]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: spread allocations across zones before introducing fragmentation
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
ca79b0c2 19#include <linux/highmem.h>
1da177e4
LT
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
10ed273f 23#include <linux/jiffies.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53
MG
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
38addce8 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 104volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
1da177e4 108/*
13808910 109 * Array of node states.
1da177e4 110 */
13808910
CL
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 118#endif
20b2f52b 119 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
ca79b0c2
AK
125atomic_long_t _totalram_pages __read_mostly;
126EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
156 * they should always be called with system_transition_mutex held
157 * (gfp_allowed_mask also should only be modified with system_transition_mutex
158 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
159 * with that modification).
452aa699 160 */
c9e664f1
RW
161
162static gfp_t saved_gfp_mask;
163
164void pm_restore_gfp_mask(void)
452aa699 165{
55f2503c 166 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
452aa699
RW
171}
172
c9e664f1 173void pm_restrict_gfp_mask(void)
452aa699 174{
55f2503c 175 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
d0164adc 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 179}
f90ac398
MG
180
181bool pm_suspended_storage(void)
182{
d0164adc 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
184 return false;
185 return true;
186}
452aa699
RW
187#endif /* CONFIG_PM_SLEEP */
188
d9c23400 189#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 190unsigned int pageblock_order __read_mostly;
d9c23400
MG
191#endif
192
d98c7a09 193static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 194
1da177e4
LT
195/*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
1da177e4 205 */
d3cda233 206int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 207#ifdef CONFIG_ZONE_DMA
d3cda233 208 [ZONE_DMA] = 256,
4b51d669 209#endif
fb0e7942 210#ifdef CONFIG_ZONE_DMA32
d3cda233 211 [ZONE_DMA32] = 256,
fb0e7942 212#endif
d3cda233 213 [ZONE_NORMAL] = 32,
e53ef38d 214#ifdef CONFIG_HIGHMEM
d3cda233 215 [ZONE_HIGHMEM] = 0,
e53ef38d 216#endif
d3cda233 217 [ZONE_MOVABLE] = 0,
2f1b6248 218};
1da177e4
LT
219
220EXPORT_SYMBOL(totalram_pages);
1da177e4 221
15ad7cdc 222static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 223#ifdef CONFIG_ZONE_DMA
2f1b6248 224 "DMA",
4b51d669 225#endif
fb0e7942 226#ifdef CONFIG_ZONE_DMA32
2f1b6248 227 "DMA32",
fb0e7942 228#endif
2f1b6248 229 "Normal",
e53ef38d 230#ifdef CONFIG_HIGHMEM
2a1e274a 231 "HighMem",
e53ef38d 232#endif
2a1e274a 233 "Movable",
033fbae9
DW
234#ifdef CONFIG_ZONE_DEVICE
235 "Device",
236#endif
2f1b6248
CL
237};
238
60f30350
VB
239char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244#ifdef CONFIG_CMA
245 "CMA",
246#endif
247#ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249#endif
250};
251
f1e61557
KS
252compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255#ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257#endif
9a982250
KS
258#ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260#endif
f1e61557
KS
261};
262
1da177e4 263int min_free_kbytes = 1024;
42aa83cb 264int user_min_free_kbytes = -1;
795ae7a0 265int watermark_scale_factor = 10;
1da177e4 266
7f16f91f
DR
267static unsigned long nr_kernel_pages __meminitdata;
268static unsigned long nr_all_pages __meminitdata;
269static unsigned long dma_reserve __meminitdata;
1da177e4 270
0ee332c1 271#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7f16f91f
DR
272static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
273static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274static unsigned long required_kernelcore __initdata;
a5c6d650 275static unsigned long required_kernelcore_percent __initdata;
7f16f91f 276static unsigned long required_movablecore __initdata;
a5c6d650 277static unsigned long required_movablecore_percent __initdata;
7f16f91f
DR
278static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
279static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
280
281/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282int movable_zone;
283EXPORT_SYMBOL(movable_zone);
284#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 285
418508c1
MS
286#if MAX_NUMNODES > 1
287int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 288int nr_online_nodes __read_mostly = 1;
418508c1 289EXPORT_SYMBOL(nr_node_ids);
62bc62a8 290EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
291#endif
292
9ef9acb0
MG
293int page_group_by_mobility_disabled __read_mostly;
294
3a80a7fa 295#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3a80a7fa 296/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 297static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 298{
ef70b6f4
MG
299 int nid = early_pfn_to_nid(pfn);
300
301 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
302 return true;
303
304 return false;
305}
306
307/*
d3035be4 308 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
309 * later in the boot cycle when it can be parallelised.
310 */
d3035be4
PT
311static bool __meminit
312defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 313{
d3035be4
PT
314 static unsigned long prev_end_pfn, nr_initialised;
315
316 /*
317 * prev_end_pfn static that contains the end of previous zone
318 * No need to protect because called very early in boot before smp_init.
319 */
320 if (prev_end_pfn != end_pfn) {
321 prev_end_pfn = end_pfn;
322 nr_initialised = 0;
323 }
324
3c2c6488 325 /* Always populate low zones for address-constrained allocations */
d3035be4 326 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 327 return false;
d3035be4
PT
328 nr_initialised++;
329 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 NODE_DATA(nid)->first_deferred_pfn = pfn;
332 return true;
3a80a7fa 333 }
d3035be4 334 return false;
3a80a7fa
MG
335}
336#else
3a80a7fa
MG
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
d3035be4 342static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 343{
d3035be4 344 return false;
3a80a7fa
MG
345}
346#endif
347
0b423ca2
MG
348/* Return a pointer to the bitmap storing bits affecting a block of pages */
349static inline unsigned long *get_pageblock_bitmap(struct page *page,
350 unsigned long pfn)
351{
352#ifdef CONFIG_SPARSEMEM
353 return __pfn_to_section(pfn)->pageblock_flags;
354#else
355 return page_zone(page)->pageblock_flags;
356#endif /* CONFIG_SPARSEMEM */
357}
358
359static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
360{
361#ifdef CONFIG_SPARSEMEM
362 pfn &= (PAGES_PER_SECTION-1);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#else
365 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367#endif /* CONFIG_SPARSEMEM */
368}
369
370/**
371 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
372 * @page: The page within the block of interest
373 * @pfn: The target page frame number
374 * @end_bitidx: The last bit of interest to retrieve
375 * @mask: mask of bits that the caller is interested in
376 *
377 * Return: pageblock_bits flags
378 */
379static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
380 unsigned long pfn,
381 unsigned long end_bitidx,
382 unsigned long mask)
383{
384 unsigned long *bitmap;
385 unsigned long bitidx, word_bitidx;
386 unsigned long word;
387
388 bitmap = get_pageblock_bitmap(page, pfn);
389 bitidx = pfn_to_bitidx(page, pfn);
390 word_bitidx = bitidx / BITS_PER_LONG;
391 bitidx &= (BITS_PER_LONG-1);
392
393 word = bitmap[word_bitidx];
394 bitidx += end_bitidx;
395 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
396}
397
398unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
399 unsigned long end_bitidx,
400 unsigned long mask)
401{
402 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
403}
404
405static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
406{
407 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
408}
409
410/**
411 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
412 * @page: The page within the block of interest
413 * @flags: The flags to set
414 * @pfn: The target page frame number
415 * @end_bitidx: The last bit of interest
416 * @mask: mask of bits that the caller is interested in
417 */
418void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
419 unsigned long pfn,
420 unsigned long end_bitidx,
421 unsigned long mask)
422{
423 unsigned long *bitmap;
424 unsigned long bitidx, word_bitidx;
425 unsigned long old_word, word;
426
427 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
428
429 bitmap = get_pageblock_bitmap(page, pfn);
430 bitidx = pfn_to_bitidx(page, pfn);
431 word_bitidx = bitidx / BITS_PER_LONG;
432 bitidx &= (BITS_PER_LONG-1);
433
434 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
435
436 bitidx += end_bitidx;
437 mask <<= (BITS_PER_LONG - bitidx - 1);
438 flags <<= (BITS_PER_LONG - bitidx - 1);
439
440 word = READ_ONCE(bitmap[word_bitidx]);
441 for (;;) {
442 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
443 if (word == old_word)
444 break;
445 word = old_word;
446 }
447}
3a80a7fa 448
ee6f509c 449void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 450{
5d0f3f72
KM
451 if (unlikely(page_group_by_mobility_disabled &&
452 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
453 migratetype = MIGRATE_UNMOVABLE;
454
b2a0ac88
MG
455 set_pageblock_flags_group(page, (unsigned long)migratetype,
456 PB_migrate, PB_migrate_end);
457}
458
13e7444b 459#ifdef CONFIG_DEBUG_VM
c6a57e19 460static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 461{
bdc8cb98
DH
462 int ret = 0;
463 unsigned seq;
464 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 465 unsigned long sp, start_pfn;
c6a57e19 466
bdc8cb98
DH
467 do {
468 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
469 start_pfn = zone->zone_start_pfn;
470 sp = zone->spanned_pages;
108bcc96 471 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
472 ret = 1;
473 } while (zone_span_seqretry(zone, seq));
474
b5e6a5a2 475 if (ret)
613813e8
DH
476 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
477 pfn, zone_to_nid(zone), zone->name,
478 start_pfn, start_pfn + sp);
b5e6a5a2 479
bdc8cb98 480 return ret;
c6a57e19
DH
481}
482
483static int page_is_consistent(struct zone *zone, struct page *page)
484{
14e07298 485 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 486 return 0;
1da177e4 487 if (zone != page_zone(page))
c6a57e19
DH
488 return 0;
489
490 return 1;
491}
492/*
493 * Temporary debugging check for pages not lying within a given zone.
494 */
d73d3c9f 495static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
496{
497 if (page_outside_zone_boundaries(zone, page))
1da177e4 498 return 1;
c6a57e19
DH
499 if (!page_is_consistent(zone, page))
500 return 1;
501
1da177e4
LT
502 return 0;
503}
13e7444b 504#else
d73d3c9f 505static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
506{
507 return 0;
508}
509#endif
510
d230dec1
KS
511static void bad_page(struct page *page, const char *reason,
512 unsigned long bad_flags)
1da177e4 513{
d936cf9b
HD
514 static unsigned long resume;
515 static unsigned long nr_shown;
516 static unsigned long nr_unshown;
517
518 /*
519 * Allow a burst of 60 reports, then keep quiet for that minute;
520 * or allow a steady drip of one report per second.
521 */
522 if (nr_shown == 60) {
523 if (time_before(jiffies, resume)) {
524 nr_unshown++;
525 goto out;
526 }
527 if (nr_unshown) {
ff8e8116 528 pr_alert(
1e9e6365 529 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
530 nr_unshown);
531 nr_unshown = 0;
532 }
533 nr_shown = 0;
534 }
535 if (nr_shown++ == 0)
536 resume = jiffies + 60 * HZ;
537
ff8e8116 538 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 539 current->comm, page_to_pfn(page));
ff8e8116
VB
540 __dump_page(page, reason);
541 bad_flags &= page->flags;
542 if (bad_flags)
543 pr_alert("bad because of flags: %#lx(%pGp)\n",
544 bad_flags, &bad_flags);
4e462112 545 dump_page_owner(page);
3dc14741 546
4f31888c 547 print_modules();
1da177e4 548 dump_stack();
d936cf9b 549out:
8cc3b392 550 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 551 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 552 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
553}
554
1da177e4
LT
555/*
556 * Higher-order pages are called "compound pages". They are structured thusly:
557 *
1d798ca3 558 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 559 *
1d798ca3
KS
560 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
561 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 562 *
1d798ca3
KS
563 * The first tail page's ->compound_dtor holds the offset in array of compound
564 * page destructors. See compound_page_dtors.
1da177e4 565 *
1d798ca3 566 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 567 * This usage means that zero-order pages may not be compound.
1da177e4 568 */
d98c7a09 569
9a982250 570void free_compound_page(struct page *page)
d98c7a09 571{
d85f3385 572 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
573}
574
d00181b9 575void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
576{
577 int i;
578 int nr_pages = 1 << order;
579
f1e61557 580 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
581 set_compound_order(page, order);
582 __SetPageHead(page);
583 for (i = 1; i < nr_pages; i++) {
584 struct page *p = page + i;
58a84aa9 585 set_page_count(p, 0);
1c290f64 586 p->mapping = TAIL_MAPPING;
1d798ca3 587 set_compound_head(p, page);
18229df5 588 }
53f9263b 589 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
590}
591
c0a32fc5
SG
592#ifdef CONFIG_DEBUG_PAGEALLOC
593unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
594bool _debug_pagealloc_enabled __read_mostly
595 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 596EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
597bool _debug_guardpage_enabled __read_mostly;
598
031bc574
JK
599static int __init early_debug_pagealloc(char *buf)
600{
601 if (!buf)
602 return -EINVAL;
2a138dc7 603 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
604}
605early_param("debug_pagealloc", early_debug_pagealloc);
606
e30825f1
JK
607static bool need_debug_guardpage(void)
608{
031bc574
JK
609 /* If we don't use debug_pagealloc, we don't need guard page */
610 if (!debug_pagealloc_enabled())
611 return false;
612
f1c1e9f7
JK
613 if (!debug_guardpage_minorder())
614 return false;
615
e30825f1
JK
616 return true;
617}
618
619static void init_debug_guardpage(void)
620{
031bc574
JK
621 if (!debug_pagealloc_enabled())
622 return;
623
f1c1e9f7
JK
624 if (!debug_guardpage_minorder())
625 return;
626
e30825f1
JK
627 _debug_guardpage_enabled = true;
628}
629
630struct page_ext_operations debug_guardpage_ops = {
631 .need = need_debug_guardpage,
632 .init = init_debug_guardpage,
633};
c0a32fc5
SG
634
635static int __init debug_guardpage_minorder_setup(char *buf)
636{
637 unsigned long res;
638
639 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 640 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
641 return 0;
642 }
643 _debug_guardpage_minorder = res;
1170532b 644 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
645 return 0;
646}
f1c1e9f7 647early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 648
acbc15a4 649static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 650 unsigned int order, int migratetype)
c0a32fc5 651{
e30825f1
JK
652 struct page_ext *page_ext;
653
654 if (!debug_guardpage_enabled())
acbc15a4
JK
655 return false;
656
657 if (order >= debug_guardpage_minorder())
658 return false;
e30825f1
JK
659
660 page_ext = lookup_page_ext(page);
f86e4271 661 if (unlikely(!page_ext))
acbc15a4 662 return false;
f86e4271 663
e30825f1
JK
664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665
2847cf95
JK
666 INIT_LIST_HEAD(&page->lru);
667 set_page_private(page, order);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
670
671 return true;
c0a32fc5
SG
672}
673
2847cf95
JK
674static inline void clear_page_guard(struct zone *zone, struct page *page,
675 unsigned int order, int migratetype)
c0a32fc5 676{
e30825f1
JK
677 struct page_ext *page_ext;
678
679 if (!debug_guardpage_enabled())
680 return;
681
682 page_ext = lookup_page_ext(page);
f86e4271
YS
683 if (unlikely(!page_ext))
684 return;
685
e30825f1
JK
686 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
687
2847cf95
JK
688 set_page_private(page, 0);
689 if (!is_migrate_isolate(migratetype))
690 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
691}
692#else
980ac167 693struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
694static inline bool set_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype) { return false; }
2847cf95
JK
696static inline void clear_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) {}
c0a32fc5
SG
698#endif
699
7aeb09f9 700static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 701{
4c21e2f2 702 set_page_private(page, order);
676165a8 703 __SetPageBuddy(page);
1da177e4
LT
704}
705
706static inline void rmv_page_order(struct page *page)
707{
676165a8 708 __ClearPageBuddy(page);
4c21e2f2 709 set_page_private(page, 0);
1da177e4
LT
710}
711
1da177e4
LT
712/*
713 * This function checks whether a page is free && is the buddy
6e292b9b 714 * we can coalesce a page and its buddy if
13ad59df 715 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 716 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
717 * (c) a page and its buddy have the same order &&
718 * (d) a page and its buddy are in the same zone.
676165a8 719 *
6e292b9b
MW
720 * For recording whether a page is in the buddy system, we set PageBuddy.
721 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 722 *
676165a8 723 * For recording page's order, we use page_private(page).
1da177e4 724 */
cb2b95e1 725static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 726 unsigned int order)
1da177e4 727{
c0a32fc5 728 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
729 if (page_zone_id(page) != page_zone_id(buddy))
730 return 0;
731
4c5018ce
WY
732 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
733
c0a32fc5
SG
734 return 1;
735 }
736
cb2b95e1 737 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
738 /*
739 * zone check is done late to avoid uselessly
740 * calculating zone/node ids for pages that could
741 * never merge.
742 */
743 if (page_zone_id(page) != page_zone_id(buddy))
744 return 0;
745
4c5018ce
WY
746 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
747
6aa3001b 748 return 1;
676165a8 749 }
6aa3001b 750 return 0;
1da177e4
LT
751}
752
753/*
754 * Freeing function for a buddy system allocator.
755 *
756 * The concept of a buddy system is to maintain direct-mapped table
757 * (containing bit values) for memory blocks of various "orders".
758 * The bottom level table contains the map for the smallest allocatable
759 * units of memory (here, pages), and each level above it describes
760 * pairs of units from the levels below, hence, "buddies".
761 * At a high level, all that happens here is marking the table entry
762 * at the bottom level available, and propagating the changes upward
763 * as necessary, plus some accounting needed to play nicely with other
764 * parts of the VM system.
765 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
766 * free pages of length of (1 << order) and marked with PageBuddy.
767 * Page's order is recorded in page_private(page) field.
1da177e4 768 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
769 * other. That is, if we allocate a small block, and both were
770 * free, the remainder of the region must be split into blocks.
1da177e4 771 * If a block is freed, and its buddy is also free, then this
5f63b720 772 * triggers coalescing into a block of larger size.
1da177e4 773 *
6d49e352 774 * -- nyc
1da177e4
LT
775 */
776
48db57f8 777static inline void __free_one_page(struct page *page,
dc4b0caf 778 unsigned long pfn,
ed0ae21d
MG
779 struct zone *zone, unsigned int order,
780 int migratetype)
1da177e4 781{
76741e77
VB
782 unsigned long combined_pfn;
783 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 784 struct page *buddy;
d9dddbf5
VB
785 unsigned int max_order;
786
787 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 788
d29bb978 789 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 790 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 791
ed0ae21d 792 VM_BUG_ON(migratetype == -1);
d9dddbf5 793 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 794 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 795
76741e77 796 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 797 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 798
d9dddbf5 799continue_merging:
3c605096 800 while (order < max_order - 1) {
76741e77
VB
801 buddy_pfn = __find_buddy_pfn(pfn, order);
802 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
803
804 if (!pfn_valid_within(buddy_pfn))
805 goto done_merging;
cb2b95e1 806 if (!page_is_buddy(page, buddy, order))
d9dddbf5 807 goto done_merging;
c0a32fc5
SG
808 /*
809 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
810 * merge with it and move up one order.
811 */
812 if (page_is_guard(buddy)) {
2847cf95 813 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
814 } else {
815 list_del(&buddy->lru);
816 zone->free_area[order].nr_free--;
817 rmv_page_order(buddy);
818 }
76741e77
VB
819 combined_pfn = buddy_pfn & pfn;
820 page = page + (combined_pfn - pfn);
821 pfn = combined_pfn;
1da177e4
LT
822 order++;
823 }
d9dddbf5
VB
824 if (max_order < MAX_ORDER) {
825 /* If we are here, it means order is >= pageblock_order.
826 * We want to prevent merge between freepages on isolate
827 * pageblock and normal pageblock. Without this, pageblock
828 * isolation could cause incorrect freepage or CMA accounting.
829 *
830 * We don't want to hit this code for the more frequent
831 * low-order merging.
832 */
833 if (unlikely(has_isolate_pageblock(zone))) {
834 int buddy_mt;
835
76741e77
VB
836 buddy_pfn = __find_buddy_pfn(pfn, order);
837 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
838 buddy_mt = get_pageblock_migratetype(buddy);
839
840 if (migratetype != buddy_mt
841 && (is_migrate_isolate(migratetype) ||
842 is_migrate_isolate(buddy_mt)))
843 goto done_merging;
844 }
845 max_order++;
846 goto continue_merging;
847 }
848
849done_merging:
1da177e4 850 set_page_order(page, order);
6dda9d55
CZ
851
852 /*
853 * If this is not the largest possible page, check if the buddy
854 * of the next-highest order is free. If it is, it's possible
855 * that pages are being freed that will coalesce soon. In case,
856 * that is happening, add the free page to the tail of the list
857 * so it's less likely to be used soon and more likely to be merged
858 * as a higher order page
859 */
13ad59df 860 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 861 struct page *higher_page, *higher_buddy;
76741e77
VB
862 combined_pfn = buddy_pfn & pfn;
863 higher_page = page + (combined_pfn - pfn);
864 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
865 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
866 if (pfn_valid_within(buddy_pfn) &&
867 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
868 list_add_tail(&page->lru,
869 &zone->free_area[order].free_list[migratetype]);
870 goto out;
871 }
872 }
873
874 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
875out:
1da177e4
LT
876 zone->free_area[order].nr_free++;
877}
878
7bfec6f4
MG
879/*
880 * A bad page could be due to a number of fields. Instead of multiple branches,
881 * try and check multiple fields with one check. The caller must do a detailed
882 * check if necessary.
883 */
884static inline bool page_expected_state(struct page *page,
885 unsigned long check_flags)
886{
887 if (unlikely(atomic_read(&page->_mapcount) != -1))
888 return false;
889
890 if (unlikely((unsigned long)page->mapping |
891 page_ref_count(page) |
892#ifdef CONFIG_MEMCG
893 (unsigned long)page->mem_cgroup |
894#endif
895 (page->flags & check_flags)))
896 return false;
897
898 return true;
899}
900
bb552ac6 901static void free_pages_check_bad(struct page *page)
1da177e4 902{
7bfec6f4
MG
903 const char *bad_reason;
904 unsigned long bad_flags;
905
7bfec6f4
MG
906 bad_reason = NULL;
907 bad_flags = 0;
f0b791a3 908
53f9263b 909 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
910 bad_reason = "nonzero mapcount";
911 if (unlikely(page->mapping != NULL))
912 bad_reason = "non-NULL mapping";
fe896d18 913 if (unlikely(page_ref_count(page) != 0))
0139aa7b 914 bad_reason = "nonzero _refcount";
f0b791a3
DH
915 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
916 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
917 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
918 }
9edad6ea
JW
919#ifdef CONFIG_MEMCG
920 if (unlikely(page->mem_cgroup))
921 bad_reason = "page still charged to cgroup";
922#endif
7bfec6f4 923 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
924}
925
926static inline int free_pages_check(struct page *page)
927{
da838d4f 928 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 929 return 0;
bb552ac6
MG
930
931 /* Something has gone sideways, find it */
932 free_pages_check_bad(page);
7bfec6f4 933 return 1;
1da177e4
LT
934}
935
4db7548c
MG
936static int free_tail_pages_check(struct page *head_page, struct page *page)
937{
938 int ret = 1;
939
940 /*
941 * We rely page->lru.next never has bit 0 set, unless the page
942 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
943 */
944 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
945
946 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
947 ret = 0;
948 goto out;
949 }
950 switch (page - head_page) {
951 case 1:
4da1984e 952 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
953 if (unlikely(compound_mapcount(page))) {
954 bad_page(page, "nonzero compound_mapcount", 0);
955 goto out;
956 }
957 break;
958 case 2:
959 /*
960 * the second tail page: ->mapping is
fa3015b7 961 * deferred_list.next -- ignore value.
4db7548c
MG
962 */
963 break;
964 default:
965 if (page->mapping != TAIL_MAPPING) {
966 bad_page(page, "corrupted mapping in tail page", 0);
967 goto out;
968 }
969 break;
970 }
971 if (unlikely(!PageTail(page))) {
972 bad_page(page, "PageTail not set", 0);
973 goto out;
974 }
975 if (unlikely(compound_head(page) != head_page)) {
976 bad_page(page, "compound_head not consistent", 0);
977 goto out;
978 }
979 ret = 0;
980out:
981 page->mapping = NULL;
982 clear_compound_head(page);
983 return ret;
984}
985
e2769dbd
MG
986static __always_inline bool free_pages_prepare(struct page *page,
987 unsigned int order, bool check_free)
4db7548c 988{
e2769dbd 989 int bad = 0;
4db7548c 990
4db7548c
MG
991 VM_BUG_ON_PAGE(PageTail(page), page);
992
e2769dbd 993 trace_mm_page_free(page, order);
e2769dbd
MG
994
995 /*
996 * Check tail pages before head page information is cleared to
997 * avoid checking PageCompound for order-0 pages.
998 */
999 if (unlikely(order)) {
1000 bool compound = PageCompound(page);
1001 int i;
1002
1003 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1004
9a73f61b
KS
1005 if (compound)
1006 ClearPageDoubleMap(page);
e2769dbd
MG
1007 for (i = 1; i < (1 << order); i++) {
1008 if (compound)
1009 bad += free_tail_pages_check(page, page + i);
1010 if (unlikely(free_pages_check(page + i))) {
1011 bad++;
1012 continue;
1013 }
1014 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1015 }
1016 }
bda807d4 1017 if (PageMappingFlags(page))
4db7548c 1018 page->mapping = NULL;
c4159a75 1019 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1020 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
4db7548c 1025
e2769dbd
MG
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
4db7548c
MG
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 debug_check_no_obj_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 }
e2769dbd
MG
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
29b52de1 1039 kasan_free_pages(page, order);
4db7548c 1040
4db7548c
MG
1041 return true;
1042}
1043
e2769dbd
MG
1044#ifdef CONFIG_DEBUG_VM
1045static inline bool free_pcp_prepare(struct page *page)
1046{
1047 return free_pages_prepare(page, 0, true);
1048}
1049
1050static inline bool bulkfree_pcp_prepare(struct page *page)
1051{
1052 return false;
1053}
1054#else
1055static bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, false);
1058}
1059
4db7548c
MG
1060static bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return free_pages_check(page);
1063}
1064#endif /* CONFIG_DEBUG_VM */
1065
97334162
AL
1066static inline void prefetch_buddy(struct page *page)
1067{
1068 unsigned long pfn = page_to_pfn(page);
1069 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1070 struct page *buddy = page + (buddy_pfn - pfn);
1071
1072 prefetch(buddy);
1073}
1074
1da177e4 1075/*
5f8dcc21 1076 * Frees a number of pages from the PCP lists
1da177e4 1077 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1078 * count is the number of pages to free.
1da177e4
LT
1079 *
1080 * If the zone was previously in an "all pages pinned" state then look to
1081 * see if this freeing clears that state.
1082 *
1083 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1084 * pinned" detection logic.
1085 */
5f8dcc21
MG
1086static void free_pcppages_bulk(struct zone *zone, int count,
1087 struct per_cpu_pages *pcp)
1da177e4 1088{
5f8dcc21 1089 int migratetype = 0;
a6f9edd6 1090 int batch_free = 0;
97334162 1091 int prefetch_nr = 0;
3777999d 1092 bool isolated_pageblocks;
0a5f4e5b
AL
1093 struct page *page, *tmp;
1094 LIST_HEAD(head);
f2260e6b 1095
e5b31ac2 1096 while (count) {
5f8dcc21
MG
1097 struct list_head *list;
1098
1099 /*
a6f9edd6
MG
1100 * Remove pages from lists in a round-robin fashion. A
1101 * batch_free count is maintained that is incremented when an
1102 * empty list is encountered. This is so more pages are freed
1103 * off fuller lists instead of spinning excessively around empty
1104 * lists
5f8dcc21
MG
1105 */
1106 do {
a6f9edd6 1107 batch_free++;
5f8dcc21
MG
1108 if (++migratetype == MIGRATE_PCPTYPES)
1109 migratetype = 0;
1110 list = &pcp->lists[migratetype];
1111 } while (list_empty(list));
48db57f8 1112
1d16871d
NK
1113 /* This is the only non-empty list. Free them all. */
1114 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1115 batch_free = count;
1d16871d 1116
a6f9edd6 1117 do {
a16601c5 1118 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1119 /* must delete to avoid corrupting pcp list */
a6f9edd6 1120 list_del(&page->lru);
77ba9062 1121 pcp->count--;
aa016d14 1122
4db7548c
MG
1123 if (bulkfree_pcp_prepare(page))
1124 continue;
1125
0a5f4e5b 1126 list_add_tail(&page->lru, &head);
97334162
AL
1127
1128 /*
1129 * We are going to put the page back to the global
1130 * pool, prefetch its buddy to speed up later access
1131 * under zone->lock. It is believed the overhead of
1132 * an additional test and calculating buddy_pfn here
1133 * can be offset by reduced memory latency later. To
1134 * avoid excessive prefetching due to large count, only
1135 * prefetch buddy for the first pcp->batch nr of pages.
1136 */
1137 if (prefetch_nr++ < pcp->batch)
1138 prefetch_buddy(page);
e5b31ac2 1139 } while (--count && --batch_free && !list_empty(list));
1da177e4 1140 }
0a5f4e5b
AL
1141
1142 spin_lock(&zone->lock);
1143 isolated_pageblocks = has_isolate_pageblock(zone);
1144
1145 /*
1146 * Use safe version since after __free_one_page(),
1147 * page->lru.next will not point to original list.
1148 */
1149 list_for_each_entry_safe(page, tmp, &head, lru) {
1150 int mt = get_pcppage_migratetype(page);
1151 /* MIGRATE_ISOLATE page should not go to pcplists */
1152 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1153 /* Pageblock could have been isolated meanwhile */
1154 if (unlikely(isolated_pageblocks))
1155 mt = get_pageblock_migratetype(page);
1156
1157 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1158 trace_mm_page_pcpu_drain(page, 0, mt);
1159 }
d34b0733 1160 spin_unlock(&zone->lock);
1da177e4
LT
1161}
1162
dc4b0caf
MG
1163static void free_one_page(struct zone *zone,
1164 struct page *page, unsigned long pfn,
7aeb09f9 1165 unsigned int order,
ed0ae21d 1166 int migratetype)
1da177e4 1167{
d34b0733 1168 spin_lock(&zone->lock);
ad53f92e
JK
1169 if (unlikely(has_isolate_pageblock(zone) ||
1170 is_migrate_isolate(migratetype))) {
1171 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1172 }
dc4b0caf 1173 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1174 spin_unlock(&zone->lock);
48db57f8
NP
1175}
1176
1e8ce83c 1177static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1178 unsigned long zone, int nid)
1e8ce83c 1179{
d0dc12e8 1180 mm_zero_struct_page(page);
1e8ce83c 1181 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1182 init_page_count(page);
1183 page_mapcount_reset(page);
1184 page_cpupid_reset_last(page);
2813b9c0 1185 page_kasan_tag_reset(page);
1e8ce83c 1186
1e8ce83c
RH
1187 INIT_LIST_HEAD(&page->lru);
1188#ifdef WANT_PAGE_VIRTUAL
1189 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1190 if (!is_highmem_idx(zone))
1191 set_page_address(page, __va(pfn << PAGE_SHIFT));
1192#endif
1193}
1194
7e18adb4 1195#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1196static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1197{
1198 pg_data_t *pgdat;
1199 int nid, zid;
1200
1201 if (!early_page_uninitialised(pfn))
1202 return;
1203
1204 nid = early_pfn_to_nid(pfn);
1205 pgdat = NODE_DATA(nid);
1206
1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 struct zone *zone = &pgdat->node_zones[zid];
1209
1210 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1211 break;
1212 }
d0dc12e8 1213 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1214}
1215#else
1216static inline void init_reserved_page(unsigned long pfn)
1217{
1218}
1219#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1220
92923ca3
NZ
1221/*
1222 * Initialised pages do not have PageReserved set. This function is
1223 * called for each range allocated by the bootmem allocator and
1224 * marks the pages PageReserved. The remaining valid pages are later
1225 * sent to the buddy page allocator.
1226 */
4b50bcc7 1227void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1228{
1229 unsigned long start_pfn = PFN_DOWN(start);
1230 unsigned long end_pfn = PFN_UP(end);
1231
7e18adb4
MG
1232 for (; start_pfn < end_pfn; start_pfn++) {
1233 if (pfn_valid(start_pfn)) {
1234 struct page *page = pfn_to_page(start_pfn);
1235
1236 init_reserved_page(start_pfn);
1d798ca3
KS
1237
1238 /* Avoid false-positive PageTail() */
1239 INIT_LIST_HEAD(&page->lru);
1240
d483da5b
AD
1241 /*
1242 * no need for atomic set_bit because the struct
1243 * page is not visible yet so nobody should
1244 * access it yet.
1245 */
1246 __SetPageReserved(page);
7e18adb4
MG
1247 }
1248 }
92923ca3
NZ
1249}
1250
ec95f53a
KM
1251static void __free_pages_ok(struct page *page, unsigned int order)
1252{
d34b0733 1253 unsigned long flags;
95e34412 1254 int migratetype;
dc4b0caf 1255 unsigned long pfn = page_to_pfn(page);
ec95f53a 1256
e2769dbd 1257 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1258 return;
1259
cfc47a28 1260 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1261 local_irq_save(flags);
1262 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1263 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1264 local_irq_restore(flags);
1da177e4
LT
1265}
1266
949698a3 1267static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1268{
c3993076 1269 unsigned int nr_pages = 1 << order;
e2d0bd2b 1270 struct page *p = page;
c3993076 1271 unsigned int loop;
a226f6c8 1272
e2d0bd2b
YL
1273 prefetchw(p);
1274 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1275 prefetchw(p + 1);
c3993076
JW
1276 __ClearPageReserved(p);
1277 set_page_count(p, 0);
a226f6c8 1278 }
e2d0bd2b
YL
1279 __ClearPageReserved(p);
1280 set_page_count(p, 0);
c3993076 1281
9705bea5 1282 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1283 set_page_refcounted(page);
1284 __free_pages(page, order);
a226f6c8
DH
1285}
1286
75a592a4
MG
1287#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1289
75a592a4
MG
1290static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1291
1292int __meminit early_pfn_to_nid(unsigned long pfn)
1293{
7ace9917 1294 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1295 int nid;
1296
7ace9917 1297 spin_lock(&early_pfn_lock);
75a592a4 1298 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1299 if (nid < 0)
e4568d38 1300 nid = first_online_node;
7ace9917
MG
1301 spin_unlock(&early_pfn_lock);
1302
1303 return nid;
75a592a4
MG
1304}
1305#endif
1306
1307#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1308static inline bool __meminit __maybe_unused
1309meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
75a592a4
MG
1311{
1312 int nid;
1313
1314 nid = __early_pfn_to_nid(pfn, state);
1315 if (nid >= 0 && nid != node)
1316 return false;
1317 return true;
1318}
1319
1320/* Only safe to use early in boot when initialisation is single-threaded */
1321static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322{
1323 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1324}
1325
1326#else
1327
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return true;
1331}
d73d3c9f
MK
1332static inline bool __meminit __maybe_unused
1333meminit_pfn_in_nid(unsigned long pfn, int node,
1334 struct mminit_pfnnid_cache *state)
75a592a4
MG
1335{
1336 return true;
1337}
1338#endif
1339
1340
7c2ee349 1341void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1342 unsigned int order)
1343{
1344 if (early_page_uninitialised(pfn))
1345 return;
949698a3 1346 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1347}
1348
7cf91a98
JK
1349/*
1350 * Check that the whole (or subset of) a pageblock given by the interval of
1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352 * with the migration of free compaction scanner. The scanners then need to
1353 * use only pfn_valid_within() check for arches that allow holes within
1354 * pageblocks.
1355 *
1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1357 *
1358 * It's possible on some configurations to have a setup like node0 node1 node0
1359 * i.e. it's possible that all pages within a zones range of pages do not
1360 * belong to a single zone. We assume that a border between node0 and node1
1361 * can occur within a single pageblock, but not a node0 node1 node0
1362 * interleaving within a single pageblock. It is therefore sufficient to check
1363 * the first and last page of a pageblock and avoid checking each individual
1364 * page in a pageblock.
1365 */
1366struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 unsigned long end_pfn, struct zone *zone)
1368{
1369 struct page *start_page;
1370 struct page *end_page;
1371
1372 /* end_pfn is one past the range we are checking */
1373 end_pfn--;
1374
1375 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1376 return NULL;
1377
2d070eab
MH
1378 start_page = pfn_to_online_page(start_pfn);
1379 if (!start_page)
1380 return NULL;
7cf91a98
JK
1381
1382 if (page_zone(start_page) != zone)
1383 return NULL;
1384
1385 end_page = pfn_to_page(end_pfn);
1386
1387 /* This gives a shorter code than deriving page_zone(end_page) */
1388 if (page_zone_id(start_page) != page_zone_id(end_page))
1389 return NULL;
1390
1391 return start_page;
1392}
1393
1394void set_zone_contiguous(struct zone *zone)
1395{
1396 unsigned long block_start_pfn = zone->zone_start_pfn;
1397 unsigned long block_end_pfn;
1398
1399 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1400 for (; block_start_pfn < zone_end_pfn(zone);
1401 block_start_pfn = block_end_pfn,
1402 block_end_pfn += pageblock_nr_pages) {
1403
1404 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1405
1406 if (!__pageblock_pfn_to_page(block_start_pfn,
1407 block_end_pfn, zone))
1408 return;
1409 }
1410
1411 /* We confirm that there is no hole */
1412 zone->contiguous = true;
1413}
1414
1415void clear_zone_contiguous(struct zone *zone)
1416{
1417 zone->contiguous = false;
1418}
1419
7e18adb4 1420#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1421static void __init deferred_free_range(unsigned long pfn,
1422 unsigned long nr_pages)
a4de83dd 1423{
2f47a91f
PT
1424 struct page *page;
1425 unsigned long i;
a4de83dd 1426
2f47a91f 1427 if (!nr_pages)
a4de83dd
MG
1428 return;
1429
2f47a91f
PT
1430 page = pfn_to_page(pfn);
1431
a4de83dd 1432 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1433 if (nr_pages == pageblock_nr_pages &&
1434 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1436 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1437 return;
1438 }
1439
e780149b
XQ
1440 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1443 __free_pages_boot_core(page, 0);
e780149b 1444 }
a4de83dd
MG
1445}
1446
d3cd131d
NS
1447/* Completion tracking for deferred_init_memmap() threads */
1448static atomic_t pgdat_init_n_undone __initdata;
1449static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450
1451static inline void __init pgdat_init_report_one_done(void)
1452{
1453 if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 complete(&pgdat_init_all_done_comp);
1455}
0e1cc95b 1456
2f47a91f 1457/*
80b1f41c
PT
1458 * Returns true if page needs to be initialized or freed to buddy allocator.
1459 *
1460 * First we check if pfn is valid on architectures where it is possible to have
1461 * holes within pageblock_nr_pages. On systems where it is not possible, this
1462 * function is optimized out.
1463 *
1464 * Then, we check if a current large page is valid by only checking the validity
1465 * of the head pfn.
1466 *
1467 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1468 * within a node: a pfn is between start and end of a node, but does not belong
1469 * to this memory node.
2f47a91f 1470 */
80b1f41c
PT
1471static inline bool __init
1472deferred_pfn_valid(int nid, unsigned long pfn,
1473 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1474{
80b1f41c
PT
1475 if (!pfn_valid_within(pfn))
1476 return false;
1477 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1478 return false;
1479 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1480 return false;
1481 return true;
1482}
2f47a91f 1483
80b1f41c
PT
1484/*
1485 * Free pages to buddy allocator. Try to free aligned pages in
1486 * pageblock_nr_pages sizes.
1487 */
1488static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1489 unsigned long end_pfn)
1490{
1491 struct mminit_pfnnid_cache nid_init_state = { };
1492 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1493 unsigned long nr_free = 0;
2f47a91f 1494
80b1f41c
PT
1495 for (; pfn < end_pfn; pfn++) {
1496 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1497 deferred_free_range(pfn - nr_free, nr_free);
1498 nr_free = 0;
1499 } else if (!(pfn & nr_pgmask)) {
1500 deferred_free_range(pfn - nr_free, nr_free);
1501 nr_free = 1;
3a2d7fa8 1502 touch_nmi_watchdog();
80b1f41c
PT
1503 } else {
1504 nr_free++;
1505 }
1506 }
1507 /* Free the last block of pages to allocator */
1508 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1509}
1510
80b1f41c
PT
1511/*
1512 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1513 * by performing it only once every pageblock_nr_pages.
1514 * Return number of pages initialized.
1515 */
1516static unsigned long __init deferred_init_pages(int nid, int zid,
1517 unsigned long pfn,
1518 unsigned long end_pfn)
2f47a91f
PT
1519{
1520 struct mminit_pfnnid_cache nid_init_state = { };
1521 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1522 unsigned long nr_pages = 0;
2f47a91f 1523 struct page *page = NULL;
2f47a91f 1524
80b1f41c
PT
1525 for (; pfn < end_pfn; pfn++) {
1526 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1527 page = NULL;
2f47a91f 1528 continue;
80b1f41c 1529 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1530 page = pfn_to_page(pfn);
3a2d7fa8 1531 touch_nmi_watchdog();
80b1f41c
PT
1532 } else {
1533 page++;
2f47a91f 1534 }
d0dc12e8 1535 __init_single_page(page, pfn, zid, nid);
80b1f41c 1536 nr_pages++;
2f47a91f 1537 }
80b1f41c 1538 return (nr_pages);
2f47a91f
PT
1539}
1540
7e18adb4 1541/* Initialise remaining memory on a node */
0e1cc95b 1542static int __init deferred_init_memmap(void *data)
7e18adb4 1543{
0e1cc95b
MG
1544 pg_data_t *pgdat = data;
1545 int nid = pgdat->node_id;
7e18adb4
MG
1546 unsigned long start = jiffies;
1547 unsigned long nr_pages = 0;
3a2d7fa8 1548 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1549 phys_addr_t spa, epa;
1550 int zid;
7e18adb4 1551 struct zone *zone;
0e1cc95b 1552 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1553 u64 i;
7e18adb4 1554
3a2d7fa8
PT
1555 /* Bind memory initialisation thread to a local node if possible */
1556 if (!cpumask_empty(cpumask))
1557 set_cpus_allowed_ptr(current, cpumask);
1558
1559 pgdat_resize_lock(pgdat, &flags);
1560 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1561 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1562 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1563 pgdat_init_report_one_done();
0e1cc95b
MG
1564 return 0;
1565 }
1566
7e18adb4
MG
1567 /* Sanity check boundaries */
1568 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1569 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1570 pgdat->first_deferred_pfn = ULONG_MAX;
1571
1572 /* Only the highest zone is deferred so find it */
1573 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1574 zone = pgdat->node_zones + zid;
1575 if (first_init_pfn < zone_end_pfn(zone))
1576 break;
1577 }
2f47a91f 1578 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1579
80b1f41c
PT
1580 /*
1581 * Initialize and free pages. We do it in two loops: first we initialize
1582 * struct page, than free to buddy allocator, because while we are
1583 * freeing pages we can access pages that are ahead (computing buddy
1584 * page in __free_one_page()).
1585 */
1586 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1587 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1588 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1589 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1590 }
2f47a91f
PT
1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1594 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1595 }
3a2d7fa8 1596 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1597
1598 /* Sanity check that the next zone really is unpopulated */
1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1600
0e1cc95b 1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1602 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1603
1604 pgdat_init_report_one_done();
0e1cc95b
MG
1605 return 0;
1606}
c9e97a19
PT
1607
1608/*
1609 * During boot we initialize deferred pages on-demand, as needed, but once
1610 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1611 * and we can permanently disable that path.
1612 */
1613static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1614
1615/*
1616 * If this zone has deferred pages, try to grow it by initializing enough
1617 * deferred pages to satisfy the allocation specified by order, rounded up to
1618 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1619 * of SECTION_SIZE bytes by initializing struct pages in increments of
1620 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1621 *
1622 * Return true when zone was grown, otherwise return false. We return true even
1623 * when we grow less than requested, to let the caller decide if there are
1624 * enough pages to satisfy the allocation.
1625 *
1626 * Note: We use noinline because this function is needed only during boot, and
1627 * it is called from a __ref function _deferred_grow_zone. This way we are
1628 * making sure that it is not inlined into permanent text section.
1629 */
1630static noinline bool __init
1631deferred_grow_zone(struct zone *zone, unsigned int order)
1632{
1633 int zid = zone_idx(zone);
1634 int nid = zone_to_nid(zone);
1635 pg_data_t *pgdat = NODE_DATA(nid);
1636 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1637 unsigned long nr_pages = 0;
1638 unsigned long first_init_pfn, spfn, epfn, t, flags;
1639 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1640 phys_addr_t spa, epa;
1641 u64 i;
1642
1643 /* Only the last zone may have deferred pages */
1644 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1645 return false;
1646
1647 pgdat_resize_lock(pgdat, &flags);
1648
1649 /*
1650 * If deferred pages have been initialized while we were waiting for
1651 * the lock, return true, as the zone was grown. The caller will retry
1652 * this zone. We won't return to this function since the caller also
1653 * has this static branch.
1654 */
1655 if (!static_branch_unlikely(&deferred_pages)) {
1656 pgdat_resize_unlock(pgdat, &flags);
1657 return true;
1658 }
1659
1660 /*
1661 * If someone grew this zone while we were waiting for spinlock, return
1662 * true, as there might be enough pages already.
1663 */
1664 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1665 pgdat_resize_unlock(pgdat, &flags);
1666 return true;
1667 }
1668
1669 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1670
1671 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1672 pgdat_resize_unlock(pgdat, &flags);
1673 return false;
1674 }
1675
1676 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1677 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1678 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1679
1680 while (spfn < epfn && nr_pages < nr_pages_needed) {
1681 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1682 first_deferred_pfn = min(t, epfn);
1683 nr_pages += deferred_init_pages(nid, zid, spfn,
1684 first_deferred_pfn);
1685 spfn = first_deferred_pfn;
1686 }
1687
1688 if (nr_pages >= nr_pages_needed)
1689 break;
1690 }
1691
1692 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1693 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1694 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1695 deferred_free_pages(nid, zid, spfn, epfn);
1696
1697 if (first_deferred_pfn == epfn)
1698 break;
1699 }
1700 pgdat->first_deferred_pfn = first_deferred_pfn;
1701 pgdat_resize_unlock(pgdat, &flags);
1702
1703 return nr_pages > 0;
1704}
1705
1706/*
1707 * deferred_grow_zone() is __init, but it is called from
1708 * get_page_from_freelist() during early boot until deferred_pages permanently
1709 * disables this call. This is why we have refdata wrapper to avoid warning,
1710 * and to ensure that the function body gets unloaded.
1711 */
1712static bool __ref
1713_deferred_grow_zone(struct zone *zone, unsigned int order)
1714{
1715 return deferred_grow_zone(zone, order);
1716}
1717
7cf91a98 1718#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1719
1720void __init page_alloc_init_late(void)
1721{
7cf91a98
JK
1722 struct zone *zone;
1723
1724#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1725 int nid;
1726
d3cd131d
NS
1727 /* There will be num_node_state(N_MEMORY) threads */
1728 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1729 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1730 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1731 }
1732
1733 /* Block until all are initialised */
d3cd131d 1734 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1735
c9e97a19
PT
1736 /*
1737 * We initialized the rest of the deferred pages. Permanently disable
1738 * on-demand struct page initialization.
1739 */
1740 static_branch_disable(&deferred_pages);
1741
4248b0da
MG
1742 /* Reinit limits that are based on free pages after the kernel is up */
1743 files_maxfiles_init();
7cf91a98 1744#endif
3010f876
PT
1745#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1746 /* Discard memblock private memory */
1747 memblock_discard();
1748#endif
7cf91a98
JK
1749
1750 for_each_populated_zone(zone)
1751 set_zone_contiguous(zone);
7e18adb4 1752}
7e18adb4 1753
47118af0 1754#ifdef CONFIG_CMA
9cf510a5 1755/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1756void __init init_cma_reserved_pageblock(struct page *page)
1757{
1758 unsigned i = pageblock_nr_pages;
1759 struct page *p = page;
1760
1761 do {
1762 __ClearPageReserved(p);
1763 set_page_count(p, 0);
d883c6cf 1764 } while (++p, --i);
47118af0 1765
47118af0 1766 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1767
1768 if (pageblock_order >= MAX_ORDER) {
1769 i = pageblock_nr_pages;
1770 p = page;
1771 do {
1772 set_page_refcounted(p);
1773 __free_pages(p, MAX_ORDER - 1);
1774 p += MAX_ORDER_NR_PAGES;
1775 } while (i -= MAX_ORDER_NR_PAGES);
1776 } else {
1777 set_page_refcounted(page);
1778 __free_pages(page, pageblock_order);
1779 }
1780
3dcc0571 1781 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1782}
1783#endif
1da177e4
LT
1784
1785/*
1786 * The order of subdivision here is critical for the IO subsystem.
1787 * Please do not alter this order without good reasons and regression
1788 * testing. Specifically, as large blocks of memory are subdivided,
1789 * the order in which smaller blocks are delivered depends on the order
1790 * they're subdivided in this function. This is the primary factor
1791 * influencing the order in which pages are delivered to the IO
1792 * subsystem according to empirical testing, and this is also justified
1793 * by considering the behavior of a buddy system containing a single
1794 * large block of memory acted on by a series of small allocations.
1795 * This behavior is a critical factor in sglist merging's success.
1796 *
6d49e352 1797 * -- nyc
1da177e4 1798 */
085cc7d5 1799static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1800 int low, int high, struct free_area *area,
1801 int migratetype)
1da177e4
LT
1802{
1803 unsigned long size = 1 << high;
1804
1805 while (high > low) {
1806 area--;
1807 high--;
1808 size >>= 1;
309381fe 1809 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1810
acbc15a4
JK
1811 /*
1812 * Mark as guard pages (or page), that will allow to
1813 * merge back to allocator when buddy will be freed.
1814 * Corresponding page table entries will not be touched,
1815 * pages will stay not present in virtual address space
1816 */
1817 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1818 continue;
acbc15a4 1819
b2a0ac88 1820 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1821 area->nr_free++;
1822 set_page_order(&page[size], high);
1823 }
1da177e4
LT
1824}
1825
4e611801 1826static void check_new_page_bad(struct page *page)
1da177e4 1827{
4e611801
VB
1828 const char *bad_reason = NULL;
1829 unsigned long bad_flags = 0;
7bfec6f4 1830
53f9263b 1831 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1832 bad_reason = "nonzero mapcount";
1833 if (unlikely(page->mapping != NULL))
1834 bad_reason = "non-NULL mapping";
fe896d18 1835 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1836 bad_reason = "nonzero _count";
f4c18e6f
NH
1837 if (unlikely(page->flags & __PG_HWPOISON)) {
1838 bad_reason = "HWPoisoned (hardware-corrupted)";
1839 bad_flags = __PG_HWPOISON;
e570f56c
NH
1840 /* Don't complain about hwpoisoned pages */
1841 page_mapcount_reset(page); /* remove PageBuddy */
1842 return;
f4c18e6f 1843 }
f0b791a3
DH
1844 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1845 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1846 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1847 }
9edad6ea
JW
1848#ifdef CONFIG_MEMCG
1849 if (unlikely(page->mem_cgroup))
1850 bad_reason = "page still charged to cgroup";
1851#endif
4e611801
VB
1852 bad_page(page, bad_reason, bad_flags);
1853}
1854
1855/*
1856 * This page is about to be returned from the page allocator
1857 */
1858static inline int check_new_page(struct page *page)
1859{
1860 if (likely(page_expected_state(page,
1861 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1862 return 0;
1863
1864 check_new_page_bad(page);
1865 return 1;
2a7684a2
WF
1866}
1867
bd33ef36 1868static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1869{
1870 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1871 page_poisoning_enabled();
1414c7f4
LA
1872}
1873
479f854a
MG
1874#ifdef CONFIG_DEBUG_VM
1875static bool check_pcp_refill(struct page *page)
1876{
1877 return false;
1878}
1879
1880static bool check_new_pcp(struct page *page)
1881{
1882 return check_new_page(page);
1883}
1884#else
1885static bool check_pcp_refill(struct page *page)
1886{
1887 return check_new_page(page);
1888}
1889static bool check_new_pcp(struct page *page)
1890{
1891 return false;
1892}
1893#endif /* CONFIG_DEBUG_VM */
1894
1895static bool check_new_pages(struct page *page, unsigned int order)
1896{
1897 int i;
1898 for (i = 0; i < (1 << order); i++) {
1899 struct page *p = page + i;
1900
1901 if (unlikely(check_new_page(p)))
1902 return true;
1903 }
1904
1905 return false;
1906}
1907
46f24fd8
JK
1908inline void post_alloc_hook(struct page *page, unsigned int order,
1909 gfp_t gfp_flags)
1910{
1911 set_page_private(page, 0);
1912 set_page_refcounted(page);
1913
1914 arch_alloc_page(page, order);
1915 kernel_map_pages(page, 1 << order, 1);
1916 kernel_poison_pages(page, 1 << order, 1);
1917 kasan_alloc_pages(page, order);
1918 set_page_owner(page, order, gfp_flags);
1919}
1920
479f854a 1921static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1922 unsigned int alloc_flags)
2a7684a2
WF
1923{
1924 int i;
689bcebf 1925
46f24fd8 1926 post_alloc_hook(page, order, gfp_flags);
17cf4406 1927
bd33ef36 1928 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1929 for (i = 0; i < (1 << order); i++)
1930 clear_highpage(page + i);
17cf4406
NP
1931
1932 if (order && (gfp_flags & __GFP_COMP))
1933 prep_compound_page(page, order);
1934
75379191 1935 /*
2f064f34 1936 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1937 * allocate the page. The expectation is that the caller is taking
1938 * steps that will free more memory. The caller should avoid the page
1939 * being used for !PFMEMALLOC purposes.
1940 */
2f064f34
MH
1941 if (alloc_flags & ALLOC_NO_WATERMARKS)
1942 set_page_pfmemalloc(page);
1943 else
1944 clear_page_pfmemalloc(page);
1da177e4
LT
1945}
1946
56fd56b8
MG
1947/*
1948 * Go through the free lists for the given migratetype and remove
1949 * the smallest available page from the freelists
1950 */
85ccc8fa 1951static __always_inline
728ec980 1952struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1953 int migratetype)
1954{
1955 unsigned int current_order;
b8af2941 1956 struct free_area *area;
56fd56b8
MG
1957 struct page *page;
1958
1959 /* Find a page of the appropriate size in the preferred list */
1960 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1961 area = &(zone->free_area[current_order]);
a16601c5 1962 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1963 struct page, lru);
a16601c5
GT
1964 if (!page)
1965 continue;
56fd56b8
MG
1966 list_del(&page->lru);
1967 rmv_page_order(page);
1968 area->nr_free--;
56fd56b8 1969 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1970 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1971 return page;
1972 }
1973
1974 return NULL;
1975}
1976
1977
b2a0ac88
MG
1978/*
1979 * This array describes the order lists are fallen back to when
1980 * the free lists for the desirable migrate type are depleted
1981 */
47118af0 1982static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 1983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 1984 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 1985 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 1986#ifdef CONFIG_CMA
974a786e 1987 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1988#endif
194159fb 1989#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1990 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1991#endif
b2a0ac88
MG
1992};
1993
dc67647b 1994#ifdef CONFIG_CMA
85ccc8fa 1995static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1996 unsigned int order)
1997{
1998 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1999}
2000#else
2001static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2002 unsigned int order) { return NULL; }
2003#endif
2004
c361be55
MG
2005/*
2006 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2007 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2008 * boundary. If alignment is required, use move_freepages_block()
2009 */
02aa0cdd 2010static int move_freepages(struct zone *zone,
b69a7288 2011 struct page *start_page, struct page *end_page,
02aa0cdd 2012 int migratetype, int *num_movable)
c361be55
MG
2013{
2014 struct page *page;
d00181b9 2015 unsigned int order;
d100313f 2016 int pages_moved = 0;
c361be55
MG
2017
2018#ifndef CONFIG_HOLES_IN_ZONE
2019 /*
2020 * page_zone is not safe to call in this context when
2021 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2022 * anyway as we check zone boundaries in move_freepages_block().
2023 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2024 * grouping pages by mobility
c361be55 2025 */
3e04040d
AB
2026 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2027 pfn_valid(page_to_pfn(end_page)) &&
2028 page_zone(start_page) != page_zone(end_page));
c361be55 2029#endif
c361be55
MG
2030 for (page = start_page; page <= end_page;) {
2031 if (!pfn_valid_within(page_to_pfn(page))) {
2032 page++;
2033 continue;
2034 }
2035
f073bdc5
AB
2036 /* Make sure we are not inadvertently changing nodes */
2037 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2038
c361be55 2039 if (!PageBuddy(page)) {
02aa0cdd
VB
2040 /*
2041 * We assume that pages that could be isolated for
2042 * migration are movable. But we don't actually try
2043 * isolating, as that would be expensive.
2044 */
2045 if (num_movable &&
2046 (PageLRU(page) || __PageMovable(page)))
2047 (*num_movable)++;
2048
c361be55
MG
2049 page++;
2050 continue;
2051 }
2052
2053 order = page_order(page);
84be48d8
KS
2054 list_move(&page->lru,
2055 &zone->free_area[order].free_list[migratetype]);
c361be55 2056 page += 1 << order;
d100313f 2057 pages_moved += 1 << order;
c361be55
MG
2058 }
2059
d100313f 2060 return pages_moved;
c361be55
MG
2061}
2062
ee6f509c 2063int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2064 int migratetype, int *num_movable)
c361be55
MG
2065{
2066 unsigned long start_pfn, end_pfn;
2067 struct page *start_page, *end_page;
2068
4a222127
DR
2069 if (num_movable)
2070 *num_movable = 0;
2071
c361be55 2072 start_pfn = page_to_pfn(page);
d9c23400 2073 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2074 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2075 end_page = start_page + pageblock_nr_pages - 1;
2076 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2077
2078 /* Do not cross zone boundaries */
108bcc96 2079 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2080 start_page = page;
108bcc96 2081 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2082 return 0;
2083
02aa0cdd
VB
2084 return move_freepages(zone, start_page, end_page, migratetype,
2085 num_movable);
c361be55
MG
2086}
2087
2f66a68f
MG
2088static void change_pageblock_range(struct page *pageblock_page,
2089 int start_order, int migratetype)
2090{
2091 int nr_pageblocks = 1 << (start_order - pageblock_order);
2092
2093 while (nr_pageblocks--) {
2094 set_pageblock_migratetype(pageblock_page, migratetype);
2095 pageblock_page += pageblock_nr_pages;
2096 }
2097}
2098
fef903ef 2099/*
9c0415eb
VB
2100 * When we are falling back to another migratetype during allocation, try to
2101 * steal extra free pages from the same pageblocks to satisfy further
2102 * allocations, instead of polluting multiple pageblocks.
2103 *
2104 * If we are stealing a relatively large buddy page, it is likely there will
2105 * be more free pages in the pageblock, so try to steal them all. For
2106 * reclaimable and unmovable allocations, we steal regardless of page size,
2107 * as fragmentation caused by those allocations polluting movable pageblocks
2108 * is worse than movable allocations stealing from unmovable and reclaimable
2109 * pageblocks.
fef903ef 2110 */
4eb7dce6
JK
2111static bool can_steal_fallback(unsigned int order, int start_mt)
2112{
2113 /*
2114 * Leaving this order check is intended, although there is
2115 * relaxed order check in next check. The reason is that
2116 * we can actually steal whole pageblock if this condition met,
2117 * but, below check doesn't guarantee it and that is just heuristic
2118 * so could be changed anytime.
2119 */
2120 if (order >= pageblock_order)
2121 return true;
2122
2123 if (order >= pageblock_order / 2 ||
2124 start_mt == MIGRATE_RECLAIMABLE ||
2125 start_mt == MIGRATE_UNMOVABLE ||
2126 page_group_by_mobility_disabled)
2127 return true;
2128
2129 return false;
2130}
2131
2132/*
2133 * This function implements actual steal behaviour. If order is large enough,
2134 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2135 * pageblock to our migratetype and determine how many already-allocated pages
2136 * are there in the pageblock with a compatible migratetype. If at least half
2137 * of pages are free or compatible, we can change migratetype of the pageblock
2138 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2139 */
2140static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2141 int start_type, bool whole_block)
fef903ef 2142{
d00181b9 2143 unsigned int current_order = page_order(page);
3bc48f96 2144 struct free_area *area;
02aa0cdd
VB
2145 int free_pages, movable_pages, alike_pages;
2146 int old_block_type;
2147
2148 old_block_type = get_pageblock_migratetype(page);
fef903ef 2149
3bc48f96
VB
2150 /*
2151 * This can happen due to races and we want to prevent broken
2152 * highatomic accounting.
2153 */
02aa0cdd 2154 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2155 goto single_page;
2156
fef903ef
SB
2157 /* Take ownership for orders >= pageblock_order */
2158 if (current_order >= pageblock_order) {
2159 change_pageblock_range(page, current_order, start_type);
3bc48f96 2160 goto single_page;
fef903ef
SB
2161 }
2162
3bc48f96
VB
2163 /* We are not allowed to try stealing from the whole block */
2164 if (!whole_block)
2165 goto single_page;
2166
02aa0cdd
VB
2167 free_pages = move_freepages_block(zone, page, start_type,
2168 &movable_pages);
2169 /*
2170 * Determine how many pages are compatible with our allocation.
2171 * For movable allocation, it's the number of movable pages which
2172 * we just obtained. For other types it's a bit more tricky.
2173 */
2174 if (start_type == MIGRATE_MOVABLE) {
2175 alike_pages = movable_pages;
2176 } else {
2177 /*
2178 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2179 * to MOVABLE pageblock, consider all non-movable pages as
2180 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2181 * vice versa, be conservative since we can't distinguish the
2182 * exact migratetype of non-movable pages.
2183 */
2184 if (old_block_type == MIGRATE_MOVABLE)
2185 alike_pages = pageblock_nr_pages
2186 - (free_pages + movable_pages);
2187 else
2188 alike_pages = 0;
2189 }
2190
3bc48f96 2191 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2192 if (!free_pages)
3bc48f96 2193 goto single_page;
fef903ef 2194
02aa0cdd
VB
2195 /*
2196 * If a sufficient number of pages in the block are either free or of
2197 * comparable migratability as our allocation, claim the whole block.
2198 */
2199 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2200 page_group_by_mobility_disabled)
2201 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2202
2203 return;
2204
2205single_page:
2206 area = &zone->free_area[current_order];
2207 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2208}
2209
2149cdae
JK
2210/*
2211 * Check whether there is a suitable fallback freepage with requested order.
2212 * If only_stealable is true, this function returns fallback_mt only if
2213 * we can steal other freepages all together. This would help to reduce
2214 * fragmentation due to mixed migratetype pages in one pageblock.
2215 */
2216int find_suitable_fallback(struct free_area *area, unsigned int order,
2217 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2218{
2219 int i;
2220 int fallback_mt;
2221
2222 if (area->nr_free == 0)
2223 return -1;
2224
2225 *can_steal = false;
2226 for (i = 0;; i++) {
2227 fallback_mt = fallbacks[migratetype][i];
974a786e 2228 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2229 break;
2230
2231 if (list_empty(&area->free_list[fallback_mt]))
2232 continue;
fef903ef 2233
4eb7dce6
JK
2234 if (can_steal_fallback(order, migratetype))
2235 *can_steal = true;
2236
2149cdae
JK
2237 if (!only_stealable)
2238 return fallback_mt;
2239
2240 if (*can_steal)
2241 return fallback_mt;
fef903ef 2242 }
4eb7dce6
JK
2243
2244 return -1;
fef903ef
SB
2245}
2246
0aaa29a5
MG
2247/*
2248 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2249 * there are no empty page blocks that contain a page with a suitable order
2250 */
2251static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2252 unsigned int alloc_order)
2253{
2254 int mt;
2255 unsigned long max_managed, flags;
2256
2257 /*
2258 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2259 * Check is race-prone but harmless.
2260 */
9705bea5 2261 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2262 if (zone->nr_reserved_highatomic >= max_managed)
2263 return;
2264
2265 spin_lock_irqsave(&zone->lock, flags);
2266
2267 /* Recheck the nr_reserved_highatomic limit under the lock */
2268 if (zone->nr_reserved_highatomic >= max_managed)
2269 goto out_unlock;
2270
2271 /* Yoink! */
2272 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2273 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2274 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2275 zone->nr_reserved_highatomic += pageblock_nr_pages;
2276 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2277 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2278 }
2279
2280out_unlock:
2281 spin_unlock_irqrestore(&zone->lock, flags);
2282}
2283
2284/*
2285 * Used when an allocation is about to fail under memory pressure. This
2286 * potentially hurts the reliability of high-order allocations when under
2287 * intense memory pressure but failed atomic allocations should be easier
2288 * to recover from than an OOM.
29fac03b
MK
2289 *
2290 * If @force is true, try to unreserve a pageblock even though highatomic
2291 * pageblock is exhausted.
0aaa29a5 2292 */
29fac03b
MK
2293static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2294 bool force)
0aaa29a5
MG
2295{
2296 struct zonelist *zonelist = ac->zonelist;
2297 unsigned long flags;
2298 struct zoneref *z;
2299 struct zone *zone;
2300 struct page *page;
2301 int order;
04c8716f 2302 bool ret;
0aaa29a5
MG
2303
2304 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2305 ac->nodemask) {
29fac03b
MK
2306 /*
2307 * Preserve at least one pageblock unless memory pressure
2308 * is really high.
2309 */
2310 if (!force && zone->nr_reserved_highatomic <=
2311 pageblock_nr_pages)
0aaa29a5
MG
2312 continue;
2313
2314 spin_lock_irqsave(&zone->lock, flags);
2315 for (order = 0; order < MAX_ORDER; order++) {
2316 struct free_area *area = &(zone->free_area[order]);
2317
a16601c5
GT
2318 page = list_first_entry_or_null(
2319 &area->free_list[MIGRATE_HIGHATOMIC],
2320 struct page, lru);
2321 if (!page)
0aaa29a5
MG
2322 continue;
2323
0aaa29a5 2324 /*
4855e4a7
MK
2325 * In page freeing path, migratetype change is racy so
2326 * we can counter several free pages in a pageblock
2327 * in this loop althoug we changed the pageblock type
2328 * from highatomic to ac->migratetype. So we should
2329 * adjust the count once.
0aaa29a5 2330 */
a6ffdc07 2331 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2332 /*
2333 * It should never happen but changes to
2334 * locking could inadvertently allow a per-cpu
2335 * drain to add pages to MIGRATE_HIGHATOMIC
2336 * while unreserving so be safe and watch for
2337 * underflows.
2338 */
2339 zone->nr_reserved_highatomic -= min(
2340 pageblock_nr_pages,
2341 zone->nr_reserved_highatomic);
2342 }
0aaa29a5
MG
2343
2344 /*
2345 * Convert to ac->migratetype and avoid the normal
2346 * pageblock stealing heuristics. Minimally, the caller
2347 * is doing the work and needs the pages. More
2348 * importantly, if the block was always converted to
2349 * MIGRATE_UNMOVABLE or another type then the number
2350 * of pageblocks that cannot be completely freed
2351 * may increase.
2352 */
2353 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2354 ret = move_freepages_block(zone, page, ac->migratetype,
2355 NULL);
29fac03b
MK
2356 if (ret) {
2357 spin_unlock_irqrestore(&zone->lock, flags);
2358 return ret;
2359 }
0aaa29a5
MG
2360 }
2361 spin_unlock_irqrestore(&zone->lock, flags);
2362 }
04c8716f
MK
2363
2364 return false;
0aaa29a5
MG
2365}
2366
3bc48f96
VB
2367/*
2368 * Try finding a free buddy page on the fallback list and put it on the free
2369 * list of requested migratetype, possibly along with other pages from the same
2370 * block, depending on fragmentation avoidance heuristics. Returns true if
2371 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2372 *
2373 * The use of signed ints for order and current_order is a deliberate
2374 * deviation from the rest of this file, to make the for loop
2375 * condition simpler.
3bc48f96 2376 */
85ccc8fa 2377static __always_inline bool
6bb15450
MG
2378__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2379 unsigned int alloc_flags)
b2a0ac88 2380{
b8af2941 2381 struct free_area *area;
b002529d 2382 int current_order;
6bb15450 2383 int min_order = order;
b2a0ac88 2384 struct page *page;
4eb7dce6
JK
2385 int fallback_mt;
2386 bool can_steal;
b2a0ac88 2387
6bb15450
MG
2388 /*
2389 * Do not steal pages from freelists belonging to other pageblocks
2390 * i.e. orders < pageblock_order. If there are no local zones free,
2391 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2392 */
2393 if (alloc_flags & ALLOC_NOFRAGMENT)
2394 min_order = pageblock_order;
2395
7a8f58f3
VB
2396 /*
2397 * Find the largest available free page in the other list. This roughly
2398 * approximates finding the pageblock with the most free pages, which
2399 * would be too costly to do exactly.
2400 */
6bb15450 2401 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2402 --current_order) {
4eb7dce6
JK
2403 area = &(zone->free_area[current_order]);
2404 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2405 start_migratetype, false, &can_steal);
4eb7dce6
JK
2406 if (fallback_mt == -1)
2407 continue;
b2a0ac88 2408
7a8f58f3
VB
2409 /*
2410 * We cannot steal all free pages from the pageblock and the
2411 * requested migratetype is movable. In that case it's better to
2412 * steal and split the smallest available page instead of the
2413 * largest available page, because even if the next movable
2414 * allocation falls back into a different pageblock than this
2415 * one, it won't cause permanent fragmentation.
2416 */
2417 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2418 && current_order > order)
2419 goto find_smallest;
b2a0ac88 2420
7a8f58f3
VB
2421 goto do_steal;
2422 }
e0fff1bd 2423
7a8f58f3 2424 return false;
e0fff1bd 2425
7a8f58f3
VB
2426find_smallest:
2427 for (current_order = order; current_order < MAX_ORDER;
2428 current_order++) {
2429 area = &(zone->free_area[current_order]);
2430 fallback_mt = find_suitable_fallback(area, current_order,
2431 start_migratetype, false, &can_steal);
2432 if (fallback_mt != -1)
2433 break;
b2a0ac88
MG
2434 }
2435
7a8f58f3
VB
2436 /*
2437 * This should not happen - we already found a suitable fallback
2438 * when looking for the largest page.
2439 */
2440 VM_BUG_ON(current_order == MAX_ORDER);
2441
2442do_steal:
2443 page = list_first_entry(&area->free_list[fallback_mt],
2444 struct page, lru);
2445
2446 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2447
2448 trace_mm_page_alloc_extfrag(page, order, current_order,
2449 start_migratetype, fallback_mt);
2450
2451 return true;
2452
b2a0ac88
MG
2453}
2454
56fd56b8 2455/*
1da177e4
LT
2456 * Do the hard work of removing an element from the buddy allocator.
2457 * Call me with the zone->lock already held.
2458 */
85ccc8fa 2459static __always_inline struct page *
6bb15450
MG
2460__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2461 unsigned int alloc_flags)
1da177e4 2462{
1da177e4
LT
2463 struct page *page;
2464
3bc48f96 2465retry:
56fd56b8 2466 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2467 if (unlikely(!page)) {
dc67647b
JK
2468 if (migratetype == MIGRATE_MOVABLE)
2469 page = __rmqueue_cma_fallback(zone, order);
2470
6bb15450
MG
2471 if (!page && __rmqueue_fallback(zone, order, migratetype,
2472 alloc_flags))
3bc48f96 2473 goto retry;
728ec980
MG
2474 }
2475
0d3d062a 2476 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2477 return page;
1da177e4
LT
2478}
2479
5f63b720 2480/*
1da177e4
LT
2481 * Obtain a specified number of elements from the buddy allocator, all under
2482 * a single hold of the lock, for efficiency. Add them to the supplied list.
2483 * Returns the number of new pages which were placed at *list.
2484 */
5f63b720 2485static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2486 unsigned long count, struct list_head *list,
6bb15450 2487 int migratetype, unsigned int alloc_flags)
1da177e4 2488{
a6de734b 2489 int i, alloced = 0;
5f63b720 2490
d34b0733 2491 spin_lock(&zone->lock);
1da177e4 2492 for (i = 0; i < count; ++i) {
6bb15450
MG
2493 struct page *page = __rmqueue(zone, order, migratetype,
2494 alloc_flags);
085cc7d5 2495 if (unlikely(page == NULL))
1da177e4 2496 break;
81eabcbe 2497
479f854a
MG
2498 if (unlikely(check_pcp_refill(page)))
2499 continue;
2500
81eabcbe 2501 /*
0fac3ba5
VB
2502 * Split buddy pages returned by expand() are received here in
2503 * physical page order. The page is added to the tail of
2504 * caller's list. From the callers perspective, the linked list
2505 * is ordered by page number under some conditions. This is
2506 * useful for IO devices that can forward direction from the
2507 * head, thus also in the physical page order. This is useful
2508 * for IO devices that can merge IO requests if the physical
2509 * pages are ordered properly.
81eabcbe 2510 */
0fac3ba5 2511 list_add_tail(&page->lru, list);
a6de734b 2512 alloced++;
bb14c2c7 2513 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2514 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2515 -(1 << order));
1da177e4 2516 }
a6de734b
MG
2517
2518 /*
2519 * i pages were removed from the buddy list even if some leak due
2520 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2521 * on i. Do not confuse with 'alloced' which is the number of
2522 * pages added to the pcp list.
2523 */
f2260e6b 2524 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2525 spin_unlock(&zone->lock);
a6de734b 2526 return alloced;
1da177e4
LT
2527}
2528
4ae7c039 2529#ifdef CONFIG_NUMA
8fce4d8e 2530/*
4037d452
CL
2531 * Called from the vmstat counter updater to drain pagesets of this
2532 * currently executing processor on remote nodes after they have
2533 * expired.
2534 *
879336c3
CL
2535 * Note that this function must be called with the thread pinned to
2536 * a single processor.
8fce4d8e 2537 */
4037d452 2538void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2539{
4ae7c039 2540 unsigned long flags;
7be12fc9 2541 int to_drain, batch;
4ae7c039 2542
4037d452 2543 local_irq_save(flags);
4db0c3c2 2544 batch = READ_ONCE(pcp->batch);
7be12fc9 2545 to_drain = min(pcp->count, batch);
77ba9062 2546 if (to_drain > 0)
2a13515c 2547 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2548 local_irq_restore(flags);
4ae7c039
CL
2549}
2550#endif
2551
9f8f2172 2552/*
93481ff0 2553 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2554 *
2555 * The processor must either be the current processor and the
2556 * thread pinned to the current processor or a processor that
2557 * is not online.
2558 */
93481ff0 2559static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2560{
c54ad30c 2561 unsigned long flags;
93481ff0
VB
2562 struct per_cpu_pageset *pset;
2563 struct per_cpu_pages *pcp;
1da177e4 2564
93481ff0
VB
2565 local_irq_save(flags);
2566 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2567
93481ff0 2568 pcp = &pset->pcp;
77ba9062 2569 if (pcp->count)
93481ff0 2570 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2571 local_irq_restore(flags);
2572}
3dfa5721 2573
93481ff0
VB
2574/*
2575 * Drain pcplists of all zones on the indicated processor.
2576 *
2577 * The processor must either be the current processor and the
2578 * thread pinned to the current processor or a processor that
2579 * is not online.
2580 */
2581static void drain_pages(unsigned int cpu)
2582{
2583 struct zone *zone;
2584
2585 for_each_populated_zone(zone) {
2586 drain_pages_zone(cpu, zone);
1da177e4
LT
2587 }
2588}
1da177e4 2589
9f8f2172
CL
2590/*
2591 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2592 *
2593 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2594 * the single zone's pages.
9f8f2172 2595 */
93481ff0 2596void drain_local_pages(struct zone *zone)
9f8f2172 2597{
93481ff0
VB
2598 int cpu = smp_processor_id();
2599
2600 if (zone)
2601 drain_pages_zone(cpu, zone);
2602 else
2603 drain_pages(cpu);
9f8f2172
CL
2604}
2605
0ccce3b9
MG
2606static void drain_local_pages_wq(struct work_struct *work)
2607{
a459eeb7
MH
2608 /*
2609 * drain_all_pages doesn't use proper cpu hotplug protection so
2610 * we can race with cpu offline when the WQ can move this from
2611 * a cpu pinned worker to an unbound one. We can operate on a different
2612 * cpu which is allright but we also have to make sure to not move to
2613 * a different one.
2614 */
2615 preempt_disable();
0ccce3b9 2616 drain_local_pages(NULL);
a459eeb7 2617 preempt_enable();
0ccce3b9
MG
2618}
2619
9f8f2172 2620/*
74046494
GBY
2621 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2622 *
93481ff0
VB
2623 * When zone parameter is non-NULL, spill just the single zone's pages.
2624 *
0ccce3b9 2625 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2626 */
93481ff0 2627void drain_all_pages(struct zone *zone)
9f8f2172 2628{
74046494 2629 int cpu;
74046494
GBY
2630
2631 /*
2632 * Allocate in the BSS so we wont require allocation in
2633 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2634 */
2635 static cpumask_t cpus_with_pcps;
2636
ce612879
MH
2637 /*
2638 * Make sure nobody triggers this path before mm_percpu_wq is fully
2639 * initialized.
2640 */
2641 if (WARN_ON_ONCE(!mm_percpu_wq))
2642 return;
2643
bd233f53
MG
2644 /*
2645 * Do not drain if one is already in progress unless it's specific to
2646 * a zone. Such callers are primarily CMA and memory hotplug and need
2647 * the drain to be complete when the call returns.
2648 */
2649 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2650 if (!zone)
2651 return;
2652 mutex_lock(&pcpu_drain_mutex);
2653 }
0ccce3b9 2654
74046494
GBY
2655 /*
2656 * We don't care about racing with CPU hotplug event
2657 * as offline notification will cause the notified
2658 * cpu to drain that CPU pcps and on_each_cpu_mask
2659 * disables preemption as part of its processing
2660 */
2661 for_each_online_cpu(cpu) {
93481ff0
VB
2662 struct per_cpu_pageset *pcp;
2663 struct zone *z;
74046494 2664 bool has_pcps = false;
93481ff0
VB
2665
2666 if (zone) {
74046494 2667 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2668 if (pcp->pcp.count)
74046494 2669 has_pcps = true;
93481ff0
VB
2670 } else {
2671 for_each_populated_zone(z) {
2672 pcp = per_cpu_ptr(z->pageset, cpu);
2673 if (pcp->pcp.count) {
2674 has_pcps = true;
2675 break;
2676 }
74046494
GBY
2677 }
2678 }
93481ff0 2679
74046494
GBY
2680 if (has_pcps)
2681 cpumask_set_cpu(cpu, &cpus_with_pcps);
2682 else
2683 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2684 }
0ccce3b9 2685
bd233f53
MG
2686 for_each_cpu(cpu, &cpus_with_pcps) {
2687 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2688 INIT_WORK(work, drain_local_pages_wq);
ce612879 2689 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2690 }
bd233f53
MG
2691 for_each_cpu(cpu, &cpus_with_pcps)
2692 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2693
2694 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2695}
2696
296699de 2697#ifdef CONFIG_HIBERNATION
1da177e4 2698
556b969a
CY
2699/*
2700 * Touch the watchdog for every WD_PAGE_COUNT pages.
2701 */
2702#define WD_PAGE_COUNT (128*1024)
2703
1da177e4
LT
2704void mark_free_pages(struct zone *zone)
2705{
556b969a 2706 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2707 unsigned long flags;
7aeb09f9 2708 unsigned int order, t;
86760a2c 2709 struct page *page;
1da177e4 2710
8080fc03 2711 if (zone_is_empty(zone))
1da177e4
LT
2712 return;
2713
2714 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2715
108bcc96 2716 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2717 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2718 if (pfn_valid(pfn)) {
86760a2c 2719 page = pfn_to_page(pfn);
ba6b0979 2720
556b969a
CY
2721 if (!--page_count) {
2722 touch_nmi_watchdog();
2723 page_count = WD_PAGE_COUNT;
2724 }
2725
ba6b0979
JK
2726 if (page_zone(page) != zone)
2727 continue;
2728
7be98234
RW
2729 if (!swsusp_page_is_forbidden(page))
2730 swsusp_unset_page_free(page);
f623f0db 2731 }
1da177e4 2732
b2a0ac88 2733 for_each_migratetype_order(order, t) {
86760a2c
GT
2734 list_for_each_entry(page,
2735 &zone->free_area[order].free_list[t], lru) {
f623f0db 2736 unsigned long i;
1da177e4 2737
86760a2c 2738 pfn = page_to_pfn(page);
556b969a
CY
2739 for (i = 0; i < (1UL << order); i++) {
2740 if (!--page_count) {
2741 touch_nmi_watchdog();
2742 page_count = WD_PAGE_COUNT;
2743 }
7be98234 2744 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2745 }
f623f0db 2746 }
b2a0ac88 2747 }
1da177e4
LT
2748 spin_unlock_irqrestore(&zone->lock, flags);
2749}
e2c55dc8 2750#endif /* CONFIG_PM */
1da177e4 2751
2d4894b5 2752static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2753{
5f8dcc21 2754 int migratetype;
1da177e4 2755
4db7548c 2756 if (!free_pcp_prepare(page))
9cca35d4 2757 return false;
689bcebf 2758
dc4b0caf 2759 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2760 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2761 return true;
2762}
2763
2d4894b5 2764static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2765{
2766 struct zone *zone = page_zone(page);
2767 struct per_cpu_pages *pcp;
2768 int migratetype;
2769
2770 migratetype = get_pcppage_migratetype(page);
d34b0733 2771 __count_vm_event(PGFREE);
da456f14 2772
5f8dcc21
MG
2773 /*
2774 * We only track unmovable, reclaimable and movable on pcp lists.
2775 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2776 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2777 * areas back if necessary. Otherwise, we may have to free
2778 * excessively into the page allocator
2779 */
2780 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2781 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2782 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2783 return;
5f8dcc21
MG
2784 }
2785 migratetype = MIGRATE_MOVABLE;
2786 }
2787
99dcc3e5 2788 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2789 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2790 pcp->count++;
48db57f8 2791 if (pcp->count >= pcp->high) {
4db0c3c2 2792 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2793 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2794 }
9cca35d4 2795}
5f8dcc21 2796
9cca35d4
MG
2797/*
2798 * Free a 0-order page
9cca35d4 2799 */
2d4894b5 2800void free_unref_page(struct page *page)
9cca35d4
MG
2801{
2802 unsigned long flags;
2803 unsigned long pfn = page_to_pfn(page);
2804
2d4894b5 2805 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2806 return;
2807
2808 local_irq_save(flags);
2d4894b5 2809 free_unref_page_commit(page, pfn);
d34b0733 2810 local_irq_restore(flags);
1da177e4
LT
2811}
2812
cc59850e
KK
2813/*
2814 * Free a list of 0-order pages
2815 */
2d4894b5 2816void free_unref_page_list(struct list_head *list)
cc59850e
KK
2817{
2818 struct page *page, *next;
9cca35d4 2819 unsigned long flags, pfn;
c24ad77d 2820 int batch_count = 0;
9cca35d4
MG
2821
2822 /* Prepare pages for freeing */
2823 list_for_each_entry_safe(page, next, list, lru) {
2824 pfn = page_to_pfn(page);
2d4894b5 2825 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2826 list_del(&page->lru);
2827 set_page_private(page, pfn);
2828 }
cc59850e 2829
9cca35d4 2830 local_irq_save(flags);
cc59850e 2831 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2832 unsigned long pfn = page_private(page);
2833
2834 set_page_private(page, 0);
2d4894b5
MG
2835 trace_mm_page_free_batched(page);
2836 free_unref_page_commit(page, pfn);
c24ad77d
LS
2837
2838 /*
2839 * Guard against excessive IRQ disabled times when we get
2840 * a large list of pages to free.
2841 */
2842 if (++batch_count == SWAP_CLUSTER_MAX) {
2843 local_irq_restore(flags);
2844 batch_count = 0;
2845 local_irq_save(flags);
2846 }
cc59850e 2847 }
9cca35d4 2848 local_irq_restore(flags);
cc59850e
KK
2849}
2850
8dfcc9ba
NP
2851/*
2852 * split_page takes a non-compound higher-order page, and splits it into
2853 * n (1<<order) sub-pages: page[0..n]
2854 * Each sub-page must be freed individually.
2855 *
2856 * Note: this is probably too low level an operation for use in drivers.
2857 * Please consult with lkml before using this in your driver.
2858 */
2859void split_page(struct page *page, unsigned int order)
2860{
2861 int i;
2862
309381fe
SL
2863 VM_BUG_ON_PAGE(PageCompound(page), page);
2864 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2865
a9627bc5 2866 for (i = 1; i < (1 << order); i++)
7835e98b 2867 set_page_refcounted(page + i);
a9627bc5 2868 split_page_owner(page, order);
8dfcc9ba 2869}
5853ff23 2870EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2871
3c605096 2872int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2873{
748446bb
MG
2874 unsigned long watermark;
2875 struct zone *zone;
2139cbe6 2876 int mt;
748446bb
MG
2877
2878 BUG_ON(!PageBuddy(page));
2879
2880 zone = page_zone(page);
2e30abd1 2881 mt = get_pageblock_migratetype(page);
748446bb 2882
194159fb 2883 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2884 /*
2885 * Obey watermarks as if the page was being allocated. We can
2886 * emulate a high-order watermark check with a raised order-0
2887 * watermark, because we already know our high-order page
2888 * exists.
2889 */
2890 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2891 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2892 return 0;
2893
8fb74b9f 2894 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2895 }
748446bb
MG
2896
2897 /* Remove page from free list */
2898 list_del(&page->lru);
2899 zone->free_area[order].nr_free--;
2900 rmv_page_order(page);
2139cbe6 2901
400bc7fd 2902 /*
2903 * Set the pageblock if the isolated page is at least half of a
2904 * pageblock
2905 */
748446bb
MG
2906 if (order >= pageblock_order - 1) {
2907 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2908 for (; page < endpage; page += pageblock_nr_pages) {
2909 int mt = get_pageblock_migratetype(page);
88ed365e 2910 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2911 && !is_migrate_highatomic(mt))
47118af0
MN
2912 set_pageblock_migratetype(page,
2913 MIGRATE_MOVABLE);
2914 }
748446bb
MG
2915 }
2916
f3a14ced 2917
8fb74b9f 2918 return 1UL << order;
1fb3f8ca
MG
2919}
2920
060e7417
MG
2921/*
2922 * Update NUMA hit/miss statistics
2923 *
2924 * Must be called with interrupts disabled.
060e7417 2925 */
41b6167e 2926static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2927{
2928#ifdef CONFIG_NUMA
3a321d2a 2929 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2930
4518085e
KW
2931 /* skip numa counters update if numa stats is disabled */
2932 if (!static_branch_likely(&vm_numa_stat_key))
2933 return;
2934
c1093b74 2935 if (zone_to_nid(z) != numa_node_id())
060e7417 2936 local_stat = NUMA_OTHER;
060e7417 2937
c1093b74 2938 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 2939 __inc_numa_state(z, NUMA_HIT);
2df26639 2940 else {
3a321d2a
KW
2941 __inc_numa_state(z, NUMA_MISS);
2942 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2943 }
3a321d2a 2944 __inc_numa_state(z, local_stat);
060e7417
MG
2945#endif
2946}
2947
066b2393
MG
2948/* Remove page from the per-cpu list, caller must protect the list */
2949static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 2950 unsigned int alloc_flags,
453f85d4 2951 struct per_cpu_pages *pcp,
066b2393
MG
2952 struct list_head *list)
2953{
2954 struct page *page;
2955
2956 do {
2957 if (list_empty(list)) {
2958 pcp->count += rmqueue_bulk(zone, 0,
2959 pcp->batch, list,
6bb15450 2960 migratetype, alloc_flags);
066b2393
MG
2961 if (unlikely(list_empty(list)))
2962 return NULL;
2963 }
2964
453f85d4 2965 page = list_first_entry(list, struct page, lru);
066b2393
MG
2966 list_del(&page->lru);
2967 pcp->count--;
2968 } while (check_new_pcp(page));
2969
2970 return page;
2971}
2972
2973/* Lock and remove page from the per-cpu list */
2974static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2975 struct zone *zone, unsigned int order,
6bb15450
MG
2976 gfp_t gfp_flags, int migratetype,
2977 unsigned int alloc_flags)
066b2393
MG
2978{
2979 struct per_cpu_pages *pcp;
2980 struct list_head *list;
066b2393 2981 struct page *page;
d34b0733 2982 unsigned long flags;
066b2393 2983
d34b0733 2984 local_irq_save(flags);
066b2393
MG
2985 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2986 list = &pcp->lists[migratetype];
6bb15450 2987 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393
MG
2988 if (page) {
2989 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2990 zone_statistics(preferred_zone, zone);
2991 }
d34b0733 2992 local_irq_restore(flags);
066b2393
MG
2993 return page;
2994}
2995
1da177e4 2996/*
75379191 2997 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2998 */
0a15c3e9 2999static inline
066b2393 3000struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3001 struct zone *zone, unsigned int order,
c603844b
MG
3002 gfp_t gfp_flags, unsigned int alloc_flags,
3003 int migratetype)
1da177e4
LT
3004{
3005 unsigned long flags;
689bcebf 3006 struct page *page;
1da177e4 3007
d34b0733 3008 if (likely(order == 0)) {
066b2393 3009 page = rmqueue_pcplist(preferred_zone, zone, order,
6bb15450 3010 gfp_flags, migratetype, alloc_flags);
066b2393
MG
3011 goto out;
3012 }
83b9355b 3013
066b2393
MG
3014 /*
3015 * We most definitely don't want callers attempting to
3016 * allocate greater than order-1 page units with __GFP_NOFAIL.
3017 */
3018 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3019 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3020
066b2393
MG
3021 do {
3022 page = NULL;
3023 if (alloc_flags & ALLOC_HARDER) {
3024 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3025 if (page)
3026 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3027 }
a74609fa 3028 if (!page)
6bb15450 3029 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3030 } while (page && check_new_pages(page, order));
3031 spin_unlock(&zone->lock);
3032 if (!page)
3033 goto failed;
3034 __mod_zone_freepage_state(zone, -(1 << order),
3035 get_pcppage_migratetype(page));
1da177e4 3036
16709d1d 3037 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3038 zone_statistics(preferred_zone, zone);
a74609fa 3039 local_irq_restore(flags);
1da177e4 3040
066b2393
MG
3041out:
3042 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3043 return page;
a74609fa
NP
3044
3045failed:
3046 local_irq_restore(flags);
a74609fa 3047 return NULL;
1da177e4
LT
3048}
3049
933e312e
AM
3050#ifdef CONFIG_FAIL_PAGE_ALLOC
3051
b2588c4b 3052static struct {
933e312e
AM
3053 struct fault_attr attr;
3054
621a5f7a 3055 bool ignore_gfp_highmem;
71baba4b 3056 bool ignore_gfp_reclaim;
54114994 3057 u32 min_order;
933e312e
AM
3058} fail_page_alloc = {
3059 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3060 .ignore_gfp_reclaim = true,
621a5f7a 3061 .ignore_gfp_highmem = true,
54114994 3062 .min_order = 1,
933e312e
AM
3063};
3064
3065static int __init setup_fail_page_alloc(char *str)
3066{
3067 return setup_fault_attr(&fail_page_alloc.attr, str);
3068}
3069__setup("fail_page_alloc=", setup_fail_page_alloc);
3070
deaf386e 3071static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3072{
54114994 3073 if (order < fail_page_alloc.min_order)
deaf386e 3074 return false;
933e312e 3075 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3076 return false;
933e312e 3077 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3078 return false;
71baba4b
MG
3079 if (fail_page_alloc.ignore_gfp_reclaim &&
3080 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3081 return false;
933e312e
AM
3082
3083 return should_fail(&fail_page_alloc.attr, 1 << order);
3084}
3085
3086#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3087
3088static int __init fail_page_alloc_debugfs(void)
3089{
0825a6f9 3090 umode_t mode = S_IFREG | 0600;
933e312e 3091 struct dentry *dir;
933e312e 3092
dd48c085
AM
3093 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3094 &fail_page_alloc.attr);
3095 if (IS_ERR(dir))
3096 return PTR_ERR(dir);
933e312e 3097
b2588c4b 3098 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3099 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3100 goto fail;
3101 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3102 &fail_page_alloc.ignore_gfp_highmem))
3103 goto fail;
3104 if (!debugfs_create_u32("min-order", mode, dir,
3105 &fail_page_alloc.min_order))
3106 goto fail;
3107
3108 return 0;
3109fail:
dd48c085 3110 debugfs_remove_recursive(dir);
933e312e 3111
b2588c4b 3112 return -ENOMEM;
933e312e
AM
3113}
3114
3115late_initcall(fail_page_alloc_debugfs);
3116
3117#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3118
3119#else /* CONFIG_FAIL_PAGE_ALLOC */
3120
deaf386e 3121static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3122{
deaf386e 3123 return false;
933e312e
AM
3124}
3125
3126#endif /* CONFIG_FAIL_PAGE_ALLOC */
3127
1da177e4 3128/*
97a16fc8
MG
3129 * Return true if free base pages are above 'mark'. For high-order checks it
3130 * will return true of the order-0 watermark is reached and there is at least
3131 * one free page of a suitable size. Checking now avoids taking the zone lock
3132 * to check in the allocation paths if no pages are free.
1da177e4 3133 */
86a294a8
MH
3134bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3135 int classzone_idx, unsigned int alloc_flags,
3136 long free_pages)
1da177e4 3137{
d23ad423 3138 long min = mark;
1da177e4 3139 int o;
cd04ae1e 3140 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3141
0aaa29a5 3142 /* free_pages may go negative - that's OK */
df0a6daa 3143 free_pages -= (1 << order) - 1;
0aaa29a5 3144
7fb1d9fc 3145 if (alloc_flags & ALLOC_HIGH)
1da177e4 3146 min -= min / 2;
0aaa29a5
MG
3147
3148 /*
3149 * If the caller does not have rights to ALLOC_HARDER then subtract
3150 * the high-atomic reserves. This will over-estimate the size of the
3151 * atomic reserve but it avoids a search.
3152 */
cd04ae1e 3153 if (likely(!alloc_harder)) {
0aaa29a5 3154 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3155 } else {
3156 /*
3157 * OOM victims can try even harder than normal ALLOC_HARDER
3158 * users on the grounds that it's definitely going to be in
3159 * the exit path shortly and free memory. Any allocation it
3160 * makes during the free path will be small and short-lived.
3161 */
3162 if (alloc_flags & ALLOC_OOM)
3163 min -= min / 2;
3164 else
3165 min -= min / 4;
3166 }
3167
e2b19197 3168
d883c6cf
JK
3169#ifdef CONFIG_CMA
3170 /* If allocation can't use CMA areas don't use free CMA pages */
3171 if (!(alloc_flags & ALLOC_CMA))
3172 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3173#endif
3174
97a16fc8
MG
3175 /*
3176 * Check watermarks for an order-0 allocation request. If these
3177 * are not met, then a high-order request also cannot go ahead
3178 * even if a suitable page happened to be free.
3179 */
3180 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3181 return false;
1da177e4 3182
97a16fc8
MG
3183 /* If this is an order-0 request then the watermark is fine */
3184 if (!order)
3185 return true;
3186
3187 /* For a high-order request, check at least one suitable page is free */
3188 for (o = order; o < MAX_ORDER; o++) {
3189 struct free_area *area = &z->free_area[o];
3190 int mt;
3191
3192 if (!area->nr_free)
3193 continue;
3194
97a16fc8
MG
3195 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3196 if (!list_empty(&area->free_list[mt]))
3197 return true;
3198 }
3199
3200#ifdef CONFIG_CMA
d883c6cf
JK
3201 if ((alloc_flags & ALLOC_CMA) &&
3202 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3203 return true;
d883c6cf 3204 }
97a16fc8 3205#endif
b050e376
VB
3206 if (alloc_harder &&
3207 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3208 return true;
1da177e4 3209 }
97a16fc8 3210 return false;
88f5acf8
MG
3211}
3212
7aeb09f9 3213bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3214 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3215{
3216 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3217 zone_page_state(z, NR_FREE_PAGES));
3218}
3219
48ee5f36
MG
3220static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3221 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3222{
3223 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3224 long cma_pages = 0;
3225
3226#ifdef CONFIG_CMA
3227 /* If allocation can't use CMA areas don't use free CMA pages */
3228 if (!(alloc_flags & ALLOC_CMA))
3229 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3230#endif
48ee5f36
MG
3231
3232 /*
3233 * Fast check for order-0 only. If this fails then the reserves
3234 * need to be calculated. There is a corner case where the check
3235 * passes but only the high-order atomic reserve are free. If
3236 * the caller is !atomic then it'll uselessly search the free
3237 * list. That corner case is then slower but it is harmless.
3238 */
d883c6cf 3239 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3240 return true;
3241
3242 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3243 free_pages);
3244}
3245
7aeb09f9 3246bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3247 unsigned long mark, int classzone_idx)
88f5acf8
MG
3248{
3249 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3250
3251 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3252 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3253
e2b19197 3254 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3255 free_pages);
1da177e4
LT
3256}
3257
9276b1bc 3258#ifdef CONFIG_NUMA
957f822a
DR
3259static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3260{
e02dc017 3261 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3262 RECLAIM_DISTANCE;
957f822a 3263}
9276b1bc 3264#else /* CONFIG_NUMA */
957f822a
DR
3265static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3266{
3267 return true;
3268}
9276b1bc
PJ
3269#endif /* CONFIG_NUMA */
3270
6bb15450
MG
3271#ifdef CONFIG_ZONE_DMA32
3272/*
3273 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3274 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3275 * premature use of a lower zone may cause lowmem pressure problems that
3276 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3277 * probably too small. It only makes sense to spread allocations to avoid
3278 * fragmentation between the Normal and DMA32 zones.
3279 */
3280static inline unsigned int
3281alloc_flags_nofragment(struct zone *zone)
3282{
3283 if (zone_idx(zone) != ZONE_NORMAL)
3284 return 0;
3285
3286 /*
3287 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3288 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3289 * on UMA that if Normal is populated then so is DMA32.
3290 */
3291 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3292 if (nr_online_nodes > 1 && !populated_zone(--zone))
3293 return 0;
3294
3295 return ALLOC_NOFRAGMENT;
3296}
3297#else
3298static inline unsigned int
3299alloc_flags_nofragment(struct zone *zone)
3300{
3301 return 0;
3302}
3303#endif
3304
7fb1d9fc 3305/*
0798e519 3306 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3307 * a page.
3308 */
3309static struct page *
a9263751
VB
3310get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3311 const struct alloc_context *ac)
753ee728 3312{
6bb15450 3313 struct zoneref *z;
5117f45d 3314 struct zone *zone;
3b8c0be4 3315 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3316 bool no_fallback;
3b8c0be4 3317
6bb15450 3318retry:
7fb1d9fc 3319 /*
9276b1bc 3320 * Scan zonelist, looking for a zone with enough free.
344736f2 3321 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3322 */
6bb15450
MG
3323 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3324 z = ac->preferred_zoneref;
c33d6c06 3325 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3326 ac->nodemask) {
be06af00 3327 struct page *page;
e085dbc5
JW
3328 unsigned long mark;
3329
664eedde
MG
3330 if (cpusets_enabled() &&
3331 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3332 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3333 continue;
a756cf59
JW
3334 /*
3335 * When allocating a page cache page for writing, we
281e3726
MG
3336 * want to get it from a node that is within its dirty
3337 * limit, such that no single node holds more than its
a756cf59 3338 * proportional share of globally allowed dirty pages.
281e3726 3339 * The dirty limits take into account the node's
a756cf59
JW
3340 * lowmem reserves and high watermark so that kswapd
3341 * should be able to balance it without having to
3342 * write pages from its LRU list.
3343 *
a756cf59 3344 * XXX: For now, allow allocations to potentially
281e3726 3345 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3346 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3347 * which is important when on a NUMA setup the allowed
281e3726 3348 * nodes are together not big enough to reach the
a756cf59 3349 * global limit. The proper fix for these situations
281e3726 3350 * will require awareness of nodes in the
a756cf59
JW
3351 * dirty-throttling and the flusher threads.
3352 */
3b8c0be4
MG
3353 if (ac->spread_dirty_pages) {
3354 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3355 continue;
3356
3357 if (!node_dirty_ok(zone->zone_pgdat)) {
3358 last_pgdat_dirty_limit = zone->zone_pgdat;
3359 continue;
3360 }
3361 }
7fb1d9fc 3362
6bb15450
MG
3363 if (no_fallback && nr_online_nodes > 1 &&
3364 zone != ac->preferred_zoneref->zone) {
3365 int local_nid;
3366
3367 /*
3368 * If moving to a remote node, retry but allow
3369 * fragmenting fallbacks. Locality is more important
3370 * than fragmentation avoidance.
3371 */
3372 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3373 if (zone_to_nid(zone) != local_nid) {
3374 alloc_flags &= ~ALLOC_NOFRAGMENT;
3375 goto retry;
3376 }
3377 }
3378
e085dbc5 3379 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3380 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3381 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3382 int ret;
3383
c9e97a19
PT
3384#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3385 /*
3386 * Watermark failed for this zone, but see if we can
3387 * grow this zone if it contains deferred pages.
3388 */
3389 if (static_branch_unlikely(&deferred_pages)) {
3390 if (_deferred_grow_zone(zone, order))
3391 goto try_this_zone;
3392 }
3393#endif
5dab2911
MG
3394 /* Checked here to keep the fast path fast */
3395 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3396 if (alloc_flags & ALLOC_NO_WATERMARKS)
3397 goto try_this_zone;
3398
a5f5f91d 3399 if (node_reclaim_mode == 0 ||
c33d6c06 3400 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3401 continue;
3402
a5f5f91d 3403 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3404 switch (ret) {
a5f5f91d 3405 case NODE_RECLAIM_NOSCAN:
fa5e084e 3406 /* did not scan */
cd38b115 3407 continue;
a5f5f91d 3408 case NODE_RECLAIM_FULL:
fa5e084e 3409 /* scanned but unreclaimable */
cd38b115 3410 continue;
fa5e084e
MG
3411 default:
3412 /* did we reclaim enough */
fed2719e 3413 if (zone_watermark_ok(zone, order, mark,
93ea9964 3414 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3415 goto try_this_zone;
3416
fed2719e 3417 continue;
0798e519 3418 }
7fb1d9fc
RS
3419 }
3420
fa5e084e 3421try_this_zone:
066b2393 3422 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3423 gfp_mask, alloc_flags, ac->migratetype);
75379191 3424 if (page) {
479f854a 3425 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3426
3427 /*
3428 * If this is a high-order atomic allocation then check
3429 * if the pageblock should be reserved for the future
3430 */
3431 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3432 reserve_highatomic_pageblock(page, zone, order);
3433
75379191 3434 return page;
c9e97a19
PT
3435 } else {
3436#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3437 /* Try again if zone has deferred pages */
3438 if (static_branch_unlikely(&deferred_pages)) {
3439 if (_deferred_grow_zone(zone, order))
3440 goto try_this_zone;
3441 }
3442#endif
75379191 3443 }
54a6eb5c 3444 }
9276b1bc 3445
6bb15450
MG
3446 /*
3447 * It's possible on a UMA machine to get through all zones that are
3448 * fragmented. If avoiding fragmentation, reset and try again.
3449 */
3450 if (no_fallback) {
3451 alloc_flags &= ~ALLOC_NOFRAGMENT;
3452 goto retry;
3453 }
3454
4ffeaf35 3455 return NULL;
753ee728
MH
3456}
3457
9af744d7 3458static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3459{
a238ab5b 3460 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3461 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3462
2c029a1e 3463 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3464 return;
3465
3466 /*
3467 * This documents exceptions given to allocations in certain
3468 * contexts that are allowed to allocate outside current's set
3469 * of allowed nodes.
3470 */
3471 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3472 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3473 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3474 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3475 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3476 filter &= ~SHOW_MEM_FILTER_NODES;
3477
9af744d7 3478 show_mem(filter, nodemask);
aa187507
MH
3479}
3480
a8e99259 3481void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3482{
3483 struct va_format vaf;
3484 va_list args;
3485 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3486 DEFAULT_RATELIMIT_BURST);
3487
0f7896f1 3488 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3489 return;
3490
7877cdcc
MH
3491 va_start(args, fmt);
3492 vaf.fmt = fmt;
3493 vaf.va = &args;
0205f755
MH
3494 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3495 current->comm, &vaf, gfp_mask, &gfp_mask,
3496 nodemask_pr_args(nodemask));
7877cdcc 3497 va_end(args);
3ee9a4f0 3498
a8e99259 3499 cpuset_print_current_mems_allowed();
3ee9a4f0 3500
a238ab5b 3501 dump_stack();
685dbf6f 3502 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3503}
3504
6c18ba7a
MH
3505static inline struct page *
3506__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3507 unsigned int alloc_flags,
3508 const struct alloc_context *ac)
3509{
3510 struct page *page;
3511
3512 page = get_page_from_freelist(gfp_mask, order,
3513 alloc_flags|ALLOC_CPUSET, ac);
3514 /*
3515 * fallback to ignore cpuset restriction if our nodes
3516 * are depleted
3517 */
3518 if (!page)
3519 page = get_page_from_freelist(gfp_mask, order,
3520 alloc_flags, ac);
3521
3522 return page;
3523}
3524
11e33f6a
MG
3525static inline struct page *
3526__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3527 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3528{
6e0fc46d
DR
3529 struct oom_control oc = {
3530 .zonelist = ac->zonelist,
3531 .nodemask = ac->nodemask,
2a966b77 3532 .memcg = NULL,
6e0fc46d
DR
3533 .gfp_mask = gfp_mask,
3534 .order = order,
6e0fc46d 3535 };
11e33f6a
MG
3536 struct page *page;
3537
9879de73
JW
3538 *did_some_progress = 0;
3539
9879de73 3540 /*
dc56401f
JW
3541 * Acquire the oom lock. If that fails, somebody else is
3542 * making progress for us.
9879de73 3543 */
dc56401f 3544 if (!mutex_trylock(&oom_lock)) {
9879de73 3545 *did_some_progress = 1;
11e33f6a 3546 schedule_timeout_uninterruptible(1);
1da177e4
LT
3547 return NULL;
3548 }
6b1de916 3549
11e33f6a
MG
3550 /*
3551 * Go through the zonelist yet one more time, keep very high watermark
3552 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3553 * we're still under heavy pressure. But make sure that this reclaim
3554 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3555 * allocation which will never fail due to oom_lock already held.
11e33f6a 3556 */
e746bf73
TH
3557 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3558 ~__GFP_DIRECT_RECLAIM, order,
3559 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3560 if (page)
11e33f6a
MG
3561 goto out;
3562
06ad276a
MH
3563 /* Coredumps can quickly deplete all memory reserves */
3564 if (current->flags & PF_DUMPCORE)
3565 goto out;
3566 /* The OOM killer will not help higher order allocs */
3567 if (order > PAGE_ALLOC_COSTLY_ORDER)
3568 goto out;
dcda9b04
MH
3569 /*
3570 * We have already exhausted all our reclaim opportunities without any
3571 * success so it is time to admit defeat. We will skip the OOM killer
3572 * because it is very likely that the caller has a more reasonable
3573 * fallback than shooting a random task.
3574 */
3575 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3576 goto out;
06ad276a
MH
3577 /* The OOM killer does not needlessly kill tasks for lowmem */
3578 if (ac->high_zoneidx < ZONE_NORMAL)
3579 goto out;
3580 if (pm_suspended_storage())
3581 goto out;
3582 /*
3583 * XXX: GFP_NOFS allocations should rather fail than rely on
3584 * other request to make a forward progress.
3585 * We are in an unfortunate situation where out_of_memory cannot
3586 * do much for this context but let's try it to at least get
3587 * access to memory reserved if the current task is killed (see
3588 * out_of_memory). Once filesystems are ready to handle allocation
3589 * failures more gracefully we should just bail out here.
3590 */
3591
3592 /* The OOM killer may not free memory on a specific node */
3593 if (gfp_mask & __GFP_THISNODE)
3594 goto out;
3da88fb3 3595
3c2c6488 3596 /* Exhausted what can be done so it's blame time */
5020e285 3597 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3598 *did_some_progress = 1;
5020e285 3599
6c18ba7a
MH
3600 /*
3601 * Help non-failing allocations by giving them access to memory
3602 * reserves
3603 */
3604 if (gfp_mask & __GFP_NOFAIL)
3605 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3606 ALLOC_NO_WATERMARKS, ac);
5020e285 3607 }
11e33f6a 3608out:
dc56401f 3609 mutex_unlock(&oom_lock);
11e33f6a
MG
3610 return page;
3611}
3612
33c2d214
MH
3613/*
3614 * Maximum number of compaction retries wit a progress before OOM
3615 * killer is consider as the only way to move forward.
3616 */
3617#define MAX_COMPACT_RETRIES 16
3618
56de7263
MG
3619#ifdef CONFIG_COMPACTION
3620/* Try memory compaction for high-order allocations before reclaim */
3621static struct page *
3622__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3623 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3624 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3625{
98dd3b48 3626 struct page *page;
eb414681 3627 unsigned long pflags;
499118e9 3628 unsigned int noreclaim_flag;
53853e2d
VB
3629
3630 if (!order)
66199712 3631 return NULL;
66199712 3632
eb414681 3633 psi_memstall_enter(&pflags);
499118e9 3634 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3635
c5d01d0d 3636 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3637 prio);
eb414681 3638
499118e9 3639 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3640 psi_memstall_leave(&pflags);
56de7263 3641
c5d01d0d 3642 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3643 return NULL;
53853e2d 3644
98dd3b48
VB
3645 /*
3646 * At least in one zone compaction wasn't deferred or skipped, so let's
3647 * count a compaction stall
3648 */
3649 count_vm_event(COMPACTSTALL);
8fb74b9f 3650
31a6c190 3651 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3652
98dd3b48
VB
3653 if (page) {
3654 struct zone *zone = page_zone(page);
53853e2d 3655
98dd3b48
VB
3656 zone->compact_blockskip_flush = false;
3657 compaction_defer_reset(zone, order, true);
3658 count_vm_event(COMPACTSUCCESS);
3659 return page;
3660 }
56de7263 3661
98dd3b48
VB
3662 /*
3663 * It's bad if compaction run occurs and fails. The most likely reason
3664 * is that pages exist, but not enough to satisfy watermarks.
3665 */
3666 count_vm_event(COMPACTFAIL);
66199712 3667
98dd3b48 3668 cond_resched();
56de7263
MG
3669
3670 return NULL;
3671}
33c2d214 3672
3250845d
VB
3673static inline bool
3674should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3675 enum compact_result compact_result,
3676 enum compact_priority *compact_priority,
d9436498 3677 int *compaction_retries)
3250845d
VB
3678{
3679 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3680 int min_priority;
65190cff
MH
3681 bool ret = false;
3682 int retries = *compaction_retries;
3683 enum compact_priority priority = *compact_priority;
3250845d
VB
3684
3685 if (!order)
3686 return false;
3687
d9436498
VB
3688 if (compaction_made_progress(compact_result))
3689 (*compaction_retries)++;
3690
3250845d
VB
3691 /*
3692 * compaction considers all the zone as desperately out of memory
3693 * so it doesn't really make much sense to retry except when the
3694 * failure could be caused by insufficient priority
3695 */
d9436498
VB
3696 if (compaction_failed(compact_result))
3697 goto check_priority;
3250845d
VB
3698
3699 /*
3700 * make sure the compaction wasn't deferred or didn't bail out early
3701 * due to locks contention before we declare that we should give up.
3702 * But do not retry if the given zonelist is not suitable for
3703 * compaction.
3704 */
65190cff
MH
3705 if (compaction_withdrawn(compact_result)) {
3706 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3707 goto out;
3708 }
3250845d
VB
3709
3710 /*
dcda9b04 3711 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3712 * costly ones because they are de facto nofail and invoke OOM
3713 * killer to move on while costly can fail and users are ready
3714 * to cope with that. 1/4 retries is rather arbitrary but we
3715 * would need much more detailed feedback from compaction to
3716 * make a better decision.
3717 */
3718 if (order > PAGE_ALLOC_COSTLY_ORDER)
3719 max_retries /= 4;
65190cff
MH
3720 if (*compaction_retries <= max_retries) {
3721 ret = true;
3722 goto out;
3723 }
3250845d 3724
d9436498
VB
3725 /*
3726 * Make sure there are attempts at the highest priority if we exhausted
3727 * all retries or failed at the lower priorities.
3728 */
3729check_priority:
c2033b00
VB
3730 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3731 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3732
c2033b00 3733 if (*compact_priority > min_priority) {
d9436498
VB
3734 (*compact_priority)--;
3735 *compaction_retries = 0;
65190cff 3736 ret = true;
d9436498 3737 }
65190cff
MH
3738out:
3739 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3740 return ret;
3250845d 3741}
56de7263
MG
3742#else
3743static inline struct page *
3744__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3745 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3746 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3747{
33c2d214 3748 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3749 return NULL;
3750}
33c2d214
MH
3751
3752static inline bool
86a294a8
MH
3753should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3754 enum compact_result compact_result,
a5508cd8 3755 enum compact_priority *compact_priority,
d9436498 3756 int *compaction_retries)
33c2d214 3757{
31e49bfd
MH
3758 struct zone *zone;
3759 struct zoneref *z;
3760
3761 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3762 return false;
3763
3764 /*
3765 * There are setups with compaction disabled which would prefer to loop
3766 * inside the allocator rather than hit the oom killer prematurely.
3767 * Let's give them a good hope and keep retrying while the order-0
3768 * watermarks are OK.
3769 */
3770 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3771 ac->nodemask) {
3772 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3773 ac_classzone_idx(ac), alloc_flags))
3774 return true;
3775 }
33c2d214
MH
3776 return false;
3777}
3250845d 3778#endif /* CONFIG_COMPACTION */
56de7263 3779
d92a8cfc 3780#ifdef CONFIG_LOCKDEP
93781325 3781static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3782 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3783
3784static bool __need_fs_reclaim(gfp_t gfp_mask)
3785{
3786 gfp_mask = current_gfp_context(gfp_mask);
3787
3788 /* no reclaim without waiting on it */
3789 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3790 return false;
3791
3792 /* this guy won't enter reclaim */
2e517d68 3793 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3794 return false;
3795
3796 /* We're only interested __GFP_FS allocations for now */
3797 if (!(gfp_mask & __GFP_FS))
3798 return false;
3799
3800 if (gfp_mask & __GFP_NOLOCKDEP)
3801 return false;
3802
3803 return true;
3804}
3805
93781325
OS
3806void __fs_reclaim_acquire(void)
3807{
3808 lock_map_acquire(&__fs_reclaim_map);
3809}
3810
3811void __fs_reclaim_release(void)
3812{
3813 lock_map_release(&__fs_reclaim_map);
3814}
3815
d92a8cfc
PZ
3816void fs_reclaim_acquire(gfp_t gfp_mask)
3817{
3818 if (__need_fs_reclaim(gfp_mask))
93781325 3819 __fs_reclaim_acquire();
d92a8cfc
PZ
3820}
3821EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3822
3823void fs_reclaim_release(gfp_t gfp_mask)
3824{
3825 if (__need_fs_reclaim(gfp_mask))
93781325 3826 __fs_reclaim_release();
d92a8cfc
PZ
3827}
3828EXPORT_SYMBOL_GPL(fs_reclaim_release);
3829#endif
3830
bba90710
MS
3831/* Perform direct synchronous page reclaim */
3832static int
a9263751
VB
3833__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3834 const struct alloc_context *ac)
11e33f6a 3835{
11e33f6a 3836 struct reclaim_state reclaim_state;
bba90710 3837 int progress;
499118e9 3838 unsigned int noreclaim_flag;
eb414681 3839 unsigned long pflags;
11e33f6a
MG
3840
3841 cond_resched();
3842
3843 /* We now go into synchronous reclaim */
3844 cpuset_memory_pressure_bump();
eb414681 3845 psi_memstall_enter(&pflags);
d92a8cfc 3846 fs_reclaim_acquire(gfp_mask);
93781325 3847 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3848 reclaim_state.reclaimed_slab = 0;
c06b1fca 3849 current->reclaim_state = &reclaim_state;
11e33f6a 3850
a9263751
VB
3851 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3852 ac->nodemask);
11e33f6a 3853
c06b1fca 3854 current->reclaim_state = NULL;
499118e9 3855 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3856 fs_reclaim_release(gfp_mask);
eb414681 3857 psi_memstall_leave(&pflags);
11e33f6a
MG
3858
3859 cond_resched();
3860
bba90710
MS
3861 return progress;
3862}
3863
3864/* The really slow allocator path where we enter direct reclaim */
3865static inline struct page *
3866__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3867 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3868 unsigned long *did_some_progress)
bba90710
MS
3869{
3870 struct page *page = NULL;
3871 bool drained = false;
3872
a9263751 3873 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3874 if (unlikely(!(*did_some_progress)))
3875 return NULL;
11e33f6a 3876
9ee493ce 3877retry:
31a6c190 3878 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3879
3880 /*
3881 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3882 * pages are pinned on the per-cpu lists or in high alloc reserves.
3883 * Shrink them them and try again
9ee493ce
MG
3884 */
3885 if (!page && !drained) {
29fac03b 3886 unreserve_highatomic_pageblock(ac, false);
93481ff0 3887 drain_all_pages(NULL);
9ee493ce
MG
3888 drained = true;
3889 goto retry;
3890 }
3891
11e33f6a
MG
3892 return page;
3893}
3894
5ecd9d40
DR
3895static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3896 const struct alloc_context *ac)
3a025760
JW
3897{
3898 struct zoneref *z;
3899 struct zone *zone;
e1a55637 3900 pg_data_t *last_pgdat = NULL;
5ecd9d40 3901 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3902
5ecd9d40
DR
3903 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3904 ac->nodemask) {
e1a55637 3905 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3906 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3907 last_pgdat = zone->zone_pgdat;
3908 }
3a025760
JW
3909}
3910
c603844b 3911static inline unsigned int
341ce06f
PZ
3912gfp_to_alloc_flags(gfp_t gfp_mask)
3913{
c603844b 3914 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3915
a56f57ff 3916 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3917 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3918
341ce06f
PZ
3919 /*
3920 * The caller may dip into page reserves a bit more if the caller
3921 * cannot run direct reclaim, or if the caller has realtime scheduling
3922 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3923 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3924 */
e6223a3b 3925 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3926
d0164adc 3927 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3928 /*
b104a35d
DR
3929 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3930 * if it can't schedule.
5c3240d9 3931 */
b104a35d 3932 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3933 alloc_flags |= ALLOC_HARDER;
523b9458 3934 /*
b104a35d 3935 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3936 * comment for __cpuset_node_allowed().
523b9458 3937 */
341ce06f 3938 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3939 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3940 alloc_flags |= ALLOC_HARDER;
3941
d883c6cf
JK
3942#ifdef CONFIG_CMA
3943 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3944 alloc_flags |= ALLOC_CMA;
3945#endif
341ce06f
PZ
3946 return alloc_flags;
3947}
3948
cd04ae1e 3949static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3950{
cd04ae1e
MH
3951 if (!tsk_is_oom_victim(tsk))
3952 return false;
3953
3954 /*
3955 * !MMU doesn't have oom reaper so give access to memory reserves
3956 * only to the thread with TIF_MEMDIE set
3957 */
3958 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3959 return false;
3960
cd04ae1e
MH
3961 return true;
3962}
3963
3964/*
3965 * Distinguish requests which really need access to full memory
3966 * reserves from oom victims which can live with a portion of it
3967 */
3968static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3969{
3970 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3971 return 0;
31a6c190 3972 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3973 return ALLOC_NO_WATERMARKS;
31a6c190 3974 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3975 return ALLOC_NO_WATERMARKS;
3976 if (!in_interrupt()) {
3977 if (current->flags & PF_MEMALLOC)
3978 return ALLOC_NO_WATERMARKS;
3979 else if (oom_reserves_allowed(current))
3980 return ALLOC_OOM;
3981 }
31a6c190 3982
cd04ae1e
MH
3983 return 0;
3984}
3985
3986bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3987{
3988 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3989}
3990
0a0337e0
MH
3991/*
3992 * Checks whether it makes sense to retry the reclaim to make a forward progress
3993 * for the given allocation request.
491d79ae
JW
3994 *
3995 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3996 * without success, or when we couldn't even meet the watermark if we
3997 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3998 *
3999 * Returns true if a retry is viable or false to enter the oom path.
4000 */
4001static inline bool
4002should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4003 struct alloc_context *ac, int alloc_flags,
423b452e 4004 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4005{
4006 struct zone *zone;
4007 struct zoneref *z;
15f570bf 4008 bool ret = false;
0a0337e0 4009
423b452e
VB
4010 /*
4011 * Costly allocations might have made a progress but this doesn't mean
4012 * their order will become available due to high fragmentation so
4013 * always increment the no progress counter for them
4014 */
4015 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4016 *no_progress_loops = 0;
4017 else
4018 (*no_progress_loops)++;
4019
0a0337e0
MH
4020 /*
4021 * Make sure we converge to OOM if we cannot make any progress
4022 * several times in the row.
4023 */
04c8716f
MK
4024 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4025 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4026 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4027 }
0a0337e0 4028
bca67592
MG
4029 /*
4030 * Keep reclaiming pages while there is a chance this will lead
4031 * somewhere. If none of the target zones can satisfy our allocation
4032 * request even if all reclaimable pages are considered then we are
4033 * screwed and have to go OOM.
0a0337e0
MH
4034 */
4035 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4036 ac->nodemask) {
4037 unsigned long available;
ede37713 4038 unsigned long reclaimable;
d379f01d
MH
4039 unsigned long min_wmark = min_wmark_pages(zone);
4040 bool wmark;
0a0337e0 4041
5a1c84b4 4042 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4043 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4044
4045 /*
491d79ae
JW
4046 * Would the allocation succeed if we reclaimed all
4047 * reclaimable pages?
0a0337e0 4048 */
d379f01d
MH
4049 wmark = __zone_watermark_ok(zone, order, min_wmark,
4050 ac_classzone_idx(ac), alloc_flags, available);
4051 trace_reclaim_retry_zone(z, order, reclaimable,
4052 available, min_wmark, *no_progress_loops, wmark);
4053 if (wmark) {
ede37713
MH
4054 /*
4055 * If we didn't make any progress and have a lot of
4056 * dirty + writeback pages then we should wait for
4057 * an IO to complete to slow down the reclaim and
4058 * prevent from pre mature OOM
4059 */
4060 if (!did_some_progress) {
11fb9989 4061 unsigned long write_pending;
ede37713 4062
5a1c84b4
MG
4063 write_pending = zone_page_state_snapshot(zone,
4064 NR_ZONE_WRITE_PENDING);
ede37713 4065
11fb9989 4066 if (2 * write_pending > reclaimable) {
ede37713
MH
4067 congestion_wait(BLK_RW_ASYNC, HZ/10);
4068 return true;
4069 }
4070 }
5a1c84b4 4071
15f570bf
MH
4072 ret = true;
4073 goto out;
0a0337e0
MH
4074 }
4075 }
4076
15f570bf
MH
4077out:
4078 /*
4079 * Memory allocation/reclaim might be called from a WQ context and the
4080 * current implementation of the WQ concurrency control doesn't
4081 * recognize that a particular WQ is congested if the worker thread is
4082 * looping without ever sleeping. Therefore we have to do a short sleep
4083 * here rather than calling cond_resched().
4084 */
4085 if (current->flags & PF_WQ_WORKER)
4086 schedule_timeout_uninterruptible(1);
4087 else
4088 cond_resched();
4089 return ret;
0a0337e0
MH
4090}
4091
902b6281
VB
4092static inline bool
4093check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4094{
4095 /*
4096 * It's possible that cpuset's mems_allowed and the nodemask from
4097 * mempolicy don't intersect. This should be normally dealt with by
4098 * policy_nodemask(), but it's possible to race with cpuset update in
4099 * such a way the check therein was true, and then it became false
4100 * before we got our cpuset_mems_cookie here.
4101 * This assumes that for all allocations, ac->nodemask can come only
4102 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4103 * when it does not intersect with the cpuset restrictions) or the
4104 * caller can deal with a violated nodemask.
4105 */
4106 if (cpusets_enabled() && ac->nodemask &&
4107 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4108 ac->nodemask = NULL;
4109 return true;
4110 }
4111
4112 /*
4113 * When updating a task's mems_allowed or mempolicy nodemask, it is
4114 * possible to race with parallel threads in such a way that our
4115 * allocation can fail while the mask is being updated. If we are about
4116 * to fail, check if the cpuset changed during allocation and if so,
4117 * retry.
4118 */
4119 if (read_mems_allowed_retry(cpuset_mems_cookie))
4120 return true;
4121
4122 return false;
4123}
4124
11e33f6a
MG
4125static inline struct page *
4126__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4127 struct alloc_context *ac)
11e33f6a 4128{
d0164adc 4129 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4130 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4131 struct page *page = NULL;
c603844b 4132 unsigned int alloc_flags;
11e33f6a 4133 unsigned long did_some_progress;
5ce9bfef 4134 enum compact_priority compact_priority;
c5d01d0d 4135 enum compact_result compact_result;
5ce9bfef
VB
4136 int compaction_retries;
4137 int no_progress_loops;
5ce9bfef 4138 unsigned int cpuset_mems_cookie;
cd04ae1e 4139 int reserve_flags;
1da177e4 4140
d0164adc
MG
4141 /*
4142 * We also sanity check to catch abuse of atomic reserves being used by
4143 * callers that are not in atomic context.
4144 */
4145 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4146 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4147 gfp_mask &= ~__GFP_ATOMIC;
4148
5ce9bfef
VB
4149retry_cpuset:
4150 compaction_retries = 0;
4151 no_progress_loops = 0;
4152 compact_priority = DEF_COMPACT_PRIORITY;
4153 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4154
4155 /*
4156 * The fast path uses conservative alloc_flags to succeed only until
4157 * kswapd needs to be woken up, and to avoid the cost of setting up
4158 * alloc_flags precisely. So we do that now.
4159 */
4160 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4161
e47483bc
VB
4162 /*
4163 * We need to recalculate the starting point for the zonelist iterator
4164 * because we might have used different nodemask in the fast path, or
4165 * there was a cpuset modification and we are retrying - otherwise we
4166 * could end up iterating over non-eligible zones endlessly.
4167 */
4168 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4169 ac->high_zoneidx, ac->nodemask);
4170 if (!ac->preferred_zoneref->zone)
4171 goto nopage;
4172
23771235 4173 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4174 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4175
4176 /*
4177 * The adjusted alloc_flags might result in immediate success, so try
4178 * that first
4179 */
4180 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4181 if (page)
4182 goto got_pg;
4183
a8161d1e
VB
4184 /*
4185 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4186 * that we have enough base pages and don't need to reclaim. For non-
4187 * movable high-order allocations, do that as well, as compaction will
4188 * try prevent permanent fragmentation by migrating from blocks of the
4189 * same migratetype.
4190 * Don't try this for allocations that are allowed to ignore
4191 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4192 */
282722b0
VB
4193 if (can_direct_reclaim &&
4194 (costly_order ||
4195 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4196 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4197 page = __alloc_pages_direct_compact(gfp_mask, order,
4198 alloc_flags, ac,
a5508cd8 4199 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4200 &compact_result);
4201 if (page)
4202 goto got_pg;
4203
3eb2771b
VB
4204 /*
4205 * Checks for costly allocations with __GFP_NORETRY, which
4206 * includes THP page fault allocations
4207 */
282722b0 4208 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4209 /*
4210 * If compaction is deferred for high-order allocations,
4211 * it is because sync compaction recently failed. If
4212 * this is the case and the caller requested a THP
4213 * allocation, we do not want to heavily disrupt the
4214 * system, so we fail the allocation instead of entering
4215 * direct reclaim.
4216 */
4217 if (compact_result == COMPACT_DEFERRED)
4218 goto nopage;
4219
a8161d1e 4220 /*
3eb2771b
VB
4221 * Looks like reclaim/compaction is worth trying, but
4222 * sync compaction could be very expensive, so keep
25160354 4223 * using async compaction.
a8161d1e 4224 */
a5508cd8 4225 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4226 }
4227 }
23771235 4228
31a6c190 4229retry:
23771235 4230 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190 4231 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4232 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4233
cd04ae1e
MH
4234 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4235 if (reserve_flags)
4236 alloc_flags = reserve_flags;
23771235 4237
e46e7b77 4238 /*
d6a24df0
VB
4239 * Reset the nodemask and zonelist iterators if memory policies can be
4240 * ignored. These allocations are high priority and system rather than
4241 * user oriented.
e46e7b77 4242 */
cd04ae1e 4243 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4244 ac->nodemask = NULL;
e46e7b77
MG
4245 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4246 ac->high_zoneidx, ac->nodemask);
4247 }
4248
23771235 4249 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4250 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4251 if (page)
4252 goto got_pg;
1da177e4 4253
d0164adc 4254 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4255 if (!can_direct_reclaim)
1da177e4
LT
4256 goto nopage;
4257
9a67f648
MH
4258 /* Avoid recursion of direct reclaim */
4259 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4260 goto nopage;
4261
a8161d1e
VB
4262 /* Try direct reclaim and then allocating */
4263 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4264 &did_some_progress);
4265 if (page)
4266 goto got_pg;
4267
4268 /* Try direct compaction and then allocating */
a9263751 4269 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4270 compact_priority, &compact_result);
56de7263
MG
4271 if (page)
4272 goto got_pg;
75f30861 4273
9083905a
JW
4274 /* Do not loop if specifically requested */
4275 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4276 goto nopage;
9083905a 4277
0a0337e0
MH
4278 /*
4279 * Do not retry costly high order allocations unless they are
dcda9b04 4280 * __GFP_RETRY_MAYFAIL
0a0337e0 4281 */
dcda9b04 4282 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4283 goto nopage;
0a0337e0 4284
0a0337e0 4285 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4286 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4287 goto retry;
4288
33c2d214
MH
4289 /*
4290 * It doesn't make any sense to retry for the compaction if the order-0
4291 * reclaim is not able to make any progress because the current
4292 * implementation of the compaction depends on the sufficient amount
4293 * of free memory (see __compaction_suitable)
4294 */
4295 if (did_some_progress > 0 &&
86a294a8 4296 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4297 compact_result, &compact_priority,
d9436498 4298 &compaction_retries))
33c2d214
MH
4299 goto retry;
4300
902b6281
VB
4301
4302 /* Deal with possible cpuset update races before we start OOM killing */
4303 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4304 goto retry_cpuset;
4305
9083905a
JW
4306 /* Reclaim has failed us, start killing things */
4307 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4308 if (page)
4309 goto got_pg;
4310
9a67f648 4311 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4312 if (tsk_is_oom_victim(current) &&
4313 (alloc_flags == ALLOC_OOM ||
c288983d 4314 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4315 goto nopage;
4316
9083905a 4317 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4318 if (did_some_progress) {
4319 no_progress_loops = 0;
9083905a 4320 goto retry;
0a0337e0 4321 }
9083905a 4322
1da177e4 4323nopage:
902b6281
VB
4324 /* Deal with possible cpuset update races before we fail */
4325 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4326 goto retry_cpuset;
4327
9a67f648
MH
4328 /*
4329 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4330 * we always retry
4331 */
4332 if (gfp_mask & __GFP_NOFAIL) {
4333 /*
4334 * All existing users of the __GFP_NOFAIL are blockable, so warn
4335 * of any new users that actually require GFP_NOWAIT
4336 */
4337 if (WARN_ON_ONCE(!can_direct_reclaim))
4338 goto fail;
4339
4340 /*
4341 * PF_MEMALLOC request from this context is rather bizarre
4342 * because we cannot reclaim anything and only can loop waiting
4343 * for somebody to do a work for us
4344 */
4345 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4346
4347 /*
4348 * non failing costly orders are a hard requirement which we
4349 * are not prepared for much so let's warn about these users
4350 * so that we can identify them and convert them to something
4351 * else.
4352 */
4353 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4354
6c18ba7a
MH
4355 /*
4356 * Help non-failing allocations by giving them access to memory
4357 * reserves but do not use ALLOC_NO_WATERMARKS because this
4358 * could deplete whole memory reserves which would just make
4359 * the situation worse
4360 */
4361 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4362 if (page)
4363 goto got_pg;
4364
9a67f648
MH
4365 cond_resched();
4366 goto retry;
4367 }
4368fail:
a8e99259 4369 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4370 "page allocation failure: order:%u", order);
1da177e4 4371got_pg:
072bb0aa 4372 return page;
1da177e4 4373}
11e33f6a 4374
9cd75558 4375static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4376 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4377 struct alloc_context *ac, gfp_t *alloc_mask,
4378 unsigned int *alloc_flags)
11e33f6a 4379{
9cd75558 4380 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4381 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4382 ac->nodemask = nodemask;
4383 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4384
682a3385 4385 if (cpusets_enabled()) {
9cd75558 4386 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4387 if (!ac->nodemask)
4388 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4389 else
4390 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4391 }
4392
d92a8cfc
PZ
4393 fs_reclaim_acquire(gfp_mask);
4394 fs_reclaim_release(gfp_mask);
11e33f6a 4395
d0164adc 4396 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4397
4398 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4399 return false;
11e33f6a 4400
d883c6cf
JK
4401 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4402 *alloc_flags |= ALLOC_CMA;
4403
9cd75558
MG
4404 return true;
4405}
21bb9bd1 4406
9cd75558 4407/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4408static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4409{
c9ab0c4f 4410 /* Dirty zone balancing only done in the fast path */
9cd75558 4411 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4412
e46e7b77
MG
4413 /*
4414 * The preferred zone is used for statistics but crucially it is
4415 * also used as the starting point for the zonelist iterator. It
4416 * may get reset for allocations that ignore memory policies.
4417 */
9cd75558
MG
4418 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4419 ac->high_zoneidx, ac->nodemask);
4420}
4421
4422/*
4423 * This is the 'heart' of the zoned buddy allocator.
4424 */
4425struct page *
04ec6264
VB
4426__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4427 nodemask_t *nodemask)
9cd75558
MG
4428{
4429 struct page *page;
4430 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4431 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4432 struct alloc_context ac = { };
4433
c63ae43b
MH
4434 /*
4435 * There are several places where we assume that the order value is sane
4436 * so bail out early if the request is out of bound.
4437 */
4438 if (unlikely(order >= MAX_ORDER)) {
4439 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4440 return NULL;
4441 }
4442
9cd75558 4443 gfp_mask &= gfp_allowed_mask;
f19360f0 4444 alloc_mask = gfp_mask;
04ec6264 4445 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4446 return NULL;
4447
a380b40a 4448 finalise_ac(gfp_mask, &ac);
5bb1b169 4449
6bb15450
MG
4450 /*
4451 * Forbid the first pass from falling back to types that fragment
4452 * memory until all local zones are considered.
4453 */
4454 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone);
4455
5117f45d 4456 /* First allocation attempt */
a9263751 4457 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4458 if (likely(page))
4459 goto out;
11e33f6a 4460
4fcb0971 4461 /*
7dea19f9
MH
4462 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4463 * resp. GFP_NOIO which has to be inherited for all allocation requests
4464 * from a particular context which has been marked by
4465 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4466 */
7dea19f9 4467 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4468 ac.spread_dirty_pages = false;
23f086f9 4469
4741526b
MG
4470 /*
4471 * Restore the original nodemask if it was potentially replaced with
4472 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4473 */
e47483bc 4474 if (unlikely(ac.nodemask != nodemask))
4741526b 4475 ac.nodemask = nodemask;
16096c25 4476
4fcb0971 4477 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4478
4fcb0971 4479out:
c4159a75
VD
4480 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4481 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4482 __free_pages(page, order);
4483 page = NULL;
4949148a
VD
4484 }
4485
4fcb0971
MG
4486 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4487
11e33f6a 4488 return page;
1da177e4 4489}
d239171e 4490EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4491
4492/*
9ea9a680
MH
4493 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4494 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4495 * you need to access high mem.
1da177e4 4496 */
920c7a5d 4497unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4498{
945a1113
AM
4499 struct page *page;
4500
9ea9a680 4501 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4502 if (!page)
4503 return 0;
4504 return (unsigned long) page_address(page);
4505}
1da177e4
LT
4506EXPORT_SYMBOL(__get_free_pages);
4507
920c7a5d 4508unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4509{
945a1113 4510 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4511}
1da177e4
LT
4512EXPORT_SYMBOL(get_zeroed_page);
4513
742aa7fb 4514static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4515{
742aa7fb
AL
4516 if (order == 0) /* Via pcp? */
4517 free_unref_page(page);
4518 else
4519 __free_pages_ok(page, order);
1da177e4
LT
4520}
4521
742aa7fb
AL
4522void __free_pages(struct page *page, unsigned int order)
4523{
4524 if (put_page_testzero(page))
4525 free_the_page(page, order);
4526}
1da177e4
LT
4527EXPORT_SYMBOL(__free_pages);
4528
920c7a5d 4529void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4530{
4531 if (addr != 0) {
725d704e 4532 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4533 __free_pages(virt_to_page((void *)addr), order);
4534 }
4535}
4536
4537EXPORT_SYMBOL(free_pages);
4538
b63ae8ca
AD
4539/*
4540 * Page Fragment:
4541 * An arbitrary-length arbitrary-offset area of memory which resides
4542 * within a 0 or higher order page. Multiple fragments within that page
4543 * are individually refcounted, in the page's reference counter.
4544 *
4545 * The page_frag functions below provide a simple allocation framework for
4546 * page fragments. This is used by the network stack and network device
4547 * drivers to provide a backing region of memory for use as either an
4548 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4549 */
2976db80
AD
4550static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4551 gfp_t gfp_mask)
b63ae8ca
AD
4552{
4553 struct page *page = NULL;
4554 gfp_t gfp = gfp_mask;
4555
4556#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4557 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4558 __GFP_NOMEMALLOC;
4559 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4560 PAGE_FRAG_CACHE_MAX_ORDER);
4561 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4562#endif
4563 if (unlikely(!page))
4564 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4565
4566 nc->va = page ? page_address(page) : NULL;
4567
4568 return page;
4569}
4570
2976db80 4571void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4572{
4573 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4574
742aa7fb
AL
4575 if (page_ref_sub_and_test(page, count))
4576 free_the_page(page, compound_order(page));
44fdffd7 4577}
2976db80 4578EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4579
8c2dd3e4
AD
4580void *page_frag_alloc(struct page_frag_cache *nc,
4581 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4582{
4583 unsigned int size = PAGE_SIZE;
4584 struct page *page;
4585 int offset;
4586
4587 if (unlikely(!nc->va)) {
4588refill:
2976db80 4589 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4590 if (!page)
4591 return NULL;
4592
4593#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4594 /* if size can vary use size else just use PAGE_SIZE */
4595 size = nc->size;
4596#endif
4597 /* Even if we own the page, we do not use atomic_set().
4598 * This would break get_page_unless_zero() users.
4599 */
fe896d18 4600 page_ref_add(page, size - 1);
b63ae8ca
AD
4601
4602 /* reset page count bias and offset to start of new frag */
2f064f34 4603 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4604 nc->pagecnt_bias = size;
4605 nc->offset = size;
4606 }
4607
4608 offset = nc->offset - fragsz;
4609 if (unlikely(offset < 0)) {
4610 page = virt_to_page(nc->va);
4611
fe896d18 4612 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4613 goto refill;
4614
4615#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4616 /* if size can vary use size else just use PAGE_SIZE */
4617 size = nc->size;
4618#endif
4619 /* OK, page count is 0, we can safely set it */
fe896d18 4620 set_page_count(page, size);
b63ae8ca
AD
4621
4622 /* reset page count bias and offset to start of new frag */
4623 nc->pagecnt_bias = size;
4624 offset = size - fragsz;
4625 }
4626
4627 nc->pagecnt_bias--;
4628 nc->offset = offset;
4629
4630 return nc->va + offset;
4631}
8c2dd3e4 4632EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4633
4634/*
4635 * Frees a page fragment allocated out of either a compound or order 0 page.
4636 */
8c2dd3e4 4637void page_frag_free(void *addr)
b63ae8ca
AD
4638{
4639 struct page *page = virt_to_head_page(addr);
4640
742aa7fb
AL
4641 if (unlikely(put_page_testzero(page)))
4642 free_the_page(page, compound_order(page));
b63ae8ca 4643}
8c2dd3e4 4644EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4645
d00181b9
KS
4646static void *make_alloc_exact(unsigned long addr, unsigned int order,
4647 size_t size)
ee85c2e1
AK
4648{
4649 if (addr) {
4650 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4651 unsigned long used = addr + PAGE_ALIGN(size);
4652
4653 split_page(virt_to_page((void *)addr), order);
4654 while (used < alloc_end) {
4655 free_page(used);
4656 used += PAGE_SIZE;
4657 }
4658 }
4659 return (void *)addr;
4660}
4661
2be0ffe2
TT
4662/**
4663 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4664 * @size: the number of bytes to allocate
4665 * @gfp_mask: GFP flags for the allocation
4666 *
4667 * This function is similar to alloc_pages(), except that it allocates the
4668 * minimum number of pages to satisfy the request. alloc_pages() can only
4669 * allocate memory in power-of-two pages.
4670 *
4671 * This function is also limited by MAX_ORDER.
4672 *
4673 * Memory allocated by this function must be released by free_pages_exact().
4674 */
4675void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4676{
4677 unsigned int order = get_order(size);
4678 unsigned long addr;
4679
4680 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4681 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4682}
4683EXPORT_SYMBOL(alloc_pages_exact);
4684
ee85c2e1
AK
4685/**
4686 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4687 * pages on a node.
b5e6ab58 4688 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4689 * @size: the number of bytes to allocate
4690 * @gfp_mask: GFP flags for the allocation
4691 *
4692 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4693 * back.
ee85c2e1 4694 */
e1931811 4695void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4696{
d00181b9 4697 unsigned int order = get_order(size);
ee85c2e1
AK
4698 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4699 if (!p)
4700 return NULL;
4701 return make_alloc_exact((unsigned long)page_address(p), order, size);
4702}
ee85c2e1 4703
2be0ffe2
TT
4704/**
4705 * free_pages_exact - release memory allocated via alloc_pages_exact()
4706 * @virt: the value returned by alloc_pages_exact.
4707 * @size: size of allocation, same value as passed to alloc_pages_exact().
4708 *
4709 * Release the memory allocated by a previous call to alloc_pages_exact.
4710 */
4711void free_pages_exact(void *virt, size_t size)
4712{
4713 unsigned long addr = (unsigned long)virt;
4714 unsigned long end = addr + PAGE_ALIGN(size);
4715
4716 while (addr < end) {
4717 free_page(addr);
4718 addr += PAGE_SIZE;
4719 }
4720}
4721EXPORT_SYMBOL(free_pages_exact);
4722
e0fb5815
ZY
4723/**
4724 * nr_free_zone_pages - count number of pages beyond high watermark
4725 * @offset: The zone index of the highest zone
4726 *
4727 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4728 * high watermark within all zones at or below a given zone index. For each
4729 * zone, the number of pages is calculated as:
0e056eb5
MCC
4730 *
4731 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4732 */
ebec3862 4733static unsigned long nr_free_zone_pages(int offset)
1da177e4 4734{
dd1a239f 4735 struct zoneref *z;
54a6eb5c
MG
4736 struct zone *zone;
4737
e310fd43 4738 /* Just pick one node, since fallback list is circular */
ebec3862 4739 unsigned long sum = 0;
1da177e4 4740
0e88460d 4741 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4742
54a6eb5c 4743 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4744 unsigned long size = zone_managed_pages(zone);
41858966 4745 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4746 if (size > high)
4747 sum += size - high;
1da177e4
LT
4748 }
4749
4750 return sum;
4751}
4752
e0fb5815
ZY
4753/**
4754 * nr_free_buffer_pages - count number of pages beyond high watermark
4755 *
4756 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4757 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4758 */
ebec3862 4759unsigned long nr_free_buffer_pages(void)
1da177e4 4760{
af4ca457 4761 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4762}
c2f1a551 4763EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4764
e0fb5815
ZY
4765/**
4766 * nr_free_pagecache_pages - count number of pages beyond high watermark
4767 *
4768 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4769 * high watermark within all zones.
1da177e4 4770 */
ebec3862 4771unsigned long nr_free_pagecache_pages(void)
1da177e4 4772{
2a1e274a 4773 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4774}
08e0f6a9
CL
4775
4776static inline void show_node(struct zone *zone)
1da177e4 4777{
e5adfffc 4778 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4779 printk("Node %d ", zone_to_nid(zone));
1da177e4 4780}
1da177e4 4781
d02bd27b
IR
4782long si_mem_available(void)
4783{
4784 long available;
4785 unsigned long pagecache;
4786 unsigned long wmark_low = 0;
4787 unsigned long pages[NR_LRU_LISTS];
b29940c1 4788 unsigned long reclaimable;
d02bd27b
IR
4789 struct zone *zone;
4790 int lru;
4791
4792 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4793 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4794
4795 for_each_zone(zone)
4796 wmark_low += zone->watermark[WMARK_LOW];
4797
4798 /*
4799 * Estimate the amount of memory available for userspace allocations,
4800 * without causing swapping.
4801 */
c41f012a 4802 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4803
4804 /*
4805 * Not all the page cache can be freed, otherwise the system will
4806 * start swapping. Assume at least half of the page cache, or the
4807 * low watermark worth of cache, needs to stay.
4808 */
4809 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4810 pagecache -= min(pagecache / 2, wmark_low);
4811 available += pagecache;
4812
4813 /*
b29940c1
VB
4814 * Part of the reclaimable slab and other kernel memory consists of
4815 * items that are in use, and cannot be freed. Cap this estimate at the
4816 * low watermark.
d02bd27b 4817 */
b29940c1
VB
4818 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4819 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4820 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4821
d02bd27b
IR
4822 if (available < 0)
4823 available = 0;
4824 return available;
4825}
4826EXPORT_SYMBOL_GPL(si_mem_available);
4827
1da177e4
LT
4828void si_meminfo(struct sysinfo *val)
4829{
ca79b0c2 4830 val->totalram = totalram_pages();
11fb9989 4831 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4832 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4833 val->bufferram = nr_blockdev_pages();
ca79b0c2 4834 val->totalhigh = totalhigh_pages();
1da177e4 4835 val->freehigh = nr_free_highpages();
1da177e4
LT
4836 val->mem_unit = PAGE_SIZE;
4837}
4838
4839EXPORT_SYMBOL(si_meminfo);
4840
4841#ifdef CONFIG_NUMA
4842void si_meminfo_node(struct sysinfo *val, int nid)
4843{
cdd91a77
JL
4844 int zone_type; /* needs to be signed */
4845 unsigned long managed_pages = 0;
fc2bd799
JK
4846 unsigned long managed_highpages = 0;
4847 unsigned long free_highpages = 0;
1da177e4
LT
4848 pg_data_t *pgdat = NODE_DATA(nid);
4849
cdd91a77 4850 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 4851 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 4852 val->totalram = managed_pages;
11fb9989 4853 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4854 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4855#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4856 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4857 struct zone *zone = &pgdat->node_zones[zone_type];
4858
4859 if (is_highmem(zone)) {
9705bea5 4860 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
4861 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4862 }
4863 }
4864 val->totalhigh = managed_highpages;
4865 val->freehigh = free_highpages;
98d2b0eb 4866#else
fc2bd799
JK
4867 val->totalhigh = managed_highpages;
4868 val->freehigh = free_highpages;
98d2b0eb 4869#endif
1da177e4
LT
4870 val->mem_unit = PAGE_SIZE;
4871}
4872#endif
4873
ddd588b5 4874/*
7bf02ea2
DR
4875 * Determine whether the node should be displayed or not, depending on whether
4876 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4877 */
9af744d7 4878static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4879{
ddd588b5 4880 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4881 return false;
ddd588b5 4882
9af744d7
MH
4883 /*
4884 * no node mask - aka implicit memory numa policy. Do not bother with
4885 * the synchronization - read_mems_allowed_begin - because we do not
4886 * have to be precise here.
4887 */
4888 if (!nodemask)
4889 nodemask = &cpuset_current_mems_allowed;
4890
4891 return !node_isset(nid, *nodemask);
ddd588b5
DR
4892}
4893
1da177e4
LT
4894#define K(x) ((x) << (PAGE_SHIFT-10))
4895
377e4f16
RV
4896static void show_migration_types(unsigned char type)
4897{
4898 static const char types[MIGRATE_TYPES] = {
4899 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4900 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4901 [MIGRATE_RECLAIMABLE] = 'E',
4902 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4903#ifdef CONFIG_CMA
4904 [MIGRATE_CMA] = 'C',
4905#endif
194159fb 4906#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4907 [MIGRATE_ISOLATE] = 'I',
194159fb 4908#endif
377e4f16
RV
4909 };
4910 char tmp[MIGRATE_TYPES + 1];
4911 char *p = tmp;
4912 int i;
4913
4914 for (i = 0; i < MIGRATE_TYPES; i++) {
4915 if (type & (1 << i))
4916 *p++ = types[i];
4917 }
4918
4919 *p = '\0';
1f84a18f 4920 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4921}
4922
1da177e4
LT
4923/*
4924 * Show free area list (used inside shift_scroll-lock stuff)
4925 * We also calculate the percentage fragmentation. We do this by counting the
4926 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4927 *
4928 * Bits in @filter:
4929 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4930 * cpuset.
1da177e4 4931 */
9af744d7 4932void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4933{
d1bfcdb8 4934 unsigned long free_pcp = 0;
c7241913 4935 int cpu;
1da177e4 4936 struct zone *zone;
599d0c95 4937 pg_data_t *pgdat;
1da177e4 4938
ee99c71c 4939 for_each_populated_zone(zone) {
9af744d7 4940 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4941 continue;
d1bfcdb8 4942
761b0677
KK
4943 for_each_online_cpu(cpu)
4944 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4945 }
4946
a731286d
KM
4947 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4948 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4949 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4950 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4951 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4952 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4953 global_node_page_state(NR_ACTIVE_ANON),
4954 global_node_page_state(NR_INACTIVE_ANON),
4955 global_node_page_state(NR_ISOLATED_ANON),
4956 global_node_page_state(NR_ACTIVE_FILE),
4957 global_node_page_state(NR_INACTIVE_FILE),
4958 global_node_page_state(NR_ISOLATED_FILE),
4959 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4960 global_node_page_state(NR_FILE_DIRTY),
4961 global_node_page_state(NR_WRITEBACK),
4962 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4963 global_node_page_state(NR_SLAB_RECLAIMABLE),
4964 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4965 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4966 global_node_page_state(NR_SHMEM),
c41f012a
MH
4967 global_zone_page_state(NR_PAGETABLE),
4968 global_zone_page_state(NR_BOUNCE),
4969 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4970 free_pcp,
c41f012a 4971 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4972
599d0c95 4973 for_each_online_pgdat(pgdat) {
9af744d7 4974 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4975 continue;
4976
599d0c95
MG
4977 printk("Node %d"
4978 " active_anon:%lukB"
4979 " inactive_anon:%lukB"
4980 " active_file:%lukB"
4981 " inactive_file:%lukB"
4982 " unevictable:%lukB"
4983 " isolated(anon):%lukB"
4984 " isolated(file):%lukB"
50658e2e 4985 " mapped:%lukB"
11fb9989
MG
4986 " dirty:%lukB"
4987 " writeback:%lukB"
4988 " shmem:%lukB"
4989#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4990 " shmem_thp: %lukB"
4991 " shmem_pmdmapped: %lukB"
4992 " anon_thp: %lukB"
4993#endif
4994 " writeback_tmp:%lukB"
4995 " unstable:%lukB"
599d0c95
MG
4996 " all_unreclaimable? %s"
4997 "\n",
4998 pgdat->node_id,
4999 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5000 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5001 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5002 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5003 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5004 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5005 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5006 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5007 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5008 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5009 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5010#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5011 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5012 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5013 * HPAGE_PMD_NR),
5014 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5015#endif
11fb9989
MG
5016 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5017 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5018 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5019 "yes" : "no");
599d0c95
MG
5020 }
5021
ee99c71c 5022 for_each_populated_zone(zone) {
1da177e4
LT
5023 int i;
5024
9af744d7 5025 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5026 continue;
d1bfcdb8
KK
5027
5028 free_pcp = 0;
5029 for_each_online_cpu(cpu)
5030 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5031
1da177e4 5032 show_node(zone);
1f84a18f
JP
5033 printk(KERN_CONT
5034 "%s"
1da177e4
LT
5035 " free:%lukB"
5036 " min:%lukB"
5037 " low:%lukB"
5038 " high:%lukB"
71c799f4
MK
5039 " active_anon:%lukB"
5040 " inactive_anon:%lukB"
5041 " active_file:%lukB"
5042 " inactive_file:%lukB"
5043 " unevictable:%lukB"
5a1c84b4 5044 " writepending:%lukB"
1da177e4 5045 " present:%lukB"
9feedc9d 5046 " managed:%lukB"
4a0aa73f 5047 " mlocked:%lukB"
c6a7f572 5048 " kernel_stack:%lukB"
4a0aa73f 5049 " pagetables:%lukB"
4a0aa73f 5050 " bounce:%lukB"
d1bfcdb8
KK
5051 " free_pcp:%lukB"
5052 " local_pcp:%ukB"
d1ce749a 5053 " free_cma:%lukB"
1da177e4
LT
5054 "\n",
5055 zone->name,
88f5acf8 5056 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5057 K(min_wmark_pages(zone)),
5058 K(low_wmark_pages(zone)),
5059 K(high_wmark_pages(zone)),
71c799f4
MK
5060 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5061 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5062 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5063 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5064 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5065 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5066 K(zone->present_pages),
9705bea5 5067 K(zone_managed_pages(zone)),
4a0aa73f 5068 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5069 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5070 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5071 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5072 K(free_pcp),
5073 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5074 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5075 printk("lowmem_reserve[]:");
5076 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5077 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5078 printk(KERN_CONT "\n");
1da177e4
LT
5079 }
5080
ee99c71c 5081 for_each_populated_zone(zone) {
d00181b9
KS
5082 unsigned int order;
5083 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5084 unsigned char types[MAX_ORDER];
1da177e4 5085
9af744d7 5086 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5087 continue;
1da177e4 5088 show_node(zone);
1f84a18f 5089 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5090
5091 spin_lock_irqsave(&zone->lock, flags);
5092 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5093 struct free_area *area = &zone->free_area[order];
5094 int type;
5095
5096 nr[order] = area->nr_free;
8f9de51a 5097 total += nr[order] << order;
377e4f16
RV
5098
5099 types[order] = 0;
5100 for (type = 0; type < MIGRATE_TYPES; type++) {
5101 if (!list_empty(&area->free_list[type]))
5102 types[order] |= 1 << type;
5103 }
1da177e4
LT
5104 }
5105 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5106 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5107 printk(KERN_CONT "%lu*%lukB ",
5108 nr[order], K(1UL) << order);
377e4f16
RV
5109 if (nr[order])
5110 show_migration_types(types[order]);
5111 }
1f84a18f 5112 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5113 }
5114
949f7ec5
DR
5115 hugetlb_show_meminfo();
5116
11fb9989 5117 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5118
1da177e4
LT
5119 show_swap_cache_info();
5120}
5121
19770b32
MG
5122static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5123{
5124 zoneref->zone = zone;
5125 zoneref->zone_idx = zone_idx(zone);
5126}
5127
1da177e4
LT
5128/*
5129 * Builds allocation fallback zone lists.
1a93205b
CL
5130 *
5131 * Add all populated zones of a node to the zonelist.
1da177e4 5132 */
9d3be21b 5133static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5134{
1a93205b 5135 struct zone *zone;
bc732f1d 5136 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5137 int nr_zones = 0;
02a68a5e
CL
5138
5139 do {
2f6726e5 5140 zone_type--;
070f8032 5141 zone = pgdat->node_zones + zone_type;
6aa303de 5142 if (managed_zone(zone)) {
9d3be21b 5143 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5144 check_highest_zone(zone_type);
1da177e4 5145 }
2f6726e5 5146 } while (zone_type);
bc732f1d 5147
070f8032 5148 return nr_zones;
1da177e4
LT
5149}
5150
5151#ifdef CONFIG_NUMA
f0c0b2b8
KH
5152
5153static int __parse_numa_zonelist_order(char *s)
5154{
c9bff3ee
MH
5155 /*
5156 * We used to support different zonlists modes but they turned
5157 * out to be just not useful. Let's keep the warning in place
5158 * if somebody still use the cmd line parameter so that we do
5159 * not fail it silently
5160 */
5161 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5162 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5163 return -EINVAL;
5164 }
5165 return 0;
5166}
5167
5168static __init int setup_numa_zonelist_order(char *s)
5169{
ecb256f8
VL
5170 if (!s)
5171 return 0;
5172
c9bff3ee 5173 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5174}
5175early_param("numa_zonelist_order", setup_numa_zonelist_order);
5176
c9bff3ee
MH
5177char numa_zonelist_order[] = "Node";
5178
f0c0b2b8
KH
5179/*
5180 * sysctl handler for numa_zonelist_order
5181 */
cccad5b9 5182int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5183 void __user *buffer, size_t *length,
f0c0b2b8
KH
5184 loff_t *ppos)
5185{
c9bff3ee 5186 char *str;
f0c0b2b8
KH
5187 int ret;
5188
c9bff3ee
MH
5189 if (!write)
5190 return proc_dostring(table, write, buffer, length, ppos);
5191 str = memdup_user_nul(buffer, 16);
5192 if (IS_ERR(str))
5193 return PTR_ERR(str);
dacbde09 5194
c9bff3ee
MH
5195 ret = __parse_numa_zonelist_order(str);
5196 kfree(str);
443c6f14 5197 return ret;
f0c0b2b8
KH
5198}
5199
5200
62bc62a8 5201#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5202static int node_load[MAX_NUMNODES];
5203
1da177e4 5204/**
4dc3b16b 5205 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5206 * @node: node whose fallback list we're appending
5207 * @used_node_mask: nodemask_t of already used nodes
5208 *
5209 * We use a number of factors to determine which is the next node that should
5210 * appear on a given node's fallback list. The node should not have appeared
5211 * already in @node's fallback list, and it should be the next closest node
5212 * according to the distance array (which contains arbitrary distance values
5213 * from each node to each node in the system), and should also prefer nodes
5214 * with no CPUs, since presumably they'll have very little allocation pressure
5215 * on them otherwise.
5216 * It returns -1 if no node is found.
5217 */
f0c0b2b8 5218static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5219{
4cf808eb 5220 int n, val;
1da177e4 5221 int min_val = INT_MAX;
00ef2d2f 5222 int best_node = NUMA_NO_NODE;
a70f7302 5223 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5224
4cf808eb
LT
5225 /* Use the local node if we haven't already */
5226 if (!node_isset(node, *used_node_mask)) {
5227 node_set(node, *used_node_mask);
5228 return node;
5229 }
1da177e4 5230
4b0ef1fe 5231 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5232
5233 /* Don't want a node to appear more than once */
5234 if (node_isset(n, *used_node_mask))
5235 continue;
5236
1da177e4
LT
5237 /* Use the distance array to find the distance */
5238 val = node_distance(node, n);
5239
4cf808eb
LT
5240 /* Penalize nodes under us ("prefer the next node") */
5241 val += (n < node);
5242
1da177e4 5243 /* Give preference to headless and unused nodes */
a70f7302
RR
5244 tmp = cpumask_of_node(n);
5245 if (!cpumask_empty(tmp))
1da177e4
LT
5246 val += PENALTY_FOR_NODE_WITH_CPUS;
5247
5248 /* Slight preference for less loaded node */
5249 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5250 val += node_load[n];
5251
5252 if (val < min_val) {
5253 min_val = val;
5254 best_node = n;
5255 }
5256 }
5257
5258 if (best_node >= 0)
5259 node_set(best_node, *used_node_mask);
5260
5261 return best_node;
5262}
5263
f0c0b2b8
KH
5264
5265/*
5266 * Build zonelists ordered by node and zones within node.
5267 * This results in maximum locality--normal zone overflows into local
5268 * DMA zone, if any--but risks exhausting DMA zone.
5269 */
9d3be21b
MH
5270static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5271 unsigned nr_nodes)
1da177e4 5272{
9d3be21b
MH
5273 struct zoneref *zonerefs;
5274 int i;
5275
5276 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5277
5278 for (i = 0; i < nr_nodes; i++) {
5279 int nr_zones;
5280
5281 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5282
9d3be21b
MH
5283 nr_zones = build_zonerefs_node(node, zonerefs);
5284 zonerefs += nr_zones;
5285 }
5286 zonerefs->zone = NULL;
5287 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5288}
5289
523b9458
CL
5290/*
5291 * Build gfp_thisnode zonelists
5292 */
5293static void build_thisnode_zonelists(pg_data_t *pgdat)
5294{
9d3be21b
MH
5295 struct zoneref *zonerefs;
5296 int nr_zones;
523b9458 5297
9d3be21b
MH
5298 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5299 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5300 zonerefs += nr_zones;
5301 zonerefs->zone = NULL;
5302 zonerefs->zone_idx = 0;
523b9458
CL
5303}
5304
f0c0b2b8
KH
5305/*
5306 * Build zonelists ordered by zone and nodes within zones.
5307 * This results in conserving DMA zone[s] until all Normal memory is
5308 * exhausted, but results in overflowing to remote node while memory
5309 * may still exist in local DMA zone.
5310 */
f0c0b2b8 5311
f0c0b2b8
KH
5312static void build_zonelists(pg_data_t *pgdat)
5313{
9d3be21b
MH
5314 static int node_order[MAX_NUMNODES];
5315 int node, load, nr_nodes = 0;
1da177e4 5316 nodemask_t used_mask;
f0c0b2b8 5317 int local_node, prev_node;
1da177e4
LT
5318
5319 /* NUMA-aware ordering of nodes */
5320 local_node = pgdat->node_id;
62bc62a8 5321 load = nr_online_nodes;
1da177e4
LT
5322 prev_node = local_node;
5323 nodes_clear(used_mask);
f0c0b2b8 5324
f0c0b2b8 5325 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5326 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5327 /*
5328 * We don't want to pressure a particular node.
5329 * So adding penalty to the first node in same
5330 * distance group to make it round-robin.
5331 */
957f822a
DR
5332 if (node_distance(local_node, node) !=
5333 node_distance(local_node, prev_node))
f0c0b2b8
KH
5334 node_load[node] = load;
5335
9d3be21b 5336 node_order[nr_nodes++] = node;
1da177e4
LT
5337 prev_node = node;
5338 load--;
1da177e4 5339 }
523b9458 5340
9d3be21b 5341 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5342 build_thisnode_zonelists(pgdat);
1da177e4
LT
5343}
5344
7aac7898
LS
5345#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5346/*
5347 * Return node id of node used for "local" allocations.
5348 * I.e., first node id of first zone in arg node's generic zonelist.
5349 * Used for initializing percpu 'numa_mem', which is used primarily
5350 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5351 */
5352int local_memory_node(int node)
5353{
c33d6c06 5354 struct zoneref *z;
7aac7898 5355
c33d6c06 5356 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5357 gfp_zone(GFP_KERNEL),
c33d6c06 5358 NULL);
c1093b74 5359 return zone_to_nid(z->zone);
7aac7898
LS
5360}
5361#endif
f0c0b2b8 5362
6423aa81
JK
5363static void setup_min_unmapped_ratio(void);
5364static void setup_min_slab_ratio(void);
1da177e4
LT
5365#else /* CONFIG_NUMA */
5366
f0c0b2b8 5367static void build_zonelists(pg_data_t *pgdat)
1da177e4 5368{
19655d34 5369 int node, local_node;
9d3be21b
MH
5370 struct zoneref *zonerefs;
5371 int nr_zones;
1da177e4
LT
5372
5373 local_node = pgdat->node_id;
1da177e4 5374
9d3be21b
MH
5375 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5376 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5377 zonerefs += nr_zones;
1da177e4 5378
54a6eb5c
MG
5379 /*
5380 * Now we build the zonelist so that it contains the zones
5381 * of all the other nodes.
5382 * We don't want to pressure a particular node, so when
5383 * building the zones for node N, we make sure that the
5384 * zones coming right after the local ones are those from
5385 * node N+1 (modulo N)
5386 */
5387 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5388 if (!node_online(node))
5389 continue;
9d3be21b
MH
5390 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5391 zonerefs += nr_zones;
1da177e4 5392 }
54a6eb5c
MG
5393 for (node = 0; node < local_node; node++) {
5394 if (!node_online(node))
5395 continue;
9d3be21b
MH
5396 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5397 zonerefs += nr_zones;
54a6eb5c
MG
5398 }
5399
9d3be21b
MH
5400 zonerefs->zone = NULL;
5401 zonerefs->zone_idx = 0;
1da177e4
LT
5402}
5403
5404#endif /* CONFIG_NUMA */
5405
99dcc3e5
CL
5406/*
5407 * Boot pageset table. One per cpu which is going to be used for all
5408 * zones and all nodes. The parameters will be set in such a way
5409 * that an item put on a list will immediately be handed over to
5410 * the buddy list. This is safe since pageset manipulation is done
5411 * with interrupts disabled.
5412 *
5413 * The boot_pagesets must be kept even after bootup is complete for
5414 * unused processors and/or zones. They do play a role for bootstrapping
5415 * hotplugged processors.
5416 *
5417 * zoneinfo_show() and maybe other functions do
5418 * not check if the processor is online before following the pageset pointer.
5419 * Other parts of the kernel may not check if the zone is available.
5420 */
5421static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5422static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5423static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5424
11cd8638 5425static void __build_all_zonelists(void *data)
1da177e4 5426{
6811378e 5427 int nid;
afb6ebb3 5428 int __maybe_unused cpu;
9adb62a5 5429 pg_data_t *self = data;
b93e0f32
MH
5430 static DEFINE_SPINLOCK(lock);
5431
5432 spin_lock(&lock);
9276b1bc 5433
7f9cfb31
BL
5434#ifdef CONFIG_NUMA
5435 memset(node_load, 0, sizeof(node_load));
5436#endif
9adb62a5 5437
c1152583
WY
5438 /*
5439 * This node is hotadded and no memory is yet present. So just
5440 * building zonelists is fine - no need to touch other nodes.
5441 */
9adb62a5
JL
5442 if (self && !node_online(self->node_id)) {
5443 build_zonelists(self);
c1152583
WY
5444 } else {
5445 for_each_online_node(nid) {
5446 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5447
c1152583
WY
5448 build_zonelists(pgdat);
5449 }
99dcc3e5 5450
7aac7898
LS
5451#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5452 /*
5453 * We now know the "local memory node" for each node--
5454 * i.e., the node of the first zone in the generic zonelist.
5455 * Set up numa_mem percpu variable for on-line cpus. During
5456 * boot, only the boot cpu should be on-line; we'll init the
5457 * secondary cpus' numa_mem as they come on-line. During
5458 * node/memory hotplug, we'll fixup all on-line cpus.
5459 */
d9c9a0b9 5460 for_each_online_cpu(cpu)
7aac7898 5461 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5462#endif
d9c9a0b9 5463 }
b93e0f32
MH
5464
5465 spin_unlock(&lock);
6811378e
YG
5466}
5467
061f67bc
RV
5468static noinline void __init
5469build_all_zonelists_init(void)
5470{
afb6ebb3
MH
5471 int cpu;
5472
061f67bc 5473 __build_all_zonelists(NULL);
afb6ebb3
MH
5474
5475 /*
5476 * Initialize the boot_pagesets that are going to be used
5477 * for bootstrapping processors. The real pagesets for
5478 * each zone will be allocated later when the per cpu
5479 * allocator is available.
5480 *
5481 * boot_pagesets are used also for bootstrapping offline
5482 * cpus if the system is already booted because the pagesets
5483 * are needed to initialize allocators on a specific cpu too.
5484 * F.e. the percpu allocator needs the page allocator which
5485 * needs the percpu allocator in order to allocate its pagesets
5486 * (a chicken-egg dilemma).
5487 */
5488 for_each_possible_cpu(cpu)
5489 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5490
061f67bc
RV
5491 mminit_verify_zonelist();
5492 cpuset_init_current_mems_allowed();
5493}
5494
4eaf3f64 5495/*
4eaf3f64 5496 * unless system_state == SYSTEM_BOOTING.
061f67bc 5497 *
72675e13 5498 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5499 * [protected by SYSTEM_BOOTING].
4eaf3f64 5500 */
72675e13 5501void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5502{
5503 if (system_state == SYSTEM_BOOTING) {
061f67bc 5504 build_all_zonelists_init();
6811378e 5505 } else {
11cd8638 5506 __build_all_zonelists(pgdat);
6811378e
YG
5507 /* cpuset refresh routine should be here */
5508 }
bd1e22b8 5509 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5510 /*
5511 * Disable grouping by mobility if the number of pages in the
5512 * system is too low to allow the mechanism to work. It would be
5513 * more accurate, but expensive to check per-zone. This check is
5514 * made on memory-hotadd so a system can start with mobility
5515 * disabled and enable it later
5516 */
d9c23400 5517 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5518 page_group_by_mobility_disabled = 1;
5519 else
5520 page_group_by_mobility_disabled = 0;
5521
c9bff3ee 5522 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5523 nr_online_nodes,
756a025f
JP
5524 page_group_by_mobility_disabled ? "off" : "on",
5525 vm_total_pages);
f0c0b2b8 5526#ifdef CONFIG_NUMA
f88dfff5 5527 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5528#endif
1da177e4
LT
5529}
5530
a9a9e77f
PT
5531/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5532static bool __meminit
5533overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5534{
5535#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5536 static struct memblock_region *r;
5537
5538 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5539 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5540 for_each_memblock(memory, r) {
5541 if (*pfn < memblock_region_memory_end_pfn(r))
5542 break;
5543 }
5544 }
5545 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5546 memblock_is_mirror(r)) {
5547 *pfn = memblock_region_memory_end_pfn(r);
5548 return true;
5549 }
5550 }
5551#endif
5552 return false;
5553}
5554
1da177e4
LT
5555/*
5556 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5557 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5558 * done. Non-atomic initialization, single-pass.
5559 */
c09b4240 5560void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5561 unsigned long start_pfn, enum memmap_context context,
5562 struct vmem_altmap *altmap)
1da177e4 5563{
a9a9e77f 5564 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5565 struct page *page;
1da177e4 5566
22b31eec
HD
5567 if (highest_memmap_pfn < end_pfn - 1)
5568 highest_memmap_pfn = end_pfn - 1;
5569
966cf44f 5570#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5571 /*
5572 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5573 * memory. We limit the total number of pages to initialize to just
5574 * those that might contain the memory mapping. We will defer the
5575 * ZONE_DEVICE page initialization until after we have released
5576 * the hotplug lock.
4b94ffdc 5577 */
966cf44f
AD
5578 if (zone == ZONE_DEVICE) {
5579 if (!altmap)
5580 return;
5581
5582 if (start_pfn == altmap->base_pfn)
5583 start_pfn += altmap->reserve;
5584 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5585 }
5586#endif
4b94ffdc 5587
cbe8dd4a 5588 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5589 /*
b72d0ffb
AM
5590 * There can be holes in boot-time mem_map[]s handed to this
5591 * function. They do not exist on hotplugged memory.
a2f3aa02 5592 */
a9a9e77f
PT
5593 if (context == MEMMAP_EARLY) {
5594 if (!early_pfn_valid(pfn))
b72d0ffb 5595 continue;
a9a9e77f
PT
5596 if (!early_pfn_in_nid(pfn, nid))
5597 continue;
5598 if (overlap_memmap_init(zone, &pfn))
5599 continue;
5600 if (defer_init(nid, pfn, end_pfn))
5601 break;
a2f3aa02 5602 }
ac5d2539 5603
d0dc12e8
PT
5604 page = pfn_to_page(pfn);
5605 __init_single_page(page, pfn, zone, nid);
5606 if (context == MEMMAP_HOTPLUG)
d483da5b 5607 __SetPageReserved(page);
d0dc12e8 5608
ac5d2539
MG
5609 /*
5610 * Mark the block movable so that blocks are reserved for
5611 * movable at startup. This will force kernel allocations
5612 * to reserve their blocks rather than leaking throughout
5613 * the address space during boot when many long-lived
974a786e 5614 * kernel allocations are made.
ac5d2539
MG
5615 *
5616 * bitmap is created for zone's valid pfn range. but memmap
5617 * can be created for invalid pages (for alignment)
5618 * check here not to call set_pageblock_migratetype() against
5619 * pfn out of zone.
5620 */
5621 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5622 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5623 cond_resched();
ac5d2539 5624 }
1da177e4 5625 }
2830bf6f
MZ
5626#ifdef CONFIG_SPARSEMEM
5627 /*
5628 * If the zone does not span the rest of the section then
5629 * we should at least initialize those pages. Otherwise we
5630 * could blow up on a poisoned page in some paths which depend
5631 * on full sections being initialized (e.g. memory hotplug).
5632 */
5633 while (end_pfn % PAGES_PER_SECTION) {
5634 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5635 end_pfn++;
5636 }
5637#endif
1da177e4
LT
5638}
5639
966cf44f
AD
5640#ifdef CONFIG_ZONE_DEVICE
5641void __ref memmap_init_zone_device(struct zone *zone,
5642 unsigned long start_pfn,
5643 unsigned long size,
5644 struct dev_pagemap *pgmap)
5645{
5646 unsigned long pfn, end_pfn = start_pfn + size;
5647 struct pglist_data *pgdat = zone->zone_pgdat;
5648 unsigned long zone_idx = zone_idx(zone);
5649 unsigned long start = jiffies;
5650 int nid = pgdat->node_id;
5651
5652 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5653 return;
5654
5655 /*
5656 * The call to memmap_init_zone should have already taken care
5657 * of the pages reserved for the memmap, so we can just jump to
5658 * the end of that region and start processing the device pages.
5659 */
5660 if (pgmap->altmap_valid) {
5661 struct vmem_altmap *altmap = &pgmap->altmap;
5662
5663 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5664 size = end_pfn - start_pfn;
5665 }
5666
5667 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5668 struct page *page = pfn_to_page(pfn);
5669
5670 __init_single_page(page, pfn, zone_idx, nid);
5671
5672 /*
5673 * Mark page reserved as it will need to wait for onlining
5674 * phase for it to be fully associated with a zone.
5675 *
5676 * We can use the non-atomic __set_bit operation for setting
5677 * the flag as we are still initializing the pages.
5678 */
5679 __SetPageReserved(page);
5680
5681 /*
5682 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5683 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5684 * page is ever freed or placed on a driver-private list.
5685 */
5686 page->pgmap = pgmap;
5687 page->hmm_data = 0;
5688
5689 /*
5690 * Mark the block movable so that blocks are reserved for
5691 * movable at startup. This will force kernel allocations
5692 * to reserve their blocks rather than leaking throughout
5693 * the address space during boot when many long-lived
5694 * kernel allocations are made.
5695 *
5696 * bitmap is created for zone's valid pfn range. but memmap
5697 * can be created for invalid pages (for alignment)
5698 * check here not to call set_pageblock_migratetype() against
5699 * pfn out of zone.
5700 *
5701 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5702 * because this is done early in sparse_add_one_section
5703 */
5704 if (!(pfn & (pageblock_nr_pages - 1))) {
5705 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5706 cond_resched();
5707 }
5708 }
5709
5710 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5711 size, jiffies_to_msecs(jiffies - start));
5712}
5713
5714#endif
1e548deb 5715static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5716{
7aeb09f9 5717 unsigned int order, t;
b2a0ac88
MG
5718 for_each_migratetype_order(order, t) {
5719 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5720 zone->free_area[order].nr_free = 0;
5721 }
5722}
5723
dfb3ccd0
PT
5724void __meminit __weak memmap_init(unsigned long size, int nid,
5725 unsigned long zone, unsigned long start_pfn)
5726{
5727 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5728}
1da177e4 5729
7cd2b0a3 5730static int zone_batchsize(struct zone *zone)
e7c8d5c9 5731{
3a6be87f 5732#ifdef CONFIG_MMU
e7c8d5c9
CL
5733 int batch;
5734
5735 /*
5736 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5737 * size of the zone.
e7c8d5c9 5738 */
9705bea5 5739 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5740 /* But no more than a meg. */
5741 if (batch * PAGE_SIZE > 1024 * 1024)
5742 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5743 batch /= 4; /* We effectively *= 4 below */
5744 if (batch < 1)
5745 batch = 1;
5746
5747 /*
0ceaacc9
NP
5748 * Clamp the batch to a 2^n - 1 value. Having a power
5749 * of 2 value was found to be more likely to have
5750 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5751 *
0ceaacc9
NP
5752 * For example if 2 tasks are alternately allocating
5753 * batches of pages, one task can end up with a lot
5754 * of pages of one half of the possible page colors
5755 * and the other with pages of the other colors.
e7c8d5c9 5756 */
9155203a 5757 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5758
e7c8d5c9 5759 return batch;
3a6be87f
DH
5760
5761#else
5762 /* The deferral and batching of frees should be suppressed under NOMMU
5763 * conditions.
5764 *
5765 * The problem is that NOMMU needs to be able to allocate large chunks
5766 * of contiguous memory as there's no hardware page translation to
5767 * assemble apparent contiguous memory from discontiguous pages.
5768 *
5769 * Queueing large contiguous runs of pages for batching, however,
5770 * causes the pages to actually be freed in smaller chunks. As there
5771 * can be a significant delay between the individual batches being
5772 * recycled, this leads to the once large chunks of space being
5773 * fragmented and becoming unavailable for high-order allocations.
5774 */
5775 return 0;
5776#endif
e7c8d5c9
CL
5777}
5778
8d7a8fa9
CS
5779/*
5780 * pcp->high and pcp->batch values are related and dependent on one another:
5781 * ->batch must never be higher then ->high.
5782 * The following function updates them in a safe manner without read side
5783 * locking.
5784 *
5785 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5786 * those fields changing asynchronously (acording the the above rule).
5787 *
5788 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5789 * outside of boot time (or some other assurance that no concurrent updaters
5790 * exist).
5791 */
5792static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5793 unsigned long batch)
5794{
5795 /* start with a fail safe value for batch */
5796 pcp->batch = 1;
5797 smp_wmb();
5798
5799 /* Update high, then batch, in order */
5800 pcp->high = high;
5801 smp_wmb();
5802
5803 pcp->batch = batch;
5804}
5805
3664033c 5806/* a companion to pageset_set_high() */
4008bab7
CS
5807static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5808{
8d7a8fa9 5809 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5810}
5811
88c90dbc 5812static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5813{
5814 struct per_cpu_pages *pcp;
5f8dcc21 5815 int migratetype;
2caaad41 5816
1c6fe946
MD
5817 memset(p, 0, sizeof(*p));
5818
3dfa5721 5819 pcp = &p->pcp;
5f8dcc21
MG
5820 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5821 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5822}
5823
88c90dbc
CS
5824static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5825{
5826 pageset_init(p);
5827 pageset_set_batch(p, batch);
5828}
5829
8ad4b1fb 5830/*
3664033c 5831 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5832 * to the value high for the pageset p.
5833 */
3664033c 5834static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5835 unsigned long high)
5836{
8d7a8fa9
CS
5837 unsigned long batch = max(1UL, high / 4);
5838 if ((high / 4) > (PAGE_SHIFT * 8))
5839 batch = PAGE_SHIFT * 8;
8ad4b1fb 5840
8d7a8fa9 5841 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5842}
5843
7cd2b0a3
DR
5844static void pageset_set_high_and_batch(struct zone *zone,
5845 struct per_cpu_pageset *pcp)
56cef2b8 5846{
56cef2b8 5847 if (percpu_pagelist_fraction)
3664033c 5848 pageset_set_high(pcp,
9705bea5 5849 (zone_managed_pages(zone) /
56cef2b8
CS
5850 percpu_pagelist_fraction));
5851 else
5852 pageset_set_batch(pcp, zone_batchsize(zone));
5853}
5854
169f6c19
CS
5855static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5856{
5857 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5858
5859 pageset_init(pcp);
5860 pageset_set_high_and_batch(zone, pcp);
5861}
5862
72675e13 5863void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5864{
5865 int cpu;
319774e2 5866 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5867 for_each_possible_cpu(cpu)
5868 zone_pageset_init(zone, cpu);
319774e2
WF
5869}
5870
2caaad41 5871/*
99dcc3e5
CL
5872 * Allocate per cpu pagesets and initialize them.
5873 * Before this call only boot pagesets were available.
e7c8d5c9 5874 */
99dcc3e5 5875void __init setup_per_cpu_pageset(void)
e7c8d5c9 5876{
b4911ea2 5877 struct pglist_data *pgdat;
99dcc3e5 5878 struct zone *zone;
e7c8d5c9 5879
319774e2
WF
5880 for_each_populated_zone(zone)
5881 setup_zone_pageset(zone);
b4911ea2
MG
5882
5883 for_each_online_pgdat(pgdat)
5884 pgdat->per_cpu_nodestats =
5885 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5886}
5887
c09b4240 5888static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5889{
99dcc3e5
CL
5890 /*
5891 * per cpu subsystem is not up at this point. The following code
5892 * relies on the ability of the linker to provide the
5893 * offset of a (static) per cpu variable into the per cpu area.
5894 */
5895 zone->pageset = &boot_pageset;
ed8ece2e 5896
b38a8725 5897 if (populated_zone(zone))
99dcc3e5
CL
5898 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5899 zone->name, zone->present_pages,
5900 zone_batchsize(zone));
ed8ece2e
DH
5901}
5902
dc0bbf3b 5903void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5904 unsigned long zone_start_pfn,
b171e409 5905 unsigned long size)
ed8ece2e
DH
5906{
5907 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 5908 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5909
8f416836
WY
5910 if (zone_idx > pgdat->nr_zones)
5911 pgdat->nr_zones = zone_idx;
ed8ece2e 5912
ed8ece2e
DH
5913 zone->zone_start_pfn = zone_start_pfn;
5914
708614e6
MG
5915 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5916 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5917 pgdat->node_id,
5918 (unsigned long)zone_idx(zone),
5919 zone_start_pfn, (zone_start_pfn + size));
5920
1e548deb 5921 zone_init_free_lists(zone);
9dcb8b68 5922 zone->initialized = 1;
ed8ece2e
DH
5923}
5924
0ee332c1 5925#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5926#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5927
c713216d
MG
5928/*
5929 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5930 */
8a942fde
MG
5931int __meminit __early_pfn_to_nid(unsigned long pfn,
5932 struct mminit_pfnnid_cache *state)
c713216d 5933{
c13291a5 5934 unsigned long start_pfn, end_pfn;
e76b63f8 5935 int nid;
7c243c71 5936
8a942fde
MG
5937 if (state->last_start <= pfn && pfn < state->last_end)
5938 return state->last_nid;
c713216d 5939
e76b63f8
YL
5940 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5941 if (nid != -1) {
8a942fde
MG
5942 state->last_start = start_pfn;
5943 state->last_end = end_pfn;
5944 state->last_nid = nid;
e76b63f8
YL
5945 }
5946
5947 return nid;
c713216d
MG
5948}
5949#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5950
c713216d 5951/**
6782832e 5952 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5953 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5954 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5955 *
7d018176
ZZ
5956 * If an architecture guarantees that all ranges registered contain no holes
5957 * and may be freed, this this function may be used instead of calling
5958 * memblock_free_early_nid() manually.
c713216d 5959 */
c13291a5 5960void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5961{
c13291a5
TH
5962 unsigned long start_pfn, end_pfn;
5963 int i, this_nid;
edbe7d23 5964
c13291a5
TH
5965 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5966 start_pfn = min(start_pfn, max_low_pfn);
5967 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5968
c13291a5 5969 if (start_pfn < end_pfn)
6782832e
SS
5970 memblock_free_early_nid(PFN_PHYS(start_pfn),
5971 (end_pfn - start_pfn) << PAGE_SHIFT,
5972 this_nid);
edbe7d23 5973 }
edbe7d23 5974}
edbe7d23 5975
c713216d
MG
5976/**
5977 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5978 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5979 *
7d018176
ZZ
5980 * If an architecture guarantees that all ranges registered contain no holes and may
5981 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5982 */
5983void __init sparse_memory_present_with_active_regions(int nid)
5984{
c13291a5
TH
5985 unsigned long start_pfn, end_pfn;
5986 int i, this_nid;
c713216d 5987
c13291a5
TH
5988 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5989 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5990}
5991
5992/**
5993 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5994 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5995 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5996 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5997 *
5998 * It returns the start and end page frame of a node based on information
7d018176 5999 * provided by memblock_set_node(). If called for a node
c713216d 6000 * with no available memory, a warning is printed and the start and end
88ca3b94 6001 * PFNs will be 0.
c713216d 6002 */
a3142c8e 6003void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6004 unsigned long *start_pfn, unsigned long *end_pfn)
6005{
c13291a5 6006 unsigned long this_start_pfn, this_end_pfn;
c713216d 6007 int i;
c13291a5 6008
c713216d
MG
6009 *start_pfn = -1UL;
6010 *end_pfn = 0;
6011
c13291a5
TH
6012 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6013 *start_pfn = min(*start_pfn, this_start_pfn);
6014 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6015 }
6016
633c0666 6017 if (*start_pfn == -1UL)
c713216d 6018 *start_pfn = 0;
c713216d
MG
6019}
6020
2a1e274a
MG
6021/*
6022 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6023 * assumption is made that zones within a node are ordered in monotonic
6024 * increasing memory addresses so that the "highest" populated zone is used
6025 */
b69a7288 6026static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6027{
6028 int zone_index;
6029 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6030 if (zone_index == ZONE_MOVABLE)
6031 continue;
6032
6033 if (arch_zone_highest_possible_pfn[zone_index] >
6034 arch_zone_lowest_possible_pfn[zone_index])
6035 break;
6036 }
6037
6038 VM_BUG_ON(zone_index == -1);
6039 movable_zone = zone_index;
6040}
6041
6042/*
6043 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6044 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6045 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6046 * in each node depending on the size of each node and how evenly kernelcore
6047 * is distributed. This helper function adjusts the zone ranges
6048 * provided by the architecture for a given node by using the end of the
6049 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6050 * zones within a node are in order of monotonic increases memory addresses
6051 */
b69a7288 6052static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6053 unsigned long zone_type,
6054 unsigned long node_start_pfn,
6055 unsigned long node_end_pfn,
6056 unsigned long *zone_start_pfn,
6057 unsigned long *zone_end_pfn)
6058{
6059 /* Only adjust if ZONE_MOVABLE is on this node */
6060 if (zone_movable_pfn[nid]) {
6061 /* Size ZONE_MOVABLE */
6062 if (zone_type == ZONE_MOVABLE) {
6063 *zone_start_pfn = zone_movable_pfn[nid];
6064 *zone_end_pfn = min(node_end_pfn,
6065 arch_zone_highest_possible_pfn[movable_zone]);
6066
e506b996
XQ
6067 /* Adjust for ZONE_MOVABLE starting within this range */
6068 } else if (!mirrored_kernelcore &&
6069 *zone_start_pfn < zone_movable_pfn[nid] &&
6070 *zone_end_pfn > zone_movable_pfn[nid]) {
6071 *zone_end_pfn = zone_movable_pfn[nid];
6072
2a1e274a
MG
6073 /* Check if this whole range is within ZONE_MOVABLE */
6074 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6075 *zone_start_pfn = *zone_end_pfn;
6076 }
6077}
6078
c713216d
MG
6079/*
6080 * Return the number of pages a zone spans in a node, including holes
6081 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6082 */
6ea6e688 6083static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6084 unsigned long zone_type,
7960aedd
ZY
6085 unsigned long node_start_pfn,
6086 unsigned long node_end_pfn,
d91749c1
TI
6087 unsigned long *zone_start_pfn,
6088 unsigned long *zone_end_pfn,
c713216d
MG
6089 unsigned long *ignored)
6090{
b5685e92 6091 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6092 if (!node_start_pfn && !node_end_pfn)
6093 return 0;
6094
7960aedd 6095 /* Get the start and end of the zone */
d91749c1
TI
6096 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6097 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6098 adjust_zone_range_for_zone_movable(nid, zone_type,
6099 node_start_pfn, node_end_pfn,
d91749c1 6100 zone_start_pfn, zone_end_pfn);
c713216d
MG
6101
6102 /* Check that this node has pages within the zone's required range */
d91749c1 6103 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6104 return 0;
6105
6106 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6107 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6108 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6109
6110 /* Return the spanned pages */
d91749c1 6111 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6112}
6113
6114/*
6115 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6116 * then all holes in the requested range will be accounted for.
c713216d 6117 */
32996250 6118unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
6119 unsigned long range_start_pfn,
6120 unsigned long range_end_pfn)
6121{
96e907d1
TH
6122 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6123 unsigned long start_pfn, end_pfn;
6124 int i;
c713216d 6125
96e907d1
TH
6126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6127 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6128 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6129 nr_absent -= end_pfn - start_pfn;
c713216d 6130 }
96e907d1 6131 return nr_absent;
c713216d
MG
6132}
6133
6134/**
6135 * absent_pages_in_range - Return number of page frames in holes within a range
6136 * @start_pfn: The start PFN to start searching for holes
6137 * @end_pfn: The end PFN to stop searching for holes
6138 *
88ca3b94 6139 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6140 */
6141unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6142 unsigned long end_pfn)
6143{
6144 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6145}
6146
6147/* Return the number of page frames in holes in a zone on a node */
6ea6e688 6148static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6149 unsigned long zone_type,
7960aedd
ZY
6150 unsigned long node_start_pfn,
6151 unsigned long node_end_pfn,
c713216d
MG
6152 unsigned long *ignored)
6153{
96e907d1
TH
6154 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6155 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6156 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6157 unsigned long nr_absent;
9c7cd687 6158
b5685e92 6159 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6160 if (!node_start_pfn && !node_end_pfn)
6161 return 0;
6162
96e907d1
TH
6163 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6164 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6165
2a1e274a
MG
6166 adjust_zone_range_for_zone_movable(nid, zone_type,
6167 node_start_pfn, node_end_pfn,
6168 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6169 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6170
6171 /*
6172 * ZONE_MOVABLE handling.
6173 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6174 * and vice versa.
6175 */
e506b996
XQ
6176 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6177 unsigned long start_pfn, end_pfn;
6178 struct memblock_region *r;
6179
6180 for_each_memblock(memory, r) {
6181 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6182 zone_start_pfn, zone_end_pfn);
6183 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6184 zone_start_pfn, zone_end_pfn);
6185
6186 if (zone_type == ZONE_MOVABLE &&
6187 memblock_is_mirror(r))
6188 nr_absent += end_pfn - start_pfn;
6189
6190 if (zone_type == ZONE_NORMAL &&
6191 !memblock_is_mirror(r))
6192 nr_absent += end_pfn - start_pfn;
342332e6
TI
6193 }
6194 }
6195
6196 return nr_absent;
c713216d 6197}
0e0b864e 6198
0ee332c1 6199#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 6200static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6201 unsigned long zone_type,
7960aedd
ZY
6202 unsigned long node_start_pfn,
6203 unsigned long node_end_pfn,
d91749c1
TI
6204 unsigned long *zone_start_pfn,
6205 unsigned long *zone_end_pfn,
c713216d
MG
6206 unsigned long *zones_size)
6207{
d91749c1
TI
6208 unsigned int zone;
6209
6210 *zone_start_pfn = node_start_pfn;
6211 for (zone = 0; zone < zone_type; zone++)
6212 *zone_start_pfn += zones_size[zone];
6213
6214 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6215
c713216d
MG
6216 return zones_size[zone_type];
6217}
6218
6ea6e688 6219static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6220 unsigned long zone_type,
7960aedd
ZY
6221 unsigned long node_start_pfn,
6222 unsigned long node_end_pfn,
c713216d
MG
6223 unsigned long *zholes_size)
6224{
6225 if (!zholes_size)
6226 return 0;
6227
6228 return zholes_size[zone_type];
6229}
20e6926d 6230
0ee332c1 6231#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6232
a3142c8e 6233static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6234 unsigned long node_start_pfn,
6235 unsigned long node_end_pfn,
6236 unsigned long *zones_size,
6237 unsigned long *zholes_size)
c713216d 6238{
febd5949 6239 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6240 enum zone_type i;
6241
febd5949
GZ
6242 for (i = 0; i < MAX_NR_ZONES; i++) {
6243 struct zone *zone = pgdat->node_zones + i;
d91749c1 6244 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6245 unsigned long size, real_size;
c713216d 6246
febd5949
GZ
6247 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6248 node_start_pfn,
6249 node_end_pfn,
d91749c1
TI
6250 &zone_start_pfn,
6251 &zone_end_pfn,
febd5949
GZ
6252 zones_size);
6253 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6254 node_start_pfn, node_end_pfn,
6255 zholes_size);
d91749c1
TI
6256 if (size)
6257 zone->zone_start_pfn = zone_start_pfn;
6258 else
6259 zone->zone_start_pfn = 0;
febd5949
GZ
6260 zone->spanned_pages = size;
6261 zone->present_pages = real_size;
6262
6263 totalpages += size;
6264 realtotalpages += real_size;
6265 }
6266
6267 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6268 pgdat->node_present_pages = realtotalpages;
6269 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6270 realtotalpages);
6271}
6272
835c134e
MG
6273#ifndef CONFIG_SPARSEMEM
6274/*
6275 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6276 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6277 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6278 * round what is now in bits to nearest long in bits, then return it in
6279 * bytes.
6280 */
7c45512d 6281static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6282{
6283 unsigned long usemapsize;
6284
7c45512d 6285 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6286 usemapsize = roundup(zonesize, pageblock_nr_pages);
6287 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6288 usemapsize *= NR_PAGEBLOCK_BITS;
6289 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6290
6291 return usemapsize / 8;
6292}
6293
7cc2a959 6294static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6295 struct zone *zone,
6296 unsigned long zone_start_pfn,
6297 unsigned long zonesize)
835c134e 6298{
7c45512d 6299 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6300 zone->pageblock_flags = NULL;
58a01a45 6301 if (usemapsize)
6782832e 6302 zone->pageblock_flags =
eb31d559 6303 memblock_alloc_node_nopanic(usemapsize,
6782832e 6304 pgdat->node_id);
835c134e
MG
6305}
6306#else
7c45512d
LT
6307static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6308 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6309#endif /* CONFIG_SPARSEMEM */
6310
d9c23400 6311#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6312
d9c23400 6313/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6314void __init set_pageblock_order(void)
d9c23400 6315{
955c1cd7
AM
6316 unsigned int order;
6317
d9c23400
MG
6318 /* Check that pageblock_nr_pages has not already been setup */
6319 if (pageblock_order)
6320 return;
6321
955c1cd7
AM
6322 if (HPAGE_SHIFT > PAGE_SHIFT)
6323 order = HUGETLB_PAGE_ORDER;
6324 else
6325 order = MAX_ORDER - 1;
6326
d9c23400
MG
6327 /*
6328 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6329 * This value may be variable depending on boot parameters on IA64 and
6330 * powerpc.
d9c23400
MG
6331 */
6332 pageblock_order = order;
6333}
6334#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6335
ba72cb8c
MG
6336/*
6337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6338 * is unused as pageblock_order is set at compile-time. See
6339 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6340 * the kernel config
ba72cb8c 6341 */
03e85f9d 6342void __init set_pageblock_order(void)
ba72cb8c 6343{
ba72cb8c 6344}
d9c23400
MG
6345
6346#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6347
03e85f9d 6348static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6349 unsigned long present_pages)
01cefaef
JL
6350{
6351 unsigned long pages = spanned_pages;
6352
6353 /*
6354 * Provide a more accurate estimation if there are holes within
6355 * the zone and SPARSEMEM is in use. If there are holes within the
6356 * zone, each populated memory region may cost us one or two extra
6357 * memmap pages due to alignment because memmap pages for each
89d790ab 6358 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6359 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6360 */
6361 if (spanned_pages > present_pages + (present_pages >> 4) &&
6362 IS_ENABLED(CONFIG_SPARSEMEM))
6363 pages = present_pages;
6364
6365 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6366}
6367
ace1db39
OS
6368#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6369static void pgdat_init_split_queue(struct pglist_data *pgdat)
6370{
6371 spin_lock_init(&pgdat->split_queue_lock);
6372 INIT_LIST_HEAD(&pgdat->split_queue);
6373 pgdat->split_queue_len = 0;
6374}
6375#else
6376static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6377#endif
6378
6379#ifdef CONFIG_COMPACTION
6380static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6381{
6382 init_waitqueue_head(&pgdat->kcompactd_wait);
6383}
6384#else
6385static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6386#endif
6387
03e85f9d 6388static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6389{
208d54e5 6390 pgdat_resize_init(pgdat);
ace1db39 6391
ace1db39
OS
6392 pgdat_init_split_queue(pgdat);
6393 pgdat_init_kcompactd(pgdat);
6394
1da177e4 6395 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6396 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6397
eefa864b 6398 pgdat_page_ext_init(pgdat);
a52633d8 6399 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6400 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6401}
6402
6403static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6404 unsigned long remaining_pages)
6405{
9705bea5 6406 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6407 zone_set_nid(zone, nid);
6408 zone->name = zone_names[idx];
6409 zone->zone_pgdat = NODE_DATA(nid);
6410 spin_lock_init(&zone->lock);
6411 zone_seqlock_init(zone);
6412 zone_pcp_init(zone);
6413}
6414
6415/*
6416 * Set up the zone data structures
6417 * - init pgdat internals
6418 * - init all zones belonging to this node
6419 *
6420 * NOTE: this function is only called during memory hotplug
6421 */
6422#ifdef CONFIG_MEMORY_HOTPLUG
6423void __ref free_area_init_core_hotplug(int nid)
6424{
6425 enum zone_type z;
6426 pg_data_t *pgdat = NODE_DATA(nid);
6427
6428 pgdat_init_internals(pgdat);
6429 for (z = 0; z < MAX_NR_ZONES; z++)
6430 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6431}
6432#endif
6433
6434/*
6435 * Set up the zone data structures:
6436 * - mark all pages reserved
6437 * - mark all memory queues empty
6438 * - clear the memory bitmaps
6439 *
6440 * NOTE: pgdat should get zeroed by caller.
6441 * NOTE: this function is only called during early init.
6442 */
6443static void __init free_area_init_core(struct pglist_data *pgdat)
6444{
6445 enum zone_type j;
6446 int nid = pgdat->node_id;
5f63b720 6447
03e85f9d 6448 pgdat_init_internals(pgdat);
385386cf
JW
6449 pgdat->per_cpu_nodestats = &boot_nodestats;
6450
1da177e4
LT
6451 for (j = 0; j < MAX_NR_ZONES; j++) {
6452 struct zone *zone = pgdat->node_zones + j;
e6943859 6453 unsigned long size, freesize, memmap_pages;
d91749c1 6454 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6455
febd5949 6456 size = zone->spanned_pages;
e6943859 6457 freesize = zone->present_pages;
1da177e4 6458
0e0b864e 6459 /*
9feedc9d 6460 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6461 * is used by this zone for memmap. This affects the watermark
6462 * and per-cpu initialisations
6463 */
e6943859 6464 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6465 if (!is_highmem_idx(j)) {
6466 if (freesize >= memmap_pages) {
6467 freesize -= memmap_pages;
6468 if (memmap_pages)
6469 printk(KERN_DEBUG
6470 " %s zone: %lu pages used for memmap\n",
6471 zone_names[j], memmap_pages);
6472 } else
1170532b 6473 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6474 zone_names[j], memmap_pages, freesize);
6475 }
0e0b864e 6476
6267276f 6477 /* Account for reserved pages */
9feedc9d
JL
6478 if (j == 0 && freesize > dma_reserve) {
6479 freesize -= dma_reserve;
d903ef9f 6480 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6481 zone_names[0], dma_reserve);
0e0b864e
MG
6482 }
6483
98d2b0eb 6484 if (!is_highmem_idx(j))
9feedc9d 6485 nr_kernel_pages += freesize;
01cefaef
JL
6486 /* Charge for highmem memmap if there are enough kernel pages */
6487 else if (nr_kernel_pages > memmap_pages * 2)
6488 nr_kernel_pages -= memmap_pages;
9feedc9d 6489 nr_all_pages += freesize;
1da177e4 6490
9feedc9d
JL
6491 /*
6492 * Set an approximate value for lowmem here, it will be adjusted
6493 * when the bootmem allocator frees pages into the buddy system.
6494 * And all highmem pages will be managed by the buddy system.
6495 */
03e85f9d 6496 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6497
d883c6cf 6498 if (!size)
1da177e4
LT
6499 continue;
6500
955c1cd7 6501 set_pageblock_order();
d883c6cf
JK
6502 setup_usemap(pgdat, zone, zone_start_pfn, size);
6503 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6504 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6505 }
6506}
6507
0cd842f9 6508#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6509static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6510{
b0aeba74 6511 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6512 unsigned long __maybe_unused offset = 0;
6513
1da177e4
LT
6514 /* Skip empty nodes */
6515 if (!pgdat->node_spanned_pages)
6516 return;
6517
b0aeba74
TL
6518 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6519 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6520 /* ia64 gets its own node_mem_map, before this, without bootmem */
6521 if (!pgdat->node_mem_map) {
b0aeba74 6522 unsigned long size, end;
d41dee36
AW
6523 struct page *map;
6524
e984bb43
BP
6525 /*
6526 * The zone's endpoints aren't required to be MAX_ORDER
6527 * aligned but the node_mem_map endpoints must be in order
6528 * for the buddy allocator to function correctly.
6529 */
108bcc96 6530 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6531 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6532 size = (end - start) * sizeof(struct page);
eb31d559 6533 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6534 pgdat->node_mem_map = map + offset;
1da177e4 6535 }
0cd842f9
OS
6536 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6537 __func__, pgdat->node_id, (unsigned long)pgdat,
6538 (unsigned long)pgdat->node_mem_map);
12d810c1 6539#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6540 /*
6541 * With no DISCONTIG, the global mem_map is just set as node 0's
6542 */
c713216d 6543 if (pgdat == NODE_DATA(0)) {
1da177e4 6544 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6545#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6546 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6547 mem_map -= offset;
0ee332c1 6548#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6549 }
1da177e4
LT
6550#endif
6551}
0cd842f9
OS
6552#else
6553static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6554#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6555
0188dc98
OS
6556#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6557static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6558{
6559 /*
6560 * We start only with one section of pages, more pages are added as
6561 * needed until the rest of deferred pages are initialized.
6562 */
6563 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6564 pgdat->node_spanned_pages);
6565 pgdat->first_deferred_pfn = ULONG_MAX;
6566}
6567#else
6568static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6569#endif
6570
03e85f9d 6571void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6572 unsigned long node_start_pfn,
6573 unsigned long *zholes_size)
1da177e4 6574{
9109fb7b 6575 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6576 unsigned long start_pfn = 0;
6577 unsigned long end_pfn = 0;
9109fb7b 6578
88fdf75d 6579 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6580 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6581
1da177e4
LT
6582 pgdat->node_id = nid;
6583 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6584 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6585#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6586 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6587 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6588 (u64)start_pfn << PAGE_SHIFT,
6589 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6590#else
6591 start_pfn = node_start_pfn;
7960aedd
ZY
6592#endif
6593 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6594 zones_size, zholes_size);
1da177e4
LT
6595
6596 alloc_node_mem_map(pgdat);
0188dc98 6597 pgdat_set_deferred_range(pgdat);
1da177e4 6598
7f3eb55b 6599 free_area_init_core(pgdat);
1da177e4
LT
6600}
6601
aca52c39 6602#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6603/*
6604 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6605 * pages zeroed
6606 */
6607static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6608{
6609 unsigned long pfn;
6610 u64 pgcnt = 0;
6611
6612 for (pfn = spfn; pfn < epfn; pfn++) {
6613 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6614 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6615 + pageblock_nr_pages - 1;
6616 continue;
6617 }
6618 mm_zero_struct_page(pfn_to_page(pfn));
6619 pgcnt++;
6620 }
6621
6622 return pgcnt;
6623}
6624
a4a3ede2
PT
6625/*
6626 * Only struct pages that are backed by physical memory are zeroed and
6627 * initialized by going through __init_single_page(). But, there are some
6628 * struct pages which are reserved in memblock allocator and their fields
6629 * may be accessed (for example page_to_pfn() on some configuration accesses
6630 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6631 *
6632 * This function also addresses a similar issue where struct pages are left
6633 * uninitialized because the physical address range is not covered by
6634 * memblock.memory or memblock.reserved. That could happen when memblock
6635 * layout is manually configured via memmap=.
a4a3ede2 6636 */
03e85f9d 6637void __init zero_resv_unavail(void)
a4a3ede2
PT
6638{
6639 phys_addr_t start, end;
a4a3ede2 6640 u64 i, pgcnt;
907ec5fc 6641 phys_addr_t next = 0;
a4a3ede2
PT
6642
6643 /*
907ec5fc 6644 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6645 */
6646 pgcnt = 0;
907ec5fc
NH
6647 for_each_mem_range(i, &memblock.memory, NULL,
6648 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6649 if (next < start)
6650 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6651 next = end;
6652 }
ec393a0f 6653 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6654
a4a3ede2
PT
6655 /*
6656 * Struct pages that do not have backing memory. This could be because
6657 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6658 */
6659 if (pgcnt)
907ec5fc 6660 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6661}
aca52c39 6662#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6663
0ee332c1 6664#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6665
6666#if MAX_NUMNODES > 1
6667/*
6668 * Figure out the number of possible node ids.
6669 */
f9872caf 6670void __init setup_nr_node_ids(void)
418508c1 6671{
904a9553 6672 unsigned int highest;
418508c1 6673
904a9553 6674 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6675 nr_node_ids = highest + 1;
6676}
418508c1
MS
6677#endif
6678
1e01979c
TH
6679/**
6680 * node_map_pfn_alignment - determine the maximum internode alignment
6681 *
6682 * This function should be called after node map is populated and sorted.
6683 * It calculates the maximum power of two alignment which can distinguish
6684 * all the nodes.
6685 *
6686 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6687 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6688 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6689 * shifted, 1GiB is enough and this function will indicate so.
6690 *
6691 * This is used to test whether pfn -> nid mapping of the chosen memory
6692 * model has fine enough granularity to avoid incorrect mapping for the
6693 * populated node map.
6694 *
6695 * Returns the determined alignment in pfn's. 0 if there is no alignment
6696 * requirement (single node).
6697 */
6698unsigned long __init node_map_pfn_alignment(void)
6699{
6700 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6701 unsigned long start, end, mask;
1e01979c 6702 int last_nid = -1;
c13291a5 6703 int i, nid;
1e01979c 6704
c13291a5 6705 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6706 if (!start || last_nid < 0 || last_nid == nid) {
6707 last_nid = nid;
6708 last_end = end;
6709 continue;
6710 }
6711
6712 /*
6713 * Start with a mask granular enough to pin-point to the
6714 * start pfn and tick off bits one-by-one until it becomes
6715 * too coarse to separate the current node from the last.
6716 */
6717 mask = ~((1 << __ffs(start)) - 1);
6718 while (mask && last_end <= (start & (mask << 1)))
6719 mask <<= 1;
6720
6721 /* accumulate all internode masks */
6722 accl_mask |= mask;
6723 }
6724
6725 /* convert mask to number of pages */
6726 return ~accl_mask + 1;
6727}
6728
a6af2bc3 6729/* Find the lowest pfn for a node */
b69a7288 6730static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6731{
a6af2bc3 6732 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6733 unsigned long start_pfn;
6734 int i;
1abbfb41 6735
c13291a5
TH
6736 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6737 min_pfn = min(min_pfn, start_pfn);
c713216d 6738
a6af2bc3 6739 if (min_pfn == ULONG_MAX) {
1170532b 6740 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6741 return 0;
6742 }
6743
6744 return min_pfn;
c713216d
MG
6745}
6746
6747/**
6748 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6749 *
6750 * It returns the minimum PFN based on information provided via
7d018176 6751 * memblock_set_node().
c713216d
MG
6752 */
6753unsigned long __init find_min_pfn_with_active_regions(void)
6754{
6755 return find_min_pfn_for_node(MAX_NUMNODES);
6756}
6757
37b07e41
LS
6758/*
6759 * early_calculate_totalpages()
6760 * Sum pages in active regions for movable zone.
4b0ef1fe 6761 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6762 */
484f51f8 6763static unsigned long __init early_calculate_totalpages(void)
7e63efef 6764{
7e63efef 6765 unsigned long totalpages = 0;
c13291a5
TH
6766 unsigned long start_pfn, end_pfn;
6767 int i, nid;
6768
6769 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6770 unsigned long pages = end_pfn - start_pfn;
7e63efef 6771
37b07e41
LS
6772 totalpages += pages;
6773 if (pages)
4b0ef1fe 6774 node_set_state(nid, N_MEMORY);
37b07e41 6775 }
b8af2941 6776 return totalpages;
7e63efef
MG
6777}
6778
2a1e274a
MG
6779/*
6780 * Find the PFN the Movable zone begins in each node. Kernel memory
6781 * is spread evenly between nodes as long as the nodes have enough
6782 * memory. When they don't, some nodes will have more kernelcore than
6783 * others
6784 */
b224ef85 6785static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6786{
6787 int i, nid;
6788 unsigned long usable_startpfn;
6789 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6790 /* save the state before borrow the nodemask */
4b0ef1fe 6791 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6792 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6793 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6794 struct memblock_region *r;
b2f3eebe
TC
6795
6796 /* Need to find movable_zone earlier when movable_node is specified. */
6797 find_usable_zone_for_movable();
6798
6799 /*
6800 * If movable_node is specified, ignore kernelcore and movablecore
6801 * options.
6802 */
6803 if (movable_node_is_enabled()) {
136199f0
EM
6804 for_each_memblock(memory, r) {
6805 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6806 continue;
6807
136199f0 6808 nid = r->nid;
b2f3eebe 6809
136199f0 6810 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6811 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6812 min(usable_startpfn, zone_movable_pfn[nid]) :
6813 usable_startpfn;
6814 }
6815
6816 goto out2;
6817 }
2a1e274a 6818
342332e6
TI
6819 /*
6820 * If kernelcore=mirror is specified, ignore movablecore option
6821 */
6822 if (mirrored_kernelcore) {
6823 bool mem_below_4gb_not_mirrored = false;
6824
6825 for_each_memblock(memory, r) {
6826 if (memblock_is_mirror(r))
6827 continue;
6828
6829 nid = r->nid;
6830
6831 usable_startpfn = memblock_region_memory_base_pfn(r);
6832
6833 if (usable_startpfn < 0x100000) {
6834 mem_below_4gb_not_mirrored = true;
6835 continue;
6836 }
6837
6838 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6839 min(usable_startpfn, zone_movable_pfn[nid]) :
6840 usable_startpfn;
6841 }
6842
6843 if (mem_below_4gb_not_mirrored)
6844 pr_warn("This configuration results in unmirrored kernel memory.");
6845
6846 goto out2;
6847 }
6848
7e63efef 6849 /*
a5c6d650
DR
6850 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6851 * amount of necessary memory.
6852 */
6853 if (required_kernelcore_percent)
6854 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6855 10000UL;
6856 if (required_movablecore_percent)
6857 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6858 10000UL;
6859
6860 /*
6861 * If movablecore= was specified, calculate what size of
7e63efef
MG
6862 * kernelcore that corresponds so that memory usable for
6863 * any allocation type is evenly spread. If both kernelcore
6864 * and movablecore are specified, then the value of kernelcore
6865 * will be used for required_kernelcore if it's greater than
6866 * what movablecore would have allowed.
6867 */
6868 if (required_movablecore) {
7e63efef
MG
6869 unsigned long corepages;
6870
6871 /*
6872 * Round-up so that ZONE_MOVABLE is at least as large as what
6873 * was requested by the user
6874 */
6875 required_movablecore =
6876 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6877 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6878 corepages = totalpages - required_movablecore;
6879
6880 required_kernelcore = max(required_kernelcore, corepages);
6881 }
6882
bde304bd
XQ
6883 /*
6884 * If kernelcore was not specified or kernelcore size is larger
6885 * than totalpages, there is no ZONE_MOVABLE.
6886 */
6887 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6888 goto out;
2a1e274a
MG
6889
6890 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6891 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6892
6893restart:
6894 /* Spread kernelcore memory as evenly as possible throughout nodes */
6895 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6896 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6897 unsigned long start_pfn, end_pfn;
6898
2a1e274a
MG
6899 /*
6900 * Recalculate kernelcore_node if the division per node
6901 * now exceeds what is necessary to satisfy the requested
6902 * amount of memory for the kernel
6903 */
6904 if (required_kernelcore < kernelcore_node)
6905 kernelcore_node = required_kernelcore / usable_nodes;
6906
6907 /*
6908 * As the map is walked, we track how much memory is usable
6909 * by the kernel using kernelcore_remaining. When it is
6910 * 0, the rest of the node is usable by ZONE_MOVABLE
6911 */
6912 kernelcore_remaining = kernelcore_node;
6913
6914 /* Go through each range of PFNs within this node */
c13291a5 6915 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6916 unsigned long size_pages;
6917
c13291a5 6918 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6919 if (start_pfn >= end_pfn)
6920 continue;
6921
6922 /* Account for what is only usable for kernelcore */
6923 if (start_pfn < usable_startpfn) {
6924 unsigned long kernel_pages;
6925 kernel_pages = min(end_pfn, usable_startpfn)
6926 - start_pfn;
6927
6928 kernelcore_remaining -= min(kernel_pages,
6929 kernelcore_remaining);
6930 required_kernelcore -= min(kernel_pages,
6931 required_kernelcore);
6932
6933 /* Continue if range is now fully accounted */
6934 if (end_pfn <= usable_startpfn) {
6935
6936 /*
6937 * Push zone_movable_pfn to the end so
6938 * that if we have to rebalance
6939 * kernelcore across nodes, we will
6940 * not double account here
6941 */
6942 zone_movable_pfn[nid] = end_pfn;
6943 continue;
6944 }
6945 start_pfn = usable_startpfn;
6946 }
6947
6948 /*
6949 * The usable PFN range for ZONE_MOVABLE is from
6950 * start_pfn->end_pfn. Calculate size_pages as the
6951 * number of pages used as kernelcore
6952 */
6953 size_pages = end_pfn - start_pfn;
6954 if (size_pages > kernelcore_remaining)
6955 size_pages = kernelcore_remaining;
6956 zone_movable_pfn[nid] = start_pfn + size_pages;
6957
6958 /*
6959 * Some kernelcore has been met, update counts and
6960 * break if the kernelcore for this node has been
b8af2941 6961 * satisfied
2a1e274a
MG
6962 */
6963 required_kernelcore -= min(required_kernelcore,
6964 size_pages);
6965 kernelcore_remaining -= size_pages;
6966 if (!kernelcore_remaining)
6967 break;
6968 }
6969 }
6970
6971 /*
6972 * If there is still required_kernelcore, we do another pass with one
6973 * less node in the count. This will push zone_movable_pfn[nid] further
6974 * along on the nodes that still have memory until kernelcore is
b8af2941 6975 * satisfied
2a1e274a
MG
6976 */
6977 usable_nodes--;
6978 if (usable_nodes && required_kernelcore > usable_nodes)
6979 goto restart;
6980
b2f3eebe 6981out2:
2a1e274a
MG
6982 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6983 for (nid = 0; nid < MAX_NUMNODES; nid++)
6984 zone_movable_pfn[nid] =
6985 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6986
20e6926d 6987out:
66918dcd 6988 /* restore the node_state */
4b0ef1fe 6989 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6990}
6991
4b0ef1fe
LJ
6992/* Any regular or high memory on that node ? */
6993static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6994{
37b07e41
LS
6995 enum zone_type zone_type;
6996
4b0ef1fe 6997 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6998 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6999 if (populated_zone(zone)) {
7b0e0c0e
OS
7000 if (IS_ENABLED(CONFIG_HIGHMEM))
7001 node_set_state(nid, N_HIGH_MEMORY);
7002 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7003 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7004 break;
7005 }
37b07e41 7006 }
37b07e41
LS
7007}
7008
c713216d
MG
7009/**
7010 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7011 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7012 *
7013 * This will call free_area_init_node() for each active node in the system.
7d018176 7014 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7015 * zone in each node and their holes is calculated. If the maximum PFN
7016 * between two adjacent zones match, it is assumed that the zone is empty.
7017 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7018 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7019 * starts where the previous one ended. For example, ZONE_DMA32 starts
7020 * at arch_max_dma_pfn.
7021 */
7022void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7023{
c13291a5
TH
7024 unsigned long start_pfn, end_pfn;
7025 int i, nid;
a6af2bc3 7026
c713216d
MG
7027 /* Record where the zone boundaries are */
7028 memset(arch_zone_lowest_possible_pfn, 0,
7029 sizeof(arch_zone_lowest_possible_pfn));
7030 memset(arch_zone_highest_possible_pfn, 0,
7031 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7032
7033 start_pfn = find_min_pfn_with_active_regions();
7034
7035 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7036 if (i == ZONE_MOVABLE)
7037 continue;
90cae1fe
OH
7038
7039 end_pfn = max(max_zone_pfn[i], start_pfn);
7040 arch_zone_lowest_possible_pfn[i] = start_pfn;
7041 arch_zone_highest_possible_pfn[i] = end_pfn;
7042
7043 start_pfn = end_pfn;
c713216d 7044 }
2a1e274a
MG
7045
7046 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7047 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7048 find_zone_movable_pfns_for_nodes();
c713216d 7049
c713216d 7050 /* Print out the zone ranges */
f88dfff5 7051 pr_info("Zone ranges:\n");
2a1e274a
MG
7052 for (i = 0; i < MAX_NR_ZONES; i++) {
7053 if (i == ZONE_MOVABLE)
7054 continue;
f88dfff5 7055 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7056 if (arch_zone_lowest_possible_pfn[i] ==
7057 arch_zone_highest_possible_pfn[i])
f88dfff5 7058 pr_cont("empty\n");
72f0ba02 7059 else
8d29e18a
JG
7060 pr_cont("[mem %#018Lx-%#018Lx]\n",
7061 (u64)arch_zone_lowest_possible_pfn[i]
7062 << PAGE_SHIFT,
7063 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7064 << PAGE_SHIFT) - 1);
2a1e274a
MG
7065 }
7066
7067 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7068 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7069 for (i = 0; i < MAX_NUMNODES; i++) {
7070 if (zone_movable_pfn[i])
8d29e18a
JG
7071 pr_info(" Node %d: %#018Lx\n", i,
7072 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7073 }
c713216d 7074
f2d52fe5 7075 /* Print out the early node map */
f88dfff5 7076 pr_info("Early memory node ranges\n");
c13291a5 7077 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7078 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7079 (u64)start_pfn << PAGE_SHIFT,
7080 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7081
7082 /* Initialise every node */
708614e6 7083 mminit_verify_pageflags_layout();
8ef82866 7084 setup_nr_node_ids();
e181ae0c 7085 zero_resv_unavail();
c713216d
MG
7086 for_each_online_node(nid) {
7087 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7088 free_area_init_node(nid, NULL,
c713216d 7089 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7090
7091 /* Any memory on that node */
7092 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7093 node_set_state(nid, N_MEMORY);
7094 check_for_memory(pgdat, nid);
c713216d
MG
7095 }
7096}
2a1e274a 7097
a5c6d650
DR
7098static int __init cmdline_parse_core(char *p, unsigned long *core,
7099 unsigned long *percent)
2a1e274a
MG
7100{
7101 unsigned long long coremem;
a5c6d650
DR
7102 char *endptr;
7103
2a1e274a
MG
7104 if (!p)
7105 return -EINVAL;
7106
a5c6d650
DR
7107 /* Value may be a percentage of total memory, otherwise bytes */
7108 coremem = simple_strtoull(p, &endptr, 0);
7109 if (*endptr == '%') {
7110 /* Paranoid check for percent values greater than 100 */
7111 WARN_ON(coremem > 100);
2a1e274a 7112
a5c6d650
DR
7113 *percent = coremem;
7114 } else {
7115 coremem = memparse(p, &p);
7116 /* Paranoid check that UL is enough for the coremem value */
7117 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7118
a5c6d650
DR
7119 *core = coremem >> PAGE_SHIFT;
7120 *percent = 0UL;
7121 }
2a1e274a
MG
7122 return 0;
7123}
ed7ed365 7124
7e63efef
MG
7125/*
7126 * kernelcore=size sets the amount of memory for use for allocations that
7127 * cannot be reclaimed or migrated.
7128 */
7129static int __init cmdline_parse_kernelcore(char *p)
7130{
342332e6
TI
7131 /* parse kernelcore=mirror */
7132 if (parse_option_str(p, "mirror")) {
7133 mirrored_kernelcore = true;
7134 return 0;
7135 }
7136
a5c6d650
DR
7137 return cmdline_parse_core(p, &required_kernelcore,
7138 &required_kernelcore_percent);
7e63efef
MG
7139}
7140
7141/*
7142 * movablecore=size sets the amount of memory for use for allocations that
7143 * can be reclaimed or migrated.
7144 */
7145static int __init cmdline_parse_movablecore(char *p)
7146{
a5c6d650
DR
7147 return cmdline_parse_core(p, &required_movablecore,
7148 &required_movablecore_percent);
7e63efef
MG
7149}
7150
ed7ed365 7151early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7152early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7153
0ee332c1 7154#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7155
c3d5f5f0
JL
7156void adjust_managed_page_count(struct page *page, long count)
7157{
9705bea5 7158 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7159 totalram_pages_add(count);
3dcc0571
JL
7160#ifdef CONFIG_HIGHMEM
7161 if (PageHighMem(page))
ca79b0c2 7162 totalhigh_pages_add(count);
3dcc0571 7163#endif
c3d5f5f0 7164}
3dcc0571 7165EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7166
11199692 7167unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 7168{
11199692
JL
7169 void *pos;
7170 unsigned long pages = 0;
69afade7 7171
11199692
JL
7172 start = (void *)PAGE_ALIGN((unsigned long)start);
7173 end = (void *)((unsigned long)end & PAGE_MASK);
7174 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7175 struct page *page = virt_to_page(pos);
7176 void *direct_map_addr;
7177
7178 /*
7179 * 'direct_map_addr' might be different from 'pos'
7180 * because some architectures' virt_to_page()
7181 * work with aliases. Getting the direct map
7182 * address ensures that we get a _writeable_
7183 * alias for the memset().
7184 */
7185 direct_map_addr = page_address(page);
dbe67df4 7186 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7187 memset(direct_map_addr, poison, PAGE_SIZE);
7188
7189 free_reserved_page(page);
69afade7
JL
7190 }
7191
7192 if (pages && s)
adb1fe9a
JP
7193 pr_info("Freeing %s memory: %ldK\n",
7194 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7195
7196 return pages;
7197}
11199692 7198EXPORT_SYMBOL(free_reserved_area);
69afade7 7199
cfa11e08
JL
7200#ifdef CONFIG_HIGHMEM
7201void free_highmem_page(struct page *page)
7202{
7203 __free_reserved_page(page);
ca79b0c2 7204 totalram_pages_inc();
9705bea5 7205 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7206 totalhigh_pages_inc();
cfa11e08
JL
7207}
7208#endif
7209
7ee3d4e8
JL
7210
7211void __init mem_init_print_info(const char *str)
7212{
7213 unsigned long physpages, codesize, datasize, rosize, bss_size;
7214 unsigned long init_code_size, init_data_size;
7215
7216 physpages = get_num_physpages();
7217 codesize = _etext - _stext;
7218 datasize = _edata - _sdata;
7219 rosize = __end_rodata - __start_rodata;
7220 bss_size = __bss_stop - __bss_start;
7221 init_data_size = __init_end - __init_begin;
7222 init_code_size = _einittext - _sinittext;
7223
7224 /*
7225 * Detect special cases and adjust section sizes accordingly:
7226 * 1) .init.* may be embedded into .data sections
7227 * 2) .init.text.* may be out of [__init_begin, __init_end],
7228 * please refer to arch/tile/kernel/vmlinux.lds.S.
7229 * 3) .rodata.* may be embedded into .text or .data sections.
7230 */
7231#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7232 do { \
7233 if (start <= pos && pos < end && size > adj) \
7234 size -= adj; \
7235 } while (0)
7ee3d4e8
JL
7236
7237 adj_init_size(__init_begin, __init_end, init_data_size,
7238 _sinittext, init_code_size);
7239 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7240 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7241 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7242 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7243
7244#undef adj_init_size
7245
756a025f 7246 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7247#ifdef CONFIG_HIGHMEM
756a025f 7248 ", %luK highmem"
7ee3d4e8 7249#endif
756a025f
JP
7250 "%s%s)\n",
7251 nr_free_pages() << (PAGE_SHIFT - 10),
7252 physpages << (PAGE_SHIFT - 10),
7253 codesize >> 10, datasize >> 10, rosize >> 10,
7254 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7255 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7256 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7257#ifdef CONFIG_HIGHMEM
ca79b0c2 7258 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7259#endif
756a025f 7260 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7261}
7262
0e0b864e 7263/**
88ca3b94
RD
7264 * set_dma_reserve - set the specified number of pages reserved in the first zone
7265 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7266 *
013110a7 7267 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7268 * In the DMA zone, a significant percentage may be consumed by kernel image
7269 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7270 * function may optionally be used to account for unfreeable pages in the
7271 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7272 * smaller per-cpu batchsize.
0e0b864e
MG
7273 */
7274void __init set_dma_reserve(unsigned long new_dma_reserve)
7275{
7276 dma_reserve = new_dma_reserve;
7277}
7278
1da177e4
LT
7279void __init free_area_init(unsigned long *zones_size)
7280{
e181ae0c 7281 zero_resv_unavail();
9109fb7b 7282 free_area_init_node(0, zones_size,
1da177e4
LT
7283 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7284}
1da177e4 7285
005fd4bb 7286static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7287{
1da177e4 7288
005fd4bb
SAS
7289 lru_add_drain_cpu(cpu);
7290 drain_pages(cpu);
9f8f2172 7291
005fd4bb
SAS
7292 /*
7293 * Spill the event counters of the dead processor
7294 * into the current processors event counters.
7295 * This artificially elevates the count of the current
7296 * processor.
7297 */
7298 vm_events_fold_cpu(cpu);
9f8f2172 7299
005fd4bb
SAS
7300 /*
7301 * Zero the differential counters of the dead processor
7302 * so that the vm statistics are consistent.
7303 *
7304 * This is only okay since the processor is dead and cannot
7305 * race with what we are doing.
7306 */
7307 cpu_vm_stats_fold(cpu);
7308 return 0;
1da177e4 7309}
1da177e4
LT
7310
7311void __init page_alloc_init(void)
7312{
005fd4bb
SAS
7313 int ret;
7314
7315 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7316 "mm/page_alloc:dead", NULL,
7317 page_alloc_cpu_dead);
7318 WARN_ON(ret < 0);
1da177e4
LT
7319}
7320
cb45b0e9 7321/*
34b10060 7322 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7323 * or min_free_kbytes changes.
7324 */
7325static void calculate_totalreserve_pages(void)
7326{
7327 struct pglist_data *pgdat;
7328 unsigned long reserve_pages = 0;
2f6726e5 7329 enum zone_type i, j;
cb45b0e9
HA
7330
7331 for_each_online_pgdat(pgdat) {
281e3726
MG
7332
7333 pgdat->totalreserve_pages = 0;
7334
cb45b0e9
HA
7335 for (i = 0; i < MAX_NR_ZONES; i++) {
7336 struct zone *zone = pgdat->node_zones + i;
3484b2de 7337 long max = 0;
9705bea5 7338 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7339
7340 /* Find valid and maximum lowmem_reserve in the zone */
7341 for (j = i; j < MAX_NR_ZONES; j++) {
7342 if (zone->lowmem_reserve[j] > max)
7343 max = zone->lowmem_reserve[j];
7344 }
7345
41858966
MG
7346 /* we treat the high watermark as reserved pages. */
7347 max += high_wmark_pages(zone);
cb45b0e9 7348
3d6357de
AK
7349 if (max > managed_pages)
7350 max = managed_pages;
a8d01437 7351
281e3726 7352 pgdat->totalreserve_pages += max;
a8d01437 7353
cb45b0e9
HA
7354 reserve_pages += max;
7355 }
7356 }
7357 totalreserve_pages = reserve_pages;
7358}
7359
1da177e4
LT
7360/*
7361 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7362 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7363 * has a correct pages reserved value, so an adequate number of
7364 * pages are left in the zone after a successful __alloc_pages().
7365 */
7366static void setup_per_zone_lowmem_reserve(void)
7367{
7368 struct pglist_data *pgdat;
2f6726e5 7369 enum zone_type j, idx;
1da177e4 7370
ec936fc5 7371 for_each_online_pgdat(pgdat) {
1da177e4
LT
7372 for (j = 0; j < MAX_NR_ZONES; j++) {
7373 struct zone *zone = pgdat->node_zones + j;
9705bea5 7374 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7375
7376 zone->lowmem_reserve[j] = 0;
7377
2f6726e5
CL
7378 idx = j;
7379 while (idx) {
1da177e4
LT
7380 struct zone *lower_zone;
7381
2f6726e5 7382 idx--;
1da177e4 7383 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7384
7385 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7386 sysctl_lowmem_reserve_ratio[idx] = 0;
7387 lower_zone->lowmem_reserve[j] = 0;
7388 } else {
7389 lower_zone->lowmem_reserve[j] =
7390 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7391 }
9705bea5 7392 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7393 }
7394 }
7395 }
cb45b0e9
HA
7396
7397 /* update totalreserve_pages */
7398 calculate_totalreserve_pages();
1da177e4
LT
7399}
7400
cfd3da1e 7401static void __setup_per_zone_wmarks(void)
1da177e4
LT
7402{
7403 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7404 unsigned long lowmem_pages = 0;
7405 struct zone *zone;
7406 unsigned long flags;
7407
7408 /* Calculate total number of !ZONE_HIGHMEM pages */
7409 for_each_zone(zone) {
7410 if (!is_highmem(zone))
9705bea5 7411 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7412 }
7413
7414 for_each_zone(zone) {
ac924c60
AM
7415 u64 tmp;
7416
1125b4e3 7417 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7418 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7419 do_div(tmp, lowmem_pages);
1da177e4
LT
7420 if (is_highmem(zone)) {
7421 /*
669ed175
NP
7422 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7423 * need highmem pages, so cap pages_min to a small
7424 * value here.
7425 *
41858966 7426 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7427 * deltas control asynch page reclaim, and so should
669ed175 7428 * not be capped for highmem.
1da177e4 7429 */
90ae8d67 7430 unsigned long min_pages;
1da177e4 7431
9705bea5 7432 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7433 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7434 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7435 } else {
669ed175
NP
7436 /*
7437 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7438 * proportionate to the zone's size.
7439 */
41858966 7440 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7441 }
7442
795ae7a0
JW
7443 /*
7444 * Set the kswapd watermarks distance according to the
7445 * scale factor in proportion to available memory, but
7446 * ensure a minimum size on small systems.
7447 */
7448 tmp = max_t(u64, tmp >> 2,
9705bea5 7449 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7450 watermark_scale_factor, 10000));
7451
7452 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7453 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7454
1125b4e3 7455 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7456 }
cb45b0e9
HA
7457
7458 /* update totalreserve_pages */
7459 calculate_totalreserve_pages();
1da177e4
LT
7460}
7461
cfd3da1e
MG
7462/**
7463 * setup_per_zone_wmarks - called when min_free_kbytes changes
7464 * or when memory is hot-{added|removed}
7465 *
7466 * Ensures that the watermark[min,low,high] values for each zone are set
7467 * correctly with respect to min_free_kbytes.
7468 */
7469void setup_per_zone_wmarks(void)
7470{
b93e0f32
MH
7471 static DEFINE_SPINLOCK(lock);
7472
7473 spin_lock(&lock);
cfd3da1e 7474 __setup_per_zone_wmarks();
b93e0f32 7475 spin_unlock(&lock);
cfd3da1e
MG
7476}
7477
1da177e4
LT
7478/*
7479 * Initialise min_free_kbytes.
7480 *
7481 * For small machines we want it small (128k min). For large machines
7482 * we want it large (64MB max). But it is not linear, because network
7483 * bandwidth does not increase linearly with machine size. We use
7484 *
b8af2941 7485 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7486 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7487 *
7488 * which yields
7489 *
7490 * 16MB: 512k
7491 * 32MB: 724k
7492 * 64MB: 1024k
7493 * 128MB: 1448k
7494 * 256MB: 2048k
7495 * 512MB: 2896k
7496 * 1024MB: 4096k
7497 * 2048MB: 5792k
7498 * 4096MB: 8192k
7499 * 8192MB: 11584k
7500 * 16384MB: 16384k
7501 */
1b79acc9 7502int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7503{
7504 unsigned long lowmem_kbytes;
5f12733e 7505 int new_min_free_kbytes;
1da177e4
LT
7506
7507 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7508 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7509
7510 if (new_min_free_kbytes > user_min_free_kbytes) {
7511 min_free_kbytes = new_min_free_kbytes;
7512 if (min_free_kbytes < 128)
7513 min_free_kbytes = 128;
7514 if (min_free_kbytes > 65536)
7515 min_free_kbytes = 65536;
7516 } else {
7517 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7518 new_min_free_kbytes, user_min_free_kbytes);
7519 }
bc75d33f 7520 setup_per_zone_wmarks();
a6cccdc3 7521 refresh_zone_stat_thresholds();
1da177e4 7522 setup_per_zone_lowmem_reserve();
6423aa81
JK
7523
7524#ifdef CONFIG_NUMA
7525 setup_min_unmapped_ratio();
7526 setup_min_slab_ratio();
7527#endif
7528
1da177e4
LT
7529 return 0;
7530}
bc22af74 7531core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7532
7533/*
b8af2941 7534 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7535 * that we can call two helper functions whenever min_free_kbytes
7536 * changes.
7537 */
cccad5b9 7538int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7539 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7540{
da8c757b
HP
7541 int rc;
7542
7543 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7544 if (rc)
7545 return rc;
7546
5f12733e
MH
7547 if (write) {
7548 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7549 setup_per_zone_wmarks();
5f12733e 7550 }
1da177e4
LT
7551 return 0;
7552}
7553
795ae7a0
JW
7554int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7555 void __user *buffer, size_t *length, loff_t *ppos)
7556{
7557 int rc;
7558
7559 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7560 if (rc)
7561 return rc;
7562
7563 if (write)
7564 setup_per_zone_wmarks();
7565
7566 return 0;
7567}
7568
9614634f 7569#ifdef CONFIG_NUMA
6423aa81 7570static void setup_min_unmapped_ratio(void)
9614634f 7571{
6423aa81 7572 pg_data_t *pgdat;
9614634f 7573 struct zone *zone;
9614634f 7574
a5f5f91d 7575 for_each_online_pgdat(pgdat)
81cbcbc2 7576 pgdat->min_unmapped_pages = 0;
a5f5f91d 7577
9614634f 7578 for_each_zone(zone)
9705bea5
AK
7579 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7580 sysctl_min_unmapped_ratio) / 100;
9614634f 7581}
0ff38490 7582
6423aa81
JK
7583
7584int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7585 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7586{
0ff38490
CL
7587 int rc;
7588
8d65af78 7589 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7590 if (rc)
7591 return rc;
7592
6423aa81
JK
7593 setup_min_unmapped_ratio();
7594
7595 return 0;
7596}
7597
7598static void setup_min_slab_ratio(void)
7599{
7600 pg_data_t *pgdat;
7601 struct zone *zone;
7602
a5f5f91d
MG
7603 for_each_online_pgdat(pgdat)
7604 pgdat->min_slab_pages = 0;
7605
0ff38490 7606 for_each_zone(zone)
9705bea5
AK
7607 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7608 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7609}
7610
7611int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7612 void __user *buffer, size_t *length, loff_t *ppos)
7613{
7614 int rc;
7615
7616 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7617 if (rc)
7618 return rc;
7619
7620 setup_min_slab_ratio();
7621
0ff38490
CL
7622 return 0;
7623}
9614634f
CL
7624#endif
7625
1da177e4
LT
7626/*
7627 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7628 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7629 * whenever sysctl_lowmem_reserve_ratio changes.
7630 *
7631 * The reserve ratio obviously has absolutely no relation with the
41858966 7632 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7633 * if in function of the boot time zone sizes.
7634 */
cccad5b9 7635int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7636 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7637{
8d65af78 7638 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7639 setup_per_zone_lowmem_reserve();
7640 return 0;
7641}
7642
8ad4b1fb
RS
7643/*
7644 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7645 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7646 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7647 */
cccad5b9 7648int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7649 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7650{
7651 struct zone *zone;
7cd2b0a3 7652 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7653 int ret;
7654
7cd2b0a3
DR
7655 mutex_lock(&pcp_batch_high_lock);
7656 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7657
8d65af78 7658 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7659 if (!write || ret < 0)
7660 goto out;
7661
7662 /* Sanity checking to avoid pcp imbalance */
7663 if (percpu_pagelist_fraction &&
7664 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7665 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7666 ret = -EINVAL;
7667 goto out;
7668 }
7669
7670 /* No change? */
7671 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7672 goto out;
c8e251fa 7673
364df0eb 7674 for_each_populated_zone(zone) {
7cd2b0a3
DR
7675 unsigned int cpu;
7676
22a7f12b 7677 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7678 pageset_set_high_and_batch(zone,
7679 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7680 }
7cd2b0a3 7681out:
c8e251fa 7682 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7683 return ret;
8ad4b1fb
RS
7684}
7685
a9919c79 7686#ifdef CONFIG_NUMA
f034b5d4 7687int hashdist = HASHDIST_DEFAULT;
1da177e4 7688
1da177e4
LT
7689static int __init set_hashdist(char *str)
7690{
7691 if (!str)
7692 return 0;
7693 hashdist = simple_strtoul(str, &str, 0);
7694 return 1;
7695}
7696__setup("hashdist=", set_hashdist);
7697#endif
7698
f6f34b43
SD
7699#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7700/*
7701 * Returns the number of pages that arch has reserved but
7702 * is not known to alloc_large_system_hash().
7703 */
7704static unsigned long __init arch_reserved_kernel_pages(void)
7705{
7706 return 0;
7707}
7708#endif
7709
9017217b
PT
7710/*
7711 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7712 * machines. As memory size is increased the scale is also increased but at
7713 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7714 * quadruples the scale is increased by one, which means the size of hash table
7715 * only doubles, instead of quadrupling as well.
7716 * Because 32-bit systems cannot have large physical memory, where this scaling
7717 * makes sense, it is disabled on such platforms.
7718 */
7719#if __BITS_PER_LONG > 32
7720#define ADAPT_SCALE_BASE (64ul << 30)
7721#define ADAPT_SCALE_SHIFT 2
7722#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7723#endif
7724
1da177e4
LT
7725/*
7726 * allocate a large system hash table from bootmem
7727 * - it is assumed that the hash table must contain an exact power-of-2
7728 * quantity of entries
7729 * - limit is the number of hash buckets, not the total allocation size
7730 */
7731void *__init alloc_large_system_hash(const char *tablename,
7732 unsigned long bucketsize,
7733 unsigned long numentries,
7734 int scale,
7735 int flags,
7736 unsigned int *_hash_shift,
7737 unsigned int *_hash_mask,
31fe62b9
TB
7738 unsigned long low_limit,
7739 unsigned long high_limit)
1da177e4 7740{
31fe62b9 7741 unsigned long long max = high_limit;
1da177e4
LT
7742 unsigned long log2qty, size;
7743 void *table = NULL;
3749a8f0 7744 gfp_t gfp_flags;
1da177e4
LT
7745
7746 /* allow the kernel cmdline to have a say */
7747 if (!numentries) {
7748 /* round applicable memory size up to nearest megabyte */
04903664 7749 numentries = nr_kernel_pages;
f6f34b43 7750 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7751
7752 /* It isn't necessary when PAGE_SIZE >= 1MB */
7753 if (PAGE_SHIFT < 20)
7754 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7755
9017217b
PT
7756#if __BITS_PER_LONG > 32
7757 if (!high_limit) {
7758 unsigned long adapt;
7759
7760 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7761 adapt <<= ADAPT_SCALE_SHIFT)
7762 scale++;
7763 }
7764#endif
7765
1da177e4
LT
7766 /* limit to 1 bucket per 2^scale bytes of low memory */
7767 if (scale > PAGE_SHIFT)
7768 numentries >>= (scale - PAGE_SHIFT);
7769 else
7770 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7771
7772 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7773 if (unlikely(flags & HASH_SMALL)) {
7774 /* Makes no sense without HASH_EARLY */
7775 WARN_ON(!(flags & HASH_EARLY));
7776 if (!(numentries >> *_hash_shift)) {
7777 numentries = 1UL << *_hash_shift;
7778 BUG_ON(!numentries);
7779 }
7780 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7781 numentries = PAGE_SIZE / bucketsize;
1da177e4 7782 }
6e692ed3 7783 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7784
7785 /* limit allocation size to 1/16 total memory by default */
7786 if (max == 0) {
7787 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7788 do_div(max, bucketsize);
7789 }
074b8517 7790 max = min(max, 0x80000000ULL);
1da177e4 7791
31fe62b9
TB
7792 if (numentries < low_limit)
7793 numentries = low_limit;
1da177e4
LT
7794 if (numentries > max)
7795 numentries = max;
7796
f0d1b0b3 7797 log2qty = ilog2(numentries);
1da177e4 7798
3749a8f0 7799 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7800 do {
7801 size = bucketsize << log2qty;
ea1f5f37
PT
7802 if (flags & HASH_EARLY) {
7803 if (flags & HASH_ZERO)
7e1c4e27
MR
7804 table = memblock_alloc_nopanic(size,
7805 SMP_CACHE_BYTES);
ea1f5f37 7806 else
7e1c4e27
MR
7807 table = memblock_alloc_raw(size,
7808 SMP_CACHE_BYTES);
ea1f5f37 7809 } else if (hashdist) {
3749a8f0 7810 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7811 } else {
1037b83b
ED
7812 /*
7813 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7814 * some pages at the end of hash table which
7815 * alloc_pages_exact() automatically does
1037b83b 7816 */
264ef8a9 7817 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7818 table = alloc_pages_exact(size, gfp_flags);
7819 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7820 }
1da177e4
LT
7821 }
7822 } while (!table && size > PAGE_SIZE && --log2qty);
7823
7824 if (!table)
7825 panic("Failed to allocate %s hash table\n", tablename);
7826
1170532b
JP
7827 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7828 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7829
7830 if (_hash_shift)
7831 *_hash_shift = log2qty;
7832 if (_hash_mask)
7833 *_hash_mask = (1 << log2qty) - 1;
7834
7835 return table;
7836}
a117e66e 7837
a5d76b54 7838/*
80934513
MK
7839 * This function checks whether pageblock includes unmovable pages or not.
7840 * If @count is not zero, it is okay to include less @count unmovable pages
7841 *
b8af2941 7842 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7843 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7844 * check without lock_page also may miss some movable non-lru pages at
7845 * race condition. So you can't expect this function should be exact.
a5d76b54 7846 */
b023f468 7847bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 7848 int migratetype, int flags)
49ac8255
KH
7849{
7850 unsigned long pfn, iter, found;
47118af0 7851
49ac8255 7852 /*
15c30bc0
MH
7853 * TODO we could make this much more efficient by not checking every
7854 * page in the range if we know all of them are in MOVABLE_ZONE and
7855 * that the movable zone guarantees that pages are migratable but
7856 * the later is not the case right now unfortunatelly. E.g. movablecore
7857 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7858 */
49ac8255 7859
4da2ce25
MH
7860 /*
7861 * CMA allocations (alloc_contig_range) really need to mark isolate
7862 * CMA pageblocks even when they are not movable in fact so consider
7863 * them movable here.
7864 */
7865 if (is_migrate_cma(migratetype) &&
7866 is_migrate_cma(get_pageblock_migratetype(page)))
7867 return false;
7868
49ac8255
KH
7869 pfn = page_to_pfn(page);
7870 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7871 unsigned long check = pfn + iter;
7872
29723fcc 7873 if (!pfn_valid_within(check))
49ac8255 7874 continue;
29723fcc 7875
49ac8255 7876 page = pfn_to_page(check);
c8721bbb 7877
d7ab3672 7878 if (PageReserved(page))
15c30bc0 7879 goto unmovable;
d7ab3672 7880
9d789999
MH
7881 /*
7882 * If the zone is movable and we have ruled out all reserved
7883 * pages then it should be reasonably safe to assume the rest
7884 * is movable.
7885 */
7886 if (zone_idx(zone) == ZONE_MOVABLE)
7887 continue;
7888
c8721bbb
NH
7889 /*
7890 * Hugepages are not in LRU lists, but they're movable.
7891 * We need not scan over tail pages bacause we don't
7892 * handle each tail page individually in migration.
7893 */
7894 if (PageHuge(page)) {
17e2e7d7
OS
7895 struct page *head = compound_head(page);
7896 unsigned int skip_pages;
464c7ffb 7897
17e2e7d7 7898 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
7899 goto unmovable;
7900
17e2e7d7
OS
7901 skip_pages = (1 << compound_order(head)) - (page - head);
7902 iter += skip_pages - 1;
c8721bbb
NH
7903 continue;
7904 }
7905
97d255c8
MK
7906 /*
7907 * We can't use page_count without pin a page
7908 * because another CPU can free compound page.
7909 * This check already skips compound tails of THP
0139aa7b 7910 * because their page->_refcount is zero at all time.
97d255c8 7911 */
fe896d18 7912 if (!page_ref_count(page)) {
49ac8255
KH
7913 if (PageBuddy(page))
7914 iter += (1 << page_order(page)) - 1;
7915 continue;
7916 }
97d255c8 7917
b023f468
WC
7918 /*
7919 * The HWPoisoned page may be not in buddy system, and
7920 * page_count() is not 0.
7921 */
d381c547 7922 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
7923 continue;
7924
0efadf48
YX
7925 if (__PageMovable(page))
7926 continue;
7927
49ac8255
KH
7928 if (!PageLRU(page))
7929 found++;
7930 /*
6b4f7799
JW
7931 * If there are RECLAIMABLE pages, we need to check
7932 * it. But now, memory offline itself doesn't call
7933 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7934 */
7935 /*
7936 * If the page is not RAM, page_count()should be 0.
7937 * we don't need more check. This is an _used_ not-movable page.
7938 *
7939 * The problematic thing here is PG_reserved pages. PG_reserved
7940 * is set to both of a memory hole page and a _used_ kernel
7941 * page at boot.
7942 */
7943 if (found > count)
15c30bc0 7944 goto unmovable;
49ac8255 7945 }
80934513 7946 return false;
15c30bc0
MH
7947unmovable:
7948 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547
MH
7949 if (flags & REPORT_FAILURE)
7950 dump_page(pfn_to_page(pfn+iter), "unmovable page");
15c30bc0 7951 return true;
49ac8255
KH
7952}
7953
080fe206 7954#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7955
7956static unsigned long pfn_max_align_down(unsigned long pfn)
7957{
7958 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7959 pageblock_nr_pages) - 1);
7960}
7961
7962static unsigned long pfn_max_align_up(unsigned long pfn)
7963{
7964 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7965 pageblock_nr_pages));
7966}
7967
041d3a8c 7968/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7969static int __alloc_contig_migrate_range(struct compact_control *cc,
7970 unsigned long start, unsigned long end)
041d3a8c
MN
7971{
7972 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7973 unsigned long nr_reclaimed;
041d3a8c
MN
7974 unsigned long pfn = start;
7975 unsigned int tries = 0;
7976 int ret = 0;
7977
be49a6e1 7978 migrate_prep();
041d3a8c 7979
bb13ffeb 7980 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7981 if (fatal_signal_pending(current)) {
7982 ret = -EINTR;
7983 break;
7984 }
7985
bb13ffeb
MG
7986 if (list_empty(&cc->migratepages)) {
7987 cc->nr_migratepages = 0;
edc2ca61 7988 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7989 if (!pfn) {
7990 ret = -EINTR;
7991 break;
7992 }
7993 tries = 0;
7994 } else if (++tries == 5) {
7995 ret = ret < 0 ? ret : -EBUSY;
7996 break;
7997 }
7998
beb51eaa
MK
7999 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8000 &cc->migratepages);
8001 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8002
9c620e2b 8003 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8004 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8005 }
2a6f5124
SP
8006 if (ret < 0) {
8007 putback_movable_pages(&cc->migratepages);
8008 return ret;
8009 }
8010 return 0;
041d3a8c
MN
8011}
8012
8013/**
8014 * alloc_contig_range() -- tries to allocate given range of pages
8015 * @start: start PFN to allocate
8016 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8017 * @migratetype: migratetype of the underlaying pageblocks (either
8018 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8019 * in range must have the same migratetype and it must
8020 * be either of the two.
ca96b625 8021 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8022 *
8023 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8024 * aligned. The PFN range must belong to a single zone.
041d3a8c 8025 *
2c7452a0
MK
8026 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8027 * pageblocks in the range. Once isolated, the pageblocks should not
8028 * be modified by others.
041d3a8c
MN
8029 *
8030 * Returns zero on success or negative error code. On success all
8031 * pages which PFN is in [start, end) are allocated for the caller and
8032 * need to be freed with free_contig_range().
8033 */
0815f3d8 8034int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8035 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8036{
041d3a8c 8037 unsigned long outer_start, outer_end;
d00181b9
KS
8038 unsigned int order;
8039 int ret = 0;
041d3a8c 8040
bb13ffeb
MG
8041 struct compact_control cc = {
8042 .nr_migratepages = 0,
8043 .order = -1,
8044 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8045 .mode = MIGRATE_SYNC,
bb13ffeb 8046 .ignore_skip_hint = true,
2583d671 8047 .no_set_skip_hint = true,
7dea19f9 8048 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8049 };
8050 INIT_LIST_HEAD(&cc.migratepages);
8051
041d3a8c
MN
8052 /*
8053 * What we do here is we mark all pageblocks in range as
8054 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8055 * have different sizes, and due to the way page allocator
8056 * work, we align the range to biggest of the two pages so
8057 * that page allocator won't try to merge buddies from
8058 * different pageblocks and change MIGRATE_ISOLATE to some
8059 * other migration type.
8060 *
8061 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8062 * migrate the pages from an unaligned range (ie. pages that
8063 * we are interested in). This will put all the pages in
8064 * range back to page allocator as MIGRATE_ISOLATE.
8065 *
8066 * When this is done, we take the pages in range from page
8067 * allocator removing them from the buddy system. This way
8068 * page allocator will never consider using them.
8069 *
8070 * This lets us mark the pageblocks back as
8071 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8072 * aligned range but not in the unaligned, original range are
8073 * put back to page allocator so that buddy can use them.
8074 */
8075
8076 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8077 pfn_max_align_up(end), migratetype, 0);
041d3a8c 8078 if (ret)
86a595f9 8079 return ret;
041d3a8c 8080
8ef5849f
JK
8081 /*
8082 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8083 * So, just fall through. test_pages_isolated() has a tracepoint
8084 * which will report the busy page.
8085 *
8086 * It is possible that busy pages could become available before
8087 * the call to test_pages_isolated, and the range will actually be
8088 * allocated. So, if we fall through be sure to clear ret so that
8089 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8090 */
bb13ffeb 8091 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8092 if (ret && ret != -EBUSY)
041d3a8c 8093 goto done;
63cd4489 8094 ret =0;
041d3a8c
MN
8095
8096 /*
8097 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8098 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8099 * more, all pages in [start, end) are free in page allocator.
8100 * What we are going to do is to allocate all pages from
8101 * [start, end) (that is remove them from page allocator).
8102 *
8103 * The only problem is that pages at the beginning and at the
8104 * end of interesting range may be not aligned with pages that
8105 * page allocator holds, ie. they can be part of higher order
8106 * pages. Because of this, we reserve the bigger range and
8107 * once this is done free the pages we are not interested in.
8108 *
8109 * We don't have to hold zone->lock here because the pages are
8110 * isolated thus they won't get removed from buddy.
8111 */
8112
8113 lru_add_drain_all();
510f5507 8114 drain_all_pages(cc.zone);
041d3a8c
MN
8115
8116 order = 0;
8117 outer_start = start;
8118 while (!PageBuddy(pfn_to_page(outer_start))) {
8119 if (++order >= MAX_ORDER) {
8ef5849f
JK
8120 outer_start = start;
8121 break;
041d3a8c
MN
8122 }
8123 outer_start &= ~0UL << order;
8124 }
8125
8ef5849f
JK
8126 if (outer_start != start) {
8127 order = page_order(pfn_to_page(outer_start));
8128
8129 /*
8130 * outer_start page could be small order buddy page and
8131 * it doesn't include start page. Adjust outer_start
8132 * in this case to report failed page properly
8133 * on tracepoint in test_pages_isolated()
8134 */
8135 if (outer_start + (1UL << order) <= start)
8136 outer_start = start;
8137 }
8138
041d3a8c 8139 /* Make sure the range is really isolated. */
b023f468 8140 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8141 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8142 __func__, outer_start, end);
041d3a8c
MN
8143 ret = -EBUSY;
8144 goto done;
8145 }
8146
49f223a9 8147 /* Grab isolated pages from freelists. */
bb13ffeb 8148 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8149 if (!outer_end) {
8150 ret = -EBUSY;
8151 goto done;
8152 }
8153
8154 /* Free head and tail (if any) */
8155 if (start != outer_start)
8156 free_contig_range(outer_start, start - outer_start);
8157 if (end != outer_end)
8158 free_contig_range(end, outer_end - end);
8159
8160done:
8161 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8162 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8163 return ret;
8164}
8165
8166void free_contig_range(unsigned long pfn, unsigned nr_pages)
8167{
bcc2b02f
MS
8168 unsigned int count = 0;
8169
8170 for (; nr_pages--; pfn++) {
8171 struct page *page = pfn_to_page(pfn);
8172
8173 count += page_count(page) != 1;
8174 __free_page(page);
8175 }
8176 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8177}
8178#endif
8179
d883c6cf 8180#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8181/*
8182 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8183 * page high values need to be recalulated.
8184 */
4ed7e022
JL
8185void __meminit zone_pcp_update(struct zone *zone)
8186{
0a647f38 8187 unsigned cpu;
c8e251fa 8188 mutex_lock(&pcp_batch_high_lock);
0a647f38 8189 for_each_possible_cpu(cpu)
169f6c19
CS
8190 pageset_set_high_and_batch(zone,
8191 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8192 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8193}
8194#endif
8195
340175b7
JL
8196void zone_pcp_reset(struct zone *zone)
8197{
8198 unsigned long flags;
5a883813
MK
8199 int cpu;
8200 struct per_cpu_pageset *pset;
340175b7
JL
8201
8202 /* avoid races with drain_pages() */
8203 local_irq_save(flags);
8204 if (zone->pageset != &boot_pageset) {
5a883813
MK
8205 for_each_online_cpu(cpu) {
8206 pset = per_cpu_ptr(zone->pageset, cpu);
8207 drain_zonestat(zone, pset);
8208 }
340175b7
JL
8209 free_percpu(zone->pageset);
8210 zone->pageset = &boot_pageset;
8211 }
8212 local_irq_restore(flags);
8213}
8214
6dcd73d7 8215#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8216/*
b9eb6319
JK
8217 * All pages in the range must be in a single zone and isolated
8218 * before calling this.
0c0e6195
KH
8219 */
8220void
8221__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8222{
8223 struct page *page;
8224 struct zone *zone;
7aeb09f9 8225 unsigned int order, i;
0c0e6195
KH
8226 unsigned long pfn;
8227 unsigned long flags;
8228 /* find the first valid pfn */
8229 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8230 if (pfn_valid(pfn))
8231 break;
8232 if (pfn == end_pfn)
8233 return;
2d070eab 8234 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8235 zone = page_zone(pfn_to_page(pfn));
8236 spin_lock_irqsave(&zone->lock, flags);
8237 pfn = start_pfn;
8238 while (pfn < end_pfn) {
8239 if (!pfn_valid(pfn)) {
8240 pfn++;
8241 continue;
8242 }
8243 page = pfn_to_page(pfn);
b023f468
WC
8244 /*
8245 * The HWPoisoned page may be not in buddy system, and
8246 * page_count() is not 0.
8247 */
8248 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8249 pfn++;
8250 SetPageReserved(page);
8251 continue;
8252 }
8253
0c0e6195
KH
8254 BUG_ON(page_count(page));
8255 BUG_ON(!PageBuddy(page));
8256 order = page_order(page);
8257#ifdef CONFIG_DEBUG_VM
1170532b
JP
8258 pr_info("remove from free list %lx %d %lx\n",
8259 pfn, 1 << order, end_pfn);
0c0e6195
KH
8260#endif
8261 list_del(&page->lru);
8262 rmv_page_order(page);
8263 zone->free_area[order].nr_free--;
0c0e6195
KH
8264 for (i = 0; i < (1 << order); i++)
8265 SetPageReserved((page+i));
8266 pfn += (1 << order);
8267 }
8268 spin_unlock_irqrestore(&zone->lock, flags);
8269}
8270#endif
8d22ba1b 8271
8d22ba1b
WF
8272bool is_free_buddy_page(struct page *page)
8273{
8274 struct zone *zone = page_zone(page);
8275 unsigned long pfn = page_to_pfn(page);
8276 unsigned long flags;
7aeb09f9 8277 unsigned int order;
8d22ba1b
WF
8278
8279 spin_lock_irqsave(&zone->lock, flags);
8280 for (order = 0; order < MAX_ORDER; order++) {
8281 struct page *page_head = page - (pfn & ((1 << order) - 1));
8282
8283 if (PageBuddy(page_head) && page_order(page_head) >= order)
8284 break;
8285 }
8286 spin_unlock_irqrestore(&zone->lock, flags);
8287
8288 return order < MAX_ORDER;
8289}
d4ae9916
NH
8290
8291#ifdef CONFIG_MEMORY_FAILURE
8292/*
8293 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8294 * test is performed under the zone lock to prevent a race against page
8295 * allocation.
8296 */
8297bool set_hwpoison_free_buddy_page(struct page *page)
8298{
8299 struct zone *zone = page_zone(page);
8300 unsigned long pfn = page_to_pfn(page);
8301 unsigned long flags;
8302 unsigned int order;
8303 bool hwpoisoned = false;
8304
8305 spin_lock_irqsave(&zone->lock, flags);
8306 for (order = 0; order < MAX_ORDER; order++) {
8307 struct page *page_head = page - (pfn & ((1 << order) - 1));
8308
8309 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8310 if (!TestSetPageHWPoison(page))
8311 hwpoisoned = true;
8312 break;
8313 }
8314 }
8315 spin_unlock_irqrestore(&zone->lock, flags);
8316
8317 return hwpoisoned;
8318}
8319#endif