]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm: mlock: remove lru_add_drain_all()
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53
MG
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
38addce8 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 104volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
1da177e4 108/*
13808910 109 * Array of node states.
1da177e4 110 */
13808910
CL
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 118#endif
20b2f52b 119 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
c3d5f5f0
JL
125/* Protect totalram_pages and zone->managed_pages */
126static DEFINE_SPINLOCK(managed_page_count_lock);
127
6c231b7b 128unsigned long totalram_pages __read_mostly;
cb45b0e9 129unsigned long totalreserve_pages __read_mostly;
e48322ab 130unsigned long totalcma_pages __read_mostly;
ab8fabd4 131
1b76b02f 132int percpu_pagelist_fraction;
dcce284a 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 134
bb14c2c7
VB
135/*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143static inline int get_pcppage_migratetype(struct page *page)
144{
145 return page->index;
146}
147
148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149{
150 page->index = migratetype;
151}
152
452aa699
RW
153#ifdef CONFIG_PM_SLEEP
154/*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
161 */
c9e664f1
RW
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
452aa699
RW
166{
167 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
452aa699
RW
172}
173
c9e664f1 174void pm_restrict_gfp_mask(void)
452aa699 175{
452aa699 176 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
d0164adc 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 180}
f90ac398
MG
181
182bool pm_suspended_storage(void)
183{
d0164adc 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
185 return false;
186 return true;
187}
452aa699
RW
188#endif /* CONFIG_PM_SLEEP */
189
d9c23400 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 191unsigned int pageblock_order __read_mostly;
d9c23400
MG
192#endif
193
d98c7a09 194static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 195
1da177e4
LT
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
1da177e4 206 */
2f1b6248 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 208#ifdef CONFIG_ZONE_DMA
2f1b6248 209 256,
4b51d669 210#endif
fb0e7942 211#ifdef CONFIG_ZONE_DMA32
2f1b6248 212 256,
fb0e7942 213#endif
e53ef38d 214#ifdef CONFIG_HIGHMEM
2a1e274a 215 32,
e53ef38d 216#endif
2a1e274a 217 32,
2f1b6248 218};
1da177e4
LT
219
220EXPORT_SYMBOL(totalram_pages);
1da177e4 221
15ad7cdc 222static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 223#ifdef CONFIG_ZONE_DMA
2f1b6248 224 "DMA",
4b51d669 225#endif
fb0e7942 226#ifdef CONFIG_ZONE_DMA32
2f1b6248 227 "DMA32",
fb0e7942 228#endif
2f1b6248 229 "Normal",
e53ef38d 230#ifdef CONFIG_HIGHMEM
2a1e274a 231 "HighMem",
e53ef38d 232#endif
2a1e274a 233 "Movable",
033fbae9
DW
234#ifdef CONFIG_ZONE_DEVICE
235 "Device",
236#endif
2f1b6248
CL
237};
238
60f30350
VB
239char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244#ifdef CONFIG_CMA
245 "CMA",
246#endif
247#ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249#endif
250};
251
f1e61557
KS
252compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255#ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257#endif
9a982250
KS
258#ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260#endif
f1e61557
KS
261};
262
1da177e4 263int min_free_kbytes = 1024;
42aa83cb 264int user_min_free_kbytes = -1;
795ae7a0 265int watermark_scale_factor = 10;
1da177e4 266
2c85f51d
JB
267static unsigned long __meminitdata nr_kernel_pages;
268static unsigned long __meminitdata nr_all_pages;
a3142c8e 269static unsigned long __meminitdata dma_reserve;
1da177e4 270
0ee332c1
TH
271#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274static unsigned long __initdata required_kernelcore;
275static unsigned long __initdata required_movablecore;
276static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 277static bool mirrored_kernelcore;
0ee332c1
TH
278
279/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280int movable_zone;
281EXPORT_SYMBOL(movable_zone);
282#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 283
418508c1
MS
284#if MAX_NUMNODES > 1
285int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 286int nr_online_nodes __read_mostly = 1;
418508c1 287EXPORT_SYMBOL(nr_node_ids);
62bc62a8 288EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
289#endif
290
9ef9acb0
MG
291int page_group_by_mobility_disabled __read_mostly;
292
3a80a7fa
MG
293#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294static inline void reset_deferred_meminit(pg_data_t *pgdat)
295{
864b9a39
MH
296 unsigned long max_initialise;
297 unsigned long reserved_lowmem;
298
299 /*
300 * Initialise at least 2G of a node but also take into account that
301 * two large system hashes that can take up 1GB for 0.25TB/node.
302 */
303 max_initialise = max(2UL << (30 - PAGE_SHIFT),
304 (pgdat->node_spanned_pages >> 8));
305
306 /*
307 * Compensate the all the memblock reservations (e.g. crash kernel)
308 * from the initial estimation to make sure we will initialize enough
309 * memory to boot.
310 */
311 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
312 pgdat->node_start_pfn + max_initialise);
313 max_initialise += reserved_lowmem;
314
315 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
316 pgdat->first_deferred_pfn = ULONG_MAX;
317}
318
319/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 320static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 321{
ef70b6f4
MG
322 int nid = early_pfn_to_nid(pfn);
323
324 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
325 return true;
326
327 return false;
328}
329
330/*
331 * Returns false when the remaining initialisation should be deferred until
332 * later in the boot cycle when it can be parallelised.
333 */
334static inline bool update_defer_init(pg_data_t *pgdat,
335 unsigned long pfn, unsigned long zone_end,
336 unsigned long *nr_initialised)
337{
338 /* Always populate low zones for address-contrained allocations */
339 if (zone_end < pgdat_end_pfn(pgdat))
340 return true;
3a80a7fa 341 (*nr_initialised)++;
864b9a39 342 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
343 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
344 pgdat->first_deferred_pfn = pfn;
345 return false;
346 }
347
348 return true;
349}
350#else
351static inline void reset_deferred_meminit(pg_data_t *pgdat)
352{
353}
354
355static inline bool early_page_uninitialised(unsigned long pfn)
356{
357 return false;
358}
359
360static inline bool update_defer_init(pg_data_t *pgdat,
361 unsigned long pfn, unsigned long zone_end,
362 unsigned long *nr_initialised)
363{
364 return true;
365}
366#endif
367
0b423ca2
MG
368/* Return a pointer to the bitmap storing bits affecting a block of pages */
369static inline unsigned long *get_pageblock_bitmap(struct page *page,
370 unsigned long pfn)
371{
372#ifdef CONFIG_SPARSEMEM
373 return __pfn_to_section(pfn)->pageblock_flags;
374#else
375 return page_zone(page)->pageblock_flags;
376#endif /* CONFIG_SPARSEMEM */
377}
378
379static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
380{
381#ifdef CONFIG_SPARSEMEM
382 pfn &= (PAGES_PER_SECTION-1);
383 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
384#else
385 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
386 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
387#endif /* CONFIG_SPARSEMEM */
388}
389
390/**
391 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
392 * @page: The page within the block of interest
393 * @pfn: The target page frame number
394 * @end_bitidx: The last bit of interest to retrieve
395 * @mask: mask of bits that the caller is interested in
396 *
397 * Return: pageblock_bits flags
398 */
399static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
400 unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403{
404 unsigned long *bitmap;
405 unsigned long bitidx, word_bitidx;
406 unsigned long word;
407
408 bitmap = get_pageblock_bitmap(page, pfn);
409 bitidx = pfn_to_bitidx(page, pfn);
410 word_bitidx = bitidx / BITS_PER_LONG;
411 bitidx &= (BITS_PER_LONG-1);
412
413 word = bitmap[word_bitidx];
414 bitidx += end_bitidx;
415 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
416}
417
418unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
419 unsigned long end_bitidx,
420 unsigned long mask)
421{
422 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
423}
424
425static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
426{
427 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
428}
429
430/**
431 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
432 * @page: The page within the block of interest
433 * @flags: The flags to set
434 * @pfn: The target page frame number
435 * @end_bitidx: The last bit of interest
436 * @mask: mask of bits that the caller is interested in
437 */
438void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
439 unsigned long pfn,
440 unsigned long end_bitidx,
441 unsigned long mask)
442{
443 unsigned long *bitmap;
444 unsigned long bitidx, word_bitidx;
445 unsigned long old_word, word;
446
447 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
448
449 bitmap = get_pageblock_bitmap(page, pfn);
450 bitidx = pfn_to_bitidx(page, pfn);
451 word_bitidx = bitidx / BITS_PER_LONG;
452 bitidx &= (BITS_PER_LONG-1);
453
454 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
455
456 bitidx += end_bitidx;
457 mask <<= (BITS_PER_LONG - bitidx - 1);
458 flags <<= (BITS_PER_LONG - bitidx - 1);
459
460 word = READ_ONCE(bitmap[word_bitidx]);
461 for (;;) {
462 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
463 if (word == old_word)
464 break;
465 word = old_word;
466 }
467}
3a80a7fa 468
ee6f509c 469void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 470{
5d0f3f72
KM
471 if (unlikely(page_group_by_mobility_disabled &&
472 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
473 migratetype = MIGRATE_UNMOVABLE;
474
b2a0ac88
MG
475 set_pageblock_flags_group(page, (unsigned long)migratetype,
476 PB_migrate, PB_migrate_end);
477}
478
13e7444b 479#ifdef CONFIG_DEBUG_VM
c6a57e19 480static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 481{
bdc8cb98
DH
482 int ret = 0;
483 unsigned seq;
484 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 485 unsigned long sp, start_pfn;
c6a57e19 486
bdc8cb98
DH
487 do {
488 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
489 start_pfn = zone->zone_start_pfn;
490 sp = zone->spanned_pages;
108bcc96 491 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
492 ret = 1;
493 } while (zone_span_seqretry(zone, seq));
494
b5e6a5a2 495 if (ret)
613813e8
DH
496 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
497 pfn, zone_to_nid(zone), zone->name,
498 start_pfn, start_pfn + sp);
b5e6a5a2 499
bdc8cb98 500 return ret;
c6a57e19
DH
501}
502
503static int page_is_consistent(struct zone *zone, struct page *page)
504{
14e07298 505 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 506 return 0;
1da177e4 507 if (zone != page_zone(page))
c6a57e19
DH
508 return 0;
509
510 return 1;
511}
512/*
513 * Temporary debugging check for pages not lying within a given zone.
514 */
d73d3c9f 515static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
516{
517 if (page_outside_zone_boundaries(zone, page))
1da177e4 518 return 1;
c6a57e19
DH
519 if (!page_is_consistent(zone, page))
520 return 1;
521
1da177e4
LT
522 return 0;
523}
13e7444b 524#else
d73d3c9f 525static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
526{
527 return 0;
528}
529#endif
530
d230dec1
KS
531static void bad_page(struct page *page, const char *reason,
532 unsigned long bad_flags)
1da177e4 533{
d936cf9b
HD
534 static unsigned long resume;
535 static unsigned long nr_shown;
536 static unsigned long nr_unshown;
537
538 /*
539 * Allow a burst of 60 reports, then keep quiet for that minute;
540 * or allow a steady drip of one report per second.
541 */
542 if (nr_shown == 60) {
543 if (time_before(jiffies, resume)) {
544 nr_unshown++;
545 goto out;
546 }
547 if (nr_unshown) {
ff8e8116 548 pr_alert(
1e9e6365 549 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
550 nr_unshown);
551 nr_unshown = 0;
552 }
553 nr_shown = 0;
554 }
555 if (nr_shown++ == 0)
556 resume = jiffies + 60 * HZ;
557
ff8e8116 558 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 559 current->comm, page_to_pfn(page));
ff8e8116
VB
560 __dump_page(page, reason);
561 bad_flags &= page->flags;
562 if (bad_flags)
563 pr_alert("bad because of flags: %#lx(%pGp)\n",
564 bad_flags, &bad_flags);
4e462112 565 dump_page_owner(page);
3dc14741 566
4f31888c 567 print_modules();
1da177e4 568 dump_stack();
d936cf9b 569out:
8cc3b392 570 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 571 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 572 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
573}
574
1da177e4
LT
575/*
576 * Higher-order pages are called "compound pages". They are structured thusly:
577 *
1d798ca3 578 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 579 *
1d798ca3
KS
580 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
581 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 582 *
1d798ca3
KS
583 * The first tail page's ->compound_dtor holds the offset in array of compound
584 * page destructors. See compound_page_dtors.
1da177e4 585 *
1d798ca3 586 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 587 * This usage means that zero-order pages may not be compound.
1da177e4 588 */
d98c7a09 589
9a982250 590void free_compound_page(struct page *page)
d98c7a09 591{
d85f3385 592 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
593}
594
d00181b9 595void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
596{
597 int i;
598 int nr_pages = 1 << order;
599
f1e61557 600 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
601 set_compound_order(page, order);
602 __SetPageHead(page);
603 for (i = 1; i < nr_pages; i++) {
604 struct page *p = page + i;
58a84aa9 605 set_page_count(p, 0);
1c290f64 606 p->mapping = TAIL_MAPPING;
1d798ca3 607 set_compound_head(p, page);
18229df5 608 }
53f9263b 609 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
610}
611
c0a32fc5
SG
612#ifdef CONFIG_DEBUG_PAGEALLOC
613unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
614bool _debug_pagealloc_enabled __read_mostly
615 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 616EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
617bool _debug_guardpage_enabled __read_mostly;
618
031bc574
JK
619static int __init early_debug_pagealloc(char *buf)
620{
621 if (!buf)
622 return -EINVAL;
2a138dc7 623 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
624}
625early_param("debug_pagealloc", early_debug_pagealloc);
626
e30825f1
JK
627static bool need_debug_guardpage(void)
628{
031bc574
JK
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
f1c1e9f7
JK
633 if (!debug_guardpage_minorder())
634 return false;
635
e30825f1
JK
636 return true;
637}
638
639static void init_debug_guardpage(void)
640{
031bc574
JK
641 if (!debug_pagealloc_enabled())
642 return;
643
f1c1e9f7
JK
644 if (!debug_guardpage_minorder())
645 return;
646
e30825f1
JK
647 _debug_guardpage_enabled = true;
648}
649
650struct page_ext_operations debug_guardpage_ops = {
651 .need = need_debug_guardpage,
652 .init = init_debug_guardpage,
653};
c0a32fc5
SG
654
655static int __init debug_guardpage_minorder_setup(char *buf)
656{
657 unsigned long res;
658
659 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 660 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
661 return 0;
662 }
663 _debug_guardpage_minorder = res;
1170532b 664 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
665 return 0;
666}
f1c1e9f7 667early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 668
acbc15a4 669static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 670 unsigned int order, int migratetype)
c0a32fc5 671{
e30825f1
JK
672 struct page_ext *page_ext;
673
674 if (!debug_guardpage_enabled())
acbc15a4
JK
675 return false;
676
677 if (order >= debug_guardpage_minorder())
678 return false;
e30825f1
JK
679
680 page_ext = lookup_page_ext(page);
f86e4271 681 if (unlikely(!page_ext))
acbc15a4 682 return false;
f86e4271 683
e30825f1
JK
684 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685
2847cf95
JK
686 INIT_LIST_HEAD(&page->lru);
687 set_page_private(page, order);
688 /* Guard pages are not available for any usage */
689 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
690
691 return true;
c0a32fc5
SG
692}
693
2847cf95
JK
694static inline void clear_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype)
c0a32fc5 696{
e30825f1
JK
697 struct page_ext *page_ext;
698
699 if (!debug_guardpage_enabled())
700 return;
701
702 page_ext = lookup_page_ext(page);
f86e4271
YS
703 if (unlikely(!page_ext))
704 return;
705
e30825f1
JK
706 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
707
2847cf95
JK
708 set_page_private(page, 0);
709 if (!is_migrate_isolate(migratetype))
710 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
711}
712#else
980ac167 713struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
714static inline bool set_page_guard(struct zone *zone, struct page *page,
715 unsigned int order, int migratetype) { return false; }
2847cf95
JK
716static inline void clear_page_guard(struct zone *zone, struct page *page,
717 unsigned int order, int migratetype) {}
c0a32fc5
SG
718#endif
719
7aeb09f9 720static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 721{
4c21e2f2 722 set_page_private(page, order);
676165a8 723 __SetPageBuddy(page);
1da177e4
LT
724}
725
726static inline void rmv_page_order(struct page *page)
727{
676165a8 728 __ClearPageBuddy(page);
4c21e2f2 729 set_page_private(page, 0);
1da177e4
LT
730}
731
1da177e4
LT
732/*
733 * This function checks whether a page is free && is the buddy
734 * we can do coalesce a page and its buddy if
13ad59df 735 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 736 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
737 * (c) a page and its buddy have the same order &&
738 * (d) a page and its buddy are in the same zone.
676165a8 739 *
cf6fe945
WSH
740 * For recording whether a page is in the buddy system, we set ->_mapcount
741 * PAGE_BUDDY_MAPCOUNT_VALUE.
742 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
743 * serialized by zone->lock.
1da177e4 744 *
676165a8 745 * For recording page's order, we use page_private(page).
1da177e4 746 */
cb2b95e1 747static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 748 unsigned int order)
1da177e4 749{
c0a32fc5 750 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
c0a32fc5
SG
756 return 1;
757 }
758
cb2b95e1 759 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
760 /*
761 * zone check is done late to avoid uselessly
762 * calculating zone/node ids for pages that could
763 * never merge.
764 */
765 if (page_zone_id(page) != page_zone_id(buddy))
766 return 0;
767
4c5018ce
WY
768 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
769
6aa3001b 770 return 1;
676165a8 771 }
6aa3001b 772 return 0;
1da177e4
LT
773}
774
775/*
776 * Freeing function for a buddy system allocator.
777 *
778 * The concept of a buddy system is to maintain direct-mapped table
779 * (containing bit values) for memory blocks of various "orders".
780 * The bottom level table contains the map for the smallest allocatable
781 * units of memory (here, pages), and each level above it describes
782 * pairs of units from the levels below, hence, "buddies".
783 * At a high level, all that happens here is marking the table entry
784 * at the bottom level available, and propagating the changes upward
785 * as necessary, plus some accounting needed to play nicely with other
786 * parts of the VM system.
787 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
788 * free pages of length of (1 << order) and marked with _mapcount
789 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
790 * field.
1da177e4 791 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
792 * other. That is, if we allocate a small block, and both were
793 * free, the remainder of the region must be split into blocks.
1da177e4 794 * If a block is freed, and its buddy is also free, then this
5f63b720 795 * triggers coalescing into a block of larger size.
1da177e4 796 *
6d49e352 797 * -- nyc
1da177e4
LT
798 */
799
48db57f8 800static inline void __free_one_page(struct page *page,
dc4b0caf 801 unsigned long pfn,
ed0ae21d
MG
802 struct zone *zone, unsigned int order,
803 int migratetype)
1da177e4 804{
76741e77
VB
805 unsigned long combined_pfn;
806 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 807 struct page *buddy;
d9dddbf5
VB
808 unsigned int max_order;
809
810 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 811
d29bb978 812 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 813 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 814
ed0ae21d 815 VM_BUG_ON(migratetype == -1);
d9dddbf5 816 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 817 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 818
76741e77 819 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 820 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 821
d9dddbf5 822continue_merging:
3c605096 823 while (order < max_order - 1) {
76741e77
VB
824 buddy_pfn = __find_buddy_pfn(pfn, order);
825 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
826
827 if (!pfn_valid_within(buddy_pfn))
828 goto done_merging;
cb2b95e1 829 if (!page_is_buddy(page, buddy, order))
d9dddbf5 830 goto done_merging;
c0a32fc5
SG
831 /*
832 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
833 * merge with it and move up one order.
834 */
835 if (page_is_guard(buddy)) {
2847cf95 836 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
837 } else {
838 list_del(&buddy->lru);
839 zone->free_area[order].nr_free--;
840 rmv_page_order(buddy);
841 }
76741e77
VB
842 combined_pfn = buddy_pfn & pfn;
843 page = page + (combined_pfn - pfn);
844 pfn = combined_pfn;
1da177e4
LT
845 order++;
846 }
d9dddbf5
VB
847 if (max_order < MAX_ORDER) {
848 /* If we are here, it means order is >= pageblock_order.
849 * We want to prevent merge between freepages on isolate
850 * pageblock and normal pageblock. Without this, pageblock
851 * isolation could cause incorrect freepage or CMA accounting.
852 *
853 * We don't want to hit this code for the more frequent
854 * low-order merging.
855 */
856 if (unlikely(has_isolate_pageblock(zone))) {
857 int buddy_mt;
858
76741e77
VB
859 buddy_pfn = __find_buddy_pfn(pfn, order);
860 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
861 buddy_mt = get_pageblock_migratetype(buddy);
862
863 if (migratetype != buddy_mt
864 && (is_migrate_isolate(migratetype) ||
865 is_migrate_isolate(buddy_mt)))
866 goto done_merging;
867 }
868 max_order++;
869 goto continue_merging;
870 }
871
872done_merging:
1da177e4 873 set_page_order(page, order);
6dda9d55
CZ
874
875 /*
876 * If this is not the largest possible page, check if the buddy
877 * of the next-highest order is free. If it is, it's possible
878 * that pages are being freed that will coalesce soon. In case,
879 * that is happening, add the free page to the tail of the list
880 * so it's less likely to be used soon and more likely to be merged
881 * as a higher order page
882 */
13ad59df 883 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 884 struct page *higher_page, *higher_buddy;
76741e77
VB
885 combined_pfn = buddy_pfn & pfn;
886 higher_page = page + (combined_pfn - pfn);
887 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
888 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
889 if (pfn_valid_within(buddy_pfn) &&
890 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
891 list_add_tail(&page->lru,
892 &zone->free_area[order].free_list[migratetype]);
893 goto out;
894 }
895 }
896
897 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
898out:
1da177e4
LT
899 zone->free_area[order].nr_free++;
900}
901
7bfec6f4
MG
902/*
903 * A bad page could be due to a number of fields. Instead of multiple branches,
904 * try and check multiple fields with one check. The caller must do a detailed
905 * check if necessary.
906 */
907static inline bool page_expected_state(struct page *page,
908 unsigned long check_flags)
909{
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 return false;
912
913 if (unlikely((unsigned long)page->mapping |
914 page_ref_count(page) |
915#ifdef CONFIG_MEMCG
916 (unsigned long)page->mem_cgroup |
917#endif
918 (page->flags & check_flags)))
919 return false;
920
921 return true;
922}
923
bb552ac6 924static void free_pages_check_bad(struct page *page)
1da177e4 925{
7bfec6f4
MG
926 const char *bad_reason;
927 unsigned long bad_flags;
928
7bfec6f4
MG
929 bad_reason = NULL;
930 bad_flags = 0;
f0b791a3 931
53f9263b 932 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
933 bad_reason = "nonzero mapcount";
934 if (unlikely(page->mapping != NULL))
935 bad_reason = "non-NULL mapping";
fe896d18 936 if (unlikely(page_ref_count(page) != 0))
0139aa7b 937 bad_reason = "nonzero _refcount";
f0b791a3
DH
938 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
939 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
940 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
941 }
9edad6ea
JW
942#ifdef CONFIG_MEMCG
943 if (unlikely(page->mem_cgroup))
944 bad_reason = "page still charged to cgroup";
945#endif
7bfec6f4 946 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
947}
948
949static inline int free_pages_check(struct page *page)
950{
da838d4f 951 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 952 return 0;
bb552ac6
MG
953
954 /* Something has gone sideways, find it */
955 free_pages_check_bad(page);
7bfec6f4 956 return 1;
1da177e4
LT
957}
958
4db7548c
MG
959static int free_tail_pages_check(struct page *head_page, struct page *page)
960{
961 int ret = 1;
962
963 /*
964 * We rely page->lru.next never has bit 0 set, unless the page
965 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
966 */
967 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
968
969 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
970 ret = 0;
971 goto out;
972 }
973 switch (page - head_page) {
974 case 1:
975 /* the first tail page: ->mapping is compound_mapcount() */
976 if (unlikely(compound_mapcount(page))) {
977 bad_page(page, "nonzero compound_mapcount", 0);
978 goto out;
979 }
980 break;
981 case 2:
982 /*
983 * the second tail page: ->mapping is
984 * page_deferred_list().next -- ignore value.
985 */
986 break;
987 default:
988 if (page->mapping != TAIL_MAPPING) {
989 bad_page(page, "corrupted mapping in tail page", 0);
990 goto out;
991 }
992 break;
993 }
994 if (unlikely(!PageTail(page))) {
995 bad_page(page, "PageTail not set", 0);
996 goto out;
997 }
998 if (unlikely(compound_head(page) != head_page)) {
999 bad_page(page, "compound_head not consistent", 0);
1000 goto out;
1001 }
1002 ret = 0;
1003out:
1004 page->mapping = NULL;
1005 clear_compound_head(page);
1006 return ret;
1007}
1008
e2769dbd
MG
1009static __always_inline bool free_pages_prepare(struct page *page,
1010 unsigned int order, bool check_free)
4db7548c 1011{
e2769dbd 1012 int bad = 0;
4db7548c 1013
4db7548c
MG
1014 VM_BUG_ON_PAGE(PageTail(page), page);
1015
e2769dbd 1016 trace_mm_page_free(page, order);
e2769dbd
MG
1017
1018 /*
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1021 */
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1024 int i;
1025
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1027
9a73f61b
KS
1028 if (compound)
1029 ClearPageDoubleMap(page);
e2769dbd
MG
1030 for (i = 1; i < (1 << order); i++) {
1031 if (compound)
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1034 bad++;
1035 continue;
1036 }
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 }
1039 }
bda807d4 1040 if (PageMappingFlags(page))
4db7548c 1041 page->mapping = NULL;
c4159a75 1042 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1043 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1044 if (check_free)
1045 bad += free_pages_check(page);
1046 if (bad)
1047 return false;
4db7548c 1048
e2769dbd
MG
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
4db7548c
MG
1052
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 debug_check_no_obj_freed(page_address(page),
e2769dbd 1057 PAGE_SIZE << order);
4db7548c 1058 }
e2769dbd
MG
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
29b52de1 1062 kasan_free_pages(page, order);
4db7548c 1063
4db7548c
MG
1064 return true;
1065}
1066
e2769dbd
MG
1067#ifdef CONFIG_DEBUG_VM
1068static inline bool free_pcp_prepare(struct page *page)
1069{
1070 return free_pages_prepare(page, 0, true);
1071}
1072
1073static inline bool bulkfree_pcp_prepare(struct page *page)
1074{
1075 return false;
1076}
1077#else
1078static bool free_pcp_prepare(struct page *page)
1079{
1080 return free_pages_prepare(page, 0, false);
1081}
1082
4db7548c
MG
1083static bool bulkfree_pcp_prepare(struct page *page)
1084{
1085 return free_pages_check(page);
1086}
1087#endif /* CONFIG_DEBUG_VM */
1088
1da177e4 1089/*
5f8dcc21 1090 * Frees a number of pages from the PCP lists
1da177e4 1091 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1092 * count is the number of pages to free.
1da177e4
LT
1093 *
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1096 *
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1099 */
5f8dcc21
MG
1100static void free_pcppages_bulk(struct zone *zone, int count,
1101 struct per_cpu_pages *pcp)
1da177e4 1102{
5f8dcc21 1103 int migratetype = 0;
a6f9edd6 1104 int batch_free = 0;
3777999d 1105 bool isolated_pageblocks;
5f8dcc21 1106
d34b0733 1107 spin_lock(&zone->lock);
3777999d 1108 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1109
e5b31ac2 1110 while (count) {
48db57f8 1111 struct page *page;
5f8dcc21
MG
1112 struct list_head *list;
1113
1114 /*
a6f9edd6
MG
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1119 * lists
5f8dcc21
MG
1120 */
1121 do {
a6f9edd6 1122 batch_free++;
5f8dcc21
MG
1123 if (++migratetype == MIGRATE_PCPTYPES)
1124 migratetype = 0;
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
48db57f8 1127
1d16871d
NK
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1130 batch_free = count;
1d16871d 1131
a6f9edd6 1132 do {
770c8aaa
BZ
1133 int mt; /* migratetype of the to-be-freed page */
1134
a16601c5 1135 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
aa016d14 1138
bb14c2c7 1139 mt = get_pcppage_migratetype(page);
aa016d14
VB
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
3777999d 1143 if (unlikely(isolated_pageblocks))
51bb1a40 1144 mt = get_pageblock_migratetype(page);
51bb1a40 1145
4db7548c
MG
1146 if (bulkfree_pcp_prepare(page))
1147 continue;
1148
dc4b0caf 1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1150 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1151 } while (--count && --batch_free && !list_empty(list));
1da177e4 1152 }
d34b0733 1153 spin_unlock(&zone->lock);
1da177e4
LT
1154}
1155
dc4b0caf
MG
1156static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
7aeb09f9 1158 unsigned int order,
ed0ae21d 1159 int migratetype)
1da177e4 1160{
d34b0733 1161 spin_lock(&zone->lock);
ad53f92e
JK
1162 if (unlikely(has_isolate_pageblock(zone) ||
1163 is_migrate_isolate(migratetype))) {
1164 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1165 }
dc4b0caf 1166 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1167 spin_unlock(&zone->lock);
48db57f8
NP
1168}
1169
1e8ce83c
RH
1170static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 unsigned long zone, int nid)
1172{
f7f99100 1173 mm_zero_struct_page(page);
1e8ce83c 1174 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1175 init_page_count(page);
1176 page_mapcount_reset(page);
1177 page_cpupid_reset_last(page);
1e8ce83c 1178
1e8ce83c
RH
1179 INIT_LIST_HEAD(&page->lru);
1180#ifdef WANT_PAGE_VIRTUAL
1181 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1182 if (!is_highmem_idx(zone))
1183 set_page_address(page, __va(pfn << PAGE_SHIFT));
1184#endif
1185}
1186
1187static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1188 int nid)
1189{
1190 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1191}
1192
7e18adb4 1193#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1194static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1195{
1196 pg_data_t *pgdat;
1197 int nid, zid;
1198
1199 if (!early_page_uninitialised(pfn))
1200 return;
1201
1202 nid = early_pfn_to_nid(pfn);
1203 pgdat = NODE_DATA(nid);
1204
1205 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1206 struct zone *zone = &pgdat->node_zones[zid];
1207
1208 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1209 break;
1210 }
1211 __init_single_pfn(pfn, zid, nid);
1212}
1213#else
1214static inline void init_reserved_page(unsigned long pfn)
1215{
1216}
1217#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1218
92923ca3
NZ
1219/*
1220 * Initialised pages do not have PageReserved set. This function is
1221 * called for each range allocated by the bootmem allocator and
1222 * marks the pages PageReserved. The remaining valid pages are later
1223 * sent to the buddy page allocator.
1224 */
4b50bcc7 1225void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1226{
1227 unsigned long start_pfn = PFN_DOWN(start);
1228 unsigned long end_pfn = PFN_UP(end);
1229
7e18adb4
MG
1230 for (; start_pfn < end_pfn; start_pfn++) {
1231 if (pfn_valid(start_pfn)) {
1232 struct page *page = pfn_to_page(start_pfn);
1233
1234 init_reserved_page(start_pfn);
1d798ca3
KS
1235
1236 /* Avoid false-positive PageTail() */
1237 INIT_LIST_HEAD(&page->lru);
1238
7e18adb4
MG
1239 SetPageReserved(page);
1240 }
1241 }
92923ca3
NZ
1242}
1243
ec95f53a
KM
1244static void __free_pages_ok(struct page *page, unsigned int order)
1245{
d34b0733 1246 unsigned long flags;
95e34412 1247 int migratetype;
dc4b0caf 1248 unsigned long pfn = page_to_pfn(page);
ec95f53a 1249
e2769dbd 1250 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1251 return;
1252
cfc47a28 1253 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1254 local_irq_save(flags);
1255 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1256 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1257 local_irq_restore(flags);
1da177e4
LT
1258}
1259
949698a3 1260static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1261{
c3993076 1262 unsigned int nr_pages = 1 << order;
e2d0bd2b 1263 struct page *p = page;
c3993076 1264 unsigned int loop;
a226f6c8 1265
e2d0bd2b
YL
1266 prefetchw(p);
1267 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1268 prefetchw(p + 1);
c3993076
JW
1269 __ClearPageReserved(p);
1270 set_page_count(p, 0);
a226f6c8 1271 }
e2d0bd2b
YL
1272 __ClearPageReserved(p);
1273 set_page_count(p, 0);
c3993076 1274
e2d0bd2b 1275 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1276 set_page_refcounted(page);
1277 __free_pages(page, order);
a226f6c8
DH
1278}
1279
75a592a4
MG
1280#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1281 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1282
75a592a4
MG
1283static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1284
1285int __meminit early_pfn_to_nid(unsigned long pfn)
1286{
7ace9917 1287 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1288 int nid;
1289
7ace9917 1290 spin_lock(&early_pfn_lock);
75a592a4 1291 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1292 if (nid < 0)
e4568d38 1293 nid = first_online_node;
7ace9917
MG
1294 spin_unlock(&early_pfn_lock);
1295
1296 return nid;
75a592a4
MG
1297}
1298#endif
1299
1300#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1301static inline bool __meminit __maybe_unused
1302meminit_pfn_in_nid(unsigned long pfn, int node,
1303 struct mminit_pfnnid_cache *state)
75a592a4
MG
1304{
1305 int nid;
1306
1307 nid = __early_pfn_to_nid(pfn, state);
1308 if (nid >= 0 && nid != node)
1309 return false;
1310 return true;
1311}
1312
1313/* Only safe to use early in boot when initialisation is single-threaded */
1314static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1315{
1316 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1317}
1318
1319#else
1320
1321static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322{
1323 return true;
1324}
d73d3c9f
MK
1325static inline bool __meminit __maybe_unused
1326meminit_pfn_in_nid(unsigned long pfn, int node,
1327 struct mminit_pfnnid_cache *state)
75a592a4
MG
1328{
1329 return true;
1330}
1331#endif
1332
1333
0e1cc95b 1334void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1335 unsigned int order)
1336{
1337 if (early_page_uninitialised(pfn))
1338 return;
949698a3 1339 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1340}
1341
7cf91a98
JK
1342/*
1343 * Check that the whole (or subset of) a pageblock given by the interval of
1344 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1345 * with the migration of free compaction scanner. The scanners then need to
1346 * use only pfn_valid_within() check for arches that allow holes within
1347 * pageblocks.
1348 *
1349 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1350 *
1351 * It's possible on some configurations to have a setup like node0 node1 node0
1352 * i.e. it's possible that all pages within a zones range of pages do not
1353 * belong to a single zone. We assume that a border between node0 and node1
1354 * can occur within a single pageblock, but not a node0 node1 node0
1355 * interleaving within a single pageblock. It is therefore sufficient to check
1356 * the first and last page of a pageblock and avoid checking each individual
1357 * page in a pageblock.
1358 */
1359struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1360 unsigned long end_pfn, struct zone *zone)
1361{
1362 struct page *start_page;
1363 struct page *end_page;
1364
1365 /* end_pfn is one past the range we are checking */
1366 end_pfn--;
1367
1368 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1369 return NULL;
1370
2d070eab
MH
1371 start_page = pfn_to_online_page(start_pfn);
1372 if (!start_page)
1373 return NULL;
7cf91a98
JK
1374
1375 if (page_zone(start_page) != zone)
1376 return NULL;
1377
1378 end_page = pfn_to_page(end_pfn);
1379
1380 /* This gives a shorter code than deriving page_zone(end_page) */
1381 if (page_zone_id(start_page) != page_zone_id(end_page))
1382 return NULL;
1383
1384 return start_page;
1385}
1386
1387void set_zone_contiguous(struct zone *zone)
1388{
1389 unsigned long block_start_pfn = zone->zone_start_pfn;
1390 unsigned long block_end_pfn;
1391
1392 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1393 for (; block_start_pfn < zone_end_pfn(zone);
1394 block_start_pfn = block_end_pfn,
1395 block_end_pfn += pageblock_nr_pages) {
1396
1397 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1398
1399 if (!__pageblock_pfn_to_page(block_start_pfn,
1400 block_end_pfn, zone))
1401 return;
1402 }
1403
1404 /* We confirm that there is no hole */
1405 zone->contiguous = true;
1406}
1407
1408void clear_zone_contiguous(struct zone *zone)
1409{
1410 zone->contiguous = false;
1411}
1412
7e18adb4 1413#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1414static void __init deferred_free_range(unsigned long pfn,
1415 unsigned long nr_pages)
a4de83dd 1416{
2f47a91f
PT
1417 struct page *page;
1418 unsigned long i;
a4de83dd 1419
2f47a91f 1420 if (!nr_pages)
a4de83dd
MG
1421 return;
1422
2f47a91f
PT
1423 page = pfn_to_page(pfn);
1424
a4de83dd 1425 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1426 if (nr_pages == pageblock_nr_pages &&
1427 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1428 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1429 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1430 return;
1431 }
1432
e780149b
XQ
1433 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1434 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1436 __free_pages_boot_core(page, 0);
e780149b 1437 }
a4de83dd
MG
1438}
1439
d3cd131d
NS
1440/* Completion tracking for deferred_init_memmap() threads */
1441static atomic_t pgdat_init_n_undone __initdata;
1442static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1443
1444static inline void __init pgdat_init_report_one_done(void)
1445{
1446 if (atomic_dec_and_test(&pgdat_init_n_undone))
1447 complete(&pgdat_init_all_done_comp);
1448}
0e1cc95b 1449
2f47a91f
PT
1450/*
1451 * Helper for deferred_init_range, free the given range, reset the counters, and
1452 * return number of pages freed.
1453 */
1454static inline unsigned long __init __def_free(unsigned long *nr_free,
1455 unsigned long *free_base_pfn,
1456 struct page **page)
1457{
1458 unsigned long nr = *nr_free;
1459
1460 deferred_free_range(*free_base_pfn, nr);
1461 *free_base_pfn = 0;
1462 *nr_free = 0;
1463 *page = NULL;
1464
1465 return nr;
1466}
1467
1468static unsigned long __init deferred_init_range(int nid, int zid,
1469 unsigned long start_pfn,
1470 unsigned long end_pfn)
1471{
1472 struct mminit_pfnnid_cache nid_init_state = { };
1473 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1474 unsigned long free_base_pfn = 0;
1475 unsigned long nr_pages = 0;
1476 unsigned long nr_free = 0;
1477 struct page *page = NULL;
1478 unsigned long pfn;
1479
1480 /*
1481 * First we check if pfn is valid on architectures where it is possible
1482 * to have holes within pageblock_nr_pages. On systems where it is not
1483 * possible, this function is optimized out.
1484 *
1485 * Then, we check if a current large page is valid by only checking the
1486 * validity of the head pfn.
1487 *
1488 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1489 * within a node: a pfn is between start and end of a node, but does not
1490 * belong to this memory node.
1491 *
1492 * Finally, we minimize pfn page lookups and scheduler checks by
1493 * performing it only once every pageblock_nr_pages.
1494 *
1495 * We do it in two loops: first we initialize struct page, than free to
1496 * buddy allocator, becuse while we are freeing pages we can access
1497 * pages that are ahead (computing buddy page in __free_one_page()).
1498 */
1499 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1500 if (!pfn_valid_within(pfn))
1501 continue;
1502 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1503 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1504 if (page && (pfn & nr_pgmask))
1505 page++;
1506 else
1507 page = pfn_to_page(pfn);
1508 __init_single_page(page, pfn, zid, nid);
1509 cond_resched();
1510 }
1511 }
1512 }
1513
1514 page = NULL;
1515 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1516 if (!pfn_valid_within(pfn)) {
1517 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1518 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1519 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1520 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1521 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1522 } else if (page && (pfn & nr_pgmask)) {
1523 page++;
1524 nr_free++;
1525 } else {
1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1527 page = pfn_to_page(pfn);
1528 free_base_pfn = pfn;
1529 nr_free = 1;
1530 cond_resched();
1531 }
1532 }
1533 /* Free the last block of pages to allocator */
1534 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1535
1536 return nr_pages;
1537}
1538
7e18adb4 1539/* Initialise remaining memory on a node */
0e1cc95b 1540static int __init deferred_init_memmap(void *data)
7e18adb4 1541{
0e1cc95b
MG
1542 pg_data_t *pgdat = data;
1543 int nid = pgdat->node_id;
7e18adb4
MG
1544 unsigned long start = jiffies;
1545 unsigned long nr_pages = 0;
2f47a91f
PT
1546 unsigned long spfn, epfn;
1547 phys_addr_t spa, epa;
1548 int zid;
7e18adb4 1549 struct zone *zone;
7e18adb4 1550 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1551 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1552 u64 i;
7e18adb4 1553
0e1cc95b 1554 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1555 pgdat_init_report_one_done();
0e1cc95b
MG
1556 return 0;
1557 }
1558
1559 /* Bind memory initialisation thread to a local node if possible */
1560 if (!cpumask_empty(cpumask))
1561 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1562
1563 /* Sanity check boundaries */
1564 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1565 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1566 pgdat->first_deferred_pfn = ULONG_MAX;
1567
1568 /* Only the highest zone is deferred so find it */
1569 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1570 zone = pgdat->node_zones + zid;
1571 if (first_init_pfn < zone_end_pfn(zone))
1572 break;
1573 }
2f47a91f 1574 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1575
2f47a91f
PT
1576 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1577 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1578 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1579 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1580 }
1581
1582 /* Sanity check that the next zone really is unpopulated */
1583 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1584
0e1cc95b 1585 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1586 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1587
1588 pgdat_init_report_one_done();
0e1cc95b
MG
1589 return 0;
1590}
7cf91a98 1591#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1592
1593void __init page_alloc_init_late(void)
1594{
7cf91a98
JK
1595 struct zone *zone;
1596
1597#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1598 int nid;
1599
d3cd131d
NS
1600 /* There will be num_node_state(N_MEMORY) threads */
1601 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1602 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1603 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1604 }
1605
1606 /* Block until all are initialised */
d3cd131d 1607 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1608
1609 /* Reinit limits that are based on free pages after the kernel is up */
1610 files_maxfiles_init();
7cf91a98 1611#endif
3010f876
PT
1612#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1613 /* Discard memblock private memory */
1614 memblock_discard();
1615#endif
7cf91a98
JK
1616
1617 for_each_populated_zone(zone)
1618 set_zone_contiguous(zone);
7e18adb4 1619}
7e18adb4 1620
47118af0 1621#ifdef CONFIG_CMA
9cf510a5 1622/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1623void __init init_cma_reserved_pageblock(struct page *page)
1624{
1625 unsigned i = pageblock_nr_pages;
1626 struct page *p = page;
1627
1628 do {
1629 __ClearPageReserved(p);
1630 set_page_count(p, 0);
1631 } while (++p, --i);
1632
47118af0 1633 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1634
1635 if (pageblock_order >= MAX_ORDER) {
1636 i = pageblock_nr_pages;
1637 p = page;
1638 do {
1639 set_page_refcounted(p);
1640 __free_pages(p, MAX_ORDER - 1);
1641 p += MAX_ORDER_NR_PAGES;
1642 } while (i -= MAX_ORDER_NR_PAGES);
1643 } else {
1644 set_page_refcounted(page);
1645 __free_pages(page, pageblock_order);
1646 }
1647
3dcc0571 1648 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1649}
1650#endif
1da177e4
LT
1651
1652/*
1653 * The order of subdivision here is critical for the IO subsystem.
1654 * Please do not alter this order without good reasons and regression
1655 * testing. Specifically, as large blocks of memory are subdivided,
1656 * the order in which smaller blocks are delivered depends on the order
1657 * they're subdivided in this function. This is the primary factor
1658 * influencing the order in which pages are delivered to the IO
1659 * subsystem according to empirical testing, and this is also justified
1660 * by considering the behavior of a buddy system containing a single
1661 * large block of memory acted on by a series of small allocations.
1662 * This behavior is a critical factor in sglist merging's success.
1663 *
6d49e352 1664 * -- nyc
1da177e4 1665 */
085cc7d5 1666static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1667 int low, int high, struct free_area *area,
1668 int migratetype)
1da177e4
LT
1669{
1670 unsigned long size = 1 << high;
1671
1672 while (high > low) {
1673 area--;
1674 high--;
1675 size >>= 1;
309381fe 1676 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1677
acbc15a4
JK
1678 /*
1679 * Mark as guard pages (or page), that will allow to
1680 * merge back to allocator when buddy will be freed.
1681 * Corresponding page table entries will not be touched,
1682 * pages will stay not present in virtual address space
1683 */
1684 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1685 continue;
acbc15a4 1686
b2a0ac88 1687 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1688 area->nr_free++;
1689 set_page_order(&page[size], high);
1690 }
1da177e4
LT
1691}
1692
4e611801 1693static void check_new_page_bad(struct page *page)
1da177e4 1694{
4e611801
VB
1695 const char *bad_reason = NULL;
1696 unsigned long bad_flags = 0;
7bfec6f4 1697
53f9263b 1698 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1699 bad_reason = "nonzero mapcount";
1700 if (unlikely(page->mapping != NULL))
1701 bad_reason = "non-NULL mapping";
fe896d18 1702 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1703 bad_reason = "nonzero _count";
f4c18e6f
NH
1704 if (unlikely(page->flags & __PG_HWPOISON)) {
1705 bad_reason = "HWPoisoned (hardware-corrupted)";
1706 bad_flags = __PG_HWPOISON;
e570f56c
NH
1707 /* Don't complain about hwpoisoned pages */
1708 page_mapcount_reset(page); /* remove PageBuddy */
1709 return;
f4c18e6f 1710 }
f0b791a3
DH
1711 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1712 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1713 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1714 }
9edad6ea
JW
1715#ifdef CONFIG_MEMCG
1716 if (unlikely(page->mem_cgroup))
1717 bad_reason = "page still charged to cgroup";
1718#endif
4e611801
VB
1719 bad_page(page, bad_reason, bad_flags);
1720}
1721
1722/*
1723 * This page is about to be returned from the page allocator
1724 */
1725static inline int check_new_page(struct page *page)
1726{
1727 if (likely(page_expected_state(page,
1728 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1729 return 0;
1730
1731 check_new_page_bad(page);
1732 return 1;
2a7684a2
WF
1733}
1734
bd33ef36 1735static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1736{
1737 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1738 page_poisoning_enabled();
1414c7f4
LA
1739}
1740
479f854a
MG
1741#ifdef CONFIG_DEBUG_VM
1742static bool check_pcp_refill(struct page *page)
1743{
1744 return false;
1745}
1746
1747static bool check_new_pcp(struct page *page)
1748{
1749 return check_new_page(page);
1750}
1751#else
1752static bool check_pcp_refill(struct page *page)
1753{
1754 return check_new_page(page);
1755}
1756static bool check_new_pcp(struct page *page)
1757{
1758 return false;
1759}
1760#endif /* CONFIG_DEBUG_VM */
1761
1762static bool check_new_pages(struct page *page, unsigned int order)
1763{
1764 int i;
1765 for (i = 0; i < (1 << order); i++) {
1766 struct page *p = page + i;
1767
1768 if (unlikely(check_new_page(p)))
1769 return true;
1770 }
1771
1772 return false;
1773}
1774
46f24fd8
JK
1775inline void post_alloc_hook(struct page *page, unsigned int order,
1776 gfp_t gfp_flags)
1777{
1778 set_page_private(page, 0);
1779 set_page_refcounted(page);
1780
1781 arch_alloc_page(page, order);
1782 kernel_map_pages(page, 1 << order, 1);
1783 kernel_poison_pages(page, 1 << order, 1);
1784 kasan_alloc_pages(page, order);
1785 set_page_owner(page, order, gfp_flags);
1786}
1787
479f854a 1788static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1789 unsigned int alloc_flags)
2a7684a2
WF
1790{
1791 int i;
689bcebf 1792
46f24fd8 1793 post_alloc_hook(page, order, gfp_flags);
17cf4406 1794
bd33ef36 1795 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1796 for (i = 0; i < (1 << order); i++)
1797 clear_highpage(page + i);
17cf4406
NP
1798
1799 if (order && (gfp_flags & __GFP_COMP))
1800 prep_compound_page(page, order);
1801
75379191 1802 /*
2f064f34 1803 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1804 * allocate the page. The expectation is that the caller is taking
1805 * steps that will free more memory. The caller should avoid the page
1806 * being used for !PFMEMALLOC purposes.
1807 */
2f064f34
MH
1808 if (alloc_flags & ALLOC_NO_WATERMARKS)
1809 set_page_pfmemalloc(page);
1810 else
1811 clear_page_pfmemalloc(page);
1da177e4
LT
1812}
1813
56fd56b8
MG
1814/*
1815 * Go through the free lists for the given migratetype and remove
1816 * the smallest available page from the freelists
1817 */
85ccc8fa 1818static __always_inline
728ec980 1819struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1820 int migratetype)
1821{
1822 unsigned int current_order;
b8af2941 1823 struct free_area *area;
56fd56b8
MG
1824 struct page *page;
1825
1826 /* Find a page of the appropriate size in the preferred list */
1827 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1828 area = &(zone->free_area[current_order]);
a16601c5 1829 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1830 struct page, lru);
a16601c5
GT
1831 if (!page)
1832 continue;
56fd56b8
MG
1833 list_del(&page->lru);
1834 rmv_page_order(page);
1835 area->nr_free--;
56fd56b8 1836 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1837 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1838 return page;
1839 }
1840
1841 return NULL;
1842}
1843
1844
b2a0ac88
MG
1845/*
1846 * This array describes the order lists are fallen back to when
1847 * the free lists for the desirable migrate type are depleted
1848 */
47118af0 1849static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1850 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1851 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1852 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1853#ifdef CONFIG_CMA
974a786e 1854 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1855#endif
194159fb 1856#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1857 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1858#endif
b2a0ac88
MG
1859};
1860
dc67647b 1861#ifdef CONFIG_CMA
85ccc8fa 1862static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1863 unsigned int order)
1864{
1865 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1866}
1867#else
1868static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1869 unsigned int order) { return NULL; }
1870#endif
1871
c361be55
MG
1872/*
1873 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1874 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1875 * boundary. If alignment is required, use move_freepages_block()
1876 */
02aa0cdd 1877static int move_freepages(struct zone *zone,
b69a7288 1878 struct page *start_page, struct page *end_page,
02aa0cdd 1879 int migratetype, int *num_movable)
c361be55
MG
1880{
1881 struct page *page;
d00181b9 1882 unsigned int order;
d100313f 1883 int pages_moved = 0;
c361be55
MG
1884
1885#ifndef CONFIG_HOLES_IN_ZONE
1886 /*
1887 * page_zone is not safe to call in this context when
1888 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1889 * anyway as we check zone boundaries in move_freepages_block().
1890 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1891 * grouping pages by mobility
c361be55 1892 */
97ee4ba7 1893 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1894#endif
1895
02aa0cdd
VB
1896 if (num_movable)
1897 *num_movable = 0;
1898
c361be55
MG
1899 for (page = start_page; page <= end_page;) {
1900 if (!pfn_valid_within(page_to_pfn(page))) {
1901 page++;
1902 continue;
1903 }
1904
f073bdc5
AB
1905 /* Make sure we are not inadvertently changing nodes */
1906 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1907
c361be55 1908 if (!PageBuddy(page)) {
02aa0cdd
VB
1909 /*
1910 * We assume that pages that could be isolated for
1911 * migration are movable. But we don't actually try
1912 * isolating, as that would be expensive.
1913 */
1914 if (num_movable &&
1915 (PageLRU(page) || __PageMovable(page)))
1916 (*num_movable)++;
1917
c361be55
MG
1918 page++;
1919 continue;
1920 }
1921
1922 order = page_order(page);
84be48d8
KS
1923 list_move(&page->lru,
1924 &zone->free_area[order].free_list[migratetype]);
c361be55 1925 page += 1 << order;
d100313f 1926 pages_moved += 1 << order;
c361be55
MG
1927 }
1928
d100313f 1929 return pages_moved;
c361be55
MG
1930}
1931
ee6f509c 1932int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1933 int migratetype, int *num_movable)
c361be55
MG
1934{
1935 unsigned long start_pfn, end_pfn;
1936 struct page *start_page, *end_page;
1937
1938 start_pfn = page_to_pfn(page);
d9c23400 1939 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1940 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1941 end_page = start_page + pageblock_nr_pages - 1;
1942 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1943
1944 /* Do not cross zone boundaries */
108bcc96 1945 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1946 start_page = page;
108bcc96 1947 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1948 return 0;
1949
02aa0cdd
VB
1950 return move_freepages(zone, start_page, end_page, migratetype,
1951 num_movable);
c361be55
MG
1952}
1953
2f66a68f
MG
1954static void change_pageblock_range(struct page *pageblock_page,
1955 int start_order, int migratetype)
1956{
1957 int nr_pageblocks = 1 << (start_order - pageblock_order);
1958
1959 while (nr_pageblocks--) {
1960 set_pageblock_migratetype(pageblock_page, migratetype);
1961 pageblock_page += pageblock_nr_pages;
1962 }
1963}
1964
fef903ef 1965/*
9c0415eb
VB
1966 * When we are falling back to another migratetype during allocation, try to
1967 * steal extra free pages from the same pageblocks to satisfy further
1968 * allocations, instead of polluting multiple pageblocks.
1969 *
1970 * If we are stealing a relatively large buddy page, it is likely there will
1971 * be more free pages in the pageblock, so try to steal them all. For
1972 * reclaimable and unmovable allocations, we steal regardless of page size,
1973 * as fragmentation caused by those allocations polluting movable pageblocks
1974 * is worse than movable allocations stealing from unmovable and reclaimable
1975 * pageblocks.
fef903ef 1976 */
4eb7dce6
JK
1977static bool can_steal_fallback(unsigned int order, int start_mt)
1978{
1979 /*
1980 * Leaving this order check is intended, although there is
1981 * relaxed order check in next check. The reason is that
1982 * we can actually steal whole pageblock if this condition met,
1983 * but, below check doesn't guarantee it and that is just heuristic
1984 * so could be changed anytime.
1985 */
1986 if (order >= pageblock_order)
1987 return true;
1988
1989 if (order >= pageblock_order / 2 ||
1990 start_mt == MIGRATE_RECLAIMABLE ||
1991 start_mt == MIGRATE_UNMOVABLE ||
1992 page_group_by_mobility_disabled)
1993 return true;
1994
1995 return false;
1996}
1997
1998/*
1999 * This function implements actual steal behaviour. If order is large enough,
2000 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2001 * pageblock to our migratetype and determine how many already-allocated pages
2002 * are there in the pageblock with a compatible migratetype. If at least half
2003 * of pages are free or compatible, we can change migratetype of the pageblock
2004 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2005 */
2006static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2007 int start_type, bool whole_block)
fef903ef 2008{
d00181b9 2009 unsigned int current_order = page_order(page);
3bc48f96 2010 struct free_area *area;
02aa0cdd
VB
2011 int free_pages, movable_pages, alike_pages;
2012 int old_block_type;
2013
2014 old_block_type = get_pageblock_migratetype(page);
fef903ef 2015
3bc48f96
VB
2016 /*
2017 * This can happen due to races and we want to prevent broken
2018 * highatomic accounting.
2019 */
02aa0cdd 2020 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2021 goto single_page;
2022
fef903ef
SB
2023 /* Take ownership for orders >= pageblock_order */
2024 if (current_order >= pageblock_order) {
2025 change_pageblock_range(page, current_order, start_type);
3bc48f96 2026 goto single_page;
fef903ef
SB
2027 }
2028
3bc48f96
VB
2029 /* We are not allowed to try stealing from the whole block */
2030 if (!whole_block)
2031 goto single_page;
2032
02aa0cdd
VB
2033 free_pages = move_freepages_block(zone, page, start_type,
2034 &movable_pages);
2035 /*
2036 * Determine how many pages are compatible with our allocation.
2037 * For movable allocation, it's the number of movable pages which
2038 * we just obtained. For other types it's a bit more tricky.
2039 */
2040 if (start_type == MIGRATE_MOVABLE) {
2041 alike_pages = movable_pages;
2042 } else {
2043 /*
2044 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2045 * to MOVABLE pageblock, consider all non-movable pages as
2046 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2047 * vice versa, be conservative since we can't distinguish the
2048 * exact migratetype of non-movable pages.
2049 */
2050 if (old_block_type == MIGRATE_MOVABLE)
2051 alike_pages = pageblock_nr_pages
2052 - (free_pages + movable_pages);
2053 else
2054 alike_pages = 0;
2055 }
2056
3bc48f96 2057 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2058 if (!free_pages)
3bc48f96 2059 goto single_page;
fef903ef 2060
02aa0cdd
VB
2061 /*
2062 * If a sufficient number of pages in the block are either free or of
2063 * comparable migratability as our allocation, claim the whole block.
2064 */
2065 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2066 page_group_by_mobility_disabled)
2067 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2068
2069 return;
2070
2071single_page:
2072 area = &zone->free_area[current_order];
2073 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2074}
2075
2149cdae
JK
2076/*
2077 * Check whether there is a suitable fallback freepage with requested order.
2078 * If only_stealable is true, this function returns fallback_mt only if
2079 * we can steal other freepages all together. This would help to reduce
2080 * fragmentation due to mixed migratetype pages in one pageblock.
2081 */
2082int find_suitable_fallback(struct free_area *area, unsigned int order,
2083 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2084{
2085 int i;
2086 int fallback_mt;
2087
2088 if (area->nr_free == 0)
2089 return -1;
2090
2091 *can_steal = false;
2092 for (i = 0;; i++) {
2093 fallback_mt = fallbacks[migratetype][i];
974a786e 2094 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2095 break;
2096
2097 if (list_empty(&area->free_list[fallback_mt]))
2098 continue;
fef903ef 2099
4eb7dce6
JK
2100 if (can_steal_fallback(order, migratetype))
2101 *can_steal = true;
2102
2149cdae
JK
2103 if (!only_stealable)
2104 return fallback_mt;
2105
2106 if (*can_steal)
2107 return fallback_mt;
fef903ef 2108 }
4eb7dce6
JK
2109
2110 return -1;
fef903ef
SB
2111}
2112
0aaa29a5
MG
2113/*
2114 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2115 * there are no empty page blocks that contain a page with a suitable order
2116 */
2117static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2118 unsigned int alloc_order)
2119{
2120 int mt;
2121 unsigned long max_managed, flags;
2122
2123 /*
2124 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2125 * Check is race-prone but harmless.
2126 */
2127 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2128 if (zone->nr_reserved_highatomic >= max_managed)
2129 return;
2130
2131 spin_lock_irqsave(&zone->lock, flags);
2132
2133 /* Recheck the nr_reserved_highatomic limit under the lock */
2134 if (zone->nr_reserved_highatomic >= max_managed)
2135 goto out_unlock;
2136
2137 /* Yoink! */
2138 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2139 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2140 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2141 zone->nr_reserved_highatomic += pageblock_nr_pages;
2142 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2143 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2144 }
2145
2146out_unlock:
2147 spin_unlock_irqrestore(&zone->lock, flags);
2148}
2149
2150/*
2151 * Used when an allocation is about to fail under memory pressure. This
2152 * potentially hurts the reliability of high-order allocations when under
2153 * intense memory pressure but failed atomic allocations should be easier
2154 * to recover from than an OOM.
29fac03b
MK
2155 *
2156 * If @force is true, try to unreserve a pageblock even though highatomic
2157 * pageblock is exhausted.
0aaa29a5 2158 */
29fac03b
MK
2159static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2160 bool force)
0aaa29a5
MG
2161{
2162 struct zonelist *zonelist = ac->zonelist;
2163 unsigned long flags;
2164 struct zoneref *z;
2165 struct zone *zone;
2166 struct page *page;
2167 int order;
04c8716f 2168 bool ret;
0aaa29a5
MG
2169
2170 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2171 ac->nodemask) {
29fac03b
MK
2172 /*
2173 * Preserve at least one pageblock unless memory pressure
2174 * is really high.
2175 */
2176 if (!force && zone->nr_reserved_highatomic <=
2177 pageblock_nr_pages)
0aaa29a5
MG
2178 continue;
2179
2180 spin_lock_irqsave(&zone->lock, flags);
2181 for (order = 0; order < MAX_ORDER; order++) {
2182 struct free_area *area = &(zone->free_area[order]);
2183
a16601c5
GT
2184 page = list_first_entry_or_null(
2185 &area->free_list[MIGRATE_HIGHATOMIC],
2186 struct page, lru);
2187 if (!page)
0aaa29a5
MG
2188 continue;
2189
0aaa29a5 2190 /*
4855e4a7
MK
2191 * In page freeing path, migratetype change is racy so
2192 * we can counter several free pages in a pageblock
2193 * in this loop althoug we changed the pageblock type
2194 * from highatomic to ac->migratetype. So we should
2195 * adjust the count once.
0aaa29a5 2196 */
a6ffdc07 2197 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2198 /*
2199 * It should never happen but changes to
2200 * locking could inadvertently allow a per-cpu
2201 * drain to add pages to MIGRATE_HIGHATOMIC
2202 * while unreserving so be safe and watch for
2203 * underflows.
2204 */
2205 zone->nr_reserved_highatomic -= min(
2206 pageblock_nr_pages,
2207 zone->nr_reserved_highatomic);
2208 }
0aaa29a5
MG
2209
2210 /*
2211 * Convert to ac->migratetype and avoid the normal
2212 * pageblock stealing heuristics. Minimally, the caller
2213 * is doing the work and needs the pages. More
2214 * importantly, if the block was always converted to
2215 * MIGRATE_UNMOVABLE or another type then the number
2216 * of pageblocks that cannot be completely freed
2217 * may increase.
2218 */
2219 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2220 ret = move_freepages_block(zone, page, ac->migratetype,
2221 NULL);
29fac03b
MK
2222 if (ret) {
2223 spin_unlock_irqrestore(&zone->lock, flags);
2224 return ret;
2225 }
0aaa29a5
MG
2226 }
2227 spin_unlock_irqrestore(&zone->lock, flags);
2228 }
04c8716f
MK
2229
2230 return false;
0aaa29a5
MG
2231}
2232
3bc48f96
VB
2233/*
2234 * Try finding a free buddy page on the fallback list and put it on the free
2235 * list of requested migratetype, possibly along with other pages from the same
2236 * block, depending on fragmentation avoidance heuristics. Returns true if
2237 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2238 *
2239 * The use of signed ints for order and current_order is a deliberate
2240 * deviation from the rest of this file, to make the for loop
2241 * condition simpler.
3bc48f96 2242 */
85ccc8fa 2243static __always_inline bool
b002529d 2244__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2245{
b8af2941 2246 struct free_area *area;
b002529d 2247 int current_order;
b2a0ac88 2248 struct page *page;
4eb7dce6
JK
2249 int fallback_mt;
2250 bool can_steal;
b2a0ac88 2251
7a8f58f3
VB
2252 /*
2253 * Find the largest available free page in the other list. This roughly
2254 * approximates finding the pageblock with the most free pages, which
2255 * would be too costly to do exactly.
2256 */
b002529d 2257 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2258 --current_order) {
4eb7dce6
JK
2259 area = &(zone->free_area[current_order]);
2260 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2261 start_migratetype, false, &can_steal);
4eb7dce6
JK
2262 if (fallback_mt == -1)
2263 continue;
b2a0ac88 2264
7a8f58f3
VB
2265 /*
2266 * We cannot steal all free pages from the pageblock and the
2267 * requested migratetype is movable. In that case it's better to
2268 * steal and split the smallest available page instead of the
2269 * largest available page, because even if the next movable
2270 * allocation falls back into a different pageblock than this
2271 * one, it won't cause permanent fragmentation.
2272 */
2273 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2274 && current_order > order)
2275 goto find_smallest;
b2a0ac88 2276
7a8f58f3
VB
2277 goto do_steal;
2278 }
e0fff1bd 2279
7a8f58f3 2280 return false;
e0fff1bd 2281
7a8f58f3
VB
2282find_smallest:
2283 for (current_order = order; current_order < MAX_ORDER;
2284 current_order++) {
2285 area = &(zone->free_area[current_order]);
2286 fallback_mt = find_suitable_fallback(area, current_order,
2287 start_migratetype, false, &can_steal);
2288 if (fallback_mt != -1)
2289 break;
b2a0ac88
MG
2290 }
2291
7a8f58f3
VB
2292 /*
2293 * This should not happen - we already found a suitable fallback
2294 * when looking for the largest page.
2295 */
2296 VM_BUG_ON(current_order == MAX_ORDER);
2297
2298do_steal:
2299 page = list_first_entry(&area->free_list[fallback_mt],
2300 struct page, lru);
2301
2302 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2303
2304 trace_mm_page_alloc_extfrag(page, order, current_order,
2305 start_migratetype, fallback_mt);
2306
2307 return true;
2308
b2a0ac88
MG
2309}
2310
56fd56b8 2311/*
1da177e4
LT
2312 * Do the hard work of removing an element from the buddy allocator.
2313 * Call me with the zone->lock already held.
2314 */
85ccc8fa
AL
2315static __always_inline struct page *
2316__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2317{
1da177e4
LT
2318 struct page *page;
2319
3bc48f96 2320retry:
56fd56b8 2321 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2322 if (unlikely(!page)) {
dc67647b
JK
2323 if (migratetype == MIGRATE_MOVABLE)
2324 page = __rmqueue_cma_fallback(zone, order);
2325
3bc48f96
VB
2326 if (!page && __rmqueue_fallback(zone, order, migratetype))
2327 goto retry;
728ec980
MG
2328 }
2329
0d3d062a 2330 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2331 return page;
1da177e4
LT
2332}
2333
5f63b720 2334/*
1da177e4
LT
2335 * Obtain a specified number of elements from the buddy allocator, all under
2336 * a single hold of the lock, for efficiency. Add them to the supplied list.
2337 * Returns the number of new pages which were placed at *list.
2338 */
5f63b720 2339static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2340 unsigned long count, struct list_head *list,
453f85d4 2341 int migratetype)
1da177e4 2342{
a6de734b 2343 int i, alloced = 0;
5f63b720 2344
d34b0733 2345 spin_lock(&zone->lock);
1da177e4 2346 for (i = 0; i < count; ++i) {
6ac0206b 2347 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2348 if (unlikely(page == NULL))
1da177e4 2349 break;
81eabcbe 2350
479f854a
MG
2351 if (unlikely(check_pcp_refill(page)))
2352 continue;
2353
81eabcbe 2354 /*
0fac3ba5
VB
2355 * Split buddy pages returned by expand() are received here in
2356 * physical page order. The page is added to the tail of
2357 * caller's list. From the callers perspective, the linked list
2358 * is ordered by page number under some conditions. This is
2359 * useful for IO devices that can forward direction from the
2360 * head, thus also in the physical page order. This is useful
2361 * for IO devices that can merge IO requests if the physical
2362 * pages are ordered properly.
81eabcbe 2363 */
0fac3ba5 2364 list_add_tail(&page->lru, list);
a6de734b 2365 alloced++;
bb14c2c7 2366 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2367 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2368 -(1 << order));
1da177e4 2369 }
a6de734b
MG
2370
2371 /*
2372 * i pages were removed from the buddy list even if some leak due
2373 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2374 * on i. Do not confuse with 'alloced' which is the number of
2375 * pages added to the pcp list.
2376 */
f2260e6b 2377 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2378 spin_unlock(&zone->lock);
a6de734b 2379 return alloced;
1da177e4
LT
2380}
2381
4ae7c039 2382#ifdef CONFIG_NUMA
8fce4d8e 2383/*
4037d452
CL
2384 * Called from the vmstat counter updater to drain pagesets of this
2385 * currently executing processor on remote nodes after they have
2386 * expired.
2387 *
879336c3
CL
2388 * Note that this function must be called with the thread pinned to
2389 * a single processor.
8fce4d8e 2390 */
4037d452 2391void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2392{
4ae7c039 2393 unsigned long flags;
7be12fc9 2394 int to_drain, batch;
4ae7c039 2395
4037d452 2396 local_irq_save(flags);
4db0c3c2 2397 batch = READ_ONCE(pcp->batch);
7be12fc9 2398 to_drain = min(pcp->count, batch);
2a13515c
KM
2399 if (to_drain > 0) {
2400 free_pcppages_bulk(zone, to_drain, pcp);
2401 pcp->count -= to_drain;
2402 }
4037d452 2403 local_irq_restore(flags);
4ae7c039
CL
2404}
2405#endif
2406
9f8f2172 2407/*
93481ff0 2408 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2409 *
2410 * The processor must either be the current processor and the
2411 * thread pinned to the current processor or a processor that
2412 * is not online.
2413 */
93481ff0 2414static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2415{
c54ad30c 2416 unsigned long flags;
93481ff0
VB
2417 struct per_cpu_pageset *pset;
2418 struct per_cpu_pages *pcp;
1da177e4 2419
93481ff0
VB
2420 local_irq_save(flags);
2421 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2422
93481ff0
VB
2423 pcp = &pset->pcp;
2424 if (pcp->count) {
2425 free_pcppages_bulk(zone, pcp->count, pcp);
2426 pcp->count = 0;
2427 }
2428 local_irq_restore(flags);
2429}
3dfa5721 2430
93481ff0
VB
2431/*
2432 * Drain pcplists of all zones on the indicated processor.
2433 *
2434 * The processor must either be the current processor and the
2435 * thread pinned to the current processor or a processor that
2436 * is not online.
2437 */
2438static void drain_pages(unsigned int cpu)
2439{
2440 struct zone *zone;
2441
2442 for_each_populated_zone(zone) {
2443 drain_pages_zone(cpu, zone);
1da177e4
LT
2444 }
2445}
1da177e4 2446
9f8f2172
CL
2447/*
2448 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2449 *
2450 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2451 * the single zone's pages.
9f8f2172 2452 */
93481ff0 2453void drain_local_pages(struct zone *zone)
9f8f2172 2454{
93481ff0
VB
2455 int cpu = smp_processor_id();
2456
2457 if (zone)
2458 drain_pages_zone(cpu, zone);
2459 else
2460 drain_pages(cpu);
9f8f2172
CL
2461}
2462
0ccce3b9
MG
2463static void drain_local_pages_wq(struct work_struct *work)
2464{
a459eeb7
MH
2465 /*
2466 * drain_all_pages doesn't use proper cpu hotplug protection so
2467 * we can race with cpu offline when the WQ can move this from
2468 * a cpu pinned worker to an unbound one. We can operate on a different
2469 * cpu which is allright but we also have to make sure to not move to
2470 * a different one.
2471 */
2472 preempt_disable();
0ccce3b9 2473 drain_local_pages(NULL);
a459eeb7 2474 preempt_enable();
0ccce3b9
MG
2475}
2476
9f8f2172 2477/*
74046494
GBY
2478 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2479 *
93481ff0
VB
2480 * When zone parameter is non-NULL, spill just the single zone's pages.
2481 *
0ccce3b9 2482 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2483 */
93481ff0 2484void drain_all_pages(struct zone *zone)
9f8f2172 2485{
74046494 2486 int cpu;
74046494
GBY
2487
2488 /*
2489 * Allocate in the BSS so we wont require allocation in
2490 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2491 */
2492 static cpumask_t cpus_with_pcps;
2493
ce612879
MH
2494 /*
2495 * Make sure nobody triggers this path before mm_percpu_wq is fully
2496 * initialized.
2497 */
2498 if (WARN_ON_ONCE(!mm_percpu_wq))
2499 return;
2500
0ccce3b9
MG
2501 /* Workqueues cannot recurse */
2502 if (current->flags & PF_WQ_WORKER)
2503 return;
2504
bd233f53
MG
2505 /*
2506 * Do not drain if one is already in progress unless it's specific to
2507 * a zone. Such callers are primarily CMA and memory hotplug and need
2508 * the drain to be complete when the call returns.
2509 */
2510 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2511 if (!zone)
2512 return;
2513 mutex_lock(&pcpu_drain_mutex);
2514 }
0ccce3b9 2515
74046494
GBY
2516 /*
2517 * We don't care about racing with CPU hotplug event
2518 * as offline notification will cause the notified
2519 * cpu to drain that CPU pcps and on_each_cpu_mask
2520 * disables preemption as part of its processing
2521 */
2522 for_each_online_cpu(cpu) {
93481ff0
VB
2523 struct per_cpu_pageset *pcp;
2524 struct zone *z;
74046494 2525 bool has_pcps = false;
93481ff0
VB
2526
2527 if (zone) {
74046494 2528 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2529 if (pcp->pcp.count)
74046494 2530 has_pcps = true;
93481ff0
VB
2531 } else {
2532 for_each_populated_zone(z) {
2533 pcp = per_cpu_ptr(z->pageset, cpu);
2534 if (pcp->pcp.count) {
2535 has_pcps = true;
2536 break;
2537 }
74046494
GBY
2538 }
2539 }
93481ff0 2540
74046494
GBY
2541 if (has_pcps)
2542 cpumask_set_cpu(cpu, &cpus_with_pcps);
2543 else
2544 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2545 }
0ccce3b9 2546
bd233f53
MG
2547 for_each_cpu(cpu, &cpus_with_pcps) {
2548 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2549 INIT_WORK(work, drain_local_pages_wq);
ce612879 2550 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2551 }
bd233f53
MG
2552 for_each_cpu(cpu, &cpus_with_pcps)
2553 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2554
2555 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2556}
2557
296699de 2558#ifdef CONFIG_HIBERNATION
1da177e4 2559
556b969a
CY
2560/*
2561 * Touch the watchdog for every WD_PAGE_COUNT pages.
2562 */
2563#define WD_PAGE_COUNT (128*1024)
2564
1da177e4
LT
2565void mark_free_pages(struct zone *zone)
2566{
556b969a 2567 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2568 unsigned long flags;
7aeb09f9 2569 unsigned int order, t;
86760a2c 2570 struct page *page;
1da177e4 2571
8080fc03 2572 if (zone_is_empty(zone))
1da177e4
LT
2573 return;
2574
2575 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2576
108bcc96 2577 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2578 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2579 if (pfn_valid(pfn)) {
86760a2c 2580 page = pfn_to_page(pfn);
ba6b0979 2581
556b969a
CY
2582 if (!--page_count) {
2583 touch_nmi_watchdog();
2584 page_count = WD_PAGE_COUNT;
2585 }
2586
ba6b0979
JK
2587 if (page_zone(page) != zone)
2588 continue;
2589
7be98234
RW
2590 if (!swsusp_page_is_forbidden(page))
2591 swsusp_unset_page_free(page);
f623f0db 2592 }
1da177e4 2593
b2a0ac88 2594 for_each_migratetype_order(order, t) {
86760a2c
GT
2595 list_for_each_entry(page,
2596 &zone->free_area[order].free_list[t], lru) {
f623f0db 2597 unsigned long i;
1da177e4 2598
86760a2c 2599 pfn = page_to_pfn(page);
556b969a
CY
2600 for (i = 0; i < (1UL << order); i++) {
2601 if (!--page_count) {
2602 touch_nmi_watchdog();
2603 page_count = WD_PAGE_COUNT;
2604 }
7be98234 2605 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2606 }
f623f0db 2607 }
b2a0ac88 2608 }
1da177e4
LT
2609 spin_unlock_irqrestore(&zone->lock, flags);
2610}
e2c55dc8 2611#endif /* CONFIG_PM */
1da177e4 2612
2d4894b5 2613static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2614{
5f8dcc21 2615 int migratetype;
1da177e4 2616
4db7548c 2617 if (!free_pcp_prepare(page))
9cca35d4 2618 return false;
689bcebf 2619
dc4b0caf 2620 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2621 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2622 return true;
2623}
2624
2d4894b5 2625static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2626{
2627 struct zone *zone = page_zone(page);
2628 struct per_cpu_pages *pcp;
2629 int migratetype;
2630
2631 migratetype = get_pcppage_migratetype(page);
d34b0733 2632 __count_vm_event(PGFREE);
da456f14 2633
5f8dcc21
MG
2634 /*
2635 * We only track unmovable, reclaimable and movable on pcp lists.
2636 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2637 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2638 * areas back if necessary. Otherwise, we may have to free
2639 * excessively into the page allocator
2640 */
2641 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2642 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2643 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2644 return;
5f8dcc21
MG
2645 }
2646 migratetype = MIGRATE_MOVABLE;
2647 }
2648
99dcc3e5 2649 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2650 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2651 pcp->count++;
48db57f8 2652 if (pcp->count >= pcp->high) {
4db0c3c2 2653 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2654 free_pcppages_bulk(zone, batch, pcp);
2655 pcp->count -= batch;
48db57f8 2656 }
9cca35d4 2657}
5f8dcc21 2658
9cca35d4
MG
2659/*
2660 * Free a 0-order page
9cca35d4 2661 */
2d4894b5 2662void free_unref_page(struct page *page)
9cca35d4
MG
2663{
2664 unsigned long flags;
2665 unsigned long pfn = page_to_pfn(page);
2666
2d4894b5 2667 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2668 return;
2669
2670 local_irq_save(flags);
2d4894b5 2671 free_unref_page_commit(page, pfn);
d34b0733 2672 local_irq_restore(flags);
1da177e4
LT
2673}
2674
cc59850e
KK
2675/*
2676 * Free a list of 0-order pages
2677 */
2d4894b5 2678void free_unref_page_list(struct list_head *list)
cc59850e
KK
2679{
2680 struct page *page, *next;
9cca35d4
MG
2681 unsigned long flags, pfn;
2682
2683 /* Prepare pages for freeing */
2684 list_for_each_entry_safe(page, next, list, lru) {
2685 pfn = page_to_pfn(page);
2d4894b5 2686 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2687 list_del(&page->lru);
2688 set_page_private(page, pfn);
2689 }
cc59850e 2690
9cca35d4 2691 local_irq_save(flags);
cc59850e 2692 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2693 unsigned long pfn = page_private(page);
2694
2695 set_page_private(page, 0);
2d4894b5
MG
2696 trace_mm_page_free_batched(page);
2697 free_unref_page_commit(page, pfn);
cc59850e 2698 }
9cca35d4 2699 local_irq_restore(flags);
cc59850e
KK
2700}
2701
8dfcc9ba
NP
2702/*
2703 * split_page takes a non-compound higher-order page, and splits it into
2704 * n (1<<order) sub-pages: page[0..n]
2705 * Each sub-page must be freed individually.
2706 *
2707 * Note: this is probably too low level an operation for use in drivers.
2708 * Please consult with lkml before using this in your driver.
2709 */
2710void split_page(struct page *page, unsigned int order)
2711{
2712 int i;
2713
309381fe
SL
2714 VM_BUG_ON_PAGE(PageCompound(page), page);
2715 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2716
a9627bc5 2717 for (i = 1; i < (1 << order); i++)
7835e98b 2718 set_page_refcounted(page + i);
a9627bc5 2719 split_page_owner(page, order);
8dfcc9ba 2720}
5853ff23 2721EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2722
3c605096 2723int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2724{
748446bb
MG
2725 unsigned long watermark;
2726 struct zone *zone;
2139cbe6 2727 int mt;
748446bb
MG
2728
2729 BUG_ON(!PageBuddy(page));
2730
2731 zone = page_zone(page);
2e30abd1 2732 mt = get_pageblock_migratetype(page);
748446bb 2733
194159fb 2734 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2735 /*
2736 * Obey watermarks as if the page was being allocated. We can
2737 * emulate a high-order watermark check with a raised order-0
2738 * watermark, because we already know our high-order page
2739 * exists.
2740 */
2741 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2742 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2743 return 0;
2744
8fb74b9f 2745 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2746 }
748446bb
MG
2747
2748 /* Remove page from free list */
2749 list_del(&page->lru);
2750 zone->free_area[order].nr_free--;
2751 rmv_page_order(page);
2139cbe6 2752
400bc7fd 2753 /*
2754 * Set the pageblock if the isolated page is at least half of a
2755 * pageblock
2756 */
748446bb
MG
2757 if (order >= pageblock_order - 1) {
2758 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2759 for (; page < endpage; page += pageblock_nr_pages) {
2760 int mt = get_pageblock_migratetype(page);
88ed365e 2761 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2762 && !is_migrate_highatomic(mt))
47118af0
MN
2763 set_pageblock_migratetype(page,
2764 MIGRATE_MOVABLE);
2765 }
748446bb
MG
2766 }
2767
f3a14ced 2768
8fb74b9f 2769 return 1UL << order;
1fb3f8ca
MG
2770}
2771
060e7417
MG
2772/*
2773 * Update NUMA hit/miss statistics
2774 *
2775 * Must be called with interrupts disabled.
060e7417 2776 */
41b6167e 2777static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2778{
2779#ifdef CONFIG_NUMA
3a321d2a 2780 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2781
4518085e
KW
2782 /* skip numa counters update if numa stats is disabled */
2783 if (!static_branch_likely(&vm_numa_stat_key))
2784 return;
2785
2df26639 2786 if (z->node != numa_node_id())
060e7417 2787 local_stat = NUMA_OTHER;
060e7417 2788
2df26639 2789 if (z->node == preferred_zone->node)
3a321d2a 2790 __inc_numa_state(z, NUMA_HIT);
2df26639 2791 else {
3a321d2a
KW
2792 __inc_numa_state(z, NUMA_MISS);
2793 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2794 }
3a321d2a 2795 __inc_numa_state(z, local_stat);
060e7417
MG
2796#endif
2797}
2798
066b2393
MG
2799/* Remove page from the per-cpu list, caller must protect the list */
2800static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2801 struct per_cpu_pages *pcp,
066b2393
MG
2802 struct list_head *list)
2803{
2804 struct page *page;
2805
2806 do {
2807 if (list_empty(list)) {
2808 pcp->count += rmqueue_bulk(zone, 0,
2809 pcp->batch, list,
453f85d4 2810 migratetype);
066b2393
MG
2811 if (unlikely(list_empty(list)))
2812 return NULL;
2813 }
2814
453f85d4 2815 page = list_first_entry(list, struct page, lru);
066b2393
MG
2816 list_del(&page->lru);
2817 pcp->count--;
2818 } while (check_new_pcp(page));
2819
2820 return page;
2821}
2822
2823/* Lock and remove page from the per-cpu list */
2824static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2825 struct zone *zone, unsigned int order,
2826 gfp_t gfp_flags, int migratetype)
2827{
2828 struct per_cpu_pages *pcp;
2829 struct list_head *list;
066b2393 2830 struct page *page;
d34b0733 2831 unsigned long flags;
066b2393 2832
d34b0733 2833 local_irq_save(flags);
066b2393
MG
2834 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2835 list = &pcp->lists[migratetype];
453f85d4 2836 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2837 if (page) {
2838 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2839 zone_statistics(preferred_zone, zone);
2840 }
d34b0733 2841 local_irq_restore(flags);
066b2393
MG
2842 return page;
2843}
2844
1da177e4 2845/*
75379191 2846 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2847 */
0a15c3e9 2848static inline
066b2393 2849struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2850 struct zone *zone, unsigned int order,
c603844b
MG
2851 gfp_t gfp_flags, unsigned int alloc_flags,
2852 int migratetype)
1da177e4
LT
2853{
2854 unsigned long flags;
689bcebf 2855 struct page *page;
1da177e4 2856
d34b0733 2857 if (likely(order == 0)) {
066b2393
MG
2858 page = rmqueue_pcplist(preferred_zone, zone, order,
2859 gfp_flags, migratetype);
2860 goto out;
2861 }
83b9355b 2862
066b2393
MG
2863 /*
2864 * We most definitely don't want callers attempting to
2865 * allocate greater than order-1 page units with __GFP_NOFAIL.
2866 */
2867 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2868 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2869
066b2393
MG
2870 do {
2871 page = NULL;
2872 if (alloc_flags & ALLOC_HARDER) {
2873 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2874 if (page)
2875 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2876 }
a74609fa 2877 if (!page)
066b2393
MG
2878 page = __rmqueue(zone, order, migratetype);
2879 } while (page && check_new_pages(page, order));
2880 spin_unlock(&zone->lock);
2881 if (!page)
2882 goto failed;
2883 __mod_zone_freepage_state(zone, -(1 << order),
2884 get_pcppage_migratetype(page));
1da177e4 2885
16709d1d 2886 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2887 zone_statistics(preferred_zone, zone);
a74609fa 2888 local_irq_restore(flags);
1da177e4 2889
066b2393
MG
2890out:
2891 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2892 return page;
a74609fa
NP
2893
2894failed:
2895 local_irq_restore(flags);
a74609fa 2896 return NULL;
1da177e4
LT
2897}
2898
933e312e
AM
2899#ifdef CONFIG_FAIL_PAGE_ALLOC
2900
b2588c4b 2901static struct {
933e312e
AM
2902 struct fault_attr attr;
2903
621a5f7a 2904 bool ignore_gfp_highmem;
71baba4b 2905 bool ignore_gfp_reclaim;
54114994 2906 u32 min_order;
933e312e
AM
2907} fail_page_alloc = {
2908 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2909 .ignore_gfp_reclaim = true,
621a5f7a 2910 .ignore_gfp_highmem = true,
54114994 2911 .min_order = 1,
933e312e
AM
2912};
2913
2914static int __init setup_fail_page_alloc(char *str)
2915{
2916 return setup_fault_attr(&fail_page_alloc.attr, str);
2917}
2918__setup("fail_page_alloc=", setup_fail_page_alloc);
2919
deaf386e 2920static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2921{
54114994 2922 if (order < fail_page_alloc.min_order)
deaf386e 2923 return false;
933e312e 2924 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2925 return false;
933e312e 2926 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2927 return false;
71baba4b
MG
2928 if (fail_page_alloc.ignore_gfp_reclaim &&
2929 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2930 return false;
933e312e
AM
2931
2932 return should_fail(&fail_page_alloc.attr, 1 << order);
2933}
2934
2935#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2936
2937static int __init fail_page_alloc_debugfs(void)
2938{
f4ae40a6 2939 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2940 struct dentry *dir;
933e312e 2941
dd48c085
AM
2942 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2943 &fail_page_alloc.attr);
2944 if (IS_ERR(dir))
2945 return PTR_ERR(dir);
933e312e 2946
b2588c4b 2947 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2948 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2949 goto fail;
2950 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2951 &fail_page_alloc.ignore_gfp_highmem))
2952 goto fail;
2953 if (!debugfs_create_u32("min-order", mode, dir,
2954 &fail_page_alloc.min_order))
2955 goto fail;
2956
2957 return 0;
2958fail:
dd48c085 2959 debugfs_remove_recursive(dir);
933e312e 2960
b2588c4b 2961 return -ENOMEM;
933e312e
AM
2962}
2963
2964late_initcall(fail_page_alloc_debugfs);
2965
2966#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2967
2968#else /* CONFIG_FAIL_PAGE_ALLOC */
2969
deaf386e 2970static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2971{
deaf386e 2972 return false;
933e312e
AM
2973}
2974
2975#endif /* CONFIG_FAIL_PAGE_ALLOC */
2976
1da177e4 2977/*
97a16fc8
MG
2978 * Return true if free base pages are above 'mark'. For high-order checks it
2979 * will return true of the order-0 watermark is reached and there is at least
2980 * one free page of a suitable size. Checking now avoids taking the zone lock
2981 * to check in the allocation paths if no pages are free.
1da177e4 2982 */
86a294a8
MH
2983bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2984 int classzone_idx, unsigned int alloc_flags,
2985 long free_pages)
1da177e4 2986{
d23ad423 2987 long min = mark;
1da177e4 2988 int o;
cd04ae1e 2989 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 2990
0aaa29a5 2991 /* free_pages may go negative - that's OK */
df0a6daa 2992 free_pages -= (1 << order) - 1;
0aaa29a5 2993
7fb1d9fc 2994 if (alloc_flags & ALLOC_HIGH)
1da177e4 2995 min -= min / 2;
0aaa29a5
MG
2996
2997 /*
2998 * If the caller does not have rights to ALLOC_HARDER then subtract
2999 * the high-atomic reserves. This will over-estimate the size of the
3000 * atomic reserve but it avoids a search.
3001 */
cd04ae1e 3002 if (likely(!alloc_harder)) {
0aaa29a5 3003 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3004 } else {
3005 /*
3006 * OOM victims can try even harder than normal ALLOC_HARDER
3007 * users on the grounds that it's definitely going to be in
3008 * the exit path shortly and free memory. Any allocation it
3009 * makes during the free path will be small and short-lived.
3010 */
3011 if (alloc_flags & ALLOC_OOM)
3012 min -= min / 2;
3013 else
3014 min -= min / 4;
3015 }
3016
e2b19197 3017
d95ea5d1
BZ
3018#ifdef CONFIG_CMA
3019 /* If allocation can't use CMA areas don't use free CMA pages */
3020 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3021 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3022#endif
026b0814 3023
97a16fc8
MG
3024 /*
3025 * Check watermarks for an order-0 allocation request. If these
3026 * are not met, then a high-order request also cannot go ahead
3027 * even if a suitable page happened to be free.
3028 */
3029 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3030 return false;
1da177e4 3031
97a16fc8
MG
3032 /* If this is an order-0 request then the watermark is fine */
3033 if (!order)
3034 return true;
3035
3036 /* For a high-order request, check at least one suitable page is free */
3037 for (o = order; o < MAX_ORDER; o++) {
3038 struct free_area *area = &z->free_area[o];
3039 int mt;
3040
3041 if (!area->nr_free)
3042 continue;
3043
3044 if (alloc_harder)
3045 return true;
1da177e4 3046
97a16fc8
MG
3047 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3048 if (!list_empty(&area->free_list[mt]))
3049 return true;
3050 }
3051
3052#ifdef CONFIG_CMA
3053 if ((alloc_flags & ALLOC_CMA) &&
3054 !list_empty(&area->free_list[MIGRATE_CMA])) {
3055 return true;
3056 }
3057#endif
1da177e4 3058 }
97a16fc8 3059 return false;
88f5acf8
MG
3060}
3061
7aeb09f9 3062bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3063 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3064{
3065 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3066 zone_page_state(z, NR_FREE_PAGES));
3067}
3068
48ee5f36
MG
3069static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3070 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3071{
3072 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3073 long cma_pages = 0;
3074
3075#ifdef CONFIG_CMA
3076 /* If allocation can't use CMA areas don't use free CMA pages */
3077 if (!(alloc_flags & ALLOC_CMA))
3078 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3079#endif
3080
3081 /*
3082 * Fast check for order-0 only. If this fails then the reserves
3083 * need to be calculated. There is a corner case where the check
3084 * passes but only the high-order atomic reserve are free. If
3085 * the caller is !atomic then it'll uselessly search the free
3086 * list. That corner case is then slower but it is harmless.
3087 */
3088 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3089 return true;
3090
3091 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3092 free_pages);
3093}
3094
7aeb09f9 3095bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3096 unsigned long mark, int classzone_idx)
88f5acf8
MG
3097{
3098 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3099
3100 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3101 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3102
e2b19197 3103 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3104 free_pages);
1da177e4
LT
3105}
3106
9276b1bc 3107#ifdef CONFIG_NUMA
957f822a
DR
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
e02dc017 3110 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3111 RECLAIM_DISTANCE;
957f822a 3112}
9276b1bc 3113#else /* CONFIG_NUMA */
957f822a
DR
3114static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3115{
3116 return true;
3117}
9276b1bc
PJ
3118#endif /* CONFIG_NUMA */
3119
7fb1d9fc 3120/*
0798e519 3121 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3122 * a page.
3123 */
3124static struct page *
a9263751
VB
3125get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3126 const struct alloc_context *ac)
753ee728 3127{
c33d6c06 3128 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3129 struct zone *zone;
3b8c0be4
MG
3130 struct pglist_data *last_pgdat_dirty_limit = NULL;
3131
7fb1d9fc 3132 /*
9276b1bc 3133 * Scan zonelist, looking for a zone with enough free.
344736f2 3134 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3135 */
c33d6c06 3136 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3137 ac->nodemask) {
be06af00 3138 struct page *page;
e085dbc5
JW
3139 unsigned long mark;
3140
664eedde
MG
3141 if (cpusets_enabled() &&
3142 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3143 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3144 continue;
a756cf59
JW
3145 /*
3146 * When allocating a page cache page for writing, we
281e3726
MG
3147 * want to get it from a node that is within its dirty
3148 * limit, such that no single node holds more than its
a756cf59 3149 * proportional share of globally allowed dirty pages.
281e3726 3150 * The dirty limits take into account the node's
a756cf59
JW
3151 * lowmem reserves and high watermark so that kswapd
3152 * should be able to balance it without having to
3153 * write pages from its LRU list.
3154 *
a756cf59 3155 * XXX: For now, allow allocations to potentially
281e3726 3156 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3157 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3158 * which is important when on a NUMA setup the allowed
281e3726 3159 * nodes are together not big enough to reach the
a756cf59 3160 * global limit. The proper fix for these situations
281e3726 3161 * will require awareness of nodes in the
a756cf59
JW
3162 * dirty-throttling and the flusher threads.
3163 */
3b8c0be4
MG
3164 if (ac->spread_dirty_pages) {
3165 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3166 continue;
3167
3168 if (!node_dirty_ok(zone->zone_pgdat)) {
3169 last_pgdat_dirty_limit = zone->zone_pgdat;
3170 continue;
3171 }
3172 }
7fb1d9fc 3173
e085dbc5 3174 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3175 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3176 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3177 int ret;
3178
5dab2911
MG
3179 /* Checked here to keep the fast path fast */
3180 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3181 if (alloc_flags & ALLOC_NO_WATERMARKS)
3182 goto try_this_zone;
3183
a5f5f91d 3184 if (node_reclaim_mode == 0 ||
c33d6c06 3185 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3186 continue;
3187
a5f5f91d 3188 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3189 switch (ret) {
a5f5f91d 3190 case NODE_RECLAIM_NOSCAN:
fa5e084e 3191 /* did not scan */
cd38b115 3192 continue;
a5f5f91d 3193 case NODE_RECLAIM_FULL:
fa5e084e 3194 /* scanned but unreclaimable */
cd38b115 3195 continue;
fa5e084e
MG
3196 default:
3197 /* did we reclaim enough */
fed2719e 3198 if (zone_watermark_ok(zone, order, mark,
93ea9964 3199 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3200 goto try_this_zone;
3201
fed2719e 3202 continue;
0798e519 3203 }
7fb1d9fc
RS
3204 }
3205
fa5e084e 3206try_this_zone:
066b2393 3207 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3208 gfp_mask, alloc_flags, ac->migratetype);
75379191 3209 if (page) {
479f854a 3210 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3211
3212 /*
3213 * If this is a high-order atomic allocation then check
3214 * if the pageblock should be reserved for the future
3215 */
3216 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3217 reserve_highatomic_pageblock(page, zone, order);
3218
75379191
VB
3219 return page;
3220 }
54a6eb5c 3221 }
9276b1bc 3222
4ffeaf35 3223 return NULL;
753ee728
MH
3224}
3225
29423e77
DR
3226/*
3227 * Large machines with many possible nodes should not always dump per-node
3228 * meminfo in irq context.
3229 */
3230static inline bool should_suppress_show_mem(void)
3231{
3232 bool ret = false;
3233
3234#if NODES_SHIFT > 8
3235 ret = in_interrupt();
3236#endif
3237 return ret;
3238}
3239
9af744d7 3240static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3241{
a238ab5b 3242 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3243 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3244
aa187507 3245 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3246 return;
3247
3248 /*
3249 * This documents exceptions given to allocations in certain
3250 * contexts that are allowed to allocate outside current's set
3251 * of allowed nodes.
3252 */
3253 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3254 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3255 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3256 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3257 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3258 filter &= ~SHOW_MEM_FILTER_NODES;
3259
9af744d7 3260 show_mem(filter, nodemask);
aa187507
MH
3261}
3262
a8e99259 3263void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3264{
3265 struct va_format vaf;
3266 va_list args;
3267 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3268 DEFAULT_RATELIMIT_BURST);
3269
0f7896f1 3270 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3271 return;
3272
7877cdcc 3273 pr_warn("%s: ", current->comm);
3ee9a4f0 3274
7877cdcc
MH
3275 va_start(args, fmt);
3276 vaf.fmt = fmt;
3277 vaf.va = &args;
3278 pr_cont("%pV", &vaf);
3279 va_end(args);
3ee9a4f0 3280
685dbf6f
DR
3281 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3282 if (nodemask)
3283 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3284 else
3285 pr_cont("(null)\n");
3286
a8e99259 3287 cpuset_print_current_mems_allowed();
3ee9a4f0 3288
a238ab5b 3289 dump_stack();
685dbf6f 3290 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3291}
3292
6c18ba7a
MH
3293static inline struct page *
3294__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3295 unsigned int alloc_flags,
3296 const struct alloc_context *ac)
3297{
3298 struct page *page;
3299
3300 page = get_page_from_freelist(gfp_mask, order,
3301 alloc_flags|ALLOC_CPUSET, ac);
3302 /*
3303 * fallback to ignore cpuset restriction if our nodes
3304 * are depleted
3305 */
3306 if (!page)
3307 page = get_page_from_freelist(gfp_mask, order,
3308 alloc_flags, ac);
3309
3310 return page;
3311}
3312
11e33f6a
MG
3313static inline struct page *
3314__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3315 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3316{
6e0fc46d
DR
3317 struct oom_control oc = {
3318 .zonelist = ac->zonelist,
3319 .nodemask = ac->nodemask,
2a966b77 3320 .memcg = NULL,
6e0fc46d
DR
3321 .gfp_mask = gfp_mask,
3322 .order = order,
6e0fc46d 3323 };
11e33f6a
MG
3324 struct page *page;
3325
9879de73
JW
3326 *did_some_progress = 0;
3327
9879de73 3328 /*
dc56401f
JW
3329 * Acquire the oom lock. If that fails, somebody else is
3330 * making progress for us.
9879de73 3331 */
dc56401f 3332 if (!mutex_trylock(&oom_lock)) {
9879de73 3333 *did_some_progress = 1;
11e33f6a 3334 schedule_timeout_uninterruptible(1);
1da177e4
LT
3335 return NULL;
3336 }
6b1de916 3337
11e33f6a
MG
3338 /*
3339 * Go through the zonelist yet one more time, keep very high watermark
3340 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3341 * we're still under heavy pressure. But make sure that this reclaim
3342 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3343 * allocation which will never fail due to oom_lock already held.
11e33f6a 3344 */
e746bf73
TH
3345 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3346 ~__GFP_DIRECT_RECLAIM, order,
3347 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3348 if (page)
11e33f6a
MG
3349 goto out;
3350
06ad276a
MH
3351 /* Coredumps can quickly deplete all memory reserves */
3352 if (current->flags & PF_DUMPCORE)
3353 goto out;
3354 /* The OOM killer will not help higher order allocs */
3355 if (order > PAGE_ALLOC_COSTLY_ORDER)
3356 goto out;
dcda9b04
MH
3357 /*
3358 * We have already exhausted all our reclaim opportunities without any
3359 * success so it is time to admit defeat. We will skip the OOM killer
3360 * because it is very likely that the caller has a more reasonable
3361 * fallback than shooting a random task.
3362 */
3363 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3364 goto out;
06ad276a
MH
3365 /* The OOM killer does not needlessly kill tasks for lowmem */
3366 if (ac->high_zoneidx < ZONE_NORMAL)
3367 goto out;
3368 if (pm_suspended_storage())
3369 goto out;
3370 /*
3371 * XXX: GFP_NOFS allocations should rather fail than rely on
3372 * other request to make a forward progress.
3373 * We are in an unfortunate situation where out_of_memory cannot
3374 * do much for this context but let's try it to at least get
3375 * access to memory reserved if the current task is killed (see
3376 * out_of_memory). Once filesystems are ready to handle allocation
3377 * failures more gracefully we should just bail out here.
3378 */
3379
3380 /* The OOM killer may not free memory on a specific node */
3381 if (gfp_mask & __GFP_THISNODE)
3382 goto out;
3da88fb3 3383
11e33f6a 3384 /* Exhausted what can be done so it's blamo time */
5020e285 3385 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3386 *did_some_progress = 1;
5020e285 3387
6c18ba7a
MH
3388 /*
3389 * Help non-failing allocations by giving them access to memory
3390 * reserves
3391 */
3392 if (gfp_mask & __GFP_NOFAIL)
3393 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3394 ALLOC_NO_WATERMARKS, ac);
5020e285 3395 }
11e33f6a 3396out:
dc56401f 3397 mutex_unlock(&oom_lock);
11e33f6a
MG
3398 return page;
3399}
3400
33c2d214
MH
3401/*
3402 * Maximum number of compaction retries wit a progress before OOM
3403 * killer is consider as the only way to move forward.
3404 */
3405#define MAX_COMPACT_RETRIES 16
3406
56de7263
MG
3407#ifdef CONFIG_COMPACTION
3408/* Try memory compaction for high-order allocations before reclaim */
3409static struct page *
3410__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3411 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3412 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3413{
98dd3b48 3414 struct page *page;
499118e9 3415 unsigned int noreclaim_flag;
53853e2d
VB
3416
3417 if (!order)
66199712 3418 return NULL;
66199712 3419
499118e9 3420 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3421 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3422 prio);
499118e9 3423 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3424
c5d01d0d 3425 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3426 return NULL;
53853e2d 3427
98dd3b48
VB
3428 /*
3429 * At least in one zone compaction wasn't deferred or skipped, so let's
3430 * count a compaction stall
3431 */
3432 count_vm_event(COMPACTSTALL);
8fb74b9f 3433
31a6c190 3434 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3435
98dd3b48
VB
3436 if (page) {
3437 struct zone *zone = page_zone(page);
53853e2d 3438
98dd3b48
VB
3439 zone->compact_blockskip_flush = false;
3440 compaction_defer_reset(zone, order, true);
3441 count_vm_event(COMPACTSUCCESS);
3442 return page;
3443 }
56de7263 3444
98dd3b48
VB
3445 /*
3446 * It's bad if compaction run occurs and fails. The most likely reason
3447 * is that pages exist, but not enough to satisfy watermarks.
3448 */
3449 count_vm_event(COMPACTFAIL);
66199712 3450
98dd3b48 3451 cond_resched();
56de7263
MG
3452
3453 return NULL;
3454}
33c2d214 3455
3250845d
VB
3456static inline bool
3457should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3458 enum compact_result compact_result,
3459 enum compact_priority *compact_priority,
d9436498 3460 int *compaction_retries)
3250845d
VB
3461{
3462 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3463 int min_priority;
65190cff
MH
3464 bool ret = false;
3465 int retries = *compaction_retries;
3466 enum compact_priority priority = *compact_priority;
3250845d
VB
3467
3468 if (!order)
3469 return false;
3470
d9436498
VB
3471 if (compaction_made_progress(compact_result))
3472 (*compaction_retries)++;
3473
3250845d
VB
3474 /*
3475 * compaction considers all the zone as desperately out of memory
3476 * so it doesn't really make much sense to retry except when the
3477 * failure could be caused by insufficient priority
3478 */
d9436498
VB
3479 if (compaction_failed(compact_result))
3480 goto check_priority;
3250845d
VB
3481
3482 /*
3483 * make sure the compaction wasn't deferred or didn't bail out early
3484 * due to locks contention before we declare that we should give up.
3485 * But do not retry if the given zonelist is not suitable for
3486 * compaction.
3487 */
65190cff
MH
3488 if (compaction_withdrawn(compact_result)) {
3489 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3490 goto out;
3491 }
3250845d
VB
3492
3493 /*
dcda9b04 3494 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3495 * costly ones because they are de facto nofail and invoke OOM
3496 * killer to move on while costly can fail and users are ready
3497 * to cope with that. 1/4 retries is rather arbitrary but we
3498 * would need much more detailed feedback from compaction to
3499 * make a better decision.
3500 */
3501 if (order > PAGE_ALLOC_COSTLY_ORDER)
3502 max_retries /= 4;
65190cff
MH
3503 if (*compaction_retries <= max_retries) {
3504 ret = true;
3505 goto out;
3506 }
3250845d 3507
d9436498
VB
3508 /*
3509 * Make sure there are attempts at the highest priority if we exhausted
3510 * all retries or failed at the lower priorities.
3511 */
3512check_priority:
c2033b00
VB
3513 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3514 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3515
c2033b00 3516 if (*compact_priority > min_priority) {
d9436498
VB
3517 (*compact_priority)--;
3518 *compaction_retries = 0;
65190cff 3519 ret = true;
d9436498 3520 }
65190cff
MH
3521out:
3522 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3523 return ret;
3250845d 3524}
56de7263
MG
3525#else
3526static inline struct page *
3527__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3528 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3529 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3530{
33c2d214 3531 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3532 return NULL;
3533}
33c2d214
MH
3534
3535static inline bool
86a294a8
MH
3536should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3537 enum compact_result compact_result,
a5508cd8 3538 enum compact_priority *compact_priority,
d9436498 3539 int *compaction_retries)
33c2d214 3540{
31e49bfd
MH
3541 struct zone *zone;
3542 struct zoneref *z;
3543
3544 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3545 return false;
3546
3547 /*
3548 * There are setups with compaction disabled which would prefer to loop
3549 * inside the allocator rather than hit the oom killer prematurely.
3550 * Let's give them a good hope and keep retrying while the order-0
3551 * watermarks are OK.
3552 */
3553 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3554 ac->nodemask) {
3555 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3556 ac_classzone_idx(ac), alloc_flags))
3557 return true;
3558 }
33c2d214
MH
3559 return false;
3560}
3250845d 3561#endif /* CONFIG_COMPACTION */
56de7263 3562
d92a8cfc
PZ
3563#ifdef CONFIG_LOCKDEP
3564struct lockdep_map __fs_reclaim_map =
3565 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3566
3567static bool __need_fs_reclaim(gfp_t gfp_mask)
3568{
3569 gfp_mask = current_gfp_context(gfp_mask);
3570
3571 /* no reclaim without waiting on it */
3572 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3573 return false;
3574
3575 /* this guy won't enter reclaim */
3576 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3577 return false;
3578
3579 /* We're only interested __GFP_FS allocations for now */
3580 if (!(gfp_mask & __GFP_FS))
3581 return false;
3582
3583 if (gfp_mask & __GFP_NOLOCKDEP)
3584 return false;
3585
3586 return true;
3587}
3588
3589void fs_reclaim_acquire(gfp_t gfp_mask)
3590{
3591 if (__need_fs_reclaim(gfp_mask))
3592 lock_map_acquire(&__fs_reclaim_map);
3593}
3594EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3595
3596void fs_reclaim_release(gfp_t gfp_mask)
3597{
3598 if (__need_fs_reclaim(gfp_mask))
3599 lock_map_release(&__fs_reclaim_map);
3600}
3601EXPORT_SYMBOL_GPL(fs_reclaim_release);
3602#endif
3603
bba90710
MS
3604/* Perform direct synchronous page reclaim */
3605static int
a9263751
VB
3606__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3607 const struct alloc_context *ac)
11e33f6a 3608{
11e33f6a 3609 struct reclaim_state reclaim_state;
bba90710 3610 int progress;
499118e9 3611 unsigned int noreclaim_flag;
11e33f6a
MG
3612
3613 cond_resched();
3614
3615 /* We now go into synchronous reclaim */
3616 cpuset_memory_pressure_bump();
499118e9 3617 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3618 fs_reclaim_acquire(gfp_mask);
11e33f6a 3619 reclaim_state.reclaimed_slab = 0;
c06b1fca 3620 current->reclaim_state = &reclaim_state;
11e33f6a 3621
a9263751
VB
3622 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3623 ac->nodemask);
11e33f6a 3624
c06b1fca 3625 current->reclaim_state = NULL;
d92a8cfc 3626 fs_reclaim_release(gfp_mask);
499118e9 3627 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3628
3629 cond_resched();
3630
bba90710
MS
3631 return progress;
3632}
3633
3634/* The really slow allocator path where we enter direct reclaim */
3635static inline struct page *
3636__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3637 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3638 unsigned long *did_some_progress)
bba90710
MS
3639{
3640 struct page *page = NULL;
3641 bool drained = false;
3642
a9263751 3643 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3644 if (unlikely(!(*did_some_progress)))
3645 return NULL;
11e33f6a 3646
9ee493ce 3647retry:
31a6c190 3648 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3649
3650 /*
3651 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3652 * pages are pinned on the per-cpu lists or in high alloc reserves.
3653 * Shrink them them and try again
9ee493ce
MG
3654 */
3655 if (!page && !drained) {
29fac03b 3656 unreserve_highatomic_pageblock(ac, false);
93481ff0 3657 drain_all_pages(NULL);
9ee493ce
MG
3658 drained = true;
3659 goto retry;
3660 }
3661
11e33f6a
MG
3662 return page;
3663}
3664
a9263751 3665static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3666{
3667 struct zoneref *z;
3668 struct zone *zone;
e1a55637 3669 pg_data_t *last_pgdat = NULL;
3a025760 3670
a9263751 3671 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3672 ac->high_zoneidx, ac->nodemask) {
3673 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3674 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3675 last_pgdat = zone->zone_pgdat;
3676 }
3a025760
JW
3677}
3678
c603844b 3679static inline unsigned int
341ce06f
PZ
3680gfp_to_alloc_flags(gfp_t gfp_mask)
3681{
c603844b 3682 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3683
a56f57ff 3684 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3685 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3686
341ce06f
PZ
3687 /*
3688 * The caller may dip into page reserves a bit more if the caller
3689 * cannot run direct reclaim, or if the caller has realtime scheduling
3690 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3691 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3692 */
e6223a3b 3693 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3694
d0164adc 3695 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3696 /*
b104a35d
DR
3697 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3698 * if it can't schedule.
5c3240d9 3699 */
b104a35d 3700 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3701 alloc_flags |= ALLOC_HARDER;
523b9458 3702 /*
b104a35d 3703 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3704 * comment for __cpuset_node_allowed().
523b9458 3705 */
341ce06f 3706 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3707 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3708 alloc_flags |= ALLOC_HARDER;
3709
d95ea5d1 3710#ifdef CONFIG_CMA
43e7a34d 3711 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3712 alloc_flags |= ALLOC_CMA;
3713#endif
341ce06f
PZ
3714 return alloc_flags;
3715}
3716
cd04ae1e 3717static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3718{
cd04ae1e
MH
3719 if (!tsk_is_oom_victim(tsk))
3720 return false;
3721
3722 /*
3723 * !MMU doesn't have oom reaper so give access to memory reserves
3724 * only to the thread with TIF_MEMDIE set
3725 */
3726 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3727 return false;
3728
cd04ae1e
MH
3729 return true;
3730}
3731
3732/*
3733 * Distinguish requests which really need access to full memory
3734 * reserves from oom victims which can live with a portion of it
3735 */
3736static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3737{
3738 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3739 return 0;
31a6c190 3740 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3741 return ALLOC_NO_WATERMARKS;
31a6c190 3742 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3743 return ALLOC_NO_WATERMARKS;
3744 if (!in_interrupt()) {
3745 if (current->flags & PF_MEMALLOC)
3746 return ALLOC_NO_WATERMARKS;
3747 else if (oom_reserves_allowed(current))
3748 return ALLOC_OOM;
3749 }
31a6c190 3750
cd04ae1e
MH
3751 return 0;
3752}
3753
3754bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3755{
3756 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3757}
3758
0a0337e0
MH
3759/*
3760 * Checks whether it makes sense to retry the reclaim to make a forward progress
3761 * for the given allocation request.
491d79ae
JW
3762 *
3763 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3764 * without success, or when we couldn't even meet the watermark if we
3765 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3766 *
3767 * Returns true if a retry is viable or false to enter the oom path.
3768 */
3769static inline bool
3770should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3771 struct alloc_context *ac, int alloc_flags,
423b452e 3772 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3773{
3774 struct zone *zone;
3775 struct zoneref *z;
3776
423b452e
VB
3777 /*
3778 * Costly allocations might have made a progress but this doesn't mean
3779 * their order will become available due to high fragmentation so
3780 * always increment the no progress counter for them
3781 */
3782 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3783 *no_progress_loops = 0;
3784 else
3785 (*no_progress_loops)++;
3786
0a0337e0
MH
3787 /*
3788 * Make sure we converge to OOM if we cannot make any progress
3789 * several times in the row.
3790 */
04c8716f
MK
3791 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3792 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3793 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3794 }
0a0337e0 3795
bca67592
MG
3796 /*
3797 * Keep reclaiming pages while there is a chance this will lead
3798 * somewhere. If none of the target zones can satisfy our allocation
3799 * request even if all reclaimable pages are considered then we are
3800 * screwed and have to go OOM.
0a0337e0
MH
3801 */
3802 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3803 ac->nodemask) {
3804 unsigned long available;
ede37713 3805 unsigned long reclaimable;
d379f01d
MH
3806 unsigned long min_wmark = min_wmark_pages(zone);
3807 bool wmark;
0a0337e0 3808
5a1c84b4 3809 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3810 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3811
3812 /*
491d79ae
JW
3813 * Would the allocation succeed if we reclaimed all
3814 * reclaimable pages?
0a0337e0 3815 */
d379f01d
MH
3816 wmark = __zone_watermark_ok(zone, order, min_wmark,
3817 ac_classzone_idx(ac), alloc_flags, available);
3818 trace_reclaim_retry_zone(z, order, reclaimable,
3819 available, min_wmark, *no_progress_loops, wmark);
3820 if (wmark) {
ede37713
MH
3821 /*
3822 * If we didn't make any progress and have a lot of
3823 * dirty + writeback pages then we should wait for
3824 * an IO to complete to slow down the reclaim and
3825 * prevent from pre mature OOM
3826 */
3827 if (!did_some_progress) {
11fb9989 3828 unsigned long write_pending;
ede37713 3829
5a1c84b4
MG
3830 write_pending = zone_page_state_snapshot(zone,
3831 NR_ZONE_WRITE_PENDING);
ede37713 3832
11fb9989 3833 if (2 * write_pending > reclaimable) {
ede37713
MH
3834 congestion_wait(BLK_RW_ASYNC, HZ/10);
3835 return true;
3836 }
3837 }
5a1c84b4 3838
ede37713
MH
3839 /*
3840 * Memory allocation/reclaim might be called from a WQ
3841 * context and the current implementation of the WQ
3842 * concurrency control doesn't recognize that
3843 * a particular WQ is congested if the worker thread is
3844 * looping without ever sleeping. Therefore we have to
3845 * do a short sleep here rather than calling
3846 * cond_resched().
3847 */
3848 if (current->flags & PF_WQ_WORKER)
3849 schedule_timeout_uninterruptible(1);
3850 else
3851 cond_resched();
3852
0a0337e0
MH
3853 return true;
3854 }
3855 }
3856
3857 return false;
3858}
3859
902b6281
VB
3860static inline bool
3861check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3862{
3863 /*
3864 * It's possible that cpuset's mems_allowed and the nodemask from
3865 * mempolicy don't intersect. This should be normally dealt with by
3866 * policy_nodemask(), but it's possible to race with cpuset update in
3867 * such a way the check therein was true, and then it became false
3868 * before we got our cpuset_mems_cookie here.
3869 * This assumes that for all allocations, ac->nodemask can come only
3870 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3871 * when it does not intersect with the cpuset restrictions) or the
3872 * caller can deal with a violated nodemask.
3873 */
3874 if (cpusets_enabled() && ac->nodemask &&
3875 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3876 ac->nodemask = NULL;
3877 return true;
3878 }
3879
3880 /*
3881 * When updating a task's mems_allowed or mempolicy nodemask, it is
3882 * possible to race with parallel threads in such a way that our
3883 * allocation can fail while the mask is being updated. If we are about
3884 * to fail, check if the cpuset changed during allocation and if so,
3885 * retry.
3886 */
3887 if (read_mems_allowed_retry(cpuset_mems_cookie))
3888 return true;
3889
3890 return false;
3891}
3892
11e33f6a
MG
3893static inline struct page *
3894__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3895 struct alloc_context *ac)
11e33f6a 3896{
d0164adc 3897 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3898 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3899 struct page *page = NULL;
c603844b 3900 unsigned int alloc_flags;
11e33f6a 3901 unsigned long did_some_progress;
5ce9bfef 3902 enum compact_priority compact_priority;
c5d01d0d 3903 enum compact_result compact_result;
5ce9bfef
VB
3904 int compaction_retries;
3905 int no_progress_loops;
63f53dea
MH
3906 unsigned long alloc_start = jiffies;
3907 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3908 unsigned int cpuset_mems_cookie;
cd04ae1e 3909 int reserve_flags;
1da177e4 3910
72807a74
MG
3911 /*
3912 * In the slowpath, we sanity check order to avoid ever trying to
3913 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3914 * be using allocators in order of preference for an area that is
3915 * too large.
3916 */
1fc28b70
MG
3917 if (order >= MAX_ORDER) {
3918 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3919 return NULL;
1fc28b70 3920 }
1da177e4 3921
d0164adc
MG
3922 /*
3923 * We also sanity check to catch abuse of atomic reserves being used by
3924 * callers that are not in atomic context.
3925 */
3926 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3927 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3928 gfp_mask &= ~__GFP_ATOMIC;
3929
5ce9bfef
VB
3930retry_cpuset:
3931 compaction_retries = 0;
3932 no_progress_loops = 0;
3933 compact_priority = DEF_COMPACT_PRIORITY;
3934 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3935
3936 /*
3937 * The fast path uses conservative alloc_flags to succeed only until
3938 * kswapd needs to be woken up, and to avoid the cost of setting up
3939 * alloc_flags precisely. So we do that now.
3940 */
3941 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3942
e47483bc
VB
3943 /*
3944 * We need to recalculate the starting point for the zonelist iterator
3945 * because we might have used different nodemask in the fast path, or
3946 * there was a cpuset modification and we are retrying - otherwise we
3947 * could end up iterating over non-eligible zones endlessly.
3948 */
3949 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3950 ac->high_zoneidx, ac->nodemask);
3951 if (!ac->preferred_zoneref->zone)
3952 goto nopage;
3953
23771235
VB
3954 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3955 wake_all_kswapds(order, ac);
3956
3957 /*
3958 * The adjusted alloc_flags might result in immediate success, so try
3959 * that first
3960 */
3961 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3962 if (page)
3963 goto got_pg;
3964
a8161d1e
VB
3965 /*
3966 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3967 * that we have enough base pages and don't need to reclaim. For non-
3968 * movable high-order allocations, do that as well, as compaction will
3969 * try prevent permanent fragmentation by migrating from blocks of the
3970 * same migratetype.
3971 * Don't try this for allocations that are allowed to ignore
3972 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3973 */
282722b0
VB
3974 if (can_direct_reclaim &&
3975 (costly_order ||
3976 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3977 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3978 page = __alloc_pages_direct_compact(gfp_mask, order,
3979 alloc_flags, ac,
a5508cd8 3980 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3981 &compact_result);
3982 if (page)
3983 goto got_pg;
3984
3eb2771b
VB
3985 /*
3986 * Checks for costly allocations with __GFP_NORETRY, which
3987 * includes THP page fault allocations
3988 */
282722b0 3989 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3990 /*
3991 * If compaction is deferred for high-order allocations,
3992 * it is because sync compaction recently failed. If
3993 * this is the case and the caller requested a THP
3994 * allocation, we do not want to heavily disrupt the
3995 * system, so we fail the allocation instead of entering
3996 * direct reclaim.
3997 */
3998 if (compact_result == COMPACT_DEFERRED)
3999 goto nopage;
4000
a8161d1e 4001 /*
3eb2771b
VB
4002 * Looks like reclaim/compaction is worth trying, but
4003 * sync compaction could be very expensive, so keep
25160354 4004 * using async compaction.
a8161d1e 4005 */
a5508cd8 4006 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4007 }
4008 }
23771235 4009
31a6c190 4010retry:
23771235 4011 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4012 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4013 wake_all_kswapds(order, ac);
4014
cd04ae1e
MH
4015 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4016 if (reserve_flags)
4017 alloc_flags = reserve_flags;
23771235 4018
e46e7b77
MG
4019 /*
4020 * Reset the zonelist iterators if memory policies can be ignored.
4021 * These allocations are high priority and system rather than user
4022 * orientated.
4023 */
cd04ae1e 4024 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4025 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4026 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4027 ac->high_zoneidx, ac->nodemask);
4028 }
4029
23771235 4030 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4031 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4032 if (page)
4033 goto got_pg;
1da177e4 4034
d0164adc 4035 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4036 if (!can_direct_reclaim)
1da177e4
LT
4037 goto nopage;
4038
9a67f648
MH
4039 /* Make sure we know about allocations which stall for too long */
4040 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 4041 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
4042 "page allocation stalls for %ums, order:%u",
4043 jiffies_to_msecs(jiffies-alloc_start), order);
4044 stall_timeout += 10 * HZ;
33d53103 4045 }
341ce06f 4046
9a67f648
MH
4047 /* Avoid recursion of direct reclaim */
4048 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4049 goto nopage;
4050
a8161d1e
VB
4051 /* Try direct reclaim and then allocating */
4052 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4053 &did_some_progress);
4054 if (page)
4055 goto got_pg;
4056
4057 /* Try direct compaction and then allocating */
a9263751 4058 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4059 compact_priority, &compact_result);
56de7263
MG
4060 if (page)
4061 goto got_pg;
75f30861 4062
9083905a
JW
4063 /* Do not loop if specifically requested */
4064 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4065 goto nopage;
9083905a 4066
0a0337e0
MH
4067 /*
4068 * Do not retry costly high order allocations unless they are
dcda9b04 4069 * __GFP_RETRY_MAYFAIL
0a0337e0 4070 */
dcda9b04 4071 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4072 goto nopage;
0a0337e0 4073
0a0337e0 4074 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4075 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4076 goto retry;
4077
33c2d214
MH
4078 /*
4079 * It doesn't make any sense to retry for the compaction if the order-0
4080 * reclaim is not able to make any progress because the current
4081 * implementation of the compaction depends on the sufficient amount
4082 * of free memory (see __compaction_suitable)
4083 */
4084 if (did_some_progress > 0 &&
86a294a8 4085 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4086 compact_result, &compact_priority,
d9436498 4087 &compaction_retries))
33c2d214
MH
4088 goto retry;
4089
902b6281
VB
4090
4091 /* Deal with possible cpuset update races before we start OOM killing */
4092 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4093 goto retry_cpuset;
4094
9083905a
JW
4095 /* Reclaim has failed us, start killing things */
4096 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4097 if (page)
4098 goto got_pg;
4099
9a67f648 4100 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4101 if (tsk_is_oom_victim(current) &&
4102 (alloc_flags == ALLOC_OOM ||
c288983d 4103 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4104 goto nopage;
4105
9083905a 4106 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4107 if (did_some_progress) {
4108 no_progress_loops = 0;
9083905a 4109 goto retry;
0a0337e0 4110 }
9083905a 4111
1da177e4 4112nopage:
902b6281
VB
4113 /* Deal with possible cpuset update races before we fail */
4114 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4115 goto retry_cpuset;
4116
9a67f648
MH
4117 /*
4118 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4119 * we always retry
4120 */
4121 if (gfp_mask & __GFP_NOFAIL) {
4122 /*
4123 * All existing users of the __GFP_NOFAIL are blockable, so warn
4124 * of any new users that actually require GFP_NOWAIT
4125 */
4126 if (WARN_ON_ONCE(!can_direct_reclaim))
4127 goto fail;
4128
4129 /*
4130 * PF_MEMALLOC request from this context is rather bizarre
4131 * because we cannot reclaim anything and only can loop waiting
4132 * for somebody to do a work for us
4133 */
4134 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4135
4136 /*
4137 * non failing costly orders are a hard requirement which we
4138 * are not prepared for much so let's warn about these users
4139 * so that we can identify them and convert them to something
4140 * else.
4141 */
4142 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4143
6c18ba7a
MH
4144 /*
4145 * Help non-failing allocations by giving them access to memory
4146 * reserves but do not use ALLOC_NO_WATERMARKS because this
4147 * could deplete whole memory reserves which would just make
4148 * the situation worse
4149 */
4150 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4151 if (page)
4152 goto got_pg;
4153
9a67f648
MH
4154 cond_resched();
4155 goto retry;
4156 }
4157fail:
a8e99259 4158 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4159 "page allocation failure: order:%u", order);
1da177e4 4160got_pg:
072bb0aa 4161 return page;
1da177e4 4162}
11e33f6a 4163
9cd75558 4164static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4165 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4166 struct alloc_context *ac, gfp_t *alloc_mask,
4167 unsigned int *alloc_flags)
11e33f6a 4168{
9cd75558 4169 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4170 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4171 ac->nodemask = nodemask;
4172 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4173
682a3385 4174 if (cpusets_enabled()) {
9cd75558 4175 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4176 if (!ac->nodemask)
4177 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4178 else
4179 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4180 }
4181
d92a8cfc
PZ
4182 fs_reclaim_acquire(gfp_mask);
4183 fs_reclaim_release(gfp_mask);
11e33f6a 4184
d0164adc 4185 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4186
4187 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4188 return false;
11e33f6a 4189
9cd75558
MG
4190 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4191 *alloc_flags |= ALLOC_CMA;
4192
4193 return true;
4194}
21bb9bd1 4195
9cd75558
MG
4196/* Determine whether to spread dirty pages and what the first usable zone */
4197static inline void finalise_ac(gfp_t gfp_mask,
4198 unsigned int order, struct alloc_context *ac)
4199{
c9ab0c4f 4200 /* Dirty zone balancing only done in the fast path */
9cd75558 4201 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4202
e46e7b77
MG
4203 /*
4204 * The preferred zone is used for statistics but crucially it is
4205 * also used as the starting point for the zonelist iterator. It
4206 * may get reset for allocations that ignore memory policies.
4207 */
9cd75558
MG
4208 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4209 ac->high_zoneidx, ac->nodemask);
4210}
4211
4212/*
4213 * This is the 'heart' of the zoned buddy allocator.
4214 */
4215struct page *
04ec6264
VB
4216__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4217 nodemask_t *nodemask)
9cd75558
MG
4218{
4219 struct page *page;
4220 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4221 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4222 struct alloc_context ac = { };
4223
4224 gfp_mask &= gfp_allowed_mask;
f19360f0 4225 alloc_mask = gfp_mask;
04ec6264 4226 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4227 return NULL;
4228
4229 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4230
5117f45d 4231 /* First allocation attempt */
a9263751 4232 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4233 if (likely(page))
4234 goto out;
11e33f6a 4235
4fcb0971 4236 /*
7dea19f9
MH
4237 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4238 * resp. GFP_NOIO which has to be inherited for all allocation requests
4239 * from a particular context which has been marked by
4240 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4241 */
7dea19f9 4242 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4243 ac.spread_dirty_pages = false;
23f086f9 4244
4741526b
MG
4245 /*
4246 * Restore the original nodemask if it was potentially replaced with
4247 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4248 */
e47483bc 4249 if (unlikely(ac.nodemask != nodemask))
4741526b 4250 ac.nodemask = nodemask;
16096c25 4251
4fcb0971 4252 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4253
4fcb0971 4254out:
c4159a75
VD
4255 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4256 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4257 __free_pages(page, order);
4258 page = NULL;
4949148a
VD
4259 }
4260
4fcb0971
MG
4261 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4262
11e33f6a 4263 return page;
1da177e4 4264}
d239171e 4265EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4266
4267/*
4268 * Common helper functions.
4269 */
920c7a5d 4270unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4271{
945a1113
AM
4272 struct page *page;
4273
4274 /*
4275 * __get_free_pages() returns a 32-bit address, which cannot represent
4276 * a highmem page
4277 */
4278 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4279
1da177e4
LT
4280 page = alloc_pages(gfp_mask, order);
4281 if (!page)
4282 return 0;
4283 return (unsigned long) page_address(page);
4284}
1da177e4
LT
4285EXPORT_SYMBOL(__get_free_pages);
4286
920c7a5d 4287unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4288{
945a1113 4289 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4290}
1da177e4
LT
4291EXPORT_SYMBOL(get_zeroed_page);
4292
920c7a5d 4293void __free_pages(struct page *page, unsigned int order)
1da177e4 4294{
b5810039 4295 if (put_page_testzero(page)) {
1da177e4 4296 if (order == 0)
2d4894b5 4297 free_unref_page(page);
1da177e4
LT
4298 else
4299 __free_pages_ok(page, order);
4300 }
4301}
4302
4303EXPORT_SYMBOL(__free_pages);
4304
920c7a5d 4305void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4306{
4307 if (addr != 0) {
725d704e 4308 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4309 __free_pages(virt_to_page((void *)addr), order);
4310 }
4311}
4312
4313EXPORT_SYMBOL(free_pages);
4314
b63ae8ca
AD
4315/*
4316 * Page Fragment:
4317 * An arbitrary-length arbitrary-offset area of memory which resides
4318 * within a 0 or higher order page. Multiple fragments within that page
4319 * are individually refcounted, in the page's reference counter.
4320 *
4321 * The page_frag functions below provide a simple allocation framework for
4322 * page fragments. This is used by the network stack and network device
4323 * drivers to provide a backing region of memory for use as either an
4324 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4325 */
2976db80
AD
4326static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4327 gfp_t gfp_mask)
b63ae8ca
AD
4328{
4329 struct page *page = NULL;
4330 gfp_t gfp = gfp_mask;
4331
4332#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4333 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4334 __GFP_NOMEMALLOC;
4335 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4336 PAGE_FRAG_CACHE_MAX_ORDER);
4337 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4338#endif
4339 if (unlikely(!page))
4340 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4341
4342 nc->va = page ? page_address(page) : NULL;
4343
4344 return page;
4345}
4346
2976db80 4347void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4348{
4349 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4350
4351 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4352 unsigned int order = compound_order(page);
4353
44fdffd7 4354 if (order == 0)
2d4894b5 4355 free_unref_page(page);
44fdffd7
AD
4356 else
4357 __free_pages_ok(page, order);
4358 }
4359}
2976db80 4360EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4361
8c2dd3e4
AD
4362void *page_frag_alloc(struct page_frag_cache *nc,
4363 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4364{
4365 unsigned int size = PAGE_SIZE;
4366 struct page *page;
4367 int offset;
4368
4369 if (unlikely(!nc->va)) {
4370refill:
2976db80 4371 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4372 if (!page)
4373 return NULL;
4374
4375#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4376 /* if size can vary use size else just use PAGE_SIZE */
4377 size = nc->size;
4378#endif
4379 /* Even if we own the page, we do not use atomic_set().
4380 * This would break get_page_unless_zero() users.
4381 */
fe896d18 4382 page_ref_add(page, size - 1);
b63ae8ca
AD
4383
4384 /* reset page count bias and offset to start of new frag */
2f064f34 4385 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4386 nc->pagecnt_bias = size;
4387 nc->offset = size;
4388 }
4389
4390 offset = nc->offset - fragsz;
4391 if (unlikely(offset < 0)) {
4392 page = virt_to_page(nc->va);
4393
fe896d18 4394 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4395 goto refill;
4396
4397#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4398 /* if size can vary use size else just use PAGE_SIZE */
4399 size = nc->size;
4400#endif
4401 /* OK, page count is 0, we can safely set it */
fe896d18 4402 set_page_count(page, size);
b63ae8ca
AD
4403
4404 /* reset page count bias and offset to start of new frag */
4405 nc->pagecnt_bias = size;
4406 offset = size - fragsz;
4407 }
4408
4409 nc->pagecnt_bias--;
4410 nc->offset = offset;
4411
4412 return nc->va + offset;
4413}
8c2dd3e4 4414EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4415
4416/*
4417 * Frees a page fragment allocated out of either a compound or order 0 page.
4418 */
8c2dd3e4 4419void page_frag_free(void *addr)
b63ae8ca
AD
4420{
4421 struct page *page = virt_to_head_page(addr);
4422
4423 if (unlikely(put_page_testzero(page)))
4424 __free_pages_ok(page, compound_order(page));
4425}
8c2dd3e4 4426EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4427
d00181b9
KS
4428static void *make_alloc_exact(unsigned long addr, unsigned int order,
4429 size_t size)
ee85c2e1
AK
4430{
4431 if (addr) {
4432 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4433 unsigned long used = addr + PAGE_ALIGN(size);
4434
4435 split_page(virt_to_page((void *)addr), order);
4436 while (used < alloc_end) {
4437 free_page(used);
4438 used += PAGE_SIZE;
4439 }
4440 }
4441 return (void *)addr;
4442}
4443
2be0ffe2
TT
4444/**
4445 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4446 * @size: the number of bytes to allocate
4447 * @gfp_mask: GFP flags for the allocation
4448 *
4449 * This function is similar to alloc_pages(), except that it allocates the
4450 * minimum number of pages to satisfy the request. alloc_pages() can only
4451 * allocate memory in power-of-two pages.
4452 *
4453 * This function is also limited by MAX_ORDER.
4454 *
4455 * Memory allocated by this function must be released by free_pages_exact().
4456 */
4457void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4458{
4459 unsigned int order = get_order(size);
4460 unsigned long addr;
4461
4462 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4463 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4464}
4465EXPORT_SYMBOL(alloc_pages_exact);
4466
ee85c2e1
AK
4467/**
4468 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4469 * pages on a node.
b5e6ab58 4470 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4471 * @size: the number of bytes to allocate
4472 * @gfp_mask: GFP flags for the allocation
4473 *
4474 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4475 * back.
ee85c2e1 4476 */
e1931811 4477void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4478{
d00181b9 4479 unsigned int order = get_order(size);
ee85c2e1
AK
4480 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4481 if (!p)
4482 return NULL;
4483 return make_alloc_exact((unsigned long)page_address(p), order, size);
4484}
ee85c2e1 4485
2be0ffe2
TT
4486/**
4487 * free_pages_exact - release memory allocated via alloc_pages_exact()
4488 * @virt: the value returned by alloc_pages_exact.
4489 * @size: size of allocation, same value as passed to alloc_pages_exact().
4490 *
4491 * Release the memory allocated by a previous call to alloc_pages_exact.
4492 */
4493void free_pages_exact(void *virt, size_t size)
4494{
4495 unsigned long addr = (unsigned long)virt;
4496 unsigned long end = addr + PAGE_ALIGN(size);
4497
4498 while (addr < end) {
4499 free_page(addr);
4500 addr += PAGE_SIZE;
4501 }
4502}
4503EXPORT_SYMBOL(free_pages_exact);
4504
e0fb5815
ZY
4505/**
4506 * nr_free_zone_pages - count number of pages beyond high watermark
4507 * @offset: The zone index of the highest zone
4508 *
4509 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4510 * high watermark within all zones at or below a given zone index. For each
4511 * zone, the number of pages is calculated as:
0e056eb5
MCC
4512 *
4513 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4514 */
ebec3862 4515static unsigned long nr_free_zone_pages(int offset)
1da177e4 4516{
dd1a239f 4517 struct zoneref *z;
54a6eb5c
MG
4518 struct zone *zone;
4519
e310fd43 4520 /* Just pick one node, since fallback list is circular */
ebec3862 4521 unsigned long sum = 0;
1da177e4 4522
0e88460d 4523 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4524
54a6eb5c 4525 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4526 unsigned long size = zone->managed_pages;
41858966 4527 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4528 if (size > high)
4529 sum += size - high;
1da177e4
LT
4530 }
4531
4532 return sum;
4533}
4534
e0fb5815
ZY
4535/**
4536 * nr_free_buffer_pages - count number of pages beyond high watermark
4537 *
4538 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4539 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4540 */
ebec3862 4541unsigned long nr_free_buffer_pages(void)
1da177e4 4542{
af4ca457 4543 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4544}
c2f1a551 4545EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4546
e0fb5815
ZY
4547/**
4548 * nr_free_pagecache_pages - count number of pages beyond high watermark
4549 *
4550 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4551 * high watermark within all zones.
1da177e4 4552 */
ebec3862 4553unsigned long nr_free_pagecache_pages(void)
1da177e4 4554{
2a1e274a 4555 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4556}
08e0f6a9
CL
4557
4558static inline void show_node(struct zone *zone)
1da177e4 4559{
e5adfffc 4560 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4561 printk("Node %d ", zone_to_nid(zone));
1da177e4 4562}
1da177e4 4563
d02bd27b
IR
4564long si_mem_available(void)
4565{
4566 long available;
4567 unsigned long pagecache;
4568 unsigned long wmark_low = 0;
4569 unsigned long pages[NR_LRU_LISTS];
4570 struct zone *zone;
4571 int lru;
4572
4573 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4574 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4575
4576 for_each_zone(zone)
4577 wmark_low += zone->watermark[WMARK_LOW];
4578
4579 /*
4580 * Estimate the amount of memory available for userspace allocations,
4581 * without causing swapping.
4582 */
c41f012a 4583 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4584
4585 /*
4586 * Not all the page cache can be freed, otherwise the system will
4587 * start swapping. Assume at least half of the page cache, or the
4588 * low watermark worth of cache, needs to stay.
4589 */
4590 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4591 pagecache -= min(pagecache / 2, wmark_low);
4592 available += pagecache;
4593
4594 /*
4595 * Part of the reclaimable slab consists of items that are in use,
4596 * and cannot be freed. Cap this estimate at the low watermark.
4597 */
d507e2eb
JW
4598 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4599 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4600 wmark_low);
d02bd27b
IR
4601
4602 if (available < 0)
4603 available = 0;
4604 return available;
4605}
4606EXPORT_SYMBOL_GPL(si_mem_available);
4607
1da177e4
LT
4608void si_meminfo(struct sysinfo *val)
4609{
4610 val->totalram = totalram_pages;
11fb9989 4611 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4612 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4613 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4614 val->totalhigh = totalhigh_pages;
4615 val->freehigh = nr_free_highpages();
1da177e4
LT
4616 val->mem_unit = PAGE_SIZE;
4617}
4618
4619EXPORT_SYMBOL(si_meminfo);
4620
4621#ifdef CONFIG_NUMA
4622void si_meminfo_node(struct sysinfo *val, int nid)
4623{
cdd91a77
JL
4624 int zone_type; /* needs to be signed */
4625 unsigned long managed_pages = 0;
fc2bd799
JK
4626 unsigned long managed_highpages = 0;
4627 unsigned long free_highpages = 0;
1da177e4
LT
4628 pg_data_t *pgdat = NODE_DATA(nid);
4629
cdd91a77
JL
4630 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4631 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4632 val->totalram = managed_pages;
11fb9989 4633 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4634 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4635#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4636 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4637 struct zone *zone = &pgdat->node_zones[zone_type];
4638
4639 if (is_highmem(zone)) {
4640 managed_highpages += zone->managed_pages;
4641 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4642 }
4643 }
4644 val->totalhigh = managed_highpages;
4645 val->freehigh = free_highpages;
98d2b0eb 4646#else
fc2bd799
JK
4647 val->totalhigh = managed_highpages;
4648 val->freehigh = free_highpages;
98d2b0eb 4649#endif
1da177e4
LT
4650 val->mem_unit = PAGE_SIZE;
4651}
4652#endif
4653
ddd588b5 4654/*
7bf02ea2
DR
4655 * Determine whether the node should be displayed or not, depending on whether
4656 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4657 */
9af744d7 4658static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4659{
ddd588b5 4660 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4661 return false;
ddd588b5 4662
9af744d7
MH
4663 /*
4664 * no node mask - aka implicit memory numa policy. Do not bother with
4665 * the synchronization - read_mems_allowed_begin - because we do not
4666 * have to be precise here.
4667 */
4668 if (!nodemask)
4669 nodemask = &cpuset_current_mems_allowed;
4670
4671 return !node_isset(nid, *nodemask);
ddd588b5
DR
4672}
4673
1da177e4
LT
4674#define K(x) ((x) << (PAGE_SHIFT-10))
4675
377e4f16
RV
4676static void show_migration_types(unsigned char type)
4677{
4678 static const char types[MIGRATE_TYPES] = {
4679 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4680 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4681 [MIGRATE_RECLAIMABLE] = 'E',
4682 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4683#ifdef CONFIG_CMA
4684 [MIGRATE_CMA] = 'C',
4685#endif
194159fb 4686#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4687 [MIGRATE_ISOLATE] = 'I',
194159fb 4688#endif
377e4f16
RV
4689 };
4690 char tmp[MIGRATE_TYPES + 1];
4691 char *p = tmp;
4692 int i;
4693
4694 for (i = 0; i < MIGRATE_TYPES; i++) {
4695 if (type & (1 << i))
4696 *p++ = types[i];
4697 }
4698
4699 *p = '\0';
1f84a18f 4700 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4701}
4702
1da177e4
LT
4703/*
4704 * Show free area list (used inside shift_scroll-lock stuff)
4705 * We also calculate the percentage fragmentation. We do this by counting the
4706 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4707 *
4708 * Bits in @filter:
4709 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4710 * cpuset.
1da177e4 4711 */
9af744d7 4712void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4713{
d1bfcdb8 4714 unsigned long free_pcp = 0;
c7241913 4715 int cpu;
1da177e4 4716 struct zone *zone;
599d0c95 4717 pg_data_t *pgdat;
1da177e4 4718
ee99c71c 4719 for_each_populated_zone(zone) {
9af744d7 4720 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4721 continue;
d1bfcdb8 4722
761b0677
KK
4723 for_each_online_cpu(cpu)
4724 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4725 }
4726
a731286d
KM
4727 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4728 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4729 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4730 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4731 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4732 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4733 global_node_page_state(NR_ACTIVE_ANON),
4734 global_node_page_state(NR_INACTIVE_ANON),
4735 global_node_page_state(NR_ISOLATED_ANON),
4736 global_node_page_state(NR_ACTIVE_FILE),
4737 global_node_page_state(NR_INACTIVE_FILE),
4738 global_node_page_state(NR_ISOLATED_FILE),
4739 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4740 global_node_page_state(NR_FILE_DIRTY),
4741 global_node_page_state(NR_WRITEBACK),
4742 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4743 global_node_page_state(NR_SLAB_RECLAIMABLE),
4744 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4745 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4746 global_node_page_state(NR_SHMEM),
c41f012a
MH
4747 global_zone_page_state(NR_PAGETABLE),
4748 global_zone_page_state(NR_BOUNCE),
4749 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4750 free_pcp,
c41f012a 4751 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4752
599d0c95 4753 for_each_online_pgdat(pgdat) {
9af744d7 4754 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4755 continue;
4756
599d0c95
MG
4757 printk("Node %d"
4758 " active_anon:%lukB"
4759 " inactive_anon:%lukB"
4760 " active_file:%lukB"
4761 " inactive_file:%lukB"
4762 " unevictable:%lukB"
4763 " isolated(anon):%lukB"
4764 " isolated(file):%lukB"
50658e2e 4765 " mapped:%lukB"
11fb9989
MG
4766 " dirty:%lukB"
4767 " writeback:%lukB"
4768 " shmem:%lukB"
4769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4770 " shmem_thp: %lukB"
4771 " shmem_pmdmapped: %lukB"
4772 " anon_thp: %lukB"
4773#endif
4774 " writeback_tmp:%lukB"
4775 " unstable:%lukB"
599d0c95
MG
4776 " all_unreclaimable? %s"
4777 "\n",
4778 pgdat->node_id,
4779 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4780 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4781 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4782 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4783 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4784 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4785 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4786 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4787 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4788 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4789 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4790#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4791 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4792 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4793 * HPAGE_PMD_NR),
4794 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4795#endif
11fb9989
MG
4796 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4797 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4798 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4799 "yes" : "no");
599d0c95
MG
4800 }
4801
ee99c71c 4802 for_each_populated_zone(zone) {
1da177e4
LT
4803 int i;
4804
9af744d7 4805 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4806 continue;
d1bfcdb8
KK
4807
4808 free_pcp = 0;
4809 for_each_online_cpu(cpu)
4810 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4811
1da177e4 4812 show_node(zone);
1f84a18f
JP
4813 printk(KERN_CONT
4814 "%s"
1da177e4
LT
4815 " free:%lukB"
4816 " min:%lukB"
4817 " low:%lukB"
4818 " high:%lukB"
71c799f4
MK
4819 " active_anon:%lukB"
4820 " inactive_anon:%lukB"
4821 " active_file:%lukB"
4822 " inactive_file:%lukB"
4823 " unevictable:%lukB"
5a1c84b4 4824 " writepending:%lukB"
1da177e4 4825 " present:%lukB"
9feedc9d 4826 " managed:%lukB"
4a0aa73f 4827 " mlocked:%lukB"
c6a7f572 4828 " kernel_stack:%lukB"
4a0aa73f 4829 " pagetables:%lukB"
4a0aa73f 4830 " bounce:%lukB"
d1bfcdb8
KK
4831 " free_pcp:%lukB"
4832 " local_pcp:%ukB"
d1ce749a 4833 " free_cma:%lukB"
1da177e4
LT
4834 "\n",
4835 zone->name,
88f5acf8 4836 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4837 K(min_wmark_pages(zone)),
4838 K(low_wmark_pages(zone)),
4839 K(high_wmark_pages(zone)),
71c799f4
MK
4840 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4841 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4842 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4843 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4844 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4845 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4846 K(zone->present_pages),
9feedc9d 4847 K(zone->managed_pages),
4a0aa73f 4848 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4849 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4850 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4851 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4852 K(free_pcp),
4853 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4854 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4855 printk("lowmem_reserve[]:");
4856 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4857 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4858 printk(KERN_CONT "\n");
1da177e4
LT
4859 }
4860
ee99c71c 4861 for_each_populated_zone(zone) {
d00181b9
KS
4862 unsigned int order;
4863 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4864 unsigned char types[MAX_ORDER];
1da177e4 4865
9af744d7 4866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4867 continue;
1da177e4 4868 show_node(zone);
1f84a18f 4869 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4870
4871 spin_lock_irqsave(&zone->lock, flags);
4872 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4873 struct free_area *area = &zone->free_area[order];
4874 int type;
4875
4876 nr[order] = area->nr_free;
8f9de51a 4877 total += nr[order] << order;
377e4f16
RV
4878
4879 types[order] = 0;
4880 for (type = 0; type < MIGRATE_TYPES; type++) {
4881 if (!list_empty(&area->free_list[type]))
4882 types[order] |= 1 << type;
4883 }
1da177e4
LT
4884 }
4885 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4886 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4887 printk(KERN_CONT "%lu*%lukB ",
4888 nr[order], K(1UL) << order);
377e4f16
RV
4889 if (nr[order])
4890 show_migration_types(types[order]);
4891 }
1f84a18f 4892 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4893 }
4894
949f7ec5
DR
4895 hugetlb_show_meminfo();
4896
11fb9989 4897 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4898
1da177e4
LT
4899 show_swap_cache_info();
4900}
4901
19770b32
MG
4902static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4903{
4904 zoneref->zone = zone;
4905 zoneref->zone_idx = zone_idx(zone);
4906}
4907
1da177e4
LT
4908/*
4909 * Builds allocation fallback zone lists.
1a93205b
CL
4910 *
4911 * Add all populated zones of a node to the zonelist.
1da177e4 4912 */
9d3be21b 4913static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4914{
1a93205b 4915 struct zone *zone;
bc732f1d 4916 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4917 int nr_zones = 0;
02a68a5e
CL
4918
4919 do {
2f6726e5 4920 zone_type--;
070f8032 4921 zone = pgdat->node_zones + zone_type;
6aa303de 4922 if (managed_zone(zone)) {
9d3be21b 4923 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4924 check_highest_zone(zone_type);
1da177e4 4925 }
2f6726e5 4926 } while (zone_type);
bc732f1d 4927
070f8032 4928 return nr_zones;
1da177e4
LT
4929}
4930
4931#ifdef CONFIG_NUMA
f0c0b2b8
KH
4932
4933static int __parse_numa_zonelist_order(char *s)
4934{
c9bff3ee
MH
4935 /*
4936 * We used to support different zonlists modes but they turned
4937 * out to be just not useful. Let's keep the warning in place
4938 * if somebody still use the cmd line parameter so that we do
4939 * not fail it silently
4940 */
4941 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4942 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4943 return -EINVAL;
4944 }
4945 return 0;
4946}
4947
4948static __init int setup_numa_zonelist_order(char *s)
4949{
ecb256f8
VL
4950 if (!s)
4951 return 0;
4952
c9bff3ee 4953 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4954}
4955early_param("numa_zonelist_order", setup_numa_zonelist_order);
4956
c9bff3ee
MH
4957char numa_zonelist_order[] = "Node";
4958
f0c0b2b8
KH
4959/*
4960 * sysctl handler for numa_zonelist_order
4961 */
cccad5b9 4962int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4963 void __user *buffer, size_t *length,
f0c0b2b8
KH
4964 loff_t *ppos)
4965{
c9bff3ee 4966 char *str;
f0c0b2b8
KH
4967 int ret;
4968
c9bff3ee
MH
4969 if (!write)
4970 return proc_dostring(table, write, buffer, length, ppos);
4971 str = memdup_user_nul(buffer, 16);
4972 if (IS_ERR(str))
4973 return PTR_ERR(str);
dacbde09 4974
c9bff3ee
MH
4975 ret = __parse_numa_zonelist_order(str);
4976 kfree(str);
443c6f14 4977 return ret;
f0c0b2b8
KH
4978}
4979
4980
62bc62a8 4981#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4982static int node_load[MAX_NUMNODES];
4983
1da177e4 4984/**
4dc3b16b 4985 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4986 * @node: node whose fallback list we're appending
4987 * @used_node_mask: nodemask_t of already used nodes
4988 *
4989 * We use a number of factors to determine which is the next node that should
4990 * appear on a given node's fallback list. The node should not have appeared
4991 * already in @node's fallback list, and it should be the next closest node
4992 * according to the distance array (which contains arbitrary distance values
4993 * from each node to each node in the system), and should also prefer nodes
4994 * with no CPUs, since presumably they'll have very little allocation pressure
4995 * on them otherwise.
4996 * It returns -1 if no node is found.
4997 */
f0c0b2b8 4998static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4999{
4cf808eb 5000 int n, val;
1da177e4 5001 int min_val = INT_MAX;
00ef2d2f 5002 int best_node = NUMA_NO_NODE;
a70f7302 5003 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5004
4cf808eb
LT
5005 /* Use the local node if we haven't already */
5006 if (!node_isset(node, *used_node_mask)) {
5007 node_set(node, *used_node_mask);
5008 return node;
5009 }
1da177e4 5010
4b0ef1fe 5011 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5012
5013 /* Don't want a node to appear more than once */
5014 if (node_isset(n, *used_node_mask))
5015 continue;
5016
1da177e4
LT
5017 /* Use the distance array to find the distance */
5018 val = node_distance(node, n);
5019
4cf808eb
LT
5020 /* Penalize nodes under us ("prefer the next node") */
5021 val += (n < node);
5022
1da177e4 5023 /* Give preference to headless and unused nodes */
a70f7302
RR
5024 tmp = cpumask_of_node(n);
5025 if (!cpumask_empty(tmp))
1da177e4
LT
5026 val += PENALTY_FOR_NODE_WITH_CPUS;
5027
5028 /* Slight preference for less loaded node */
5029 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5030 val += node_load[n];
5031
5032 if (val < min_val) {
5033 min_val = val;
5034 best_node = n;
5035 }
5036 }
5037
5038 if (best_node >= 0)
5039 node_set(best_node, *used_node_mask);
5040
5041 return best_node;
5042}
5043
f0c0b2b8
KH
5044
5045/*
5046 * Build zonelists ordered by node and zones within node.
5047 * This results in maximum locality--normal zone overflows into local
5048 * DMA zone, if any--but risks exhausting DMA zone.
5049 */
9d3be21b
MH
5050static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5051 unsigned nr_nodes)
1da177e4 5052{
9d3be21b
MH
5053 struct zoneref *zonerefs;
5054 int i;
5055
5056 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5057
5058 for (i = 0; i < nr_nodes; i++) {
5059 int nr_zones;
5060
5061 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5062
9d3be21b
MH
5063 nr_zones = build_zonerefs_node(node, zonerefs);
5064 zonerefs += nr_zones;
5065 }
5066 zonerefs->zone = NULL;
5067 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5068}
5069
523b9458
CL
5070/*
5071 * Build gfp_thisnode zonelists
5072 */
5073static void build_thisnode_zonelists(pg_data_t *pgdat)
5074{
9d3be21b
MH
5075 struct zoneref *zonerefs;
5076 int nr_zones;
523b9458 5077
9d3be21b
MH
5078 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5079 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5080 zonerefs += nr_zones;
5081 zonerefs->zone = NULL;
5082 zonerefs->zone_idx = 0;
523b9458
CL
5083}
5084
f0c0b2b8
KH
5085/*
5086 * Build zonelists ordered by zone and nodes within zones.
5087 * This results in conserving DMA zone[s] until all Normal memory is
5088 * exhausted, but results in overflowing to remote node while memory
5089 * may still exist in local DMA zone.
5090 */
f0c0b2b8 5091
f0c0b2b8
KH
5092static void build_zonelists(pg_data_t *pgdat)
5093{
9d3be21b
MH
5094 static int node_order[MAX_NUMNODES];
5095 int node, load, nr_nodes = 0;
1da177e4 5096 nodemask_t used_mask;
f0c0b2b8 5097 int local_node, prev_node;
1da177e4
LT
5098
5099 /* NUMA-aware ordering of nodes */
5100 local_node = pgdat->node_id;
62bc62a8 5101 load = nr_online_nodes;
1da177e4
LT
5102 prev_node = local_node;
5103 nodes_clear(used_mask);
f0c0b2b8 5104
f0c0b2b8 5105 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5106 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5107 /*
5108 * We don't want to pressure a particular node.
5109 * So adding penalty to the first node in same
5110 * distance group to make it round-robin.
5111 */
957f822a
DR
5112 if (node_distance(local_node, node) !=
5113 node_distance(local_node, prev_node))
f0c0b2b8
KH
5114 node_load[node] = load;
5115
9d3be21b 5116 node_order[nr_nodes++] = node;
1da177e4
LT
5117 prev_node = node;
5118 load--;
1da177e4 5119 }
523b9458 5120
9d3be21b 5121 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5122 build_thisnode_zonelists(pgdat);
1da177e4
LT
5123}
5124
7aac7898
LS
5125#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5126/*
5127 * Return node id of node used for "local" allocations.
5128 * I.e., first node id of first zone in arg node's generic zonelist.
5129 * Used for initializing percpu 'numa_mem', which is used primarily
5130 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5131 */
5132int local_memory_node(int node)
5133{
c33d6c06 5134 struct zoneref *z;
7aac7898 5135
c33d6c06 5136 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5137 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5138 NULL);
5139 return z->zone->node;
7aac7898
LS
5140}
5141#endif
f0c0b2b8 5142
6423aa81
JK
5143static void setup_min_unmapped_ratio(void);
5144static void setup_min_slab_ratio(void);
1da177e4
LT
5145#else /* CONFIG_NUMA */
5146
f0c0b2b8 5147static void build_zonelists(pg_data_t *pgdat)
1da177e4 5148{
19655d34 5149 int node, local_node;
9d3be21b
MH
5150 struct zoneref *zonerefs;
5151 int nr_zones;
1da177e4
LT
5152
5153 local_node = pgdat->node_id;
1da177e4 5154
9d3be21b
MH
5155 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5156 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5157 zonerefs += nr_zones;
1da177e4 5158
54a6eb5c
MG
5159 /*
5160 * Now we build the zonelist so that it contains the zones
5161 * of all the other nodes.
5162 * We don't want to pressure a particular node, so when
5163 * building the zones for node N, we make sure that the
5164 * zones coming right after the local ones are those from
5165 * node N+1 (modulo N)
5166 */
5167 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5168 if (!node_online(node))
5169 continue;
9d3be21b
MH
5170 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5171 zonerefs += nr_zones;
1da177e4 5172 }
54a6eb5c
MG
5173 for (node = 0; node < local_node; node++) {
5174 if (!node_online(node))
5175 continue;
9d3be21b
MH
5176 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5177 zonerefs += nr_zones;
54a6eb5c
MG
5178 }
5179
9d3be21b
MH
5180 zonerefs->zone = NULL;
5181 zonerefs->zone_idx = 0;
1da177e4
LT
5182}
5183
5184#endif /* CONFIG_NUMA */
5185
99dcc3e5
CL
5186/*
5187 * Boot pageset table. One per cpu which is going to be used for all
5188 * zones and all nodes. The parameters will be set in such a way
5189 * that an item put on a list will immediately be handed over to
5190 * the buddy list. This is safe since pageset manipulation is done
5191 * with interrupts disabled.
5192 *
5193 * The boot_pagesets must be kept even after bootup is complete for
5194 * unused processors and/or zones. They do play a role for bootstrapping
5195 * hotplugged processors.
5196 *
5197 * zoneinfo_show() and maybe other functions do
5198 * not check if the processor is online before following the pageset pointer.
5199 * Other parts of the kernel may not check if the zone is available.
5200 */
5201static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5202static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5203static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5204
11cd8638 5205static void __build_all_zonelists(void *data)
1da177e4 5206{
6811378e 5207 int nid;
afb6ebb3 5208 int __maybe_unused cpu;
9adb62a5 5209 pg_data_t *self = data;
b93e0f32
MH
5210 static DEFINE_SPINLOCK(lock);
5211
5212 spin_lock(&lock);
9276b1bc 5213
7f9cfb31
BL
5214#ifdef CONFIG_NUMA
5215 memset(node_load, 0, sizeof(node_load));
5216#endif
9adb62a5 5217
c1152583
WY
5218 /*
5219 * This node is hotadded and no memory is yet present. So just
5220 * building zonelists is fine - no need to touch other nodes.
5221 */
9adb62a5
JL
5222 if (self && !node_online(self->node_id)) {
5223 build_zonelists(self);
c1152583
WY
5224 } else {
5225 for_each_online_node(nid) {
5226 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5227
c1152583
WY
5228 build_zonelists(pgdat);
5229 }
99dcc3e5 5230
7aac7898
LS
5231#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5232 /*
5233 * We now know the "local memory node" for each node--
5234 * i.e., the node of the first zone in the generic zonelist.
5235 * Set up numa_mem percpu variable for on-line cpus. During
5236 * boot, only the boot cpu should be on-line; we'll init the
5237 * secondary cpus' numa_mem as they come on-line. During
5238 * node/memory hotplug, we'll fixup all on-line cpus.
5239 */
d9c9a0b9 5240 for_each_online_cpu(cpu)
7aac7898 5241 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5242#endif
d9c9a0b9 5243 }
b93e0f32
MH
5244
5245 spin_unlock(&lock);
6811378e
YG
5246}
5247
061f67bc
RV
5248static noinline void __init
5249build_all_zonelists_init(void)
5250{
afb6ebb3
MH
5251 int cpu;
5252
061f67bc 5253 __build_all_zonelists(NULL);
afb6ebb3
MH
5254
5255 /*
5256 * Initialize the boot_pagesets that are going to be used
5257 * for bootstrapping processors. The real pagesets for
5258 * each zone will be allocated later when the per cpu
5259 * allocator is available.
5260 *
5261 * boot_pagesets are used also for bootstrapping offline
5262 * cpus if the system is already booted because the pagesets
5263 * are needed to initialize allocators on a specific cpu too.
5264 * F.e. the percpu allocator needs the page allocator which
5265 * needs the percpu allocator in order to allocate its pagesets
5266 * (a chicken-egg dilemma).
5267 */
5268 for_each_possible_cpu(cpu)
5269 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5270
061f67bc
RV
5271 mminit_verify_zonelist();
5272 cpuset_init_current_mems_allowed();
5273}
5274
4eaf3f64 5275/*
4eaf3f64 5276 * unless system_state == SYSTEM_BOOTING.
061f67bc 5277 *
72675e13 5278 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5279 * [protected by SYSTEM_BOOTING].
4eaf3f64 5280 */
72675e13 5281void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5282{
5283 if (system_state == SYSTEM_BOOTING) {
061f67bc 5284 build_all_zonelists_init();
6811378e 5285 } else {
11cd8638 5286 __build_all_zonelists(pgdat);
6811378e
YG
5287 /* cpuset refresh routine should be here */
5288 }
bd1e22b8 5289 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5290 /*
5291 * Disable grouping by mobility if the number of pages in the
5292 * system is too low to allow the mechanism to work. It would be
5293 * more accurate, but expensive to check per-zone. This check is
5294 * made on memory-hotadd so a system can start with mobility
5295 * disabled and enable it later
5296 */
d9c23400 5297 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5298 page_group_by_mobility_disabled = 1;
5299 else
5300 page_group_by_mobility_disabled = 0;
5301
c9bff3ee 5302 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5303 nr_online_nodes,
756a025f
JP
5304 page_group_by_mobility_disabled ? "off" : "on",
5305 vm_total_pages);
f0c0b2b8 5306#ifdef CONFIG_NUMA
f88dfff5 5307 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5308#endif
1da177e4
LT
5309}
5310
1da177e4
LT
5311/*
5312 * Initially all pages are reserved - free ones are freed
5313 * up by free_all_bootmem() once the early boot process is
5314 * done. Non-atomic initialization, single-pass.
5315 */
c09b4240 5316void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5317 unsigned long start_pfn, enum memmap_context context)
1da177e4 5318{
4b94ffdc 5319 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5320 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5321 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5322 unsigned long pfn;
3a80a7fa 5323 unsigned long nr_initialised = 0;
342332e6
TI
5324#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 struct memblock_region *r = NULL, *tmp;
5326#endif
1da177e4 5327
22b31eec
HD
5328 if (highest_memmap_pfn < end_pfn - 1)
5329 highest_memmap_pfn = end_pfn - 1;
5330
4b94ffdc
DW
5331 /*
5332 * Honor reservation requested by the driver for this ZONE_DEVICE
5333 * memory
5334 */
5335 if (altmap && start_pfn == altmap->base_pfn)
5336 start_pfn += altmap->reserve;
5337
cbe8dd4a 5338 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5339 /*
b72d0ffb
AM
5340 * There can be holes in boot-time mem_map[]s handed to this
5341 * function. They do not exist on hotplugged memory.
a2f3aa02 5342 */
b72d0ffb
AM
5343 if (context != MEMMAP_EARLY)
5344 goto not_early;
5345
b92df1de
PB
5346 if (!early_pfn_valid(pfn)) {
5347#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5348 /*
5349 * Skip to the pfn preceding the next valid one (or
5350 * end_pfn), such that we hit a valid pfn (or end_pfn)
5351 * on our next iteration of the loop.
5352 */
5353 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5354#endif
b72d0ffb 5355 continue;
b92df1de 5356 }
b72d0ffb
AM
5357 if (!early_pfn_in_nid(pfn, nid))
5358 continue;
5359 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5360 break;
342332e6
TI
5361
5362#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5363 /*
5364 * Check given memblock attribute by firmware which can affect
5365 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5366 * mirrored, it's an overlapped memmap init. skip it.
5367 */
5368 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5369 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5370 for_each_memblock(memory, tmp)
5371 if (pfn < memblock_region_memory_end_pfn(tmp))
5372 break;
5373 r = tmp;
5374 }
5375 if (pfn >= memblock_region_memory_base_pfn(r) &&
5376 memblock_is_mirror(r)) {
5377 /* already initialized as NORMAL */
5378 pfn = memblock_region_memory_end_pfn(r);
5379 continue;
342332e6 5380 }
a2f3aa02 5381 }
b72d0ffb 5382#endif
ac5d2539 5383
b72d0ffb 5384not_early:
ac5d2539
MG
5385 /*
5386 * Mark the block movable so that blocks are reserved for
5387 * movable at startup. This will force kernel allocations
5388 * to reserve their blocks rather than leaking throughout
5389 * the address space during boot when many long-lived
974a786e 5390 * kernel allocations are made.
ac5d2539
MG
5391 *
5392 * bitmap is created for zone's valid pfn range. but memmap
5393 * can be created for invalid pages (for alignment)
5394 * check here not to call set_pageblock_migratetype() against
5395 * pfn out of zone.
5396 */
5397 if (!(pfn & (pageblock_nr_pages - 1))) {
5398 struct page *page = pfn_to_page(pfn);
5399
5400 __init_single_page(page, pfn, zone, nid);
5401 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5402 cond_resched();
ac5d2539
MG
5403 } else {
5404 __init_single_pfn(pfn, zone, nid);
5405 }
1da177e4
LT
5406 }
5407}
5408
1e548deb 5409static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5410{
7aeb09f9 5411 unsigned int order, t;
b2a0ac88
MG
5412 for_each_migratetype_order(order, t) {
5413 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5414 zone->free_area[order].nr_free = 0;
5415 }
5416}
5417
5418#ifndef __HAVE_ARCH_MEMMAP_INIT
5419#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5420 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5421#endif
5422
7cd2b0a3 5423static int zone_batchsize(struct zone *zone)
e7c8d5c9 5424{
3a6be87f 5425#ifdef CONFIG_MMU
e7c8d5c9
CL
5426 int batch;
5427
5428 /*
5429 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5430 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5431 *
5432 * OK, so we don't know how big the cache is. So guess.
5433 */
b40da049 5434 batch = zone->managed_pages / 1024;
ba56e91c
SR
5435 if (batch * PAGE_SIZE > 512 * 1024)
5436 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5437 batch /= 4; /* We effectively *= 4 below */
5438 if (batch < 1)
5439 batch = 1;
5440
5441 /*
0ceaacc9
NP
5442 * Clamp the batch to a 2^n - 1 value. Having a power
5443 * of 2 value was found to be more likely to have
5444 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5445 *
0ceaacc9
NP
5446 * For example if 2 tasks are alternately allocating
5447 * batches of pages, one task can end up with a lot
5448 * of pages of one half of the possible page colors
5449 * and the other with pages of the other colors.
e7c8d5c9 5450 */
9155203a 5451 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5452
e7c8d5c9 5453 return batch;
3a6be87f
DH
5454
5455#else
5456 /* The deferral and batching of frees should be suppressed under NOMMU
5457 * conditions.
5458 *
5459 * The problem is that NOMMU needs to be able to allocate large chunks
5460 * of contiguous memory as there's no hardware page translation to
5461 * assemble apparent contiguous memory from discontiguous pages.
5462 *
5463 * Queueing large contiguous runs of pages for batching, however,
5464 * causes the pages to actually be freed in smaller chunks. As there
5465 * can be a significant delay between the individual batches being
5466 * recycled, this leads to the once large chunks of space being
5467 * fragmented and becoming unavailable for high-order allocations.
5468 */
5469 return 0;
5470#endif
e7c8d5c9
CL
5471}
5472
8d7a8fa9
CS
5473/*
5474 * pcp->high and pcp->batch values are related and dependent on one another:
5475 * ->batch must never be higher then ->high.
5476 * The following function updates them in a safe manner without read side
5477 * locking.
5478 *
5479 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5480 * those fields changing asynchronously (acording the the above rule).
5481 *
5482 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5483 * outside of boot time (or some other assurance that no concurrent updaters
5484 * exist).
5485 */
5486static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5487 unsigned long batch)
5488{
5489 /* start with a fail safe value for batch */
5490 pcp->batch = 1;
5491 smp_wmb();
5492
5493 /* Update high, then batch, in order */
5494 pcp->high = high;
5495 smp_wmb();
5496
5497 pcp->batch = batch;
5498}
5499
3664033c 5500/* a companion to pageset_set_high() */
4008bab7
CS
5501static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5502{
8d7a8fa9 5503 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5504}
5505
88c90dbc 5506static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5507{
5508 struct per_cpu_pages *pcp;
5f8dcc21 5509 int migratetype;
2caaad41 5510
1c6fe946
MD
5511 memset(p, 0, sizeof(*p));
5512
3dfa5721 5513 pcp = &p->pcp;
2caaad41 5514 pcp->count = 0;
5f8dcc21
MG
5515 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5516 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5517}
5518
88c90dbc
CS
5519static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5520{
5521 pageset_init(p);
5522 pageset_set_batch(p, batch);
5523}
5524
8ad4b1fb 5525/*
3664033c 5526 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5527 * to the value high for the pageset p.
5528 */
3664033c 5529static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5530 unsigned long high)
5531{
8d7a8fa9
CS
5532 unsigned long batch = max(1UL, high / 4);
5533 if ((high / 4) > (PAGE_SHIFT * 8))
5534 batch = PAGE_SHIFT * 8;
8ad4b1fb 5535
8d7a8fa9 5536 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5537}
5538
7cd2b0a3
DR
5539static void pageset_set_high_and_batch(struct zone *zone,
5540 struct per_cpu_pageset *pcp)
56cef2b8 5541{
56cef2b8 5542 if (percpu_pagelist_fraction)
3664033c 5543 pageset_set_high(pcp,
56cef2b8
CS
5544 (zone->managed_pages /
5545 percpu_pagelist_fraction));
5546 else
5547 pageset_set_batch(pcp, zone_batchsize(zone));
5548}
5549
169f6c19
CS
5550static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5551{
5552 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5553
5554 pageset_init(pcp);
5555 pageset_set_high_and_batch(zone, pcp);
5556}
5557
72675e13 5558void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5559{
5560 int cpu;
319774e2 5561 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5562 for_each_possible_cpu(cpu)
5563 zone_pageset_init(zone, cpu);
319774e2
WF
5564}
5565
2caaad41 5566/*
99dcc3e5
CL
5567 * Allocate per cpu pagesets and initialize them.
5568 * Before this call only boot pagesets were available.
e7c8d5c9 5569 */
99dcc3e5 5570void __init setup_per_cpu_pageset(void)
e7c8d5c9 5571{
b4911ea2 5572 struct pglist_data *pgdat;
99dcc3e5 5573 struct zone *zone;
e7c8d5c9 5574
319774e2
WF
5575 for_each_populated_zone(zone)
5576 setup_zone_pageset(zone);
b4911ea2
MG
5577
5578 for_each_online_pgdat(pgdat)
5579 pgdat->per_cpu_nodestats =
5580 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5581}
5582
c09b4240 5583static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5584{
99dcc3e5
CL
5585 /*
5586 * per cpu subsystem is not up at this point. The following code
5587 * relies on the ability of the linker to provide the
5588 * offset of a (static) per cpu variable into the per cpu area.
5589 */
5590 zone->pageset = &boot_pageset;
ed8ece2e 5591
b38a8725 5592 if (populated_zone(zone))
99dcc3e5
CL
5593 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5594 zone->name, zone->present_pages,
5595 zone_batchsize(zone));
ed8ece2e
DH
5596}
5597
dc0bbf3b 5598void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5599 unsigned long zone_start_pfn,
b171e409 5600 unsigned long size)
ed8ece2e
DH
5601{
5602 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5603
ed8ece2e
DH
5604 pgdat->nr_zones = zone_idx(zone) + 1;
5605
ed8ece2e
DH
5606 zone->zone_start_pfn = zone_start_pfn;
5607
708614e6
MG
5608 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5609 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5610 pgdat->node_id,
5611 (unsigned long)zone_idx(zone),
5612 zone_start_pfn, (zone_start_pfn + size));
5613
1e548deb 5614 zone_init_free_lists(zone);
9dcb8b68 5615 zone->initialized = 1;
ed8ece2e
DH
5616}
5617
0ee332c1 5618#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5619#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5620
c713216d
MG
5621/*
5622 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5623 */
8a942fde
MG
5624int __meminit __early_pfn_to_nid(unsigned long pfn,
5625 struct mminit_pfnnid_cache *state)
c713216d 5626{
c13291a5 5627 unsigned long start_pfn, end_pfn;
e76b63f8 5628 int nid;
7c243c71 5629
8a942fde
MG
5630 if (state->last_start <= pfn && pfn < state->last_end)
5631 return state->last_nid;
c713216d 5632
e76b63f8
YL
5633 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5634 if (nid != -1) {
8a942fde
MG
5635 state->last_start = start_pfn;
5636 state->last_end = end_pfn;
5637 state->last_nid = nid;
e76b63f8
YL
5638 }
5639
5640 return nid;
c713216d
MG
5641}
5642#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5643
c713216d 5644/**
6782832e 5645 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5646 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5647 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5648 *
7d018176
ZZ
5649 * If an architecture guarantees that all ranges registered contain no holes
5650 * and may be freed, this this function may be used instead of calling
5651 * memblock_free_early_nid() manually.
c713216d 5652 */
c13291a5 5653void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5654{
c13291a5
TH
5655 unsigned long start_pfn, end_pfn;
5656 int i, this_nid;
edbe7d23 5657
c13291a5
TH
5658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5659 start_pfn = min(start_pfn, max_low_pfn);
5660 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5661
c13291a5 5662 if (start_pfn < end_pfn)
6782832e
SS
5663 memblock_free_early_nid(PFN_PHYS(start_pfn),
5664 (end_pfn - start_pfn) << PAGE_SHIFT,
5665 this_nid);
edbe7d23 5666 }
edbe7d23 5667}
edbe7d23 5668
c713216d
MG
5669/**
5670 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5671 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5672 *
7d018176
ZZ
5673 * If an architecture guarantees that all ranges registered contain no holes and may
5674 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5675 */
5676void __init sparse_memory_present_with_active_regions(int nid)
5677{
c13291a5
TH
5678 unsigned long start_pfn, end_pfn;
5679 int i, this_nid;
c713216d 5680
c13291a5
TH
5681 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5682 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5683}
5684
5685/**
5686 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5687 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5688 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5689 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5690 *
5691 * It returns the start and end page frame of a node based on information
7d018176 5692 * provided by memblock_set_node(). If called for a node
c713216d 5693 * with no available memory, a warning is printed and the start and end
88ca3b94 5694 * PFNs will be 0.
c713216d 5695 */
a3142c8e 5696void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5697 unsigned long *start_pfn, unsigned long *end_pfn)
5698{
c13291a5 5699 unsigned long this_start_pfn, this_end_pfn;
c713216d 5700 int i;
c13291a5 5701
c713216d
MG
5702 *start_pfn = -1UL;
5703 *end_pfn = 0;
5704
c13291a5
TH
5705 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5706 *start_pfn = min(*start_pfn, this_start_pfn);
5707 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5708 }
5709
633c0666 5710 if (*start_pfn == -1UL)
c713216d 5711 *start_pfn = 0;
c713216d
MG
5712}
5713
2a1e274a
MG
5714/*
5715 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5716 * assumption is made that zones within a node are ordered in monotonic
5717 * increasing memory addresses so that the "highest" populated zone is used
5718 */
b69a7288 5719static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5720{
5721 int zone_index;
5722 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5723 if (zone_index == ZONE_MOVABLE)
5724 continue;
5725
5726 if (arch_zone_highest_possible_pfn[zone_index] >
5727 arch_zone_lowest_possible_pfn[zone_index])
5728 break;
5729 }
5730
5731 VM_BUG_ON(zone_index == -1);
5732 movable_zone = zone_index;
5733}
5734
5735/*
5736 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5737 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5738 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5739 * in each node depending on the size of each node and how evenly kernelcore
5740 * is distributed. This helper function adjusts the zone ranges
5741 * provided by the architecture for a given node by using the end of the
5742 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5743 * zones within a node are in order of monotonic increases memory addresses
5744 */
b69a7288 5745static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5746 unsigned long zone_type,
5747 unsigned long node_start_pfn,
5748 unsigned long node_end_pfn,
5749 unsigned long *zone_start_pfn,
5750 unsigned long *zone_end_pfn)
5751{
5752 /* Only adjust if ZONE_MOVABLE is on this node */
5753 if (zone_movable_pfn[nid]) {
5754 /* Size ZONE_MOVABLE */
5755 if (zone_type == ZONE_MOVABLE) {
5756 *zone_start_pfn = zone_movable_pfn[nid];
5757 *zone_end_pfn = min(node_end_pfn,
5758 arch_zone_highest_possible_pfn[movable_zone]);
5759
e506b996
XQ
5760 /* Adjust for ZONE_MOVABLE starting within this range */
5761 } else if (!mirrored_kernelcore &&
5762 *zone_start_pfn < zone_movable_pfn[nid] &&
5763 *zone_end_pfn > zone_movable_pfn[nid]) {
5764 *zone_end_pfn = zone_movable_pfn[nid];
5765
2a1e274a
MG
5766 /* Check if this whole range is within ZONE_MOVABLE */
5767 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5768 *zone_start_pfn = *zone_end_pfn;
5769 }
5770}
5771
c713216d
MG
5772/*
5773 * Return the number of pages a zone spans in a node, including holes
5774 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5775 */
6ea6e688 5776static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5777 unsigned long zone_type,
7960aedd
ZY
5778 unsigned long node_start_pfn,
5779 unsigned long node_end_pfn,
d91749c1
TI
5780 unsigned long *zone_start_pfn,
5781 unsigned long *zone_end_pfn,
c713216d
MG
5782 unsigned long *ignored)
5783{
b5685e92 5784 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5785 if (!node_start_pfn && !node_end_pfn)
5786 return 0;
5787
7960aedd 5788 /* Get the start and end of the zone */
d91749c1
TI
5789 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5790 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5791 adjust_zone_range_for_zone_movable(nid, zone_type,
5792 node_start_pfn, node_end_pfn,
d91749c1 5793 zone_start_pfn, zone_end_pfn);
c713216d
MG
5794
5795 /* Check that this node has pages within the zone's required range */
d91749c1 5796 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5797 return 0;
5798
5799 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5800 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5801 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5802
5803 /* Return the spanned pages */
d91749c1 5804 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5805}
5806
5807/*
5808 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5809 * then all holes in the requested range will be accounted for.
c713216d 5810 */
32996250 5811unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5812 unsigned long range_start_pfn,
5813 unsigned long range_end_pfn)
5814{
96e907d1
TH
5815 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5816 unsigned long start_pfn, end_pfn;
5817 int i;
c713216d 5818
96e907d1
TH
5819 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5820 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5821 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5822 nr_absent -= end_pfn - start_pfn;
c713216d 5823 }
96e907d1 5824 return nr_absent;
c713216d
MG
5825}
5826
5827/**
5828 * absent_pages_in_range - Return number of page frames in holes within a range
5829 * @start_pfn: The start PFN to start searching for holes
5830 * @end_pfn: The end PFN to stop searching for holes
5831 *
88ca3b94 5832 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5833 */
5834unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5835 unsigned long end_pfn)
5836{
5837 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5838}
5839
5840/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5841static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5842 unsigned long zone_type,
7960aedd
ZY
5843 unsigned long node_start_pfn,
5844 unsigned long node_end_pfn,
c713216d
MG
5845 unsigned long *ignored)
5846{
96e907d1
TH
5847 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5848 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5849 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5850 unsigned long nr_absent;
9c7cd687 5851
b5685e92 5852 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5853 if (!node_start_pfn && !node_end_pfn)
5854 return 0;
5855
96e907d1
TH
5856 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5857 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5858
2a1e274a
MG
5859 adjust_zone_range_for_zone_movable(nid, zone_type,
5860 node_start_pfn, node_end_pfn,
5861 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5862 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5863
5864 /*
5865 * ZONE_MOVABLE handling.
5866 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5867 * and vice versa.
5868 */
e506b996
XQ
5869 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5870 unsigned long start_pfn, end_pfn;
5871 struct memblock_region *r;
5872
5873 for_each_memblock(memory, r) {
5874 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5875 zone_start_pfn, zone_end_pfn);
5876 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5877 zone_start_pfn, zone_end_pfn);
5878
5879 if (zone_type == ZONE_MOVABLE &&
5880 memblock_is_mirror(r))
5881 nr_absent += end_pfn - start_pfn;
5882
5883 if (zone_type == ZONE_NORMAL &&
5884 !memblock_is_mirror(r))
5885 nr_absent += end_pfn - start_pfn;
342332e6
TI
5886 }
5887 }
5888
5889 return nr_absent;
c713216d 5890}
0e0b864e 5891
0ee332c1 5892#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5893static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5894 unsigned long zone_type,
7960aedd
ZY
5895 unsigned long node_start_pfn,
5896 unsigned long node_end_pfn,
d91749c1
TI
5897 unsigned long *zone_start_pfn,
5898 unsigned long *zone_end_pfn,
c713216d
MG
5899 unsigned long *zones_size)
5900{
d91749c1
TI
5901 unsigned int zone;
5902
5903 *zone_start_pfn = node_start_pfn;
5904 for (zone = 0; zone < zone_type; zone++)
5905 *zone_start_pfn += zones_size[zone];
5906
5907 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5908
c713216d
MG
5909 return zones_size[zone_type];
5910}
5911
6ea6e688 5912static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5913 unsigned long zone_type,
7960aedd
ZY
5914 unsigned long node_start_pfn,
5915 unsigned long node_end_pfn,
c713216d
MG
5916 unsigned long *zholes_size)
5917{
5918 if (!zholes_size)
5919 return 0;
5920
5921 return zholes_size[zone_type];
5922}
20e6926d 5923
0ee332c1 5924#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5925
a3142c8e 5926static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5927 unsigned long node_start_pfn,
5928 unsigned long node_end_pfn,
5929 unsigned long *zones_size,
5930 unsigned long *zholes_size)
c713216d 5931{
febd5949 5932 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5933 enum zone_type i;
5934
febd5949
GZ
5935 for (i = 0; i < MAX_NR_ZONES; i++) {
5936 struct zone *zone = pgdat->node_zones + i;
d91749c1 5937 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5938 unsigned long size, real_size;
c713216d 5939
febd5949
GZ
5940 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5941 node_start_pfn,
5942 node_end_pfn,
d91749c1
TI
5943 &zone_start_pfn,
5944 &zone_end_pfn,
febd5949
GZ
5945 zones_size);
5946 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5947 node_start_pfn, node_end_pfn,
5948 zholes_size);
d91749c1
TI
5949 if (size)
5950 zone->zone_start_pfn = zone_start_pfn;
5951 else
5952 zone->zone_start_pfn = 0;
febd5949
GZ
5953 zone->spanned_pages = size;
5954 zone->present_pages = real_size;
5955
5956 totalpages += size;
5957 realtotalpages += real_size;
5958 }
5959
5960 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5961 pgdat->node_present_pages = realtotalpages;
5962 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5963 realtotalpages);
5964}
5965
835c134e
MG
5966#ifndef CONFIG_SPARSEMEM
5967/*
5968 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5969 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5970 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5971 * round what is now in bits to nearest long in bits, then return it in
5972 * bytes.
5973 */
7c45512d 5974static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5975{
5976 unsigned long usemapsize;
5977
7c45512d 5978 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5979 usemapsize = roundup(zonesize, pageblock_nr_pages);
5980 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5981 usemapsize *= NR_PAGEBLOCK_BITS;
5982 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5983
5984 return usemapsize / 8;
5985}
5986
5987static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5988 struct zone *zone,
5989 unsigned long zone_start_pfn,
5990 unsigned long zonesize)
835c134e 5991{
7c45512d 5992 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5993 zone->pageblock_flags = NULL;
58a01a45 5994 if (usemapsize)
6782832e
SS
5995 zone->pageblock_flags =
5996 memblock_virt_alloc_node_nopanic(usemapsize,
5997 pgdat->node_id);
835c134e
MG
5998}
5999#else
7c45512d
LT
6000static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6001 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6002#endif /* CONFIG_SPARSEMEM */
6003
d9c23400 6004#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6005
d9c23400 6006/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6007void __paginginit set_pageblock_order(void)
d9c23400 6008{
955c1cd7
AM
6009 unsigned int order;
6010
d9c23400
MG
6011 /* Check that pageblock_nr_pages has not already been setup */
6012 if (pageblock_order)
6013 return;
6014
955c1cd7
AM
6015 if (HPAGE_SHIFT > PAGE_SHIFT)
6016 order = HUGETLB_PAGE_ORDER;
6017 else
6018 order = MAX_ORDER - 1;
6019
d9c23400
MG
6020 /*
6021 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6022 * This value may be variable depending on boot parameters on IA64 and
6023 * powerpc.
d9c23400
MG
6024 */
6025 pageblock_order = order;
6026}
6027#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6028
ba72cb8c
MG
6029/*
6030 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6031 * is unused as pageblock_order is set at compile-time. See
6032 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6033 * the kernel config
ba72cb8c 6034 */
15ca220e 6035void __paginginit set_pageblock_order(void)
ba72cb8c 6036{
ba72cb8c 6037}
d9c23400
MG
6038
6039#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6040
01cefaef
JL
6041static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6042 unsigned long present_pages)
6043{
6044 unsigned long pages = spanned_pages;
6045
6046 /*
6047 * Provide a more accurate estimation if there are holes within
6048 * the zone and SPARSEMEM is in use. If there are holes within the
6049 * zone, each populated memory region may cost us one or two extra
6050 * memmap pages due to alignment because memmap pages for each
89d790ab 6051 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6052 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6053 */
6054 if (spanned_pages > present_pages + (present_pages >> 4) &&
6055 IS_ENABLED(CONFIG_SPARSEMEM))
6056 pages = present_pages;
6057
6058 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6059}
6060
1da177e4
LT
6061/*
6062 * Set up the zone data structures:
6063 * - mark all pages reserved
6064 * - mark all memory queues empty
6065 * - clear the memory bitmaps
6527af5d
MK
6066 *
6067 * NOTE: pgdat should get zeroed by caller.
1da177e4 6068 */
7f3eb55b 6069static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6070{
2f1b6248 6071 enum zone_type j;
ed8ece2e 6072 int nid = pgdat->node_id;
1da177e4 6073
208d54e5 6074 pgdat_resize_init(pgdat);
8177a420
AA
6075#ifdef CONFIG_NUMA_BALANCING
6076 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6077 pgdat->numabalancing_migrate_nr_pages = 0;
6078 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6079#endif
6080#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6081 spin_lock_init(&pgdat->split_queue_lock);
6082 INIT_LIST_HEAD(&pgdat->split_queue);
6083 pgdat->split_queue_len = 0;
8177a420 6084#endif
1da177e4 6085 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6086 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6087#ifdef CONFIG_COMPACTION
6088 init_waitqueue_head(&pgdat->kcompactd_wait);
6089#endif
eefa864b 6090 pgdat_page_ext_init(pgdat);
a52633d8 6091 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6092 lruvec_init(node_lruvec(pgdat));
5f63b720 6093
385386cf
JW
6094 pgdat->per_cpu_nodestats = &boot_nodestats;
6095
1da177e4
LT
6096 for (j = 0; j < MAX_NR_ZONES; j++) {
6097 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6098 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6099 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6100
febd5949
GZ
6101 size = zone->spanned_pages;
6102 realsize = freesize = zone->present_pages;
1da177e4 6103
0e0b864e 6104 /*
9feedc9d 6105 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6106 * is used by this zone for memmap. This affects the watermark
6107 * and per-cpu initialisations
6108 */
01cefaef 6109 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6110 if (!is_highmem_idx(j)) {
6111 if (freesize >= memmap_pages) {
6112 freesize -= memmap_pages;
6113 if (memmap_pages)
6114 printk(KERN_DEBUG
6115 " %s zone: %lu pages used for memmap\n",
6116 zone_names[j], memmap_pages);
6117 } else
1170532b 6118 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6119 zone_names[j], memmap_pages, freesize);
6120 }
0e0b864e 6121
6267276f 6122 /* Account for reserved pages */
9feedc9d
JL
6123 if (j == 0 && freesize > dma_reserve) {
6124 freesize -= dma_reserve;
d903ef9f 6125 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6126 zone_names[0], dma_reserve);
0e0b864e
MG
6127 }
6128
98d2b0eb 6129 if (!is_highmem_idx(j))
9feedc9d 6130 nr_kernel_pages += freesize;
01cefaef
JL
6131 /* Charge for highmem memmap if there are enough kernel pages */
6132 else if (nr_kernel_pages > memmap_pages * 2)
6133 nr_kernel_pages -= memmap_pages;
9feedc9d 6134 nr_all_pages += freesize;
1da177e4 6135
9feedc9d
JL
6136 /*
6137 * Set an approximate value for lowmem here, it will be adjusted
6138 * when the bootmem allocator frees pages into the buddy system.
6139 * And all highmem pages will be managed by the buddy system.
6140 */
6141 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6142#ifdef CONFIG_NUMA
d5f541ed 6143 zone->node = nid;
9614634f 6144#endif
1da177e4 6145 zone->name = zone_names[j];
a52633d8 6146 zone->zone_pgdat = pgdat;
1da177e4 6147 spin_lock_init(&zone->lock);
bdc8cb98 6148 zone_seqlock_init(zone);
ed8ece2e 6149 zone_pcp_init(zone);
81c0a2bb 6150
1da177e4
LT
6151 if (!size)
6152 continue;
6153
955c1cd7 6154 set_pageblock_order();
7c45512d 6155 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6156 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6157 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6158 }
6159}
6160
bd721ea7 6161static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6162{
b0aeba74 6163 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6164 unsigned long __maybe_unused offset = 0;
6165
1da177e4
LT
6166 /* Skip empty nodes */
6167 if (!pgdat->node_spanned_pages)
6168 return;
6169
d41dee36 6170#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6171 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6172 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6173 /* ia64 gets its own node_mem_map, before this, without bootmem */
6174 if (!pgdat->node_mem_map) {
b0aeba74 6175 unsigned long size, end;
d41dee36
AW
6176 struct page *map;
6177
e984bb43
BP
6178 /*
6179 * The zone's endpoints aren't required to be MAX_ORDER
6180 * aligned but the node_mem_map endpoints must be in order
6181 * for the buddy allocator to function correctly.
6182 */
108bcc96 6183 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6184 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6185 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6186 map = alloc_remap(pgdat->node_id, size);
6187 if (!map)
6782832e
SS
6188 map = memblock_virt_alloc_node_nopanic(size,
6189 pgdat->node_id);
a1c34a3b 6190 pgdat->node_mem_map = map + offset;
1da177e4 6191 }
12d810c1 6192#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6193 /*
6194 * With no DISCONTIG, the global mem_map is just set as node 0's
6195 */
c713216d 6196 if (pgdat == NODE_DATA(0)) {
1da177e4 6197 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6198#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6199 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6200 mem_map -= offset;
0ee332c1 6201#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6202 }
1da177e4 6203#endif
d41dee36 6204#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6205}
6206
9109fb7b
JW
6207void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6208 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6209{
9109fb7b 6210 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6211 unsigned long start_pfn = 0;
6212 unsigned long end_pfn = 0;
9109fb7b 6213
88fdf75d 6214 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6215 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6216
1da177e4
LT
6217 pgdat->node_id = nid;
6218 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6219 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6220#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6221 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6222 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6223 (u64)start_pfn << PAGE_SHIFT,
6224 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6225#else
6226 start_pfn = node_start_pfn;
7960aedd
ZY
6227#endif
6228 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6229 zones_size, zholes_size);
1da177e4
LT
6230
6231 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6232#ifdef CONFIG_FLAT_NODE_MEM_MAP
6233 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6234 nid, (unsigned long)pgdat,
6235 (unsigned long)pgdat->node_mem_map);
6236#endif
1da177e4 6237
864b9a39 6238 reset_deferred_meminit(pgdat);
7f3eb55b 6239 free_area_init_core(pgdat);
1da177e4
LT
6240}
6241
a4a3ede2
PT
6242#ifdef CONFIG_HAVE_MEMBLOCK
6243/*
6244 * Only struct pages that are backed by physical memory are zeroed and
6245 * initialized by going through __init_single_page(). But, there are some
6246 * struct pages which are reserved in memblock allocator and their fields
6247 * may be accessed (for example page_to_pfn() on some configuration accesses
6248 * flags). We must explicitly zero those struct pages.
6249 */
6250void __paginginit zero_resv_unavail(void)
6251{
6252 phys_addr_t start, end;
6253 unsigned long pfn;
6254 u64 i, pgcnt;
6255
6256 /*
6257 * Loop through ranges that are reserved, but do not have reported
6258 * physical memory backing.
6259 */
6260 pgcnt = 0;
6261 for_each_resv_unavail_range(i, &start, &end) {
6262 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6263 mm_zero_struct_page(pfn_to_page(pfn));
6264 pgcnt++;
6265 }
6266 }
6267
6268 /*
6269 * Struct pages that do not have backing memory. This could be because
6270 * firmware is using some of this memory, or for some other reasons.
6271 * Once memblock is changed so such behaviour is not allowed: i.e.
6272 * list of "reserved" memory must be a subset of list of "memory", then
6273 * this code can be removed.
6274 */
6275 if (pgcnt)
6276 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6277}
6278#endif /* CONFIG_HAVE_MEMBLOCK */
6279
0ee332c1 6280#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6281
6282#if MAX_NUMNODES > 1
6283/*
6284 * Figure out the number of possible node ids.
6285 */
f9872caf 6286void __init setup_nr_node_ids(void)
418508c1 6287{
904a9553 6288 unsigned int highest;
418508c1 6289
904a9553 6290 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6291 nr_node_ids = highest + 1;
6292}
418508c1
MS
6293#endif
6294
1e01979c
TH
6295/**
6296 * node_map_pfn_alignment - determine the maximum internode alignment
6297 *
6298 * This function should be called after node map is populated and sorted.
6299 * It calculates the maximum power of two alignment which can distinguish
6300 * all the nodes.
6301 *
6302 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6303 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6304 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6305 * shifted, 1GiB is enough and this function will indicate so.
6306 *
6307 * This is used to test whether pfn -> nid mapping of the chosen memory
6308 * model has fine enough granularity to avoid incorrect mapping for the
6309 * populated node map.
6310 *
6311 * Returns the determined alignment in pfn's. 0 if there is no alignment
6312 * requirement (single node).
6313 */
6314unsigned long __init node_map_pfn_alignment(void)
6315{
6316 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6317 unsigned long start, end, mask;
1e01979c 6318 int last_nid = -1;
c13291a5 6319 int i, nid;
1e01979c 6320
c13291a5 6321 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6322 if (!start || last_nid < 0 || last_nid == nid) {
6323 last_nid = nid;
6324 last_end = end;
6325 continue;
6326 }
6327
6328 /*
6329 * Start with a mask granular enough to pin-point to the
6330 * start pfn and tick off bits one-by-one until it becomes
6331 * too coarse to separate the current node from the last.
6332 */
6333 mask = ~((1 << __ffs(start)) - 1);
6334 while (mask && last_end <= (start & (mask << 1)))
6335 mask <<= 1;
6336
6337 /* accumulate all internode masks */
6338 accl_mask |= mask;
6339 }
6340
6341 /* convert mask to number of pages */
6342 return ~accl_mask + 1;
6343}
6344
a6af2bc3 6345/* Find the lowest pfn for a node */
b69a7288 6346static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6347{
a6af2bc3 6348 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6349 unsigned long start_pfn;
6350 int i;
1abbfb41 6351
c13291a5
TH
6352 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6353 min_pfn = min(min_pfn, start_pfn);
c713216d 6354
a6af2bc3 6355 if (min_pfn == ULONG_MAX) {
1170532b 6356 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6357 return 0;
6358 }
6359
6360 return min_pfn;
c713216d
MG
6361}
6362
6363/**
6364 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6365 *
6366 * It returns the minimum PFN based on information provided via
7d018176 6367 * memblock_set_node().
c713216d
MG
6368 */
6369unsigned long __init find_min_pfn_with_active_regions(void)
6370{
6371 return find_min_pfn_for_node(MAX_NUMNODES);
6372}
6373
37b07e41
LS
6374/*
6375 * early_calculate_totalpages()
6376 * Sum pages in active regions for movable zone.
4b0ef1fe 6377 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6378 */
484f51f8 6379static unsigned long __init early_calculate_totalpages(void)
7e63efef 6380{
7e63efef 6381 unsigned long totalpages = 0;
c13291a5
TH
6382 unsigned long start_pfn, end_pfn;
6383 int i, nid;
6384
6385 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6386 unsigned long pages = end_pfn - start_pfn;
7e63efef 6387
37b07e41
LS
6388 totalpages += pages;
6389 if (pages)
4b0ef1fe 6390 node_set_state(nid, N_MEMORY);
37b07e41 6391 }
b8af2941 6392 return totalpages;
7e63efef
MG
6393}
6394
2a1e274a
MG
6395/*
6396 * Find the PFN the Movable zone begins in each node. Kernel memory
6397 * is spread evenly between nodes as long as the nodes have enough
6398 * memory. When they don't, some nodes will have more kernelcore than
6399 * others
6400 */
b224ef85 6401static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6402{
6403 int i, nid;
6404 unsigned long usable_startpfn;
6405 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6406 /* save the state before borrow the nodemask */
4b0ef1fe 6407 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6408 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6409 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6410 struct memblock_region *r;
b2f3eebe
TC
6411
6412 /* Need to find movable_zone earlier when movable_node is specified. */
6413 find_usable_zone_for_movable();
6414
6415 /*
6416 * If movable_node is specified, ignore kernelcore and movablecore
6417 * options.
6418 */
6419 if (movable_node_is_enabled()) {
136199f0
EM
6420 for_each_memblock(memory, r) {
6421 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6422 continue;
6423
136199f0 6424 nid = r->nid;
b2f3eebe 6425
136199f0 6426 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6427 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6428 min(usable_startpfn, zone_movable_pfn[nid]) :
6429 usable_startpfn;
6430 }
6431
6432 goto out2;
6433 }
2a1e274a 6434
342332e6
TI
6435 /*
6436 * If kernelcore=mirror is specified, ignore movablecore option
6437 */
6438 if (mirrored_kernelcore) {
6439 bool mem_below_4gb_not_mirrored = false;
6440
6441 for_each_memblock(memory, r) {
6442 if (memblock_is_mirror(r))
6443 continue;
6444
6445 nid = r->nid;
6446
6447 usable_startpfn = memblock_region_memory_base_pfn(r);
6448
6449 if (usable_startpfn < 0x100000) {
6450 mem_below_4gb_not_mirrored = true;
6451 continue;
6452 }
6453
6454 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6455 min(usable_startpfn, zone_movable_pfn[nid]) :
6456 usable_startpfn;
6457 }
6458
6459 if (mem_below_4gb_not_mirrored)
6460 pr_warn("This configuration results in unmirrored kernel memory.");
6461
6462 goto out2;
6463 }
6464
7e63efef 6465 /*
b2f3eebe 6466 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6467 * kernelcore that corresponds so that memory usable for
6468 * any allocation type is evenly spread. If both kernelcore
6469 * and movablecore are specified, then the value of kernelcore
6470 * will be used for required_kernelcore if it's greater than
6471 * what movablecore would have allowed.
6472 */
6473 if (required_movablecore) {
7e63efef
MG
6474 unsigned long corepages;
6475
6476 /*
6477 * Round-up so that ZONE_MOVABLE is at least as large as what
6478 * was requested by the user
6479 */
6480 required_movablecore =
6481 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6482 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6483 corepages = totalpages - required_movablecore;
6484
6485 required_kernelcore = max(required_kernelcore, corepages);
6486 }
6487
bde304bd
XQ
6488 /*
6489 * If kernelcore was not specified or kernelcore size is larger
6490 * than totalpages, there is no ZONE_MOVABLE.
6491 */
6492 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6493 goto out;
2a1e274a
MG
6494
6495 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6496 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6497
6498restart:
6499 /* Spread kernelcore memory as evenly as possible throughout nodes */
6500 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6501 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6502 unsigned long start_pfn, end_pfn;
6503
2a1e274a
MG
6504 /*
6505 * Recalculate kernelcore_node if the division per node
6506 * now exceeds what is necessary to satisfy the requested
6507 * amount of memory for the kernel
6508 */
6509 if (required_kernelcore < kernelcore_node)
6510 kernelcore_node = required_kernelcore / usable_nodes;
6511
6512 /*
6513 * As the map is walked, we track how much memory is usable
6514 * by the kernel using kernelcore_remaining. When it is
6515 * 0, the rest of the node is usable by ZONE_MOVABLE
6516 */
6517 kernelcore_remaining = kernelcore_node;
6518
6519 /* Go through each range of PFNs within this node */
c13291a5 6520 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6521 unsigned long size_pages;
6522
c13291a5 6523 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6524 if (start_pfn >= end_pfn)
6525 continue;
6526
6527 /* Account for what is only usable for kernelcore */
6528 if (start_pfn < usable_startpfn) {
6529 unsigned long kernel_pages;
6530 kernel_pages = min(end_pfn, usable_startpfn)
6531 - start_pfn;
6532
6533 kernelcore_remaining -= min(kernel_pages,
6534 kernelcore_remaining);
6535 required_kernelcore -= min(kernel_pages,
6536 required_kernelcore);
6537
6538 /* Continue if range is now fully accounted */
6539 if (end_pfn <= usable_startpfn) {
6540
6541 /*
6542 * Push zone_movable_pfn to the end so
6543 * that if we have to rebalance
6544 * kernelcore across nodes, we will
6545 * not double account here
6546 */
6547 zone_movable_pfn[nid] = end_pfn;
6548 continue;
6549 }
6550 start_pfn = usable_startpfn;
6551 }
6552
6553 /*
6554 * The usable PFN range for ZONE_MOVABLE is from
6555 * start_pfn->end_pfn. Calculate size_pages as the
6556 * number of pages used as kernelcore
6557 */
6558 size_pages = end_pfn - start_pfn;
6559 if (size_pages > kernelcore_remaining)
6560 size_pages = kernelcore_remaining;
6561 zone_movable_pfn[nid] = start_pfn + size_pages;
6562
6563 /*
6564 * Some kernelcore has been met, update counts and
6565 * break if the kernelcore for this node has been
b8af2941 6566 * satisfied
2a1e274a
MG
6567 */
6568 required_kernelcore -= min(required_kernelcore,
6569 size_pages);
6570 kernelcore_remaining -= size_pages;
6571 if (!kernelcore_remaining)
6572 break;
6573 }
6574 }
6575
6576 /*
6577 * If there is still required_kernelcore, we do another pass with one
6578 * less node in the count. This will push zone_movable_pfn[nid] further
6579 * along on the nodes that still have memory until kernelcore is
b8af2941 6580 * satisfied
2a1e274a
MG
6581 */
6582 usable_nodes--;
6583 if (usable_nodes && required_kernelcore > usable_nodes)
6584 goto restart;
6585
b2f3eebe 6586out2:
2a1e274a
MG
6587 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6588 for (nid = 0; nid < MAX_NUMNODES; nid++)
6589 zone_movable_pfn[nid] =
6590 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6591
20e6926d 6592out:
66918dcd 6593 /* restore the node_state */
4b0ef1fe 6594 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6595}
6596
4b0ef1fe
LJ
6597/* Any regular or high memory on that node ? */
6598static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6599{
37b07e41
LS
6600 enum zone_type zone_type;
6601
4b0ef1fe
LJ
6602 if (N_MEMORY == N_NORMAL_MEMORY)
6603 return;
6604
6605 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6606 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6607 if (populated_zone(zone)) {
4b0ef1fe
LJ
6608 node_set_state(nid, N_HIGH_MEMORY);
6609 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6610 zone_type <= ZONE_NORMAL)
6611 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6612 break;
6613 }
37b07e41 6614 }
37b07e41
LS
6615}
6616
c713216d
MG
6617/**
6618 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6619 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6620 *
6621 * This will call free_area_init_node() for each active node in the system.
7d018176 6622 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6623 * zone in each node and their holes is calculated. If the maximum PFN
6624 * between two adjacent zones match, it is assumed that the zone is empty.
6625 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6626 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6627 * starts where the previous one ended. For example, ZONE_DMA32 starts
6628 * at arch_max_dma_pfn.
6629 */
6630void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6631{
c13291a5
TH
6632 unsigned long start_pfn, end_pfn;
6633 int i, nid;
a6af2bc3 6634
c713216d
MG
6635 /* Record where the zone boundaries are */
6636 memset(arch_zone_lowest_possible_pfn, 0,
6637 sizeof(arch_zone_lowest_possible_pfn));
6638 memset(arch_zone_highest_possible_pfn, 0,
6639 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6640
6641 start_pfn = find_min_pfn_with_active_regions();
6642
6643 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6644 if (i == ZONE_MOVABLE)
6645 continue;
90cae1fe
OH
6646
6647 end_pfn = max(max_zone_pfn[i], start_pfn);
6648 arch_zone_lowest_possible_pfn[i] = start_pfn;
6649 arch_zone_highest_possible_pfn[i] = end_pfn;
6650
6651 start_pfn = end_pfn;
c713216d 6652 }
2a1e274a
MG
6653
6654 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6655 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6656 find_zone_movable_pfns_for_nodes();
c713216d 6657
c713216d 6658 /* Print out the zone ranges */
f88dfff5 6659 pr_info("Zone ranges:\n");
2a1e274a
MG
6660 for (i = 0; i < MAX_NR_ZONES; i++) {
6661 if (i == ZONE_MOVABLE)
6662 continue;
f88dfff5 6663 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6664 if (arch_zone_lowest_possible_pfn[i] ==
6665 arch_zone_highest_possible_pfn[i])
f88dfff5 6666 pr_cont("empty\n");
72f0ba02 6667 else
8d29e18a
JG
6668 pr_cont("[mem %#018Lx-%#018Lx]\n",
6669 (u64)arch_zone_lowest_possible_pfn[i]
6670 << PAGE_SHIFT,
6671 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6672 << PAGE_SHIFT) - 1);
2a1e274a
MG
6673 }
6674
6675 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6676 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6677 for (i = 0; i < MAX_NUMNODES; i++) {
6678 if (zone_movable_pfn[i])
8d29e18a
JG
6679 pr_info(" Node %d: %#018Lx\n", i,
6680 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6681 }
c713216d 6682
f2d52fe5 6683 /* Print out the early node map */
f88dfff5 6684 pr_info("Early memory node ranges\n");
c13291a5 6685 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6686 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6687 (u64)start_pfn << PAGE_SHIFT,
6688 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6689
6690 /* Initialise every node */
708614e6 6691 mminit_verify_pageflags_layout();
8ef82866 6692 setup_nr_node_ids();
c713216d
MG
6693 for_each_online_node(nid) {
6694 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6695 free_area_init_node(nid, NULL,
c713216d 6696 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6697
6698 /* Any memory on that node */
6699 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6700 node_set_state(nid, N_MEMORY);
6701 check_for_memory(pgdat, nid);
c713216d 6702 }
a4a3ede2 6703 zero_resv_unavail();
c713216d 6704}
2a1e274a 6705
7e63efef 6706static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6707{
6708 unsigned long long coremem;
6709 if (!p)
6710 return -EINVAL;
6711
6712 coremem = memparse(p, &p);
7e63efef 6713 *core = coremem >> PAGE_SHIFT;
2a1e274a 6714
7e63efef 6715 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6716 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6717
6718 return 0;
6719}
ed7ed365 6720
7e63efef
MG
6721/*
6722 * kernelcore=size sets the amount of memory for use for allocations that
6723 * cannot be reclaimed or migrated.
6724 */
6725static int __init cmdline_parse_kernelcore(char *p)
6726{
342332e6
TI
6727 /* parse kernelcore=mirror */
6728 if (parse_option_str(p, "mirror")) {
6729 mirrored_kernelcore = true;
6730 return 0;
6731 }
6732
7e63efef
MG
6733 return cmdline_parse_core(p, &required_kernelcore);
6734}
6735
6736/*
6737 * movablecore=size sets the amount of memory for use for allocations that
6738 * can be reclaimed or migrated.
6739 */
6740static int __init cmdline_parse_movablecore(char *p)
6741{
6742 return cmdline_parse_core(p, &required_movablecore);
6743}
6744
ed7ed365 6745early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6746early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6747
0ee332c1 6748#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6749
c3d5f5f0
JL
6750void adjust_managed_page_count(struct page *page, long count)
6751{
6752 spin_lock(&managed_page_count_lock);
6753 page_zone(page)->managed_pages += count;
6754 totalram_pages += count;
3dcc0571
JL
6755#ifdef CONFIG_HIGHMEM
6756 if (PageHighMem(page))
6757 totalhigh_pages += count;
6758#endif
c3d5f5f0
JL
6759 spin_unlock(&managed_page_count_lock);
6760}
3dcc0571 6761EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6762
11199692 6763unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6764{
11199692
JL
6765 void *pos;
6766 unsigned long pages = 0;
69afade7 6767
11199692
JL
6768 start = (void *)PAGE_ALIGN((unsigned long)start);
6769 end = (void *)((unsigned long)end & PAGE_MASK);
6770 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6771 if ((unsigned int)poison <= 0xFF)
11199692
JL
6772 memset(pos, poison, PAGE_SIZE);
6773 free_reserved_page(virt_to_page(pos));
69afade7
JL
6774 }
6775
6776 if (pages && s)
adb1fe9a
JP
6777 pr_info("Freeing %s memory: %ldK\n",
6778 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6779
6780 return pages;
6781}
11199692 6782EXPORT_SYMBOL(free_reserved_area);
69afade7 6783
cfa11e08
JL
6784#ifdef CONFIG_HIGHMEM
6785void free_highmem_page(struct page *page)
6786{
6787 __free_reserved_page(page);
6788 totalram_pages++;
7b4b2a0d 6789 page_zone(page)->managed_pages++;
cfa11e08
JL
6790 totalhigh_pages++;
6791}
6792#endif
6793
7ee3d4e8
JL
6794
6795void __init mem_init_print_info(const char *str)
6796{
6797 unsigned long physpages, codesize, datasize, rosize, bss_size;
6798 unsigned long init_code_size, init_data_size;
6799
6800 physpages = get_num_physpages();
6801 codesize = _etext - _stext;
6802 datasize = _edata - _sdata;
6803 rosize = __end_rodata - __start_rodata;
6804 bss_size = __bss_stop - __bss_start;
6805 init_data_size = __init_end - __init_begin;
6806 init_code_size = _einittext - _sinittext;
6807
6808 /*
6809 * Detect special cases and adjust section sizes accordingly:
6810 * 1) .init.* may be embedded into .data sections
6811 * 2) .init.text.* may be out of [__init_begin, __init_end],
6812 * please refer to arch/tile/kernel/vmlinux.lds.S.
6813 * 3) .rodata.* may be embedded into .text or .data sections.
6814 */
6815#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6816 do { \
6817 if (start <= pos && pos < end && size > adj) \
6818 size -= adj; \
6819 } while (0)
7ee3d4e8
JL
6820
6821 adj_init_size(__init_begin, __init_end, init_data_size,
6822 _sinittext, init_code_size);
6823 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6824 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6825 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6826 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6827
6828#undef adj_init_size
6829
756a025f 6830 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6831#ifdef CONFIG_HIGHMEM
756a025f 6832 ", %luK highmem"
7ee3d4e8 6833#endif
756a025f
JP
6834 "%s%s)\n",
6835 nr_free_pages() << (PAGE_SHIFT - 10),
6836 physpages << (PAGE_SHIFT - 10),
6837 codesize >> 10, datasize >> 10, rosize >> 10,
6838 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6839 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6840 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6841#ifdef CONFIG_HIGHMEM
756a025f 6842 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6843#endif
756a025f 6844 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6845}
6846
0e0b864e 6847/**
88ca3b94
RD
6848 * set_dma_reserve - set the specified number of pages reserved in the first zone
6849 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6850 *
013110a7 6851 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6852 * In the DMA zone, a significant percentage may be consumed by kernel image
6853 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6854 * function may optionally be used to account for unfreeable pages in the
6855 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6856 * smaller per-cpu batchsize.
0e0b864e
MG
6857 */
6858void __init set_dma_reserve(unsigned long new_dma_reserve)
6859{
6860 dma_reserve = new_dma_reserve;
6861}
6862
1da177e4
LT
6863void __init free_area_init(unsigned long *zones_size)
6864{
9109fb7b 6865 free_area_init_node(0, zones_size,
1da177e4 6866 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 6867 zero_resv_unavail();
1da177e4 6868}
1da177e4 6869
005fd4bb 6870static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6871{
1da177e4 6872
005fd4bb
SAS
6873 lru_add_drain_cpu(cpu);
6874 drain_pages(cpu);
9f8f2172 6875
005fd4bb
SAS
6876 /*
6877 * Spill the event counters of the dead processor
6878 * into the current processors event counters.
6879 * This artificially elevates the count of the current
6880 * processor.
6881 */
6882 vm_events_fold_cpu(cpu);
9f8f2172 6883
005fd4bb
SAS
6884 /*
6885 * Zero the differential counters of the dead processor
6886 * so that the vm statistics are consistent.
6887 *
6888 * This is only okay since the processor is dead and cannot
6889 * race with what we are doing.
6890 */
6891 cpu_vm_stats_fold(cpu);
6892 return 0;
1da177e4 6893}
1da177e4
LT
6894
6895void __init page_alloc_init(void)
6896{
005fd4bb
SAS
6897 int ret;
6898
6899 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6900 "mm/page_alloc:dead", NULL,
6901 page_alloc_cpu_dead);
6902 WARN_ON(ret < 0);
1da177e4
LT
6903}
6904
cb45b0e9 6905/*
34b10060 6906 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6907 * or min_free_kbytes changes.
6908 */
6909static void calculate_totalreserve_pages(void)
6910{
6911 struct pglist_data *pgdat;
6912 unsigned long reserve_pages = 0;
2f6726e5 6913 enum zone_type i, j;
cb45b0e9
HA
6914
6915 for_each_online_pgdat(pgdat) {
281e3726
MG
6916
6917 pgdat->totalreserve_pages = 0;
6918
cb45b0e9
HA
6919 for (i = 0; i < MAX_NR_ZONES; i++) {
6920 struct zone *zone = pgdat->node_zones + i;
3484b2de 6921 long max = 0;
cb45b0e9
HA
6922
6923 /* Find valid and maximum lowmem_reserve in the zone */
6924 for (j = i; j < MAX_NR_ZONES; j++) {
6925 if (zone->lowmem_reserve[j] > max)
6926 max = zone->lowmem_reserve[j];
6927 }
6928
41858966
MG
6929 /* we treat the high watermark as reserved pages. */
6930 max += high_wmark_pages(zone);
cb45b0e9 6931
b40da049
JL
6932 if (max > zone->managed_pages)
6933 max = zone->managed_pages;
a8d01437 6934
281e3726 6935 pgdat->totalreserve_pages += max;
a8d01437 6936
cb45b0e9
HA
6937 reserve_pages += max;
6938 }
6939 }
6940 totalreserve_pages = reserve_pages;
6941}
6942
1da177e4
LT
6943/*
6944 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6945 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6946 * has a correct pages reserved value, so an adequate number of
6947 * pages are left in the zone after a successful __alloc_pages().
6948 */
6949static void setup_per_zone_lowmem_reserve(void)
6950{
6951 struct pglist_data *pgdat;
2f6726e5 6952 enum zone_type j, idx;
1da177e4 6953
ec936fc5 6954 for_each_online_pgdat(pgdat) {
1da177e4
LT
6955 for (j = 0; j < MAX_NR_ZONES; j++) {
6956 struct zone *zone = pgdat->node_zones + j;
b40da049 6957 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6958
6959 zone->lowmem_reserve[j] = 0;
6960
2f6726e5
CL
6961 idx = j;
6962 while (idx) {
1da177e4
LT
6963 struct zone *lower_zone;
6964
2f6726e5
CL
6965 idx--;
6966
1da177e4
LT
6967 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6968 sysctl_lowmem_reserve_ratio[idx] = 1;
6969
6970 lower_zone = pgdat->node_zones + idx;
b40da049 6971 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6972 sysctl_lowmem_reserve_ratio[idx];
b40da049 6973 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6974 }
6975 }
6976 }
cb45b0e9
HA
6977
6978 /* update totalreserve_pages */
6979 calculate_totalreserve_pages();
1da177e4
LT
6980}
6981
cfd3da1e 6982static void __setup_per_zone_wmarks(void)
1da177e4
LT
6983{
6984 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6985 unsigned long lowmem_pages = 0;
6986 struct zone *zone;
6987 unsigned long flags;
6988
6989 /* Calculate total number of !ZONE_HIGHMEM pages */
6990 for_each_zone(zone) {
6991 if (!is_highmem(zone))
b40da049 6992 lowmem_pages += zone->managed_pages;
1da177e4
LT
6993 }
6994
6995 for_each_zone(zone) {
ac924c60
AM
6996 u64 tmp;
6997
1125b4e3 6998 spin_lock_irqsave(&zone->lock, flags);
b40da049 6999 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7000 do_div(tmp, lowmem_pages);
1da177e4
LT
7001 if (is_highmem(zone)) {
7002 /*
669ed175
NP
7003 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7004 * need highmem pages, so cap pages_min to a small
7005 * value here.
7006 *
41858966 7007 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7008 * deltas control asynch page reclaim, and so should
669ed175 7009 * not be capped for highmem.
1da177e4 7010 */
90ae8d67 7011 unsigned long min_pages;
1da177e4 7012
b40da049 7013 min_pages = zone->managed_pages / 1024;
90ae8d67 7014 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7015 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7016 } else {
669ed175
NP
7017 /*
7018 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7019 * proportionate to the zone's size.
7020 */
41858966 7021 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7022 }
7023
795ae7a0
JW
7024 /*
7025 * Set the kswapd watermarks distance according to the
7026 * scale factor in proportion to available memory, but
7027 * ensure a minimum size on small systems.
7028 */
7029 tmp = max_t(u64, tmp >> 2,
7030 mult_frac(zone->managed_pages,
7031 watermark_scale_factor, 10000));
7032
7033 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7034 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7035
1125b4e3 7036 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7037 }
cb45b0e9
HA
7038
7039 /* update totalreserve_pages */
7040 calculate_totalreserve_pages();
1da177e4
LT
7041}
7042
cfd3da1e
MG
7043/**
7044 * setup_per_zone_wmarks - called when min_free_kbytes changes
7045 * or when memory is hot-{added|removed}
7046 *
7047 * Ensures that the watermark[min,low,high] values for each zone are set
7048 * correctly with respect to min_free_kbytes.
7049 */
7050void setup_per_zone_wmarks(void)
7051{
b93e0f32
MH
7052 static DEFINE_SPINLOCK(lock);
7053
7054 spin_lock(&lock);
cfd3da1e 7055 __setup_per_zone_wmarks();
b93e0f32 7056 spin_unlock(&lock);
cfd3da1e
MG
7057}
7058
1da177e4
LT
7059/*
7060 * Initialise min_free_kbytes.
7061 *
7062 * For small machines we want it small (128k min). For large machines
7063 * we want it large (64MB max). But it is not linear, because network
7064 * bandwidth does not increase linearly with machine size. We use
7065 *
b8af2941 7066 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7067 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7068 *
7069 * which yields
7070 *
7071 * 16MB: 512k
7072 * 32MB: 724k
7073 * 64MB: 1024k
7074 * 128MB: 1448k
7075 * 256MB: 2048k
7076 * 512MB: 2896k
7077 * 1024MB: 4096k
7078 * 2048MB: 5792k
7079 * 4096MB: 8192k
7080 * 8192MB: 11584k
7081 * 16384MB: 16384k
7082 */
1b79acc9 7083int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7084{
7085 unsigned long lowmem_kbytes;
5f12733e 7086 int new_min_free_kbytes;
1da177e4
LT
7087
7088 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7089 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7090
7091 if (new_min_free_kbytes > user_min_free_kbytes) {
7092 min_free_kbytes = new_min_free_kbytes;
7093 if (min_free_kbytes < 128)
7094 min_free_kbytes = 128;
7095 if (min_free_kbytes > 65536)
7096 min_free_kbytes = 65536;
7097 } else {
7098 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7099 new_min_free_kbytes, user_min_free_kbytes);
7100 }
bc75d33f 7101 setup_per_zone_wmarks();
a6cccdc3 7102 refresh_zone_stat_thresholds();
1da177e4 7103 setup_per_zone_lowmem_reserve();
6423aa81
JK
7104
7105#ifdef CONFIG_NUMA
7106 setup_min_unmapped_ratio();
7107 setup_min_slab_ratio();
7108#endif
7109
1da177e4
LT
7110 return 0;
7111}
bc22af74 7112core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7113
7114/*
b8af2941 7115 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7116 * that we can call two helper functions whenever min_free_kbytes
7117 * changes.
7118 */
cccad5b9 7119int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7120 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7121{
da8c757b
HP
7122 int rc;
7123
7124 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7125 if (rc)
7126 return rc;
7127
5f12733e
MH
7128 if (write) {
7129 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7130 setup_per_zone_wmarks();
5f12733e 7131 }
1da177e4
LT
7132 return 0;
7133}
7134
795ae7a0
JW
7135int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7136 void __user *buffer, size_t *length, loff_t *ppos)
7137{
7138 int rc;
7139
7140 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7141 if (rc)
7142 return rc;
7143
7144 if (write)
7145 setup_per_zone_wmarks();
7146
7147 return 0;
7148}
7149
9614634f 7150#ifdef CONFIG_NUMA
6423aa81 7151static void setup_min_unmapped_ratio(void)
9614634f 7152{
6423aa81 7153 pg_data_t *pgdat;
9614634f 7154 struct zone *zone;
9614634f 7155
a5f5f91d 7156 for_each_online_pgdat(pgdat)
81cbcbc2 7157 pgdat->min_unmapped_pages = 0;
a5f5f91d 7158
9614634f 7159 for_each_zone(zone)
a5f5f91d 7160 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7161 sysctl_min_unmapped_ratio) / 100;
9614634f 7162}
0ff38490 7163
6423aa81
JK
7164
7165int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7166 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7167{
0ff38490
CL
7168 int rc;
7169
8d65af78 7170 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7171 if (rc)
7172 return rc;
7173
6423aa81
JK
7174 setup_min_unmapped_ratio();
7175
7176 return 0;
7177}
7178
7179static void setup_min_slab_ratio(void)
7180{
7181 pg_data_t *pgdat;
7182 struct zone *zone;
7183
a5f5f91d
MG
7184 for_each_online_pgdat(pgdat)
7185 pgdat->min_slab_pages = 0;
7186
0ff38490 7187 for_each_zone(zone)
a5f5f91d 7188 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7189 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7190}
7191
7192int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7193 void __user *buffer, size_t *length, loff_t *ppos)
7194{
7195 int rc;
7196
7197 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7198 if (rc)
7199 return rc;
7200
7201 setup_min_slab_ratio();
7202
0ff38490
CL
7203 return 0;
7204}
9614634f
CL
7205#endif
7206
1da177e4
LT
7207/*
7208 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7209 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7210 * whenever sysctl_lowmem_reserve_ratio changes.
7211 *
7212 * The reserve ratio obviously has absolutely no relation with the
41858966 7213 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7214 * if in function of the boot time zone sizes.
7215 */
cccad5b9 7216int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7217 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7218{
8d65af78 7219 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7220 setup_per_zone_lowmem_reserve();
7221 return 0;
7222}
7223
8ad4b1fb
RS
7224/*
7225 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7226 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7227 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7228 */
cccad5b9 7229int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7230 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7231{
7232 struct zone *zone;
7cd2b0a3 7233 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7234 int ret;
7235
7cd2b0a3
DR
7236 mutex_lock(&pcp_batch_high_lock);
7237 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7238
8d65af78 7239 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7240 if (!write || ret < 0)
7241 goto out;
7242
7243 /* Sanity checking to avoid pcp imbalance */
7244 if (percpu_pagelist_fraction &&
7245 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7246 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7247 ret = -EINVAL;
7248 goto out;
7249 }
7250
7251 /* No change? */
7252 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7253 goto out;
c8e251fa 7254
364df0eb 7255 for_each_populated_zone(zone) {
7cd2b0a3
DR
7256 unsigned int cpu;
7257
22a7f12b 7258 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7259 pageset_set_high_and_batch(zone,
7260 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7261 }
7cd2b0a3 7262out:
c8e251fa 7263 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7264 return ret;
8ad4b1fb
RS
7265}
7266
a9919c79 7267#ifdef CONFIG_NUMA
f034b5d4 7268int hashdist = HASHDIST_DEFAULT;
1da177e4 7269
1da177e4
LT
7270static int __init set_hashdist(char *str)
7271{
7272 if (!str)
7273 return 0;
7274 hashdist = simple_strtoul(str, &str, 0);
7275 return 1;
7276}
7277__setup("hashdist=", set_hashdist);
7278#endif
7279
f6f34b43
SD
7280#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7281/*
7282 * Returns the number of pages that arch has reserved but
7283 * is not known to alloc_large_system_hash().
7284 */
7285static unsigned long __init arch_reserved_kernel_pages(void)
7286{
7287 return 0;
7288}
7289#endif
7290
9017217b
PT
7291/*
7292 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7293 * machines. As memory size is increased the scale is also increased but at
7294 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7295 * quadruples the scale is increased by one, which means the size of hash table
7296 * only doubles, instead of quadrupling as well.
7297 * Because 32-bit systems cannot have large physical memory, where this scaling
7298 * makes sense, it is disabled on such platforms.
7299 */
7300#if __BITS_PER_LONG > 32
7301#define ADAPT_SCALE_BASE (64ul << 30)
7302#define ADAPT_SCALE_SHIFT 2
7303#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7304#endif
7305
1da177e4
LT
7306/*
7307 * allocate a large system hash table from bootmem
7308 * - it is assumed that the hash table must contain an exact power-of-2
7309 * quantity of entries
7310 * - limit is the number of hash buckets, not the total allocation size
7311 */
7312void *__init alloc_large_system_hash(const char *tablename,
7313 unsigned long bucketsize,
7314 unsigned long numentries,
7315 int scale,
7316 int flags,
7317 unsigned int *_hash_shift,
7318 unsigned int *_hash_mask,
31fe62b9
TB
7319 unsigned long low_limit,
7320 unsigned long high_limit)
1da177e4 7321{
31fe62b9 7322 unsigned long long max = high_limit;
1da177e4
LT
7323 unsigned long log2qty, size;
7324 void *table = NULL;
3749a8f0 7325 gfp_t gfp_flags;
1da177e4
LT
7326
7327 /* allow the kernel cmdline to have a say */
7328 if (!numentries) {
7329 /* round applicable memory size up to nearest megabyte */
04903664 7330 numentries = nr_kernel_pages;
f6f34b43 7331 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7332
7333 /* It isn't necessary when PAGE_SIZE >= 1MB */
7334 if (PAGE_SHIFT < 20)
7335 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7336
9017217b
PT
7337#if __BITS_PER_LONG > 32
7338 if (!high_limit) {
7339 unsigned long adapt;
7340
7341 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7342 adapt <<= ADAPT_SCALE_SHIFT)
7343 scale++;
7344 }
7345#endif
7346
1da177e4
LT
7347 /* limit to 1 bucket per 2^scale bytes of low memory */
7348 if (scale > PAGE_SHIFT)
7349 numentries >>= (scale - PAGE_SHIFT);
7350 else
7351 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7352
7353 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7354 if (unlikely(flags & HASH_SMALL)) {
7355 /* Makes no sense without HASH_EARLY */
7356 WARN_ON(!(flags & HASH_EARLY));
7357 if (!(numentries >> *_hash_shift)) {
7358 numentries = 1UL << *_hash_shift;
7359 BUG_ON(!numentries);
7360 }
7361 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7362 numentries = PAGE_SIZE / bucketsize;
1da177e4 7363 }
6e692ed3 7364 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7365
7366 /* limit allocation size to 1/16 total memory by default */
7367 if (max == 0) {
7368 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7369 do_div(max, bucketsize);
7370 }
074b8517 7371 max = min(max, 0x80000000ULL);
1da177e4 7372
31fe62b9
TB
7373 if (numentries < low_limit)
7374 numentries = low_limit;
1da177e4
LT
7375 if (numentries > max)
7376 numentries = max;
7377
f0d1b0b3 7378 log2qty = ilog2(numentries);
1da177e4 7379
3749a8f0 7380 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7381 do {
7382 size = bucketsize << log2qty;
ea1f5f37
PT
7383 if (flags & HASH_EARLY) {
7384 if (flags & HASH_ZERO)
7385 table = memblock_virt_alloc_nopanic(size, 0);
7386 else
7387 table = memblock_virt_alloc_raw(size, 0);
7388 } else if (hashdist) {
3749a8f0 7389 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7390 } else {
1037b83b
ED
7391 /*
7392 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7393 * some pages at the end of hash table which
7394 * alloc_pages_exact() automatically does
1037b83b 7395 */
264ef8a9 7396 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7397 table = alloc_pages_exact(size, gfp_flags);
7398 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7399 }
1da177e4
LT
7400 }
7401 } while (!table && size > PAGE_SIZE && --log2qty);
7402
7403 if (!table)
7404 panic("Failed to allocate %s hash table\n", tablename);
7405
1170532b
JP
7406 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7407 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7408
7409 if (_hash_shift)
7410 *_hash_shift = log2qty;
7411 if (_hash_mask)
7412 *_hash_mask = (1 << log2qty) - 1;
7413
7414 return table;
7415}
a117e66e 7416
a5d76b54 7417/*
80934513
MK
7418 * This function checks whether pageblock includes unmovable pages or not.
7419 * If @count is not zero, it is okay to include less @count unmovable pages
7420 *
b8af2941 7421 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7422 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7423 * check without lock_page also may miss some movable non-lru pages at
7424 * race condition. So you can't expect this function should be exact.
a5d76b54 7425 */
b023f468 7426bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7427 int migratetype,
b023f468 7428 bool skip_hwpoisoned_pages)
49ac8255
KH
7429{
7430 unsigned long pfn, iter, found;
47118af0 7431
49ac8255
KH
7432 /*
7433 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7434 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7435 */
7436 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7437 return false;
49ac8255 7438
4da2ce25
MH
7439 /*
7440 * CMA allocations (alloc_contig_range) really need to mark isolate
7441 * CMA pageblocks even when they are not movable in fact so consider
7442 * them movable here.
7443 */
7444 if (is_migrate_cma(migratetype) &&
7445 is_migrate_cma(get_pageblock_migratetype(page)))
7446 return false;
7447
49ac8255
KH
7448 pfn = page_to_pfn(page);
7449 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7450 unsigned long check = pfn + iter;
7451
29723fcc 7452 if (!pfn_valid_within(check))
49ac8255 7453 continue;
29723fcc 7454
49ac8255 7455 page = pfn_to_page(check);
c8721bbb 7456
d7ab3672
MH
7457 if (PageReserved(page))
7458 return true;
7459
c8721bbb
NH
7460 /*
7461 * Hugepages are not in LRU lists, but they're movable.
7462 * We need not scan over tail pages bacause we don't
7463 * handle each tail page individually in migration.
7464 */
7465 if (PageHuge(page)) {
7466 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7467 continue;
7468 }
7469
97d255c8
MK
7470 /*
7471 * We can't use page_count without pin a page
7472 * because another CPU can free compound page.
7473 * This check already skips compound tails of THP
0139aa7b 7474 * because their page->_refcount is zero at all time.
97d255c8 7475 */
fe896d18 7476 if (!page_ref_count(page)) {
49ac8255
KH
7477 if (PageBuddy(page))
7478 iter += (1 << page_order(page)) - 1;
7479 continue;
7480 }
97d255c8 7481
b023f468
WC
7482 /*
7483 * The HWPoisoned page may be not in buddy system, and
7484 * page_count() is not 0.
7485 */
7486 if (skip_hwpoisoned_pages && PageHWPoison(page))
7487 continue;
7488
0efadf48
YX
7489 if (__PageMovable(page))
7490 continue;
7491
49ac8255
KH
7492 if (!PageLRU(page))
7493 found++;
7494 /*
6b4f7799
JW
7495 * If there are RECLAIMABLE pages, we need to check
7496 * it. But now, memory offline itself doesn't call
7497 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7498 */
7499 /*
7500 * If the page is not RAM, page_count()should be 0.
7501 * we don't need more check. This is an _used_ not-movable page.
7502 *
7503 * The problematic thing here is PG_reserved pages. PG_reserved
7504 * is set to both of a memory hole page and a _used_ kernel
7505 * page at boot.
7506 */
7507 if (found > count)
80934513 7508 return true;
49ac8255 7509 }
80934513 7510 return false;
49ac8255
KH
7511}
7512
7513bool is_pageblock_removable_nolock(struct page *page)
7514{
656a0706
MH
7515 struct zone *zone;
7516 unsigned long pfn;
687875fb
MH
7517
7518 /*
7519 * We have to be careful here because we are iterating over memory
7520 * sections which are not zone aware so we might end up outside of
7521 * the zone but still within the section.
656a0706
MH
7522 * We have to take care about the node as well. If the node is offline
7523 * its NODE_DATA will be NULL - see page_zone.
687875fb 7524 */
656a0706
MH
7525 if (!node_online(page_to_nid(page)))
7526 return false;
7527
7528 zone = page_zone(page);
7529 pfn = page_to_pfn(page);
108bcc96 7530 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7531 return false;
7532
4da2ce25 7533 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7534}
0c0e6195 7535
080fe206 7536#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7537
7538static unsigned long pfn_max_align_down(unsigned long pfn)
7539{
7540 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7541 pageblock_nr_pages) - 1);
7542}
7543
7544static unsigned long pfn_max_align_up(unsigned long pfn)
7545{
7546 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7547 pageblock_nr_pages));
7548}
7549
041d3a8c 7550/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7551static int __alloc_contig_migrate_range(struct compact_control *cc,
7552 unsigned long start, unsigned long end)
041d3a8c
MN
7553{
7554 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7555 unsigned long nr_reclaimed;
041d3a8c
MN
7556 unsigned long pfn = start;
7557 unsigned int tries = 0;
7558 int ret = 0;
7559
be49a6e1 7560 migrate_prep();
041d3a8c 7561
bb13ffeb 7562 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7563 if (fatal_signal_pending(current)) {
7564 ret = -EINTR;
7565 break;
7566 }
7567
bb13ffeb
MG
7568 if (list_empty(&cc->migratepages)) {
7569 cc->nr_migratepages = 0;
edc2ca61 7570 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7571 if (!pfn) {
7572 ret = -EINTR;
7573 break;
7574 }
7575 tries = 0;
7576 } else if (++tries == 5) {
7577 ret = ret < 0 ? ret : -EBUSY;
7578 break;
7579 }
7580
beb51eaa
MK
7581 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7582 &cc->migratepages);
7583 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7584
9c620e2b 7585 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7586 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7587 }
2a6f5124
SP
7588 if (ret < 0) {
7589 putback_movable_pages(&cc->migratepages);
7590 return ret;
7591 }
7592 return 0;
041d3a8c
MN
7593}
7594
7595/**
7596 * alloc_contig_range() -- tries to allocate given range of pages
7597 * @start: start PFN to allocate
7598 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7599 * @migratetype: migratetype of the underlaying pageblocks (either
7600 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7601 * in range must have the same migratetype and it must
7602 * be either of the two.
ca96b625 7603 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7604 *
7605 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7606 * aligned, however it's the caller's responsibility to guarantee that
7607 * we are the only thread that changes migrate type of pageblocks the
7608 * pages fall in.
7609 *
7610 * The PFN range must belong to a single zone.
7611 *
7612 * Returns zero on success or negative error code. On success all
7613 * pages which PFN is in [start, end) are allocated for the caller and
7614 * need to be freed with free_contig_range().
7615 */
0815f3d8 7616int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7617 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7618{
041d3a8c 7619 unsigned long outer_start, outer_end;
d00181b9
KS
7620 unsigned int order;
7621 int ret = 0;
041d3a8c 7622
bb13ffeb
MG
7623 struct compact_control cc = {
7624 .nr_migratepages = 0,
7625 .order = -1,
7626 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7627 .mode = MIGRATE_SYNC,
bb13ffeb 7628 .ignore_skip_hint = true,
7dea19f9 7629 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7630 };
7631 INIT_LIST_HEAD(&cc.migratepages);
7632
041d3a8c
MN
7633 /*
7634 * What we do here is we mark all pageblocks in range as
7635 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7636 * have different sizes, and due to the way page allocator
7637 * work, we align the range to biggest of the two pages so
7638 * that page allocator won't try to merge buddies from
7639 * different pageblocks and change MIGRATE_ISOLATE to some
7640 * other migration type.
7641 *
7642 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7643 * migrate the pages from an unaligned range (ie. pages that
7644 * we are interested in). This will put all the pages in
7645 * range back to page allocator as MIGRATE_ISOLATE.
7646 *
7647 * When this is done, we take the pages in range from page
7648 * allocator removing them from the buddy system. This way
7649 * page allocator will never consider using them.
7650 *
7651 * This lets us mark the pageblocks back as
7652 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7653 * aligned range but not in the unaligned, original range are
7654 * put back to page allocator so that buddy can use them.
7655 */
7656
7657 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7658 pfn_max_align_up(end), migratetype,
7659 false);
041d3a8c 7660 if (ret)
86a595f9 7661 return ret;
041d3a8c 7662
8ef5849f
JK
7663 /*
7664 * In case of -EBUSY, we'd like to know which page causes problem.
7665 * So, just fall through. We will check it in test_pages_isolated().
7666 */
bb13ffeb 7667 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7668 if (ret && ret != -EBUSY)
041d3a8c
MN
7669 goto done;
7670
7671 /*
7672 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7673 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7674 * more, all pages in [start, end) are free in page allocator.
7675 * What we are going to do is to allocate all pages from
7676 * [start, end) (that is remove them from page allocator).
7677 *
7678 * The only problem is that pages at the beginning and at the
7679 * end of interesting range may be not aligned with pages that
7680 * page allocator holds, ie. they can be part of higher order
7681 * pages. Because of this, we reserve the bigger range and
7682 * once this is done free the pages we are not interested in.
7683 *
7684 * We don't have to hold zone->lock here because the pages are
7685 * isolated thus they won't get removed from buddy.
7686 */
7687
7688 lru_add_drain_all();
510f5507 7689 drain_all_pages(cc.zone);
041d3a8c
MN
7690
7691 order = 0;
7692 outer_start = start;
7693 while (!PageBuddy(pfn_to_page(outer_start))) {
7694 if (++order >= MAX_ORDER) {
8ef5849f
JK
7695 outer_start = start;
7696 break;
041d3a8c
MN
7697 }
7698 outer_start &= ~0UL << order;
7699 }
7700
8ef5849f
JK
7701 if (outer_start != start) {
7702 order = page_order(pfn_to_page(outer_start));
7703
7704 /*
7705 * outer_start page could be small order buddy page and
7706 * it doesn't include start page. Adjust outer_start
7707 * in this case to report failed page properly
7708 * on tracepoint in test_pages_isolated()
7709 */
7710 if (outer_start + (1UL << order) <= start)
7711 outer_start = start;
7712 }
7713
041d3a8c 7714 /* Make sure the range is really isolated. */
b023f468 7715 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7716 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7717 __func__, outer_start, end);
041d3a8c
MN
7718 ret = -EBUSY;
7719 goto done;
7720 }
7721
49f223a9 7722 /* Grab isolated pages from freelists. */
bb13ffeb 7723 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7724 if (!outer_end) {
7725 ret = -EBUSY;
7726 goto done;
7727 }
7728
7729 /* Free head and tail (if any) */
7730 if (start != outer_start)
7731 free_contig_range(outer_start, start - outer_start);
7732 if (end != outer_end)
7733 free_contig_range(end, outer_end - end);
7734
7735done:
7736 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7737 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7738 return ret;
7739}
7740
7741void free_contig_range(unsigned long pfn, unsigned nr_pages)
7742{
bcc2b02f
MS
7743 unsigned int count = 0;
7744
7745 for (; nr_pages--; pfn++) {
7746 struct page *page = pfn_to_page(pfn);
7747
7748 count += page_count(page) != 1;
7749 __free_page(page);
7750 }
7751 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7752}
7753#endif
7754
4ed7e022 7755#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7756/*
7757 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7758 * page high values need to be recalulated.
7759 */
4ed7e022
JL
7760void __meminit zone_pcp_update(struct zone *zone)
7761{
0a647f38 7762 unsigned cpu;
c8e251fa 7763 mutex_lock(&pcp_batch_high_lock);
0a647f38 7764 for_each_possible_cpu(cpu)
169f6c19
CS
7765 pageset_set_high_and_batch(zone,
7766 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7767 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7768}
7769#endif
7770
340175b7
JL
7771void zone_pcp_reset(struct zone *zone)
7772{
7773 unsigned long flags;
5a883813
MK
7774 int cpu;
7775 struct per_cpu_pageset *pset;
340175b7
JL
7776
7777 /* avoid races with drain_pages() */
7778 local_irq_save(flags);
7779 if (zone->pageset != &boot_pageset) {
5a883813
MK
7780 for_each_online_cpu(cpu) {
7781 pset = per_cpu_ptr(zone->pageset, cpu);
7782 drain_zonestat(zone, pset);
7783 }
340175b7
JL
7784 free_percpu(zone->pageset);
7785 zone->pageset = &boot_pageset;
7786 }
7787 local_irq_restore(flags);
7788}
7789
6dcd73d7 7790#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7791/*
b9eb6319
JK
7792 * All pages in the range must be in a single zone and isolated
7793 * before calling this.
0c0e6195
KH
7794 */
7795void
7796__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7797{
7798 struct page *page;
7799 struct zone *zone;
7aeb09f9 7800 unsigned int order, i;
0c0e6195
KH
7801 unsigned long pfn;
7802 unsigned long flags;
7803 /* find the first valid pfn */
7804 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7805 if (pfn_valid(pfn))
7806 break;
7807 if (pfn == end_pfn)
7808 return;
2d070eab 7809 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7810 zone = page_zone(pfn_to_page(pfn));
7811 spin_lock_irqsave(&zone->lock, flags);
7812 pfn = start_pfn;
7813 while (pfn < end_pfn) {
7814 if (!pfn_valid(pfn)) {
7815 pfn++;
7816 continue;
7817 }
7818 page = pfn_to_page(pfn);
b023f468
WC
7819 /*
7820 * The HWPoisoned page may be not in buddy system, and
7821 * page_count() is not 0.
7822 */
7823 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7824 pfn++;
7825 SetPageReserved(page);
7826 continue;
7827 }
7828
0c0e6195
KH
7829 BUG_ON(page_count(page));
7830 BUG_ON(!PageBuddy(page));
7831 order = page_order(page);
7832#ifdef CONFIG_DEBUG_VM
1170532b
JP
7833 pr_info("remove from free list %lx %d %lx\n",
7834 pfn, 1 << order, end_pfn);
0c0e6195
KH
7835#endif
7836 list_del(&page->lru);
7837 rmv_page_order(page);
7838 zone->free_area[order].nr_free--;
0c0e6195
KH
7839 for (i = 0; i < (1 << order); i++)
7840 SetPageReserved((page+i));
7841 pfn += (1 << order);
7842 }
7843 spin_unlock_irqrestore(&zone->lock, flags);
7844}
7845#endif
8d22ba1b 7846
8d22ba1b
WF
7847bool is_free_buddy_page(struct page *page)
7848{
7849 struct zone *zone = page_zone(page);
7850 unsigned long pfn = page_to_pfn(page);
7851 unsigned long flags;
7aeb09f9 7852 unsigned int order;
8d22ba1b
WF
7853
7854 spin_lock_irqsave(&zone->lock, flags);
7855 for (order = 0; order < MAX_ORDER; order++) {
7856 struct page *page_head = page - (pfn & ((1 << order) - 1));
7857
7858 if (PageBuddy(page_head) && page_order(page_head) >= order)
7859 break;
7860 }
7861 spin_unlock_irqrestore(&zone->lock, flags);
7862
7863 return order < MAX_ORDER;
7864}