]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: check multiple page fields with a single branch
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
7bfec6f4
MG
787/*
788 * A bad page could be due to a number of fields. Instead of multiple branches,
789 * try and check multiple fields with one check. The caller must do a detailed
790 * check if necessary.
791 */
792static inline bool page_expected_state(struct page *page,
793 unsigned long check_flags)
794{
795 if (unlikely(atomic_read(&page->_mapcount) != -1))
796 return false;
797
798 if (unlikely((unsigned long)page->mapping |
799 page_ref_count(page) |
800#ifdef CONFIG_MEMCG
801 (unsigned long)page->mem_cgroup |
802#endif
803 (page->flags & check_flags)))
804 return false;
805
806 return true;
807}
808
224abf92 809static inline int free_pages_check(struct page *page)
1da177e4 810{
7bfec6f4
MG
811 const char *bad_reason;
812 unsigned long bad_flags;
813
814 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)) {
815 page_cpupid_reset_last(page);
816 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
817 return 0;
818 }
819
820 /* Something has gone sideways, find it */
821 bad_reason = NULL;
822 bad_flags = 0;
f0b791a3 823
53f9263b 824 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
825 bad_reason = "nonzero mapcount";
826 if (unlikely(page->mapping != NULL))
827 bad_reason = "non-NULL mapping";
fe896d18 828 if (unlikely(page_ref_count(page) != 0))
0139aa7b 829 bad_reason = "nonzero _refcount";
f0b791a3
DH
830 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
831 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
832 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
833 }
9edad6ea
JW
834#ifdef CONFIG_MEMCG
835 if (unlikely(page->mem_cgroup))
836 bad_reason = "page still charged to cgroup";
837#endif
7bfec6f4
MG
838 bad_page(page, bad_reason, bad_flags);
839 return 1;
1da177e4
LT
840}
841
842/*
5f8dcc21 843 * Frees a number of pages from the PCP lists
1da177e4 844 * Assumes all pages on list are in same zone, and of same order.
207f36ee 845 * count is the number of pages to free.
1da177e4
LT
846 *
847 * If the zone was previously in an "all pages pinned" state then look to
848 * see if this freeing clears that state.
849 *
850 * And clear the zone's pages_scanned counter, to hold off the "all pages are
851 * pinned" detection logic.
852 */
5f8dcc21
MG
853static void free_pcppages_bulk(struct zone *zone, int count,
854 struct per_cpu_pages *pcp)
1da177e4 855{
5f8dcc21 856 int migratetype = 0;
a6f9edd6 857 int batch_free = 0;
72853e29 858 int to_free = count;
0d5d823a 859 unsigned long nr_scanned;
3777999d 860 bool isolated_pageblocks;
5f8dcc21 861
c54ad30c 862 spin_lock(&zone->lock);
3777999d 863 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
864 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
865 if (nr_scanned)
866 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 867
72853e29 868 while (to_free) {
48db57f8 869 struct page *page;
5f8dcc21
MG
870 struct list_head *list;
871
872 /*
a6f9edd6
MG
873 * Remove pages from lists in a round-robin fashion. A
874 * batch_free count is maintained that is incremented when an
875 * empty list is encountered. This is so more pages are freed
876 * off fuller lists instead of spinning excessively around empty
877 * lists
5f8dcc21
MG
878 */
879 do {
a6f9edd6 880 batch_free++;
5f8dcc21
MG
881 if (++migratetype == MIGRATE_PCPTYPES)
882 migratetype = 0;
883 list = &pcp->lists[migratetype];
884 } while (list_empty(list));
48db57f8 885
1d16871d
NK
886 /* This is the only non-empty list. Free them all. */
887 if (batch_free == MIGRATE_PCPTYPES)
888 batch_free = to_free;
889
a6f9edd6 890 do {
770c8aaa
BZ
891 int mt; /* migratetype of the to-be-freed page */
892
a16601c5 893 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
894 /* must delete as __free_one_page list manipulates */
895 list_del(&page->lru);
aa016d14 896
bb14c2c7 897 mt = get_pcppage_migratetype(page);
aa016d14
VB
898 /* MIGRATE_ISOLATE page should not go to pcplists */
899 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
900 /* Pageblock could have been isolated meanwhile */
3777999d 901 if (unlikely(isolated_pageblocks))
51bb1a40 902 mt = get_pageblock_migratetype(page);
51bb1a40 903
dc4b0caf 904 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 905 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 906 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 907 }
c54ad30c 908 spin_unlock(&zone->lock);
1da177e4
LT
909}
910
dc4b0caf
MG
911static void free_one_page(struct zone *zone,
912 struct page *page, unsigned long pfn,
7aeb09f9 913 unsigned int order,
ed0ae21d 914 int migratetype)
1da177e4 915{
0d5d823a 916 unsigned long nr_scanned;
006d22d9 917 spin_lock(&zone->lock);
0d5d823a
MG
918 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
919 if (nr_scanned)
920 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 921
ad53f92e
JK
922 if (unlikely(has_isolate_pageblock(zone) ||
923 is_migrate_isolate(migratetype))) {
924 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 925 }
dc4b0caf 926 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 927 spin_unlock(&zone->lock);
48db57f8
NP
928}
929
81422f29
KS
930static int free_tail_pages_check(struct page *head_page, struct page *page)
931{
1d798ca3
KS
932 int ret = 1;
933
934 /*
935 * We rely page->lru.next never has bit 0 set, unless the page
936 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
937 */
938 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
939
940 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
941 ret = 0;
942 goto out;
943 }
9a982250
KS
944 switch (page - head_page) {
945 case 1:
946 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
947 if (unlikely(compound_mapcount(page))) {
948 bad_page(page, "nonzero compound_mapcount", 0);
949 goto out;
950 }
9a982250
KS
951 break;
952 case 2:
953 /*
954 * the second tail page: ->mapping is
955 * page_deferred_list().next -- ignore value.
956 */
957 break;
958 default:
959 if (page->mapping != TAIL_MAPPING) {
960 bad_page(page, "corrupted mapping in tail page", 0);
961 goto out;
962 }
963 break;
1c290f64 964 }
81422f29
KS
965 if (unlikely(!PageTail(page))) {
966 bad_page(page, "PageTail not set", 0);
1d798ca3 967 goto out;
81422f29 968 }
1d798ca3
KS
969 if (unlikely(compound_head(page) != head_page)) {
970 bad_page(page, "compound_head not consistent", 0);
971 goto out;
81422f29 972 }
1d798ca3
KS
973 ret = 0;
974out:
1c290f64 975 page->mapping = NULL;
1d798ca3
KS
976 clear_compound_head(page);
977 return ret;
81422f29
KS
978}
979
1e8ce83c
RH
980static void __meminit __init_single_page(struct page *page, unsigned long pfn,
981 unsigned long zone, int nid)
982{
1e8ce83c 983 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
984 init_page_count(page);
985 page_mapcount_reset(page);
986 page_cpupid_reset_last(page);
1e8ce83c 987
1e8ce83c
RH
988 INIT_LIST_HEAD(&page->lru);
989#ifdef WANT_PAGE_VIRTUAL
990 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
991 if (!is_highmem_idx(zone))
992 set_page_address(page, __va(pfn << PAGE_SHIFT));
993#endif
994}
995
996static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
997 int nid)
998{
999 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1000}
1001
7e18adb4
MG
1002#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1003static void init_reserved_page(unsigned long pfn)
1004{
1005 pg_data_t *pgdat;
1006 int nid, zid;
1007
1008 if (!early_page_uninitialised(pfn))
1009 return;
1010
1011 nid = early_pfn_to_nid(pfn);
1012 pgdat = NODE_DATA(nid);
1013
1014 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1015 struct zone *zone = &pgdat->node_zones[zid];
1016
1017 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1018 break;
1019 }
1020 __init_single_pfn(pfn, zid, nid);
1021}
1022#else
1023static inline void init_reserved_page(unsigned long pfn)
1024{
1025}
1026#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1027
92923ca3
NZ
1028/*
1029 * Initialised pages do not have PageReserved set. This function is
1030 * called for each range allocated by the bootmem allocator and
1031 * marks the pages PageReserved. The remaining valid pages are later
1032 * sent to the buddy page allocator.
1033 */
7e18adb4 1034void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1035{
1036 unsigned long start_pfn = PFN_DOWN(start);
1037 unsigned long end_pfn = PFN_UP(end);
1038
7e18adb4
MG
1039 for (; start_pfn < end_pfn; start_pfn++) {
1040 if (pfn_valid(start_pfn)) {
1041 struct page *page = pfn_to_page(start_pfn);
1042
1043 init_reserved_page(start_pfn);
1d798ca3
KS
1044
1045 /* Avoid false-positive PageTail() */
1046 INIT_LIST_HEAD(&page->lru);
1047
7e18adb4
MG
1048 SetPageReserved(page);
1049 }
1050 }
92923ca3
NZ
1051}
1052
ec95f53a 1053static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1054{
d61f8590 1055 int bad = 0;
1da177e4 1056
ab1f306f 1057 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1058
b413d48a 1059 trace_mm_page_free(page, order);
b1eeab67 1060 kmemcheck_free_shadow(page, order);
b8c73fc2 1061 kasan_free_pages(page, order);
b1eeab67 1062
d61f8590
MG
1063 /*
1064 * Check tail pages before head page information is cleared to
1065 * avoid checking PageCompound for order-0 pages.
1066 */
1067 if (unlikely(order)) {
1068 bool compound = PageCompound(page);
1069 int i;
1070
1071 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1072
1073 for (i = 1; i < (1 << order); i++) {
1074 if (compound)
1075 bad += free_tail_pages_check(page, page + i);
1076 bad += free_pages_check(page + i);
1077 }
1078 }
17514574 1079 if (PageAnonHead(page))
8dd60a3a 1080 page->mapping = NULL;
81422f29 1081 bad += free_pages_check(page);
8cc3b392 1082 if (bad)
ec95f53a 1083 return false;
689bcebf 1084
48c96a36
JK
1085 reset_page_owner(page, order);
1086
3ac7fe5a 1087 if (!PageHighMem(page)) {
b8af2941
PK
1088 debug_check_no_locks_freed(page_address(page),
1089 PAGE_SIZE << order);
3ac7fe5a
TG
1090 debug_check_no_obj_freed(page_address(page),
1091 PAGE_SIZE << order);
1092 }
dafb1367 1093 arch_free_page(page, order);
8823b1db 1094 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1095 kernel_map_pages(page, 1 << order, 0);
dafb1367 1096
ec95f53a
KM
1097 return true;
1098}
1099
1100static void __free_pages_ok(struct page *page, unsigned int order)
1101{
1102 unsigned long flags;
95e34412 1103 int migratetype;
dc4b0caf 1104 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1105
1106 if (!free_pages_prepare(page, order))
1107 return;
1108
cfc47a28 1109 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1110 local_irq_save(flags);
f8891e5e 1111 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1112 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1113 local_irq_restore(flags);
1da177e4
LT
1114}
1115
949698a3 1116static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1117{
c3993076 1118 unsigned int nr_pages = 1 << order;
e2d0bd2b 1119 struct page *p = page;
c3993076 1120 unsigned int loop;
a226f6c8 1121
e2d0bd2b
YL
1122 prefetchw(p);
1123 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1124 prefetchw(p + 1);
c3993076
JW
1125 __ClearPageReserved(p);
1126 set_page_count(p, 0);
a226f6c8 1127 }
e2d0bd2b
YL
1128 __ClearPageReserved(p);
1129 set_page_count(p, 0);
c3993076 1130
e2d0bd2b 1131 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1132 set_page_refcounted(page);
1133 __free_pages(page, order);
a226f6c8
DH
1134}
1135
75a592a4
MG
1136#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1137 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1138
75a592a4
MG
1139static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1140
1141int __meminit early_pfn_to_nid(unsigned long pfn)
1142{
7ace9917 1143 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1144 int nid;
1145
7ace9917 1146 spin_lock(&early_pfn_lock);
75a592a4 1147 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1148 if (nid < 0)
1149 nid = 0;
1150 spin_unlock(&early_pfn_lock);
1151
1152 return nid;
75a592a4
MG
1153}
1154#endif
1155
1156#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1157static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1158 struct mminit_pfnnid_cache *state)
1159{
1160 int nid;
1161
1162 nid = __early_pfn_to_nid(pfn, state);
1163 if (nid >= 0 && nid != node)
1164 return false;
1165 return true;
1166}
1167
1168/* Only safe to use early in boot when initialisation is single-threaded */
1169static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1170{
1171 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1172}
1173
1174#else
1175
1176static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1177{
1178 return true;
1179}
1180static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1181 struct mminit_pfnnid_cache *state)
1182{
1183 return true;
1184}
1185#endif
1186
1187
0e1cc95b 1188void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1189 unsigned int order)
1190{
1191 if (early_page_uninitialised(pfn))
1192 return;
949698a3 1193 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1194}
1195
7cf91a98
JK
1196/*
1197 * Check that the whole (or subset of) a pageblock given by the interval of
1198 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1199 * with the migration of free compaction scanner. The scanners then need to
1200 * use only pfn_valid_within() check for arches that allow holes within
1201 * pageblocks.
1202 *
1203 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1204 *
1205 * It's possible on some configurations to have a setup like node0 node1 node0
1206 * i.e. it's possible that all pages within a zones range of pages do not
1207 * belong to a single zone. We assume that a border between node0 and node1
1208 * can occur within a single pageblock, but not a node0 node1 node0
1209 * interleaving within a single pageblock. It is therefore sufficient to check
1210 * the first and last page of a pageblock and avoid checking each individual
1211 * page in a pageblock.
1212 */
1213struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1214 unsigned long end_pfn, struct zone *zone)
1215{
1216 struct page *start_page;
1217 struct page *end_page;
1218
1219 /* end_pfn is one past the range we are checking */
1220 end_pfn--;
1221
1222 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1223 return NULL;
1224
1225 start_page = pfn_to_page(start_pfn);
1226
1227 if (page_zone(start_page) != zone)
1228 return NULL;
1229
1230 end_page = pfn_to_page(end_pfn);
1231
1232 /* This gives a shorter code than deriving page_zone(end_page) */
1233 if (page_zone_id(start_page) != page_zone_id(end_page))
1234 return NULL;
1235
1236 return start_page;
1237}
1238
1239void set_zone_contiguous(struct zone *zone)
1240{
1241 unsigned long block_start_pfn = zone->zone_start_pfn;
1242 unsigned long block_end_pfn;
1243
1244 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1245 for (; block_start_pfn < zone_end_pfn(zone);
1246 block_start_pfn = block_end_pfn,
1247 block_end_pfn += pageblock_nr_pages) {
1248
1249 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1250
1251 if (!__pageblock_pfn_to_page(block_start_pfn,
1252 block_end_pfn, zone))
1253 return;
1254 }
1255
1256 /* We confirm that there is no hole */
1257 zone->contiguous = true;
1258}
1259
1260void clear_zone_contiguous(struct zone *zone)
1261{
1262 zone->contiguous = false;
1263}
1264
7e18adb4 1265#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1266static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1267 unsigned long pfn, int nr_pages)
1268{
1269 int i;
1270
1271 if (!page)
1272 return;
1273
1274 /* Free a large naturally-aligned chunk if possible */
1275 if (nr_pages == MAX_ORDER_NR_PAGES &&
1276 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1277 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1278 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1279 return;
1280 }
1281
949698a3
LZ
1282 for (i = 0; i < nr_pages; i++, page++)
1283 __free_pages_boot_core(page, 0);
a4de83dd
MG
1284}
1285
d3cd131d
NS
1286/* Completion tracking for deferred_init_memmap() threads */
1287static atomic_t pgdat_init_n_undone __initdata;
1288static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1289
1290static inline void __init pgdat_init_report_one_done(void)
1291{
1292 if (atomic_dec_and_test(&pgdat_init_n_undone))
1293 complete(&pgdat_init_all_done_comp);
1294}
0e1cc95b 1295
7e18adb4 1296/* Initialise remaining memory on a node */
0e1cc95b 1297static int __init deferred_init_memmap(void *data)
7e18adb4 1298{
0e1cc95b
MG
1299 pg_data_t *pgdat = data;
1300 int nid = pgdat->node_id;
7e18adb4
MG
1301 struct mminit_pfnnid_cache nid_init_state = { };
1302 unsigned long start = jiffies;
1303 unsigned long nr_pages = 0;
1304 unsigned long walk_start, walk_end;
1305 int i, zid;
1306 struct zone *zone;
7e18adb4 1307 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1308 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1309
0e1cc95b 1310 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1311 pgdat_init_report_one_done();
0e1cc95b
MG
1312 return 0;
1313 }
1314
1315 /* Bind memory initialisation thread to a local node if possible */
1316 if (!cpumask_empty(cpumask))
1317 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1318
1319 /* Sanity check boundaries */
1320 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1321 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1322 pgdat->first_deferred_pfn = ULONG_MAX;
1323
1324 /* Only the highest zone is deferred so find it */
1325 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1326 zone = pgdat->node_zones + zid;
1327 if (first_init_pfn < zone_end_pfn(zone))
1328 break;
1329 }
1330
1331 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1332 unsigned long pfn, end_pfn;
54608c3f 1333 struct page *page = NULL;
a4de83dd
MG
1334 struct page *free_base_page = NULL;
1335 unsigned long free_base_pfn = 0;
1336 int nr_to_free = 0;
7e18adb4
MG
1337
1338 end_pfn = min(walk_end, zone_end_pfn(zone));
1339 pfn = first_init_pfn;
1340 if (pfn < walk_start)
1341 pfn = walk_start;
1342 if (pfn < zone->zone_start_pfn)
1343 pfn = zone->zone_start_pfn;
1344
1345 for (; pfn < end_pfn; pfn++) {
54608c3f 1346 if (!pfn_valid_within(pfn))
a4de83dd 1347 goto free_range;
7e18adb4 1348
54608c3f
MG
1349 /*
1350 * Ensure pfn_valid is checked every
1351 * MAX_ORDER_NR_PAGES for memory holes
1352 */
1353 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1354 if (!pfn_valid(pfn)) {
1355 page = NULL;
a4de83dd 1356 goto free_range;
54608c3f
MG
1357 }
1358 }
1359
1360 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1361 page = NULL;
a4de83dd 1362 goto free_range;
54608c3f
MG
1363 }
1364
1365 /* Minimise pfn page lookups and scheduler checks */
1366 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1367 page++;
1368 } else {
a4de83dd
MG
1369 nr_pages += nr_to_free;
1370 deferred_free_range(free_base_page,
1371 free_base_pfn, nr_to_free);
1372 free_base_page = NULL;
1373 free_base_pfn = nr_to_free = 0;
1374
54608c3f
MG
1375 page = pfn_to_page(pfn);
1376 cond_resched();
1377 }
7e18adb4
MG
1378
1379 if (page->flags) {
1380 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1381 goto free_range;
7e18adb4
MG
1382 }
1383
1384 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1385 if (!free_base_page) {
1386 free_base_page = page;
1387 free_base_pfn = pfn;
1388 nr_to_free = 0;
1389 }
1390 nr_to_free++;
1391
1392 /* Where possible, batch up pages for a single free */
1393 continue;
1394free_range:
1395 /* Free the current block of pages to allocator */
1396 nr_pages += nr_to_free;
1397 deferred_free_range(free_base_page, free_base_pfn,
1398 nr_to_free);
1399 free_base_page = NULL;
1400 free_base_pfn = nr_to_free = 0;
7e18adb4 1401 }
a4de83dd 1402
7e18adb4
MG
1403 first_init_pfn = max(end_pfn, first_init_pfn);
1404 }
1405
1406 /* Sanity check that the next zone really is unpopulated */
1407 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1408
0e1cc95b 1409 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1410 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1411
1412 pgdat_init_report_one_done();
0e1cc95b
MG
1413 return 0;
1414}
7cf91a98 1415#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1416
1417void __init page_alloc_init_late(void)
1418{
7cf91a98
JK
1419 struct zone *zone;
1420
1421#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1422 int nid;
1423
d3cd131d
NS
1424 /* There will be num_node_state(N_MEMORY) threads */
1425 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1426 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1427 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1428 }
1429
1430 /* Block until all are initialised */
d3cd131d 1431 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1432
1433 /* Reinit limits that are based on free pages after the kernel is up */
1434 files_maxfiles_init();
7cf91a98
JK
1435#endif
1436
1437 for_each_populated_zone(zone)
1438 set_zone_contiguous(zone);
7e18adb4 1439}
7e18adb4 1440
47118af0 1441#ifdef CONFIG_CMA
9cf510a5 1442/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1443void __init init_cma_reserved_pageblock(struct page *page)
1444{
1445 unsigned i = pageblock_nr_pages;
1446 struct page *p = page;
1447
1448 do {
1449 __ClearPageReserved(p);
1450 set_page_count(p, 0);
1451 } while (++p, --i);
1452
47118af0 1453 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1454
1455 if (pageblock_order >= MAX_ORDER) {
1456 i = pageblock_nr_pages;
1457 p = page;
1458 do {
1459 set_page_refcounted(p);
1460 __free_pages(p, MAX_ORDER - 1);
1461 p += MAX_ORDER_NR_PAGES;
1462 } while (i -= MAX_ORDER_NR_PAGES);
1463 } else {
1464 set_page_refcounted(page);
1465 __free_pages(page, pageblock_order);
1466 }
1467
3dcc0571 1468 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1469}
1470#endif
1da177e4
LT
1471
1472/*
1473 * The order of subdivision here is critical for the IO subsystem.
1474 * Please do not alter this order without good reasons and regression
1475 * testing. Specifically, as large blocks of memory are subdivided,
1476 * the order in which smaller blocks are delivered depends on the order
1477 * they're subdivided in this function. This is the primary factor
1478 * influencing the order in which pages are delivered to the IO
1479 * subsystem according to empirical testing, and this is also justified
1480 * by considering the behavior of a buddy system containing a single
1481 * large block of memory acted on by a series of small allocations.
1482 * This behavior is a critical factor in sglist merging's success.
1483 *
6d49e352 1484 * -- nyc
1da177e4 1485 */
085cc7d5 1486static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1487 int low, int high, struct free_area *area,
1488 int migratetype)
1da177e4
LT
1489{
1490 unsigned long size = 1 << high;
1491
1492 while (high > low) {
1493 area--;
1494 high--;
1495 size >>= 1;
309381fe 1496 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1497
2847cf95 1498 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1499 debug_guardpage_enabled() &&
2847cf95 1500 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1501 /*
1502 * Mark as guard pages (or page), that will allow to
1503 * merge back to allocator when buddy will be freed.
1504 * Corresponding page table entries will not be touched,
1505 * pages will stay not present in virtual address space
1506 */
2847cf95 1507 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1508 continue;
1509 }
b2a0ac88 1510 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1511 area->nr_free++;
1512 set_page_order(&page[size], high);
1513 }
1da177e4
LT
1514}
1515
1da177e4
LT
1516/*
1517 * This page is about to be returned from the page allocator
1518 */
2a7684a2 1519static inline int check_new_page(struct page *page)
1da177e4 1520{
7bfec6f4
MG
1521 const char *bad_reason;
1522 unsigned long bad_flags;
1523
1524 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1525 return 0;
f0b791a3 1526
7bfec6f4
MG
1527 bad_reason = NULL;
1528 bad_flags = 0;
53f9263b 1529 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1530 bad_reason = "nonzero mapcount";
1531 if (unlikely(page->mapping != NULL))
1532 bad_reason = "non-NULL mapping";
fe896d18 1533 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1534 bad_reason = "nonzero _count";
f4c18e6f
NH
1535 if (unlikely(page->flags & __PG_HWPOISON)) {
1536 bad_reason = "HWPoisoned (hardware-corrupted)";
1537 bad_flags = __PG_HWPOISON;
1538 }
f0b791a3
DH
1539 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1540 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1541 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1542 }
9edad6ea
JW
1543#ifdef CONFIG_MEMCG
1544 if (unlikely(page->mem_cgroup))
1545 bad_reason = "page still charged to cgroup";
1546#endif
f0b791a3
DH
1547 if (unlikely(bad_reason)) {
1548 bad_page(page, bad_reason, bad_flags);
689bcebf 1549 return 1;
8cc3b392 1550 }
2a7684a2
WF
1551 return 0;
1552}
1553
1414c7f4
LA
1554static inline bool free_pages_prezeroed(bool poisoned)
1555{
1556 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1557 page_poisoning_enabled() && poisoned;
1558}
1559
75379191 1560static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1561 unsigned int alloc_flags)
2a7684a2
WF
1562{
1563 int i;
1414c7f4 1564 bool poisoned = true;
2a7684a2
WF
1565
1566 for (i = 0; i < (1 << order); i++) {
1567 struct page *p = page + i;
1568 if (unlikely(check_new_page(p)))
1569 return 1;
1414c7f4
LA
1570 if (poisoned)
1571 poisoned &= page_is_poisoned(p);
2a7684a2 1572 }
689bcebf 1573
4c21e2f2 1574 set_page_private(page, 0);
7835e98b 1575 set_page_refcounted(page);
cc102509
NP
1576
1577 arch_alloc_page(page, order);
1da177e4 1578 kernel_map_pages(page, 1 << order, 1);
8823b1db 1579 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1580 kasan_alloc_pages(page, order);
17cf4406 1581
1414c7f4 1582 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1583 for (i = 0; i < (1 << order); i++)
1584 clear_highpage(page + i);
17cf4406
NP
1585
1586 if (order && (gfp_flags & __GFP_COMP))
1587 prep_compound_page(page, order);
1588
48c96a36
JK
1589 set_page_owner(page, order, gfp_flags);
1590
75379191 1591 /*
2f064f34 1592 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1593 * allocate the page. The expectation is that the caller is taking
1594 * steps that will free more memory. The caller should avoid the page
1595 * being used for !PFMEMALLOC purposes.
1596 */
2f064f34
MH
1597 if (alloc_flags & ALLOC_NO_WATERMARKS)
1598 set_page_pfmemalloc(page);
1599 else
1600 clear_page_pfmemalloc(page);
75379191 1601
689bcebf 1602 return 0;
1da177e4
LT
1603}
1604
56fd56b8
MG
1605/*
1606 * Go through the free lists for the given migratetype and remove
1607 * the smallest available page from the freelists
1608 */
728ec980
MG
1609static inline
1610struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1611 int migratetype)
1612{
1613 unsigned int current_order;
b8af2941 1614 struct free_area *area;
56fd56b8
MG
1615 struct page *page;
1616
1617 /* Find a page of the appropriate size in the preferred list */
1618 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1619 area = &(zone->free_area[current_order]);
a16601c5 1620 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1621 struct page, lru);
a16601c5
GT
1622 if (!page)
1623 continue;
56fd56b8
MG
1624 list_del(&page->lru);
1625 rmv_page_order(page);
1626 area->nr_free--;
56fd56b8 1627 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1628 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1629 return page;
1630 }
1631
1632 return NULL;
1633}
1634
1635
b2a0ac88
MG
1636/*
1637 * This array describes the order lists are fallen back to when
1638 * the free lists for the desirable migrate type are depleted
1639 */
47118af0 1640static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1641 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1642 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1643 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1644#ifdef CONFIG_CMA
974a786e 1645 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1646#endif
194159fb 1647#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1648 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1649#endif
b2a0ac88
MG
1650};
1651
dc67647b
JK
1652#ifdef CONFIG_CMA
1653static struct page *__rmqueue_cma_fallback(struct zone *zone,
1654 unsigned int order)
1655{
1656 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1657}
1658#else
1659static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1660 unsigned int order) { return NULL; }
1661#endif
1662
c361be55
MG
1663/*
1664 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1665 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1666 * boundary. If alignment is required, use move_freepages_block()
1667 */
435b405c 1668int move_freepages(struct zone *zone,
b69a7288
AB
1669 struct page *start_page, struct page *end_page,
1670 int migratetype)
c361be55
MG
1671{
1672 struct page *page;
d00181b9 1673 unsigned int order;
d100313f 1674 int pages_moved = 0;
c361be55
MG
1675
1676#ifndef CONFIG_HOLES_IN_ZONE
1677 /*
1678 * page_zone is not safe to call in this context when
1679 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1680 * anyway as we check zone boundaries in move_freepages_block().
1681 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1682 * grouping pages by mobility
c361be55 1683 */
97ee4ba7 1684 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1685#endif
1686
1687 for (page = start_page; page <= end_page;) {
344c790e 1688 /* Make sure we are not inadvertently changing nodes */
309381fe 1689 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1690
c361be55
MG
1691 if (!pfn_valid_within(page_to_pfn(page))) {
1692 page++;
1693 continue;
1694 }
1695
1696 if (!PageBuddy(page)) {
1697 page++;
1698 continue;
1699 }
1700
1701 order = page_order(page);
84be48d8
KS
1702 list_move(&page->lru,
1703 &zone->free_area[order].free_list[migratetype]);
c361be55 1704 page += 1 << order;
d100313f 1705 pages_moved += 1 << order;
c361be55
MG
1706 }
1707
d100313f 1708 return pages_moved;
c361be55
MG
1709}
1710
ee6f509c 1711int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1712 int migratetype)
c361be55
MG
1713{
1714 unsigned long start_pfn, end_pfn;
1715 struct page *start_page, *end_page;
1716
1717 start_pfn = page_to_pfn(page);
d9c23400 1718 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1719 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1720 end_page = start_page + pageblock_nr_pages - 1;
1721 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1722
1723 /* Do not cross zone boundaries */
108bcc96 1724 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1725 start_page = page;
108bcc96 1726 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1727 return 0;
1728
1729 return move_freepages(zone, start_page, end_page, migratetype);
1730}
1731
2f66a68f
MG
1732static void change_pageblock_range(struct page *pageblock_page,
1733 int start_order, int migratetype)
1734{
1735 int nr_pageblocks = 1 << (start_order - pageblock_order);
1736
1737 while (nr_pageblocks--) {
1738 set_pageblock_migratetype(pageblock_page, migratetype);
1739 pageblock_page += pageblock_nr_pages;
1740 }
1741}
1742
fef903ef 1743/*
9c0415eb
VB
1744 * When we are falling back to another migratetype during allocation, try to
1745 * steal extra free pages from the same pageblocks to satisfy further
1746 * allocations, instead of polluting multiple pageblocks.
1747 *
1748 * If we are stealing a relatively large buddy page, it is likely there will
1749 * be more free pages in the pageblock, so try to steal them all. For
1750 * reclaimable and unmovable allocations, we steal regardless of page size,
1751 * as fragmentation caused by those allocations polluting movable pageblocks
1752 * is worse than movable allocations stealing from unmovable and reclaimable
1753 * pageblocks.
fef903ef 1754 */
4eb7dce6
JK
1755static bool can_steal_fallback(unsigned int order, int start_mt)
1756{
1757 /*
1758 * Leaving this order check is intended, although there is
1759 * relaxed order check in next check. The reason is that
1760 * we can actually steal whole pageblock if this condition met,
1761 * but, below check doesn't guarantee it and that is just heuristic
1762 * so could be changed anytime.
1763 */
1764 if (order >= pageblock_order)
1765 return true;
1766
1767 if (order >= pageblock_order / 2 ||
1768 start_mt == MIGRATE_RECLAIMABLE ||
1769 start_mt == MIGRATE_UNMOVABLE ||
1770 page_group_by_mobility_disabled)
1771 return true;
1772
1773 return false;
1774}
1775
1776/*
1777 * This function implements actual steal behaviour. If order is large enough,
1778 * we can steal whole pageblock. If not, we first move freepages in this
1779 * pageblock and check whether half of pages are moved or not. If half of
1780 * pages are moved, we can change migratetype of pageblock and permanently
1781 * use it's pages as requested migratetype in the future.
1782 */
1783static void steal_suitable_fallback(struct zone *zone, struct page *page,
1784 int start_type)
fef903ef 1785{
d00181b9 1786 unsigned int current_order = page_order(page);
4eb7dce6 1787 int pages;
fef903ef 1788
fef903ef
SB
1789 /* Take ownership for orders >= pageblock_order */
1790 if (current_order >= pageblock_order) {
1791 change_pageblock_range(page, current_order, start_type);
3a1086fb 1792 return;
fef903ef
SB
1793 }
1794
4eb7dce6 1795 pages = move_freepages_block(zone, page, start_type);
fef903ef 1796
4eb7dce6
JK
1797 /* Claim the whole block if over half of it is free */
1798 if (pages >= (1 << (pageblock_order-1)) ||
1799 page_group_by_mobility_disabled)
1800 set_pageblock_migratetype(page, start_type);
1801}
1802
2149cdae
JK
1803/*
1804 * Check whether there is a suitable fallback freepage with requested order.
1805 * If only_stealable is true, this function returns fallback_mt only if
1806 * we can steal other freepages all together. This would help to reduce
1807 * fragmentation due to mixed migratetype pages in one pageblock.
1808 */
1809int find_suitable_fallback(struct free_area *area, unsigned int order,
1810 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1811{
1812 int i;
1813 int fallback_mt;
1814
1815 if (area->nr_free == 0)
1816 return -1;
1817
1818 *can_steal = false;
1819 for (i = 0;; i++) {
1820 fallback_mt = fallbacks[migratetype][i];
974a786e 1821 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1822 break;
1823
1824 if (list_empty(&area->free_list[fallback_mt]))
1825 continue;
fef903ef 1826
4eb7dce6
JK
1827 if (can_steal_fallback(order, migratetype))
1828 *can_steal = true;
1829
2149cdae
JK
1830 if (!only_stealable)
1831 return fallback_mt;
1832
1833 if (*can_steal)
1834 return fallback_mt;
fef903ef 1835 }
4eb7dce6
JK
1836
1837 return -1;
fef903ef
SB
1838}
1839
0aaa29a5
MG
1840/*
1841 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1842 * there are no empty page blocks that contain a page with a suitable order
1843 */
1844static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1845 unsigned int alloc_order)
1846{
1847 int mt;
1848 unsigned long max_managed, flags;
1849
1850 /*
1851 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1852 * Check is race-prone but harmless.
1853 */
1854 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1855 if (zone->nr_reserved_highatomic >= max_managed)
1856 return;
1857
1858 spin_lock_irqsave(&zone->lock, flags);
1859
1860 /* Recheck the nr_reserved_highatomic limit under the lock */
1861 if (zone->nr_reserved_highatomic >= max_managed)
1862 goto out_unlock;
1863
1864 /* Yoink! */
1865 mt = get_pageblock_migratetype(page);
1866 if (mt != MIGRATE_HIGHATOMIC &&
1867 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1868 zone->nr_reserved_highatomic += pageblock_nr_pages;
1869 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1870 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1871 }
1872
1873out_unlock:
1874 spin_unlock_irqrestore(&zone->lock, flags);
1875}
1876
1877/*
1878 * Used when an allocation is about to fail under memory pressure. This
1879 * potentially hurts the reliability of high-order allocations when under
1880 * intense memory pressure but failed atomic allocations should be easier
1881 * to recover from than an OOM.
1882 */
1883static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1884{
1885 struct zonelist *zonelist = ac->zonelist;
1886 unsigned long flags;
1887 struct zoneref *z;
1888 struct zone *zone;
1889 struct page *page;
1890 int order;
1891
1892 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1893 ac->nodemask) {
1894 /* Preserve at least one pageblock */
1895 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1896 continue;
1897
1898 spin_lock_irqsave(&zone->lock, flags);
1899 for (order = 0; order < MAX_ORDER; order++) {
1900 struct free_area *area = &(zone->free_area[order]);
1901
a16601c5
GT
1902 page = list_first_entry_or_null(
1903 &area->free_list[MIGRATE_HIGHATOMIC],
1904 struct page, lru);
1905 if (!page)
0aaa29a5
MG
1906 continue;
1907
0aaa29a5
MG
1908 /*
1909 * It should never happen but changes to locking could
1910 * inadvertently allow a per-cpu drain to add pages
1911 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1912 * and watch for underflows.
1913 */
1914 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1915 zone->nr_reserved_highatomic);
1916
1917 /*
1918 * Convert to ac->migratetype and avoid the normal
1919 * pageblock stealing heuristics. Minimally, the caller
1920 * is doing the work and needs the pages. More
1921 * importantly, if the block was always converted to
1922 * MIGRATE_UNMOVABLE or another type then the number
1923 * of pageblocks that cannot be completely freed
1924 * may increase.
1925 */
1926 set_pageblock_migratetype(page, ac->migratetype);
1927 move_freepages_block(zone, page, ac->migratetype);
1928 spin_unlock_irqrestore(&zone->lock, flags);
1929 return;
1930 }
1931 spin_unlock_irqrestore(&zone->lock, flags);
1932 }
1933}
1934
b2a0ac88 1935/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1936static inline struct page *
7aeb09f9 1937__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1938{
b8af2941 1939 struct free_area *area;
7aeb09f9 1940 unsigned int current_order;
b2a0ac88 1941 struct page *page;
4eb7dce6
JK
1942 int fallback_mt;
1943 bool can_steal;
b2a0ac88
MG
1944
1945 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1946 for (current_order = MAX_ORDER-1;
1947 current_order >= order && current_order <= MAX_ORDER-1;
1948 --current_order) {
4eb7dce6
JK
1949 area = &(zone->free_area[current_order]);
1950 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1951 start_migratetype, false, &can_steal);
4eb7dce6
JK
1952 if (fallback_mt == -1)
1953 continue;
b2a0ac88 1954
a16601c5 1955 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1956 struct page, lru);
1957 if (can_steal)
1958 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1959
4eb7dce6
JK
1960 /* Remove the page from the freelists */
1961 area->nr_free--;
1962 list_del(&page->lru);
1963 rmv_page_order(page);
3a1086fb 1964
4eb7dce6
JK
1965 expand(zone, page, order, current_order, area,
1966 start_migratetype);
1967 /*
bb14c2c7 1968 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1969 * migratetype depending on the decisions in
bb14c2c7
VB
1970 * find_suitable_fallback(). This is OK as long as it does not
1971 * differ for MIGRATE_CMA pageblocks. Those can be used as
1972 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1973 */
bb14c2c7 1974 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1975
4eb7dce6
JK
1976 trace_mm_page_alloc_extfrag(page, order, current_order,
1977 start_migratetype, fallback_mt);
e0fff1bd 1978
4eb7dce6 1979 return page;
b2a0ac88
MG
1980 }
1981
728ec980 1982 return NULL;
b2a0ac88
MG
1983}
1984
56fd56b8 1985/*
1da177e4
LT
1986 * Do the hard work of removing an element from the buddy allocator.
1987 * Call me with the zone->lock already held.
1988 */
b2a0ac88 1989static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1990 int migratetype)
1da177e4 1991{
1da177e4
LT
1992 struct page *page;
1993
56fd56b8 1994 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1995 if (unlikely(!page)) {
dc67647b
JK
1996 if (migratetype == MIGRATE_MOVABLE)
1997 page = __rmqueue_cma_fallback(zone, order);
1998
1999 if (!page)
2000 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2001 }
2002
0d3d062a 2003 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2004 return page;
1da177e4
LT
2005}
2006
5f63b720 2007/*
1da177e4
LT
2008 * Obtain a specified number of elements from the buddy allocator, all under
2009 * a single hold of the lock, for efficiency. Add them to the supplied list.
2010 * Returns the number of new pages which were placed at *list.
2011 */
5f63b720 2012static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2013 unsigned long count, struct list_head *list,
b745bc85 2014 int migratetype, bool cold)
1da177e4 2015{
5bcc9f86 2016 int i;
5f63b720 2017
c54ad30c 2018 spin_lock(&zone->lock);
1da177e4 2019 for (i = 0; i < count; ++i) {
6ac0206b 2020 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2021 if (unlikely(page == NULL))
1da177e4 2022 break;
81eabcbe
MG
2023
2024 /*
2025 * Split buddy pages returned by expand() are received here
2026 * in physical page order. The page is added to the callers and
2027 * list and the list head then moves forward. From the callers
2028 * perspective, the linked list is ordered by page number in
2029 * some conditions. This is useful for IO devices that can
2030 * merge IO requests if the physical pages are ordered
2031 * properly.
2032 */
b745bc85 2033 if (likely(!cold))
e084b2d9
MG
2034 list_add(&page->lru, list);
2035 else
2036 list_add_tail(&page->lru, list);
81eabcbe 2037 list = &page->lru;
bb14c2c7 2038 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2039 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2040 -(1 << order));
1da177e4 2041 }
f2260e6b 2042 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2043 spin_unlock(&zone->lock);
085cc7d5 2044 return i;
1da177e4
LT
2045}
2046
4ae7c039 2047#ifdef CONFIG_NUMA
8fce4d8e 2048/*
4037d452
CL
2049 * Called from the vmstat counter updater to drain pagesets of this
2050 * currently executing processor on remote nodes after they have
2051 * expired.
2052 *
879336c3
CL
2053 * Note that this function must be called with the thread pinned to
2054 * a single processor.
8fce4d8e 2055 */
4037d452 2056void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2057{
4ae7c039 2058 unsigned long flags;
7be12fc9 2059 int to_drain, batch;
4ae7c039 2060
4037d452 2061 local_irq_save(flags);
4db0c3c2 2062 batch = READ_ONCE(pcp->batch);
7be12fc9 2063 to_drain = min(pcp->count, batch);
2a13515c
KM
2064 if (to_drain > 0) {
2065 free_pcppages_bulk(zone, to_drain, pcp);
2066 pcp->count -= to_drain;
2067 }
4037d452 2068 local_irq_restore(flags);
4ae7c039
CL
2069}
2070#endif
2071
9f8f2172 2072/*
93481ff0 2073 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2074 *
2075 * The processor must either be the current processor and the
2076 * thread pinned to the current processor or a processor that
2077 * is not online.
2078 */
93481ff0 2079static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2080{
c54ad30c 2081 unsigned long flags;
93481ff0
VB
2082 struct per_cpu_pageset *pset;
2083 struct per_cpu_pages *pcp;
1da177e4 2084
93481ff0
VB
2085 local_irq_save(flags);
2086 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2087
93481ff0
VB
2088 pcp = &pset->pcp;
2089 if (pcp->count) {
2090 free_pcppages_bulk(zone, pcp->count, pcp);
2091 pcp->count = 0;
2092 }
2093 local_irq_restore(flags);
2094}
3dfa5721 2095
93481ff0
VB
2096/*
2097 * Drain pcplists of all zones on the indicated processor.
2098 *
2099 * The processor must either be the current processor and the
2100 * thread pinned to the current processor or a processor that
2101 * is not online.
2102 */
2103static void drain_pages(unsigned int cpu)
2104{
2105 struct zone *zone;
2106
2107 for_each_populated_zone(zone) {
2108 drain_pages_zone(cpu, zone);
1da177e4
LT
2109 }
2110}
1da177e4 2111
9f8f2172
CL
2112/*
2113 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2114 *
2115 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2116 * the single zone's pages.
9f8f2172 2117 */
93481ff0 2118void drain_local_pages(struct zone *zone)
9f8f2172 2119{
93481ff0
VB
2120 int cpu = smp_processor_id();
2121
2122 if (zone)
2123 drain_pages_zone(cpu, zone);
2124 else
2125 drain_pages(cpu);
9f8f2172
CL
2126}
2127
2128/*
74046494
GBY
2129 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2130 *
93481ff0
VB
2131 * When zone parameter is non-NULL, spill just the single zone's pages.
2132 *
74046494
GBY
2133 * Note that this code is protected against sending an IPI to an offline
2134 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2135 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2136 * nothing keeps CPUs from showing up after we populated the cpumask and
2137 * before the call to on_each_cpu_mask().
9f8f2172 2138 */
93481ff0 2139void drain_all_pages(struct zone *zone)
9f8f2172 2140{
74046494 2141 int cpu;
74046494
GBY
2142
2143 /*
2144 * Allocate in the BSS so we wont require allocation in
2145 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2146 */
2147 static cpumask_t cpus_with_pcps;
2148
2149 /*
2150 * We don't care about racing with CPU hotplug event
2151 * as offline notification will cause the notified
2152 * cpu to drain that CPU pcps and on_each_cpu_mask
2153 * disables preemption as part of its processing
2154 */
2155 for_each_online_cpu(cpu) {
93481ff0
VB
2156 struct per_cpu_pageset *pcp;
2157 struct zone *z;
74046494 2158 bool has_pcps = false;
93481ff0
VB
2159
2160 if (zone) {
74046494 2161 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2162 if (pcp->pcp.count)
74046494 2163 has_pcps = true;
93481ff0
VB
2164 } else {
2165 for_each_populated_zone(z) {
2166 pcp = per_cpu_ptr(z->pageset, cpu);
2167 if (pcp->pcp.count) {
2168 has_pcps = true;
2169 break;
2170 }
74046494
GBY
2171 }
2172 }
93481ff0 2173
74046494
GBY
2174 if (has_pcps)
2175 cpumask_set_cpu(cpu, &cpus_with_pcps);
2176 else
2177 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2178 }
93481ff0
VB
2179 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2180 zone, 1);
9f8f2172
CL
2181}
2182
296699de 2183#ifdef CONFIG_HIBERNATION
1da177e4
LT
2184
2185void mark_free_pages(struct zone *zone)
2186{
f623f0db
RW
2187 unsigned long pfn, max_zone_pfn;
2188 unsigned long flags;
7aeb09f9 2189 unsigned int order, t;
86760a2c 2190 struct page *page;
1da177e4 2191
8080fc03 2192 if (zone_is_empty(zone))
1da177e4
LT
2193 return;
2194
2195 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2196
108bcc96 2197 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2198 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2199 if (pfn_valid(pfn)) {
86760a2c 2200 page = pfn_to_page(pfn);
ba6b0979
JK
2201
2202 if (page_zone(page) != zone)
2203 continue;
2204
7be98234
RW
2205 if (!swsusp_page_is_forbidden(page))
2206 swsusp_unset_page_free(page);
f623f0db 2207 }
1da177e4 2208
b2a0ac88 2209 for_each_migratetype_order(order, t) {
86760a2c
GT
2210 list_for_each_entry(page,
2211 &zone->free_area[order].free_list[t], lru) {
f623f0db 2212 unsigned long i;
1da177e4 2213
86760a2c 2214 pfn = page_to_pfn(page);
f623f0db 2215 for (i = 0; i < (1UL << order); i++)
7be98234 2216 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2217 }
b2a0ac88 2218 }
1da177e4
LT
2219 spin_unlock_irqrestore(&zone->lock, flags);
2220}
e2c55dc8 2221#endif /* CONFIG_PM */
1da177e4 2222
1da177e4
LT
2223/*
2224 * Free a 0-order page
b745bc85 2225 * cold == true ? free a cold page : free a hot page
1da177e4 2226 */
b745bc85 2227void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2228{
2229 struct zone *zone = page_zone(page);
2230 struct per_cpu_pages *pcp;
2231 unsigned long flags;
dc4b0caf 2232 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2233 int migratetype;
1da177e4 2234
ec95f53a 2235 if (!free_pages_prepare(page, 0))
689bcebf
HD
2236 return;
2237
dc4b0caf 2238 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2239 set_pcppage_migratetype(page, migratetype);
1da177e4 2240 local_irq_save(flags);
f8891e5e 2241 __count_vm_event(PGFREE);
da456f14 2242
5f8dcc21
MG
2243 /*
2244 * We only track unmovable, reclaimable and movable on pcp lists.
2245 * Free ISOLATE pages back to the allocator because they are being
2246 * offlined but treat RESERVE as movable pages so we can get those
2247 * areas back if necessary. Otherwise, we may have to free
2248 * excessively into the page allocator
2249 */
2250 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2251 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2252 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2253 goto out;
2254 }
2255 migratetype = MIGRATE_MOVABLE;
2256 }
2257
99dcc3e5 2258 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2259 if (!cold)
5f8dcc21 2260 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2261 else
2262 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2263 pcp->count++;
48db57f8 2264 if (pcp->count >= pcp->high) {
4db0c3c2 2265 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2266 free_pcppages_bulk(zone, batch, pcp);
2267 pcp->count -= batch;
48db57f8 2268 }
5f8dcc21
MG
2269
2270out:
1da177e4 2271 local_irq_restore(flags);
1da177e4
LT
2272}
2273
cc59850e
KK
2274/*
2275 * Free a list of 0-order pages
2276 */
b745bc85 2277void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2278{
2279 struct page *page, *next;
2280
2281 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2282 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2283 free_hot_cold_page(page, cold);
2284 }
2285}
2286
8dfcc9ba
NP
2287/*
2288 * split_page takes a non-compound higher-order page, and splits it into
2289 * n (1<<order) sub-pages: page[0..n]
2290 * Each sub-page must be freed individually.
2291 *
2292 * Note: this is probably too low level an operation for use in drivers.
2293 * Please consult with lkml before using this in your driver.
2294 */
2295void split_page(struct page *page, unsigned int order)
2296{
2297 int i;
e2cfc911 2298 gfp_t gfp_mask;
8dfcc9ba 2299
309381fe
SL
2300 VM_BUG_ON_PAGE(PageCompound(page), page);
2301 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2302
2303#ifdef CONFIG_KMEMCHECK
2304 /*
2305 * Split shadow pages too, because free(page[0]) would
2306 * otherwise free the whole shadow.
2307 */
2308 if (kmemcheck_page_is_tracked(page))
2309 split_page(virt_to_page(page[0].shadow), order);
2310#endif
2311
e2cfc911
JK
2312 gfp_mask = get_page_owner_gfp(page);
2313 set_page_owner(page, 0, gfp_mask);
48c96a36 2314 for (i = 1; i < (1 << order); i++) {
7835e98b 2315 set_page_refcounted(page + i);
e2cfc911 2316 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2317 }
8dfcc9ba 2318}
5853ff23 2319EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2320
3c605096 2321int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2322{
748446bb
MG
2323 unsigned long watermark;
2324 struct zone *zone;
2139cbe6 2325 int mt;
748446bb
MG
2326
2327 BUG_ON(!PageBuddy(page));
2328
2329 zone = page_zone(page);
2e30abd1 2330 mt = get_pageblock_migratetype(page);
748446bb 2331
194159fb 2332 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2333 /* Obey watermarks as if the page was being allocated */
2334 watermark = low_wmark_pages(zone) + (1 << order);
2335 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2336 return 0;
2337
8fb74b9f 2338 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2339 }
748446bb
MG
2340
2341 /* Remove page from free list */
2342 list_del(&page->lru);
2343 zone->free_area[order].nr_free--;
2344 rmv_page_order(page);
2139cbe6 2345
e2cfc911 2346 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2347
8fb74b9f 2348 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2349 if (order >= pageblock_order - 1) {
2350 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2351 for (; page < endpage; page += pageblock_nr_pages) {
2352 int mt = get_pageblock_migratetype(page);
194159fb 2353 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2354 set_pageblock_migratetype(page,
2355 MIGRATE_MOVABLE);
2356 }
748446bb
MG
2357 }
2358
f3a14ced 2359
8fb74b9f 2360 return 1UL << order;
1fb3f8ca
MG
2361}
2362
2363/*
2364 * Similar to split_page except the page is already free. As this is only
2365 * being used for migration, the migratetype of the block also changes.
2366 * As this is called with interrupts disabled, the caller is responsible
2367 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2368 * are enabled.
2369 *
2370 * Note: this is probably too low level an operation for use in drivers.
2371 * Please consult with lkml before using this in your driver.
2372 */
2373int split_free_page(struct page *page)
2374{
2375 unsigned int order;
2376 int nr_pages;
2377
1fb3f8ca
MG
2378 order = page_order(page);
2379
8fb74b9f 2380 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2381 if (!nr_pages)
2382 return 0;
2383
2384 /* Split into individual pages */
2385 set_page_refcounted(page);
2386 split_page(page, order);
2387 return nr_pages;
748446bb
MG
2388}
2389
060e7417
MG
2390/*
2391 * Update NUMA hit/miss statistics
2392 *
2393 * Must be called with interrupts disabled.
2394 *
2395 * When __GFP_OTHER_NODE is set assume the node of the preferred
2396 * zone is the local node. This is useful for daemons who allocate
2397 * memory on behalf of other processes.
2398 */
2399static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2400 gfp_t flags)
2401{
2402#ifdef CONFIG_NUMA
2403 int local_nid = numa_node_id();
2404 enum zone_stat_item local_stat = NUMA_LOCAL;
2405
2406 if (unlikely(flags & __GFP_OTHER_NODE)) {
2407 local_stat = NUMA_OTHER;
2408 local_nid = preferred_zone->node;
2409 }
2410
2411 if (z->node == local_nid) {
2412 __inc_zone_state(z, NUMA_HIT);
2413 __inc_zone_state(z, local_stat);
2414 } else {
2415 __inc_zone_state(z, NUMA_MISS);
2416 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2417 }
2418#endif
2419}
2420
1da177e4 2421/*
75379191 2422 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2423 */
0a15c3e9
MG
2424static inline
2425struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2426 struct zone *zone, unsigned int order,
c603844b
MG
2427 gfp_t gfp_flags, unsigned int alloc_flags,
2428 int migratetype)
1da177e4
LT
2429{
2430 unsigned long flags;
689bcebf 2431 struct page *page;
b745bc85 2432 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2433
48db57f8 2434 if (likely(order == 0)) {
1da177e4 2435 struct per_cpu_pages *pcp;
5f8dcc21 2436 struct list_head *list;
1da177e4 2437
1da177e4 2438 local_irq_save(flags);
99dcc3e5
CL
2439 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2440 list = &pcp->lists[migratetype];
5f8dcc21 2441 if (list_empty(list)) {
535131e6 2442 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2443 pcp->batch, list,
e084b2d9 2444 migratetype, cold);
5f8dcc21 2445 if (unlikely(list_empty(list)))
6fb332fa 2446 goto failed;
535131e6 2447 }
b92a6edd 2448
5f8dcc21 2449 if (cold)
a16601c5 2450 page = list_last_entry(list, struct page, lru);
5f8dcc21 2451 else
a16601c5 2452 page = list_first_entry(list, struct page, lru);
5f8dcc21 2453
754078eb 2454 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2455 list_del(&page->lru);
2456 pcp->count--;
7fb1d9fc 2457 } else {
0f352e53
MH
2458 /*
2459 * We most definitely don't want callers attempting to
2460 * allocate greater than order-1 page units with __GFP_NOFAIL.
2461 */
2462 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2463 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2464
2465 page = NULL;
2466 if (alloc_flags & ALLOC_HARDER) {
2467 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2468 if (page)
2469 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2470 }
2471 if (!page)
6ac0206b 2472 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2473 spin_unlock(&zone->lock);
2474 if (!page)
2475 goto failed;
754078eb 2476 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2477 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2478 get_pcppage_migratetype(page));
1da177e4
LT
2479 }
2480
abe5f972 2481 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2482 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2483 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2484
f8891e5e 2485 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2486 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2487 local_irq_restore(flags);
1da177e4 2488
309381fe 2489 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2490 return page;
a74609fa
NP
2491
2492failed:
2493 local_irq_restore(flags);
a74609fa 2494 return NULL;
1da177e4
LT
2495}
2496
933e312e
AM
2497#ifdef CONFIG_FAIL_PAGE_ALLOC
2498
b2588c4b 2499static struct {
933e312e
AM
2500 struct fault_attr attr;
2501
621a5f7a 2502 bool ignore_gfp_highmem;
71baba4b 2503 bool ignore_gfp_reclaim;
54114994 2504 u32 min_order;
933e312e
AM
2505} fail_page_alloc = {
2506 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2507 .ignore_gfp_reclaim = true,
621a5f7a 2508 .ignore_gfp_highmem = true,
54114994 2509 .min_order = 1,
933e312e
AM
2510};
2511
2512static int __init setup_fail_page_alloc(char *str)
2513{
2514 return setup_fault_attr(&fail_page_alloc.attr, str);
2515}
2516__setup("fail_page_alloc=", setup_fail_page_alloc);
2517
deaf386e 2518static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2519{
54114994 2520 if (order < fail_page_alloc.min_order)
deaf386e 2521 return false;
933e312e 2522 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2523 return false;
933e312e 2524 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2525 return false;
71baba4b
MG
2526 if (fail_page_alloc.ignore_gfp_reclaim &&
2527 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2528 return false;
933e312e
AM
2529
2530 return should_fail(&fail_page_alloc.attr, 1 << order);
2531}
2532
2533#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2534
2535static int __init fail_page_alloc_debugfs(void)
2536{
f4ae40a6 2537 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2538 struct dentry *dir;
933e312e 2539
dd48c085
AM
2540 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2541 &fail_page_alloc.attr);
2542 if (IS_ERR(dir))
2543 return PTR_ERR(dir);
933e312e 2544
b2588c4b 2545 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2546 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2547 goto fail;
2548 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2549 &fail_page_alloc.ignore_gfp_highmem))
2550 goto fail;
2551 if (!debugfs_create_u32("min-order", mode, dir,
2552 &fail_page_alloc.min_order))
2553 goto fail;
2554
2555 return 0;
2556fail:
dd48c085 2557 debugfs_remove_recursive(dir);
933e312e 2558
b2588c4b 2559 return -ENOMEM;
933e312e
AM
2560}
2561
2562late_initcall(fail_page_alloc_debugfs);
2563
2564#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2565
2566#else /* CONFIG_FAIL_PAGE_ALLOC */
2567
deaf386e 2568static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2569{
deaf386e 2570 return false;
933e312e
AM
2571}
2572
2573#endif /* CONFIG_FAIL_PAGE_ALLOC */
2574
1da177e4 2575/*
97a16fc8
MG
2576 * Return true if free base pages are above 'mark'. For high-order checks it
2577 * will return true of the order-0 watermark is reached and there is at least
2578 * one free page of a suitable size. Checking now avoids taking the zone lock
2579 * to check in the allocation paths if no pages are free.
1da177e4 2580 */
7aeb09f9 2581static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2582 unsigned long mark, int classzone_idx,
2583 unsigned int alloc_flags,
7aeb09f9 2584 long free_pages)
1da177e4 2585{
d23ad423 2586 long min = mark;
1da177e4 2587 int o;
c603844b 2588 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2589
0aaa29a5 2590 /* free_pages may go negative - that's OK */
df0a6daa 2591 free_pages -= (1 << order) - 1;
0aaa29a5 2592
7fb1d9fc 2593 if (alloc_flags & ALLOC_HIGH)
1da177e4 2594 min -= min / 2;
0aaa29a5
MG
2595
2596 /*
2597 * If the caller does not have rights to ALLOC_HARDER then subtract
2598 * the high-atomic reserves. This will over-estimate the size of the
2599 * atomic reserve but it avoids a search.
2600 */
97a16fc8 2601 if (likely(!alloc_harder))
0aaa29a5
MG
2602 free_pages -= z->nr_reserved_highatomic;
2603 else
1da177e4 2604 min -= min / 4;
e2b19197 2605
d95ea5d1
BZ
2606#ifdef CONFIG_CMA
2607 /* If allocation can't use CMA areas don't use free CMA pages */
2608 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2609 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2610#endif
026b0814 2611
97a16fc8
MG
2612 /*
2613 * Check watermarks for an order-0 allocation request. If these
2614 * are not met, then a high-order request also cannot go ahead
2615 * even if a suitable page happened to be free.
2616 */
2617 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2618 return false;
1da177e4 2619
97a16fc8
MG
2620 /* If this is an order-0 request then the watermark is fine */
2621 if (!order)
2622 return true;
2623
2624 /* For a high-order request, check at least one suitable page is free */
2625 for (o = order; o < MAX_ORDER; o++) {
2626 struct free_area *area = &z->free_area[o];
2627 int mt;
2628
2629 if (!area->nr_free)
2630 continue;
2631
2632 if (alloc_harder)
2633 return true;
1da177e4 2634
97a16fc8
MG
2635 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2636 if (!list_empty(&area->free_list[mt]))
2637 return true;
2638 }
2639
2640#ifdef CONFIG_CMA
2641 if ((alloc_flags & ALLOC_CMA) &&
2642 !list_empty(&area->free_list[MIGRATE_CMA])) {
2643 return true;
2644 }
2645#endif
1da177e4 2646 }
97a16fc8 2647 return false;
88f5acf8
MG
2648}
2649
7aeb09f9 2650bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2651 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2652{
2653 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2654 zone_page_state(z, NR_FREE_PAGES));
2655}
2656
48ee5f36
MG
2657static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2658 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2659{
2660 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2661 long cma_pages = 0;
2662
2663#ifdef CONFIG_CMA
2664 /* If allocation can't use CMA areas don't use free CMA pages */
2665 if (!(alloc_flags & ALLOC_CMA))
2666 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2667#endif
2668
2669 /*
2670 * Fast check for order-0 only. If this fails then the reserves
2671 * need to be calculated. There is a corner case where the check
2672 * passes but only the high-order atomic reserve are free. If
2673 * the caller is !atomic then it'll uselessly search the free
2674 * list. That corner case is then slower but it is harmless.
2675 */
2676 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2677 return true;
2678
2679 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2680 free_pages);
2681}
2682
7aeb09f9 2683bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2684 unsigned long mark, int classzone_idx)
88f5acf8
MG
2685{
2686 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2687
2688 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2689 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2690
e2b19197 2691 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2692 free_pages);
1da177e4
LT
2693}
2694
9276b1bc 2695#ifdef CONFIG_NUMA
81c0a2bb
JW
2696static bool zone_local(struct zone *local_zone, struct zone *zone)
2697{
fff4068c 2698 return local_zone->node == zone->node;
81c0a2bb
JW
2699}
2700
957f822a
DR
2701static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2702{
5f7a75ac
MG
2703 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2704 RECLAIM_DISTANCE;
957f822a 2705}
9276b1bc 2706#else /* CONFIG_NUMA */
81c0a2bb
JW
2707static bool zone_local(struct zone *local_zone, struct zone *zone)
2708{
2709 return true;
2710}
2711
957f822a
DR
2712static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2713{
2714 return true;
2715}
9276b1bc
PJ
2716#endif /* CONFIG_NUMA */
2717
4ffeaf35
MG
2718static void reset_alloc_batches(struct zone *preferred_zone)
2719{
2720 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2721
2722 do {
2723 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2724 high_wmark_pages(zone) - low_wmark_pages(zone) -
2725 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2726 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2727 } while (zone++ != preferred_zone);
2728}
2729
7fb1d9fc 2730/*
0798e519 2731 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2732 * a page.
2733 */
2734static struct page *
a9263751
VB
2735get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2736 const struct alloc_context *ac)
753ee728 2737{
c33d6c06 2738 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2739 struct zone *zone;
30534755
MG
2740 bool fair_skipped = false;
2741 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2742
9276b1bc 2743zonelist_scan:
7fb1d9fc 2744 /*
9276b1bc 2745 * Scan zonelist, looking for a zone with enough free.
344736f2 2746 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2747 */
c33d6c06 2748 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2749 ac->nodemask) {
be06af00 2750 struct page *page;
e085dbc5
JW
2751 unsigned long mark;
2752
664eedde
MG
2753 if (cpusets_enabled() &&
2754 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2755 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2756 continue;
81c0a2bb
JW
2757 /*
2758 * Distribute pages in proportion to the individual
2759 * zone size to ensure fair page aging. The zone a
2760 * page was allocated in should have no effect on the
2761 * time the page has in memory before being reclaimed.
81c0a2bb 2762 */
30534755 2763 if (apply_fair) {
57054651 2764 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2765 fair_skipped = true;
3a025760 2766 continue;
4ffeaf35 2767 }
c33d6c06 2768 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2769 if (fair_skipped)
2770 goto reset_fair;
2771 apply_fair = false;
2772 }
81c0a2bb 2773 }
a756cf59
JW
2774 /*
2775 * When allocating a page cache page for writing, we
2776 * want to get it from a zone that is within its dirty
2777 * limit, such that no single zone holds more than its
2778 * proportional share of globally allowed dirty pages.
2779 * The dirty limits take into account the zone's
2780 * lowmem reserves and high watermark so that kswapd
2781 * should be able to balance it without having to
2782 * write pages from its LRU list.
2783 *
2784 * This may look like it could increase pressure on
2785 * lower zones by failing allocations in higher zones
2786 * before they are full. But the pages that do spill
2787 * over are limited as the lower zones are protected
2788 * by this very same mechanism. It should not become
2789 * a practical burden to them.
2790 *
2791 * XXX: For now, allow allocations to potentially
2792 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2793 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2794 * which is important when on a NUMA setup the allowed
2795 * zones are together not big enough to reach the
2796 * global limit. The proper fix for these situations
2797 * will require awareness of zones in the
2798 * dirty-throttling and the flusher threads.
2799 */
c9ab0c4f 2800 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2801 continue;
7fb1d9fc 2802
e085dbc5 2803 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2804 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2805 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2806 int ret;
2807
5dab2911
MG
2808 /* Checked here to keep the fast path fast */
2809 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2810 if (alloc_flags & ALLOC_NO_WATERMARKS)
2811 goto try_this_zone;
2812
957f822a 2813 if (zone_reclaim_mode == 0 ||
c33d6c06 2814 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2815 continue;
2816
fa5e084e
MG
2817 ret = zone_reclaim(zone, gfp_mask, order);
2818 switch (ret) {
2819 case ZONE_RECLAIM_NOSCAN:
2820 /* did not scan */
cd38b115 2821 continue;
fa5e084e
MG
2822 case ZONE_RECLAIM_FULL:
2823 /* scanned but unreclaimable */
cd38b115 2824 continue;
fa5e084e
MG
2825 default:
2826 /* did we reclaim enough */
fed2719e 2827 if (zone_watermark_ok(zone, order, mark,
93ea9964 2828 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2829 goto try_this_zone;
2830
fed2719e 2831 continue;
0798e519 2832 }
7fb1d9fc
RS
2833 }
2834
fa5e084e 2835try_this_zone:
c33d6c06 2836 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2837 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2838 if (page) {
2839 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2840 goto try_this_zone;
0aaa29a5
MG
2841
2842 /*
2843 * If this is a high-order atomic allocation then check
2844 * if the pageblock should be reserved for the future
2845 */
2846 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2847 reserve_highatomic_pageblock(page, zone, order);
2848
75379191
VB
2849 return page;
2850 }
54a6eb5c 2851 }
9276b1bc 2852
4ffeaf35
MG
2853 /*
2854 * The first pass makes sure allocations are spread fairly within the
2855 * local node. However, the local node might have free pages left
2856 * after the fairness batches are exhausted, and remote zones haven't
2857 * even been considered yet. Try once more without fairness, and
2858 * include remote zones now, before entering the slowpath and waking
2859 * kswapd: prefer spilling to a remote zone over swapping locally.
2860 */
30534755
MG
2861 if (fair_skipped) {
2862reset_fair:
2863 apply_fair = false;
2864 fair_skipped = false;
c33d6c06 2865 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 2866 goto zonelist_scan;
30534755 2867 }
4ffeaf35
MG
2868
2869 return NULL;
753ee728
MH
2870}
2871
29423e77
DR
2872/*
2873 * Large machines with many possible nodes should not always dump per-node
2874 * meminfo in irq context.
2875 */
2876static inline bool should_suppress_show_mem(void)
2877{
2878 bool ret = false;
2879
2880#if NODES_SHIFT > 8
2881 ret = in_interrupt();
2882#endif
2883 return ret;
2884}
2885
a238ab5b
DH
2886static DEFINE_RATELIMIT_STATE(nopage_rs,
2887 DEFAULT_RATELIMIT_INTERVAL,
2888 DEFAULT_RATELIMIT_BURST);
2889
d00181b9 2890void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2891{
a238ab5b
DH
2892 unsigned int filter = SHOW_MEM_FILTER_NODES;
2893
c0a32fc5
SG
2894 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2895 debug_guardpage_minorder() > 0)
a238ab5b
DH
2896 return;
2897
2898 /*
2899 * This documents exceptions given to allocations in certain
2900 * contexts that are allowed to allocate outside current's set
2901 * of allowed nodes.
2902 */
2903 if (!(gfp_mask & __GFP_NOMEMALLOC))
2904 if (test_thread_flag(TIF_MEMDIE) ||
2905 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2906 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2907 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2908 filter &= ~SHOW_MEM_FILTER_NODES;
2909
2910 if (fmt) {
3ee9a4f0
JP
2911 struct va_format vaf;
2912 va_list args;
2913
a238ab5b 2914 va_start(args, fmt);
3ee9a4f0
JP
2915
2916 vaf.fmt = fmt;
2917 vaf.va = &args;
2918
2919 pr_warn("%pV", &vaf);
2920
a238ab5b
DH
2921 va_end(args);
2922 }
2923
c5c990e8
VB
2924 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2925 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2926 dump_stack();
2927 if (!should_suppress_show_mem())
2928 show_mem(filter);
2929}
2930
11e33f6a
MG
2931static inline struct page *
2932__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2933 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2934{
6e0fc46d
DR
2935 struct oom_control oc = {
2936 .zonelist = ac->zonelist,
2937 .nodemask = ac->nodemask,
2938 .gfp_mask = gfp_mask,
2939 .order = order,
6e0fc46d 2940 };
11e33f6a
MG
2941 struct page *page;
2942
9879de73
JW
2943 *did_some_progress = 0;
2944
9879de73 2945 /*
dc56401f
JW
2946 * Acquire the oom lock. If that fails, somebody else is
2947 * making progress for us.
9879de73 2948 */
dc56401f 2949 if (!mutex_trylock(&oom_lock)) {
9879de73 2950 *did_some_progress = 1;
11e33f6a 2951 schedule_timeout_uninterruptible(1);
1da177e4
LT
2952 return NULL;
2953 }
6b1de916 2954
11e33f6a
MG
2955 /*
2956 * Go through the zonelist yet one more time, keep very high watermark
2957 * here, this is only to catch a parallel oom killing, we must fail if
2958 * we're still under heavy pressure.
2959 */
a9263751
VB
2960 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2961 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2962 if (page)
11e33f6a
MG
2963 goto out;
2964
4365a567 2965 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2966 /* Coredumps can quickly deplete all memory reserves */
2967 if (current->flags & PF_DUMPCORE)
2968 goto out;
4365a567
KH
2969 /* The OOM killer will not help higher order allocs */
2970 if (order > PAGE_ALLOC_COSTLY_ORDER)
2971 goto out;
03668b3c 2972 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2973 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2974 goto out;
9083905a
JW
2975 if (pm_suspended_storage())
2976 goto out;
3da88fb3
MH
2977 /*
2978 * XXX: GFP_NOFS allocations should rather fail than rely on
2979 * other request to make a forward progress.
2980 * We are in an unfortunate situation where out_of_memory cannot
2981 * do much for this context but let's try it to at least get
2982 * access to memory reserved if the current task is killed (see
2983 * out_of_memory). Once filesystems are ready to handle allocation
2984 * failures more gracefully we should just bail out here.
2985 */
2986
4167e9b2 2987 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2988 if (gfp_mask & __GFP_THISNODE)
2989 goto out;
2990 }
11e33f6a 2991 /* Exhausted what can be done so it's blamo time */
5020e285 2992 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2993 *did_some_progress = 1;
5020e285
MH
2994
2995 if (gfp_mask & __GFP_NOFAIL) {
2996 page = get_page_from_freelist(gfp_mask, order,
2997 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2998 /*
2999 * fallback to ignore cpuset restriction if our nodes
3000 * are depleted
3001 */
3002 if (!page)
3003 page = get_page_from_freelist(gfp_mask, order,
3004 ALLOC_NO_WATERMARKS, ac);
3005 }
3006 }
11e33f6a 3007out:
dc56401f 3008 mutex_unlock(&oom_lock);
11e33f6a
MG
3009 return page;
3010}
3011
56de7263
MG
3012#ifdef CONFIG_COMPACTION
3013/* Try memory compaction for high-order allocations before reclaim */
3014static struct page *
3015__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3016 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3017 enum migrate_mode mode, int *contended_compaction,
3018 bool *deferred_compaction)
56de7263 3019{
53853e2d 3020 unsigned long compact_result;
98dd3b48 3021 struct page *page;
53853e2d
VB
3022
3023 if (!order)
66199712 3024 return NULL;
66199712 3025
c06b1fca 3026 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
3027 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3028 mode, contended_compaction);
c06b1fca 3029 current->flags &= ~PF_MEMALLOC;
56de7263 3030
98dd3b48
VB
3031 switch (compact_result) {
3032 case COMPACT_DEFERRED:
53853e2d 3033 *deferred_compaction = true;
98dd3b48
VB
3034 /* fall-through */
3035 case COMPACT_SKIPPED:
3036 return NULL;
3037 default:
3038 break;
3039 }
53853e2d 3040
98dd3b48
VB
3041 /*
3042 * At least in one zone compaction wasn't deferred or skipped, so let's
3043 * count a compaction stall
3044 */
3045 count_vm_event(COMPACTSTALL);
8fb74b9f 3046
a9263751
VB
3047 page = get_page_from_freelist(gfp_mask, order,
3048 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3049
98dd3b48
VB
3050 if (page) {
3051 struct zone *zone = page_zone(page);
53853e2d 3052
98dd3b48
VB
3053 zone->compact_blockskip_flush = false;
3054 compaction_defer_reset(zone, order, true);
3055 count_vm_event(COMPACTSUCCESS);
3056 return page;
3057 }
56de7263 3058
98dd3b48
VB
3059 /*
3060 * It's bad if compaction run occurs and fails. The most likely reason
3061 * is that pages exist, but not enough to satisfy watermarks.
3062 */
3063 count_vm_event(COMPACTFAIL);
66199712 3064
98dd3b48 3065 cond_resched();
56de7263
MG
3066
3067 return NULL;
3068}
3069#else
3070static inline struct page *
3071__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3072 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3073 enum migrate_mode mode, int *contended_compaction,
3074 bool *deferred_compaction)
56de7263
MG
3075{
3076 return NULL;
3077}
3078#endif /* CONFIG_COMPACTION */
3079
bba90710
MS
3080/* Perform direct synchronous page reclaim */
3081static int
a9263751
VB
3082__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3083 const struct alloc_context *ac)
11e33f6a 3084{
11e33f6a 3085 struct reclaim_state reclaim_state;
bba90710 3086 int progress;
11e33f6a
MG
3087
3088 cond_resched();
3089
3090 /* We now go into synchronous reclaim */
3091 cpuset_memory_pressure_bump();
c06b1fca 3092 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3093 lockdep_set_current_reclaim_state(gfp_mask);
3094 reclaim_state.reclaimed_slab = 0;
c06b1fca 3095 current->reclaim_state = &reclaim_state;
11e33f6a 3096
a9263751
VB
3097 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3098 ac->nodemask);
11e33f6a 3099
c06b1fca 3100 current->reclaim_state = NULL;
11e33f6a 3101 lockdep_clear_current_reclaim_state();
c06b1fca 3102 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3103
3104 cond_resched();
3105
bba90710
MS
3106 return progress;
3107}
3108
3109/* The really slow allocator path where we enter direct reclaim */
3110static inline struct page *
3111__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3112 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3113 unsigned long *did_some_progress)
bba90710
MS
3114{
3115 struct page *page = NULL;
3116 bool drained = false;
3117
a9263751 3118 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3119 if (unlikely(!(*did_some_progress)))
3120 return NULL;
11e33f6a 3121
9ee493ce 3122retry:
a9263751
VB
3123 page = get_page_from_freelist(gfp_mask, order,
3124 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3125
3126 /*
3127 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3128 * pages are pinned on the per-cpu lists or in high alloc reserves.
3129 * Shrink them them and try again
9ee493ce
MG
3130 */
3131 if (!page && !drained) {
0aaa29a5 3132 unreserve_highatomic_pageblock(ac);
93481ff0 3133 drain_all_pages(NULL);
9ee493ce
MG
3134 drained = true;
3135 goto retry;
3136 }
3137
11e33f6a
MG
3138 return page;
3139}
3140
a9263751 3141static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3142{
3143 struct zoneref *z;
3144 struct zone *zone;
3145
a9263751
VB
3146 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3147 ac->high_zoneidx, ac->nodemask)
93ea9964 3148 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3149}
3150
c603844b 3151static inline unsigned int
341ce06f
PZ
3152gfp_to_alloc_flags(gfp_t gfp_mask)
3153{
c603844b 3154 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3155
a56f57ff 3156 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3157 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3158
341ce06f
PZ
3159 /*
3160 * The caller may dip into page reserves a bit more if the caller
3161 * cannot run direct reclaim, or if the caller has realtime scheduling
3162 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3163 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3164 */
e6223a3b 3165 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3166
d0164adc 3167 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3168 /*
b104a35d
DR
3169 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3170 * if it can't schedule.
5c3240d9 3171 */
b104a35d 3172 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3173 alloc_flags |= ALLOC_HARDER;
523b9458 3174 /*
b104a35d 3175 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3176 * comment for __cpuset_node_allowed().
523b9458 3177 */
341ce06f 3178 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3179 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3180 alloc_flags |= ALLOC_HARDER;
3181
b37f1dd0
MG
3182 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3183 if (gfp_mask & __GFP_MEMALLOC)
3184 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3185 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3186 alloc_flags |= ALLOC_NO_WATERMARKS;
3187 else if (!in_interrupt() &&
3188 ((current->flags & PF_MEMALLOC) ||
3189 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3190 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3191 }
d95ea5d1 3192#ifdef CONFIG_CMA
43e7a34d 3193 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3194 alloc_flags |= ALLOC_CMA;
3195#endif
341ce06f
PZ
3196 return alloc_flags;
3197}
3198
072bb0aa
MG
3199bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3200{
b37f1dd0 3201 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3202}
3203
d0164adc
MG
3204static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3205{
3206 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3207}
3208
11e33f6a
MG
3209static inline struct page *
3210__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3211 struct alloc_context *ac)
11e33f6a 3212{
d0164adc 3213 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3214 struct page *page = NULL;
c603844b 3215 unsigned int alloc_flags;
11e33f6a
MG
3216 unsigned long pages_reclaimed = 0;
3217 unsigned long did_some_progress;
e0b9daeb 3218 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3219 bool deferred_compaction = false;
1f9efdef 3220 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3221
72807a74
MG
3222 /*
3223 * In the slowpath, we sanity check order to avoid ever trying to
3224 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3225 * be using allocators in order of preference for an area that is
3226 * too large.
3227 */
1fc28b70
MG
3228 if (order >= MAX_ORDER) {
3229 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3230 return NULL;
1fc28b70 3231 }
1da177e4 3232
d0164adc
MG
3233 /*
3234 * We also sanity check to catch abuse of atomic reserves being used by
3235 * callers that are not in atomic context.
3236 */
3237 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3238 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3239 gfp_mask &= ~__GFP_ATOMIC;
3240
9879de73 3241retry:
d0164adc 3242 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3243 wake_all_kswapds(order, ac);
1da177e4 3244
9bf2229f 3245 /*
7fb1d9fc
RS
3246 * OK, we're below the kswapd watermark and have kicked background
3247 * reclaim. Now things get more complex, so set up alloc_flags according
3248 * to how we want to proceed.
9bf2229f 3249 */
341ce06f 3250 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3251
341ce06f 3252 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3253 page = get_page_from_freelist(gfp_mask, order,
3254 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3255 if (page)
3256 goto got_pg;
1da177e4 3257
11e33f6a 3258 /* Allocate without watermarks if the context allows */
341ce06f 3259 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3260 /*
3261 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3262 * the allocation is high priority and these type of
3263 * allocations are system rather than user orientated
3264 */
a9263751 3265 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3266 page = get_page_from_freelist(gfp_mask, order,
3267 ALLOC_NO_WATERMARKS, ac);
3268 if (page)
3269 goto got_pg;
1da177e4
LT
3270 }
3271
d0164adc
MG
3272 /* Caller is not willing to reclaim, we can't balance anything */
3273 if (!can_direct_reclaim) {
aed0a0e3 3274 /*
33d53103
MH
3275 * All existing users of the __GFP_NOFAIL are blockable, so warn
3276 * of any new users that actually allow this type of allocation
3277 * to fail.
aed0a0e3
DR
3278 */
3279 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3280 goto nopage;
aed0a0e3 3281 }
1da177e4 3282
341ce06f 3283 /* Avoid recursion of direct reclaim */
33d53103
MH
3284 if (current->flags & PF_MEMALLOC) {
3285 /*
3286 * __GFP_NOFAIL request from this context is rather bizarre
3287 * because we cannot reclaim anything and only can loop waiting
3288 * for somebody to do a work for us.
3289 */
3290 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3291 cond_resched();
3292 goto retry;
3293 }
341ce06f 3294 goto nopage;
33d53103 3295 }
341ce06f 3296
6583bb64
DR
3297 /* Avoid allocations with no watermarks from looping endlessly */
3298 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3299 goto nopage;
3300
77f1fe6b
MG
3301 /*
3302 * Try direct compaction. The first pass is asynchronous. Subsequent
3303 * attempts after direct reclaim are synchronous
3304 */
a9263751
VB
3305 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3306 migration_mode,
3307 &contended_compaction,
53853e2d 3308 &deferred_compaction);
56de7263
MG
3309 if (page)
3310 goto got_pg;
75f30861 3311
1f9efdef 3312 /* Checks for THP-specific high-order allocations */
d0164adc 3313 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3314 /*
3315 * If compaction is deferred for high-order allocations, it is
3316 * because sync compaction recently failed. If this is the case
3317 * and the caller requested a THP allocation, we do not want
3318 * to heavily disrupt the system, so we fail the allocation
3319 * instead of entering direct reclaim.
3320 */
3321 if (deferred_compaction)
3322 goto nopage;
3323
3324 /*
3325 * In all zones where compaction was attempted (and not
3326 * deferred or skipped), lock contention has been detected.
3327 * For THP allocation we do not want to disrupt the others
3328 * so we fallback to base pages instead.
3329 */
3330 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3331 goto nopage;
3332
3333 /*
3334 * If compaction was aborted due to need_resched(), we do not
3335 * want to further increase allocation latency, unless it is
3336 * khugepaged trying to collapse.
3337 */
3338 if (contended_compaction == COMPACT_CONTENDED_SCHED
3339 && !(current->flags & PF_KTHREAD))
3340 goto nopage;
3341 }
66199712 3342
8fe78048
DR
3343 /*
3344 * It can become very expensive to allocate transparent hugepages at
3345 * fault, so use asynchronous memory compaction for THP unless it is
3346 * khugepaged trying to collapse.
3347 */
d0164adc 3348 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3349 migration_mode = MIGRATE_SYNC_LIGHT;
3350
11e33f6a 3351 /* Try direct reclaim and then allocating */
a9263751
VB
3352 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3353 &did_some_progress);
11e33f6a
MG
3354 if (page)
3355 goto got_pg;
1da177e4 3356
9083905a
JW
3357 /* Do not loop if specifically requested */
3358 if (gfp_mask & __GFP_NORETRY)
3359 goto noretry;
3360
3361 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3362 pages_reclaimed += did_some_progress;
9083905a
JW
3363 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3364 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3365 /* Wait for some write requests to complete then retry */
c33d6c06 3366 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3367 goto retry;
1da177e4
LT
3368 }
3369
9083905a
JW
3370 /* Reclaim has failed us, start killing things */
3371 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3372 if (page)
3373 goto got_pg;
3374
3375 /* Retry as long as the OOM killer is making progress */
3376 if (did_some_progress)
3377 goto retry;
3378
3379noretry:
3380 /*
3381 * High-order allocations do not necessarily loop after
3382 * direct reclaim and reclaim/compaction depends on compaction
3383 * being called after reclaim so call directly if necessary
3384 */
3385 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3386 ac, migration_mode,
3387 &contended_compaction,
3388 &deferred_compaction);
3389 if (page)
3390 goto got_pg;
1da177e4 3391nopage:
a238ab5b 3392 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3393got_pg:
072bb0aa 3394 return page;
1da177e4 3395}
11e33f6a
MG
3396
3397/*
3398 * This is the 'heart' of the zoned buddy allocator.
3399 */
3400struct page *
3401__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3402 struct zonelist *zonelist, nodemask_t *nodemask)
3403{
5bb1b169 3404 struct page *page;
cc9a6c87 3405 unsigned int cpuset_mems_cookie;
c603844b 3406 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3407 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3408 struct alloc_context ac = {
3409 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3410 .zonelist = zonelist,
a9263751
VB
3411 .nodemask = nodemask,
3412 .migratetype = gfpflags_to_migratetype(gfp_mask),
3413 };
11e33f6a 3414
682a3385 3415 if (cpusets_enabled()) {
83d4ca81 3416 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3417 alloc_flags |= ALLOC_CPUSET;
3418 if (!ac.nodemask)
3419 ac.nodemask = &cpuset_current_mems_allowed;
3420 }
3421
dcce284a
BH
3422 gfp_mask &= gfp_allowed_mask;
3423
11e33f6a
MG
3424 lockdep_trace_alloc(gfp_mask);
3425
d0164adc 3426 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3427
3428 if (should_fail_alloc_page(gfp_mask, order))
3429 return NULL;
3430
3431 /*
3432 * Check the zones suitable for the gfp_mask contain at least one
3433 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3434 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3435 */
3436 if (unlikely(!zonelist->_zonerefs->zone))
3437 return NULL;
3438
a9263751 3439 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3440 alloc_flags |= ALLOC_CMA;
3441
cc9a6c87 3442retry_cpuset:
d26914d1 3443 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3444
c9ab0c4f
MG
3445 /* Dirty zone balancing only done in the fast path */
3446 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3447
5117f45d 3448 /* The preferred zone is used for statistics later */
c33d6c06
MG
3449 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3450 ac.high_zoneidx, ac.nodemask);
3451 if (!ac.preferred_zoneref) {
5bb1b169 3452 page = NULL;
4fcb0971 3453 goto no_zone;
5bb1b169
MG
3454 }
3455
5117f45d 3456 /* First allocation attempt */
a9263751 3457 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3458 if (likely(page))
3459 goto out;
11e33f6a 3460
4fcb0971
MG
3461 /*
3462 * Runtime PM, block IO and its error handling path can deadlock
3463 * because I/O on the device might not complete.
3464 */
3465 alloc_mask = memalloc_noio_flags(gfp_mask);
3466 ac.spread_dirty_pages = false;
23f086f9 3467
4fcb0971 3468 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3469
4fcb0971 3470no_zone:
cc9a6c87
MG
3471 /*
3472 * When updating a task's mems_allowed, it is possible to race with
3473 * parallel threads in such a way that an allocation can fail while
3474 * the mask is being updated. If a page allocation is about to fail,
3475 * check if the cpuset changed during allocation and if so, retry.
3476 */
83d4ca81
MG
3477 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3478 alloc_mask = gfp_mask;
cc9a6c87 3479 goto retry_cpuset;
83d4ca81 3480 }
cc9a6c87 3481
4fcb0971
MG
3482out:
3483 if (kmemcheck_enabled && page)
3484 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3485
3486 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3487
11e33f6a 3488 return page;
1da177e4 3489}
d239171e 3490EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3491
3492/*
3493 * Common helper functions.
3494 */
920c7a5d 3495unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3496{
945a1113
AM
3497 struct page *page;
3498
3499 /*
3500 * __get_free_pages() returns a 32-bit address, which cannot represent
3501 * a highmem page
3502 */
3503 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3504
1da177e4
LT
3505 page = alloc_pages(gfp_mask, order);
3506 if (!page)
3507 return 0;
3508 return (unsigned long) page_address(page);
3509}
1da177e4
LT
3510EXPORT_SYMBOL(__get_free_pages);
3511
920c7a5d 3512unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3513{
945a1113 3514 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3515}
1da177e4
LT
3516EXPORT_SYMBOL(get_zeroed_page);
3517
920c7a5d 3518void __free_pages(struct page *page, unsigned int order)
1da177e4 3519{
b5810039 3520 if (put_page_testzero(page)) {
1da177e4 3521 if (order == 0)
b745bc85 3522 free_hot_cold_page(page, false);
1da177e4
LT
3523 else
3524 __free_pages_ok(page, order);
3525 }
3526}
3527
3528EXPORT_SYMBOL(__free_pages);
3529
920c7a5d 3530void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3531{
3532 if (addr != 0) {
725d704e 3533 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3534 __free_pages(virt_to_page((void *)addr), order);
3535 }
3536}
3537
3538EXPORT_SYMBOL(free_pages);
3539
b63ae8ca
AD
3540/*
3541 * Page Fragment:
3542 * An arbitrary-length arbitrary-offset area of memory which resides
3543 * within a 0 or higher order page. Multiple fragments within that page
3544 * are individually refcounted, in the page's reference counter.
3545 *
3546 * The page_frag functions below provide a simple allocation framework for
3547 * page fragments. This is used by the network stack and network device
3548 * drivers to provide a backing region of memory for use as either an
3549 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3550 */
3551static struct page *__page_frag_refill(struct page_frag_cache *nc,
3552 gfp_t gfp_mask)
3553{
3554 struct page *page = NULL;
3555 gfp_t gfp = gfp_mask;
3556
3557#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3558 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3559 __GFP_NOMEMALLOC;
3560 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3561 PAGE_FRAG_CACHE_MAX_ORDER);
3562 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3563#endif
3564 if (unlikely(!page))
3565 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3566
3567 nc->va = page ? page_address(page) : NULL;
3568
3569 return page;
3570}
3571
3572void *__alloc_page_frag(struct page_frag_cache *nc,
3573 unsigned int fragsz, gfp_t gfp_mask)
3574{
3575 unsigned int size = PAGE_SIZE;
3576 struct page *page;
3577 int offset;
3578
3579 if (unlikely(!nc->va)) {
3580refill:
3581 page = __page_frag_refill(nc, gfp_mask);
3582 if (!page)
3583 return NULL;
3584
3585#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3586 /* if size can vary use size else just use PAGE_SIZE */
3587 size = nc->size;
3588#endif
3589 /* Even if we own the page, we do not use atomic_set().
3590 * This would break get_page_unless_zero() users.
3591 */
fe896d18 3592 page_ref_add(page, size - 1);
b63ae8ca
AD
3593
3594 /* reset page count bias and offset to start of new frag */
2f064f34 3595 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3596 nc->pagecnt_bias = size;
3597 nc->offset = size;
3598 }
3599
3600 offset = nc->offset - fragsz;
3601 if (unlikely(offset < 0)) {
3602 page = virt_to_page(nc->va);
3603
fe896d18 3604 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3605 goto refill;
3606
3607#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3608 /* if size can vary use size else just use PAGE_SIZE */
3609 size = nc->size;
3610#endif
3611 /* OK, page count is 0, we can safely set it */
fe896d18 3612 set_page_count(page, size);
b63ae8ca
AD
3613
3614 /* reset page count bias and offset to start of new frag */
3615 nc->pagecnt_bias = size;
3616 offset = size - fragsz;
3617 }
3618
3619 nc->pagecnt_bias--;
3620 nc->offset = offset;
3621
3622 return nc->va + offset;
3623}
3624EXPORT_SYMBOL(__alloc_page_frag);
3625
3626/*
3627 * Frees a page fragment allocated out of either a compound or order 0 page.
3628 */
3629void __free_page_frag(void *addr)
3630{
3631 struct page *page = virt_to_head_page(addr);
3632
3633 if (unlikely(put_page_testzero(page)))
3634 __free_pages_ok(page, compound_order(page));
3635}
3636EXPORT_SYMBOL(__free_page_frag);
3637
6a1a0d3b 3638/*
52383431 3639 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3640 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3641 * equivalent to alloc_pages.
6a1a0d3b 3642 *
52383431
VD
3643 * It should be used when the caller would like to use kmalloc, but since the
3644 * allocation is large, it has to fall back to the page allocator.
3645 */
3646struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3647{
3648 struct page *page;
52383431 3649
52383431 3650 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3651 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3652 __free_pages(page, order);
3653 page = NULL;
3654 }
52383431
VD
3655 return page;
3656}
3657
3658struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3659{
3660 struct page *page;
52383431 3661
52383431 3662 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3663 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3664 __free_pages(page, order);
3665 page = NULL;
3666 }
52383431
VD
3667 return page;
3668}
3669
3670/*
3671 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3672 * alloc_kmem_pages.
6a1a0d3b 3673 */
52383431 3674void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3675{
d05e83a6 3676 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3677 __free_pages(page, order);
3678}
3679
52383431 3680void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3681{
3682 if (addr != 0) {
3683 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3684 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3685 }
3686}
3687
d00181b9
KS
3688static void *make_alloc_exact(unsigned long addr, unsigned int order,
3689 size_t size)
ee85c2e1
AK
3690{
3691 if (addr) {
3692 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3693 unsigned long used = addr + PAGE_ALIGN(size);
3694
3695 split_page(virt_to_page((void *)addr), order);
3696 while (used < alloc_end) {
3697 free_page(used);
3698 used += PAGE_SIZE;
3699 }
3700 }
3701 return (void *)addr;
3702}
3703
2be0ffe2
TT
3704/**
3705 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3706 * @size: the number of bytes to allocate
3707 * @gfp_mask: GFP flags for the allocation
3708 *
3709 * This function is similar to alloc_pages(), except that it allocates the
3710 * minimum number of pages to satisfy the request. alloc_pages() can only
3711 * allocate memory in power-of-two pages.
3712 *
3713 * This function is also limited by MAX_ORDER.
3714 *
3715 * Memory allocated by this function must be released by free_pages_exact().
3716 */
3717void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3718{
3719 unsigned int order = get_order(size);
3720 unsigned long addr;
3721
3722 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3723 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3724}
3725EXPORT_SYMBOL(alloc_pages_exact);
3726
ee85c2e1
AK
3727/**
3728 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3729 * pages on a node.
b5e6ab58 3730 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3731 * @size: the number of bytes to allocate
3732 * @gfp_mask: GFP flags for the allocation
3733 *
3734 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3735 * back.
ee85c2e1 3736 */
e1931811 3737void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3738{
d00181b9 3739 unsigned int order = get_order(size);
ee85c2e1
AK
3740 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3741 if (!p)
3742 return NULL;
3743 return make_alloc_exact((unsigned long)page_address(p), order, size);
3744}
ee85c2e1 3745
2be0ffe2
TT
3746/**
3747 * free_pages_exact - release memory allocated via alloc_pages_exact()
3748 * @virt: the value returned by alloc_pages_exact.
3749 * @size: size of allocation, same value as passed to alloc_pages_exact().
3750 *
3751 * Release the memory allocated by a previous call to alloc_pages_exact.
3752 */
3753void free_pages_exact(void *virt, size_t size)
3754{
3755 unsigned long addr = (unsigned long)virt;
3756 unsigned long end = addr + PAGE_ALIGN(size);
3757
3758 while (addr < end) {
3759 free_page(addr);
3760 addr += PAGE_SIZE;
3761 }
3762}
3763EXPORT_SYMBOL(free_pages_exact);
3764
e0fb5815
ZY
3765/**
3766 * nr_free_zone_pages - count number of pages beyond high watermark
3767 * @offset: The zone index of the highest zone
3768 *
3769 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3770 * high watermark within all zones at or below a given zone index. For each
3771 * zone, the number of pages is calculated as:
834405c3 3772 * managed_pages - high_pages
e0fb5815 3773 */
ebec3862 3774static unsigned long nr_free_zone_pages(int offset)
1da177e4 3775{
dd1a239f 3776 struct zoneref *z;
54a6eb5c
MG
3777 struct zone *zone;
3778
e310fd43 3779 /* Just pick one node, since fallback list is circular */
ebec3862 3780 unsigned long sum = 0;
1da177e4 3781
0e88460d 3782 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3783
54a6eb5c 3784 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3785 unsigned long size = zone->managed_pages;
41858966 3786 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3787 if (size > high)
3788 sum += size - high;
1da177e4
LT
3789 }
3790
3791 return sum;
3792}
3793
e0fb5815
ZY
3794/**
3795 * nr_free_buffer_pages - count number of pages beyond high watermark
3796 *
3797 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3798 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3799 */
ebec3862 3800unsigned long nr_free_buffer_pages(void)
1da177e4 3801{
af4ca457 3802 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3803}
c2f1a551 3804EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3805
e0fb5815
ZY
3806/**
3807 * nr_free_pagecache_pages - count number of pages beyond high watermark
3808 *
3809 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3810 * high watermark within all zones.
1da177e4 3811 */
ebec3862 3812unsigned long nr_free_pagecache_pages(void)
1da177e4 3813{
2a1e274a 3814 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3815}
08e0f6a9
CL
3816
3817static inline void show_node(struct zone *zone)
1da177e4 3818{
e5adfffc 3819 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3820 printk("Node %d ", zone_to_nid(zone));
1da177e4 3821}
1da177e4 3822
d02bd27b
IR
3823long si_mem_available(void)
3824{
3825 long available;
3826 unsigned long pagecache;
3827 unsigned long wmark_low = 0;
3828 unsigned long pages[NR_LRU_LISTS];
3829 struct zone *zone;
3830 int lru;
3831
3832 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3833 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3834
3835 for_each_zone(zone)
3836 wmark_low += zone->watermark[WMARK_LOW];
3837
3838 /*
3839 * Estimate the amount of memory available for userspace allocations,
3840 * without causing swapping.
3841 */
3842 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3843
3844 /*
3845 * Not all the page cache can be freed, otherwise the system will
3846 * start swapping. Assume at least half of the page cache, or the
3847 * low watermark worth of cache, needs to stay.
3848 */
3849 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3850 pagecache -= min(pagecache / 2, wmark_low);
3851 available += pagecache;
3852
3853 /*
3854 * Part of the reclaimable slab consists of items that are in use,
3855 * and cannot be freed. Cap this estimate at the low watermark.
3856 */
3857 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3858 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3859
3860 if (available < 0)
3861 available = 0;
3862 return available;
3863}
3864EXPORT_SYMBOL_GPL(si_mem_available);
3865
1da177e4
LT
3866void si_meminfo(struct sysinfo *val)
3867{
3868 val->totalram = totalram_pages;
cc7452b6 3869 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3870 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3871 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3872 val->totalhigh = totalhigh_pages;
3873 val->freehigh = nr_free_highpages();
1da177e4
LT
3874 val->mem_unit = PAGE_SIZE;
3875}
3876
3877EXPORT_SYMBOL(si_meminfo);
3878
3879#ifdef CONFIG_NUMA
3880void si_meminfo_node(struct sysinfo *val, int nid)
3881{
cdd91a77
JL
3882 int zone_type; /* needs to be signed */
3883 unsigned long managed_pages = 0;
fc2bd799
JK
3884 unsigned long managed_highpages = 0;
3885 unsigned long free_highpages = 0;
1da177e4
LT
3886 pg_data_t *pgdat = NODE_DATA(nid);
3887
cdd91a77
JL
3888 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3889 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3890 val->totalram = managed_pages;
cc7452b6 3891 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3892 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3893#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3894 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3895 struct zone *zone = &pgdat->node_zones[zone_type];
3896
3897 if (is_highmem(zone)) {
3898 managed_highpages += zone->managed_pages;
3899 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3900 }
3901 }
3902 val->totalhigh = managed_highpages;
3903 val->freehigh = free_highpages;
98d2b0eb 3904#else
fc2bd799
JK
3905 val->totalhigh = managed_highpages;
3906 val->freehigh = free_highpages;
98d2b0eb 3907#endif
1da177e4
LT
3908 val->mem_unit = PAGE_SIZE;
3909}
3910#endif
3911
ddd588b5 3912/*
7bf02ea2
DR
3913 * Determine whether the node should be displayed or not, depending on whether
3914 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3915 */
7bf02ea2 3916bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3917{
3918 bool ret = false;
cc9a6c87 3919 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3920
3921 if (!(flags & SHOW_MEM_FILTER_NODES))
3922 goto out;
3923
cc9a6c87 3924 do {
d26914d1 3925 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3926 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3927 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3928out:
3929 return ret;
3930}
3931
1da177e4
LT
3932#define K(x) ((x) << (PAGE_SHIFT-10))
3933
377e4f16
RV
3934static void show_migration_types(unsigned char type)
3935{
3936 static const char types[MIGRATE_TYPES] = {
3937 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3938 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3939 [MIGRATE_RECLAIMABLE] = 'E',
3940 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3941#ifdef CONFIG_CMA
3942 [MIGRATE_CMA] = 'C',
3943#endif
194159fb 3944#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3945 [MIGRATE_ISOLATE] = 'I',
194159fb 3946#endif
377e4f16
RV
3947 };
3948 char tmp[MIGRATE_TYPES + 1];
3949 char *p = tmp;
3950 int i;
3951
3952 for (i = 0; i < MIGRATE_TYPES; i++) {
3953 if (type & (1 << i))
3954 *p++ = types[i];
3955 }
3956
3957 *p = '\0';
3958 printk("(%s) ", tmp);
3959}
3960
1da177e4
LT
3961/*
3962 * Show free area list (used inside shift_scroll-lock stuff)
3963 * We also calculate the percentage fragmentation. We do this by counting the
3964 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3965 *
3966 * Bits in @filter:
3967 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3968 * cpuset.
1da177e4 3969 */
7bf02ea2 3970void show_free_areas(unsigned int filter)
1da177e4 3971{
d1bfcdb8 3972 unsigned long free_pcp = 0;
c7241913 3973 int cpu;
1da177e4
LT
3974 struct zone *zone;
3975
ee99c71c 3976 for_each_populated_zone(zone) {
7bf02ea2 3977 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3978 continue;
d1bfcdb8 3979
761b0677
KK
3980 for_each_online_cpu(cpu)
3981 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3982 }
3983
a731286d
KM
3984 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3985 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3986 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3987 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3988 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3989 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3990 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3991 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3992 global_page_state(NR_ISOLATED_ANON),
3993 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3994 global_page_state(NR_INACTIVE_FILE),
a731286d 3995 global_page_state(NR_ISOLATED_FILE),
7b854121 3996 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3997 global_page_state(NR_FILE_DIRTY),
ce866b34 3998 global_page_state(NR_WRITEBACK),
fd39fc85 3999 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4000 global_page_state(NR_SLAB_RECLAIMABLE),
4001 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4002 global_page_state(NR_FILE_MAPPED),
4b02108a 4003 global_page_state(NR_SHMEM),
a25700a5 4004 global_page_state(NR_PAGETABLE),
d1ce749a 4005 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4006 global_page_state(NR_FREE_PAGES),
4007 free_pcp,
d1ce749a 4008 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4009
ee99c71c 4010 for_each_populated_zone(zone) {
1da177e4
LT
4011 int i;
4012
7bf02ea2 4013 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4014 continue;
d1bfcdb8
KK
4015
4016 free_pcp = 0;
4017 for_each_online_cpu(cpu)
4018 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4019
1da177e4
LT
4020 show_node(zone);
4021 printk("%s"
4022 " free:%lukB"
4023 " min:%lukB"
4024 " low:%lukB"
4025 " high:%lukB"
4f98a2fe
RR
4026 " active_anon:%lukB"
4027 " inactive_anon:%lukB"
4028 " active_file:%lukB"
4029 " inactive_file:%lukB"
7b854121 4030 " unevictable:%lukB"
a731286d
KM
4031 " isolated(anon):%lukB"
4032 " isolated(file):%lukB"
1da177e4 4033 " present:%lukB"
9feedc9d 4034 " managed:%lukB"
4a0aa73f
KM
4035 " mlocked:%lukB"
4036 " dirty:%lukB"
4037 " writeback:%lukB"
4038 " mapped:%lukB"
4b02108a 4039 " shmem:%lukB"
4a0aa73f
KM
4040 " slab_reclaimable:%lukB"
4041 " slab_unreclaimable:%lukB"
c6a7f572 4042 " kernel_stack:%lukB"
4a0aa73f
KM
4043 " pagetables:%lukB"
4044 " unstable:%lukB"
4045 " bounce:%lukB"
d1bfcdb8
KK
4046 " free_pcp:%lukB"
4047 " local_pcp:%ukB"
d1ce749a 4048 " free_cma:%lukB"
4a0aa73f 4049 " writeback_tmp:%lukB"
1da177e4
LT
4050 " pages_scanned:%lu"
4051 " all_unreclaimable? %s"
4052 "\n",
4053 zone->name,
88f5acf8 4054 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4055 K(min_wmark_pages(zone)),
4056 K(low_wmark_pages(zone)),
4057 K(high_wmark_pages(zone)),
4f98a2fe
RR
4058 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4059 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4060 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4061 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4062 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4063 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4064 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4065 K(zone->present_pages),
9feedc9d 4066 K(zone->managed_pages),
4a0aa73f
KM
4067 K(zone_page_state(zone, NR_MLOCK)),
4068 K(zone_page_state(zone, NR_FILE_DIRTY)),
4069 K(zone_page_state(zone, NR_WRITEBACK)),
4070 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4071 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4072 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4073 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4074 zone_page_state(zone, NR_KERNEL_STACK) *
4075 THREAD_SIZE / 1024,
4a0aa73f
KM
4076 K(zone_page_state(zone, NR_PAGETABLE)),
4077 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4078 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4079 K(free_pcp),
4080 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4081 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4082 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4083 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4084 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4085 );
4086 printk("lowmem_reserve[]:");
4087 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4088 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4089 printk("\n");
4090 }
4091
ee99c71c 4092 for_each_populated_zone(zone) {
d00181b9
KS
4093 unsigned int order;
4094 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4095 unsigned char types[MAX_ORDER];
1da177e4 4096
7bf02ea2 4097 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4098 continue;
1da177e4
LT
4099 show_node(zone);
4100 printk("%s: ", zone->name);
1da177e4
LT
4101
4102 spin_lock_irqsave(&zone->lock, flags);
4103 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4104 struct free_area *area = &zone->free_area[order];
4105 int type;
4106
4107 nr[order] = area->nr_free;
8f9de51a 4108 total += nr[order] << order;
377e4f16
RV
4109
4110 types[order] = 0;
4111 for (type = 0; type < MIGRATE_TYPES; type++) {
4112 if (!list_empty(&area->free_list[type]))
4113 types[order] |= 1 << type;
4114 }
1da177e4
LT
4115 }
4116 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4117 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4118 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4119 if (nr[order])
4120 show_migration_types(types[order]);
4121 }
1da177e4
LT
4122 printk("= %lukB\n", K(total));
4123 }
4124
949f7ec5
DR
4125 hugetlb_show_meminfo();
4126
e6f3602d
LW
4127 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4128
1da177e4
LT
4129 show_swap_cache_info();
4130}
4131
19770b32
MG
4132static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4133{
4134 zoneref->zone = zone;
4135 zoneref->zone_idx = zone_idx(zone);
4136}
4137
1da177e4
LT
4138/*
4139 * Builds allocation fallback zone lists.
1a93205b
CL
4140 *
4141 * Add all populated zones of a node to the zonelist.
1da177e4 4142 */
f0c0b2b8 4143static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4144 int nr_zones)
1da177e4 4145{
1a93205b 4146 struct zone *zone;
bc732f1d 4147 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4148
4149 do {
2f6726e5 4150 zone_type--;
070f8032 4151 zone = pgdat->node_zones + zone_type;
1a93205b 4152 if (populated_zone(zone)) {
dd1a239f
MG
4153 zoneref_set_zone(zone,
4154 &zonelist->_zonerefs[nr_zones++]);
070f8032 4155 check_highest_zone(zone_type);
1da177e4 4156 }
2f6726e5 4157 } while (zone_type);
bc732f1d 4158
070f8032 4159 return nr_zones;
1da177e4
LT
4160}
4161
f0c0b2b8
KH
4162
4163/*
4164 * zonelist_order:
4165 * 0 = automatic detection of better ordering.
4166 * 1 = order by ([node] distance, -zonetype)
4167 * 2 = order by (-zonetype, [node] distance)
4168 *
4169 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4170 * the same zonelist. So only NUMA can configure this param.
4171 */
4172#define ZONELIST_ORDER_DEFAULT 0
4173#define ZONELIST_ORDER_NODE 1
4174#define ZONELIST_ORDER_ZONE 2
4175
4176/* zonelist order in the kernel.
4177 * set_zonelist_order() will set this to NODE or ZONE.
4178 */
4179static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4180static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4181
4182
1da177e4 4183#ifdef CONFIG_NUMA
f0c0b2b8
KH
4184/* The value user specified ....changed by config */
4185static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4186/* string for sysctl */
4187#define NUMA_ZONELIST_ORDER_LEN 16
4188char numa_zonelist_order[16] = "default";
4189
4190/*
4191 * interface for configure zonelist ordering.
4192 * command line option "numa_zonelist_order"
4193 * = "[dD]efault - default, automatic configuration.
4194 * = "[nN]ode - order by node locality, then by zone within node
4195 * = "[zZ]one - order by zone, then by locality within zone
4196 */
4197
4198static int __parse_numa_zonelist_order(char *s)
4199{
4200 if (*s == 'd' || *s == 'D') {
4201 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4202 } else if (*s == 'n' || *s == 'N') {
4203 user_zonelist_order = ZONELIST_ORDER_NODE;
4204 } else if (*s == 'z' || *s == 'Z') {
4205 user_zonelist_order = ZONELIST_ORDER_ZONE;
4206 } else {
1170532b 4207 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4208 return -EINVAL;
4209 }
4210 return 0;
4211}
4212
4213static __init int setup_numa_zonelist_order(char *s)
4214{
ecb256f8
VL
4215 int ret;
4216
4217 if (!s)
4218 return 0;
4219
4220 ret = __parse_numa_zonelist_order(s);
4221 if (ret == 0)
4222 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4223
4224 return ret;
f0c0b2b8
KH
4225}
4226early_param("numa_zonelist_order", setup_numa_zonelist_order);
4227
4228/*
4229 * sysctl handler for numa_zonelist_order
4230 */
cccad5b9 4231int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4232 void __user *buffer, size_t *length,
f0c0b2b8
KH
4233 loff_t *ppos)
4234{
4235 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4236 int ret;
443c6f14 4237 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4238
443c6f14 4239 mutex_lock(&zl_order_mutex);
dacbde09
CG
4240 if (write) {
4241 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4242 ret = -EINVAL;
4243 goto out;
4244 }
4245 strcpy(saved_string, (char *)table->data);
4246 }
8d65af78 4247 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4248 if (ret)
443c6f14 4249 goto out;
f0c0b2b8
KH
4250 if (write) {
4251 int oldval = user_zonelist_order;
dacbde09
CG
4252
4253 ret = __parse_numa_zonelist_order((char *)table->data);
4254 if (ret) {
f0c0b2b8
KH
4255 /*
4256 * bogus value. restore saved string
4257 */
dacbde09 4258 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4259 NUMA_ZONELIST_ORDER_LEN);
4260 user_zonelist_order = oldval;
4eaf3f64
HL
4261 } else if (oldval != user_zonelist_order) {
4262 mutex_lock(&zonelists_mutex);
9adb62a5 4263 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4264 mutex_unlock(&zonelists_mutex);
4265 }
f0c0b2b8 4266 }
443c6f14
AK
4267out:
4268 mutex_unlock(&zl_order_mutex);
4269 return ret;
f0c0b2b8
KH
4270}
4271
4272
62bc62a8 4273#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4274static int node_load[MAX_NUMNODES];
4275
1da177e4 4276/**
4dc3b16b 4277 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4278 * @node: node whose fallback list we're appending
4279 * @used_node_mask: nodemask_t of already used nodes
4280 *
4281 * We use a number of factors to determine which is the next node that should
4282 * appear on a given node's fallback list. The node should not have appeared
4283 * already in @node's fallback list, and it should be the next closest node
4284 * according to the distance array (which contains arbitrary distance values
4285 * from each node to each node in the system), and should also prefer nodes
4286 * with no CPUs, since presumably they'll have very little allocation pressure
4287 * on them otherwise.
4288 * It returns -1 if no node is found.
4289 */
f0c0b2b8 4290static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4291{
4cf808eb 4292 int n, val;
1da177e4 4293 int min_val = INT_MAX;
00ef2d2f 4294 int best_node = NUMA_NO_NODE;
a70f7302 4295 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4296
4cf808eb
LT
4297 /* Use the local node if we haven't already */
4298 if (!node_isset(node, *used_node_mask)) {
4299 node_set(node, *used_node_mask);
4300 return node;
4301 }
1da177e4 4302
4b0ef1fe 4303 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4304
4305 /* Don't want a node to appear more than once */
4306 if (node_isset(n, *used_node_mask))
4307 continue;
4308
1da177e4
LT
4309 /* Use the distance array to find the distance */
4310 val = node_distance(node, n);
4311
4cf808eb
LT
4312 /* Penalize nodes under us ("prefer the next node") */
4313 val += (n < node);
4314
1da177e4 4315 /* Give preference to headless and unused nodes */
a70f7302
RR
4316 tmp = cpumask_of_node(n);
4317 if (!cpumask_empty(tmp))
1da177e4
LT
4318 val += PENALTY_FOR_NODE_WITH_CPUS;
4319
4320 /* Slight preference for less loaded node */
4321 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4322 val += node_load[n];
4323
4324 if (val < min_val) {
4325 min_val = val;
4326 best_node = n;
4327 }
4328 }
4329
4330 if (best_node >= 0)
4331 node_set(best_node, *used_node_mask);
4332
4333 return best_node;
4334}
4335
f0c0b2b8
KH
4336
4337/*
4338 * Build zonelists ordered by node and zones within node.
4339 * This results in maximum locality--normal zone overflows into local
4340 * DMA zone, if any--but risks exhausting DMA zone.
4341 */
4342static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4343{
f0c0b2b8 4344 int j;
1da177e4 4345 struct zonelist *zonelist;
f0c0b2b8 4346
54a6eb5c 4347 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4348 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4349 ;
bc732f1d 4350 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4351 zonelist->_zonerefs[j].zone = NULL;
4352 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4353}
4354
523b9458
CL
4355/*
4356 * Build gfp_thisnode zonelists
4357 */
4358static void build_thisnode_zonelists(pg_data_t *pgdat)
4359{
523b9458
CL
4360 int j;
4361 struct zonelist *zonelist;
4362
54a6eb5c 4363 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4364 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4365 zonelist->_zonerefs[j].zone = NULL;
4366 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4367}
4368
f0c0b2b8
KH
4369/*
4370 * Build zonelists ordered by zone and nodes within zones.
4371 * This results in conserving DMA zone[s] until all Normal memory is
4372 * exhausted, but results in overflowing to remote node while memory
4373 * may still exist in local DMA zone.
4374 */
4375static int node_order[MAX_NUMNODES];
4376
4377static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4378{
f0c0b2b8
KH
4379 int pos, j, node;
4380 int zone_type; /* needs to be signed */
4381 struct zone *z;
4382 struct zonelist *zonelist;
4383
54a6eb5c
MG
4384 zonelist = &pgdat->node_zonelists[0];
4385 pos = 0;
4386 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4387 for (j = 0; j < nr_nodes; j++) {
4388 node = node_order[j];
4389 z = &NODE_DATA(node)->node_zones[zone_type];
4390 if (populated_zone(z)) {
dd1a239f
MG
4391 zoneref_set_zone(z,
4392 &zonelist->_zonerefs[pos++]);
54a6eb5c 4393 check_highest_zone(zone_type);
f0c0b2b8
KH
4394 }
4395 }
f0c0b2b8 4396 }
dd1a239f
MG
4397 zonelist->_zonerefs[pos].zone = NULL;
4398 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4399}
4400
3193913c
MG
4401#if defined(CONFIG_64BIT)
4402/*
4403 * Devices that require DMA32/DMA are relatively rare and do not justify a
4404 * penalty to every machine in case the specialised case applies. Default
4405 * to Node-ordering on 64-bit NUMA machines
4406 */
4407static int default_zonelist_order(void)
4408{
4409 return ZONELIST_ORDER_NODE;
4410}
4411#else
4412/*
4413 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4414 * by the kernel. If processes running on node 0 deplete the low memory zone
4415 * then reclaim will occur more frequency increasing stalls and potentially
4416 * be easier to OOM if a large percentage of the zone is under writeback or
4417 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4418 * Hence, default to zone ordering on 32-bit.
4419 */
f0c0b2b8
KH
4420static int default_zonelist_order(void)
4421{
f0c0b2b8
KH
4422 return ZONELIST_ORDER_ZONE;
4423}
3193913c 4424#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4425
4426static void set_zonelist_order(void)
4427{
4428 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4429 current_zonelist_order = default_zonelist_order();
4430 else
4431 current_zonelist_order = user_zonelist_order;
4432}
4433
4434static void build_zonelists(pg_data_t *pgdat)
4435{
c00eb15a 4436 int i, node, load;
1da177e4 4437 nodemask_t used_mask;
f0c0b2b8
KH
4438 int local_node, prev_node;
4439 struct zonelist *zonelist;
d00181b9 4440 unsigned int order = current_zonelist_order;
1da177e4
LT
4441
4442 /* initialize zonelists */
523b9458 4443 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4444 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4445 zonelist->_zonerefs[0].zone = NULL;
4446 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4447 }
4448
4449 /* NUMA-aware ordering of nodes */
4450 local_node = pgdat->node_id;
62bc62a8 4451 load = nr_online_nodes;
1da177e4
LT
4452 prev_node = local_node;
4453 nodes_clear(used_mask);
f0c0b2b8 4454
f0c0b2b8 4455 memset(node_order, 0, sizeof(node_order));
c00eb15a 4456 i = 0;
f0c0b2b8 4457
1da177e4
LT
4458 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4459 /*
4460 * We don't want to pressure a particular node.
4461 * So adding penalty to the first node in same
4462 * distance group to make it round-robin.
4463 */
957f822a
DR
4464 if (node_distance(local_node, node) !=
4465 node_distance(local_node, prev_node))
f0c0b2b8
KH
4466 node_load[node] = load;
4467
1da177e4
LT
4468 prev_node = node;
4469 load--;
f0c0b2b8
KH
4470 if (order == ZONELIST_ORDER_NODE)
4471 build_zonelists_in_node_order(pgdat, node);
4472 else
c00eb15a 4473 node_order[i++] = node; /* remember order */
f0c0b2b8 4474 }
1da177e4 4475
f0c0b2b8
KH
4476 if (order == ZONELIST_ORDER_ZONE) {
4477 /* calculate node order -- i.e., DMA last! */
c00eb15a 4478 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4479 }
523b9458
CL
4480
4481 build_thisnode_zonelists(pgdat);
1da177e4
LT
4482}
4483
7aac7898
LS
4484#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4485/*
4486 * Return node id of node used for "local" allocations.
4487 * I.e., first node id of first zone in arg node's generic zonelist.
4488 * Used for initializing percpu 'numa_mem', which is used primarily
4489 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4490 */
4491int local_memory_node(int node)
4492{
c33d6c06 4493 struct zoneref *z;
7aac7898 4494
c33d6c06 4495 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4496 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4497 NULL);
4498 return z->zone->node;
7aac7898
LS
4499}
4500#endif
f0c0b2b8 4501
1da177e4
LT
4502#else /* CONFIG_NUMA */
4503
f0c0b2b8
KH
4504static void set_zonelist_order(void)
4505{
4506 current_zonelist_order = ZONELIST_ORDER_ZONE;
4507}
4508
4509static void build_zonelists(pg_data_t *pgdat)
1da177e4 4510{
19655d34 4511 int node, local_node;
54a6eb5c
MG
4512 enum zone_type j;
4513 struct zonelist *zonelist;
1da177e4
LT
4514
4515 local_node = pgdat->node_id;
1da177e4 4516
54a6eb5c 4517 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4518 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4519
54a6eb5c
MG
4520 /*
4521 * Now we build the zonelist so that it contains the zones
4522 * of all the other nodes.
4523 * We don't want to pressure a particular node, so when
4524 * building the zones for node N, we make sure that the
4525 * zones coming right after the local ones are those from
4526 * node N+1 (modulo N)
4527 */
4528 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4529 if (!node_online(node))
4530 continue;
bc732f1d 4531 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4532 }
54a6eb5c
MG
4533 for (node = 0; node < local_node; node++) {
4534 if (!node_online(node))
4535 continue;
bc732f1d 4536 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4537 }
4538
dd1a239f
MG
4539 zonelist->_zonerefs[j].zone = NULL;
4540 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4541}
4542
4543#endif /* CONFIG_NUMA */
4544
99dcc3e5
CL
4545/*
4546 * Boot pageset table. One per cpu which is going to be used for all
4547 * zones and all nodes. The parameters will be set in such a way
4548 * that an item put on a list will immediately be handed over to
4549 * the buddy list. This is safe since pageset manipulation is done
4550 * with interrupts disabled.
4551 *
4552 * The boot_pagesets must be kept even after bootup is complete for
4553 * unused processors and/or zones. They do play a role for bootstrapping
4554 * hotplugged processors.
4555 *
4556 * zoneinfo_show() and maybe other functions do
4557 * not check if the processor is online before following the pageset pointer.
4558 * Other parts of the kernel may not check if the zone is available.
4559 */
4560static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4561static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4562static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4563
4eaf3f64
HL
4564/*
4565 * Global mutex to protect against size modification of zonelists
4566 * as well as to serialize pageset setup for the new populated zone.
4567 */
4568DEFINE_MUTEX(zonelists_mutex);
4569
9b1a4d38 4570/* return values int ....just for stop_machine() */
4ed7e022 4571static int __build_all_zonelists(void *data)
1da177e4 4572{
6811378e 4573 int nid;
99dcc3e5 4574 int cpu;
9adb62a5 4575 pg_data_t *self = data;
9276b1bc 4576
7f9cfb31
BL
4577#ifdef CONFIG_NUMA
4578 memset(node_load, 0, sizeof(node_load));
4579#endif
9adb62a5
JL
4580
4581 if (self && !node_online(self->node_id)) {
4582 build_zonelists(self);
9adb62a5
JL
4583 }
4584
9276b1bc 4585 for_each_online_node(nid) {
7ea1530a
CL
4586 pg_data_t *pgdat = NODE_DATA(nid);
4587
4588 build_zonelists(pgdat);
9276b1bc 4589 }
99dcc3e5
CL
4590
4591 /*
4592 * Initialize the boot_pagesets that are going to be used
4593 * for bootstrapping processors. The real pagesets for
4594 * each zone will be allocated later when the per cpu
4595 * allocator is available.
4596 *
4597 * boot_pagesets are used also for bootstrapping offline
4598 * cpus if the system is already booted because the pagesets
4599 * are needed to initialize allocators on a specific cpu too.
4600 * F.e. the percpu allocator needs the page allocator which
4601 * needs the percpu allocator in order to allocate its pagesets
4602 * (a chicken-egg dilemma).
4603 */
7aac7898 4604 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4605 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4606
7aac7898
LS
4607#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4608 /*
4609 * We now know the "local memory node" for each node--
4610 * i.e., the node of the first zone in the generic zonelist.
4611 * Set up numa_mem percpu variable for on-line cpus. During
4612 * boot, only the boot cpu should be on-line; we'll init the
4613 * secondary cpus' numa_mem as they come on-line. During
4614 * node/memory hotplug, we'll fixup all on-line cpus.
4615 */
4616 if (cpu_online(cpu))
4617 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4618#endif
4619 }
4620
6811378e
YG
4621 return 0;
4622}
4623
061f67bc
RV
4624static noinline void __init
4625build_all_zonelists_init(void)
4626{
4627 __build_all_zonelists(NULL);
4628 mminit_verify_zonelist();
4629 cpuset_init_current_mems_allowed();
4630}
4631
4eaf3f64
HL
4632/*
4633 * Called with zonelists_mutex held always
4634 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4635 *
4636 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4637 * [we're only called with non-NULL zone through __meminit paths] and
4638 * (2) call of __init annotated helper build_all_zonelists_init
4639 * [protected by SYSTEM_BOOTING].
4eaf3f64 4640 */
9adb62a5 4641void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4642{
f0c0b2b8
KH
4643 set_zonelist_order();
4644
6811378e 4645 if (system_state == SYSTEM_BOOTING) {
061f67bc 4646 build_all_zonelists_init();
6811378e 4647 } else {
e9959f0f 4648#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4649 if (zone)
4650 setup_zone_pageset(zone);
e9959f0f 4651#endif
dd1895e2
CS
4652 /* we have to stop all cpus to guarantee there is no user
4653 of zonelist */
9adb62a5 4654 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4655 /* cpuset refresh routine should be here */
4656 }
bd1e22b8 4657 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4658 /*
4659 * Disable grouping by mobility if the number of pages in the
4660 * system is too low to allow the mechanism to work. It would be
4661 * more accurate, but expensive to check per-zone. This check is
4662 * made on memory-hotadd so a system can start with mobility
4663 * disabled and enable it later
4664 */
d9c23400 4665 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4666 page_group_by_mobility_disabled = 1;
4667 else
4668 page_group_by_mobility_disabled = 0;
4669
756a025f
JP
4670 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4671 nr_online_nodes,
4672 zonelist_order_name[current_zonelist_order],
4673 page_group_by_mobility_disabled ? "off" : "on",
4674 vm_total_pages);
f0c0b2b8 4675#ifdef CONFIG_NUMA
f88dfff5 4676 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4677#endif
1da177e4
LT
4678}
4679
4680/*
4681 * Helper functions to size the waitqueue hash table.
4682 * Essentially these want to choose hash table sizes sufficiently
4683 * large so that collisions trying to wait on pages are rare.
4684 * But in fact, the number of active page waitqueues on typical
4685 * systems is ridiculously low, less than 200. So this is even
4686 * conservative, even though it seems large.
4687 *
4688 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4689 * waitqueues, i.e. the size of the waitq table given the number of pages.
4690 */
4691#define PAGES_PER_WAITQUEUE 256
4692
cca448fe 4693#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4694static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4695{
4696 unsigned long size = 1;
4697
4698 pages /= PAGES_PER_WAITQUEUE;
4699
4700 while (size < pages)
4701 size <<= 1;
4702
4703 /*
4704 * Once we have dozens or even hundreds of threads sleeping
4705 * on IO we've got bigger problems than wait queue collision.
4706 * Limit the size of the wait table to a reasonable size.
4707 */
4708 size = min(size, 4096UL);
4709
4710 return max(size, 4UL);
4711}
cca448fe
YG
4712#else
4713/*
4714 * A zone's size might be changed by hot-add, so it is not possible to determine
4715 * a suitable size for its wait_table. So we use the maximum size now.
4716 *
4717 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4718 *
4719 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4720 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4721 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4722 *
4723 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4724 * or more by the traditional way. (See above). It equals:
4725 *
4726 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4727 * ia64(16K page size) : = ( 8G + 4M)byte.
4728 * powerpc (64K page size) : = (32G +16M)byte.
4729 */
4730static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4731{
4732 return 4096UL;
4733}
4734#endif
1da177e4
LT
4735
4736/*
4737 * This is an integer logarithm so that shifts can be used later
4738 * to extract the more random high bits from the multiplicative
4739 * hash function before the remainder is taken.
4740 */
4741static inline unsigned long wait_table_bits(unsigned long size)
4742{
4743 return ffz(~size);
4744}
4745
1da177e4
LT
4746/*
4747 * Initially all pages are reserved - free ones are freed
4748 * up by free_all_bootmem() once the early boot process is
4749 * done. Non-atomic initialization, single-pass.
4750 */
c09b4240 4751void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4752 unsigned long start_pfn, enum memmap_context context)
1da177e4 4753{
4b94ffdc 4754 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4755 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4756 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4757 unsigned long pfn;
3a80a7fa 4758 unsigned long nr_initialised = 0;
342332e6
TI
4759#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4760 struct memblock_region *r = NULL, *tmp;
4761#endif
1da177e4 4762
22b31eec
HD
4763 if (highest_memmap_pfn < end_pfn - 1)
4764 highest_memmap_pfn = end_pfn - 1;
4765
4b94ffdc
DW
4766 /*
4767 * Honor reservation requested by the driver for this ZONE_DEVICE
4768 * memory
4769 */
4770 if (altmap && start_pfn == altmap->base_pfn)
4771 start_pfn += altmap->reserve;
4772
cbe8dd4a 4773 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4774 /*
b72d0ffb
AM
4775 * There can be holes in boot-time mem_map[]s handed to this
4776 * function. They do not exist on hotplugged memory.
a2f3aa02 4777 */
b72d0ffb
AM
4778 if (context != MEMMAP_EARLY)
4779 goto not_early;
4780
4781 if (!early_pfn_valid(pfn))
4782 continue;
4783 if (!early_pfn_in_nid(pfn, nid))
4784 continue;
4785 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4786 break;
342332e6
TI
4787
4788#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4789 /*
4790 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4791 * from zone_movable_pfn[nid] to end of each node should be
4792 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4793 */
4794 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4795 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4796 continue;
342332e6 4797
b72d0ffb
AM
4798 /*
4799 * Check given memblock attribute by firmware which can affect
4800 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4801 * mirrored, it's an overlapped memmap init. skip it.
4802 */
4803 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4804 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4805 for_each_memblock(memory, tmp)
4806 if (pfn < memblock_region_memory_end_pfn(tmp))
4807 break;
4808 r = tmp;
4809 }
4810 if (pfn >= memblock_region_memory_base_pfn(r) &&
4811 memblock_is_mirror(r)) {
4812 /* already initialized as NORMAL */
4813 pfn = memblock_region_memory_end_pfn(r);
4814 continue;
342332e6 4815 }
a2f3aa02 4816 }
b72d0ffb 4817#endif
ac5d2539 4818
b72d0ffb 4819not_early:
ac5d2539
MG
4820 /*
4821 * Mark the block movable so that blocks are reserved for
4822 * movable at startup. This will force kernel allocations
4823 * to reserve their blocks rather than leaking throughout
4824 * the address space during boot when many long-lived
974a786e 4825 * kernel allocations are made.
ac5d2539
MG
4826 *
4827 * bitmap is created for zone's valid pfn range. but memmap
4828 * can be created for invalid pages (for alignment)
4829 * check here not to call set_pageblock_migratetype() against
4830 * pfn out of zone.
4831 */
4832 if (!(pfn & (pageblock_nr_pages - 1))) {
4833 struct page *page = pfn_to_page(pfn);
4834
4835 __init_single_page(page, pfn, zone, nid);
4836 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4837 } else {
4838 __init_single_pfn(pfn, zone, nid);
4839 }
1da177e4
LT
4840 }
4841}
4842
1e548deb 4843static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4844{
7aeb09f9 4845 unsigned int order, t;
b2a0ac88
MG
4846 for_each_migratetype_order(order, t) {
4847 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4848 zone->free_area[order].nr_free = 0;
4849 }
4850}
4851
4852#ifndef __HAVE_ARCH_MEMMAP_INIT
4853#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4854 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4855#endif
4856
7cd2b0a3 4857static int zone_batchsize(struct zone *zone)
e7c8d5c9 4858{
3a6be87f 4859#ifdef CONFIG_MMU
e7c8d5c9
CL
4860 int batch;
4861
4862 /*
4863 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4864 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4865 *
4866 * OK, so we don't know how big the cache is. So guess.
4867 */
b40da049 4868 batch = zone->managed_pages / 1024;
ba56e91c
SR
4869 if (batch * PAGE_SIZE > 512 * 1024)
4870 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4871 batch /= 4; /* We effectively *= 4 below */
4872 if (batch < 1)
4873 batch = 1;
4874
4875 /*
0ceaacc9
NP
4876 * Clamp the batch to a 2^n - 1 value. Having a power
4877 * of 2 value was found to be more likely to have
4878 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4879 *
0ceaacc9
NP
4880 * For example if 2 tasks are alternately allocating
4881 * batches of pages, one task can end up with a lot
4882 * of pages of one half of the possible page colors
4883 * and the other with pages of the other colors.
e7c8d5c9 4884 */
9155203a 4885 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4886
e7c8d5c9 4887 return batch;
3a6be87f
DH
4888
4889#else
4890 /* The deferral and batching of frees should be suppressed under NOMMU
4891 * conditions.
4892 *
4893 * The problem is that NOMMU needs to be able to allocate large chunks
4894 * of contiguous memory as there's no hardware page translation to
4895 * assemble apparent contiguous memory from discontiguous pages.
4896 *
4897 * Queueing large contiguous runs of pages for batching, however,
4898 * causes the pages to actually be freed in smaller chunks. As there
4899 * can be a significant delay between the individual batches being
4900 * recycled, this leads to the once large chunks of space being
4901 * fragmented and becoming unavailable for high-order allocations.
4902 */
4903 return 0;
4904#endif
e7c8d5c9
CL
4905}
4906
8d7a8fa9
CS
4907/*
4908 * pcp->high and pcp->batch values are related and dependent on one another:
4909 * ->batch must never be higher then ->high.
4910 * The following function updates them in a safe manner without read side
4911 * locking.
4912 *
4913 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4914 * those fields changing asynchronously (acording the the above rule).
4915 *
4916 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4917 * outside of boot time (or some other assurance that no concurrent updaters
4918 * exist).
4919 */
4920static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4921 unsigned long batch)
4922{
4923 /* start with a fail safe value for batch */
4924 pcp->batch = 1;
4925 smp_wmb();
4926
4927 /* Update high, then batch, in order */
4928 pcp->high = high;
4929 smp_wmb();
4930
4931 pcp->batch = batch;
4932}
4933
3664033c 4934/* a companion to pageset_set_high() */
4008bab7
CS
4935static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4936{
8d7a8fa9 4937 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4938}
4939
88c90dbc 4940static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4941{
4942 struct per_cpu_pages *pcp;
5f8dcc21 4943 int migratetype;
2caaad41 4944
1c6fe946
MD
4945 memset(p, 0, sizeof(*p));
4946
3dfa5721 4947 pcp = &p->pcp;
2caaad41 4948 pcp->count = 0;
5f8dcc21
MG
4949 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4950 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4951}
4952
88c90dbc
CS
4953static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4954{
4955 pageset_init(p);
4956 pageset_set_batch(p, batch);
4957}
4958
8ad4b1fb 4959/*
3664033c 4960 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4961 * to the value high for the pageset p.
4962 */
3664033c 4963static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4964 unsigned long high)
4965{
8d7a8fa9
CS
4966 unsigned long batch = max(1UL, high / 4);
4967 if ((high / 4) > (PAGE_SHIFT * 8))
4968 batch = PAGE_SHIFT * 8;
8ad4b1fb 4969
8d7a8fa9 4970 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4971}
4972
7cd2b0a3
DR
4973static void pageset_set_high_and_batch(struct zone *zone,
4974 struct per_cpu_pageset *pcp)
56cef2b8 4975{
56cef2b8 4976 if (percpu_pagelist_fraction)
3664033c 4977 pageset_set_high(pcp,
56cef2b8
CS
4978 (zone->managed_pages /
4979 percpu_pagelist_fraction));
4980 else
4981 pageset_set_batch(pcp, zone_batchsize(zone));
4982}
4983
169f6c19
CS
4984static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4985{
4986 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4987
4988 pageset_init(pcp);
4989 pageset_set_high_and_batch(zone, pcp);
4990}
4991
4ed7e022 4992static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4993{
4994 int cpu;
319774e2 4995 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4996 for_each_possible_cpu(cpu)
4997 zone_pageset_init(zone, cpu);
319774e2
WF
4998}
4999
2caaad41 5000/*
99dcc3e5
CL
5001 * Allocate per cpu pagesets and initialize them.
5002 * Before this call only boot pagesets were available.
e7c8d5c9 5003 */
99dcc3e5 5004void __init setup_per_cpu_pageset(void)
e7c8d5c9 5005{
99dcc3e5 5006 struct zone *zone;
e7c8d5c9 5007
319774e2
WF
5008 for_each_populated_zone(zone)
5009 setup_zone_pageset(zone);
e7c8d5c9
CL
5010}
5011
577a32f6 5012static noinline __init_refok
cca448fe 5013int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5014{
5015 int i;
cca448fe 5016 size_t alloc_size;
ed8ece2e
DH
5017
5018 /*
5019 * The per-page waitqueue mechanism uses hashed waitqueues
5020 * per zone.
5021 */
02b694de
YG
5022 zone->wait_table_hash_nr_entries =
5023 wait_table_hash_nr_entries(zone_size_pages);
5024 zone->wait_table_bits =
5025 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5026 alloc_size = zone->wait_table_hash_nr_entries
5027 * sizeof(wait_queue_head_t);
5028
cd94b9db 5029 if (!slab_is_available()) {
cca448fe 5030 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5031 memblock_virt_alloc_node_nopanic(
5032 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5033 } else {
5034 /*
5035 * This case means that a zone whose size was 0 gets new memory
5036 * via memory hot-add.
5037 * But it may be the case that a new node was hot-added. In
5038 * this case vmalloc() will not be able to use this new node's
5039 * memory - this wait_table must be initialized to use this new
5040 * node itself as well.
5041 * To use this new node's memory, further consideration will be
5042 * necessary.
5043 */
8691f3a7 5044 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5045 }
5046 if (!zone->wait_table)
5047 return -ENOMEM;
ed8ece2e 5048
b8af2941 5049 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5050 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5051
5052 return 0;
ed8ece2e
DH
5053}
5054
c09b4240 5055static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5056{
99dcc3e5
CL
5057 /*
5058 * per cpu subsystem is not up at this point. The following code
5059 * relies on the ability of the linker to provide the
5060 * offset of a (static) per cpu variable into the per cpu area.
5061 */
5062 zone->pageset = &boot_pageset;
ed8ece2e 5063
b38a8725 5064 if (populated_zone(zone))
99dcc3e5
CL
5065 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5066 zone->name, zone->present_pages,
5067 zone_batchsize(zone));
ed8ece2e
DH
5068}
5069
4ed7e022 5070int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5071 unsigned long zone_start_pfn,
b171e409 5072 unsigned long size)
ed8ece2e
DH
5073{
5074 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5075 int ret;
5076 ret = zone_wait_table_init(zone, size);
5077 if (ret)
5078 return ret;
ed8ece2e
DH
5079 pgdat->nr_zones = zone_idx(zone) + 1;
5080
ed8ece2e
DH
5081 zone->zone_start_pfn = zone_start_pfn;
5082
708614e6
MG
5083 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5084 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5085 pgdat->node_id,
5086 (unsigned long)zone_idx(zone),
5087 zone_start_pfn, (zone_start_pfn + size));
5088
1e548deb 5089 zone_init_free_lists(zone);
718127cc
YG
5090
5091 return 0;
ed8ece2e
DH
5092}
5093
0ee332c1 5094#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5095#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5096
c713216d
MG
5097/*
5098 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5099 */
8a942fde
MG
5100int __meminit __early_pfn_to_nid(unsigned long pfn,
5101 struct mminit_pfnnid_cache *state)
c713216d 5102{
c13291a5 5103 unsigned long start_pfn, end_pfn;
e76b63f8 5104 int nid;
7c243c71 5105
8a942fde
MG
5106 if (state->last_start <= pfn && pfn < state->last_end)
5107 return state->last_nid;
c713216d 5108
e76b63f8
YL
5109 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5110 if (nid != -1) {
8a942fde
MG
5111 state->last_start = start_pfn;
5112 state->last_end = end_pfn;
5113 state->last_nid = nid;
e76b63f8
YL
5114 }
5115
5116 return nid;
c713216d
MG
5117}
5118#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5119
c713216d 5120/**
6782832e 5121 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5122 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5123 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5124 *
7d018176
ZZ
5125 * If an architecture guarantees that all ranges registered contain no holes
5126 * and may be freed, this this function may be used instead of calling
5127 * memblock_free_early_nid() manually.
c713216d 5128 */
c13291a5 5129void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5130{
c13291a5
TH
5131 unsigned long start_pfn, end_pfn;
5132 int i, this_nid;
edbe7d23 5133
c13291a5
TH
5134 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5135 start_pfn = min(start_pfn, max_low_pfn);
5136 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5137
c13291a5 5138 if (start_pfn < end_pfn)
6782832e
SS
5139 memblock_free_early_nid(PFN_PHYS(start_pfn),
5140 (end_pfn - start_pfn) << PAGE_SHIFT,
5141 this_nid);
edbe7d23 5142 }
edbe7d23 5143}
edbe7d23 5144
c713216d
MG
5145/**
5146 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5147 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5148 *
7d018176
ZZ
5149 * If an architecture guarantees that all ranges registered contain no holes and may
5150 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5151 */
5152void __init sparse_memory_present_with_active_regions(int nid)
5153{
c13291a5
TH
5154 unsigned long start_pfn, end_pfn;
5155 int i, this_nid;
c713216d 5156
c13291a5
TH
5157 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5158 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5159}
5160
5161/**
5162 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5163 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5164 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5165 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5166 *
5167 * It returns the start and end page frame of a node based on information
7d018176 5168 * provided by memblock_set_node(). If called for a node
c713216d 5169 * with no available memory, a warning is printed and the start and end
88ca3b94 5170 * PFNs will be 0.
c713216d 5171 */
a3142c8e 5172void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5173 unsigned long *start_pfn, unsigned long *end_pfn)
5174{
c13291a5 5175 unsigned long this_start_pfn, this_end_pfn;
c713216d 5176 int i;
c13291a5 5177
c713216d
MG
5178 *start_pfn = -1UL;
5179 *end_pfn = 0;
5180
c13291a5
TH
5181 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5182 *start_pfn = min(*start_pfn, this_start_pfn);
5183 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5184 }
5185
633c0666 5186 if (*start_pfn == -1UL)
c713216d 5187 *start_pfn = 0;
c713216d
MG
5188}
5189
2a1e274a
MG
5190/*
5191 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5192 * assumption is made that zones within a node are ordered in monotonic
5193 * increasing memory addresses so that the "highest" populated zone is used
5194 */
b69a7288 5195static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5196{
5197 int zone_index;
5198 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5199 if (zone_index == ZONE_MOVABLE)
5200 continue;
5201
5202 if (arch_zone_highest_possible_pfn[zone_index] >
5203 arch_zone_lowest_possible_pfn[zone_index])
5204 break;
5205 }
5206
5207 VM_BUG_ON(zone_index == -1);
5208 movable_zone = zone_index;
5209}
5210
5211/*
5212 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5213 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5214 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5215 * in each node depending on the size of each node and how evenly kernelcore
5216 * is distributed. This helper function adjusts the zone ranges
5217 * provided by the architecture for a given node by using the end of the
5218 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5219 * zones within a node are in order of monotonic increases memory addresses
5220 */
b69a7288 5221static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5222 unsigned long zone_type,
5223 unsigned long node_start_pfn,
5224 unsigned long node_end_pfn,
5225 unsigned long *zone_start_pfn,
5226 unsigned long *zone_end_pfn)
5227{
5228 /* Only adjust if ZONE_MOVABLE is on this node */
5229 if (zone_movable_pfn[nid]) {
5230 /* Size ZONE_MOVABLE */
5231 if (zone_type == ZONE_MOVABLE) {
5232 *zone_start_pfn = zone_movable_pfn[nid];
5233 *zone_end_pfn = min(node_end_pfn,
5234 arch_zone_highest_possible_pfn[movable_zone]);
5235
2a1e274a
MG
5236 /* Check if this whole range is within ZONE_MOVABLE */
5237 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5238 *zone_start_pfn = *zone_end_pfn;
5239 }
5240}
5241
c713216d
MG
5242/*
5243 * Return the number of pages a zone spans in a node, including holes
5244 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5245 */
6ea6e688 5246static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5247 unsigned long zone_type,
7960aedd
ZY
5248 unsigned long node_start_pfn,
5249 unsigned long node_end_pfn,
d91749c1
TI
5250 unsigned long *zone_start_pfn,
5251 unsigned long *zone_end_pfn,
c713216d
MG
5252 unsigned long *ignored)
5253{
b5685e92 5254 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5255 if (!node_start_pfn && !node_end_pfn)
5256 return 0;
5257
7960aedd 5258 /* Get the start and end of the zone */
d91749c1
TI
5259 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5260 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5261 adjust_zone_range_for_zone_movable(nid, zone_type,
5262 node_start_pfn, node_end_pfn,
d91749c1 5263 zone_start_pfn, zone_end_pfn);
c713216d
MG
5264
5265 /* Check that this node has pages within the zone's required range */
d91749c1 5266 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5267 return 0;
5268
5269 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5270 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5271 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5272
5273 /* Return the spanned pages */
d91749c1 5274 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5275}
5276
5277/*
5278 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5279 * then all holes in the requested range will be accounted for.
c713216d 5280 */
32996250 5281unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5282 unsigned long range_start_pfn,
5283 unsigned long range_end_pfn)
5284{
96e907d1
TH
5285 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5286 unsigned long start_pfn, end_pfn;
5287 int i;
c713216d 5288
96e907d1
TH
5289 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5290 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5291 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5292 nr_absent -= end_pfn - start_pfn;
c713216d 5293 }
96e907d1 5294 return nr_absent;
c713216d
MG
5295}
5296
5297/**
5298 * absent_pages_in_range - Return number of page frames in holes within a range
5299 * @start_pfn: The start PFN to start searching for holes
5300 * @end_pfn: The end PFN to stop searching for holes
5301 *
88ca3b94 5302 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5303 */
5304unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5305 unsigned long end_pfn)
5306{
5307 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5308}
5309
5310/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5311static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5312 unsigned long zone_type,
7960aedd
ZY
5313 unsigned long node_start_pfn,
5314 unsigned long node_end_pfn,
c713216d
MG
5315 unsigned long *ignored)
5316{
96e907d1
TH
5317 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5318 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5319 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5320 unsigned long nr_absent;
9c7cd687 5321
b5685e92 5322 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5323 if (!node_start_pfn && !node_end_pfn)
5324 return 0;
5325
96e907d1
TH
5326 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5327 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5328
2a1e274a
MG
5329 adjust_zone_range_for_zone_movable(nid, zone_type,
5330 node_start_pfn, node_end_pfn,
5331 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5332 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5333
5334 /*
5335 * ZONE_MOVABLE handling.
5336 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5337 * and vice versa.
5338 */
5339 if (zone_movable_pfn[nid]) {
5340 if (mirrored_kernelcore) {
5341 unsigned long start_pfn, end_pfn;
5342 struct memblock_region *r;
5343
5344 for_each_memblock(memory, r) {
5345 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5346 zone_start_pfn, zone_end_pfn);
5347 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5348 zone_start_pfn, zone_end_pfn);
5349
5350 if (zone_type == ZONE_MOVABLE &&
5351 memblock_is_mirror(r))
5352 nr_absent += end_pfn - start_pfn;
5353
5354 if (zone_type == ZONE_NORMAL &&
5355 !memblock_is_mirror(r))
5356 nr_absent += end_pfn - start_pfn;
5357 }
5358 } else {
5359 if (zone_type == ZONE_NORMAL)
5360 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5361 }
5362 }
5363
5364 return nr_absent;
c713216d 5365}
0e0b864e 5366
0ee332c1 5367#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5368static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5369 unsigned long zone_type,
7960aedd
ZY
5370 unsigned long node_start_pfn,
5371 unsigned long node_end_pfn,
d91749c1
TI
5372 unsigned long *zone_start_pfn,
5373 unsigned long *zone_end_pfn,
c713216d
MG
5374 unsigned long *zones_size)
5375{
d91749c1
TI
5376 unsigned int zone;
5377
5378 *zone_start_pfn = node_start_pfn;
5379 for (zone = 0; zone < zone_type; zone++)
5380 *zone_start_pfn += zones_size[zone];
5381
5382 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5383
c713216d
MG
5384 return zones_size[zone_type];
5385}
5386
6ea6e688 5387static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5388 unsigned long zone_type,
7960aedd
ZY
5389 unsigned long node_start_pfn,
5390 unsigned long node_end_pfn,
c713216d
MG
5391 unsigned long *zholes_size)
5392{
5393 if (!zholes_size)
5394 return 0;
5395
5396 return zholes_size[zone_type];
5397}
20e6926d 5398
0ee332c1 5399#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5400
a3142c8e 5401static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5402 unsigned long node_start_pfn,
5403 unsigned long node_end_pfn,
5404 unsigned long *zones_size,
5405 unsigned long *zholes_size)
c713216d 5406{
febd5949 5407 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5408 enum zone_type i;
5409
febd5949
GZ
5410 for (i = 0; i < MAX_NR_ZONES; i++) {
5411 struct zone *zone = pgdat->node_zones + i;
d91749c1 5412 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5413 unsigned long size, real_size;
c713216d 5414
febd5949
GZ
5415 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5416 node_start_pfn,
5417 node_end_pfn,
d91749c1
TI
5418 &zone_start_pfn,
5419 &zone_end_pfn,
febd5949
GZ
5420 zones_size);
5421 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5422 node_start_pfn, node_end_pfn,
5423 zholes_size);
d91749c1
TI
5424 if (size)
5425 zone->zone_start_pfn = zone_start_pfn;
5426 else
5427 zone->zone_start_pfn = 0;
febd5949
GZ
5428 zone->spanned_pages = size;
5429 zone->present_pages = real_size;
5430
5431 totalpages += size;
5432 realtotalpages += real_size;
5433 }
5434
5435 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5436 pgdat->node_present_pages = realtotalpages;
5437 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5438 realtotalpages);
5439}
5440
835c134e
MG
5441#ifndef CONFIG_SPARSEMEM
5442/*
5443 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5444 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5445 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5446 * round what is now in bits to nearest long in bits, then return it in
5447 * bytes.
5448 */
7c45512d 5449static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5450{
5451 unsigned long usemapsize;
5452
7c45512d 5453 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5454 usemapsize = roundup(zonesize, pageblock_nr_pages);
5455 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5456 usemapsize *= NR_PAGEBLOCK_BITS;
5457 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5458
5459 return usemapsize / 8;
5460}
5461
5462static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5463 struct zone *zone,
5464 unsigned long zone_start_pfn,
5465 unsigned long zonesize)
835c134e 5466{
7c45512d 5467 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5468 zone->pageblock_flags = NULL;
58a01a45 5469 if (usemapsize)
6782832e
SS
5470 zone->pageblock_flags =
5471 memblock_virt_alloc_node_nopanic(usemapsize,
5472 pgdat->node_id);
835c134e
MG
5473}
5474#else
7c45512d
LT
5475static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5476 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5477#endif /* CONFIG_SPARSEMEM */
5478
d9c23400 5479#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5480
d9c23400 5481/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5482void __paginginit set_pageblock_order(void)
d9c23400 5483{
955c1cd7
AM
5484 unsigned int order;
5485
d9c23400
MG
5486 /* Check that pageblock_nr_pages has not already been setup */
5487 if (pageblock_order)
5488 return;
5489
955c1cd7
AM
5490 if (HPAGE_SHIFT > PAGE_SHIFT)
5491 order = HUGETLB_PAGE_ORDER;
5492 else
5493 order = MAX_ORDER - 1;
5494
d9c23400
MG
5495 /*
5496 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5497 * This value may be variable depending on boot parameters on IA64 and
5498 * powerpc.
d9c23400
MG
5499 */
5500 pageblock_order = order;
5501}
5502#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5503
ba72cb8c
MG
5504/*
5505 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5506 * is unused as pageblock_order is set at compile-time. See
5507 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5508 * the kernel config
ba72cb8c 5509 */
15ca220e 5510void __paginginit set_pageblock_order(void)
ba72cb8c 5511{
ba72cb8c 5512}
d9c23400
MG
5513
5514#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5515
01cefaef
JL
5516static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5517 unsigned long present_pages)
5518{
5519 unsigned long pages = spanned_pages;
5520
5521 /*
5522 * Provide a more accurate estimation if there are holes within
5523 * the zone and SPARSEMEM is in use. If there are holes within the
5524 * zone, each populated memory region may cost us one or two extra
5525 * memmap pages due to alignment because memmap pages for each
5526 * populated regions may not naturally algined on page boundary.
5527 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5528 */
5529 if (spanned_pages > present_pages + (present_pages >> 4) &&
5530 IS_ENABLED(CONFIG_SPARSEMEM))
5531 pages = present_pages;
5532
5533 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5534}
5535
1da177e4
LT
5536/*
5537 * Set up the zone data structures:
5538 * - mark all pages reserved
5539 * - mark all memory queues empty
5540 * - clear the memory bitmaps
6527af5d
MK
5541 *
5542 * NOTE: pgdat should get zeroed by caller.
1da177e4 5543 */
7f3eb55b 5544static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5545{
2f1b6248 5546 enum zone_type j;
ed8ece2e 5547 int nid = pgdat->node_id;
718127cc 5548 int ret;
1da177e4 5549
208d54e5 5550 pgdat_resize_init(pgdat);
8177a420
AA
5551#ifdef CONFIG_NUMA_BALANCING
5552 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5553 pgdat->numabalancing_migrate_nr_pages = 0;
5554 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5555#endif
5556#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5557 spin_lock_init(&pgdat->split_queue_lock);
5558 INIT_LIST_HEAD(&pgdat->split_queue);
5559 pgdat->split_queue_len = 0;
8177a420 5560#endif
1da177e4 5561 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5562 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5563#ifdef CONFIG_COMPACTION
5564 init_waitqueue_head(&pgdat->kcompactd_wait);
5565#endif
eefa864b 5566 pgdat_page_ext_init(pgdat);
5f63b720 5567
1da177e4
LT
5568 for (j = 0; j < MAX_NR_ZONES; j++) {
5569 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5570 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5571 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5572
febd5949
GZ
5573 size = zone->spanned_pages;
5574 realsize = freesize = zone->present_pages;
1da177e4 5575
0e0b864e 5576 /*
9feedc9d 5577 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5578 * is used by this zone for memmap. This affects the watermark
5579 * and per-cpu initialisations
5580 */
01cefaef 5581 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5582 if (!is_highmem_idx(j)) {
5583 if (freesize >= memmap_pages) {
5584 freesize -= memmap_pages;
5585 if (memmap_pages)
5586 printk(KERN_DEBUG
5587 " %s zone: %lu pages used for memmap\n",
5588 zone_names[j], memmap_pages);
5589 } else
1170532b 5590 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5591 zone_names[j], memmap_pages, freesize);
5592 }
0e0b864e 5593
6267276f 5594 /* Account for reserved pages */
9feedc9d
JL
5595 if (j == 0 && freesize > dma_reserve) {
5596 freesize -= dma_reserve;
d903ef9f 5597 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5598 zone_names[0], dma_reserve);
0e0b864e
MG
5599 }
5600
98d2b0eb 5601 if (!is_highmem_idx(j))
9feedc9d 5602 nr_kernel_pages += freesize;
01cefaef
JL
5603 /* Charge for highmem memmap if there are enough kernel pages */
5604 else if (nr_kernel_pages > memmap_pages * 2)
5605 nr_kernel_pages -= memmap_pages;
9feedc9d 5606 nr_all_pages += freesize;
1da177e4 5607
9feedc9d
JL
5608 /*
5609 * Set an approximate value for lowmem here, it will be adjusted
5610 * when the bootmem allocator frees pages into the buddy system.
5611 * And all highmem pages will be managed by the buddy system.
5612 */
5613 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5614#ifdef CONFIG_NUMA
d5f541ed 5615 zone->node = nid;
9feedc9d 5616 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5617 / 100;
9feedc9d 5618 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5619#endif
1da177e4
LT
5620 zone->name = zone_names[j];
5621 spin_lock_init(&zone->lock);
5622 spin_lock_init(&zone->lru_lock);
bdc8cb98 5623 zone_seqlock_init(zone);
1da177e4 5624 zone->zone_pgdat = pgdat;
ed8ece2e 5625 zone_pcp_init(zone);
81c0a2bb
JW
5626
5627 /* For bootup, initialized properly in watermark setup */
5628 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5629
bea8c150 5630 lruvec_init(&zone->lruvec);
1da177e4
LT
5631 if (!size)
5632 continue;
5633
955c1cd7 5634 set_pageblock_order();
7c45512d 5635 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5636 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5637 BUG_ON(ret);
76cdd58e 5638 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5639 }
5640}
5641
577a32f6 5642static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5643{
b0aeba74 5644 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5645 unsigned long __maybe_unused offset = 0;
5646
1da177e4
LT
5647 /* Skip empty nodes */
5648 if (!pgdat->node_spanned_pages)
5649 return;
5650
d41dee36 5651#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5652 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5653 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5654 /* ia64 gets its own node_mem_map, before this, without bootmem */
5655 if (!pgdat->node_mem_map) {
b0aeba74 5656 unsigned long size, end;
d41dee36
AW
5657 struct page *map;
5658
e984bb43
BP
5659 /*
5660 * The zone's endpoints aren't required to be MAX_ORDER
5661 * aligned but the node_mem_map endpoints must be in order
5662 * for the buddy allocator to function correctly.
5663 */
108bcc96 5664 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5665 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5666 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5667 map = alloc_remap(pgdat->node_id, size);
5668 if (!map)
6782832e
SS
5669 map = memblock_virt_alloc_node_nopanic(size,
5670 pgdat->node_id);
a1c34a3b 5671 pgdat->node_mem_map = map + offset;
1da177e4 5672 }
12d810c1 5673#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5674 /*
5675 * With no DISCONTIG, the global mem_map is just set as node 0's
5676 */
c713216d 5677 if (pgdat == NODE_DATA(0)) {
1da177e4 5678 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5679#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5680 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5681 mem_map -= offset;
0ee332c1 5682#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5683 }
1da177e4 5684#endif
d41dee36 5685#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5686}
5687
9109fb7b
JW
5688void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5689 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5690{
9109fb7b 5691 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5692 unsigned long start_pfn = 0;
5693 unsigned long end_pfn = 0;
9109fb7b 5694
88fdf75d 5695 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5696 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5697
3a80a7fa 5698 reset_deferred_meminit(pgdat);
1da177e4
LT
5699 pgdat->node_id = nid;
5700 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5701#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5702 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5703 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5704 (u64)start_pfn << PAGE_SHIFT,
5705 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5706#else
5707 start_pfn = node_start_pfn;
7960aedd
ZY
5708#endif
5709 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5710 zones_size, zholes_size);
1da177e4
LT
5711
5712 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5713#ifdef CONFIG_FLAT_NODE_MEM_MAP
5714 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5715 nid, (unsigned long)pgdat,
5716 (unsigned long)pgdat->node_mem_map);
5717#endif
1da177e4 5718
7f3eb55b 5719 free_area_init_core(pgdat);
1da177e4
LT
5720}
5721
0ee332c1 5722#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5723
5724#if MAX_NUMNODES > 1
5725/*
5726 * Figure out the number of possible node ids.
5727 */
f9872caf 5728void __init setup_nr_node_ids(void)
418508c1 5729{
904a9553 5730 unsigned int highest;
418508c1 5731
904a9553 5732 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5733 nr_node_ids = highest + 1;
5734}
418508c1
MS
5735#endif
5736
1e01979c
TH
5737/**
5738 * node_map_pfn_alignment - determine the maximum internode alignment
5739 *
5740 * This function should be called after node map is populated and sorted.
5741 * It calculates the maximum power of two alignment which can distinguish
5742 * all the nodes.
5743 *
5744 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5745 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5746 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5747 * shifted, 1GiB is enough and this function will indicate so.
5748 *
5749 * This is used to test whether pfn -> nid mapping of the chosen memory
5750 * model has fine enough granularity to avoid incorrect mapping for the
5751 * populated node map.
5752 *
5753 * Returns the determined alignment in pfn's. 0 if there is no alignment
5754 * requirement (single node).
5755 */
5756unsigned long __init node_map_pfn_alignment(void)
5757{
5758 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5759 unsigned long start, end, mask;
1e01979c 5760 int last_nid = -1;
c13291a5 5761 int i, nid;
1e01979c 5762
c13291a5 5763 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5764 if (!start || last_nid < 0 || last_nid == nid) {
5765 last_nid = nid;
5766 last_end = end;
5767 continue;
5768 }
5769
5770 /*
5771 * Start with a mask granular enough to pin-point to the
5772 * start pfn and tick off bits one-by-one until it becomes
5773 * too coarse to separate the current node from the last.
5774 */
5775 mask = ~((1 << __ffs(start)) - 1);
5776 while (mask && last_end <= (start & (mask << 1)))
5777 mask <<= 1;
5778
5779 /* accumulate all internode masks */
5780 accl_mask |= mask;
5781 }
5782
5783 /* convert mask to number of pages */
5784 return ~accl_mask + 1;
5785}
5786
a6af2bc3 5787/* Find the lowest pfn for a node */
b69a7288 5788static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5789{
a6af2bc3 5790 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5791 unsigned long start_pfn;
5792 int i;
1abbfb41 5793
c13291a5
TH
5794 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5795 min_pfn = min(min_pfn, start_pfn);
c713216d 5796
a6af2bc3 5797 if (min_pfn == ULONG_MAX) {
1170532b 5798 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5799 return 0;
5800 }
5801
5802 return min_pfn;
c713216d
MG
5803}
5804
5805/**
5806 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5807 *
5808 * It returns the minimum PFN based on information provided via
7d018176 5809 * memblock_set_node().
c713216d
MG
5810 */
5811unsigned long __init find_min_pfn_with_active_regions(void)
5812{
5813 return find_min_pfn_for_node(MAX_NUMNODES);
5814}
5815
37b07e41
LS
5816/*
5817 * early_calculate_totalpages()
5818 * Sum pages in active regions for movable zone.
4b0ef1fe 5819 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5820 */
484f51f8 5821static unsigned long __init early_calculate_totalpages(void)
7e63efef 5822{
7e63efef 5823 unsigned long totalpages = 0;
c13291a5
TH
5824 unsigned long start_pfn, end_pfn;
5825 int i, nid;
5826
5827 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5828 unsigned long pages = end_pfn - start_pfn;
7e63efef 5829
37b07e41
LS
5830 totalpages += pages;
5831 if (pages)
4b0ef1fe 5832 node_set_state(nid, N_MEMORY);
37b07e41 5833 }
b8af2941 5834 return totalpages;
7e63efef
MG
5835}
5836
2a1e274a
MG
5837/*
5838 * Find the PFN the Movable zone begins in each node. Kernel memory
5839 * is spread evenly between nodes as long as the nodes have enough
5840 * memory. When they don't, some nodes will have more kernelcore than
5841 * others
5842 */
b224ef85 5843static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5844{
5845 int i, nid;
5846 unsigned long usable_startpfn;
5847 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5848 /* save the state before borrow the nodemask */
4b0ef1fe 5849 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5850 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5851 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5852 struct memblock_region *r;
b2f3eebe
TC
5853
5854 /* Need to find movable_zone earlier when movable_node is specified. */
5855 find_usable_zone_for_movable();
5856
5857 /*
5858 * If movable_node is specified, ignore kernelcore and movablecore
5859 * options.
5860 */
5861 if (movable_node_is_enabled()) {
136199f0
EM
5862 for_each_memblock(memory, r) {
5863 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5864 continue;
5865
136199f0 5866 nid = r->nid;
b2f3eebe 5867
136199f0 5868 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5869 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5870 min(usable_startpfn, zone_movable_pfn[nid]) :
5871 usable_startpfn;
5872 }
5873
5874 goto out2;
5875 }
2a1e274a 5876
342332e6
TI
5877 /*
5878 * If kernelcore=mirror is specified, ignore movablecore option
5879 */
5880 if (mirrored_kernelcore) {
5881 bool mem_below_4gb_not_mirrored = false;
5882
5883 for_each_memblock(memory, r) {
5884 if (memblock_is_mirror(r))
5885 continue;
5886
5887 nid = r->nid;
5888
5889 usable_startpfn = memblock_region_memory_base_pfn(r);
5890
5891 if (usable_startpfn < 0x100000) {
5892 mem_below_4gb_not_mirrored = true;
5893 continue;
5894 }
5895
5896 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5897 min(usable_startpfn, zone_movable_pfn[nid]) :
5898 usable_startpfn;
5899 }
5900
5901 if (mem_below_4gb_not_mirrored)
5902 pr_warn("This configuration results in unmirrored kernel memory.");
5903
5904 goto out2;
5905 }
5906
7e63efef 5907 /*
b2f3eebe 5908 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5909 * kernelcore that corresponds so that memory usable for
5910 * any allocation type is evenly spread. If both kernelcore
5911 * and movablecore are specified, then the value of kernelcore
5912 * will be used for required_kernelcore if it's greater than
5913 * what movablecore would have allowed.
5914 */
5915 if (required_movablecore) {
7e63efef
MG
5916 unsigned long corepages;
5917
5918 /*
5919 * Round-up so that ZONE_MOVABLE is at least as large as what
5920 * was requested by the user
5921 */
5922 required_movablecore =
5923 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5924 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5925 corepages = totalpages - required_movablecore;
5926
5927 required_kernelcore = max(required_kernelcore, corepages);
5928 }
5929
bde304bd
XQ
5930 /*
5931 * If kernelcore was not specified or kernelcore size is larger
5932 * than totalpages, there is no ZONE_MOVABLE.
5933 */
5934 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5935 goto out;
2a1e274a
MG
5936
5937 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5938 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5939
5940restart:
5941 /* Spread kernelcore memory as evenly as possible throughout nodes */
5942 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5943 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5944 unsigned long start_pfn, end_pfn;
5945
2a1e274a
MG
5946 /*
5947 * Recalculate kernelcore_node if the division per node
5948 * now exceeds what is necessary to satisfy the requested
5949 * amount of memory for the kernel
5950 */
5951 if (required_kernelcore < kernelcore_node)
5952 kernelcore_node = required_kernelcore / usable_nodes;
5953
5954 /*
5955 * As the map is walked, we track how much memory is usable
5956 * by the kernel using kernelcore_remaining. When it is
5957 * 0, the rest of the node is usable by ZONE_MOVABLE
5958 */
5959 kernelcore_remaining = kernelcore_node;
5960
5961 /* Go through each range of PFNs within this node */
c13291a5 5962 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5963 unsigned long size_pages;
5964
c13291a5 5965 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5966 if (start_pfn >= end_pfn)
5967 continue;
5968
5969 /* Account for what is only usable for kernelcore */
5970 if (start_pfn < usable_startpfn) {
5971 unsigned long kernel_pages;
5972 kernel_pages = min(end_pfn, usable_startpfn)
5973 - start_pfn;
5974
5975 kernelcore_remaining -= min(kernel_pages,
5976 kernelcore_remaining);
5977 required_kernelcore -= min(kernel_pages,
5978 required_kernelcore);
5979
5980 /* Continue if range is now fully accounted */
5981 if (end_pfn <= usable_startpfn) {
5982
5983 /*
5984 * Push zone_movable_pfn to the end so
5985 * that if we have to rebalance
5986 * kernelcore across nodes, we will
5987 * not double account here
5988 */
5989 zone_movable_pfn[nid] = end_pfn;
5990 continue;
5991 }
5992 start_pfn = usable_startpfn;
5993 }
5994
5995 /*
5996 * The usable PFN range for ZONE_MOVABLE is from
5997 * start_pfn->end_pfn. Calculate size_pages as the
5998 * number of pages used as kernelcore
5999 */
6000 size_pages = end_pfn - start_pfn;
6001 if (size_pages > kernelcore_remaining)
6002 size_pages = kernelcore_remaining;
6003 zone_movable_pfn[nid] = start_pfn + size_pages;
6004
6005 /*
6006 * Some kernelcore has been met, update counts and
6007 * break if the kernelcore for this node has been
b8af2941 6008 * satisfied
2a1e274a
MG
6009 */
6010 required_kernelcore -= min(required_kernelcore,
6011 size_pages);
6012 kernelcore_remaining -= size_pages;
6013 if (!kernelcore_remaining)
6014 break;
6015 }
6016 }
6017
6018 /*
6019 * If there is still required_kernelcore, we do another pass with one
6020 * less node in the count. This will push zone_movable_pfn[nid] further
6021 * along on the nodes that still have memory until kernelcore is
b8af2941 6022 * satisfied
2a1e274a
MG
6023 */
6024 usable_nodes--;
6025 if (usable_nodes && required_kernelcore > usable_nodes)
6026 goto restart;
6027
b2f3eebe 6028out2:
2a1e274a
MG
6029 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6030 for (nid = 0; nid < MAX_NUMNODES; nid++)
6031 zone_movable_pfn[nid] =
6032 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6033
20e6926d 6034out:
66918dcd 6035 /* restore the node_state */
4b0ef1fe 6036 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6037}
6038
4b0ef1fe
LJ
6039/* Any regular or high memory on that node ? */
6040static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6041{
37b07e41
LS
6042 enum zone_type zone_type;
6043
4b0ef1fe
LJ
6044 if (N_MEMORY == N_NORMAL_MEMORY)
6045 return;
6046
6047 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6048 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6049 if (populated_zone(zone)) {
4b0ef1fe
LJ
6050 node_set_state(nid, N_HIGH_MEMORY);
6051 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6052 zone_type <= ZONE_NORMAL)
6053 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6054 break;
6055 }
37b07e41 6056 }
37b07e41
LS
6057}
6058
c713216d
MG
6059/**
6060 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6061 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6062 *
6063 * This will call free_area_init_node() for each active node in the system.
7d018176 6064 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6065 * zone in each node and their holes is calculated. If the maximum PFN
6066 * between two adjacent zones match, it is assumed that the zone is empty.
6067 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6068 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6069 * starts where the previous one ended. For example, ZONE_DMA32 starts
6070 * at arch_max_dma_pfn.
6071 */
6072void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6073{
c13291a5
TH
6074 unsigned long start_pfn, end_pfn;
6075 int i, nid;
a6af2bc3 6076
c713216d
MG
6077 /* Record where the zone boundaries are */
6078 memset(arch_zone_lowest_possible_pfn, 0,
6079 sizeof(arch_zone_lowest_possible_pfn));
6080 memset(arch_zone_highest_possible_pfn, 0,
6081 sizeof(arch_zone_highest_possible_pfn));
6082 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6083 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6084 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6085 if (i == ZONE_MOVABLE)
6086 continue;
c713216d
MG
6087 arch_zone_lowest_possible_pfn[i] =
6088 arch_zone_highest_possible_pfn[i-1];
6089 arch_zone_highest_possible_pfn[i] =
6090 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6091 }
2a1e274a
MG
6092 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6093 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6094
6095 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6096 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6097 find_zone_movable_pfns_for_nodes();
c713216d 6098
c713216d 6099 /* Print out the zone ranges */
f88dfff5 6100 pr_info("Zone ranges:\n");
2a1e274a
MG
6101 for (i = 0; i < MAX_NR_ZONES; i++) {
6102 if (i == ZONE_MOVABLE)
6103 continue;
f88dfff5 6104 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6105 if (arch_zone_lowest_possible_pfn[i] ==
6106 arch_zone_highest_possible_pfn[i])
f88dfff5 6107 pr_cont("empty\n");
72f0ba02 6108 else
8d29e18a
JG
6109 pr_cont("[mem %#018Lx-%#018Lx]\n",
6110 (u64)arch_zone_lowest_possible_pfn[i]
6111 << PAGE_SHIFT,
6112 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6113 << PAGE_SHIFT) - 1);
2a1e274a
MG
6114 }
6115
6116 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6117 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6118 for (i = 0; i < MAX_NUMNODES; i++) {
6119 if (zone_movable_pfn[i])
8d29e18a
JG
6120 pr_info(" Node %d: %#018Lx\n", i,
6121 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6122 }
c713216d 6123
f2d52fe5 6124 /* Print out the early node map */
f88dfff5 6125 pr_info("Early memory node ranges\n");
c13291a5 6126 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6127 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6128 (u64)start_pfn << PAGE_SHIFT,
6129 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6130
6131 /* Initialise every node */
708614e6 6132 mminit_verify_pageflags_layout();
8ef82866 6133 setup_nr_node_ids();
c713216d
MG
6134 for_each_online_node(nid) {
6135 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6136 free_area_init_node(nid, NULL,
c713216d 6137 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6138
6139 /* Any memory on that node */
6140 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6141 node_set_state(nid, N_MEMORY);
6142 check_for_memory(pgdat, nid);
c713216d
MG
6143 }
6144}
2a1e274a 6145
7e63efef 6146static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6147{
6148 unsigned long long coremem;
6149 if (!p)
6150 return -EINVAL;
6151
6152 coremem = memparse(p, &p);
7e63efef 6153 *core = coremem >> PAGE_SHIFT;
2a1e274a 6154
7e63efef 6155 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6156 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6157
6158 return 0;
6159}
ed7ed365 6160
7e63efef
MG
6161/*
6162 * kernelcore=size sets the amount of memory for use for allocations that
6163 * cannot be reclaimed or migrated.
6164 */
6165static int __init cmdline_parse_kernelcore(char *p)
6166{
342332e6
TI
6167 /* parse kernelcore=mirror */
6168 if (parse_option_str(p, "mirror")) {
6169 mirrored_kernelcore = true;
6170 return 0;
6171 }
6172
7e63efef
MG
6173 return cmdline_parse_core(p, &required_kernelcore);
6174}
6175
6176/*
6177 * movablecore=size sets the amount of memory for use for allocations that
6178 * can be reclaimed or migrated.
6179 */
6180static int __init cmdline_parse_movablecore(char *p)
6181{
6182 return cmdline_parse_core(p, &required_movablecore);
6183}
6184
ed7ed365 6185early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6186early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6187
0ee332c1 6188#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6189
c3d5f5f0
JL
6190void adjust_managed_page_count(struct page *page, long count)
6191{
6192 spin_lock(&managed_page_count_lock);
6193 page_zone(page)->managed_pages += count;
6194 totalram_pages += count;
3dcc0571
JL
6195#ifdef CONFIG_HIGHMEM
6196 if (PageHighMem(page))
6197 totalhigh_pages += count;
6198#endif
c3d5f5f0
JL
6199 spin_unlock(&managed_page_count_lock);
6200}
3dcc0571 6201EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6202
11199692 6203unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6204{
11199692
JL
6205 void *pos;
6206 unsigned long pages = 0;
69afade7 6207
11199692
JL
6208 start = (void *)PAGE_ALIGN((unsigned long)start);
6209 end = (void *)((unsigned long)end & PAGE_MASK);
6210 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6211 if ((unsigned int)poison <= 0xFF)
11199692
JL
6212 memset(pos, poison, PAGE_SIZE);
6213 free_reserved_page(virt_to_page(pos));
69afade7
JL
6214 }
6215
6216 if (pages && s)
11199692 6217 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6218 s, pages << (PAGE_SHIFT - 10), start, end);
6219
6220 return pages;
6221}
11199692 6222EXPORT_SYMBOL(free_reserved_area);
69afade7 6223
cfa11e08
JL
6224#ifdef CONFIG_HIGHMEM
6225void free_highmem_page(struct page *page)
6226{
6227 __free_reserved_page(page);
6228 totalram_pages++;
7b4b2a0d 6229 page_zone(page)->managed_pages++;
cfa11e08
JL
6230 totalhigh_pages++;
6231}
6232#endif
6233
7ee3d4e8
JL
6234
6235void __init mem_init_print_info(const char *str)
6236{
6237 unsigned long physpages, codesize, datasize, rosize, bss_size;
6238 unsigned long init_code_size, init_data_size;
6239
6240 physpages = get_num_physpages();
6241 codesize = _etext - _stext;
6242 datasize = _edata - _sdata;
6243 rosize = __end_rodata - __start_rodata;
6244 bss_size = __bss_stop - __bss_start;
6245 init_data_size = __init_end - __init_begin;
6246 init_code_size = _einittext - _sinittext;
6247
6248 /*
6249 * Detect special cases and adjust section sizes accordingly:
6250 * 1) .init.* may be embedded into .data sections
6251 * 2) .init.text.* may be out of [__init_begin, __init_end],
6252 * please refer to arch/tile/kernel/vmlinux.lds.S.
6253 * 3) .rodata.* may be embedded into .text or .data sections.
6254 */
6255#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6256 do { \
6257 if (start <= pos && pos < end && size > adj) \
6258 size -= adj; \
6259 } while (0)
7ee3d4e8
JL
6260
6261 adj_init_size(__init_begin, __init_end, init_data_size,
6262 _sinittext, init_code_size);
6263 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6264 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6265 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6266 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6267
6268#undef adj_init_size
6269
756a025f 6270 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6271#ifdef CONFIG_HIGHMEM
756a025f 6272 ", %luK highmem"
7ee3d4e8 6273#endif
756a025f
JP
6274 "%s%s)\n",
6275 nr_free_pages() << (PAGE_SHIFT - 10),
6276 physpages << (PAGE_SHIFT - 10),
6277 codesize >> 10, datasize >> 10, rosize >> 10,
6278 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6279 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6280 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6281#ifdef CONFIG_HIGHMEM
756a025f 6282 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6283#endif
756a025f 6284 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6285}
6286
0e0b864e 6287/**
88ca3b94
RD
6288 * set_dma_reserve - set the specified number of pages reserved in the first zone
6289 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6290 *
013110a7 6291 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6292 * In the DMA zone, a significant percentage may be consumed by kernel image
6293 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6294 * function may optionally be used to account for unfreeable pages in the
6295 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6296 * smaller per-cpu batchsize.
0e0b864e
MG
6297 */
6298void __init set_dma_reserve(unsigned long new_dma_reserve)
6299{
6300 dma_reserve = new_dma_reserve;
6301}
6302
1da177e4
LT
6303void __init free_area_init(unsigned long *zones_size)
6304{
9109fb7b 6305 free_area_init_node(0, zones_size,
1da177e4
LT
6306 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6307}
1da177e4 6308
1da177e4
LT
6309static int page_alloc_cpu_notify(struct notifier_block *self,
6310 unsigned long action, void *hcpu)
6311{
6312 int cpu = (unsigned long)hcpu;
1da177e4 6313
8bb78442 6314 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6315 lru_add_drain_cpu(cpu);
9f8f2172
CL
6316 drain_pages(cpu);
6317
6318 /*
6319 * Spill the event counters of the dead processor
6320 * into the current processors event counters.
6321 * This artificially elevates the count of the current
6322 * processor.
6323 */
f8891e5e 6324 vm_events_fold_cpu(cpu);
9f8f2172
CL
6325
6326 /*
6327 * Zero the differential counters of the dead processor
6328 * so that the vm statistics are consistent.
6329 *
6330 * This is only okay since the processor is dead and cannot
6331 * race with what we are doing.
6332 */
2bb921e5 6333 cpu_vm_stats_fold(cpu);
1da177e4
LT
6334 }
6335 return NOTIFY_OK;
6336}
1da177e4
LT
6337
6338void __init page_alloc_init(void)
6339{
6340 hotcpu_notifier(page_alloc_cpu_notify, 0);
6341}
6342
cb45b0e9 6343/*
34b10060 6344 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6345 * or min_free_kbytes changes.
6346 */
6347static void calculate_totalreserve_pages(void)
6348{
6349 struct pglist_data *pgdat;
6350 unsigned long reserve_pages = 0;
2f6726e5 6351 enum zone_type i, j;
cb45b0e9
HA
6352
6353 for_each_online_pgdat(pgdat) {
6354 for (i = 0; i < MAX_NR_ZONES; i++) {
6355 struct zone *zone = pgdat->node_zones + i;
3484b2de 6356 long max = 0;
cb45b0e9
HA
6357
6358 /* Find valid and maximum lowmem_reserve in the zone */
6359 for (j = i; j < MAX_NR_ZONES; j++) {
6360 if (zone->lowmem_reserve[j] > max)
6361 max = zone->lowmem_reserve[j];
6362 }
6363
41858966
MG
6364 /* we treat the high watermark as reserved pages. */
6365 max += high_wmark_pages(zone);
cb45b0e9 6366
b40da049
JL
6367 if (max > zone->managed_pages)
6368 max = zone->managed_pages;
a8d01437
JW
6369
6370 zone->totalreserve_pages = max;
6371
cb45b0e9
HA
6372 reserve_pages += max;
6373 }
6374 }
6375 totalreserve_pages = reserve_pages;
6376}
6377
1da177e4
LT
6378/*
6379 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6380 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6381 * has a correct pages reserved value, so an adequate number of
6382 * pages are left in the zone after a successful __alloc_pages().
6383 */
6384static void setup_per_zone_lowmem_reserve(void)
6385{
6386 struct pglist_data *pgdat;
2f6726e5 6387 enum zone_type j, idx;
1da177e4 6388
ec936fc5 6389 for_each_online_pgdat(pgdat) {
1da177e4
LT
6390 for (j = 0; j < MAX_NR_ZONES; j++) {
6391 struct zone *zone = pgdat->node_zones + j;
b40da049 6392 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6393
6394 zone->lowmem_reserve[j] = 0;
6395
2f6726e5
CL
6396 idx = j;
6397 while (idx) {
1da177e4
LT
6398 struct zone *lower_zone;
6399
2f6726e5
CL
6400 idx--;
6401
1da177e4
LT
6402 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6403 sysctl_lowmem_reserve_ratio[idx] = 1;
6404
6405 lower_zone = pgdat->node_zones + idx;
b40da049 6406 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6407 sysctl_lowmem_reserve_ratio[idx];
b40da049 6408 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6409 }
6410 }
6411 }
cb45b0e9
HA
6412
6413 /* update totalreserve_pages */
6414 calculate_totalreserve_pages();
1da177e4
LT
6415}
6416
cfd3da1e 6417static void __setup_per_zone_wmarks(void)
1da177e4
LT
6418{
6419 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6420 unsigned long lowmem_pages = 0;
6421 struct zone *zone;
6422 unsigned long flags;
6423
6424 /* Calculate total number of !ZONE_HIGHMEM pages */
6425 for_each_zone(zone) {
6426 if (!is_highmem(zone))
b40da049 6427 lowmem_pages += zone->managed_pages;
1da177e4
LT
6428 }
6429
6430 for_each_zone(zone) {
ac924c60
AM
6431 u64 tmp;
6432
1125b4e3 6433 spin_lock_irqsave(&zone->lock, flags);
b40da049 6434 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6435 do_div(tmp, lowmem_pages);
1da177e4
LT
6436 if (is_highmem(zone)) {
6437 /*
669ed175
NP
6438 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6439 * need highmem pages, so cap pages_min to a small
6440 * value here.
6441 *
41858966 6442 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6443 * deltas control asynch page reclaim, and so should
669ed175 6444 * not be capped for highmem.
1da177e4 6445 */
90ae8d67 6446 unsigned long min_pages;
1da177e4 6447
b40da049 6448 min_pages = zone->managed_pages / 1024;
90ae8d67 6449 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6450 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6451 } else {
669ed175
NP
6452 /*
6453 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6454 * proportionate to the zone's size.
6455 */
41858966 6456 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6457 }
6458
795ae7a0
JW
6459 /*
6460 * Set the kswapd watermarks distance according to the
6461 * scale factor in proportion to available memory, but
6462 * ensure a minimum size on small systems.
6463 */
6464 tmp = max_t(u64, tmp >> 2,
6465 mult_frac(zone->managed_pages,
6466 watermark_scale_factor, 10000));
6467
6468 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6469 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6470
81c0a2bb 6471 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6472 high_wmark_pages(zone) - low_wmark_pages(zone) -
6473 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6474
1125b4e3 6475 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6476 }
cb45b0e9
HA
6477
6478 /* update totalreserve_pages */
6479 calculate_totalreserve_pages();
1da177e4
LT
6480}
6481
cfd3da1e
MG
6482/**
6483 * setup_per_zone_wmarks - called when min_free_kbytes changes
6484 * or when memory is hot-{added|removed}
6485 *
6486 * Ensures that the watermark[min,low,high] values for each zone are set
6487 * correctly with respect to min_free_kbytes.
6488 */
6489void setup_per_zone_wmarks(void)
6490{
6491 mutex_lock(&zonelists_mutex);
6492 __setup_per_zone_wmarks();
6493 mutex_unlock(&zonelists_mutex);
6494}
6495
55a4462a 6496/*
556adecb
RR
6497 * The inactive anon list should be small enough that the VM never has to
6498 * do too much work, but large enough that each inactive page has a chance
6499 * to be referenced again before it is swapped out.
6500 *
6501 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6502 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6503 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6504 * the anonymous pages are kept on the inactive list.
6505 *
6506 * total target max
6507 * memory ratio inactive anon
6508 * -------------------------------------
6509 * 10MB 1 5MB
6510 * 100MB 1 50MB
6511 * 1GB 3 250MB
6512 * 10GB 10 0.9GB
6513 * 100GB 31 3GB
6514 * 1TB 101 10GB
6515 * 10TB 320 32GB
6516 */
1b79acc9 6517static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6518{
96cb4df5 6519 unsigned int gb, ratio;
556adecb 6520
96cb4df5 6521 /* Zone size in gigabytes */
b40da049 6522 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6523 if (gb)
556adecb 6524 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6525 else
6526 ratio = 1;
556adecb 6527
96cb4df5
MK
6528 zone->inactive_ratio = ratio;
6529}
556adecb 6530
839a4fcc 6531static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6532{
6533 struct zone *zone;
6534
6535 for_each_zone(zone)
6536 calculate_zone_inactive_ratio(zone);
556adecb
RR
6537}
6538
1da177e4
LT
6539/*
6540 * Initialise min_free_kbytes.
6541 *
6542 * For small machines we want it small (128k min). For large machines
6543 * we want it large (64MB max). But it is not linear, because network
6544 * bandwidth does not increase linearly with machine size. We use
6545 *
b8af2941 6546 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6547 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6548 *
6549 * which yields
6550 *
6551 * 16MB: 512k
6552 * 32MB: 724k
6553 * 64MB: 1024k
6554 * 128MB: 1448k
6555 * 256MB: 2048k
6556 * 512MB: 2896k
6557 * 1024MB: 4096k
6558 * 2048MB: 5792k
6559 * 4096MB: 8192k
6560 * 8192MB: 11584k
6561 * 16384MB: 16384k
6562 */
1b79acc9 6563int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6564{
6565 unsigned long lowmem_kbytes;
5f12733e 6566 int new_min_free_kbytes;
1da177e4
LT
6567
6568 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6569 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6570
6571 if (new_min_free_kbytes > user_min_free_kbytes) {
6572 min_free_kbytes = new_min_free_kbytes;
6573 if (min_free_kbytes < 128)
6574 min_free_kbytes = 128;
6575 if (min_free_kbytes > 65536)
6576 min_free_kbytes = 65536;
6577 } else {
6578 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6579 new_min_free_kbytes, user_min_free_kbytes);
6580 }
bc75d33f 6581 setup_per_zone_wmarks();
a6cccdc3 6582 refresh_zone_stat_thresholds();
1da177e4 6583 setup_per_zone_lowmem_reserve();
556adecb 6584 setup_per_zone_inactive_ratio();
1da177e4
LT
6585 return 0;
6586}
bc22af74 6587core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6588
6589/*
b8af2941 6590 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6591 * that we can call two helper functions whenever min_free_kbytes
6592 * changes.
6593 */
cccad5b9 6594int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6595 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6596{
da8c757b
HP
6597 int rc;
6598
6599 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6600 if (rc)
6601 return rc;
6602
5f12733e
MH
6603 if (write) {
6604 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6605 setup_per_zone_wmarks();
5f12733e 6606 }
1da177e4
LT
6607 return 0;
6608}
6609
795ae7a0
JW
6610int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6611 void __user *buffer, size_t *length, loff_t *ppos)
6612{
6613 int rc;
6614
6615 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6616 if (rc)
6617 return rc;
6618
6619 if (write)
6620 setup_per_zone_wmarks();
6621
6622 return 0;
6623}
6624
9614634f 6625#ifdef CONFIG_NUMA
cccad5b9 6626int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6627 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6628{
6629 struct zone *zone;
6630 int rc;
6631
8d65af78 6632 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6633 if (rc)
6634 return rc;
6635
6636 for_each_zone(zone)
b40da049 6637 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6638 sysctl_min_unmapped_ratio) / 100;
6639 return 0;
6640}
0ff38490 6641
cccad5b9 6642int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6643 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6644{
6645 struct zone *zone;
6646 int rc;
6647
8d65af78 6648 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6649 if (rc)
6650 return rc;
6651
6652 for_each_zone(zone)
b40da049 6653 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6654 sysctl_min_slab_ratio) / 100;
6655 return 0;
6656}
9614634f
CL
6657#endif
6658
1da177e4
LT
6659/*
6660 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6661 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6662 * whenever sysctl_lowmem_reserve_ratio changes.
6663 *
6664 * The reserve ratio obviously has absolutely no relation with the
41858966 6665 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6666 * if in function of the boot time zone sizes.
6667 */
cccad5b9 6668int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6669 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6670{
8d65af78 6671 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6672 setup_per_zone_lowmem_reserve();
6673 return 0;
6674}
6675
8ad4b1fb
RS
6676/*
6677 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6678 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6679 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6680 */
cccad5b9 6681int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6682 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6683{
6684 struct zone *zone;
7cd2b0a3 6685 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6686 int ret;
6687
7cd2b0a3
DR
6688 mutex_lock(&pcp_batch_high_lock);
6689 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6690
8d65af78 6691 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6692 if (!write || ret < 0)
6693 goto out;
6694
6695 /* Sanity checking to avoid pcp imbalance */
6696 if (percpu_pagelist_fraction &&
6697 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6698 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6699 ret = -EINVAL;
6700 goto out;
6701 }
6702
6703 /* No change? */
6704 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6705 goto out;
c8e251fa 6706
364df0eb 6707 for_each_populated_zone(zone) {
7cd2b0a3
DR
6708 unsigned int cpu;
6709
22a7f12b 6710 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6711 pageset_set_high_and_batch(zone,
6712 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6713 }
7cd2b0a3 6714out:
c8e251fa 6715 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6716 return ret;
8ad4b1fb
RS
6717}
6718
a9919c79 6719#ifdef CONFIG_NUMA
f034b5d4 6720int hashdist = HASHDIST_DEFAULT;
1da177e4 6721
1da177e4
LT
6722static int __init set_hashdist(char *str)
6723{
6724 if (!str)
6725 return 0;
6726 hashdist = simple_strtoul(str, &str, 0);
6727 return 1;
6728}
6729__setup("hashdist=", set_hashdist);
6730#endif
6731
6732/*
6733 * allocate a large system hash table from bootmem
6734 * - it is assumed that the hash table must contain an exact power-of-2
6735 * quantity of entries
6736 * - limit is the number of hash buckets, not the total allocation size
6737 */
6738void *__init alloc_large_system_hash(const char *tablename,
6739 unsigned long bucketsize,
6740 unsigned long numentries,
6741 int scale,
6742 int flags,
6743 unsigned int *_hash_shift,
6744 unsigned int *_hash_mask,
31fe62b9
TB
6745 unsigned long low_limit,
6746 unsigned long high_limit)
1da177e4 6747{
31fe62b9 6748 unsigned long long max = high_limit;
1da177e4
LT
6749 unsigned long log2qty, size;
6750 void *table = NULL;
6751
6752 /* allow the kernel cmdline to have a say */
6753 if (!numentries) {
6754 /* round applicable memory size up to nearest megabyte */
04903664 6755 numentries = nr_kernel_pages;
a7e83318
JZ
6756
6757 /* It isn't necessary when PAGE_SIZE >= 1MB */
6758 if (PAGE_SHIFT < 20)
6759 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6760
6761 /* limit to 1 bucket per 2^scale bytes of low memory */
6762 if (scale > PAGE_SHIFT)
6763 numentries >>= (scale - PAGE_SHIFT);
6764 else
6765 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6766
6767 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6768 if (unlikely(flags & HASH_SMALL)) {
6769 /* Makes no sense without HASH_EARLY */
6770 WARN_ON(!(flags & HASH_EARLY));
6771 if (!(numentries >> *_hash_shift)) {
6772 numentries = 1UL << *_hash_shift;
6773 BUG_ON(!numentries);
6774 }
6775 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6776 numentries = PAGE_SIZE / bucketsize;
1da177e4 6777 }
6e692ed3 6778 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6779
6780 /* limit allocation size to 1/16 total memory by default */
6781 if (max == 0) {
6782 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6783 do_div(max, bucketsize);
6784 }
074b8517 6785 max = min(max, 0x80000000ULL);
1da177e4 6786
31fe62b9
TB
6787 if (numentries < low_limit)
6788 numentries = low_limit;
1da177e4
LT
6789 if (numentries > max)
6790 numentries = max;
6791
f0d1b0b3 6792 log2qty = ilog2(numentries);
1da177e4
LT
6793
6794 do {
6795 size = bucketsize << log2qty;
6796 if (flags & HASH_EARLY)
6782832e 6797 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6798 else if (hashdist)
6799 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6800 else {
1037b83b
ED
6801 /*
6802 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6803 * some pages at the end of hash table which
6804 * alloc_pages_exact() automatically does
1037b83b 6805 */
264ef8a9 6806 if (get_order(size) < MAX_ORDER) {
a1dd268c 6807 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6808 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6809 }
1da177e4
LT
6810 }
6811 } while (!table && size > PAGE_SIZE && --log2qty);
6812
6813 if (!table)
6814 panic("Failed to allocate %s hash table\n", tablename);
6815
1170532b
JP
6816 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6817 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6818
6819 if (_hash_shift)
6820 *_hash_shift = log2qty;
6821 if (_hash_mask)
6822 *_hash_mask = (1 << log2qty) - 1;
6823
6824 return table;
6825}
a117e66e 6826
835c134e 6827/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6828static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6829 unsigned long pfn)
6830{
6831#ifdef CONFIG_SPARSEMEM
6832 return __pfn_to_section(pfn)->pageblock_flags;
6833#else
f75fb889 6834 return page_zone(page)->pageblock_flags;
835c134e
MG
6835#endif /* CONFIG_SPARSEMEM */
6836}
6837
f75fb889 6838static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6839{
6840#ifdef CONFIG_SPARSEMEM
6841 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6842 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6843#else
f75fb889 6844 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6845 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6846#endif /* CONFIG_SPARSEMEM */
6847}
6848
6849/**
1aab4d77 6850 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6851 * @page: The page within the block of interest
1aab4d77
RD
6852 * @pfn: The target page frame number
6853 * @end_bitidx: The last bit of interest to retrieve
6854 * @mask: mask of bits that the caller is interested in
6855 *
6856 * Return: pageblock_bits flags
835c134e 6857 */
dc4b0caf 6858unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6859 unsigned long end_bitidx,
6860 unsigned long mask)
835c134e 6861{
835c134e 6862 unsigned long *bitmap;
dc4b0caf 6863 unsigned long bitidx, word_bitidx;
e58469ba 6864 unsigned long word;
835c134e 6865
f75fb889
MG
6866 bitmap = get_pageblock_bitmap(page, pfn);
6867 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6868 word_bitidx = bitidx / BITS_PER_LONG;
6869 bitidx &= (BITS_PER_LONG-1);
835c134e 6870
e58469ba
MG
6871 word = bitmap[word_bitidx];
6872 bitidx += end_bitidx;
6873 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6874}
6875
6876/**
dc4b0caf 6877 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6878 * @page: The page within the block of interest
835c134e 6879 * @flags: The flags to set
1aab4d77
RD
6880 * @pfn: The target page frame number
6881 * @end_bitidx: The last bit of interest
6882 * @mask: mask of bits that the caller is interested in
835c134e 6883 */
dc4b0caf
MG
6884void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6885 unsigned long pfn,
e58469ba
MG
6886 unsigned long end_bitidx,
6887 unsigned long mask)
835c134e 6888{
835c134e 6889 unsigned long *bitmap;
dc4b0caf 6890 unsigned long bitidx, word_bitidx;
e58469ba
MG
6891 unsigned long old_word, word;
6892
6893 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6894
f75fb889
MG
6895 bitmap = get_pageblock_bitmap(page, pfn);
6896 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6897 word_bitidx = bitidx / BITS_PER_LONG;
6898 bitidx &= (BITS_PER_LONG-1);
6899
f75fb889 6900 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6901
e58469ba
MG
6902 bitidx += end_bitidx;
6903 mask <<= (BITS_PER_LONG - bitidx - 1);
6904 flags <<= (BITS_PER_LONG - bitidx - 1);
6905
4db0c3c2 6906 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6907 for (;;) {
6908 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6909 if (word == old_word)
6910 break;
6911 word = old_word;
6912 }
835c134e 6913}
a5d76b54
KH
6914
6915/*
80934513
MK
6916 * This function checks whether pageblock includes unmovable pages or not.
6917 * If @count is not zero, it is okay to include less @count unmovable pages
6918 *
b8af2941 6919 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6920 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6921 * expect this function should be exact.
a5d76b54 6922 */
b023f468
WC
6923bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6924 bool skip_hwpoisoned_pages)
49ac8255
KH
6925{
6926 unsigned long pfn, iter, found;
47118af0
MN
6927 int mt;
6928
49ac8255
KH
6929 /*
6930 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6931 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6932 */
6933 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6934 return false;
47118af0
MN
6935 mt = get_pageblock_migratetype(page);
6936 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6937 return false;
49ac8255
KH
6938
6939 pfn = page_to_pfn(page);
6940 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6941 unsigned long check = pfn + iter;
6942
29723fcc 6943 if (!pfn_valid_within(check))
49ac8255 6944 continue;
29723fcc 6945
49ac8255 6946 page = pfn_to_page(check);
c8721bbb
NH
6947
6948 /*
6949 * Hugepages are not in LRU lists, but they're movable.
6950 * We need not scan over tail pages bacause we don't
6951 * handle each tail page individually in migration.
6952 */
6953 if (PageHuge(page)) {
6954 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6955 continue;
6956 }
6957
97d255c8
MK
6958 /*
6959 * We can't use page_count without pin a page
6960 * because another CPU can free compound page.
6961 * This check already skips compound tails of THP
0139aa7b 6962 * because their page->_refcount is zero at all time.
97d255c8 6963 */
fe896d18 6964 if (!page_ref_count(page)) {
49ac8255
KH
6965 if (PageBuddy(page))
6966 iter += (1 << page_order(page)) - 1;
6967 continue;
6968 }
97d255c8 6969
b023f468
WC
6970 /*
6971 * The HWPoisoned page may be not in buddy system, and
6972 * page_count() is not 0.
6973 */
6974 if (skip_hwpoisoned_pages && PageHWPoison(page))
6975 continue;
6976
49ac8255
KH
6977 if (!PageLRU(page))
6978 found++;
6979 /*
6b4f7799
JW
6980 * If there are RECLAIMABLE pages, we need to check
6981 * it. But now, memory offline itself doesn't call
6982 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6983 */
6984 /*
6985 * If the page is not RAM, page_count()should be 0.
6986 * we don't need more check. This is an _used_ not-movable page.
6987 *
6988 * The problematic thing here is PG_reserved pages. PG_reserved
6989 * is set to both of a memory hole page and a _used_ kernel
6990 * page at boot.
6991 */
6992 if (found > count)
80934513 6993 return true;
49ac8255 6994 }
80934513 6995 return false;
49ac8255
KH
6996}
6997
6998bool is_pageblock_removable_nolock(struct page *page)
6999{
656a0706
MH
7000 struct zone *zone;
7001 unsigned long pfn;
687875fb
MH
7002
7003 /*
7004 * We have to be careful here because we are iterating over memory
7005 * sections which are not zone aware so we might end up outside of
7006 * the zone but still within the section.
656a0706
MH
7007 * We have to take care about the node as well. If the node is offline
7008 * its NODE_DATA will be NULL - see page_zone.
687875fb 7009 */
656a0706
MH
7010 if (!node_online(page_to_nid(page)))
7011 return false;
7012
7013 zone = page_zone(page);
7014 pfn = page_to_pfn(page);
108bcc96 7015 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7016 return false;
7017
b023f468 7018 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7019}
0c0e6195 7020
080fe206 7021#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7022
7023static unsigned long pfn_max_align_down(unsigned long pfn)
7024{
7025 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7026 pageblock_nr_pages) - 1);
7027}
7028
7029static unsigned long pfn_max_align_up(unsigned long pfn)
7030{
7031 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7032 pageblock_nr_pages));
7033}
7034
041d3a8c 7035/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7036static int __alloc_contig_migrate_range(struct compact_control *cc,
7037 unsigned long start, unsigned long end)
041d3a8c
MN
7038{
7039 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7040 unsigned long nr_reclaimed;
041d3a8c
MN
7041 unsigned long pfn = start;
7042 unsigned int tries = 0;
7043 int ret = 0;
7044
be49a6e1 7045 migrate_prep();
041d3a8c 7046
bb13ffeb 7047 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7048 if (fatal_signal_pending(current)) {
7049 ret = -EINTR;
7050 break;
7051 }
7052
bb13ffeb
MG
7053 if (list_empty(&cc->migratepages)) {
7054 cc->nr_migratepages = 0;
edc2ca61 7055 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7056 if (!pfn) {
7057 ret = -EINTR;
7058 break;
7059 }
7060 tries = 0;
7061 } else if (++tries == 5) {
7062 ret = ret < 0 ? ret : -EBUSY;
7063 break;
7064 }
7065
beb51eaa
MK
7066 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7067 &cc->migratepages);
7068 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7069
9c620e2b 7070 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7071 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7072 }
2a6f5124
SP
7073 if (ret < 0) {
7074 putback_movable_pages(&cc->migratepages);
7075 return ret;
7076 }
7077 return 0;
041d3a8c
MN
7078}
7079
7080/**
7081 * alloc_contig_range() -- tries to allocate given range of pages
7082 * @start: start PFN to allocate
7083 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7084 * @migratetype: migratetype of the underlaying pageblocks (either
7085 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7086 * in range must have the same migratetype and it must
7087 * be either of the two.
041d3a8c
MN
7088 *
7089 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7090 * aligned, however it's the caller's responsibility to guarantee that
7091 * we are the only thread that changes migrate type of pageblocks the
7092 * pages fall in.
7093 *
7094 * The PFN range must belong to a single zone.
7095 *
7096 * Returns zero on success or negative error code. On success all
7097 * pages which PFN is in [start, end) are allocated for the caller and
7098 * need to be freed with free_contig_range().
7099 */
0815f3d8
MN
7100int alloc_contig_range(unsigned long start, unsigned long end,
7101 unsigned migratetype)
041d3a8c 7102{
041d3a8c 7103 unsigned long outer_start, outer_end;
d00181b9
KS
7104 unsigned int order;
7105 int ret = 0;
041d3a8c 7106
bb13ffeb
MG
7107 struct compact_control cc = {
7108 .nr_migratepages = 0,
7109 .order = -1,
7110 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7111 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7112 .ignore_skip_hint = true,
7113 };
7114 INIT_LIST_HEAD(&cc.migratepages);
7115
041d3a8c
MN
7116 /*
7117 * What we do here is we mark all pageblocks in range as
7118 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7119 * have different sizes, and due to the way page allocator
7120 * work, we align the range to biggest of the two pages so
7121 * that page allocator won't try to merge buddies from
7122 * different pageblocks and change MIGRATE_ISOLATE to some
7123 * other migration type.
7124 *
7125 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7126 * migrate the pages from an unaligned range (ie. pages that
7127 * we are interested in). This will put all the pages in
7128 * range back to page allocator as MIGRATE_ISOLATE.
7129 *
7130 * When this is done, we take the pages in range from page
7131 * allocator removing them from the buddy system. This way
7132 * page allocator will never consider using them.
7133 *
7134 * This lets us mark the pageblocks back as
7135 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7136 * aligned range but not in the unaligned, original range are
7137 * put back to page allocator so that buddy can use them.
7138 */
7139
7140 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7141 pfn_max_align_up(end), migratetype,
7142 false);
041d3a8c 7143 if (ret)
86a595f9 7144 return ret;
041d3a8c 7145
8ef5849f
JK
7146 /*
7147 * In case of -EBUSY, we'd like to know which page causes problem.
7148 * So, just fall through. We will check it in test_pages_isolated().
7149 */
bb13ffeb 7150 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7151 if (ret && ret != -EBUSY)
041d3a8c
MN
7152 goto done;
7153
7154 /*
7155 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7156 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7157 * more, all pages in [start, end) are free in page allocator.
7158 * What we are going to do is to allocate all pages from
7159 * [start, end) (that is remove them from page allocator).
7160 *
7161 * The only problem is that pages at the beginning and at the
7162 * end of interesting range may be not aligned with pages that
7163 * page allocator holds, ie. they can be part of higher order
7164 * pages. Because of this, we reserve the bigger range and
7165 * once this is done free the pages we are not interested in.
7166 *
7167 * We don't have to hold zone->lock here because the pages are
7168 * isolated thus they won't get removed from buddy.
7169 */
7170
7171 lru_add_drain_all();
510f5507 7172 drain_all_pages(cc.zone);
041d3a8c
MN
7173
7174 order = 0;
7175 outer_start = start;
7176 while (!PageBuddy(pfn_to_page(outer_start))) {
7177 if (++order >= MAX_ORDER) {
8ef5849f
JK
7178 outer_start = start;
7179 break;
041d3a8c
MN
7180 }
7181 outer_start &= ~0UL << order;
7182 }
7183
8ef5849f
JK
7184 if (outer_start != start) {
7185 order = page_order(pfn_to_page(outer_start));
7186
7187 /*
7188 * outer_start page could be small order buddy page and
7189 * it doesn't include start page. Adjust outer_start
7190 * in this case to report failed page properly
7191 * on tracepoint in test_pages_isolated()
7192 */
7193 if (outer_start + (1UL << order) <= start)
7194 outer_start = start;
7195 }
7196
041d3a8c 7197 /* Make sure the range is really isolated. */
b023f468 7198 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7199 pr_info("%s: [%lx, %lx) PFNs busy\n",
7200 __func__, outer_start, end);
041d3a8c
MN
7201 ret = -EBUSY;
7202 goto done;
7203 }
7204
49f223a9 7205 /* Grab isolated pages from freelists. */
bb13ffeb 7206 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7207 if (!outer_end) {
7208 ret = -EBUSY;
7209 goto done;
7210 }
7211
7212 /* Free head and tail (if any) */
7213 if (start != outer_start)
7214 free_contig_range(outer_start, start - outer_start);
7215 if (end != outer_end)
7216 free_contig_range(end, outer_end - end);
7217
7218done:
7219 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7220 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7221 return ret;
7222}
7223
7224void free_contig_range(unsigned long pfn, unsigned nr_pages)
7225{
bcc2b02f
MS
7226 unsigned int count = 0;
7227
7228 for (; nr_pages--; pfn++) {
7229 struct page *page = pfn_to_page(pfn);
7230
7231 count += page_count(page) != 1;
7232 __free_page(page);
7233 }
7234 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7235}
7236#endif
7237
4ed7e022 7238#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7239/*
7240 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7241 * page high values need to be recalulated.
7242 */
4ed7e022
JL
7243void __meminit zone_pcp_update(struct zone *zone)
7244{
0a647f38 7245 unsigned cpu;
c8e251fa 7246 mutex_lock(&pcp_batch_high_lock);
0a647f38 7247 for_each_possible_cpu(cpu)
169f6c19
CS
7248 pageset_set_high_and_batch(zone,
7249 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7250 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7251}
7252#endif
7253
340175b7
JL
7254void zone_pcp_reset(struct zone *zone)
7255{
7256 unsigned long flags;
5a883813
MK
7257 int cpu;
7258 struct per_cpu_pageset *pset;
340175b7
JL
7259
7260 /* avoid races with drain_pages() */
7261 local_irq_save(flags);
7262 if (zone->pageset != &boot_pageset) {
5a883813
MK
7263 for_each_online_cpu(cpu) {
7264 pset = per_cpu_ptr(zone->pageset, cpu);
7265 drain_zonestat(zone, pset);
7266 }
340175b7
JL
7267 free_percpu(zone->pageset);
7268 zone->pageset = &boot_pageset;
7269 }
7270 local_irq_restore(flags);
7271}
7272
6dcd73d7 7273#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7274/*
b9eb6319
JK
7275 * All pages in the range must be in a single zone and isolated
7276 * before calling this.
0c0e6195
KH
7277 */
7278void
7279__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7280{
7281 struct page *page;
7282 struct zone *zone;
7aeb09f9 7283 unsigned int order, i;
0c0e6195
KH
7284 unsigned long pfn;
7285 unsigned long flags;
7286 /* find the first valid pfn */
7287 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7288 if (pfn_valid(pfn))
7289 break;
7290 if (pfn == end_pfn)
7291 return;
7292 zone = page_zone(pfn_to_page(pfn));
7293 spin_lock_irqsave(&zone->lock, flags);
7294 pfn = start_pfn;
7295 while (pfn < end_pfn) {
7296 if (!pfn_valid(pfn)) {
7297 pfn++;
7298 continue;
7299 }
7300 page = pfn_to_page(pfn);
b023f468
WC
7301 /*
7302 * The HWPoisoned page may be not in buddy system, and
7303 * page_count() is not 0.
7304 */
7305 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7306 pfn++;
7307 SetPageReserved(page);
7308 continue;
7309 }
7310
0c0e6195
KH
7311 BUG_ON(page_count(page));
7312 BUG_ON(!PageBuddy(page));
7313 order = page_order(page);
7314#ifdef CONFIG_DEBUG_VM
1170532b
JP
7315 pr_info("remove from free list %lx %d %lx\n",
7316 pfn, 1 << order, end_pfn);
0c0e6195
KH
7317#endif
7318 list_del(&page->lru);
7319 rmv_page_order(page);
7320 zone->free_area[order].nr_free--;
0c0e6195
KH
7321 for (i = 0; i < (1 << order); i++)
7322 SetPageReserved((page+i));
7323 pfn += (1 << order);
7324 }
7325 spin_unlock_irqrestore(&zone->lock, flags);
7326}
7327#endif
8d22ba1b 7328
8d22ba1b
WF
7329bool is_free_buddy_page(struct page *page)
7330{
7331 struct zone *zone = page_zone(page);
7332 unsigned long pfn = page_to_pfn(page);
7333 unsigned long flags;
7aeb09f9 7334 unsigned int order;
8d22ba1b
WF
7335
7336 spin_lock_irqsave(&zone->lock, flags);
7337 for (order = 0; order < MAX_ORDER; order++) {
7338 struct page *page_head = page - (pfn & ((1 << order) - 1));
7339
7340 if (PageBuddy(page_head) && page_order(page_head) >= order)
7341 break;
7342 }
7343 spin_unlock_irqrestore(&zone->lock, flags);
7344
7345 return order < MAX_ORDER;
7346}