]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm/memory-failure.c: add page flag description in error paths
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
1da177e4 68
7ee3d4e8 69#include <asm/sections.h>
1da177e4 70#include <asm/tlbflush.h>
ac924c60 71#include <asm/div64.h>
1da177e4
LT
72#include "internal.h"
73
c8e251fa
CS
74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 76#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 77
72812019
LS
78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79DEFINE_PER_CPU(int, numa_node);
80EXPORT_PER_CPU_SYMBOL(numa_node);
81#endif
82
7aac7898
LS
83#ifdef CONFIG_HAVE_MEMORYLESS_NODES
84/*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 92int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
93#endif
94
bd233f53
MG
95/* work_structs for global per-cpu drains */
96DEFINE_MUTEX(pcpu_drain_mutex);
97DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98
38addce8 99#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 100volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
101EXPORT_SYMBOL(latent_entropy);
102#endif
103
1da177e4 104/*
13808910 105 * Array of node states.
1da177e4 106 */
13808910
CL
107nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110#ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112#ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
114#endif
115#ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
117#endif
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa
MG
291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292static inline void reset_deferred_meminit(pg_data_t *pgdat)
293{
294 pgdat->first_deferred_pfn = ULONG_MAX;
295}
296
297/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 299{
ef70b6f4
MG
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
303 return true;
304
305 return false;
306}
307
308/*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315{
987b3095
LZ
316 unsigned long max_initialise;
317
3a80a7fa
MG
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
987b3095
LZ
321 /*
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
324 */
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
3a80a7fa 327
3a80a7fa 328 (*nr_initialised)++;
987b3095 329 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
333 }
334
335 return true;
336}
337#else
338static inline void reset_deferred_meminit(pg_data_t *pgdat)
339{
340}
341
342static inline bool early_page_uninitialised(unsigned long pfn)
343{
344 return false;
345}
346
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
ff8e8116 535 pr_alert(
1e9e6365 536 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
ff8e8116 545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 546 current->comm, page_to_pfn(page));
ff8e8116
VB
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
4e462112 552 dump_page_owner(page);
3dc14741 553
4f31888c 554 print_modules();
1da177e4 555 dump_stack();
d936cf9b 556out:
8cc3b392 557 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 558 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
560}
561
1da177e4
LT
562/*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
1d798ca3 565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 566 *
1d798ca3
KS
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 569 *
1d798ca3
KS
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
1da177e4 572 *
1d798ca3 573 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 574 * This usage means that zero-order pages may not be compound.
1da177e4 575 */
d98c7a09 576
9a982250 577void free_compound_page(struct page *page)
d98c7a09 578{
d85f3385 579 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
580}
581
d00181b9 582void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
583{
584 int i;
585 int nr_pages = 1 << order;
586
f1e61557 587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
58a84aa9 592 set_page_count(p, 0);
1c290f64 593 p->mapping = TAIL_MAPPING;
1d798ca3 594 set_compound_head(p, page);
18229df5 595 }
53f9263b 596 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
597}
598
c0a32fc5
SG
599#ifdef CONFIG_DEBUG_PAGEALLOC
600unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
601bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 603EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
604bool _debug_guardpage_enabled __read_mostly;
605
031bc574
JK
606static int __init early_debug_pagealloc(char *buf)
607{
608 if (!buf)
609 return -EINVAL;
2a138dc7 610 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
611}
612early_param("debug_pagealloc", early_debug_pagealloc);
613
e30825f1
JK
614static bool need_debug_guardpage(void)
615{
031bc574
JK
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
f1c1e9f7
JK
620 if (!debug_guardpage_minorder())
621 return false;
622
e30825f1
JK
623 return true;
624}
625
626static void init_debug_guardpage(void)
627{
031bc574
JK
628 if (!debug_pagealloc_enabled())
629 return;
630
f1c1e9f7
JK
631 if (!debug_guardpage_minorder())
632 return;
633
e30825f1
JK
634 _debug_guardpage_enabled = true;
635}
636
637struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
640};
c0a32fc5
SG
641
642static int __init debug_guardpage_minorder_setup(char *buf)
643{
644 unsigned long res;
645
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 647 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
648 return 0;
649 }
650 _debug_guardpage_minorder = res;
1170532b 651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
652 return 0;
653}
f1c1e9f7 654early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 655
acbc15a4 656static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 657 unsigned int order, int migratetype)
c0a32fc5 658{
e30825f1
JK
659 struct page_ext *page_ext;
660
661 if (!debug_guardpage_enabled())
acbc15a4
JK
662 return false;
663
664 if (order >= debug_guardpage_minorder())
665 return false;
e30825f1
JK
666
667 page_ext = lookup_page_ext(page);
f86e4271 668 if (unlikely(!page_ext))
acbc15a4 669 return false;
f86e4271 670
e30825f1
JK
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672
2847cf95
JK
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
677
678 return true;
c0a32fc5
SG
679}
680
2847cf95
JK
681static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
c0a32fc5 683{
e30825f1
JK
684 struct page_ext *page_ext;
685
686 if (!debug_guardpage_enabled())
687 return;
688
689 page_ext = lookup_page_ext(page);
f86e4271
YS
690 if (unlikely(!page_ext))
691 return;
692
e30825f1
JK
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
2847cf95
JK
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
698}
699#else
980ac167 700struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
701static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
2847cf95
JK
703static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
c0a32fc5
SG
705#endif
706
7aeb09f9 707static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 708{
4c21e2f2 709 set_page_private(page, order);
676165a8 710 __SetPageBuddy(page);
1da177e4
LT
711}
712
713static inline void rmv_page_order(struct page *page)
714{
676165a8 715 __ClearPageBuddy(page);
4c21e2f2 716 set_page_private(page, 0);
1da177e4
LT
717}
718
1da177e4
LT
719/*
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
13ad59df 722 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 723 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
676165a8 726 *
cf6fe945
WSH
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
1da177e4 731 *
676165a8 732 * For recording page's order, we use page_private(page).
1da177e4 733 */
cb2b95e1 734static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 735 unsigned int order)
1da177e4 736{
c0a32fc5 737 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
4c5018ce
WY
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
c0a32fc5
SG
743 return 1;
744 }
745
cb2b95e1 746 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
747 /*
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
751 */
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
4c5018ce
WY
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
6aa3001b 757 return 1;
676165a8 758 }
6aa3001b 759 return 0;
1da177e4
LT
760}
761
762/*
763 * Freeing function for a buddy system allocator.
764 *
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
1da177e4 778 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
1da177e4 781 * If a block is freed, and its buddy is also free, then this
5f63b720 782 * triggers coalescing into a block of larger size.
1da177e4 783 *
6d49e352 784 * -- nyc
1da177e4
LT
785 */
786
48db57f8 787static inline void __free_one_page(struct page *page,
dc4b0caf 788 unsigned long pfn,
ed0ae21d
MG
789 struct zone *zone, unsigned int order,
790 int migratetype)
1da177e4 791{
76741e77
VB
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
76741e77 806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 808
d9dddbf5 809continue_merging:
3c605096 810 while (order < max_order - 1) {
76741e77
VB
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
813
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
cb2b95e1 816 if (!page_is_buddy(page, buddy, order))
d9dddbf5 817 goto done_merging;
c0a32fc5
SG
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy)) {
2847cf95 823 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
828 }
76741e77
VB
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
1da177e4
LT
832 order++;
833 }
d9dddbf5
VB
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
839 *
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
842 */
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
845
76741e77
VB
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
848 buddy_mt = get_pageblock_migratetype(buddy);
849
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
854 }
855 max_order++;
856 goto continue_merging;
857 }
858
859done_merging:
1da177e4 860 set_page_order(page, order);
6dda9d55
CZ
861
862 /*
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
869 */
13ad59df 870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 871 struct page *higher_page, *higher_buddy;
76741e77
VB
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
880 goto out;
881 }
882 }
883
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885out:
1da177e4
LT
886 zone->free_area[order].nr_free++;
887}
888
7bfec6f4
MG
889/*
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
893 */
894static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
896{
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
898 return false;
899
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
902#ifdef CONFIG_MEMCG
903 (unsigned long)page->mem_cgroup |
904#endif
905 (page->flags & check_flags)))
906 return false;
907
908 return true;
909}
910
bb552ac6 911static void free_pages_check_bad(struct page *page)
1da177e4 912{
7bfec6f4
MG
913 const char *bad_reason;
914 unsigned long bad_flags;
915
7bfec6f4
MG
916 bad_reason = NULL;
917 bad_flags = 0;
f0b791a3 918
53f9263b 919 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
fe896d18 923 if (unlikely(page_ref_count(page) != 0))
0139aa7b 924 bad_reason = "nonzero _refcount";
f0b791a3
DH
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
928 }
9edad6ea
JW
929#ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932#endif
7bfec6f4 933 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
934}
935
936static inline int free_pages_check(struct page *page)
937{
da838d4f 938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 939 return 0;
bb552ac6
MG
940
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
7bfec6f4 943 return 1;
1da177e4
LT
944}
945
4db7548c
MG
946static int free_tail_pages_check(struct page *head_page, struct page *page)
947{
948 int ret = 1;
949
950 /*
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
953 */
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
955
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 ret = 0;
958 goto out;
959 }
960 switch (page - head_page) {
961 case 1:
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
965 goto out;
966 }
967 break;
968 case 2:
969 /*
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
972 */
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
977 goto out;
978 }
979 break;
980 }
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
983 goto out;
984 }
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
987 goto out;
988 }
989 ret = 0;
990out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
994}
995
e2769dbd
MG
996static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
4db7548c 998{
e2769dbd 999 int bad = 0;
4db7548c 1000
4db7548c
MG
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1002
e2769dbd
MG
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1005
1006 /*
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1009 */
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1012 int i;
1013
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1015
9a73f61b
KS
1016 if (compound)
1017 ClearPageDoubleMap(page);
e2769dbd
MG
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1022 bad++;
1023 continue;
1024 }
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 }
1027 }
bda807d4 1028 if (PageMappingFlags(page))
4db7548c 1029 page->mapping = NULL;
c4159a75 1030 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1031 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1032 if (check_free)
1033 bad += free_pages_check(page);
1034 if (bad)
1035 return false;
4db7548c 1036
e2769dbd
MG
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
4db7548c
MG
1040
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
e2769dbd 1043 PAGE_SIZE << order);
4db7548c 1044 debug_check_no_obj_freed(page_address(page),
e2769dbd 1045 PAGE_SIZE << order);
4db7548c 1046 }
e2769dbd
MG
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
29b52de1 1050 kasan_free_pages(page, order);
4db7548c 1051
4db7548c
MG
1052 return true;
1053}
1054
e2769dbd
MG
1055#ifdef CONFIG_DEBUG_VM
1056static inline bool free_pcp_prepare(struct page *page)
1057{
1058 return free_pages_prepare(page, 0, true);
1059}
1060
1061static inline bool bulkfree_pcp_prepare(struct page *page)
1062{
1063 return false;
1064}
1065#else
1066static bool free_pcp_prepare(struct page *page)
1067{
1068 return free_pages_prepare(page, 0, false);
1069}
1070
4db7548c
MG
1071static bool bulkfree_pcp_prepare(struct page *page)
1072{
1073 return free_pages_check(page);
1074}
1075#endif /* CONFIG_DEBUG_VM */
1076
1da177e4 1077/*
5f8dcc21 1078 * Frees a number of pages from the PCP lists
1da177e4 1079 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1080 * count is the number of pages to free.
1da177e4
LT
1081 *
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1084 *
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1087 */
5f8dcc21
MG
1088static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1da177e4 1090{
5f8dcc21 1091 int migratetype = 0;
a6f9edd6 1092 int batch_free = 0;
3777999d 1093 bool isolated_pageblocks;
5f8dcc21 1094
d34b0733 1095 spin_lock(&zone->lock);
3777999d 1096 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1097
e5b31ac2 1098 while (count) {
48db57f8 1099 struct page *page;
5f8dcc21
MG
1100 struct list_head *list;
1101
1102 /*
a6f9edd6
MG
1103 * Remove pages from lists in a round-robin fashion. A
1104 * batch_free count is maintained that is incremented when an
1105 * empty list is encountered. This is so more pages are freed
1106 * off fuller lists instead of spinning excessively around empty
1107 * lists
5f8dcc21
MG
1108 */
1109 do {
a6f9edd6 1110 batch_free++;
5f8dcc21
MG
1111 if (++migratetype == MIGRATE_PCPTYPES)
1112 migratetype = 0;
1113 list = &pcp->lists[migratetype];
1114 } while (list_empty(list));
48db57f8 1115
1d16871d
NK
1116 /* This is the only non-empty list. Free them all. */
1117 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1118 batch_free = count;
1d16871d 1119
a6f9edd6 1120 do {
770c8aaa
BZ
1121 int mt; /* migratetype of the to-be-freed page */
1122
a16601c5 1123 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1124 /* must delete as __free_one_page list manipulates */
1125 list_del(&page->lru);
aa016d14 1126
bb14c2c7 1127 mt = get_pcppage_migratetype(page);
aa016d14
VB
1128 /* MIGRATE_ISOLATE page should not go to pcplists */
1129 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1130 /* Pageblock could have been isolated meanwhile */
3777999d 1131 if (unlikely(isolated_pageblocks))
51bb1a40 1132 mt = get_pageblock_migratetype(page);
51bb1a40 1133
4db7548c
MG
1134 if (bulkfree_pcp_prepare(page))
1135 continue;
1136
dc4b0caf 1137 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1138 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1139 } while (--count && --batch_free && !list_empty(list));
1da177e4 1140 }
d34b0733 1141 spin_unlock(&zone->lock);
1da177e4
LT
1142}
1143
dc4b0caf
MG
1144static void free_one_page(struct zone *zone,
1145 struct page *page, unsigned long pfn,
7aeb09f9 1146 unsigned int order,
ed0ae21d 1147 int migratetype)
1da177e4 1148{
d34b0733 1149 spin_lock(&zone->lock);
ad53f92e
JK
1150 if (unlikely(has_isolate_pageblock(zone) ||
1151 is_migrate_isolate(migratetype))) {
1152 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1153 }
dc4b0caf 1154 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1155 spin_unlock(&zone->lock);
48db57f8
NP
1156}
1157
1e8ce83c
RH
1158static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1159 unsigned long zone, int nid)
1160{
1e8ce83c 1161 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1162 init_page_count(page);
1163 page_mapcount_reset(page);
1164 page_cpupid_reset_last(page);
1e8ce83c 1165
1e8ce83c
RH
1166 INIT_LIST_HEAD(&page->lru);
1167#ifdef WANT_PAGE_VIRTUAL
1168 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1169 if (!is_highmem_idx(zone))
1170 set_page_address(page, __va(pfn << PAGE_SHIFT));
1171#endif
1172}
1173
1174static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1175 int nid)
1176{
1177 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1178}
1179
7e18adb4
MG
1180#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1181static void init_reserved_page(unsigned long pfn)
1182{
1183 pg_data_t *pgdat;
1184 int nid, zid;
1185
1186 if (!early_page_uninitialised(pfn))
1187 return;
1188
1189 nid = early_pfn_to_nid(pfn);
1190 pgdat = NODE_DATA(nid);
1191
1192 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1193 struct zone *zone = &pgdat->node_zones[zid];
1194
1195 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1196 break;
1197 }
1198 __init_single_pfn(pfn, zid, nid);
1199}
1200#else
1201static inline void init_reserved_page(unsigned long pfn)
1202{
1203}
1204#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1205
92923ca3
NZ
1206/*
1207 * Initialised pages do not have PageReserved set. This function is
1208 * called for each range allocated by the bootmem allocator and
1209 * marks the pages PageReserved. The remaining valid pages are later
1210 * sent to the buddy page allocator.
1211 */
4b50bcc7 1212void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1213{
1214 unsigned long start_pfn = PFN_DOWN(start);
1215 unsigned long end_pfn = PFN_UP(end);
1216
7e18adb4
MG
1217 for (; start_pfn < end_pfn; start_pfn++) {
1218 if (pfn_valid(start_pfn)) {
1219 struct page *page = pfn_to_page(start_pfn);
1220
1221 init_reserved_page(start_pfn);
1d798ca3
KS
1222
1223 /* Avoid false-positive PageTail() */
1224 INIT_LIST_HEAD(&page->lru);
1225
7e18adb4
MG
1226 SetPageReserved(page);
1227 }
1228 }
92923ca3
NZ
1229}
1230
ec95f53a
KM
1231static void __free_pages_ok(struct page *page, unsigned int order)
1232{
d34b0733 1233 unsigned long flags;
95e34412 1234 int migratetype;
dc4b0caf 1235 unsigned long pfn = page_to_pfn(page);
ec95f53a 1236
e2769dbd 1237 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1238 return;
1239
cfc47a28 1240 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1241 local_irq_save(flags);
1242 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1243 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1244 local_irq_restore(flags);
1da177e4
LT
1245}
1246
949698a3 1247static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1248{
c3993076 1249 unsigned int nr_pages = 1 << order;
e2d0bd2b 1250 struct page *p = page;
c3993076 1251 unsigned int loop;
a226f6c8 1252
e2d0bd2b
YL
1253 prefetchw(p);
1254 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1255 prefetchw(p + 1);
c3993076
JW
1256 __ClearPageReserved(p);
1257 set_page_count(p, 0);
a226f6c8 1258 }
e2d0bd2b
YL
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
c3993076 1261
e2d0bd2b 1262 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1263 set_page_refcounted(page);
1264 __free_pages(page, order);
a226f6c8
DH
1265}
1266
75a592a4
MG
1267#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1268 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1269
75a592a4
MG
1270static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1271
1272int __meminit early_pfn_to_nid(unsigned long pfn)
1273{
7ace9917 1274 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1275 int nid;
1276
7ace9917 1277 spin_lock(&early_pfn_lock);
75a592a4 1278 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1279 if (nid < 0)
e4568d38 1280 nid = first_online_node;
7ace9917
MG
1281 spin_unlock(&early_pfn_lock);
1282
1283 return nid;
75a592a4
MG
1284}
1285#endif
1286
1287#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1288static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1289 struct mminit_pfnnid_cache *state)
1290{
1291 int nid;
1292
1293 nid = __early_pfn_to_nid(pfn, state);
1294 if (nid >= 0 && nid != node)
1295 return false;
1296 return true;
1297}
1298
1299/* Only safe to use early in boot when initialisation is single-threaded */
1300static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1301{
1302 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1303}
1304
1305#else
1306
1307static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1308{
1309 return true;
1310}
1311static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1312 struct mminit_pfnnid_cache *state)
1313{
1314 return true;
1315}
1316#endif
1317
1318
0e1cc95b 1319void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1320 unsigned int order)
1321{
1322 if (early_page_uninitialised(pfn))
1323 return;
949698a3 1324 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1325}
1326
7cf91a98
JK
1327/*
1328 * Check that the whole (or subset of) a pageblock given by the interval of
1329 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1330 * with the migration of free compaction scanner. The scanners then need to
1331 * use only pfn_valid_within() check for arches that allow holes within
1332 * pageblocks.
1333 *
1334 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1335 *
1336 * It's possible on some configurations to have a setup like node0 node1 node0
1337 * i.e. it's possible that all pages within a zones range of pages do not
1338 * belong to a single zone. We assume that a border between node0 and node1
1339 * can occur within a single pageblock, but not a node0 node1 node0
1340 * interleaving within a single pageblock. It is therefore sufficient to check
1341 * the first and last page of a pageblock and avoid checking each individual
1342 * page in a pageblock.
1343 */
1344struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345 unsigned long end_pfn, struct zone *zone)
1346{
1347 struct page *start_page;
1348 struct page *end_page;
1349
1350 /* end_pfn is one past the range we are checking */
1351 end_pfn--;
1352
1353 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1354 return NULL;
1355
1356 start_page = pfn_to_page(start_pfn);
1357
1358 if (page_zone(start_page) != zone)
1359 return NULL;
1360
1361 end_page = pfn_to_page(end_pfn);
1362
1363 /* This gives a shorter code than deriving page_zone(end_page) */
1364 if (page_zone_id(start_page) != page_zone_id(end_page))
1365 return NULL;
1366
1367 return start_page;
1368}
1369
1370void set_zone_contiguous(struct zone *zone)
1371{
1372 unsigned long block_start_pfn = zone->zone_start_pfn;
1373 unsigned long block_end_pfn;
1374
1375 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1376 for (; block_start_pfn < zone_end_pfn(zone);
1377 block_start_pfn = block_end_pfn,
1378 block_end_pfn += pageblock_nr_pages) {
1379
1380 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1381
1382 if (!__pageblock_pfn_to_page(block_start_pfn,
1383 block_end_pfn, zone))
1384 return;
1385 }
1386
1387 /* We confirm that there is no hole */
1388 zone->contiguous = true;
1389}
1390
1391void clear_zone_contiguous(struct zone *zone)
1392{
1393 zone->contiguous = false;
1394}
1395
7e18adb4 1396#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1397static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1398 unsigned long pfn, int nr_pages)
1399{
1400 int i;
1401
1402 if (!page)
1403 return;
1404
1405 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1406 if (nr_pages == pageblock_nr_pages &&
1407 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1408 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1409 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1410 return;
1411 }
1412
e780149b
XQ
1413 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1414 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1415 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1416 __free_pages_boot_core(page, 0);
e780149b 1417 }
a4de83dd
MG
1418}
1419
d3cd131d
NS
1420/* Completion tracking for deferred_init_memmap() threads */
1421static atomic_t pgdat_init_n_undone __initdata;
1422static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424static inline void __init pgdat_init_report_one_done(void)
1425{
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428}
0e1cc95b 1429
7e18adb4 1430/* Initialise remaining memory on a node */
0e1cc95b 1431static int __init deferred_init_memmap(void *data)
7e18adb4 1432{
0e1cc95b
MG
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
7e18adb4
MG
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
7e18adb4 1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1443
0e1cc95b 1444 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1445 pgdat_init_report_one_done();
0e1cc95b
MG
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
54608c3f 1467 struct page *page = NULL;
a4de83dd
MG
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
7e18adb4
MG
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
54608c3f 1480 if (!pfn_valid_within(pfn))
a4de83dd 1481 goto free_range;
7e18adb4 1482
54608c3f
MG
1483 /*
1484 * Ensure pfn_valid is checked every
e780149b 1485 * pageblock_nr_pages for memory holes
54608c3f 1486 */
e780149b 1487 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
a4de83dd 1490 goto free_range;
54608c3f
MG
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
e780149b 1500 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1501 page++;
1502 } else {
a4de83dd
MG
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
54608c3f
MG
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
7e18adb4
MG
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1515 goto free_range;
7e18adb4
MG
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
7e18adb4 1535 }
e780149b
XQ
1536 /* Free the last block of pages to allocator */
1537 nr_pages += nr_to_free;
1538 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1539
7e18adb4
MG
1540 first_init_pfn = max(end_pfn, first_init_pfn);
1541 }
1542
1543 /* Sanity check that the next zone really is unpopulated */
1544 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1545
0e1cc95b 1546 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1547 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1548
1549 pgdat_init_report_one_done();
0e1cc95b
MG
1550 return 0;
1551}
7cf91a98 1552#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1553
1554void __init page_alloc_init_late(void)
1555{
7cf91a98
JK
1556 struct zone *zone;
1557
1558#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1559 int nid;
1560
d3cd131d
NS
1561 /* There will be num_node_state(N_MEMORY) threads */
1562 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1563 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1564 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1565 }
1566
1567 /* Block until all are initialised */
d3cd131d 1568 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1569
1570 /* Reinit limits that are based on free pages after the kernel is up */
1571 files_maxfiles_init();
7cf91a98
JK
1572#endif
1573
1574 for_each_populated_zone(zone)
1575 set_zone_contiguous(zone);
7e18adb4 1576}
7e18adb4 1577
47118af0 1578#ifdef CONFIG_CMA
9cf510a5 1579/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1580void __init init_cma_reserved_pageblock(struct page *page)
1581{
1582 unsigned i = pageblock_nr_pages;
1583 struct page *p = page;
1584
1585 do {
1586 __ClearPageReserved(p);
1587 set_page_count(p, 0);
1588 } while (++p, --i);
1589
47118af0 1590 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1591
1592 if (pageblock_order >= MAX_ORDER) {
1593 i = pageblock_nr_pages;
1594 p = page;
1595 do {
1596 set_page_refcounted(p);
1597 __free_pages(p, MAX_ORDER - 1);
1598 p += MAX_ORDER_NR_PAGES;
1599 } while (i -= MAX_ORDER_NR_PAGES);
1600 } else {
1601 set_page_refcounted(page);
1602 __free_pages(page, pageblock_order);
1603 }
1604
3dcc0571 1605 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1606}
1607#endif
1da177e4
LT
1608
1609/*
1610 * The order of subdivision here is critical for the IO subsystem.
1611 * Please do not alter this order without good reasons and regression
1612 * testing. Specifically, as large blocks of memory are subdivided,
1613 * the order in which smaller blocks are delivered depends on the order
1614 * they're subdivided in this function. This is the primary factor
1615 * influencing the order in which pages are delivered to the IO
1616 * subsystem according to empirical testing, and this is also justified
1617 * by considering the behavior of a buddy system containing a single
1618 * large block of memory acted on by a series of small allocations.
1619 * This behavior is a critical factor in sglist merging's success.
1620 *
6d49e352 1621 * -- nyc
1da177e4 1622 */
085cc7d5 1623static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1624 int low, int high, struct free_area *area,
1625 int migratetype)
1da177e4
LT
1626{
1627 unsigned long size = 1 << high;
1628
1629 while (high > low) {
1630 area--;
1631 high--;
1632 size >>= 1;
309381fe 1633 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1634
acbc15a4
JK
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
1641 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1642 continue;
acbc15a4 1643
b2a0ac88 1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1da177e4
LT
1648}
1649
4e611801 1650static void check_new_page_bad(struct page *page)
1da177e4 1651{
4e611801
VB
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
7bfec6f4 1654
53f9263b 1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
fe896d18 1659 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1660 bad_reason = "nonzero _count";
f4c18e6f
NH
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
e570f56c
NH
1664 /* Don't complain about hwpoisoned pages */
1665 page_mapcount_reset(page); /* remove PageBuddy */
1666 return;
f4c18e6f 1667 }
f0b791a3
DH
1668 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1669 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1670 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1671 }
9edad6ea
JW
1672#ifdef CONFIG_MEMCG
1673 if (unlikely(page->mem_cgroup))
1674 bad_reason = "page still charged to cgroup";
1675#endif
4e611801
VB
1676 bad_page(page, bad_reason, bad_flags);
1677}
1678
1679/*
1680 * This page is about to be returned from the page allocator
1681 */
1682static inline int check_new_page(struct page *page)
1683{
1684 if (likely(page_expected_state(page,
1685 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1686 return 0;
1687
1688 check_new_page_bad(page);
1689 return 1;
2a7684a2
WF
1690}
1691
bd33ef36 1692static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1693{
1694 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1695 page_poisoning_enabled();
1414c7f4
LA
1696}
1697
479f854a
MG
1698#ifdef CONFIG_DEBUG_VM
1699static bool check_pcp_refill(struct page *page)
1700{
1701 return false;
1702}
1703
1704static bool check_new_pcp(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708#else
1709static bool check_pcp_refill(struct page *page)
1710{
1711 return check_new_page(page);
1712}
1713static bool check_new_pcp(struct page *page)
1714{
1715 return false;
1716}
1717#endif /* CONFIG_DEBUG_VM */
1718
1719static bool check_new_pages(struct page *page, unsigned int order)
1720{
1721 int i;
1722 for (i = 0; i < (1 << order); i++) {
1723 struct page *p = page + i;
1724
1725 if (unlikely(check_new_page(p)))
1726 return true;
1727 }
1728
1729 return false;
1730}
1731
46f24fd8
JK
1732inline void post_alloc_hook(struct page *page, unsigned int order,
1733 gfp_t gfp_flags)
1734{
1735 set_page_private(page, 0);
1736 set_page_refcounted(page);
1737
1738 arch_alloc_page(page, order);
1739 kernel_map_pages(page, 1 << order, 1);
1740 kernel_poison_pages(page, 1 << order, 1);
1741 kasan_alloc_pages(page, order);
1742 set_page_owner(page, order, gfp_flags);
1743}
1744
479f854a 1745static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1746 unsigned int alloc_flags)
2a7684a2
WF
1747{
1748 int i;
689bcebf 1749
46f24fd8 1750 post_alloc_hook(page, order, gfp_flags);
17cf4406 1751
bd33ef36 1752 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1753 for (i = 0; i < (1 << order); i++)
1754 clear_highpage(page + i);
17cf4406
NP
1755
1756 if (order && (gfp_flags & __GFP_COMP))
1757 prep_compound_page(page, order);
1758
75379191 1759 /*
2f064f34 1760 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1761 * allocate the page. The expectation is that the caller is taking
1762 * steps that will free more memory. The caller should avoid the page
1763 * being used for !PFMEMALLOC purposes.
1764 */
2f064f34
MH
1765 if (alloc_flags & ALLOC_NO_WATERMARKS)
1766 set_page_pfmemalloc(page);
1767 else
1768 clear_page_pfmemalloc(page);
1da177e4
LT
1769}
1770
56fd56b8
MG
1771/*
1772 * Go through the free lists for the given migratetype and remove
1773 * the smallest available page from the freelists
1774 */
728ec980
MG
1775static inline
1776struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1777 int migratetype)
1778{
1779 unsigned int current_order;
b8af2941 1780 struct free_area *area;
56fd56b8
MG
1781 struct page *page;
1782
1783 /* Find a page of the appropriate size in the preferred list */
1784 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1785 area = &(zone->free_area[current_order]);
a16601c5 1786 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1787 struct page, lru);
a16601c5
GT
1788 if (!page)
1789 continue;
56fd56b8
MG
1790 list_del(&page->lru);
1791 rmv_page_order(page);
1792 area->nr_free--;
56fd56b8 1793 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1794 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1795 return page;
1796 }
1797
1798 return NULL;
1799}
1800
1801
b2a0ac88
MG
1802/*
1803 * This array describes the order lists are fallen back to when
1804 * the free lists for the desirable migrate type are depleted
1805 */
47118af0 1806static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1807 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1808 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1809 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1810#ifdef CONFIG_CMA
974a786e 1811 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1812#endif
194159fb 1813#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1814 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1815#endif
b2a0ac88
MG
1816};
1817
dc67647b
JK
1818#ifdef CONFIG_CMA
1819static struct page *__rmqueue_cma_fallback(struct zone *zone,
1820 unsigned int order)
1821{
1822 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1823}
1824#else
1825static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1826 unsigned int order) { return NULL; }
1827#endif
1828
c361be55
MG
1829/*
1830 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1831 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1832 * boundary. If alignment is required, use move_freepages_block()
1833 */
435b405c 1834int move_freepages(struct zone *zone,
b69a7288
AB
1835 struct page *start_page, struct page *end_page,
1836 int migratetype)
c361be55
MG
1837{
1838 struct page *page;
d00181b9 1839 unsigned int order;
d100313f 1840 int pages_moved = 0;
c361be55
MG
1841
1842#ifndef CONFIG_HOLES_IN_ZONE
1843 /*
1844 * page_zone is not safe to call in this context when
1845 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1846 * anyway as we check zone boundaries in move_freepages_block().
1847 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1848 * grouping pages by mobility
c361be55 1849 */
97ee4ba7 1850 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1851#endif
1852
1853 for (page = start_page; page <= end_page;) {
1854 if (!pfn_valid_within(page_to_pfn(page))) {
1855 page++;
1856 continue;
1857 }
1858
f073bdc5
AB
1859 /* Make sure we are not inadvertently changing nodes */
1860 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1861
c361be55
MG
1862 if (!PageBuddy(page)) {
1863 page++;
1864 continue;
1865 }
1866
1867 order = page_order(page);
84be48d8
KS
1868 list_move(&page->lru,
1869 &zone->free_area[order].free_list[migratetype]);
c361be55 1870 page += 1 << order;
d100313f 1871 pages_moved += 1 << order;
c361be55
MG
1872 }
1873
d100313f 1874 return pages_moved;
c361be55
MG
1875}
1876
ee6f509c 1877int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1878 int migratetype)
c361be55
MG
1879{
1880 unsigned long start_pfn, end_pfn;
1881 struct page *start_page, *end_page;
1882
1883 start_pfn = page_to_pfn(page);
d9c23400 1884 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1885 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1886 end_page = start_page + pageblock_nr_pages - 1;
1887 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1888
1889 /* Do not cross zone boundaries */
108bcc96 1890 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1891 start_page = page;
108bcc96 1892 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1893 return 0;
1894
1895 return move_freepages(zone, start_page, end_page, migratetype);
1896}
1897
2f66a68f
MG
1898static void change_pageblock_range(struct page *pageblock_page,
1899 int start_order, int migratetype)
1900{
1901 int nr_pageblocks = 1 << (start_order - pageblock_order);
1902
1903 while (nr_pageblocks--) {
1904 set_pageblock_migratetype(pageblock_page, migratetype);
1905 pageblock_page += pageblock_nr_pages;
1906 }
1907}
1908
fef903ef 1909/*
9c0415eb
VB
1910 * When we are falling back to another migratetype during allocation, try to
1911 * steal extra free pages from the same pageblocks to satisfy further
1912 * allocations, instead of polluting multiple pageblocks.
1913 *
1914 * If we are stealing a relatively large buddy page, it is likely there will
1915 * be more free pages in the pageblock, so try to steal them all. For
1916 * reclaimable and unmovable allocations, we steal regardless of page size,
1917 * as fragmentation caused by those allocations polluting movable pageblocks
1918 * is worse than movable allocations stealing from unmovable and reclaimable
1919 * pageblocks.
fef903ef 1920 */
4eb7dce6
JK
1921static bool can_steal_fallback(unsigned int order, int start_mt)
1922{
1923 /*
1924 * Leaving this order check is intended, although there is
1925 * relaxed order check in next check. The reason is that
1926 * we can actually steal whole pageblock if this condition met,
1927 * but, below check doesn't guarantee it and that is just heuristic
1928 * so could be changed anytime.
1929 */
1930 if (order >= pageblock_order)
1931 return true;
1932
1933 if (order >= pageblock_order / 2 ||
1934 start_mt == MIGRATE_RECLAIMABLE ||
1935 start_mt == MIGRATE_UNMOVABLE ||
1936 page_group_by_mobility_disabled)
1937 return true;
1938
1939 return false;
1940}
1941
1942/*
1943 * This function implements actual steal behaviour. If order is large enough,
1944 * we can steal whole pageblock. If not, we first move freepages in this
1945 * pageblock and check whether half of pages are moved or not. If half of
1946 * pages are moved, we can change migratetype of pageblock and permanently
1947 * use it's pages as requested migratetype in the future.
1948 */
1949static void steal_suitable_fallback(struct zone *zone, struct page *page,
1950 int start_type)
fef903ef 1951{
d00181b9 1952 unsigned int current_order = page_order(page);
4eb7dce6 1953 int pages;
fef903ef 1954
fef903ef
SB
1955 /* Take ownership for orders >= pageblock_order */
1956 if (current_order >= pageblock_order) {
1957 change_pageblock_range(page, current_order, start_type);
3a1086fb 1958 return;
fef903ef
SB
1959 }
1960
4eb7dce6 1961 pages = move_freepages_block(zone, page, start_type);
fef903ef 1962
4eb7dce6
JK
1963 /* Claim the whole block if over half of it is free */
1964 if (pages >= (1 << (pageblock_order-1)) ||
1965 page_group_by_mobility_disabled)
1966 set_pageblock_migratetype(page, start_type);
1967}
1968
2149cdae
JK
1969/*
1970 * Check whether there is a suitable fallback freepage with requested order.
1971 * If only_stealable is true, this function returns fallback_mt only if
1972 * we can steal other freepages all together. This would help to reduce
1973 * fragmentation due to mixed migratetype pages in one pageblock.
1974 */
1975int find_suitable_fallback(struct free_area *area, unsigned int order,
1976 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1977{
1978 int i;
1979 int fallback_mt;
1980
1981 if (area->nr_free == 0)
1982 return -1;
1983
1984 *can_steal = false;
1985 for (i = 0;; i++) {
1986 fallback_mt = fallbacks[migratetype][i];
974a786e 1987 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1988 break;
1989
1990 if (list_empty(&area->free_list[fallback_mt]))
1991 continue;
fef903ef 1992
4eb7dce6
JK
1993 if (can_steal_fallback(order, migratetype))
1994 *can_steal = true;
1995
2149cdae
JK
1996 if (!only_stealable)
1997 return fallback_mt;
1998
1999 if (*can_steal)
2000 return fallback_mt;
fef903ef 2001 }
4eb7dce6
JK
2002
2003 return -1;
fef903ef
SB
2004}
2005
0aaa29a5
MG
2006/*
2007 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2008 * there are no empty page blocks that contain a page with a suitable order
2009 */
2010static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2011 unsigned int alloc_order)
2012{
2013 int mt;
2014 unsigned long max_managed, flags;
2015
2016 /*
2017 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2018 * Check is race-prone but harmless.
2019 */
2020 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2021 if (zone->nr_reserved_highatomic >= max_managed)
2022 return;
2023
2024 spin_lock_irqsave(&zone->lock, flags);
2025
2026 /* Recheck the nr_reserved_highatomic limit under the lock */
2027 if (zone->nr_reserved_highatomic >= max_managed)
2028 goto out_unlock;
2029
2030 /* Yoink! */
2031 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2032 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2033 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2034 zone->nr_reserved_highatomic += pageblock_nr_pages;
2035 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2036 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2037 }
2038
2039out_unlock:
2040 spin_unlock_irqrestore(&zone->lock, flags);
2041}
2042
2043/*
2044 * Used when an allocation is about to fail under memory pressure. This
2045 * potentially hurts the reliability of high-order allocations when under
2046 * intense memory pressure but failed atomic allocations should be easier
2047 * to recover from than an OOM.
29fac03b
MK
2048 *
2049 * If @force is true, try to unreserve a pageblock even though highatomic
2050 * pageblock is exhausted.
0aaa29a5 2051 */
29fac03b
MK
2052static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2053 bool force)
0aaa29a5
MG
2054{
2055 struct zonelist *zonelist = ac->zonelist;
2056 unsigned long flags;
2057 struct zoneref *z;
2058 struct zone *zone;
2059 struct page *page;
2060 int order;
04c8716f 2061 bool ret;
0aaa29a5
MG
2062
2063 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2064 ac->nodemask) {
29fac03b
MK
2065 /*
2066 * Preserve at least one pageblock unless memory pressure
2067 * is really high.
2068 */
2069 if (!force && zone->nr_reserved_highatomic <=
2070 pageblock_nr_pages)
0aaa29a5
MG
2071 continue;
2072
2073 spin_lock_irqsave(&zone->lock, flags);
2074 for (order = 0; order < MAX_ORDER; order++) {
2075 struct free_area *area = &(zone->free_area[order]);
2076
a16601c5
GT
2077 page = list_first_entry_or_null(
2078 &area->free_list[MIGRATE_HIGHATOMIC],
2079 struct page, lru);
2080 if (!page)
0aaa29a5
MG
2081 continue;
2082
0aaa29a5 2083 /*
4855e4a7
MK
2084 * In page freeing path, migratetype change is racy so
2085 * we can counter several free pages in a pageblock
2086 * in this loop althoug we changed the pageblock type
2087 * from highatomic to ac->migratetype. So we should
2088 * adjust the count once.
0aaa29a5 2089 */
a6ffdc07 2090 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2091 /*
2092 * It should never happen but changes to
2093 * locking could inadvertently allow a per-cpu
2094 * drain to add pages to MIGRATE_HIGHATOMIC
2095 * while unreserving so be safe and watch for
2096 * underflows.
2097 */
2098 zone->nr_reserved_highatomic -= min(
2099 pageblock_nr_pages,
2100 zone->nr_reserved_highatomic);
2101 }
0aaa29a5
MG
2102
2103 /*
2104 * Convert to ac->migratetype and avoid the normal
2105 * pageblock stealing heuristics. Minimally, the caller
2106 * is doing the work and needs the pages. More
2107 * importantly, if the block was always converted to
2108 * MIGRATE_UNMOVABLE or another type then the number
2109 * of pageblocks that cannot be completely freed
2110 * may increase.
2111 */
2112 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2113 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2114 if (ret) {
2115 spin_unlock_irqrestore(&zone->lock, flags);
2116 return ret;
2117 }
0aaa29a5
MG
2118 }
2119 spin_unlock_irqrestore(&zone->lock, flags);
2120 }
04c8716f
MK
2121
2122 return false;
0aaa29a5
MG
2123}
2124
b2a0ac88 2125/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2126static inline struct page *
7aeb09f9 2127__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2128{
b8af2941 2129 struct free_area *area;
7aeb09f9 2130 unsigned int current_order;
b2a0ac88 2131 struct page *page;
4eb7dce6
JK
2132 int fallback_mt;
2133 bool can_steal;
b2a0ac88
MG
2134
2135 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2136 for (current_order = MAX_ORDER-1;
2137 current_order >= order && current_order <= MAX_ORDER-1;
2138 --current_order) {
4eb7dce6
JK
2139 area = &(zone->free_area[current_order]);
2140 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2141 start_migratetype, false, &can_steal);
4eb7dce6
JK
2142 if (fallback_mt == -1)
2143 continue;
b2a0ac88 2144
a16601c5 2145 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2146 struct page, lru);
a6ffdc07 2147 if (can_steal && !is_migrate_highatomic_page(page))
4eb7dce6 2148 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2149
4eb7dce6
JK
2150 /* Remove the page from the freelists */
2151 area->nr_free--;
2152 list_del(&page->lru);
2153 rmv_page_order(page);
3a1086fb 2154
4eb7dce6
JK
2155 expand(zone, page, order, current_order, area,
2156 start_migratetype);
2157 /*
bb14c2c7 2158 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2159 * migratetype depending on the decisions in
bb14c2c7
VB
2160 * find_suitable_fallback(). This is OK as long as it does not
2161 * differ for MIGRATE_CMA pageblocks. Those can be used as
2162 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2163 */
bb14c2c7 2164 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2165
4eb7dce6
JK
2166 trace_mm_page_alloc_extfrag(page, order, current_order,
2167 start_migratetype, fallback_mt);
e0fff1bd 2168
4eb7dce6 2169 return page;
b2a0ac88
MG
2170 }
2171
728ec980 2172 return NULL;
b2a0ac88
MG
2173}
2174
56fd56b8 2175/*
1da177e4
LT
2176 * Do the hard work of removing an element from the buddy allocator.
2177 * Call me with the zone->lock already held.
2178 */
b2a0ac88 2179static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2180 int migratetype)
1da177e4 2181{
1da177e4
LT
2182 struct page *page;
2183
56fd56b8 2184 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2185 if (unlikely(!page)) {
dc67647b
JK
2186 if (migratetype == MIGRATE_MOVABLE)
2187 page = __rmqueue_cma_fallback(zone, order);
2188
2189 if (!page)
2190 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2191 }
2192
0d3d062a 2193 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2194 return page;
1da177e4
LT
2195}
2196
5f63b720 2197/*
1da177e4
LT
2198 * Obtain a specified number of elements from the buddy allocator, all under
2199 * a single hold of the lock, for efficiency. Add them to the supplied list.
2200 * Returns the number of new pages which were placed at *list.
2201 */
5f63b720 2202static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2203 unsigned long count, struct list_head *list,
b745bc85 2204 int migratetype, bool cold)
1da177e4 2205{
a6de734b 2206 int i, alloced = 0;
5f63b720 2207
d34b0733 2208 spin_lock(&zone->lock);
1da177e4 2209 for (i = 0; i < count; ++i) {
6ac0206b 2210 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2211 if (unlikely(page == NULL))
1da177e4 2212 break;
81eabcbe 2213
479f854a
MG
2214 if (unlikely(check_pcp_refill(page)))
2215 continue;
2216
81eabcbe
MG
2217 /*
2218 * Split buddy pages returned by expand() are received here
2219 * in physical page order. The page is added to the callers and
2220 * list and the list head then moves forward. From the callers
2221 * perspective, the linked list is ordered by page number in
2222 * some conditions. This is useful for IO devices that can
2223 * merge IO requests if the physical pages are ordered
2224 * properly.
2225 */
b745bc85 2226 if (likely(!cold))
e084b2d9
MG
2227 list_add(&page->lru, list);
2228 else
2229 list_add_tail(&page->lru, list);
81eabcbe 2230 list = &page->lru;
a6de734b 2231 alloced++;
bb14c2c7 2232 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2233 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2234 -(1 << order));
1da177e4 2235 }
a6de734b
MG
2236
2237 /*
2238 * i pages were removed from the buddy list even if some leak due
2239 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2240 * on i. Do not confuse with 'alloced' which is the number of
2241 * pages added to the pcp list.
2242 */
f2260e6b 2243 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2244 spin_unlock(&zone->lock);
a6de734b 2245 return alloced;
1da177e4
LT
2246}
2247
4ae7c039 2248#ifdef CONFIG_NUMA
8fce4d8e 2249/*
4037d452
CL
2250 * Called from the vmstat counter updater to drain pagesets of this
2251 * currently executing processor on remote nodes after they have
2252 * expired.
2253 *
879336c3
CL
2254 * Note that this function must be called with the thread pinned to
2255 * a single processor.
8fce4d8e 2256 */
4037d452 2257void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2258{
4ae7c039 2259 unsigned long flags;
7be12fc9 2260 int to_drain, batch;
4ae7c039 2261
4037d452 2262 local_irq_save(flags);
4db0c3c2 2263 batch = READ_ONCE(pcp->batch);
7be12fc9 2264 to_drain = min(pcp->count, batch);
2a13515c
KM
2265 if (to_drain > 0) {
2266 free_pcppages_bulk(zone, to_drain, pcp);
2267 pcp->count -= to_drain;
2268 }
4037d452 2269 local_irq_restore(flags);
4ae7c039
CL
2270}
2271#endif
2272
9f8f2172 2273/*
93481ff0 2274 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2275 *
2276 * The processor must either be the current processor and the
2277 * thread pinned to the current processor or a processor that
2278 * is not online.
2279 */
93481ff0 2280static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2281{
c54ad30c 2282 unsigned long flags;
93481ff0
VB
2283 struct per_cpu_pageset *pset;
2284 struct per_cpu_pages *pcp;
1da177e4 2285
93481ff0
VB
2286 local_irq_save(flags);
2287 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2288
93481ff0
VB
2289 pcp = &pset->pcp;
2290 if (pcp->count) {
2291 free_pcppages_bulk(zone, pcp->count, pcp);
2292 pcp->count = 0;
2293 }
2294 local_irq_restore(flags);
2295}
3dfa5721 2296
93481ff0
VB
2297/*
2298 * Drain pcplists of all zones on the indicated processor.
2299 *
2300 * The processor must either be the current processor and the
2301 * thread pinned to the current processor or a processor that
2302 * is not online.
2303 */
2304static void drain_pages(unsigned int cpu)
2305{
2306 struct zone *zone;
2307
2308 for_each_populated_zone(zone) {
2309 drain_pages_zone(cpu, zone);
1da177e4
LT
2310 }
2311}
1da177e4 2312
9f8f2172
CL
2313/*
2314 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2315 *
2316 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2317 * the single zone's pages.
9f8f2172 2318 */
93481ff0 2319void drain_local_pages(struct zone *zone)
9f8f2172 2320{
93481ff0
VB
2321 int cpu = smp_processor_id();
2322
2323 if (zone)
2324 drain_pages_zone(cpu, zone);
2325 else
2326 drain_pages(cpu);
9f8f2172
CL
2327}
2328
0ccce3b9
MG
2329static void drain_local_pages_wq(struct work_struct *work)
2330{
a459eeb7
MH
2331 /*
2332 * drain_all_pages doesn't use proper cpu hotplug protection so
2333 * we can race with cpu offline when the WQ can move this from
2334 * a cpu pinned worker to an unbound one. We can operate on a different
2335 * cpu which is allright but we also have to make sure to not move to
2336 * a different one.
2337 */
2338 preempt_disable();
0ccce3b9 2339 drain_local_pages(NULL);
a459eeb7 2340 preempt_enable();
0ccce3b9
MG
2341}
2342
9f8f2172 2343/*
74046494
GBY
2344 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2345 *
93481ff0
VB
2346 * When zone parameter is non-NULL, spill just the single zone's pages.
2347 *
0ccce3b9 2348 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2349 */
93481ff0 2350void drain_all_pages(struct zone *zone)
9f8f2172 2351{
74046494 2352 int cpu;
74046494
GBY
2353
2354 /*
2355 * Allocate in the BSS so we wont require allocation in
2356 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2357 */
2358 static cpumask_t cpus_with_pcps;
2359
ce612879
MH
2360 /*
2361 * Make sure nobody triggers this path before mm_percpu_wq is fully
2362 * initialized.
2363 */
2364 if (WARN_ON_ONCE(!mm_percpu_wq))
2365 return;
2366
0ccce3b9
MG
2367 /* Workqueues cannot recurse */
2368 if (current->flags & PF_WQ_WORKER)
2369 return;
2370
bd233f53
MG
2371 /*
2372 * Do not drain if one is already in progress unless it's specific to
2373 * a zone. Such callers are primarily CMA and memory hotplug and need
2374 * the drain to be complete when the call returns.
2375 */
2376 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2377 if (!zone)
2378 return;
2379 mutex_lock(&pcpu_drain_mutex);
2380 }
0ccce3b9 2381
74046494
GBY
2382 /*
2383 * We don't care about racing with CPU hotplug event
2384 * as offline notification will cause the notified
2385 * cpu to drain that CPU pcps and on_each_cpu_mask
2386 * disables preemption as part of its processing
2387 */
2388 for_each_online_cpu(cpu) {
93481ff0
VB
2389 struct per_cpu_pageset *pcp;
2390 struct zone *z;
74046494 2391 bool has_pcps = false;
93481ff0
VB
2392
2393 if (zone) {
74046494 2394 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2395 if (pcp->pcp.count)
74046494 2396 has_pcps = true;
93481ff0
VB
2397 } else {
2398 for_each_populated_zone(z) {
2399 pcp = per_cpu_ptr(z->pageset, cpu);
2400 if (pcp->pcp.count) {
2401 has_pcps = true;
2402 break;
2403 }
74046494
GBY
2404 }
2405 }
93481ff0 2406
74046494
GBY
2407 if (has_pcps)
2408 cpumask_set_cpu(cpu, &cpus_with_pcps);
2409 else
2410 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2411 }
0ccce3b9 2412
bd233f53
MG
2413 for_each_cpu(cpu, &cpus_with_pcps) {
2414 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2415 INIT_WORK(work, drain_local_pages_wq);
ce612879 2416 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2417 }
bd233f53
MG
2418 for_each_cpu(cpu, &cpus_with_pcps)
2419 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2420
2421 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2422}
2423
296699de 2424#ifdef CONFIG_HIBERNATION
1da177e4
LT
2425
2426void mark_free_pages(struct zone *zone)
2427{
f623f0db
RW
2428 unsigned long pfn, max_zone_pfn;
2429 unsigned long flags;
7aeb09f9 2430 unsigned int order, t;
86760a2c 2431 struct page *page;
1da177e4 2432
8080fc03 2433 if (zone_is_empty(zone))
1da177e4
LT
2434 return;
2435
2436 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2437
108bcc96 2438 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2439 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2440 if (pfn_valid(pfn)) {
86760a2c 2441 page = pfn_to_page(pfn);
ba6b0979
JK
2442
2443 if (page_zone(page) != zone)
2444 continue;
2445
7be98234
RW
2446 if (!swsusp_page_is_forbidden(page))
2447 swsusp_unset_page_free(page);
f623f0db 2448 }
1da177e4 2449
b2a0ac88 2450 for_each_migratetype_order(order, t) {
86760a2c
GT
2451 list_for_each_entry(page,
2452 &zone->free_area[order].free_list[t], lru) {
f623f0db 2453 unsigned long i;
1da177e4 2454
86760a2c 2455 pfn = page_to_pfn(page);
f623f0db 2456 for (i = 0; i < (1UL << order); i++)
7be98234 2457 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2458 }
b2a0ac88 2459 }
1da177e4
LT
2460 spin_unlock_irqrestore(&zone->lock, flags);
2461}
e2c55dc8 2462#endif /* CONFIG_PM */
1da177e4 2463
1da177e4
LT
2464/*
2465 * Free a 0-order page
b745bc85 2466 * cold == true ? free a cold page : free a hot page
1da177e4 2467 */
b745bc85 2468void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2469{
2470 struct zone *zone = page_zone(page);
2471 struct per_cpu_pages *pcp;
d34b0733 2472 unsigned long flags;
dc4b0caf 2473 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2474 int migratetype;
1da177e4 2475
4db7548c 2476 if (!free_pcp_prepare(page))
689bcebf
HD
2477 return;
2478
dc4b0caf 2479 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2480 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2481 local_irq_save(flags);
2482 __count_vm_event(PGFREE);
da456f14 2483
5f8dcc21
MG
2484 /*
2485 * We only track unmovable, reclaimable and movable on pcp lists.
2486 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2487 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2488 * areas back if necessary. Otherwise, we may have to free
2489 * excessively into the page allocator
2490 */
2491 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2492 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2493 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2494 goto out;
2495 }
2496 migratetype = MIGRATE_MOVABLE;
2497 }
2498
99dcc3e5 2499 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2500 if (!cold)
5f8dcc21 2501 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2502 else
2503 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2504 pcp->count++;
48db57f8 2505 if (pcp->count >= pcp->high) {
4db0c3c2 2506 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2507 free_pcppages_bulk(zone, batch, pcp);
2508 pcp->count -= batch;
48db57f8 2509 }
5f8dcc21
MG
2510
2511out:
d34b0733 2512 local_irq_restore(flags);
1da177e4
LT
2513}
2514
cc59850e
KK
2515/*
2516 * Free a list of 0-order pages
2517 */
b745bc85 2518void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2519{
2520 struct page *page, *next;
2521
2522 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2523 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2524 free_hot_cold_page(page, cold);
2525 }
2526}
2527
8dfcc9ba
NP
2528/*
2529 * split_page takes a non-compound higher-order page, and splits it into
2530 * n (1<<order) sub-pages: page[0..n]
2531 * Each sub-page must be freed individually.
2532 *
2533 * Note: this is probably too low level an operation for use in drivers.
2534 * Please consult with lkml before using this in your driver.
2535 */
2536void split_page(struct page *page, unsigned int order)
2537{
2538 int i;
2539
309381fe
SL
2540 VM_BUG_ON_PAGE(PageCompound(page), page);
2541 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2542
2543#ifdef CONFIG_KMEMCHECK
2544 /*
2545 * Split shadow pages too, because free(page[0]) would
2546 * otherwise free the whole shadow.
2547 */
2548 if (kmemcheck_page_is_tracked(page))
2549 split_page(virt_to_page(page[0].shadow), order);
2550#endif
2551
a9627bc5 2552 for (i = 1; i < (1 << order); i++)
7835e98b 2553 set_page_refcounted(page + i);
a9627bc5 2554 split_page_owner(page, order);
8dfcc9ba 2555}
5853ff23 2556EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2557
3c605096 2558int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2559{
748446bb
MG
2560 unsigned long watermark;
2561 struct zone *zone;
2139cbe6 2562 int mt;
748446bb
MG
2563
2564 BUG_ON(!PageBuddy(page));
2565
2566 zone = page_zone(page);
2e30abd1 2567 mt = get_pageblock_migratetype(page);
748446bb 2568
194159fb 2569 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2570 /*
2571 * Obey watermarks as if the page was being allocated. We can
2572 * emulate a high-order watermark check with a raised order-0
2573 * watermark, because we already know our high-order page
2574 * exists.
2575 */
2576 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2577 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2578 return 0;
2579
8fb74b9f 2580 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2581 }
748446bb
MG
2582
2583 /* Remove page from free list */
2584 list_del(&page->lru);
2585 zone->free_area[order].nr_free--;
2586 rmv_page_order(page);
2139cbe6 2587
400bc7fd 2588 /*
2589 * Set the pageblock if the isolated page is at least half of a
2590 * pageblock
2591 */
748446bb
MG
2592 if (order >= pageblock_order - 1) {
2593 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2594 for (; page < endpage; page += pageblock_nr_pages) {
2595 int mt = get_pageblock_migratetype(page);
88ed365e 2596 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2597 && !is_migrate_highatomic(mt))
47118af0
MN
2598 set_pageblock_migratetype(page,
2599 MIGRATE_MOVABLE);
2600 }
748446bb
MG
2601 }
2602
f3a14ced 2603
8fb74b9f 2604 return 1UL << order;
1fb3f8ca
MG
2605}
2606
060e7417
MG
2607/*
2608 * Update NUMA hit/miss statistics
2609 *
2610 * Must be called with interrupts disabled.
060e7417 2611 */
41b6167e 2612static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2613{
2614#ifdef CONFIG_NUMA
060e7417
MG
2615 enum zone_stat_item local_stat = NUMA_LOCAL;
2616
2df26639 2617 if (z->node != numa_node_id())
060e7417 2618 local_stat = NUMA_OTHER;
060e7417 2619
2df26639 2620 if (z->node == preferred_zone->node)
060e7417 2621 __inc_zone_state(z, NUMA_HIT);
2df26639 2622 else {
060e7417
MG
2623 __inc_zone_state(z, NUMA_MISS);
2624 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2625 }
2df26639 2626 __inc_zone_state(z, local_stat);
060e7417
MG
2627#endif
2628}
2629
066b2393
MG
2630/* Remove page from the per-cpu list, caller must protect the list */
2631static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2632 bool cold, struct per_cpu_pages *pcp,
2633 struct list_head *list)
2634{
2635 struct page *page;
2636
2637 do {
2638 if (list_empty(list)) {
2639 pcp->count += rmqueue_bulk(zone, 0,
2640 pcp->batch, list,
2641 migratetype, cold);
2642 if (unlikely(list_empty(list)))
2643 return NULL;
2644 }
2645
2646 if (cold)
2647 page = list_last_entry(list, struct page, lru);
2648 else
2649 page = list_first_entry(list, struct page, lru);
2650
2651 list_del(&page->lru);
2652 pcp->count--;
2653 } while (check_new_pcp(page));
2654
2655 return page;
2656}
2657
2658/* Lock and remove page from the per-cpu list */
2659static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2660 struct zone *zone, unsigned int order,
2661 gfp_t gfp_flags, int migratetype)
2662{
2663 struct per_cpu_pages *pcp;
2664 struct list_head *list;
2665 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2666 struct page *page;
d34b0733 2667 unsigned long flags;
066b2393 2668
d34b0733 2669 local_irq_save(flags);
066b2393
MG
2670 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2671 list = &pcp->lists[migratetype];
2672 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2673 if (page) {
2674 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2675 zone_statistics(preferred_zone, zone);
2676 }
d34b0733 2677 local_irq_restore(flags);
066b2393
MG
2678 return page;
2679}
2680
1da177e4 2681/*
75379191 2682 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2683 */
0a15c3e9 2684static inline
066b2393 2685struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2686 struct zone *zone, unsigned int order,
c603844b
MG
2687 gfp_t gfp_flags, unsigned int alloc_flags,
2688 int migratetype)
1da177e4
LT
2689{
2690 unsigned long flags;
689bcebf 2691 struct page *page;
1da177e4 2692
d34b0733 2693 if (likely(order == 0)) {
066b2393
MG
2694 page = rmqueue_pcplist(preferred_zone, zone, order,
2695 gfp_flags, migratetype);
2696 goto out;
2697 }
83b9355b 2698
066b2393
MG
2699 /*
2700 * We most definitely don't want callers attempting to
2701 * allocate greater than order-1 page units with __GFP_NOFAIL.
2702 */
2703 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2704 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2705
066b2393
MG
2706 do {
2707 page = NULL;
2708 if (alloc_flags & ALLOC_HARDER) {
2709 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2710 if (page)
2711 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2712 }
a74609fa 2713 if (!page)
066b2393
MG
2714 page = __rmqueue(zone, order, migratetype);
2715 } while (page && check_new_pages(page, order));
2716 spin_unlock(&zone->lock);
2717 if (!page)
2718 goto failed;
2719 __mod_zone_freepage_state(zone, -(1 << order),
2720 get_pcppage_migratetype(page));
1da177e4 2721
16709d1d 2722 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2723 zone_statistics(preferred_zone, zone);
a74609fa 2724 local_irq_restore(flags);
1da177e4 2725
066b2393
MG
2726out:
2727 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2728 return page;
a74609fa
NP
2729
2730failed:
2731 local_irq_restore(flags);
a74609fa 2732 return NULL;
1da177e4
LT
2733}
2734
933e312e
AM
2735#ifdef CONFIG_FAIL_PAGE_ALLOC
2736
b2588c4b 2737static struct {
933e312e
AM
2738 struct fault_attr attr;
2739
621a5f7a 2740 bool ignore_gfp_highmem;
71baba4b 2741 bool ignore_gfp_reclaim;
54114994 2742 u32 min_order;
933e312e
AM
2743} fail_page_alloc = {
2744 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2745 .ignore_gfp_reclaim = true,
621a5f7a 2746 .ignore_gfp_highmem = true,
54114994 2747 .min_order = 1,
933e312e
AM
2748};
2749
2750static int __init setup_fail_page_alloc(char *str)
2751{
2752 return setup_fault_attr(&fail_page_alloc.attr, str);
2753}
2754__setup("fail_page_alloc=", setup_fail_page_alloc);
2755
deaf386e 2756static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2757{
54114994 2758 if (order < fail_page_alloc.min_order)
deaf386e 2759 return false;
933e312e 2760 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2761 return false;
933e312e 2762 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2763 return false;
71baba4b
MG
2764 if (fail_page_alloc.ignore_gfp_reclaim &&
2765 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2766 return false;
933e312e
AM
2767
2768 return should_fail(&fail_page_alloc.attr, 1 << order);
2769}
2770
2771#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2772
2773static int __init fail_page_alloc_debugfs(void)
2774{
f4ae40a6 2775 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2776 struct dentry *dir;
933e312e 2777
dd48c085
AM
2778 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2779 &fail_page_alloc.attr);
2780 if (IS_ERR(dir))
2781 return PTR_ERR(dir);
933e312e 2782
b2588c4b 2783 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2784 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2785 goto fail;
2786 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2787 &fail_page_alloc.ignore_gfp_highmem))
2788 goto fail;
2789 if (!debugfs_create_u32("min-order", mode, dir,
2790 &fail_page_alloc.min_order))
2791 goto fail;
2792
2793 return 0;
2794fail:
dd48c085 2795 debugfs_remove_recursive(dir);
933e312e 2796
b2588c4b 2797 return -ENOMEM;
933e312e
AM
2798}
2799
2800late_initcall(fail_page_alloc_debugfs);
2801
2802#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2803
2804#else /* CONFIG_FAIL_PAGE_ALLOC */
2805
deaf386e 2806static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2807{
deaf386e 2808 return false;
933e312e
AM
2809}
2810
2811#endif /* CONFIG_FAIL_PAGE_ALLOC */
2812
1da177e4 2813/*
97a16fc8
MG
2814 * Return true if free base pages are above 'mark'. For high-order checks it
2815 * will return true of the order-0 watermark is reached and there is at least
2816 * one free page of a suitable size. Checking now avoids taking the zone lock
2817 * to check in the allocation paths if no pages are free.
1da177e4 2818 */
86a294a8
MH
2819bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2820 int classzone_idx, unsigned int alloc_flags,
2821 long free_pages)
1da177e4 2822{
d23ad423 2823 long min = mark;
1da177e4 2824 int o;
c603844b 2825 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2826
0aaa29a5 2827 /* free_pages may go negative - that's OK */
df0a6daa 2828 free_pages -= (1 << order) - 1;
0aaa29a5 2829
7fb1d9fc 2830 if (alloc_flags & ALLOC_HIGH)
1da177e4 2831 min -= min / 2;
0aaa29a5
MG
2832
2833 /*
2834 * If the caller does not have rights to ALLOC_HARDER then subtract
2835 * the high-atomic reserves. This will over-estimate the size of the
2836 * atomic reserve but it avoids a search.
2837 */
97a16fc8 2838 if (likely(!alloc_harder))
0aaa29a5
MG
2839 free_pages -= z->nr_reserved_highatomic;
2840 else
1da177e4 2841 min -= min / 4;
e2b19197 2842
d95ea5d1
BZ
2843#ifdef CONFIG_CMA
2844 /* If allocation can't use CMA areas don't use free CMA pages */
2845 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2846 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2847#endif
026b0814 2848
97a16fc8
MG
2849 /*
2850 * Check watermarks for an order-0 allocation request. If these
2851 * are not met, then a high-order request also cannot go ahead
2852 * even if a suitable page happened to be free.
2853 */
2854 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2855 return false;
1da177e4 2856
97a16fc8
MG
2857 /* If this is an order-0 request then the watermark is fine */
2858 if (!order)
2859 return true;
2860
2861 /* For a high-order request, check at least one suitable page is free */
2862 for (o = order; o < MAX_ORDER; o++) {
2863 struct free_area *area = &z->free_area[o];
2864 int mt;
2865
2866 if (!area->nr_free)
2867 continue;
2868
2869 if (alloc_harder)
2870 return true;
1da177e4 2871
97a16fc8
MG
2872 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2873 if (!list_empty(&area->free_list[mt]))
2874 return true;
2875 }
2876
2877#ifdef CONFIG_CMA
2878 if ((alloc_flags & ALLOC_CMA) &&
2879 !list_empty(&area->free_list[MIGRATE_CMA])) {
2880 return true;
2881 }
2882#endif
1da177e4 2883 }
97a16fc8 2884 return false;
88f5acf8
MG
2885}
2886
7aeb09f9 2887bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2888 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2889{
2890 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2891 zone_page_state(z, NR_FREE_PAGES));
2892}
2893
48ee5f36
MG
2894static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2895 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2896{
2897 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2898 long cma_pages = 0;
2899
2900#ifdef CONFIG_CMA
2901 /* If allocation can't use CMA areas don't use free CMA pages */
2902 if (!(alloc_flags & ALLOC_CMA))
2903 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2904#endif
2905
2906 /*
2907 * Fast check for order-0 only. If this fails then the reserves
2908 * need to be calculated. There is a corner case where the check
2909 * passes but only the high-order atomic reserve are free. If
2910 * the caller is !atomic then it'll uselessly search the free
2911 * list. That corner case is then slower but it is harmless.
2912 */
2913 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2914 return true;
2915
2916 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2917 free_pages);
2918}
2919
7aeb09f9 2920bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2921 unsigned long mark, int classzone_idx)
88f5acf8
MG
2922{
2923 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2924
2925 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2926 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2927
e2b19197 2928 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2929 free_pages);
1da177e4
LT
2930}
2931
9276b1bc 2932#ifdef CONFIG_NUMA
957f822a
DR
2933static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2934{
e02dc017 2935 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 2936 RECLAIM_DISTANCE;
957f822a 2937}
9276b1bc 2938#else /* CONFIG_NUMA */
957f822a
DR
2939static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2940{
2941 return true;
2942}
9276b1bc
PJ
2943#endif /* CONFIG_NUMA */
2944
7fb1d9fc 2945/*
0798e519 2946 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2947 * a page.
2948 */
2949static struct page *
a9263751
VB
2950get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2951 const struct alloc_context *ac)
753ee728 2952{
c33d6c06 2953 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2954 struct zone *zone;
3b8c0be4
MG
2955 struct pglist_data *last_pgdat_dirty_limit = NULL;
2956
7fb1d9fc 2957 /*
9276b1bc 2958 * Scan zonelist, looking for a zone with enough free.
344736f2 2959 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2960 */
c33d6c06 2961 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2962 ac->nodemask) {
be06af00 2963 struct page *page;
e085dbc5
JW
2964 unsigned long mark;
2965
664eedde
MG
2966 if (cpusets_enabled() &&
2967 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2968 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2969 continue;
a756cf59
JW
2970 /*
2971 * When allocating a page cache page for writing, we
281e3726
MG
2972 * want to get it from a node that is within its dirty
2973 * limit, such that no single node holds more than its
a756cf59 2974 * proportional share of globally allowed dirty pages.
281e3726 2975 * The dirty limits take into account the node's
a756cf59
JW
2976 * lowmem reserves and high watermark so that kswapd
2977 * should be able to balance it without having to
2978 * write pages from its LRU list.
2979 *
a756cf59 2980 * XXX: For now, allow allocations to potentially
281e3726 2981 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2982 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2983 * which is important when on a NUMA setup the allowed
281e3726 2984 * nodes are together not big enough to reach the
a756cf59 2985 * global limit. The proper fix for these situations
281e3726 2986 * will require awareness of nodes in the
a756cf59
JW
2987 * dirty-throttling and the flusher threads.
2988 */
3b8c0be4
MG
2989 if (ac->spread_dirty_pages) {
2990 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2991 continue;
2992
2993 if (!node_dirty_ok(zone->zone_pgdat)) {
2994 last_pgdat_dirty_limit = zone->zone_pgdat;
2995 continue;
2996 }
2997 }
7fb1d9fc 2998
e085dbc5 2999 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3000 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3001 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3002 int ret;
3003
5dab2911
MG
3004 /* Checked here to keep the fast path fast */
3005 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3006 if (alloc_flags & ALLOC_NO_WATERMARKS)
3007 goto try_this_zone;
3008
a5f5f91d 3009 if (node_reclaim_mode == 0 ||
c33d6c06 3010 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3011 continue;
3012
a5f5f91d 3013 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3014 switch (ret) {
a5f5f91d 3015 case NODE_RECLAIM_NOSCAN:
fa5e084e 3016 /* did not scan */
cd38b115 3017 continue;
a5f5f91d 3018 case NODE_RECLAIM_FULL:
fa5e084e 3019 /* scanned but unreclaimable */
cd38b115 3020 continue;
fa5e084e
MG
3021 default:
3022 /* did we reclaim enough */
fed2719e 3023 if (zone_watermark_ok(zone, order, mark,
93ea9964 3024 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3025 goto try_this_zone;
3026
fed2719e 3027 continue;
0798e519 3028 }
7fb1d9fc
RS
3029 }
3030
fa5e084e 3031try_this_zone:
066b2393 3032 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3033 gfp_mask, alloc_flags, ac->migratetype);
75379191 3034 if (page) {
479f854a 3035 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3036
3037 /*
3038 * If this is a high-order atomic allocation then check
3039 * if the pageblock should be reserved for the future
3040 */
3041 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3042 reserve_highatomic_pageblock(page, zone, order);
3043
75379191
VB
3044 return page;
3045 }
54a6eb5c 3046 }
9276b1bc 3047
4ffeaf35 3048 return NULL;
753ee728
MH
3049}
3050
29423e77
DR
3051/*
3052 * Large machines with many possible nodes should not always dump per-node
3053 * meminfo in irq context.
3054 */
3055static inline bool should_suppress_show_mem(void)
3056{
3057 bool ret = false;
3058
3059#if NODES_SHIFT > 8
3060 ret = in_interrupt();
3061#endif
3062 return ret;
3063}
3064
9af744d7 3065static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3066{
a238ab5b 3067 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3068 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3069
aa187507 3070 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3071 return;
3072
3073 /*
3074 * This documents exceptions given to allocations in certain
3075 * contexts that are allowed to allocate outside current's set
3076 * of allowed nodes.
3077 */
3078 if (!(gfp_mask & __GFP_NOMEMALLOC))
3079 if (test_thread_flag(TIF_MEMDIE) ||
3080 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3081 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3082 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3083 filter &= ~SHOW_MEM_FILTER_NODES;
3084
9af744d7 3085 show_mem(filter, nodemask);
aa187507
MH
3086}
3087
a8e99259 3088void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3089{
3090 struct va_format vaf;
3091 va_list args;
3092 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3093 DEFAULT_RATELIMIT_BURST);
3094
3095 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3096 debug_guardpage_minorder() > 0)
3097 return;
3098
7877cdcc 3099 pr_warn("%s: ", current->comm);
3ee9a4f0 3100
7877cdcc
MH
3101 va_start(args, fmt);
3102 vaf.fmt = fmt;
3103 vaf.va = &args;
3104 pr_cont("%pV", &vaf);
3105 va_end(args);
3ee9a4f0 3106
685dbf6f
DR
3107 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3108 if (nodemask)
3109 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3110 else
3111 pr_cont("(null)\n");
3112
a8e99259 3113 cpuset_print_current_mems_allowed();
3ee9a4f0 3114
a238ab5b 3115 dump_stack();
685dbf6f 3116 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3117}
3118
6c18ba7a
MH
3119static inline struct page *
3120__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3121 unsigned int alloc_flags,
3122 const struct alloc_context *ac)
3123{
3124 struct page *page;
3125
3126 page = get_page_from_freelist(gfp_mask, order,
3127 alloc_flags|ALLOC_CPUSET, ac);
3128 /*
3129 * fallback to ignore cpuset restriction if our nodes
3130 * are depleted
3131 */
3132 if (!page)
3133 page = get_page_from_freelist(gfp_mask, order,
3134 alloc_flags, ac);
3135
3136 return page;
3137}
3138
11e33f6a
MG
3139static inline struct page *
3140__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3141 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3142{
6e0fc46d
DR
3143 struct oom_control oc = {
3144 .zonelist = ac->zonelist,
3145 .nodemask = ac->nodemask,
2a966b77 3146 .memcg = NULL,
6e0fc46d
DR
3147 .gfp_mask = gfp_mask,
3148 .order = order,
6e0fc46d 3149 };
11e33f6a
MG
3150 struct page *page;
3151
9879de73
JW
3152 *did_some_progress = 0;
3153
9879de73 3154 /*
dc56401f
JW
3155 * Acquire the oom lock. If that fails, somebody else is
3156 * making progress for us.
9879de73 3157 */
dc56401f 3158 if (!mutex_trylock(&oom_lock)) {
9879de73 3159 *did_some_progress = 1;
11e33f6a 3160 schedule_timeout_uninterruptible(1);
1da177e4
LT
3161 return NULL;
3162 }
6b1de916 3163
11e33f6a
MG
3164 /*
3165 * Go through the zonelist yet one more time, keep very high watermark
3166 * here, this is only to catch a parallel oom killing, we must fail if
3167 * we're still under heavy pressure.
3168 */
a9263751
VB
3169 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3170 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3171 if (page)
11e33f6a
MG
3172 goto out;
3173
06ad276a
MH
3174 /* Coredumps can quickly deplete all memory reserves */
3175 if (current->flags & PF_DUMPCORE)
3176 goto out;
3177 /* The OOM killer will not help higher order allocs */
3178 if (order > PAGE_ALLOC_COSTLY_ORDER)
3179 goto out;
3180 /* The OOM killer does not needlessly kill tasks for lowmem */
3181 if (ac->high_zoneidx < ZONE_NORMAL)
3182 goto out;
3183 if (pm_suspended_storage())
3184 goto out;
3185 /*
3186 * XXX: GFP_NOFS allocations should rather fail than rely on
3187 * other request to make a forward progress.
3188 * We are in an unfortunate situation where out_of_memory cannot
3189 * do much for this context but let's try it to at least get
3190 * access to memory reserved if the current task is killed (see
3191 * out_of_memory). Once filesystems are ready to handle allocation
3192 * failures more gracefully we should just bail out here.
3193 */
3194
3195 /* The OOM killer may not free memory on a specific node */
3196 if (gfp_mask & __GFP_THISNODE)
3197 goto out;
3da88fb3 3198
11e33f6a 3199 /* Exhausted what can be done so it's blamo time */
5020e285 3200 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3201 *did_some_progress = 1;
5020e285 3202
6c18ba7a
MH
3203 /*
3204 * Help non-failing allocations by giving them access to memory
3205 * reserves
3206 */
3207 if (gfp_mask & __GFP_NOFAIL)
3208 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3209 ALLOC_NO_WATERMARKS, ac);
5020e285 3210 }
11e33f6a 3211out:
dc56401f 3212 mutex_unlock(&oom_lock);
11e33f6a
MG
3213 return page;
3214}
3215
33c2d214
MH
3216/*
3217 * Maximum number of compaction retries wit a progress before OOM
3218 * killer is consider as the only way to move forward.
3219 */
3220#define MAX_COMPACT_RETRIES 16
3221
56de7263
MG
3222#ifdef CONFIG_COMPACTION
3223/* Try memory compaction for high-order allocations before reclaim */
3224static struct page *
3225__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3226 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3227 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3228{
98dd3b48 3229 struct page *page;
53853e2d
VB
3230
3231 if (!order)
66199712 3232 return NULL;
66199712 3233
c06b1fca 3234 current->flags |= PF_MEMALLOC;
c5d01d0d 3235 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3236 prio);
c06b1fca 3237 current->flags &= ~PF_MEMALLOC;
56de7263 3238
c5d01d0d 3239 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3240 return NULL;
53853e2d 3241
98dd3b48
VB
3242 /*
3243 * At least in one zone compaction wasn't deferred or skipped, so let's
3244 * count a compaction stall
3245 */
3246 count_vm_event(COMPACTSTALL);
8fb74b9f 3247
31a6c190 3248 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3249
98dd3b48
VB
3250 if (page) {
3251 struct zone *zone = page_zone(page);
53853e2d 3252
98dd3b48
VB
3253 zone->compact_blockskip_flush = false;
3254 compaction_defer_reset(zone, order, true);
3255 count_vm_event(COMPACTSUCCESS);
3256 return page;
3257 }
56de7263 3258
98dd3b48
VB
3259 /*
3260 * It's bad if compaction run occurs and fails. The most likely reason
3261 * is that pages exist, but not enough to satisfy watermarks.
3262 */
3263 count_vm_event(COMPACTFAIL);
66199712 3264
98dd3b48 3265 cond_resched();
56de7263
MG
3266
3267 return NULL;
3268}
33c2d214 3269
3250845d
VB
3270static inline bool
3271should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3272 enum compact_result compact_result,
3273 enum compact_priority *compact_priority,
d9436498 3274 int *compaction_retries)
3250845d
VB
3275{
3276 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3277 int min_priority;
65190cff
MH
3278 bool ret = false;
3279 int retries = *compaction_retries;
3280 enum compact_priority priority = *compact_priority;
3250845d
VB
3281
3282 if (!order)
3283 return false;
3284
d9436498
VB
3285 if (compaction_made_progress(compact_result))
3286 (*compaction_retries)++;
3287
3250845d
VB
3288 /*
3289 * compaction considers all the zone as desperately out of memory
3290 * so it doesn't really make much sense to retry except when the
3291 * failure could be caused by insufficient priority
3292 */
d9436498
VB
3293 if (compaction_failed(compact_result))
3294 goto check_priority;
3250845d
VB
3295
3296 /*
3297 * make sure the compaction wasn't deferred or didn't bail out early
3298 * due to locks contention before we declare that we should give up.
3299 * But do not retry if the given zonelist is not suitable for
3300 * compaction.
3301 */
65190cff
MH
3302 if (compaction_withdrawn(compact_result)) {
3303 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3304 goto out;
3305 }
3250845d
VB
3306
3307 /*
3308 * !costly requests are much more important than __GFP_REPEAT
3309 * costly ones because they are de facto nofail and invoke OOM
3310 * killer to move on while costly can fail and users are ready
3311 * to cope with that. 1/4 retries is rather arbitrary but we
3312 * would need much more detailed feedback from compaction to
3313 * make a better decision.
3314 */
3315 if (order > PAGE_ALLOC_COSTLY_ORDER)
3316 max_retries /= 4;
65190cff
MH
3317 if (*compaction_retries <= max_retries) {
3318 ret = true;
3319 goto out;
3320 }
3250845d 3321
d9436498
VB
3322 /*
3323 * Make sure there are attempts at the highest priority if we exhausted
3324 * all retries or failed at the lower priorities.
3325 */
3326check_priority:
c2033b00
VB
3327 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3328 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3329
c2033b00 3330 if (*compact_priority > min_priority) {
d9436498
VB
3331 (*compact_priority)--;
3332 *compaction_retries = 0;
65190cff 3333 ret = true;
d9436498 3334 }
65190cff
MH
3335out:
3336 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3337 return ret;
3250845d 3338}
56de7263
MG
3339#else
3340static inline struct page *
3341__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3342 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3343 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3344{
33c2d214 3345 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3346 return NULL;
3347}
33c2d214
MH
3348
3349static inline bool
86a294a8
MH
3350should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3351 enum compact_result compact_result,
a5508cd8 3352 enum compact_priority *compact_priority,
d9436498 3353 int *compaction_retries)
33c2d214 3354{
31e49bfd
MH
3355 struct zone *zone;
3356 struct zoneref *z;
3357
3358 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3359 return false;
3360
3361 /*
3362 * There are setups with compaction disabled which would prefer to loop
3363 * inside the allocator rather than hit the oom killer prematurely.
3364 * Let's give them a good hope and keep retrying while the order-0
3365 * watermarks are OK.
3366 */
3367 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3368 ac->nodemask) {
3369 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3370 ac_classzone_idx(ac), alloc_flags))
3371 return true;
3372 }
33c2d214
MH
3373 return false;
3374}
3250845d 3375#endif /* CONFIG_COMPACTION */
56de7263 3376
bba90710
MS
3377/* Perform direct synchronous page reclaim */
3378static int
a9263751
VB
3379__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3380 const struct alloc_context *ac)
11e33f6a 3381{
11e33f6a 3382 struct reclaim_state reclaim_state;
bba90710 3383 int progress;
11e33f6a
MG
3384
3385 cond_resched();
3386
3387 /* We now go into synchronous reclaim */
3388 cpuset_memory_pressure_bump();
c06b1fca 3389 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3390 lockdep_set_current_reclaim_state(gfp_mask);
3391 reclaim_state.reclaimed_slab = 0;
c06b1fca 3392 current->reclaim_state = &reclaim_state;
11e33f6a 3393
a9263751
VB
3394 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3395 ac->nodemask);
11e33f6a 3396
c06b1fca 3397 current->reclaim_state = NULL;
11e33f6a 3398 lockdep_clear_current_reclaim_state();
c06b1fca 3399 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3400
3401 cond_resched();
3402
bba90710
MS
3403 return progress;
3404}
3405
3406/* The really slow allocator path where we enter direct reclaim */
3407static inline struct page *
3408__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3409 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3410 unsigned long *did_some_progress)
bba90710
MS
3411{
3412 struct page *page = NULL;
3413 bool drained = false;
3414
a9263751 3415 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3416 if (unlikely(!(*did_some_progress)))
3417 return NULL;
11e33f6a 3418
9ee493ce 3419retry:
31a6c190 3420 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3421
3422 /*
3423 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3424 * pages are pinned on the per-cpu lists or in high alloc reserves.
3425 * Shrink them them and try again
9ee493ce
MG
3426 */
3427 if (!page && !drained) {
29fac03b 3428 unreserve_highatomic_pageblock(ac, false);
93481ff0 3429 drain_all_pages(NULL);
9ee493ce
MG
3430 drained = true;
3431 goto retry;
3432 }
3433
11e33f6a
MG
3434 return page;
3435}
3436
a9263751 3437static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3438{
3439 struct zoneref *z;
3440 struct zone *zone;
e1a55637 3441 pg_data_t *last_pgdat = NULL;
3a025760 3442
a9263751 3443 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3444 ac->high_zoneidx, ac->nodemask) {
3445 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3446 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3447 last_pgdat = zone->zone_pgdat;
3448 }
3a025760
JW
3449}
3450
c603844b 3451static inline unsigned int
341ce06f
PZ
3452gfp_to_alloc_flags(gfp_t gfp_mask)
3453{
c603844b 3454 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3455
a56f57ff 3456 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3457 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3458
341ce06f
PZ
3459 /*
3460 * The caller may dip into page reserves a bit more if the caller
3461 * cannot run direct reclaim, or if the caller has realtime scheduling
3462 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3463 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3464 */
e6223a3b 3465 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3466
d0164adc 3467 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3468 /*
b104a35d
DR
3469 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3470 * if it can't schedule.
5c3240d9 3471 */
b104a35d 3472 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3473 alloc_flags |= ALLOC_HARDER;
523b9458 3474 /*
b104a35d 3475 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3476 * comment for __cpuset_node_allowed().
523b9458 3477 */
341ce06f 3478 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3479 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3480 alloc_flags |= ALLOC_HARDER;
3481
d95ea5d1 3482#ifdef CONFIG_CMA
43e7a34d 3483 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3484 alloc_flags |= ALLOC_CMA;
3485#endif
341ce06f
PZ
3486 return alloc_flags;
3487}
3488
072bb0aa
MG
3489bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3490{
31a6c190
VB
3491 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3492 return false;
3493
3494 if (gfp_mask & __GFP_MEMALLOC)
3495 return true;
3496 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3497 return true;
3498 if (!in_interrupt() &&
3499 ((current->flags & PF_MEMALLOC) ||
3500 unlikely(test_thread_flag(TIF_MEMDIE))))
3501 return true;
3502
3503 return false;
072bb0aa
MG
3504}
3505
0a0337e0
MH
3506/*
3507 * Checks whether it makes sense to retry the reclaim to make a forward progress
3508 * for the given allocation request.
491d79ae
JW
3509 *
3510 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3511 * without success, or when we couldn't even meet the watermark if we
3512 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3513 *
3514 * Returns true if a retry is viable or false to enter the oom path.
3515 */
3516static inline bool
3517should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3518 struct alloc_context *ac, int alloc_flags,
423b452e 3519 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3520{
3521 struct zone *zone;
3522 struct zoneref *z;
3523
423b452e
VB
3524 /*
3525 * Costly allocations might have made a progress but this doesn't mean
3526 * their order will become available due to high fragmentation so
3527 * always increment the no progress counter for them
3528 */
3529 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3530 *no_progress_loops = 0;
3531 else
3532 (*no_progress_loops)++;
3533
0a0337e0
MH
3534 /*
3535 * Make sure we converge to OOM if we cannot make any progress
3536 * several times in the row.
3537 */
04c8716f
MK
3538 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3539 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3540 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3541 }
0a0337e0 3542
bca67592
MG
3543 /*
3544 * Keep reclaiming pages while there is a chance this will lead
3545 * somewhere. If none of the target zones can satisfy our allocation
3546 * request even if all reclaimable pages are considered then we are
3547 * screwed and have to go OOM.
0a0337e0
MH
3548 */
3549 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3550 ac->nodemask) {
3551 unsigned long available;
ede37713 3552 unsigned long reclaimable;
d379f01d
MH
3553 unsigned long min_wmark = min_wmark_pages(zone);
3554 bool wmark;
0a0337e0 3555
5a1c84b4 3556 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3557 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3558
3559 /*
491d79ae
JW
3560 * Would the allocation succeed if we reclaimed all
3561 * reclaimable pages?
0a0337e0 3562 */
d379f01d
MH
3563 wmark = __zone_watermark_ok(zone, order, min_wmark,
3564 ac_classzone_idx(ac), alloc_flags, available);
3565 trace_reclaim_retry_zone(z, order, reclaimable,
3566 available, min_wmark, *no_progress_loops, wmark);
3567 if (wmark) {
ede37713
MH
3568 /*
3569 * If we didn't make any progress and have a lot of
3570 * dirty + writeback pages then we should wait for
3571 * an IO to complete to slow down the reclaim and
3572 * prevent from pre mature OOM
3573 */
3574 if (!did_some_progress) {
11fb9989 3575 unsigned long write_pending;
ede37713 3576
5a1c84b4
MG
3577 write_pending = zone_page_state_snapshot(zone,
3578 NR_ZONE_WRITE_PENDING);
ede37713 3579
11fb9989 3580 if (2 * write_pending > reclaimable) {
ede37713
MH
3581 congestion_wait(BLK_RW_ASYNC, HZ/10);
3582 return true;
3583 }
3584 }
5a1c84b4 3585
ede37713
MH
3586 /*
3587 * Memory allocation/reclaim might be called from a WQ
3588 * context and the current implementation of the WQ
3589 * concurrency control doesn't recognize that
3590 * a particular WQ is congested if the worker thread is
3591 * looping without ever sleeping. Therefore we have to
3592 * do a short sleep here rather than calling
3593 * cond_resched().
3594 */
3595 if (current->flags & PF_WQ_WORKER)
3596 schedule_timeout_uninterruptible(1);
3597 else
3598 cond_resched();
3599
0a0337e0
MH
3600 return true;
3601 }
3602 }
3603
3604 return false;
3605}
3606
11e33f6a
MG
3607static inline struct page *
3608__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3609 struct alloc_context *ac)
11e33f6a 3610{
d0164adc 3611 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3612 struct page *page = NULL;
c603844b 3613 unsigned int alloc_flags;
11e33f6a 3614 unsigned long did_some_progress;
5ce9bfef 3615 enum compact_priority compact_priority;
c5d01d0d 3616 enum compact_result compact_result;
5ce9bfef
VB
3617 int compaction_retries;
3618 int no_progress_loops;
63f53dea
MH
3619 unsigned long alloc_start = jiffies;
3620 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3621 unsigned int cpuset_mems_cookie;
1da177e4 3622
72807a74
MG
3623 /*
3624 * In the slowpath, we sanity check order to avoid ever trying to
3625 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3626 * be using allocators in order of preference for an area that is
3627 * too large.
3628 */
1fc28b70
MG
3629 if (order >= MAX_ORDER) {
3630 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3631 return NULL;
1fc28b70 3632 }
1da177e4 3633
d0164adc
MG
3634 /*
3635 * We also sanity check to catch abuse of atomic reserves being used by
3636 * callers that are not in atomic context.
3637 */
3638 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3639 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3640 gfp_mask &= ~__GFP_ATOMIC;
3641
5ce9bfef
VB
3642retry_cpuset:
3643 compaction_retries = 0;
3644 no_progress_loops = 0;
3645 compact_priority = DEF_COMPACT_PRIORITY;
3646 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3647
3648 /*
3649 * The fast path uses conservative alloc_flags to succeed only until
3650 * kswapd needs to be woken up, and to avoid the cost of setting up
3651 * alloc_flags precisely. So we do that now.
3652 */
3653 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3654
e47483bc
VB
3655 /*
3656 * We need to recalculate the starting point for the zonelist iterator
3657 * because we might have used different nodemask in the fast path, or
3658 * there was a cpuset modification and we are retrying - otherwise we
3659 * could end up iterating over non-eligible zones endlessly.
3660 */
3661 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3662 ac->high_zoneidx, ac->nodemask);
3663 if (!ac->preferred_zoneref->zone)
3664 goto nopage;
3665
23771235
VB
3666 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3667 wake_all_kswapds(order, ac);
3668
3669 /*
3670 * The adjusted alloc_flags might result in immediate success, so try
3671 * that first
3672 */
3673 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3674 if (page)
3675 goto got_pg;
3676
a8161d1e
VB
3677 /*
3678 * For costly allocations, try direct compaction first, as it's likely
3679 * that we have enough base pages and don't need to reclaim. Don't try
3680 * that for allocations that are allowed to ignore watermarks, as the
3681 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3682 */
3683 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3684 !gfp_pfmemalloc_allowed(gfp_mask)) {
3685 page = __alloc_pages_direct_compact(gfp_mask, order,
3686 alloc_flags, ac,
a5508cd8 3687 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3688 &compact_result);
3689 if (page)
3690 goto got_pg;
3691
3eb2771b
VB
3692 /*
3693 * Checks for costly allocations with __GFP_NORETRY, which
3694 * includes THP page fault allocations
3695 */
3696 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3697 /*
3698 * If compaction is deferred for high-order allocations,
3699 * it is because sync compaction recently failed. If
3700 * this is the case and the caller requested a THP
3701 * allocation, we do not want to heavily disrupt the
3702 * system, so we fail the allocation instead of entering
3703 * direct reclaim.
3704 */
3705 if (compact_result == COMPACT_DEFERRED)
3706 goto nopage;
3707
a8161d1e 3708 /*
3eb2771b
VB
3709 * Looks like reclaim/compaction is worth trying, but
3710 * sync compaction could be very expensive, so keep
25160354 3711 * using async compaction.
a8161d1e 3712 */
a5508cd8 3713 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3714 }
3715 }
23771235 3716
31a6c190 3717retry:
23771235 3718 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3719 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3720 wake_all_kswapds(order, ac);
3721
23771235
VB
3722 if (gfp_pfmemalloc_allowed(gfp_mask))
3723 alloc_flags = ALLOC_NO_WATERMARKS;
3724
e46e7b77
MG
3725 /*
3726 * Reset the zonelist iterators if memory policies can be ignored.
3727 * These allocations are high priority and system rather than user
3728 * orientated.
3729 */
23771235 3730 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3731 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3732 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3733 ac->high_zoneidx, ac->nodemask);
3734 }
3735
23771235 3736 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3737 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3738 if (page)
3739 goto got_pg;
1da177e4 3740
d0164adc 3741 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3742 if (!can_direct_reclaim)
1da177e4
LT
3743 goto nopage;
3744
9a67f648
MH
3745 /* Make sure we know about allocations which stall for too long */
3746 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 3747 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
3748 "page allocation stalls for %ums, order:%u",
3749 jiffies_to_msecs(jiffies-alloc_start), order);
3750 stall_timeout += 10 * HZ;
33d53103 3751 }
341ce06f 3752
9a67f648
MH
3753 /* Avoid recursion of direct reclaim */
3754 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3755 goto nopage;
3756
a8161d1e
VB
3757 /* Try direct reclaim and then allocating */
3758 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3759 &did_some_progress);
3760 if (page)
3761 goto got_pg;
3762
3763 /* Try direct compaction and then allocating */
a9263751 3764 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3765 compact_priority, &compact_result);
56de7263
MG
3766 if (page)
3767 goto got_pg;
75f30861 3768
9083905a
JW
3769 /* Do not loop if specifically requested */
3770 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3771 goto nopage;
9083905a 3772
0a0337e0
MH
3773 /*
3774 * Do not retry costly high order allocations unless they are
3775 * __GFP_REPEAT
3776 */
3777 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3778 goto nopage;
0a0337e0 3779
0a0337e0 3780 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3781 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3782 goto retry;
3783
33c2d214
MH
3784 /*
3785 * It doesn't make any sense to retry for the compaction if the order-0
3786 * reclaim is not able to make any progress because the current
3787 * implementation of the compaction depends on the sufficient amount
3788 * of free memory (see __compaction_suitable)
3789 */
3790 if (did_some_progress > 0 &&
86a294a8 3791 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3792 compact_result, &compact_priority,
d9436498 3793 &compaction_retries))
33c2d214
MH
3794 goto retry;
3795
e47483bc
VB
3796 /*
3797 * It's possible we raced with cpuset update so the OOM would be
3798 * premature (see below the nopage: label for full explanation).
3799 */
3800 if (read_mems_allowed_retry(cpuset_mems_cookie))
3801 goto retry_cpuset;
3802
9083905a
JW
3803 /* Reclaim has failed us, start killing things */
3804 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3805 if (page)
3806 goto got_pg;
3807
9a67f648
MH
3808 /* Avoid allocations with no watermarks from looping endlessly */
3809 if (test_thread_flag(TIF_MEMDIE))
3810 goto nopage;
3811
9083905a 3812 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3813 if (did_some_progress) {
3814 no_progress_loops = 0;
9083905a 3815 goto retry;
0a0337e0 3816 }
9083905a 3817
1da177e4 3818nopage:
5ce9bfef 3819 /*
e47483bc
VB
3820 * When updating a task's mems_allowed or mempolicy nodemask, it is
3821 * possible to race with parallel threads in such a way that our
3822 * allocation can fail while the mask is being updated. If we are about
3823 * to fail, check if the cpuset changed during allocation and if so,
3824 * retry.
5ce9bfef
VB
3825 */
3826 if (read_mems_allowed_retry(cpuset_mems_cookie))
3827 goto retry_cpuset;
3828
9a67f648
MH
3829 /*
3830 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3831 * we always retry
3832 */
3833 if (gfp_mask & __GFP_NOFAIL) {
3834 /*
3835 * All existing users of the __GFP_NOFAIL are blockable, so warn
3836 * of any new users that actually require GFP_NOWAIT
3837 */
3838 if (WARN_ON_ONCE(!can_direct_reclaim))
3839 goto fail;
3840
3841 /*
3842 * PF_MEMALLOC request from this context is rather bizarre
3843 * because we cannot reclaim anything and only can loop waiting
3844 * for somebody to do a work for us
3845 */
3846 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3847
3848 /*
3849 * non failing costly orders are a hard requirement which we
3850 * are not prepared for much so let's warn about these users
3851 * so that we can identify them and convert them to something
3852 * else.
3853 */
3854 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3855
6c18ba7a
MH
3856 /*
3857 * Help non-failing allocations by giving them access to memory
3858 * reserves but do not use ALLOC_NO_WATERMARKS because this
3859 * could deplete whole memory reserves which would just make
3860 * the situation worse
3861 */
3862 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3863 if (page)
3864 goto got_pg;
3865
9a67f648
MH
3866 cond_resched();
3867 goto retry;
3868 }
3869fail:
a8e99259 3870 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3871 "page allocation failure: order:%u", order);
1da177e4 3872got_pg:
072bb0aa 3873 return page;
1da177e4 3874}
11e33f6a 3875
9cd75558
MG
3876static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3877 struct zonelist *zonelist, nodemask_t *nodemask,
3878 struct alloc_context *ac, gfp_t *alloc_mask,
3879 unsigned int *alloc_flags)
11e33f6a 3880{
9cd75558
MG
3881 ac->high_zoneidx = gfp_zone(gfp_mask);
3882 ac->zonelist = zonelist;
3883 ac->nodemask = nodemask;
3884 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3885
682a3385 3886 if (cpusets_enabled()) {
9cd75558 3887 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
3888 if (!ac->nodemask)
3889 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
3890 else
3891 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
3892 }
3893
11e33f6a
MG
3894 lockdep_trace_alloc(gfp_mask);
3895
d0164adc 3896 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3897
3898 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 3899 return false;
11e33f6a 3900
9cd75558
MG
3901 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3902 *alloc_flags |= ALLOC_CMA;
3903
3904 return true;
3905}
21bb9bd1 3906
9cd75558
MG
3907/* Determine whether to spread dirty pages and what the first usable zone */
3908static inline void finalise_ac(gfp_t gfp_mask,
3909 unsigned int order, struct alloc_context *ac)
3910{
c9ab0c4f 3911 /* Dirty zone balancing only done in the fast path */
9cd75558 3912 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 3913
e46e7b77
MG
3914 /*
3915 * The preferred zone is used for statistics but crucially it is
3916 * also used as the starting point for the zonelist iterator. It
3917 * may get reset for allocations that ignore memory policies.
3918 */
9cd75558
MG
3919 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3920 ac->high_zoneidx, ac->nodemask);
3921}
3922
3923/*
3924 * This is the 'heart' of the zoned buddy allocator.
3925 */
3926struct page *
3927__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3928 struct zonelist *zonelist, nodemask_t *nodemask)
3929{
3930 struct page *page;
3931 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3932 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3933 struct alloc_context ac = { };
3934
3935 gfp_mask &= gfp_allowed_mask;
3936 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3937 return NULL;
3938
3939 finalise_ac(gfp_mask, order, &ac);
5bb1b169 3940
5117f45d 3941 /* First allocation attempt */
a9263751 3942 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3943 if (likely(page))
3944 goto out;
11e33f6a 3945
4fcb0971 3946 /*
7dea19f9
MH
3947 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
3948 * resp. GFP_NOIO which has to be inherited for all allocation requests
3949 * from a particular context which has been marked by
3950 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 3951 */
7dea19f9 3952 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 3953 ac.spread_dirty_pages = false;
23f086f9 3954
4741526b
MG
3955 /*
3956 * Restore the original nodemask if it was potentially replaced with
3957 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3958 */
e47483bc 3959 if (unlikely(ac.nodemask != nodemask))
4741526b 3960 ac.nodemask = nodemask;
16096c25 3961
4fcb0971 3962 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3963
4fcb0971 3964out:
c4159a75
VD
3965 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3966 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3967 __free_pages(page, order);
3968 page = NULL;
4949148a
VD
3969 }
3970
4fcb0971
MG
3971 if (kmemcheck_enabled && page)
3972 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3973
3974 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3975
11e33f6a 3976 return page;
1da177e4 3977}
d239171e 3978EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3979
3980/*
3981 * Common helper functions.
3982 */
920c7a5d 3983unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3984{
945a1113
AM
3985 struct page *page;
3986
3987 /*
3988 * __get_free_pages() returns a 32-bit address, which cannot represent
3989 * a highmem page
3990 */
3991 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3992
1da177e4
LT
3993 page = alloc_pages(gfp_mask, order);
3994 if (!page)
3995 return 0;
3996 return (unsigned long) page_address(page);
3997}
1da177e4
LT
3998EXPORT_SYMBOL(__get_free_pages);
3999
920c7a5d 4000unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4001{
945a1113 4002 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4003}
1da177e4
LT
4004EXPORT_SYMBOL(get_zeroed_page);
4005
920c7a5d 4006void __free_pages(struct page *page, unsigned int order)
1da177e4 4007{
b5810039 4008 if (put_page_testzero(page)) {
1da177e4 4009 if (order == 0)
b745bc85 4010 free_hot_cold_page(page, false);
1da177e4
LT
4011 else
4012 __free_pages_ok(page, order);
4013 }
4014}
4015
4016EXPORT_SYMBOL(__free_pages);
4017
920c7a5d 4018void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4019{
4020 if (addr != 0) {
725d704e 4021 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4022 __free_pages(virt_to_page((void *)addr), order);
4023 }
4024}
4025
4026EXPORT_SYMBOL(free_pages);
4027
b63ae8ca
AD
4028/*
4029 * Page Fragment:
4030 * An arbitrary-length arbitrary-offset area of memory which resides
4031 * within a 0 or higher order page. Multiple fragments within that page
4032 * are individually refcounted, in the page's reference counter.
4033 *
4034 * The page_frag functions below provide a simple allocation framework for
4035 * page fragments. This is used by the network stack and network device
4036 * drivers to provide a backing region of memory for use as either an
4037 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4038 */
2976db80
AD
4039static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4040 gfp_t gfp_mask)
b63ae8ca
AD
4041{
4042 struct page *page = NULL;
4043 gfp_t gfp = gfp_mask;
4044
4045#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4046 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4047 __GFP_NOMEMALLOC;
4048 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4049 PAGE_FRAG_CACHE_MAX_ORDER);
4050 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4051#endif
4052 if (unlikely(!page))
4053 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4054
4055 nc->va = page ? page_address(page) : NULL;
4056
4057 return page;
4058}
4059
2976db80 4060void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4061{
4062 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4063
4064 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4065 unsigned int order = compound_order(page);
4066
44fdffd7
AD
4067 if (order == 0)
4068 free_hot_cold_page(page, false);
4069 else
4070 __free_pages_ok(page, order);
4071 }
4072}
2976db80 4073EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4074
8c2dd3e4
AD
4075void *page_frag_alloc(struct page_frag_cache *nc,
4076 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4077{
4078 unsigned int size = PAGE_SIZE;
4079 struct page *page;
4080 int offset;
4081
4082 if (unlikely(!nc->va)) {
4083refill:
2976db80 4084 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4085 if (!page)
4086 return NULL;
4087
4088#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4089 /* if size can vary use size else just use PAGE_SIZE */
4090 size = nc->size;
4091#endif
4092 /* Even if we own the page, we do not use atomic_set().
4093 * This would break get_page_unless_zero() users.
4094 */
fe896d18 4095 page_ref_add(page, size - 1);
b63ae8ca
AD
4096
4097 /* reset page count bias and offset to start of new frag */
2f064f34 4098 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4099 nc->pagecnt_bias = size;
4100 nc->offset = size;
4101 }
4102
4103 offset = nc->offset - fragsz;
4104 if (unlikely(offset < 0)) {
4105 page = virt_to_page(nc->va);
4106
fe896d18 4107 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4108 goto refill;
4109
4110#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4111 /* if size can vary use size else just use PAGE_SIZE */
4112 size = nc->size;
4113#endif
4114 /* OK, page count is 0, we can safely set it */
fe896d18 4115 set_page_count(page, size);
b63ae8ca
AD
4116
4117 /* reset page count bias and offset to start of new frag */
4118 nc->pagecnt_bias = size;
4119 offset = size - fragsz;
4120 }
4121
4122 nc->pagecnt_bias--;
4123 nc->offset = offset;
4124
4125 return nc->va + offset;
4126}
8c2dd3e4 4127EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4128
4129/*
4130 * Frees a page fragment allocated out of either a compound or order 0 page.
4131 */
8c2dd3e4 4132void page_frag_free(void *addr)
b63ae8ca
AD
4133{
4134 struct page *page = virt_to_head_page(addr);
4135
4136 if (unlikely(put_page_testzero(page)))
4137 __free_pages_ok(page, compound_order(page));
4138}
8c2dd3e4 4139EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4140
d00181b9
KS
4141static void *make_alloc_exact(unsigned long addr, unsigned int order,
4142 size_t size)
ee85c2e1
AK
4143{
4144 if (addr) {
4145 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4146 unsigned long used = addr + PAGE_ALIGN(size);
4147
4148 split_page(virt_to_page((void *)addr), order);
4149 while (used < alloc_end) {
4150 free_page(used);
4151 used += PAGE_SIZE;
4152 }
4153 }
4154 return (void *)addr;
4155}
4156
2be0ffe2
TT
4157/**
4158 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4159 * @size: the number of bytes to allocate
4160 * @gfp_mask: GFP flags for the allocation
4161 *
4162 * This function is similar to alloc_pages(), except that it allocates the
4163 * minimum number of pages to satisfy the request. alloc_pages() can only
4164 * allocate memory in power-of-two pages.
4165 *
4166 * This function is also limited by MAX_ORDER.
4167 *
4168 * Memory allocated by this function must be released by free_pages_exact().
4169 */
4170void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4171{
4172 unsigned int order = get_order(size);
4173 unsigned long addr;
4174
4175 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4176 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4177}
4178EXPORT_SYMBOL(alloc_pages_exact);
4179
ee85c2e1
AK
4180/**
4181 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4182 * pages on a node.
b5e6ab58 4183 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4184 * @size: the number of bytes to allocate
4185 * @gfp_mask: GFP flags for the allocation
4186 *
4187 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4188 * back.
ee85c2e1 4189 */
e1931811 4190void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4191{
d00181b9 4192 unsigned int order = get_order(size);
ee85c2e1
AK
4193 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4194 if (!p)
4195 return NULL;
4196 return make_alloc_exact((unsigned long)page_address(p), order, size);
4197}
ee85c2e1 4198
2be0ffe2
TT
4199/**
4200 * free_pages_exact - release memory allocated via alloc_pages_exact()
4201 * @virt: the value returned by alloc_pages_exact.
4202 * @size: size of allocation, same value as passed to alloc_pages_exact().
4203 *
4204 * Release the memory allocated by a previous call to alloc_pages_exact.
4205 */
4206void free_pages_exact(void *virt, size_t size)
4207{
4208 unsigned long addr = (unsigned long)virt;
4209 unsigned long end = addr + PAGE_ALIGN(size);
4210
4211 while (addr < end) {
4212 free_page(addr);
4213 addr += PAGE_SIZE;
4214 }
4215}
4216EXPORT_SYMBOL(free_pages_exact);
4217
e0fb5815
ZY
4218/**
4219 * nr_free_zone_pages - count number of pages beyond high watermark
4220 * @offset: The zone index of the highest zone
4221 *
4222 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4223 * high watermark within all zones at or below a given zone index. For each
4224 * zone, the number of pages is calculated as:
0e056eb5
MCC
4225 *
4226 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4227 */
ebec3862 4228static unsigned long nr_free_zone_pages(int offset)
1da177e4 4229{
dd1a239f 4230 struct zoneref *z;
54a6eb5c
MG
4231 struct zone *zone;
4232
e310fd43 4233 /* Just pick one node, since fallback list is circular */
ebec3862 4234 unsigned long sum = 0;
1da177e4 4235
0e88460d 4236 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4237
54a6eb5c 4238 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4239 unsigned long size = zone->managed_pages;
41858966 4240 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4241 if (size > high)
4242 sum += size - high;
1da177e4
LT
4243 }
4244
4245 return sum;
4246}
4247
e0fb5815
ZY
4248/**
4249 * nr_free_buffer_pages - count number of pages beyond high watermark
4250 *
4251 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4252 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4253 */
ebec3862 4254unsigned long nr_free_buffer_pages(void)
1da177e4 4255{
af4ca457 4256 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4257}
c2f1a551 4258EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4259
e0fb5815
ZY
4260/**
4261 * nr_free_pagecache_pages - count number of pages beyond high watermark
4262 *
4263 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4264 * high watermark within all zones.
1da177e4 4265 */
ebec3862 4266unsigned long nr_free_pagecache_pages(void)
1da177e4 4267{
2a1e274a 4268 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4269}
08e0f6a9
CL
4270
4271static inline void show_node(struct zone *zone)
1da177e4 4272{
e5adfffc 4273 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4274 printk("Node %d ", zone_to_nid(zone));
1da177e4 4275}
1da177e4 4276
d02bd27b
IR
4277long si_mem_available(void)
4278{
4279 long available;
4280 unsigned long pagecache;
4281 unsigned long wmark_low = 0;
4282 unsigned long pages[NR_LRU_LISTS];
4283 struct zone *zone;
4284 int lru;
4285
4286 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4287 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4288
4289 for_each_zone(zone)
4290 wmark_low += zone->watermark[WMARK_LOW];
4291
4292 /*
4293 * Estimate the amount of memory available for userspace allocations,
4294 * without causing swapping.
4295 */
4296 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4297
4298 /*
4299 * Not all the page cache can be freed, otherwise the system will
4300 * start swapping. Assume at least half of the page cache, or the
4301 * low watermark worth of cache, needs to stay.
4302 */
4303 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4304 pagecache -= min(pagecache / 2, wmark_low);
4305 available += pagecache;
4306
4307 /*
4308 * Part of the reclaimable slab consists of items that are in use,
4309 * and cannot be freed. Cap this estimate at the low watermark.
4310 */
4311 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4312 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4313
4314 if (available < 0)
4315 available = 0;
4316 return available;
4317}
4318EXPORT_SYMBOL_GPL(si_mem_available);
4319
1da177e4
LT
4320void si_meminfo(struct sysinfo *val)
4321{
4322 val->totalram = totalram_pages;
11fb9989 4323 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4324 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4325 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4326 val->totalhigh = totalhigh_pages;
4327 val->freehigh = nr_free_highpages();
1da177e4
LT
4328 val->mem_unit = PAGE_SIZE;
4329}
4330
4331EXPORT_SYMBOL(si_meminfo);
4332
4333#ifdef CONFIG_NUMA
4334void si_meminfo_node(struct sysinfo *val, int nid)
4335{
cdd91a77
JL
4336 int zone_type; /* needs to be signed */
4337 unsigned long managed_pages = 0;
fc2bd799
JK
4338 unsigned long managed_highpages = 0;
4339 unsigned long free_highpages = 0;
1da177e4
LT
4340 pg_data_t *pgdat = NODE_DATA(nid);
4341
cdd91a77
JL
4342 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4343 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4344 val->totalram = managed_pages;
11fb9989 4345 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4346 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4347#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4348 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4349 struct zone *zone = &pgdat->node_zones[zone_type];
4350
4351 if (is_highmem(zone)) {
4352 managed_highpages += zone->managed_pages;
4353 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4354 }
4355 }
4356 val->totalhigh = managed_highpages;
4357 val->freehigh = free_highpages;
98d2b0eb 4358#else
fc2bd799
JK
4359 val->totalhigh = managed_highpages;
4360 val->freehigh = free_highpages;
98d2b0eb 4361#endif
1da177e4
LT
4362 val->mem_unit = PAGE_SIZE;
4363}
4364#endif
4365
ddd588b5 4366/*
7bf02ea2
DR
4367 * Determine whether the node should be displayed or not, depending on whether
4368 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4369 */
9af744d7 4370static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4371{
ddd588b5 4372 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4373 return false;
ddd588b5 4374
9af744d7
MH
4375 /*
4376 * no node mask - aka implicit memory numa policy. Do not bother with
4377 * the synchronization - read_mems_allowed_begin - because we do not
4378 * have to be precise here.
4379 */
4380 if (!nodemask)
4381 nodemask = &cpuset_current_mems_allowed;
4382
4383 return !node_isset(nid, *nodemask);
ddd588b5
DR
4384}
4385
1da177e4
LT
4386#define K(x) ((x) << (PAGE_SHIFT-10))
4387
377e4f16
RV
4388static void show_migration_types(unsigned char type)
4389{
4390 static const char types[MIGRATE_TYPES] = {
4391 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4392 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4393 [MIGRATE_RECLAIMABLE] = 'E',
4394 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4395#ifdef CONFIG_CMA
4396 [MIGRATE_CMA] = 'C',
4397#endif
194159fb 4398#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4399 [MIGRATE_ISOLATE] = 'I',
194159fb 4400#endif
377e4f16
RV
4401 };
4402 char tmp[MIGRATE_TYPES + 1];
4403 char *p = tmp;
4404 int i;
4405
4406 for (i = 0; i < MIGRATE_TYPES; i++) {
4407 if (type & (1 << i))
4408 *p++ = types[i];
4409 }
4410
4411 *p = '\0';
1f84a18f 4412 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4413}
4414
1da177e4
LT
4415/*
4416 * Show free area list (used inside shift_scroll-lock stuff)
4417 * We also calculate the percentage fragmentation. We do this by counting the
4418 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4419 *
4420 * Bits in @filter:
4421 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4422 * cpuset.
1da177e4 4423 */
9af744d7 4424void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4425{
d1bfcdb8 4426 unsigned long free_pcp = 0;
c7241913 4427 int cpu;
1da177e4 4428 struct zone *zone;
599d0c95 4429 pg_data_t *pgdat;
1da177e4 4430
ee99c71c 4431 for_each_populated_zone(zone) {
9af744d7 4432 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4433 continue;
d1bfcdb8 4434
761b0677
KK
4435 for_each_online_cpu(cpu)
4436 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4437 }
4438
a731286d
KM
4439 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4440 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4441 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4442 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4443 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4444 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4445 global_node_page_state(NR_ACTIVE_ANON),
4446 global_node_page_state(NR_INACTIVE_ANON),
4447 global_node_page_state(NR_ISOLATED_ANON),
4448 global_node_page_state(NR_ACTIVE_FILE),
4449 global_node_page_state(NR_INACTIVE_FILE),
4450 global_node_page_state(NR_ISOLATED_FILE),
4451 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4452 global_node_page_state(NR_FILE_DIRTY),
4453 global_node_page_state(NR_WRITEBACK),
4454 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4455 global_page_state(NR_SLAB_RECLAIMABLE),
4456 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4457 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4458 global_node_page_state(NR_SHMEM),
a25700a5 4459 global_page_state(NR_PAGETABLE),
d1ce749a 4460 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4461 global_page_state(NR_FREE_PAGES),
4462 free_pcp,
d1ce749a 4463 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4464
599d0c95 4465 for_each_online_pgdat(pgdat) {
9af744d7 4466 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4467 continue;
4468
599d0c95
MG
4469 printk("Node %d"
4470 " active_anon:%lukB"
4471 " inactive_anon:%lukB"
4472 " active_file:%lukB"
4473 " inactive_file:%lukB"
4474 " unevictable:%lukB"
4475 " isolated(anon):%lukB"
4476 " isolated(file):%lukB"
50658e2e 4477 " mapped:%lukB"
11fb9989
MG
4478 " dirty:%lukB"
4479 " writeback:%lukB"
4480 " shmem:%lukB"
4481#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4482 " shmem_thp: %lukB"
4483 " shmem_pmdmapped: %lukB"
4484 " anon_thp: %lukB"
4485#endif
4486 " writeback_tmp:%lukB"
4487 " unstable:%lukB"
599d0c95
MG
4488 " all_unreclaimable? %s"
4489 "\n",
4490 pgdat->node_id,
4491 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4492 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4493 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4494 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4495 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4496 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4497 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4498 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4499 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4500 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4501 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4502#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4503 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4504 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4505 * HPAGE_PMD_NR),
4506 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4507#endif
11fb9989
MG
4508 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4509 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4510 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4511 "yes" : "no");
599d0c95
MG
4512 }
4513
ee99c71c 4514 for_each_populated_zone(zone) {
1da177e4
LT
4515 int i;
4516
9af744d7 4517 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4518 continue;
d1bfcdb8
KK
4519
4520 free_pcp = 0;
4521 for_each_online_cpu(cpu)
4522 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4523
1da177e4 4524 show_node(zone);
1f84a18f
JP
4525 printk(KERN_CONT
4526 "%s"
1da177e4
LT
4527 " free:%lukB"
4528 " min:%lukB"
4529 " low:%lukB"
4530 " high:%lukB"
71c799f4
MK
4531 " active_anon:%lukB"
4532 " inactive_anon:%lukB"
4533 " active_file:%lukB"
4534 " inactive_file:%lukB"
4535 " unevictable:%lukB"
5a1c84b4 4536 " writepending:%lukB"
1da177e4 4537 " present:%lukB"
9feedc9d 4538 " managed:%lukB"
4a0aa73f 4539 " mlocked:%lukB"
4a0aa73f
KM
4540 " slab_reclaimable:%lukB"
4541 " slab_unreclaimable:%lukB"
c6a7f572 4542 " kernel_stack:%lukB"
4a0aa73f 4543 " pagetables:%lukB"
4a0aa73f 4544 " bounce:%lukB"
d1bfcdb8
KK
4545 " free_pcp:%lukB"
4546 " local_pcp:%ukB"
d1ce749a 4547 " free_cma:%lukB"
1da177e4
LT
4548 "\n",
4549 zone->name,
88f5acf8 4550 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4551 K(min_wmark_pages(zone)),
4552 K(low_wmark_pages(zone)),
4553 K(high_wmark_pages(zone)),
71c799f4
MK
4554 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4555 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4556 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4557 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4558 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4559 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4560 K(zone->present_pages),
9feedc9d 4561 K(zone->managed_pages),
4a0aa73f 4562 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4563 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4564 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4565 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4566 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4567 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4568 K(free_pcp),
4569 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4570 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4571 printk("lowmem_reserve[]:");
4572 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4573 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4574 printk(KERN_CONT "\n");
1da177e4
LT
4575 }
4576
ee99c71c 4577 for_each_populated_zone(zone) {
d00181b9
KS
4578 unsigned int order;
4579 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4580 unsigned char types[MAX_ORDER];
1da177e4 4581
9af744d7 4582 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4583 continue;
1da177e4 4584 show_node(zone);
1f84a18f 4585 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4586
4587 spin_lock_irqsave(&zone->lock, flags);
4588 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4589 struct free_area *area = &zone->free_area[order];
4590 int type;
4591
4592 nr[order] = area->nr_free;
8f9de51a 4593 total += nr[order] << order;
377e4f16
RV
4594
4595 types[order] = 0;
4596 for (type = 0; type < MIGRATE_TYPES; type++) {
4597 if (!list_empty(&area->free_list[type]))
4598 types[order] |= 1 << type;
4599 }
1da177e4
LT
4600 }
4601 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4602 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4603 printk(KERN_CONT "%lu*%lukB ",
4604 nr[order], K(1UL) << order);
377e4f16
RV
4605 if (nr[order])
4606 show_migration_types(types[order]);
4607 }
1f84a18f 4608 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4609 }
4610
949f7ec5
DR
4611 hugetlb_show_meminfo();
4612
11fb9989 4613 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4614
1da177e4
LT
4615 show_swap_cache_info();
4616}
4617
19770b32
MG
4618static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4619{
4620 zoneref->zone = zone;
4621 zoneref->zone_idx = zone_idx(zone);
4622}
4623
1da177e4
LT
4624/*
4625 * Builds allocation fallback zone lists.
1a93205b
CL
4626 *
4627 * Add all populated zones of a node to the zonelist.
1da177e4 4628 */
f0c0b2b8 4629static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4630 int nr_zones)
1da177e4 4631{
1a93205b 4632 struct zone *zone;
bc732f1d 4633 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4634
4635 do {
2f6726e5 4636 zone_type--;
070f8032 4637 zone = pgdat->node_zones + zone_type;
6aa303de 4638 if (managed_zone(zone)) {
dd1a239f
MG
4639 zoneref_set_zone(zone,
4640 &zonelist->_zonerefs[nr_zones++]);
070f8032 4641 check_highest_zone(zone_type);
1da177e4 4642 }
2f6726e5 4643 } while (zone_type);
bc732f1d 4644
070f8032 4645 return nr_zones;
1da177e4
LT
4646}
4647
f0c0b2b8
KH
4648
4649/*
4650 * zonelist_order:
4651 * 0 = automatic detection of better ordering.
4652 * 1 = order by ([node] distance, -zonetype)
4653 * 2 = order by (-zonetype, [node] distance)
4654 *
4655 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4656 * the same zonelist. So only NUMA can configure this param.
4657 */
4658#define ZONELIST_ORDER_DEFAULT 0
4659#define ZONELIST_ORDER_NODE 1
4660#define ZONELIST_ORDER_ZONE 2
4661
4662/* zonelist order in the kernel.
4663 * set_zonelist_order() will set this to NODE or ZONE.
4664 */
4665static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4666static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4667
4668
1da177e4 4669#ifdef CONFIG_NUMA
f0c0b2b8
KH
4670/* The value user specified ....changed by config */
4671static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4672/* string for sysctl */
4673#define NUMA_ZONELIST_ORDER_LEN 16
4674char numa_zonelist_order[16] = "default";
4675
4676/*
4677 * interface for configure zonelist ordering.
4678 * command line option "numa_zonelist_order"
4679 * = "[dD]efault - default, automatic configuration.
4680 * = "[nN]ode - order by node locality, then by zone within node
4681 * = "[zZ]one - order by zone, then by locality within zone
4682 */
4683
4684static int __parse_numa_zonelist_order(char *s)
4685{
4686 if (*s == 'd' || *s == 'D') {
4687 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4688 } else if (*s == 'n' || *s == 'N') {
4689 user_zonelist_order = ZONELIST_ORDER_NODE;
4690 } else if (*s == 'z' || *s == 'Z') {
4691 user_zonelist_order = ZONELIST_ORDER_ZONE;
4692 } else {
1170532b 4693 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4694 return -EINVAL;
4695 }
4696 return 0;
4697}
4698
4699static __init int setup_numa_zonelist_order(char *s)
4700{
ecb256f8
VL
4701 int ret;
4702
4703 if (!s)
4704 return 0;
4705
4706 ret = __parse_numa_zonelist_order(s);
4707 if (ret == 0)
4708 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4709
4710 return ret;
f0c0b2b8
KH
4711}
4712early_param("numa_zonelist_order", setup_numa_zonelist_order);
4713
4714/*
4715 * sysctl handler for numa_zonelist_order
4716 */
cccad5b9 4717int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4718 void __user *buffer, size_t *length,
f0c0b2b8
KH
4719 loff_t *ppos)
4720{
4721 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4722 int ret;
443c6f14 4723 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4724
443c6f14 4725 mutex_lock(&zl_order_mutex);
dacbde09
CG
4726 if (write) {
4727 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4728 ret = -EINVAL;
4729 goto out;
4730 }
4731 strcpy(saved_string, (char *)table->data);
4732 }
8d65af78 4733 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4734 if (ret)
443c6f14 4735 goto out;
f0c0b2b8
KH
4736 if (write) {
4737 int oldval = user_zonelist_order;
dacbde09
CG
4738
4739 ret = __parse_numa_zonelist_order((char *)table->data);
4740 if (ret) {
f0c0b2b8
KH
4741 /*
4742 * bogus value. restore saved string
4743 */
dacbde09 4744 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4745 NUMA_ZONELIST_ORDER_LEN);
4746 user_zonelist_order = oldval;
4eaf3f64
HL
4747 } else if (oldval != user_zonelist_order) {
4748 mutex_lock(&zonelists_mutex);
9adb62a5 4749 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4750 mutex_unlock(&zonelists_mutex);
4751 }
f0c0b2b8 4752 }
443c6f14
AK
4753out:
4754 mutex_unlock(&zl_order_mutex);
4755 return ret;
f0c0b2b8
KH
4756}
4757
4758
62bc62a8 4759#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4760static int node_load[MAX_NUMNODES];
4761
1da177e4 4762/**
4dc3b16b 4763 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4764 * @node: node whose fallback list we're appending
4765 * @used_node_mask: nodemask_t of already used nodes
4766 *
4767 * We use a number of factors to determine which is the next node that should
4768 * appear on a given node's fallback list. The node should not have appeared
4769 * already in @node's fallback list, and it should be the next closest node
4770 * according to the distance array (which contains arbitrary distance values
4771 * from each node to each node in the system), and should also prefer nodes
4772 * with no CPUs, since presumably they'll have very little allocation pressure
4773 * on them otherwise.
4774 * It returns -1 if no node is found.
4775 */
f0c0b2b8 4776static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4777{
4cf808eb 4778 int n, val;
1da177e4 4779 int min_val = INT_MAX;
00ef2d2f 4780 int best_node = NUMA_NO_NODE;
a70f7302 4781 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4782
4cf808eb
LT
4783 /* Use the local node if we haven't already */
4784 if (!node_isset(node, *used_node_mask)) {
4785 node_set(node, *used_node_mask);
4786 return node;
4787 }
1da177e4 4788
4b0ef1fe 4789 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4790
4791 /* Don't want a node to appear more than once */
4792 if (node_isset(n, *used_node_mask))
4793 continue;
4794
1da177e4
LT
4795 /* Use the distance array to find the distance */
4796 val = node_distance(node, n);
4797
4cf808eb
LT
4798 /* Penalize nodes under us ("prefer the next node") */
4799 val += (n < node);
4800
1da177e4 4801 /* Give preference to headless and unused nodes */
a70f7302
RR
4802 tmp = cpumask_of_node(n);
4803 if (!cpumask_empty(tmp))
1da177e4
LT
4804 val += PENALTY_FOR_NODE_WITH_CPUS;
4805
4806 /* Slight preference for less loaded node */
4807 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4808 val += node_load[n];
4809
4810 if (val < min_val) {
4811 min_val = val;
4812 best_node = n;
4813 }
4814 }
4815
4816 if (best_node >= 0)
4817 node_set(best_node, *used_node_mask);
4818
4819 return best_node;
4820}
4821
f0c0b2b8
KH
4822
4823/*
4824 * Build zonelists ordered by node and zones within node.
4825 * This results in maximum locality--normal zone overflows into local
4826 * DMA zone, if any--but risks exhausting DMA zone.
4827 */
4828static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4829{
f0c0b2b8 4830 int j;
1da177e4 4831 struct zonelist *zonelist;
f0c0b2b8 4832
c9634cf0 4833 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4834 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4835 ;
bc732f1d 4836 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4837 zonelist->_zonerefs[j].zone = NULL;
4838 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4839}
4840
523b9458
CL
4841/*
4842 * Build gfp_thisnode zonelists
4843 */
4844static void build_thisnode_zonelists(pg_data_t *pgdat)
4845{
523b9458
CL
4846 int j;
4847 struct zonelist *zonelist;
4848
c9634cf0 4849 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4850 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4851 zonelist->_zonerefs[j].zone = NULL;
4852 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4853}
4854
f0c0b2b8
KH
4855/*
4856 * Build zonelists ordered by zone and nodes within zones.
4857 * This results in conserving DMA zone[s] until all Normal memory is
4858 * exhausted, but results in overflowing to remote node while memory
4859 * may still exist in local DMA zone.
4860 */
4861static int node_order[MAX_NUMNODES];
4862
4863static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4864{
f0c0b2b8
KH
4865 int pos, j, node;
4866 int zone_type; /* needs to be signed */
4867 struct zone *z;
4868 struct zonelist *zonelist;
4869
c9634cf0 4870 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4871 pos = 0;
4872 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4873 for (j = 0; j < nr_nodes; j++) {
4874 node = node_order[j];
4875 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4876 if (managed_zone(z)) {
dd1a239f
MG
4877 zoneref_set_zone(z,
4878 &zonelist->_zonerefs[pos++]);
54a6eb5c 4879 check_highest_zone(zone_type);
f0c0b2b8
KH
4880 }
4881 }
f0c0b2b8 4882 }
dd1a239f
MG
4883 zonelist->_zonerefs[pos].zone = NULL;
4884 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4885}
4886
3193913c
MG
4887#if defined(CONFIG_64BIT)
4888/*
4889 * Devices that require DMA32/DMA are relatively rare and do not justify a
4890 * penalty to every machine in case the specialised case applies. Default
4891 * to Node-ordering on 64-bit NUMA machines
4892 */
4893static int default_zonelist_order(void)
4894{
4895 return ZONELIST_ORDER_NODE;
4896}
4897#else
4898/*
4899 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4900 * by the kernel. If processes running on node 0 deplete the low memory zone
4901 * then reclaim will occur more frequency increasing stalls and potentially
4902 * be easier to OOM if a large percentage of the zone is under writeback or
4903 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4904 * Hence, default to zone ordering on 32-bit.
4905 */
f0c0b2b8
KH
4906static int default_zonelist_order(void)
4907{
f0c0b2b8
KH
4908 return ZONELIST_ORDER_ZONE;
4909}
3193913c 4910#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4911
4912static void set_zonelist_order(void)
4913{
4914 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4915 current_zonelist_order = default_zonelist_order();
4916 else
4917 current_zonelist_order = user_zonelist_order;
4918}
4919
4920static void build_zonelists(pg_data_t *pgdat)
4921{
c00eb15a 4922 int i, node, load;
1da177e4 4923 nodemask_t used_mask;
f0c0b2b8
KH
4924 int local_node, prev_node;
4925 struct zonelist *zonelist;
d00181b9 4926 unsigned int order = current_zonelist_order;
1da177e4
LT
4927
4928 /* initialize zonelists */
523b9458 4929 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4930 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4931 zonelist->_zonerefs[0].zone = NULL;
4932 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4933 }
4934
4935 /* NUMA-aware ordering of nodes */
4936 local_node = pgdat->node_id;
62bc62a8 4937 load = nr_online_nodes;
1da177e4
LT
4938 prev_node = local_node;
4939 nodes_clear(used_mask);
f0c0b2b8 4940
f0c0b2b8 4941 memset(node_order, 0, sizeof(node_order));
c00eb15a 4942 i = 0;
f0c0b2b8 4943
1da177e4
LT
4944 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4945 /*
4946 * We don't want to pressure a particular node.
4947 * So adding penalty to the first node in same
4948 * distance group to make it round-robin.
4949 */
957f822a
DR
4950 if (node_distance(local_node, node) !=
4951 node_distance(local_node, prev_node))
f0c0b2b8
KH
4952 node_load[node] = load;
4953
1da177e4
LT
4954 prev_node = node;
4955 load--;
f0c0b2b8
KH
4956 if (order == ZONELIST_ORDER_NODE)
4957 build_zonelists_in_node_order(pgdat, node);
4958 else
c00eb15a 4959 node_order[i++] = node; /* remember order */
f0c0b2b8 4960 }
1da177e4 4961
f0c0b2b8
KH
4962 if (order == ZONELIST_ORDER_ZONE) {
4963 /* calculate node order -- i.e., DMA last! */
c00eb15a 4964 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4965 }
523b9458
CL
4966
4967 build_thisnode_zonelists(pgdat);
1da177e4
LT
4968}
4969
7aac7898
LS
4970#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4971/*
4972 * Return node id of node used for "local" allocations.
4973 * I.e., first node id of first zone in arg node's generic zonelist.
4974 * Used for initializing percpu 'numa_mem', which is used primarily
4975 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4976 */
4977int local_memory_node(int node)
4978{
c33d6c06 4979 struct zoneref *z;
7aac7898 4980
c33d6c06 4981 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4982 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4983 NULL);
4984 return z->zone->node;
7aac7898
LS
4985}
4986#endif
f0c0b2b8 4987
6423aa81
JK
4988static void setup_min_unmapped_ratio(void);
4989static void setup_min_slab_ratio(void);
1da177e4
LT
4990#else /* CONFIG_NUMA */
4991
f0c0b2b8
KH
4992static void set_zonelist_order(void)
4993{
4994 current_zonelist_order = ZONELIST_ORDER_ZONE;
4995}
4996
4997static void build_zonelists(pg_data_t *pgdat)
1da177e4 4998{
19655d34 4999 int node, local_node;
54a6eb5c
MG
5000 enum zone_type j;
5001 struct zonelist *zonelist;
1da177e4
LT
5002
5003 local_node = pgdat->node_id;
1da177e4 5004
c9634cf0 5005 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5006 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5007
54a6eb5c
MG
5008 /*
5009 * Now we build the zonelist so that it contains the zones
5010 * of all the other nodes.
5011 * We don't want to pressure a particular node, so when
5012 * building the zones for node N, we make sure that the
5013 * zones coming right after the local ones are those from
5014 * node N+1 (modulo N)
5015 */
5016 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5017 if (!node_online(node))
5018 continue;
bc732f1d 5019 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5020 }
54a6eb5c
MG
5021 for (node = 0; node < local_node; node++) {
5022 if (!node_online(node))
5023 continue;
bc732f1d 5024 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5025 }
5026
dd1a239f
MG
5027 zonelist->_zonerefs[j].zone = NULL;
5028 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5029}
5030
5031#endif /* CONFIG_NUMA */
5032
99dcc3e5
CL
5033/*
5034 * Boot pageset table. One per cpu which is going to be used for all
5035 * zones and all nodes. The parameters will be set in such a way
5036 * that an item put on a list will immediately be handed over to
5037 * the buddy list. This is safe since pageset manipulation is done
5038 * with interrupts disabled.
5039 *
5040 * The boot_pagesets must be kept even after bootup is complete for
5041 * unused processors and/or zones. They do play a role for bootstrapping
5042 * hotplugged processors.
5043 *
5044 * zoneinfo_show() and maybe other functions do
5045 * not check if the processor is online before following the pageset pointer.
5046 * Other parts of the kernel may not check if the zone is available.
5047 */
5048static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5049static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5050static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5051
4eaf3f64
HL
5052/*
5053 * Global mutex to protect against size modification of zonelists
5054 * as well as to serialize pageset setup for the new populated zone.
5055 */
5056DEFINE_MUTEX(zonelists_mutex);
5057
9b1a4d38 5058/* return values int ....just for stop_machine() */
4ed7e022 5059static int __build_all_zonelists(void *data)
1da177e4 5060{
6811378e 5061 int nid;
99dcc3e5 5062 int cpu;
9adb62a5 5063 pg_data_t *self = data;
9276b1bc 5064
7f9cfb31
BL
5065#ifdef CONFIG_NUMA
5066 memset(node_load, 0, sizeof(node_load));
5067#endif
9adb62a5
JL
5068
5069 if (self && !node_online(self->node_id)) {
5070 build_zonelists(self);
9adb62a5
JL
5071 }
5072
9276b1bc 5073 for_each_online_node(nid) {
7ea1530a
CL
5074 pg_data_t *pgdat = NODE_DATA(nid);
5075
5076 build_zonelists(pgdat);
9276b1bc 5077 }
99dcc3e5
CL
5078
5079 /*
5080 * Initialize the boot_pagesets that are going to be used
5081 * for bootstrapping processors. The real pagesets for
5082 * each zone will be allocated later when the per cpu
5083 * allocator is available.
5084 *
5085 * boot_pagesets are used also for bootstrapping offline
5086 * cpus if the system is already booted because the pagesets
5087 * are needed to initialize allocators on a specific cpu too.
5088 * F.e. the percpu allocator needs the page allocator which
5089 * needs the percpu allocator in order to allocate its pagesets
5090 * (a chicken-egg dilemma).
5091 */
7aac7898 5092 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5093 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5094
7aac7898
LS
5095#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5096 /*
5097 * We now know the "local memory node" for each node--
5098 * i.e., the node of the first zone in the generic zonelist.
5099 * Set up numa_mem percpu variable for on-line cpus. During
5100 * boot, only the boot cpu should be on-line; we'll init the
5101 * secondary cpus' numa_mem as they come on-line. During
5102 * node/memory hotplug, we'll fixup all on-line cpus.
5103 */
5104 if (cpu_online(cpu))
5105 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5106#endif
5107 }
5108
6811378e
YG
5109 return 0;
5110}
5111
061f67bc
RV
5112static noinline void __init
5113build_all_zonelists_init(void)
5114{
5115 __build_all_zonelists(NULL);
5116 mminit_verify_zonelist();
5117 cpuset_init_current_mems_allowed();
5118}
5119
4eaf3f64
HL
5120/*
5121 * Called with zonelists_mutex held always
5122 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5123 *
5124 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5125 * [we're only called with non-NULL zone through __meminit paths] and
5126 * (2) call of __init annotated helper build_all_zonelists_init
5127 * [protected by SYSTEM_BOOTING].
4eaf3f64 5128 */
9adb62a5 5129void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5130{
f0c0b2b8
KH
5131 set_zonelist_order();
5132
6811378e 5133 if (system_state == SYSTEM_BOOTING) {
061f67bc 5134 build_all_zonelists_init();
6811378e 5135 } else {
e9959f0f 5136#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5137 if (zone)
5138 setup_zone_pageset(zone);
e9959f0f 5139#endif
dd1895e2
CS
5140 /* we have to stop all cpus to guarantee there is no user
5141 of zonelist */
9adb62a5 5142 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5143 /* cpuset refresh routine should be here */
5144 }
bd1e22b8 5145 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5146 /*
5147 * Disable grouping by mobility if the number of pages in the
5148 * system is too low to allow the mechanism to work. It would be
5149 * more accurate, but expensive to check per-zone. This check is
5150 * made on memory-hotadd so a system can start with mobility
5151 * disabled and enable it later
5152 */
d9c23400 5153 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5154 page_group_by_mobility_disabled = 1;
5155 else
5156 page_group_by_mobility_disabled = 0;
5157
756a025f
JP
5158 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5159 nr_online_nodes,
5160 zonelist_order_name[current_zonelist_order],
5161 page_group_by_mobility_disabled ? "off" : "on",
5162 vm_total_pages);
f0c0b2b8 5163#ifdef CONFIG_NUMA
f88dfff5 5164 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5165#endif
1da177e4
LT
5166}
5167
1da177e4
LT
5168/*
5169 * Initially all pages are reserved - free ones are freed
5170 * up by free_all_bootmem() once the early boot process is
5171 * done. Non-atomic initialization, single-pass.
5172 */
c09b4240 5173void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5174 unsigned long start_pfn, enum memmap_context context)
1da177e4 5175{
4b94ffdc 5176 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5177 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5178 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5179 unsigned long pfn;
3a80a7fa 5180 unsigned long nr_initialised = 0;
342332e6
TI
5181#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5182 struct memblock_region *r = NULL, *tmp;
5183#endif
1da177e4 5184
22b31eec
HD
5185 if (highest_memmap_pfn < end_pfn - 1)
5186 highest_memmap_pfn = end_pfn - 1;
5187
4b94ffdc
DW
5188 /*
5189 * Honor reservation requested by the driver for this ZONE_DEVICE
5190 * memory
5191 */
5192 if (altmap && start_pfn == altmap->base_pfn)
5193 start_pfn += altmap->reserve;
5194
cbe8dd4a 5195 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5196 /*
b72d0ffb
AM
5197 * There can be holes in boot-time mem_map[]s handed to this
5198 * function. They do not exist on hotplugged memory.
a2f3aa02 5199 */
b72d0ffb
AM
5200 if (context != MEMMAP_EARLY)
5201 goto not_early;
5202
b92df1de
PB
5203 if (!early_pfn_valid(pfn)) {
5204#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5205 /*
5206 * Skip to the pfn preceding the next valid one (or
5207 * end_pfn), such that we hit a valid pfn (or end_pfn)
5208 * on our next iteration of the loop.
5209 */
5210 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5211#endif
b72d0ffb 5212 continue;
b92df1de 5213 }
b72d0ffb
AM
5214 if (!early_pfn_in_nid(pfn, nid))
5215 continue;
5216 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5217 break;
342332e6
TI
5218
5219#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5220 /*
5221 * Check given memblock attribute by firmware which can affect
5222 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5223 * mirrored, it's an overlapped memmap init. skip it.
5224 */
5225 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5226 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5227 for_each_memblock(memory, tmp)
5228 if (pfn < memblock_region_memory_end_pfn(tmp))
5229 break;
5230 r = tmp;
5231 }
5232 if (pfn >= memblock_region_memory_base_pfn(r) &&
5233 memblock_is_mirror(r)) {
5234 /* already initialized as NORMAL */
5235 pfn = memblock_region_memory_end_pfn(r);
5236 continue;
342332e6 5237 }
a2f3aa02 5238 }
b72d0ffb 5239#endif
ac5d2539 5240
b72d0ffb 5241not_early:
ac5d2539
MG
5242 /*
5243 * Mark the block movable so that blocks are reserved for
5244 * movable at startup. This will force kernel allocations
5245 * to reserve their blocks rather than leaking throughout
5246 * the address space during boot when many long-lived
974a786e 5247 * kernel allocations are made.
ac5d2539
MG
5248 *
5249 * bitmap is created for zone's valid pfn range. but memmap
5250 * can be created for invalid pages (for alignment)
5251 * check here not to call set_pageblock_migratetype() against
5252 * pfn out of zone.
5253 */
5254 if (!(pfn & (pageblock_nr_pages - 1))) {
5255 struct page *page = pfn_to_page(pfn);
5256
5257 __init_single_page(page, pfn, zone, nid);
5258 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5259 } else {
5260 __init_single_pfn(pfn, zone, nid);
5261 }
1da177e4
LT
5262 }
5263}
5264
1e548deb 5265static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5266{
7aeb09f9 5267 unsigned int order, t;
b2a0ac88
MG
5268 for_each_migratetype_order(order, t) {
5269 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5270 zone->free_area[order].nr_free = 0;
5271 }
5272}
5273
5274#ifndef __HAVE_ARCH_MEMMAP_INIT
5275#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5276 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5277#endif
5278
7cd2b0a3 5279static int zone_batchsize(struct zone *zone)
e7c8d5c9 5280{
3a6be87f 5281#ifdef CONFIG_MMU
e7c8d5c9
CL
5282 int batch;
5283
5284 /*
5285 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5286 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5287 *
5288 * OK, so we don't know how big the cache is. So guess.
5289 */
b40da049 5290 batch = zone->managed_pages / 1024;
ba56e91c
SR
5291 if (batch * PAGE_SIZE > 512 * 1024)
5292 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5293 batch /= 4; /* We effectively *= 4 below */
5294 if (batch < 1)
5295 batch = 1;
5296
5297 /*
0ceaacc9
NP
5298 * Clamp the batch to a 2^n - 1 value. Having a power
5299 * of 2 value was found to be more likely to have
5300 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5301 *
0ceaacc9
NP
5302 * For example if 2 tasks are alternately allocating
5303 * batches of pages, one task can end up with a lot
5304 * of pages of one half of the possible page colors
5305 * and the other with pages of the other colors.
e7c8d5c9 5306 */
9155203a 5307 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5308
e7c8d5c9 5309 return batch;
3a6be87f
DH
5310
5311#else
5312 /* The deferral and batching of frees should be suppressed under NOMMU
5313 * conditions.
5314 *
5315 * The problem is that NOMMU needs to be able to allocate large chunks
5316 * of contiguous memory as there's no hardware page translation to
5317 * assemble apparent contiguous memory from discontiguous pages.
5318 *
5319 * Queueing large contiguous runs of pages for batching, however,
5320 * causes the pages to actually be freed in smaller chunks. As there
5321 * can be a significant delay between the individual batches being
5322 * recycled, this leads to the once large chunks of space being
5323 * fragmented and becoming unavailable for high-order allocations.
5324 */
5325 return 0;
5326#endif
e7c8d5c9
CL
5327}
5328
8d7a8fa9
CS
5329/*
5330 * pcp->high and pcp->batch values are related and dependent on one another:
5331 * ->batch must never be higher then ->high.
5332 * The following function updates them in a safe manner without read side
5333 * locking.
5334 *
5335 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5336 * those fields changing asynchronously (acording the the above rule).
5337 *
5338 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5339 * outside of boot time (or some other assurance that no concurrent updaters
5340 * exist).
5341 */
5342static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5343 unsigned long batch)
5344{
5345 /* start with a fail safe value for batch */
5346 pcp->batch = 1;
5347 smp_wmb();
5348
5349 /* Update high, then batch, in order */
5350 pcp->high = high;
5351 smp_wmb();
5352
5353 pcp->batch = batch;
5354}
5355
3664033c 5356/* a companion to pageset_set_high() */
4008bab7
CS
5357static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5358{
8d7a8fa9 5359 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5360}
5361
88c90dbc 5362static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5363{
5364 struct per_cpu_pages *pcp;
5f8dcc21 5365 int migratetype;
2caaad41 5366
1c6fe946
MD
5367 memset(p, 0, sizeof(*p));
5368
3dfa5721 5369 pcp = &p->pcp;
2caaad41 5370 pcp->count = 0;
5f8dcc21
MG
5371 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5372 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5373}
5374
88c90dbc
CS
5375static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5376{
5377 pageset_init(p);
5378 pageset_set_batch(p, batch);
5379}
5380
8ad4b1fb 5381/*
3664033c 5382 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5383 * to the value high for the pageset p.
5384 */
3664033c 5385static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5386 unsigned long high)
5387{
8d7a8fa9
CS
5388 unsigned long batch = max(1UL, high / 4);
5389 if ((high / 4) > (PAGE_SHIFT * 8))
5390 batch = PAGE_SHIFT * 8;
8ad4b1fb 5391
8d7a8fa9 5392 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5393}
5394
7cd2b0a3
DR
5395static void pageset_set_high_and_batch(struct zone *zone,
5396 struct per_cpu_pageset *pcp)
56cef2b8 5397{
56cef2b8 5398 if (percpu_pagelist_fraction)
3664033c 5399 pageset_set_high(pcp,
56cef2b8
CS
5400 (zone->managed_pages /
5401 percpu_pagelist_fraction));
5402 else
5403 pageset_set_batch(pcp, zone_batchsize(zone));
5404}
5405
169f6c19
CS
5406static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5407{
5408 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5409
5410 pageset_init(pcp);
5411 pageset_set_high_and_batch(zone, pcp);
5412}
5413
4ed7e022 5414static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5415{
5416 int cpu;
319774e2 5417 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5418 for_each_possible_cpu(cpu)
5419 zone_pageset_init(zone, cpu);
319774e2
WF
5420}
5421
2caaad41 5422/*
99dcc3e5
CL
5423 * Allocate per cpu pagesets and initialize them.
5424 * Before this call only boot pagesets were available.
e7c8d5c9 5425 */
99dcc3e5 5426void __init setup_per_cpu_pageset(void)
e7c8d5c9 5427{
b4911ea2 5428 struct pglist_data *pgdat;
99dcc3e5 5429 struct zone *zone;
e7c8d5c9 5430
319774e2
WF
5431 for_each_populated_zone(zone)
5432 setup_zone_pageset(zone);
b4911ea2
MG
5433
5434 for_each_online_pgdat(pgdat)
5435 pgdat->per_cpu_nodestats =
5436 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5437}
5438
c09b4240 5439static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5440{
99dcc3e5
CL
5441 /*
5442 * per cpu subsystem is not up at this point. The following code
5443 * relies on the ability of the linker to provide the
5444 * offset of a (static) per cpu variable into the per cpu area.
5445 */
5446 zone->pageset = &boot_pageset;
ed8ece2e 5447
b38a8725 5448 if (populated_zone(zone))
99dcc3e5
CL
5449 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5450 zone->name, zone->present_pages,
5451 zone_batchsize(zone));
ed8ece2e
DH
5452}
5453
4ed7e022 5454int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5455 unsigned long zone_start_pfn,
b171e409 5456 unsigned long size)
ed8ece2e
DH
5457{
5458 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5459
ed8ece2e
DH
5460 pgdat->nr_zones = zone_idx(zone) + 1;
5461
ed8ece2e
DH
5462 zone->zone_start_pfn = zone_start_pfn;
5463
708614e6
MG
5464 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5465 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5466 pgdat->node_id,
5467 (unsigned long)zone_idx(zone),
5468 zone_start_pfn, (zone_start_pfn + size));
5469
1e548deb 5470 zone_init_free_lists(zone);
9dcb8b68 5471 zone->initialized = 1;
718127cc
YG
5472
5473 return 0;
ed8ece2e
DH
5474}
5475
0ee332c1 5476#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5477#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5478
c713216d
MG
5479/*
5480 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5481 */
8a942fde
MG
5482int __meminit __early_pfn_to_nid(unsigned long pfn,
5483 struct mminit_pfnnid_cache *state)
c713216d 5484{
c13291a5 5485 unsigned long start_pfn, end_pfn;
e76b63f8 5486 int nid;
7c243c71 5487
8a942fde
MG
5488 if (state->last_start <= pfn && pfn < state->last_end)
5489 return state->last_nid;
c713216d 5490
e76b63f8
YL
5491 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5492 if (nid != -1) {
8a942fde
MG
5493 state->last_start = start_pfn;
5494 state->last_end = end_pfn;
5495 state->last_nid = nid;
e76b63f8
YL
5496 }
5497
5498 return nid;
c713216d
MG
5499}
5500#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5501
c713216d 5502/**
6782832e 5503 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5504 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5505 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5506 *
7d018176
ZZ
5507 * If an architecture guarantees that all ranges registered contain no holes
5508 * and may be freed, this this function may be used instead of calling
5509 * memblock_free_early_nid() manually.
c713216d 5510 */
c13291a5 5511void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5512{
c13291a5
TH
5513 unsigned long start_pfn, end_pfn;
5514 int i, this_nid;
edbe7d23 5515
c13291a5
TH
5516 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5517 start_pfn = min(start_pfn, max_low_pfn);
5518 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5519
c13291a5 5520 if (start_pfn < end_pfn)
6782832e
SS
5521 memblock_free_early_nid(PFN_PHYS(start_pfn),
5522 (end_pfn - start_pfn) << PAGE_SHIFT,
5523 this_nid);
edbe7d23 5524 }
edbe7d23 5525}
edbe7d23 5526
c713216d
MG
5527/**
5528 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5529 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5530 *
7d018176
ZZ
5531 * If an architecture guarantees that all ranges registered contain no holes and may
5532 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5533 */
5534void __init sparse_memory_present_with_active_regions(int nid)
5535{
c13291a5
TH
5536 unsigned long start_pfn, end_pfn;
5537 int i, this_nid;
c713216d 5538
c13291a5
TH
5539 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5540 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5541}
5542
5543/**
5544 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5545 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5546 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5547 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5548 *
5549 * It returns the start and end page frame of a node based on information
7d018176 5550 * provided by memblock_set_node(). If called for a node
c713216d 5551 * with no available memory, a warning is printed and the start and end
88ca3b94 5552 * PFNs will be 0.
c713216d 5553 */
a3142c8e 5554void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5555 unsigned long *start_pfn, unsigned long *end_pfn)
5556{
c13291a5 5557 unsigned long this_start_pfn, this_end_pfn;
c713216d 5558 int i;
c13291a5 5559
c713216d
MG
5560 *start_pfn = -1UL;
5561 *end_pfn = 0;
5562
c13291a5
TH
5563 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5564 *start_pfn = min(*start_pfn, this_start_pfn);
5565 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5566 }
5567
633c0666 5568 if (*start_pfn == -1UL)
c713216d 5569 *start_pfn = 0;
c713216d
MG
5570}
5571
2a1e274a
MG
5572/*
5573 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5574 * assumption is made that zones within a node are ordered in monotonic
5575 * increasing memory addresses so that the "highest" populated zone is used
5576 */
b69a7288 5577static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5578{
5579 int zone_index;
5580 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5581 if (zone_index == ZONE_MOVABLE)
5582 continue;
5583
5584 if (arch_zone_highest_possible_pfn[zone_index] >
5585 arch_zone_lowest_possible_pfn[zone_index])
5586 break;
5587 }
5588
5589 VM_BUG_ON(zone_index == -1);
5590 movable_zone = zone_index;
5591}
5592
5593/*
5594 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5595 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5596 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5597 * in each node depending on the size of each node and how evenly kernelcore
5598 * is distributed. This helper function adjusts the zone ranges
5599 * provided by the architecture for a given node by using the end of the
5600 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5601 * zones within a node are in order of monotonic increases memory addresses
5602 */
b69a7288 5603static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5604 unsigned long zone_type,
5605 unsigned long node_start_pfn,
5606 unsigned long node_end_pfn,
5607 unsigned long *zone_start_pfn,
5608 unsigned long *zone_end_pfn)
5609{
5610 /* Only adjust if ZONE_MOVABLE is on this node */
5611 if (zone_movable_pfn[nid]) {
5612 /* Size ZONE_MOVABLE */
5613 if (zone_type == ZONE_MOVABLE) {
5614 *zone_start_pfn = zone_movable_pfn[nid];
5615 *zone_end_pfn = min(node_end_pfn,
5616 arch_zone_highest_possible_pfn[movable_zone]);
5617
e506b996
XQ
5618 /* Adjust for ZONE_MOVABLE starting within this range */
5619 } else if (!mirrored_kernelcore &&
5620 *zone_start_pfn < zone_movable_pfn[nid] &&
5621 *zone_end_pfn > zone_movable_pfn[nid]) {
5622 *zone_end_pfn = zone_movable_pfn[nid];
5623
2a1e274a
MG
5624 /* Check if this whole range is within ZONE_MOVABLE */
5625 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5626 *zone_start_pfn = *zone_end_pfn;
5627 }
5628}
5629
c713216d
MG
5630/*
5631 * Return the number of pages a zone spans in a node, including holes
5632 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5633 */
6ea6e688 5634static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5635 unsigned long zone_type,
7960aedd
ZY
5636 unsigned long node_start_pfn,
5637 unsigned long node_end_pfn,
d91749c1
TI
5638 unsigned long *zone_start_pfn,
5639 unsigned long *zone_end_pfn,
c713216d
MG
5640 unsigned long *ignored)
5641{
b5685e92 5642 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5643 if (!node_start_pfn && !node_end_pfn)
5644 return 0;
5645
7960aedd 5646 /* Get the start and end of the zone */
d91749c1
TI
5647 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5648 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5649 adjust_zone_range_for_zone_movable(nid, zone_type,
5650 node_start_pfn, node_end_pfn,
d91749c1 5651 zone_start_pfn, zone_end_pfn);
c713216d
MG
5652
5653 /* Check that this node has pages within the zone's required range */
d91749c1 5654 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5655 return 0;
5656
5657 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5658 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5659 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5660
5661 /* Return the spanned pages */
d91749c1 5662 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5663}
5664
5665/*
5666 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5667 * then all holes in the requested range will be accounted for.
c713216d 5668 */
32996250 5669unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5670 unsigned long range_start_pfn,
5671 unsigned long range_end_pfn)
5672{
96e907d1
TH
5673 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5674 unsigned long start_pfn, end_pfn;
5675 int i;
c713216d 5676
96e907d1
TH
5677 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5678 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5679 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5680 nr_absent -= end_pfn - start_pfn;
c713216d 5681 }
96e907d1 5682 return nr_absent;
c713216d
MG
5683}
5684
5685/**
5686 * absent_pages_in_range - Return number of page frames in holes within a range
5687 * @start_pfn: The start PFN to start searching for holes
5688 * @end_pfn: The end PFN to stop searching for holes
5689 *
88ca3b94 5690 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5691 */
5692unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5693 unsigned long end_pfn)
5694{
5695 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5696}
5697
5698/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5699static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5700 unsigned long zone_type,
7960aedd
ZY
5701 unsigned long node_start_pfn,
5702 unsigned long node_end_pfn,
c713216d
MG
5703 unsigned long *ignored)
5704{
96e907d1
TH
5705 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5706 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5707 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5708 unsigned long nr_absent;
9c7cd687 5709
b5685e92 5710 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5711 if (!node_start_pfn && !node_end_pfn)
5712 return 0;
5713
96e907d1
TH
5714 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5715 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5716
2a1e274a
MG
5717 adjust_zone_range_for_zone_movable(nid, zone_type,
5718 node_start_pfn, node_end_pfn,
5719 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5720 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5721
5722 /*
5723 * ZONE_MOVABLE handling.
5724 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5725 * and vice versa.
5726 */
e506b996
XQ
5727 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5728 unsigned long start_pfn, end_pfn;
5729 struct memblock_region *r;
5730
5731 for_each_memblock(memory, r) {
5732 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5733 zone_start_pfn, zone_end_pfn);
5734 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5735 zone_start_pfn, zone_end_pfn);
5736
5737 if (zone_type == ZONE_MOVABLE &&
5738 memblock_is_mirror(r))
5739 nr_absent += end_pfn - start_pfn;
5740
5741 if (zone_type == ZONE_NORMAL &&
5742 !memblock_is_mirror(r))
5743 nr_absent += end_pfn - start_pfn;
342332e6
TI
5744 }
5745 }
5746
5747 return nr_absent;
c713216d 5748}
0e0b864e 5749
0ee332c1 5750#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5751static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5752 unsigned long zone_type,
7960aedd
ZY
5753 unsigned long node_start_pfn,
5754 unsigned long node_end_pfn,
d91749c1
TI
5755 unsigned long *zone_start_pfn,
5756 unsigned long *zone_end_pfn,
c713216d
MG
5757 unsigned long *zones_size)
5758{
d91749c1
TI
5759 unsigned int zone;
5760
5761 *zone_start_pfn = node_start_pfn;
5762 for (zone = 0; zone < zone_type; zone++)
5763 *zone_start_pfn += zones_size[zone];
5764
5765 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5766
c713216d
MG
5767 return zones_size[zone_type];
5768}
5769
6ea6e688 5770static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5771 unsigned long zone_type,
7960aedd
ZY
5772 unsigned long node_start_pfn,
5773 unsigned long node_end_pfn,
c713216d
MG
5774 unsigned long *zholes_size)
5775{
5776 if (!zholes_size)
5777 return 0;
5778
5779 return zholes_size[zone_type];
5780}
20e6926d 5781
0ee332c1 5782#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5783
a3142c8e 5784static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5785 unsigned long node_start_pfn,
5786 unsigned long node_end_pfn,
5787 unsigned long *zones_size,
5788 unsigned long *zholes_size)
c713216d 5789{
febd5949 5790 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5791 enum zone_type i;
5792
febd5949
GZ
5793 for (i = 0; i < MAX_NR_ZONES; i++) {
5794 struct zone *zone = pgdat->node_zones + i;
d91749c1 5795 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5796 unsigned long size, real_size;
c713216d 5797
febd5949
GZ
5798 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5799 node_start_pfn,
5800 node_end_pfn,
d91749c1
TI
5801 &zone_start_pfn,
5802 &zone_end_pfn,
febd5949
GZ
5803 zones_size);
5804 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5805 node_start_pfn, node_end_pfn,
5806 zholes_size);
d91749c1
TI
5807 if (size)
5808 zone->zone_start_pfn = zone_start_pfn;
5809 else
5810 zone->zone_start_pfn = 0;
febd5949
GZ
5811 zone->spanned_pages = size;
5812 zone->present_pages = real_size;
5813
5814 totalpages += size;
5815 realtotalpages += real_size;
5816 }
5817
5818 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5819 pgdat->node_present_pages = realtotalpages;
5820 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5821 realtotalpages);
5822}
5823
835c134e
MG
5824#ifndef CONFIG_SPARSEMEM
5825/*
5826 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5827 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5828 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5829 * round what is now in bits to nearest long in bits, then return it in
5830 * bytes.
5831 */
7c45512d 5832static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5833{
5834 unsigned long usemapsize;
5835
7c45512d 5836 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5837 usemapsize = roundup(zonesize, pageblock_nr_pages);
5838 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5839 usemapsize *= NR_PAGEBLOCK_BITS;
5840 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5841
5842 return usemapsize / 8;
5843}
5844
5845static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5846 struct zone *zone,
5847 unsigned long zone_start_pfn,
5848 unsigned long zonesize)
835c134e 5849{
7c45512d 5850 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5851 zone->pageblock_flags = NULL;
58a01a45 5852 if (usemapsize)
6782832e
SS
5853 zone->pageblock_flags =
5854 memblock_virt_alloc_node_nopanic(usemapsize,
5855 pgdat->node_id);
835c134e
MG
5856}
5857#else
7c45512d
LT
5858static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5859 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5860#endif /* CONFIG_SPARSEMEM */
5861
d9c23400 5862#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5863
d9c23400 5864/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5865void __paginginit set_pageblock_order(void)
d9c23400 5866{
955c1cd7
AM
5867 unsigned int order;
5868
d9c23400
MG
5869 /* Check that pageblock_nr_pages has not already been setup */
5870 if (pageblock_order)
5871 return;
5872
955c1cd7
AM
5873 if (HPAGE_SHIFT > PAGE_SHIFT)
5874 order = HUGETLB_PAGE_ORDER;
5875 else
5876 order = MAX_ORDER - 1;
5877
d9c23400
MG
5878 /*
5879 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5880 * This value may be variable depending on boot parameters on IA64 and
5881 * powerpc.
d9c23400
MG
5882 */
5883 pageblock_order = order;
5884}
5885#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5886
ba72cb8c
MG
5887/*
5888 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5889 * is unused as pageblock_order is set at compile-time. See
5890 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5891 * the kernel config
ba72cb8c 5892 */
15ca220e 5893void __paginginit set_pageblock_order(void)
ba72cb8c 5894{
ba72cb8c 5895}
d9c23400
MG
5896
5897#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5898
01cefaef
JL
5899static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5900 unsigned long present_pages)
5901{
5902 unsigned long pages = spanned_pages;
5903
5904 /*
5905 * Provide a more accurate estimation if there are holes within
5906 * the zone and SPARSEMEM is in use. If there are holes within the
5907 * zone, each populated memory region may cost us one or two extra
5908 * memmap pages due to alignment because memmap pages for each
89d790ab 5909 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
5910 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5911 */
5912 if (spanned_pages > present_pages + (present_pages >> 4) &&
5913 IS_ENABLED(CONFIG_SPARSEMEM))
5914 pages = present_pages;
5915
5916 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5917}
5918
1da177e4
LT
5919/*
5920 * Set up the zone data structures:
5921 * - mark all pages reserved
5922 * - mark all memory queues empty
5923 * - clear the memory bitmaps
6527af5d
MK
5924 *
5925 * NOTE: pgdat should get zeroed by caller.
1da177e4 5926 */
7f3eb55b 5927static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5928{
2f1b6248 5929 enum zone_type j;
ed8ece2e 5930 int nid = pgdat->node_id;
718127cc 5931 int ret;
1da177e4 5932
208d54e5 5933 pgdat_resize_init(pgdat);
8177a420
AA
5934#ifdef CONFIG_NUMA_BALANCING
5935 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5936 pgdat->numabalancing_migrate_nr_pages = 0;
5937 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5938#endif
5939#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5940 spin_lock_init(&pgdat->split_queue_lock);
5941 INIT_LIST_HEAD(&pgdat->split_queue);
5942 pgdat->split_queue_len = 0;
8177a420 5943#endif
1da177e4 5944 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5945 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5946#ifdef CONFIG_COMPACTION
5947 init_waitqueue_head(&pgdat->kcompactd_wait);
5948#endif
eefa864b 5949 pgdat_page_ext_init(pgdat);
a52633d8 5950 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5951 lruvec_init(node_lruvec(pgdat));
5f63b720 5952
1da177e4
LT
5953 for (j = 0; j < MAX_NR_ZONES; j++) {
5954 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5955 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5956 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5957
febd5949
GZ
5958 size = zone->spanned_pages;
5959 realsize = freesize = zone->present_pages;
1da177e4 5960
0e0b864e 5961 /*
9feedc9d 5962 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5963 * is used by this zone for memmap. This affects the watermark
5964 * and per-cpu initialisations
5965 */
01cefaef 5966 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5967 if (!is_highmem_idx(j)) {
5968 if (freesize >= memmap_pages) {
5969 freesize -= memmap_pages;
5970 if (memmap_pages)
5971 printk(KERN_DEBUG
5972 " %s zone: %lu pages used for memmap\n",
5973 zone_names[j], memmap_pages);
5974 } else
1170532b 5975 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5976 zone_names[j], memmap_pages, freesize);
5977 }
0e0b864e 5978
6267276f 5979 /* Account for reserved pages */
9feedc9d
JL
5980 if (j == 0 && freesize > dma_reserve) {
5981 freesize -= dma_reserve;
d903ef9f 5982 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5983 zone_names[0], dma_reserve);
0e0b864e
MG
5984 }
5985
98d2b0eb 5986 if (!is_highmem_idx(j))
9feedc9d 5987 nr_kernel_pages += freesize;
01cefaef
JL
5988 /* Charge for highmem memmap if there are enough kernel pages */
5989 else if (nr_kernel_pages > memmap_pages * 2)
5990 nr_kernel_pages -= memmap_pages;
9feedc9d 5991 nr_all_pages += freesize;
1da177e4 5992
9feedc9d
JL
5993 /*
5994 * Set an approximate value for lowmem here, it will be adjusted
5995 * when the bootmem allocator frees pages into the buddy system.
5996 * And all highmem pages will be managed by the buddy system.
5997 */
5998 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5999#ifdef CONFIG_NUMA
d5f541ed 6000 zone->node = nid;
9614634f 6001#endif
1da177e4 6002 zone->name = zone_names[j];
a52633d8 6003 zone->zone_pgdat = pgdat;
1da177e4 6004 spin_lock_init(&zone->lock);
bdc8cb98 6005 zone_seqlock_init(zone);
ed8ece2e 6006 zone_pcp_init(zone);
81c0a2bb 6007
1da177e4
LT
6008 if (!size)
6009 continue;
6010
955c1cd7 6011 set_pageblock_order();
7c45512d 6012 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6013 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6014 BUG_ON(ret);
76cdd58e 6015 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6016 }
6017}
6018
bd721ea7 6019static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6020{
b0aeba74 6021 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6022 unsigned long __maybe_unused offset = 0;
6023
1da177e4
LT
6024 /* Skip empty nodes */
6025 if (!pgdat->node_spanned_pages)
6026 return;
6027
d41dee36 6028#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6029 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6030 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6031 /* ia64 gets its own node_mem_map, before this, without bootmem */
6032 if (!pgdat->node_mem_map) {
b0aeba74 6033 unsigned long size, end;
d41dee36
AW
6034 struct page *map;
6035
e984bb43
BP
6036 /*
6037 * The zone's endpoints aren't required to be MAX_ORDER
6038 * aligned but the node_mem_map endpoints must be in order
6039 * for the buddy allocator to function correctly.
6040 */
108bcc96 6041 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6042 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6043 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6044 map = alloc_remap(pgdat->node_id, size);
6045 if (!map)
6782832e
SS
6046 map = memblock_virt_alloc_node_nopanic(size,
6047 pgdat->node_id);
a1c34a3b 6048 pgdat->node_mem_map = map + offset;
1da177e4 6049 }
12d810c1 6050#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6051 /*
6052 * With no DISCONTIG, the global mem_map is just set as node 0's
6053 */
c713216d 6054 if (pgdat == NODE_DATA(0)) {
1da177e4 6055 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6056#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6057 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6058 mem_map -= offset;
0ee332c1 6059#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6060 }
1da177e4 6061#endif
d41dee36 6062#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6063}
6064
9109fb7b
JW
6065void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6066 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6067{
9109fb7b 6068 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6069 unsigned long start_pfn = 0;
6070 unsigned long end_pfn = 0;
9109fb7b 6071
88fdf75d 6072 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6073 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6074
3a80a7fa 6075 reset_deferred_meminit(pgdat);
1da177e4
LT
6076 pgdat->node_id = nid;
6077 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6078 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6079#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6080 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6081 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6082 (u64)start_pfn << PAGE_SHIFT,
6083 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6084#else
6085 start_pfn = node_start_pfn;
7960aedd
ZY
6086#endif
6087 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6088 zones_size, zholes_size);
1da177e4
LT
6089
6090 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6091#ifdef CONFIG_FLAT_NODE_MEM_MAP
6092 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6093 nid, (unsigned long)pgdat,
6094 (unsigned long)pgdat->node_mem_map);
6095#endif
1da177e4 6096
7f3eb55b 6097 free_area_init_core(pgdat);
1da177e4
LT
6098}
6099
0ee332c1 6100#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6101
6102#if MAX_NUMNODES > 1
6103/*
6104 * Figure out the number of possible node ids.
6105 */
f9872caf 6106void __init setup_nr_node_ids(void)
418508c1 6107{
904a9553 6108 unsigned int highest;
418508c1 6109
904a9553 6110 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6111 nr_node_ids = highest + 1;
6112}
418508c1
MS
6113#endif
6114
1e01979c
TH
6115/**
6116 * node_map_pfn_alignment - determine the maximum internode alignment
6117 *
6118 * This function should be called after node map is populated and sorted.
6119 * It calculates the maximum power of two alignment which can distinguish
6120 * all the nodes.
6121 *
6122 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6123 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6124 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6125 * shifted, 1GiB is enough and this function will indicate so.
6126 *
6127 * This is used to test whether pfn -> nid mapping of the chosen memory
6128 * model has fine enough granularity to avoid incorrect mapping for the
6129 * populated node map.
6130 *
6131 * Returns the determined alignment in pfn's. 0 if there is no alignment
6132 * requirement (single node).
6133 */
6134unsigned long __init node_map_pfn_alignment(void)
6135{
6136 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6137 unsigned long start, end, mask;
1e01979c 6138 int last_nid = -1;
c13291a5 6139 int i, nid;
1e01979c 6140
c13291a5 6141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6142 if (!start || last_nid < 0 || last_nid == nid) {
6143 last_nid = nid;
6144 last_end = end;
6145 continue;
6146 }
6147
6148 /*
6149 * Start with a mask granular enough to pin-point to the
6150 * start pfn and tick off bits one-by-one until it becomes
6151 * too coarse to separate the current node from the last.
6152 */
6153 mask = ~((1 << __ffs(start)) - 1);
6154 while (mask && last_end <= (start & (mask << 1)))
6155 mask <<= 1;
6156
6157 /* accumulate all internode masks */
6158 accl_mask |= mask;
6159 }
6160
6161 /* convert mask to number of pages */
6162 return ~accl_mask + 1;
6163}
6164
a6af2bc3 6165/* Find the lowest pfn for a node */
b69a7288 6166static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6167{
a6af2bc3 6168 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6169 unsigned long start_pfn;
6170 int i;
1abbfb41 6171
c13291a5
TH
6172 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6173 min_pfn = min(min_pfn, start_pfn);
c713216d 6174
a6af2bc3 6175 if (min_pfn == ULONG_MAX) {
1170532b 6176 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6177 return 0;
6178 }
6179
6180 return min_pfn;
c713216d
MG
6181}
6182
6183/**
6184 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6185 *
6186 * It returns the minimum PFN based on information provided via
7d018176 6187 * memblock_set_node().
c713216d
MG
6188 */
6189unsigned long __init find_min_pfn_with_active_regions(void)
6190{
6191 return find_min_pfn_for_node(MAX_NUMNODES);
6192}
6193
37b07e41
LS
6194/*
6195 * early_calculate_totalpages()
6196 * Sum pages in active regions for movable zone.
4b0ef1fe 6197 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6198 */
484f51f8 6199static unsigned long __init early_calculate_totalpages(void)
7e63efef 6200{
7e63efef 6201 unsigned long totalpages = 0;
c13291a5
TH
6202 unsigned long start_pfn, end_pfn;
6203 int i, nid;
6204
6205 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6206 unsigned long pages = end_pfn - start_pfn;
7e63efef 6207
37b07e41
LS
6208 totalpages += pages;
6209 if (pages)
4b0ef1fe 6210 node_set_state(nid, N_MEMORY);
37b07e41 6211 }
b8af2941 6212 return totalpages;
7e63efef
MG
6213}
6214
2a1e274a
MG
6215/*
6216 * Find the PFN the Movable zone begins in each node. Kernel memory
6217 * is spread evenly between nodes as long as the nodes have enough
6218 * memory. When they don't, some nodes will have more kernelcore than
6219 * others
6220 */
b224ef85 6221static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6222{
6223 int i, nid;
6224 unsigned long usable_startpfn;
6225 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6226 /* save the state before borrow the nodemask */
4b0ef1fe 6227 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6228 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6229 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6230 struct memblock_region *r;
b2f3eebe
TC
6231
6232 /* Need to find movable_zone earlier when movable_node is specified. */
6233 find_usable_zone_for_movable();
6234
6235 /*
6236 * If movable_node is specified, ignore kernelcore and movablecore
6237 * options.
6238 */
6239 if (movable_node_is_enabled()) {
136199f0
EM
6240 for_each_memblock(memory, r) {
6241 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6242 continue;
6243
136199f0 6244 nid = r->nid;
b2f3eebe 6245
136199f0 6246 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6247 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6248 min(usable_startpfn, zone_movable_pfn[nid]) :
6249 usable_startpfn;
6250 }
6251
6252 goto out2;
6253 }
2a1e274a 6254
342332e6
TI
6255 /*
6256 * If kernelcore=mirror is specified, ignore movablecore option
6257 */
6258 if (mirrored_kernelcore) {
6259 bool mem_below_4gb_not_mirrored = false;
6260
6261 for_each_memblock(memory, r) {
6262 if (memblock_is_mirror(r))
6263 continue;
6264
6265 nid = r->nid;
6266
6267 usable_startpfn = memblock_region_memory_base_pfn(r);
6268
6269 if (usable_startpfn < 0x100000) {
6270 mem_below_4gb_not_mirrored = true;
6271 continue;
6272 }
6273
6274 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6275 min(usable_startpfn, zone_movable_pfn[nid]) :
6276 usable_startpfn;
6277 }
6278
6279 if (mem_below_4gb_not_mirrored)
6280 pr_warn("This configuration results in unmirrored kernel memory.");
6281
6282 goto out2;
6283 }
6284
7e63efef 6285 /*
b2f3eebe 6286 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6287 * kernelcore that corresponds so that memory usable for
6288 * any allocation type is evenly spread. If both kernelcore
6289 * and movablecore are specified, then the value of kernelcore
6290 * will be used for required_kernelcore if it's greater than
6291 * what movablecore would have allowed.
6292 */
6293 if (required_movablecore) {
7e63efef
MG
6294 unsigned long corepages;
6295
6296 /*
6297 * Round-up so that ZONE_MOVABLE is at least as large as what
6298 * was requested by the user
6299 */
6300 required_movablecore =
6301 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6302 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6303 corepages = totalpages - required_movablecore;
6304
6305 required_kernelcore = max(required_kernelcore, corepages);
6306 }
6307
bde304bd
XQ
6308 /*
6309 * If kernelcore was not specified or kernelcore size is larger
6310 * than totalpages, there is no ZONE_MOVABLE.
6311 */
6312 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6313 goto out;
2a1e274a
MG
6314
6315 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6316 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6317
6318restart:
6319 /* Spread kernelcore memory as evenly as possible throughout nodes */
6320 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6321 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6322 unsigned long start_pfn, end_pfn;
6323
2a1e274a
MG
6324 /*
6325 * Recalculate kernelcore_node if the division per node
6326 * now exceeds what is necessary to satisfy the requested
6327 * amount of memory for the kernel
6328 */
6329 if (required_kernelcore < kernelcore_node)
6330 kernelcore_node = required_kernelcore / usable_nodes;
6331
6332 /*
6333 * As the map is walked, we track how much memory is usable
6334 * by the kernel using kernelcore_remaining. When it is
6335 * 0, the rest of the node is usable by ZONE_MOVABLE
6336 */
6337 kernelcore_remaining = kernelcore_node;
6338
6339 /* Go through each range of PFNs within this node */
c13291a5 6340 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6341 unsigned long size_pages;
6342
c13291a5 6343 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6344 if (start_pfn >= end_pfn)
6345 continue;
6346
6347 /* Account for what is only usable for kernelcore */
6348 if (start_pfn < usable_startpfn) {
6349 unsigned long kernel_pages;
6350 kernel_pages = min(end_pfn, usable_startpfn)
6351 - start_pfn;
6352
6353 kernelcore_remaining -= min(kernel_pages,
6354 kernelcore_remaining);
6355 required_kernelcore -= min(kernel_pages,
6356 required_kernelcore);
6357
6358 /* Continue if range is now fully accounted */
6359 if (end_pfn <= usable_startpfn) {
6360
6361 /*
6362 * Push zone_movable_pfn to the end so
6363 * that if we have to rebalance
6364 * kernelcore across nodes, we will
6365 * not double account here
6366 */
6367 zone_movable_pfn[nid] = end_pfn;
6368 continue;
6369 }
6370 start_pfn = usable_startpfn;
6371 }
6372
6373 /*
6374 * The usable PFN range for ZONE_MOVABLE is from
6375 * start_pfn->end_pfn. Calculate size_pages as the
6376 * number of pages used as kernelcore
6377 */
6378 size_pages = end_pfn - start_pfn;
6379 if (size_pages > kernelcore_remaining)
6380 size_pages = kernelcore_remaining;
6381 zone_movable_pfn[nid] = start_pfn + size_pages;
6382
6383 /*
6384 * Some kernelcore has been met, update counts and
6385 * break if the kernelcore for this node has been
b8af2941 6386 * satisfied
2a1e274a
MG
6387 */
6388 required_kernelcore -= min(required_kernelcore,
6389 size_pages);
6390 kernelcore_remaining -= size_pages;
6391 if (!kernelcore_remaining)
6392 break;
6393 }
6394 }
6395
6396 /*
6397 * If there is still required_kernelcore, we do another pass with one
6398 * less node in the count. This will push zone_movable_pfn[nid] further
6399 * along on the nodes that still have memory until kernelcore is
b8af2941 6400 * satisfied
2a1e274a
MG
6401 */
6402 usable_nodes--;
6403 if (usable_nodes && required_kernelcore > usable_nodes)
6404 goto restart;
6405
b2f3eebe 6406out2:
2a1e274a
MG
6407 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6408 for (nid = 0; nid < MAX_NUMNODES; nid++)
6409 zone_movable_pfn[nid] =
6410 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6411
20e6926d 6412out:
66918dcd 6413 /* restore the node_state */
4b0ef1fe 6414 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6415}
6416
4b0ef1fe
LJ
6417/* Any regular or high memory on that node ? */
6418static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6419{
37b07e41
LS
6420 enum zone_type zone_type;
6421
4b0ef1fe
LJ
6422 if (N_MEMORY == N_NORMAL_MEMORY)
6423 return;
6424
6425 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6426 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6427 if (populated_zone(zone)) {
4b0ef1fe
LJ
6428 node_set_state(nid, N_HIGH_MEMORY);
6429 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6430 zone_type <= ZONE_NORMAL)
6431 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6432 break;
6433 }
37b07e41 6434 }
37b07e41
LS
6435}
6436
c713216d
MG
6437/**
6438 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6439 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6440 *
6441 * This will call free_area_init_node() for each active node in the system.
7d018176 6442 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6443 * zone in each node and their holes is calculated. If the maximum PFN
6444 * between two adjacent zones match, it is assumed that the zone is empty.
6445 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6446 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6447 * starts where the previous one ended. For example, ZONE_DMA32 starts
6448 * at arch_max_dma_pfn.
6449 */
6450void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6451{
c13291a5
TH
6452 unsigned long start_pfn, end_pfn;
6453 int i, nid;
a6af2bc3 6454
c713216d
MG
6455 /* Record where the zone boundaries are */
6456 memset(arch_zone_lowest_possible_pfn, 0,
6457 sizeof(arch_zone_lowest_possible_pfn));
6458 memset(arch_zone_highest_possible_pfn, 0,
6459 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6460
6461 start_pfn = find_min_pfn_with_active_regions();
6462
6463 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6464 if (i == ZONE_MOVABLE)
6465 continue;
90cae1fe
OH
6466
6467 end_pfn = max(max_zone_pfn[i], start_pfn);
6468 arch_zone_lowest_possible_pfn[i] = start_pfn;
6469 arch_zone_highest_possible_pfn[i] = end_pfn;
6470
6471 start_pfn = end_pfn;
c713216d 6472 }
2a1e274a
MG
6473
6474 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6475 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6476 find_zone_movable_pfns_for_nodes();
c713216d 6477
c713216d 6478 /* Print out the zone ranges */
f88dfff5 6479 pr_info("Zone ranges:\n");
2a1e274a
MG
6480 for (i = 0; i < MAX_NR_ZONES; i++) {
6481 if (i == ZONE_MOVABLE)
6482 continue;
f88dfff5 6483 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6484 if (arch_zone_lowest_possible_pfn[i] ==
6485 arch_zone_highest_possible_pfn[i])
f88dfff5 6486 pr_cont("empty\n");
72f0ba02 6487 else
8d29e18a
JG
6488 pr_cont("[mem %#018Lx-%#018Lx]\n",
6489 (u64)arch_zone_lowest_possible_pfn[i]
6490 << PAGE_SHIFT,
6491 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6492 << PAGE_SHIFT) - 1);
2a1e274a
MG
6493 }
6494
6495 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6496 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6497 for (i = 0; i < MAX_NUMNODES; i++) {
6498 if (zone_movable_pfn[i])
8d29e18a
JG
6499 pr_info(" Node %d: %#018Lx\n", i,
6500 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6501 }
c713216d 6502
f2d52fe5 6503 /* Print out the early node map */
f88dfff5 6504 pr_info("Early memory node ranges\n");
c13291a5 6505 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6506 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6507 (u64)start_pfn << PAGE_SHIFT,
6508 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6509
6510 /* Initialise every node */
708614e6 6511 mminit_verify_pageflags_layout();
8ef82866 6512 setup_nr_node_ids();
c713216d
MG
6513 for_each_online_node(nid) {
6514 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6515 free_area_init_node(nid, NULL,
c713216d 6516 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6517
6518 /* Any memory on that node */
6519 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6520 node_set_state(nid, N_MEMORY);
6521 check_for_memory(pgdat, nid);
c713216d
MG
6522 }
6523}
2a1e274a 6524
7e63efef 6525static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6526{
6527 unsigned long long coremem;
6528 if (!p)
6529 return -EINVAL;
6530
6531 coremem = memparse(p, &p);
7e63efef 6532 *core = coremem >> PAGE_SHIFT;
2a1e274a 6533
7e63efef 6534 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6535 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6536
6537 return 0;
6538}
ed7ed365 6539
7e63efef
MG
6540/*
6541 * kernelcore=size sets the amount of memory for use for allocations that
6542 * cannot be reclaimed or migrated.
6543 */
6544static int __init cmdline_parse_kernelcore(char *p)
6545{
342332e6
TI
6546 /* parse kernelcore=mirror */
6547 if (parse_option_str(p, "mirror")) {
6548 mirrored_kernelcore = true;
6549 return 0;
6550 }
6551
7e63efef
MG
6552 return cmdline_parse_core(p, &required_kernelcore);
6553}
6554
6555/*
6556 * movablecore=size sets the amount of memory for use for allocations that
6557 * can be reclaimed or migrated.
6558 */
6559static int __init cmdline_parse_movablecore(char *p)
6560{
6561 return cmdline_parse_core(p, &required_movablecore);
6562}
6563
ed7ed365 6564early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6565early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6566
0ee332c1 6567#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6568
c3d5f5f0
JL
6569void adjust_managed_page_count(struct page *page, long count)
6570{
6571 spin_lock(&managed_page_count_lock);
6572 page_zone(page)->managed_pages += count;
6573 totalram_pages += count;
3dcc0571
JL
6574#ifdef CONFIG_HIGHMEM
6575 if (PageHighMem(page))
6576 totalhigh_pages += count;
6577#endif
c3d5f5f0
JL
6578 spin_unlock(&managed_page_count_lock);
6579}
3dcc0571 6580EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6581
11199692 6582unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6583{
11199692
JL
6584 void *pos;
6585 unsigned long pages = 0;
69afade7 6586
11199692
JL
6587 start = (void *)PAGE_ALIGN((unsigned long)start);
6588 end = (void *)((unsigned long)end & PAGE_MASK);
6589 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6590 if ((unsigned int)poison <= 0xFF)
11199692
JL
6591 memset(pos, poison, PAGE_SIZE);
6592 free_reserved_page(virt_to_page(pos));
69afade7
JL
6593 }
6594
6595 if (pages && s)
adb1fe9a
JP
6596 pr_info("Freeing %s memory: %ldK\n",
6597 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6598
6599 return pages;
6600}
11199692 6601EXPORT_SYMBOL(free_reserved_area);
69afade7 6602
cfa11e08
JL
6603#ifdef CONFIG_HIGHMEM
6604void free_highmem_page(struct page *page)
6605{
6606 __free_reserved_page(page);
6607 totalram_pages++;
7b4b2a0d 6608 page_zone(page)->managed_pages++;
cfa11e08
JL
6609 totalhigh_pages++;
6610}
6611#endif
6612
7ee3d4e8
JL
6613
6614void __init mem_init_print_info(const char *str)
6615{
6616 unsigned long physpages, codesize, datasize, rosize, bss_size;
6617 unsigned long init_code_size, init_data_size;
6618
6619 physpages = get_num_physpages();
6620 codesize = _etext - _stext;
6621 datasize = _edata - _sdata;
6622 rosize = __end_rodata - __start_rodata;
6623 bss_size = __bss_stop - __bss_start;
6624 init_data_size = __init_end - __init_begin;
6625 init_code_size = _einittext - _sinittext;
6626
6627 /*
6628 * Detect special cases and adjust section sizes accordingly:
6629 * 1) .init.* may be embedded into .data sections
6630 * 2) .init.text.* may be out of [__init_begin, __init_end],
6631 * please refer to arch/tile/kernel/vmlinux.lds.S.
6632 * 3) .rodata.* may be embedded into .text or .data sections.
6633 */
6634#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6635 do { \
6636 if (start <= pos && pos < end && size > adj) \
6637 size -= adj; \
6638 } while (0)
7ee3d4e8
JL
6639
6640 adj_init_size(__init_begin, __init_end, init_data_size,
6641 _sinittext, init_code_size);
6642 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6643 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6644 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6645 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6646
6647#undef adj_init_size
6648
756a025f 6649 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6650#ifdef CONFIG_HIGHMEM
756a025f 6651 ", %luK highmem"
7ee3d4e8 6652#endif
756a025f
JP
6653 "%s%s)\n",
6654 nr_free_pages() << (PAGE_SHIFT - 10),
6655 physpages << (PAGE_SHIFT - 10),
6656 codesize >> 10, datasize >> 10, rosize >> 10,
6657 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6658 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6659 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6660#ifdef CONFIG_HIGHMEM
756a025f 6661 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6662#endif
756a025f 6663 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6664}
6665
0e0b864e 6666/**
88ca3b94
RD
6667 * set_dma_reserve - set the specified number of pages reserved in the first zone
6668 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6669 *
013110a7 6670 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6671 * In the DMA zone, a significant percentage may be consumed by kernel image
6672 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6673 * function may optionally be used to account for unfreeable pages in the
6674 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6675 * smaller per-cpu batchsize.
0e0b864e
MG
6676 */
6677void __init set_dma_reserve(unsigned long new_dma_reserve)
6678{
6679 dma_reserve = new_dma_reserve;
6680}
6681
1da177e4
LT
6682void __init free_area_init(unsigned long *zones_size)
6683{
9109fb7b 6684 free_area_init_node(0, zones_size,
1da177e4
LT
6685 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6686}
1da177e4 6687
005fd4bb 6688static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6689{
1da177e4 6690
005fd4bb
SAS
6691 lru_add_drain_cpu(cpu);
6692 drain_pages(cpu);
9f8f2172 6693
005fd4bb
SAS
6694 /*
6695 * Spill the event counters of the dead processor
6696 * into the current processors event counters.
6697 * This artificially elevates the count of the current
6698 * processor.
6699 */
6700 vm_events_fold_cpu(cpu);
9f8f2172 6701
005fd4bb
SAS
6702 /*
6703 * Zero the differential counters of the dead processor
6704 * so that the vm statistics are consistent.
6705 *
6706 * This is only okay since the processor is dead and cannot
6707 * race with what we are doing.
6708 */
6709 cpu_vm_stats_fold(cpu);
6710 return 0;
1da177e4 6711}
1da177e4
LT
6712
6713void __init page_alloc_init(void)
6714{
005fd4bb
SAS
6715 int ret;
6716
6717 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6718 "mm/page_alloc:dead", NULL,
6719 page_alloc_cpu_dead);
6720 WARN_ON(ret < 0);
1da177e4
LT
6721}
6722
cb45b0e9 6723/*
34b10060 6724 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6725 * or min_free_kbytes changes.
6726 */
6727static void calculate_totalreserve_pages(void)
6728{
6729 struct pglist_data *pgdat;
6730 unsigned long reserve_pages = 0;
2f6726e5 6731 enum zone_type i, j;
cb45b0e9
HA
6732
6733 for_each_online_pgdat(pgdat) {
281e3726
MG
6734
6735 pgdat->totalreserve_pages = 0;
6736
cb45b0e9
HA
6737 for (i = 0; i < MAX_NR_ZONES; i++) {
6738 struct zone *zone = pgdat->node_zones + i;
3484b2de 6739 long max = 0;
cb45b0e9
HA
6740
6741 /* Find valid and maximum lowmem_reserve in the zone */
6742 for (j = i; j < MAX_NR_ZONES; j++) {
6743 if (zone->lowmem_reserve[j] > max)
6744 max = zone->lowmem_reserve[j];
6745 }
6746
41858966
MG
6747 /* we treat the high watermark as reserved pages. */
6748 max += high_wmark_pages(zone);
cb45b0e9 6749
b40da049
JL
6750 if (max > zone->managed_pages)
6751 max = zone->managed_pages;
a8d01437 6752
281e3726 6753 pgdat->totalreserve_pages += max;
a8d01437 6754
cb45b0e9
HA
6755 reserve_pages += max;
6756 }
6757 }
6758 totalreserve_pages = reserve_pages;
6759}
6760
1da177e4
LT
6761/*
6762 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6763 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6764 * has a correct pages reserved value, so an adequate number of
6765 * pages are left in the zone after a successful __alloc_pages().
6766 */
6767static void setup_per_zone_lowmem_reserve(void)
6768{
6769 struct pglist_data *pgdat;
2f6726e5 6770 enum zone_type j, idx;
1da177e4 6771
ec936fc5 6772 for_each_online_pgdat(pgdat) {
1da177e4
LT
6773 for (j = 0; j < MAX_NR_ZONES; j++) {
6774 struct zone *zone = pgdat->node_zones + j;
b40da049 6775 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6776
6777 zone->lowmem_reserve[j] = 0;
6778
2f6726e5
CL
6779 idx = j;
6780 while (idx) {
1da177e4
LT
6781 struct zone *lower_zone;
6782
2f6726e5
CL
6783 idx--;
6784
1da177e4
LT
6785 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6786 sysctl_lowmem_reserve_ratio[idx] = 1;
6787
6788 lower_zone = pgdat->node_zones + idx;
b40da049 6789 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6790 sysctl_lowmem_reserve_ratio[idx];
b40da049 6791 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6792 }
6793 }
6794 }
cb45b0e9
HA
6795
6796 /* update totalreserve_pages */
6797 calculate_totalreserve_pages();
1da177e4
LT
6798}
6799
cfd3da1e 6800static void __setup_per_zone_wmarks(void)
1da177e4
LT
6801{
6802 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6803 unsigned long lowmem_pages = 0;
6804 struct zone *zone;
6805 unsigned long flags;
6806
6807 /* Calculate total number of !ZONE_HIGHMEM pages */
6808 for_each_zone(zone) {
6809 if (!is_highmem(zone))
b40da049 6810 lowmem_pages += zone->managed_pages;
1da177e4
LT
6811 }
6812
6813 for_each_zone(zone) {
ac924c60
AM
6814 u64 tmp;
6815
1125b4e3 6816 spin_lock_irqsave(&zone->lock, flags);
b40da049 6817 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6818 do_div(tmp, lowmem_pages);
1da177e4
LT
6819 if (is_highmem(zone)) {
6820 /*
669ed175
NP
6821 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6822 * need highmem pages, so cap pages_min to a small
6823 * value here.
6824 *
41858966 6825 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6826 * deltas control asynch page reclaim, and so should
669ed175 6827 * not be capped for highmem.
1da177e4 6828 */
90ae8d67 6829 unsigned long min_pages;
1da177e4 6830
b40da049 6831 min_pages = zone->managed_pages / 1024;
90ae8d67 6832 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6833 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6834 } else {
669ed175
NP
6835 /*
6836 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6837 * proportionate to the zone's size.
6838 */
41858966 6839 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6840 }
6841
795ae7a0
JW
6842 /*
6843 * Set the kswapd watermarks distance according to the
6844 * scale factor in proportion to available memory, but
6845 * ensure a minimum size on small systems.
6846 */
6847 tmp = max_t(u64, tmp >> 2,
6848 mult_frac(zone->managed_pages,
6849 watermark_scale_factor, 10000));
6850
6851 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6852 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6853
1125b4e3 6854 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6855 }
cb45b0e9
HA
6856
6857 /* update totalreserve_pages */
6858 calculate_totalreserve_pages();
1da177e4
LT
6859}
6860
cfd3da1e
MG
6861/**
6862 * setup_per_zone_wmarks - called when min_free_kbytes changes
6863 * or when memory is hot-{added|removed}
6864 *
6865 * Ensures that the watermark[min,low,high] values for each zone are set
6866 * correctly with respect to min_free_kbytes.
6867 */
6868void setup_per_zone_wmarks(void)
6869{
6870 mutex_lock(&zonelists_mutex);
6871 __setup_per_zone_wmarks();
6872 mutex_unlock(&zonelists_mutex);
6873}
6874
1da177e4
LT
6875/*
6876 * Initialise min_free_kbytes.
6877 *
6878 * For small machines we want it small (128k min). For large machines
6879 * we want it large (64MB max). But it is not linear, because network
6880 * bandwidth does not increase linearly with machine size. We use
6881 *
b8af2941 6882 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6883 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6884 *
6885 * which yields
6886 *
6887 * 16MB: 512k
6888 * 32MB: 724k
6889 * 64MB: 1024k
6890 * 128MB: 1448k
6891 * 256MB: 2048k
6892 * 512MB: 2896k
6893 * 1024MB: 4096k
6894 * 2048MB: 5792k
6895 * 4096MB: 8192k
6896 * 8192MB: 11584k
6897 * 16384MB: 16384k
6898 */
1b79acc9 6899int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6900{
6901 unsigned long lowmem_kbytes;
5f12733e 6902 int new_min_free_kbytes;
1da177e4
LT
6903
6904 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6905 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6906
6907 if (new_min_free_kbytes > user_min_free_kbytes) {
6908 min_free_kbytes = new_min_free_kbytes;
6909 if (min_free_kbytes < 128)
6910 min_free_kbytes = 128;
6911 if (min_free_kbytes > 65536)
6912 min_free_kbytes = 65536;
6913 } else {
6914 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6915 new_min_free_kbytes, user_min_free_kbytes);
6916 }
bc75d33f 6917 setup_per_zone_wmarks();
a6cccdc3 6918 refresh_zone_stat_thresholds();
1da177e4 6919 setup_per_zone_lowmem_reserve();
6423aa81
JK
6920
6921#ifdef CONFIG_NUMA
6922 setup_min_unmapped_ratio();
6923 setup_min_slab_ratio();
6924#endif
6925
1da177e4
LT
6926 return 0;
6927}
bc22af74 6928core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6929
6930/*
b8af2941 6931 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6932 * that we can call two helper functions whenever min_free_kbytes
6933 * changes.
6934 */
cccad5b9 6935int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6936 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6937{
da8c757b
HP
6938 int rc;
6939
6940 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6941 if (rc)
6942 return rc;
6943
5f12733e
MH
6944 if (write) {
6945 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6946 setup_per_zone_wmarks();
5f12733e 6947 }
1da177e4
LT
6948 return 0;
6949}
6950
795ae7a0
JW
6951int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6952 void __user *buffer, size_t *length, loff_t *ppos)
6953{
6954 int rc;
6955
6956 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6957 if (rc)
6958 return rc;
6959
6960 if (write)
6961 setup_per_zone_wmarks();
6962
6963 return 0;
6964}
6965
9614634f 6966#ifdef CONFIG_NUMA
6423aa81 6967static void setup_min_unmapped_ratio(void)
9614634f 6968{
6423aa81 6969 pg_data_t *pgdat;
9614634f 6970 struct zone *zone;
9614634f 6971
a5f5f91d 6972 for_each_online_pgdat(pgdat)
81cbcbc2 6973 pgdat->min_unmapped_pages = 0;
a5f5f91d 6974
9614634f 6975 for_each_zone(zone)
a5f5f91d 6976 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6977 sysctl_min_unmapped_ratio) / 100;
9614634f 6978}
0ff38490 6979
6423aa81
JK
6980
6981int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6982 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6983{
0ff38490
CL
6984 int rc;
6985
8d65af78 6986 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6987 if (rc)
6988 return rc;
6989
6423aa81
JK
6990 setup_min_unmapped_ratio();
6991
6992 return 0;
6993}
6994
6995static void setup_min_slab_ratio(void)
6996{
6997 pg_data_t *pgdat;
6998 struct zone *zone;
6999
a5f5f91d
MG
7000 for_each_online_pgdat(pgdat)
7001 pgdat->min_slab_pages = 0;
7002
0ff38490 7003 for_each_zone(zone)
a5f5f91d 7004 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7005 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7006}
7007
7008int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7009 void __user *buffer, size_t *length, loff_t *ppos)
7010{
7011 int rc;
7012
7013 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7014 if (rc)
7015 return rc;
7016
7017 setup_min_slab_ratio();
7018
0ff38490
CL
7019 return 0;
7020}
9614634f
CL
7021#endif
7022
1da177e4
LT
7023/*
7024 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7025 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7026 * whenever sysctl_lowmem_reserve_ratio changes.
7027 *
7028 * The reserve ratio obviously has absolutely no relation with the
41858966 7029 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7030 * if in function of the boot time zone sizes.
7031 */
cccad5b9 7032int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7033 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7034{
8d65af78 7035 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7036 setup_per_zone_lowmem_reserve();
7037 return 0;
7038}
7039
8ad4b1fb
RS
7040/*
7041 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7042 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7043 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7044 */
cccad5b9 7045int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7046 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7047{
7048 struct zone *zone;
7cd2b0a3 7049 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7050 int ret;
7051
7cd2b0a3
DR
7052 mutex_lock(&pcp_batch_high_lock);
7053 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7054
8d65af78 7055 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7056 if (!write || ret < 0)
7057 goto out;
7058
7059 /* Sanity checking to avoid pcp imbalance */
7060 if (percpu_pagelist_fraction &&
7061 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7062 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7063 ret = -EINVAL;
7064 goto out;
7065 }
7066
7067 /* No change? */
7068 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7069 goto out;
c8e251fa 7070
364df0eb 7071 for_each_populated_zone(zone) {
7cd2b0a3
DR
7072 unsigned int cpu;
7073
22a7f12b 7074 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7075 pageset_set_high_and_batch(zone,
7076 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7077 }
7cd2b0a3 7078out:
c8e251fa 7079 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7080 return ret;
8ad4b1fb
RS
7081}
7082
a9919c79 7083#ifdef CONFIG_NUMA
f034b5d4 7084int hashdist = HASHDIST_DEFAULT;
1da177e4 7085
1da177e4
LT
7086static int __init set_hashdist(char *str)
7087{
7088 if (!str)
7089 return 0;
7090 hashdist = simple_strtoul(str, &str, 0);
7091 return 1;
7092}
7093__setup("hashdist=", set_hashdist);
7094#endif
7095
f6f34b43
SD
7096#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7097/*
7098 * Returns the number of pages that arch has reserved but
7099 * is not known to alloc_large_system_hash().
7100 */
7101static unsigned long __init arch_reserved_kernel_pages(void)
7102{
7103 return 0;
7104}
7105#endif
7106
1da177e4
LT
7107/*
7108 * allocate a large system hash table from bootmem
7109 * - it is assumed that the hash table must contain an exact power-of-2
7110 * quantity of entries
7111 * - limit is the number of hash buckets, not the total allocation size
7112 */
7113void *__init alloc_large_system_hash(const char *tablename,
7114 unsigned long bucketsize,
7115 unsigned long numentries,
7116 int scale,
7117 int flags,
7118 unsigned int *_hash_shift,
7119 unsigned int *_hash_mask,
31fe62b9
TB
7120 unsigned long low_limit,
7121 unsigned long high_limit)
1da177e4 7122{
31fe62b9 7123 unsigned long long max = high_limit;
1da177e4
LT
7124 unsigned long log2qty, size;
7125 void *table = NULL;
7126
7127 /* allow the kernel cmdline to have a say */
7128 if (!numentries) {
7129 /* round applicable memory size up to nearest megabyte */
04903664 7130 numentries = nr_kernel_pages;
f6f34b43 7131 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7132
7133 /* It isn't necessary when PAGE_SIZE >= 1MB */
7134 if (PAGE_SHIFT < 20)
7135 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7136
7137 /* limit to 1 bucket per 2^scale bytes of low memory */
7138 if (scale > PAGE_SHIFT)
7139 numentries >>= (scale - PAGE_SHIFT);
7140 else
7141 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7142
7143 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7144 if (unlikely(flags & HASH_SMALL)) {
7145 /* Makes no sense without HASH_EARLY */
7146 WARN_ON(!(flags & HASH_EARLY));
7147 if (!(numentries >> *_hash_shift)) {
7148 numentries = 1UL << *_hash_shift;
7149 BUG_ON(!numentries);
7150 }
7151 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7152 numentries = PAGE_SIZE / bucketsize;
1da177e4 7153 }
6e692ed3 7154 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7155
7156 /* limit allocation size to 1/16 total memory by default */
7157 if (max == 0) {
7158 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7159 do_div(max, bucketsize);
7160 }
074b8517 7161 max = min(max, 0x80000000ULL);
1da177e4 7162
31fe62b9
TB
7163 if (numentries < low_limit)
7164 numentries = low_limit;
1da177e4
LT
7165 if (numentries > max)
7166 numentries = max;
7167
f0d1b0b3 7168 log2qty = ilog2(numentries);
1da177e4
LT
7169
7170 do {
7171 size = bucketsize << log2qty;
7172 if (flags & HASH_EARLY)
6782832e 7173 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7174 else if (hashdist)
7175 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7176 else {
1037b83b
ED
7177 /*
7178 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7179 * some pages at the end of hash table which
7180 * alloc_pages_exact() automatically does
1037b83b 7181 */
264ef8a9 7182 if (get_order(size) < MAX_ORDER) {
a1dd268c 7183 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7184 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7185 }
1da177e4
LT
7186 }
7187 } while (!table && size > PAGE_SIZE && --log2qty);
7188
7189 if (!table)
7190 panic("Failed to allocate %s hash table\n", tablename);
7191
1170532b
JP
7192 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7193 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7194
7195 if (_hash_shift)
7196 *_hash_shift = log2qty;
7197 if (_hash_mask)
7198 *_hash_mask = (1 << log2qty) - 1;
7199
7200 return table;
7201}
a117e66e 7202
a5d76b54 7203/*
80934513
MK
7204 * This function checks whether pageblock includes unmovable pages or not.
7205 * If @count is not zero, it is okay to include less @count unmovable pages
7206 *
b8af2941 7207 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7208 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7209 * check without lock_page also may miss some movable non-lru pages at
7210 * race condition. So you can't expect this function should be exact.
a5d76b54 7211 */
b023f468
WC
7212bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7213 bool skip_hwpoisoned_pages)
49ac8255
KH
7214{
7215 unsigned long pfn, iter, found;
47118af0
MN
7216 int mt;
7217
49ac8255
KH
7218 /*
7219 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7220 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7221 */
7222 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7223 return false;
47118af0
MN
7224 mt = get_pageblock_migratetype(page);
7225 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7226 return false;
49ac8255
KH
7227
7228 pfn = page_to_pfn(page);
7229 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7230 unsigned long check = pfn + iter;
7231
29723fcc 7232 if (!pfn_valid_within(check))
49ac8255 7233 continue;
29723fcc 7234
49ac8255 7235 page = pfn_to_page(check);
c8721bbb
NH
7236
7237 /*
7238 * Hugepages are not in LRU lists, but they're movable.
7239 * We need not scan over tail pages bacause we don't
7240 * handle each tail page individually in migration.
7241 */
7242 if (PageHuge(page)) {
7243 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7244 continue;
7245 }
7246
97d255c8
MK
7247 /*
7248 * We can't use page_count without pin a page
7249 * because another CPU can free compound page.
7250 * This check already skips compound tails of THP
0139aa7b 7251 * because their page->_refcount is zero at all time.
97d255c8 7252 */
fe896d18 7253 if (!page_ref_count(page)) {
49ac8255
KH
7254 if (PageBuddy(page))
7255 iter += (1 << page_order(page)) - 1;
7256 continue;
7257 }
97d255c8 7258
b023f468
WC
7259 /*
7260 * The HWPoisoned page may be not in buddy system, and
7261 * page_count() is not 0.
7262 */
7263 if (skip_hwpoisoned_pages && PageHWPoison(page))
7264 continue;
7265
0efadf48
YX
7266 if (__PageMovable(page))
7267 continue;
7268
49ac8255
KH
7269 if (!PageLRU(page))
7270 found++;
7271 /*
6b4f7799
JW
7272 * If there are RECLAIMABLE pages, we need to check
7273 * it. But now, memory offline itself doesn't call
7274 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7275 */
7276 /*
7277 * If the page is not RAM, page_count()should be 0.
7278 * we don't need more check. This is an _used_ not-movable page.
7279 *
7280 * The problematic thing here is PG_reserved pages. PG_reserved
7281 * is set to both of a memory hole page and a _used_ kernel
7282 * page at boot.
7283 */
7284 if (found > count)
80934513 7285 return true;
49ac8255 7286 }
80934513 7287 return false;
49ac8255
KH
7288}
7289
7290bool is_pageblock_removable_nolock(struct page *page)
7291{
656a0706
MH
7292 struct zone *zone;
7293 unsigned long pfn;
687875fb
MH
7294
7295 /*
7296 * We have to be careful here because we are iterating over memory
7297 * sections which are not zone aware so we might end up outside of
7298 * the zone but still within the section.
656a0706
MH
7299 * We have to take care about the node as well. If the node is offline
7300 * its NODE_DATA will be NULL - see page_zone.
687875fb 7301 */
656a0706
MH
7302 if (!node_online(page_to_nid(page)))
7303 return false;
7304
7305 zone = page_zone(page);
7306 pfn = page_to_pfn(page);
108bcc96 7307 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7308 return false;
7309
b023f468 7310 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7311}
0c0e6195 7312
080fe206 7313#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7314
7315static unsigned long pfn_max_align_down(unsigned long pfn)
7316{
7317 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7318 pageblock_nr_pages) - 1);
7319}
7320
7321static unsigned long pfn_max_align_up(unsigned long pfn)
7322{
7323 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7324 pageblock_nr_pages));
7325}
7326
041d3a8c 7327/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7328static int __alloc_contig_migrate_range(struct compact_control *cc,
7329 unsigned long start, unsigned long end)
041d3a8c
MN
7330{
7331 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7332 unsigned long nr_reclaimed;
041d3a8c
MN
7333 unsigned long pfn = start;
7334 unsigned int tries = 0;
7335 int ret = 0;
7336
be49a6e1 7337 migrate_prep();
041d3a8c 7338
bb13ffeb 7339 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7340 if (fatal_signal_pending(current)) {
7341 ret = -EINTR;
7342 break;
7343 }
7344
bb13ffeb
MG
7345 if (list_empty(&cc->migratepages)) {
7346 cc->nr_migratepages = 0;
edc2ca61 7347 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7348 if (!pfn) {
7349 ret = -EINTR;
7350 break;
7351 }
7352 tries = 0;
7353 } else if (++tries == 5) {
7354 ret = ret < 0 ? ret : -EBUSY;
7355 break;
7356 }
7357
beb51eaa
MK
7358 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7359 &cc->migratepages);
7360 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7361
9c620e2b 7362 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7363 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7364 }
2a6f5124
SP
7365 if (ret < 0) {
7366 putback_movable_pages(&cc->migratepages);
7367 return ret;
7368 }
7369 return 0;
041d3a8c
MN
7370}
7371
7372/**
7373 * alloc_contig_range() -- tries to allocate given range of pages
7374 * @start: start PFN to allocate
7375 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7376 * @migratetype: migratetype of the underlaying pageblocks (either
7377 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7378 * in range must have the same migratetype and it must
7379 * be either of the two.
ca96b625 7380 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7381 *
7382 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7383 * aligned, however it's the caller's responsibility to guarantee that
7384 * we are the only thread that changes migrate type of pageblocks the
7385 * pages fall in.
7386 *
7387 * The PFN range must belong to a single zone.
7388 *
7389 * Returns zero on success or negative error code. On success all
7390 * pages which PFN is in [start, end) are allocated for the caller and
7391 * need to be freed with free_contig_range().
7392 */
0815f3d8 7393int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7394 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7395{
041d3a8c 7396 unsigned long outer_start, outer_end;
d00181b9
KS
7397 unsigned int order;
7398 int ret = 0;
041d3a8c 7399
bb13ffeb
MG
7400 struct compact_control cc = {
7401 .nr_migratepages = 0,
7402 .order = -1,
7403 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7404 .mode = MIGRATE_SYNC,
bb13ffeb 7405 .ignore_skip_hint = true,
7dea19f9 7406 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7407 };
7408 INIT_LIST_HEAD(&cc.migratepages);
7409
041d3a8c
MN
7410 /*
7411 * What we do here is we mark all pageblocks in range as
7412 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7413 * have different sizes, and due to the way page allocator
7414 * work, we align the range to biggest of the two pages so
7415 * that page allocator won't try to merge buddies from
7416 * different pageblocks and change MIGRATE_ISOLATE to some
7417 * other migration type.
7418 *
7419 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7420 * migrate the pages from an unaligned range (ie. pages that
7421 * we are interested in). This will put all the pages in
7422 * range back to page allocator as MIGRATE_ISOLATE.
7423 *
7424 * When this is done, we take the pages in range from page
7425 * allocator removing them from the buddy system. This way
7426 * page allocator will never consider using them.
7427 *
7428 * This lets us mark the pageblocks back as
7429 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7430 * aligned range but not in the unaligned, original range are
7431 * put back to page allocator so that buddy can use them.
7432 */
7433
7434 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7435 pfn_max_align_up(end), migratetype,
7436 false);
041d3a8c 7437 if (ret)
86a595f9 7438 return ret;
041d3a8c 7439
8ef5849f
JK
7440 /*
7441 * In case of -EBUSY, we'd like to know which page causes problem.
7442 * So, just fall through. We will check it in test_pages_isolated().
7443 */
bb13ffeb 7444 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7445 if (ret && ret != -EBUSY)
041d3a8c
MN
7446 goto done;
7447
7448 /*
7449 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7450 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7451 * more, all pages in [start, end) are free in page allocator.
7452 * What we are going to do is to allocate all pages from
7453 * [start, end) (that is remove them from page allocator).
7454 *
7455 * The only problem is that pages at the beginning and at the
7456 * end of interesting range may be not aligned with pages that
7457 * page allocator holds, ie. they can be part of higher order
7458 * pages. Because of this, we reserve the bigger range and
7459 * once this is done free the pages we are not interested in.
7460 *
7461 * We don't have to hold zone->lock here because the pages are
7462 * isolated thus they won't get removed from buddy.
7463 */
7464
7465 lru_add_drain_all();
510f5507 7466 drain_all_pages(cc.zone);
041d3a8c
MN
7467
7468 order = 0;
7469 outer_start = start;
7470 while (!PageBuddy(pfn_to_page(outer_start))) {
7471 if (++order >= MAX_ORDER) {
8ef5849f
JK
7472 outer_start = start;
7473 break;
041d3a8c
MN
7474 }
7475 outer_start &= ~0UL << order;
7476 }
7477
8ef5849f
JK
7478 if (outer_start != start) {
7479 order = page_order(pfn_to_page(outer_start));
7480
7481 /*
7482 * outer_start page could be small order buddy page and
7483 * it doesn't include start page. Adjust outer_start
7484 * in this case to report failed page properly
7485 * on tracepoint in test_pages_isolated()
7486 */
7487 if (outer_start + (1UL << order) <= start)
7488 outer_start = start;
7489 }
7490
041d3a8c 7491 /* Make sure the range is really isolated. */
b023f468 7492 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7493 pr_info("%s: [%lx, %lx) PFNs busy\n",
7494 __func__, outer_start, end);
041d3a8c
MN
7495 ret = -EBUSY;
7496 goto done;
7497 }
7498
49f223a9 7499 /* Grab isolated pages from freelists. */
bb13ffeb 7500 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7501 if (!outer_end) {
7502 ret = -EBUSY;
7503 goto done;
7504 }
7505
7506 /* Free head and tail (if any) */
7507 if (start != outer_start)
7508 free_contig_range(outer_start, start - outer_start);
7509 if (end != outer_end)
7510 free_contig_range(end, outer_end - end);
7511
7512done:
7513 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7514 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7515 return ret;
7516}
7517
7518void free_contig_range(unsigned long pfn, unsigned nr_pages)
7519{
bcc2b02f
MS
7520 unsigned int count = 0;
7521
7522 for (; nr_pages--; pfn++) {
7523 struct page *page = pfn_to_page(pfn);
7524
7525 count += page_count(page) != 1;
7526 __free_page(page);
7527 }
7528 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7529}
7530#endif
7531
4ed7e022 7532#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7533/*
7534 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7535 * page high values need to be recalulated.
7536 */
4ed7e022
JL
7537void __meminit zone_pcp_update(struct zone *zone)
7538{
0a647f38 7539 unsigned cpu;
c8e251fa 7540 mutex_lock(&pcp_batch_high_lock);
0a647f38 7541 for_each_possible_cpu(cpu)
169f6c19
CS
7542 pageset_set_high_and_batch(zone,
7543 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7544 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7545}
7546#endif
7547
340175b7
JL
7548void zone_pcp_reset(struct zone *zone)
7549{
7550 unsigned long flags;
5a883813
MK
7551 int cpu;
7552 struct per_cpu_pageset *pset;
340175b7
JL
7553
7554 /* avoid races with drain_pages() */
7555 local_irq_save(flags);
7556 if (zone->pageset != &boot_pageset) {
5a883813
MK
7557 for_each_online_cpu(cpu) {
7558 pset = per_cpu_ptr(zone->pageset, cpu);
7559 drain_zonestat(zone, pset);
7560 }
340175b7
JL
7561 free_percpu(zone->pageset);
7562 zone->pageset = &boot_pageset;
7563 }
7564 local_irq_restore(flags);
7565}
7566
6dcd73d7 7567#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7568/*
b9eb6319
JK
7569 * All pages in the range must be in a single zone and isolated
7570 * before calling this.
0c0e6195
KH
7571 */
7572void
7573__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7574{
7575 struct page *page;
7576 struct zone *zone;
7aeb09f9 7577 unsigned int order, i;
0c0e6195
KH
7578 unsigned long pfn;
7579 unsigned long flags;
7580 /* find the first valid pfn */
7581 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7582 if (pfn_valid(pfn))
7583 break;
7584 if (pfn == end_pfn)
7585 return;
7586 zone = page_zone(pfn_to_page(pfn));
7587 spin_lock_irqsave(&zone->lock, flags);
7588 pfn = start_pfn;
7589 while (pfn < end_pfn) {
7590 if (!pfn_valid(pfn)) {
7591 pfn++;
7592 continue;
7593 }
7594 page = pfn_to_page(pfn);
b023f468
WC
7595 /*
7596 * The HWPoisoned page may be not in buddy system, and
7597 * page_count() is not 0.
7598 */
7599 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7600 pfn++;
7601 SetPageReserved(page);
7602 continue;
7603 }
7604
0c0e6195
KH
7605 BUG_ON(page_count(page));
7606 BUG_ON(!PageBuddy(page));
7607 order = page_order(page);
7608#ifdef CONFIG_DEBUG_VM
1170532b
JP
7609 pr_info("remove from free list %lx %d %lx\n",
7610 pfn, 1 << order, end_pfn);
0c0e6195
KH
7611#endif
7612 list_del(&page->lru);
7613 rmv_page_order(page);
7614 zone->free_area[order].nr_free--;
0c0e6195
KH
7615 for (i = 0; i < (1 << order); i++)
7616 SetPageReserved((page+i));
7617 pfn += (1 << order);
7618 }
7619 spin_unlock_irqrestore(&zone->lock, flags);
7620}
7621#endif
8d22ba1b 7622
8d22ba1b
WF
7623bool is_free_buddy_page(struct page *page)
7624{
7625 struct zone *zone = page_zone(page);
7626 unsigned long pfn = page_to_pfn(page);
7627 unsigned long flags;
7aeb09f9 7628 unsigned int order;
8d22ba1b
WF
7629
7630 spin_lock_irqsave(&zone->lock, flags);
7631 for (order = 0; order < MAX_ORDER; order++) {
7632 struct page *page_head = page - (pfn & ((1 << order) - 1));
7633
7634 if (PageBuddy(page_head) && page_order(page_head) >= order)
7635 break;
7636 }
7637 spin_unlock_irqrestore(&zone->lock, flags);
7638
7639 return order < MAX_ORDER;
7640}