]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm/page_poison.c: enable PAGE_POISONING as a separate option
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
1da177e4 252
2c85f51d
JB
253static unsigned long __meminitdata nr_kernel_pages;
254static unsigned long __meminitdata nr_all_pages;
a3142c8e 255static unsigned long __meminitdata dma_reserve;
1da177e4 256
0ee332c1
TH
257#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
258static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
259static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __initdata required_kernelcore;
261static unsigned long __initdata required_movablecore;
262static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 263static bool mirrored_kernelcore;
0ee332c1
TH
264
265/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
266int movable_zone;
267EXPORT_SYMBOL(movable_zone);
268#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 269
418508c1
MS
270#if MAX_NUMNODES > 1
271int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 272int nr_online_nodes __read_mostly = 1;
418508c1 273EXPORT_SYMBOL(nr_node_ids);
62bc62a8 274EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
275#endif
276
9ef9acb0
MG
277int page_group_by_mobility_disabled __read_mostly;
278
3a80a7fa
MG
279#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
280static inline void reset_deferred_meminit(pg_data_t *pgdat)
281{
282 pgdat->first_deferred_pfn = ULONG_MAX;
283}
284
285/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 286static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 287{
ae026b2a 288 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
289 return true;
290
291 return false;
292}
293
7e18adb4
MG
294static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295{
296 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
297 return true;
298
299 return false;
300}
301
3a80a7fa
MG
302/*
303 * Returns false when the remaining initialisation should be deferred until
304 * later in the boot cycle when it can be parallelised.
305 */
306static inline bool update_defer_init(pg_data_t *pgdat,
307 unsigned long pfn, unsigned long zone_end,
308 unsigned long *nr_initialised)
309{
310 /* Always populate low zones for address-contrained allocations */
311 if (zone_end < pgdat_end_pfn(pgdat))
312 return true;
313
314 /* Initialise at least 2G of the highest zone */
315 (*nr_initialised)++;
316 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
317 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
318 pgdat->first_deferred_pfn = pfn;
319 return false;
320 }
321
322 return true;
323}
324#else
325static inline void reset_deferred_meminit(pg_data_t *pgdat)
326{
327}
328
329static inline bool early_page_uninitialised(unsigned long pfn)
330{
331 return false;
332}
333
7e18adb4
MG
334static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
335{
336 return false;
337}
338
3a80a7fa
MG
339static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342{
343 return true;
344}
345#endif
346
347
ee6f509c 348void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 349{
5d0f3f72
KM
350 if (unlikely(page_group_by_mobility_disabled &&
351 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
352 migratetype = MIGRATE_UNMOVABLE;
353
b2a0ac88
MG
354 set_pageblock_flags_group(page, (unsigned long)migratetype,
355 PB_migrate, PB_migrate_end);
356}
357
13e7444b 358#ifdef CONFIG_DEBUG_VM
c6a57e19 359static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 360{
bdc8cb98
DH
361 int ret = 0;
362 unsigned seq;
363 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 364 unsigned long sp, start_pfn;
c6a57e19 365
bdc8cb98
DH
366 do {
367 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
368 start_pfn = zone->zone_start_pfn;
369 sp = zone->spanned_pages;
108bcc96 370 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
371 ret = 1;
372 } while (zone_span_seqretry(zone, seq));
373
b5e6a5a2 374 if (ret)
613813e8
DH
375 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
376 pfn, zone_to_nid(zone), zone->name,
377 start_pfn, start_pfn + sp);
b5e6a5a2 378
bdc8cb98 379 return ret;
c6a57e19
DH
380}
381
382static int page_is_consistent(struct zone *zone, struct page *page)
383{
14e07298 384 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 385 return 0;
1da177e4 386 if (zone != page_zone(page))
c6a57e19
DH
387 return 0;
388
389 return 1;
390}
391/*
392 * Temporary debugging check for pages not lying within a given zone.
393 */
394static int bad_range(struct zone *zone, struct page *page)
395{
396 if (page_outside_zone_boundaries(zone, page))
1da177e4 397 return 1;
c6a57e19
DH
398 if (!page_is_consistent(zone, page))
399 return 1;
400
1da177e4
LT
401 return 0;
402}
13e7444b
NP
403#else
404static inline int bad_range(struct zone *zone, struct page *page)
405{
406 return 0;
407}
408#endif
409
d230dec1
KS
410static void bad_page(struct page *page, const char *reason,
411 unsigned long bad_flags)
1da177e4 412{
d936cf9b
HD
413 static unsigned long resume;
414 static unsigned long nr_shown;
415 static unsigned long nr_unshown;
416
2a7684a2
WF
417 /* Don't complain about poisoned pages */
418 if (PageHWPoison(page)) {
22b751c3 419 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
420 return;
421 }
422
d936cf9b
HD
423 /*
424 * Allow a burst of 60 reports, then keep quiet for that minute;
425 * or allow a steady drip of one report per second.
426 */
427 if (nr_shown == 60) {
428 if (time_before(jiffies, resume)) {
429 nr_unshown++;
430 goto out;
431 }
432 if (nr_unshown) {
ff8e8116 433 pr_alert(
1e9e6365 434 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
435 nr_unshown);
436 nr_unshown = 0;
437 }
438 nr_shown = 0;
439 }
440 if (nr_shown++ == 0)
441 resume = jiffies + 60 * HZ;
442
ff8e8116 443 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 444 current->comm, page_to_pfn(page));
ff8e8116
VB
445 __dump_page(page, reason);
446 bad_flags &= page->flags;
447 if (bad_flags)
448 pr_alert("bad because of flags: %#lx(%pGp)\n",
449 bad_flags, &bad_flags);
4e462112 450 dump_page_owner(page);
3dc14741 451
4f31888c 452 print_modules();
1da177e4 453 dump_stack();
d936cf9b 454out:
8cc3b392 455 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 456 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 457 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
458}
459
1da177e4
LT
460/*
461 * Higher-order pages are called "compound pages". They are structured thusly:
462 *
1d798ca3 463 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 464 *
1d798ca3
KS
465 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
466 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 467 *
1d798ca3
KS
468 * The first tail page's ->compound_dtor holds the offset in array of compound
469 * page destructors. See compound_page_dtors.
1da177e4 470 *
1d798ca3 471 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 472 * This usage means that zero-order pages may not be compound.
1da177e4 473 */
d98c7a09 474
9a982250 475void free_compound_page(struct page *page)
d98c7a09 476{
d85f3385 477 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
478}
479
d00181b9 480void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
481{
482 int i;
483 int nr_pages = 1 << order;
484
f1e61557 485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
486 set_compound_order(page, order);
487 __SetPageHead(page);
488 for (i = 1; i < nr_pages; i++) {
489 struct page *p = page + i;
58a84aa9 490 set_page_count(p, 0);
1c290f64 491 p->mapping = TAIL_MAPPING;
1d798ca3 492 set_compound_head(p, page);
18229df5 493 }
53f9263b 494 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
495}
496
c0a32fc5
SG
497#ifdef CONFIG_DEBUG_PAGEALLOC
498unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
499bool _debug_pagealloc_enabled __read_mostly
500 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
e30825f1
JK
501bool _debug_guardpage_enabled __read_mostly;
502
031bc574
JK
503static int __init early_debug_pagealloc(char *buf)
504{
505 if (!buf)
506 return -EINVAL;
507
508 if (strcmp(buf, "on") == 0)
509 _debug_pagealloc_enabled = true;
510
ea6eabb0
CB
511 if (strcmp(buf, "off") == 0)
512 _debug_pagealloc_enabled = false;
513
031bc574
JK
514 return 0;
515}
516early_param("debug_pagealloc", early_debug_pagealloc);
517
e30825f1
JK
518static bool need_debug_guardpage(void)
519{
031bc574
JK
520 /* If we don't use debug_pagealloc, we don't need guard page */
521 if (!debug_pagealloc_enabled())
522 return false;
523
e30825f1
JK
524 return true;
525}
526
527static void init_debug_guardpage(void)
528{
031bc574
JK
529 if (!debug_pagealloc_enabled())
530 return;
531
e30825f1
JK
532 _debug_guardpage_enabled = true;
533}
534
535struct page_ext_operations debug_guardpage_ops = {
536 .need = need_debug_guardpage,
537 .init = init_debug_guardpage,
538};
c0a32fc5
SG
539
540static int __init debug_guardpage_minorder_setup(char *buf)
541{
542 unsigned long res;
543
544 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
545 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
546 return 0;
547 }
548 _debug_guardpage_minorder = res;
549 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
550 return 0;
551}
552__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
553
2847cf95
JK
554static inline void set_page_guard(struct zone *zone, struct page *page,
555 unsigned int order, int migratetype)
c0a32fc5 556{
e30825f1
JK
557 struct page_ext *page_ext;
558
559 if (!debug_guardpage_enabled())
560 return;
561
562 page_ext = lookup_page_ext(page);
563 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
564
2847cf95
JK
565 INIT_LIST_HEAD(&page->lru);
566 set_page_private(page, order);
567 /* Guard pages are not available for any usage */
568 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
569}
570
2847cf95
JK
571static inline void clear_page_guard(struct zone *zone, struct page *page,
572 unsigned int order, int migratetype)
c0a32fc5 573{
e30825f1
JK
574 struct page_ext *page_ext;
575
576 if (!debug_guardpage_enabled())
577 return;
578
579 page_ext = lookup_page_ext(page);
580 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
581
2847cf95
JK
582 set_page_private(page, 0);
583 if (!is_migrate_isolate(migratetype))
584 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
585}
586#else
e30825f1 587struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
588static inline void set_page_guard(struct zone *zone, struct page *page,
589 unsigned int order, int migratetype) {}
590static inline void clear_page_guard(struct zone *zone, struct page *page,
591 unsigned int order, int migratetype) {}
c0a32fc5
SG
592#endif
593
7aeb09f9 594static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 595{
4c21e2f2 596 set_page_private(page, order);
676165a8 597 __SetPageBuddy(page);
1da177e4
LT
598}
599
600static inline void rmv_page_order(struct page *page)
601{
676165a8 602 __ClearPageBuddy(page);
4c21e2f2 603 set_page_private(page, 0);
1da177e4
LT
604}
605
1da177e4
LT
606/*
607 * This function checks whether a page is free && is the buddy
608 * we can do coalesce a page and its buddy if
13e7444b 609 * (a) the buddy is not in a hole &&
676165a8 610 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
611 * (c) a page and its buddy have the same order &&
612 * (d) a page and its buddy are in the same zone.
676165a8 613 *
cf6fe945
WSH
614 * For recording whether a page is in the buddy system, we set ->_mapcount
615 * PAGE_BUDDY_MAPCOUNT_VALUE.
616 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
617 * serialized by zone->lock.
1da177e4 618 *
676165a8 619 * For recording page's order, we use page_private(page).
1da177e4 620 */
cb2b95e1 621static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 622 unsigned int order)
1da177e4 623{
14e07298 624 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 625 return 0;
13e7444b 626
c0a32fc5 627 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
628 if (page_zone_id(page) != page_zone_id(buddy))
629 return 0;
630
4c5018ce
WY
631 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
632
c0a32fc5
SG
633 return 1;
634 }
635
cb2b95e1 636 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 /*
638 * zone check is done late to avoid uselessly
639 * calculating zone/node ids for pages that could
640 * never merge.
641 */
642 if (page_zone_id(page) != page_zone_id(buddy))
643 return 0;
644
4c5018ce
WY
645 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
646
6aa3001b 647 return 1;
676165a8 648 }
6aa3001b 649 return 0;
1da177e4
LT
650}
651
652/*
653 * Freeing function for a buddy system allocator.
654 *
655 * The concept of a buddy system is to maintain direct-mapped table
656 * (containing bit values) for memory blocks of various "orders".
657 * The bottom level table contains the map for the smallest allocatable
658 * units of memory (here, pages), and each level above it describes
659 * pairs of units from the levels below, hence, "buddies".
660 * At a high level, all that happens here is marking the table entry
661 * at the bottom level available, and propagating the changes upward
662 * as necessary, plus some accounting needed to play nicely with other
663 * parts of the VM system.
664 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
665 * free pages of length of (1 << order) and marked with _mapcount
666 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
667 * field.
1da177e4 668 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
669 * other. That is, if we allocate a small block, and both were
670 * free, the remainder of the region must be split into blocks.
1da177e4 671 * If a block is freed, and its buddy is also free, then this
5f63b720 672 * triggers coalescing into a block of larger size.
1da177e4 673 *
6d49e352 674 * -- nyc
1da177e4
LT
675 */
676
48db57f8 677static inline void __free_one_page(struct page *page,
dc4b0caf 678 unsigned long pfn,
ed0ae21d
MG
679 struct zone *zone, unsigned int order,
680 int migratetype)
1da177e4
LT
681{
682 unsigned long page_idx;
6dda9d55 683 unsigned long combined_idx;
43506fad 684 unsigned long uninitialized_var(buddy_idx);
6dda9d55 685 struct page *buddy;
d00181b9 686 unsigned int max_order = MAX_ORDER;
1da177e4 687
d29bb978 688 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 689 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 690
ed0ae21d 691 VM_BUG_ON(migratetype == -1);
3c605096
JK
692 if (is_migrate_isolate(migratetype)) {
693 /*
694 * We restrict max order of merging to prevent merge
695 * between freepages on isolate pageblock and normal
696 * pageblock. Without this, pageblock isolation
697 * could cause incorrect freepage accounting.
698 */
d00181b9 699 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 700 } else {
8f82b55d 701 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 702 }
ed0ae21d 703
3c605096 704 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 705
309381fe
SL
706 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
707 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 708
3c605096 709 while (order < max_order - 1) {
43506fad
KC
710 buddy_idx = __find_buddy_index(page_idx, order);
711 buddy = page + (buddy_idx - page_idx);
cb2b95e1 712 if (!page_is_buddy(page, buddy, order))
3c82d0ce 713 break;
c0a32fc5
SG
714 /*
715 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
716 * merge with it and move up one order.
717 */
718 if (page_is_guard(buddy)) {
2847cf95 719 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
720 } else {
721 list_del(&buddy->lru);
722 zone->free_area[order].nr_free--;
723 rmv_page_order(buddy);
724 }
43506fad 725 combined_idx = buddy_idx & page_idx;
1da177e4
LT
726 page = page + (combined_idx - page_idx);
727 page_idx = combined_idx;
728 order++;
729 }
730 set_page_order(page, order);
6dda9d55
CZ
731
732 /*
733 * If this is not the largest possible page, check if the buddy
734 * of the next-highest order is free. If it is, it's possible
735 * that pages are being freed that will coalesce soon. In case,
736 * that is happening, add the free page to the tail of the list
737 * so it's less likely to be used soon and more likely to be merged
738 * as a higher order page
739 */
b7f50cfa 740 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 741 struct page *higher_page, *higher_buddy;
43506fad
KC
742 combined_idx = buddy_idx & page_idx;
743 higher_page = page + (combined_idx - page_idx);
744 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 745 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
746 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
747 list_add_tail(&page->lru,
748 &zone->free_area[order].free_list[migratetype]);
749 goto out;
750 }
751 }
752
753 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
754out:
1da177e4
LT
755 zone->free_area[order].nr_free++;
756}
757
224abf92 758static inline int free_pages_check(struct page *page)
1da177e4 759{
d230dec1 760 const char *bad_reason = NULL;
f0b791a3
DH
761 unsigned long bad_flags = 0;
762
53f9263b 763 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
764 bad_reason = "nonzero mapcount";
765 if (unlikely(page->mapping != NULL))
766 bad_reason = "non-NULL mapping";
767 if (unlikely(atomic_read(&page->_count) != 0))
768 bad_reason = "nonzero _count";
769 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
770 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
771 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
772 }
9edad6ea
JW
773#ifdef CONFIG_MEMCG
774 if (unlikely(page->mem_cgroup))
775 bad_reason = "page still charged to cgroup";
776#endif
f0b791a3
DH
777 if (unlikely(bad_reason)) {
778 bad_page(page, bad_reason, bad_flags);
79f4b7bf 779 return 1;
8cc3b392 780 }
90572890 781 page_cpupid_reset_last(page);
79f4b7bf
HD
782 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
783 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
784 return 0;
1da177e4
LT
785}
786
787/*
5f8dcc21 788 * Frees a number of pages from the PCP lists
1da177e4 789 * Assumes all pages on list are in same zone, and of same order.
207f36ee 790 * count is the number of pages to free.
1da177e4
LT
791 *
792 * If the zone was previously in an "all pages pinned" state then look to
793 * see if this freeing clears that state.
794 *
795 * And clear the zone's pages_scanned counter, to hold off the "all pages are
796 * pinned" detection logic.
797 */
5f8dcc21
MG
798static void free_pcppages_bulk(struct zone *zone, int count,
799 struct per_cpu_pages *pcp)
1da177e4 800{
5f8dcc21 801 int migratetype = 0;
a6f9edd6 802 int batch_free = 0;
72853e29 803 int to_free = count;
0d5d823a 804 unsigned long nr_scanned;
5f8dcc21 805
c54ad30c 806 spin_lock(&zone->lock);
0d5d823a
MG
807 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
808 if (nr_scanned)
809 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 810
72853e29 811 while (to_free) {
48db57f8 812 struct page *page;
5f8dcc21
MG
813 struct list_head *list;
814
815 /*
a6f9edd6
MG
816 * Remove pages from lists in a round-robin fashion. A
817 * batch_free count is maintained that is incremented when an
818 * empty list is encountered. This is so more pages are freed
819 * off fuller lists instead of spinning excessively around empty
820 * lists
5f8dcc21
MG
821 */
822 do {
a6f9edd6 823 batch_free++;
5f8dcc21
MG
824 if (++migratetype == MIGRATE_PCPTYPES)
825 migratetype = 0;
826 list = &pcp->lists[migratetype];
827 } while (list_empty(list));
48db57f8 828
1d16871d
NK
829 /* This is the only non-empty list. Free them all. */
830 if (batch_free == MIGRATE_PCPTYPES)
831 batch_free = to_free;
832
a6f9edd6 833 do {
770c8aaa
BZ
834 int mt; /* migratetype of the to-be-freed page */
835
a16601c5 836 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
837 /* must delete as __free_one_page list manipulates */
838 list_del(&page->lru);
aa016d14 839
bb14c2c7 840 mt = get_pcppage_migratetype(page);
aa016d14
VB
841 /* MIGRATE_ISOLATE page should not go to pcplists */
842 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
843 /* Pageblock could have been isolated meanwhile */
8f82b55d 844 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 845 mt = get_pageblock_migratetype(page);
51bb1a40 846
dc4b0caf 847 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 848 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 849 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 850 }
c54ad30c 851 spin_unlock(&zone->lock);
1da177e4
LT
852}
853
dc4b0caf
MG
854static void free_one_page(struct zone *zone,
855 struct page *page, unsigned long pfn,
7aeb09f9 856 unsigned int order,
ed0ae21d 857 int migratetype)
1da177e4 858{
0d5d823a 859 unsigned long nr_scanned;
006d22d9 860 spin_lock(&zone->lock);
0d5d823a
MG
861 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
862 if (nr_scanned)
863 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 864
ad53f92e
JK
865 if (unlikely(has_isolate_pageblock(zone) ||
866 is_migrate_isolate(migratetype))) {
867 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 868 }
dc4b0caf 869 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 870 spin_unlock(&zone->lock);
48db57f8
NP
871}
872
81422f29
KS
873static int free_tail_pages_check(struct page *head_page, struct page *page)
874{
1d798ca3
KS
875 int ret = 1;
876
877 /*
878 * We rely page->lru.next never has bit 0 set, unless the page
879 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
880 */
881 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
882
883 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
884 ret = 0;
885 goto out;
886 }
9a982250
KS
887 switch (page - head_page) {
888 case 1:
889 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
890 if (unlikely(compound_mapcount(page))) {
891 bad_page(page, "nonzero compound_mapcount", 0);
892 goto out;
893 }
9a982250
KS
894 break;
895 case 2:
896 /*
897 * the second tail page: ->mapping is
898 * page_deferred_list().next -- ignore value.
899 */
900 break;
901 default:
902 if (page->mapping != TAIL_MAPPING) {
903 bad_page(page, "corrupted mapping in tail page", 0);
904 goto out;
905 }
906 break;
1c290f64 907 }
81422f29
KS
908 if (unlikely(!PageTail(page))) {
909 bad_page(page, "PageTail not set", 0);
1d798ca3 910 goto out;
81422f29 911 }
1d798ca3
KS
912 if (unlikely(compound_head(page) != head_page)) {
913 bad_page(page, "compound_head not consistent", 0);
914 goto out;
81422f29 915 }
1d798ca3
KS
916 ret = 0;
917out:
1c290f64 918 page->mapping = NULL;
1d798ca3
KS
919 clear_compound_head(page);
920 return ret;
81422f29
KS
921}
922
1e8ce83c
RH
923static void __meminit __init_single_page(struct page *page, unsigned long pfn,
924 unsigned long zone, int nid)
925{
1e8ce83c 926 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
927 init_page_count(page);
928 page_mapcount_reset(page);
929 page_cpupid_reset_last(page);
1e8ce83c 930
1e8ce83c
RH
931 INIT_LIST_HEAD(&page->lru);
932#ifdef WANT_PAGE_VIRTUAL
933 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
934 if (!is_highmem_idx(zone))
935 set_page_address(page, __va(pfn << PAGE_SHIFT));
936#endif
937}
938
939static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
940 int nid)
941{
942 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
943}
944
7e18adb4
MG
945#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
946static void init_reserved_page(unsigned long pfn)
947{
948 pg_data_t *pgdat;
949 int nid, zid;
950
951 if (!early_page_uninitialised(pfn))
952 return;
953
954 nid = early_pfn_to_nid(pfn);
955 pgdat = NODE_DATA(nid);
956
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct zone *zone = &pgdat->node_zones[zid];
959
960 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
961 break;
962 }
963 __init_single_pfn(pfn, zid, nid);
964}
965#else
966static inline void init_reserved_page(unsigned long pfn)
967{
968}
969#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
970
92923ca3
NZ
971/*
972 * Initialised pages do not have PageReserved set. This function is
973 * called for each range allocated by the bootmem allocator and
974 * marks the pages PageReserved. The remaining valid pages are later
975 * sent to the buddy page allocator.
976 */
7e18adb4 977void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
978{
979 unsigned long start_pfn = PFN_DOWN(start);
980 unsigned long end_pfn = PFN_UP(end);
981
7e18adb4
MG
982 for (; start_pfn < end_pfn; start_pfn++) {
983 if (pfn_valid(start_pfn)) {
984 struct page *page = pfn_to_page(start_pfn);
985
986 init_reserved_page(start_pfn);
1d798ca3
KS
987
988 /* Avoid false-positive PageTail() */
989 INIT_LIST_HEAD(&page->lru);
990
7e18adb4
MG
991 SetPageReserved(page);
992 }
993 }
92923ca3
NZ
994}
995
ec95f53a 996static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 997{
81422f29
KS
998 bool compound = PageCompound(page);
999 int i, bad = 0;
1da177e4 1000
ab1f306f 1001 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1002 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1003
b413d48a 1004 trace_mm_page_free(page, order);
b1eeab67 1005 kmemcheck_free_shadow(page, order);
b8c73fc2 1006 kasan_free_pages(page, order);
b1eeab67 1007
8dd60a3a
AA
1008 if (PageAnon(page))
1009 page->mapping = NULL;
81422f29
KS
1010 bad += free_pages_check(page);
1011 for (i = 1; i < (1 << order); i++) {
1012 if (compound)
1013 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1014 bad += free_pages_check(page + i);
81422f29 1015 }
8cc3b392 1016 if (bad)
ec95f53a 1017 return false;
689bcebf 1018
48c96a36
JK
1019 reset_page_owner(page, order);
1020
3ac7fe5a 1021 if (!PageHighMem(page)) {
b8af2941
PK
1022 debug_check_no_locks_freed(page_address(page),
1023 PAGE_SIZE << order);
3ac7fe5a
TG
1024 debug_check_no_obj_freed(page_address(page),
1025 PAGE_SIZE << order);
1026 }
dafb1367 1027 arch_free_page(page, order);
8823b1db 1028 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1029 kernel_map_pages(page, 1 << order, 0);
dafb1367 1030
ec95f53a
KM
1031 return true;
1032}
1033
1034static void __free_pages_ok(struct page *page, unsigned int order)
1035{
1036 unsigned long flags;
95e34412 1037 int migratetype;
dc4b0caf 1038 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1039
1040 if (!free_pages_prepare(page, order))
1041 return;
1042
cfc47a28 1043 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1044 local_irq_save(flags);
f8891e5e 1045 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1046 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1047 local_irq_restore(flags);
1da177e4
LT
1048}
1049
0e1cc95b 1050static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1051 unsigned long pfn, unsigned int order)
a226f6c8 1052{
c3993076 1053 unsigned int nr_pages = 1 << order;
e2d0bd2b 1054 struct page *p = page;
c3993076 1055 unsigned int loop;
a226f6c8 1056
e2d0bd2b
YL
1057 prefetchw(p);
1058 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1059 prefetchw(p + 1);
c3993076
JW
1060 __ClearPageReserved(p);
1061 set_page_count(p, 0);
a226f6c8 1062 }
e2d0bd2b
YL
1063 __ClearPageReserved(p);
1064 set_page_count(p, 0);
c3993076 1065
e2d0bd2b 1066 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1067 set_page_refcounted(page);
1068 __free_pages(page, order);
a226f6c8
DH
1069}
1070
75a592a4
MG
1071#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1072 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1073
75a592a4
MG
1074static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1075
1076int __meminit early_pfn_to_nid(unsigned long pfn)
1077{
7ace9917 1078 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1079 int nid;
1080
7ace9917 1081 spin_lock(&early_pfn_lock);
75a592a4 1082 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1083 if (nid < 0)
1084 nid = 0;
1085 spin_unlock(&early_pfn_lock);
1086
1087 return nid;
75a592a4
MG
1088}
1089#endif
1090
1091#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1092static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1093 struct mminit_pfnnid_cache *state)
1094{
1095 int nid;
1096
1097 nid = __early_pfn_to_nid(pfn, state);
1098 if (nid >= 0 && nid != node)
1099 return false;
1100 return true;
1101}
1102
1103/* Only safe to use early in boot when initialisation is single-threaded */
1104static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1105{
1106 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1107}
1108
1109#else
1110
1111static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1112{
1113 return true;
1114}
1115static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1116 struct mminit_pfnnid_cache *state)
1117{
1118 return true;
1119}
1120#endif
1121
1122
0e1cc95b 1123void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1124 unsigned int order)
1125{
1126 if (early_page_uninitialised(pfn))
1127 return;
1128 return __free_pages_boot_core(page, pfn, order);
1129}
1130
7e18adb4 1131#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1132static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1133 unsigned long pfn, int nr_pages)
1134{
1135 int i;
1136
1137 if (!page)
1138 return;
1139
1140 /* Free a large naturally-aligned chunk if possible */
1141 if (nr_pages == MAX_ORDER_NR_PAGES &&
1142 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1143 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1144 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1145 return;
1146 }
1147
1148 for (i = 0; i < nr_pages; i++, page++, pfn++)
1149 __free_pages_boot_core(page, pfn, 0);
1150}
1151
d3cd131d
NS
1152/* Completion tracking for deferred_init_memmap() threads */
1153static atomic_t pgdat_init_n_undone __initdata;
1154static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1155
1156static inline void __init pgdat_init_report_one_done(void)
1157{
1158 if (atomic_dec_and_test(&pgdat_init_n_undone))
1159 complete(&pgdat_init_all_done_comp);
1160}
0e1cc95b 1161
7e18adb4 1162/* Initialise remaining memory on a node */
0e1cc95b 1163static int __init deferred_init_memmap(void *data)
7e18adb4 1164{
0e1cc95b
MG
1165 pg_data_t *pgdat = data;
1166 int nid = pgdat->node_id;
7e18adb4
MG
1167 struct mminit_pfnnid_cache nid_init_state = { };
1168 unsigned long start = jiffies;
1169 unsigned long nr_pages = 0;
1170 unsigned long walk_start, walk_end;
1171 int i, zid;
1172 struct zone *zone;
7e18adb4 1173 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1174 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1175
0e1cc95b 1176 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1177 pgdat_init_report_one_done();
0e1cc95b
MG
1178 return 0;
1179 }
1180
1181 /* Bind memory initialisation thread to a local node if possible */
1182 if (!cpumask_empty(cpumask))
1183 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1184
1185 /* Sanity check boundaries */
1186 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1187 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1188 pgdat->first_deferred_pfn = ULONG_MAX;
1189
1190 /* Only the highest zone is deferred so find it */
1191 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1192 zone = pgdat->node_zones + zid;
1193 if (first_init_pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196
1197 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1198 unsigned long pfn, end_pfn;
54608c3f 1199 struct page *page = NULL;
a4de83dd
MG
1200 struct page *free_base_page = NULL;
1201 unsigned long free_base_pfn = 0;
1202 int nr_to_free = 0;
7e18adb4
MG
1203
1204 end_pfn = min(walk_end, zone_end_pfn(zone));
1205 pfn = first_init_pfn;
1206 if (pfn < walk_start)
1207 pfn = walk_start;
1208 if (pfn < zone->zone_start_pfn)
1209 pfn = zone->zone_start_pfn;
1210
1211 for (; pfn < end_pfn; pfn++) {
54608c3f 1212 if (!pfn_valid_within(pfn))
a4de83dd 1213 goto free_range;
7e18adb4 1214
54608c3f
MG
1215 /*
1216 * Ensure pfn_valid is checked every
1217 * MAX_ORDER_NR_PAGES for memory holes
1218 */
1219 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1220 if (!pfn_valid(pfn)) {
1221 page = NULL;
a4de83dd 1222 goto free_range;
54608c3f
MG
1223 }
1224 }
1225
1226 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1227 page = NULL;
a4de83dd 1228 goto free_range;
54608c3f
MG
1229 }
1230
1231 /* Minimise pfn page lookups and scheduler checks */
1232 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1233 page++;
1234 } else {
a4de83dd
MG
1235 nr_pages += nr_to_free;
1236 deferred_free_range(free_base_page,
1237 free_base_pfn, nr_to_free);
1238 free_base_page = NULL;
1239 free_base_pfn = nr_to_free = 0;
1240
54608c3f
MG
1241 page = pfn_to_page(pfn);
1242 cond_resched();
1243 }
7e18adb4
MG
1244
1245 if (page->flags) {
1246 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1247 goto free_range;
7e18adb4
MG
1248 }
1249
1250 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1251 if (!free_base_page) {
1252 free_base_page = page;
1253 free_base_pfn = pfn;
1254 nr_to_free = 0;
1255 }
1256 nr_to_free++;
1257
1258 /* Where possible, batch up pages for a single free */
1259 continue;
1260free_range:
1261 /* Free the current block of pages to allocator */
1262 nr_pages += nr_to_free;
1263 deferred_free_range(free_base_page, free_base_pfn,
1264 nr_to_free);
1265 free_base_page = NULL;
1266 free_base_pfn = nr_to_free = 0;
7e18adb4 1267 }
a4de83dd 1268
7e18adb4
MG
1269 first_init_pfn = max(end_pfn, first_init_pfn);
1270 }
1271
1272 /* Sanity check that the next zone really is unpopulated */
1273 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1274
0e1cc95b 1275 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1276 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1277
1278 pgdat_init_report_one_done();
0e1cc95b
MG
1279 return 0;
1280}
1281
1282void __init page_alloc_init_late(void)
1283{
1284 int nid;
1285
d3cd131d
NS
1286 /* There will be num_node_state(N_MEMORY) threads */
1287 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1288 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1289 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1290 }
1291
1292 /* Block until all are initialised */
d3cd131d 1293 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1294
1295 /* Reinit limits that are based on free pages after the kernel is up */
1296 files_maxfiles_init();
7e18adb4
MG
1297}
1298#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1299
47118af0 1300#ifdef CONFIG_CMA
9cf510a5 1301/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1302void __init init_cma_reserved_pageblock(struct page *page)
1303{
1304 unsigned i = pageblock_nr_pages;
1305 struct page *p = page;
1306
1307 do {
1308 __ClearPageReserved(p);
1309 set_page_count(p, 0);
1310 } while (++p, --i);
1311
47118af0 1312 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1313
1314 if (pageblock_order >= MAX_ORDER) {
1315 i = pageblock_nr_pages;
1316 p = page;
1317 do {
1318 set_page_refcounted(p);
1319 __free_pages(p, MAX_ORDER - 1);
1320 p += MAX_ORDER_NR_PAGES;
1321 } while (i -= MAX_ORDER_NR_PAGES);
1322 } else {
1323 set_page_refcounted(page);
1324 __free_pages(page, pageblock_order);
1325 }
1326
3dcc0571 1327 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1328}
1329#endif
1da177e4
LT
1330
1331/*
1332 * The order of subdivision here is critical for the IO subsystem.
1333 * Please do not alter this order without good reasons and regression
1334 * testing. Specifically, as large blocks of memory are subdivided,
1335 * the order in which smaller blocks are delivered depends on the order
1336 * they're subdivided in this function. This is the primary factor
1337 * influencing the order in which pages are delivered to the IO
1338 * subsystem according to empirical testing, and this is also justified
1339 * by considering the behavior of a buddy system containing a single
1340 * large block of memory acted on by a series of small allocations.
1341 * This behavior is a critical factor in sglist merging's success.
1342 *
6d49e352 1343 * -- nyc
1da177e4 1344 */
085cc7d5 1345static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1346 int low, int high, struct free_area *area,
1347 int migratetype)
1da177e4
LT
1348{
1349 unsigned long size = 1 << high;
1350
1351 while (high > low) {
1352 area--;
1353 high--;
1354 size >>= 1;
309381fe 1355 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1356
2847cf95 1357 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1358 debug_guardpage_enabled() &&
2847cf95 1359 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1360 /*
1361 * Mark as guard pages (or page), that will allow to
1362 * merge back to allocator when buddy will be freed.
1363 * Corresponding page table entries will not be touched,
1364 * pages will stay not present in virtual address space
1365 */
2847cf95 1366 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1367 continue;
1368 }
b2a0ac88 1369 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1370 area->nr_free++;
1371 set_page_order(&page[size], high);
1372 }
1da177e4
LT
1373}
1374
1da177e4
LT
1375/*
1376 * This page is about to be returned from the page allocator
1377 */
2a7684a2 1378static inline int check_new_page(struct page *page)
1da177e4 1379{
d230dec1 1380 const char *bad_reason = NULL;
f0b791a3
DH
1381 unsigned long bad_flags = 0;
1382
53f9263b 1383 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1384 bad_reason = "nonzero mapcount";
1385 if (unlikely(page->mapping != NULL))
1386 bad_reason = "non-NULL mapping";
1387 if (unlikely(atomic_read(&page->_count) != 0))
1388 bad_reason = "nonzero _count";
f4c18e6f
NH
1389 if (unlikely(page->flags & __PG_HWPOISON)) {
1390 bad_reason = "HWPoisoned (hardware-corrupted)";
1391 bad_flags = __PG_HWPOISON;
1392 }
f0b791a3
DH
1393 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1394 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1395 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1396 }
9edad6ea
JW
1397#ifdef CONFIG_MEMCG
1398 if (unlikely(page->mem_cgroup))
1399 bad_reason = "page still charged to cgroup";
1400#endif
f0b791a3
DH
1401 if (unlikely(bad_reason)) {
1402 bad_page(page, bad_reason, bad_flags);
689bcebf 1403 return 1;
8cc3b392 1404 }
2a7684a2
WF
1405 return 0;
1406}
1407
75379191
VB
1408static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1409 int alloc_flags)
2a7684a2
WF
1410{
1411 int i;
1412
1413 for (i = 0; i < (1 << order); i++) {
1414 struct page *p = page + i;
1415 if (unlikely(check_new_page(p)))
1416 return 1;
1417 }
689bcebf 1418
4c21e2f2 1419 set_page_private(page, 0);
7835e98b 1420 set_page_refcounted(page);
cc102509
NP
1421
1422 arch_alloc_page(page, order);
1da177e4 1423 kernel_map_pages(page, 1 << order, 1);
8823b1db 1424 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1425 kasan_alloc_pages(page, order);
17cf4406
NP
1426
1427 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1428 for (i = 0; i < (1 << order); i++)
1429 clear_highpage(page + i);
17cf4406
NP
1430
1431 if (order && (gfp_flags & __GFP_COMP))
1432 prep_compound_page(page, order);
1433
48c96a36
JK
1434 set_page_owner(page, order, gfp_flags);
1435
75379191 1436 /*
2f064f34 1437 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1438 * allocate the page. The expectation is that the caller is taking
1439 * steps that will free more memory. The caller should avoid the page
1440 * being used for !PFMEMALLOC purposes.
1441 */
2f064f34
MH
1442 if (alloc_flags & ALLOC_NO_WATERMARKS)
1443 set_page_pfmemalloc(page);
1444 else
1445 clear_page_pfmemalloc(page);
75379191 1446
689bcebf 1447 return 0;
1da177e4
LT
1448}
1449
56fd56b8
MG
1450/*
1451 * Go through the free lists for the given migratetype and remove
1452 * the smallest available page from the freelists
1453 */
728ec980
MG
1454static inline
1455struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1456 int migratetype)
1457{
1458 unsigned int current_order;
b8af2941 1459 struct free_area *area;
56fd56b8
MG
1460 struct page *page;
1461
1462 /* Find a page of the appropriate size in the preferred list */
1463 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1464 area = &(zone->free_area[current_order]);
a16601c5 1465 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1466 struct page, lru);
a16601c5
GT
1467 if (!page)
1468 continue;
56fd56b8
MG
1469 list_del(&page->lru);
1470 rmv_page_order(page);
1471 area->nr_free--;
56fd56b8 1472 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1473 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1474 return page;
1475 }
1476
1477 return NULL;
1478}
1479
1480
b2a0ac88
MG
1481/*
1482 * This array describes the order lists are fallen back to when
1483 * the free lists for the desirable migrate type are depleted
1484 */
47118af0 1485static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1486 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1487 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1488 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1489#ifdef CONFIG_CMA
974a786e 1490 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1491#endif
194159fb 1492#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1493 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1494#endif
b2a0ac88
MG
1495};
1496
dc67647b
JK
1497#ifdef CONFIG_CMA
1498static struct page *__rmqueue_cma_fallback(struct zone *zone,
1499 unsigned int order)
1500{
1501 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1502}
1503#else
1504static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1505 unsigned int order) { return NULL; }
1506#endif
1507
c361be55
MG
1508/*
1509 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1510 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1511 * boundary. If alignment is required, use move_freepages_block()
1512 */
435b405c 1513int move_freepages(struct zone *zone,
b69a7288
AB
1514 struct page *start_page, struct page *end_page,
1515 int migratetype)
c361be55
MG
1516{
1517 struct page *page;
d00181b9 1518 unsigned int order;
d100313f 1519 int pages_moved = 0;
c361be55
MG
1520
1521#ifndef CONFIG_HOLES_IN_ZONE
1522 /*
1523 * page_zone is not safe to call in this context when
1524 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1525 * anyway as we check zone boundaries in move_freepages_block().
1526 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1527 * grouping pages by mobility
c361be55 1528 */
97ee4ba7 1529 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1530#endif
1531
1532 for (page = start_page; page <= end_page;) {
344c790e 1533 /* Make sure we are not inadvertently changing nodes */
309381fe 1534 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1535
c361be55
MG
1536 if (!pfn_valid_within(page_to_pfn(page))) {
1537 page++;
1538 continue;
1539 }
1540
1541 if (!PageBuddy(page)) {
1542 page++;
1543 continue;
1544 }
1545
1546 order = page_order(page);
84be48d8
KS
1547 list_move(&page->lru,
1548 &zone->free_area[order].free_list[migratetype]);
c361be55 1549 page += 1 << order;
d100313f 1550 pages_moved += 1 << order;
c361be55
MG
1551 }
1552
d100313f 1553 return pages_moved;
c361be55
MG
1554}
1555
ee6f509c 1556int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1557 int migratetype)
c361be55
MG
1558{
1559 unsigned long start_pfn, end_pfn;
1560 struct page *start_page, *end_page;
1561
1562 start_pfn = page_to_pfn(page);
d9c23400 1563 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1564 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1565 end_page = start_page + pageblock_nr_pages - 1;
1566 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1567
1568 /* Do not cross zone boundaries */
108bcc96 1569 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1570 start_page = page;
108bcc96 1571 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1572 return 0;
1573
1574 return move_freepages(zone, start_page, end_page, migratetype);
1575}
1576
2f66a68f
MG
1577static void change_pageblock_range(struct page *pageblock_page,
1578 int start_order, int migratetype)
1579{
1580 int nr_pageblocks = 1 << (start_order - pageblock_order);
1581
1582 while (nr_pageblocks--) {
1583 set_pageblock_migratetype(pageblock_page, migratetype);
1584 pageblock_page += pageblock_nr_pages;
1585 }
1586}
1587
fef903ef 1588/*
9c0415eb
VB
1589 * When we are falling back to another migratetype during allocation, try to
1590 * steal extra free pages from the same pageblocks to satisfy further
1591 * allocations, instead of polluting multiple pageblocks.
1592 *
1593 * If we are stealing a relatively large buddy page, it is likely there will
1594 * be more free pages in the pageblock, so try to steal them all. For
1595 * reclaimable and unmovable allocations, we steal regardless of page size,
1596 * as fragmentation caused by those allocations polluting movable pageblocks
1597 * is worse than movable allocations stealing from unmovable and reclaimable
1598 * pageblocks.
fef903ef 1599 */
4eb7dce6
JK
1600static bool can_steal_fallback(unsigned int order, int start_mt)
1601{
1602 /*
1603 * Leaving this order check is intended, although there is
1604 * relaxed order check in next check. The reason is that
1605 * we can actually steal whole pageblock if this condition met,
1606 * but, below check doesn't guarantee it and that is just heuristic
1607 * so could be changed anytime.
1608 */
1609 if (order >= pageblock_order)
1610 return true;
1611
1612 if (order >= pageblock_order / 2 ||
1613 start_mt == MIGRATE_RECLAIMABLE ||
1614 start_mt == MIGRATE_UNMOVABLE ||
1615 page_group_by_mobility_disabled)
1616 return true;
1617
1618 return false;
1619}
1620
1621/*
1622 * This function implements actual steal behaviour. If order is large enough,
1623 * we can steal whole pageblock. If not, we first move freepages in this
1624 * pageblock and check whether half of pages are moved or not. If half of
1625 * pages are moved, we can change migratetype of pageblock and permanently
1626 * use it's pages as requested migratetype in the future.
1627 */
1628static void steal_suitable_fallback(struct zone *zone, struct page *page,
1629 int start_type)
fef903ef 1630{
d00181b9 1631 unsigned int current_order = page_order(page);
4eb7dce6 1632 int pages;
fef903ef 1633
fef903ef
SB
1634 /* Take ownership for orders >= pageblock_order */
1635 if (current_order >= pageblock_order) {
1636 change_pageblock_range(page, current_order, start_type);
3a1086fb 1637 return;
fef903ef
SB
1638 }
1639
4eb7dce6 1640 pages = move_freepages_block(zone, page, start_type);
fef903ef 1641
4eb7dce6
JK
1642 /* Claim the whole block if over half of it is free */
1643 if (pages >= (1 << (pageblock_order-1)) ||
1644 page_group_by_mobility_disabled)
1645 set_pageblock_migratetype(page, start_type);
1646}
1647
2149cdae
JK
1648/*
1649 * Check whether there is a suitable fallback freepage with requested order.
1650 * If only_stealable is true, this function returns fallback_mt only if
1651 * we can steal other freepages all together. This would help to reduce
1652 * fragmentation due to mixed migratetype pages in one pageblock.
1653 */
1654int find_suitable_fallback(struct free_area *area, unsigned int order,
1655 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1656{
1657 int i;
1658 int fallback_mt;
1659
1660 if (area->nr_free == 0)
1661 return -1;
1662
1663 *can_steal = false;
1664 for (i = 0;; i++) {
1665 fallback_mt = fallbacks[migratetype][i];
974a786e 1666 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1667 break;
1668
1669 if (list_empty(&area->free_list[fallback_mt]))
1670 continue;
fef903ef 1671
4eb7dce6
JK
1672 if (can_steal_fallback(order, migratetype))
1673 *can_steal = true;
1674
2149cdae
JK
1675 if (!only_stealable)
1676 return fallback_mt;
1677
1678 if (*can_steal)
1679 return fallback_mt;
fef903ef 1680 }
4eb7dce6
JK
1681
1682 return -1;
fef903ef
SB
1683}
1684
0aaa29a5
MG
1685/*
1686 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1687 * there are no empty page blocks that contain a page with a suitable order
1688 */
1689static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1690 unsigned int alloc_order)
1691{
1692 int mt;
1693 unsigned long max_managed, flags;
1694
1695 /*
1696 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1697 * Check is race-prone but harmless.
1698 */
1699 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1700 if (zone->nr_reserved_highatomic >= max_managed)
1701 return;
1702
1703 spin_lock_irqsave(&zone->lock, flags);
1704
1705 /* Recheck the nr_reserved_highatomic limit under the lock */
1706 if (zone->nr_reserved_highatomic >= max_managed)
1707 goto out_unlock;
1708
1709 /* Yoink! */
1710 mt = get_pageblock_migratetype(page);
1711 if (mt != MIGRATE_HIGHATOMIC &&
1712 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1713 zone->nr_reserved_highatomic += pageblock_nr_pages;
1714 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1715 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1716 }
1717
1718out_unlock:
1719 spin_unlock_irqrestore(&zone->lock, flags);
1720}
1721
1722/*
1723 * Used when an allocation is about to fail under memory pressure. This
1724 * potentially hurts the reliability of high-order allocations when under
1725 * intense memory pressure but failed atomic allocations should be easier
1726 * to recover from than an OOM.
1727 */
1728static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1729{
1730 struct zonelist *zonelist = ac->zonelist;
1731 unsigned long flags;
1732 struct zoneref *z;
1733 struct zone *zone;
1734 struct page *page;
1735 int order;
1736
1737 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1738 ac->nodemask) {
1739 /* Preserve at least one pageblock */
1740 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1741 continue;
1742
1743 spin_lock_irqsave(&zone->lock, flags);
1744 for (order = 0; order < MAX_ORDER; order++) {
1745 struct free_area *area = &(zone->free_area[order]);
1746
a16601c5
GT
1747 page = list_first_entry_or_null(
1748 &area->free_list[MIGRATE_HIGHATOMIC],
1749 struct page, lru);
1750 if (!page)
0aaa29a5
MG
1751 continue;
1752
0aaa29a5
MG
1753 /*
1754 * It should never happen but changes to locking could
1755 * inadvertently allow a per-cpu drain to add pages
1756 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1757 * and watch for underflows.
1758 */
1759 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1760 zone->nr_reserved_highatomic);
1761
1762 /*
1763 * Convert to ac->migratetype and avoid the normal
1764 * pageblock stealing heuristics. Minimally, the caller
1765 * is doing the work and needs the pages. More
1766 * importantly, if the block was always converted to
1767 * MIGRATE_UNMOVABLE or another type then the number
1768 * of pageblocks that cannot be completely freed
1769 * may increase.
1770 */
1771 set_pageblock_migratetype(page, ac->migratetype);
1772 move_freepages_block(zone, page, ac->migratetype);
1773 spin_unlock_irqrestore(&zone->lock, flags);
1774 return;
1775 }
1776 spin_unlock_irqrestore(&zone->lock, flags);
1777 }
1778}
1779
b2a0ac88 1780/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1781static inline struct page *
7aeb09f9 1782__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1783{
b8af2941 1784 struct free_area *area;
7aeb09f9 1785 unsigned int current_order;
b2a0ac88 1786 struct page *page;
4eb7dce6
JK
1787 int fallback_mt;
1788 bool can_steal;
b2a0ac88
MG
1789
1790 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1791 for (current_order = MAX_ORDER-1;
1792 current_order >= order && current_order <= MAX_ORDER-1;
1793 --current_order) {
4eb7dce6
JK
1794 area = &(zone->free_area[current_order]);
1795 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1796 start_migratetype, false, &can_steal);
4eb7dce6
JK
1797 if (fallback_mt == -1)
1798 continue;
b2a0ac88 1799
a16601c5 1800 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1801 struct page, lru);
1802 if (can_steal)
1803 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1804
4eb7dce6
JK
1805 /* Remove the page from the freelists */
1806 area->nr_free--;
1807 list_del(&page->lru);
1808 rmv_page_order(page);
3a1086fb 1809
4eb7dce6
JK
1810 expand(zone, page, order, current_order, area,
1811 start_migratetype);
1812 /*
bb14c2c7 1813 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1814 * migratetype depending on the decisions in
bb14c2c7
VB
1815 * find_suitable_fallback(). This is OK as long as it does not
1816 * differ for MIGRATE_CMA pageblocks. Those can be used as
1817 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1818 */
bb14c2c7 1819 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1820
4eb7dce6
JK
1821 trace_mm_page_alloc_extfrag(page, order, current_order,
1822 start_migratetype, fallback_mt);
e0fff1bd 1823
4eb7dce6 1824 return page;
b2a0ac88
MG
1825 }
1826
728ec980 1827 return NULL;
b2a0ac88
MG
1828}
1829
56fd56b8 1830/*
1da177e4
LT
1831 * Do the hard work of removing an element from the buddy allocator.
1832 * Call me with the zone->lock already held.
1833 */
b2a0ac88 1834static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1835 int migratetype)
1da177e4 1836{
1da177e4
LT
1837 struct page *page;
1838
56fd56b8 1839 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1840 if (unlikely(!page)) {
dc67647b
JK
1841 if (migratetype == MIGRATE_MOVABLE)
1842 page = __rmqueue_cma_fallback(zone, order);
1843
1844 if (!page)
1845 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1846 }
1847
0d3d062a 1848 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1849 return page;
1da177e4
LT
1850}
1851
5f63b720 1852/*
1da177e4
LT
1853 * Obtain a specified number of elements from the buddy allocator, all under
1854 * a single hold of the lock, for efficiency. Add them to the supplied list.
1855 * Returns the number of new pages which were placed at *list.
1856 */
5f63b720 1857static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1858 unsigned long count, struct list_head *list,
b745bc85 1859 int migratetype, bool cold)
1da177e4 1860{
5bcc9f86 1861 int i;
5f63b720 1862
c54ad30c 1863 spin_lock(&zone->lock);
1da177e4 1864 for (i = 0; i < count; ++i) {
6ac0206b 1865 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1866 if (unlikely(page == NULL))
1da177e4 1867 break;
81eabcbe
MG
1868
1869 /*
1870 * Split buddy pages returned by expand() are received here
1871 * in physical page order. The page is added to the callers and
1872 * list and the list head then moves forward. From the callers
1873 * perspective, the linked list is ordered by page number in
1874 * some conditions. This is useful for IO devices that can
1875 * merge IO requests if the physical pages are ordered
1876 * properly.
1877 */
b745bc85 1878 if (likely(!cold))
e084b2d9
MG
1879 list_add(&page->lru, list);
1880 else
1881 list_add_tail(&page->lru, list);
81eabcbe 1882 list = &page->lru;
bb14c2c7 1883 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1884 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1885 -(1 << order));
1da177e4 1886 }
f2260e6b 1887 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1888 spin_unlock(&zone->lock);
085cc7d5 1889 return i;
1da177e4
LT
1890}
1891
4ae7c039 1892#ifdef CONFIG_NUMA
8fce4d8e 1893/*
4037d452
CL
1894 * Called from the vmstat counter updater to drain pagesets of this
1895 * currently executing processor on remote nodes after they have
1896 * expired.
1897 *
879336c3
CL
1898 * Note that this function must be called with the thread pinned to
1899 * a single processor.
8fce4d8e 1900 */
4037d452 1901void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1902{
4ae7c039 1903 unsigned long flags;
7be12fc9 1904 int to_drain, batch;
4ae7c039 1905
4037d452 1906 local_irq_save(flags);
4db0c3c2 1907 batch = READ_ONCE(pcp->batch);
7be12fc9 1908 to_drain = min(pcp->count, batch);
2a13515c
KM
1909 if (to_drain > 0) {
1910 free_pcppages_bulk(zone, to_drain, pcp);
1911 pcp->count -= to_drain;
1912 }
4037d452 1913 local_irq_restore(flags);
4ae7c039
CL
1914}
1915#endif
1916
9f8f2172 1917/*
93481ff0 1918 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1919 *
1920 * The processor must either be the current processor and the
1921 * thread pinned to the current processor or a processor that
1922 * is not online.
1923 */
93481ff0 1924static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1925{
c54ad30c 1926 unsigned long flags;
93481ff0
VB
1927 struct per_cpu_pageset *pset;
1928 struct per_cpu_pages *pcp;
1da177e4 1929
93481ff0
VB
1930 local_irq_save(flags);
1931 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1932
93481ff0
VB
1933 pcp = &pset->pcp;
1934 if (pcp->count) {
1935 free_pcppages_bulk(zone, pcp->count, pcp);
1936 pcp->count = 0;
1937 }
1938 local_irq_restore(flags);
1939}
3dfa5721 1940
93481ff0
VB
1941/*
1942 * Drain pcplists of all zones on the indicated processor.
1943 *
1944 * The processor must either be the current processor and the
1945 * thread pinned to the current processor or a processor that
1946 * is not online.
1947 */
1948static void drain_pages(unsigned int cpu)
1949{
1950 struct zone *zone;
1951
1952 for_each_populated_zone(zone) {
1953 drain_pages_zone(cpu, zone);
1da177e4
LT
1954 }
1955}
1da177e4 1956
9f8f2172
CL
1957/*
1958 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1959 *
1960 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1961 * the single zone's pages.
9f8f2172 1962 */
93481ff0 1963void drain_local_pages(struct zone *zone)
9f8f2172 1964{
93481ff0
VB
1965 int cpu = smp_processor_id();
1966
1967 if (zone)
1968 drain_pages_zone(cpu, zone);
1969 else
1970 drain_pages(cpu);
9f8f2172
CL
1971}
1972
1973/*
74046494
GBY
1974 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1975 *
93481ff0
VB
1976 * When zone parameter is non-NULL, spill just the single zone's pages.
1977 *
74046494
GBY
1978 * Note that this code is protected against sending an IPI to an offline
1979 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1980 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1981 * nothing keeps CPUs from showing up after we populated the cpumask and
1982 * before the call to on_each_cpu_mask().
9f8f2172 1983 */
93481ff0 1984void drain_all_pages(struct zone *zone)
9f8f2172 1985{
74046494 1986 int cpu;
74046494
GBY
1987
1988 /*
1989 * Allocate in the BSS so we wont require allocation in
1990 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1991 */
1992 static cpumask_t cpus_with_pcps;
1993
1994 /*
1995 * We don't care about racing with CPU hotplug event
1996 * as offline notification will cause the notified
1997 * cpu to drain that CPU pcps and on_each_cpu_mask
1998 * disables preemption as part of its processing
1999 */
2000 for_each_online_cpu(cpu) {
93481ff0
VB
2001 struct per_cpu_pageset *pcp;
2002 struct zone *z;
74046494 2003 bool has_pcps = false;
93481ff0
VB
2004
2005 if (zone) {
74046494 2006 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2007 if (pcp->pcp.count)
74046494 2008 has_pcps = true;
93481ff0
VB
2009 } else {
2010 for_each_populated_zone(z) {
2011 pcp = per_cpu_ptr(z->pageset, cpu);
2012 if (pcp->pcp.count) {
2013 has_pcps = true;
2014 break;
2015 }
74046494
GBY
2016 }
2017 }
93481ff0 2018
74046494
GBY
2019 if (has_pcps)
2020 cpumask_set_cpu(cpu, &cpus_with_pcps);
2021 else
2022 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2023 }
93481ff0
VB
2024 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2025 zone, 1);
9f8f2172
CL
2026}
2027
296699de 2028#ifdef CONFIG_HIBERNATION
1da177e4
LT
2029
2030void mark_free_pages(struct zone *zone)
2031{
f623f0db
RW
2032 unsigned long pfn, max_zone_pfn;
2033 unsigned long flags;
7aeb09f9 2034 unsigned int order, t;
86760a2c 2035 struct page *page;
1da177e4 2036
8080fc03 2037 if (zone_is_empty(zone))
1da177e4
LT
2038 return;
2039
2040 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2041
108bcc96 2042 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2043 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2044 if (pfn_valid(pfn)) {
86760a2c 2045 page = pfn_to_page(pfn);
7be98234
RW
2046 if (!swsusp_page_is_forbidden(page))
2047 swsusp_unset_page_free(page);
f623f0db 2048 }
1da177e4 2049
b2a0ac88 2050 for_each_migratetype_order(order, t) {
86760a2c
GT
2051 list_for_each_entry(page,
2052 &zone->free_area[order].free_list[t], lru) {
f623f0db 2053 unsigned long i;
1da177e4 2054
86760a2c 2055 pfn = page_to_pfn(page);
f623f0db 2056 for (i = 0; i < (1UL << order); i++)
7be98234 2057 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2058 }
b2a0ac88 2059 }
1da177e4
LT
2060 spin_unlock_irqrestore(&zone->lock, flags);
2061}
e2c55dc8 2062#endif /* CONFIG_PM */
1da177e4 2063
1da177e4
LT
2064/*
2065 * Free a 0-order page
b745bc85 2066 * cold == true ? free a cold page : free a hot page
1da177e4 2067 */
b745bc85 2068void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2069{
2070 struct zone *zone = page_zone(page);
2071 struct per_cpu_pages *pcp;
2072 unsigned long flags;
dc4b0caf 2073 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2074 int migratetype;
1da177e4 2075
ec95f53a 2076 if (!free_pages_prepare(page, 0))
689bcebf
HD
2077 return;
2078
dc4b0caf 2079 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2080 set_pcppage_migratetype(page, migratetype);
1da177e4 2081 local_irq_save(flags);
f8891e5e 2082 __count_vm_event(PGFREE);
da456f14 2083
5f8dcc21
MG
2084 /*
2085 * We only track unmovable, reclaimable and movable on pcp lists.
2086 * Free ISOLATE pages back to the allocator because they are being
2087 * offlined but treat RESERVE as movable pages so we can get those
2088 * areas back if necessary. Otherwise, we may have to free
2089 * excessively into the page allocator
2090 */
2091 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2092 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2093 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2094 goto out;
2095 }
2096 migratetype = MIGRATE_MOVABLE;
2097 }
2098
99dcc3e5 2099 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2100 if (!cold)
5f8dcc21 2101 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2102 else
2103 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2104 pcp->count++;
48db57f8 2105 if (pcp->count >= pcp->high) {
4db0c3c2 2106 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2107 free_pcppages_bulk(zone, batch, pcp);
2108 pcp->count -= batch;
48db57f8 2109 }
5f8dcc21
MG
2110
2111out:
1da177e4 2112 local_irq_restore(flags);
1da177e4
LT
2113}
2114
cc59850e
KK
2115/*
2116 * Free a list of 0-order pages
2117 */
b745bc85 2118void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2119{
2120 struct page *page, *next;
2121
2122 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2123 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2124 free_hot_cold_page(page, cold);
2125 }
2126}
2127
8dfcc9ba
NP
2128/*
2129 * split_page takes a non-compound higher-order page, and splits it into
2130 * n (1<<order) sub-pages: page[0..n]
2131 * Each sub-page must be freed individually.
2132 *
2133 * Note: this is probably too low level an operation for use in drivers.
2134 * Please consult with lkml before using this in your driver.
2135 */
2136void split_page(struct page *page, unsigned int order)
2137{
2138 int i;
e2cfc911 2139 gfp_t gfp_mask;
8dfcc9ba 2140
309381fe
SL
2141 VM_BUG_ON_PAGE(PageCompound(page), page);
2142 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2143
2144#ifdef CONFIG_KMEMCHECK
2145 /*
2146 * Split shadow pages too, because free(page[0]) would
2147 * otherwise free the whole shadow.
2148 */
2149 if (kmemcheck_page_is_tracked(page))
2150 split_page(virt_to_page(page[0].shadow), order);
2151#endif
2152
e2cfc911
JK
2153 gfp_mask = get_page_owner_gfp(page);
2154 set_page_owner(page, 0, gfp_mask);
48c96a36 2155 for (i = 1; i < (1 << order); i++) {
7835e98b 2156 set_page_refcounted(page + i);
e2cfc911 2157 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2158 }
8dfcc9ba 2159}
5853ff23 2160EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2161
3c605096 2162int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2163{
748446bb
MG
2164 unsigned long watermark;
2165 struct zone *zone;
2139cbe6 2166 int mt;
748446bb
MG
2167
2168 BUG_ON(!PageBuddy(page));
2169
2170 zone = page_zone(page);
2e30abd1 2171 mt = get_pageblock_migratetype(page);
748446bb 2172
194159fb 2173 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2174 /* Obey watermarks as if the page was being allocated */
2175 watermark = low_wmark_pages(zone) + (1 << order);
2176 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2177 return 0;
2178
8fb74b9f 2179 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2180 }
748446bb
MG
2181
2182 /* Remove page from free list */
2183 list_del(&page->lru);
2184 zone->free_area[order].nr_free--;
2185 rmv_page_order(page);
2139cbe6 2186
e2cfc911 2187 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2188
8fb74b9f 2189 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2190 if (order >= pageblock_order - 1) {
2191 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2192 for (; page < endpage; page += pageblock_nr_pages) {
2193 int mt = get_pageblock_migratetype(page);
194159fb 2194 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2195 set_pageblock_migratetype(page,
2196 MIGRATE_MOVABLE);
2197 }
748446bb
MG
2198 }
2199
f3a14ced 2200
8fb74b9f 2201 return 1UL << order;
1fb3f8ca
MG
2202}
2203
2204/*
2205 * Similar to split_page except the page is already free. As this is only
2206 * being used for migration, the migratetype of the block also changes.
2207 * As this is called with interrupts disabled, the caller is responsible
2208 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2209 * are enabled.
2210 *
2211 * Note: this is probably too low level an operation for use in drivers.
2212 * Please consult with lkml before using this in your driver.
2213 */
2214int split_free_page(struct page *page)
2215{
2216 unsigned int order;
2217 int nr_pages;
2218
1fb3f8ca
MG
2219 order = page_order(page);
2220
8fb74b9f 2221 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2222 if (!nr_pages)
2223 return 0;
2224
2225 /* Split into individual pages */
2226 set_page_refcounted(page);
2227 split_page(page, order);
2228 return nr_pages;
748446bb
MG
2229}
2230
1da177e4 2231/*
75379191 2232 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2233 */
0a15c3e9
MG
2234static inline
2235struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2236 struct zone *zone, unsigned int order,
0aaa29a5 2237 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2238{
2239 unsigned long flags;
689bcebf 2240 struct page *page;
b745bc85 2241 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2242
48db57f8 2243 if (likely(order == 0)) {
1da177e4 2244 struct per_cpu_pages *pcp;
5f8dcc21 2245 struct list_head *list;
1da177e4 2246
1da177e4 2247 local_irq_save(flags);
99dcc3e5
CL
2248 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2249 list = &pcp->lists[migratetype];
5f8dcc21 2250 if (list_empty(list)) {
535131e6 2251 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2252 pcp->batch, list,
e084b2d9 2253 migratetype, cold);
5f8dcc21 2254 if (unlikely(list_empty(list)))
6fb332fa 2255 goto failed;
535131e6 2256 }
b92a6edd 2257
5f8dcc21 2258 if (cold)
a16601c5 2259 page = list_last_entry(list, struct page, lru);
5f8dcc21 2260 else
a16601c5 2261 page = list_first_entry(list, struct page, lru);
5f8dcc21 2262
b92a6edd
MG
2263 list_del(&page->lru);
2264 pcp->count--;
7fb1d9fc 2265 } else {
dab48dab
AM
2266 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2267 /*
2268 * __GFP_NOFAIL is not to be used in new code.
2269 *
2270 * All __GFP_NOFAIL callers should be fixed so that they
2271 * properly detect and handle allocation failures.
2272 *
2273 * We most definitely don't want callers attempting to
4923abf9 2274 * allocate greater than order-1 page units with
dab48dab
AM
2275 * __GFP_NOFAIL.
2276 */
4923abf9 2277 WARN_ON_ONCE(order > 1);
dab48dab 2278 }
1da177e4 2279 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2280
2281 page = NULL;
2282 if (alloc_flags & ALLOC_HARDER) {
2283 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2284 if (page)
2285 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2286 }
2287 if (!page)
6ac0206b 2288 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2289 spin_unlock(&zone->lock);
2290 if (!page)
2291 goto failed;
d1ce749a 2292 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2293 get_pcppage_migratetype(page));
1da177e4
LT
2294 }
2295
3a025760 2296 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2297 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2298 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2299 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2300
f8891e5e 2301 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2302 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2303 local_irq_restore(flags);
1da177e4 2304
309381fe 2305 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2306 return page;
a74609fa
NP
2307
2308failed:
2309 local_irq_restore(flags);
a74609fa 2310 return NULL;
1da177e4
LT
2311}
2312
933e312e
AM
2313#ifdef CONFIG_FAIL_PAGE_ALLOC
2314
b2588c4b 2315static struct {
933e312e
AM
2316 struct fault_attr attr;
2317
621a5f7a 2318 bool ignore_gfp_highmem;
71baba4b 2319 bool ignore_gfp_reclaim;
54114994 2320 u32 min_order;
933e312e
AM
2321} fail_page_alloc = {
2322 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2323 .ignore_gfp_reclaim = true,
621a5f7a 2324 .ignore_gfp_highmem = true,
54114994 2325 .min_order = 1,
933e312e
AM
2326};
2327
2328static int __init setup_fail_page_alloc(char *str)
2329{
2330 return setup_fault_attr(&fail_page_alloc.attr, str);
2331}
2332__setup("fail_page_alloc=", setup_fail_page_alloc);
2333
deaf386e 2334static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2335{
54114994 2336 if (order < fail_page_alloc.min_order)
deaf386e 2337 return false;
933e312e 2338 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2339 return false;
933e312e 2340 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2341 return false;
71baba4b
MG
2342 if (fail_page_alloc.ignore_gfp_reclaim &&
2343 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2344 return false;
933e312e
AM
2345
2346 return should_fail(&fail_page_alloc.attr, 1 << order);
2347}
2348
2349#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2350
2351static int __init fail_page_alloc_debugfs(void)
2352{
f4ae40a6 2353 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2354 struct dentry *dir;
933e312e 2355
dd48c085
AM
2356 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2357 &fail_page_alloc.attr);
2358 if (IS_ERR(dir))
2359 return PTR_ERR(dir);
933e312e 2360
b2588c4b 2361 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2362 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2363 goto fail;
2364 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2365 &fail_page_alloc.ignore_gfp_highmem))
2366 goto fail;
2367 if (!debugfs_create_u32("min-order", mode, dir,
2368 &fail_page_alloc.min_order))
2369 goto fail;
2370
2371 return 0;
2372fail:
dd48c085 2373 debugfs_remove_recursive(dir);
933e312e 2374
b2588c4b 2375 return -ENOMEM;
933e312e
AM
2376}
2377
2378late_initcall(fail_page_alloc_debugfs);
2379
2380#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2381
2382#else /* CONFIG_FAIL_PAGE_ALLOC */
2383
deaf386e 2384static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2385{
deaf386e 2386 return false;
933e312e
AM
2387}
2388
2389#endif /* CONFIG_FAIL_PAGE_ALLOC */
2390
1da177e4 2391/*
97a16fc8
MG
2392 * Return true if free base pages are above 'mark'. For high-order checks it
2393 * will return true of the order-0 watermark is reached and there is at least
2394 * one free page of a suitable size. Checking now avoids taking the zone lock
2395 * to check in the allocation paths if no pages are free.
1da177e4 2396 */
7aeb09f9
MG
2397static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2398 unsigned long mark, int classzone_idx, int alloc_flags,
2399 long free_pages)
1da177e4 2400{
d23ad423 2401 long min = mark;
1da177e4 2402 int o;
97a16fc8 2403 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2404
0aaa29a5 2405 /* free_pages may go negative - that's OK */
df0a6daa 2406 free_pages -= (1 << order) - 1;
0aaa29a5 2407
7fb1d9fc 2408 if (alloc_flags & ALLOC_HIGH)
1da177e4 2409 min -= min / 2;
0aaa29a5
MG
2410
2411 /*
2412 * If the caller does not have rights to ALLOC_HARDER then subtract
2413 * the high-atomic reserves. This will over-estimate the size of the
2414 * atomic reserve but it avoids a search.
2415 */
97a16fc8 2416 if (likely(!alloc_harder))
0aaa29a5
MG
2417 free_pages -= z->nr_reserved_highatomic;
2418 else
1da177e4 2419 min -= min / 4;
e2b19197 2420
d95ea5d1
BZ
2421#ifdef CONFIG_CMA
2422 /* If allocation can't use CMA areas don't use free CMA pages */
2423 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2424 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2425#endif
026b0814 2426
97a16fc8
MG
2427 /*
2428 * Check watermarks for an order-0 allocation request. If these
2429 * are not met, then a high-order request also cannot go ahead
2430 * even if a suitable page happened to be free.
2431 */
2432 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2433 return false;
1da177e4 2434
97a16fc8
MG
2435 /* If this is an order-0 request then the watermark is fine */
2436 if (!order)
2437 return true;
2438
2439 /* For a high-order request, check at least one suitable page is free */
2440 for (o = order; o < MAX_ORDER; o++) {
2441 struct free_area *area = &z->free_area[o];
2442 int mt;
2443
2444 if (!area->nr_free)
2445 continue;
2446
2447 if (alloc_harder)
2448 return true;
1da177e4 2449
97a16fc8
MG
2450 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2451 if (!list_empty(&area->free_list[mt]))
2452 return true;
2453 }
2454
2455#ifdef CONFIG_CMA
2456 if ((alloc_flags & ALLOC_CMA) &&
2457 !list_empty(&area->free_list[MIGRATE_CMA])) {
2458 return true;
2459 }
2460#endif
1da177e4 2461 }
97a16fc8 2462 return false;
88f5acf8
MG
2463}
2464
7aeb09f9 2465bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2466 int classzone_idx, int alloc_flags)
2467{
2468 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2469 zone_page_state(z, NR_FREE_PAGES));
2470}
2471
7aeb09f9 2472bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2473 unsigned long mark, int classzone_idx)
88f5acf8
MG
2474{
2475 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2476
2477 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2478 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2479
e2b19197 2480 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2481 free_pages);
1da177e4
LT
2482}
2483
9276b1bc 2484#ifdef CONFIG_NUMA
81c0a2bb
JW
2485static bool zone_local(struct zone *local_zone, struct zone *zone)
2486{
fff4068c 2487 return local_zone->node == zone->node;
81c0a2bb
JW
2488}
2489
957f822a
DR
2490static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2491{
5f7a75ac
MG
2492 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2493 RECLAIM_DISTANCE;
957f822a 2494}
9276b1bc 2495#else /* CONFIG_NUMA */
81c0a2bb
JW
2496static bool zone_local(struct zone *local_zone, struct zone *zone)
2497{
2498 return true;
2499}
2500
957f822a
DR
2501static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2502{
2503 return true;
2504}
9276b1bc
PJ
2505#endif /* CONFIG_NUMA */
2506
4ffeaf35
MG
2507static void reset_alloc_batches(struct zone *preferred_zone)
2508{
2509 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2510
2511 do {
2512 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2513 high_wmark_pages(zone) - low_wmark_pages(zone) -
2514 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2515 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2516 } while (zone++ != preferred_zone);
2517}
2518
7fb1d9fc 2519/*
0798e519 2520 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2521 * a page.
2522 */
2523static struct page *
a9263751
VB
2524get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2525 const struct alloc_context *ac)
753ee728 2526{
a9263751 2527 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2528 struct zoneref *z;
7fb1d9fc 2529 struct page *page = NULL;
5117f45d 2530 struct zone *zone;
4ffeaf35
MG
2531 int nr_fair_skipped = 0;
2532 bool zonelist_rescan;
54a6eb5c 2533
9276b1bc 2534zonelist_scan:
4ffeaf35
MG
2535 zonelist_rescan = false;
2536
7fb1d9fc 2537 /*
9276b1bc 2538 * Scan zonelist, looking for a zone with enough free.
344736f2 2539 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2540 */
a9263751
VB
2541 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2542 ac->nodemask) {
e085dbc5
JW
2543 unsigned long mark;
2544
664eedde
MG
2545 if (cpusets_enabled() &&
2546 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2547 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2548 continue;
81c0a2bb
JW
2549 /*
2550 * Distribute pages in proportion to the individual
2551 * zone size to ensure fair page aging. The zone a
2552 * page was allocated in should have no effect on the
2553 * time the page has in memory before being reclaimed.
81c0a2bb 2554 */
3a025760 2555 if (alloc_flags & ALLOC_FAIR) {
a9263751 2556 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2557 break;
57054651 2558 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2559 nr_fair_skipped++;
3a025760 2560 continue;
4ffeaf35 2561 }
81c0a2bb 2562 }
a756cf59
JW
2563 /*
2564 * When allocating a page cache page for writing, we
2565 * want to get it from a zone that is within its dirty
2566 * limit, such that no single zone holds more than its
2567 * proportional share of globally allowed dirty pages.
2568 * The dirty limits take into account the zone's
2569 * lowmem reserves and high watermark so that kswapd
2570 * should be able to balance it without having to
2571 * write pages from its LRU list.
2572 *
2573 * This may look like it could increase pressure on
2574 * lower zones by failing allocations in higher zones
2575 * before they are full. But the pages that do spill
2576 * over are limited as the lower zones are protected
2577 * by this very same mechanism. It should not become
2578 * a practical burden to them.
2579 *
2580 * XXX: For now, allow allocations to potentially
2581 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2582 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2583 * which is important when on a NUMA setup the allowed
2584 * zones are together not big enough to reach the
2585 * global limit. The proper fix for these situations
2586 * will require awareness of zones in the
2587 * dirty-throttling and the flusher threads.
2588 */
c9ab0c4f 2589 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2590 continue;
7fb1d9fc 2591
e085dbc5
JW
2592 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2593 if (!zone_watermark_ok(zone, order, mark,
a9263751 2594 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2595 int ret;
2596
5dab2911
MG
2597 /* Checked here to keep the fast path fast */
2598 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2599 if (alloc_flags & ALLOC_NO_WATERMARKS)
2600 goto try_this_zone;
2601
957f822a 2602 if (zone_reclaim_mode == 0 ||
a9263751 2603 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2604 continue;
2605
fa5e084e
MG
2606 ret = zone_reclaim(zone, gfp_mask, order);
2607 switch (ret) {
2608 case ZONE_RECLAIM_NOSCAN:
2609 /* did not scan */
cd38b115 2610 continue;
fa5e084e
MG
2611 case ZONE_RECLAIM_FULL:
2612 /* scanned but unreclaimable */
cd38b115 2613 continue;
fa5e084e
MG
2614 default:
2615 /* did we reclaim enough */
fed2719e 2616 if (zone_watermark_ok(zone, order, mark,
a9263751 2617 ac->classzone_idx, alloc_flags))
fed2719e
MG
2618 goto try_this_zone;
2619
fed2719e 2620 continue;
0798e519 2621 }
7fb1d9fc
RS
2622 }
2623
fa5e084e 2624try_this_zone:
a9263751 2625 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2626 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2627 if (page) {
2628 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2629 goto try_this_zone;
0aaa29a5
MG
2630
2631 /*
2632 * If this is a high-order atomic allocation then check
2633 * if the pageblock should be reserved for the future
2634 */
2635 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2636 reserve_highatomic_pageblock(page, zone, order);
2637
75379191
VB
2638 return page;
2639 }
54a6eb5c 2640 }
9276b1bc 2641
4ffeaf35
MG
2642 /*
2643 * The first pass makes sure allocations are spread fairly within the
2644 * local node. However, the local node might have free pages left
2645 * after the fairness batches are exhausted, and remote zones haven't
2646 * even been considered yet. Try once more without fairness, and
2647 * include remote zones now, before entering the slowpath and waking
2648 * kswapd: prefer spilling to a remote zone over swapping locally.
2649 */
2650 if (alloc_flags & ALLOC_FAIR) {
2651 alloc_flags &= ~ALLOC_FAIR;
2652 if (nr_fair_skipped) {
2653 zonelist_rescan = true;
a9263751 2654 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2655 }
2656 if (nr_online_nodes > 1)
2657 zonelist_rescan = true;
2658 }
2659
4ffeaf35
MG
2660 if (zonelist_rescan)
2661 goto zonelist_scan;
2662
2663 return NULL;
753ee728
MH
2664}
2665
29423e77
DR
2666/*
2667 * Large machines with many possible nodes should not always dump per-node
2668 * meminfo in irq context.
2669 */
2670static inline bool should_suppress_show_mem(void)
2671{
2672 bool ret = false;
2673
2674#if NODES_SHIFT > 8
2675 ret = in_interrupt();
2676#endif
2677 return ret;
2678}
2679
a238ab5b
DH
2680static DEFINE_RATELIMIT_STATE(nopage_rs,
2681 DEFAULT_RATELIMIT_INTERVAL,
2682 DEFAULT_RATELIMIT_BURST);
2683
d00181b9 2684void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2685{
a238ab5b
DH
2686 unsigned int filter = SHOW_MEM_FILTER_NODES;
2687
c0a32fc5
SG
2688 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2689 debug_guardpage_minorder() > 0)
a238ab5b
DH
2690 return;
2691
2692 /*
2693 * This documents exceptions given to allocations in certain
2694 * contexts that are allowed to allocate outside current's set
2695 * of allowed nodes.
2696 */
2697 if (!(gfp_mask & __GFP_NOMEMALLOC))
2698 if (test_thread_flag(TIF_MEMDIE) ||
2699 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2700 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2701 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2702 filter &= ~SHOW_MEM_FILTER_NODES;
2703
2704 if (fmt) {
3ee9a4f0
JP
2705 struct va_format vaf;
2706 va_list args;
2707
a238ab5b 2708 va_start(args, fmt);
3ee9a4f0
JP
2709
2710 vaf.fmt = fmt;
2711 vaf.va = &args;
2712
2713 pr_warn("%pV", &vaf);
2714
a238ab5b
DH
2715 va_end(args);
2716 }
2717
c5c990e8
VB
2718 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2719 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2720 dump_stack();
2721 if (!should_suppress_show_mem())
2722 show_mem(filter);
2723}
2724
11e33f6a
MG
2725static inline struct page *
2726__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2727 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2728{
6e0fc46d
DR
2729 struct oom_control oc = {
2730 .zonelist = ac->zonelist,
2731 .nodemask = ac->nodemask,
2732 .gfp_mask = gfp_mask,
2733 .order = order,
6e0fc46d 2734 };
11e33f6a
MG
2735 struct page *page;
2736
9879de73
JW
2737 *did_some_progress = 0;
2738
9879de73 2739 /*
dc56401f
JW
2740 * Acquire the oom lock. If that fails, somebody else is
2741 * making progress for us.
9879de73 2742 */
dc56401f 2743 if (!mutex_trylock(&oom_lock)) {
9879de73 2744 *did_some_progress = 1;
11e33f6a 2745 schedule_timeout_uninterruptible(1);
1da177e4
LT
2746 return NULL;
2747 }
6b1de916 2748
11e33f6a
MG
2749 /*
2750 * Go through the zonelist yet one more time, keep very high watermark
2751 * here, this is only to catch a parallel oom killing, we must fail if
2752 * we're still under heavy pressure.
2753 */
a9263751
VB
2754 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2755 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2756 if (page)
11e33f6a
MG
2757 goto out;
2758
4365a567 2759 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2760 /* Coredumps can quickly deplete all memory reserves */
2761 if (current->flags & PF_DUMPCORE)
2762 goto out;
4365a567
KH
2763 /* The OOM killer will not help higher order allocs */
2764 if (order > PAGE_ALLOC_COSTLY_ORDER)
2765 goto out;
03668b3c 2766 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2767 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2768 goto out;
9083905a 2769 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2770 if (!(gfp_mask & __GFP_FS)) {
2771 /*
2772 * XXX: Page reclaim didn't yield anything,
2773 * and the OOM killer can't be invoked, but
9083905a 2774 * keep looping as per tradition.
cc873177
JW
2775 */
2776 *did_some_progress = 1;
9879de73 2777 goto out;
cc873177 2778 }
9083905a
JW
2779 if (pm_suspended_storage())
2780 goto out;
4167e9b2 2781 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2782 if (gfp_mask & __GFP_THISNODE)
2783 goto out;
2784 }
11e33f6a 2785 /* Exhausted what can be done so it's blamo time */
5020e285 2786 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2787 *did_some_progress = 1;
5020e285
MH
2788
2789 if (gfp_mask & __GFP_NOFAIL) {
2790 page = get_page_from_freelist(gfp_mask, order,
2791 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2792 /*
2793 * fallback to ignore cpuset restriction if our nodes
2794 * are depleted
2795 */
2796 if (!page)
2797 page = get_page_from_freelist(gfp_mask, order,
2798 ALLOC_NO_WATERMARKS, ac);
2799 }
2800 }
11e33f6a 2801out:
dc56401f 2802 mutex_unlock(&oom_lock);
11e33f6a
MG
2803 return page;
2804}
2805
56de7263
MG
2806#ifdef CONFIG_COMPACTION
2807/* Try memory compaction for high-order allocations before reclaim */
2808static struct page *
2809__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2810 int alloc_flags, const struct alloc_context *ac,
2811 enum migrate_mode mode, int *contended_compaction,
2812 bool *deferred_compaction)
56de7263 2813{
53853e2d 2814 unsigned long compact_result;
98dd3b48 2815 struct page *page;
53853e2d
VB
2816
2817 if (!order)
66199712 2818 return NULL;
66199712 2819
c06b1fca 2820 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2821 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2822 mode, contended_compaction);
c06b1fca 2823 current->flags &= ~PF_MEMALLOC;
56de7263 2824
98dd3b48
VB
2825 switch (compact_result) {
2826 case COMPACT_DEFERRED:
53853e2d 2827 *deferred_compaction = true;
98dd3b48
VB
2828 /* fall-through */
2829 case COMPACT_SKIPPED:
2830 return NULL;
2831 default:
2832 break;
2833 }
53853e2d 2834
98dd3b48
VB
2835 /*
2836 * At least in one zone compaction wasn't deferred or skipped, so let's
2837 * count a compaction stall
2838 */
2839 count_vm_event(COMPACTSTALL);
8fb74b9f 2840
a9263751
VB
2841 page = get_page_from_freelist(gfp_mask, order,
2842 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2843
98dd3b48
VB
2844 if (page) {
2845 struct zone *zone = page_zone(page);
53853e2d 2846
98dd3b48
VB
2847 zone->compact_blockskip_flush = false;
2848 compaction_defer_reset(zone, order, true);
2849 count_vm_event(COMPACTSUCCESS);
2850 return page;
2851 }
56de7263 2852
98dd3b48
VB
2853 /*
2854 * It's bad if compaction run occurs and fails. The most likely reason
2855 * is that pages exist, but not enough to satisfy watermarks.
2856 */
2857 count_vm_event(COMPACTFAIL);
66199712 2858
98dd3b48 2859 cond_resched();
56de7263
MG
2860
2861 return NULL;
2862}
2863#else
2864static inline struct page *
2865__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2866 int alloc_flags, const struct alloc_context *ac,
2867 enum migrate_mode mode, int *contended_compaction,
2868 bool *deferred_compaction)
56de7263
MG
2869{
2870 return NULL;
2871}
2872#endif /* CONFIG_COMPACTION */
2873
bba90710
MS
2874/* Perform direct synchronous page reclaim */
2875static int
a9263751
VB
2876__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2877 const struct alloc_context *ac)
11e33f6a 2878{
11e33f6a 2879 struct reclaim_state reclaim_state;
bba90710 2880 int progress;
11e33f6a
MG
2881
2882 cond_resched();
2883
2884 /* We now go into synchronous reclaim */
2885 cpuset_memory_pressure_bump();
c06b1fca 2886 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2887 lockdep_set_current_reclaim_state(gfp_mask);
2888 reclaim_state.reclaimed_slab = 0;
c06b1fca 2889 current->reclaim_state = &reclaim_state;
11e33f6a 2890
a9263751
VB
2891 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2892 ac->nodemask);
11e33f6a 2893
c06b1fca 2894 current->reclaim_state = NULL;
11e33f6a 2895 lockdep_clear_current_reclaim_state();
c06b1fca 2896 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2897
2898 cond_resched();
2899
bba90710
MS
2900 return progress;
2901}
2902
2903/* The really slow allocator path where we enter direct reclaim */
2904static inline struct page *
2905__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2906 int alloc_flags, const struct alloc_context *ac,
2907 unsigned long *did_some_progress)
bba90710
MS
2908{
2909 struct page *page = NULL;
2910 bool drained = false;
2911
a9263751 2912 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2913 if (unlikely(!(*did_some_progress)))
2914 return NULL;
11e33f6a 2915
9ee493ce 2916retry:
a9263751
VB
2917 page = get_page_from_freelist(gfp_mask, order,
2918 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2919
2920 /*
2921 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2922 * pages are pinned on the per-cpu lists or in high alloc reserves.
2923 * Shrink them them and try again
9ee493ce
MG
2924 */
2925 if (!page && !drained) {
0aaa29a5 2926 unreserve_highatomic_pageblock(ac);
93481ff0 2927 drain_all_pages(NULL);
9ee493ce
MG
2928 drained = true;
2929 goto retry;
2930 }
2931
11e33f6a
MG
2932 return page;
2933}
2934
a9263751 2935static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2936{
2937 struct zoneref *z;
2938 struct zone *zone;
2939
a9263751
VB
2940 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2941 ac->high_zoneidx, ac->nodemask)
2942 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2943}
2944
341ce06f
PZ
2945static inline int
2946gfp_to_alloc_flags(gfp_t gfp_mask)
2947{
341ce06f 2948 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2949
a56f57ff 2950 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2951 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2952
341ce06f
PZ
2953 /*
2954 * The caller may dip into page reserves a bit more if the caller
2955 * cannot run direct reclaim, or if the caller has realtime scheduling
2956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2957 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2958 */
e6223a3b 2959 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2960
d0164adc 2961 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2962 /*
b104a35d
DR
2963 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2964 * if it can't schedule.
5c3240d9 2965 */
b104a35d 2966 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2967 alloc_flags |= ALLOC_HARDER;
523b9458 2968 /*
b104a35d 2969 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2970 * comment for __cpuset_node_allowed().
523b9458 2971 */
341ce06f 2972 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2973 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2974 alloc_flags |= ALLOC_HARDER;
2975
b37f1dd0
MG
2976 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2977 if (gfp_mask & __GFP_MEMALLOC)
2978 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2979 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2980 alloc_flags |= ALLOC_NO_WATERMARKS;
2981 else if (!in_interrupt() &&
2982 ((current->flags & PF_MEMALLOC) ||
2983 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2984 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2985 }
d95ea5d1 2986#ifdef CONFIG_CMA
43e7a34d 2987 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2988 alloc_flags |= ALLOC_CMA;
2989#endif
341ce06f
PZ
2990 return alloc_flags;
2991}
2992
072bb0aa
MG
2993bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2994{
b37f1dd0 2995 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2996}
2997
d0164adc
MG
2998static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2999{
3000 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3001}
3002
11e33f6a
MG
3003static inline struct page *
3004__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3005 struct alloc_context *ac)
11e33f6a 3006{
d0164adc 3007 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3008 struct page *page = NULL;
3009 int alloc_flags;
3010 unsigned long pages_reclaimed = 0;
3011 unsigned long did_some_progress;
e0b9daeb 3012 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3013 bool deferred_compaction = false;
1f9efdef 3014 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3015
72807a74
MG
3016 /*
3017 * In the slowpath, we sanity check order to avoid ever trying to
3018 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3019 * be using allocators in order of preference for an area that is
3020 * too large.
3021 */
1fc28b70
MG
3022 if (order >= MAX_ORDER) {
3023 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3024 return NULL;
1fc28b70 3025 }
1da177e4 3026
d0164adc
MG
3027 /*
3028 * We also sanity check to catch abuse of atomic reserves being used by
3029 * callers that are not in atomic context.
3030 */
3031 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3032 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3033 gfp_mask &= ~__GFP_ATOMIC;
3034
952f3b51 3035 /*
4167e9b2
DR
3036 * If this allocation cannot block and it is for a specific node, then
3037 * fail early. There's no need to wakeup kswapd or retry for a
3038 * speculative node-specific allocation.
952f3b51 3039 */
d0164adc 3040 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3041 goto nopage;
3042
9879de73 3043retry:
d0164adc 3044 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3045 wake_all_kswapds(order, ac);
1da177e4 3046
9bf2229f 3047 /*
7fb1d9fc
RS
3048 * OK, we're below the kswapd watermark and have kicked background
3049 * reclaim. Now things get more complex, so set up alloc_flags according
3050 * to how we want to proceed.
9bf2229f 3051 */
341ce06f 3052 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3053
f33261d7
DR
3054 /*
3055 * Find the true preferred zone if the allocation is unconstrained by
3056 * cpusets.
3057 */
a9263751 3058 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3059 struct zoneref *preferred_zoneref;
a9263751
VB
3060 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3061 ac->high_zoneidx, NULL, &ac->preferred_zone);
3062 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3063 }
f33261d7 3064
341ce06f 3065 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3066 page = get_page_from_freelist(gfp_mask, order,
3067 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3068 if (page)
3069 goto got_pg;
1da177e4 3070
11e33f6a 3071 /* Allocate without watermarks if the context allows */
341ce06f 3072 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3073 /*
3074 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3075 * the allocation is high priority and these type of
3076 * allocations are system rather than user orientated
3077 */
a9263751 3078 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3079 page = get_page_from_freelist(gfp_mask, order,
3080 ALLOC_NO_WATERMARKS, ac);
3081 if (page)
3082 goto got_pg;
1da177e4
LT
3083 }
3084
d0164adc
MG
3085 /* Caller is not willing to reclaim, we can't balance anything */
3086 if (!can_direct_reclaim) {
aed0a0e3 3087 /*
33d53103
MH
3088 * All existing users of the __GFP_NOFAIL are blockable, so warn
3089 * of any new users that actually allow this type of allocation
3090 * to fail.
aed0a0e3
DR
3091 */
3092 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3093 goto nopage;
aed0a0e3 3094 }
1da177e4 3095
341ce06f 3096 /* Avoid recursion of direct reclaim */
33d53103
MH
3097 if (current->flags & PF_MEMALLOC) {
3098 /*
3099 * __GFP_NOFAIL request from this context is rather bizarre
3100 * because we cannot reclaim anything and only can loop waiting
3101 * for somebody to do a work for us.
3102 */
3103 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3104 cond_resched();
3105 goto retry;
3106 }
341ce06f 3107 goto nopage;
33d53103 3108 }
341ce06f 3109
6583bb64
DR
3110 /* Avoid allocations with no watermarks from looping endlessly */
3111 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3112 goto nopage;
3113
77f1fe6b
MG
3114 /*
3115 * Try direct compaction. The first pass is asynchronous. Subsequent
3116 * attempts after direct reclaim are synchronous
3117 */
a9263751
VB
3118 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3119 migration_mode,
3120 &contended_compaction,
53853e2d 3121 &deferred_compaction);
56de7263
MG
3122 if (page)
3123 goto got_pg;
75f30861 3124
1f9efdef 3125 /* Checks for THP-specific high-order allocations */
d0164adc 3126 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3127 /*
3128 * If compaction is deferred for high-order allocations, it is
3129 * because sync compaction recently failed. If this is the case
3130 * and the caller requested a THP allocation, we do not want
3131 * to heavily disrupt the system, so we fail the allocation
3132 * instead of entering direct reclaim.
3133 */
3134 if (deferred_compaction)
3135 goto nopage;
3136
3137 /*
3138 * In all zones where compaction was attempted (and not
3139 * deferred or skipped), lock contention has been detected.
3140 * For THP allocation we do not want to disrupt the others
3141 * so we fallback to base pages instead.
3142 */
3143 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3144 goto nopage;
3145
3146 /*
3147 * If compaction was aborted due to need_resched(), we do not
3148 * want to further increase allocation latency, unless it is
3149 * khugepaged trying to collapse.
3150 */
3151 if (contended_compaction == COMPACT_CONTENDED_SCHED
3152 && !(current->flags & PF_KTHREAD))
3153 goto nopage;
3154 }
66199712 3155
8fe78048
DR
3156 /*
3157 * It can become very expensive to allocate transparent hugepages at
3158 * fault, so use asynchronous memory compaction for THP unless it is
3159 * khugepaged trying to collapse.
3160 */
d0164adc 3161 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3162 migration_mode = MIGRATE_SYNC_LIGHT;
3163
11e33f6a 3164 /* Try direct reclaim and then allocating */
a9263751
VB
3165 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3166 &did_some_progress);
11e33f6a
MG
3167 if (page)
3168 goto got_pg;
1da177e4 3169
9083905a
JW
3170 /* Do not loop if specifically requested */
3171 if (gfp_mask & __GFP_NORETRY)
3172 goto noretry;
3173
3174 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3175 pages_reclaimed += did_some_progress;
9083905a
JW
3176 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3177 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3178 /* Wait for some write requests to complete then retry */
a9263751 3179 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3180 goto retry;
1da177e4
LT
3181 }
3182
9083905a
JW
3183 /* Reclaim has failed us, start killing things */
3184 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3185 if (page)
3186 goto got_pg;
3187
3188 /* Retry as long as the OOM killer is making progress */
3189 if (did_some_progress)
3190 goto retry;
3191
3192noretry:
3193 /*
3194 * High-order allocations do not necessarily loop after
3195 * direct reclaim and reclaim/compaction depends on compaction
3196 * being called after reclaim so call directly if necessary
3197 */
3198 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3199 ac, migration_mode,
3200 &contended_compaction,
3201 &deferred_compaction);
3202 if (page)
3203 goto got_pg;
1da177e4 3204nopage:
a238ab5b 3205 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3206got_pg:
072bb0aa 3207 return page;
1da177e4 3208}
11e33f6a
MG
3209
3210/*
3211 * This is the 'heart' of the zoned buddy allocator.
3212 */
3213struct page *
3214__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3215 struct zonelist *zonelist, nodemask_t *nodemask)
3216{
d8846374 3217 struct zoneref *preferred_zoneref;
cc9a6c87 3218 struct page *page = NULL;
cc9a6c87 3219 unsigned int cpuset_mems_cookie;
3a025760 3220 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3221 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3222 struct alloc_context ac = {
3223 .high_zoneidx = gfp_zone(gfp_mask),
3224 .nodemask = nodemask,
3225 .migratetype = gfpflags_to_migratetype(gfp_mask),
3226 };
11e33f6a 3227
dcce284a
BH
3228 gfp_mask &= gfp_allowed_mask;
3229
11e33f6a
MG
3230 lockdep_trace_alloc(gfp_mask);
3231
d0164adc 3232 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3233
3234 if (should_fail_alloc_page(gfp_mask, order))
3235 return NULL;
3236
3237 /*
3238 * Check the zones suitable for the gfp_mask contain at least one
3239 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3240 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3241 */
3242 if (unlikely(!zonelist->_zonerefs->zone))
3243 return NULL;
3244
a9263751 3245 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3246 alloc_flags |= ALLOC_CMA;
3247
cc9a6c87 3248retry_cpuset:
d26914d1 3249 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3250
a9263751
VB
3251 /* We set it here, as __alloc_pages_slowpath might have changed it */
3252 ac.zonelist = zonelist;
c9ab0c4f
MG
3253
3254 /* Dirty zone balancing only done in the fast path */
3255 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3256
5117f45d 3257 /* The preferred zone is used for statistics later */
a9263751
VB
3258 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3259 ac.nodemask ? : &cpuset_current_mems_allowed,
3260 &ac.preferred_zone);
3261 if (!ac.preferred_zone)
cc9a6c87 3262 goto out;
a9263751 3263 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3264
3265 /* First allocation attempt */
91fbdc0f 3266 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3267 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3268 if (unlikely(!page)) {
3269 /*
3270 * Runtime PM, block IO and its error handling path
3271 * can deadlock because I/O on the device might not
3272 * complete.
3273 */
91fbdc0f 3274 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3275 ac.spread_dirty_pages = false;
91fbdc0f 3276
a9263751 3277 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3278 }
11e33f6a 3279
23f086f9
XQ
3280 if (kmemcheck_enabled && page)
3281 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3282
a9263751 3283 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3284
3285out:
3286 /*
3287 * When updating a task's mems_allowed, it is possible to race with
3288 * parallel threads in such a way that an allocation can fail while
3289 * the mask is being updated. If a page allocation is about to fail,
3290 * check if the cpuset changed during allocation and if so, retry.
3291 */
d26914d1 3292 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3293 goto retry_cpuset;
3294
11e33f6a 3295 return page;
1da177e4 3296}
d239171e 3297EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3298
3299/*
3300 * Common helper functions.
3301 */
920c7a5d 3302unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3303{
945a1113
AM
3304 struct page *page;
3305
3306 /*
3307 * __get_free_pages() returns a 32-bit address, which cannot represent
3308 * a highmem page
3309 */
3310 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3311
1da177e4
LT
3312 page = alloc_pages(gfp_mask, order);
3313 if (!page)
3314 return 0;
3315 return (unsigned long) page_address(page);
3316}
1da177e4
LT
3317EXPORT_SYMBOL(__get_free_pages);
3318
920c7a5d 3319unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3320{
945a1113 3321 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3322}
1da177e4
LT
3323EXPORT_SYMBOL(get_zeroed_page);
3324
920c7a5d 3325void __free_pages(struct page *page, unsigned int order)
1da177e4 3326{
b5810039 3327 if (put_page_testzero(page)) {
1da177e4 3328 if (order == 0)
b745bc85 3329 free_hot_cold_page(page, false);
1da177e4
LT
3330 else
3331 __free_pages_ok(page, order);
3332 }
3333}
3334
3335EXPORT_SYMBOL(__free_pages);
3336
920c7a5d 3337void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3338{
3339 if (addr != 0) {
725d704e 3340 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3341 __free_pages(virt_to_page((void *)addr), order);
3342 }
3343}
3344
3345EXPORT_SYMBOL(free_pages);
3346
b63ae8ca
AD
3347/*
3348 * Page Fragment:
3349 * An arbitrary-length arbitrary-offset area of memory which resides
3350 * within a 0 or higher order page. Multiple fragments within that page
3351 * are individually refcounted, in the page's reference counter.
3352 *
3353 * The page_frag functions below provide a simple allocation framework for
3354 * page fragments. This is used by the network stack and network device
3355 * drivers to provide a backing region of memory for use as either an
3356 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3357 */
3358static struct page *__page_frag_refill(struct page_frag_cache *nc,
3359 gfp_t gfp_mask)
3360{
3361 struct page *page = NULL;
3362 gfp_t gfp = gfp_mask;
3363
3364#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3365 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3366 __GFP_NOMEMALLOC;
3367 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3368 PAGE_FRAG_CACHE_MAX_ORDER);
3369 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3370#endif
3371 if (unlikely(!page))
3372 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3373
3374 nc->va = page ? page_address(page) : NULL;
3375
3376 return page;
3377}
3378
3379void *__alloc_page_frag(struct page_frag_cache *nc,
3380 unsigned int fragsz, gfp_t gfp_mask)
3381{
3382 unsigned int size = PAGE_SIZE;
3383 struct page *page;
3384 int offset;
3385
3386 if (unlikely(!nc->va)) {
3387refill:
3388 page = __page_frag_refill(nc, gfp_mask);
3389 if (!page)
3390 return NULL;
3391
3392#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3393 /* if size can vary use size else just use PAGE_SIZE */
3394 size = nc->size;
3395#endif
3396 /* Even if we own the page, we do not use atomic_set().
3397 * This would break get_page_unless_zero() users.
3398 */
3399 atomic_add(size - 1, &page->_count);
3400
3401 /* reset page count bias and offset to start of new frag */
2f064f34 3402 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3403 nc->pagecnt_bias = size;
3404 nc->offset = size;
3405 }
3406
3407 offset = nc->offset - fragsz;
3408 if (unlikely(offset < 0)) {
3409 page = virt_to_page(nc->va);
3410
3411 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3412 goto refill;
3413
3414#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3415 /* if size can vary use size else just use PAGE_SIZE */
3416 size = nc->size;
3417#endif
3418 /* OK, page count is 0, we can safely set it */
3419 atomic_set(&page->_count, size);
3420
3421 /* reset page count bias and offset to start of new frag */
3422 nc->pagecnt_bias = size;
3423 offset = size - fragsz;
3424 }
3425
3426 nc->pagecnt_bias--;
3427 nc->offset = offset;
3428
3429 return nc->va + offset;
3430}
3431EXPORT_SYMBOL(__alloc_page_frag);
3432
3433/*
3434 * Frees a page fragment allocated out of either a compound or order 0 page.
3435 */
3436void __free_page_frag(void *addr)
3437{
3438 struct page *page = virt_to_head_page(addr);
3439
3440 if (unlikely(put_page_testzero(page)))
3441 __free_pages_ok(page, compound_order(page));
3442}
3443EXPORT_SYMBOL(__free_page_frag);
3444
6a1a0d3b 3445/*
52383431 3446 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3447 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3448 * equivalent to alloc_pages.
6a1a0d3b 3449 *
52383431
VD
3450 * It should be used when the caller would like to use kmalloc, but since the
3451 * allocation is large, it has to fall back to the page allocator.
3452 */
3453struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3454{
3455 struct page *page;
52383431 3456
52383431 3457 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3458 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3459 __free_pages(page, order);
3460 page = NULL;
3461 }
52383431
VD
3462 return page;
3463}
3464
3465struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3466{
3467 struct page *page;
52383431 3468
52383431 3469 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3470 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3471 __free_pages(page, order);
3472 page = NULL;
3473 }
52383431
VD
3474 return page;
3475}
3476
3477/*
3478 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3479 * alloc_kmem_pages.
6a1a0d3b 3480 */
52383431 3481void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3482{
d05e83a6 3483 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3484 __free_pages(page, order);
3485}
3486
52383431 3487void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3488{
3489 if (addr != 0) {
3490 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3491 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3492 }
3493}
3494
d00181b9
KS
3495static void *make_alloc_exact(unsigned long addr, unsigned int order,
3496 size_t size)
ee85c2e1
AK
3497{
3498 if (addr) {
3499 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3500 unsigned long used = addr + PAGE_ALIGN(size);
3501
3502 split_page(virt_to_page((void *)addr), order);
3503 while (used < alloc_end) {
3504 free_page(used);
3505 used += PAGE_SIZE;
3506 }
3507 }
3508 return (void *)addr;
3509}
3510
2be0ffe2
TT
3511/**
3512 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3513 * @size: the number of bytes to allocate
3514 * @gfp_mask: GFP flags for the allocation
3515 *
3516 * This function is similar to alloc_pages(), except that it allocates the
3517 * minimum number of pages to satisfy the request. alloc_pages() can only
3518 * allocate memory in power-of-two pages.
3519 *
3520 * This function is also limited by MAX_ORDER.
3521 *
3522 * Memory allocated by this function must be released by free_pages_exact().
3523 */
3524void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3525{
3526 unsigned int order = get_order(size);
3527 unsigned long addr;
3528
3529 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3530 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3531}
3532EXPORT_SYMBOL(alloc_pages_exact);
3533
ee85c2e1
AK
3534/**
3535 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3536 * pages on a node.
b5e6ab58 3537 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3538 * @size: the number of bytes to allocate
3539 * @gfp_mask: GFP flags for the allocation
3540 *
3541 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3542 * back.
ee85c2e1 3543 */
e1931811 3544void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3545{
d00181b9 3546 unsigned int order = get_order(size);
ee85c2e1
AK
3547 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3548 if (!p)
3549 return NULL;
3550 return make_alloc_exact((unsigned long)page_address(p), order, size);
3551}
ee85c2e1 3552
2be0ffe2
TT
3553/**
3554 * free_pages_exact - release memory allocated via alloc_pages_exact()
3555 * @virt: the value returned by alloc_pages_exact.
3556 * @size: size of allocation, same value as passed to alloc_pages_exact().
3557 *
3558 * Release the memory allocated by a previous call to alloc_pages_exact.
3559 */
3560void free_pages_exact(void *virt, size_t size)
3561{
3562 unsigned long addr = (unsigned long)virt;
3563 unsigned long end = addr + PAGE_ALIGN(size);
3564
3565 while (addr < end) {
3566 free_page(addr);
3567 addr += PAGE_SIZE;
3568 }
3569}
3570EXPORT_SYMBOL(free_pages_exact);
3571
e0fb5815
ZY
3572/**
3573 * nr_free_zone_pages - count number of pages beyond high watermark
3574 * @offset: The zone index of the highest zone
3575 *
3576 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3577 * high watermark within all zones at or below a given zone index. For each
3578 * zone, the number of pages is calculated as:
834405c3 3579 * managed_pages - high_pages
e0fb5815 3580 */
ebec3862 3581static unsigned long nr_free_zone_pages(int offset)
1da177e4 3582{
dd1a239f 3583 struct zoneref *z;
54a6eb5c
MG
3584 struct zone *zone;
3585
e310fd43 3586 /* Just pick one node, since fallback list is circular */
ebec3862 3587 unsigned long sum = 0;
1da177e4 3588
0e88460d 3589 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3590
54a6eb5c 3591 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3592 unsigned long size = zone->managed_pages;
41858966 3593 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3594 if (size > high)
3595 sum += size - high;
1da177e4
LT
3596 }
3597
3598 return sum;
3599}
3600
e0fb5815
ZY
3601/**
3602 * nr_free_buffer_pages - count number of pages beyond high watermark
3603 *
3604 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3605 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3606 */
ebec3862 3607unsigned long nr_free_buffer_pages(void)
1da177e4 3608{
af4ca457 3609 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3610}
c2f1a551 3611EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3612
e0fb5815
ZY
3613/**
3614 * nr_free_pagecache_pages - count number of pages beyond high watermark
3615 *
3616 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3617 * high watermark within all zones.
1da177e4 3618 */
ebec3862 3619unsigned long nr_free_pagecache_pages(void)
1da177e4 3620{
2a1e274a 3621 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3622}
08e0f6a9
CL
3623
3624static inline void show_node(struct zone *zone)
1da177e4 3625{
e5adfffc 3626 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3627 printk("Node %d ", zone_to_nid(zone));
1da177e4 3628}
1da177e4 3629
1da177e4
LT
3630void si_meminfo(struct sysinfo *val)
3631{
3632 val->totalram = totalram_pages;
cc7452b6 3633 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3634 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3635 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3636 val->totalhigh = totalhigh_pages;
3637 val->freehigh = nr_free_highpages();
1da177e4
LT
3638 val->mem_unit = PAGE_SIZE;
3639}
3640
3641EXPORT_SYMBOL(si_meminfo);
3642
3643#ifdef CONFIG_NUMA
3644void si_meminfo_node(struct sysinfo *val, int nid)
3645{
cdd91a77
JL
3646 int zone_type; /* needs to be signed */
3647 unsigned long managed_pages = 0;
1da177e4
LT
3648 pg_data_t *pgdat = NODE_DATA(nid);
3649
cdd91a77
JL
3650 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3651 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3652 val->totalram = managed_pages;
cc7452b6 3653 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3654 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3655#ifdef CONFIG_HIGHMEM
b40da049 3656 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3657 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3658 NR_FREE_PAGES);
98d2b0eb
CL
3659#else
3660 val->totalhigh = 0;
3661 val->freehigh = 0;
3662#endif
1da177e4
LT
3663 val->mem_unit = PAGE_SIZE;
3664}
3665#endif
3666
ddd588b5 3667/*
7bf02ea2
DR
3668 * Determine whether the node should be displayed or not, depending on whether
3669 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3670 */
7bf02ea2 3671bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3672{
3673 bool ret = false;
cc9a6c87 3674 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3675
3676 if (!(flags & SHOW_MEM_FILTER_NODES))
3677 goto out;
3678
cc9a6c87 3679 do {
d26914d1 3680 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3681 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3682 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3683out:
3684 return ret;
3685}
3686
1da177e4
LT
3687#define K(x) ((x) << (PAGE_SHIFT-10))
3688
377e4f16
RV
3689static void show_migration_types(unsigned char type)
3690{
3691 static const char types[MIGRATE_TYPES] = {
3692 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3693 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3694 [MIGRATE_RECLAIMABLE] = 'E',
3695 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3696#ifdef CONFIG_CMA
3697 [MIGRATE_CMA] = 'C',
3698#endif
194159fb 3699#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3700 [MIGRATE_ISOLATE] = 'I',
194159fb 3701#endif
377e4f16
RV
3702 };
3703 char tmp[MIGRATE_TYPES + 1];
3704 char *p = tmp;
3705 int i;
3706
3707 for (i = 0; i < MIGRATE_TYPES; i++) {
3708 if (type & (1 << i))
3709 *p++ = types[i];
3710 }
3711
3712 *p = '\0';
3713 printk("(%s) ", tmp);
3714}
3715
1da177e4
LT
3716/*
3717 * Show free area list (used inside shift_scroll-lock stuff)
3718 * We also calculate the percentage fragmentation. We do this by counting the
3719 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3720 *
3721 * Bits in @filter:
3722 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3723 * cpuset.
1da177e4 3724 */
7bf02ea2 3725void show_free_areas(unsigned int filter)
1da177e4 3726{
d1bfcdb8 3727 unsigned long free_pcp = 0;
c7241913 3728 int cpu;
1da177e4
LT
3729 struct zone *zone;
3730
ee99c71c 3731 for_each_populated_zone(zone) {
7bf02ea2 3732 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3733 continue;
d1bfcdb8 3734
761b0677
KK
3735 for_each_online_cpu(cpu)
3736 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3737 }
3738
a731286d
KM
3739 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3740 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3741 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3742 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3743 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3744 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3745 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3746 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3747 global_page_state(NR_ISOLATED_ANON),
3748 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3749 global_page_state(NR_INACTIVE_FILE),
a731286d 3750 global_page_state(NR_ISOLATED_FILE),
7b854121 3751 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3752 global_page_state(NR_FILE_DIRTY),
ce866b34 3753 global_page_state(NR_WRITEBACK),
fd39fc85 3754 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3755 global_page_state(NR_SLAB_RECLAIMABLE),
3756 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3757 global_page_state(NR_FILE_MAPPED),
4b02108a 3758 global_page_state(NR_SHMEM),
a25700a5 3759 global_page_state(NR_PAGETABLE),
d1ce749a 3760 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3761 global_page_state(NR_FREE_PAGES),
3762 free_pcp,
d1ce749a 3763 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3764
ee99c71c 3765 for_each_populated_zone(zone) {
1da177e4
LT
3766 int i;
3767
7bf02ea2 3768 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3769 continue;
d1bfcdb8
KK
3770
3771 free_pcp = 0;
3772 for_each_online_cpu(cpu)
3773 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3774
1da177e4
LT
3775 show_node(zone);
3776 printk("%s"
3777 " free:%lukB"
3778 " min:%lukB"
3779 " low:%lukB"
3780 " high:%lukB"
4f98a2fe
RR
3781 " active_anon:%lukB"
3782 " inactive_anon:%lukB"
3783 " active_file:%lukB"
3784 " inactive_file:%lukB"
7b854121 3785 " unevictable:%lukB"
a731286d
KM
3786 " isolated(anon):%lukB"
3787 " isolated(file):%lukB"
1da177e4 3788 " present:%lukB"
9feedc9d 3789 " managed:%lukB"
4a0aa73f
KM
3790 " mlocked:%lukB"
3791 " dirty:%lukB"
3792 " writeback:%lukB"
3793 " mapped:%lukB"
4b02108a 3794 " shmem:%lukB"
4a0aa73f
KM
3795 " slab_reclaimable:%lukB"
3796 " slab_unreclaimable:%lukB"
c6a7f572 3797 " kernel_stack:%lukB"
4a0aa73f
KM
3798 " pagetables:%lukB"
3799 " unstable:%lukB"
3800 " bounce:%lukB"
d1bfcdb8
KK
3801 " free_pcp:%lukB"
3802 " local_pcp:%ukB"
d1ce749a 3803 " free_cma:%lukB"
4a0aa73f 3804 " writeback_tmp:%lukB"
1da177e4
LT
3805 " pages_scanned:%lu"
3806 " all_unreclaimable? %s"
3807 "\n",
3808 zone->name,
88f5acf8 3809 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3810 K(min_wmark_pages(zone)),
3811 K(low_wmark_pages(zone)),
3812 K(high_wmark_pages(zone)),
4f98a2fe
RR
3813 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3814 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3815 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3816 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3817 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3818 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3819 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3820 K(zone->present_pages),
9feedc9d 3821 K(zone->managed_pages),
4a0aa73f
KM
3822 K(zone_page_state(zone, NR_MLOCK)),
3823 K(zone_page_state(zone, NR_FILE_DIRTY)),
3824 K(zone_page_state(zone, NR_WRITEBACK)),
3825 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3826 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3827 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3828 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3829 zone_page_state(zone, NR_KERNEL_STACK) *
3830 THREAD_SIZE / 1024,
4a0aa73f
KM
3831 K(zone_page_state(zone, NR_PAGETABLE)),
3832 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3833 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3834 K(free_pcp),
3835 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3836 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3837 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3838 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3839 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3840 );
3841 printk("lowmem_reserve[]:");
3842 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3843 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3844 printk("\n");
3845 }
3846
ee99c71c 3847 for_each_populated_zone(zone) {
d00181b9
KS
3848 unsigned int order;
3849 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3850 unsigned char types[MAX_ORDER];
1da177e4 3851
7bf02ea2 3852 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3853 continue;
1da177e4
LT
3854 show_node(zone);
3855 printk("%s: ", zone->name);
1da177e4
LT
3856
3857 spin_lock_irqsave(&zone->lock, flags);
3858 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3859 struct free_area *area = &zone->free_area[order];
3860 int type;
3861
3862 nr[order] = area->nr_free;
8f9de51a 3863 total += nr[order] << order;
377e4f16
RV
3864
3865 types[order] = 0;
3866 for (type = 0; type < MIGRATE_TYPES; type++) {
3867 if (!list_empty(&area->free_list[type]))
3868 types[order] |= 1 << type;
3869 }
1da177e4
LT
3870 }
3871 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3872 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3873 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3874 if (nr[order])
3875 show_migration_types(types[order]);
3876 }
1da177e4
LT
3877 printk("= %lukB\n", K(total));
3878 }
3879
949f7ec5
DR
3880 hugetlb_show_meminfo();
3881
e6f3602d
LW
3882 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3883
1da177e4
LT
3884 show_swap_cache_info();
3885}
3886
19770b32
MG
3887static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3888{
3889 zoneref->zone = zone;
3890 zoneref->zone_idx = zone_idx(zone);
3891}
3892
1da177e4
LT
3893/*
3894 * Builds allocation fallback zone lists.
1a93205b
CL
3895 *
3896 * Add all populated zones of a node to the zonelist.
1da177e4 3897 */
f0c0b2b8 3898static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3899 int nr_zones)
1da177e4 3900{
1a93205b 3901 struct zone *zone;
bc732f1d 3902 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3903
3904 do {
2f6726e5 3905 zone_type--;
070f8032 3906 zone = pgdat->node_zones + zone_type;
1a93205b 3907 if (populated_zone(zone)) {
dd1a239f
MG
3908 zoneref_set_zone(zone,
3909 &zonelist->_zonerefs[nr_zones++]);
070f8032 3910 check_highest_zone(zone_type);
1da177e4 3911 }
2f6726e5 3912 } while (zone_type);
bc732f1d 3913
070f8032 3914 return nr_zones;
1da177e4
LT
3915}
3916
f0c0b2b8
KH
3917
3918/*
3919 * zonelist_order:
3920 * 0 = automatic detection of better ordering.
3921 * 1 = order by ([node] distance, -zonetype)
3922 * 2 = order by (-zonetype, [node] distance)
3923 *
3924 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3925 * the same zonelist. So only NUMA can configure this param.
3926 */
3927#define ZONELIST_ORDER_DEFAULT 0
3928#define ZONELIST_ORDER_NODE 1
3929#define ZONELIST_ORDER_ZONE 2
3930
3931/* zonelist order in the kernel.
3932 * set_zonelist_order() will set this to NODE or ZONE.
3933 */
3934static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3935static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3936
3937
1da177e4 3938#ifdef CONFIG_NUMA
f0c0b2b8
KH
3939/* The value user specified ....changed by config */
3940static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3941/* string for sysctl */
3942#define NUMA_ZONELIST_ORDER_LEN 16
3943char numa_zonelist_order[16] = "default";
3944
3945/*
3946 * interface for configure zonelist ordering.
3947 * command line option "numa_zonelist_order"
3948 * = "[dD]efault - default, automatic configuration.
3949 * = "[nN]ode - order by node locality, then by zone within node
3950 * = "[zZ]one - order by zone, then by locality within zone
3951 */
3952
3953static int __parse_numa_zonelist_order(char *s)
3954{
3955 if (*s == 'd' || *s == 'D') {
3956 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3957 } else if (*s == 'n' || *s == 'N') {
3958 user_zonelist_order = ZONELIST_ORDER_NODE;
3959 } else if (*s == 'z' || *s == 'Z') {
3960 user_zonelist_order = ZONELIST_ORDER_ZONE;
3961 } else {
3962 printk(KERN_WARNING
3963 "Ignoring invalid numa_zonelist_order value: "
3964 "%s\n", s);
3965 return -EINVAL;
3966 }
3967 return 0;
3968}
3969
3970static __init int setup_numa_zonelist_order(char *s)
3971{
ecb256f8
VL
3972 int ret;
3973
3974 if (!s)
3975 return 0;
3976
3977 ret = __parse_numa_zonelist_order(s);
3978 if (ret == 0)
3979 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3980
3981 return ret;
f0c0b2b8
KH
3982}
3983early_param("numa_zonelist_order", setup_numa_zonelist_order);
3984
3985/*
3986 * sysctl handler for numa_zonelist_order
3987 */
cccad5b9 3988int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3989 void __user *buffer, size_t *length,
f0c0b2b8
KH
3990 loff_t *ppos)
3991{
3992 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3993 int ret;
443c6f14 3994 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3995
443c6f14 3996 mutex_lock(&zl_order_mutex);
dacbde09
CG
3997 if (write) {
3998 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3999 ret = -EINVAL;
4000 goto out;
4001 }
4002 strcpy(saved_string, (char *)table->data);
4003 }
8d65af78 4004 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4005 if (ret)
443c6f14 4006 goto out;
f0c0b2b8
KH
4007 if (write) {
4008 int oldval = user_zonelist_order;
dacbde09
CG
4009
4010 ret = __parse_numa_zonelist_order((char *)table->data);
4011 if (ret) {
f0c0b2b8
KH
4012 /*
4013 * bogus value. restore saved string
4014 */
dacbde09 4015 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4016 NUMA_ZONELIST_ORDER_LEN);
4017 user_zonelist_order = oldval;
4eaf3f64
HL
4018 } else if (oldval != user_zonelist_order) {
4019 mutex_lock(&zonelists_mutex);
9adb62a5 4020 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4021 mutex_unlock(&zonelists_mutex);
4022 }
f0c0b2b8 4023 }
443c6f14
AK
4024out:
4025 mutex_unlock(&zl_order_mutex);
4026 return ret;
f0c0b2b8
KH
4027}
4028
4029
62bc62a8 4030#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4031static int node_load[MAX_NUMNODES];
4032
1da177e4 4033/**
4dc3b16b 4034 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4035 * @node: node whose fallback list we're appending
4036 * @used_node_mask: nodemask_t of already used nodes
4037 *
4038 * We use a number of factors to determine which is the next node that should
4039 * appear on a given node's fallback list. The node should not have appeared
4040 * already in @node's fallback list, and it should be the next closest node
4041 * according to the distance array (which contains arbitrary distance values
4042 * from each node to each node in the system), and should also prefer nodes
4043 * with no CPUs, since presumably they'll have very little allocation pressure
4044 * on them otherwise.
4045 * It returns -1 if no node is found.
4046 */
f0c0b2b8 4047static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4048{
4cf808eb 4049 int n, val;
1da177e4 4050 int min_val = INT_MAX;
00ef2d2f 4051 int best_node = NUMA_NO_NODE;
a70f7302 4052 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4053
4cf808eb
LT
4054 /* Use the local node if we haven't already */
4055 if (!node_isset(node, *used_node_mask)) {
4056 node_set(node, *used_node_mask);
4057 return node;
4058 }
1da177e4 4059
4b0ef1fe 4060 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4061
4062 /* Don't want a node to appear more than once */
4063 if (node_isset(n, *used_node_mask))
4064 continue;
4065
1da177e4
LT
4066 /* Use the distance array to find the distance */
4067 val = node_distance(node, n);
4068
4cf808eb
LT
4069 /* Penalize nodes under us ("prefer the next node") */
4070 val += (n < node);
4071
1da177e4 4072 /* Give preference to headless and unused nodes */
a70f7302
RR
4073 tmp = cpumask_of_node(n);
4074 if (!cpumask_empty(tmp))
1da177e4
LT
4075 val += PENALTY_FOR_NODE_WITH_CPUS;
4076
4077 /* Slight preference for less loaded node */
4078 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4079 val += node_load[n];
4080
4081 if (val < min_val) {
4082 min_val = val;
4083 best_node = n;
4084 }
4085 }
4086
4087 if (best_node >= 0)
4088 node_set(best_node, *used_node_mask);
4089
4090 return best_node;
4091}
4092
f0c0b2b8
KH
4093
4094/*
4095 * Build zonelists ordered by node and zones within node.
4096 * This results in maximum locality--normal zone overflows into local
4097 * DMA zone, if any--but risks exhausting DMA zone.
4098 */
4099static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4100{
f0c0b2b8 4101 int j;
1da177e4 4102 struct zonelist *zonelist;
f0c0b2b8 4103
54a6eb5c 4104 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4105 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4106 ;
bc732f1d 4107 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4108 zonelist->_zonerefs[j].zone = NULL;
4109 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4110}
4111
523b9458
CL
4112/*
4113 * Build gfp_thisnode zonelists
4114 */
4115static void build_thisnode_zonelists(pg_data_t *pgdat)
4116{
523b9458
CL
4117 int j;
4118 struct zonelist *zonelist;
4119
54a6eb5c 4120 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4121 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4122 zonelist->_zonerefs[j].zone = NULL;
4123 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4124}
4125
f0c0b2b8
KH
4126/*
4127 * Build zonelists ordered by zone and nodes within zones.
4128 * This results in conserving DMA zone[s] until all Normal memory is
4129 * exhausted, but results in overflowing to remote node while memory
4130 * may still exist in local DMA zone.
4131 */
4132static int node_order[MAX_NUMNODES];
4133
4134static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4135{
f0c0b2b8
KH
4136 int pos, j, node;
4137 int zone_type; /* needs to be signed */
4138 struct zone *z;
4139 struct zonelist *zonelist;
4140
54a6eb5c
MG
4141 zonelist = &pgdat->node_zonelists[0];
4142 pos = 0;
4143 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4144 for (j = 0; j < nr_nodes; j++) {
4145 node = node_order[j];
4146 z = &NODE_DATA(node)->node_zones[zone_type];
4147 if (populated_zone(z)) {
dd1a239f
MG
4148 zoneref_set_zone(z,
4149 &zonelist->_zonerefs[pos++]);
54a6eb5c 4150 check_highest_zone(zone_type);
f0c0b2b8
KH
4151 }
4152 }
f0c0b2b8 4153 }
dd1a239f
MG
4154 zonelist->_zonerefs[pos].zone = NULL;
4155 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4156}
4157
3193913c
MG
4158#if defined(CONFIG_64BIT)
4159/*
4160 * Devices that require DMA32/DMA are relatively rare and do not justify a
4161 * penalty to every machine in case the specialised case applies. Default
4162 * to Node-ordering on 64-bit NUMA machines
4163 */
4164static int default_zonelist_order(void)
4165{
4166 return ZONELIST_ORDER_NODE;
4167}
4168#else
4169/*
4170 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4171 * by the kernel. If processes running on node 0 deplete the low memory zone
4172 * then reclaim will occur more frequency increasing stalls and potentially
4173 * be easier to OOM if a large percentage of the zone is under writeback or
4174 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4175 * Hence, default to zone ordering on 32-bit.
4176 */
f0c0b2b8
KH
4177static int default_zonelist_order(void)
4178{
f0c0b2b8
KH
4179 return ZONELIST_ORDER_ZONE;
4180}
3193913c 4181#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4182
4183static void set_zonelist_order(void)
4184{
4185 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4186 current_zonelist_order = default_zonelist_order();
4187 else
4188 current_zonelist_order = user_zonelist_order;
4189}
4190
4191static void build_zonelists(pg_data_t *pgdat)
4192{
c00eb15a 4193 int i, node, load;
1da177e4 4194 nodemask_t used_mask;
f0c0b2b8
KH
4195 int local_node, prev_node;
4196 struct zonelist *zonelist;
d00181b9 4197 unsigned int order = current_zonelist_order;
1da177e4
LT
4198
4199 /* initialize zonelists */
523b9458 4200 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4201 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4202 zonelist->_zonerefs[0].zone = NULL;
4203 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4204 }
4205
4206 /* NUMA-aware ordering of nodes */
4207 local_node = pgdat->node_id;
62bc62a8 4208 load = nr_online_nodes;
1da177e4
LT
4209 prev_node = local_node;
4210 nodes_clear(used_mask);
f0c0b2b8 4211
f0c0b2b8 4212 memset(node_order, 0, sizeof(node_order));
c00eb15a 4213 i = 0;
f0c0b2b8 4214
1da177e4
LT
4215 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4216 /*
4217 * We don't want to pressure a particular node.
4218 * So adding penalty to the first node in same
4219 * distance group to make it round-robin.
4220 */
957f822a
DR
4221 if (node_distance(local_node, node) !=
4222 node_distance(local_node, prev_node))
f0c0b2b8
KH
4223 node_load[node] = load;
4224
1da177e4
LT
4225 prev_node = node;
4226 load--;
f0c0b2b8
KH
4227 if (order == ZONELIST_ORDER_NODE)
4228 build_zonelists_in_node_order(pgdat, node);
4229 else
c00eb15a 4230 node_order[i++] = node; /* remember order */
f0c0b2b8 4231 }
1da177e4 4232
f0c0b2b8
KH
4233 if (order == ZONELIST_ORDER_ZONE) {
4234 /* calculate node order -- i.e., DMA last! */
c00eb15a 4235 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4236 }
523b9458
CL
4237
4238 build_thisnode_zonelists(pgdat);
1da177e4
LT
4239}
4240
7aac7898
LS
4241#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4242/*
4243 * Return node id of node used for "local" allocations.
4244 * I.e., first node id of first zone in arg node's generic zonelist.
4245 * Used for initializing percpu 'numa_mem', which is used primarily
4246 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4247 */
4248int local_memory_node(int node)
4249{
4250 struct zone *zone;
4251
4252 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4253 gfp_zone(GFP_KERNEL),
4254 NULL,
4255 &zone);
4256 return zone->node;
4257}
4258#endif
f0c0b2b8 4259
1da177e4
LT
4260#else /* CONFIG_NUMA */
4261
f0c0b2b8
KH
4262static void set_zonelist_order(void)
4263{
4264 current_zonelist_order = ZONELIST_ORDER_ZONE;
4265}
4266
4267static void build_zonelists(pg_data_t *pgdat)
1da177e4 4268{
19655d34 4269 int node, local_node;
54a6eb5c
MG
4270 enum zone_type j;
4271 struct zonelist *zonelist;
1da177e4
LT
4272
4273 local_node = pgdat->node_id;
1da177e4 4274
54a6eb5c 4275 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4276 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4277
54a6eb5c
MG
4278 /*
4279 * Now we build the zonelist so that it contains the zones
4280 * of all the other nodes.
4281 * We don't want to pressure a particular node, so when
4282 * building the zones for node N, we make sure that the
4283 * zones coming right after the local ones are those from
4284 * node N+1 (modulo N)
4285 */
4286 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4287 if (!node_online(node))
4288 continue;
bc732f1d 4289 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4290 }
54a6eb5c
MG
4291 for (node = 0; node < local_node; node++) {
4292 if (!node_online(node))
4293 continue;
bc732f1d 4294 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4295 }
4296
dd1a239f
MG
4297 zonelist->_zonerefs[j].zone = NULL;
4298 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4299}
4300
4301#endif /* CONFIG_NUMA */
4302
99dcc3e5
CL
4303/*
4304 * Boot pageset table. One per cpu which is going to be used for all
4305 * zones and all nodes. The parameters will be set in such a way
4306 * that an item put on a list will immediately be handed over to
4307 * the buddy list. This is safe since pageset manipulation is done
4308 * with interrupts disabled.
4309 *
4310 * The boot_pagesets must be kept even after bootup is complete for
4311 * unused processors and/or zones. They do play a role for bootstrapping
4312 * hotplugged processors.
4313 *
4314 * zoneinfo_show() and maybe other functions do
4315 * not check if the processor is online before following the pageset pointer.
4316 * Other parts of the kernel may not check if the zone is available.
4317 */
4318static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4319static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4320static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4321
4eaf3f64
HL
4322/*
4323 * Global mutex to protect against size modification of zonelists
4324 * as well as to serialize pageset setup for the new populated zone.
4325 */
4326DEFINE_MUTEX(zonelists_mutex);
4327
9b1a4d38 4328/* return values int ....just for stop_machine() */
4ed7e022 4329static int __build_all_zonelists(void *data)
1da177e4 4330{
6811378e 4331 int nid;
99dcc3e5 4332 int cpu;
9adb62a5 4333 pg_data_t *self = data;
9276b1bc 4334
7f9cfb31
BL
4335#ifdef CONFIG_NUMA
4336 memset(node_load, 0, sizeof(node_load));
4337#endif
9adb62a5
JL
4338
4339 if (self && !node_online(self->node_id)) {
4340 build_zonelists(self);
9adb62a5
JL
4341 }
4342
9276b1bc 4343 for_each_online_node(nid) {
7ea1530a
CL
4344 pg_data_t *pgdat = NODE_DATA(nid);
4345
4346 build_zonelists(pgdat);
9276b1bc 4347 }
99dcc3e5
CL
4348
4349 /*
4350 * Initialize the boot_pagesets that are going to be used
4351 * for bootstrapping processors. The real pagesets for
4352 * each zone will be allocated later when the per cpu
4353 * allocator is available.
4354 *
4355 * boot_pagesets are used also for bootstrapping offline
4356 * cpus if the system is already booted because the pagesets
4357 * are needed to initialize allocators on a specific cpu too.
4358 * F.e. the percpu allocator needs the page allocator which
4359 * needs the percpu allocator in order to allocate its pagesets
4360 * (a chicken-egg dilemma).
4361 */
7aac7898 4362 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4363 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4364
7aac7898
LS
4365#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4366 /*
4367 * We now know the "local memory node" for each node--
4368 * i.e., the node of the first zone in the generic zonelist.
4369 * Set up numa_mem percpu variable for on-line cpus. During
4370 * boot, only the boot cpu should be on-line; we'll init the
4371 * secondary cpus' numa_mem as they come on-line. During
4372 * node/memory hotplug, we'll fixup all on-line cpus.
4373 */
4374 if (cpu_online(cpu))
4375 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4376#endif
4377 }
4378
6811378e
YG
4379 return 0;
4380}
4381
061f67bc
RV
4382static noinline void __init
4383build_all_zonelists_init(void)
4384{
4385 __build_all_zonelists(NULL);
4386 mminit_verify_zonelist();
4387 cpuset_init_current_mems_allowed();
4388}
4389
4eaf3f64
HL
4390/*
4391 * Called with zonelists_mutex held always
4392 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4393 *
4394 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4395 * [we're only called with non-NULL zone through __meminit paths] and
4396 * (2) call of __init annotated helper build_all_zonelists_init
4397 * [protected by SYSTEM_BOOTING].
4eaf3f64 4398 */
9adb62a5 4399void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4400{
f0c0b2b8
KH
4401 set_zonelist_order();
4402
6811378e 4403 if (system_state == SYSTEM_BOOTING) {
061f67bc 4404 build_all_zonelists_init();
6811378e 4405 } else {
e9959f0f 4406#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4407 if (zone)
4408 setup_zone_pageset(zone);
e9959f0f 4409#endif
dd1895e2
CS
4410 /* we have to stop all cpus to guarantee there is no user
4411 of zonelist */
9adb62a5 4412 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4413 /* cpuset refresh routine should be here */
4414 }
bd1e22b8 4415 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4416 /*
4417 * Disable grouping by mobility if the number of pages in the
4418 * system is too low to allow the mechanism to work. It would be
4419 * more accurate, but expensive to check per-zone. This check is
4420 * made on memory-hotadd so a system can start with mobility
4421 * disabled and enable it later
4422 */
d9c23400 4423 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4424 page_group_by_mobility_disabled = 1;
4425 else
4426 page_group_by_mobility_disabled = 0;
4427
f88dfff5 4428 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4429 "Total pages: %ld\n",
62bc62a8 4430 nr_online_nodes,
f0c0b2b8 4431 zonelist_order_name[current_zonelist_order],
9ef9acb0 4432 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4433 vm_total_pages);
4434#ifdef CONFIG_NUMA
f88dfff5 4435 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4436#endif
1da177e4
LT
4437}
4438
4439/*
4440 * Helper functions to size the waitqueue hash table.
4441 * Essentially these want to choose hash table sizes sufficiently
4442 * large so that collisions trying to wait on pages are rare.
4443 * But in fact, the number of active page waitqueues on typical
4444 * systems is ridiculously low, less than 200. So this is even
4445 * conservative, even though it seems large.
4446 *
4447 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4448 * waitqueues, i.e. the size of the waitq table given the number of pages.
4449 */
4450#define PAGES_PER_WAITQUEUE 256
4451
cca448fe 4452#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4453static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4454{
4455 unsigned long size = 1;
4456
4457 pages /= PAGES_PER_WAITQUEUE;
4458
4459 while (size < pages)
4460 size <<= 1;
4461
4462 /*
4463 * Once we have dozens or even hundreds of threads sleeping
4464 * on IO we've got bigger problems than wait queue collision.
4465 * Limit the size of the wait table to a reasonable size.
4466 */
4467 size = min(size, 4096UL);
4468
4469 return max(size, 4UL);
4470}
cca448fe
YG
4471#else
4472/*
4473 * A zone's size might be changed by hot-add, so it is not possible to determine
4474 * a suitable size for its wait_table. So we use the maximum size now.
4475 *
4476 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4477 *
4478 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4479 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4480 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4481 *
4482 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4483 * or more by the traditional way. (See above). It equals:
4484 *
4485 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4486 * ia64(16K page size) : = ( 8G + 4M)byte.
4487 * powerpc (64K page size) : = (32G +16M)byte.
4488 */
4489static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4490{
4491 return 4096UL;
4492}
4493#endif
1da177e4
LT
4494
4495/*
4496 * This is an integer logarithm so that shifts can be used later
4497 * to extract the more random high bits from the multiplicative
4498 * hash function before the remainder is taken.
4499 */
4500static inline unsigned long wait_table_bits(unsigned long size)
4501{
4502 return ffz(~size);
4503}
4504
1da177e4
LT
4505/*
4506 * Initially all pages are reserved - free ones are freed
4507 * up by free_all_bootmem() once the early boot process is
4508 * done. Non-atomic initialization, single-pass.
4509 */
c09b4240 4510void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4511 unsigned long start_pfn, enum memmap_context context)
1da177e4 4512{
4b94ffdc 4513 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4514 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4515 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4516 unsigned long pfn;
3a80a7fa 4517 unsigned long nr_initialised = 0;
342332e6
TI
4518#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4519 struct memblock_region *r = NULL, *tmp;
4520#endif
1da177e4 4521
22b31eec
HD
4522 if (highest_memmap_pfn < end_pfn - 1)
4523 highest_memmap_pfn = end_pfn - 1;
4524
4b94ffdc
DW
4525 /*
4526 * Honor reservation requested by the driver for this ZONE_DEVICE
4527 * memory
4528 */
4529 if (altmap && start_pfn == altmap->base_pfn)
4530 start_pfn += altmap->reserve;
4531
cbe8dd4a 4532 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4533 /*
b72d0ffb
AM
4534 * There can be holes in boot-time mem_map[]s handed to this
4535 * function. They do not exist on hotplugged memory.
a2f3aa02 4536 */
b72d0ffb
AM
4537 if (context != MEMMAP_EARLY)
4538 goto not_early;
4539
4540 if (!early_pfn_valid(pfn))
4541 continue;
4542 if (!early_pfn_in_nid(pfn, nid))
4543 continue;
4544 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4545 break;
342332e6
TI
4546
4547#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4548 /*
4549 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4550 * from zone_movable_pfn[nid] to end of each node should be
4551 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4552 */
4553 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4554 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4555 continue;
342332e6 4556
b72d0ffb
AM
4557 /*
4558 * Check given memblock attribute by firmware which can affect
4559 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4560 * mirrored, it's an overlapped memmap init. skip it.
4561 */
4562 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4563 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4564 for_each_memblock(memory, tmp)
4565 if (pfn < memblock_region_memory_end_pfn(tmp))
4566 break;
4567 r = tmp;
4568 }
4569 if (pfn >= memblock_region_memory_base_pfn(r) &&
4570 memblock_is_mirror(r)) {
4571 /* already initialized as NORMAL */
4572 pfn = memblock_region_memory_end_pfn(r);
4573 continue;
342332e6 4574 }
a2f3aa02 4575 }
b72d0ffb 4576#endif
ac5d2539 4577
b72d0ffb 4578not_early:
ac5d2539
MG
4579 /*
4580 * Mark the block movable so that blocks are reserved for
4581 * movable at startup. This will force kernel allocations
4582 * to reserve their blocks rather than leaking throughout
4583 * the address space during boot when many long-lived
974a786e 4584 * kernel allocations are made.
ac5d2539
MG
4585 *
4586 * bitmap is created for zone's valid pfn range. but memmap
4587 * can be created for invalid pages (for alignment)
4588 * check here not to call set_pageblock_migratetype() against
4589 * pfn out of zone.
4590 */
4591 if (!(pfn & (pageblock_nr_pages - 1))) {
4592 struct page *page = pfn_to_page(pfn);
4593
4594 __init_single_page(page, pfn, zone, nid);
4595 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4596 } else {
4597 __init_single_pfn(pfn, zone, nid);
4598 }
1da177e4
LT
4599 }
4600}
4601
1e548deb 4602static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4603{
7aeb09f9 4604 unsigned int order, t;
b2a0ac88
MG
4605 for_each_migratetype_order(order, t) {
4606 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4607 zone->free_area[order].nr_free = 0;
4608 }
4609}
4610
4611#ifndef __HAVE_ARCH_MEMMAP_INIT
4612#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4613 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4614#endif
4615
7cd2b0a3 4616static int zone_batchsize(struct zone *zone)
e7c8d5c9 4617{
3a6be87f 4618#ifdef CONFIG_MMU
e7c8d5c9
CL
4619 int batch;
4620
4621 /*
4622 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4623 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4624 *
4625 * OK, so we don't know how big the cache is. So guess.
4626 */
b40da049 4627 batch = zone->managed_pages / 1024;
ba56e91c
SR
4628 if (batch * PAGE_SIZE > 512 * 1024)
4629 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4630 batch /= 4; /* We effectively *= 4 below */
4631 if (batch < 1)
4632 batch = 1;
4633
4634 /*
0ceaacc9
NP
4635 * Clamp the batch to a 2^n - 1 value. Having a power
4636 * of 2 value was found to be more likely to have
4637 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4638 *
0ceaacc9
NP
4639 * For example if 2 tasks are alternately allocating
4640 * batches of pages, one task can end up with a lot
4641 * of pages of one half of the possible page colors
4642 * and the other with pages of the other colors.
e7c8d5c9 4643 */
9155203a 4644 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4645
e7c8d5c9 4646 return batch;
3a6be87f
DH
4647
4648#else
4649 /* The deferral and batching of frees should be suppressed under NOMMU
4650 * conditions.
4651 *
4652 * The problem is that NOMMU needs to be able to allocate large chunks
4653 * of contiguous memory as there's no hardware page translation to
4654 * assemble apparent contiguous memory from discontiguous pages.
4655 *
4656 * Queueing large contiguous runs of pages for batching, however,
4657 * causes the pages to actually be freed in smaller chunks. As there
4658 * can be a significant delay between the individual batches being
4659 * recycled, this leads to the once large chunks of space being
4660 * fragmented and becoming unavailable for high-order allocations.
4661 */
4662 return 0;
4663#endif
e7c8d5c9
CL
4664}
4665
8d7a8fa9
CS
4666/*
4667 * pcp->high and pcp->batch values are related and dependent on one another:
4668 * ->batch must never be higher then ->high.
4669 * The following function updates them in a safe manner without read side
4670 * locking.
4671 *
4672 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4673 * those fields changing asynchronously (acording the the above rule).
4674 *
4675 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4676 * outside of boot time (or some other assurance that no concurrent updaters
4677 * exist).
4678 */
4679static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4680 unsigned long batch)
4681{
4682 /* start with a fail safe value for batch */
4683 pcp->batch = 1;
4684 smp_wmb();
4685
4686 /* Update high, then batch, in order */
4687 pcp->high = high;
4688 smp_wmb();
4689
4690 pcp->batch = batch;
4691}
4692
3664033c 4693/* a companion to pageset_set_high() */
4008bab7
CS
4694static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4695{
8d7a8fa9 4696 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4697}
4698
88c90dbc 4699static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4700{
4701 struct per_cpu_pages *pcp;
5f8dcc21 4702 int migratetype;
2caaad41 4703
1c6fe946
MD
4704 memset(p, 0, sizeof(*p));
4705
3dfa5721 4706 pcp = &p->pcp;
2caaad41 4707 pcp->count = 0;
5f8dcc21
MG
4708 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4709 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4710}
4711
88c90dbc
CS
4712static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4713{
4714 pageset_init(p);
4715 pageset_set_batch(p, batch);
4716}
4717
8ad4b1fb 4718/*
3664033c 4719 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4720 * to the value high for the pageset p.
4721 */
3664033c 4722static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4723 unsigned long high)
4724{
8d7a8fa9
CS
4725 unsigned long batch = max(1UL, high / 4);
4726 if ((high / 4) > (PAGE_SHIFT * 8))
4727 batch = PAGE_SHIFT * 8;
8ad4b1fb 4728
8d7a8fa9 4729 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4730}
4731
7cd2b0a3
DR
4732static void pageset_set_high_and_batch(struct zone *zone,
4733 struct per_cpu_pageset *pcp)
56cef2b8 4734{
56cef2b8 4735 if (percpu_pagelist_fraction)
3664033c 4736 pageset_set_high(pcp,
56cef2b8
CS
4737 (zone->managed_pages /
4738 percpu_pagelist_fraction));
4739 else
4740 pageset_set_batch(pcp, zone_batchsize(zone));
4741}
4742
169f6c19
CS
4743static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4744{
4745 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4746
4747 pageset_init(pcp);
4748 pageset_set_high_and_batch(zone, pcp);
4749}
4750
4ed7e022 4751static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4752{
4753 int cpu;
319774e2 4754 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4755 for_each_possible_cpu(cpu)
4756 zone_pageset_init(zone, cpu);
319774e2
WF
4757}
4758
2caaad41 4759/*
99dcc3e5
CL
4760 * Allocate per cpu pagesets and initialize them.
4761 * Before this call only boot pagesets were available.
e7c8d5c9 4762 */
99dcc3e5 4763void __init setup_per_cpu_pageset(void)
e7c8d5c9 4764{
99dcc3e5 4765 struct zone *zone;
e7c8d5c9 4766
319774e2
WF
4767 for_each_populated_zone(zone)
4768 setup_zone_pageset(zone);
e7c8d5c9
CL
4769}
4770
577a32f6 4771static noinline __init_refok
cca448fe 4772int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4773{
4774 int i;
cca448fe 4775 size_t alloc_size;
ed8ece2e
DH
4776
4777 /*
4778 * The per-page waitqueue mechanism uses hashed waitqueues
4779 * per zone.
4780 */
02b694de
YG
4781 zone->wait_table_hash_nr_entries =
4782 wait_table_hash_nr_entries(zone_size_pages);
4783 zone->wait_table_bits =
4784 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4785 alloc_size = zone->wait_table_hash_nr_entries
4786 * sizeof(wait_queue_head_t);
4787
cd94b9db 4788 if (!slab_is_available()) {
cca448fe 4789 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4790 memblock_virt_alloc_node_nopanic(
4791 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4792 } else {
4793 /*
4794 * This case means that a zone whose size was 0 gets new memory
4795 * via memory hot-add.
4796 * But it may be the case that a new node was hot-added. In
4797 * this case vmalloc() will not be able to use this new node's
4798 * memory - this wait_table must be initialized to use this new
4799 * node itself as well.
4800 * To use this new node's memory, further consideration will be
4801 * necessary.
4802 */
8691f3a7 4803 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4804 }
4805 if (!zone->wait_table)
4806 return -ENOMEM;
ed8ece2e 4807
b8af2941 4808 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4809 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4810
4811 return 0;
ed8ece2e
DH
4812}
4813
c09b4240 4814static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4815{
99dcc3e5
CL
4816 /*
4817 * per cpu subsystem is not up at this point. The following code
4818 * relies on the ability of the linker to provide the
4819 * offset of a (static) per cpu variable into the per cpu area.
4820 */
4821 zone->pageset = &boot_pageset;
ed8ece2e 4822
b38a8725 4823 if (populated_zone(zone))
99dcc3e5
CL
4824 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4825 zone->name, zone->present_pages,
4826 zone_batchsize(zone));
ed8ece2e
DH
4827}
4828
4ed7e022 4829int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4830 unsigned long zone_start_pfn,
b171e409 4831 unsigned long size)
ed8ece2e
DH
4832{
4833 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4834 int ret;
4835 ret = zone_wait_table_init(zone, size);
4836 if (ret)
4837 return ret;
ed8ece2e
DH
4838 pgdat->nr_zones = zone_idx(zone) + 1;
4839
ed8ece2e
DH
4840 zone->zone_start_pfn = zone_start_pfn;
4841
708614e6
MG
4842 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4843 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4844 pgdat->node_id,
4845 (unsigned long)zone_idx(zone),
4846 zone_start_pfn, (zone_start_pfn + size));
4847
1e548deb 4848 zone_init_free_lists(zone);
718127cc
YG
4849
4850 return 0;
ed8ece2e
DH
4851}
4852
0ee332c1 4853#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4854#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4855
c713216d
MG
4856/*
4857 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4858 */
8a942fde
MG
4859int __meminit __early_pfn_to_nid(unsigned long pfn,
4860 struct mminit_pfnnid_cache *state)
c713216d 4861{
c13291a5 4862 unsigned long start_pfn, end_pfn;
e76b63f8 4863 int nid;
7c243c71 4864
8a942fde
MG
4865 if (state->last_start <= pfn && pfn < state->last_end)
4866 return state->last_nid;
c713216d 4867
e76b63f8
YL
4868 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4869 if (nid != -1) {
8a942fde
MG
4870 state->last_start = start_pfn;
4871 state->last_end = end_pfn;
4872 state->last_nid = nid;
e76b63f8
YL
4873 }
4874
4875 return nid;
c713216d
MG
4876}
4877#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4878
c713216d 4879/**
6782832e 4880 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4881 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4882 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4883 *
7d018176
ZZ
4884 * If an architecture guarantees that all ranges registered contain no holes
4885 * and may be freed, this this function may be used instead of calling
4886 * memblock_free_early_nid() manually.
c713216d 4887 */
c13291a5 4888void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4889{
c13291a5
TH
4890 unsigned long start_pfn, end_pfn;
4891 int i, this_nid;
edbe7d23 4892
c13291a5
TH
4893 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4894 start_pfn = min(start_pfn, max_low_pfn);
4895 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4896
c13291a5 4897 if (start_pfn < end_pfn)
6782832e
SS
4898 memblock_free_early_nid(PFN_PHYS(start_pfn),
4899 (end_pfn - start_pfn) << PAGE_SHIFT,
4900 this_nid);
edbe7d23 4901 }
edbe7d23 4902}
edbe7d23 4903
c713216d
MG
4904/**
4905 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4906 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4907 *
7d018176
ZZ
4908 * If an architecture guarantees that all ranges registered contain no holes and may
4909 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4910 */
4911void __init sparse_memory_present_with_active_regions(int nid)
4912{
c13291a5
TH
4913 unsigned long start_pfn, end_pfn;
4914 int i, this_nid;
c713216d 4915
c13291a5
TH
4916 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4917 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4918}
4919
4920/**
4921 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4922 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4923 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4924 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4925 *
4926 * It returns the start and end page frame of a node based on information
7d018176 4927 * provided by memblock_set_node(). If called for a node
c713216d 4928 * with no available memory, a warning is printed and the start and end
88ca3b94 4929 * PFNs will be 0.
c713216d 4930 */
a3142c8e 4931void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4932 unsigned long *start_pfn, unsigned long *end_pfn)
4933{
c13291a5 4934 unsigned long this_start_pfn, this_end_pfn;
c713216d 4935 int i;
c13291a5 4936
c713216d
MG
4937 *start_pfn = -1UL;
4938 *end_pfn = 0;
4939
c13291a5
TH
4940 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4941 *start_pfn = min(*start_pfn, this_start_pfn);
4942 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4943 }
4944
633c0666 4945 if (*start_pfn == -1UL)
c713216d 4946 *start_pfn = 0;
c713216d
MG
4947}
4948
2a1e274a
MG
4949/*
4950 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4951 * assumption is made that zones within a node are ordered in monotonic
4952 * increasing memory addresses so that the "highest" populated zone is used
4953 */
b69a7288 4954static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4955{
4956 int zone_index;
4957 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4958 if (zone_index == ZONE_MOVABLE)
4959 continue;
4960
4961 if (arch_zone_highest_possible_pfn[zone_index] >
4962 arch_zone_lowest_possible_pfn[zone_index])
4963 break;
4964 }
4965
4966 VM_BUG_ON(zone_index == -1);
4967 movable_zone = zone_index;
4968}
4969
4970/*
4971 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4972 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4973 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4974 * in each node depending on the size of each node and how evenly kernelcore
4975 * is distributed. This helper function adjusts the zone ranges
4976 * provided by the architecture for a given node by using the end of the
4977 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4978 * zones within a node are in order of monotonic increases memory addresses
4979 */
b69a7288 4980static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4981 unsigned long zone_type,
4982 unsigned long node_start_pfn,
4983 unsigned long node_end_pfn,
4984 unsigned long *zone_start_pfn,
4985 unsigned long *zone_end_pfn)
4986{
4987 /* Only adjust if ZONE_MOVABLE is on this node */
4988 if (zone_movable_pfn[nid]) {
4989 /* Size ZONE_MOVABLE */
4990 if (zone_type == ZONE_MOVABLE) {
4991 *zone_start_pfn = zone_movable_pfn[nid];
4992 *zone_end_pfn = min(node_end_pfn,
4993 arch_zone_highest_possible_pfn[movable_zone]);
4994
2a1e274a
MG
4995 /* Check if this whole range is within ZONE_MOVABLE */
4996 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4997 *zone_start_pfn = *zone_end_pfn;
4998 }
4999}
5000
c713216d
MG
5001/*
5002 * Return the number of pages a zone spans in a node, including holes
5003 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5004 */
6ea6e688 5005static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5006 unsigned long zone_type,
7960aedd
ZY
5007 unsigned long node_start_pfn,
5008 unsigned long node_end_pfn,
d91749c1
TI
5009 unsigned long *zone_start_pfn,
5010 unsigned long *zone_end_pfn,
c713216d
MG
5011 unsigned long *ignored)
5012{
b5685e92 5013 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5014 if (!node_start_pfn && !node_end_pfn)
5015 return 0;
5016
7960aedd 5017 /* Get the start and end of the zone */
d91749c1
TI
5018 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5019 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5020 adjust_zone_range_for_zone_movable(nid, zone_type,
5021 node_start_pfn, node_end_pfn,
d91749c1 5022 zone_start_pfn, zone_end_pfn);
c713216d
MG
5023
5024 /* Check that this node has pages within the zone's required range */
d91749c1 5025 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5026 return 0;
5027
5028 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5029 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5030 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5031
5032 /* Return the spanned pages */
d91749c1 5033 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5034}
5035
5036/*
5037 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5038 * then all holes in the requested range will be accounted for.
c713216d 5039 */
32996250 5040unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5041 unsigned long range_start_pfn,
5042 unsigned long range_end_pfn)
5043{
96e907d1
TH
5044 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5045 unsigned long start_pfn, end_pfn;
5046 int i;
c713216d 5047
96e907d1
TH
5048 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5049 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5050 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5051 nr_absent -= end_pfn - start_pfn;
c713216d 5052 }
96e907d1 5053 return nr_absent;
c713216d
MG
5054}
5055
5056/**
5057 * absent_pages_in_range - Return number of page frames in holes within a range
5058 * @start_pfn: The start PFN to start searching for holes
5059 * @end_pfn: The end PFN to stop searching for holes
5060 *
88ca3b94 5061 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5062 */
5063unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5064 unsigned long end_pfn)
5065{
5066 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5067}
5068
5069/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5070static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5071 unsigned long zone_type,
7960aedd
ZY
5072 unsigned long node_start_pfn,
5073 unsigned long node_end_pfn,
c713216d
MG
5074 unsigned long *ignored)
5075{
96e907d1
TH
5076 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5077 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5078 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5079 unsigned long nr_absent;
9c7cd687 5080
b5685e92 5081 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5082 if (!node_start_pfn && !node_end_pfn)
5083 return 0;
5084
96e907d1
TH
5085 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5086 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5087
2a1e274a
MG
5088 adjust_zone_range_for_zone_movable(nid, zone_type,
5089 node_start_pfn, node_end_pfn,
5090 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5091 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5092
5093 /*
5094 * ZONE_MOVABLE handling.
5095 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5096 * and vice versa.
5097 */
5098 if (zone_movable_pfn[nid]) {
5099 if (mirrored_kernelcore) {
5100 unsigned long start_pfn, end_pfn;
5101 struct memblock_region *r;
5102
5103 for_each_memblock(memory, r) {
5104 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5105 zone_start_pfn, zone_end_pfn);
5106 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5107 zone_start_pfn, zone_end_pfn);
5108
5109 if (zone_type == ZONE_MOVABLE &&
5110 memblock_is_mirror(r))
5111 nr_absent += end_pfn - start_pfn;
5112
5113 if (zone_type == ZONE_NORMAL &&
5114 !memblock_is_mirror(r))
5115 nr_absent += end_pfn - start_pfn;
5116 }
5117 } else {
5118 if (zone_type == ZONE_NORMAL)
5119 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5120 }
5121 }
5122
5123 return nr_absent;
c713216d 5124}
0e0b864e 5125
0ee332c1 5126#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5127static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5128 unsigned long zone_type,
7960aedd
ZY
5129 unsigned long node_start_pfn,
5130 unsigned long node_end_pfn,
d91749c1
TI
5131 unsigned long *zone_start_pfn,
5132 unsigned long *zone_end_pfn,
c713216d
MG
5133 unsigned long *zones_size)
5134{
d91749c1
TI
5135 unsigned int zone;
5136
5137 *zone_start_pfn = node_start_pfn;
5138 for (zone = 0; zone < zone_type; zone++)
5139 *zone_start_pfn += zones_size[zone];
5140
5141 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5142
c713216d
MG
5143 return zones_size[zone_type];
5144}
5145
6ea6e688 5146static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5147 unsigned long zone_type,
7960aedd
ZY
5148 unsigned long node_start_pfn,
5149 unsigned long node_end_pfn,
c713216d
MG
5150 unsigned long *zholes_size)
5151{
5152 if (!zholes_size)
5153 return 0;
5154
5155 return zholes_size[zone_type];
5156}
20e6926d 5157
0ee332c1 5158#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5159
a3142c8e 5160static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5161 unsigned long node_start_pfn,
5162 unsigned long node_end_pfn,
5163 unsigned long *zones_size,
5164 unsigned long *zholes_size)
c713216d 5165{
febd5949 5166 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5167 enum zone_type i;
5168
febd5949
GZ
5169 for (i = 0; i < MAX_NR_ZONES; i++) {
5170 struct zone *zone = pgdat->node_zones + i;
d91749c1 5171 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5172 unsigned long size, real_size;
c713216d 5173
febd5949
GZ
5174 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5175 node_start_pfn,
5176 node_end_pfn,
d91749c1
TI
5177 &zone_start_pfn,
5178 &zone_end_pfn,
febd5949
GZ
5179 zones_size);
5180 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5181 node_start_pfn, node_end_pfn,
5182 zholes_size);
d91749c1
TI
5183 if (size)
5184 zone->zone_start_pfn = zone_start_pfn;
5185 else
5186 zone->zone_start_pfn = 0;
febd5949
GZ
5187 zone->spanned_pages = size;
5188 zone->present_pages = real_size;
5189
5190 totalpages += size;
5191 realtotalpages += real_size;
5192 }
5193
5194 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5195 pgdat->node_present_pages = realtotalpages;
5196 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5197 realtotalpages);
5198}
5199
835c134e
MG
5200#ifndef CONFIG_SPARSEMEM
5201/*
5202 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5203 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5204 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5205 * round what is now in bits to nearest long in bits, then return it in
5206 * bytes.
5207 */
7c45512d 5208static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5209{
5210 unsigned long usemapsize;
5211
7c45512d 5212 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5213 usemapsize = roundup(zonesize, pageblock_nr_pages);
5214 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5215 usemapsize *= NR_PAGEBLOCK_BITS;
5216 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5217
5218 return usemapsize / 8;
5219}
5220
5221static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5222 struct zone *zone,
5223 unsigned long zone_start_pfn,
5224 unsigned long zonesize)
835c134e 5225{
7c45512d 5226 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5227 zone->pageblock_flags = NULL;
58a01a45 5228 if (usemapsize)
6782832e
SS
5229 zone->pageblock_flags =
5230 memblock_virt_alloc_node_nopanic(usemapsize,
5231 pgdat->node_id);
835c134e
MG
5232}
5233#else
7c45512d
LT
5234static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5235 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5236#endif /* CONFIG_SPARSEMEM */
5237
d9c23400 5238#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5239
d9c23400 5240/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5241void __paginginit set_pageblock_order(void)
d9c23400 5242{
955c1cd7
AM
5243 unsigned int order;
5244
d9c23400
MG
5245 /* Check that pageblock_nr_pages has not already been setup */
5246 if (pageblock_order)
5247 return;
5248
955c1cd7
AM
5249 if (HPAGE_SHIFT > PAGE_SHIFT)
5250 order = HUGETLB_PAGE_ORDER;
5251 else
5252 order = MAX_ORDER - 1;
5253
d9c23400
MG
5254 /*
5255 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5256 * This value may be variable depending on boot parameters on IA64 and
5257 * powerpc.
d9c23400
MG
5258 */
5259 pageblock_order = order;
5260}
5261#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5262
ba72cb8c
MG
5263/*
5264 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5265 * is unused as pageblock_order is set at compile-time. See
5266 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5267 * the kernel config
ba72cb8c 5268 */
15ca220e 5269void __paginginit set_pageblock_order(void)
ba72cb8c 5270{
ba72cb8c 5271}
d9c23400
MG
5272
5273#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5274
01cefaef
JL
5275static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5276 unsigned long present_pages)
5277{
5278 unsigned long pages = spanned_pages;
5279
5280 /*
5281 * Provide a more accurate estimation if there are holes within
5282 * the zone and SPARSEMEM is in use. If there are holes within the
5283 * zone, each populated memory region may cost us one or two extra
5284 * memmap pages due to alignment because memmap pages for each
5285 * populated regions may not naturally algined on page boundary.
5286 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5287 */
5288 if (spanned_pages > present_pages + (present_pages >> 4) &&
5289 IS_ENABLED(CONFIG_SPARSEMEM))
5290 pages = present_pages;
5291
5292 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5293}
5294
1da177e4
LT
5295/*
5296 * Set up the zone data structures:
5297 * - mark all pages reserved
5298 * - mark all memory queues empty
5299 * - clear the memory bitmaps
6527af5d
MK
5300 *
5301 * NOTE: pgdat should get zeroed by caller.
1da177e4 5302 */
7f3eb55b 5303static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5304{
2f1b6248 5305 enum zone_type j;
ed8ece2e 5306 int nid = pgdat->node_id;
718127cc 5307 int ret;
1da177e4 5308
208d54e5 5309 pgdat_resize_init(pgdat);
8177a420
AA
5310#ifdef CONFIG_NUMA_BALANCING
5311 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5312 pgdat->numabalancing_migrate_nr_pages = 0;
5313 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5314#endif
5315#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5316 spin_lock_init(&pgdat->split_queue_lock);
5317 INIT_LIST_HEAD(&pgdat->split_queue);
5318 pgdat->split_queue_len = 0;
8177a420 5319#endif
1da177e4 5320 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5321 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5322 pgdat_page_ext_init(pgdat);
5f63b720 5323
1da177e4
LT
5324 for (j = 0; j < MAX_NR_ZONES; j++) {
5325 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5326 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5327 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5328
febd5949
GZ
5329 size = zone->spanned_pages;
5330 realsize = freesize = zone->present_pages;
1da177e4 5331
0e0b864e 5332 /*
9feedc9d 5333 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5334 * is used by this zone for memmap. This affects the watermark
5335 * and per-cpu initialisations
5336 */
01cefaef 5337 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5338 if (!is_highmem_idx(j)) {
5339 if (freesize >= memmap_pages) {
5340 freesize -= memmap_pages;
5341 if (memmap_pages)
5342 printk(KERN_DEBUG
5343 " %s zone: %lu pages used for memmap\n",
5344 zone_names[j], memmap_pages);
5345 } else
5346 printk(KERN_WARNING
5347 " %s zone: %lu pages exceeds freesize %lu\n",
5348 zone_names[j], memmap_pages, freesize);
5349 }
0e0b864e 5350
6267276f 5351 /* Account for reserved pages */
9feedc9d
JL
5352 if (j == 0 && freesize > dma_reserve) {
5353 freesize -= dma_reserve;
d903ef9f 5354 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5355 zone_names[0], dma_reserve);
0e0b864e
MG
5356 }
5357
98d2b0eb 5358 if (!is_highmem_idx(j))
9feedc9d 5359 nr_kernel_pages += freesize;
01cefaef
JL
5360 /* Charge for highmem memmap if there are enough kernel pages */
5361 else if (nr_kernel_pages > memmap_pages * 2)
5362 nr_kernel_pages -= memmap_pages;
9feedc9d 5363 nr_all_pages += freesize;
1da177e4 5364
9feedc9d
JL
5365 /*
5366 * Set an approximate value for lowmem here, it will be adjusted
5367 * when the bootmem allocator frees pages into the buddy system.
5368 * And all highmem pages will be managed by the buddy system.
5369 */
5370 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5371#ifdef CONFIG_NUMA
d5f541ed 5372 zone->node = nid;
9feedc9d 5373 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5374 / 100;
9feedc9d 5375 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5376#endif
1da177e4
LT
5377 zone->name = zone_names[j];
5378 spin_lock_init(&zone->lock);
5379 spin_lock_init(&zone->lru_lock);
bdc8cb98 5380 zone_seqlock_init(zone);
1da177e4 5381 zone->zone_pgdat = pgdat;
ed8ece2e 5382 zone_pcp_init(zone);
81c0a2bb
JW
5383
5384 /* For bootup, initialized properly in watermark setup */
5385 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5386
bea8c150 5387 lruvec_init(&zone->lruvec);
1da177e4
LT
5388 if (!size)
5389 continue;
5390
955c1cd7 5391 set_pageblock_order();
7c45512d 5392 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5393 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5394 BUG_ON(ret);
76cdd58e 5395 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5396 }
5397}
5398
577a32f6 5399static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5400{
b0aeba74 5401 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5402 unsigned long __maybe_unused offset = 0;
5403
1da177e4
LT
5404 /* Skip empty nodes */
5405 if (!pgdat->node_spanned_pages)
5406 return;
5407
d41dee36 5408#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5409 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5410 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5411 /* ia64 gets its own node_mem_map, before this, without bootmem */
5412 if (!pgdat->node_mem_map) {
b0aeba74 5413 unsigned long size, end;
d41dee36
AW
5414 struct page *map;
5415
e984bb43
BP
5416 /*
5417 * The zone's endpoints aren't required to be MAX_ORDER
5418 * aligned but the node_mem_map endpoints must be in order
5419 * for the buddy allocator to function correctly.
5420 */
108bcc96 5421 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5422 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5423 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5424 map = alloc_remap(pgdat->node_id, size);
5425 if (!map)
6782832e
SS
5426 map = memblock_virt_alloc_node_nopanic(size,
5427 pgdat->node_id);
a1c34a3b 5428 pgdat->node_mem_map = map + offset;
1da177e4 5429 }
12d810c1 5430#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5431 /*
5432 * With no DISCONTIG, the global mem_map is just set as node 0's
5433 */
c713216d 5434 if (pgdat == NODE_DATA(0)) {
1da177e4 5435 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5436#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5437 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5438 mem_map -= offset;
0ee332c1 5439#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5440 }
1da177e4 5441#endif
d41dee36 5442#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5443}
5444
9109fb7b
JW
5445void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5446 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5447{
9109fb7b 5448 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5449 unsigned long start_pfn = 0;
5450 unsigned long end_pfn = 0;
9109fb7b 5451
88fdf75d 5452 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5453 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5454
3a80a7fa 5455 reset_deferred_meminit(pgdat);
1da177e4
LT
5456 pgdat->node_id = nid;
5457 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5458#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5459 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5460 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5461 (u64)start_pfn << PAGE_SHIFT,
5462 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5463#else
5464 start_pfn = node_start_pfn;
7960aedd
ZY
5465#endif
5466 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5467 zones_size, zholes_size);
1da177e4
LT
5468
5469 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5470#ifdef CONFIG_FLAT_NODE_MEM_MAP
5471 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5472 nid, (unsigned long)pgdat,
5473 (unsigned long)pgdat->node_mem_map);
5474#endif
1da177e4 5475
7f3eb55b 5476 free_area_init_core(pgdat);
1da177e4
LT
5477}
5478
0ee332c1 5479#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5480
5481#if MAX_NUMNODES > 1
5482/*
5483 * Figure out the number of possible node ids.
5484 */
f9872caf 5485void __init setup_nr_node_ids(void)
418508c1 5486{
904a9553 5487 unsigned int highest;
418508c1 5488
904a9553 5489 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5490 nr_node_ids = highest + 1;
5491}
418508c1
MS
5492#endif
5493
1e01979c
TH
5494/**
5495 * node_map_pfn_alignment - determine the maximum internode alignment
5496 *
5497 * This function should be called after node map is populated and sorted.
5498 * It calculates the maximum power of two alignment which can distinguish
5499 * all the nodes.
5500 *
5501 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5502 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5503 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5504 * shifted, 1GiB is enough and this function will indicate so.
5505 *
5506 * This is used to test whether pfn -> nid mapping of the chosen memory
5507 * model has fine enough granularity to avoid incorrect mapping for the
5508 * populated node map.
5509 *
5510 * Returns the determined alignment in pfn's. 0 if there is no alignment
5511 * requirement (single node).
5512 */
5513unsigned long __init node_map_pfn_alignment(void)
5514{
5515 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5516 unsigned long start, end, mask;
1e01979c 5517 int last_nid = -1;
c13291a5 5518 int i, nid;
1e01979c 5519
c13291a5 5520 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5521 if (!start || last_nid < 0 || last_nid == nid) {
5522 last_nid = nid;
5523 last_end = end;
5524 continue;
5525 }
5526
5527 /*
5528 * Start with a mask granular enough to pin-point to the
5529 * start pfn and tick off bits one-by-one until it becomes
5530 * too coarse to separate the current node from the last.
5531 */
5532 mask = ~((1 << __ffs(start)) - 1);
5533 while (mask && last_end <= (start & (mask << 1)))
5534 mask <<= 1;
5535
5536 /* accumulate all internode masks */
5537 accl_mask |= mask;
5538 }
5539
5540 /* convert mask to number of pages */
5541 return ~accl_mask + 1;
5542}
5543
a6af2bc3 5544/* Find the lowest pfn for a node */
b69a7288 5545static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5546{
a6af2bc3 5547 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5548 unsigned long start_pfn;
5549 int i;
1abbfb41 5550
c13291a5
TH
5551 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5552 min_pfn = min(min_pfn, start_pfn);
c713216d 5553
a6af2bc3
MG
5554 if (min_pfn == ULONG_MAX) {
5555 printk(KERN_WARNING
2bc0d261 5556 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5557 return 0;
5558 }
5559
5560 return min_pfn;
c713216d
MG
5561}
5562
5563/**
5564 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5565 *
5566 * It returns the minimum PFN based on information provided via
7d018176 5567 * memblock_set_node().
c713216d
MG
5568 */
5569unsigned long __init find_min_pfn_with_active_regions(void)
5570{
5571 return find_min_pfn_for_node(MAX_NUMNODES);
5572}
5573
37b07e41
LS
5574/*
5575 * early_calculate_totalpages()
5576 * Sum pages in active regions for movable zone.
4b0ef1fe 5577 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5578 */
484f51f8 5579static unsigned long __init early_calculate_totalpages(void)
7e63efef 5580{
7e63efef 5581 unsigned long totalpages = 0;
c13291a5
TH
5582 unsigned long start_pfn, end_pfn;
5583 int i, nid;
5584
5585 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5586 unsigned long pages = end_pfn - start_pfn;
7e63efef 5587
37b07e41
LS
5588 totalpages += pages;
5589 if (pages)
4b0ef1fe 5590 node_set_state(nid, N_MEMORY);
37b07e41 5591 }
b8af2941 5592 return totalpages;
7e63efef
MG
5593}
5594
2a1e274a
MG
5595/*
5596 * Find the PFN the Movable zone begins in each node. Kernel memory
5597 * is spread evenly between nodes as long as the nodes have enough
5598 * memory. When they don't, some nodes will have more kernelcore than
5599 * others
5600 */
b224ef85 5601static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5602{
5603 int i, nid;
5604 unsigned long usable_startpfn;
5605 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5606 /* save the state before borrow the nodemask */
4b0ef1fe 5607 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5608 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5609 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5610 struct memblock_region *r;
b2f3eebe
TC
5611
5612 /* Need to find movable_zone earlier when movable_node is specified. */
5613 find_usable_zone_for_movable();
5614
5615 /*
5616 * If movable_node is specified, ignore kernelcore and movablecore
5617 * options.
5618 */
5619 if (movable_node_is_enabled()) {
136199f0
EM
5620 for_each_memblock(memory, r) {
5621 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5622 continue;
5623
136199f0 5624 nid = r->nid;
b2f3eebe 5625
136199f0 5626 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5627 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5628 min(usable_startpfn, zone_movable_pfn[nid]) :
5629 usable_startpfn;
5630 }
5631
5632 goto out2;
5633 }
2a1e274a 5634
342332e6
TI
5635 /*
5636 * If kernelcore=mirror is specified, ignore movablecore option
5637 */
5638 if (mirrored_kernelcore) {
5639 bool mem_below_4gb_not_mirrored = false;
5640
5641 for_each_memblock(memory, r) {
5642 if (memblock_is_mirror(r))
5643 continue;
5644
5645 nid = r->nid;
5646
5647 usable_startpfn = memblock_region_memory_base_pfn(r);
5648
5649 if (usable_startpfn < 0x100000) {
5650 mem_below_4gb_not_mirrored = true;
5651 continue;
5652 }
5653
5654 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5655 min(usable_startpfn, zone_movable_pfn[nid]) :
5656 usable_startpfn;
5657 }
5658
5659 if (mem_below_4gb_not_mirrored)
5660 pr_warn("This configuration results in unmirrored kernel memory.");
5661
5662 goto out2;
5663 }
5664
7e63efef 5665 /*
b2f3eebe 5666 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5667 * kernelcore that corresponds so that memory usable for
5668 * any allocation type is evenly spread. If both kernelcore
5669 * and movablecore are specified, then the value of kernelcore
5670 * will be used for required_kernelcore if it's greater than
5671 * what movablecore would have allowed.
5672 */
5673 if (required_movablecore) {
7e63efef
MG
5674 unsigned long corepages;
5675
5676 /*
5677 * Round-up so that ZONE_MOVABLE is at least as large as what
5678 * was requested by the user
5679 */
5680 required_movablecore =
5681 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5682 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5683 corepages = totalpages - required_movablecore;
5684
5685 required_kernelcore = max(required_kernelcore, corepages);
5686 }
5687
bde304bd
XQ
5688 /*
5689 * If kernelcore was not specified or kernelcore size is larger
5690 * than totalpages, there is no ZONE_MOVABLE.
5691 */
5692 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5693 goto out;
2a1e274a
MG
5694
5695 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5696 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5697
5698restart:
5699 /* Spread kernelcore memory as evenly as possible throughout nodes */
5700 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5701 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5702 unsigned long start_pfn, end_pfn;
5703
2a1e274a
MG
5704 /*
5705 * Recalculate kernelcore_node if the division per node
5706 * now exceeds what is necessary to satisfy the requested
5707 * amount of memory for the kernel
5708 */
5709 if (required_kernelcore < kernelcore_node)
5710 kernelcore_node = required_kernelcore / usable_nodes;
5711
5712 /*
5713 * As the map is walked, we track how much memory is usable
5714 * by the kernel using kernelcore_remaining. When it is
5715 * 0, the rest of the node is usable by ZONE_MOVABLE
5716 */
5717 kernelcore_remaining = kernelcore_node;
5718
5719 /* Go through each range of PFNs within this node */
c13291a5 5720 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5721 unsigned long size_pages;
5722
c13291a5 5723 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5724 if (start_pfn >= end_pfn)
5725 continue;
5726
5727 /* Account for what is only usable for kernelcore */
5728 if (start_pfn < usable_startpfn) {
5729 unsigned long kernel_pages;
5730 kernel_pages = min(end_pfn, usable_startpfn)
5731 - start_pfn;
5732
5733 kernelcore_remaining -= min(kernel_pages,
5734 kernelcore_remaining);
5735 required_kernelcore -= min(kernel_pages,
5736 required_kernelcore);
5737
5738 /* Continue if range is now fully accounted */
5739 if (end_pfn <= usable_startpfn) {
5740
5741 /*
5742 * Push zone_movable_pfn to the end so
5743 * that if we have to rebalance
5744 * kernelcore across nodes, we will
5745 * not double account here
5746 */
5747 zone_movable_pfn[nid] = end_pfn;
5748 continue;
5749 }
5750 start_pfn = usable_startpfn;
5751 }
5752
5753 /*
5754 * The usable PFN range for ZONE_MOVABLE is from
5755 * start_pfn->end_pfn. Calculate size_pages as the
5756 * number of pages used as kernelcore
5757 */
5758 size_pages = end_pfn - start_pfn;
5759 if (size_pages > kernelcore_remaining)
5760 size_pages = kernelcore_remaining;
5761 zone_movable_pfn[nid] = start_pfn + size_pages;
5762
5763 /*
5764 * Some kernelcore has been met, update counts and
5765 * break if the kernelcore for this node has been
b8af2941 5766 * satisfied
2a1e274a
MG
5767 */
5768 required_kernelcore -= min(required_kernelcore,
5769 size_pages);
5770 kernelcore_remaining -= size_pages;
5771 if (!kernelcore_remaining)
5772 break;
5773 }
5774 }
5775
5776 /*
5777 * If there is still required_kernelcore, we do another pass with one
5778 * less node in the count. This will push zone_movable_pfn[nid] further
5779 * along on the nodes that still have memory until kernelcore is
b8af2941 5780 * satisfied
2a1e274a
MG
5781 */
5782 usable_nodes--;
5783 if (usable_nodes && required_kernelcore > usable_nodes)
5784 goto restart;
5785
b2f3eebe 5786out2:
2a1e274a
MG
5787 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5788 for (nid = 0; nid < MAX_NUMNODES; nid++)
5789 zone_movable_pfn[nid] =
5790 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5791
20e6926d 5792out:
66918dcd 5793 /* restore the node_state */
4b0ef1fe 5794 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5795}
5796
4b0ef1fe
LJ
5797/* Any regular or high memory on that node ? */
5798static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5799{
37b07e41
LS
5800 enum zone_type zone_type;
5801
4b0ef1fe
LJ
5802 if (N_MEMORY == N_NORMAL_MEMORY)
5803 return;
5804
5805 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5806 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5807 if (populated_zone(zone)) {
4b0ef1fe
LJ
5808 node_set_state(nid, N_HIGH_MEMORY);
5809 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5810 zone_type <= ZONE_NORMAL)
5811 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5812 break;
5813 }
37b07e41 5814 }
37b07e41
LS
5815}
5816
c713216d
MG
5817/**
5818 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5819 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5820 *
5821 * This will call free_area_init_node() for each active node in the system.
7d018176 5822 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5823 * zone in each node and their holes is calculated. If the maximum PFN
5824 * between two adjacent zones match, it is assumed that the zone is empty.
5825 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5826 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5827 * starts where the previous one ended. For example, ZONE_DMA32 starts
5828 * at arch_max_dma_pfn.
5829 */
5830void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5831{
c13291a5
TH
5832 unsigned long start_pfn, end_pfn;
5833 int i, nid;
a6af2bc3 5834
c713216d
MG
5835 /* Record where the zone boundaries are */
5836 memset(arch_zone_lowest_possible_pfn, 0,
5837 sizeof(arch_zone_lowest_possible_pfn));
5838 memset(arch_zone_highest_possible_pfn, 0,
5839 sizeof(arch_zone_highest_possible_pfn));
5840 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5841 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5842 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5843 if (i == ZONE_MOVABLE)
5844 continue;
c713216d
MG
5845 arch_zone_lowest_possible_pfn[i] =
5846 arch_zone_highest_possible_pfn[i-1];
5847 arch_zone_highest_possible_pfn[i] =
5848 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5849 }
2a1e274a
MG
5850 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5851 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5852
5853 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5854 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5855 find_zone_movable_pfns_for_nodes();
c713216d 5856
c713216d 5857 /* Print out the zone ranges */
f88dfff5 5858 pr_info("Zone ranges:\n");
2a1e274a
MG
5859 for (i = 0; i < MAX_NR_ZONES; i++) {
5860 if (i == ZONE_MOVABLE)
5861 continue;
f88dfff5 5862 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5863 if (arch_zone_lowest_possible_pfn[i] ==
5864 arch_zone_highest_possible_pfn[i])
f88dfff5 5865 pr_cont("empty\n");
72f0ba02 5866 else
8d29e18a
JG
5867 pr_cont("[mem %#018Lx-%#018Lx]\n",
5868 (u64)arch_zone_lowest_possible_pfn[i]
5869 << PAGE_SHIFT,
5870 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5871 << PAGE_SHIFT) - 1);
2a1e274a
MG
5872 }
5873
5874 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5875 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5876 for (i = 0; i < MAX_NUMNODES; i++) {
5877 if (zone_movable_pfn[i])
8d29e18a
JG
5878 pr_info(" Node %d: %#018Lx\n", i,
5879 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5880 }
c713216d 5881
f2d52fe5 5882 /* Print out the early node map */
f88dfff5 5883 pr_info("Early memory node ranges\n");
c13291a5 5884 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5885 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5886 (u64)start_pfn << PAGE_SHIFT,
5887 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5888
5889 /* Initialise every node */
708614e6 5890 mminit_verify_pageflags_layout();
8ef82866 5891 setup_nr_node_ids();
c713216d
MG
5892 for_each_online_node(nid) {
5893 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5894 free_area_init_node(nid, NULL,
c713216d 5895 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5896
5897 /* Any memory on that node */
5898 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5899 node_set_state(nid, N_MEMORY);
5900 check_for_memory(pgdat, nid);
c713216d
MG
5901 }
5902}
2a1e274a 5903
7e63efef 5904static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5905{
5906 unsigned long long coremem;
5907 if (!p)
5908 return -EINVAL;
5909
5910 coremem = memparse(p, &p);
7e63efef 5911 *core = coremem >> PAGE_SHIFT;
2a1e274a 5912
7e63efef 5913 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5914 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5915
5916 return 0;
5917}
ed7ed365 5918
7e63efef
MG
5919/*
5920 * kernelcore=size sets the amount of memory for use for allocations that
5921 * cannot be reclaimed or migrated.
5922 */
5923static int __init cmdline_parse_kernelcore(char *p)
5924{
342332e6
TI
5925 /* parse kernelcore=mirror */
5926 if (parse_option_str(p, "mirror")) {
5927 mirrored_kernelcore = true;
5928 return 0;
5929 }
5930
7e63efef
MG
5931 return cmdline_parse_core(p, &required_kernelcore);
5932}
5933
5934/*
5935 * movablecore=size sets the amount of memory for use for allocations that
5936 * can be reclaimed or migrated.
5937 */
5938static int __init cmdline_parse_movablecore(char *p)
5939{
5940 return cmdline_parse_core(p, &required_movablecore);
5941}
5942
ed7ed365 5943early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5944early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5945
0ee332c1 5946#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5947
c3d5f5f0
JL
5948void adjust_managed_page_count(struct page *page, long count)
5949{
5950 spin_lock(&managed_page_count_lock);
5951 page_zone(page)->managed_pages += count;
5952 totalram_pages += count;
3dcc0571
JL
5953#ifdef CONFIG_HIGHMEM
5954 if (PageHighMem(page))
5955 totalhigh_pages += count;
5956#endif
c3d5f5f0
JL
5957 spin_unlock(&managed_page_count_lock);
5958}
3dcc0571 5959EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5960
11199692 5961unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5962{
11199692
JL
5963 void *pos;
5964 unsigned long pages = 0;
69afade7 5965
11199692
JL
5966 start = (void *)PAGE_ALIGN((unsigned long)start);
5967 end = (void *)((unsigned long)end & PAGE_MASK);
5968 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5969 if ((unsigned int)poison <= 0xFF)
11199692
JL
5970 memset(pos, poison, PAGE_SIZE);
5971 free_reserved_page(virt_to_page(pos));
69afade7
JL
5972 }
5973
5974 if (pages && s)
11199692 5975 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5976 s, pages << (PAGE_SHIFT - 10), start, end);
5977
5978 return pages;
5979}
11199692 5980EXPORT_SYMBOL(free_reserved_area);
69afade7 5981
cfa11e08
JL
5982#ifdef CONFIG_HIGHMEM
5983void free_highmem_page(struct page *page)
5984{
5985 __free_reserved_page(page);
5986 totalram_pages++;
7b4b2a0d 5987 page_zone(page)->managed_pages++;
cfa11e08
JL
5988 totalhigh_pages++;
5989}
5990#endif
5991
7ee3d4e8
JL
5992
5993void __init mem_init_print_info(const char *str)
5994{
5995 unsigned long physpages, codesize, datasize, rosize, bss_size;
5996 unsigned long init_code_size, init_data_size;
5997
5998 physpages = get_num_physpages();
5999 codesize = _etext - _stext;
6000 datasize = _edata - _sdata;
6001 rosize = __end_rodata - __start_rodata;
6002 bss_size = __bss_stop - __bss_start;
6003 init_data_size = __init_end - __init_begin;
6004 init_code_size = _einittext - _sinittext;
6005
6006 /*
6007 * Detect special cases and adjust section sizes accordingly:
6008 * 1) .init.* may be embedded into .data sections
6009 * 2) .init.text.* may be out of [__init_begin, __init_end],
6010 * please refer to arch/tile/kernel/vmlinux.lds.S.
6011 * 3) .rodata.* may be embedded into .text or .data sections.
6012 */
6013#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6014 do { \
6015 if (start <= pos && pos < end && size > adj) \
6016 size -= adj; \
6017 } while (0)
7ee3d4e8
JL
6018
6019 adj_init_size(__init_begin, __init_end, init_data_size,
6020 _sinittext, init_code_size);
6021 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6022 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6023 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6024 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6025
6026#undef adj_init_size
6027
f88dfff5 6028 pr_info("Memory: %luK/%luK available "
7ee3d4e8 6029 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 6030 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
6031#ifdef CONFIG_HIGHMEM
6032 ", %luK highmem"
6033#endif
6034 "%s%s)\n",
6035 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6036 codesize >> 10, datasize >> 10, rosize >> 10,
6037 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6038 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6039 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6040#ifdef CONFIG_HIGHMEM
6041 totalhigh_pages << (PAGE_SHIFT-10),
6042#endif
6043 str ? ", " : "", str ? str : "");
6044}
6045
0e0b864e 6046/**
88ca3b94
RD
6047 * set_dma_reserve - set the specified number of pages reserved in the first zone
6048 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6049 *
013110a7 6050 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6051 * In the DMA zone, a significant percentage may be consumed by kernel image
6052 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6053 * function may optionally be used to account for unfreeable pages in the
6054 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6055 * smaller per-cpu batchsize.
0e0b864e
MG
6056 */
6057void __init set_dma_reserve(unsigned long new_dma_reserve)
6058{
6059 dma_reserve = new_dma_reserve;
6060}
6061
1da177e4
LT
6062void __init free_area_init(unsigned long *zones_size)
6063{
9109fb7b 6064 free_area_init_node(0, zones_size,
1da177e4
LT
6065 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6066}
1da177e4 6067
1da177e4
LT
6068static int page_alloc_cpu_notify(struct notifier_block *self,
6069 unsigned long action, void *hcpu)
6070{
6071 int cpu = (unsigned long)hcpu;
1da177e4 6072
8bb78442 6073 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6074 lru_add_drain_cpu(cpu);
9f8f2172
CL
6075 drain_pages(cpu);
6076
6077 /*
6078 * Spill the event counters of the dead processor
6079 * into the current processors event counters.
6080 * This artificially elevates the count of the current
6081 * processor.
6082 */
f8891e5e 6083 vm_events_fold_cpu(cpu);
9f8f2172
CL
6084
6085 /*
6086 * Zero the differential counters of the dead processor
6087 * so that the vm statistics are consistent.
6088 *
6089 * This is only okay since the processor is dead and cannot
6090 * race with what we are doing.
6091 */
2bb921e5 6092 cpu_vm_stats_fold(cpu);
1da177e4
LT
6093 }
6094 return NOTIFY_OK;
6095}
1da177e4
LT
6096
6097void __init page_alloc_init(void)
6098{
6099 hotcpu_notifier(page_alloc_cpu_notify, 0);
6100}
6101
cb45b0e9 6102/*
34b10060 6103 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6104 * or min_free_kbytes changes.
6105 */
6106static void calculate_totalreserve_pages(void)
6107{
6108 struct pglist_data *pgdat;
6109 unsigned long reserve_pages = 0;
2f6726e5 6110 enum zone_type i, j;
cb45b0e9
HA
6111
6112 for_each_online_pgdat(pgdat) {
6113 for (i = 0; i < MAX_NR_ZONES; i++) {
6114 struct zone *zone = pgdat->node_zones + i;
3484b2de 6115 long max = 0;
cb45b0e9
HA
6116
6117 /* Find valid and maximum lowmem_reserve in the zone */
6118 for (j = i; j < MAX_NR_ZONES; j++) {
6119 if (zone->lowmem_reserve[j] > max)
6120 max = zone->lowmem_reserve[j];
6121 }
6122
41858966
MG
6123 /* we treat the high watermark as reserved pages. */
6124 max += high_wmark_pages(zone);
cb45b0e9 6125
b40da049
JL
6126 if (max > zone->managed_pages)
6127 max = zone->managed_pages;
a8d01437
JW
6128
6129 zone->totalreserve_pages = max;
6130
cb45b0e9
HA
6131 reserve_pages += max;
6132 }
6133 }
6134 totalreserve_pages = reserve_pages;
6135}
6136
1da177e4
LT
6137/*
6138 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6139 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6140 * has a correct pages reserved value, so an adequate number of
6141 * pages are left in the zone after a successful __alloc_pages().
6142 */
6143static void setup_per_zone_lowmem_reserve(void)
6144{
6145 struct pglist_data *pgdat;
2f6726e5 6146 enum zone_type j, idx;
1da177e4 6147
ec936fc5 6148 for_each_online_pgdat(pgdat) {
1da177e4
LT
6149 for (j = 0; j < MAX_NR_ZONES; j++) {
6150 struct zone *zone = pgdat->node_zones + j;
b40da049 6151 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6152
6153 zone->lowmem_reserve[j] = 0;
6154
2f6726e5
CL
6155 idx = j;
6156 while (idx) {
1da177e4
LT
6157 struct zone *lower_zone;
6158
2f6726e5
CL
6159 idx--;
6160
1da177e4
LT
6161 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6162 sysctl_lowmem_reserve_ratio[idx] = 1;
6163
6164 lower_zone = pgdat->node_zones + idx;
b40da049 6165 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6166 sysctl_lowmem_reserve_ratio[idx];
b40da049 6167 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6168 }
6169 }
6170 }
cb45b0e9
HA
6171
6172 /* update totalreserve_pages */
6173 calculate_totalreserve_pages();
1da177e4
LT
6174}
6175
cfd3da1e 6176static void __setup_per_zone_wmarks(void)
1da177e4
LT
6177{
6178 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6179 unsigned long lowmem_pages = 0;
6180 struct zone *zone;
6181 unsigned long flags;
6182
6183 /* Calculate total number of !ZONE_HIGHMEM pages */
6184 for_each_zone(zone) {
6185 if (!is_highmem(zone))
b40da049 6186 lowmem_pages += zone->managed_pages;
1da177e4
LT
6187 }
6188
6189 for_each_zone(zone) {
ac924c60
AM
6190 u64 tmp;
6191
1125b4e3 6192 spin_lock_irqsave(&zone->lock, flags);
b40da049 6193 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6194 do_div(tmp, lowmem_pages);
1da177e4
LT
6195 if (is_highmem(zone)) {
6196 /*
669ed175
NP
6197 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6198 * need highmem pages, so cap pages_min to a small
6199 * value here.
6200 *
41858966 6201 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6202 * deltas control asynch page reclaim, and so should
669ed175 6203 * not be capped for highmem.
1da177e4 6204 */
90ae8d67 6205 unsigned long min_pages;
1da177e4 6206
b40da049 6207 min_pages = zone->managed_pages / 1024;
90ae8d67 6208 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6209 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6210 } else {
669ed175
NP
6211 /*
6212 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6213 * proportionate to the zone's size.
6214 */
41858966 6215 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6216 }
6217
41858966
MG
6218 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6219 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6220
81c0a2bb 6221 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6222 high_wmark_pages(zone) - low_wmark_pages(zone) -
6223 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6224
1125b4e3 6225 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6226 }
cb45b0e9
HA
6227
6228 /* update totalreserve_pages */
6229 calculate_totalreserve_pages();
1da177e4
LT
6230}
6231
cfd3da1e
MG
6232/**
6233 * setup_per_zone_wmarks - called when min_free_kbytes changes
6234 * or when memory is hot-{added|removed}
6235 *
6236 * Ensures that the watermark[min,low,high] values for each zone are set
6237 * correctly with respect to min_free_kbytes.
6238 */
6239void setup_per_zone_wmarks(void)
6240{
6241 mutex_lock(&zonelists_mutex);
6242 __setup_per_zone_wmarks();
6243 mutex_unlock(&zonelists_mutex);
6244}
6245
55a4462a 6246/*
556adecb
RR
6247 * The inactive anon list should be small enough that the VM never has to
6248 * do too much work, but large enough that each inactive page has a chance
6249 * to be referenced again before it is swapped out.
6250 *
6251 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6252 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6253 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6254 * the anonymous pages are kept on the inactive list.
6255 *
6256 * total target max
6257 * memory ratio inactive anon
6258 * -------------------------------------
6259 * 10MB 1 5MB
6260 * 100MB 1 50MB
6261 * 1GB 3 250MB
6262 * 10GB 10 0.9GB
6263 * 100GB 31 3GB
6264 * 1TB 101 10GB
6265 * 10TB 320 32GB
6266 */
1b79acc9 6267static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6268{
96cb4df5 6269 unsigned int gb, ratio;
556adecb 6270
96cb4df5 6271 /* Zone size in gigabytes */
b40da049 6272 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6273 if (gb)
556adecb 6274 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6275 else
6276 ratio = 1;
556adecb 6277
96cb4df5
MK
6278 zone->inactive_ratio = ratio;
6279}
556adecb 6280
839a4fcc 6281static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6282{
6283 struct zone *zone;
6284
6285 for_each_zone(zone)
6286 calculate_zone_inactive_ratio(zone);
556adecb
RR
6287}
6288
1da177e4
LT
6289/*
6290 * Initialise min_free_kbytes.
6291 *
6292 * For small machines we want it small (128k min). For large machines
6293 * we want it large (64MB max). But it is not linear, because network
6294 * bandwidth does not increase linearly with machine size. We use
6295 *
b8af2941 6296 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6297 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6298 *
6299 * which yields
6300 *
6301 * 16MB: 512k
6302 * 32MB: 724k
6303 * 64MB: 1024k
6304 * 128MB: 1448k
6305 * 256MB: 2048k
6306 * 512MB: 2896k
6307 * 1024MB: 4096k
6308 * 2048MB: 5792k
6309 * 4096MB: 8192k
6310 * 8192MB: 11584k
6311 * 16384MB: 16384k
6312 */
1b79acc9 6313int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6314{
6315 unsigned long lowmem_kbytes;
5f12733e 6316 int new_min_free_kbytes;
1da177e4
LT
6317
6318 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6319 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6320
6321 if (new_min_free_kbytes > user_min_free_kbytes) {
6322 min_free_kbytes = new_min_free_kbytes;
6323 if (min_free_kbytes < 128)
6324 min_free_kbytes = 128;
6325 if (min_free_kbytes > 65536)
6326 min_free_kbytes = 65536;
6327 } else {
6328 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6329 new_min_free_kbytes, user_min_free_kbytes);
6330 }
bc75d33f 6331 setup_per_zone_wmarks();
a6cccdc3 6332 refresh_zone_stat_thresholds();
1da177e4 6333 setup_per_zone_lowmem_reserve();
556adecb 6334 setup_per_zone_inactive_ratio();
1da177e4
LT
6335 return 0;
6336}
bc75d33f 6337module_init(init_per_zone_wmark_min)
1da177e4
LT
6338
6339/*
b8af2941 6340 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6341 * that we can call two helper functions whenever min_free_kbytes
6342 * changes.
6343 */
cccad5b9 6344int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6345 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6346{
da8c757b
HP
6347 int rc;
6348
6349 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6350 if (rc)
6351 return rc;
6352
5f12733e
MH
6353 if (write) {
6354 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6355 setup_per_zone_wmarks();
5f12733e 6356 }
1da177e4
LT
6357 return 0;
6358}
6359
9614634f 6360#ifdef CONFIG_NUMA
cccad5b9 6361int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6362 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6363{
6364 struct zone *zone;
6365 int rc;
6366
8d65af78 6367 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6368 if (rc)
6369 return rc;
6370
6371 for_each_zone(zone)
b40da049 6372 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6373 sysctl_min_unmapped_ratio) / 100;
6374 return 0;
6375}
0ff38490 6376
cccad5b9 6377int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6378 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6379{
6380 struct zone *zone;
6381 int rc;
6382
8d65af78 6383 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6384 if (rc)
6385 return rc;
6386
6387 for_each_zone(zone)
b40da049 6388 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6389 sysctl_min_slab_ratio) / 100;
6390 return 0;
6391}
9614634f
CL
6392#endif
6393
1da177e4
LT
6394/*
6395 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6396 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6397 * whenever sysctl_lowmem_reserve_ratio changes.
6398 *
6399 * The reserve ratio obviously has absolutely no relation with the
41858966 6400 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6401 * if in function of the boot time zone sizes.
6402 */
cccad5b9 6403int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6404 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6405{
8d65af78 6406 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6407 setup_per_zone_lowmem_reserve();
6408 return 0;
6409}
6410
8ad4b1fb
RS
6411/*
6412 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6413 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6414 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6415 */
cccad5b9 6416int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6417 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6418{
6419 struct zone *zone;
7cd2b0a3 6420 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6421 int ret;
6422
7cd2b0a3
DR
6423 mutex_lock(&pcp_batch_high_lock);
6424 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6425
8d65af78 6426 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6427 if (!write || ret < 0)
6428 goto out;
6429
6430 /* Sanity checking to avoid pcp imbalance */
6431 if (percpu_pagelist_fraction &&
6432 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6433 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6434 ret = -EINVAL;
6435 goto out;
6436 }
6437
6438 /* No change? */
6439 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6440 goto out;
c8e251fa 6441
364df0eb 6442 for_each_populated_zone(zone) {
7cd2b0a3
DR
6443 unsigned int cpu;
6444
22a7f12b 6445 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6446 pageset_set_high_and_batch(zone,
6447 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6448 }
7cd2b0a3 6449out:
c8e251fa 6450 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6451 return ret;
8ad4b1fb
RS
6452}
6453
a9919c79 6454#ifdef CONFIG_NUMA
f034b5d4 6455int hashdist = HASHDIST_DEFAULT;
1da177e4 6456
1da177e4
LT
6457static int __init set_hashdist(char *str)
6458{
6459 if (!str)
6460 return 0;
6461 hashdist = simple_strtoul(str, &str, 0);
6462 return 1;
6463}
6464__setup("hashdist=", set_hashdist);
6465#endif
6466
6467/*
6468 * allocate a large system hash table from bootmem
6469 * - it is assumed that the hash table must contain an exact power-of-2
6470 * quantity of entries
6471 * - limit is the number of hash buckets, not the total allocation size
6472 */
6473void *__init alloc_large_system_hash(const char *tablename,
6474 unsigned long bucketsize,
6475 unsigned long numentries,
6476 int scale,
6477 int flags,
6478 unsigned int *_hash_shift,
6479 unsigned int *_hash_mask,
31fe62b9
TB
6480 unsigned long low_limit,
6481 unsigned long high_limit)
1da177e4 6482{
31fe62b9 6483 unsigned long long max = high_limit;
1da177e4
LT
6484 unsigned long log2qty, size;
6485 void *table = NULL;
6486
6487 /* allow the kernel cmdline to have a say */
6488 if (!numentries) {
6489 /* round applicable memory size up to nearest megabyte */
04903664 6490 numentries = nr_kernel_pages;
a7e83318
JZ
6491
6492 /* It isn't necessary when PAGE_SIZE >= 1MB */
6493 if (PAGE_SHIFT < 20)
6494 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6495
6496 /* limit to 1 bucket per 2^scale bytes of low memory */
6497 if (scale > PAGE_SHIFT)
6498 numentries >>= (scale - PAGE_SHIFT);
6499 else
6500 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6501
6502 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6503 if (unlikely(flags & HASH_SMALL)) {
6504 /* Makes no sense without HASH_EARLY */
6505 WARN_ON(!(flags & HASH_EARLY));
6506 if (!(numentries >> *_hash_shift)) {
6507 numentries = 1UL << *_hash_shift;
6508 BUG_ON(!numentries);
6509 }
6510 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6511 numentries = PAGE_SIZE / bucketsize;
1da177e4 6512 }
6e692ed3 6513 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6514
6515 /* limit allocation size to 1/16 total memory by default */
6516 if (max == 0) {
6517 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6518 do_div(max, bucketsize);
6519 }
074b8517 6520 max = min(max, 0x80000000ULL);
1da177e4 6521
31fe62b9
TB
6522 if (numentries < low_limit)
6523 numentries = low_limit;
1da177e4
LT
6524 if (numentries > max)
6525 numentries = max;
6526
f0d1b0b3 6527 log2qty = ilog2(numentries);
1da177e4
LT
6528
6529 do {
6530 size = bucketsize << log2qty;
6531 if (flags & HASH_EARLY)
6782832e 6532 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6533 else if (hashdist)
6534 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6535 else {
1037b83b
ED
6536 /*
6537 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6538 * some pages at the end of hash table which
6539 * alloc_pages_exact() automatically does
1037b83b 6540 */
264ef8a9 6541 if (get_order(size) < MAX_ORDER) {
a1dd268c 6542 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6543 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6544 }
1da177e4
LT
6545 }
6546 } while (!table && size > PAGE_SIZE && --log2qty);
6547
6548 if (!table)
6549 panic("Failed to allocate %s hash table\n", tablename);
6550
f241e660 6551 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6552 tablename,
f241e660 6553 (1UL << log2qty),
f0d1b0b3 6554 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6555 size);
6556
6557 if (_hash_shift)
6558 *_hash_shift = log2qty;
6559 if (_hash_mask)
6560 *_hash_mask = (1 << log2qty) - 1;
6561
6562 return table;
6563}
a117e66e 6564
835c134e
MG
6565/* Return a pointer to the bitmap storing bits affecting a block of pages */
6566static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6567 unsigned long pfn)
6568{
6569#ifdef CONFIG_SPARSEMEM
6570 return __pfn_to_section(pfn)->pageblock_flags;
6571#else
6572 return zone->pageblock_flags;
6573#endif /* CONFIG_SPARSEMEM */
6574}
6575
6576static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6577{
6578#ifdef CONFIG_SPARSEMEM
6579 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6580 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6581#else
c060f943 6582 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6583 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6584#endif /* CONFIG_SPARSEMEM */
6585}
6586
6587/**
1aab4d77 6588 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6589 * @page: The page within the block of interest
1aab4d77
RD
6590 * @pfn: The target page frame number
6591 * @end_bitidx: The last bit of interest to retrieve
6592 * @mask: mask of bits that the caller is interested in
6593 *
6594 * Return: pageblock_bits flags
835c134e 6595 */
dc4b0caf 6596unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6597 unsigned long end_bitidx,
6598 unsigned long mask)
835c134e
MG
6599{
6600 struct zone *zone;
6601 unsigned long *bitmap;
dc4b0caf 6602 unsigned long bitidx, word_bitidx;
e58469ba 6603 unsigned long word;
835c134e
MG
6604
6605 zone = page_zone(page);
835c134e
MG
6606 bitmap = get_pageblock_bitmap(zone, pfn);
6607 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6608 word_bitidx = bitidx / BITS_PER_LONG;
6609 bitidx &= (BITS_PER_LONG-1);
835c134e 6610
e58469ba
MG
6611 word = bitmap[word_bitidx];
6612 bitidx += end_bitidx;
6613 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6614}
6615
6616/**
dc4b0caf 6617 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6618 * @page: The page within the block of interest
835c134e 6619 * @flags: The flags to set
1aab4d77
RD
6620 * @pfn: The target page frame number
6621 * @end_bitidx: The last bit of interest
6622 * @mask: mask of bits that the caller is interested in
835c134e 6623 */
dc4b0caf
MG
6624void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6625 unsigned long pfn,
e58469ba
MG
6626 unsigned long end_bitidx,
6627 unsigned long mask)
835c134e
MG
6628{
6629 struct zone *zone;
6630 unsigned long *bitmap;
dc4b0caf 6631 unsigned long bitidx, word_bitidx;
e58469ba
MG
6632 unsigned long old_word, word;
6633
6634 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6635
6636 zone = page_zone(page);
835c134e
MG
6637 bitmap = get_pageblock_bitmap(zone, pfn);
6638 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6639 word_bitidx = bitidx / BITS_PER_LONG;
6640 bitidx &= (BITS_PER_LONG-1);
6641
309381fe 6642 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6643
e58469ba
MG
6644 bitidx += end_bitidx;
6645 mask <<= (BITS_PER_LONG - bitidx - 1);
6646 flags <<= (BITS_PER_LONG - bitidx - 1);
6647
4db0c3c2 6648 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6649 for (;;) {
6650 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6651 if (word == old_word)
6652 break;
6653 word = old_word;
6654 }
835c134e 6655}
a5d76b54
KH
6656
6657/*
80934513
MK
6658 * This function checks whether pageblock includes unmovable pages or not.
6659 * If @count is not zero, it is okay to include less @count unmovable pages
6660 *
b8af2941 6661 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6662 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6663 * expect this function should be exact.
a5d76b54 6664 */
b023f468
WC
6665bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6666 bool skip_hwpoisoned_pages)
49ac8255
KH
6667{
6668 unsigned long pfn, iter, found;
47118af0
MN
6669 int mt;
6670
49ac8255
KH
6671 /*
6672 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6673 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6674 */
6675 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6676 return false;
47118af0
MN
6677 mt = get_pageblock_migratetype(page);
6678 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6679 return false;
49ac8255
KH
6680
6681 pfn = page_to_pfn(page);
6682 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6683 unsigned long check = pfn + iter;
6684
29723fcc 6685 if (!pfn_valid_within(check))
49ac8255 6686 continue;
29723fcc 6687
49ac8255 6688 page = pfn_to_page(check);
c8721bbb
NH
6689
6690 /*
6691 * Hugepages are not in LRU lists, but they're movable.
6692 * We need not scan over tail pages bacause we don't
6693 * handle each tail page individually in migration.
6694 */
6695 if (PageHuge(page)) {
6696 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6697 continue;
6698 }
6699
97d255c8
MK
6700 /*
6701 * We can't use page_count without pin a page
6702 * because another CPU can free compound page.
6703 * This check already skips compound tails of THP
6704 * because their page->_count is zero at all time.
6705 */
6706 if (!atomic_read(&page->_count)) {
49ac8255
KH
6707 if (PageBuddy(page))
6708 iter += (1 << page_order(page)) - 1;
6709 continue;
6710 }
97d255c8 6711
b023f468
WC
6712 /*
6713 * The HWPoisoned page may be not in buddy system, and
6714 * page_count() is not 0.
6715 */
6716 if (skip_hwpoisoned_pages && PageHWPoison(page))
6717 continue;
6718
49ac8255
KH
6719 if (!PageLRU(page))
6720 found++;
6721 /*
6b4f7799
JW
6722 * If there are RECLAIMABLE pages, we need to check
6723 * it. But now, memory offline itself doesn't call
6724 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6725 */
6726 /*
6727 * If the page is not RAM, page_count()should be 0.
6728 * we don't need more check. This is an _used_ not-movable page.
6729 *
6730 * The problematic thing here is PG_reserved pages. PG_reserved
6731 * is set to both of a memory hole page and a _used_ kernel
6732 * page at boot.
6733 */
6734 if (found > count)
80934513 6735 return true;
49ac8255 6736 }
80934513 6737 return false;
49ac8255
KH
6738}
6739
6740bool is_pageblock_removable_nolock(struct page *page)
6741{
656a0706
MH
6742 struct zone *zone;
6743 unsigned long pfn;
687875fb
MH
6744
6745 /*
6746 * We have to be careful here because we are iterating over memory
6747 * sections which are not zone aware so we might end up outside of
6748 * the zone but still within the section.
656a0706
MH
6749 * We have to take care about the node as well. If the node is offline
6750 * its NODE_DATA will be NULL - see page_zone.
687875fb 6751 */
656a0706
MH
6752 if (!node_online(page_to_nid(page)))
6753 return false;
6754
6755 zone = page_zone(page);
6756 pfn = page_to_pfn(page);
108bcc96 6757 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6758 return false;
6759
b023f468 6760 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6761}
0c0e6195 6762
080fe206 6763#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6764
6765static unsigned long pfn_max_align_down(unsigned long pfn)
6766{
6767 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6768 pageblock_nr_pages) - 1);
6769}
6770
6771static unsigned long pfn_max_align_up(unsigned long pfn)
6772{
6773 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6774 pageblock_nr_pages));
6775}
6776
041d3a8c 6777/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6778static int __alloc_contig_migrate_range(struct compact_control *cc,
6779 unsigned long start, unsigned long end)
041d3a8c
MN
6780{
6781 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6782 unsigned long nr_reclaimed;
041d3a8c
MN
6783 unsigned long pfn = start;
6784 unsigned int tries = 0;
6785 int ret = 0;
6786
be49a6e1 6787 migrate_prep();
041d3a8c 6788
bb13ffeb 6789 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6790 if (fatal_signal_pending(current)) {
6791 ret = -EINTR;
6792 break;
6793 }
6794
bb13ffeb
MG
6795 if (list_empty(&cc->migratepages)) {
6796 cc->nr_migratepages = 0;
edc2ca61 6797 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6798 if (!pfn) {
6799 ret = -EINTR;
6800 break;
6801 }
6802 tries = 0;
6803 } else if (++tries == 5) {
6804 ret = ret < 0 ? ret : -EBUSY;
6805 break;
6806 }
6807
beb51eaa
MK
6808 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6809 &cc->migratepages);
6810 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6811
9c620e2b 6812 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6813 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6814 }
2a6f5124
SP
6815 if (ret < 0) {
6816 putback_movable_pages(&cc->migratepages);
6817 return ret;
6818 }
6819 return 0;
041d3a8c
MN
6820}
6821
6822/**
6823 * alloc_contig_range() -- tries to allocate given range of pages
6824 * @start: start PFN to allocate
6825 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6826 * @migratetype: migratetype of the underlaying pageblocks (either
6827 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6828 * in range must have the same migratetype and it must
6829 * be either of the two.
041d3a8c
MN
6830 *
6831 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6832 * aligned, however it's the caller's responsibility to guarantee that
6833 * we are the only thread that changes migrate type of pageblocks the
6834 * pages fall in.
6835 *
6836 * The PFN range must belong to a single zone.
6837 *
6838 * Returns zero on success or negative error code. On success all
6839 * pages which PFN is in [start, end) are allocated for the caller and
6840 * need to be freed with free_contig_range().
6841 */
0815f3d8
MN
6842int alloc_contig_range(unsigned long start, unsigned long end,
6843 unsigned migratetype)
041d3a8c 6844{
041d3a8c 6845 unsigned long outer_start, outer_end;
d00181b9
KS
6846 unsigned int order;
6847 int ret = 0;
041d3a8c 6848
bb13ffeb
MG
6849 struct compact_control cc = {
6850 .nr_migratepages = 0,
6851 .order = -1,
6852 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6853 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6854 .ignore_skip_hint = true,
6855 };
6856 INIT_LIST_HEAD(&cc.migratepages);
6857
041d3a8c
MN
6858 /*
6859 * What we do here is we mark all pageblocks in range as
6860 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6861 * have different sizes, and due to the way page allocator
6862 * work, we align the range to biggest of the two pages so
6863 * that page allocator won't try to merge buddies from
6864 * different pageblocks and change MIGRATE_ISOLATE to some
6865 * other migration type.
6866 *
6867 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6868 * migrate the pages from an unaligned range (ie. pages that
6869 * we are interested in). This will put all the pages in
6870 * range back to page allocator as MIGRATE_ISOLATE.
6871 *
6872 * When this is done, we take the pages in range from page
6873 * allocator removing them from the buddy system. This way
6874 * page allocator will never consider using them.
6875 *
6876 * This lets us mark the pageblocks back as
6877 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6878 * aligned range but not in the unaligned, original range are
6879 * put back to page allocator so that buddy can use them.
6880 */
6881
6882 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6883 pfn_max_align_up(end), migratetype,
6884 false);
041d3a8c 6885 if (ret)
86a595f9 6886 return ret;
041d3a8c 6887
8ef5849f
JK
6888 /*
6889 * In case of -EBUSY, we'd like to know which page causes problem.
6890 * So, just fall through. We will check it in test_pages_isolated().
6891 */
bb13ffeb 6892 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6893 if (ret && ret != -EBUSY)
041d3a8c
MN
6894 goto done;
6895
6896 /*
6897 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6898 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6899 * more, all pages in [start, end) are free in page allocator.
6900 * What we are going to do is to allocate all pages from
6901 * [start, end) (that is remove them from page allocator).
6902 *
6903 * The only problem is that pages at the beginning and at the
6904 * end of interesting range may be not aligned with pages that
6905 * page allocator holds, ie. they can be part of higher order
6906 * pages. Because of this, we reserve the bigger range and
6907 * once this is done free the pages we are not interested in.
6908 *
6909 * We don't have to hold zone->lock here because the pages are
6910 * isolated thus they won't get removed from buddy.
6911 */
6912
6913 lru_add_drain_all();
510f5507 6914 drain_all_pages(cc.zone);
041d3a8c
MN
6915
6916 order = 0;
6917 outer_start = start;
6918 while (!PageBuddy(pfn_to_page(outer_start))) {
6919 if (++order >= MAX_ORDER) {
8ef5849f
JK
6920 outer_start = start;
6921 break;
041d3a8c
MN
6922 }
6923 outer_start &= ~0UL << order;
6924 }
6925
8ef5849f
JK
6926 if (outer_start != start) {
6927 order = page_order(pfn_to_page(outer_start));
6928
6929 /*
6930 * outer_start page could be small order buddy page and
6931 * it doesn't include start page. Adjust outer_start
6932 * in this case to report failed page properly
6933 * on tracepoint in test_pages_isolated()
6934 */
6935 if (outer_start + (1UL << order) <= start)
6936 outer_start = start;
6937 }
6938
041d3a8c 6939 /* Make sure the range is really isolated. */
b023f468 6940 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6941 pr_info("%s: [%lx, %lx) PFNs busy\n",
6942 __func__, outer_start, end);
041d3a8c
MN
6943 ret = -EBUSY;
6944 goto done;
6945 }
6946
49f223a9 6947 /* Grab isolated pages from freelists. */
bb13ffeb 6948 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6949 if (!outer_end) {
6950 ret = -EBUSY;
6951 goto done;
6952 }
6953
6954 /* Free head and tail (if any) */
6955 if (start != outer_start)
6956 free_contig_range(outer_start, start - outer_start);
6957 if (end != outer_end)
6958 free_contig_range(end, outer_end - end);
6959
6960done:
6961 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6962 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6963 return ret;
6964}
6965
6966void free_contig_range(unsigned long pfn, unsigned nr_pages)
6967{
bcc2b02f
MS
6968 unsigned int count = 0;
6969
6970 for (; nr_pages--; pfn++) {
6971 struct page *page = pfn_to_page(pfn);
6972
6973 count += page_count(page) != 1;
6974 __free_page(page);
6975 }
6976 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6977}
6978#endif
6979
4ed7e022 6980#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6981/*
6982 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6983 * page high values need to be recalulated.
6984 */
4ed7e022
JL
6985void __meminit zone_pcp_update(struct zone *zone)
6986{
0a647f38 6987 unsigned cpu;
c8e251fa 6988 mutex_lock(&pcp_batch_high_lock);
0a647f38 6989 for_each_possible_cpu(cpu)
169f6c19
CS
6990 pageset_set_high_and_batch(zone,
6991 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6992 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6993}
6994#endif
6995
340175b7
JL
6996void zone_pcp_reset(struct zone *zone)
6997{
6998 unsigned long flags;
5a883813
MK
6999 int cpu;
7000 struct per_cpu_pageset *pset;
340175b7
JL
7001
7002 /* avoid races with drain_pages() */
7003 local_irq_save(flags);
7004 if (zone->pageset != &boot_pageset) {
5a883813
MK
7005 for_each_online_cpu(cpu) {
7006 pset = per_cpu_ptr(zone->pageset, cpu);
7007 drain_zonestat(zone, pset);
7008 }
340175b7
JL
7009 free_percpu(zone->pageset);
7010 zone->pageset = &boot_pageset;
7011 }
7012 local_irq_restore(flags);
7013}
7014
6dcd73d7 7015#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
7016/*
7017 * All pages in the range must be isolated before calling this.
7018 */
7019void
7020__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7021{
7022 struct page *page;
7023 struct zone *zone;
7aeb09f9 7024 unsigned int order, i;
0c0e6195
KH
7025 unsigned long pfn;
7026 unsigned long flags;
7027 /* find the first valid pfn */
7028 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7029 if (pfn_valid(pfn))
7030 break;
7031 if (pfn == end_pfn)
7032 return;
7033 zone = page_zone(pfn_to_page(pfn));
7034 spin_lock_irqsave(&zone->lock, flags);
7035 pfn = start_pfn;
7036 while (pfn < end_pfn) {
7037 if (!pfn_valid(pfn)) {
7038 pfn++;
7039 continue;
7040 }
7041 page = pfn_to_page(pfn);
b023f468
WC
7042 /*
7043 * The HWPoisoned page may be not in buddy system, and
7044 * page_count() is not 0.
7045 */
7046 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7047 pfn++;
7048 SetPageReserved(page);
7049 continue;
7050 }
7051
0c0e6195
KH
7052 BUG_ON(page_count(page));
7053 BUG_ON(!PageBuddy(page));
7054 order = page_order(page);
7055#ifdef CONFIG_DEBUG_VM
7056 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7057 pfn, 1 << order, end_pfn);
7058#endif
7059 list_del(&page->lru);
7060 rmv_page_order(page);
7061 zone->free_area[order].nr_free--;
0c0e6195
KH
7062 for (i = 0; i < (1 << order); i++)
7063 SetPageReserved((page+i));
7064 pfn += (1 << order);
7065 }
7066 spin_unlock_irqrestore(&zone->lock, flags);
7067}
7068#endif
8d22ba1b
WF
7069
7070#ifdef CONFIG_MEMORY_FAILURE
7071bool is_free_buddy_page(struct page *page)
7072{
7073 struct zone *zone = page_zone(page);
7074 unsigned long pfn = page_to_pfn(page);
7075 unsigned long flags;
7aeb09f9 7076 unsigned int order;
8d22ba1b
WF
7077
7078 spin_lock_irqsave(&zone->lock, flags);
7079 for (order = 0; order < MAX_ORDER; order++) {
7080 struct page *page_head = page - (pfn & ((1 << order) - 1));
7081
7082 if (PageBuddy(page_head) && page_order(page_head) >= order)
7083 break;
7084 }
7085 spin_unlock_irqrestore(&zone->lock, flags);
7086
7087 return order < MAX_ORDER;
7088}
7089#endif