]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm, THP: don't hold mmap_sem in khugepaged when allocating THP
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
115/*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121unsigned long dirty_balance_reserve __read_mostly;
122
1b76b02f 123int percpu_pagelist_fraction;
dcce284a 124gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 125
452aa699
RW
126#ifdef CONFIG_PM_SLEEP
127/*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
c9e664f1
RW
135
136static gfp_t saved_gfp_mask;
137
138void pm_restore_gfp_mask(void)
452aa699
RW
139{
140 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
452aa699
RW
145}
146
c9e664f1 147void pm_restrict_gfp_mask(void)
452aa699 148{
452aa699 149 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 153}
f90ac398
MG
154
155bool pm_suspended_storage(void)
156{
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160}
452aa699
RW
161#endif /* CONFIG_PM_SLEEP */
162
d9c23400
MG
163#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164int pageblock_order __read_mostly;
165#endif
166
d98c7a09 167static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 168
1da177e4
LT
169/*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
1da177e4 179 */
2f1b6248 180int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 256,
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 256,
fb0e7942 186#endif
e53ef38d 187#ifdef CONFIG_HIGHMEM
2a1e274a 188 32,
e53ef38d 189#endif
2a1e274a 190 32,
2f1b6248 191};
1da177e4
LT
192
193EXPORT_SYMBOL(totalram_pages);
1da177e4 194
15ad7cdc 195static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 "DMA",
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 "DMA32",
fb0e7942 201#endif
2f1b6248 202 "Normal",
e53ef38d 203#ifdef CONFIG_HIGHMEM
2a1e274a 204 "HighMem",
e53ef38d 205#endif
2a1e274a 206 "Movable",
2f1b6248
CL
207};
208
1da177e4 209int min_free_kbytes = 1024;
42aa83cb 210int user_min_free_kbytes = -1;
1da177e4 211
2c85f51d
JB
212static unsigned long __meminitdata nr_kernel_pages;
213static unsigned long __meminitdata nr_all_pages;
a3142c8e 214static unsigned long __meminitdata dma_reserve;
1da177e4 215
0ee332c1
TH
216#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __initdata required_kernelcore;
220static unsigned long __initdata required_movablecore;
221static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224int movable_zone;
225EXPORT_SYMBOL(movable_zone);
226#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 227
418508c1
MS
228#if MAX_NUMNODES > 1
229int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 230int nr_online_nodes __read_mostly = 1;
418508c1 231EXPORT_SYMBOL(nr_node_ids);
62bc62a8 232EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
233#endif
234
9ef9acb0
MG
235int page_group_by_mobility_disabled __read_mostly;
236
ee6f509c 237void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 238{
5d0f3f72
KM
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
241 migratetype = MIGRATE_UNMOVABLE;
242
b2a0ac88
MG
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245}
246
7f33d49a
RW
247bool oom_killer_disabled __read_mostly;
248
13e7444b 249#ifdef CONFIG_DEBUG_VM
c6a57e19 250static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 251{
bdc8cb98
DH
252 int ret = 0;
253 unsigned seq;
254 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 255 unsigned long sp, start_pfn;
c6a57e19 256
bdc8cb98
DH
257 do {
258 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
259 start_pfn = zone->zone_start_pfn;
260 sp = zone->spanned_pages;
108bcc96 261 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
262 ret = 1;
263 } while (zone_span_seqretry(zone, seq));
264
b5e6a5a2 265 if (ret)
613813e8
DH
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn, zone_to_nid(zone), zone->name,
268 start_pfn, start_pfn + sp);
b5e6a5a2 269
bdc8cb98 270 return ret;
c6a57e19
DH
271}
272
273static int page_is_consistent(struct zone *zone, struct page *page)
274{
14e07298 275 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 276 return 0;
1da177e4 277 if (zone != page_zone(page))
c6a57e19
DH
278 return 0;
279
280 return 1;
281}
282/*
283 * Temporary debugging check for pages not lying within a given zone.
284 */
285static int bad_range(struct zone *zone, struct page *page)
286{
287 if (page_outside_zone_boundaries(zone, page))
1da177e4 288 return 1;
c6a57e19
DH
289 if (!page_is_consistent(zone, page))
290 return 1;
291
1da177e4
LT
292 return 0;
293}
13e7444b
NP
294#else
295static inline int bad_range(struct zone *zone, struct page *page)
296{
297 return 0;
298}
299#endif
300
d230dec1
KS
301static void bad_page(struct page *page, const char *reason,
302 unsigned long bad_flags)
1da177e4 303{
d936cf9b
HD
304 static unsigned long resume;
305 static unsigned long nr_shown;
306 static unsigned long nr_unshown;
307
2a7684a2
WF
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page)) {
22b751c3 310 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
311 return;
312 }
313
d936cf9b
HD
314 /*
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
317 */
318 if (nr_shown == 60) {
319 if (time_before(jiffies, resume)) {
320 nr_unshown++;
321 goto out;
322 }
323 if (nr_unshown) {
1e9e6365
HD
324 printk(KERN_ALERT
325 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
326 nr_unshown);
327 nr_unshown = 0;
328 }
329 nr_shown = 0;
330 }
331 if (nr_shown++ == 0)
332 resume = jiffies + 60 * HZ;
333
1e9e6365 334 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 335 current->comm, page_to_pfn(page));
f0b791a3 336 dump_page_badflags(page, reason, bad_flags);
3dc14741 337
4f31888c 338 print_modules();
1da177e4 339 dump_stack();
d936cf9b 340out:
8cc3b392 341 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 342 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 343 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
344}
345
1da177e4
LT
346/*
347 * Higher-order pages are called "compound pages". They are structured thusly:
348 *
349 * The first PAGE_SIZE page is called the "head page".
350 *
351 * The remaining PAGE_SIZE pages are called "tail pages".
352 *
6416b9fa
WSH
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
1da177e4 355 *
41d78ba5
HD
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
1da177e4 359 */
d98c7a09
HD
360
361static void free_compound_page(struct page *page)
362{
d85f3385 363 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
364}
365
01ad1c08 366void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
367{
368 int i;
369 int nr_pages = 1 << order;
370
371 set_compound_page_dtor(page, free_compound_page);
372 set_compound_order(page, order);
373 __SetPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
58a84aa9 376 set_page_count(p, 0);
18229df5 377 p->first_page = page;
668f9abb
DR
378 /* Make sure p->first_page is always valid for PageTail() */
379 smp_wmb();
380 __SetPageTail(p);
18229df5
AW
381 }
382}
383
59ff4216 384/* update __split_huge_page_refcount if you change this function */
8cc3b392 385static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
386{
387 int i;
388 int nr_pages = 1 << order;
8cc3b392 389 int bad = 0;
1da177e4 390
0bb2c763 391 if (unlikely(compound_order(page) != order)) {
f0b791a3 392 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
393 bad++;
394 }
1da177e4 395
6d777953 396 __ClearPageHead(page);
8cc3b392 397
18229df5
AW
398 for (i = 1; i < nr_pages; i++) {
399 struct page *p = page + i;
1da177e4 400
f0b791a3
DH
401 if (unlikely(!PageTail(p))) {
402 bad_page(page, "PageTail not set", 0);
403 bad++;
404 } else if (unlikely(p->first_page != page)) {
405 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
406 bad++;
407 }
d85f3385 408 __ClearPageTail(p);
1da177e4 409 }
8cc3b392
HD
410
411 return bad;
1da177e4 412}
1da177e4 413
7aeb09f9
MG
414static inline void prep_zero_page(struct page *page, unsigned int order,
415 gfp_t gfp_flags)
17cf4406
NP
416{
417 int i;
418
6626c5d5
AM
419 /*
420 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 */
725d704e 423 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
424 for (i = 0; i < (1 << order); i++)
425 clear_highpage(page + i);
426}
427
c0a32fc5
SG
428#ifdef CONFIG_DEBUG_PAGEALLOC
429unsigned int _debug_guardpage_minorder;
430
431static int __init debug_guardpage_minorder_setup(char *buf)
432{
433 unsigned long res;
434
435 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
436 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
437 return 0;
438 }
439 _debug_guardpage_minorder = res;
440 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
441 return 0;
442}
443__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
444
445static inline void set_page_guard_flag(struct page *page)
446{
447 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
448}
449
450static inline void clear_page_guard_flag(struct page *page)
451{
452 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
453}
454#else
455static inline void set_page_guard_flag(struct page *page) { }
456static inline void clear_page_guard_flag(struct page *page) { }
457#endif
458
7aeb09f9 459static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 460{
4c21e2f2 461 set_page_private(page, order);
676165a8 462 __SetPageBuddy(page);
1da177e4
LT
463}
464
465static inline void rmv_page_order(struct page *page)
466{
676165a8 467 __ClearPageBuddy(page);
4c21e2f2 468 set_page_private(page, 0);
1da177e4
LT
469}
470
471/*
472 * Locate the struct page for both the matching buddy in our
473 * pair (buddy1) and the combined O(n+1) page they form (page).
474 *
475 * 1) Any buddy B1 will have an order O twin B2 which satisfies
476 * the following equation:
477 * B2 = B1 ^ (1 << O)
478 * For example, if the starting buddy (buddy2) is #8 its order
479 * 1 buddy is #10:
480 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
481 *
482 * 2) Any buddy B will have an order O+1 parent P which
483 * satisfies the following equation:
484 * P = B & ~(1 << O)
485 *
d6e05edc 486 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 487 */
1da177e4 488static inline unsigned long
43506fad 489__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 490{
43506fad 491 return page_idx ^ (1 << order);
1da177e4
LT
492}
493
494/*
495 * This function checks whether a page is free && is the buddy
496 * we can do coalesce a page and its buddy if
13e7444b 497 * (a) the buddy is not in a hole &&
676165a8 498 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
499 * (c) a page and its buddy have the same order &&
500 * (d) a page and its buddy are in the same zone.
676165a8 501 *
cf6fe945
WSH
502 * For recording whether a page is in the buddy system, we set ->_mapcount
503 * PAGE_BUDDY_MAPCOUNT_VALUE.
504 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
505 * serialized by zone->lock.
1da177e4 506 *
676165a8 507 * For recording page's order, we use page_private(page).
1da177e4 508 */
cb2b95e1 509static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 510 unsigned int order)
1da177e4 511{
14e07298 512 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 513 return 0;
13e7444b 514
c0a32fc5 515 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 516 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
517
518 if (page_zone_id(page) != page_zone_id(buddy))
519 return 0;
520
c0a32fc5
SG
521 return 1;
522 }
523
cb2b95e1 524 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 525 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
526
527 /*
528 * zone check is done late to avoid uselessly
529 * calculating zone/node ids for pages that could
530 * never merge.
531 */
532 if (page_zone_id(page) != page_zone_id(buddy))
533 return 0;
534
6aa3001b 535 return 1;
676165a8 536 }
6aa3001b 537 return 0;
1da177e4
LT
538}
539
540/*
541 * Freeing function for a buddy system allocator.
542 *
543 * The concept of a buddy system is to maintain direct-mapped table
544 * (containing bit values) for memory blocks of various "orders".
545 * The bottom level table contains the map for the smallest allocatable
546 * units of memory (here, pages), and each level above it describes
547 * pairs of units from the levels below, hence, "buddies".
548 * At a high level, all that happens here is marking the table entry
549 * at the bottom level available, and propagating the changes upward
550 * as necessary, plus some accounting needed to play nicely with other
551 * parts of the VM system.
552 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
553 * free pages of length of (1 << order) and marked with _mapcount
554 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
555 * field.
1da177e4 556 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
557 * other. That is, if we allocate a small block, and both were
558 * free, the remainder of the region must be split into blocks.
1da177e4 559 * If a block is freed, and its buddy is also free, then this
5f63b720 560 * triggers coalescing into a block of larger size.
1da177e4 561 *
6d49e352 562 * -- nyc
1da177e4
LT
563 */
564
48db57f8 565static inline void __free_one_page(struct page *page,
dc4b0caf 566 unsigned long pfn,
ed0ae21d
MG
567 struct zone *zone, unsigned int order,
568 int migratetype)
1da177e4
LT
569{
570 unsigned long page_idx;
6dda9d55 571 unsigned long combined_idx;
43506fad 572 unsigned long uninitialized_var(buddy_idx);
6dda9d55 573 struct page *buddy;
1da177e4 574
d29bb978
CS
575 VM_BUG_ON(!zone_is_initialized(zone));
576
224abf92 577 if (unlikely(PageCompound(page)))
8cc3b392
HD
578 if (unlikely(destroy_compound_page(page, order)))
579 return;
1da177e4 580
ed0ae21d
MG
581 VM_BUG_ON(migratetype == -1);
582
dc4b0caf 583 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 584
309381fe
SL
585 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
586 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 587
1da177e4 588 while (order < MAX_ORDER-1) {
43506fad
KC
589 buddy_idx = __find_buddy_index(page_idx, order);
590 buddy = page + (buddy_idx - page_idx);
cb2b95e1 591 if (!page_is_buddy(page, buddy, order))
3c82d0ce 592 break;
c0a32fc5
SG
593 /*
594 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
595 * merge with it and move up one order.
596 */
597 if (page_is_guard(buddy)) {
598 clear_page_guard_flag(buddy);
599 set_page_private(page, 0);
d1ce749a
BZ
600 __mod_zone_freepage_state(zone, 1 << order,
601 migratetype);
c0a32fc5
SG
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
43506fad 607 combined_idx = buddy_idx & page_idx;
1da177e4
LT
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
6dda9d55
CZ
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
b7f50cfa 622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 623 struct page *higher_page, *higher_buddy;
43506fad
KC
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 627 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636out:
1da177e4
LT
637 zone->free_area[order].nr_free++;
638}
639
224abf92 640static inline int free_pages_check(struct page *page)
1da177e4 641{
d230dec1 642 const char *bad_reason = NULL;
f0b791a3
DH
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
655 if (unlikely(mem_cgroup_bad_page_check(page)))
656 bad_reason = "cgroup check failed";
657 if (unlikely(bad_reason)) {
658 bad_page(page, bad_reason, bad_flags);
79f4b7bf 659 return 1;
8cc3b392 660 }
90572890 661 page_cpupid_reset_last(page);
79f4b7bf
HD
662 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
663 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
664 return 0;
1da177e4
LT
665}
666
667/*
5f8dcc21 668 * Frees a number of pages from the PCP lists
1da177e4 669 * Assumes all pages on list are in same zone, and of same order.
207f36ee 670 * count is the number of pages to free.
1da177e4
LT
671 *
672 * If the zone was previously in an "all pages pinned" state then look to
673 * see if this freeing clears that state.
674 *
675 * And clear the zone's pages_scanned counter, to hold off the "all pages are
676 * pinned" detection logic.
677 */
5f8dcc21
MG
678static void free_pcppages_bulk(struct zone *zone, int count,
679 struct per_cpu_pages *pcp)
1da177e4 680{
5f8dcc21 681 int migratetype = 0;
a6f9edd6 682 int batch_free = 0;
72853e29 683 int to_free = count;
0d5d823a 684 unsigned long nr_scanned;
5f8dcc21 685
c54ad30c 686 spin_lock(&zone->lock);
0d5d823a
MG
687 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
688 if (nr_scanned)
689 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 690
72853e29 691 while (to_free) {
48db57f8 692 struct page *page;
5f8dcc21
MG
693 struct list_head *list;
694
695 /*
a6f9edd6
MG
696 * Remove pages from lists in a round-robin fashion. A
697 * batch_free count is maintained that is incremented when an
698 * empty list is encountered. This is so more pages are freed
699 * off fuller lists instead of spinning excessively around empty
700 * lists
5f8dcc21
MG
701 */
702 do {
a6f9edd6 703 batch_free++;
5f8dcc21
MG
704 if (++migratetype == MIGRATE_PCPTYPES)
705 migratetype = 0;
706 list = &pcp->lists[migratetype];
707 } while (list_empty(list));
48db57f8 708
1d16871d
NK
709 /* This is the only non-empty list. Free them all. */
710 if (batch_free == MIGRATE_PCPTYPES)
711 batch_free = to_free;
712
a6f9edd6 713 do {
770c8aaa
BZ
714 int mt; /* migratetype of the to-be-freed page */
715
a6f9edd6
MG
716 page = list_entry(list->prev, struct page, lru);
717 /* must delete as __free_one_page list manipulates */
718 list_del(&page->lru);
b12c4ad1 719 mt = get_freepage_migratetype(page);
a7016235 720 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 721 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 722 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 723 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
724 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
725 if (is_migrate_cma(mt))
726 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
727 }
72853e29 728 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 729 }
c54ad30c 730 spin_unlock(&zone->lock);
1da177e4
LT
731}
732
dc4b0caf
MG
733static void free_one_page(struct zone *zone,
734 struct page *page, unsigned long pfn,
7aeb09f9 735 unsigned int order,
ed0ae21d 736 int migratetype)
1da177e4 737{
0d5d823a 738 unsigned long nr_scanned;
006d22d9 739 spin_lock(&zone->lock);
0d5d823a
MG
740 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
741 if (nr_scanned)
742 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 743
dc4b0caf 744 __free_one_page(page, pfn, zone, order, migratetype);
194159fb 745 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 746 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 747 spin_unlock(&zone->lock);
48db57f8
NP
748}
749
ec95f53a 750static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 751{
1da177e4 752 int i;
8cc3b392 753 int bad = 0;
1da177e4 754
b413d48a 755 trace_mm_page_free(page, order);
b1eeab67
VN
756 kmemcheck_free_shadow(page, order);
757
8dd60a3a
AA
758 if (PageAnon(page))
759 page->mapping = NULL;
760 for (i = 0; i < (1 << order); i++)
761 bad += free_pages_check(page + i);
8cc3b392 762 if (bad)
ec95f53a 763 return false;
689bcebf 764
3ac7fe5a 765 if (!PageHighMem(page)) {
b8af2941
PK
766 debug_check_no_locks_freed(page_address(page),
767 PAGE_SIZE << order);
3ac7fe5a
TG
768 debug_check_no_obj_freed(page_address(page),
769 PAGE_SIZE << order);
770 }
dafb1367 771 arch_free_page(page, order);
48db57f8 772 kernel_map_pages(page, 1 << order, 0);
dafb1367 773
ec95f53a
KM
774 return true;
775}
776
777static void __free_pages_ok(struct page *page, unsigned int order)
778{
779 unsigned long flags;
95e34412 780 int migratetype;
dc4b0caf 781 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
782
783 if (!free_pages_prepare(page, order))
784 return;
785
cfc47a28 786 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 787 local_irq_save(flags);
f8891e5e 788 __count_vm_events(PGFREE, 1 << order);
95e34412 789 set_freepage_migratetype(page, migratetype);
dc4b0caf 790 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 791 local_irq_restore(flags);
1da177e4
LT
792}
793
170a5a7e 794void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 795{
c3993076 796 unsigned int nr_pages = 1 << order;
e2d0bd2b 797 struct page *p = page;
c3993076 798 unsigned int loop;
a226f6c8 799
e2d0bd2b
YL
800 prefetchw(p);
801 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
802 prefetchw(p + 1);
c3993076
JW
803 __ClearPageReserved(p);
804 set_page_count(p, 0);
a226f6c8 805 }
e2d0bd2b
YL
806 __ClearPageReserved(p);
807 set_page_count(p, 0);
c3993076 808
e2d0bd2b 809 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
810 set_page_refcounted(page);
811 __free_pages(page, order);
a226f6c8
DH
812}
813
47118af0 814#ifdef CONFIG_CMA
9cf510a5 815/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
816void __init init_cma_reserved_pageblock(struct page *page)
817{
818 unsigned i = pageblock_nr_pages;
819 struct page *p = page;
820
821 do {
822 __ClearPageReserved(p);
823 set_page_count(p, 0);
824 } while (++p, --i);
825
47118af0 826 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
827
828 if (pageblock_order >= MAX_ORDER) {
829 i = pageblock_nr_pages;
830 p = page;
831 do {
832 set_page_refcounted(p);
833 __free_pages(p, MAX_ORDER - 1);
834 p += MAX_ORDER_NR_PAGES;
835 } while (i -= MAX_ORDER_NR_PAGES);
836 } else {
837 set_page_refcounted(page);
838 __free_pages(page, pageblock_order);
839 }
840
3dcc0571 841 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
842}
843#endif
1da177e4
LT
844
845/*
846 * The order of subdivision here is critical for the IO subsystem.
847 * Please do not alter this order without good reasons and regression
848 * testing. Specifically, as large blocks of memory are subdivided,
849 * the order in which smaller blocks are delivered depends on the order
850 * they're subdivided in this function. This is the primary factor
851 * influencing the order in which pages are delivered to the IO
852 * subsystem according to empirical testing, and this is also justified
853 * by considering the behavior of a buddy system containing a single
854 * large block of memory acted on by a series of small allocations.
855 * This behavior is a critical factor in sglist merging's success.
856 *
6d49e352 857 * -- nyc
1da177e4 858 */
085cc7d5 859static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
860 int low, int high, struct free_area *area,
861 int migratetype)
1da177e4
LT
862{
863 unsigned long size = 1 << high;
864
865 while (high > low) {
866 area--;
867 high--;
868 size >>= 1;
309381fe 869 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
870
871#ifdef CONFIG_DEBUG_PAGEALLOC
872 if (high < debug_guardpage_minorder()) {
873 /*
874 * Mark as guard pages (or page), that will allow to
875 * merge back to allocator when buddy will be freed.
876 * Corresponding page table entries will not be touched,
877 * pages will stay not present in virtual address space
878 */
879 INIT_LIST_HEAD(&page[size].lru);
880 set_page_guard_flag(&page[size]);
881 set_page_private(&page[size], high);
882 /* Guard pages are not available for any usage */
d1ce749a
BZ
883 __mod_zone_freepage_state(zone, -(1 << high),
884 migratetype);
c0a32fc5
SG
885 continue;
886 }
887#endif
b2a0ac88 888 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
889 area->nr_free++;
890 set_page_order(&page[size], high);
891 }
1da177e4
LT
892}
893
1da177e4
LT
894/*
895 * This page is about to be returned from the page allocator
896 */
2a7684a2 897static inline int check_new_page(struct page *page)
1da177e4 898{
d230dec1 899 const char *bad_reason = NULL;
f0b791a3
DH
900 unsigned long bad_flags = 0;
901
902 if (unlikely(page_mapcount(page)))
903 bad_reason = "nonzero mapcount";
904 if (unlikely(page->mapping != NULL))
905 bad_reason = "non-NULL mapping";
906 if (unlikely(atomic_read(&page->_count) != 0))
907 bad_reason = "nonzero _count";
908 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
909 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
910 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
911 }
912 if (unlikely(mem_cgroup_bad_page_check(page)))
913 bad_reason = "cgroup check failed";
914 if (unlikely(bad_reason)) {
915 bad_page(page, bad_reason, bad_flags);
689bcebf 916 return 1;
8cc3b392 917 }
2a7684a2
WF
918 return 0;
919}
920
7aeb09f9 921static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
922{
923 int i;
924
925 for (i = 0; i < (1 << order); i++) {
926 struct page *p = page + i;
927 if (unlikely(check_new_page(p)))
928 return 1;
929 }
689bcebf 930
4c21e2f2 931 set_page_private(page, 0);
7835e98b 932 set_page_refcounted(page);
cc102509
NP
933
934 arch_alloc_page(page, order);
1da177e4 935 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
936
937 if (gfp_flags & __GFP_ZERO)
938 prep_zero_page(page, order, gfp_flags);
939
940 if (order && (gfp_flags & __GFP_COMP))
941 prep_compound_page(page, order);
942
689bcebf 943 return 0;
1da177e4
LT
944}
945
56fd56b8
MG
946/*
947 * Go through the free lists for the given migratetype and remove
948 * the smallest available page from the freelists
949 */
728ec980
MG
950static inline
951struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
952 int migratetype)
953{
954 unsigned int current_order;
b8af2941 955 struct free_area *area;
56fd56b8
MG
956 struct page *page;
957
958 /* Find a page of the appropriate size in the preferred list */
959 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
960 area = &(zone->free_area[current_order]);
961 if (list_empty(&area->free_list[migratetype]))
962 continue;
963
964 page = list_entry(area->free_list[migratetype].next,
965 struct page, lru);
966 list_del(&page->lru);
967 rmv_page_order(page);
968 area->nr_free--;
56fd56b8 969 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 970 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
971 return page;
972 }
973
974 return NULL;
975}
976
977
b2a0ac88
MG
978/*
979 * This array describes the order lists are fallen back to when
980 * the free lists for the desirable migrate type are depleted
981 */
47118af0
MN
982static int fallbacks[MIGRATE_TYPES][4] = {
983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
985#ifdef CONFIG_CMA
986 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
987 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
988#else
989 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
990#endif
6d4a4916 991 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 992#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 993 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 994#endif
b2a0ac88
MG
995};
996
c361be55
MG
997/*
998 * Move the free pages in a range to the free lists of the requested type.
d9c23400 999 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1000 * boundary. If alignment is required, use move_freepages_block()
1001 */
435b405c 1002int move_freepages(struct zone *zone,
b69a7288
AB
1003 struct page *start_page, struct page *end_page,
1004 int migratetype)
c361be55
MG
1005{
1006 struct page *page;
1007 unsigned long order;
d100313f 1008 int pages_moved = 0;
c361be55
MG
1009
1010#ifndef CONFIG_HOLES_IN_ZONE
1011 /*
1012 * page_zone is not safe to call in this context when
1013 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1014 * anyway as we check zone boundaries in move_freepages_block().
1015 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1016 * grouping pages by mobility
c361be55
MG
1017 */
1018 BUG_ON(page_zone(start_page) != page_zone(end_page));
1019#endif
1020
1021 for (page = start_page; page <= end_page;) {
344c790e 1022 /* Make sure we are not inadvertently changing nodes */
309381fe 1023 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1024
c361be55
MG
1025 if (!pfn_valid_within(page_to_pfn(page))) {
1026 page++;
1027 continue;
1028 }
1029
1030 if (!PageBuddy(page)) {
1031 page++;
1032 continue;
1033 }
1034
1035 order = page_order(page);
84be48d8
KS
1036 list_move(&page->lru,
1037 &zone->free_area[order].free_list[migratetype]);
95e34412 1038 set_freepage_migratetype(page, migratetype);
c361be55 1039 page += 1 << order;
d100313f 1040 pages_moved += 1 << order;
c361be55
MG
1041 }
1042
d100313f 1043 return pages_moved;
c361be55
MG
1044}
1045
ee6f509c 1046int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1047 int migratetype)
c361be55
MG
1048{
1049 unsigned long start_pfn, end_pfn;
1050 struct page *start_page, *end_page;
1051
1052 start_pfn = page_to_pfn(page);
d9c23400 1053 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1054 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1055 end_page = start_page + pageblock_nr_pages - 1;
1056 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1057
1058 /* Do not cross zone boundaries */
108bcc96 1059 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1060 start_page = page;
108bcc96 1061 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1062 return 0;
1063
1064 return move_freepages(zone, start_page, end_page, migratetype);
1065}
1066
2f66a68f
MG
1067static void change_pageblock_range(struct page *pageblock_page,
1068 int start_order, int migratetype)
1069{
1070 int nr_pageblocks = 1 << (start_order - pageblock_order);
1071
1072 while (nr_pageblocks--) {
1073 set_pageblock_migratetype(pageblock_page, migratetype);
1074 pageblock_page += pageblock_nr_pages;
1075 }
1076}
1077
fef903ef
SB
1078/*
1079 * If breaking a large block of pages, move all free pages to the preferred
1080 * allocation list. If falling back for a reclaimable kernel allocation, be
1081 * more aggressive about taking ownership of free pages.
1082 *
1083 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1084 * nor move CMA pages to different free lists. We don't want unmovable pages
1085 * to be allocated from MIGRATE_CMA areas.
1086 *
1087 * Returns the new migratetype of the pageblock (or the same old migratetype
1088 * if it was unchanged).
1089 */
1090static int try_to_steal_freepages(struct zone *zone, struct page *page,
1091 int start_type, int fallback_type)
1092{
1093 int current_order = page_order(page);
1094
0cbef29a
KM
1095 /*
1096 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1097 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1098 * is set to CMA so it is returned to the correct freelist in case
1099 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1100 */
fef903ef
SB
1101 if (is_migrate_cma(fallback_type))
1102 return fallback_type;
1103
1104 /* Take ownership for orders >= pageblock_order */
1105 if (current_order >= pageblock_order) {
1106 change_pageblock_range(page, current_order, start_type);
1107 return start_type;
1108 }
1109
1110 if (current_order >= pageblock_order / 2 ||
1111 start_type == MIGRATE_RECLAIMABLE ||
1112 page_group_by_mobility_disabled) {
1113 int pages;
1114
1115 pages = move_freepages_block(zone, page, start_type);
1116
1117 /* Claim the whole block if over half of it is free */
1118 if (pages >= (1 << (pageblock_order-1)) ||
1119 page_group_by_mobility_disabled) {
1120
1121 set_pageblock_migratetype(page, start_type);
1122 return start_type;
1123 }
1124
1125 }
1126
1127 return fallback_type;
1128}
1129
b2a0ac88 1130/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1131static inline struct page *
7aeb09f9 1132__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1133{
b8af2941 1134 struct free_area *area;
7aeb09f9 1135 unsigned int current_order;
b2a0ac88 1136 struct page *page;
fef903ef 1137 int migratetype, new_type, i;
b2a0ac88
MG
1138
1139 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1140 for (current_order = MAX_ORDER-1;
1141 current_order >= order && current_order <= MAX_ORDER-1;
1142 --current_order) {
6d4a4916 1143 for (i = 0;; i++) {
b2a0ac88
MG
1144 migratetype = fallbacks[start_migratetype][i];
1145
56fd56b8
MG
1146 /* MIGRATE_RESERVE handled later if necessary */
1147 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1148 break;
e010487d 1149
b2a0ac88
MG
1150 area = &(zone->free_area[current_order]);
1151 if (list_empty(&area->free_list[migratetype]))
1152 continue;
1153
1154 page = list_entry(area->free_list[migratetype].next,
1155 struct page, lru);
1156 area->nr_free--;
1157
fef903ef
SB
1158 new_type = try_to_steal_freepages(zone, page,
1159 start_migratetype,
1160 migratetype);
b2a0ac88
MG
1161
1162 /* Remove the page from the freelists */
1163 list_del(&page->lru);
1164 rmv_page_order(page);
b2a0ac88 1165
47118af0 1166 expand(zone, page, order, current_order, area,
0cbef29a 1167 new_type);
5bcc9f86
VB
1168 /* The freepage_migratetype may differ from pageblock's
1169 * migratetype depending on the decisions in
1170 * try_to_steal_freepages. This is OK as long as it does
1171 * not differ for MIGRATE_CMA type.
1172 */
1173 set_freepage_migratetype(page, new_type);
e0fff1bd 1174
52c8f6a5
KM
1175 trace_mm_page_alloc_extfrag(page, order, current_order,
1176 start_migratetype, migratetype, new_type);
e0fff1bd 1177
b2a0ac88
MG
1178 return page;
1179 }
1180 }
1181
728ec980 1182 return NULL;
b2a0ac88
MG
1183}
1184
56fd56b8 1185/*
1da177e4
LT
1186 * Do the hard work of removing an element from the buddy allocator.
1187 * Call me with the zone->lock already held.
1188 */
b2a0ac88
MG
1189static struct page *__rmqueue(struct zone *zone, unsigned int order,
1190 int migratetype)
1da177e4 1191{
1da177e4
LT
1192 struct page *page;
1193
728ec980 1194retry_reserve:
56fd56b8 1195 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1196
728ec980 1197 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1198 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1199
728ec980
MG
1200 /*
1201 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1202 * is used because __rmqueue_smallest is an inline function
1203 * and we want just one call site
1204 */
1205 if (!page) {
1206 migratetype = MIGRATE_RESERVE;
1207 goto retry_reserve;
1208 }
1209 }
1210
0d3d062a 1211 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1212 return page;
1da177e4
LT
1213}
1214
5f63b720 1215/*
1da177e4
LT
1216 * Obtain a specified number of elements from the buddy allocator, all under
1217 * a single hold of the lock, for efficiency. Add them to the supplied list.
1218 * Returns the number of new pages which were placed at *list.
1219 */
5f63b720 1220static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1221 unsigned long count, struct list_head *list,
b745bc85 1222 int migratetype, bool cold)
1da177e4 1223{
5bcc9f86 1224 int i;
5f63b720 1225
c54ad30c 1226 spin_lock(&zone->lock);
1da177e4 1227 for (i = 0; i < count; ++i) {
b2a0ac88 1228 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1229 if (unlikely(page == NULL))
1da177e4 1230 break;
81eabcbe
MG
1231
1232 /*
1233 * Split buddy pages returned by expand() are received here
1234 * in physical page order. The page is added to the callers and
1235 * list and the list head then moves forward. From the callers
1236 * perspective, the linked list is ordered by page number in
1237 * some conditions. This is useful for IO devices that can
1238 * merge IO requests if the physical pages are ordered
1239 * properly.
1240 */
b745bc85 1241 if (likely(!cold))
e084b2d9
MG
1242 list_add(&page->lru, list);
1243 else
1244 list_add_tail(&page->lru, list);
81eabcbe 1245 list = &page->lru;
5bcc9f86 1246 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1247 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1248 -(1 << order));
1da177e4 1249 }
f2260e6b 1250 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1251 spin_unlock(&zone->lock);
085cc7d5 1252 return i;
1da177e4
LT
1253}
1254
4ae7c039 1255#ifdef CONFIG_NUMA
8fce4d8e 1256/*
4037d452
CL
1257 * Called from the vmstat counter updater to drain pagesets of this
1258 * currently executing processor on remote nodes after they have
1259 * expired.
1260 *
879336c3
CL
1261 * Note that this function must be called with the thread pinned to
1262 * a single processor.
8fce4d8e 1263 */
4037d452 1264void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1265{
4ae7c039 1266 unsigned long flags;
7be12fc9 1267 int to_drain, batch;
4ae7c039 1268
4037d452 1269 local_irq_save(flags);
998d39cb 1270 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1271 to_drain = min(pcp->count, batch);
2a13515c
KM
1272 if (to_drain > 0) {
1273 free_pcppages_bulk(zone, to_drain, pcp);
1274 pcp->count -= to_drain;
1275 }
4037d452 1276 local_irq_restore(flags);
4ae7c039
CL
1277}
1278#endif
1279
9f8f2172
CL
1280/*
1281 * Drain pages of the indicated processor.
1282 *
1283 * The processor must either be the current processor and the
1284 * thread pinned to the current processor or a processor that
1285 * is not online.
1286 */
1287static void drain_pages(unsigned int cpu)
1da177e4 1288{
c54ad30c 1289 unsigned long flags;
1da177e4 1290 struct zone *zone;
1da177e4 1291
ee99c71c 1292 for_each_populated_zone(zone) {
1da177e4 1293 struct per_cpu_pageset *pset;
3dfa5721 1294 struct per_cpu_pages *pcp;
1da177e4 1295
99dcc3e5
CL
1296 local_irq_save(flags);
1297 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1298
1299 pcp = &pset->pcp;
2ff754fa
DR
1300 if (pcp->count) {
1301 free_pcppages_bulk(zone, pcp->count, pcp);
1302 pcp->count = 0;
1303 }
3dfa5721 1304 local_irq_restore(flags);
1da177e4
LT
1305 }
1306}
1da177e4 1307
9f8f2172
CL
1308/*
1309 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1310 */
1311void drain_local_pages(void *arg)
1312{
1313 drain_pages(smp_processor_id());
1314}
1315
1316/*
74046494
GBY
1317 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1318 *
1319 * Note that this code is protected against sending an IPI to an offline
1320 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1321 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1322 * nothing keeps CPUs from showing up after we populated the cpumask and
1323 * before the call to on_each_cpu_mask().
9f8f2172
CL
1324 */
1325void drain_all_pages(void)
1326{
74046494
GBY
1327 int cpu;
1328 struct per_cpu_pageset *pcp;
1329 struct zone *zone;
1330
1331 /*
1332 * Allocate in the BSS so we wont require allocation in
1333 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1334 */
1335 static cpumask_t cpus_with_pcps;
1336
1337 /*
1338 * We don't care about racing with CPU hotplug event
1339 * as offline notification will cause the notified
1340 * cpu to drain that CPU pcps and on_each_cpu_mask
1341 * disables preemption as part of its processing
1342 */
1343 for_each_online_cpu(cpu) {
1344 bool has_pcps = false;
1345 for_each_populated_zone(zone) {
1346 pcp = per_cpu_ptr(zone->pageset, cpu);
1347 if (pcp->pcp.count) {
1348 has_pcps = true;
1349 break;
1350 }
1351 }
1352 if (has_pcps)
1353 cpumask_set_cpu(cpu, &cpus_with_pcps);
1354 else
1355 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1356 }
1357 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1358}
1359
296699de 1360#ifdef CONFIG_HIBERNATION
1da177e4
LT
1361
1362void mark_free_pages(struct zone *zone)
1363{
f623f0db
RW
1364 unsigned long pfn, max_zone_pfn;
1365 unsigned long flags;
7aeb09f9 1366 unsigned int order, t;
1da177e4
LT
1367 struct list_head *curr;
1368
8080fc03 1369 if (zone_is_empty(zone))
1da177e4
LT
1370 return;
1371
1372 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1373
108bcc96 1374 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1376 if (pfn_valid(pfn)) {
1377 struct page *page = pfn_to_page(pfn);
1378
7be98234
RW
1379 if (!swsusp_page_is_forbidden(page))
1380 swsusp_unset_page_free(page);
f623f0db 1381 }
1da177e4 1382
b2a0ac88
MG
1383 for_each_migratetype_order(order, t) {
1384 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1385 unsigned long i;
1da177e4 1386
f623f0db
RW
1387 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1388 for (i = 0; i < (1UL << order); i++)
7be98234 1389 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1390 }
b2a0ac88 1391 }
1da177e4
LT
1392 spin_unlock_irqrestore(&zone->lock, flags);
1393}
e2c55dc8 1394#endif /* CONFIG_PM */
1da177e4 1395
1da177e4
LT
1396/*
1397 * Free a 0-order page
b745bc85 1398 * cold == true ? free a cold page : free a hot page
1da177e4 1399 */
b745bc85 1400void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1401{
1402 struct zone *zone = page_zone(page);
1403 struct per_cpu_pages *pcp;
1404 unsigned long flags;
dc4b0caf 1405 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1406 int migratetype;
1da177e4 1407
ec95f53a 1408 if (!free_pages_prepare(page, 0))
689bcebf
HD
1409 return;
1410
dc4b0caf 1411 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1412 set_freepage_migratetype(page, migratetype);
1da177e4 1413 local_irq_save(flags);
f8891e5e 1414 __count_vm_event(PGFREE);
da456f14 1415
5f8dcc21
MG
1416 /*
1417 * We only track unmovable, reclaimable and movable on pcp lists.
1418 * Free ISOLATE pages back to the allocator because they are being
1419 * offlined but treat RESERVE as movable pages so we can get those
1420 * areas back if necessary. Otherwise, we may have to free
1421 * excessively into the page allocator
1422 */
1423 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1424 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1425 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1426 goto out;
1427 }
1428 migratetype = MIGRATE_MOVABLE;
1429 }
1430
99dcc3e5 1431 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1432 if (!cold)
5f8dcc21 1433 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1434 else
1435 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1436 pcp->count++;
48db57f8 1437 if (pcp->count >= pcp->high) {
998d39cb
CS
1438 unsigned long batch = ACCESS_ONCE(pcp->batch);
1439 free_pcppages_bulk(zone, batch, pcp);
1440 pcp->count -= batch;
48db57f8 1441 }
5f8dcc21
MG
1442
1443out:
1da177e4 1444 local_irq_restore(flags);
1da177e4
LT
1445}
1446
cc59850e
KK
1447/*
1448 * Free a list of 0-order pages
1449 */
b745bc85 1450void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1451{
1452 struct page *page, *next;
1453
1454 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1455 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1456 free_hot_cold_page(page, cold);
1457 }
1458}
1459
8dfcc9ba
NP
1460/*
1461 * split_page takes a non-compound higher-order page, and splits it into
1462 * n (1<<order) sub-pages: page[0..n]
1463 * Each sub-page must be freed individually.
1464 *
1465 * Note: this is probably too low level an operation for use in drivers.
1466 * Please consult with lkml before using this in your driver.
1467 */
1468void split_page(struct page *page, unsigned int order)
1469{
1470 int i;
1471
309381fe
SL
1472 VM_BUG_ON_PAGE(PageCompound(page), page);
1473 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1474
1475#ifdef CONFIG_KMEMCHECK
1476 /*
1477 * Split shadow pages too, because free(page[0]) would
1478 * otherwise free the whole shadow.
1479 */
1480 if (kmemcheck_page_is_tracked(page))
1481 split_page(virt_to_page(page[0].shadow), order);
1482#endif
1483
7835e98b
NP
1484 for (i = 1; i < (1 << order); i++)
1485 set_page_refcounted(page + i);
8dfcc9ba 1486}
5853ff23 1487EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1488
8fb74b9f 1489static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1490{
748446bb
MG
1491 unsigned long watermark;
1492 struct zone *zone;
2139cbe6 1493 int mt;
748446bb
MG
1494
1495 BUG_ON(!PageBuddy(page));
1496
1497 zone = page_zone(page);
2e30abd1 1498 mt = get_pageblock_migratetype(page);
748446bb 1499
194159fb 1500 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1501 /* Obey watermarks as if the page was being allocated */
1502 watermark = low_wmark_pages(zone) + (1 << order);
1503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1504 return 0;
1505
8fb74b9f 1506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1507 }
748446bb
MG
1508
1509 /* Remove page from free list */
1510 list_del(&page->lru);
1511 zone->free_area[order].nr_free--;
1512 rmv_page_order(page);
2139cbe6 1513
8fb74b9f 1514 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1515 if (order >= pageblock_order - 1) {
1516 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1517 for (; page < endpage; page += pageblock_nr_pages) {
1518 int mt = get_pageblock_migratetype(page);
194159fb 1519 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1520 set_pageblock_migratetype(page,
1521 MIGRATE_MOVABLE);
1522 }
748446bb
MG
1523 }
1524
8fb74b9f 1525 return 1UL << order;
1fb3f8ca
MG
1526}
1527
1528/*
1529 * Similar to split_page except the page is already free. As this is only
1530 * being used for migration, the migratetype of the block also changes.
1531 * As this is called with interrupts disabled, the caller is responsible
1532 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1533 * are enabled.
1534 *
1535 * Note: this is probably too low level an operation for use in drivers.
1536 * Please consult with lkml before using this in your driver.
1537 */
1538int split_free_page(struct page *page)
1539{
1540 unsigned int order;
1541 int nr_pages;
1542
1fb3f8ca
MG
1543 order = page_order(page);
1544
8fb74b9f 1545 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1546 if (!nr_pages)
1547 return 0;
1548
1549 /* Split into individual pages */
1550 set_page_refcounted(page);
1551 split_page(page, order);
1552 return nr_pages;
748446bb
MG
1553}
1554
1da177e4
LT
1555/*
1556 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1557 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1558 * or two.
1559 */
0a15c3e9
MG
1560static inline
1561struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1562 struct zone *zone, unsigned int order,
1563 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1564{
1565 unsigned long flags;
689bcebf 1566 struct page *page;
b745bc85 1567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1568
689bcebf 1569again:
48db57f8 1570 if (likely(order == 0)) {
1da177e4 1571 struct per_cpu_pages *pcp;
5f8dcc21 1572 struct list_head *list;
1da177e4 1573
1da177e4 1574 local_irq_save(flags);
99dcc3e5
CL
1575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1576 list = &pcp->lists[migratetype];
5f8dcc21 1577 if (list_empty(list)) {
535131e6 1578 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1579 pcp->batch, list,
e084b2d9 1580 migratetype, cold);
5f8dcc21 1581 if (unlikely(list_empty(list)))
6fb332fa 1582 goto failed;
535131e6 1583 }
b92a6edd 1584
5f8dcc21
MG
1585 if (cold)
1586 page = list_entry(list->prev, struct page, lru);
1587 else
1588 page = list_entry(list->next, struct page, lru);
1589
b92a6edd
MG
1590 list_del(&page->lru);
1591 pcp->count--;
7fb1d9fc 1592 } else {
dab48dab
AM
1593 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1594 /*
1595 * __GFP_NOFAIL is not to be used in new code.
1596 *
1597 * All __GFP_NOFAIL callers should be fixed so that they
1598 * properly detect and handle allocation failures.
1599 *
1600 * We most definitely don't want callers attempting to
4923abf9 1601 * allocate greater than order-1 page units with
dab48dab
AM
1602 * __GFP_NOFAIL.
1603 */
4923abf9 1604 WARN_ON_ONCE(order > 1);
dab48dab 1605 }
1da177e4 1606 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1607 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1608 spin_unlock(&zone->lock);
1609 if (!page)
1610 goto failed;
d1ce749a 1611 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1612 get_freepage_migratetype(page));
1da177e4
LT
1613 }
1614
3a025760 1615 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1616 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
4ffeaf35
MG
1617 !zone_is_fair_depleted(zone))
1618 zone_set_flag(zone, ZONE_FAIR_DEPLETED);
27329369 1619
f8891e5e 1620 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1621 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1622 local_irq_restore(flags);
1da177e4 1623
309381fe 1624 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1625 if (prep_new_page(page, order, gfp_flags))
a74609fa 1626 goto again;
1da177e4 1627 return page;
a74609fa
NP
1628
1629failed:
1630 local_irq_restore(flags);
a74609fa 1631 return NULL;
1da177e4
LT
1632}
1633
933e312e
AM
1634#ifdef CONFIG_FAIL_PAGE_ALLOC
1635
b2588c4b 1636static struct {
933e312e
AM
1637 struct fault_attr attr;
1638
1639 u32 ignore_gfp_highmem;
1640 u32 ignore_gfp_wait;
54114994 1641 u32 min_order;
933e312e
AM
1642} fail_page_alloc = {
1643 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1644 .ignore_gfp_wait = 1,
1645 .ignore_gfp_highmem = 1,
54114994 1646 .min_order = 1,
933e312e
AM
1647};
1648
1649static int __init setup_fail_page_alloc(char *str)
1650{
1651 return setup_fault_attr(&fail_page_alloc.attr, str);
1652}
1653__setup("fail_page_alloc=", setup_fail_page_alloc);
1654
deaf386e 1655static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1656{
54114994 1657 if (order < fail_page_alloc.min_order)
deaf386e 1658 return false;
933e312e 1659 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1660 return false;
933e312e 1661 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1662 return false;
933e312e 1663 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1664 return false;
933e312e
AM
1665
1666 return should_fail(&fail_page_alloc.attr, 1 << order);
1667}
1668
1669#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1670
1671static int __init fail_page_alloc_debugfs(void)
1672{
f4ae40a6 1673 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1674 struct dentry *dir;
933e312e 1675
dd48c085
AM
1676 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1677 &fail_page_alloc.attr);
1678 if (IS_ERR(dir))
1679 return PTR_ERR(dir);
933e312e 1680
b2588c4b
AM
1681 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1682 &fail_page_alloc.ignore_gfp_wait))
1683 goto fail;
1684 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1685 &fail_page_alloc.ignore_gfp_highmem))
1686 goto fail;
1687 if (!debugfs_create_u32("min-order", mode, dir,
1688 &fail_page_alloc.min_order))
1689 goto fail;
1690
1691 return 0;
1692fail:
dd48c085 1693 debugfs_remove_recursive(dir);
933e312e 1694
b2588c4b 1695 return -ENOMEM;
933e312e
AM
1696}
1697
1698late_initcall(fail_page_alloc_debugfs);
1699
1700#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1701
1702#else /* CONFIG_FAIL_PAGE_ALLOC */
1703
deaf386e 1704static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1705{
deaf386e 1706 return false;
933e312e
AM
1707}
1708
1709#endif /* CONFIG_FAIL_PAGE_ALLOC */
1710
1da177e4 1711/*
88f5acf8 1712 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1713 * of the allocation.
1714 */
7aeb09f9
MG
1715static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1716 unsigned long mark, int classzone_idx, int alloc_flags,
1717 long free_pages)
1da177e4
LT
1718{
1719 /* free_pages my go negative - that's OK */
d23ad423 1720 long min = mark;
1da177e4 1721 int o;
026b0814 1722 long free_cma = 0;
1da177e4 1723
df0a6daa 1724 free_pages -= (1 << order) - 1;
7fb1d9fc 1725 if (alloc_flags & ALLOC_HIGH)
1da177e4 1726 min -= min / 2;
7fb1d9fc 1727 if (alloc_flags & ALLOC_HARDER)
1da177e4 1728 min -= min / 4;
d95ea5d1
BZ
1729#ifdef CONFIG_CMA
1730 /* If allocation can't use CMA areas don't use free CMA pages */
1731 if (!(alloc_flags & ALLOC_CMA))
026b0814 1732 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1733#endif
026b0814 1734
3484b2de 1735 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1736 return false;
1da177e4
LT
1737 for (o = 0; o < order; o++) {
1738 /* At the next order, this order's pages become unavailable */
1739 free_pages -= z->free_area[o].nr_free << o;
1740
1741 /* Require fewer higher order pages to be free */
1742 min >>= 1;
1743
1744 if (free_pages <= min)
88f5acf8 1745 return false;
1da177e4 1746 }
88f5acf8
MG
1747 return true;
1748}
1749
7aeb09f9 1750bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1751 int classzone_idx, int alloc_flags)
1752{
1753 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1754 zone_page_state(z, NR_FREE_PAGES));
1755}
1756
7aeb09f9
MG
1757bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1758 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1759{
1760 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1761
1762 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1763 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1764
1765 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1766 free_pages);
1da177e4
LT
1767}
1768
9276b1bc
PJ
1769#ifdef CONFIG_NUMA
1770/*
1771 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1772 * skip over zones that are not allowed by the cpuset, or that have
1773 * been recently (in last second) found to be nearly full. See further
1774 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1775 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1776 *
a1aeb65a 1777 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1778 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1779 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1780 *
1781 * If the zonelist cache is not available for this zonelist, does
1782 * nothing and returns NULL.
1783 *
1784 * If the fullzones BITMAP in the zonelist cache is stale (more than
1785 * a second since last zap'd) then we zap it out (clear its bits.)
1786 *
1787 * We hold off even calling zlc_setup, until after we've checked the
1788 * first zone in the zonelist, on the theory that most allocations will
1789 * be satisfied from that first zone, so best to examine that zone as
1790 * quickly as we can.
1791 */
1792static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1793{
1794 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1795 nodemask_t *allowednodes; /* zonelist_cache approximation */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return NULL;
1800
f05111f5 1801 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1803 zlc->last_full_zap = jiffies;
1804 }
1805
1806 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1807 &cpuset_current_mems_allowed :
4b0ef1fe 1808 &node_states[N_MEMORY];
9276b1bc
PJ
1809 return allowednodes;
1810}
1811
1812/*
1813 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1814 * if it is worth looking at further for free memory:
1815 * 1) Check that the zone isn't thought to be full (doesn't have its
1816 * bit set in the zonelist_cache fullzones BITMAP).
1817 * 2) Check that the zones node (obtained from the zonelist_cache
1818 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1819 * Return true (non-zero) if zone is worth looking at further, or
1820 * else return false (zero) if it is not.
1821 *
1822 * This check -ignores- the distinction between various watermarks,
1823 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1824 * found to be full for any variation of these watermarks, it will
1825 * be considered full for up to one second by all requests, unless
1826 * we are so low on memory on all allowed nodes that we are forced
1827 * into the second scan of the zonelist.
1828 *
1829 * In the second scan we ignore this zonelist cache and exactly
1830 * apply the watermarks to all zones, even it is slower to do so.
1831 * We are low on memory in the second scan, and should leave no stone
1832 * unturned looking for a free page.
1833 */
dd1a239f 1834static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1835 nodemask_t *allowednodes)
1836{
1837 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1838 int i; /* index of *z in zonelist zones */
1839 int n; /* node that zone *z is on */
1840
1841 zlc = zonelist->zlcache_ptr;
1842 if (!zlc)
1843 return 1;
1844
dd1a239f 1845 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1846 n = zlc->z_to_n[i];
1847
1848 /* This zone is worth trying if it is allowed but not full */
1849 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1850}
1851
1852/*
1853 * Given 'z' scanning a zonelist, set the corresponding bit in
1854 * zlc->fullzones, so that subsequent attempts to allocate a page
1855 * from that zone don't waste time re-examining it.
1856 */
dd1a239f 1857static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1858{
1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1860 int i; /* index of *z in zonelist zones */
1861
1862 zlc = zonelist->zlcache_ptr;
1863 if (!zlc)
1864 return;
1865
dd1a239f 1866 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1867
1868 set_bit(i, zlc->fullzones);
1869}
1870
76d3fbf8
MG
1871/*
1872 * clear all zones full, called after direct reclaim makes progress so that
1873 * a zone that was recently full is not skipped over for up to a second
1874 */
1875static void zlc_clear_zones_full(struct zonelist *zonelist)
1876{
1877 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1878
1879 zlc = zonelist->zlcache_ptr;
1880 if (!zlc)
1881 return;
1882
1883 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1884}
1885
81c0a2bb
JW
1886static bool zone_local(struct zone *local_zone, struct zone *zone)
1887{
fff4068c 1888 return local_zone->node == zone->node;
81c0a2bb
JW
1889}
1890
957f822a
DR
1891static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1892{
5f7a75ac
MG
1893 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1894 RECLAIM_DISTANCE;
957f822a
DR
1895}
1896
9276b1bc
PJ
1897#else /* CONFIG_NUMA */
1898
1899static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1900{
1901 return NULL;
1902}
1903
dd1a239f 1904static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1905 nodemask_t *allowednodes)
1906{
1907 return 1;
1908}
1909
dd1a239f 1910static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1911{
1912}
76d3fbf8
MG
1913
1914static void zlc_clear_zones_full(struct zonelist *zonelist)
1915{
1916}
957f822a 1917
81c0a2bb
JW
1918static bool zone_local(struct zone *local_zone, struct zone *zone)
1919{
1920 return true;
1921}
1922
957f822a
DR
1923static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1924{
1925 return true;
1926}
1927
9276b1bc
PJ
1928#endif /* CONFIG_NUMA */
1929
4ffeaf35
MG
1930static void reset_alloc_batches(struct zone *preferred_zone)
1931{
1932 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1933
1934 do {
1935 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1936 high_wmark_pages(zone) - low_wmark_pages(zone) -
1937 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1938 zone_clear_flag(zone, ZONE_FAIR_DEPLETED);
1939 } while (zone++ != preferred_zone);
1940}
1941
7fb1d9fc 1942/*
0798e519 1943 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1944 * a page.
1945 */
1946static struct page *
19770b32 1947get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1948 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1949 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1950{
dd1a239f 1951 struct zoneref *z;
7fb1d9fc 1952 struct page *page = NULL;
5117f45d 1953 struct zone *zone;
9276b1bc
PJ
1954 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1955 int zlc_active = 0; /* set if using zonelist_cache */
1956 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1957 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1958 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
1959 int nr_fair_skipped = 0;
1960 bool zonelist_rescan;
54a6eb5c 1961
9276b1bc 1962zonelist_scan:
4ffeaf35
MG
1963 zonelist_rescan = false;
1964
7fb1d9fc 1965 /*
9276b1bc 1966 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1967 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1968 */
19770b32
MG
1969 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1970 high_zoneidx, nodemask) {
e085dbc5
JW
1971 unsigned long mark;
1972
e5adfffc 1973 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1974 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1975 continue;
664eedde
MG
1976 if (cpusets_enabled() &&
1977 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1978 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1979 continue;
81c0a2bb
JW
1980 /*
1981 * Distribute pages in proportion to the individual
1982 * zone size to ensure fair page aging. The zone a
1983 * page was allocated in should have no effect on the
1984 * time the page has in memory before being reclaimed.
81c0a2bb 1985 */
3a025760 1986 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1987 if (!zone_local(preferred_zone, zone))
f7b5d647 1988 break;
4ffeaf35
MG
1989 if (zone_is_fair_depleted(zone)) {
1990 nr_fair_skipped++;
3a025760 1991 continue;
4ffeaf35 1992 }
81c0a2bb 1993 }
a756cf59
JW
1994 /*
1995 * When allocating a page cache page for writing, we
1996 * want to get it from a zone that is within its dirty
1997 * limit, such that no single zone holds more than its
1998 * proportional share of globally allowed dirty pages.
1999 * The dirty limits take into account the zone's
2000 * lowmem reserves and high watermark so that kswapd
2001 * should be able to balance it without having to
2002 * write pages from its LRU list.
2003 *
2004 * This may look like it could increase pressure on
2005 * lower zones by failing allocations in higher zones
2006 * before they are full. But the pages that do spill
2007 * over are limited as the lower zones are protected
2008 * by this very same mechanism. It should not become
2009 * a practical burden to them.
2010 *
2011 * XXX: For now, allow allocations to potentially
2012 * exceed the per-zone dirty limit in the slowpath
2013 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2014 * which is important when on a NUMA setup the allowed
2015 * zones are together not big enough to reach the
2016 * global limit. The proper fix for these situations
2017 * will require awareness of zones in the
2018 * dirty-throttling and the flusher threads.
2019 */
a6e21b14 2020 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2021 continue;
7fb1d9fc 2022
e085dbc5
JW
2023 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2024 if (!zone_watermark_ok(zone, order, mark,
2025 classzone_idx, alloc_flags)) {
fa5e084e
MG
2026 int ret;
2027
5dab2911
MG
2028 /* Checked here to keep the fast path fast */
2029 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2030 if (alloc_flags & ALLOC_NO_WATERMARKS)
2031 goto try_this_zone;
2032
e5adfffc
KS
2033 if (IS_ENABLED(CONFIG_NUMA) &&
2034 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2035 /*
2036 * we do zlc_setup if there are multiple nodes
2037 * and before considering the first zone allowed
2038 * by the cpuset.
2039 */
2040 allowednodes = zlc_setup(zonelist, alloc_flags);
2041 zlc_active = 1;
2042 did_zlc_setup = 1;
2043 }
2044
957f822a
DR
2045 if (zone_reclaim_mode == 0 ||
2046 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2047 goto this_zone_full;
2048
cd38b115
MG
2049 /*
2050 * As we may have just activated ZLC, check if the first
2051 * eligible zone has failed zone_reclaim recently.
2052 */
e5adfffc 2053 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2054 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2055 continue;
2056
fa5e084e
MG
2057 ret = zone_reclaim(zone, gfp_mask, order);
2058 switch (ret) {
2059 case ZONE_RECLAIM_NOSCAN:
2060 /* did not scan */
cd38b115 2061 continue;
fa5e084e
MG
2062 case ZONE_RECLAIM_FULL:
2063 /* scanned but unreclaimable */
cd38b115 2064 continue;
fa5e084e
MG
2065 default:
2066 /* did we reclaim enough */
fed2719e 2067 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2068 classzone_idx, alloc_flags))
fed2719e
MG
2069 goto try_this_zone;
2070
2071 /*
2072 * Failed to reclaim enough to meet watermark.
2073 * Only mark the zone full if checking the min
2074 * watermark or if we failed to reclaim just
2075 * 1<<order pages or else the page allocator
2076 * fastpath will prematurely mark zones full
2077 * when the watermark is between the low and
2078 * min watermarks.
2079 */
2080 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2081 ret == ZONE_RECLAIM_SOME)
9276b1bc 2082 goto this_zone_full;
fed2719e
MG
2083
2084 continue;
0798e519 2085 }
7fb1d9fc
RS
2086 }
2087
fa5e084e 2088try_this_zone:
3dd28266
MG
2089 page = buffered_rmqueue(preferred_zone, zone, order,
2090 gfp_mask, migratetype);
0798e519 2091 if (page)
7fb1d9fc 2092 break;
9276b1bc 2093this_zone_full:
65bb3719 2094 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2095 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2096 }
9276b1bc 2097
4ffeaf35 2098 if (page) {
b121186a
AS
2099 /*
2100 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2101 * necessary to allocate the page. The expectation is
2102 * that the caller is taking steps that will free more
2103 * memory. The caller should avoid the page being used
2104 * for !PFMEMALLOC purposes.
2105 */
2106 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2107 return page;
2108 }
b121186a 2109
4ffeaf35
MG
2110 /*
2111 * The first pass makes sure allocations are spread fairly within the
2112 * local node. However, the local node might have free pages left
2113 * after the fairness batches are exhausted, and remote zones haven't
2114 * even been considered yet. Try once more without fairness, and
2115 * include remote zones now, before entering the slowpath and waking
2116 * kswapd: prefer spilling to a remote zone over swapping locally.
2117 */
2118 if (alloc_flags & ALLOC_FAIR) {
2119 alloc_flags &= ~ALLOC_FAIR;
2120 if (nr_fair_skipped) {
2121 zonelist_rescan = true;
2122 reset_alloc_batches(preferred_zone);
2123 }
2124 if (nr_online_nodes > 1)
2125 zonelist_rescan = true;
2126 }
2127
2128 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2129 /* Disable zlc cache for second zonelist scan */
2130 zlc_active = 0;
2131 zonelist_rescan = true;
2132 }
2133
2134 if (zonelist_rescan)
2135 goto zonelist_scan;
2136
2137 return NULL;
753ee728
MH
2138}
2139
29423e77
DR
2140/*
2141 * Large machines with many possible nodes should not always dump per-node
2142 * meminfo in irq context.
2143 */
2144static inline bool should_suppress_show_mem(void)
2145{
2146 bool ret = false;
2147
2148#if NODES_SHIFT > 8
2149 ret = in_interrupt();
2150#endif
2151 return ret;
2152}
2153
a238ab5b
DH
2154static DEFINE_RATELIMIT_STATE(nopage_rs,
2155 DEFAULT_RATELIMIT_INTERVAL,
2156 DEFAULT_RATELIMIT_BURST);
2157
2158void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2159{
a238ab5b
DH
2160 unsigned int filter = SHOW_MEM_FILTER_NODES;
2161
c0a32fc5
SG
2162 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2163 debug_guardpage_minorder() > 0)
a238ab5b
DH
2164 return;
2165
2166 /*
2167 * This documents exceptions given to allocations in certain
2168 * contexts that are allowed to allocate outside current's set
2169 * of allowed nodes.
2170 */
2171 if (!(gfp_mask & __GFP_NOMEMALLOC))
2172 if (test_thread_flag(TIF_MEMDIE) ||
2173 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2174 filter &= ~SHOW_MEM_FILTER_NODES;
2175 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2176 filter &= ~SHOW_MEM_FILTER_NODES;
2177
2178 if (fmt) {
3ee9a4f0
JP
2179 struct va_format vaf;
2180 va_list args;
2181
a238ab5b 2182 va_start(args, fmt);
3ee9a4f0
JP
2183
2184 vaf.fmt = fmt;
2185 vaf.va = &args;
2186
2187 pr_warn("%pV", &vaf);
2188
a238ab5b
DH
2189 va_end(args);
2190 }
2191
3ee9a4f0
JP
2192 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2193 current->comm, order, gfp_mask);
a238ab5b
DH
2194
2195 dump_stack();
2196 if (!should_suppress_show_mem())
2197 show_mem(filter);
2198}
2199
11e33f6a
MG
2200static inline int
2201should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2202 unsigned long did_some_progress,
11e33f6a 2203 unsigned long pages_reclaimed)
1da177e4 2204{
11e33f6a
MG
2205 /* Do not loop if specifically requested */
2206 if (gfp_mask & __GFP_NORETRY)
2207 return 0;
1da177e4 2208
f90ac398
MG
2209 /* Always retry if specifically requested */
2210 if (gfp_mask & __GFP_NOFAIL)
2211 return 1;
2212
2213 /*
2214 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2215 * making forward progress without invoking OOM. Suspend also disables
2216 * storage devices so kswapd will not help. Bail if we are suspending.
2217 */
2218 if (!did_some_progress && pm_suspended_storage())
2219 return 0;
2220
11e33f6a
MG
2221 /*
2222 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2223 * means __GFP_NOFAIL, but that may not be true in other
2224 * implementations.
2225 */
2226 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2227 return 1;
2228
2229 /*
2230 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2231 * specified, then we retry until we no longer reclaim any pages
2232 * (above), or we've reclaimed an order of pages at least as
2233 * large as the allocation's order. In both cases, if the
2234 * allocation still fails, we stop retrying.
2235 */
2236 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2237 return 1;
cf40bd16 2238
11e33f6a
MG
2239 return 0;
2240}
933e312e 2241
11e33f6a
MG
2242static inline struct page *
2243__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2244 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2245 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2246 int classzone_idx, int migratetype)
11e33f6a
MG
2247{
2248 struct page *page;
2249
e972a070
DR
2250 /* Acquire the per-zone oom lock for each zone */
2251 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
11e33f6a 2252 schedule_timeout_uninterruptible(1);
1da177e4
LT
2253 return NULL;
2254 }
6b1de916 2255
11e33f6a
MG
2256 /*
2257 * Go through the zonelist yet one more time, keep very high watermark
2258 * here, this is only to catch a parallel oom killing, we must fail if
2259 * we're still under heavy pressure.
2260 */
2261 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2262 order, zonelist, high_zoneidx,
5117f45d 2263 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2264 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2265 if (page)
11e33f6a
MG
2266 goto out;
2267
4365a567
KH
2268 if (!(gfp_mask & __GFP_NOFAIL)) {
2269 /* The OOM killer will not help higher order allocs */
2270 if (order > PAGE_ALLOC_COSTLY_ORDER)
2271 goto out;
03668b3c
DR
2272 /* The OOM killer does not needlessly kill tasks for lowmem */
2273 if (high_zoneidx < ZONE_NORMAL)
2274 goto out;
4365a567
KH
2275 /*
2276 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2277 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2278 * The caller should handle page allocation failure by itself if
2279 * it specifies __GFP_THISNODE.
2280 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2281 */
2282 if (gfp_mask & __GFP_THISNODE)
2283 goto out;
2284 }
11e33f6a 2285 /* Exhausted what can be done so it's blamo time */
08ab9b10 2286 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2287
2288out:
e972a070 2289 oom_zonelist_unlock(zonelist, gfp_mask);
11e33f6a
MG
2290 return page;
2291}
2292
56de7263
MG
2293#ifdef CONFIG_COMPACTION
2294/* Try memory compaction for high-order allocations before reclaim */
2295static struct page *
2296__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
2298 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2299 int classzone_idx, int migratetype, enum migrate_mode mode,
c67fe375 2300 bool *contended_compaction, bool *deferred_compaction,
66199712 2301 unsigned long *did_some_progress)
56de7263 2302{
66199712 2303 if (!order)
56de7263
MG
2304 return NULL;
2305
aff62249 2306 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2307 *deferred_compaction = true;
2308 return NULL;
2309 }
2310
c06b1fca 2311 current->flags |= PF_MEMALLOC;
56de7263 2312 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2313 nodemask, mode,
8fb74b9f 2314 contended_compaction);
c06b1fca 2315 current->flags &= ~PF_MEMALLOC;
56de7263 2316
1fb3f8ca 2317 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2318 struct page *page;
2319
56de7263
MG
2320 /* Page migration frees to the PCP lists but we want merging */
2321 drain_pages(get_cpu());
2322 put_cpu();
2323
2324 page = get_page_from_freelist(gfp_mask, nodemask,
2325 order, zonelist, high_zoneidx,
cfd19c5a 2326 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2327 preferred_zone, classzone_idx, migratetype);
56de7263 2328 if (page) {
62997027 2329 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2330 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2331 count_vm_event(COMPACTSUCCESS);
2332 return page;
2333 }
2334
2335 /*
2336 * It's bad if compaction run occurs and fails.
2337 * The most likely reason is that pages exist,
2338 * but not enough to satisfy watermarks.
2339 */
2340 count_vm_event(COMPACTFAIL);
66199712
MG
2341
2342 /*
2343 * As async compaction considers a subset of pageblocks, only
2344 * defer if the failure was a sync compaction failure.
2345 */
e0b9daeb 2346 if (mode != MIGRATE_ASYNC)
aff62249 2347 defer_compaction(preferred_zone, order);
56de7263
MG
2348
2349 cond_resched();
2350 }
2351
2352 return NULL;
2353}
2354#else
2355static inline struct page *
2356__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2357 struct zonelist *zonelist, enum zone_type high_zoneidx,
2358 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374
MG
2359 int classzone_idx, int migratetype,
2360 enum migrate_mode mode, bool *contended_compaction,
e0b9daeb 2361 bool *deferred_compaction, unsigned long *did_some_progress)
56de7263
MG
2362{
2363 return NULL;
2364}
2365#endif /* CONFIG_COMPACTION */
2366
bba90710
MS
2367/* Perform direct synchronous page reclaim */
2368static int
2369__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2370 nodemask_t *nodemask)
11e33f6a 2371{
11e33f6a 2372 struct reclaim_state reclaim_state;
bba90710 2373 int progress;
11e33f6a
MG
2374
2375 cond_resched();
2376
2377 /* We now go into synchronous reclaim */
2378 cpuset_memory_pressure_bump();
c06b1fca 2379 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2380 lockdep_set_current_reclaim_state(gfp_mask);
2381 reclaim_state.reclaimed_slab = 0;
c06b1fca 2382 current->reclaim_state = &reclaim_state;
11e33f6a 2383
bba90710 2384 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2385
c06b1fca 2386 current->reclaim_state = NULL;
11e33f6a 2387 lockdep_clear_current_reclaim_state();
c06b1fca 2388 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2389
2390 cond_resched();
2391
bba90710
MS
2392 return progress;
2393}
2394
2395/* The really slow allocator path where we enter direct reclaim */
2396static inline struct page *
2397__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2398 struct zonelist *zonelist, enum zone_type high_zoneidx,
2399 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2400 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2401{
2402 struct page *page = NULL;
2403 bool drained = false;
2404
2405 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2406 nodemask);
9ee493ce
MG
2407 if (unlikely(!(*did_some_progress)))
2408 return NULL;
11e33f6a 2409
76d3fbf8 2410 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2411 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2412 zlc_clear_zones_full(zonelist);
2413
9ee493ce
MG
2414retry:
2415 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2416 zonelist, high_zoneidx,
cfd19c5a 2417 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2418 preferred_zone, classzone_idx,
2419 migratetype);
9ee493ce
MG
2420
2421 /*
2422 * If an allocation failed after direct reclaim, it could be because
2423 * pages are pinned on the per-cpu lists. Drain them and try again
2424 */
2425 if (!page && !drained) {
2426 drain_all_pages();
2427 drained = true;
2428 goto retry;
2429 }
2430
11e33f6a
MG
2431 return page;
2432}
2433
1da177e4 2434/*
11e33f6a
MG
2435 * This is called in the allocator slow-path if the allocation request is of
2436 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2437 */
11e33f6a
MG
2438static inline struct page *
2439__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2440 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2441 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2442 int classzone_idx, int migratetype)
11e33f6a
MG
2443{
2444 struct page *page;
2445
2446 do {
2447 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2448 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2449 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2450
2451 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2452 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2453 } while (!page && (gfp_mask & __GFP_NOFAIL));
2454
2455 return page;
2456}
2457
3a025760
JW
2458static void wake_all_kswapds(unsigned int order,
2459 struct zonelist *zonelist,
2460 enum zone_type high_zoneidx,
2461 struct zone *preferred_zone)
2462{
2463 struct zoneref *z;
2464 struct zone *zone;
2465
2466 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2467 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2468}
2469
341ce06f
PZ
2470static inline int
2471gfp_to_alloc_flags(gfp_t gfp_mask)
2472{
341ce06f 2473 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2474 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2475
a56f57ff 2476 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2477 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2478
341ce06f
PZ
2479 /*
2480 * The caller may dip into page reserves a bit more if the caller
2481 * cannot run direct reclaim, or if the caller has realtime scheduling
2482 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2483 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2484 */
e6223a3b 2485 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2486
b104a35d 2487 if (atomic) {
5c3240d9 2488 /*
b104a35d
DR
2489 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2490 * if it can't schedule.
5c3240d9 2491 */
b104a35d 2492 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2493 alloc_flags |= ALLOC_HARDER;
523b9458 2494 /*
b104a35d
DR
2495 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2496 * comment for __cpuset_node_allowed_softwall().
523b9458 2497 */
341ce06f 2498 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2499 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2500 alloc_flags |= ALLOC_HARDER;
2501
b37f1dd0
MG
2502 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2503 if (gfp_mask & __GFP_MEMALLOC)
2504 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2505 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2506 alloc_flags |= ALLOC_NO_WATERMARKS;
2507 else if (!in_interrupt() &&
2508 ((current->flags & PF_MEMALLOC) ||
2509 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2510 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2511 }
d95ea5d1
BZ
2512#ifdef CONFIG_CMA
2513 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2514 alloc_flags |= ALLOC_CMA;
2515#endif
341ce06f
PZ
2516 return alloc_flags;
2517}
2518
072bb0aa
MG
2519bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2520{
b37f1dd0 2521 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2522}
2523
11e33f6a
MG
2524static inline struct page *
2525__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2526 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2527 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2528 int classzone_idx, int migratetype)
11e33f6a
MG
2529{
2530 const gfp_t wait = gfp_mask & __GFP_WAIT;
2531 struct page *page = NULL;
2532 int alloc_flags;
2533 unsigned long pages_reclaimed = 0;
2534 unsigned long did_some_progress;
e0b9daeb 2535 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2536 bool deferred_compaction = false;
c67fe375 2537 bool contended_compaction = false;
1da177e4 2538
72807a74
MG
2539 /*
2540 * In the slowpath, we sanity check order to avoid ever trying to
2541 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2542 * be using allocators in order of preference for an area that is
2543 * too large.
2544 */
1fc28b70
MG
2545 if (order >= MAX_ORDER) {
2546 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2547 return NULL;
1fc28b70 2548 }
1da177e4 2549
952f3b51
CL
2550 /*
2551 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2552 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2553 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2554 * using a larger set of nodes after it has established that the
2555 * allowed per node queues are empty and that nodes are
2556 * over allocated.
2557 */
3a025760
JW
2558 if (IS_ENABLED(CONFIG_NUMA) &&
2559 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2560 goto nopage;
2561
cc4a6851 2562restart:
3a025760
JW
2563 if (!(gfp_mask & __GFP_NO_KSWAPD))
2564 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2565
9bf2229f 2566 /*
7fb1d9fc
RS
2567 * OK, we're below the kswapd watermark and have kicked background
2568 * reclaim. Now things get more complex, so set up alloc_flags according
2569 * to how we want to proceed.
9bf2229f 2570 */
341ce06f 2571 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2572
f33261d7
DR
2573 /*
2574 * Find the true preferred zone if the allocation is unconstrained by
2575 * cpusets.
2576 */
d8846374
MG
2577 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2578 struct zoneref *preferred_zoneref;
2579 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2580 NULL, &preferred_zone);
2581 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2582 }
f33261d7 2583
cfa54a0f 2584rebalance:
341ce06f 2585 /* This is the last chance, in general, before the goto nopage. */
19770b32 2586 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2587 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2588 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2589 if (page)
2590 goto got_pg;
1da177e4 2591
11e33f6a 2592 /* Allocate without watermarks if the context allows */
341ce06f 2593 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2594 /*
2595 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2596 * the allocation is high priority and these type of
2597 * allocations are system rather than user orientated
2598 */
2599 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2600
341ce06f
PZ
2601 page = __alloc_pages_high_priority(gfp_mask, order,
2602 zonelist, high_zoneidx, nodemask,
d8846374 2603 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2604 if (page) {
341ce06f 2605 goto got_pg;
cfd19c5a 2606 }
1da177e4
LT
2607 }
2608
2609 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2610 if (!wait) {
2611 /*
2612 * All existing users of the deprecated __GFP_NOFAIL are
2613 * blockable, so warn of any new users that actually allow this
2614 * type of allocation to fail.
2615 */
2616 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2617 goto nopage;
aed0a0e3 2618 }
1da177e4 2619
341ce06f 2620 /* Avoid recursion of direct reclaim */
c06b1fca 2621 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2622 goto nopage;
2623
6583bb64
DR
2624 /* Avoid allocations with no watermarks from looping endlessly */
2625 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2626 goto nopage;
2627
77f1fe6b
MG
2628 /*
2629 * Try direct compaction. The first pass is asynchronous. Subsequent
2630 * attempts after direct reclaim are synchronous
2631 */
e0b9daeb
DR
2632 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2633 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2634 preferred_zone,
2635 classzone_idx, migratetype,
e0b9daeb 2636 migration_mode, &contended_compaction,
66199712
MG
2637 &deferred_compaction,
2638 &did_some_progress);
56de7263
MG
2639 if (page)
2640 goto got_pg;
75f30861 2641
31f8d42d
LT
2642 /*
2643 * If compaction is deferred for high-order allocations, it is because
2644 * sync compaction recently failed. In this is the case and the caller
2645 * requested a movable allocation that does not heavily disrupt the
2646 * system then fail the allocation instead of entering direct reclaim.
2647 */
2648 if ((deferred_compaction || contended_compaction) &&
caf49191 2649 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2650 goto nopage;
66199712 2651
8fe78048
DR
2652 /*
2653 * It can become very expensive to allocate transparent hugepages at
2654 * fault, so use asynchronous memory compaction for THP unless it is
2655 * khugepaged trying to collapse.
2656 */
2657 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2658 (current->flags & PF_KTHREAD))
2659 migration_mode = MIGRATE_SYNC_LIGHT;
2660
11e33f6a
MG
2661 /* Try direct reclaim and then allocating */
2662 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2663 zonelist, high_zoneidx,
2664 nodemask,
5117f45d 2665 alloc_flags, preferred_zone,
d8846374
MG
2666 classzone_idx, migratetype,
2667 &did_some_progress);
11e33f6a
MG
2668 if (page)
2669 goto got_pg;
1da177e4 2670
e33c3b5e 2671 /*
11e33f6a
MG
2672 * If we failed to make any progress reclaiming, then we are
2673 * running out of options and have to consider going OOM
e33c3b5e 2674 */
11e33f6a 2675 if (!did_some_progress) {
b9921ecd 2676 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2677 if (oom_killer_disabled)
2678 goto nopage;
29fd66d2
DR
2679 /* Coredumps can quickly deplete all memory reserves */
2680 if ((current->flags & PF_DUMPCORE) &&
2681 !(gfp_mask & __GFP_NOFAIL))
2682 goto nopage;
11e33f6a
MG
2683 page = __alloc_pages_may_oom(gfp_mask, order,
2684 zonelist, high_zoneidx,
3dd28266 2685 nodemask, preferred_zone,
d8846374 2686 classzone_idx, migratetype);
11e33f6a
MG
2687 if (page)
2688 goto got_pg;
1da177e4 2689
03668b3c
DR
2690 if (!(gfp_mask & __GFP_NOFAIL)) {
2691 /*
2692 * The oom killer is not called for high-order
2693 * allocations that may fail, so if no progress
2694 * is being made, there are no other options and
2695 * retrying is unlikely to help.
2696 */
2697 if (order > PAGE_ALLOC_COSTLY_ORDER)
2698 goto nopage;
2699 /*
2700 * The oom killer is not called for lowmem
2701 * allocations to prevent needlessly killing
2702 * innocent tasks.
2703 */
2704 if (high_zoneidx < ZONE_NORMAL)
2705 goto nopage;
2706 }
e2c55dc8 2707
ff0ceb9d
DR
2708 goto restart;
2709 }
1da177e4
LT
2710 }
2711
11e33f6a 2712 /* Check if we should retry the allocation */
a41f24ea 2713 pages_reclaimed += did_some_progress;
f90ac398
MG
2714 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2715 pages_reclaimed)) {
11e33f6a 2716 /* Wait for some write requests to complete then retry */
0e093d99 2717 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2718 goto rebalance;
3e7d3449
MG
2719 } else {
2720 /*
2721 * High-order allocations do not necessarily loop after
2722 * direct reclaim and reclaim/compaction depends on compaction
2723 * being called after reclaim so call directly if necessary
2724 */
e0b9daeb
DR
2725 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2726 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2727 preferred_zone,
2728 classzone_idx, migratetype,
e0b9daeb 2729 migration_mode, &contended_compaction,
66199712
MG
2730 &deferred_compaction,
2731 &did_some_progress);
3e7d3449
MG
2732 if (page)
2733 goto got_pg;
1da177e4
LT
2734 }
2735
2736nopage:
a238ab5b 2737 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2738 return page;
1da177e4 2739got_pg:
b1eeab67
VN
2740 if (kmemcheck_enabled)
2741 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2742
072bb0aa 2743 return page;
1da177e4 2744}
11e33f6a
MG
2745
2746/*
2747 * This is the 'heart' of the zoned buddy allocator.
2748 */
2749struct page *
2750__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2751 struct zonelist *zonelist, nodemask_t *nodemask)
2752{
2753 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2754 struct zone *preferred_zone;
d8846374 2755 struct zoneref *preferred_zoneref;
cc9a6c87 2756 struct page *page = NULL;
3dd28266 2757 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2758 unsigned int cpuset_mems_cookie;
3a025760 2759 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2760 int classzone_idx;
11e33f6a 2761
dcce284a
BH
2762 gfp_mask &= gfp_allowed_mask;
2763
11e33f6a
MG
2764 lockdep_trace_alloc(gfp_mask);
2765
2766 might_sleep_if(gfp_mask & __GFP_WAIT);
2767
2768 if (should_fail_alloc_page(gfp_mask, order))
2769 return NULL;
2770
2771 /*
2772 * Check the zones suitable for the gfp_mask contain at least one
2773 * valid zone. It's possible to have an empty zonelist as a result
2774 * of GFP_THISNODE and a memoryless node
2775 */
2776 if (unlikely(!zonelist->_zonerefs->zone))
2777 return NULL;
2778
21bb9bd1
VB
2779 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2780 alloc_flags |= ALLOC_CMA;
2781
cc9a6c87 2782retry_cpuset:
d26914d1 2783 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2784
5117f45d 2785 /* The preferred zone is used for statistics later */
d8846374 2786 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2787 nodemask ? : &cpuset_current_mems_allowed,
2788 &preferred_zone);
cc9a6c87
MG
2789 if (!preferred_zone)
2790 goto out;
d8846374 2791 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2792
2793 /* First allocation attempt */
11e33f6a 2794 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2795 zonelist, high_zoneidx, alloc_flags,
d8846374 2796 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2797 if (unlikely(!page)) {
2798 /*
2799 * Runtime PM, block IO and its error handling path
2800 * can deadlock because I/O on the device might not
2801 * complete.
2802 */
2803 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2804 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2805 zonelist, high_zoneidx, nodemask,
d8846374 2806 preferred_zone, classzone_idx, migratetype);
21caf2fc 2807 }
11e33f6a 2808
4b4f278c 2809 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2810
2811out:
2812 /*
2813 * When updating a task's mems_allowed, it is possible to race with
2814 * parallel threads in such a way that an allocation can fail while
2815 * the mask is being updated. If a page allocation is about to fail,
2816 * check if the cpuset changed during allocation and if so, retry.
2817 */
d26914d1 2818 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2819 goto retry_cpuset;
2820
11e33f6a 2821 return page;
1da177e4 2822}
d239171e 2823EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2824
2825/*
2826 * Common helper functions.
2827 */
920c7a5d 2828unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2829{
945a1113
AM
2830 struct page *page;
2831
2832 /*
2833 * __get_free_pages() returns a 32-bit address, which cannot represent
2834 * a highmem page
2835 */
2836 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2837
1da177e4
LT
2838 page = alloc_pages(gfp_mask, order);
2839 if (!page)
2840 return 0;
2841 return (unsigned long) page_address(page);
2842}
1da177e4
LT
2843EXPORT_SYMBOL(__get_free_pages);
2844
920c7a5d 2845unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2846{
945a1113 2847 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2848}
1da177e4
LT
2849EXPORT_SYMBOL(get_zeroed_page);
2850
920c7a5d 2851void __free_pages(struct page *page, unsigned int order)
1da177e4 2852{
b5810039 2853 if (put_page_testzero(page)) {
1da177e4 2854 if (order == 0)
b745bc85 2855 free_hot_cold_page(page, false);
1da177e4
LT
2856 else
2857 __free_pages_ok(page, order);
2858 }
2859}
2860
2861EXPORT_SYMBOL(__free_pages);
2862
920c7a5d 2863void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2864{
2865 if (addr != 0) {
725d704e 2866 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2867 __free_pages(virt_to_page((void *)addr), order);
2868 }
2869}
2870
2871EXPORT_SYMBOL(free_pages);
2872
6a1a0d3b 2873/*
52383431
VD
2874 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2875 * of the current memory cgroup.
6a1a0d3b 2876 *
52383431
VD
2877 * It should be used when the caller would like to use kmalloc, but since the
2878 * allocation is large, it has to fall back to the page allocator.
2879 */
2880struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2881{
2882 struct page *page;
2883 struct mem_cgroup *memcg = NULL;
2884
2885 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2886 return NULL;
2887 page = alloc_pages(gfp_mask, order);
2888 memcg_kmem_commit_charge(page, memcg, order);
2889 return page;
2890}
2891
2892struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2893{
2894 struct page *page;
2895 struct mem_cgroup *memcg = NULL;
2896
2897 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2898 return NULL;
2899 page = alloc_pages_node(nid, gfp_mask, order);
2900 memcg_kmem_commit_charge(page, memcg, order);
2901 return page;
2902}
2903
2904/*
2905 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2906 * alloc_kmem_pages.
6a1a0d3b 2907 */
52383431 2908void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2909{
2910 memcg_kmem_uncharge_pages(page, order);
2911 __free_pages(page, order);
2912}
2913
52383431 2914void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2915{
2916 if (addr != 0) {
2917 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2918 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2919 }
2920}
2921
ee85c2e1
AK
2922static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2923{
2924 if (addr) {
2925 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2926 unsigned long used = addr + PAGE_ALIGN(size);
2927
2928 split_page(virt_to_page((void *)addr), order);
2929 while (used < alloc_end) {
2930 free_page(used);
2931 used += PAGE_SIZE;
2932 }
2933 }
2934 return (void *)addr;
2935}
2936
2be0ffe2
TT
2937/**
2938 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2939 * @size: the number of bytes to allocate
2940 * @gfp_mask: GFP flags for the allocation
2941 *
2942 * This function is similar to alloc_pages(), except that it allocates the
2943 * minimum number of pages to satisfy the request. alloc_pages() can only
2944 * allocate memory in power-of-two pages.
2945 *
2946 * This function is also limited by MAX_ORDER.
2947 *
2948 * Memory allocated by this function must be released by free_pages_exact().
2949 */
2950void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2951{
2952 unsigned int order = get_order(size);
2953 unsigned long addr;
2954
2955 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2956 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2957}
2958EXPORT_SYMBOL(alloc_pages_exact);
2959
ee85c2e1
AK
2960/**
2961 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2962 * pages on a node.
b5e6ab58 2963 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2964 * @size: the number of bytes to allocate
2965 * @gfp_mask: GFP flags for the allocation
2966 *
2967 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2968 * back.
2969 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2970 * but is not exact.
2971 */
e1931811 2972void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
2973{
2974 unsigned order = get_order(size);
2975 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2976 if (!p)
2977 return NULL;
2978 return make_alloc_exact((unsigned long)page_address(p), order, size);
2979}
ee85c2e1 2980
2be0ffe2
TT
2981/**
2982 * free_pages_exact - release memory allocated via alloc_pages_exact()
2983 * @virt: the value returned by alloc_pages_exact.
2984 * @size: size of allocation, same value as passed to alloc_pages_exact().
2985 *
2986 * Release the memory allocated by a previous call to alloc_pages_exact.
2987 */
2988void free_pages_exact(void *virt, size_t size)
2989{
2990 unsigned long addr = (unsigned long)virt;
2991 unsigned long end = addr + PAGE_ALIGN(size);
2992
2993 while (addr < end) {
2994 free_page(addr);
2995 addr += PAGE_SIZE;
2996 }
2997}
2998EXPORT_SYMBOL(free_pages_exact);
2999
e0fb5815
ZY
3000/**
3001 * nr_free_zone_pages - count number of pages beyond high watermark
3002 * @offset: The zone index of the highest zone
3003 *
3004 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3005 * high watermark within all zones at or below a given zone index. For each
3006 * zone, the number of pages is calculated as:
834405c3 3007 * managed_pages - high_pages
e0fb5815 3008 */
ebec3862 3009static unsigned long nr_free_zone_pages(int offset)
1da177e4 3010{
dd1a239f 3011 struct zoneref *z;
54a6eb5c
MG
3012 struct zone *zone;
3013
e310fd43 3014 /* Just pick one node, since fallback list is circular */
ebec3862 3015 unsigned long sum = 0;
1da177e4 3016
0e88460d 3017 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3018
54a6eb5c 3019 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3020 unsigned long size = zone->managed_pages;
41858966 3021 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3022 if (size > high)
3023 sum += size - high;
1da177e4
LT
3024 }
3025
3026 return sum;
3027}
3028
e0fb5815
ZY
3029/**
3030 * nr_free_buffer_pages - count number of pages beyond high watermark
3031 *
3032 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3033 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3034 */
ebec3862 3035unsigned long nr_free_buffer_pages(void)
1da177e4 3036{
af4ca457 3037 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3038}
c2f1a551 3039EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3040
e0fb5815
ZY
3041/**
3042 * nr_free_pagecache_pages - count number of pages beyond high watermark
3043 *
3044 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3045 * high watermark within all zones.
1da177e4 3046 */
ebec3862 3047unsigned long nr_free_pagecache_pages(void)
1da177e4 3048{
2a1e274a 3049 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3050}
08e0f6a9
CL
3051
3052static inline void show_node(struct zone *zone)
1da177e4 3053{
e5adfffc 3054 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3055 printk("Node %d ", zone_to_nid(zone));
1da177e4 3056}
1da177e4 3057
1da177e4
LT
3058void si_meminfo(struct sysinfo *val)
3059{
3060 val->totalram = totalram_pages;
cc7452b6 3061 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3062 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3063 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3064 val->totalhigh = totalhigh_pages;
3065 val->freehigh = nr_free_highpages();
1da177e4
LT
3066 val->mem_unit = PAGE_SIZE;
3067}
3068
3069EXPORT_SYMBOL(si_meminfo);
3070
3071#ifdef CONFIG_NUMA
3072void si_meminfo_node(struct sysinfo *val, int nid)
3073{
cdd91a77
JL
3074 int zone_type; /* needs to be signed */
3075 unsigned long managed_pages = 0;
1da177e4
LT
3076 pg_data_t *pgdat = NODE_DATA(nid);
3077
cdd91a77
JL
3078 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3079 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3080 val->totalram = managed_pages;
cc7452b6 3081 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3082 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3083#ifdef CONFIG_HIGHMEM
b40da049 3084 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3085 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3086 NR_FREE_PAGES);
98d2b0eb
CL
3087#else
3088 val->totalhigh = 0;
3089 val->freehigh = 0;
3090#endif
1da177e4
LT
3091 val->mem_unit = PAGE_SIZE;
3092}
3093#endif
3094
ddd588b5 3095/*
7bf02ea2
DR
3096 * Determine whether the node should be displayed or not, depending on whether
3097 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3098 */
7bf02ea2 3099bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3100{
3101 bool ret = false;
cc9a6c87 3102 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3103
3104 if (!(flags & SHOW_MEM_FILTER_NODES))
3105 goto out;
3106
cc9a6c87 3107 do {
d26914d1 3108 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3109 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3110 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3111out:
3112 return ret;
3113}
3114
1da177e4
LT
3115#define K(x) ((x) << (PAGE_SHIFT-10))
3116
377e4f16
RV
3117static void show_migration_types(unsigned char type)
3118{
3119 static const char types[MIGRATE_TYPES] = {
3120 [MIGRATE_UNMOVABLE] = 'U',
3121 [MIGRATE_RECLAIMABLE] = 'E',
3122 [MIGRATE_MOVABLE] = 'M',
3123 [MIGRATE_RESERVE] = 'R',
3124#ifdef CONFIG_CMA
3125 [MIGRATE_CMA] = 'C',
3126#endif
194159fb 3127#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3128 [MIGRATE_ISOLATE] = 'I',
194159fb 3129#endif
377e4f16
RV
3130 };
3131 char tmp[MIGRATE_TYPES + 1];
3132 char *p = tmp;
3133 int i;
3134
3135 for (i = 0; i < MIGRATE_TYPES; i++) {
3136 if (type & (1 << i))
3137 *p++ = types[i];
3138 }
3139
3140 *p = '\0';
3141 printk("(%s) ", tmp);
3142}
3143
1da177e4
LT
3144/*
3145 * Show free area list (used inside shift_scroll-lock stuff)
3146 * We also calculate the percentage fragmentation. We do this by counting the
3147 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3148 * Suppresses nodes that are not allowed by current's cpuset if
3149 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3150 */
7bf02ea2 3151void show_free_areas(unsigned int filter)
1da177e4 3152{
c7241913 3153 int cpu;
1da177e4
LT
3154 struct zone *zone;
3155
ee99c71c 3156 for_each_populated_zone(zone) {
7bf02ea2 3157 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3158 continue;
c7241913
JS
3159 show_node(zone);
3160 printk("%s per-cpu:\n", zone->name);
1da177e4 3161
6b482c67 3162 for_each_online_cpu(cpu) {
1da177e4
LT
3163 struct per_cpu_pageset *pageset;
3164
99dcc3e5 3165 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3166
3dfa5721
CL
3167 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3168 cpu, pageset->pcp.high,
3169 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3170 }
3171 }
3172
a731286d
KM
3173 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3174 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3175 " unevictable:%lu"
b76146ed 3176 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3177 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3178 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3179 " free_cma:%lu\n",
4f98a2fe 3180 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3181 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3182 global_page_state(NR_ISOLATED_ANON),
3183 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3184 global_page_state(NR_INACTIVE_FILE),
a731286d 3185 global_page_state(NR_ISOLATED_FILE),
7b854121 3186 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3187 global_page_state(NR_FILE_DIRTY),
ce866b34 3188 global_page_state(NR_WRITEBACK),
fd39fc85 3189 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3190 global_page_state(NR_FREE_PAGES),
3701b033
KM
3191 global_page_state(NR_SLAB_RECLAIMABLE),
3192 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3193 global_page_state(NR_FILE_MAPPED),
4b02108a 3194 global_page_state(NR_SHMEM),
a25700a5 3195 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3196 global_page_state(NR_BOUNCE),
3197 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3198
ee99c71c 3199 for_each_populated_zone(zone) {
1da177e4
LT
3200 int i;
3201
7bf02ea2 3202 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3203 continue;
1da177e4
LT
3204 show_node(zone);
3205 printk("%s"
3206 " free:%lukB"
3207 " min:%lukB"
3208 " low:%lukB"
3209 " high:%lukB"
4f98a2fe
RR
3210 " active_anon:%lukB"
3211 " inactive_anon:%lukB"
3212 " active_file:%lukB"
3213 " inactive_file:%lukB"
7b854121 3214 " unevictable:%lukB"
a731286d
KM
3215 " isolated(anon):%lukB"
3216 " isolated(file):%lukB"
1da177e4 3217 " present:%lukB"
9feedc9d 3218 " managed:%lukB"
4a0aa73f
KM
3219 " mlocked:%lukB"
3220 " dirty:%lukB"
3221 " writeback:%lukB"
3222 " mapped:%lukB"
4b02108a 3223 " shmem:%lukB"
4a0aa73f
KM
3224 " slab_reclaimable:%lukB"
3225 " slab_unreclaimable:%lukB"
c6a7f572 3226 " kernel_stack:%lukB"
4a0aa73f
KM
3227 " pagetables:%lukB"
3228 " unstable:%lukB"
3229 " bounce:%lukB"
d1ce749a 3230 " free_cma:%lukB"
4a0aa73f 3231 " writeback_tmp:%lukB"
1da177e4
LT
3232 " pages_scanned:%lu"
3233 " all_unreclaimable? %s"
3234 "\n",
3235 zone->name,
88f5acf8 3236 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3237 K(min_wmark_pages(zone)),
3238 K(low_wmark_pages(zone)),
3239 K(high_wmark_pages(zone)),
4f98a2fe
RR
3240 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3241 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3242 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3243 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3244 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3245 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3246 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3247 K(zone->present_pages),
9feedc9d 3248 K(zone->managed_pages),
4a0aa73f
KM
3249 K(zone_page_state(zone, NR_MLOCK)),
3250 K(zone_page_state(zone, NR_FILE_DIRTY)),
3251 K(zone_page_state(zone, NR_WRITEBACK)),
3252 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3253 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3254 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3255 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3256 zone_page_state(zone, NR_KERNEL_STACK) *
3257 THREAD_SIZE / 1024,
4a0aa73f
KM
3258 K(zone_page_state(zone, NR_PAGETABLE)),
3259 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3260 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3261 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3262 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3263 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3264 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3265 );
3266 printk("lowmem_reserve[]:");
3267 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3268 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3269 printk("\n");
3270 }
3271
ee99c71c 3272 for_each_populated_zone(zone) {
b8af2941 3273 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3274 unsigned char types[MAX_ORDER];
1da177e4 3275
7bf02ea2 3276 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3277 continue;
1da177e4
LT
3278 show_node(zone);
3279 printk("%s: ", zone->name);
1da177e4
LT
3280
3281 spin_lock_irqsave(&zone->lock, flags);
3282 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3283 struct free_area *area = &zone->free_area[order];
3284 int type;
3285
3286 nr[order] = area->nr_free;
8f9de51a 3287 total += nr[order] << order;
377e4f16
RV
3288
3289 types[order] = 0;
3290 for (type = 0; type < MIGRATE_TYPES; type++) {
3291 if (!list_empty(&area->free_list[type]))
3292 types[order] |= 1 << type;
3293 }
1da177e4
LT
3294 }
3295 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3296 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3297 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3298 if (nr[order])
3299 show_migration_types(types[order]);
3300 }
1da177e4
LT
3301 printk("= %lukB\n", K(total));
3302 }
3303
949f7ec5
DR
3304 hugetlb_show_meminfo();
3305
e6f3602d
LW
3306 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3307
1da177e4
LT
3308 show_swap_cache_info();
3309}
3310
19770b32
MG
3311static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3312{
3313 zoneref->zone = zone;
3314 zoneref->zone_idx = zone_idx(zone);
3315}
3316
1da177e4
LT
3317/*
3318 * Builds allocation fallback zone lists.
1a93205b
CL
3319 *
3320 * Add all populated zones of a node to the zonelist.
1da177e4 3321 */
f0c0b2b8 3322static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3323 int nr_zones)
1da177e4 3324{
1a93205b 3325 struct zone *zone;
bc732f1d 3326 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3327
3328 do {
2f6726e5 3329 zone_type--;
070f8032 3330 zone = pgdat->node_zones + zone_type;
1a93205b 3331 if (populated_zone(zone)) {
dd1a239f
MG
3332 zoneref_set_zone(zone,
3333 &zonelist->_zonerefs[nr_zones++]);
070f8032 3334 check_highest_zone(zone_type);
1da177e4 3335 }
2f6726e5 3336 } while (zone_type);
bc732f1d 3337
070f8032 3338 return nr_zones;
1da177e4
LT
3339}
3340
f0c0b2b8
KH
3341
3342/*
3343 * zonelist_order:
3344 * 0 = automatic detection of better ordering.
3345 * 1 = order by ([node] distance, -zonetype)
3346 * 2 = order by (-zonetype, [node] distance)
3347 *
3348 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3349 * the same zonelist. So only NUMA can configure this param.
3350 */
3351#define ZONELIST_ORDER_DEFAULT 0
3352#define ZONELIST_ORDER_NODE 1
3353#define ZONELIST_ORDER_ZONE 2
3354
3355/* zonelist order in the kernel.
3356 * set_zonelist_order() will set this to NODE or ZONE.
3357 */
3358static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3359static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3360
3361
1da177e4 3362#ifdef CONFIG_NUMA
f0c0b2b8
KH
3363/* The value user specified ....changed by config */
3364static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3365/* string for sysctl */
3366#define NUMA_ZONELIST_ORDER_LEN 16
3367char numa_zonelist_order[16] = "default";
3368
3369/*
3370 * interface for configure zonelist ordering.
3371 * command line option "numa_zonelist_order"
3372 * = "[dD]efault - default, automatic configuration.
3373 * = "[nN]ode - order by node locality, then by zone within node
3374 * = "[zZ]one - order by zone, then by locality within zone
3375 */
3376
3377static int __parse_numa_zonelist_order(char *s)
3378{
3379 if (*s == 'd' || *s == 'D') {
3380 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3381 } else if (*s == 'n' || *s == 'N') {
3382 user_zonelist_order = ZONELIST_ORDER_NODE;
3383 } else if (*s == 'z' || *s == 'Z') {
3384 user_zonelist_order = ZONELIST_ORDER_ZONE;
3385 } else {
3386 printk(KERN_WARNING
3387 "Ignoring invalid numa_zonelist_order value: "
3388 "%s\n", s);
3389 return -EINVAL;
3390 }
3391 return 0;
3392}
3393
3394static __init int setup_numa_zonelist_order(char *s)
3395{
ecb256f8
VL
3396 int ret;
3397
3398 if (!s)
3399 return 0;
3400
3401 ret = __parse_numa_zonelist_order(s);
3402 if (ret == 0)
3403 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3404
3405 return ret;
f0c0b2b8
KH
3406}
3407early_param("numa_zonelist_order", setup_numa_zonelist_order);
3408
3409/*
3410 * sysctl handler for numa_zonelist_order
3411 */
cccad5b9 3412int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3413 void __user *buffer, size_t *length,
f0c0b2b8
KH
3414 loff_t *ppos)
3415{
3416 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3417 int ret;
443c6f14 3418 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3419
443c6f14 3420 mutex_lock(&zl_order_mutex);
dacbde09
CG
3421 if (write) {
3422 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3423 ret = -EINVAL;
3424 goto out;
3425 }
3426 strcpy(saved_string, (char *)table->data);
3427 }
8d65af78 3428 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3429 if (ret)
443c6f14 3430 goto out;
f0c0b2b8
KH
3431 if (write) {
3432 int oldval = user_zonelist_order;
dacbde09
CG
3433
3434 ret = __parse_numa_zonelist_order((char *)table->data);
3435 if (ret) {
f0c0b2b8
KH
3436 /*
3437 * bogus value. restore saved string
3438 */
dacbde09 3439 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3440 NUMA_ZONELIST_ORDER_LEN);
3441 user_zonelist_order = oldval;
4eaf3f64
HL
3442 } else if (oldval != user_zonelist_order) {
3443 mutex_lock(&zonelists_mutex);
9adb62a5 3444 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3445 mutex_unlock(&zonelists_mutex);
3446 }
f0c0b2b8 3447 }
443c6f14
AK
3448out:
3449 mutex_unlock(&zl_order_mutex);
3450 return ret;
f0c0b2b8
KH
3451}
3452
3453
62bc62a8 3454#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3455static int node_load[MAX_NUMNODES];
3456
1da177e4 3457/**
4dc3b16b 3458 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3459 * @node: node whose fallback list we're appending
3460 * @used_node_mask: nodemask_t of already used nodes
3461 *
3462 * We use a number of factors to determine which is the next node that should
3463 * appear on a given node's fallback list. The node should not have appeared
3464 * already in @node's fallback list, and it should be the next closest node
3465 * according to the distance array (which contains arbitrary distance values
3466 * from each node to each node in the system), and should also prefer nodes
3467 * with no CPUs, since presumably they'll have very little allocation pressure
3468 * on them otherwise.
3469 * It returns -1 if no node is found.
3470 */
f0c0b2b8 3471static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3472{
4cf808eb 3473 int n, val;
1da177e4 3474 int min_val = INT_MAX;
00ef2d2f 3475 int best_node = NUMA_NO_NODE;
a70f7302 3476 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3477
4cf808eb
LT
3478 /* Use the local node if we haven't already */
3479 if (!node_isset(node, *used_node_mask)) {
3480 node_set(node, *used_node_mask);
3481 return node;
3482 }
1da177e4 3483
4b0ef1fe 3484 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3485
3486 /* Don't want a node to appear more than once */
3487 if (node_isset(n, *used_node_mask))
3488 continue;
3489
1da177e4
LT
3490 /* Use the distance array to find the distance */
3491 val = node_distance(node, n);
3492
4cf808eb
LT
3493 /* Penalize nodes under us ("prefer the next node") */
3494 val += (n < node);
3495
1da177e4 3496 /* Give preference to headless and unused nodes */
a70f7302
RR
3497 tmp = cpumask_of_node(n);
3498 if (!cpumask_empty(tmp))
1da177e4
LT
3499 val += PENALTY_FOR_NODE_WITH_CPUS;
3500
3501 /* Slight preference for less loaded node */
3502 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3503 val += node_load[n];
3504
3505 if (val < min_val) {
3506 min_val = val;
3507 best_node = n;
3508 }
3509 }
3510
3511 if (best_node >= 0)
3512 node_set(best_node, *used_node_mask);
3513
3514 return best_node;
3515}
3516
f0c0b2b8
KH
3517
3518/*
3519 * Build zonelists ordered by node and zones within node.
3520 * This results in maximum locality--normal zone overflows into local
3521 * DMA zone, if any--but risks exhausting DMA zone.
3522 */
3523static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3524{
f0c0b2b8 3525 int j;
1da177e4 3526 struct zonelist *zonelist;
f0c0b2b8 3527
54a6eb5c 3528 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3529 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3530 ;
bc732f1d 3531 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3532 zonelist->_zonerefs[j].zone = NULL;
3533 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3534}
3535
523b9458
CL
3536/*
3537 * Build gfp_thisnode zonelists
3538 */
3539static void build_thisnode_zonelists(pg_data_t *pgdat)
3540{
523b9458
CL
3541 int j;
3542 struct zonelist *zonelist;
3543
54a6eb5c 3544 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3545 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3546 zonelist->_zonerefs[j].zone = NULL;
3547 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3548}
3549
f0c0b2b8
KH
3550/*
3551 * Build zonelists ordered by zone and nodes within zones.
3552 * This results in conserving DMA zone[s] until all Normal memory is
3553 * exhausted, but results in overflowing to remote node while memory
3554 * may still exist in local DMA zone.
3555 */
3556static int node_order[MAX_NUMNODES];
3557
3558static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3559{
f0c0b2b8
KH
3560 int pos, j, node;
3561 int zone_type; /* needs to be signed */
3562 struct zone *z;
3563 struct zonelist *zonelist;
3564
54a6eb5c
MG
3565 zonelist = &pgdat->node_zonelists[0];
3566 pos = 0;
3567 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3568 for (j = 0; j < nr_nodes; j++) {
3569 node = node_order[j];
3570 z = &NODE_DATA(node)->node_zones[zone_type];
3571 if (populated_zone(z)) {
dd1a239f
MG
3572 zoneref_set_zone(z,
3573 &zonelist->_zonerefs[pos++]);
54a6eb5c 3574 check_highest_zone(zone_type);
f0c0b2b8
KH
3575 }
3576 }
f0c0b2b8 3577 }
dd1a239f
MG
3578 zonelist->_zonerefs[pos].zone = NULL;
3579 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3580}
3581
3582static int default_zonelist_order(void)
3583{
3584 int nid, zone_type;
b8af2941 3585 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3586 struct zone *z;
3587 int average_size;
3588 /*
b8af2941 3589 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3590 * If they are really small and used heavily, the system can fall
3591 * into OOM very easily.
e325c90f 3592 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3593 */
3594 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3595 low_kmem_size = 0;
3596 total_size = 0;
3597 for_each_online_node(nid) {
3598 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3599 z = &NODE_DATA(nid)->node_zones[zone_type];
3600 if (populated_zone(z)) {
3601 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3602 low_kmem_size += z->managed_pages;
3603 total_size += z->managed_pages;
e325c90f
DR
3604 } else if (zone_type == ZONE_NORMAL) {
3605 /*
3606 * If any node has only lowmem, then node order
3607 * is preferred to allow kernel allocations
3608 * locally; otherwise, they can easily infringe
3609 * on other nodes when there is an abundance of
3610 * lowmem available to allocate from.
3611 */
3612 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3613 }
3614 }
3615 }
3616 if (!low_kmem_size || /* there are no DMA area. */
3617 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3618 return ZONELIST_ORDER_NODE;
3619 /*
3620 * look into each node's config.
b8af2941
PK
3621 * If there is a node whose DMA/DMA32 memory is very big area on
3622 * local memory, NODE_ORDER may be suitable.
3623 */
37b07e41 3624 average_size = total_size /
4b0ef1fe 3625 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3626 for_each_online_node(nid) {
3627 low_kmem_size = 0;
3628 total_size = 0;
3629 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3630 z = &NODE_DATA(nid)->node_zones[zone_type];
3631 if (populated_zone(z)) {
3632 if (zone_type < ZONE_NORMAL)
3633 low_kmem_size += z->present_pages;
3634 total_size += z->present_pages;
3635 }
3636 }
3637 if (low_kmem_size &&
3638 total_size > average_size && /* ignore small node */
3639 low_kmem_size > total_size * 70/100)
3640 return ZONELIST_ORDER_NODE;
3641 }
3642 return ZONELIST_ORDER_ZONE;
3643}
3644
3645static void set_zonelist_order(void)
3646{
3647 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3648 current_zonelist_order = default_zonelist_order();
3649 else
3650 current_zonelist_order = user_zonelist_order;
3651}
3652
3653static void build_zonelists(pg_data_t *pgdat)
3654{
3655 int j, node, load;
3656 enum zone_type i;
1da177e4 3657 nodemask_t used_mask;
f0c0b2b8
KH
3658 int local_node, prev_node;
3659 struct zonelist *zonelist;
3660 int order = current_zonelist_order;
1da177e4
LT
3661
3662 /* initialize zonelists */
523b9458 3663 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3664 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3665 zonelist->_zonerefs[0].zone = NULL;
3666 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3667 }
3668
3669 /* NUMA-aware ordering of nodes */
3670 local_node = pgdat->node_id;
62bc62a8 3671 load = nr_online_nodes;
1da177e4
LT
3672 prev_node = local_node;
3673 nodes_clear(used_mask);
f0c0b2b8 3674
f0c0b2b8
KH
3675 memset(node_order, 0, sizeof(node_order));
3676 j = 0;
3677
1da177e4
LT
3678 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3679 /*
3680 * We don't want to pressure a particular node.
3681 * So adding penalty to the first node in same
3682 * distance group to make it round-robin.
3683 */
957f822a
DR
3684 if (node_distance(local_node, node) !=
3685 node_distance(local_node, prev_node))
f0c0b2b8
KH
3686 node_load[node] = load;
3687
1da177e4
LT
3688 prev_node = node;
3689 load--;
f0c0b2b8
KH
3690 if (order == ZONELIST_ORDER_NODE)
3691 build_zonelists_in_node_order(pgdat, node);
3692 else
3693 node_order[j++] = node; /* remember order */
3694 }
1da177e4 3695
f0c0b2b8
KH
3696 if (order == ZONELIST_ORDER_ZONE) {
3697 /* calculate node order -- i.e., DMA last! */
3698 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3699 }
523b9458
CL
3700
3701 build_thisnode_zonelists(pgdat);
1da177e4
LT
3702}
3703
9276b1bc 3704/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3705static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3706{
54a6eb5c
MG
3707 struct zonelist *zonelist;
3708 struct zonelist_cache *zlc;
dd1a239f 3709 struct zoneref *z;
9276b1bc 3710
54a6eb5c
MG
3711 zonelist = &pgdat->node_zonelists[0];
3712 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3713 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3714 for (z = zonelist->_zonerefs; z->zone; z++)
3715 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3716}
3717
7aac7898
LS
3718#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3719/*
3720 * Return node id of node used for "local" allocations.
3721 * I.e., first node id of first zone in arg node's generic zonelist.
3722 * Used for initializing percpu 'numa_mem', which is used primarily
3723 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3724 */
3725int local_memory_node(int node)
3726{
3727 struct zone *zone;
3728
3729 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3730 gfp_zone(GFP_KERNEL),
3731 NULL,
3732 &zone);
3733 return zone->node;
3734}
3735#endif
f0c0b2b8 3736
1da177e4
LT
3737#else /* CONFIG_NUMA */
3738
f0c0b2b8
KH
3739static void set_zonelist_order(void)
3740{
3741 current_zonelist_order = ZONELIST_ORDER_ZONE;
3742}
3743
3744static void build_zonelists(pg_data_t *pgdat)
1da177e4 3745{
19655d34 3746 int node, local_node;
54a6eb5c
MG
3747 enum zone_type j;
3748 struct zonelist *zonelist;
1da177e4
LT
3749
3750 local_node = pgdat->node_id;
1da177e4 3751
54a6eb5c 3752 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3753 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3754
54a6eb5c
MG
3755 /*
3756 * Now we build the zonelist so that it contains the zones
3757 * of all the other nodes.
3758 * We don't want to pressure a particular node, so when
3759 * building the zones for node N, we make sure that the
3760 * zones coming right after the local ones are those from
3761 * node N+1 (modulo N)
3762 */
3763 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3764 if (!node_online(node))
3765 continue;
bc732f1d 3766 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3767 }
54a6eb5c
MG
3768 for (node = 0; node < local_node; node++) {
3769 if (!node_online(node))
3770 continue;
bc732f1d 3771 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3772 }
3773
dd1a239f
MG
3774 zonelist->_zonerefs[j].zone = NULL;
3775 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3776}
3777
9276b1bc 3778/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3779static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3780{
54a6eb5c 3781 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3782}
3783
1da177e4
LT
3784#endif /* CONFIG_NUMA */
3785
99dcc3e5
CL
3786/*
3787 * Boot pageset table. One per cpu which is going to be used for all
3788 * zones and all nodes. The parameters will be set in such a way
3789 * that an item put on a list will immediately be handed over to
3790 * the buddy list. This is safe since pageset manipulation is done
3791 * with interrupts disabled.
3792 *
3793 * The boot_pagesets must be kept even after bootup is complete for
3794 * unused processors and/or zones. They do play a role for bootstrapping
3795 * hotplugged processors.
3796 *
3797 * zoneinfo_show() and maybe other functions do
3798 * not check if the processor is online before following the pageset pointer.
3799 * Other parts of the kernel may not check if the zone is available.
3800 */
3801static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3802static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3803static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3804
4eaf3f64
HL
3805/*
3806 * Global mutex to protect against size modification of zonelists
3807 * as well as to serialize pageset setup for the new populated zone.
3808 */
3809DEFINE_MUTEX(zonelists_mutex);
3810
9b1a4d38 3811/* return values int ....just for stop_machine() */
4ed7e022 3812static int __build_all_zonelists(void *data)
1da177e4 3813{
6811378e 3814 int nid;
99dcc3e5 3815 int cpu;
9adb62a5 3816 pg_data_t *self = data;
9276b1bc 3817
7f9cfb31
BL
3818#ifdef CONFIG_NUMA
3819 memset(node_load, 0, sizeof(node_load));
3820#endif
9adb62a5
JL
3821
3822 if (self && !node_online(self->node_id)) {
3823 build_zonelists(self);
3824 build_zonelist_cache(self);
3825 }
3826
9276b1bc 3827 for_each_online_node(nid) {
7ea1530a
CL
3828 pg_data_t *pgdat = NODE_DATA(nid);
3829
3830 build_zonelists(pgdat);
3831 build_zonelist_cache(pgdat);
9276b1bc 3832 }
99dcc3e5
CL
3833
3834 /*
3835 * Initialize the boot_pagesets that are going to be used
3836 * for bootstrapping processors. The real pagesets for
3837 * each zone will be allocated later when the per cpu
3838 * allocator is available.
3839 *
3840 * boot_pagesets are used also for bootstrapping offline
3841 * cpus if the system is already booted because the pagesets
3842 * are needed to initialize allocators on a specific cpu too.
3843 * F.e. the percpu allocator needs the page allocator which
3844 * needs the percpu allocator in order to allocate its pagesets
3845 * (a chicken-egg dilemma).
3846 */
7aac7898 3847 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3848 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3849
7aac7898
LS
3850#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3851 /*
3852 * We now know the "local memory node" for each node--
3853 * i.e., the node of the first zone in the generic zonelist.
3854 * Set up numa_mem percpu variable for on-line cpus. During
3855 * boot, only the boot cpu should be on-line; we'll init the
3856 * secondary cpus' numa_mem as they come on-line. During
3857 * node/memory hotplug, we'll fixup all on-line cpus.
3858 */
3859 if (cpu_online(cpu))
3860 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3861#endif
3862 }
3863
6811378e
YG
3864 return 0;
3865}
3866
4eaf3f64
HL
3867/*
3868 * Called with zonelists_mutex held always
3869 * unless system_state == SYSTEM_BOOTING.
3870 */
9adb62a5 3871void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3872{
f0c0b2b8
KH
3873 set_zonelist_order();
3874
6811378e 3875 if (system_state == SYSTEM_BOOTING) {
423b41d7 3876 __build_all_zonelists(NULL);
68ad8df4 3877 mminit_verify_zonelist();
6811378e
YG
3878 cpuset_init_current_mems_allowed();
3879 } else {
e9959f0f 3880#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3881 if (zone)
3882 setup_zone_pageset(zone);
e9959f0f 3883#endif
dd1895e2
CS
3884 /* we have to stop all cpus to guarantee there is no user
3885 of zonelist */
9adb62a5 3886 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3887 /* cpuset refresh routine should be here */
3888 }
bd1e22b8 3889 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3890 /*
3891 * Disable grouping by mobility if the number of pages in the
3892 * system is too low to allow the mechanism to work. It would be
3893 * more accurate, but expensive to check per-zone. This check is
3894 * made on memory-hotadd so a system can start with mobility
3895 * disabled and enable it later
3896 */
d9c23400 3897 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3898 page_group_by_mobility_disabled = 1;
3899 else
3900 page_group_by_mobility_disabled = 0;
3901
3902 printk("Built %i zonelists in %s order, mobility grouping %s. "
3903 "Total pages: %ld\n",
62bc62a8 3904 nr_online_nodes,
f0c0b2b8 3905 zonelist_order_name[current_zonelist_order],
9ef9acb0 3906 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3907 vm_total_pages);
3908#ifdef CONFIG_NUMA
3909 printk("Policy zone: %s\n", zone_names[policy_zone]);
3910#endif
1da177e4
LT
3911}
3912
3913/*
3914 * Helper functions to size the waitqueue hash table.
3915 * Essentially these want to choose hash table sizes sufficiently
3916 * large so that collisions trying to wait on pages are rare.
3917 * But in fact, the number of active page waitqueues on typical
3918 * systems is ridiculously low, less than 200. So this is even
3919 * conservative, even though it seems large.
3920 *
3921 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3922 * waitqueues, i.e. the size of the waitq table given the number of pages.
3923 */
3924#define PAGES_PER_WAITQUEUE 256
3925
cca448fe 3926#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3927static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3928{
3929 unsigned long size = 1;
3930
3931 pages /= PAGES_PER_WAITQUEUE;
3932
3933 while (size < pages)
3934 size <<= 1;
3935
3936 /*
3937 * Once we have dozens or even hundreds of threads sleeping
3938 * on IO we've got bigger problems than wait queue collision.
3939 * Limit the size of the wait table to a reasonable size.
3940 */
3941 size = min(size, 4096UL);
3942
3943 return max(size, 4UL);
3944}
cca448fe
YG
3945#else
3946/*
3947 * A zone's size might be changed by hot-add, so it is not possible to determine
3948 * a suitable size for its wait_table. So we use the maximum size now.
3949 *
3950 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3951 *
3952 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3953 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3954 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3955 *
3956 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3957 * or more by the traditional way. (See above). It equals:
3958 *
3959 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3960 * ia64(16K page size) : = ( 8G + 4M)byte.
3961 * powerpc (64K page size) : = (32G +16M)byte.
3962 */
3963static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3964{
3965 return 4096UL;
3966}
3967#endif
1da177e4
LT
3968
3969/*
3970 * This is an integer logarithm so that shifts can be used later
3971 * to extract the more random high bits from the multiplicative
3972 * hash function before the remainder is taken.
3973 */
3974static inline unsigned long wait_table_bits(unsigned long size)
3975{
3976 return ffz(~size);
3977}
3978
6d3163ce
AH
3979/*
3980 * Check if a pageblock contains reserved pages
3981 */
3982static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3983{
3984 unsigned long pfn;
3985
3986 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3987 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3988 return 1;
3989 }
3990 return 0;
3991}
3992
56fd56b8 3993/*
d9c23400 3994 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3995 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3996 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3997 * higher will lead to a bigger reserve which will get freed as contiguous
3998 * blocks as reclaim kicks in
3999 */
4000static void setup_zone_migrate_reserve(struct zone *zone)
4001{
6d3163ce 4002 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4003 struct page *page;
78986a67
MG
4004 unsigned long block_migratetype;
4005 int reserve;
943dca1a 4006 int old_reserve;
56fd56b8 4007
d0215638
MH
4008 /*
4009 * Get the start pfn, end pfn and the number of blocks to reserve
4010 * We have to be careful to be aligned to pageblock_nr_pages to
4011 * make sure that we always check pfn_valid for the first page in
4012 * the block.
4013 */
56fd56b8 4014 start_pfn = zone->zone_start_pfn;
108bcc96 4015 end_pfn = zone_end_pfn(zone);
d0215638 4016 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4017 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4018 pageblock_order;
56fd56b8 4019
78986a67
MG
4020 /*
4021 * Reserve blocks are generally in place to help high-order atomic
4022 * allocations that are short-lived. A min_free_kbytes value that
4023 * would result in more than 2 reserve blocks for atomic allocations
4024 * is assumed to be in place to help anti-fragmentation for the
4025 * future allocation of hugepages at runtime.
4026 */
4027 reserve = min(2, reserve);
943dca1a
YI
4028 old_reserve = zone->nr_migrate_reserve_block;
4029
4030 /* When memory hot-add, we almost always need to do nothing */
4031 if (reserve == old_reserve)
4032 return;
4033 zone->nr_migrate_reserve_block = reserve;
78986a67 4034
d9c23400 4035 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4036 if (!pfn_valid(pfn))
4037 continue;
4038 page = pfn_to_page(pfn);
4039
344c790e
AL
4040 /* Watch out for overlapping nodes */
4041 if (page_to_nid(page) != zone_to_nid(zone))
4042 continue;
4043
56fd56b8
MG
4044 block_migratetype = get_pageblock_migratetype(page);
4045
938929f1
MG
4046 /* Only test what is necessary when the reserves are not met */
4047 if (reserve > 0) {
4048 /*
4049 * Blocks with reserved pages will never free, skip
4050 * them.
4051 */
4052 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4053 if (pageblock_is_reserved(pfn, block_end_pfn))
4054 continue;
56fd56b8 4055
938929f1
MG
4056 /* If this block is reserved, account for it */
4057 if (block_migratetype == MIGRATE_RESERVE) {
4058 reserve--;
4059 continue;
4060 }
4061
4062 /* Suitable for reserving if this block is movable */
4063 if (block_migratetype == MIGRATE_MOVABLE) {
4064 set_pageblock_migratetype(page,
4065 MIGRATE_RESERVE);
4066 move_freepages_block(zone, page,
4067 MIGRATE_RESERVE);
4068 reserve--;
4069 continue;
4070 }
943dca1a
YI
4071 } else if (!old_reserve) {
4072 /*
4073 * At boot time we don't need to scan the whole zone
4074 * for turning off MIGRATE_RESERVE.
4075 */
4076 break;
56fd56b8
MG
4077 }
4078
4079 /*
4080 * If the reserve is met and this is a previous reserved block,
4081 * take it back
4082 */
4083 if (block_migratetype == MIGRATE_RESERVE) {
4084 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4085 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4086 }
4087 }
4088}
ac0e5b7a 4089
1da177e4
LT
4090/*
4091 * Initially all pages are reserved - free ones are freed
4092 * up by free_all_bootmem() once the early boot process is
4093 * done. Non-atomic initialization, single-pass.
4094 */
c09b4240 4095void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4096 unsigned long start_pfn, enum memmap_context context)
1da177e4 4097{
1da177e4 4098 struct page *page;
29751f69
AW
4099 unsigned long end_pfn = start_pfn + size;
4100 unsigned long pfn;
86051ca5 4101 struct zone *z;
1da177e4 4102
22b31eec
HD
4103 if (highest_memmap_pfn < end_pfn - 1)
4104 highest_memmap_pfn = end_pfn - 1;
4105
86051ca5 4106 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4107 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4108 /*
4109 * There can be holes in boot-time mem_map[]s
4110 * handed to this function. They do not
4111 * exist on hotplugged memory.
4112 */
4113 if (context == MEMMAP_EARLY) {
4114 if (!early_pfn_valid(pfn))
4115 continue;
4116 if (!early_pfn_in_nid(pfn, nid))
4117 continue;
4118 }
d41dee36
AW
4119 page = pfn_to_page(pfn);
4120 set_page_links(page, zone, nid, pfn);
708614e6 4121 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4122 init_page_count(page);
22b751c3 4123 page_mapcount_reset(page);
90572890 4124 page_cpupid_reset_last(page);
1da177e4 4125 SetPageReserved(page);
b2a0ac88
MG
4126 /*
4127 * Mark the block movable so that blocks are reserved for
4128 * movable at startup. This will force kernel allocations
4129 * to reserve their blocks rather than leaking throughout
4130 * the address space during boot when many long-lived
56fd56b8
MG
4131 * kernel allocations are made. Later some blocks near
4132 * the start are marked MIGRATE_RESERVE by
4133 * setup_zone_migrate_reserve()
86051ca5
KH
4134 *
4135 * bitmap is created for zone's valid pfn range. but memmap
4136 * can be created for invalid pages (for alignment)
4137 * check here not to call set_pageblock_migratetype() against
4138 * pfn out of zone.
b2a0ac88 4139 */
86051ca5 4140 if ((z->zone_start_pfn <= pfn)
108bcc96 4141 && (pfn < zone_end_pfn(z))
86051ca5 4142 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4143 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4144
1da177e4
LT
4145 INIT_LIST_HEAD(&page->lru);
4146#ifdef WANT_PAGE_VIRTUAL
4147 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4148 if (!is_highmem_idx(zone))
3212c6be 4149 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4150#endif
1da177e4
LT
4151 }
4152}
4153
1e548deb 4154static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4155{
7aeb09f9 4156 unsigned int order, t;
b2a0ac88
MG
4157 for_each_migratetype_order(order, t) {
4158 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4159 zone->free_area[order].nr_free = 0;
4160 }
4161}
4162
4163#ifndef __HAVE_ARCH_MEMMAP_INIT
4164#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4165 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4166#endif
4167
7cd2b0a3 4168static int zone_batchsize(struct zone *zone)
e7c8d5c9 4169{
3a6be87f 4170#ifdef CONFIG_MMU
e7c8d5c9
CL
4171 int batch;
4172
4173 /*
4174 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4175 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4176 *
4177 * OK, so we don't know how big the cache is. So guess.
4178 */
b40da049 4179 batch = zone->managed_pages / 1024;
ba56e91c
SR
4180 if (batch * PAGE_SIZE > 512 * 1024)
4181 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4182 batch /= 4; /* We effectively *= 4 below */
4183 if (batch < 1)
4184 batch = 1;
4185
4186 /*
0ceaacc9
NP
4187 * Clamp the batch to a 2^n - 1 value. Having a power
4188 * of 2 value was found to be more likely to have
4189 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4190 *
0ceaacc9
NP
4191 * For example if 2 tasks are alternately allocating
4192 * batches of pages, one task can end up with a lot
4193 * of pages of one half of the possible page colors
4194 * and the other with pages of the other colors.
e7c8d5c9 4195 */
9155203a 4196 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4197
e7c8d5c9 4198 return batch;
3a6be87f
DH
4199
4200#else
4201 /* The deferral and batching of frees should be suppressed under NOMMU
4202 * conditions.
4203 *
4204 * The problem is that NOMMU needs to be able to allocate large chunks
4205 * of contiguous memory as there's no hardware page translation to
4206 * assemble apparent contiguous memory from discontiguous pages.
4207 *
4208 * Queueing large contiguous runs of pages for batching, however,
4209 * causes the pages to actually be freed in smaller chunks. As there
4210 * can be a significant delay between the individual batches being
4211 * recycled, this leads to the once large chunks of space being
4212 * fragmented and becoming unavailable for high-order allocations.
4213 */
4214 return 0;
4215#endif
e7c8d5c9
CL
4216}
4217
8d7a8fa9
CS
4218/*
4219 * pcp->high and pcp->batch values are related and dependent on one another:
4220 * ->batch must never be higher then ->high.
4221 * The following function updates them in a safe manner without read side
4222 * locking.
4223 *
4224 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4225 * those fields changing asynchronously (acording the the above rule).
4226 *
4227 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4228 * outside of boot time (or some other assurance that no concurrent updaters
4229 * exist).
4230 */
4231static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4232 unsigned long batch)
4233{
4234 /* start with a fail safe value for batch */
4235 pcp->batch = 1;
4236 smp_wmb();
4237
4238 /* Update high, then batch, in order */
4239 pcp->high = high;
4240 smp_wmb();
4241
4242 pcp->batch = batch;
4243}
4244
3664033c 4245/* a companion to pageset_set_high() */
4008bab7
CS
4246static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4247{
8d7a8fa9 4248 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4249}
4250
88c90dbc 4251static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4252{
4253 struct per_cpu_pages *pcp;
5f8dcc21 4254 int migratetype;
2caaad41 4255
1c6fe946
MD
4256 memset(p, 0, sizeof(*p));
4257
3dfa5721 4258 pcp = &p->pcp;
2caaad41 4259 pcp->count = 0;
5f8dcc21
MG
4260 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4261 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4262}
4263
88c90dbc
CS
4264static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4265{
4266 pageset_init(p);
4267 pageset_set_batch(p, batch);
4268}
4269
8ad4b1fb 4270/*
3664033c 4271 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4272 * to the value high for the pageset p.
4273 */
3664033c 4274static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4275 unsigned long high)
4276{
8d7a8fa9
CS
4277 unsigned long batch = max(1UL, high / 4);
4278 if ((high / 4) > (PAGE_SHIFT * 8))
4279 batch = PAGE_SHIFT * 8;
8ad4b1fb 4280
8d7a8fa9 4281 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4282}
4283
7cd2b0a3
DR
4284static void pageset_set_high_and_batch(struct zone *zone,
4285 struct per_cpu_pageset *pcp)
56cef2b8 4286{
56cef2b8 4287 if (percpu_pagelist_fraction)
3664033c 4288 pageset_set_high(pcp,
56cef2b8
CS
4289 (zone->managed_pages /
4290 percpu_pagelist_fraction));
4291 else
4292 pageset_set_batch(pcp, zone_batchsize(zone));
4293}
4294
169f6c19
CS
4295static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4296{
4297 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4298
4299 pageset_init(pcp);
4300 pageset_set_high_and_batch(zone, pcp);
4301}
4302
4ed7e022 4303static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4304{
4305 int cpu;
319774e2 4306 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4307 for_each_possible_cpu(cpu)
4308 zone_pageset_init(zone, cpu);
319774e2
WF
4309}
4310
2caaad41 4311/*
99dcc3e5
CL
4312 * Allocate per cpu pagesets and initialize them.
4313 * Before this call only boot pagesets were available.
e7c8d5c9 4314 */
99dcc3e5 4315void __init setup_per_cpu_pageset(void)
e7c8d5c9 4316{
99dcc3e5 4317 struct zone *zone;
e7c8d5c9 4318
319774e2
WF
4319 for_each_populated_zone(zone)
4320 setup_zone_pageset(zone);
e7c8d5c9
CL
4321}
4322
577a32f6 4323static noinline __init_refok
cca448fe 4324int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4325{
4326 int i;
cca448fe 4327 size_t alloc_size;
ed8ece2e
DH
4328
4329 /*
4330 * The per-page waitqueue mechanism uses hashed waitqueues
4331 * per zone.
4332 */
02b694de
YG
4333 zone->wait_table_hash_nr_entries =
4334 wait_table_hash_nr_entries(zone_size_pages);
4335 zone->wait_table_bits =
4336 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4337 alloc_size = zone->wait_table_hash_nr_entries
4338 * sizeof(wait_queue_head_t);
4339
cd94b9db 4340 if (!slab_is_available()) {
cca448fe 4341 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4342 memblock_virt_alloc_node_nopanic(
4343 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4344 } else {
4345 /*
4346 * This case means that a zone whose size was 0 gets new memory
4347 * via memory hot-add.
4348 * But it may be the case that a new node was hot-added. In
4349 * this case vmalloc() will not be able to use this new node's
4350 * memory - this wait_table must be initialized to use this new
4351 * node itself as well.
4352 * To use this new node's memory, further consideration will be
4353 * necessary.
4354 */
8691f3a7 4355 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4356 }
4357 if (!zone->wait_table)
4358 return -ENOMEM;
ed8ece2e 4359
b8af2941 4360 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4361 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4362
4363 return 0;
ed8ece2e
DH
4364}
4365
c09b4240 4366static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4367{
99dcc3e5
CL
4368 /*
4369 * per cpu subsystem is not up at this point. The following code
4370 * relies on the ability of the linker to provide the
4371 * offset of a (static) per cpu variable into the per cpu area.
4372 */
4373 zone->pageset = &boot_pageset;
ed8ece2e 4374
b38a8725 4375 if (populated_zone(zone))
99dcc3e5
CL
4376 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4377 zone->name, zone->present_pages,
4378 zone_batchsize(zone));
ed8ece2e
DH
4379}
4380
4ed7e022 4381int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4382 unsigned long zone_start_pfn,
a2f3aa02
DH
4383 unsigned long size,
4384 enum memmap_context context)
ed8ece2e
DH
4385{
4386 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4387 int ret;
4388 ret = zone_wait_table_init(zone, size);
4389 if (ret)
4390 return ret;
ed8ece2e
DH
4391 pgdat->nr_zones = zone_idx(zone) + 1;
4392
ed8ece2e
DH
4393 zone->zone_start_pfn = zone_start_pfn;
4394
708614e6
MG
4395 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4396 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4397 pgdat->node_id,
4398 (unsigned long)zone_idx(zone),
4399 zone_start_pfn, (zone_start_pfn + size));
4400
1e548deb 4401 zone_init_free_lists(zone);
718127cc
YG
4402
4403 return 0;
ed8ece2e
DH
4404}
4405
0ee332c1 4406#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4407#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4408/*
4409 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4410 */
f2dbcfa7 4411int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4412{
c13291a5 4413 unsigned long start_pfn, end_pfn;
e76b63f8 4414 int nid;
7c243c71
RA
4415 /*
4416 * NOTE: The following SMP-unsafe globals are only used early in boot
4417 * when the kernel is running single-threaded.
4418 */
4419 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4420 static int __meminitdata last_nid;
4421
4422 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4423 return last_nid;
c713216d 4424
e76b63f8
YL
4425 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4426 if (nid != -1) {
4427 last_start_pfn = start_pfn;
4428 last_end_pfn = end_pfn;
4429 last_nid = nid;
4430 }
4431
4432 return nid;
c713216d
MG
4433}
4434#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4435
f2dbcfa7
KH
4436int __meminit early_pfn_to_nid(unsigned long pfn)
4437{
cc2559bc
KH
4438 int nid;
4439
4440 nid = __early_pfn_to_nid(pfn);
4441 if (nid >= 0)
4442 return nid;
4443 /* just returns 0 */
4444 return 0;
f2dbcfa7
KH
4445}
4446
cc2559bc
KH
4447#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4448bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4449{
4450 int nid;
4451
4452 nid = __early_pfn_to_nid(pfn);
4453 if (nid >= 0 && nid != node)
4454 return false;
4455 return true;
4456}
4457#endif
f2dbcfa7 4458
c713216d 4459/**
6782832e 4460 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4461 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4462 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4463 *
7d018176
ZZ
4464 * If an architecture guarantees that all ranges registered contain no holes
4465 * and may be freed, this this function may be used instead of calling
4466 * memblock_free_early_nid() manually.
c713216d 4467 */
c13291a5 4468void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4469{
c13291a5
TH
4470 unsigned long start_pfn, end_pfn;
4471 int i, this_nid;
edbe7d23 4472
c13291a5
TH
4473 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4474 start_pfn = min(start_pfn, max_low_pfn);
4475 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4476
c13291a5 4477 if (start_pfn < end_pfn)
6782832e
SS
4478 memblock_free_early_nid(PFN_PHYS(start_pfn),
4479 (end_pfn - start_pfn) << PAGE_SHIFT,
4480 this_nid);
edbe7d23 4481 }
edbe7d23 4482}
edbe7d23 4483
c713216d
MG
4484/**
4485 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4486 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4487 *
7d018176
ZZ
4488 * If an architecture guarantees that all ranges registered contain no holes and may
4489 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4490 */
4491void __init sparse_memory_present_with_active_regions(int nid)
4492{
c13291a5
TH
4493 unsigned long start_pfn, end_pfn;
4494 int i, this_nid;
c713216d 4495
c13291a5
TH
4496 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4497 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4498}
4499
4500/**
4501 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4502 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4503 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4504 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4505 *
4506 * It returns the start and end page frame of a node based on information
7d018176 4507 * provided by memblock_set_node(). If called for a node
c713216d 4508 * with no available memory, a warning is printed and the start and end
88ca3b94 4509 * PFNs will be 0.
c713216d 4510 */
a3142c8e 4511void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4512 unsigned long *start_pfn, unsigned long *end_pfn)
4513{
c13291a5 4514 unsigned long this_start_pfn, this_end_pfn;
c713216d 4515 int i;
c13291a5 4516
c713216d
MG
4517 *start_pfn = -1UL;
4518 *end_pfn = 0;
4519
c13291a5
TH
4520 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4521 *start_pfn = min(*start_pfn, this_start_pfn);
4522 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4523 }
4524
633c0666 4525 if (*start_pfn == -1UL)
c713216d 4526 *start_pfn = 0;
c713216d
MG
4527}
4528
2a1e274a
MG
4529/*
4530 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4531 * assumption is made that zones within a node are ordered in monotonic
4532 * increasing memory addresses so that the "highest" populated zone is used
4533 */
b69a7288 4534static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4535{
4536 int zone_index;
4537 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4538 if (zone_index == ZONE_MOVABLE)
4539 continue;
4540
4541 if (arch_zone_highest_possible_pfn[zone_index] >
4542 arch_zone_lowest_possible_pfn[zone_index])
4543 break;
4544 }
4545
4546 VM_BUG_ON(zone_index == -1);
4547 movable_zone = zone_index;
4548}
4549
4550/*
4551 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4552 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4553 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4554 * in each node depending on the size of each node and how evenly kernelcore
4555 * is distributed. This helper function adjusts the zone ranges
4556 * provided by the architecture for a given node by using the end of the
4557 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4558 * zones within a node are in order of monotonic increases memory addresses
4559 */
b69a7288 4560static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4561 unsigned long zone_type,
4562 unsigned long node_start_pfn,
4563 unsigned long node_end_pfn,
4564 unsigned long *zone_start_pfn,
4565 unsigned long *zone_end_pfn)
4566{
4567 /* Only adjust if ZONE_MOVABLE is on this node */
4568 if (zone_movable_pfn[nid]) {
4569 /* Size ZONE_MOVABLE */
4570 if (zone_type == ZONE_MOVABLE) {
4571 *zone_start_pfn = zone_movable_pfn[nid];
4572 *zone_end_pfn = min(node_end_pfn,
4573 arch_zone_highest_possible_pfn[movable_zone]);
4574
4575 /* Adjust for ZONE_MOVABLE starting within this range */
4576 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4577 *zone_end_pfn > zone_movable_pfn[nid]) {
4578 *zone_end_pfn = zone_movable_pfn[nid];
4579
4580 /* Check if this whole range is within ZONE_MOVABLE */
4581 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4582 *zone_start_pfn = *zone_end_pfn;
4583 }
4584}
4585
c713216d
MG
4586/*
4587 * Return the number of pages a zone spans in a node, including holes
4588 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4589 */
6ea6e688 4590static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4591 unsigned long zone_type,
7960aedd
ZY
4592 unsigned long node_start_pfn,
4593 unsigned long node_end_pfn,
c713216d
MG
4594 unsigned long *ignored)
4595{
c713216d
MG
4596 unsigned long zone_start_pfn, zone_end_pfn;
4597
7960aedd 4598 /* Get the start and end of the zone */
c713216d
MG
4599 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4600 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4601 adjust_zone_range_for_zone_movable(nid, zone_type,
4602 node_start_pfn, node_end_pfn,
4603 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4604
4605 /* Check that this node has pages within the zone's required range */
4606 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4607 return 0;
4608
4609 /* Move the zone boundaries inside the node if necessary */
4610 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4611 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4612
4613 /* Return the spanned pages */
4614 return zone_end_pfn - zone_start_pfn;
4615}
4616
4617/*
4618 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4619 * then all holes in the requested range will be accounted for.
c713216d 4620 */
32996250 4621unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4622 unsigned long range_start_pfn,
4623 unsigned long range_end_pfn)
4624{
96e907d1
TH
4625 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4626 unsigned long start_pfn, end_pfn;
4627 int i;
c713216d 4628
96e907d1
TH
4629 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4630 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4631 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4632 nr_absent -= end_pfn - start_pfn;
c713216d 4633 }
96e907d1 4634 return nr_absent;
c713216d
MG
4635}
4636
4637/**
4638 * absent_pages_in_range - Return number of page frames in holes within a range
4639 * @start_pfn: The start PFN to start searching for holes
4640 * @end_pfn: The end PFN to stop searching for holes
4641 *
88ca3b94 4642 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4643 */
4644unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4645 unsigned long end_pfn)
4646{
4647 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4648}
4649
4650/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4651static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4652 unsigned long zone_type,
7960aedd
ZY
4653 unsigned long node_start_pfn,
4654 unsigned long node_end_pfn,
c713216d
MG
4655 unsigned long *ignored)
4656{
96e907d1
TH
4657 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4658 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4659 unsigned long zone_start_pfn, zone_end_pfn;
4660
96e907d1
TH
4661 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4662 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4663
2a1e274a
MG
4664 adjust_zone_range_for_zone_movable(nid, zone_type,
4665 node_start_pfn, node_end_pfn,
4666 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4667 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4668}
0e0b864e 4669
0ee332c1 4670#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4671static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4672 unsigned long zone_type,
7960aedd
ZY
4673 unsigned long node_start_pfn,
4674 unsigned long node_end_pfn,
c713216d
MG
4675 unsigned long *zones_size)
4676{
4677 return zones_size[zone_type];
4678}
4679
6ea6e688 4680static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4681 unsigned long zone_type,
7960aedd
ZY
4682 unsigned long node_start_pfn,
4683 unsigned long node_end_pfn,
c713216d
MG
4684 unsigned long *zholes_size)
4685{
4686 if (!zholes_size)
4687 return 0;
4688
4689 return zholes_size[zone_type];
4690}
20e6926d 4691
0ee332c1 4692#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4693
a3142c8e 4694static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4695 unsigned long node_start_pfn,
4696 unsigned long node_end_pfn,
4697 unsigned long *zones_size,
4698 unsigned long *zholes_size)
c713216d
MG
4699{
4700 unsigned long realtotalpages, totalpages = 0;
4701 enum zone_type i;
4702
4703 for (i = 0; i < MAX_NR_ZONES; i++)
4704 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4705 node_start_pfn,
4706 node_end_pfn,
4707 zones_size);
c713216d
MG
4708 pgdat->node_spanned_pages = totalpages;
4709
4710 realtotalpages = totalpages;
4711 for (i = 0; i < MAX_NR_ZONES; i++)
4712 realtotalpages -=
4713 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4714 node_start_pfn, node_end_pfn,
4715 zholes_size);
c713216d
MG
4716 pgdat->node_present_pages = realtotalpages;
4717 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4718 realtotalpages);
4719}
4720
835c134e
MG
4721#ifndef CONFIG_SPARSEMEM
4722/*
4723 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4724 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4725 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4726 * round what is now in bits to nearest long in bits, then return it in
4727 * bytes.
4728 */
7c45512d 4729static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4730{
4731 unsigned long usemapsize;
4732
7c45512d 4733 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4734 usemapsize = roundup(zonesize, pageblock_nr_pages);
4735 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4736 usemapsize *= NR_PAGEBLOCK_BITS;
4737 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4738
4739 return usemapsize / 8;
4740}
4741
4742static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4743 struct zone *zone,
4744 unsigned long zone_start_pfn,
4745 unsigned long zonesize)
835c134e 4746{
7c45512d 4747 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4748 zone->pageblock_flags = NULL;
58a01a45 4749 if (usemapsize)
6782832e
SS
4750 zone->pageblock_flags =
4751 memblock_virt_alloc_node_nopanic(usemapsize,
4752 pgdat->node_id);
835c134e
MG
4753}
4754#else
7c45512d
LT
4755static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4756 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4757#endif /* CONFIG_SPARSEMEM */
4758
d9c23400 4759#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4760
d9c23400 4761/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4762void __paginginit set_pageblock_order(void)
d9c23400 4763{
955c1cd7
AM
4764 unsigned int order;
4765
d9c23400
MG
4766 /* Check that pageblock_nr_pages has not already been setup */
4767 if (pageblock_order)
4768 return;
4769
955c1cd7
AM
4770 if (HPAGE_SHIFT > PAGE_SHIFT)
4771 order = HUGETLB_PAGE_ORDER;
4772 else
4773 order = MAX_ORDER - 1;
4774
d9c23400
MG
4775 /*
4776 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4777 * This value may be variable depending on boot parameters on IA64 and
4778 * powerpc.
d9c23400
MG
4779 */
4780 pageblock_order = order;
4781}
4782#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4783
ba72cb8c
MG
4784/*
4785 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4786 * is unused as pageblock_order is set at compile-time. See
4787 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4788 * the kernel config
ba72cb8c 4789 */
15ca220e 4790void __paginginit set_pageblock_order(void)
ba72cb8c 4791{
ba72cb8c 4792}
d9c23400
MG
4793
4794#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4795
01cefaef
JL
4796static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4797 unsigned long present_pages)
4798{
4799 unsigned long pages = spanned_pages;
4800
4801 /*
4802 * Provide a more accurate estimation if there are holes within
4803 * the zone and SPARSEMEM is in use. If there are holes within the
4804 * zone, each populated memory region may cost us one or two extra
4805 * memmap pages due to alignment because memmap pages for each
4806 * populated regions may not naturally algined on page boundary.
4807 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4808 */
4809 if (spanned_pages > present_pages + (present_pages >> 4) &&
4810 IS_ENABLED(CONFIG_SPARSEMEM))
4811 pages = present_pages;
4812
4813 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4814}
4815
1da177e4
LT
4816/*
4817 * Set up the zone data structures:
4818 * - mark all pages reserved
4819 * - mark all memory queues empty
4820 * - clear the memory bitmaps
6527af5d
MK
4821 *
4822 * NOTE: pgdat should get zeroed by caller.
1da177e4 4823 */
b5a0e011 4824static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4825 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4826 unsigned long *zones_size, unsigned long *zholes_size)
4827{
2f1b6248 4828 enum zone_type j;
ed8ece2e 4829 int nid = pgdat->node_id;
1da177e4 4830 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4831 int ret;
1da177e4 4832
208d54e5 4833 pgdat_resize_init(pgdat);
8177a420
AA
4834#ifdef CONFIG_NUMA_BALANCING
4835 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4836 pgdat->numabalancing_migrate_nr_pages = 0;
4837 pgdat->numabalancing_migrate_next_window = jiffies;
4838#endif
1da177e4 4839 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4840 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4841 pgdat_page_cgroup_init(pgdat);
5f63b720 4842
1da177e4
LT
4843 for (j = 0; j < MAX_NR_ZONES; j++) {
4844 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4845 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4846
7960aedd
ZY
4847 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4848 node_end_pfn, zones_size);
9feedc9d 4849 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4850 node_start_pfn,
4851 node_end_pfn,
c713216d 4852 zholes_size);
1da177e4 4853
0e0b864e 4854 /*
9feedc9d 4855 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4856 * is used by this zone for memmap. This affects the watermark
4857 * and per-cpu initialisations
4858 */
01cefaef 4859 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4860 if (freesize >= memmap_pages) {
4861 freesize -= memmap_pages;
5594c8c8
YL
4862 if (memmap_pages)
4863 printk(KERN_DEBUG
4864 " %s zone: %lu pages used for memmap\n",
4865 zone_names[j], memmap_pages);
0e0b864e
MG
4866 } else
4867 printk(KERN_WARNING
9feedc9d
JL
4868 " %s zone: %lu pages exceeds freesize %lu\n",
4869 zone_names[j], memmap_pages, freesize);
0e0b864e 4870
6267276f 4871 /* Account for reserved pages */
9feedc9d
JL
4872 if (j == 0 && freesize > dma_reserve) {
4873 freesize -= dma_reserve;
d903ef9f 4874 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4875 zone_names[0], dma_reserve);
0e0b864e
MG
4876 }
4877
98d2b0eb 4878 if (!is_highmem_idx(j))
9feedc9d 4879 nr_kernel_pages += freesize;
01cefaef
JL
4880 /* Charge for highmem memmap if there are enough kernel pages */
4881 else if (nr_kernel_pages > memmap_pages * 2)
4882 nr_kernel_pages -= memmap_pages;
9feedc9d 4883 nr_all_pages += freesize;
1da177e4
LT
4884
4885 zone->spanned_pages = size;
306f2e9e 4886 zone->present_pages = realsize;
9feedc9d
JL
4887 /*
4888 * Set an approximate value for lowmem here, it will be adjusted
4889 * when the bootmem allocator frees pages into the buddy system.
4890 * And all highmem pages will be managed by the buddy system.
4891 */
4892 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4893#ifdef CONFIG_NUMA
d5f541ed 4894 zone->node = nid;
9feedc9d 4895 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4896 / 100;
9feedc9d 4897 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4898#endif
1da177e4
LT
4899 zone->name = zone_names[j];
4900 spin_lock_init(&zone->lock);
4901 spin_lock_init(&zone->lru_lock);
bdc8cb98 4902 zone_seqlock_init(zone);
1da177e4 4903 zone->zone_pgdat = pgdat;
ed8ece2e 4904 zone_pcp_init(zone);
81c0a2bb
JW
4905
4906 /* For bootup, initialized properly in watermark setup */
4907 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4908
bea8c150 4909 lruvec_init(&zone->lruvec);
1da177e4
LT
4910 if (!size)
4911 continue;
4912
955c1cd7 4913 set_pageblock_order();
7c45512d 4914 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4915 ret = init_currently_empty_zone(zone, zone_start_pfn,
4916 size, MEMMAP_EARLY);
718127cc 4917 BUG_ON(ret);
76cdd58e 4918 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4919 zone_start_pfn += size;
1da177e4
LT
4920 }
4921}
4922
577a32f6 4923static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4924{
1da177e4
LT
4925 /* Skip empty nodes */
4926 if (!pgdat->node_spanned_pages)
4927 return;
4928
d41dee36 4929#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4930 /* ia64 gets its own node_mem_map, before this, without bootmem */
4931 if (!pgdat->node_mem_map) {
e984bb43 4932 unsigned long size, start, end;
d41dee36
AW
4933 struct page *map;
4934
e984bb43
BP
4935 /*
4936 * The zone's endpoints aren't required to be MAX_ORDER
4937 * aligned but the node_mem_map endpoints must be in order
4938 * for the buddy allocator to function correctly.
4939 */
4940 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4941 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4942 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4943 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4944 map = alloc_remap(pgdat->node_id, size);
4945 if (!map)
6782832e
SS
4946 map = memblock_virt_alloc_node_nopanic(size,
4947 pgdat->node_id);
e984bb43 4948 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4949 }
12d810c1 4950#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4951 /*
4952 * With no DISCONTIG, the global mem_map is just set as node 0's
4953 */
c713216d 4954 if (pgdat == NODE_DATA(0)) {
1da177e4 4955 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4956#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4957 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4958 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4959#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4960 }
1da177e4 4961#endif
d41dee36 4962#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4963}
4964
9109fb7b
JW
4965void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4966 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4967{
9109fb7b 4968 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4969 unsigned long start_pfn = 0;
4970 unsigned long end_pfn = 0;
9109fb7b 4971
88fdf75d 4972 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4973 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4974
1da177e4
LT
4975 pgdat->node_id = nid;
4976 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4977#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4978 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4979#endif
4980 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4981 zones_size, zholes_size);
1da177e4
LT
4982
4983 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4984#ifdef CONFIG_FLAT_NODE_MEM_MAP
4985 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4986 nid, (unsigned long)pgdat,
4987 (unsigned long)pgdat->node_mem_map);
4988#endif
1da177e4 4989
7960aedd
ZY
4990 free_area_init_core(pgdat, start_pfn, end_pfn,
4991 zones_size, zholes_size);
1da177e4
LT
4992}
4993
0ee332c1 4994#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4995
4996#if MAX_NUMNODES > 1
4997/*
4998 * Figure out the number of possible node ids.
4999 */
f9872caf 5000void __init setup_nr_node_ids(void)
418508c1
MS
5001{
5002 unsigned int node;
5003 unsigned int highest = 0;
5004
5005 for_each_node_mask(node, node_possible_map)
5006 highest = node;
5007 nr_node_ids = highest + 1;
5008}
418508c1
MS
5009#endif
5010
1e01979c
TH
5011/**
5012 * node_map_pfn_alignment - determine the maximum internode alignment
5013 *
5014 * This function should be called after node map is populated and sorted.
5015 * It calculates the maximum power of two alignment which can distinguish
5016 * all the nodes.
5017 *
5018 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5019 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5020 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5021 * shifted, 1GiB is enough and this function will indicate so.
5022 *
5023 * This is used to test whether pfn -> nid mapping of the chosen memory
5024 * model has fine enough granularity to avoid incorrect mapping for the
5025 * populated node map.
5026 *
5027 * Returns the determined alignment in pfn's. 0 if there is no alignment
5028 * requirement (single node).
5029 */
5030unsigned long __init node_map_pfn_alignment(void)
5031{
5032 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5033 unsigned long start, end, mask;
1e01979c 5034 int last_nid = -1;
c13291a5 5035 int i, nid;
1e01979c 5036
c13291a5 5037 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5038 if (!start || last_nid < 0 || last_nid == nid) {
5039 last_nid = nid;
5040 last_end = end;
5041 continue;
5042 }
5043
5044 /*
5045 * Start with a mask granular enough to pin-point to the
5046 * start pfn and tick off bits one-by-one until it becomes
5047 * too coarse to separate the current node from the last.
5048 */
5049 mask = ~((1 << __ffs(start)) - 1);
5050 while (mask && last_end <= (start & (mask << 1)))
5051 mask <<= 1;
5052
5053 /* accumulate all internode masks */
5054 accl_mask |= mask;
5055 }
5056
5057 /* convert mask to number of pages */
5058 return ~accl_mask + 1;
5059}
5060
a6af2bc3 5061/* Find the lowest pfn for a node */
b69a7288 5062static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5063{
a6af2bc3 5064 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5065 unsigned long start_pfn;
5066 int i;
1abbfb41 5067
c13291a5
TH
5068 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5069 min_pfn = min(min_pfn, start_pfn);
c713216d 5070
a6af2bc3
MG
5071 if (min_pfn == ULONG_MAX) {
5072 printk(KERN_WARNING
2bc0d261 5073 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5074 return 0;
5075 }
5076
5077 return min_pfn;
c713216d
MG
5078}
5079
5080/**
5081 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5082 *
5083 * It returns the minimum PFN based on information provided via
7d018176 5084 * memblock_set_node().
c713216d
MG
5085 */
5086unsigned long __init find_min_pfn_with_active_regions(void)
5087{
5088 return find_min_pfn_for_node(MAX_NUMNODES);
5089}
5090
37b07e41
LS
5091/*
5092 * early_calculate_totalpages()
5093 * Sum pages in active regions for movable zone.
4b0ef1fe 5094 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5095 */
484f51f8 5096static unsigned long __init early_calculate_totalpages(void)
7e63efef 5097{
7e63efef 5098 unsigned long totalpages = 0;
c13291a5
TH
5099 unsigned long start_pfn, end_pfn;
5100 int i, nid;
5101
5102 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5103 unsigned long pages = end_pfn - start_pfn;
7e63efef 5104
37b07e41
LS
5105 totalpages += pages;
5106 if (pages)
4b0ef1fe 5107 node_set_state(nid, N_MEMORY);
37b07e41 5108 }
b8af2941 5109 return totalpages;
7e63efef
MG
5110}
5111
2a1e274a
MG
5112/*
5113 * Find the PFN the Movable zone begins in each node. Kernel memory
5114 * is spread evenly between nodes as long as the nodes have enough
5115 * memory. When they don't, some nodes will have more kernelcore than
5116 * others
5117 */
b224ef85 5118static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5119{
5120 int i, nid;
5121 unsigned long usable_startpfn;
5122 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5123 /* save the state before borrow the nodemask */
4b0ef1fe 5124 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5125 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5126 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5127 struct memblock_region *r;
b2f3eebe
TC
5128
5129 /* Need to find movable_zone earlier when movable_node is specified. */
5130 find_usable_zone_for_movable();
5131
5132 /*
5133 * If movable_node is specified, ignore kernelcore and movablecore
5134 * options.
5135 */
5136 if (movable_node_is_enabled()) {
136199f0
EM
5137 for_each_memblock(memory, r) {
5138 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5139 continue;
5140
136199f0 5141 nid = r->nid;
b2f3eebe 5142
136199f0 5143 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5144 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5145 min(usable_startpfn, zone_movable_pfn[nid]) :
5146 usable_startpfn;
5147 }
5148
5149 goto out2;
5150 }
2a1e274a 5151
7e63efef 5152 /*
b2f3eebe 5153 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5154 * kernelcore that corresponds so that memory usable for
5155 * any allocation type is evenly spread. If both kernelcore
5156 * and movablecore are specified, then the value of kernelcore
5157 * will be used for required_kernelcore if it's greater than
5158 * what movablecore would have allowed.
5159 */
5160 if (required_movablecore) {
7e63efef
MG
5161 unsigned long corepages;
5162
5163 /*
5164 * Round-up so that ZONE_MOVABLE is at least as large as what
5165 * was requested by the user
5166 */
5167 required_movablecore =
5168 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5169 corepages = totalpages - required_movablecore;
5170
5171 required_kernelcore = max(required_kernelcore, corepages);
5172 }
5173
20e6926d
YL
5174 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5175 if (!required_kernelcore)
66918dcd 5176 goto out;
2a1e274a
MG
5177
5178 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5179 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5180
5181restart:
5182 /* Spread kernelcore memory as evenly as possible throughout nodes */
5183 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5184 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5185 unsigned long start_pfn, end_pfn;
5186
2a1e274a
MG
5187 /*
5188 * Recalculate kernelcore_node if the division per node
5189 * now exceeds what is necessary to satisfy the requested
5190 * amount of memory for the kernel
5191 */
5192 if (required_kernelcore < kernelcore_node)
5193 kernelcore_node = required_kernelcore / usable_nodes;
5194
5195 /*
5196 * As the map is walked, we track how much memory is usable
5197 * by the kernel using kernelcore_remaining. When it is
5198 * 0, the rest of the node is usable by ZONE_MOVABLE
5199 */
5200 kernelcore_remaining = kernelcore_node;
5201
5202 /* Go through each range of PFNs within this node */
c13291a5 5203 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5204 unsigned long size_pages;
5205
c13291a5 5206 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5207 if (start_pfn >= end_pfn)
5208 continue;
5209
5210 /* Account for what is only usable for kernelcore */
5211 if (start_pfn < usable_startpfn) {
5212 unsigned long kernel_pages;
5213 kernel_pages = min(end_pfn, usable_startpfn)
5214 - start_pfn;
5215
5216 kernelcore_remaining -= min(kernel_pages,
5217 kernelcore_remaining);
5218 required_kernelcore -= min(kernel_pages,
5219 required_kernelcore);
5220
5221 /* Continue if range is now fully accounted */
5222 if (end_pfn <= usable_startpfn) {
5223
5224 /*
5225 * Push zone_movable_pfn to the end so
5226 * that if we have to rebalance
5227 * kernelcore across nodes, we will
5228 * not double account here
5229 */
5230 zone_movable_pfn[nid] = end_pfn;
5231 continue;
5232 }
5233 start_pfn = usable_startpfn;
5234 }
5235
5236 /*
5237 * The usable PFN range for ZONE_MOVABLE is from
5238 * start_pfn->end_pfn. Calculate size_pages as the
5239 * number of pages used as kernelcore
5240 */
5241 size_pages = end_pfn - start_pfn;
5242 if (size_pages > kernelcore_remaining)
5243 size_pages = kernelcore_remaining;
5244 zone_movable_pfn[nid] = start_pfn + size_pages;
5245
5246 /*
5247 * Some kernelcore has been met, update counts and
5248 * break if the kernelcore for this node has been
b8af2941 5249 * satisfied
2a1e274a
MG
5250 */
5251 required_kernelcore -= min(required_kernelcore,
5252 size_pages);
5253 kernelcore_remaining -= size_pages;
5254 if (!kernelcore_remaining)
5255 break;
5256 }
5257 }
5258
5259 /*
5260 * If there is still required_kernelcore, we do another pass with one
5261 * less node in the count. This will push zone_movable_pfn[nid] further
5262 * along on the nodes that still have memory until kernelcore is
b8af2941 5263 * satisfied
2a1e274a
MG
5264 */
5265 usable_nodes--;
5266 if (usable_nodes && required_kernelcore > usable_nodes)
5267 goto restart;
5268
b2f3eebe 5269out2:
2a1e274a
MG
5270 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5271 for (nid = 0; nid < MAX_NUMNODES; nid++)
5272 zone_movable_pfn[nid] =
5273 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5274
20e6926d 5275out:
66918dcd 5276 /* restore the node_state */
4b0ef1fe 5277 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5278}
5279
4b0ef1fe
LJ
5280/* Any regular or high memory on that node ? */
5281static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5282{
37b07e41
LS
5283 enum zone_type zone_type;
5284
4b0ef1fe
LJ
5285 if (N_MEMORY == N_NORMAL_MEMORY)
5286 return;
5287
5288 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5289 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5290 if (populated_zone(zone)) {
4b0ef1fe
LJ
5291 node_set_state(nid, N_HIGH_MEMORY);
5292 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5293 zone_type <= ZONE_NORMAL)
5294 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5295 break;
5296 }
37b07e41 5297 }
37b07e41
LS
5298}
5299
c713216d
MG
5300/**
5301 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5302 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5303 *
5304 * This will call free_area_init_node() for each active node in the system.
7d018176 5305 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5306 * zone in each node and their holes is calculated. If the maximum PFN
5307 * between two adjacent zones match, it is assumed that the zone is empty.
5308 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5309 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5310 * starts where the previous one ended. For example, ZONE_DMA32 starts
5311 * at arch_max_dma_pfn.
5312 */
5313void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5314{
c13291a5
TH
5315 unsigned long start_pfn, end_pfn;
5316 int i, nid;
a6af2bc3 5317
c713216d
MG
5318 /* Record where the zone boundaries are */
5319 memset(arch_zone_lowest_possible_pfn, 0,
5320 sizeof(arch_zone_lowest_possible_pfn));
5321 memset(arch_zone_highest_possible_pfn, 0,
5322 sizeof(arch_zone_highest_possible_pfn));
5323 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5324 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5325 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5326 if (i == ZONE_MOVABLE)
5327 continue;
c713216d
MG
5328 arch_zone_lowest_possible_pfn[i] =
5329 arch_zone_highest_possible_pfn[i-1];
5330 arch_zone_highest_possible_pfn[i] =
5331 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5332 }
2a1e274a
MG
5333 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5334 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5335
5336 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5337 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5338 find_zone_movable_pfns_for_nodes();
c713216d 5339
c713216d 5340 /* Print out the zone ranges */
a62e2f4f 5341 printk("Zone ranges:\n");
2a1e274a
MG
5342 for (i = 0; i < MAX_NR_ZONES; i++) {
5343 if (i == ZONE_MOVABLE)
5344 continue;
155cbfc8 5345 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5346 if (arch_zone_lowest_possible_pfn[i] ==
5347 arch_zone_highest_possible_pfn[i])
155cbfc8 5348 printk(KERN_CONT "empty\n");
72f0ba02 5349 else
a62e2f4f
BH
5350 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5351 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5352 (arch_zone_highest_possible_pfn[i]
5353 << PAGE_SHIFT) - 1);
2a1e274a
MG
5354 }
5355
5356 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5357 printk("Movable zone start for each node\n");
2a1e274a
MG
5358 for (i = 0; i < MAX_NUMNODES; i++) {
5359 if (zone_movable_pfn[i])
a62e2f4f
BH
5360 printk(" Node %d: %#010lx\n", i,
5361 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5362 }
c713216d 5363
f2d52fe5 5364 /* Print out the early node map */
a62e2f4f 5365 printk("Early memory node ranges\n");
c13291a5 5366 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5367 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5368 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5369
5370 /* Initialise every node */
708614e6 5371 mminit_verify_pageflags_layout();
8ef82866 5372 setup_nr_node_ids();
c713216d
MG
5373 for_each_online_node(nid) {
5374 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5375 free_area_init_node(nid, NULL,
c713216d 5376 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5377
5378 /* Any memory on that node */
5379 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5380 node_set_state(nid, N_MEMORY);
5381 check_for_memory(pgdat, nid);
c713216d
MG
5382 }
5383}
2a1e274a 5384
7e63efef 5385static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5386{
5387 unsigned long long coremem;
5388 if (!p)
5389 return -EINVAL;
5390
5391 coremem = memparse(p, &p);
7e63efef 5392 *core = coremem >> PAGE_SHIFT;
2a1e274a 5393
7e63efef 5394 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5395 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5396
5397 return 0;
5398}
ed7ed365 5399
7e63efef
MG
5400/*
5401 * kernelcore=size sets the amount of memory for use for allocations that
5402 * cannot be reclaimed or migrated.
5403 */
5404static int __init cmdline_parse_kernelcore(char *p)
5405{
5406 return cmdline_parse_core(p, &required_kernelcore);
5407}
5408
5409/*
5410 * movablecore=size sets the amount of memory for use for allocations that
5411 * can be reclaimed or migrated.
5412 */
5413static int __init cmdline_parse_movablecore(char *p)
5414{
5415 return cmdline_parse_core(p, &required_movablecore);
5416}
5417
ed7ed365 5418early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5419early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5420
0ee332c1 5421#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5422
c3d5f5f0
JL
5423void adjust_managed_page_count(struct page *page, long count)
5424{
5425 spin_lock(&managed_page_count_lock);
5426 page_zone(page)->managed_pages += count;
5427 totalram_pages += count;
3dcc0571
JL
5428#ifdef CONFIG_HIGHMEM
5429 if (PageHighMem(page))
5430 totalhigh_pages += count;
5431#endif
c3d5f5f0
JL
5432 spin_unlock(&managed_page_count_lock);
5433}
3dcc0571 5434EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5435
11199692 5436unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5437{
11199692
JL
5438 void *pos;
5439 unsigned long pages = 0;
69afade7 5440
11199692
JL
5441 start = (void *)PAGE_ALIGN((unsigned long)start);
5442 end = (void *)((unsigned long)end & PAGE_MASK);
5443 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5444 if ((unsigned int)poison <= 0xFF)
11199692
JL
5445 memset(pos, poison, PAGE_SIZE);
5446 free_reserved_page(virt_to_page(pos));
69afade7
JL
5447 }
5448
5449 if (pages && s)
11199692 5450 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5451 s, pages << (PAGE_SHIFT - 10), start, end);
5452
5453 return pages;
5454}
11199692 5455EXPORT_SYMBOL(free_reserved_area);
69afade7 5456
cfa11e08
JL
5457#ifdef CONFIG_HIGHMEM
5458void free_highmem_page(struct page *page)
5459{
5460 __free_reserved_page(page);
5461 totalram_pages++;
7b4b2a0d 5462 page_zone(page)->managed_pages++;
cfa11e08
JL
5463 totalhigh_pages++;
5464}
5465#endif
5466
7ee3d4e8
JL
5467
5468void __init mem_init_print_info(const char *str)
5469{
5470 unsigned long physpages, codesize, datasize, rosize, bss_size;
5471 unsigned long init_code_size, init_data_size;
5472
5473 physpages = get_num_physpages();
5474 codesize = _etext - _stext;
5475 datasize = _edata - _sdata;
5476 rosize = __end_rodata - __start_rodata;
5477 bss_size = __bss_stop - __bss_start;
5478 init_data_size = __init_end - __init_begin;
5479 init_code_size = _einittext - _sinittext;
5480
5481 /*
5482 * Detect special cases and adjust section sizes accordingly:
5483 * 1) .init.* may be embedded into .data sections
5484 * 2) .init.text.* may be out of [__init_begin, __init_end],
5485 * please refer to arch/tile/kernel/vmlinux.lds.S.
5486 * 3) .rodata.* may be embedded into .text or .data sections.
5487 */
5488#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5489 do { \
5490 if (start <= pos && pos < end && size > adj) \
5491 size -= adj; \
5492 } while (0)
7ee3d4e8
JL
5493
5494 adj_init_size(__init_begin, __init_end, init_data_size,
5495 _sinittext, init_code_size);
5496 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5497 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5498 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5499 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5500
5501#undef adj_init_size
5502
5503 printk("Memory: %luK/%luK available "
5504 "(%luK kernel code, %luK rwdata, %luK rodata, "
5505 "%luK init, %luK bss, %luK reserved"
5506#ifdef CONFIG_HIGHMEM
5507 ", %luK highmem"
5508#endif
5509 "%s%s)\n",
5510 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5511 codesize >> 10, datasize >> 10, rosize >> 10,
5512 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5513 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5514#ifdef CONFIG_HIGHMEM
5515 totalhigh_pages << (PAGE_SHIFT-10),
5516#endif
5517 str ? ", " : "", str ? str : "");
5518}
5519
0e0b864e 5520/**
88ca3b94
RD
5521 * set_dma_reserve - set the specified number of pages reserved in the first zone
5522 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5523 *
5524 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5525 * In the DMA zone, a significant percentage may be consumed by kernel image
5526 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5527 * function may optionally be used to account for unfreeable pages in the
5528 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5529 * smaller per-cpu batchsize.
0e0b864e
MG
5530 */
5531void __init set_dma_reserve(unsigned long new_dma_reserve)
5532{
5533 dma_reserve = new_dma_reserve;
5534}
5535
1da177e4
LT
5536void __init free_area_init(unsigned long *zones_size)
5537{
9109fb7b 5538 free_area_init_node(0, zones_size,
1da177e4
LT
5539 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5540}
1da177e4 5541
1da177e4
LT
5542static int page_alloc_cpu_notify(struct notifier_block *self,
5543 unsigned long action, void *hcpu)
5544{
5545 int cpu = (unsigned long)hcpu;
1da177e4 5546
8bb78442 5547 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5548 lru_add_drain_cpu(cpu);
9f8f2172
CL
5549 drain_pages(cpu);
5550
5551 /*
5552 * Spill the event counters of the dead processor
5553 * into the current processors event counters.
5554 * This artificially elevates the count of the current
5555 * processor.
5556 */
f8891e5e 5557 vm_events_fold_cpu(cpu);
9f8f2172
CL
5558
5559 /*
5560 * Zero the differential counters of the dead processor
5561 * so that the vm statistics are consistent.
5562 *
5563 * This is only okay since the processor is dead and cannot
5564 * race with what we are doing.
5565 */
2bb921e5 5566 cpu_vm_stats_fold(cpu);
1da177e4
LT
5567 }
5568 return NOTIFY_OK;
5569}
1da177e4
LT
5570
5571void __init page_alloc_init(void)
5572{
5573 hotcpu_notifier(page_alloc_cpu_notify, 0);
5574}
5575
cb45b0e9
HA
5576/*
5577 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5578 * or min_free_kbytes changes.
5579 */
5580static void calculate_totalreserve_pages(void)
5581{
5582 struct pglist_data *pgdat;
5583 unsigned long reserve_pages = 0;
2f6726e5 5584 enum zone_type i, j;
cb45b0e9
HA
5585
5586 for_each_online_pgdat(pgdat) {
5587 for (i = 0; i < MAX_NR_ZONES; i++) {
5588 struct zone *zone = pgdat->node_zones + i;
3484b2de 5589 long max = 0;
cb45b0e9
HA
5590
5591 /* Find valid and maximum lowmem_reserve in the zone */
5592 for (j = i; j < MAX_NR_ZONES; j++) {
5593 if (zone->lowmem_reserve[j] > max)
5594 max = zone->lowmem_reserve[j];
5595 }
5596
41858966
MG
5597 /* we treat the high watermark as reserved pages. */
5598 max += high_wmark_pages(zone);
cb45b0e9 5599
b40da049
JL
5600 if (max > zone->managed_pages)
5601 max = zone->managed_pages;
cb45b0e9 5602 reserve_pages += max;
ab8fabd4
JW
5603 /*
5604 * Lowmem reserves are not available to
5605 * GFP_HIGHUSER page cache allocations and
5606 * kswapd tries to balance zones to their high
5607 * watermark. As a result, neither should be
5608 * regarded as dirtyable memory, to prevent a
5609 * situation where reclaim has to clean pages
5610 * in order to balance the zones.
5611 */
5612 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5613 }
5614 }
ab8fabd4 5615 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5616 totalreserve_pages = reserve_pages;
5617}
5618
1da177e4
LT
5619/*
5620 * setup_per_zone_lowmem_reserve - called whenever
5621 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5622 * has a correct pages reserved value, so an adequate number of
5623 * pages are left in the zone after a successful __alloc_pages().
5624 */
5625static void setup_per_zone_lowmem_reserve(void)
5626{
5627 struct pglist_data *pgdat;
2f6726e5 5628 enum zone_type j, idx;
1da177e4 5629
ec936fc5 5630 for_each_online_pgdat(pgdat) {
1da177e4
LT
5631 for (j = 0; j < MAX_NR_ZONES; j++) {
5632 struct zone *zone = pgdat->node_zones + j;
b40da049 5633 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5634
5635 zone->lowmem_reserve[j] = 0;
5636
2f6726e5
CL
5637 idx = j;
5638 while (idx) {
1da177e4
LT
5639 struct zone *lower_zone;
5640
2f6726e5
CL
5641 idx--;
5642
1da177e4
LT
5643 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5644 sysctl_lowmem_reserve_ratio[idx] = 1;
5645
5646 lower_zone = pgdat->node_zones + idx;
b40da049 5647 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5648 sysctl_lowmem_reserve_ratio[idx];
b40da049 5649 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5650 }
5651 }
5652 }
cb45b0e9
HA
5653
5654 /* update totalreserve_pages */
5655 calculate_totalreserve_pages();
1da177e4
LT
5656}
5657
cfd3da1e 5658static void __setup_per_zone_wmarks(void)
1da177e4
LT
5659{
5660 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5661 unsigned long lowmem_pages = 0;
5662 struct zone *zone;
5663 unsigned long flags;
5664
5665 /* Calculate total number of !ZONE_HIGHMEM pages */
5666 for_each_zone(zone) {
5667 if (!is_highmem(zone))
b40da049 5668 lowmem_pages += zone->managed_pages;
1da177e4
LT
5669 }
5670
5671 for_each_zone(zone) {
ac924c60
AM
5672 u64 tmp;
5673
1125b4e3 5674 spin_lock_irqsave(&zone->lock, flags);
b40da049 5675 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5676 do_div(tmp, lowmem_pages);
1da177e4
LT
5677 if (is_highmem(zone)) {
5678 /*
669ed175
NP
5679 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5680 * need highmem pages, so cap pages_min to a small
5681 * value here.
5682 *
41858966 5683 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5684 * deltas controls asynch page reclaim, and so should
5685 * not be capped for highmem.
1da177e4 5686 */
90ae8d67 5687 unsigned long min_pages;
1da177e4 5688
b40da049 5689 min_pages = zone->managed_pages / 1024;
90ae8d67 5690 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5691 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5692 } else {
669ed175
NP
5693 /*
5694 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5695 * proportionate to the zone's size.
5696 */
41858966 5697 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5698 }
5699
41858966
MG
5700 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5701 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5702
81c0a2bb 5703 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5704 high_wmark_pages(zone) - low_wmark_pages(zone) -
5705 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5706
56fd56b8 5707 setup_zone_migrate_reserve(zone);
1125b4e3 5708 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5709 }
cb45b0e9
HA
5710
5711 /* update totalreserve_pages */
5712 calculate_totalreserve_pages();
1da177e4
LT
5713}
5714
cfd3da1e
MG
5715/**
5716 * setup_per_zone_wmarks - called when min_free_kbytes changes
5717 * or when memory is hot-{added|removed}
5718 *
5719 * Ensures that the watermark[min,low,high] values for each zone are set
5720 * correctly with respect to min_free_kbytes.
5721 */
5722void setup_per_zone_wmarks(void)
5723{
5724 mutex_lock(&zonelists_mutex);
5725 __setup_per_zone_wmarks();
5726 mutex_unlock(&zonelists_mutex);
5727}
5728
55a4462a 5729/*
556adecb
RR
5730 * The inactive anon list should be small enough that the VM never has to
5731 * do too much work, but large enough that each inactive page has a chance
5732 * to be referenced again before it is swapped out.
5733 *
5734 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5735 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5736 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5737 * the anonymous pages are kept on the inactive list.
5738 *
5739 * total target max
5740 * memory ratio inactive anon
5741 * -------------------------------------
5742 * 10MB 1 5MB
5743 * 100MB 1 50MB
5744 * 1GB 3 250MB
5745 * 10GB 10 0.9GB
5746 * 100GB 31 3GB
5747 * 1TB 101 10GB
5748 * 10TB 320 32GB
5749 */
1b79acc9 5750static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5751{
96cb4df5 5752 unsigned int gb, ratio;
556adecb 5753
96cb4df5 5754 /* Zone size in gigabytes */
b40da049 5755 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5756 if (gb)
556adecb 5757 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5758 else
5759 ratio = 1;
556adecb 5760
96cb4df5
MK
5761 zone->inactive_ratio = ratio;
5762}
556adecb 5763
839a4fcc 5764static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5765{
5766 struct zone *zone;
5767
5768 for_each_zone(zone)
5769 calculate_zone_inactive_ratio(zone);
556adecb
RR
5770}
5771
1da177e4
LT
5772/*
5773 * Initialise min_free_kbytes.
5774 *
5775 * For small machines we want it small (128k min). For large machines
5776 * we want it large (64MB max). But it is not linear, because network
5777 * bandwidth does not increase linearly with machine size. We use
5778 *
b8af2941 5779 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5780 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5781 *
5782 * which yields
5783 *
5784 * 16MB: 512k
5785 * 32MB: 724k
5786 * 64MB: 1024k
5787 * 128MB: 1448k
5788 * 256MB: 2048k
5789 * 512MB: 2896k
5790 * 1024MB: 4096k
5791 * 2048MB: 5792k
5792 * 4096MB: 8192k
5793 * 8192MB: 11584k
5794 * 16384MB: 16384k
5795 */
1b79acc9 5796int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5797{
5798 unsigned long lowmem_kbytes;
5f12733e 5799 int new_min_free_kbytes;
1da177e4
LT
5800
5801 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5802 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5803
5804 if (new_min_free_kbytes > user_min_free_kbytes) {
5805 min_free_kbytes = new_min_free_kbytes;
5806 if (min_free_kbytes < 128)
5807 min_free_kbytes = 128;
5808 if (min_free_kbytes > 65536)
5809 min_free_kbytes = 65536;
5810 } else {
5811 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5812 new_min_free_kbytes, user_min_free_kbytes);
5813 }
bc75d33f 5814 setup_per_zone_wmarks();
a6cccdc3 5815 refresh_zone_stat_thresholds();
1da177e4 5816 setup_per_zone_lowmem_reserve();
556adecb 5817 setup_per_zone_inactive_ratio();
1da177e4
LT
5818 return 0;
5819}
bc75d33f 5820module_init(init_per_zone_wmark_min)
1da177e4
LT
5821
5822/*
b8af2941 5823 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5824 * that we can call two helper functions whenever min_free_kbytes
5825 * changes.
5826 */
cccad5b9 5827int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5828 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5829{
da8c757b
HP
5830 int rc;
5831
5832 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5833 if (rc)
5834 return rc;
5835
5f12733e
MH
5836 if (write) {
5837 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5838 setup_per_zone_wmarks();
5f12733e 5839 }
1da177e4
LT
5840 return 0;
5841}
5842
9614634f 5843#ifdef CONFIG_NUMA
cccad5b9 5844int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5845 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5846{
5847 struct zone *zone;
5848 int rc;
5849
8d65af78 5850 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5851 if (rc)
5852 return rc;
5853
5854 for_each_zone(zone)
b40da049 5855 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5856 sysctl_min_unmapped_ratio) / 100;
5857 return 0;
5858}
0ff38490 5859
cccad5b9 5860int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5861 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5862{
5863 struct zone *zone;
5864 int rc;
5865
8d65af78 5866 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5867 if (rc)
5868 return rc;
5869
5870 for_each_zone(zone)
b40da049 5871 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5872 sysctl_min_slab_ratio) / 100;
5873 return 0;
5874}
9614634f
CL
5875#endif
5876
1da177e4
LT
5877/*
5878 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5879 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5880 * whenever sysctl_lowmem_reserve_ratio changes.
5881 *
5882 * The reserve ratio obviously has absolutely no relation with the
41858966 5883 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5884 * if in function of the boot time zone sizes.
5885 */
cccad5b9 5886int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5887 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5888{
8d65af78 5889 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5890 setup_per_zone_lowmem_reserve();
5891 return 0;
5892}
5893
8ad4b1fb
RS
5894/*
5895 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5896 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5897 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5898 */
cccad5b9 5899int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5900 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5901{
5902 struct zone *zone;
7cd2b0a3 5903 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5904 int ret;
5905
7cd2b0a3
DR
5906 mutex_lock(&pcp_batch_high_lock);
5907 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5908
8d65af78 5909 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5910 if (!write || ret < 0)
5911 goto out;
5912
5913 /* Sanity checking to avoid pcp imbalance */
5914 if (percpu_pagelist_fraction &&
5915 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5916 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5917 ret = -EINVAL;
5918 goto out;
5919 }
5920
5921 /* No change? */
5922 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5923 goto out;
c8e251fa 5924
364df0eb 5925 for_each_populated_zone(zone) {
7cd2b0a3
DR
5926 unsigned int cpu;
5927
22a7f12b 5928 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5929 pageset_set_high_and_batch(zone,
5930 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5931 }
7cd2b0a3 5932out:
c8e251fa 5933 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5934 return ret;
8ad4b1fb
RS
5935}
5936
f034b5d4 5937int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5938
5939#ifdef CONFIG_NUMA
5940static int __init set_hashdist(char *str)
5941{
5942 if (!str)
5943 return 0;
5944 hashdist = simple_strtoul(str, &str, 0);
5945 return 1;
5946}
5947__setup("hashdist=", set_hashdist);
5948#endif
5949
5950/*
5951 * allocate a large system hash table from bootmem
5952 * - it is assumed that the hash table must contain an exact power-of-2
5953 * quantity of entries
5954 * - limit is the number of hash buckets, not the total allocation size
5955 */
5956void *__init alloc_large_system_hash(const char *tablename,
5957 unsigned long bucketsize,
5958 unsigned long numentries,
5959 int scale,
5960 int flags,
5961 unsigned int *_hash_shift,
5962 unsigned int *_hash_mask,
31fe62b9
TB
5963 unsigned long low_limit,
5964 unsigned long high_limit)
1da177e4 5965{
31fe62b9 5966 unsigned long long max = high_limit;
1da177e4
LT
5967 unsigned long log2qty, size;
5968 void *table = NULL;
5969
5970 /* allow the kernel cmdline to have a say */
5971 if (!numentries) {
5972 /* round applicable memory size up to nearest megabyte */
04903664 5973 numentries = nr_kernel_pages;
a7e83318
JZ
5974
5975 /* It isn't necessary when PAGE_SIZE >= 1MB */
5976 if (PAGE_SHIFT < 20)
5977 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5978
5979 /* limit to 1 bucket per 2^scale bytes of low memory */
5980 if (scale > PAGE_SHIFT)
5981 numentries >>= (scale - PAGE_SHIFT);
5982 else
5983 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5984
5985 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5986 if (unlikely(flags & HASH_SMALL)) {
5987 /* Makes no sense without HASH_EARLY */
5988 WARN_ON(!(flags & HASH_EARLY));
5989 if (!(numentries >> *_hash_shift)) {
5990 numentries = 1UL << *_hash_shift;
5991 BUG_ON(!numentries);
5992 }
5993 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5994 numentries = PAGE_SIZE / bucketsize;
1da177e4 5995 }
6e692ed3 5996 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5997
5998 /* limit allocation size to 1/16 total memory by default */
5999 if (max == 0) {
6000 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6001 do_div(max, bucketsize);
6002 }
074b8517 6003 max = min(max, 0x80000000ULL);
1da177e4 6004
31fe62b9
TB
6005 if (numentries < low_limit)
6006 numentries = low_limit;
1da177e4
LT
6007 if (numentries > max)
6008 numentries = max;
6009
f0d1b0b3 6010 log2qty = ilog2(numentries);
1da177e4
LT
6011
6012 do {
6013 size = bucketsize << log2qty;
6014 if (flags & HASH_EARLY)
6782832e 6015 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6016 else if (hashdist)
6017 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6018 else {
1037b83b
ED
6019 /*
6020 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6021 * some pages at the end of hash table which
6022 * alloc_pages_exact() automatically does
1037b83b 6023 */
264ef8a9 6024 if (get_order(size) < MAX_ORDER) {
a1dd268c 6025 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6026 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6027 }
1da177e4
LT
6028 }
6029 } while (!table && size > PAGE_SIZE && --log2qty);
6030
6031 if (!table)
6032 panic("Failed to allocate %s hash table\n", tablename);
6033
f241e660 6034 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6035 tablename,
f241e660 6036 (1UL << log2qty),
f0d1b0b3 6037 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6038 size);
6039
6040 if (_hash_shift)
6041 *_hash_shift = log2qty;
6042 if (_hash_mask)
6043 *_hash_mask = (1 << log2qty) - 1;
6044
6045 return table;
6046}
a117e66e 6047
835c134e
MG
6048/* Return a pointer to the bitmap storing bits affecting a block of pages */
6049static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6050 unsigned long pfn)
6051{
6052#ifdef CONFIG_SPARSEMEM
6053 return __pfn_to_section(pfn)->pageblock_flags;
6054#else
6055 return zone->pageblock_flags;
6056#endif /* CONFIG_SPARSEMEM */
6057}
6058
6059static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6060{
6061#ifdef CONFIG_SPARSEMEM
6062 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6063 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6064#else
c060f943 6065 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6066 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6067#endif /* CONFIG_SPARSEMEM */
6068}
6069
6070/**
1aab4d77 6071 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6072 * @page: The page within the block of interest
1aab4d77
RD
6073 * @pfn: The target page frame number
6074 * @end_bitidx: The last bit of interest to retrieve
6075 * @mask: mask of bits that the caller is interested in
6076 *
6077 * Return: pageblock_bits flags
835c134e 6078 */
dc4b0caf 6079unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6080 unsigned long end_bitidx,
6081 unsigned long mask)
835c134e
MG
6082{
6083 struct zone *zone;
6084 unsigned long *bitmap;
dc4b0caf 6085 unsigned long bitidx, word_bitidx;
e58469ba 6086 unsigned long word;
835c134e
MG
6087
6088 zone = page_zone(page);
835c134e
MG
6089 bitmap = get_pageblock_bitmap(zone, pfn);
6090 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6091 word_bitidx = bitidx / BITS_PER_LONG;
6092 bitidx &= (BITS_PER_LONG-1);
835c134e 6093
e58469ba
MG
6094 word = bitmap[word_bitidx];
6095 bitidx += end_bitidx;
6096 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6097}
6098
6099/**
dc4b0caf 6100 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6101 * @page: The page within the block of interest
835c134e 6102 * @flags: The flags to set
1aab4d77
RD
6103 * @pfn: The target page frame number
6104 * @end_bitidx: The last bit of interest
6105 * @mask: mask of bits that the caller is interested in
835c134e 6106 */
dc4b0caf
MG
6107void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6108 unsigned long pfn,
e58469ba
MG
6109 unsigned long end_bitidx,
6110 unsigned long mask)
835c134e
MG
6111{
6112 struct zone *zone;
6113 unsigned long *bitmap;
dc4b0caf 6114 unsigned long bitidx, word_bitidx;
e58469ba
MG
6115 unsigned long old_word, word;
6116
6117 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6118
6119 zone = page_zone(page);
835c134e
MG
6120 bitmap = get_pageblock_bitmap(zone, pfn);
6121 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6122 word_bitidx = bitidx / BITS_PER_LONG;
6123 bitidx &= (BITS_PER_LONG-1);
6124
309381fe 6125 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6126
e58469ba
MG
6127 bitidx += end_bitidx;
6128 mask <<= (BITS_PER_LONG - bitidx - 1);
6129 flags <<= (BITS_PER_LONG - bitidx - 1);
6130
6131 word = ACCESS_ONCE(bitmap[word_bitidx]);
6132 for (;;) {
6133 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6134 if (word == old_word)
6135 break;
6136 word = old_word;
6137 }
835c134e 6138}
a5d76b54
KH
6139
6140/*
80934513
MK
6141 * This function checks whether pageblock includes unmovable pages or not.
6142 * If @count is not zero, it is okay to include less @count unmovable pages
6143 *
b8af2941 6144 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6145 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6146 * expect this function should be exact.
a5d76b54 6147 */
b023f468
WC
6148bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6149 bool skip_hwpoisoned_pages)
49ac8255
KH
6150{
6151 unsigned long pfn, iter, found;
47118af0
MN
6152 int mt;
6153
49ac8255
KH
6154 /*
6155 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6156 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6157 */
6158 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6159 return false;
47118af0
MN
6160 mt = get_pageblock_migratetype(page);
6161 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6162 return false;
49ac8255
KH
6163
6164 pfn = page_to_pfn(page);
6165 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6166 unsigned long check = pfn + iter;
6167
29723fcc 6168 if (!pfn_valid_within(check))
49ac8255 6169 continue;
29723fcc 6170
49ac8255 6171 page = pfn_to_page(check);
c8721bbb
NH
6172
6173 /*
6174 * Hugepages are not in LRU lists, but they're movable.
6175 * We need not scan over tail pages bacause we don't
6176 * handle each tail page individually in migration.
6177 */
6178 if (PageHuge(page)) {
6179 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6180 continue;
6181 }
6182
97d255c8
MK
6183 /*
6184 * We can't use page_count without pin a page
6185 * because another CPU can free compound page.
6186 * This check already skips compound tails of THP
6187 * because their page->_count is zero at all time.
6188 */
6189 if (!atomic_read(&page->_count)) {
49ac8255
KH
6190 if (PageBuddy(page))
6191 iter += (1 << page_order(page)) - 1;
6192 continue;
6193 }
97d255c8 6194
b023f468
WC
6195 /*
6196 * The HWPoisoned page may be not in buddy system, and
6197 * page_count() is not 0.
6198 */
6199 if (skip_hwpoisoned_pages && PageHWPoison(page))
6200 continue;
6201
49ac8255
KH
6202 if (!PageLRU(page))
6203 found++;
6204 /*
6205 * If there are RECLAIMABLE pages, we need to check it.
6206 * But now, memory offline itself doesn't call shrink_slab()
6207 * and it still to be fixed.
6208 */
6209 /*
6210 * If the page is not RAM, page_count()should be 0.
6211 * we don't need more check. This is an _used_ not-movable page.
6212 *
6213 * The problematic thing here is PG_reserved pages. PG_reserved
6214 * is set to both of a memory hole page and a _used_ kernel
6215 * page at boot.
6216 */
6217 if (found > count)
80934513 6218 return true;
49ac8255 6219 }
80934513 6220 return false;
49ac8255
KH
6221}
6222
6223bool is_pageblock_removable_nolock(struct page *page)
6224{
656a0706
MH
6225 struct zone *zone;
6226 unsigned long pfn;
687875fb
MH
6227
6228 /*
6229 * We have to be careful here because we are iterating over memory
6230 * sections which are not zone aware so we might end up outside of
6231 * the zone but still within the section.
656a0706
MH
6232 * We have to take care about the node as well. If the node is offline
6233 * its NODE_DATA will be NULL - see page_zone.
687875fb 6234 */
656a0706
MH
6235 if (!node_online(page_to_nid(page)))
6236 return false;
6237
6238 zone = page_zone(page);
6239 pfn = page_to_pfn(page);
108bcc96 6240 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6241 return false;
6242
b023f468 6243 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6244}
0c0e6195 6245
041d3a8c
MN
6246#ifdef CONFIG_CMA
6247
6248static unsigned long pfn_max_align_down(unsigned long pfn)
6249{
6250 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6251 pageblock_nr_pages) - 1);
6252}
6253
6254static unsigned long pfn_max_align_up(unsigned long pfn)
6255{
6256 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6257 pageblock_nr_pages));
6258}
6259
041d3a8c 6260/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6261static int __alloc_contig_migrate_range(struct compact_control *cc,
6262 unsigned long start, unsigned long end)
041d3a8c
MN
6263{
6264 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6265 unsigned long nr_reclaimed;
041d3a8c
MN
6266 unsigned long pfn = start;
6267 unsigned int tries = 0;
6268 int ret = 0;
6269
be49a6e1 6270 migrate_prep();
041d3a8c 6271
bb13ffeb 6272 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6273 if (fatal_signal_pending(current)) {
6274 ret = -EINTR;
6275 break;
6276 }
6277
bb13ffeb
MG
6278 if (list_empty(&cc->migratepages)) {
6279 cc->nr_migratepages = 0;
6280 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6281 pfn, end, true);
041d3a8c
MN
6282 if (!pfn) {
6283 ret = -EINTR;
6284 break;
6285 }
6286 tries = 0;
6287 } else if (++tries == 5) {
6288 ret = ret < 0 ? ret : -EBUSY;
6289 break;
6290 }
6291
beb51eaa
MK
6292 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6293 &cc->migratepages);
6294 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6295
9c620e2b 6296 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6297 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6298 }
2a6f5124
SP
6299 if (ret < 0) {
6300 putback_movable_pages(&cc->migratepages);
6301 return ret;
6302 }
6303 return 0;
041d3a8c
MN
6304}
6305
6306/**
6307 * alloc_contig_range() -- tries to allocate given range of pages
6308 * @start: start PFN to allocate
6309 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6310 * @migratetype: migratetype of the underlaying pageblocks (either
6311 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6312 * in range must have the same migratetype and it must
6313 * be either of the two.
041d3a8c
MN
6314 *
6315 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6316 * aligned, however it's the caller's responsibility to guarantee that
6317 * we are the only thread that changes migrate type of pageblocks the
6318 * pages fall in.
6319 *
6320 * The PFN range must belong to a single zone.
6321 *
6322 * Returns zero on success or negative error code. On success all
6323 * pages which PFN is in [start, end) are allocated for the caller and
6324 * need to be freed with free_contig_range().
6325 */
0815f3d8
MN
6326int alloc_contig_range(unsigned long start, unsigned long end,
6327 unsigned migratetype)
041d3a8c 6328{
041d3a8c
MN
6329 unsigned long outer_start, outer_end;
6330 int ret = 0, order;
6331
bb13ffeb
MG
6332 struct compact_control cc = {
6333 .nr_migratepages = 0,
6334 .order = -1,
6335 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6336 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6337 .ignore_skip_hint = true,
6338 };
6339 INIT_LIST_HEAD(&cc.migratepages);
6340
041d3a8c
MN
6341 /*
6342 * What we do here is we mark all pageblocks in range as
6343 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6344 * have different sizes, and due to the way page allocator
6345 * work, we align the range to biggest of the two pages so
6346 * that page allocator won't try to merge buddies from
6347 * different pageblocks and change MIGRATE_ISOLATE to some
6348 * other migration type.
6349 *
6350 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6351 * migrate the pages from an unaligned range (ie. pages that
6352 * we are interested in). This will put all the pages in
6353 * range back to page allocator as MIGRATE_ISOLATE.
6354 *
6355 * When this is done, we take the pages in range from page
6356 * allocator removing them from the buddy system. This way
6357 * page allocator will never consider using them.
6358 *
6359 * This lets us mark the pageblocks back as
6360 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6361 * aligned range but not in the unaligned, original range are
6362 * put back to page allocator so that buddy can use them.
6363 */
6364
6365 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6366 pfn_max_align_up(end), migratetype,
6367 false);
041d3a8c 6368 if (ret)
86a595f9 6369 return ret;
041d3a8c 6370
bb13ffeb 6371 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6372 if (ret)
6373 goto done;
6374
6375 /*
6376 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6377 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6378 * more, all pages in [start, end) are free in page allocator.
6379 * What we are going to do is to allocate all pages from
6380 * [start, end) (that is remove them from page allocator).
6381 *
6382 * The only problem is that pages at the beginning and at the
6383 * end of interesting range may be not aligned with pages that
6384 * page allocator holds, ie. they can be part of higher order
6385 * pages. Because of this, we reserve the bigger range and
6386 * once this is done free the pages we are not interested in.
6387 *
6388 * We don't have to hold zone->lock here because the pages are
6389 * isolated thus they won't get removed from buddy.
6390 */
6391
6392 lru_add_drain_all();
6393 drain_all_pages();
6394
6395 order = 0;
6396 outer_start = start;
6397 while (!PageBuddy(pfn_to_page(outer_start))) {
6398 if (++order >= MAX_ORDER) {
6399 ret = -EBUSY;
6400 goto done;
6401 }
6402 outer_start &= ~0UL << order;
6403 }
6404
6405 /* Make sure the range is really isolated. */
b023f468 6406 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6407 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6408 outer_start, end);
6409 ret = -EBUSY;
6410 goto done;
6411 }
6412
49f223a9
MS
6413
6414 /* Grab isolated pages from freelists. */
bb13ffeb 6415 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6416 if (!outer_end) {
6417 ret = -EBUSY;
6418 goto done;
6419 }
6420
6421 /* Free head and tail (if any) */
6422 if (start != outer_start)
6423 free_contig_range(outer_start, start - outer_start);
6424 if (end != outer_end)
6425 free_contig_range(end, outer_end - end);
6426
6427done:
6428 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6429 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6430 return ret;
6431}
6432
6433void free_contig_range(unsigned long pfn, unsigned nr_pages)
6434{
bcc2b02f
MS
6435 unsigned int count = 0;
6436
6437 for (; nr_pages--; pfn++) {
6438 struct page *page = pfn_to_page(pfn);
6439
6440 count += page_count(page) != 1;
6441 __free_page(page);
6442 }
6443 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6444}
6445#endif
6446
4ed7e022 6447#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6448/*
6449 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6450 * page high values need to be recalulated.
6451 */
4ed7e022
JL
6452void __meminit zone_pcp_update(struct zone *zone)
6453{
0a647f38 6454 unsigned cpu;
c8e251fa 6455 mutex_lock(&pcp_batch_high_lock);
0a647f38 6456 for_each_possible_cpu(cpu)
169f6c19
CS
6457 pageset_set_high_and_batch(zone,
6458 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6459 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6460}
6461#endif
6462
340175b7
JL
6463void zone_pcp_reset(struct zone *zone)
6464{
6465 unsigned long flags;
5a883813
MK
6466 int cpu;
6467 struct per_cpu_pageset *pset;
340175b7
JL
6468
6469 /* avoid races with drain_pages() */
6470 local_irq_save(flags);
6471 if (zone->pageset != &boot_pageset) {
5a883813
MK
6472 for_each_online_cpu(cpu) {
6473 pset = per_cpu_ptr(zone->pageset, cpu);
6474 drain_zonestat(zone, pset);
6475 }
340175b7
JL
6476 free_percpu(zone->pageset);
6477 zone->pageset = &boot_pageset;
6478 }
6479 local_irq_restore(flags);
6480}
6481
6dcd73d7 6482#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6483/*
6484 * All pages in the range must be isolated before calling this.
6485 */
6486void
6487__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6488{
6489 struct page *page;
6490 struct zone *zone;
7aeb09f9 6491 unsigned int order, i;
0c0e6195
KH
6492 unsigned long pfn;
6493 unsigned long flags;
6494 /* find the first valid pfn */
6495 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6496 if (pfn_valid(pfn))
6497 break;
6498 if (pfn == end_pfn)
6499 return;
6500 zone = page_zone(pfn_to_page(pfn));
6501 spin_lock_irqsave(&zone->lock, flags);
6502 pfn = start_pfn;
6503 while (pfn < end_pfn) {
6504 if (!pfn_valid(pfn)) {
6505 pfn++;
6506 continue;
6507 }
6508 page = pfn_to_page(pfn);
b023f468
WC
6509 /*
6510 * The HWPoisoned page may be not in buddy system, and
6511 * page_count() is not 0.
6512 */
6513 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6514 pfn++;
6515 SetPageReserved(page);
6516 continue;
6517 }
6518
0c0e6195
KH
6519 BUG_ON(page_count(page));
6520 BUG_ON(!PageBuddy(page));
6521 order = page_order(page);
6522#ifdef CONFIG_DEBUG_VM
6523 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6524 pfn, 1 << order, end_pfn);
6525#endif
6526 list_del(&page->lru);
6527 rmv_page_order(page);
6528 zone->free_area[order].nr_free--;
0c0e6195
KH
6529 for (i = 0; i < (1 << order); i++)
6530 SetPageReserved((page+i));
6531 pfn += (1 << order);
6532 }
6533 spin_unlock_irqrestore(&zone->lock, flags);
6534}
6535#endif
8d22ba1b
WF
6536
6537#ifdef CONFIG_MEMORY_FAILURE
6538bool is_free_buddy_page(struct page *page)
6539{
6540 struct zone *zone = page_zone(page);
6541 unsigned long pfn = page_to_pfn(page);
6542 unsigned long flags;
7aeb09f9 6543 unsigned int order;
8d22ba1b
WF
6544
6545 spin_lock_irqsave(&zone->lock, flags);
6546 for (order = 0; order < MAX_ORDER; order++) {
6547 struct page *page_head = page - (pfn & ((1 << order) - 1));
6548
6549 if (PageBuddy(page_head) && page_order(page_head) >= order)
6550 break;
6551 }
6552 spin_unlock_irqrestore(&zone->lock, flags);
6553
6554 return order < MAX_ORDER;
6555}
6556#endif
718a3821 6557
51300cef 6558static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6559 {1UL << PG_locked, "locked" },
6560 {1UL << PG_error, "error" },
6561 {1UL << PG_referenced, "referenced" },
6562 {1UL << PG_uptodate, "uptodate" },
6563 {1UL << PG_dirty, "dirty" },
6564 {1UL << PG_lru, "lru" },
6565 {1UL << PG_active, "active" },
6566 {1UL << PG_slab, "slab" },
6567 {1UL << PG_owner_priv_1, "owner_priv_1" },
6568 {1UL << PG_arch_1, "arch_1" },
6569 {1UL << PG_reserved, "reserved" },
6570 {1UL << PG_private, "private" },
6571 {1UL << PG_private_2, "private_2" },
6572 {1UL << PG_writeback, "writeback" },
6573#ifdef CONFIG_PAGEFLAGS_EXTENDED
6574 {1UL << PG_head, "head" },
6575 {1UL << PG_tail, "tail" },
6576#else
6577 {1UL << PG_compound, "compound" },
6578#endif
6579 {1UL << PG_swapcache, "swapcache" },
6580 {1UL << PG_mappedtodisk, "mappedtodisk" },
6581 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6582 {1UL << PG_swapbacked, "swapbacked" },
6583 {1UL << PG_unevictable, "unevictable" },
6584#ifdef CONFIG_MMU
6585 {1UL << PG_mlocked, "mlocked" },
6586#endif
6587#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6588 {1UL << PG_uncached, "uncached" },
6589#endif
6590#ifdef CONFIG_MEMORY_FAILURE
6591 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6592#endif
6593#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6594 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6595#endif
718a3821
WF
6596};
6597
6598static void dump_page_flags(unsigned long flags)
6599{
6600 const char *delim = "";
6601 unsigned long mask;
6602 int i;
6603
51300cef 6604 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6605
718a3821
WF
6606 printk(KERN_ALERT "page flags: %#lx(", flags);
6607
6608 /* remove zone id */
6609 flags &= (1UL << NR_PAGEFLAGS) - 1;
6610
51300cef 6611 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6612
6613 mask = pageflag_names[i].mask;
6614 if ((flags & mask) != mask)
6615 continue;
6616
6617 flags &= ~mask;
6618 printk("%s%s", delim, pageflag_names[i].name);
6619 delim = "|";
6620 }
6621
6622 /* check for left over flags */
6623 if (flags)
6624 printk("%s%#lx", delim, flags);
6625
6626 printk(")\n");
6627}
6628
d230dec1
KS
6629void dump_page_badflags(struct page *page, const char *reason,
6630 unsigned long badflags)
718a3821
WF
6631{
6632 printk(KERN_ALERT
6633 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6634 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6635 page->mapping, page->index);
6636 dump_page_flags(page->flags);
f0b791a3
DH
6637 if (reason)
6638 pr_alert("page dumped because: %s\n", reason);
6639 if (page->flags & badflags) {
6640 pr_alert("bad because of flags:\n");
6641 dump_page_flags(page->flags & badflags);
6642 }
f212ad7c 6643 mem_cgroup_print_bad_page(page);
718a3821 6644}
f0b791a3 6645
d230dec1 6646void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6647{
6648 dump_page_badflags(page, reason, 0);
6649}
ed12d845 6650EXPORT_SYMBOL(dump_page);