]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
sched/rt: Move rt specific bits into new header file
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
ac924c60 64#include <asm/div64.h>
1da177e4
LT
65#include "internal.h"
66
72812019
LS
67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68DEFINE_PER_CPU(int, numa_node);
69EXPORT_PER_CPU_SYMBOL(numa_node);
70#endif
71
7aac7898
LS
72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
73/*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81#endif
82
1da177e4 83/*
13808910 84 * Array of node states.
1da177e4 85 */
13808910
CL
86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89#ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91#ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
93#endif
94#ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
96#endif
97 [N_CPU] = { { [0] = 1UL } },
98#endif /* NUMA */
99};
100EXPORT_SYMBOL(node_states);
101
6c231b7b 102unsigned long totalram_pages __read_mostly;
cb45b0e9 103unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
104/*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110unsigned long dirty_balance_reserve __read_mostly;
111
1b76b02f 112int percpu_pagelist_fraction;
dcce284a 113gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 114
452aa699
RW
115#ifdef CONFIG_PM_SLEEP
116/*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
c9e664f1
RW
124
125static gfp_t saved_gfp_mask;
126
127void pm_restore_gfp_mask(void)
452aa699
RW
128{
129 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
452aa699
RW
134}
135
c9e664f1 136void pm_restrict_gfp_mask(void)
452aa699 137{
452aa699 138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 142}
f90ac398
MG
143
144bool pm_suspended_storage(void)
145{
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149}
452aa699
RW
150#endif /* CONFIG_PM_SLEEP */
151
d9c23400
MG
152#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153int pageblock_order __read_mostly;
154#endif
155
d98c7a09 156static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 157
1da177e4
LT
158/*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
1da177e4 168 */
2f1b6248 169int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 170#ifdef CONFIG_ZONE_DMA
2f1b6248 171 256,
4b51d669 172#endif
fb0e7942 173#ifdef CONFIG_ZONE_DMA32
2f1b6248 174 256,
fb0e7942 175#endif
e53ef38d 176#ifdef CONFIG_HIGHMEM
2a1e274a 177 32,
e53ef38d 178#endif
2a1e274a 179 32,
2f1b6248 180};
1da177e4
LT
181
182EXPORT_SYMBOL(totalram_pages);
1da177e4 183
15ad7cdc 184static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 185#ifdef CONFIG_ZONE_DMA
2f1b6248 186 "DMA",
4b51d669 187#endif
fb0e7942 188#ifdef CONFIG_ZONE_DMA32
2f1b6248 189 "DMA32",
fb0e7942 190#endif
2f1b6248 191 "Normal",
e53ef38d 192#ifdef CONFIG_HIGHMEM
2a1e274a 193 "HighMem",
e53ef38d 194#endif
2a1e274a 195 "Movable",
2f1b6248
CL
196};
197
1da177e4
LT
198int min_free_kbytes = 1024;
199
2c85f51d
JB
200static unsigned long __meminitdata nr_kernel_pages;
201static unsigned long __meminitdata nr_all_pages;
a3142c8e 202static unsigned long __meminitdata dma_reserve;
1da177e4 203
0ee332c1
TH
204#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207static unsigned long __initdata required_kernelcore;
208static unsigned long __initdata required_movablecore;
209static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212int movable_zone;
213EXPORT_SYMBOL(movable_zone);
214#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 215
418508c1
MS
216#if MAX_NUMNODES > 1
217int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 218int nr_online_nodes __read_mostly = 1;
418508c1 219EXPORT_SYMBOL(nr_node_ids);
62bc62a8 220EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
221#endif
222
9ef9acb0
MG
223int page_group_by_mobility_disabled __read_mostly;
224
ee6f509c 225void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 226{
49255c61
MG
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
b2a0ac88
MG
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233}
234
7f33d49a
RW
235bool oom_killer_disabled __read_mostly;
236
13e7444b 237#ifdef CONFIG_DEBUG_VM
c6a57e19 238static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 239{
bdc8cb98
DH
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
c6a57e19 243
bdc8cb98
DH
244 do {
245 seq = zone_span_seqbegin(zone);
246 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 ret = 1;
248 else if (pfn < zone->zone_start_pfn)
249 ret = 1;
250 } while (zone_span_seqretry(zone, seq));
251
252 return ret;
c6a57e19
DH
253}
254
255static int page_is_consistent(struct zone *zone, struct page *page)
256{
14e07298 257 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 258 return 0;
1da177e4 259 if (zone != page_zone(page))
c6a57e19
DH
260 return 0;
261
262 return 1;
263}
264/*
265 * Temporary debugging check for pages not lying within a given zone.
266 */
267static int bad_range(struct zone *zone, struct page *page)
268{
269 if (page_outside_zone_boundaries(zone, page))
1da177e4 270 return 1;
c6a57e19
DH
271 if (!page_is_consistent(zone, page))
272 return 1;
273
1da177e4
LT
274 return 0;
275}
13e7444b
NP
276#else
277static inline int bad_range(struct zone *zone, struct page *page)
278{
279 return 0;
280}
281#endif
282
224abf92 283static void bad_page(struct page *page)
1da177e4 284{
d936cf9b
HD
285 static unsigned long resume;
286 static unsigned long nr_shown;
287 static unsigned long nr_unshown;
288
2a7684a2
WF
289 /* Don't complain about poisoned pages */
290 if (PageHWPoison(page)) {
ef2b4b95 291 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
292 return;
293 }
294
d936cf9b
HD
295 /*
296 * Allow a burst of 60 reports, then keep quiet for that minute;
297 * or allow a steady drip of one report per second.
298 */
299 if (nr_shown == 60) {
300 if (time_before(jiffies, resume)) {
301 nr_unshown++;
302 goto out;
303 }
304 if (nr_unshown) {
1e9e6365
HD
305 printk(KERN_ALERT
306 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
307 nr_unshown);
308 nr_unshown = 0;
309 }
310 nr_shown = 0;
311 }
312 if (nr_shown++ == 0)
313 resume = jiffies + 60 * HZ;
314
1e9e6365 315 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 316 current->comm, page_to_pfn(page));
718a3821 317 dump_page(page);
3dc14741 318
4f31888c 319 print_modules();
1da177e4 320 dump_stack();
d936cf9b 321out:
8cc3b392 322 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 323 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 324 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
325}
326
1da177e4
LT
327/*
328 * Higher-order pages are called "compound pages". They are structured thusly:
329 *
330 * The first PAGE_SIZE page is called the "head page".
331 *
332 * The remaining PAGE_SIZE pages are called "tail pages".
333 *
6416b9fa
WSH
334 * All pages have PG_compound set. All tail pages have their ->first_page
335 * pointing at the head page.
1da177e4 336 *
41d78ba5
HD
337 * The first tail page's ->lru.next holds the address of the compound page's
338 * put_page() function. Its ->lru.prev holds the order of allocation.
339 * This usage means that zero-order pages may not be compound.
1da177e4 340 */
d98c7a09
HD
341
342static void free_compound_page(struct page *page)
343{
d85f3385 344 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
345}
346
01ad1c08 347void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
348{
349 int i;
350 int nr_pages = 1 << order;
351
352 set_compound_page_dtor(page, free_compound_page);
353 set_compound_order(page, order);
354 __SetPageHead(page);
355 for (i = 1; i < nr_pages; i++) {
356 struct page *p = page + i;
18229df5 357 __SetPageTail(p);
58a84aa9 358 set_page_count(p, 0);
18229df5
AW
359 p->first_page = page;
360 }
361}
362
59ff4216 363/* update __split_huge_page_refcount if you change this function */
8cc3b392 364static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
365{
366 int i;
367 int nr_pages = 1 << order;
8cc3b392 368 int bad = 0;
1da177e4 369
0bb2c763 370 if (unlikely(compound_order(page) != order)) {
224abf92 371 bad_page(page);
8cc3b392
HD
372 bad++;
373 }
1da177e4 374
6d777953 375 __ClearPageHead(page);
8cc3b392 376
18229df5
AW
377 for (i = 1; i < nr_pages; i++) {
378 struct page *p = page + i;
1da177e4 379
e713a21d 380 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 381 bad_page(page);
8cc3b392
HD
382 bad++;
383 }
d85f3385 384 __ClearPageTail(p);
1da177e4 385 }
8cc3b392
HD
386
387 return bad;
1da177e4 388}
1da177e4 389
17cf4406
NP
390static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
391{
392 int i;
393
6626c5d5
AM
394 /*
395 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
396 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 */
725d704e 398 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
399 for (i = 0; i < (1 << order); i++)
400 clear_highpage(page + i);
401}
402
c0a32fc5
SG
403#ifdef CONFIG_DEBUG_PAGEALLOC
404unsigned int _debug_guardpage_minorder;
405
406static int __init debug_guardpage_minorder_setup(char *buf)
407{
408 unsigned long res;
409
410 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
411 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
412 return 0;
413 }
414 _debug_guardpage_minorder = res;
415 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
416 return 0;
417}
418__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
419
420static inline void set_page_guard_flag(struct page *page)
421{
422 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
423}
424
425static inline void clear_page_guard_flag(struct page *page)
426{
427 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428}
429#else
430static inline void set_page_guard_flag(struct page *page) { }
431static inline void clear_page_guard_flag(struct page *page) { }
432#endif
433
6aa3001b
AM
434static inline void set_page_order(struct page *page, int order)
435{
4c21e2f2 436 set_page_private(page, order);
676165a8 437 __SetPageBuddy(page);
1da177e4
LT
438}
439
440static inline void rmv_page_order(struct page *page)
441{
676165a8 442 __ClearPageBuddy(page);
4c21e2f2 443 set_page_private(page, 0);
1da177e4
LT
444}
445
446/*
447 * Locate the struct page for both the matching buddy in our
448 * pair (buddy1) and the combined O(n+1) page they form (page).
449 *
450 * 1) Any buddy B1 will have an order O twin B2 which satisfies
451 * the following equation:
452 * B2 = B1 ^ (1 << O)
453 * For example, if the starting buddy (buddy2) is #8 its order
454 * 1 buddy is #10:
455 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
456 *
457 * 2) Any buddy B will have an order O+1 parent P which
458 * satisfies the following equation:
459 * P = B & ~(1 << O)
460 *
d6e05edc 461 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 462 */
1da177e4 463static inline unsigned long
43506fad 464__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 465{
43506fad 466 return page_idx ^ (1 << order);
1da177e4
LT
467}
468
469/*
470 * This function checks whether a page is free && is the buddy
471 * we can do coalesce a page and its buddy if
13e7444b 472 * (a) the buddy is not in a hole &&
676165a8 473 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
474 * (c) a page and its buddy have the same order &&
475 * (d) a page and its buddy are in the same zone.
676165a8 476 *
5f24ce5f
AA
477 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
478 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 479 *
676165a8 480 * For recording page's order, we use page_private(page).
1da177e4 481 */
cb2b95e1
AW
482static inline int page_is_buddy(struct page *page, struct page *buddy,
483 int order)
1da177e4 484{
14e07298 485 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 486 return 0;
13e7444b 487
cb2b95e1
AW
488 if (page_zone_id(page) != page_zone_id(buddy))
489 return 0;
490
c0a32fc5
SG
491 if (page_is_guard(buddy) && page_order(buddy) == order) {
492 VM_BUG_ON(page_count(buddy) != 0);
493 return 1;
494 }
495
cb2b95e1 496 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 497 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 498 return 1;
676165a8 499 }
6aa3001b 500 return 0;
1da177e4
LT
501}
502
503/*
504 * Freeing function for a buddy system allocator.
505 *
506 * The concept of a buddy system is to maintain direct-mapped table
507 * (containing bit values) for memory blocks of various "orders".
508 * The bottom level table contains the map for the smallest allocatable
509 * units of memory (here, pages), and each level above it describes
510 * pairs of units from the levels below, hence, "buddies".
511 * At a high level, all that happens here is marking the table entry
512 * at the bottom level available, and propagating the changes upward
513 * as necessary, plus some accounting needed to play nicely with other
514 * parts of the VM system.
515 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 516 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 517 * order is recorded in page_private(page) field.
1da177e4 518 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
519 * other. That is, if we allocate a small block, and both were
520 * free, the remainder of the region must be split into blocks.
1da177e4 521 * If a block is freed, and its buddy is also free, then this
5f63b720 522 * triggers coalescing into a block of larger size.
1da177e4 523 *
6d49e352 524 * -- nyc
1da177e4
LT
525 */
526
48db57f8 527static inline void __free_one_page(struct page *page,
ed0ae21d
MG
528 struct zone *zone, unsigned int order,
529 int migratetype)
1da177e4
LT
530{
531 unsigned long page_idx;
6dda9d55 532 unsigned long combined_idx;
43506fad 533 unsigned long uninitialized_var(buddy_idx);
6dda9d55 534 struct page *buddy;
1da177e4 535
224abf92 536 if (unlikely(PageCompound(page)))
8cc3b392
HD
537 if (unlikely(destroy_compound_page(page, order)))
538 return;
1da177e4 539
ed0ae21d
MG
540 VM_BUG_ON(migratetype == -1);
541
1da177e4
LT
542 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
543
f2260e6b 544 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 545 VM_BUG_ON(bad_range(zone, page));
1da177e4 546
1da177e4 547 while (order < MAX_ORDER-1) {
43506fad
KC
548 buddy_idx = __find_buddy_index(page_idx, order);
549 buddy = page + (buddy_idx - page_idx);
cb2b95e1 550 if (!page_is_buddy(page, buddy, order))
3c82d0ce 551 break;
c0a32fc5
SG
552 /*
553 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
554 * merge with it and move up one order.
555 */
556 if (page_is_guard(buddy)) {
557 clear_page_guard_flag(buddy);
558 set_page_private(page, 0);
d1ce749a
BZ
559 __mod_zone_freepage_state(zone, 1 << order,
560 migratetype);
c0a32fc5
SG
561 } else {
562 list_del(&buddy->lru);
563 zone->free_area[order].nr_free--;
564 rmv_page_order(buddy);
565 }
43506fad 566 combined_idx = buddy_idx & page_idx;
1da177e4
LT
567 page = page + (combined_idx - page_idx);
568 page_idx = combined_idx;
569 order++;
570 }
571 set_page_order(page, order);
6dda9d55
CZ
572
573 /*
574 * If this is not the largest possible page, check if the buddy
575 * of the next-highest order is free. If it is, it's possible
576 * that pages are being freed that will coalesce soon. In case,
577 * that is happening, add the free page to the tail of the list
578 * so it's less likely to be used soon and more likely to be merged
579 * as a higher order page
580 */
b7f50cfa 581 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 582 struct page *higher_page, *higher_buddy;
43506fad
KC
583 combined_idx = buddy_idx & page_idx;
584 higher_page = page + (combined_idx - page_idx);
585 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 586 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
587 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
588 list_add_tail(&page->lru,
589 &zone->free_area[order].free_list[migratetype]);
590 goto out;
591 }
592 }
593
594 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
595out:
1da177e4
LT
596 zone->free_area[order].nr_free++;
597}
598
224abf92 599static inline int free_pages_check(struct page *page)
1da177e4 600{
92be2e33
NP
601 if (unlikely(page_mapcount(page) |
602 (page->mapping != NULL) |
a3af9c38 603 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
604 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
605 (mem_cgroup_bad_page_check(page)))) {
224abf92 606 bad_page(page);
79f4b7bf 607 return 1;
8cc3b392 608 }
57e0a030 609 reset_page_last_nid(page);
79f4b7bf
HD
610 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
611 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
612 return 0;
1da177e4
LT
613}
614
615/*
5f8dcc21 616 * Frees a number of pages from the PCP lists
1da177e4 617 * Assumes all pages on list are in same zone, and of same order.
207f36ee 618 * count is the number of pages to free.
1da177e4
LT
619 *
620 * If the zone was previously in an "all pages pinned" state then look to
621 * see if this freeing clears that state.
622 *
623 * And clear the zone's pages_scanned counter, to hold off the "all pages are
624 * pinned" detection logic.
625 */
5f8dcc21
MG
626static void free_pcppages_bulk(struct zone *zone, int count,
627 struct per_cpu_pages *pcp)
1da177e4 628{
5f8dcc21 629 int migratetype = 0;
a6f9edd6 630 int batch_free = 0;
72853e29 631 int to_free = count;
5f8dcc21 632
c54ad30c 633 spin_lock(&zone->lock);
93e4a89a 634 zone->all_unreclaimable = 0;
1da177e4 635 zone->pages_scanned = 0;
f2260e6b 636
72853e29 637 while (to_free) {
48db57f8 638 struct page *page;
5f8dcc21
MG
639 struct list_head *list;
640
641 /*
a6f9edd6
MG
642 * Remove pages from lists in a round-robin fashion. A
643 * batch_free count is maintained that is incremented when an
644 * empty list is encountered. This is so more pages are freed
645 * off fuller lists instead of spinning excessively around empty
646 * lists
5f8dcc21
MG
647 */
648 do {
a6f9edd6 649 batch_free++;
5f8dcc21
MG
650 if (++migratetype == MIGRATE_PCPTYPES)
651 migratetype = 0;
652 list = &pcp->lists[migratetype];
653 } while (list_empty(list));
48db57f8 654
1d16871d
NK
655 /* This is the only non-empty list. Free them all. */
656 if (batch_free == MIGRATE_PCPTYPES)
657 batch_free = to_free;
658
a6f9edd6 659 do {
770c8aaa
BZ
660 int mt; /* migratetype of the to-be-freed page */
661
a6f9edd6
MG
662 page = list_entry(list->prev, struct page, lru);
663 /* must delete as __free_one_page list manipulates */
664 list_del(&page->lru);
b12c4ad1 665 mt = get_freepage_migratetype(page);
a7016235 666 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
667 __free_one_page(page, zone, 0, mt);
668 trace_mm_page_pcpu_drain(page, 0, mt);
97d0da22
WC
669 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
670 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
671 if (is_migrate_cma(mt))
672 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
673 }
72853e29 674 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 675 }
c54ad30c 676 spin_unlock(&zone->lock);
1da177e4
LT
677}
678
ed0ae21d
MG
679static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
1da177e4 681{
006d22d9 682 spin_lock(&zone->lock);
93e4a89a 683 zone->all_unreclaimable = 0;
006d22d9 684 zone->pages_scanned = 0;
f2260e6b 685
ed0ae21d 686 __free_one_page(page, zone, order, migratetype);
2139cbe6 687 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 688 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 689 spin_unlock(&zone->lock);
48db57f8
NP
690}
691
ec95f53a 692static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 693{
1da177e4 694 int i;
8cc3b392 695 int bad = 0;
1da177e4 696
b413d48a 697 trace_mm_page_free(page, order);
b1eeab67
VN
698 kmemcheck_free_shadow(page, order);
699
8dd60a3a
AA
700 if (PageAnon(page))
701 page->mapping = NULL;
702 for (i = 0; i < (1 << order); i++)
703 bad += free_pages_check(page + i);
8cc3b392 704 if (bad)
ec95f53a 705 return false;
689bcebf 706
3ac7fe5a 707 if (!PageHighMem(page)) {
9858db50 708 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
709 debug_check_no_obj_freed(page_address(page),
710 PAGE_SIZE << order);
711 }
dafb1367 712 arch_free_page(page, order);
48db57f8 713 kernel_map_pages(page, 1 << order, 0);
dafb1367 714
ec95f53a
KM
715 return true;
716}
717
718static void __free_pages_ok(struct page *page, unsigned int order)
719{
720 unsigned long flags;
95e34412 721 int migratetype;
ec95f53a
KM
722
723 if (!free_pages_prepare(page, order))
724 return;
725
c54ad30c 726 local_irq_save(flags);
f8891e5e 727 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
728 migratetype = get_pageblock_migratetype(page);
729 set_freepage_migratetype(page, migratetype);
730 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 731 local_irq_restore(flags);
1da177e4
LT
732}
733
9feedc9d
JL
734/*
735 * Read access to zone->managed_pages is safe because it's unsigned long,
736 * but we still need to serialize writers. Currently all callers of
737 * __free_pages_bootmem() except put_page_bootmem() should only be used
738 * at boot time. So for shorter boot time, we shift the burden to
739 * put_page_bootmem() to serialize writers.
740 */
af370fb8 741void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 742{
c3993076
JW
743 unsigned int nr_pages = 1 << order;
744 unsigned int loop;
a226f6c8 745
c3993076
JW
746 prefetchw(page);
747 for (loop = 0; loop < nr_pages; loop++) {
748 struct page *p = &page[loop];
749
750 if (loop + 1 < nr_pages)
751 prefetchw(p + 1);
752 __ClearPageReserved(p);
753 set_page_count(p, 0);
a226f6c8 754 }
c3993076 755
9feedc9d 756 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
757 set_page_refcounted(page);
758 __free_pages(page, order);
a226f6c8
DH
759}
760
47118af0
MN
761#ifdef CONFIG_CMA
762/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
763void __init init_cma_reserved_pageblock(struct page *page)
764{
765 unsigned i = pageblock_nr_pages;
766 struct page *p = page;
767
768 do {
769 __ClearPageReserved(p);
770 set_page_count(p, 0);
771 } while (++p, --i);
772
773 set_page_refcounted(page);
774 set_pageblock_migratetype(page, MIGRATE_CMA);
775 __free_pages(page, pageblock_order);
776 totalram_pages += pageblock_nr_pages;
777}
778#endif
1da177e4
LT
779
780/*
781 * The order of subdivision here is critical for the IO subsystem.
782 * Please do not alter this order without good reasons and regression
783 * testing. Specifically, as large blocks of memory are subdivided,
784 * the order in which smaller blocks are delivered depends on the order
785 * they're subdivided in this function. This is the primary factor
786 * influencing the order in which pages are delivered to the IO
787 * subsystem according to empirical testing, and this is also justified
788 * by considering the behavior of a buddy system containing a single
789 * large block of memory acted on by a series of small allocations.
790 * This behavior is a critical factor in sglist merging's success.
791 *
6d49e352 792 * -- nyc
1da177e4 793 */
085cc7d5 794static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
795 int low, int high, struct free_area *area,
796 int migratetype)
1da177e4
LT
797{
798 unsigned long size = 1 << high;
799
800 while (high > low) {
801 area--;
802 high--;
803 size >>= 1;
725d704e 804 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
805
806#ifdef CONFIG_DEBUG_PAGEALLOC
807 if (high < debug_guardpage_minorder()) {
808 /*
809 * Mark as guard pages (or page), that will allow to
810 * merge back to allocator when buddy will be freed.
811 * Corresponding page table entries will not be touched,
812 * pages will stay not present in virtual address space
813 */
814 INIT_LIST_HEAD(&page[size].lru);
815 set_page_guard_flag(&page[size]);
816 set_page_private(&page[size], high);
817 /* Guard pages are not available for any usage */
d1ce749a
BZ
818 __mod_zone_freepage_state(zone, -(1 << high),
819 migratetype);
c0a32fc5
SG
820 continue;
821 }
822#endif
b2a0ac88 823 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
824 area->nr_free++;
825 set_page_order(&page[size], high);
826 }
1da177e4
LT
827}
828
1da177e4
LT
829/*
830 * This page is about to be returned from the page allocator
831 */
2a7684a2 832static inline int check_new_page(struct page *page)
1da177e4 833{
92be2e33
NP
834 if (unlikely(page_mapcount(page) |
835 (page->mapping != NULL) |
a3af9c38 836 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
837 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
838 (mem_cgroup_bad_page_check(page)))) {
224abf92 839 bad_page(page);
689bcebf 840 return 1;
8cc3b392 841 }
2a7684a2
WF
842 return 0;
843}
844
845static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
846{
847 int i;
848
849 for (i = 0; i < (1 << order); i++) {
850 struct page *p = page + i;
851 if (unlikely(check_new_page(p)))
852 return 1;
853 }
689bcebf 854
4c21e2f2 855 set_page_private(page, 0);
7835e98b 856 set_page_refcounted(page);
cc102509
NP
857
858 arch_alloc_page(page, order);
1da177e4 859 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
860
861 if (gfp_flags & __GFP_ZERO)
862 prep_zero_page(page, order, gfp_flags);
863
864 if (order && (gfp_flags & __GFP_COMP))
865 prep_compound_page(page, order);
866
689bcebf 867 return 0;
1da177e4
LT
868}
869
56fd56b8
MG
870/*
871 * Go through the free lists for the given migratetype and remove
872 * the smallest available page from the freelists
873 */
728ec980
MG
874static inline
875struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
876 int migratetype)
877{
878 unsigned int current_order;
879 struct free_area * area;
880 struct page *page;
881
882 /* Find a page of the appropriate size in the preferred list */
883 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
884 area = &(zone->free_area[current_order]);
885 if (list_empty(&area->free_list[migratetype]))
886 continue;
887
888 page = list_entry(area->free_list[migratetype].next,
889 struct page, lru);
890 list_del(&page->lru);
891 rmv_page_order(page);
892 area->nr_free--;
56fd56b8
MG
893 expand(zone, page, order, current_order, area, migratetype);
894 return page;
895 }
896
897 return NULL;
898}
899
900
b2a0ac88
MG
901/*
902 * This array describes the order lists are fallen back to when
903 * the free lists for the desirable migrate type are depleted
904 */
47118af0
MN
905static int fallbacks[MIGRATE_TYPES][4] = {
906 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
907 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
908#ifdef CONFIG_CMA
909 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
911#else
912 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913#endif
6d4a4916
MN
914 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
915 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
916};
917
c361be55
MG
918/*
919 * Move the free pages in a range to the free lists of the requested type.
d9c23400 920 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
921 * boundary. If alignment is required, use move_freepages_block()
922 */
435b405c 923int move_freepages(struct zone *zone,
b69a7288
AB
924 struct page *start_page, struct page *end_page,
925 int migratetype)
c361be55
MG
926{
927 struct page *page;
928 unsigned long order;
d100313f 929 int pages_moved = 0;
c361be55
MG
930
931#ifndef CONFIG_HOLES_IN_ZONE
932 /*
933 * page_zone is not safe to call in this context when
934 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
935 * anyway as we check zone boundaries in move_freepages_block().
936 * Remove at a later date when no bug reports exist related to
ac0e5b7a 937 * grouping pages by mobility
c361be55
MG
938 */
939 BUG_ON(page_zone(start_page) != page_zone(end_page));
940#endif
941
942 for (page = start_page; page <= end_page;) {
344c790e
AL
943 /* Make sure we are not inadvertently changing nodes */
944 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
945
c361be55
MG
946 if (!pfn_valid_within(page_to_pfn(page))) {
947 page++;
948 continue;
949 }
950
951 if (!PageBuddy(page)) {
952 page++;
953 continue;
954 }
955
956 order = page_order(page);
84be48d8
KS
957 list_move(&page->lru,
958 &zone->free_area[order].free_list[migratetype]);
95e34412 959 set_freepage_migratetype(page, migratetype);
c361be55 960 page += 1 << order;
d100313f 961 pages_moved += 1 << order;
c361be55
MG
962 }
963
d100313f 964 return pages_moved;
c361be55
MG
965}
966
ee6f509c 967int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 968 int migratetype)
c361be55
MG
969{
970 unsigned long start_pfn, end_pfn;
971 struct page *start_page, *end_page;
972
973 start_pfn = page_to_pfn(page);
d9c23400 974 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 975 start_page = pfn_to_page(start_pfn);
d9c23400
MG
976 end_page = start_page + pageblock_nr_pages - 1;
977 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
978
979 /* Do not cross zone boundaries */
980 if (start_pfn < zone->zone_start_pfn)
981 start_page = page;
982 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
983 return 0;
984
985 return move_freepages(zone, start_page, end_page, migratetype);
986}
987
2f66a68f
MG
988static void change_pageblock_range(struct page *pageblock_page,
989 int start_order, int migratetype)
990{
991 int nr_pageblocks = 1 << (start_order - pageblock_order);
992
993 while (nr_pageblocks--) {
994 set_pageblock_migratetype(pageblock_page, migratetype);
995 pageblock_page += pageblock_nr_pages;
996 }
997}
998
b2a0ac88 999/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1000static inline struct page *
1001__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1002{
1003 struct free_area * area;
1004 int current_order;
1005 struct page *page;
1006 int migratetype, i;
1007
1008 /* Find the largest possible block of pages in the other list */
1009 for (current_order = MAX_ORDER-1; current_order >= order;
1010 --current_order) {
6d4a4916 1011 for (i = 0;; i++) {
b2a0ac88
MG
1012 migratetype = fallbacks[start_migratetype][i];
1013
56fd56b8
MG
1014 /* MIGRATE_RESERVE handled later if necessary */
1015 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1016 break;
e010487d 1017
b2a0ac88
MG
1018 area = &(zone->free_area[current_order]);
1019 if (list_empty(&area->free_list[migratetype]))
1020 continue;
1021
1022 page = list_entry(area->free_list[migratetype].next,
1023 struct page, lru);
1024 area->nr_free--;
1025
1026 /*
c361be55 1027 * If breaking a large block of pages, move all free
46dafbca
MG
1028 * pages to the preferred allocation list. If falling
1029 * back for a reclaimable kernel allocation, be more
25985edc 1030 * aggressive about taking ownership of free pages
47118af0
MN
1031 *
1032 * On the other hand, never change migration
1033 * type of MIGRATE_CMA pageblocks nor move CMA
1034 * pages on different free lists. We don't
1035 * want unmovable pages to be allocated from
1036 * MIGRATE_CMA areas.
b2a0ac88 1037 */
47118af0
MN
1038 if (!is_migrate_cma(migratetype) &&
1039 (unlikely(current_order >= pageblock_order / 2) ||
1040 start_migratetype == MIGRATE_RECLAIMABLE ||
1041 page_group_by_mobility_disabled)) {
1042 int pages;
46dafbca
MG
1043 pages = move_freepages_block(zone, page,
1044 start_migratetype);
1045
1046 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1047 if (pages >= (1 << (pageblock_order-1)) ||
1048 page_group_by_mobility_disabled)
46dafbca
MG
1049 set_pageblock_migratetype(page,
1050 start_migratetype);
1051
b2a0ac88 1052 migratetype = start_migratetype;
c361be55 1053 }
b2a0ac88
MG
1054
1055 /* Remove the page from the freelists */
1056 list_del(&page->lru);
1057 rmv_page_order(page);
b2a0ac88 1058
2f66a68f 1059 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1060 if (current_order >= pageblock_order &&
1061 !is_migrate_cma(migratetype))
2f66a68f 1062 change_pageblock_range(page, current_order,
b2a0ac88
MG
1063 start_migratetype);
1064
47118af0
MN
1065 expand(zone, page, order, current_order, area,
1066 is_migrate_cma(migratetype)
1067 ? migratetype : start_migratetype);
e0fff1bd
MG
1068
1069 trace_mm_page_alloc_extfrag(page, order, current_order,
1070 start_migratetype, migratetype);
1071
b2a0ac88
MG
1072 return page;
1073 }
1074 }
1075
728ec980 1076 return NULL;
b2a0ac88
MG
1077}
1078
56fd56b8 1079/*
1da177e4
LT
1080 * Do the hard work of removing an element from the buddy allocator.
1081 * Call me with the zone->lock already held.
1082 */
b2a0ac88
MG
1083static struct page *__rmqueue(struct zone *zone, unsigned int order,
1084 int migratetype)
1da177e4 1085{
1da177e4
LT
1086 struct page *page;
1087
728ec980 1088retry_reserve:
56fd56b8 1089 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1090
728ec980 1091 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1092 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1093
728ec980
MG
1094 /*
1095 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1096 * is used because __rmqueue_smallest is an inline function
1097 * and we want just one call site
1098 */
1099 if (!page) {
1100 migratetype = MIGRATE_RESERVE;
1101 goto retry_reserve;
1102 }
1103 }
1104
0d3d062a 1105 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1106 return page;
1da177e4
LT
1107}
1108
5f63b720 1109/*
1da177e4
LT
1110 * Obtain a specified number of elements from the buddy allocator, all under
1111 * a single hold of the lock, for efficiency. Add them to the supplied list.
1112 * Returns the number of new pages which were placed at *list.
1113 */
5f63b720 1114static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1115 unsigned long count, struct list_head *list,
e084b2d9 1116 int migratetype, int cold)
1da177e4 1117{
47118af0 1118 int mt = migratetype, i;
5f63b720 1119
c54ad30c 1120 spin_lock(&zone->lock);
1da177e4 1121 for (i = 0; i < count; ++i) {
b2a0ac88 1122 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1123 if (unlikely(page == NULL))
1da177e4 1124 break;
81eabcbe
MG
1125
1126 /*
1127 * Split buddy pages returned by expand() are received here
1128 * in physical page order. The page is added to the callers and
1129 * list and the list head then moves forward. From the callers
1130 * perspective, the linked list is ordered by page number in
1131 * some conditions. This is useful for IO devices that can
1132 * merge IO requests if the physical pages are ordered
1133 * properly.
1134 */
e084b2d9
MG
1135 if (likely(cold == 0))
1136 list_add(&page->lru, list);
1137 else
1138 list_add_tail(&page->lru, list);
47118af0
MN
1139 if (IS_ENABLED(CONFIG_CMA)) {
1140 mt = get_pageblock_migratetype(page);
1141 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1142 mt = migratetype;
1143 }
b12c4ad1 1144 set_freepage_migratetype(page, mt);
81eabcbe 1145 list = &page->lru;
d1ce749a
BZ
1146 if (is_migrate_cma(mt))
1147 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1148 -(1 << order));
1da177e4 1149 }
f2260e6b 1150 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1151 spin_unlock(&zone->lock);
085cc7d5 1152 return i;
1da177e4
LT
1153}
1154
4ae7c039 1155#ifdef CONFIG_NUMA
8fce4d8e 1156/*
4037d452
CL
1157 * Called from the vmstat counter updater to drain pagesets of this
1158 * currently executing processor on remote nodes after they have
1159 * expired.
1160 *
879336c3
CL
1161 * Note that this function must be called with the thread pinned to
1162 * a single processor.
8fce4d8e 1163 */
4037d452 1164void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1165{
4ae7c039 1166 unsigned long flags;
4037d452 1167 int to_drain;
4ae7c039 1168
4037d452
CL
1169 local_irq_save(flags);
1170 if (pcp->count >= pcp->batch)
1171 to_drain = pcp->batch;
1172 else
1173 to_drain = pcp->count;
2a13515c
KM
1174 if (to_drain > 0) {
1175 free_pcppages_bulk(zone, to_drain, pcp);
1176 pcp->count -= to_drain;
1177 }
4037d452 1178 local_irq_restore(flags);
4ae7c039
CL
1179}
1180#endif
1181
9f8f2172
CL
1182/*
1183 * Drain pages of the indicated processor.
1184 *
1185 * The processor must either be the current processor and the
1186 * thread pinned to the current processor or a processor that
1187 * is not online.
1188 */
1189static void drain_pages(unsigned int cpu)
1da177e4 1190{
c54ad30c 1191 unsigned long flags;
1da177e4 1192 struct zone *zone;
1da177e4 1193
ee99c71c 1194 for_each_populated_zone(zone) {
1da177e4 1195 struct per_cpu_pageset *pset;
3dfa5721 1196 struct per_cpu_pages *pcp;
1da177e4 1197
99dcc3e5
CL
1198 local_irq_save(flags);
1199 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1200
1201 pcp = &pset->pcp;
2ff754fa
DR
1202 if (pcp->count) {
1203 free_pcppages_bulk(zone, pcp->count, pcp);
1204 pcp->count = 0;
1205 }
3dfa5721 1206 local_irq_restore(flags);
1da177e4
LT
1207 }
1208}
1da177e4 1209
9f8f2172
CL
1210/*
1211 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1212 */
1213void drain_local_pages(void *arg)
1214{
1215 drain_pages(smp_processor_id());
1216}
1217
1218/*
74046494
GBY
1219 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1220 *
1221 * Note that this code is protected against sending an IPI to an offline
1222 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1223 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1224 * nothing keeps CPUs from showing up after we populated the cpumask and
1225 * before the call to on_each_cpu_mask().
9f8f2172
CL
1226 */
1227void drain_all_pages(void)
1228{
74046494
GBY
1229 int cpu;
1230 struct per_cpu_pageset *pcp;
1231 struct zone *zone;
1232
1233 /*
1234 * Allocate in the BSS so we wont require allocation in
1235 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1236 */
1237 static cpumask_t cpus_with_pcps;
1238
1239 /*
1240 * We don't care about racing with CPU hotplug event
1241 * as offline notification will cause the notified
1242 * cpu to drain that CPU pcps and on_each_cpu_mask
1243 * disables preemption as part of its processing
1244 */
1245 for_each_online_cpu(cpu) {
1246 bool has_pcps = false;
1247 for_each_populated_zone(zone) {
1248 pcp = per_cpu_ptr(zone->pageset, cpu);
1249 if (pcp->pcp.count) {
1250 has_pcps = true;
1251 break;
1252 }
1253 }
1254 if (has_pcps)
1255 cpumask_set_cpu(cpu, &cpus_with_pcps);
1256 else
1257 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1258 }
1259 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1260}
1261
296699de 1262#ifdef CONFIG_HIBERNATION
1da177e4
LT
1263
1264void mark_free_pages(struct zone *zone)
1265{
f623f0db
RW
1266 unsigned long pfn, max_zone_pfn;
1267 unsigned long flags;
b2a0ac88 1268 int order, t;
1da177e4
LT
1269 struct list_head *curr;
1270
1271 if (!zone->spanned_pages)
1272 return;
1273
1274 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1275
1276 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1277 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1278 if (pfn_valid(pfn)) {
1279 struct page *page = pfn_to_page(pfn);
1280
7be98234
RW
1281 if (!swsusp_page_is_forbidden(page))
1282 swsusp_unset_page_free(page);
f623f0db 1283 }
1da177e4 1284
b2a0ac88
MG
1285 for_each_migratetype_order(order, t) {
1286 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1287 unsigned long i;
1da177e4 1288
f623f0db
RW
1289 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1290 for (i = 0; i < (1UL << order); i++)
7be98234 1291 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1292 }
b2a0ac88 1293 }
1da177e4
LT
1294 spin_unlock_irqrestore(&zone->lock, flags);
1295}
e2c55dc8 1296#endif /* CONFIG_PM */
1da177e4 1297
1da177e4
LT
1298/*
1299 * Free a 0-order page
fc91668e 1300 * cold == 1 ? free a cold page : free a hot page
1da177e4 1301 */
fc91668e 1302void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1303{
1304 struct zone *zone = page_zone(page);
1305 struct per_cpu_pages *pcp;
1306 unsigned long flags;
5f8dcc21 1307 int migratetype;
1da177e4 1308
ec95f53a 1309 if (!free_pages_prepare(page, 0))
689bcebf
HD
1310 return;
1311
5f8dcc21 1312 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1313 set_freepage_migratetype(page, migratetype);
1da177e4 1314 local_irq_save(flags);
f8891e5e 1315 __count_vm_event(PGFREE);
da456f14 1316
5f8dcc21
MG
1317 /*
1318 * We only track unmovable, reclaimable and movable on pcp lists.
1319 * Free ISOLATE pages back to the allocator because they are being
1320 * offlined but treat RESERVE as movable pages so we can get those
1321 * areas back if necessary. Otherwise, we may have to free
1322 * excessively into the page allocator
1323 */
1324 if (migratetype >= MIGRATE_PCPTYPES) {
1325 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1326 free_one_page(zone, page, 0, migratetype);
1327 goto out;
1328 }
1329 migratetype = MIGRATE_MOVABLE;
1330 }
1331
99dcc3e5 1332 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1333 if (cold)
5f8dcc21 1334 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1335 else
5f8dcc21 1336 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1337 pcp->count++;
48db57f8 1338 if (pcp->count >= pcp->high) {
5f8dcc21 1339 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1340 pcp->count -= pcp->batch;
1341 }
5f8dcc21
MG
1342
1343out:
1da177e4 1344 local_irq_restore(flags);
1da177e4
LT
1345}
1346
cc59850e
KK
1347/*
1348 * Free a list of 0-order pages
1349 */
1350void free_hot_cold_page_list(struct list_head *list, int cold)
1351{
1352 struct page *page, *next;
1353
1354 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1355 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1356 free_hot_cold_page(page, cold);
1357 }
1358}
1359
8dfcc9ba
NP
1360/*
1361 * split_page takes a non-compound higher-order page, and splits it into
1362 * n (1<<order) sub-pages: page[0..n]
1363 * Each sub-page must be freed individually.
1364 *
1365 * Note: this is probably too low level an operation for use in drivers.
1366 * Please consult with lkml before using this in your driver.
1367 */
1368void split_page(struct page *page, unsigned int order)
1369{
1370 int i;
1371
725d704e
NP
1372 VM_BUG_ON(PageCompound(page));
1373 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1374
1375#ifdef CONFIG_KMEMCHECK
1376 /*
1377 * Split shadow pages too, because free(page[0]) would
1378 * otherwise free the whole shadow.
1379 */
1380 if (kmemcheck_page_is_tracked(page))
1381 split_page(virt_to_page(page[0].shadow), order);
1382#endif
1383
7835e98b
NP
1384 for (i = 1; i < (1 << order); i++)
1385 set_page_refcounted(page + i);
8dfcc9ba 1386}
8dfcc9ba 1387
8fb74b9f 1388static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1389{
748446bb
MG
1390 unsigned long watermark;
1391 struct zone *zone;
2139cbe6 1392 int mt;
748446bb
MG
1393
1394 BUG_ON(!PageBuddy(page));
1395
1396 zone = page_zone(page);
2e30abd1 1397 mt = get_pageblock_migratetype(page);
748446bb 1398
2e30abd1
MS
1399 if (mt != MIGRATE_ISOLATE) {
1400 /* Obey watermarks as if the page was being allocated */
1401 watermark = low_wmark_pages(zone) + (1 << order);
1402 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1403 return 0;
1404
8fb74b9f 1405 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1406 }
748446bb
MG
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
2139cbe6 1412
8fb74b9f 1413 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1414 if (order >= pageblock_order - 1) {
1415 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1416 for (; page < endpage; page += pageblock_nr_pages) {
1417 int mt = get_pageblock_migratetype(page);
1418 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1419 set_pageblock_migratetype(page,
1420 MIGRATE_MOVABLE);
1421 }
748446bb
MG
1422 }
1423
8fb74b9f 1424 return 1UL << order;
1fb3f8ca
MG
1425}
1426
1427/*
1428 * Similar to split_page except the page is already free. As this is only
1429 * being used for migration, the migratetype of the block also changes.
1430 * As this is called with interrupts disabled, the caller is responsible
1431 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1432 * are enabled.
1433 *
1434 * Note: this is probably too low level an operation for use in drivers.
1435 * Please consult with lkml before using this in your driver.
1436 */
1437int split_free_page(struct page *page)
1438{
1439 unsigned int order;
1440 int nr_pages;
1441
1fb3f8ca
MG
1442 order = page_order(page);
1443
8fb74b9f 1444 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1445 if (!nr_pages)
1446 return 0;
1447
1448 /* Split into individual pages */
1449 set_page_refcounted(page);
1450 split_page(page, order);
1451 return nr_pages;
748446bb
MG
1452}
1453
1da177e4
LT
1454/*
1455 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1456 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1457 * or two.
1458 */
0a15c3e9
MG
1459static inline
1460struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1461 struct zone *zone, int order, gfp_t gfp_flags,
1462 int migratetype)
1da177e4
LT
1463{
1464 unsigned long flags;
689bcebf 1465 struct page *page;
1da177e4
LT
1466 int cold = !!(gfp_flags & __GFP_COLD);
1467
689bcebf 1468again:
48db57f8 1469 if (likely(order == 0)) {
1da177e4 1470 struct per_cpu_pages *pcp;
5f8dcc21 1471 struct list_head *list;
1da177e4 1472
1da177e4 1473 local_irq_save(flags);
99dcc3e5
CL
1474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1475 list = &pcp->lists[migratetype];
5f8dcc21 1476 if (list_empty(list)) {
535131e6 1477 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1478 pcp->batch, list,
e084b2d9 1479 migratetype, cold);
5f8dcc21 1480 if (unlikely(list_empty(list)))
6fb332fa 1481 goto failed;
535131e6 1482 }
b92a6edd 1483
5f8dcc21
MG
1484 if (cold)
1485 page = list_entry(list->prev, struct page, lru);
1486 else
1487 page = list_entry(list->next, struct page, lru);
1488
b92a6edd
MG
1489 list_del(&page->lru);
1490 pcp->count--;
7fb1d9fc 1491 } else {
dab48dab
AM
1492 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1493 /*
1494 * __GFP_NOFAIL is not to be used in new code.
1495 *
1496 * All __GFP_NOFAIL callers should be fixed so that they
1497 * properly detect and handle allocation failures.
1498 *
1499 * We most definitely don't want callers attempting to
4923abf9 1500 * allocate greater than order-1 page units with
dab48dab
AM
1501 * __GFP_NOFAIL.
1502 */
4923abf9 1503 WARN_ON_ONCE(order > 1);
dab48dab 1504 }
1da177e4 1505 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1506 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1507 spin_unlock(&zone->lock);
1508 if (!page)
1509 goto failed;
d1ce749a
BZ
1510 __mod_zone_freepage_state(zone, -(1 << order),
1511 get_pageblock_migratetype(page));
1da177e4
LT
1512 }
1513
f8891e5e 1514 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1515 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1516 local_irq_restore(flags);
1da177e4 1517
725d704e 1518 VM_BUG_ON(bad_range(zone, page));
17cf4406 1519 if (prep_new_page(page, order, gfp_flags))
a74609fa 1520 goto again;
1da177e4 1521 return page;
a74609fa
NP
1522
1523failed:
1524 local_irq_restore(flags);
a74609fa 1525 return NULL;
1da177e4
LT
1526}
1527
933e312e
AM
1528#ifdef CONFIG_FAIL_PAGE_ALLOC
1529
b2588c4b 1530static struct {
933e312e
AM
1531 struct fault_attr attr;
1532
1533 u32 ignore_gfp_highmem;
1534 u32 ignore_gfp_wait;
54114994 1535 u32 min_order;
933e312e
AM
1536} fail_page_alloc = {
1537 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1538 .ignore_gfp_wait = 1,
1539 .ignore_gfp_highmem = 1,
54114994 1540 .min_order = 1,
933e312e
AM
1541};
1542
1543static int __init setup_fail_page_alloc(char *str)
1544{
1545 return setup_fault_attr(&fail_page_alloc.attr, str);
1546}
1547__setup("fail_page_alloc=", setup_fail_page_alloc);
1548
deaf386e 1549static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1550{
54114994 1551 if (order < fail_page_alloc.min_order)
deaf386e 1552 return false;
933e312e 1553 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1554 return false;
933e312e 1555 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1556 return false;
933e312e 1557 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1558 return false;
933e312e
AM
1559
1560 return should_fail(&fail_page_alloc.attr, 1 << order);
1561}
1562
1563#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1564
1565static int __init fail_page_alloc_debugfs(void)
1566{
f4ae40a6 1567 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1568 struct dentry *dir;
933e312e 1569
dd48c085
AM
1570 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1571 &fail_page_alloc.attr);
1572 if (IS_ERR(dir))
1573 return PTR_ERR(dir);
933e312e 1574
b2588c4b
AM
1575 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1576 &fail_page_alloc.ignore_gfp_wait))
1577 goto fail;
1578 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1579 &fail_page_alloc.ignore_gfp_highmem))
1580 goto fail;
1581 if (!debugfs_create_u32("min-order", mode, dir,
1582 &fail_page_alloc.min_order))
1583 goto fail;
1584
1585 return 0;
1586fail:
dd48c085 1587 debugfs_remove_recursive(dir);
933e312e 1588
b2588c4b 1589 return -ENOMEM;
933e312e
AM
1590}
1591
1592late_initcall(fail_page_alloc_debugfs);
1593
1594#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1595
1596#else /* CONFIG_FAIL_PAGE_ALLOC */
1597
deaf386e 1598static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1599{
deaf386e 1600 return false;
933e312e
AM
1601}
1602
1603#endif /* CONFIG_FAIL_PAGE_ALLOC */
1604
1da177e4 1605/*
88f5acf8 1606 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1607 * of the allocation.
1608 */
88f5acf8
MG
1609static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1610 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1611{
1612 /* free_pages my go negative - that's OK */
d23ad423 1613 long min = mark;
2cfed075 1614 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1615 int o;
1616
df0a6daa 1617 free_pages -= (1 << order) - 1;
7fb1d9fc 1618 if (alloc_flags & ALLOC_HIGH)
1da177e4 1619 min -= min / 2;
7fb1d9fc 1620 if (alloc_flags & ALLOC_HARDER)
1da177e4 1621 min -= min / 4;
d95ea5d1
BZ
1622#ifdef CONFIG_CMA
1623 /* If allocation can't use CMA areas don't use free CMA pages */
1624 if (!(alloc_flags & ALLOC_CMA))
1625 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1626#endif
2cfed075 1627 if (free_pages <= min + lowmem_reserve)
88f5acf8 1628 return false;
1da177e4
LT
1629 for (o = 0; o < order; o++) {
1630 /* At the next order, this order's pages become unavailable */
1631 free_pages -= z->free_area[o].nr_free << o;
1632
1633 /* Require fewer higher order pages to be free */
1634 min >>= 1;
1635
1636 if (free_pages <= min)
88f5acf8 1637 return false;
1da177e4 1638 }
88f5acf8
MG
1639 return true;
1640}
1641
1642bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1643 int classzone_idx, int alloc_flags)
1644{
1645 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1646 zone_page_state(z, NR_FREE_PAGES));
1647}
1648
1649bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1650 int classzone_idx, int alloc_flags)
1651{
1652 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1653
1654 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1655 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1656
1657 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1658 free_pages);
1da177e4
LT
1659}
1660
9276b1bc
PJ
1661#ifdef CONFIG_NUMA
1662/*
1663 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1664 * skip over zones that are not allowed by the cpuset, or that have
1665 * been recently (in last second) found to be nearly full. See further
1666 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1667 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1668 *
1669 * If the zonelist cache is present in the passed in zonelist, then
1670 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1671 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1672 *
1673 * If the zonelist cache is not available for this zonelist, does
1674 * nothing and returns NULL.
1675 *
1676 * If the fullzones BITMAP in the zonelist cache is stale (more than
1677 * a second since last zap'd) then we zap it out (clear its bits.)
1678 *
1679 * We hold off even calling zlc_setup, until after we've checked the
1680 * first zone in the zonelist, on the theory that most allocations will
1681 * be satisfied from that first zone, so best to examine that zone as
1682 * quickly as we can.
1683 */
1684static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1685{
1686 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1687 nodemask_t *allowednodes; /* zonelist_cache approximation */
1688
1689 zlc = zonelist->zlcache_ptr;
1690 if (!zlc)
1691 return NULL;
1692
f05111f5 1693 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1694 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1695 zlc->last_full_zap = jiffies;
1696 }
1697
1698 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1699 &cpuset_current_mems_allowed :
4b0ef1fe 1700 &node_states[N_MEMORY];
9276b1bc
PJ
1701 return allowednodes;
1702}
1703
1704/*
1705 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1706 * if it is worth looking at further for free memory:
1707 * 1) Check that the zone isn't thought to be full (doesn't have its
1708 * bit set in the zonelist_cache fullzones BITMAP).
1709 * 2) Check that the zones node (obtained from the zonelist_cache
1710 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1711 * Return true (non-zero) if zone is worth looking at further, or
1712 * else return false (zero) if it is not.
1713 *
1714 * This check -ignores- the distinction between various watermarks,
1715 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1716 * found to be full for any variation of these watermarks, it will
1717 * be considered full for up to one second by all requests, unless
1718 * we are so low on memory on all allowed nodes that we are forced
1719 * into the second scan of the zonelist.
1720 *
1721 * In the second scan we ignore this zonelist cache and exactly
1722 * apply the watermarks to all zones, even it is slower to do so.
1723 * We are low on memory in the second scan, and should leave no stone
1724 * unturned looking for a free page.
1725 */
dd1a239f 1726static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1727 nodemask_t *allowednodes)
1728{
1729 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1730 int i; /* index of *z in zonelist zones */
1731 int n; /* node that zone *z is on */
1732
1733 zlc = zonelist->zlcache_ptr;
1734 if (!zlc)
1735 return 1;
1736
dd1a239f 1737 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1738 n = zlc->z_to_n[i];
1739
1740 /* This zone is worth trying if it is allowed but not full */
1741 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1742}
1743
1744/*
1745 * Given 'z' scanning a zonelist, set the corresponding bit in
1746 * zlc->fullzones, so that subsequent attempts to allocate a page
1747 * from that zone don't waste time re-examining it.
1748 */
dd1a239f 1749static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1750{
1751 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1752 int i; /* index of *z in zonelist zones */
1753
1754 zlc = zonelist->zlcache_ptr;
1755 if (!zlc)
1756 return;
1757
dd1a239f 1758 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1759
1760 set_bit(i, zlc->fullzones);
1761}
1762
76d3fbf8
MG
1763/*
1764 * clear all zones full, called after direct reclaim makes progress so that
1765 * a zone that was recently full is not skipped over for up to a second
1766 */
1767static void zlc_clear_zones_full(struct zonelist *zonelist)
1768{
1769 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return;
1774
1775 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1776}
1777
957f822a
DR
1778static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1779{
1780 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1781}
1782
1783static void __paginginit init_zone_allows_reclaim(int nid)
1784{
1785 int i;
1786
1787 for_each_online_node(i)
6b187d02 1788 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1789 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1790 else
957f822a 1791 zone_reclaim_mode = 1;
957f822a
DR
1792}
1793
9276b1bc
PJ
1794#else /* CONFIG_NUMA */
1795
1796static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1797{
1798 return NULL;
1799}
1800
dd1a239f 1801static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1802 nodemask_t *allowednodes)
1803{
1804 return 1;
1805}
1806
dd1a239f 1807static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1808{
1809}
76d3fbf8
MG
1810
1811static void zlc_clear_zones_full(struct zonelist *zonelist)
1812{
1813}
957f822a
DR
1814
1815static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1816{
1817 return true;
1818}
1819
1820static inline void init_zone_allows_reclaim(int nid)
1821{
1822}
9276b1bc
PJ
1823#endif /* CONFIG_NUMA */
1824
7fb1d9fc 1825/*
0798e519 1826 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1827 * a page.
1828 */
1829static struct page *
19770b32 1830get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1831 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1832 struct zone *preferred_zone, int migratetype)
753ee728 1833{
dd1a239f 1834 struct zoneref *z;
7fb1d9fc 1835 struct page *page = NULL;
54a6eb5c 1836 int classzone_idx;
5117f45d 1837 struct zone *zone;
9276b1bc
PJ
1838 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1839 int zlc_active = 0; /* set if using zonelist_cache */
1840 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1841
19770b32 1842 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1843zonelist_scan:
7fb1d9fc 1844 /*
9276b1bc 1845 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1846 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1847 */
19770b32
MG
1848 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1849 high_zoneidx, nodemask) {
e5adfffc 1850 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1851 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1852 continue;
7fb1d9fc 1853 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1854 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1855 continue;
a756cf59
JW
1856 /*
1857 * When allocating a page cache page for writing, we
1858 * want to get it from a zone that is within its dirty
1859 * limit, such that no single zone holds more than its
1860 * proportional share of globally allowed dirty pages.
1861 * The dirty limits take into account the zone's
1862 * lowmem reserves and high watermark so that kswapd
1863 * should be able to balance it without having to
1864 * write pages from its LRU list.
1865 *
1866 * This may look like it could increase pressure on
1867 * lower zones by failing allocations in higher zones
1868 * before they are full. But the pages that do spill
1869 * over are limited as the lower zones are protected
1870 * by this very same mechanism. It should not become
1871 * a practical burden to them.
1872 *
1873 * XXX: For now, allow allocations to potentially
1874 * exceed the per-zone dirty limit in the slowpath
1875 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1876 * which is important when on a NUMA setup the allowed
1877 * zones are together not big enough to reach the
1878 * global limit. The proper fix for these situations
1879 * will require awareness of zones in the
1880 * dirty-throttling and the flusher threads.
1881 */
1882 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1883 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1884 goto this_zone_full;
7fb1d9fc 1885
41858966 1886 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1887 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1888 unsigned long mark;
fa5e084e
MG
1889 int ret;
1890
41858966 1891 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1892 if (zone_watermark_ok(zone, order, mark,
1893 classzone_idx, alloc_flags))
1894 goto try_this_zone;
1895
e5adfffc
KS
1896 if (IS_ENABLED(CONFIG_NUMA) &&
1897 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1898 /*
1899 * we do zlc_setup if there are multiple nodes
1900 * and before considering the first zone allowed
1901 * by the cpuset.
1902 */
1903 allowednodes = zlc_setup(zonelist, alloc_flags);
1904 zlc_active = 1;
1905 did_zlc_setup = 1;
1906 }
1907
957f822a
DR
1908 if (zone_reclaim_mode == 0 ||
1909 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1910 goto this_zone_full;
1911
cd38b115
MG
1912 /*
1913 * As we may have just activated ZLC, check if the first
1914 * eligible zone has failed zone_reclaim recently.
1915 */
e5adfffc 1916 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1917 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1918 continue;
1919
fa5e084e
MG
1920 ret = zone_reclaim(zone, gfp_mask, order);
1921 switch (ret) {
1922 case ZONE_RECLAIM_NOSCAN:
1923 /* did not scan */
cd38b115 1924 continue;
fa5e084e
MG
1925 case ZONE_RECLAIM_FULL:
1926 /* scanned but unreclaimable */
cd38b115 1927 continue;
fa5e084e
MG
1928 default:
1929 /* did we reclaim enough */
1930 if (!zone_watermark_ok(zone, order, mark,
1931 classzone_idx, alloc_flags))
9276b1bc 1932 goto this_zone_full;
0798e519 1933 }
7fb1d9fc
RS
1934 }
1935
fa5e084e 1936try_this_zone:
3dd28266
MG
1937 page = buffered_rmqueue(preferred_zone, zone, order,
1938 gfp_mask, migratetype);
0798e519 1939 if (page)
7fb1d9fc 1940 break;
9276b1bc 1941this_zone_full:
e5adfffc 1942 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1943 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1944 }
9276b1bc 1945
e5adfffc 1946 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1947 /* Disable zlc cache for second zonelist scan */
1948 zlc_active = 0;
1949 goto zonelist_scan;
1950 }
b121186a
AS
1951
1952 if (page)
1953 /*
1954 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1955 * necessary to allocate the page. The expectation is
1956 * that the caller is taking steps that will free more
1957 * memory. The caller should avoid the page being used
1958 * for !PFMEMALLOC purposes.
1959 */
1960 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1961
7fb1d9fc 1962 return page;
753ee728
MH
1963}
1964
29423e77
DR
1965/*
1966 * Large machines with many possible nodes should not always dump per-node
1967 * meminfo in irq context.
1968 */
1969static inline bool should_suppress_show_mem(void)
1970{
1971 bool ret = false;
1972
1973#if NODES_SHIFT > 8
1974 ret = in_interrupt();
1975#endif
1976 return ret;
1977}
1978
a238ab5b
DH
1979static DEFINE_RATELIMIT_STATE(nopage_rs,
1980 DEFAULT_RATELIMIT_INTERVAL,
1981 DEFAULT_RATELIMIT_BURST);
1982
1983void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1984{
a238ab5b
DH
1985 unsigned int filter = SHOW_MEM_FILTER_NODES;
1986
c0a32fc5
SG
1987 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1988 debug_guardpage_minorder() > 0)
a238ab5b
DH
1989 return;
1990
1991 /*
1992 * This documents exceptions given to allocations in certain
1993 * contexts that are allowed to allocate outside current's set
1994 * of allowed nodes.
1995 */
1996 if (!(gfp_mask & __GFP_NOMEMALLOC))
1997 if (test_thread_flag(TIF_MEMDIE) ||
1998 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1999 filter &= ~SHOW_MEM_FILTER_NODES;
2000 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2001 filter &= ~SHOW_MEM_FILTER_NODES;
2002
2003 if (fmt) {
3ee9a4f0
JP
2004 struct va_format vaf;
2005 va_list args;
2006
a238ab5b 2007 va_start(args, fmt);
3ee9a4f0
JP
2008
2009 vaf.fmt = fmt;
2010 vaf.va = &args;
2011
2012 pr_warn("%pV", &vaf);
2013
a238ab5b
DH
2014 va_end(args);
2015 }
2016
3ee9a4f0
JP
2017 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2018 current->comm, order, gfp_mask);
a238ab5b
DH
2019
2020 dump_stack();
2021 if (!should_suppress_show_mem())
2022 show_mem(filter);
2023}
2024
11e33f6a
MG
2025static inline int
2026should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2027 unsigned long did_some_progress,
11e33f6a 2028 unsigned long pages_reclaimed)
1da177e4 2029{
11e33f6a
MG
2030 /* Do not loop if specifically requested */
2031 if (gfp_mask & __GFP_NORETRY)
2032 return 0;
1da177e4 2033
f90ac398
MG
2034 /* Always retry if specifically requested */
2035 if (gfp_mask & __GFP_NOFAIL)
2036 return 1;
2037
2038 /*
2039 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2040 * making forward progress without invoking OOM. Suspend also disables
2041 * storage devices so kswapd will not help. Bail if we are suspending.
2042 */
2043 if (!did_some_progress && pm_suspended_storage())
2044 return 0;
2045
11e33f6a
MG
2046 /*
2047 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2048 * means __GFP_NOFAIL, but that may not be true in other
2049 * implementations.
2050 */
2051 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2052 return 1;
2053
2054 /*
2055 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2056 * specified, then we retry until we no longer reclaim any pages
2057 * (above), or we've reclaimed an order of pages at least as
2058 * large as the allocation's order. In both cases, if the
2059 * allocation still fails, we stop retrying.
2060 */
2061 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2062 return 1;
cf40bd16 2063
11e33f6a
MG
2064 return 0;
2065}
933e312e 2066
11e33f6a
MG
2067static inline struct page *
2068__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2069 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2070 nodemask_t *nodemask, struct zone *preferred_zone,
2071 int migratetype)
11e33f6a
MG
2072{
2073 struct page *page;
2074
2075 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2076 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2077 schedule_timeout_uninterruptible(1);
1da177e4
LT
2078 return NULL;
2079 }
6b1de916 2080
11e33f6a
MG
2081 /*
2082 * Go through the zonelist yet one more time, keep very high watermark
2083 * here, this is only to catch a parallel oom killing, we must fail if
2084 * we're still under heavy pressure.
2085 */
2086 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2087 order, zonelist, high_zoneidx,
5117f45d 2088 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2089 preferred_zone, migratetype);
7fb1d9fc 2090 if (page)
11e33f6a
MG
2091 goto out;
2092
4365a567
KH
2093 if (!(gfp_mask & __GFP_NOFAIL)) {
2094 /* The OOM killer will not help higher order allocs */
2095 if (order > PAGE_ALLOC_COSTLY_ORDER)
2096 goto out;
03668b3c
DR
2097 /* The OOM killer does not needlessly kill tasks for lowmem */
2098 if (high_zoneidx < ZONE_NORMAL)
2099 goto out;
4365a567
KH
2100 /*
2101 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2102 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2103 * The caller should handle page allocation failure by itself if
2104 * it specifies __GFP_THISNODE.
2105 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2106 */
2107 if (gfp_mask & __GFP_THISNODE)
2108 goto out;
2109 }
11e33f6a 2110 /* Exhausted what can be done so it's blamo time */
08ab9b10 2111 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2112
2113out:
2114 clear_zonelist_oom(zonelist, gfp_mask);
2115 return page;
2116}
2117
56de7263
MG
2118#ifdef CONFIG_COMPACTION
2119/* Try memory compaction for high-order allocations before reclaim */
2120static struct page *
2121__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2122 struct zonelist *zonelist, enum zone_type high_zoneidx,
2123 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2124 int migratetype, bool sync_migration,
c67fe375 2125 bool *contended_compaction, bool *deferred_compaction,
66199712 2126 unsigned long *did_some_progress)
56de7263 2127{
66199712 2128 if (!order)
56de7263
MG
2129 return NULL;
2130
aff62249 2131 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2132 *deferred_compaction = true;
2133 return NULL;
2134 }
2135
c06b1fca 2136 current->flags |= PF_MEMALLOC;
56de7263 2137 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2138 nodemask, sync_migration,
8fb74b9f 2139 contended_compaction);
c06b1fca 2140 current->flags &= ~PF_MEMALLOC;
56de7263 2141
1fb3f8ca 2142 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2143 struct page *page;
2144
56de7263
MG
2145 /* Page migration frees to the PCP lists but we want merging */
2146 drain_pages(get_cpu());
2147 put_cpu();
2148
2149 page = get_page_from_freelist(gfp_mask, nodemask,
2150 order, zonelist, high_zoneidx,
cfd19c5a
MG
2151 alloc_flags & ~ALLOC_NO_WATERMARKS,
2152 preferred_zone, migratetype);
56de7263 2153 if (page) {
62997027 2154 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2155 preferred_zone->compact_considered = 0;
2156 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2157 if (order >= preferred_zone->compact_order_failed)
2158 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2159 count_vm_event(COMPACTSUCCESS);
2160 return page;
2161 }
2162
2163 /*
2164 * It's bad if compaction run occurs and fails.
2165 * The most likely reason is that pages exist,
2166 * but not enough to satisfy watermarks.
2167 */
2168 count_vm_event(COMPACTFAIL);
66199712
MG
2169
2170 /*
2171 * As async compaction considers a subset of pageblocks, only
2172 * defer if the failure was a sync compaction failure.
2173 */
2174 if (sync_migration)
aff62249 2175 defer_compaction(preferred_zone, order);
56de7263
MG
2176
2177 cond_resched();
2178 }
2179
2180 return NULL;
2181}
2182#else
2183static inline struct page *
2184__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2185 struct zonelist *zonelist, enum zone_type high_zoneidx,
2186 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2187 int migratetype, bool sync_migration,
c67fe375 2188 bool *contended_compaction, bool *deferred_compaction,
66199712 2189 unsigned long *did_some_progress)
56de7263
MG
2190{
2191 return NULL;
2192}
2193#endif /* CONFIG_COMPACTION */
2194
bba90710
MS
2195/* Perform direct synchronous page reclaim */
2196static int
2197__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2198 nodemask_t *nodemask)
11e33f6a 2199{
11e33f6a 2200 struct reclaim_state reclaim_state;
bba90710 2201 int progress;
11e33f6a
MG
2202
2203 cond_resched();
2204
2205 /* We now go into synchronous reclaim */
2206 cpuset_memory_pressure_bump();
c06b1fca 2207 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2208 lockdep_set_current_reclaim_state(gfp_mask);
2209 reclaim_state.reclaimed_slab = 0;
c06b1fca 2210 current->reclaim_state = &reclaim_state;
11e33f6a 2211
bba90710 2212 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2213
c06b1fca 2214 current->reclaim_state = NULL;
11e33f6a 2215 lockdep_clear_current_reclaim_state();
c06b1fca 2216 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2217
2218 cond_resched();
2219
bba90710
MS
2220 return progress;
2221}
2222
2223/* The really slow allocator path where we enter direct reclaim */
2224static inline struct page *
2225__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2226 struct zonelist *zonelist, enum zone_type high_zoneidx,
2227 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2228 int migratetype, unsigned long *did_some_progress)
2229{
2230 struct page *page = NULL;
2231 bool drained = false;
2232
2233 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2234 nodemask);
9ee493ce
MG
2235 if (unlikely(!(*did_some_progress)))
2236 return NULL;
11e33f6a 2237
76d3fbf8 2238 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2239 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2240 zlc_clear_zones_full(zonelist);
2241
9ee493ce
MG
2242retry:
2243 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2244 zonelist, high_zoneidx,
cfd19c5a
MG
2245 alloc_flags & ~ALLOC_NO_WATERMARKS,
2246 preferred_zone, migratetype);
9ee493ce
MG
2247
2248 /*
2249 * If an allocation failed after direct reclaim, it could be because
2250 * pages are pinned on the per-cpu lists. Drain them and try again
2251 */
2252 if (!page && !drained) {
2253 drain_all_pages();
2254 drained = true;
2255 goto retry;
2256 }
2257
11e33f6a
MG
2258 return page;
2259}
2260
1da177e4 2261/*
11e33f6a
MG
2262 * This is called in the allocator slow-path if the allocation request is of
2263 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2264 */
11e33f6a
MG
2265static inline struct page *
2266__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2268 nodemask_t *nodemask, struct zone *preferred_zone,
2269 int migratetype)
11e33f6a
MG
2270{
2271 struct page *page;
2272
2273 do {
2274 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2275 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2276 preferred_zone, migratetype);
11e33f6a
MG
2277
2278 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2279 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2280 } while (!page && (gfp_mask & __GFP_NOFAIL));
2281
2282 return page;
2283}
2284
2285static inline
2286void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2287 enum zone_type high_zoneidx,
2288 enum zone_type classzone_idx)
1da177e4 2289{
dd1a239f
MG
2290 struct zoneref *z;
2291 struct zone *zone;
1da177e4 2292
11e33f6a 2293 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2294 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2295}
cf40bd16 2296
341ce06f
PZ
2297static inline int
2298gfp_to_alloc_flags(gfp_t gfp_mask)
2299{
341ce06f
PZ
2300 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2301 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2302
a56f57ff 2303 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2304 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2305
341ce06f
PZ
2306 /*
2307 * The caller may dip into page reserves a bit more if the caller
2308 * cannot run direct reclaim, or if the caller has realtime scheduling
2309 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2310 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2311 */
e6223a3b 2312 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2313
341ce06f 2314 if (!wait) {
5c3240d9
AA
2315 /*
2316 * Not worth trying to allocate harder for
2317 * __GFP_NOMEMALLOC even if it can't schedule.
2318 */
2319 if (!(gfp_mask & __GFP_NOMEMALLOC))
2320 alloc_flags |= ALLOC_HARDER;
523b9458 2321 /*
341ce06f
PZ
2322 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2323 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2324 */
341ce06f 2325 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2326 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2327 alloc_flags |= ALLOC_HARDER;
2328
b37f1dd0
MG
2329 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2330 if (gfp_mask & __GFP_MEMALLOC)
2331 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2332 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2333 alloc_flags |= ALLOC_NO_WATERMARKS;
2334 else if (!in_interrupt() &&
2335 ((current->flags & PF_MEMALLOC) ||
2336 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2337 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2338 }
d95ea5d1
BZ
2339#ifdef CONFIG_CMA
2340 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2341 alloc_flags |= ALLOC_CMA;
2342#endif
341ce06f
PZ
2343 return alloc_flags;
2344}
2345
072bb0aa
MG
2346bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2347{
b37f1dd0 2348 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2349}
2350
11e33f6a
MG
2351static inline struct page *
2352__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2353 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2354 nodemask_t *nodemask, struct zone *preferred_zone,
2355 int migratetype)
11e33f6a
MG
2356{
2357 const gfp_t wait = gfp_mask & __GFP_WAIT;
2358 struct page *page = NULL;
2359 int alloc_flags;
2360 unsigned long pages_reclaimed = 0;
2361 unsigned long did_some_progress;
77f1fe6b 2362 bool sync_migration = false;
66199712 2363 bool deferred_compaction = false;
c67fe375 2364 bool contended_compaction = false;
1da177e4 2365
72807a74
MG
2366 /*
2367 * In the slowpath, we sanity check order to avoid ever trying to
2368 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2369 * be using allocators in order of preference for an area that is
2370 * too large.
2371 */
1fc28b70
MG
2372 if (order >= MAX_ORDER) {
2373 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2374 return NULL;
1fc28b70 2375 }
1da177e4 2376
952f3b51
CL
2377 /*
2378 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2379 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2380 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2381 * using a larger set of nodes after it has established that the
2382 * allowed per node queues are empty and that nodes are
2383 * over allocated.
2384 */
e5adfffc
KS
2385 if (IS_ENABLED(CONFIG_NUMA) &&
2386 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2387 goto nopage;
2388
cc4a6851 2389restart:
caf49191
LT
2390 if (!(gfp_mask & __GFP_NO_KSWAPD))
2391 wake_all_kswapd(order, zonelist, high_zoneidx,
2392 zone_idx(preferred_zone));
1da177e4 2393
9bf2229f 2394 /*
7fb1d9fc
RS
2395 * OK, we're below the kswapd watermark and have kicked background
2396 * reclaim. Now things get more complex, so set up alloc_flags according
2397 * to how we want to proceed.
9bf2229f 2398 */
341ce06f 2399 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2400
f33261d7
DR
2401 /*
2402 * Find the true preferred zone if the allocation is unconstrained by
2403 * cpusets.
2404 */
2405 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2406 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2407 &preferred_zone);
2408
cfa54a0f 2409rebalance:
341ce06f 2410 /* This is the last chance, in general, before the goto nopage. */
19770b32 2411 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2412 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2413 preferred_zone, migratetype);
7fb1d9fc
RS
2414 if (page)
2415 goto got_pg;
1da177e4 2416
11e33f6a 2417 /* Allocate without watermarks if the context allows */
341ce06f 2418 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2419 /*
2420 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2421 * the allocation is high priority and these type of
2422 * allocations are system rather than user orientated
2423 */
2424 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2425
341ce06f
PZ
2426 page = __alloc_pages_high_priority(gfp_mask, order,
2427 zonelist, high_zoneidx, nodemask,
2428 preferred_zone, migratetype);
cfd19c5a 2429 if (page) {
341ce06f 2430 goto got_pg;
cfd19c5a 2431 }
1da177e4
LT
2432 }
2433
2434 /* Atomic allocations - we can't balance anything */
2435 if (!wait)
2436 goto nopage;
2437
341ce06f 2438 /* Avoid recursion of direct reclaim */
c06b1fca 2439 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2440 goto nopage;
2441
6583bb64
DR
2442 /* Avoid allocations with no watermarks from looping endlessly */
2443 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2444 goto nopage;
2445
77f1fe6b
MG
2446 /*
2447 * Try direct compaction. The first pass is asynchronous. Subsequent
2448 * attempts after direct reclaim are synchronous
2449 */
56de7263
MG
2450 page = __alloc_pages_direct_compact(gfp_mask, order,
2451 zonelist, high_zoneidx,
2452 nodemask,
2453 alloc_flags, preferred_zone,
66199712 2454 migratetype, sync_migration,
c67fe375 2455 &contended_compaction,
66199712
MG
2456 &deferred_compaction,
2457 &did_some_progress);
56de7263
MG
2458 if (page)
2459 goto got_pg;
c6a140bf 2460 sync_migration = true;
56de7263 2461
31f8d42d
LT
2462 /*
2463 * If compaction is deferred for high-order allocations, it is because
2464 * sync compaction recently failed. In this is the case and the caller
2465 * requested a movable allocation that does not heavily disrupt the
2466 * system then fail the allocation instead of entering direct reclaim.
2467 */
2468 if ((deferred_compaction || contended_compaction) &&
caf49191 2469 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2470 goto nopage;
66199712 2471
11e33f6a
MG
2472 /* Try direct reclaim and then allocating */
2473 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2474 zonelist, high_zoneidx,
2475 nodemask,
5117f45d 2476 alloc_flags, preferred_zone,
3dd28266 2477 migratetype, &did_some_progress);
11e33f6a
MG
2478 if (page)
2479 goto got_pg;
1da177e4 2480
e33c3b5e 2481 /*
11e33f6a
MG
2482 * If we failed to make any progress reclaiming, then we are
2483 * running out of options and have to consider going OOM
e33c3b5e 2484 */
11e33f6a
MG
2485 if (!did_some_progress) {
2486 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2487 if (oom_killer_disabled)
2488 goto nopage;
29fd66d2
DR
2489 /* Coredumps can quickly deplete all memory reserves */
2490 if ((current->flags & PF_DUMPCORE) &&
2491 !(gfp_mask & __GFP_NOFAIL))
2492 goto nopage;
11e33f6a
MG
2493 page = __alloc_pages_may_oom(gfp_mask, order,
2494 zonelist, high_zoneidx,
3dd28266
MG
2495 nodemask, preferred_zone,
2496 migratetype);
11e33f6a
MG
2497 if (page)
2498 goto got_pg;
1da177e4 2499
03668b3c
DR
2500 if (!(gfp_mask & __GFP_NOFAIL)) {
2501 /*
2502 * The oom killer is not called for high-order
2503 * allocations that may fail, so if no progress
2504 * is being made, there are no other options and
2505 * retrying is unlikely to help.
2506 */
2507 if (order > PAGE_ALLOC_COSTLY_ORDER)
2508 goto nopage;
2509 /*
2510 * The oom killer is not called for lowmem
2511 * allocations to prevent needlessly killing
2512 * innocent tasks.
2513 */
2514 if (high_zoneidx < ZONE_NORMAL)
2515 goto nopage;
2516 }
e2c55dc8 2517
ff0ceb9d
DR
2518 goto restart;
2519 }
1da177e4
LT
2520 }
2521
11e33f6a 2522 /* Check if we should retry the allocation */
a41f24ea 2523 pages_reclaimed += did_some_progress;
f90ac398
MG
2524 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2525 pages_reclaimed)) {
11e33f6a 2526 /* Wait for some write requests to complete then retry */
0e093d99 2527 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2528 goto rebalance;
3e7d3449
MG
2529 } else {
2530 /*
2531 * High-order allocations do not necessarily loop after
2532 * direct reclaim and reclaim/compaction depends on compaction
2533 * being called after reclaim so call directly if necessary
2534 */
2535 page = __alloc_pages_direct_compact(gfp_mask, order,
2536 zonelist, high_zoneidx,
2537 nodemask,
2538 alloc_flags, preferred_zone,
66199712 2539 migratetype, sync_migration,
c67fe375 2540 &contended_compaction,
66199712
MG
2541 &deferred_compaction,
2542 &did_some_progress);
3e7d3449
MG
2543 if (page)
2544 goto got_pg;
1da177e4
LT
2545 }
2546
2547nopage:
a238ab5b 2548 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2549 return page;
1da177e4 2550got_pg:
b1eeab67
VN
2551 if (kmemcheck_enabled)
2552 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2553
072bb0aa 2554 return page;
1da177e4 2555}
11e33f6a
MG
2556
2557/*
2558 * This is the 'heart' of the zoned buddy allocator.
2559 */
2560struct page *
2561__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2562 struct zonelist *zonelist, nodemask_t *nodemask)
2563{
2564 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2565 struct zone *preferred_zone;
cc9a6c87 2566 struct page *page = NULL;
3dd28266 2567 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2568 unsigned int cpuset_mems_cookie;
d95ea5d1 2569 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2570 struct mem_cgroup *memcg = NULL;
11e33f6a 2571
dcce284a
BH
2572 gfp_mask &= gfp_allowed_mask;
2573
11e33f6a
MG
2574 lockdep_trace_alloc(gfp_mask);
2575
2576 might_sleep_if(gfp_mask & __GFP_WAIT);
2577
2578 if (should_fail_alloc_page(gfp_mask, order))
2579 return NULL;
2580
2581 /*
2582 * Check the zones suitable for the gfp_mask contain at least one
2583 * valid zone. It's possible to have an empty zonelist as a result
2584 * of GFP_THISNODE and a memoryless node
2585 */
2586 if (unlikely(!zonelist->_zonerefs->zone))
2587 return NULL;
2588
6a1a0d3b
GC
2589 /*
2590 * Will only have any effect when __GFP_KMEMCG is set. This is
2591 * verified in the (always inline) callee
2592 */
2593 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2594 return NULL;
2595
cc9a6c87
MG
2596retry_cpuset:
2597 cpuset_mems_cookie = get_mems_allowed();
2598
5117f45d 2599 /* The preferred zone is used for statistics later */
f33261d7
DR
2600 first_zones_zonelist(zonelist, high_zoneidx,
2601 nodemask ? : &cpuset_current_mems_allowed,
2602 &preferred_zone);
cc9a6c87
MG
2603 if (!preferred_zone)
2604 goto out;
5117f45d 2605
d95ea5d1
BZ
2606#ifdef CONFIG_CMA
2607 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2608 alloc_flags |= ALLOC_CMA;
2609#endif
5117f45d 2610 /* First allocation attempt */
11e33f6a 2611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2612 zonelist, high_zoneidx, alloc_flags,
3dd28266 2613 preferred_zone, migratetype);
11e33f6a
MG
2614 if (unlikely(!page))
2615 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2616 zonelist, high_zoneidx, nodemask,
3dd28266 2617 preferred_zone, migratetype);
11e33f6a 2618
4b4f278c 2619 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2620
2621out:
2622 /*
2623 * When updating a task's mems_allowed, it is possible to race with
2624 * parallel threads in such a way that an allocation can fail while
2625 * the mask is being updated. If a page allocation is about to fail,
2626 * check if the cpuset changed during allocation and if so, retry.
2627 */
2628 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2629 goto retry_cpuset;
2630
6a1a0d3b
GC
2631 memcg_kmem_commit_charge(page, memcg, order);
2632
11e33f6a 2633 return page;
1da177e4 2634}
d239171e 2635EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2636
2637/*
2638 * Common helper functions.
2639 */
920c7a5d 2640unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2641{
945a1113
AM
2642 struct page *page;
2643
2644 /*
2645 * __get_free_pages() returns a 32-bit address, which cannot represent
2646 * a highmem page
2647 */
2648 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2649
1da177e4
LT
2650 page = alloc_pages(gfp_mask, order);
2651 if (!page)
2652 return 0;
2653 return (unsigned long) page_address(page);
2654}
1da177e4
LT
2655EXPORT_SYMBOL(__get_free_pages);
2656
920c7a5d 2657unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2658{
945a1113 2659 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2660}
1da177e4
LT
2661EXPORT_SYMBOL(get_zeroed_page);
2662
920c7a5d 2663void __free_pages(struct page *page, unsigned int order)
1da177e4 2664{
b5810039 2665 if (put_page_testzero(page)) {
1da177e4 2666 if (order == 0)
fc91668e 2667 free_hot_cold_page(page, 0);
1da177e4
LT
2668 else
2669 __free_pages_ok(page, order);
2670 }
2671}
2672
2673EXPORT_SYMBOL(__free_pages);
2674
920c7a5d 2675void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2676{
2677 if (addr != 0) {
725d704e 2678 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2679 __free_pages(virt_to_page((void *)addr), order);
2680 }
2681}
2682
2683EXPORT_SYMBOL(free_pages);
2684
6a1a0d3b
GC
2685/*
2686 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2687 * pages allocated with __GFP_KMEMCG.
2688 *
2689 * Those pages are accounted to a particular memcg, embedded in the
2690 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2691 * for that information only to find out that it is NULL for users who have no
2692 * interest in that whatsoever, we provide these functions.
2693 *
2694 * The caller knows better which flags it relies on.
2695 */
2696void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2697{
2698 memcg_kmem_uncharge_pages(page, order);
2699 __free_pages(page, order);
2700}
2701
2702void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2703{
2704 if (addr != 0) {
2705 VM_BUG_ON(!virt_addr_valid((void *)addr));
2706 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2707 }
2708}
2709
ee85c2e1
AK
2710static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2711{
2712 if (addr) {
2713 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2714 unsigned long used = addr + PAGE_ALIGN(size);
2715
2716 split_page(virt_to_page((void *)addr), order);
2717 while (used < alloc_end) {
2718 free_page(used);
2719 used += PAGE_SIZE;
2720 }
2721 }
2722 return (void *)addr;
2723}
2724
2be0ffe2
TT
2725/**
2726 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2727 * @size: the number of bytes to allocate
2728 * @gfp_mask: GFP flags for the allocation
2729 *
2730 * This function is similar to alloc_pages(), except that it allocates the
2731 * minimum number of pages to satisfy the request. alloc_pages() can only
2732 * allocate memory in power-of-two pages.
2733 *
2734 * This function is also limited by MAX_ORDER.
2735 *
2736 * Memory allocated by this function must be released by free_pages_exact().
2737 */
2738void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2739{
2740 unsigned int order = get_order(size);
2741 unsigned long addr;
2742
2743 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2744 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2745}
2746EXPORT_SYMBOL(alloc_pages_exact);
2747
ee85c2e1
AK
2748/**
2749 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2750 * pages on a node.
b5e6ab58 2751 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2752 * @size: the number of bytes to allocate
2753 * @gfp_mask: GFP flags for the allocation
2754 *
2755 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2756 * back.
2757 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2758 * but is not exact.
2759 */
2760void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2761{
2762 unsigned order = get_order(size);
2763 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2764 if (!p)
2765 return NULL;
2766 return make_alloc_exact((unsigned long)page_address(p), order, size);
2767}
2768EXPORT_SYMBOL(alloc_pages_exact_nid);
2769
2be0ffe2
TT
2770/**
2771 * free_pages_exact - release memory allocated via alloc_pages_exact()
2772 * @virt: the value returned by alloc_pages_exact.
2773 * @size: size of allocation, same value as passed to alloc_pages_exact().
2774 *
2775 * Release the memory allocated by a previous call to alloc_pages_exact.
2776 */
2777void free_pages_exact(void *virt, size_t size)
2778{
2779 unsigned long addr = (unsigned long)virt;
2780 unsigned long end = addr + PAGE_ALIGN(size);
2781
2782 while (addr < end) {
2783 free_page(addr);
2784 addr += PAGE_SIZE;
2785 }
2786}
2787EXPORT_SYMBOL(free_pages_exact);
2788
1da177e4
LT
2789static unsigned int nr_free_zone_pages(int offset)
2790{
dd1a239f 2791 struct zoneref *z;
54a6eb5c
MG
2792 struct zone *zone;
2793
e310fd43 2794 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2795 unsigned int sum = 0;
2796
0e88460d 2797 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2798
54a6eb5c 2799 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2800 unsigned long size = zone->present_pages;
41858966 2801 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2802 if (size > high)
2803 sum += size - high;
1da177e4
LT
2804 }
2805
2806 return sum;
2807}
2808
2809/*
2810 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2811 */
2812unsigned int nr_free_buffer_pages(void)
2813{
af4ca457 2814 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2815}
c2f1a551 2816EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2817
2818/*
2819 * Amount of free RAM allocatable within all zones
2820 */
2821unsigned int nr_free_pagecache_pages(void)
2822{
2a1e274a 2823 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2824}
08e0f6a9
CL
2825
2826static inline void show_node(struct zone *zone)
1da177e4 2827{
e5adfffc 2828 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2829 printk("Node %d ", zone_to_nid(zone));
1da177e4 2830}
1da177e4 2831
1da177e4
LT
2832void si_meminfo(struct sysinfo *val)
2833{
2834 val->totalram = totalram_pages;
2835 val->sharedram = 0;
d23ad423 2836 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2837 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2838 val->totalhigh = totalhigh_pages;
2839 val->freehigh = nr_free_highpages();
1da177e4
LT
2840 val->mem_unit = PAGE_SIZE;
2841}
2842
2843EXPORT_SYMBOL(si_meminfo);
2844
2845#ifdef CONFIG_NUMA
2846void si_meminfo_node(struct sysinfo *val, int nid)
2847{
2848 pg_data_t *pgdat = NODE_DATA(nid);
2849
2850 val->totalram = pgdat->node_present_pages;
d23ad423 2851 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2852#ifdef CONFIG_HIGHMEM
1da177e4 2853 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2854 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2855 NR_FREE_PAGES);
98d2b0eb
CL
2856#else
2857 val->totalhigh = 0;
2858 val->freehigh = 0;
2859#endif
1da177e4
LT
2860 val->mem_unit = PAGE_SIZE;
2861}
2862#endif
2863
ddd588b5 2864/*
7bf02ea2
DR
2865 * Determine whether the node should be displayed or not, depending on whether
2866 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2867 */
7bf02ea2 2868bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2869{
2870 bool ret = false;
cc9a6c87 2871 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2872
2873 if (!(flags & SHOW_MEM_FILTER_NODES))
2874 goto out;
2875
cc9a6c87
MG
2876 do {
2877 cpuset_mems_cookie = get_mems_allowed();
2878 ret = !node_isset(nid, cpuset_current_mems_allowed);
2879 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2880out:
2881 return ret;
2882}
2883
1da177e4
LT
2884#define K(x) ((x) << (PAGE_SHIFT-10))
2885
377e4f16
RV
2886static void show_migration_types(unsigned char type)
2887{
2888 static const char types[MIGRATE_TYPES] = {
2889 [MIGRATE_UNMOVABLE] = 'U',
2890 [MIGRATE_RECLAIMABLE] = 'E',
2891 [MIGRATE_MOVABLE] = 'M',
2892 [MIGRATE_RESERVE] = 'R',
2893#ifdef CONFIG_CMA
2894 [MIGRATE_CMA] = 'C',
2895#endif
2896 [MIGRATE_ISOLATE] = 'I',
2897 };
2898 char tmp[MIGRATE_TYPES + 1];
2899 char *p = tmp;
2900 int i;
2901
2902 for (i = 0; i < MIGRATE_TYPES; i++) {
2903 if (type & (1 << i))
2904 *p++ = types[i];
2905 }
2906
2907 *p = '\0';
2908 printk("(%s) ", tmp);
2909}
2910
1da177e4
LT
2911/*
2912 * Show free area list (used inside shift_scroll-lock stuff)
2913 * We also calculate the percentage fragmentation. We do this by counting the
2914 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2915 * Suppresses nodes that are not allowed by current's cpuset if
2916 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2917 */
7bf02ea2 2918void show_free_areas(unsigned int filter)
1da177e4 2919{
c7241913 2920 int cpu;
1da177e4
LT
2921 struct zone *zone;
2922
ee99c71c 2923 for_each_populated_zone(zone) {
7bf02ea2 2924 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2925 continue;
c7241913
JS
2926 show_node(zone);
2927 printk("%s per-cpu:\n", zone->name);
1da177e4 2928
6b482c67 2929 for_each_online_cpu(cpu) {
1da177e4
LT
2930 struct per_cpu_pageset *pageset;
2931
99dcc3e5 2932 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2933
3dfa5721
CL
2934 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2935 cpu, pageset->pcp.high,
2936 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2937 }
2938 }
2939
a731286d
KM
2940 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2941 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2942 " unevictable:%lu"
b76146ed 2943 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2944 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2945 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2946 " free_cma:%lu\n",
4f98a2fe 2947 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2948 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2949 global_page_state(NR_ISOLATED_ANON),
2950 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2951 global_page_state(NR_INACTIVE_FILE),
a731286d 2952 global_page_state(NR_ISOLATED_FILE),
7b854121 2953 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2954 global_page_state(NR_FILE_DIRTY),
ce866b34 2955 global_page_state(NR_WRITEBACK),
fd39fc85 2956 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2957 global_page_state(NR_FREE_PAGES),
3701b033
KM
2958 global_page_state(NR_SLAB_RECLAIMABLE),
2959 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2960 global_page_state(NR_FILE_MAPPED),
4b02108a 2961 global_page_state(NR_SHMEM),
a25700a5 2962 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2963 global_page_state(NR_BOUNCE),
2964 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2965
ee99c71c 2966 for_each_populated_zone(zone) {
1da177e4
LT
2967 int i;
2968
7bf02ea2 2969 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2970 continue;
1da177e4
LT
2971 show_node(zone);
2972 printk("%s"
2973 " free:%lukB"
2974 " min:%lukB"
2975 " low:%lukB"
2976 " high:%lukB"
4f98a2fe
RR
2977 " active_anon:%lukB"
2978 " inactive_anon:%lukB"
2979 " active_file:%lukB"
2980 " inactive_file:%lukB"
7b854121 2981 " unevictable:%lukB"
a731286d
KM
2982 " isolated(anon):%lukB"
2983 " isolated(file):%lukB"
1da177e4 2984 " present:%lukB"
9feedc9d 2985 " managed:%lukB"
4a0aa73f
KM
2986 " mlocked:%lukB"
2987 " dirty:%lukB"
2988 " writeback:%lukB"
2989 " mapped:%lukB"
4b02108a 2990 " shmem:%lukB"
4a0aa73f
KM
2991 " slab_reclaimable:%lukB"
2992 " slab_unreclaimable:%lukB"
c6a7f572 2993 " kernel_stack:%lukB"
4a0aa73f
KM
2994 " pagetables:%lukB"
2995 " unstable:%lukB"
2996 " bounce:%lukB"
d1ce749a 2997 " free_cma:%lukB"
4a0aa73f 2998 " writeback_tmp:%lukB"
1da177e4
LT
2999 " pages_scanned:%lu"
3000 " all_unreclaimable? %s"
3001 "\n",
3002 zone->name,
88f5acf8 3003 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3004 K(min_wmark_pages(zone)),
3005 K(low_wmark_pages(zone)),
3006 K(high_wmark_pages(zone)),
4f98a2fe
RR
3007 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3008 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3009 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3010 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3011 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3012 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3013 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3014 K(zone->present_pages),
9feedc9d 3015 K(zone->managed_pages),
4a0aa73f
KM
3016 K(zone_page_state(zone, NR_MLOCK)),
3017 K(zone_page_state(zone, NR_FILE_DIRTY)),
3018 K(zone_page_state(zone, NR_WRITEBACK)),
3019 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3020 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3021 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3022 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3023 zone_page_state(zone, NR_KERNEL_STACK) *
3024 THREAD_SIZE / 1024,
4a0aa73f
KM
3025 K(zone_page_state(zone, NR_PAGETABLE)),
3026 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3027 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3028 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3029 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3030 zone->pages_scanned,
93e4a89a 3031 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3032 );
3033 printk("lowmem_reserve[]:");
3034 for (i = 0; i < MAX_NR_ZONES; i++)
3035 printk(" %lu", zone->lowmem_reserve[i]);
3036 printk("\n");
3037 }
3038
ee99c71c 3039 for_each_populated_zone(zone) {
8f9de51a 3040 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3041 unsigned char types[MAX_ORDER];
1da177e4 3042
7bf02ea2 3043 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3044 continue;
1da177e4
LT
3045 show_node(zone);
3046 printk("%s: ", zone->name);
1da177e4
LT
3047
3048 spin_lock_irqsave(&zone->lock, flags);
3049 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3050 struct free_area *area = &zone->free_area[order];
3051 int type;
3052
3053 nr[order] = area->nr_free;
8f9de51a 3054 total += nr[order] << order;
377e4f16
RV
3055
3056 types[order] = 0;
3057 for (type = 0; type < MIGRATE_TYPES; type++) {
3058 if (!list_empty(&area->free_list[type]))
3059 types[order] |= 1 << type;
3060 }
1da177e4
LT
3061 }
3062 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3063 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3064 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3065 if (nr[order])
3066 show_migration_types(types[order]);
3067 }
1da177e4
LT
3068 printk("= %lukB\n", K(total));
3069 }
3070
e6f3602d
LW
3071 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3072
1da177e4
LT
3073 show_swap_cache_info();
3074}
3075
19770b32
MG
3076static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3077{
3078 zoneref->zone = zone;
3079 zoneref->zone_idx = zone_idx(zone);
3080}
3081
1da177e4
LT
3082/*
3083 * Builds allocation fallback zone lists.
1a93205b
CL
3084 *
3085 * Add all populated zones of a node to the zonelist.
1da177e4 3086 */
f0c0b2b8
KH
3087static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3088 int nr_zones, enum zone_type zone_type)
1da177e4 3089{
1a93205b
CL
3090 struct zone *zone;
3091
98d2b0eb 3092 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3093 zone_type++;
02a68a5e
CL
3094
3095 do {
2f6726e5 3096 zone_type--;
070f8032 3097 zone = pgdat->node_zones + zone_type;
1a93205b 3098 if (populated_zone(zone)) {
dd1a239f
MG
3099 zoneref_set_zone(zone,
3100 &zonelist->_zonerefs[nr_zones++]);
070f8032 3101 check_highest_zone(zone_type);
1da177e4 3102 }
02a68a5e 3103
2f6726e5 3104 } while (zone_type);
070f8032 3105 return nr_zones;
1da177e4
LT
3106}
3107
f0c0b2b8
KH
3108
3109/*
3110 * zonelist_order:
3111 * 0 = automatic detection of better ordering.
3112 * 1 = order by ([node] distance, -zonetype)
3113 * 2 = order by (-zonetype, [node] distance)
3114 *
3115 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3116 * the same zonelist. So only NUMA can configure this param.
3117 */
3118#define ZONELIST_ORDER_DEFAULT 0
3119#define ZONELIST_ORDER_NODE 1
3120#define ZONELIST_ORDER_ZONE 2
3121
3122/* zonelist order in the kernel.
3123 * set_zonelist_order() will set this to NODE or ZONE.
3124 */
3125static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3126static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3127
3128
1da177e4 3129#ifdef CONFIG_NUMA
f0c0b2b8
KH
3130/* The value user specified ....changed by config */
3131static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3132/* string for sysctl */
3133#define NUMA_ZONELIST_ORDER_LEN 16
3134char numa_zonelist_order[16] = "default";
3135
3136/*
3137 * interface for configure zonelist ordering.
3138 * command line option "numa_zonelist_order"
3139 * = "[dD]efault - default, automatic configuration.
3140 * = "[nN]ode - order by node locality, then by zone within node
3141 * = "[zZ]one - order by zone, then by locality within zone
3142 */
3143
3144static int __parse_numa_zonelist_order(char *s)
3145{
3146 if (*s == 'd' || *s == 'D') {
3147 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3148 } else if (*s == 'n' || *s == 'N') {
3149 user_zonelist_order = ZONELIST_ORDER_NODE;
3150 } else if (*s == 'z' || *s == 'Z') {
3151 user_zonelist_order = ZONELIST_ORDER_ZONE;
3152 } else {
3153 printk(KERN_WARNING
3154 "Ignoring invalid numa_zonelist_order value: "
3155 "%s\n", s);
3156 return -EINVAL;
3157 }
3158 return 0;
3159}
3160
3161static __init int setup_numa_zonelist_order(char *s)
3162{
ecb256f8
VL
3163 int ret;
3164
3165 if (!s)
3166 return 0;
3167
3168 ret = __parse_numa_zonelist_order(s);
3169 if (ret == 0)
3170 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3171
3172 return ret;
f0c0b2b8
KH
3173}
3174early_param("numa_zonelist_order", setup_numa_zonelist_order);
3175
3176/*
3177 * sysctl handler for numa_zonelist_order
3178 */
3179int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3180 void __user *buffer, size_t *length,
f0c0b2b8
KH
3181 loff_t *ppos)
3182{
3183 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3184 int ret;
443c6f14 3185 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3186
443c6f14 3187 mutex_lock(&zl_order_mutex);
f0c0b2b8 3188 if (write)
443c6f14 3189 strcpy(saved_string, (char*)table->data);
8d65af78 3190 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3191 if (ret)
443c6f14 3192 goto out;
f0c0b2b8
KH
3193 if (write) {
3194 int oldval = user_zonelist_order;
3195 if (__parse_numa_zonelist_order((char*)table->data)) {
3196 /*
3197 * bogus value. restore saved string
3198 */
3199 strncpy((char*)table->data, saved_string,
3200 NUMA_ZONELIST_ORDER_LEN);
3201 user_zonelist_order = oldval;
4eaf3f64
HL
3202 } else if (oldval != user_zonelist_order) {
3203 mutex_lock(&zonelists_mutex);
9adb62a5 3204 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3205 mutex_unlock(&zonelists_mutex);
3206 }
f0c0b2b8 3207 }
443c6f14
AK
3208out:
3209 mutex_unlock(&zl_order_mutex);
3210 return ret;
f0c0b2b8
KH
3211}
3212
3213
62bc62a8 3214#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3215static int node_load[MAX_NUMNODES];
3216
1da177e4 3217/**
4dc3b16b 3218 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3219 * @node: node whose fallback list we're appending
3220 * @used_node_mask: nodemask_t of already used nodes
3221 *
3222 * We use a number of factors to determine which is the next node that should
3223 * appear on a given node's fallback list. The node should not have appeared
3224 * already in @node's fallback list, and it should be the next closest node
3225 * according to the distance array (which contains arbitrary distance values
3226 * from each node to each node in the system), and should also prefer nodes
3227 * with no CPUs, since presumably they'll have very little allocation pressure
3228 * on them otherwise.
3229 * It returns -1 if no node is found.
3230 */
f0c0b2b8 3231static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3232{
4cf808eb 3233 int n, val;
1da177e4
LT
3234 int min_val = INT_MAX;
3235 int best_node = -1;
a70f7302 3236 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3237
4cf808eb
LT
3238 /* Use the local node if we haven't already */
3239 if (!node_isset(node, *used_node_mask)) {
3240 node_set(node, *used_node_mask);
3241 return node;
3242 }
1da177e4 3243
4b0ef1fe 3244 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3245
3246 /* Don't want a node to appear more than once */
3247 if (node_isset(n, *used_node_mask))
3248 continue;
3249
1da177e4
LT
3250 /* Use the distance array to find the distance */
3251 val = node_distance(node, n);
3252
4cf808eb
LT
3253 /* Penalize nodes under us ("prefer the next node") */
3254 val += (n < node);
3255
1da177e4 3256 /* Give preference to headless and unused nodes */
a70f7302
RR
3257 tmp = cpumask_of_node(n);
3258 if (!cpumask_empty(tmp))
1da177e4
LT
3259 val += PENALTY_FOR_NODE_WITH_CPUS;
3260
3261 /* Slight preference for less loaded node */
3262 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3263 val += node_load[n];
3264
3265 if (val < min_val) {
3266 min_val = val;
3267 best_node = n;
3268 }
3269 }
3270
3271 if (best_node >= 0)
3272 node_set(best_node, *used_node_mask);
3273
3274 return best_node;
3275}
3276
f0c0b2b8
KH
3277
3278/*
3279 * Build zonelists ordered by node and zones within node.
3280 * This results in maximum locality--normal zone overflows into local
3281 * DMA zone, if any--but risks exhausting DMA zone.
3282 */
3283static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3284{
f0c0b2b8 3285 int j;
1da177e4 3286 struct zonelist *zonelist;
f0c0b2b8 3287
54a6eb5c 3288 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3289 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3290 ;
3291 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3292 MAX_NR_ZONES - 1);
dd1a239f
MG
3293 zonelist->_zonerefs[j].zone = NULL;
3294 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3295}
3296
523b9458
CL
3297/*
3298 * Build gfp_thisnode zonelists
3299 */
3300static void build_thisnode_zonelists(pg_data_t *pgdat)
3301{
523b9458
CL
3302 int j;
3303 struct zonelist *zonelist;
3304
54a6eb5c
MG
3305 zonelist = &pgdat->node_zonelists[1];
3306 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3307 zonelist->_zonerefs[j].zone = NULL;
3308 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3309}
3310
f0c0b2b8
KH
3311/*
3312 * Build zonelists ordered by zone and nodes within zones.
3313 * This results in conserving DMA zone[s] until all Normal memory is
3314 * exhausted, but results in overflowing to remote node while memory
3315 * may still exist in local DMA zone.
3316 */
3317static int node_order[MAX_NUMNODES];
3318
3319static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3320{
f0c0b2b8
KH
3321 int pos, j, node;
3322 int zone_type; /* needs to be signed */
3323 struct zone *z;
3324 struct zonelist *zonelist;
3325
54a6eb5c
MG
3326 zonelist = &pgdat->node_zonelists[0];
3327 pos = 0;
3328 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3329 for (j = 0; j < nr_nodes; j++) {
3330 node = node_order[j];
3331 z = &NODE_DATA(node)->node_zones[zone_type];
3332 if (populated_zone(z)) {
dd1a239f
MG
3333 zoneref_set_zone(z,
3334 &zonelist->_zonerefs[pos++]);
54a6eb5c 3335 check_highest_zone(zone_type);
f0c0b2b8
KH
3336 }
3337 }
f0c0b2b8 3338 }
dd1a239f
MG
3339 zonelist->_zonerefs[pos].zone = NULL;
3340 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3341}
3342
3343static int default_zonelist_order(void)
3344{
3345 int nid, zone_type;
3346 unsigned long low_kmem_size,total_size;
3347 struct zone *z;
3348 int average_size;
3349 /*
88393161 3350 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3351 * If they are really small and used heavily, the system can fall
3352 * into OOM very easily.
e325c90f 3353 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3354 */
3355 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3356 low_kmem_size = 0;
3357 total_size = 0;
3358 for_each_online_node(nid) {
3359 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3360 z = &NODE_DATA(nid)->node_zones[zone_type];
3361 if (populated_zone(z)) {
3362 if (zone_type < ZONE_NORMAL)
3363 low_kmem_size += z->present_pages;
3364 total_size += z->present_pages;
e325c90f
DR
3365 } else if (zone_type == ZONE_NORMAL) {
3366 /*
3367 * If any node has only lowmem, then node order
3368 * is preferred to allow kernel allocations
3369 * locally; otherwise, they can easily infringe
3370 * on other nodes when there is an abundance of
3371 * lowmem available to allocate from.
3372 */
3373 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3374 }
3375 }
3376 }
3377 if (!low_kmem_size || /* there are no DMA area. */
3378 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3379 return ZONELIST_ORDER_NODE;
3380 /*
3381 * look into each node's config.
3382 * If there is a node whose DMA/DMA32 memory is very big area on
3383 * local memory, NODE_ORDER may be suitable.
3384 */
37b07e41 3385 average_size = total_size /
4b0ef1fe 3386 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3387 for_each_online_node(nid) {
3388 low_kmem_size = 0;
3389 total_size = 0;
3390 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3391 z = &NODE_DATA(nid)->node_zones[zone_type];
3392 if (populated_zone(z)) {
3393 if (zone_type < ZONE_NORMAL)
3394 low_kmem_size += z->present_pages;
3395 total_size += z->present_pages;
3396 }
3397 }
3398 if (low_kmem_size &&
3399 total_size > average_size && /* ignore small node */
3400 low_kmem_size > total_size * 70/100)
3401 return ZONELIST_ORDER_NODE;
3402 }
3403 return ZONELIST_ORDER_ZONE;
3404}
3405
3406static void set_zonelist_order(void)
3407{
3408 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3409 current_zonelist_order = default_zonelist_order();
3410 else
3411 current_zonelist_order = user_zonelist_order;
3412}
3413
3414static void build_zonelists(pg_data_t *pgdat)
3415{
3416 int j, node, load;
3417 enum zone_type i;
1da177e4 3418 nodemask_t used_mask;
f0c0b2b8
KH
3419 int local_node, prev_node;
3420 struct zonelist *zonelist;
3421 int order = current_zonelist_order;
1da177e4
LT
3422
3423 /* initialize zonelists */
523b9458 3424 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3425 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3426 zonelist->_zonerefs[0].zone = NULL;
3427 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3428 }
3429
3430 /* NUMA-aware ordering of nodes */
3431 local_node = pgdat->node_id;
62bc62a8 3432 load = nr_online_nodes;
1da177e4
LT
3433 prev_node = local_node;
3434 nodes_clear(used_mask);
f0c0b2b8 3435
f0c0b2b8
KH
3436 memset(node_order, 0, sizeof(node_order));
3437 j = 0;
3438
1da177e4
LT
3439 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3440 /*
3441 * We don't want to pressure a particular node.
3442 * So adding penalty to the first node in same
3443 * distance group to make it round-robin.
3444 */
957f822a
DR
3445 if (node_distance(local_node, node) !=
3446 node_distance(local_node, prev_node))
f0c0b2b8
KH
3447 node_load[node] = load;
3448
1da177e4
LT
3449 prev_node = node;
3450 load--;
f0c0b2b8
KH
3451 if (order == ZONELIST_ORDER_NODE)
3452 build_zonelists_in_node_order(pgdat, node);
3453 else
3454 node_order[j++] = node; /* remember order */
3455 }
1da177e4 3456
f0c0b2b8
KH
3457 if (order == ZONELIST_ORDER_ZONE) {
3458 /* calculate node order -- i.e., DMA last! */
3459 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3460 }
523b9458
CL
3461
3462 build_thisnode_zonelists(pgdat);
1da177e4
LT
3463}
3464
9276b1bc 3465/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3466static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3467{
54a6eb5c
MG
3468 struct zonelist *zonelist;
3469 struct zonelist_cache *zlc;
dd1a239f 3470 struct zoneref *z;
9276b1bc 3471
54a6eb5c
MG
3472 zonelist = &pgdat->node_zonelists[0];
3473 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3474 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3475 for (z = zonelist->_zonerefs; z->zone; z++)
3476 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3477}
3478
7aac7898
LS
3479#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3480/*
3481 * Return node id of node used for "local" allocations.
3482 * I.e., first node id of first zone in arg node's generic zonelist.
3483 * Used for initializing percpu 'numa_mem', which is used primarily
3484 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3485 */
3486int local_memory_node(int node)
3487{
3488 struct zone *zone;
3489
3490 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3491 gfp_zone(GFP_KERNEL),
3492 NULL,
3493 &zone);
3494 return zone->node;
3495}
3496#endif
f0c0b2b8 3497
1da177e4
LT
3498#else /* CONFIG_NUMA */
3499
f0c0b2b8
KH
3500static void set_zonelist_order(void)
3501{
3502 current_zonelist_order = ZONELIST_ORDER_ZONE;
3503}
3504
3505static void build_zonelists(pg_data_t *pgdat)
1da177e4 3506{
19655d34 3507 int node, local_node;
54a6eb5c
MG
3508 enum zone_type j;
3509 struct zonelist *zonelist;
1da177e4
LT
3510
3511 local_node = pgdat->node_id;
1da177e4 3512
54a6eb5c
MG
3513 zonelist = &pgdat->node_zonelists[0];
3514 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3515
54a6eb5c
MG
3516 /*
3517 * Now we build the zonelist so that it contains the zones
3518 * of all the other nodes.
3519 * We don't want to pressure a particular node, so when
3520 * building the zones for node N, we make sure that the
3521 * zones coming right after the local ones are those from
3522 * node N+1 (modulo N)
3523 */
3524 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3525 if (!node_online(node))
3526 continue;
3527 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3528 MAX_NR_ZONES - 1);
1da177e4 3529 }
54a6eb5c
MG
3530 for (node = 0; node < local_node; node++) {
3531 if (!node_online(node))
3532 continue;
3533 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3534 MAX_NR_ZONES - 1);
3535 }
3536
dd1a239f
MG
3537 zonelist->_zonerefs[j].zone = NULL;
3538 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3539}
3540
9276b1bc 3541/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3542static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3543{
54a6eb5c 3544 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3545}
3546
1da177e4
LT
3547#endif /* CONFIG_NUMA */
3548
99dcc3e5
CL
3549/*
3550 * Boot pageset table. One per cpu which is going to be used for all
3551 * zones and all nodes. The parameters will be set in such a way
3552 * that an item put on a list will immediately be handed over to
3553 * the buddy list. This is safe since pageset manipulation is done
3554 * with interrupts disabled.
3555 *
3556 * The boot_pagesets must be kept even after bootup is complete for
3557 * unused processors and/or zones. They do play a role for bootstrapping
3558 * hotplugged processors.
3559 *
3560 * zoneinfo_show() and maybe other functions do
3561 * not check if the processor is online before following the pageset pointer.
3562 * Other parts of the kernel may not check if the zone is available.
3563 */
3564static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3565static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3566static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3567
4eaf3f64
HL
3568/*
3569 * Global mutex to protect against size modification of zonelists
3570 * as well as to serialize pageset setup for the new populated zone.
3571 */
3572DEFINE_MUTEX(zonelists_mutex);
3573
9b1a4d38 3574/* return values int ....just for stop_machine() */
4ed7e022 3575static int __build_all_zonelists(void *data)
1da177e4 3576{
6811378e 3577 int nid;
99dcc3e5 3578 int cpu;
9adb62a5 3579 pg_data_t *self = data;
9276b1bc 3580
7f9cfb31
BL
3581#ifdef CONFIG_NUMA
3582 memset(node_load, 0, sizeof(node_load));
3583#endif
9adb62a5
JL
3584
3585 if (self && !node_online(self->node_id)) {
3586 build_zonelists(self);
3587 build_zonelist_cache(self);
3588 }
3589
9276b1bc 3590 for_each_online_node(nid) {
7ea1530a
CL
3591 pg_data_t *pgdat = NODE_DATA(nid);
3592
3593 build_zonelists(pgdat);
3594 build_zonelist_cache(pgdat);
9276b1bc 3595 }
99dcc3e5
CL
3596
3597 /*
3598 * Initialize the boot_pagesets that are going to be used
3599 * for bootstrapping processors. The real pagesets for
3600 * each zone will be allocated later when the per cpu
3601 * allocator is available.
3602 *
3603 * boot_pagesets are used also for bootstrapping offline
3604 * cpus if the system is already booted because the pagesets
3605 * are needed to initialize allocators on a specific cpu too.
3606 * F.e. the percpu allocator needs the page allocator which
3607 * needs the percpu allocator in order to allocate its pagesets
3608 * (a chicken-egg dilemma).
3609 */
7aac7898 3610 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3611 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3612
7aac7898
LS
3613#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3614 /*
3615 * We now know the "local memory node" for each node--
3616 * i.e., the node of the first zone in the generic zonelist.
3617 * Set up numa_mem percpu variable for on-line cpus. During
3618 * boot, only the boot cpu should be on-line; we'll init the
3619 * secondary cpus' numa_mem as they come on-line. During
3620 * node/memory hotplug, we'll fixup all on-line cpus.
3621 */
3622 if (cpu_online(cpu))
3623 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3624#endif
3625 }
3626
6811378e
YG
3627 return 0;
3628}
3629
4eaf3f64
HL
3630/*
3631 * Called with zonelists_mutex held always
3632 * unless system_state == SYSTEM_BOOTING.
3633 */
9adb62a5 3634void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3635{
f0c0b2b8
KH
3636 set_zonelist_order();
3637
6811378e 3638 if (system_state == SYSTEM_BOOTING) {
423b41d7 3639 __build_all_zonelists(NULL);
68ad8df4 3640 mminit_verify_zonelist();
6811378e
YG
3641 cpuset_init_current_mems_allowed();
3642 } else {
183ff22b 3643 /* we have to stop all cpus to guarantee there is no user
6811378e 3644 of zonelist */
e9959f0f 3645#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3646 if (zone)
3647 setup_zone_pageset(zone);
e9959f0f 3648#endif
9adb62a5 3649 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3650 /* cpuset refresh routine should be here */
3651 }
bd1e22b8 3652 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3653 /*
3654 * Disable grouping by mobility if the number of pages in the
3655 * system is too low to allow the mechanism to work. It would be
3656 * more accurate, but expensive to check per-zone. This check is
3657 * made on memory-hotadd so a system can start with mobility
3658 * disabled and enable it later
3659 */
d9c23400 3660 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3661 page_group_by_mobility_disabled = 1;
3662 else
3663 page_group_by_mobility_disabled = 0;
3664
3665 printk("Built %i zonelists in %s order, mobility grouping %s. "
3666 "Total pages: %ld\n",
62bc62a8 3667 nr_online_nodes,
f0c0b2b8 3668 zonelist_order_name[current_zonelist_order],
9ef9acb0 3669 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3670 vm_total_pages);
3671#ifdef CONFIG_NUMA
3672 printk("Policy zone: %s\n", zone_names[policy_zone]);
3673#endif
1da177e4
LT
3674}
3675
3676/*
3677 * Helper functions to size the waitqueue hash table.
3678 * Essentially these want to choose hash table sizes sufficiently
3679 * large so that collisions trying to wait on pages are rare.
3680 * But in fact, the number of active page waitqueues on typical
3681 * systems is ridiculously low, less than 200. So this is even
3682 * conservative, even though it seems large.
3683 *
3684 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3685 * waitqueues, i.e. the size of the waitq table given the number of pages.
3686 */
3687#define PAGES_PER_WAITQUEUE 256
3688
cca448fe 3689#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3690static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3691{
3692 unsigned long size = 1;
3693
3694 pages /= PAGES_PER_WAITQUEUE;
3695
3696 while (size < pages)
3697 size <<= 1;
3698
3699 /*
3700 * Once we have dozens or even hundreds of threads sleeping
3701 * on IO we've got bigger problems than wait queue collision.
3702 * Limit the size of the wait table to a reasonable size.
3703 */
3704 size = min(size, 4096UL);
3705
3706 return max(size, 4UL);
3707}
cca448fe
YG
3708#else
3709/*
3710 * A zone's size might be changed by hot-add, so it is not possible to determine
3711 * a suitable size for its wait_table. So we use the maximum size now.
3712 *
3713 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3714 *
3715 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3716 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3717 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3718 *
3719 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3720 * or more by the traditional way. (See above). It equals:
3721 *
3722 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3723 * ia64(16K page size) : = ( 8G + 4M)byte.
3724 * powerpc (64K page size) : = (32G +16M)byte.
3725 */
3726static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3727{
3728 return 4096UL;
3729}
3730#endif
1da177e4
LT
3731
3732/*
3733 * This is an integer logarithm so that shifts can be used later
3734 * to extract the more random high bits from the multiplicative
3735 * hash function before the remainder is taken.
3736 */
3737static inline unsigned long wait_table_bits(unsigned long size)
3738{
3739 return ffz(~size);
3740}
3741
3742#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3743
6d3163ce
AH
3744/*
3745 * Check if a pageblock contains reserved pages
3746 */
3747static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3748{
3749 unsigned long pfn;
3750
3751 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3752 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3753 return 1;
3754 }
3755 return 0;
3756}
3757
56fd56b8 3758/*
d9c23400 3759 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3760 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3761 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3762 * higher will lead to a bigger reserve which will get freed as contiguous
3763 * blocks as reclaim kicks in
3764 */
3765static void setup_zone_migrate_reserve(struct zone *zone)
3766{
6d3163ce 3767 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3768 struct page *page;
78986a67
MG
3769 unsigned long block_migratetype;
3770 int reserve;
56fd56b8 3771
d0215638
MH
3772 /*
3773 * Get the start pfn, end pfn and the number of blocks to reserve
3774 * We have to be careful to be aligned to pageblock_nr_pages to
3775 * make sure that we always check pfn_valid for the first page in
3776 * the block.
3777 */
56fd56b8
MG
3778 start_pfn = zone->zone_start_pfn;
3779 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3780 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3781 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3782 pageblock_order;
56fd56b8 3783
78986a67
MG
3784 /*
3785 * Reserve blocks are generally in place to help high-order atomic
3786 * allocations that are short-lived. A min_free_kbytes value that
3787 * would result in more than 2 reserve blocks for atomic allocations
3788 * is assumed to be in place to help anti-fragmentation for the
3789 * future allocation of hugepages at runtime.
3790 */
3791 reserve = min(2, reserve);
3792
d9c23400 3793 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3794 if (!pfn_valid(pfn))
3795 continue;
3796 page = pfn_to_page(pfn);
3797
344c790e
AL
3798 /* Watch out for overlapping nodes */
3799 if (page_to_nid(page) != zone_to_nid(zone))
3800 continue;
3801
56fd56b8
MG
3802 block_migratetype = get_pageblock_migratetype(page);
3803
938929f1
MG
3804 /* Only test what is necessary when the reserves are not met */
3805 if (reserve > 0) {
3806 /*
3807 * Blocks with reserved pages will never free, skip
3808 * them.
3809 */
3810 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3811 if (pageblock_is_reserved(pfn, block_end_pfn))
3812 continue;
56fd56b8 3813
938929f1
MG
3814 /* If this block is reserved, account for it */
3815 if (block_migratetype == MIGRATE_RESERVE) {
3816 reserve--;
3817 continue;
3818 }
3819
3820 /* Suitable for reserving if this block is movable */
3821 if (block_migratetype == MIGRATE_MOVABLE) {
3822 set_pageblock_migratetype(page,
3823 MIGRATE_RESERVE);
3824 move_freepages_block(zone, page,
3825 MIGRATE_RESERVE);
3826 reserve--;
3827 continue;
3828 }
56fd56b8
MG
3829 }
3830
3831 /*
3832 * If the reserve is met and this is a previous reserved block,
3833 * take it back
3834 */
3835 if (block_migratetype == MIGRATE_RESERVE) {
3836 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3837 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3838 }
3839 }
3840}
ac0e5b7a 3841
1da177e4
LT
3842/*
3843 * Initially all pages are reserved - free ones are freed
3844 * up by free_all_bootmem() once the early boot process is
3845 * done. Non-atomic initialization, single-pass.
3846 */
c09b4240 3847void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3848 unsigned long start_pfn, enum memmap_context context)
1da177e4 3849{
1da177e4 3850 struct page *page;
29751f69
AW
3851 unsigned long end_pfn = start_pfn + size;
3852 unsigned long pfn;
86051ca5 3853 struct zone *z;
1da177e4 3854
22b31eec
HD
3855 if (highest_memmap_pfn < end_pfn - 1)
3856 highest_memmap_pfn = end_pfn - 1;
3857
86051ca5 3858 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3859 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3860 /*
3861 * There can be holes in boot-time mem_map[]s
3862 * handed to this function. They do not
3863 * exist on hotplugged memory.
3864 */
3865 if (context == MEMMAP_EARLY) {
3866 if (!early_pfn_valid(pfn))
3867 continue;
3868 if (!early_pfn_in_nid(pfn, nid))
3869 continue;
3870 }
d41dee36
AW
3871 page = pfn_to_page(pfn);
3872 set_page_links(page, zone, nid, pfn);
708614e6 3873 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3874 init_page_count(page);
1da177e4 3875 reset_page_mapcount(page);
57e0a030 3876 reset_page_last_nid(page);
1da177e4 3877 SetPageReserved(page);
b2a0ac88
MG
3878 /*
3879 * Mark the block movable so that blocks are reserved for
3880 * movable at startup. This will force kernel allocations
3881 * to reserve their blocks rather than leaking throughout
3882 * the address space during boot when many long-lived
56fd56b8
MG
3883 * kernel allocations are made. Later some blocks near
3884 * the start are marked MIGRATE_RESERVE by
3885 * setup_zone_migrate_reserve()
86051ca5
KH
3886 *
3887 * bitmap is created for zone's valid pfn range. but memmap
3888 * can be created for invalid pages (for alignment)
3889 * check here not to call set_pageblock_migratetype() against
3890 * pfn out of zone.
b2a0ac88 3891 */
86051ca5
KH
3892 if ((z->zone_start_pfn <= pfn)
3893 && (pfn < z->zone_start_pfn + z->spanned_pages)
3894 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3895 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3896
1da177e4
LT
3897 INIT_LIST_HEAD(&page->lru);
3898#ifdef WANT_PAGE_VIRTUAL
3899 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3900 if (!is_highmem_idx(zone))
3212c6be 3901 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3902#endif
1da177e4
LT
3903 }
3904}
3905
1e548deb 3906static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3907{
b2a0ac88
MG
3908 int order, t;
3909 for_each_migratetype_order(order, t) {
3910 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3911 zone->free_area[order].nr_free = 0;
3912 }
3913}
3914
3915#ifndef __HAVE_ARCH_MEMMAP_INIT
3916#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3917 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3918#endif
3919
4ed7e022 3920static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3921{
3a6be87f 3922#ifdef CONFIG_MMU
e7c8d5c9
CL
3923 int batch;
3924
3925 /*
3926 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3927 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3928 *
3929 * OK, so we don't know how big the cache is. So guess.
3930 */
3931 batch = zone->present_pages / 1024;
ba56e91c
SR
3932 if (batch * PAGE_SIZE > 512 * 1024)
3933 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3934 batch /= 4; /* We effectively *= 4 below */
3935 if (batch < 1)
3936 batch = 1;
3937
3938 /*
0ceaacc9
NP
3939 * Clamp the batch to a 2^n - 1 value. Having a power
3940 * of 2 value was found to be more likely to have
3941 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3942 *
0ceaacc9
NP
3943 * For example if 2 tasks are alternately allocating
3944 * batches of pages, one task can end up with a lot
3945 * of pages of one half of the possible page colors
3946 * and the other with pages of the other colors.
e7c8d5c9 3947 */
9155203a 3948 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3949
e7c8d5c9 3950 return batch;
3a6be87f
DH
3951
3952#else
3953 /* The deferral and batching of frees should be suppressed under NOMMU
3954 * conditions.
3955 *
3956 * The problem is that NOMMU needs to be able to allocate large chunks
3957 * of contiguous memory as there's no hardware page translation to
3958 * assemble apparent contiguous memory from discontiguous pages.
3959 *
3960 * Queueing large contiguous runs of pages for batching, however,
3961 * causes the pages to actually be freed in smaller chunks. As there
3962 * can be a significant delay between the individual batches being
3963 * recycled, this leads to the once large chunks of space being
3964 * fragmented and becoming unavailable for high-order allocations.
3965 */
3966 return 0;
3967#endif
e7c8d5c9
CL
3968}
3969
b69a7288 3970static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3971{
3972 struct per_cpu_pages *pcp;
5f8dcc21 3973 int migratetype;
2caaad41 3974
1c6fe946
MD
3975 memset(p, 0, sizeof(*p));
3976
3dfa5721 3977 pcp = &p->pcp;
2caaad41 3978 pcp->count = 0;
2caaad41
CL
3979 pcp->high = 6 * batch;
3980 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3981 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3982 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3983}
3984
8ad4b1fb
RS
3985/*
3986 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3987 * to the value high for the pageset p.
3988 */
3989
3990static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3991 unsigned long high)
3992{
3993 struct per_cpu_pages *pcp;
3994
3dfa5721 3995 pcp = &p->pcp;
8ad4b1fb
RS
3996 pcp->high = high;
3997 pcp->batch = max(1UL, high/4);
3998 if ((high/4) > (PAGE_SHIFT * 8))
3999 pcp->batch = PAGE_SHIFT * 8;
4000}
4001
4ed7e022 4002static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4003{
4004 int cpu;
4005
4006 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4007
4008 for_each_possible_cpu(cpu) {
4009 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4010
4011 setup_pageset(pcp, zone_batchsize(zone));
4012
4013 if (percpu_pagelist_fraction)
4014 setup_pagelist_highmark(pcp,
4015 (zone->present_pages /
4016 percpu_pagelist_fraction));
4017 }
4018}
4019
2caaad41 4020/*
99dcc3e5
CL
4021 * Allocate per cpu pagesets and initialize them.
4022 * Before this call only boot pagesets were available.
e7c8d5c9 4023 */
99dcc3e5 4024void __init setup_per_cpu_pageset(void)
e7c8d5c9 4025{
99dcc3e5 4026 struct zone *zone;
e7c8d5c9 4027
319774e2
WF
4028 for_each_populated_zone(zone)
4029 setup_zone_pageset(zone);
e7c8d5c9
CL
4030}
4031
577a32f6 4032static noinline __init_refok
cca448fe 4033int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4034{
4035 int i;
4036 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4037 size_t alloc_size;
ed8ece2e
DH
4038
4039 /*
4040 * The per-page waitqueue mechanism uses hashed waitqueues
4041 * per zone.
4042 */
02b694de
YG
4043 zone->wait_table_hash_nr_entries =
4044 wait_table_hash_nr_entries(zone_size_pages);
4045 zone->wait_table_bits =
4046 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4047 alloc_size = zone->wait_table_hash_nr_entries
4048 * sizeof(wait_queue_head_t);
4049
cd94b9db 4050 if (!slab_is_available()) {
cca448fe 4051 zone->wait_table = (wait_queue_head_t *)
8f389a99 4052 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4053 } else {
4054 /*
4055 * This case means that a zone whose size was 0 gets new memory
4056 * via memory hot-add.
4057 * But it may be the case that a new node was hot-added. In
4058 * this case vmalloc() will not be able to use this new node's
4059 * memory - this wait_table must be initialized to use this new
4060 * node itself as well.
4061 * To use this new node's memory, further consideration will be
4062 * necessary.
4063 */
8691f3a7 4064 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4065 }
4066 if (!zone->wait_table)
4067 return -ENOMEM;
ed8ece2e 4068
02b694de 4069 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4070 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4071
4072 return 0;
ed8ece2e
DH
4073}
4074
c09b4240 4075static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4076{
99dcc3e5
CL
4077 /*
4078 * per cpu subsystem is not up at this point. The following code
4079 * relies on the ability of the linker to provide the
4080 * offset of a (static) per cpu variable into the per cpu area.
4081 */
4082 zone->pageset = &boot_pageset;
ed8ece2e 4083
f5335c0f 4084 if (zone->present_pages)
99dcc3e5
CL
4085 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4086 zone->name, zone->present_pages,
4087 zone_batchsize(zone));
ed8ece2e
DH
4088}
4089
4ed7e022 4090int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4091 unsigned long zone_start_pfn,
a2f3aa02
DH
4092 unsigned long size,
4093 enum memmap_context context)
ed8ece2e
DH
4094{
4095 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4096 int ret;
4097 ret = zone_wait_table_init(zone, size);
4098 if (ret)
4099 return ret;
ed8ece2e
DH
4100 pgdat->nr_zones = zone_idx(zone) + 1;
4101
ed8ece2e
DH
4102 zone->zone_start_pfn = zone_start_pfn;
4103
708614e6
MG
4104 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4105 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4106 pgdat->node_id,
4107 (unsigned long)zone_idx(zone),
4108 zone_start_pfn, (zone_start_pfn + size));
4109
1e548deb 4110 zone_init_free_lists(zone);
718127cc
YG
4111
4112 return 0;
ed8ece2e
DH
4113}
4114
0ee332c1 4115#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4116#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4117/*
4118 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4119 * Architectures may implement their own version but if add_active_range()
4120 * was used and there are no special requirements, this is a convenient
4121 * alternative
4122 */
f2dbcfa7 4123int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4124{
c13291a5
TH
4125 unsigned long start_pfn, end_pfn;
4126 int i, nid;
c713216d 4127
c13291a5 4128 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4129 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4130 return nid;
cc2559bc
KH
4131 /* This is a memory hole */
4132 return -1;
c713216d
MG
4133}
4134#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4135
f2dbcfa7
KH
4136int __meminit early_pfn_to_nid(unsigned long pfn)
4137{
cc2559bc
KH
4138 int nid;
4139
4140 nid = __early_pfn_to_nid(pfn);
4141 if (nid >= 0)
4142 return nid;
4143 /* just returns 0 */
4144 return 0;
f2dbcfa7
KH
4145}
4146
cc2559bc
KH
4147#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4148bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4149{
4150 int nid;
4151
4152 nid = __early_pfn_to_nid(pfn);
4153 if (nid >= 0 && nid != node)
4154 return false;
4155 return true;
4156}
4157#endif
f2dbcfa7 4158
c713216d
MG
4159/**
4160 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4161 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4162 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4163 *
4164 * If an architecture guarantees that all ranges registered with
4165 * add_active_ranges() contain no holes and may be freed, this
4166 * this function may be used instead of calling free_bootmem() manually.
4167 */
c13291a5 4168void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4169{
c13291a5
TH
4170 unsigned long start_pfn, end_pfn;
4171 int i, this_nid;
edbe7d23 4172
c13291a5
TH
4173 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4174 start_pfn = min(start_pfn, max_low_pfn);
4175 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4176
c13291a5
TH
4177 if (start_pfn < end_pfn)
4178 free_bootmem_node(NODE_DATA(this_nid),
4179 PFN_PHYS(start_pfn),
4180 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4181 }
edbe7d23 4182}
edbe7d23 4183
c713216d
MG
4184/**
4185 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4186 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4187 *
4188 * If an architecture guarantees that all ranges registered with
4189 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4190 * function may be used instead of calling memory_present() manually.
c713216d
MG
4191 */
4192void __init sparse_memory_present_with_active_regions(int nid)
4193{
c13291a5
TH
4194 unsigned long start_pfn, end_pfn;
4195 int i, this_nid;
c713216d 4196
c13291a5
TH
4197 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4198 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4199}
4200
4201/**
4202 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4203 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4204 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4205 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4206 *
4207 * It returns the start and end page frame of a node based on information
4208 * provided by an arch calling add_active_range(). If called for a node
4209 * with no available memory, a warning is printed and the start and end
88ca3b94 4210 * PFNs will be 0.
c713216d 4211 */
a3142c8e 4212void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4213 unsigned long *start_pfn, unsigned long *end_pfn)
4214{
c13291a5 4215 unsigned long this_start_pfn, this_end_pfn;
c713216d 4216 int i;
c13291a5 4217
c713216d
MG
4218 *start_pfn = -1UL;
4219 *end_pfn = 0;
4220
c13291a5
TH
4221 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4222 *start_pfn = min(*start_pfn, this_start_pfn);
4223 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4224 }
4225
633c0666 4226 if (*start_pfn == -1UL)
c713216d 4227 *start_pfn = 0;
c713216d
MG
4228}
4229
2a1e274a
MG
4230/*
4231 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4232 * assumption is made that zones within a node are ordered in monotonic
4233 * increasing memory addresses so that the "highest" populated zone is used
4234 */
b69a7288 4235static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4236{
4237 int zone_index;
4238 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4239 if (zone_index == ZONE_MOVABLE)
4240 continue;
4241
4242 if (arch_zone_highest_possible_pfn[zone_index] >
4243 arch_zone_lowest_possible_pfn[zone_index])
4244 break;
4245 }
4246
4247 VM_BUG_ON(zone_index == -1);
4248 movable_zone = zone_index;
4249}
4250
4251/*
4252 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4253 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4254 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4255 * in each node depending on the size of each node and how evenly kernelcore
4256 * is distributed. This helper function adjusts the zone ranges
4257 * provided by the architecture for a given node by using the end of the
4258 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4259 * zones within a node are in order of monotonic increases memory addresses
4260 */
b69a7288 4261static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4262 unsigned long zone_type,
4263 unsigned long node_start_pfn,
4264 unsigned long node_end_pfn,
4265 unsigned long *zone_start_pfn,
4266 unsigned long *zone_end_pfn)
4267{
4268 /* Only adjust if ZONE_MOVABLE is on this node */
4269 if (zone_movable_pfn[nid]) {
4270 /* Size ZONE_MOVABLE */
4271 if (zone_type == ZONE_MOVABLE) {
4272 *zone_start_pfn = zone_movable_pfn[nid];
4273 *zone_end_pfn = min(node_end_pfn,
4274 arch_zone_highest_possible_pfn[movable_zone]);
4275
4276 /* Adjust for ZONE_MOVABLE starting within this range */
4277 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4278 *zone_end_pfn > zone_movable_pfn[nid]) {
4279 *zone_end_pfn = zone_movable_pfn[nid];
4280
4281 /* Check if this whole range is within ZONE_MOVABLE */
4282 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4283 *zone_start_pfn = *zone_end_pfn;
4284 }
4285}
4286
c713216d
MG
4287/*
4288 * Return the number of pages a zone spans in a node, including holes
4289 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4290 */
6ea6e688 4291static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4292 unsigned long zone_type,
4293 unsigned long *ignored)
4294{
4295 unsigned long node_start_pfn, node_end_pfn;
4296 unsigned long zone_start_pfn, zone_end_pfn;
4297
4298 /* Get the start and end of the node and zone */
4299 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4300 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4301 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4302 adjust_zone_range_for_zone_movable(nid, zone_type,
4303 node_start_pfn, node_end_pfn,
4304 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4305
4306 /* Check that this node has pages within the zone's required range */
4307 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4308 return 0;
4309
4310 /* Move the zone boundaries inside the node if necessary */
4311 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4312 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4313
4314 /* Return the spanned pages */
4315 return zone_end_pfn - zone_start_pfn;
4316}
4317
4318/*
4319 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4320 * then all holes in the requested range will be accounted for.
c713216d 4321 */
32996250 4322unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4323 unsigned long range_start_pfn,
4324 unsigned long range_end_pfn)
4325{
96e907d1
TH
4326 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4327 unsigned long start_pfn, end_pfn;
4328 int i;
c713216d 4329
96e907d1
TH
4330 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4331 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4332 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4333 nr_absent -= end_pfn - start_pfn;
c713216d 4334 }
96e907d1 4335 return nr_absent;
c713216d
MG
4336}
4337
4338/**
4339 * absent_pages_in_range - Return number of page frames in holes within a range
4340 * @start_pfn: The start PFN to start searching for holes
4341 * @end_pfn: The end PFN to stop searching for holes
4342 *
88ca3b94 4343 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4344 */
4345unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4346 unsigned long end_pfn)
4347{
4348 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4349}
4350
4351/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4352static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4353 unsigned long zone_type,
4354 unsigned long *ignored)
4355{
96e907d1
TH
4356 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4357 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4358 unsigned long node_start_pfn, node_end_pfn;
4359 unsigned long zone_start_pfn, zone_end_pfn;
4360
4361 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4362 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4363 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4364
2a1e274a
MG
4365 adjust_zone_range_for_zone_movable(nid, zone_type,
4366 node_start_pfn, node_end_pfn,
4367 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4368 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4369}
0e0b864e 4370
0ee332c1 4371#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4372static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4373 unsigned long zone_type,
4374 unsigned long *zones_size)
4375{
4376 return zones_size[zone_type];
4377}
4378
6ea6e688 4379static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4380 unsigned long zone_type,
4381 unsigned long *zholes_size)
4382{
4383 if (!zholes_size)
4384 return 0;
4385
4386 return zholes_size[zone_type];
4387}
0e0b864e 4388
0ee332c1 4389#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4390
a3142c8e 4391static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4392 unsigned long *zones_size, unsigned long *zholes_size)
4393{
4394 unsigned long realtotalpages, totalpages = 0;
4395 enum zone_type i;
4396
4397 for (i = 0; i < MAX_NR_ZONES; i++)
4398 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4399 zones_size);
4400 pgdat->node_spanned_pages = totalpages;
4401
4402 realtotalpages = totalpages;
4403 for (i = 0; i < MAX_NR_ZONES; i++)
4404 realtotalpages -=
4405 zone_absent_pages_in_node(pgdat->node_id, i,
4406 zholes_size);
4407 pgdat->node_present_pages = realtotalpages;
4408 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4409 realtotalpages);
4410}
4411
835c134e
MG
4412#ifndef CONFIG_SPARSEMEM
4413/*
4414 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4415 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4416 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4417 * round what is now in bits to nearest long in bits, then return it in
4418 * bytes.
4419 */
4420static unsigned long __init usemap_size(unsigned long zonesize)
4421{
4422 unsigned long usemapsize;
4423
d9c23400
MG
4424 usemapsize = roundup(zonesize, pageblock_nr_pages);
4425 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4426 usemapsize *= NR_PAGEBLOCK_BITS;
4427 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4428
4429 return usemapsize / 8;
4430}
4431
4432static void __init setup_usemap(struct pglist_data *pgdat,
4433 struct zone *zone, unsigned long zonesize)
4434{
4435 unsigned long usemapsize = usemap_size(zonesize);
4436 zone->pageblock_flags = NULL;
58a01a45 4437 if (usemapsize)
8f389a99
YL
4438 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4439 usemapsize);
835c134e
MG
4440}
4441#else
fa9f90be 4442static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4443 struct zone *zone, unsigned long zonesize) {}
4444#endif /* CONFIG_SPARSEMEM */
4445
d9c23400 4446#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4447
d9c23400 4448/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4449void __init set_pageblock_order(void)
d9c23400 4450{
955c1cd7
AM
4451 unsigned int order;
4452
d9c23400
MG
4453 /* Check that pageblock_nr_pages has not already been setup */
4454 if (pageblock_order)
4455 return;
4456
955c1cd7
AM
4457 if (HPAGE_SHIFT > PAGE_SHIFT)
4458 order = HUGETLB_PAGE_ORDER;
4459 else
4460 order = MAX_ORDER - 1;
4461
d9c23400
MG
4462 /*
4463 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4464 * This value may be variable depending on boot parameters on IA64 and
4465 * powerpc.
d9c23400
MG
4466 */
4467 pageblock_order = order;
4468}
4469#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4470
ba72cb8c
MG
4471/*
4472 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4473 * is unused as pageblock_order is set at compile-time. See
4474 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4475 * the kernel config
ba72cb8c 4476 */
ca57df79 4477void __init set_pageblock_order(void)
ba72cb8c 4478{
ba72cb8c 4479}
d9c23400
MG
4480
4481#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4482
01cefaef
JL
4483static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4484 unsigned long present_pages)
4485{
4486 unsigned long pages = spanned_pages;
4487
4488 /*
4489 * Provide a more accurate estimation if there are holes within
4490 * the zone and SPARSEMEM is in use. If there are holes within the
4491 * zone, each populated memory region may cost us one or two extra
4492 * memmap pages due to alignment because memmap pages for each
4493 * populated regions may not naturally algined on page boundary.
4494 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4495 */
4496 if (spanned_pages > present_pages + (present_pages >> 4) &&
4497 IS_ENABLED(CONFIG_SPARSEMEM))
4498 pages = present_pages;
4499
4500 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4501}
4502
1da177e4
LT
4503/*
4504 * Set up the zone data structures:
4505 * - mark all pages reserved
4506 * - mark all memory queues empty
4507 * - clear the memory bitmaps
6527af5d
MK
4508 *
4509 * NOTE: pgdat should get zeroed by caller.
1da177e4 4510 */
b5a0e011 4511static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4512 unsigned long *zones_size, unsigned long *zholes_size)
4513{
2f1b6248 4514 enum zone_type j;
ed8ece2e 4515 int nid = pgdat->node_id;
1da177e4 4516 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4517 int ret;
1da177e4 4518
208d54e5 4519 pgdat_resize_init(pgdat);
8177a420
AA
4520#ifdef CONFIG_NUMA_BALANCING
4521 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4522 pgdat->numabalancing_migrate_nr_pages = 0;
4523 pgdat->numabalancing_migrate_next_window = jiffies;
4524#endif
1da177e4 4525 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4526 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4527 pgdat_page_cgroup_init(pgdat);
5f63b720 4528
1da177e4
LT
4529 for (j = 0; j < MAX_NR_ZONES; j++) {
4530 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4531 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4532
c713216d 4533 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4534 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4535 zholes_size);
1da177e4 4536
0e0b864e 4537 /*
9feedc9d 4538 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4539 * is used by this zone for memmap. This affects the watermark
4540 * and per-cpu initialisations
4541 */
01cefaef 4542 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4543 if (freesize >= memmap_pages) {
4544 freesize -= memmap_pages;
5594c8c8
YL
4545 if (memmap_pages)
4546 printk(KERN_DEBUG
4547 " %s zone: %lu pages used for memmap\n",
4548 zone_names[j], memmap_pages);
0e0b864e
MG
4549 } else
4550 printk(KERN_WARNING
9feedc9d
JL
4551 " %s zone: %lu pages exceeds freesize %lu\n",
4552 zone_names[j], memmap_pages, freesize);
0e0b864e 4553
6267276f 4554 /* Account for reserved pages */
9feedc9d
JL
4555 if (j == 0 && freesize > dma_reserve) {
4556 freesize -= dma_reserve;
d903ef9f 4557 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4558 zone_names[0], dma_reserve);
0e0b864e
MG
4559 }
4560
98d2b0eb 4561 if (!is_highmem_idx(j))
9feedc9d 4562 nr_kernel_pages += freesize;
01cefaef
JL
4563 /* Charge for highmem memmap if there are enough kernel pages */
4564 else if (nr_kernel_pages > memmap_pages * 2)
4565 nr_kernel_pages -= memmap_pages;
9feedc9d 4566 nr_all_pages += freesize;
1da177e4
LT
4567
4568 zone->spanned_pages = size;
9feedc9d
JL
4569 zone->present_pages = freesize;
4570 /*
4571 * Set an approximate value for lowmem here, it will be adjusted
4572 * when the bootmem allocator frees pages into the buddy system.
4573 * And all highmem pages will be managed by the buddy system.
4574 */
4575 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4576#ifdef CONFIG_NUMA
d5f541ed 4577 zone->node = nid;
9feedc9d 4578 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4579 / 100;
9feedc9d 4580 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4581#endif
1da177e4
LT
4582 zone->name = zone_names[j];
4583 spin_lock_init(&zone->lock);
4584 spin_lock_init(&zone->lru_lock);
bdc8cb98 4585 zone_seqlock_init(zone);
1da177e4 4586 zone->zone_pgdat = pgdat;
1da177e4 4587
ed8ece2e 4588 zone_pcp_init(zone);
bea8c150 4589 lruvec_init(&zone->lruvec);
1da177e4
LT
4590 if (!size)
4591 continue;
4592
955c1cd7 4593 set_pageblock_order();
835c134e 4594 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4595 ret = init_currently_empty_zone(zone, zone_start_pfn,
4596 size, MEMMAP_EARLY);
718127cc 4597 BUG_ON(ret);
76cdd58e 4598 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4599 zone_start_pfn += size;
1da177e4
LT
4600 }
4601}
4602
577a32f6 4603static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4604{
1da177e4
LT
4605 /* Skip empty nodes */
4606 if (!pgdat->node_spanned_pages)
4607 return;
4608
d41dee36 4609#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4610 /* ia64 gets its own node_mem_map, before this, without bootmem */
4611 if (!pgdat->node_mem_map) {
e984bb43 4612 unsigned long size, start, end;
d41dee36
AW
4613 struct page *map;
4614
e984bb43
BP
4615 /*
4616 * The zone's endpoints aren't required to be MAX_ORDER
4617 * aligned but the node_mem_map endpoints must be in order
4618 * for the buddy allocator to function correctly.
4619 */
4620 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4621 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4622 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4623 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4624 map = alloc_remap(pgdat->node_id, size);
4625 if (!map)
8f389a99 4626 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4627 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4628 }
12d810c1 4629#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4630 /*
4631 * With no DISCONTIG, the global mem_map is just set as node 0's
4632 */
c713216d 4633 if (pgdat == NODE_DATA(0)) {
1da177e4 4634 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4635#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4636 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4637 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4638#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4639 }
1da177e4 4640#endif
d41dee36 4641#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4642}
4643
9109fb7b
JW
4644void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4645 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4646{
9109fb7b
JW
4647 pg_data_t *pgdat = NODE_DATA(nid);
4648
88fdf75d 4649 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4650 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4651
1da177e4
LT
4652 pgdat->node_id = nid;
4653 pgdat->node_start_pfn = node_start_pfn;
957f822a 4654 init_zone_allows_reclaim(nid);
c713216d 4655 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4656
4657 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4658#ifdef CONFIG_FLAT_NODE_MEM_MAP
4659 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4660 nid, (unsigned long)pgdat,
4661 (unsigned long)pgdat->node_mem_map);
4662#endif
1da177e4
LT
4663
4664 free_area_init_core(pgdat, zones_size, zholes_size);
4665}
4666
0ee332c1 4667#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4668
4669#if MAX_NUMNODES > 1
4670/*
4671 * Figure out the number of possible node ids.
4672 */
4673static void __init setup_nr_node_ids(void)
4674{
4675 unsigned int node;
4676 unsigned int highest = 0;
4677
4678 for_each_node_mask(node, node_possible_map)
4679 highest = node;
4680 nr_node_ids = highest + 1;
4681}
4682#else
4683static inline void setup_nr_node_ids(void)
4684{
4685}
4686#endif
4687
1e01979c
TH
4688/**
4689 * node_map_pfn_alignment - determine the maximum internode alignment
4690 *
4691 * This function should be called after node map is populated and sorted.
4692 * It calculates the maximum power of two alignment which can distinguish
4693 * all the nodes.
4694 *
4695 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4696 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4697 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4698 * shifted, 1GiB is enough and this function will indicate so.
4699 *
4700 * This is used to test whether pfn -> nid mapping of the chosen memory
4701 * model has fine enough granularity to avoid incorrect mapping for the
4702 * populated node map.
4703 *
4704 * Returns the determined alignment in pfn's. 0 if there is no alignment
4705 * requirement (single node).
4706 */
4707unsigned long __init node_map_pfn_alignment(void)
4708{
4709 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4710 unsigned long start, end, mask;
1e01979c 4711 int last_nid = -1;
c13291a5 4712 int i, nid;
1e01979c 4713
c13291a5 4714 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4715 if (!start || last_nid < 0 || last_nid == nid) {
4716 last_nid = nid;
4717 last_end = end;
4718 continue;
4719 }
4720
4721 /*
4722 * Start with a mask granular enough to pin-point to the
4723 * start pfn and tick off bits one-by-one until it becomes
4724 * too coarse to separate the current node from the last.
4725 */
4726 mask = ~((1 << __ffs(start)) - 1);
4727 while (mask && last_end <= (start & (mask << 1)))
4728 mask <<= 1;
4729
4730 /* accumulate all internode masks */
4731 accl_mask |= mask;
4732 }
4733
4734 /* convert mask to number of pages */
4735 return ~accl_mask + 1;
4736}
4737
a6af2bc3 4738/* Find the lowest pfn for a node */
b69a7288 4739static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4740{
a6af2bc3 4741 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4742 unsigned long start_pfn;
4743 int i;
1abbfb41 4744
c13291a5
TH
4745 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4746 min_pfn = min(min_pfn, start_pfn);
c713216d 4747
a6af2bc3
MG
4748 if (min_pfn == ULONG_MAX) {
4749 printk(KERN_WARNING
2bc0d261 4750 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4751 return 0;
4752 }
4753
4754 return min_pfn;
c713216d
MG
4755}
4756
4757/**
4758 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4759 *
4760 * It returns the minimum PFN based on information provided via
88ca3b94 4761 * add_active_range().
c713216d
MG
4762 */
4763unsigned long __init find_min_pfn_with_active_regions(void)
4764{
4765 return find_min_pfn_for_node(MAX_NUMNODES);
4766}
4767
37b07e41
LS
4768/*
4769 * early_calculate_totalpages()
4770 * Sum pages in active regions for movable zone.
4b0ef1fe 4771 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4772 */
484f51f8 4773static unsigned long __init early_calculate_totalpages(void)
7e63efef 4774{
7e63efef 4775 unsigned long totalpages = 0;
c13291a5
TH
4776 unsigned long start_pfn, end_pfn;
4777 int i, nid;
4778
4779 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4780 unsigned long pages = end_pfn - start_pfn;
7e63efef 4781
37b07e41
LS
4782 totalpages += pages;
4783 if (pages)
4b0ef1fe 4784 node_set_state(nid, N_MEMORY);
37b07e41
LS
4785 }
4786 return totalpages;
7e63efef
MG
4787}
4788
2a1e274a
MG
4789/*
4790 * Find the PFN the Movable zone begins in each node. Kernel memory
4791 * is spread evenly between nodes as long as the nodes have enough
4792 * memory. When they don't, some nodes will have more kernelcore than
4793 * others
4794 */
b224ef85 4795static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4796{
4797 int i, nid;
4798 unsigned long usable_startpfn;
4799 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4800 /* save the state before borrow the nodemask */
4b0ef1fe 4801 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4802 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4803 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4804
7e63efef
MG
4805 /*
4806 * If movablecore was specified, calculate what size of
4807 * kernelcore that corresponds so that memory usable for
4808 * any allocation type is evenly spread. If both kernelcore
4809 * and movablecore are specified, then the value of kernelcore
4810 * will be used for required_kernelcore if it's greater than
4811 * what movablecore would have allowed.
4812 */
4813 if (required_movablecore) {
7e63efef
MG
4814 unsigned long corepages;
4815
4816 /*
4817 * Round-up so that ZONE_MOVABLE is at least as large as what
4818 * was requested by the user
4819 */
4820 required_movablecore =
4821 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4822 corepages = totalpages - required_movablecore;
4823
4824 required_kernelcore = max(required_kernelcore, corepages);
4825 }
4826
2a1e274a
MG
4827 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4828 if (!required_kernelcore)
66918dcd 4829 goto out;
2a1e274a
MG
4830
4831 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4832 find_usable_zone_for_movable();
4833 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4834
4835restart:
4836 /* Spread kernelcore memory as evenly as possible throughout nodes */
4837 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4838 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4839 unsigned long start_pfn, end_pfn;
4840
2a1e274a
MG
4841 /*
4842 * Recalculate kernelcore_node if the division per node
4843 * now exceeds what is necessary to satisfy the requested
4844 * amount of memory for the kernel
4845 */
4846 if (required_kernelcore < kernelcore_node)
4847 kernelcore_node = required_kernelcore / usable_nodes;
4848
4849 /*
4850 * As the map is walked, we track how much memory is usable
4851 * by the kernel using kernelcore_remaining. When it is
4852 * 0, the rest of the node is usable by ZONE_MOVABLE
4853 */
4854 kernelcore_remaining = kernelcore_node;
4855
4856 /* Go through each range of PFNs within this node */
c13291a5 4857 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4858 unsigned long size_pages;
4859
c13291a5 4860 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4861 if (start_pfn >= end_pfn)
4862 continue;
4863
4864 /* Account for what is only usable for kernelcore */
4865 if (start_pfn < usable_startpfn) {
4866 unsigned long kernel_pages;
4867 kernel_pages = min(end_pfn, usable_startpfn)
4868 - start_pfn;
4869
4870 kernelcore_remaining -= min(kernel_pages,
4871 kernelcore_remaining);
4872 required_kernelcore -= min(kernel_pages,
4873 required_kernelcore);
4874
4875 /* Continue if range is now fully accounted */
4876 if (end_pfn <= usable_startpfn) {
4877
4878 /*
4879 * Push zone_movable_pfn to the end so
4880 * that if we have to rebalance
4881 * kernelcore across nodes, we will
4882 * not double account here
4883 */
4884 zone_movable_pfn[nid] = end_pfn;
4885 continue;
4886 }
4887 start_pfn = usable_startpfn;
4888 }
4889
4890 /*
4891 * The usable PFN range for ZONE_MOVABLE is from
4892 * start_pfn->end_pfn. Calculate size_pages as the
4893 * number of pages used as kernelcore
4894 */
4895 size_pages = end_pfn - start_pfn;
4896 if (size_pages > kernelcore_remaining)
4897 size_pages = kernelcore_remaining;
4898 zone_movable_pfn[nid] = start_pfn + size_pages;
4899
4900 /*
4901 * Some kernelcore has been met, update counts and
4902 * break if the kernelcore for this node has been
4903 * satisified
4904 */
4905 required_kernelcore -= min(required_kernelcore,
4906 size_pages);
4907 kernelcore_remaining -= size_pages;
4908 if (!kernelcore_remaining)
4909 break;
4910 }
4911 }
4912
4913 /*
4914 * If there is still required_kernelcore, we do another pass with one
4915 * less node in the count. This will push zone_movable_pfn[nid] further
4916 * along on the nodes that still have memory until kernelcore is
4917 * satisified
4918 */
4919 usable_nodes--;
4920 if (usable_nodes && required_kernelcore > usable_nodes)
4921 goto restart;
4922
4923 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4924 for (nid = 0; nid < MAX_NUMNODES; nid++)
4925 zone_movable_pfn[nid] =
4926 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4927
4928out:
4929 /* restore the node_state */
4b0ef1fe 4930 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
4931}
4932
4b0ef1fe
LJ
4933/* Any regular or high memory on that node ? */
4934static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 4935{
37b07e41
LS
4936 enum zone_type zone_type;
4937
4b0ef1fe
LJ
4938 if (N_MEMORY == N_NORMAL_MEMORY)
4939 return;
4940
4941 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 4942 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4943 if (zone->present_pages) {
4b0ef1fe
LJ
4944 node_set_state(nid, N_HIGH_MEMORY);
4945 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4946 zone_type <= ZONE_NORMAL)
4947 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
4948 break;
4949 }
37b07e41 4950 }
37b07e41
LS
4951}
4952
c713216d
MG
4953/**
4954 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4955 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4956 *
4957 * This will call free_area_init_node() for each active node in the system.
4958 * Using the page ranges provided by add_active_range(), the size of each
4959 * zone in each node and their holes is calculated. If the maximum PFN
4960 * between two adjacent zones match, it is assumed that the zone is empty.
4961 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4962 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4963 * starts where the previous one ended. For example, ZONE_DMA32 starts
4964 * at arch_max_dma_pfn.
4965 */
4966void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4967{
c13291a5
TH
4968 unsigned long start_pfn, end_pfn;
4969 int i, nid;
a6af2bc3 4970
c713216d
MG
4971 /* Record where the zone boundaries are */
4972 memset(arch_zone_lowest_possible_pfn, 0,
4973 sizeof(arch_zone_lowest_possible_pfn));
4974 memset(arch_zone_highest_possible_pfn, 0,
4975 sizeof(arch_zone_highest_possible_pfn));
4976 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4977 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4978 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4979 if (i == ZONE_MOVABLE)
4980 continue;
c713216d
MG
4981 arch_zone_lowest_possible_pfn[i] =
4982 arch_zone_highest_possible_pfn[i-1];
4983 arch_zone_highest_possible_pfn[i] =
4984 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4985 }
2a1e274a
MG
4986 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4987 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4988
4989 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4990 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4991 find_zone_movable_pfns_for_nodes();
c713216d 4992
c713216d 4993 /* Print out the zone ranges */
a62e2f4f 4994 printk("Zone ranges:\n");
2a1e274a
MG
4995 for (i = 0; i < MAX_NR_ZONES; i++) {
4996 if (i == ZONE_MOVABLE)
4997 continue;
155cbfc8 4998 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4999 if (arch_zone_lowest_possible_pfn[i] ==
5000 arch_zone_highest_possible_pfn[i])
155cbfc8 5001 printk(KERN_CONT "empty\n");
72f0ba02 5002 else
a62e2f4f
BH
5003 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5004 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5005 (arch_zone_highest_possible_pfn[i]
5006 << PAGE_SHIFT) - 1);
2a1e274a
MG
5007 }
5008
5009 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5010 printk("Movable zone start for each node\n");
2a1e274a
MG
5011 for (i = 0; i < MAX_NUMNODES; i++) {
5012 if (zone_movable_pfn[i])
a62e2f4f
BH
5013 printk(" Node %d: %#010lx\n", i,
5014 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5015 }
c713216d 5016
f2d52fe5 5017 /* Print out the early node map */
a62e2f4f 5018 printk("Early memory node ranges\n");
c13291a5 5019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5020 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5021 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5022
5023 /* Initialise every node */
708614e6 5024 mminit_verify_pageflags_layout();
8ef82866 5025 setup_nr_node_ids();
c713216d
MG
5026 for_each_online_node(nid) {
5027 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5028 free_area_init_node(nid, NULL,
c713216d 5029 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5030
5031 /* Any memory on that node */
5032 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5033 node_set_state(nid, N_MEMORY);
5034 check_for_memory(pgdat, nid);
c713216d
MG
5035 }
5036}
2a1e274a 5037
7e63efef 5038static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5039{
5040 unsigned long long coremem;
5041 if (!p)
5042 return -EINVAL;
5043
5044 coremem = memparse(p, &p);
7e63efef 5045 *core = coremem >> PAGE_SHIFT;
2a1e274a 5046
7e63efef 5047 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5048 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5049
5050 return 0;
5051}
ed7ed365 5052
7e63efef
MG
5053/*
5054 * kernelcore=size sets the amount of memory for use for allocations that
5055 * cannot be reclaimed or migrated.
5056 */
5057static int __init cmdline_parse_kernelcore(char *p)
5058{
5059 return cmdline_parse_core(p, &required_kernelcore);
5060}
5061
5062/*
5063 * movablecore=size sets the amount of memory for use for allocations that
5064 * can be reclaimed or migrated.
5065 */
5066static int __init cmdline_parse_movablecore(char *p)
5067{
5068 return cmdline_parse_core(p, &required_movablecore);
5069}
5070
ed7ed365 5071early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5072early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5073
0ee332c1 5074#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5075
0e0b864e 5076/**
88ca3b94
RD
5077 * set_dma_reserve - set the specified number of pages reserved in the first zone
5078 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5079 *
5080 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5081 * In the DMA zone, a significant percentage may be consumed by kernel image
5082 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5083 * function may optionally be used to account for unfreeable pages in the
5084 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5085 * smaller per-cpu batchsize.
0e0b864e
MG
5086 */
5087void __init set_dma_reserve(unsigned long new_dma_reserve)
5088{
5089 dma_reserve = new_dma_reserve;
5090}
5091
1da177e4
LT
5092void __init free_area_init(unsigned long *zones_size)
5093{
9109fb7b 5094 free_area_init_node(0, zones_size,
1da177e4
LT
5095 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5096}
1da177e4 5097
1da177e4
LT
5098static int page_alloc_cpu_notify(struct notifier_block *self,
5099 unsigned long action, void *hcpu)
5100{
5101 int cpu = (unsigned long)hcpu;
1da177e4 5102
8bb78442 5103 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5104 lru_add_drain_cpu(cpu);
9f8f2172
CL
5105 drain_pages(cpu);
5106
5107 /*
5108 * Spill the event counters of the dead processor
5109 * into the current processors event counters.
5110 * This artificially elevates the count of the current
5111 * processor.
5112 */
f8891e5e 5113 vm_events_fold_cpu(cpu);
9f8f2172
CL
5114
5115 /*
5116 * Zero the differential counters of the dead processor
5117 * so that the vm statistics are consistent.
5118 *
5119 * This is only okay since the processor is dead and cannot
5120 * race with what we are doing.
5121 */
2244b95a 5122 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5123 }
5124 return NOTIFY_OK;
5125}
1da177e4
LT
5126
5127void __init page_alloc_init(void)
5128{
5129 hotcpu_notifier(page_alloc_cpu_notify, 0);
5130}
5131
cb45b0e9
HA
5132/*
5133 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5134 * or min_free_kbytes changes.
5135 */
5136static void calculate_totalreserve_pages(void)
5137{
5138 struct pglist_data *pgdat;
5139 unsigned long reserve_pages = 0;
2f6726e5 5140 enum zone_type i, j;
cb45b0e9
HA
5141
5142 for_each_online_pgdat(pgdat) {
5143 for (i = 0; i < MAX_NR_ZONES; i++) {
5144 struct zone *zone = pgdat->node_zones + i;
5145 unsigned long max = 0;
5146
5147 /* Find valid and maximum lowmem_reserve in the zone */
5148 for (j = i; j < MAX_NR_ZONES; j++) {
5149 if (zone->lowmem_reserve[j] > max)
5150 max = zone->lowmem_reserve[j];
5151 }
5152
41858966
MG
5153 /* we treat the high watermark as reserved pages. */
5154 max += high_wmark_pages(zone);
cb45b0e9
HA
5155
5156 if (max > zone->present_pages)
5157 max = zone->present_pages;
5158 reserve_pages += max;
ab8fabd4
JW
5159 /*
5160 * Lowmem reserves are not available to
5161 * GFP_HIGHUSER page cache allocations and
5162 * kswapd tries to balance zones to their high
5163 * watermark. As a result, neither should be
5164 * regarded as dirtyable memory, to prevent a
5165 * situation where reclaim has to clean pages
5166 * in order to balance the zones.
5167 */
5168 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5169 }
5170 }
ab8fabd4 5171 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5172 totalreserve_pages = reserve_pages;
5173}
5174
1da177e4
LT
5175/*
5176 * setup_per_zone_lowmem_reserve - called whenever
5177 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5178 * has a correct pages reserved value, so an adequate number of
5179 * pages are left in the zone after a successful __alloc_pages().
5180 */
5181static void setup_per_zone_lowmem_reserve(void)
5182{
5183 struct pglist_data *pgdat;
2f6726e5 5184 enum zone_type j, idx;
1da177e4 5185
ec936fc5 5186 for_each_online_pgdat(pgdat) {
1da177e4
LT
5187 for (j = 0; j < MAX_NR_ZONES; j++) {
5188 struct zone *zone = pgdat->node_zones + j;
5189 unsigned long present_pages = zone->present_pages;
5190
5191 zone->lowmem_reserve[j] = 0;
5192
2f6726e5
CL
5193 idx = j;
5194 while (idx) {
1da177e4
LT
5195 struct zone *lower_zone;
5196
2f6726e5
CL
5197 idx--;
5198
1da177e4
LT
5199 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5200 sysctl_lowmem_reserve_ratio[idx] = 1;
5201
5202 lower_zone = pgdat->node_zones + idx;
5203 lower_zone->lowmem_reserve[j] = present_pages /
5204 sysctl_lowmem_reserve_ratio[idx];
5205 present_pages += lower_zone->present_pages;
5206 }
5207 }
5208 }
cb45b0e9
HA
5209
5210 /* update totalreserve_pages */
5211 calculate_totalreserve_pages();
1da177e4
LT
5212}
5213
cfd3da1e 5214static void __setup_per_zone_wmarks(void)
1da177e4
LT
5215{
5216 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5217 unsigned long lowmem_pages = 0;
5218 struct zone *zone;
5219 unsigned long flags;
5220
5221 /* Calculate total number of !ZONE_HIGHMEM pages */
5222 for_each_zone(zone) {
5223 if (!is_highmem(zone))
5224 lowmem_pages += zone->present_pages;
5225 }
5226
5227 for_each_zone(zone) {
ac924c60
AM
5228 u64 tmp;
5229
1125b4e3 5230 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5231 tmp = (u64)pages_min * zone->present_pages;
5232 do_div(tmp, lowmem_pages);
1da177e4
LT
5233 if (is_highmem(zone)) {
5234 /*
669ed175
NP
5235 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5236 * need highmem pages, so cap pages_min to a small
5237 * value here.
5238 *
41858966 5239 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5240 * deltas controls asynch page reclaim, and so should
5241 * not be capped for highmem.
1da177e4
LT
5242 */
5243 int min_pages;
5244
5245 min_pages = zone->present_pages / 1024;
5246 if (min_pages < SWAP_CLUSTER_MAX)
5247 min_pages = SWAP_CLUSTER_MAX;
5248 if (min_pages > 128)
5249 min_pages = 128;
41858966 5250 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5251 } else {
669ed175
NP
5252 /*
5253 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5254 * proportionate to the zone's size.
5255 */
41858966 5256 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5257 }
5258
41858966
MG
5259 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5260 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5261
56fd56b8 5262 setup_zone_migrate_reserve(zone);
1125b4e3 5263 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5264 }
cb45b0e9
HA
5265
5266 /* update totalreserve_pages */
5267 calculate_totalreserve_pages();
1da177e4
LT
5268}
5269
cfd3da1e
MG
5270/**
5271 * setup_per_zone_wmarks - called when min_free_kbytes changes
5272 * or when memory is hot-{added|removed}
5273 *
5274 * Ensures that the watermark[min,low,high] values for each zone are set
5275 * correctly with respect to min_free_kbytes.
5276 */
5277void setup_per_zone_wmarks(void)
5278{
5279 mutex_lock(&zonelists_mutex);
5280 __setup_per_zone_wmarks();
5281 mutex_unlock(&zonelists_mutex);
5282}
5283
55a4462a 5284/*
556adecb
RR
5285 * The inactive anon list should be small enough that the VM never has to
5286 * do too much work, but large enough that each inactive page has a chance
5287 * to be referenced again before it is swapped out.
5288 *
5289 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5290 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5291 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5292 * the anonymous pages are kept on the inactive list.
5293 *
5294 * total target max
5295 * memory ratio inactive anon
5296 * -------------------------------------
5297 * 10MB 1 5MB
5298 * 100MB 1 50MB
5299 * 1GB 3 250MB
5300 * 10GB 10 0.9GB
5301 * 100GB 31 3GB
5302 * 1TB 101 10GB
5303 * 10TB 320 32GB
5304 */
1b79acc9 5305static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5306{
96cb4df5 5307 unsigned int gb, ratio;
556adecb 5308
96cb4df5
MK
5309 /* Zone size in gigabytes */
5310 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5311 if (gb)
556adecb 5312 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5313 else
5314 ratio = 1;
556adecb 5315
96cb4df5
MK
5316 zone->inactive_ratio = ratio;
5317}
556adecb 5318
839a4fcc 5319static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5320{
5321 struct zone *zone;
5322
5323 for_each_zone(zone)
5324 calculate_zone_inactive_ratio(zone);
556adecb
RR
5325}
5326
1da177e4
LT
5327/*
5328 * Initialise min_free_kbytes.
5329 *
5330 * For small machines we want it small (128k min). For large machines
5331 * we want it large (64MB max). But it is not linear, because network
5332 * bandwidth does not increase linearly with machine size. We use
5333 *
5334 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5335 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5336 *
5337 * which yields
5338 *
5339 * 16MB: 512k
5340 * 32MB: 724k
5341 * 64MB: 1024k
5342 * 128MB: 1448k
5343 * 256MB: 2048k
5344 * 512MB: 2896k
5345 * 1024MB: 4096k
5346 * 2048MB: 5792k
5347 * 4096MB: 8192k
5348 * 8192MB: 11584k
5349 * 16384MB: 16384k
5350 */
1b79acc9 5351int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5352{
5353 unsigned long lowmem_kbytes;
5354
5355 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5356
5357 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5358 if (min_free_kbytes < 128)
5359 min_free_kbytes = 128;
5360 if (min_free_kbytes > 65536)
5361 min_free_kbytes = 65536;
bc75d33f 5362 setup_per_zone_wmarks();
a6cccdc3 5363 refresh_zone_stat_thresholds();
1da177e4 5364 setup_per_zone_lowmem_reserve();
556adecb 5365 setup_per_zone_inactive_ratio();
1da177e4
LT
5366 return 0;
5367}
bc75d33f 5368module_init(init_per_zone_wmark_min)
1da177e4
LT
5369
5370/*
5371 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5372 * that we can call two helper functions whenever min_free_kbytes
5373 * changes.
5374 */
5375int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5376 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5377{
8d65af78 5378 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5379 if (write)
bc75d33f 5380 setup_per_zone_wmarks();
1da177e4
LT
5381 return 0;
5382}
5383
9614634f
CL
5384#ifdef CONFIG_NUMA
5385int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5386 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5387{
5388 struct zone *zone;
5389 int rc;
5390
8d65af78 5391 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5392 if (rc)
5393 return rc;
5394
5395 for_each_zone(zone)
8417bba4 5396 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5397 sysctl_min_unmapped_ratio) / 100;
5398 return 0;
5399}
0ff38490
CL
5400
5401int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5402 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5403{
5404 struct zone *zone;
5405 int rc;
5406
8d65af78 5407 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5408 if (rc)
5409 return rc;
5410
5411 for_each_zone(zone)
5412 zone->min_slab_pages = (zone->present_pages *
5413 sysctl_min_slab_ratio) / 100;
5414 return 0;
5415}
9614634f
CL
5416#endif
5417
1da177e4
LT
5418/*
5419 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5420 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5421 * whenever sysctl_lowmem_reserve_ratio changes.
5422 *
5423 * The reserve ratio obviously has absolutely no relation with the
41858966 5424 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5425 * if in function of the boot time zone sizes.
5426 */
5427int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5428 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5429{
8d65af78 5430 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5431 setup_per_zone_lowmem_reserve();
5432 return 0;
5433}
5434
8ad4b1fb
RS
5435/*
5436 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5437 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5438 * can have before it gets flushed back to buddy allocator.
5439 */
5440
5441int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5442 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5443{
5444 struct zone *zone;
5445 unsigned int cpu;
5446 int ret;
5447
8d65af78 5448 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5449 if (!write || (ret < 0))
8ad4b1fb 5450 return ret;
364df0eb 5451 for_each_populated_zone(zone) {
99dcc3e5 5452 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5453 unsigned long high;
5454 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5455 setup_pagelist_highmark(
5456 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5457 }
5458 }
5459 return 0;
5460}
5461
f034b5d4 5462int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5463
5464#ifdef CONFIG_NUMA
5465static int __init set_hashdist(char *str)
5466{
5467 if (!str)
5468 return 0;
5469 hashdist = simple_strtoul(str, &str, 0);
5470 return 1;
5471}
5472__setup("hashdist=", set_hashdist);
5473#endif
5474
5475/*
5476 * allocate a large system hash table from bootmem
5477 * - it is assumed that the hash table must contain an exact power-of-2
5478 * quantity of entries
5479 * - limit is the number of hash buckets, not the total allocation size
5480 */
5481void *__init alloc_large_system_hash(const char *tablename,
5482 unsigned long bucketsize,
5483 unsigned long numentries,
5484 int scale,
5485 int flags,
5486 unsigned int *_hash_shift,
5487 unsigned int *_hash_mask,
31fe62b9
TB
5488 unsigned long low_limit,
5489 unsigned long high_limit)
1da177e4 5490{
31fe62b9 5491 unsigned long long max = high_limit;
1da177e4
LT
5492 unsigned long log2qty, size;
5493 void *table = NULL;
5494
5495 /* allow the kernel cmdline to have a say */
5496 if (!numentries) {
5497 /* round applicable memory size up to nearest megabyte */
04903664 5498 numentries = nr_kernel_pages;
1da177e4
LT
5499 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5500 numentries >>= 20 - PAGE_SHIFT;
5501 numentries <<= 20 - PAGE_SHIFT;
5502
5503 /* limit to 1 bucket per 2^scale bytes of low memory */
5504 if (scale > PAGE_SHIFT)
5505 numentries >>= (scale - PAGE_SHIFT);
5506 else
5507 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5508
5509 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5510 if (unlikely(flags & HASH_SMALL)) {
5511 /* Makes no sense without HASH_EARLY */
5512 WARN_ON(!(flags & HASH_EARLY));
5513 if (!(numentries >> *_hash_shift)) {
5514 numentries = 1UL << *_hash_shift;
5515 BUG_ON(!numentries);
5516 }
5517 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5518 numentries = PAGE_SIZE / bucketsize;
1da177e4 5519 }
6e692ed3 5520 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5521
5522 /* limit allocation size to 1/16 total memory by default */
5523 if (max == 0) {
5524 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5525 do_div(max, bucketsize);
5526 }
074b8517 5527 max = min(max, 0x80000000ULL);
1da177e4 5528
31fe62b9
TB
5529 if (numentries < low_limit)
5530 numentries = low_limit;
1da177e4
LT
5531 if (numentries > max)
5532 numentries = max;
5533
f0d1b0b3 5534 log2qty = ilog2(numentries);
1da177e4
LT
5535
5536 do {
5537 size = bucketsize << log2qty;
5538 if (flags & HASH_EARLY)
74768ed8 5539 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5540 else if (hashdist)
5541 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5542 else {
1037b83b
ED
5543 /*
5544 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5545 * some pages at the end of hash table which
5546 * alloc_pages_exact() automatically does
1037b83b 5547 */
264ef8a9 5548 if (get_order(size) < MAX_ORDER) {
a1dd268c 5549 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5550 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5551 }
1da177e4
LT
5552 }
5553 } while (!table && size > PAGE_SIZE && --log2qty);
5554
5555 if (!table)
5556 panic("Failed to allocate %s hash table\n", tablename);
5557
f241e660 5558 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5559 tablename,
f241e660 5560 (1UL << log2qty),
f0d1b0b3 5561 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5562 size);
5563
5564 if (_hash_shift)
5565 *_hash_shift = log2qty;
5566 if (_hash_mask)
5567 *_hash_mask = (1 << log2qty) - 1;
5568
5569 return table;
5570}
a117e66e 5571
835c134e
MG
5572/* Return a pointer to the bitmap storing bits affecting a block of pages */
5573static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5574 unsigned long pfn)
5575{
5576#ifdef CONFIG_SPARSEMEM
5577 return __pfn_to_section(pfn)->pageblock_flags;
5578#else
5579 return zone->pageblock_flags;
5580#endif /* CONFIG_SPARSEMEM */
5581}
5582
5583static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5584{
5585#ifdef CONFIG_SPARSEMEM
5586 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5587 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5588#else
c060f943 5589 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5590 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5591#endif /* CONFIG_SPARSEMEM */
5592}
5593
5594/**
d9c23400 5595 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5596 * @page: The page within the block of interest
5597 * @start_bitidx: The first bit of interest to retrieve
5598 * @end_bitidx: The last bit of interest
5599 * returns pageblock_bits flags
5600 */
5601unsigned long get_pageblock_flags_group(struct page *page,
5602 int start_bitidx, int end_bitidx)
5603{
5604 struct zone *zone;
5605 unsigned long *bitmap;
5606 unsigned long pfn, bitidx;
5607 unsigned long flags = 0;
5608 unsigned long value = 1;
5609
5610 zone = page_zone(page);
5611 pfn = page_to_pfn(page);
5612 bitmap = get_pageblock_bitmap(zone, pfn);
5613 bitidx = pfn_to_bitidx(zone, pfn);
5614
5615 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5616 if (test_bit(bitidx + start_bitidx, bitmap))
5617 flags |= value;
6220ec78 5618
835c134e
MG
5619 return flags;
5620}
5621
5622/**
d9c23400 5623 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5624 * @page: The page within the block of interest
5625 * @start_bitidx: The first bit of interest
5626 * @end_bitidx: The last bit of interest
5627 * @flags: The flags to set
5628 */
5629void set_pageblock_flags_group(struct page *page, unsigned long flags,
5630 int start_bitidx, int end_bitidx)
5631{
5632 struct zone *zone;
5633 unsigned long *bitmap;
5634 unsigned long pfn, bitidx;
5635 unsigned long value = 1;
5636
5637 zone = page_zone(page);
5638 pfn = page_to_pfn(page);
5639 bitmap = get_pageblock_bitmap(zone, pfn);
5640 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5641 VM_BUG_ON(pfn < zone->zone_start_pfn);
5642 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5643
5644 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5645 if (flags & value)
5646 __set_bit(bitidx + start_bitidx, bitmap);
5647 else
5648 __clear_bit(bitidx + start_bitidx, bitmap);
5649}
a5d76b54
KH
5650
5651/*
80934513
MK
5652 * This function checks whether pageblock includes unmovable pages or not.
5653 * If @count is not zero, it is okay to include less @count unmovable pages
5654 *
5655 * PageLRU check wihtout isolation or lru_lock could race so that
5656 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5657 * expect this function should be exact.
a5d76b54 5658 */
b023f468
WC
5659bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5660 bool skip_hwpoisoned_pages)
49ac8255
KH
5661{
5662 unsigned long pfn, iter, found;
47118af0
MN
5663 int mt;
5664
49ac8255
KH
5665 /*
5666 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5667 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5668 */
5669 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5670 return false;
47118af0
MN
5671 mt = get_pageblock_migratetype(page);
5672 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5673 return false;
49ac8255
KH
5674
5675 pfn = page_to_pfn(page);
5676 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5677 unsigned long check = pfn + iter;
5678
29723fcc 5679 if (!pfn_valid_within(check))
49ac8255 5680 continue;
29723fcc 5681
49ac8255 5682 page = pfn_to_page(check);
97d255c8
MK
5683 /*
5684 * We can't use page_count without pin a page
5685 * because another CPU can free compound page.
5686 * This check already skips compound tails of THP
5687 * because their page->_count is zero at all time.
5688 */
5689 if (!atomic_read(&page->_count)) {
49ac8255
KH
5690 if (PageBuddy(page))
5691 iter += (1 << page_order(page)) - 1;
5692 continue;
5693 }
97d255c8 5694
b023f468
WC
5695 /*
5696 * The HWPoisoned page may be not in buddy system, and
5697 * page_count() is not 0.
5698 */
5699 if (skip_hwpoisoned_pages && PageHWPoison(page))
5700 continue;
5701
49ac8255
KH
5702 if (!PageLRU(page))
5703 found++;
5704 /*
5705 * If there are RECLAIMABLE pages, we need to check it.
5706 * But now, memory offline itself doesn't call shrink_slab()
5707 * and it still to be fixed.
5708 */
5709 /*
5710 * If the page is not RAM, page_count()should be 0.
5711 * we don't need more check. This is an _used_ not-movable page.
5712 *
5713 * The problematic thing here is PG_reserved pages. PG_reserved
5714 * is set to both of a memory hole page and a _used_ kernel
5715 * page at boot.
5716 */
5717 if (found > count)
80934513 5718 return true;
49ac8255 5719 }
80934513 5720 return false;
49ac8255
KH
5721}
5722
5723bool is_pageblock_removable_nolock(struct page *page)
5724{
656a0706
MH
5725 struct zone *zone;
5726 unsigned long pfn;
687875fb
MH
5727
5728 /*
5729 * We have to be careful here because we are iterating over memory
5730 * sections which are not zone aware so we might end up outside of
5731 * the zone but still within the section.
656a0706
MH
5732 * We have to take care about the node as well. If the node is offline
5733 * its NODE_DATA will be NULL - see page_zone.
687875fb 5734 */
656a0706
MH
5735 if (!node_online(page_to_nid(page)))
5736 return false;
5737
5738 zone = page_zone(page);
5739 pfn = page_to_pfn(page);
5740 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5741 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5742 return false;
5743
b023f468 5744 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5745}
0c0e6195 5746
041d3a8c
MN
5747#ifdef CONFIG_CMA
5748
5749static unsigned long pfn_max_align_down(unsigned long pfn)
5750{
5751 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5752 pageblock_nr_pages) - 1);
5753}
5754
5755static unsigned long pfn_max_align_up(unsigned long pfn)
5756{
5757 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5758 pageblock_nr_pages));
5759}
5760
041d3a8c 5761/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5762static int __alloc_contig_migrate_range(struct compact_control *cc,
5763 unsigned long start, unsigned long end)
041d3a8c
MN
5764{
5765 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5766 unsigned long nr_reclaimed;
041d3a8c
MN
5767 unsigned long pfn = start;
5768 unsigned int tries = 0;
5769 int ret = 0;
5770
be49a6e1 5771 migrate_prep();
041d3a8c 5772
bb13ffeb 5773 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5774 if (fatal_signal_pending(current)) {
5775 ret = -EINTR;
5776 break;
5777 }
5778
bb13ffeb
MG
5779 if (list_empty(&cc->migratepages)) {
5780 cc->nr_migratepages = 0;
5781 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5782 pfn, end, true);
041d3a8c
MN
5783 if (!pfn) {
5784 ret = -EINTR;
5785 break;
5786 }
5787 tries = 0;
5788 } else if (++tries == 5) {
5789 ret = ret < 0 ? ret : -EBUSY;
5790 break;
5791 }
5792
beb51eaa
MK
5793 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5794 &cc->migratepages);
5795 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5796
bb13ffeb 5797 ret = migrate_pages(&cc->migratepages,
723a0644 5798 alloc_migrate_target,
7b2a2d4a
MG
5799 0, false, MIGRATE_SYNC,
5800 MR_CMA);
041d3a8c
MN
5801 }
5802
5733c7d1 5803 putback_movable_pages(&cc->migratepages);
041d3a8c
MN
5804 return ret > 0 ? 0 : ret;
5805}
5806
5807/**
5808 * alloc_contig_range() -- tries to allocate given range of pages
5809 * @start: start PFN to allocate
5810 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5811 * @migratetype: migratetype of the underlaying pageblocks (either
5812 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5813 * in range must have the same migratetype and it must
5814 * be either of the two.
041d3a8c
MN
5815 *
5816 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5817 * aligned, however it's the caller's responsibility to guarantee that
5818 * we are the only thread that changes migrate type of pageblocks the
5819 * pages fall in.
5820 *
5821 * The PFN range must belong to a single zone.
5822 *
5823 * Returns zero on success or negative error code. On success all
5824 * pages which PFN is in [start, end) are allocated for the caller and
5825 * need to be freed with free_contig_range().
5826 */
0815f3d8
MN
5827int alloc_contig_range(unsigned long start, unsigned long end,
5828 unsigned migratetype)
041d3a8c 5829{
041d3a8c
MN
5830 unsigned long outer_start, outer_end;
5831 int ret = 0, order;
5832
bb13ffeb
MG
5833 struct compact_control cc = {
5834 .nr_migratepages = 0,
5835 .order = -1,
5836 .zone = page_zone(pfn_to_page(start)),
5837 .sync = true,
5838 .ignore_skip_hint = true,
5839 };
5840 INIT_LIST_HEAD(&cc.migratepages);
5841
041d3a8c
MN
5842 /*
5843 * What we do here is we mark all pageblocks in range as
5844 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5845 * have different sizes, and due to the way page allocator
5846 * work, we align the range to biggest of the two pages so
5847 * that page allocator won't try to merge buddies from
5848 * different pageblocks and change MIGRATE_ISOLATE to some
5849 * other migration type.
5850 *
5851 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5852 * migrate the pages from an unaligned range (ie. pages that
5853 * we are interested in). This will put all the pages in
5854 * range back to page allocator as MIGRATE_ISOLATE.
5855 *
5856 * When this is done, we take the pages in range from page
5857 * allocator removing them from the buddy system. This way
5858 * page allocator will never consider using them.
5859 *
5860 * This lets us mark the pageblocks back as
5861 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5862 * aligned range but not in the unaligned, original range are
5863 * put back to page allocator so that buddy can use them.
5864 */
5865
5866 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
5867 pfn_max_align_up(end), migratetype,
5868 false);
041d3a8c 5869 if (ret)
86a595f9 5870 return ret;
041d3a8c 5871
bb13ffeb 5872 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5873 if (ret)
5874 goto done;
5875
5876 /*
5877 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5878 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5879 * more, all pages in [start, end) are free in page allocator.
5880 * What we are going to do is to allocate all pages from
5881 * [start, end) (that is remove them from page allocator).
5882 *
5883 * The only problem is that pages at the beginning and at the
5884 * end of interesting range may be not aligned with pages that
5885 * page allocator holds, ie. they can be part of higher order
5886 * pages. Because of this, we reserve the bigger range and
5887 * once this is done free the pages we are not interested in.
5888 *
5889 * We don't have to hold zone->lock here because the pages are
5890 * isolated thus they won't get removed from buddy.
5891 */
5892
5893 lru_add_drain_all();
5894 drain_all_pages();
5895
5896 order = 0;
5897 outer_start = start;
5898 while (!PageBuddy(pfn_to_page(outer_start))) {
5899 if (++order >= MAX_ORDER) {
5900 ret = -EBUSY;
5901 goto done;
5902 }
5903 outer_start &= ~0UL << order;
5904 }
5905
5906 /* Make sure the range is really isolated. */
b023f468 5907 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
5908 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5909 outer_start, end);
5910 ret = -EBUSY;
5911 goto done;
5912 }
5913
49f223a9
MS
5914
5915 /* Grab isolated pages from freelists. */
bb13ffeb 5916 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5917 if (!outer_end) {
5918 ret = -EBUSY;
5919 goto done;
5920 }
5921
5922 /* Free head and tail (if any) */
5923 if (start != outer_start)
5924 free_contig_range(outer_start, start - outer_start);
5925 if (end != outer_end)
5926 free_contig_range(end, outer_end - end);
5927
5928done:
5929 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5930 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5931 return ret;
5932}
5933
5934void free_contig_range(unsigned long pfn, unsigned nr_pages)
5935{
bcc2b02f
MS
5936 unsigned int count = 0;
5937
5938 for (; nr_pages--; pfn++) {
5939 struct page *page = pfn_to_page(pfn);
5940
5941 count += page_count(page) != 1;
5942 __free_page(page);
5943 }
5944 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
5945}
5946#endif
5947
4ed7e022
JL
5948#ifdef CONFIG_MEMORY_HOTPLUG
5949static int __meminit __zone_pcp_update(void *data)
5950{
5951 struct zone *zone = data;
5952 int cpu;
5953 unsigned long batch = zone_batchsize(zone), flags;
5954
5955 for_each_possible_cpu(cpu) {
5956 struct per_cpu_pageset *pset;
5957 struct per_cpu_pages *pcp;
5958
5959 pset = per_cpu_ptr(zone->pageset, cpu);
5960 pcp = &pset->pcp;
5961
5962 local_irq_save(flags);
5963 if (pcp->count > 0)
5964 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5965 drain_zonestat(zone, pset);
4ed7e022
JL
5966 setup_pageset(pset, batch);
5967 local_irq_restore(flags);
5968 }
5969 return 0;
5970}
5971
5972void __meminit zone_pcp_update(struct zone *zone)
5973{
5974 stop_machine(__zone_pcp_update, zone, NULL);
5975}
5976#endif
5977
340175b7
JL
5978void zone_pcp_reset(struct zone *zone)
5979{
5980 unsigned long flags;
5a883813
MK
5981 int cpu;
5982 struct per_cpu_pageset *pset;
340175b7
JL
5983
5984 /* avoid races with drain_pages() */
5985 local_irq_save(flags);
5986 if (zone->pageset != &boot_pageset) {
5a883813
MK
5987 for_each_online_cpu(cpu) {
5988 pset = per_cpu_ptr(zone->pageset, cpu);
5989 drain_zonestat(zone, pset);
5990 }
340175b7
JL
5991 free_percpu(zone->pageset);
5992 zone->pageset = &boot_pageset;
5993 }
5994 local_irq_restore(flags);
5995}
5996
6dcd73d7 5997#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
5998/*
5999 * All pages in the range must be isolated before calling this.
6000 */
6001void
6002__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6003{
6004 struct page *page;
6005 struct zone *zone;
6006 int order, i;
6007 unsigned long pfn;
6008 unsigned long flags;
6009 /* find the first valid pfn */
6010 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6011 if (pfn_valid(pfn))
6012 break;
6013 if (pfn == end_pfn)
6014 return;
6015 zone = page_zone(pfn_to_page(pfn));
6016 spin_lock_irqsave(&zone->lock, flags);
6017 pfn = start_pfn;
6018 while (pfn < end_pfn) {
6019 if (!pfn_valid(pfn)) {
6020 pfn++;
6021 continue;
6022 }
6023 page = pfn_to_page(pfn);
b023f468
WC
6024 /*
6025 * The HWPoisoned page may be not in buddy system, and
6026 * page_count() is not 0.
6027 */
6028 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6029 pfn++;
6030 SetPageReserved(page);
6031 continue;
6032 }
6033
0c0e6195
KH
6034 BUG_ON(page_count(page));
6035 BUG_ON(!PageBuddy(page));
6036 order = page_order(page);
6037#ifdef CONFIG_DEBUG_VM
6038 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6039 pfn, 1 << order, end_pfn);
6040#endif
6041 list_del(&page->lru);
6042 rmv_page_order(page);
6043 zone->free_area[order].nr_free--;
0c0e6195
KH
6044 for (i = 0; i < (1 << order); i++)
6045 SetPageReserved((page+i));
6046 pfn += (1 << order);
6047 }
6048 spin_unlock_irqrestore(&zone->lock, flags);
6049}
6050#endif
8d22ba1b
WF
6051
6052#ifdef CONFIG_MEMORY_FAILURE
6053bool is_free_buddy_page(struct page *page)
6054{
6055 struct zone *zone = page_zone(page);
6056 unsigned long pfn = page_to_pfn(page);
6057 unsigned long flags;
6058 int order;
6059
6060 spin_lock_irqsave(&zone->lock, flags);
6061 for (order = 0; order < MAX_ORDER; order++) {
6062 struct page *page_head = page - (pfn & ((1 << order) - 1));
6063
6064 if (PageBuddy(page_head) && page_order(page_head) >= order)
6065 break;
6066 }
6067 spin_unlock_irqrestore(&zone->lock, flags);
6068
6069 return order < MAX_ORDER;
6070}
6071#endif
718a3821 6072
51300cef 6073static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6074 {1UL << PG_locked, "locked" },
6075 {1UL << PG_error, "error" },
6076 {1UL << PG_referenced, "referenced" },
6077 {1UL << PG_uptodate, "uptodate" },
6078 {1UL << PG_dirty, "dirty" },
6079 {1UL << PG_lru, "lru" },
6080 {1UL << PG_active, "active" },
6081 {1UL << PG_slab, "slab" },
6082 {1UL << PG_owner_priv_1, "owner_priv_1" },
6083 {1UL << PG_arch_1, "arch_1" },
6084 {1UL << PG_reserved, "reserved" },
6085 {1UL << PG_private, "private" },
6086 {1UL << PG_private_2, "private_2" },
6087 {1UL << PG_writeback, "writeback" },
6088#ifdef CONFIG_PAGEFLAGS_EXTENDED
6089 {1UL << PG_head, "head" },
6090 {1UL << PG_tail, "tail" },
6091#else
6092 {1UL << PG_compound, "compound" },
6093#endif
6094 {1UL << PG_swapcache, "swapcache" },
6095 {1UL << PG_mappedtodisk, "mappedtodisk" },
6096 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6097 {1UL << PG_swapbacked, "swapbacked" },
6098 {1UL << PG_unevictable, "unevictable" },
6099#ifdef CONFIG_MMU
6100 {1UL << PG_mlocked, "mlocked" },
6101#endif
6102#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6103 {1UL << PG_uncached, "uncached" },
6104#endif
6105#ifdef CONFIG_MEMORY_FAILURE
6106 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6107#endif
6108#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6109 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6110#endif
718a3821
WF
6111};
6112
6113static void dump_page_flags(unsigned long flags)
6114{
6115 const char *delim = "";
6116 unsigned long mask;
6117 int i;
6118
51300cef 6119 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6120
718a3821
WF
6121 printk(KERN_ALERT "page flags: %#lx(", flags);
6122
6123 /* remove zone id */
6124 flags &= (1UL << NR_PAGEFLAGS) - 1;
6125
51300cef 6126 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6127
6128 mask = pageflag_names[i].mask;
6129 if ((flags & mask) != mask)
6130 continue;
6131
6132 flags &= ~mask;
6133 printk("%s%s", delim, pageflag_names[i].name);
6134 delim = "|";
6135 }
6136
6137 /* check for left over flags */
6138 if (flags)
6139 printk("%s%#lx", delim, flags);
6140
6141 printk(")\n");
6142}
6143
6144void dump_page(struct page *page)
6145{
6146 printk(KERN_ALERT
6147 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6148 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6149 page->mapping, page->index);
6150 dump_page_flags(page->flags);
f212ad7c 6151 mem_cgroup_print_bad_page(page);
718a3821 6152}