]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
thp: kvm mmu transparent hugepage support
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
c9e664f1
RW
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
452aa699
RW
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
452aa699
RW
117}
118
c9e664f1 119void pm_restrict_gfp_mask(void)
452aa699 120{
452aa699 121 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
125}
126#endif /* CONFIG_PM_SLEEP */
127
d9c23400
MG
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
d98c7a09 132static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 133
1da177e4
LT
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
1da177e4 144 */
2f1b6248 145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 146#ifdef CONFIG_ZONE_DMA
2f1b6248 147 256,
4b51d669 148#endif
fb0e7942 149#ifdef CONFIG_ZONE_DMA32
2f1b6248 150 256,
fb0e7942 151#endif
e53ef38d 152#ifdef CONFIG_HIGHMEM
2a1e274a 153 32,
e53ef38d 154#endif
2a1e274a 155 32,
2f1b6248 156};
1da177e4
LT
157
158EXPORT_SYMBOL(totalram_pages);
1da177e4 159
15ad7cdc 160static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 161#ifdef CONFIG_ZONE_DMA
2f1b6248 162 "DMA",
4b51d669 163#endif
fb0e7942 164#ifdef CONFIG_ZONE_DMA32
2f1b6248 165 "DMA32",
fb0e7942 166#endif
2f1b6248 167 "Normal",
e53ef38d 168#ifdef CONFIG_HIGHMEM
2a1e274a 169 "HighMem",
e53ef38d 170#endif
2a1e274a 171 "Movable",
2f1b6248
CL
172};
173
1da177e4
LT
174int min_free_kbytes = 1024;
175
2c85f51d
JB
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
a3142c8e 178static unsigned long __meminitdata dma_reserve;
1da177e4 179
c713216d
MG
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
183ff22b 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
98011f56
JB
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 205 static unsigned long __initdata required_kernelcore;
484f51f8 206 static unsigned long __initdata required_movablecore;
b69a7288 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
c713216d
MG
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
418508c1
MS
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 216int nr_online_nodes __read_mostly = 1;
418508c1 217EXPORT_SYMBOL(nr_node_ids);
62bc62a8 218EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
219#endif
220
9ef9acb0
MG
221int page_group_by_mobility_disabled __read_mostly;
222
b2a0ac88
MG
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
49255c61
MG
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
b2a0ac88
MG
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
7f33d49a
RW
233bool oom_killer_disabled __read_mostly;
234
13e7444b 235#ifdef CONFIG_DEBUG_VM
c6a57e19 236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 237{
bdc8cb98
DH
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
c6a57e19 241
bdc8cb98
DH
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
c6a57e19
DH
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
14e07298 255 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 256 return 0;
1da177e4 257 if (zone != page_zone(page))
c6a57e19
DH
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
1da177e4 268 return 1;
c6a57e19
DH
269 if (!page_is_consistent(zone, page))
270 return 1;
271
1da177e4
LT
272 return 0;
273}
13e7444b
NP
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
224abf92 281static void bad_page(struct page *page)
1da177e4 282{
d936cf9b
HD
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
2a7684a2
WF
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
d936cf9b
HD
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
1e9e6365
HD
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
1e9e6365 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 314 current->comm, page_to_pfn(page));
718a3821 315 dump_page(page);
3dc14741 316
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392
HD
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
59ff4216 360/* update __split_huge_page_refcount if you change this function */
8cc3b392 361static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
362{
363 int i;
364 int nr_pages = 1 << order;
8cc3b392 365 int bad = 0;
1da177e4 366
8cc3b392
HD
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
224abf92 369 bad_page(page);
8cc3b392
HD
370 bad++;
371 }
1da177e4 372
6d777953 373 __ClearPageHead(page);
8cc3b392 374
18229df5
AW
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
1da177e4 377
e713a21d 378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 379 bad_page(page);
8cc3b392
HD
380 bad++;
381 }
d85f3385 382 __ClearPageTail(p);
1da177e4 383 }
8cc3b392
HD
384
385 return bad;
1da177e4 386}
1da177e4 387
17cf4406
NP
388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389{
390 int i;
391
6626c5d5
AM
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
725d704e 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399}
400
6aa3001b
AM
401static inline void set_page_order(struct page *page, int order)
402{
4c21e2f2 403 set_page_private(page, order);
676165a8 404 __SetPageBuddy(page);
1da177e4
LT
405}
406
407static inline void rmv_page_order(struct page *page)
408{
676165a8 409 __ClearPageBuddy(page);
4c21e2f2 410 set_page_private(page, 0);
1da177e4
LT
411}
412
413/*
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
416 *
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 *
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
427 *
d6e05edc 428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
429 */
430static inline struct page *
431__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
432{
433 unsigned long buddy_idx = page_idx ^ (1 << order);
434
435 return page + (buddy_idx - page_idx);
436}
437
438static inline unsigned long
439__find_combined_index(unsigned long page_idx, unsigned int order)
440{
441 return (page_idx & ~(1 << order));
442}
443
444/*
445 * This function checks whether a page is free && is the buddy
446 * we can do coalesce a page and its buddy if
13e7444b 447 * (a) the buddy is not in a hole &&
676165a8 448 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
449 * (c) a page and its buddy have the same order &&
450 * (d) a page and its buddy are in the same zone.
676165a8
NP
451 *
452 * For recording whether a page is in the buddy system, we use PG_buddy.
453 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 454 *
676165a8 455 * For recording page's order, we use page_private(page).
1da177e4 456 */
cb2b95e1
AW
457static inline int page_is_buddy(struct page *page, struct page *buddy,
458 int order)
1da177e4 459{
14e07298 460 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 461 return 0;
13e7444b 462
cb2b95e1
AW
463 if (page_zone_id(page) != page_zone_id(buddy))
464 return 0;
465
466 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 467 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 468 return 1;
676165a8 469 }
6aa3001b 470 return 0;
1da177e4
LT
471}
472
473/*
474 * Freeing function for a buddy system allocator.
475 *
476 * The concept of a buddy system is to maintain direct-mapped table
477 * (containing bit values) for memory blocks of various "orders".
478 * The bottom level table contains the map for the smallest allocatable
479 * units of memory (here, pages), and each level above it describes
480 * pairs of units from the levels below, hence, "buddies".
481 * At a high level, all that happens here is marking the table entry
482 * at the bottom level available, and propagating the changes upward
483 * as necessary, plus some accounting needed to play nicely with other
484 * parts of the VM system.
485 * At each level, we keep a list of pages, which are heads of continuous
676165a8 486 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 487 * order is recorded in page_private(page) field.
1da177e4
LT
488 * So when we are allocating or freeing one, we can derive the state of the
489 * other. That is, if we allocate a small block, and both were
490 * free, the remainder of the region must be split into blocks.
491 * If a block is freed, and its buddy is also free, then this
492 * triggers coalescing into a block of larger size.
493 *
494 * -- wli
495 */
496
48db57f8 497static inline void __free_one_page(struct page *page,
ed0ae21d
MG
498 struct zone *zone, unsigned int order,
499 int migratetype)
1da177e4
LT
500{
501 unsigned long page_idx;
6dda9d55
CZ
502 unsigned long combined_idx;
503 struct page *buddy;
1da177e4 504
224abf92 505 if (unlikely(PageCompound(page)))
8cc3b392
HD
506 if (unlikely(destroy_compound_page(page, order)))
507 return;
1da177e4 508
ed0ae21d
MG
509 VM_BUG_ON(migratetype == -1);
510
1da177e4
LT
511 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
512
f2260e6b 513 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 514 VM_BUG_ON(bad_range(zone, page));
1da177e4 515
1da177e4 516 while (order < MAX_ORDER-1) {
1da177e4 517 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 518 if (!page_is_buddy(page, buddy, order))
3c82d0ce 519 break;
13e7444b 520
3c82d0ce 521 /* Our buddy is free, merge with it and move up one order. */
1da177e4 522 list_del(&buddy->lru);
b2a0ac88 523 zone->free_area[order].nr_free--;
1da177e4 524 rmv_page_order(buddy);
13e7444b 525 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
526 page = page + (combined_idx - page_idx);
527 page_idx = combined_idx;
528 order++;
529 }
530 set_page_order(page, order);
6dda9d55
CZ
531
532 /*
533 * If this is not the largest possible page, check if the buddy
534 * of the next-highest order is free. If it is, it's possible
535 * that pages are being freed that will coalesce soon. In case,
536 * that is happening, add the free page to the tail of the list
537 * so it's less likely to be used soon and more likely to be merged
538 * as a higher order page
539 */
b7f50cfa 540 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55
CZ
541 struct page *higher_page, *higher_buddy;
542 combined_idx = __find_combined_index(page_idx, order);
543 higher_page = page + combined_idx - page_idx;
544 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
545 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
546 list_add_tail(&page->lru,
547 &zone->free_area[order].free_list[migratetype]);
548 goto out;
549 }
550 }
551
552 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
553out:
1da177e4
LT
554 zone->free_area[order].nr_free++;
555}
556
092cead6
KM
557/*
558 * free_page_mlock() -- clean up attempts to free and mlocked() page.
559 * Page should not be on lru, so no need to fix that up.
560 * free_pages_check() will verify...
561 */
562static inline void free_page_mlock(struct page *page)
563{
092cead6
KM
564 __dec_zone_page_state(page, NR_MLOCK);
565 __count_vm_event(UNEVICTABLE_MLOCKFREED);
566}
092cead6 567
224abf92 568static inline int free_pages_check(struct page *page)
1da177e4 569{
92be2e33
NP
570 if (unlikely(page_mapcount(page) |
571 (page->mapping != NULL) |
a3af9c38 572 (atomic_read(&page->_count) != 0) |
8cc3b392 573 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 574 bad_page(page);
79f4b7bf 575 return 1;
8cc3b392 576 }
79f4b7bf
HD
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
1da177e4
LT
580}
581
582/*
5f8dcc21 583 * Frees a number of pages from the PCP lists
1da177e4 584 * Assumes all pages on list are in same zone, and of same order.
207f36ee 585 * count is the number of pages to free.
1da177e4
LT
586 *
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
589 *
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
592 */
5f8dcc21
MG
593static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
1da177e4 595{
5f8dcc21 596 int migratetype = 0;
a6f9edd6 597 int batch_free = 0;
72853e29 598 int to_free = count;
5f8dcc21 599
c54ad30c 600 spin_lock(&zone->lock);
93e4a89a 601 zone->all_unreclaimable = 0;
1da177e4 602 zone->pages_scanned = 0;
f2260e6b 603
72853e29 604 while (to_free) {
48db57f8 605 struct page *page;
5f8dcc21
MG
606 struct list_head *list;
607
608 /*
a6f9edd6
MG
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
5f8dcc21
MG
614 */
615 do {
a6f9edd6 616 batch_free++;
5f8dcc21
MG
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
48db57f8 621
a6f9edd6
MG
622 do {
623 page = list_entry(list->prev, struct page, lru);
624 /* must delete as __free_one_page list manipulates */
625 list_del(&page->lru);
a7016235
HD
626 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
627 __free_one_page(page, zone, 0, page_private(page));
628 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 629 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 630 }
72853e29 631 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 632 spin_unlock(&zone->lock);
1da177e4
LT
633}
634
ed0ae21d
MG
635static void free_one_page(struct zone *zone, struct page *page, int order,
636 int migratetype)
1da177e4 637{
006d22d9 638 spin_lock(&zone->lock);
93e4a89a 639 zone->all_unreclaimable = 0;
006d22d9 640 zone->pages_scanned = 0;
f2260e6b 641
ed0ae21d 642 __free_one_page(page, zone, order, migratetype);
72853e29 643 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 644 spin_unlock(&zone->lock);
48db57f8
NP
645}
646
ec95f53a 647static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 648{
1da177e4 649 int i;
8cc3b392 650 int bad = 0;
1da177e4 651
f650316c 652 trace_mm_page_free_direct(page, order);
b1eeab67
VN
653 kmemcheck_free_shadow(page, order);
654
8dd60a3a
AA
655 if (PageAnon(page))
656 page->mapping = NULL;
657 for (i = 0; i < (1 << order); i++)
658 bad += free_pages_check(page + i);
8cc3b392 659 if (bad)
ec95f53a 660 return false;
689bcebf 661
3ac7fe5a 662 if (!PageHighMem(page)) {
9858db50 663 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
664 debug_check_no_obj_freed(page_address(page),
665 PAGE_SIZE << order);
666 }
dafb1367 667 arch_free_page(page, order);
48db57f8 668 kernel_map_pages(page, 1 << order, 0);
dafb1367 669
ec95f53a
KM
670 return true;
671}
672
673static void __free_pages_ok(struct page *page, unsigned int order)
674{
675 unsigned long flags;
676 int wasMlocked = __TestClearPageMlocked(page);
677
678 if (!free_pages_prepare(page, order))
679 return;
680
c54ad30c 681 local_irq_save(flags);
c277331d 682 if (unlikely(wasMlocked))
da456f14 683 free_page_mlock(page);
f8891e5e 684 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
685 free_one_page(page_zone(page), page, order,
686 get_pageblock_migratetype(page));
c54ad30c 687 local_irq_restore(flags);
1da177e4
LT
688}
689
a226f6c8
DH
690/*
691 * permit the bootmem allocator to evade page validation on high-order frees
692 */
af370fb8 693void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
694{
695 if (order == 0) {
696 __ClearPageReserved(page);
697 set_page_count(page, 0);
7835e98b 698 set_page_refcounted(page);
545b1ea9 699 __free_page(page);
a226f6c8 700 } else {
a226f6c8
DH
701 int loop;
702
545b1ea9 703 prefetchw(page);
a226f6c8
DH
704 for (loop = 0; loop < BITS_PER_LONG; loop++) {
705 struct page *p = &page[loop];
706
545b1ea9
NP
707 if (loop + 1 < BITS_PER_LONG)
708 prefetchw(p + 1);
a226f6c8
DH
709 __ClearPageReserved(p);
710 set_page_count(p, 0);
711 }
712
7835e98b 713 set_page_refcounted(page);
545b1ea9 714 __free_pages(page, order);
a226f6c8
DH
715 }
716}
717
1da177e4
LT
718
719/*
720 * The order of subdivision here is critical for the IO subsystem.
721 * Please do not alter this order without good reasons and regression
722 * testing. Specifically, as large blocks of memory are subdivided,
723 * the order in which smaller blocks are delivered depends on the order
724 * they're subdivided in this function. This is the primary factor
725 * influencing the order in which pages are delivered to the IO
726 * subsystem according to empirical testing, and this is also justified
727 * by considering the behavior of a buddy system containing a single
728 * large block of memory acted on by a series of small allocations.
729 * This behavior is a critical factor in sglist merging's success.
730 *
731 * -- wli
732 */
085cc7d5 733static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
734 int low, int high, struct free_area *area,
735 int migratetype)
1da177e4
LT
736{
737 unsigned long size = 1 << high;
738
739 while (high > low) {
740 area--;
741 high--;
742 size >>= 1;
725d704e 743 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 744 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
745 area->nr_free++;
746 set_page_order(&page[size], high);
747 }
1da177e4
LT
748}
749
1da177e4
LT
750/*
751 * This page is about to be returned from the page allocator
752 */
2a7684a2 753static inline int check_new_page(struct page *page)
1da177e4 754{
92be2e33
NP
755 if (unlikely(page_mapcount(page) |
756 (page->mapping != NULL) |
a3af9c38 757 (atomic_read(&page->_count) != 0) |
8cc3b392 758 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 759 bad_page(page);
689bcebf 760 return 1;
8cc3b392 761 }
2a7684a2
WF
762 return 0;
763}
764
765static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
766{
767 int i;
768
769 for (i = 0; i < (1 << order); i++) {
770 struct page *p = page + i;
771 if (unlikely(check_new_page(p)))
772 return 1;
773 }
689bcebf 774
4c21e2f2 775 set_page_private(page, 0);
7835e98b 776 set_page_refcounted(page);
cc102509
NP
777
778 arch_alloc_page(page, order);
1da177e4 779 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
780
781 if (gfp_flags & __GFP_ZERO)
782 prep_zero_page(page, order, gfp_flags);
783
784 if (order && (gfp_flags & __GFP_COMP))
785 prep_compound_page(page, order);
786
689bcebf 787 return 0;
1da177e4
LT
788}
789
56fd56b8
MG
790/*
791 * Go through the free lists for the given migratetype and remove
792 * the smallest available page from the freelists
793 */
728ec980
MG
794static inline
795struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
796 int migratetype)
797{
798 unsigned int current_order;
799 struct free_area * area;
800 struct page *page;
801
802 /* Find a page of the appropriate size in the preferred list */
803 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
804 area = &(zone->free_area[current_order]);
805 if (list_empty(&area->free_list[migratetype]))
806 continue;
807
808 page = list_entry(area->free_list[migratetype].next,
809 struct page, lru);
810 list_del(&page->lru);
811 rmv_page_order(page);
812 area->nr_free--;
56fd56b8
MG
813 expand(zone, page, order, current_order, area, migratetype);
814 return page;
815 }
816
817 return NULL;
818}
819
820
b2a0ac88
MG
821/*
822 * This array describes the order lists are fallen back to when
823 * the free lists for the desirable migrate type are depleted
824 */
825static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
826 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
827 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
828 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
830};
831
c361be55
MG
832/*
833 * Move the free pages in a range to the free lists of the requested type.
d9c23400 834 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
835 * boundary. If alignment is required, use move_freepages_block()
836 */
b69a7288
AB
837static int move_freepages(struct zone *zone,
838 struct page *start_page, struct page *end_page,
839 int migratetype)
c361be55
MG
840{
841 struct page *page;
842 unsigned long order;
d100313f 843 int pages_moved = 0;
c361be55
MG
844
845#ifndef CONFIG_HOLES_IN_ZONE
846 /*
847 * page_zone is not safe to call in this context when
848 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
849 * anyway as we check zone boundaries in move_freepages_block().
850 * Remove at a later date when no bug reports exist related to
ac0e5b7a 851 * grouping pages by mobility
c361be55
MG
852 */
853 BUG_ON(page_zone(start_page) != page_zone(end_page));
854#endif
855
856 for (page = start_page; page <= end_page;) {
344c790e
AL
857 /* Make sure we are not inadvertently changing nodes */
858 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
859
c361be55
MG
860 if (!pfn_valid_within(page_to_pfn(page))) {
861 page++;
862 continue;
863 }
864
865 if (!PageBuddy(page)) {
866 page++;
867 continue;
868 }
869
870 order = page_order(page);
871 list_del(&page->lru);
872 list_add(&page->lru,
873 &zone->free_area[order].free_list[migratetype]);
874 page += 1 << order;
d100313f 875 pages_moved += 1 << order;
c361be55
MG
876 }
877
d100313f 878 return pages_moved;
c361be55
MG
879}
880
b69a7288
AB
881static int move_freepages_block(struct zone *zone, struct page *page,
882 int migratetype)
c361be55
MG
883{
884 unsigned long start_pfn, end_pfn;
885 struct page *start_page, *end_page;
886
887 start_pfn = page_to_pfn(page);
d9c23400 888 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 889 start_page = pfn_to_page(start_pfn);
d9c23400
MG
890 end_page = start_page + pageblock_nr_pages - 1;
891 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
892
893 /* Do not cross zone boundaries */
894 if (start_pfn < zone->zone_start_pfn)
895 start_page = page;
896 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
897 return 0;
898
899 return move_freepages(zone, start_page, end_page, migratetype);
900}
901
2f66a68f
MG
902static void change_pageblock_range(struct page *pageblock_page,
903 int start_order, int migratetype)
904{
905 int nr_pageblocks = 1 << (start_order - pageblock_order);
906
907 while (nr_pageblocks--) {
908 set_pageblock_migratetype(pageblock_page, migratetype);
909 pageblock_page += pageblock_nr_pages;
910 }
911}
912
b2a0ac88 913/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
914static inline struct page *
915__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
916{
917 struct free_area * area;
918 int current_order;
919 struct page *page;
920 int migratetype, i;
921
922 /* Find the largest possible block of pages in the other list */
923 for (current_order = MAX_ORDER-1; current_order >= order;
924 --current_order) {
925 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
926 migratetype = fallbacks[start_migratetype][i];
927
56fd56b8
MG
928 /* MIGRATE_RESERVE handled later if necessary */
929 if (migratetype == MIGRATE_RESERVE)
930 continue;
e010487d 931
b2a0ac88
MG
932 area = &(zone->free_area[current_order]);
933 if (list_empty(&area->free_list[migratetype]))
934 continue;
935
936 page = list_entry(area->free_list[migratetype].next,
937 struct page, lru);
938 area->nr_free--;
939
940 /*
c361be55 941 * If breaking a large block of pages, move all free
46dafbca
MG
942 * pages to the preferred allocation list. If falling
943 * back for a reclaimable kernel allocation, be more
944 * agressive about taking ownership of free pages
b2a0ac88 945 */
d9c23400 946 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
947 start_migratetype == MIGRATE_RECLAIMABLE ||
948 page_group_by_mobility_disabled) {
46dafbca
MG
949 unsigned long pages;
950 pages = move_freepages_block(zone, page,
951 start_migratetype);
952
953 /* Claim the whole block if over half of it is free */
dd5d241e
MG
954 if (pages >= (1 << (pageblock_order-1)) ||
955 page_group_by_mobility_disabled)
46dafbca
MG
956 set_pageblock_migratetype(page,
957 start_migratetype);
958
b2a0ac88 959 migratetype = start_migratetype;
c361be55 960 }
b2a0ac88
MG
961
962 /* Remove the page from the freelists */
963 list_del(&page->lru);
964 rmv_page_order(page);
b2a0ac88 965
2f66a68f
MG
966 /* Take ownership for orders >= pageblock_order */
967 if (current_order >= pageblock_order)
968 change_pageblock_range(page, current_order,
b2a0ac88
MG
969 start_migratetype);
970
971 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
972
973 trace_mm_page_alloc_extfrag(page, order, current_order,
974 start_migratetype, migratetype);
975
b2a0ac88
MG
976 return page;
977 }
978 }
979
728ec980 980 return NULL;
b2a0ac88
MG
981}
982
56fd56b8 983/*
1da177e4
LT
984 * Do the hard work of removing an element from the buddy allocator.
985 * Call me with the zone->lock already held.
986 */
b2a0ac88
MG
987static struct page *__rmqueue(struct zone *zone, unsigned int order,
988 int migratetype)
1da177e4 989{
1da177e4
LT
990 struct page *page;
991
728ec980 992retry_reserve:
56fd56b8 993 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 994
728ec980 995 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 996 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 997
728ec980
MG
998 /*
999 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1000 * is used because __rmqueue_smallest is an inline function
1001 * and we want just one call site
1002 */
1003 if (!page) {
1004 migratetype = MIGRATE_RESERVE;
1005 goto retry_reserve;
1006 }
1007 }
1008
0d3d062a 1009 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1010 return page;
1da177e4
LT
1011}
1012
1013/*
1014 * Obtain a specified number of elements from the buddy allocator, all under
1015 * a single hold of the lock, for efficiency. Add them to the supplied list.
1016 * Returns the number of new pages which were placed at *list.
1017 */
1018static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1019 unsigned long count, struct list_head *list,
e084b2d9 1020 int migratetype, int cold)
1da177e4 1021{
1da177e4 1022 int i;
1da177e4 1023
c54ad30c 1024 spin_lock(&zone->lock);
1da177e4 1025 for (i = 0; i < count; ++i) {
b2a0ac88 1026 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1027 if (unlikely(page == NULL))
1da177e4 1028 break;
81eabcbe
MG
1029
1030 /*
1031 * Split buddy pages returned by expand() are received here
1032 * in physical page order. The page is added to the callers and
1033 * list and the list head then moves forward. From the callers
1034 * perspective, the linked list is ordered by page number in
1035 * some conditions. This is useful for IO devices that can
1036 * merge IO requests if the physical pages are ordered
1037 * properly.
1038 */
e084b2d9
MG
1039 if (likely(cold == 0))
1040 list_add(&page->lru, list);
1041 else
1042 list_add_tail(&page->lru, list);
535131e6 1043 set_page_private(page, migratetype);
81eabcbe 1044 list = &page->lru;
1da177e4 1045 }
f2260e6b 1046 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1047 spin_unlock(&zone->lock);
085cc7d5 1048 return i;
1da177e4
LT
1049}
1050
4ae7c039 1051#ifdef CONFIG_NUMA
8fce4d8e 1052/*
4037d452
CL
1053 * Called from the vmstat counter updater to drain pagesets of this
1054 * currently executing processor on remote nodes after they have
1055 * expired.
1056 *
879336c3
CL
1057 * Note that this function must be called with the thread pinned to
1058 * a single processor.
8fce4d8e 1059 */
4037d452 1060void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1061{
4ae7c039 1062 unsigned long flags;
4037d452 1063 int to_drain;
4ae7c039 1064
4037d452
CL
1065 local_irq_save(flags);
1066 if (pcp->count >= pcp->batch)
1067 to_drain = pcp->batch;
1068 else
1069 to_drain = pcp->count;
5f8dcc21 1070 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1071 pcp->count -= to_drain;
1072 local_irq_restore(flags);
4ae7c039
CL
1073}
1074#endif
1075
9f8f2172
CL
1076/*
1077 * Drain pages of the indicated processor.
1078 *
1079 * The processor must either be the current processor and the
1080 * thread pinned to the current processor or a processor that
1081 * is not online.
1082 */
1083static void drain_pages(unsigned int cpu)
1da177e4 1084{
c54ad30c 1085 unsigned long flags;
1da177e4 1086 struct zone *zone;
1da177e4 1087
ee99c71c 1088 for_each_populated_zone(zone) {
1da177e4 1089 struct per_cpu_pageset *pset;
3dfa5721 1090 struct per_cpu_pages *pcp;
1da177e4 1091
99dcc3e5
CL
1092 local_irq_save(flags);
1093 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1094
1095 pcp = &pset->pcp;
5f8dcc21 1096 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1097 pcp->count = 0;
1098 local_irq_restore(flags);
1da177e4
LT
1099 }
1100}
1da177e4 1101
9f8f2172
CL
1102/*
1103 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1104 */
1105void drain_local_pages(void *arg)
1106{
1107 drain_pages(smp_processor_id());
1108}
1109
1110/*
1111 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1112 */
1113void drain_all_pages(void)
1114{
15c8b6c1 1115 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1116}
1117
296699de 1118#ifdef CONFIG_HIBERNATION
1da177e4
LT
1119
1120void mark_free_pages(struct zone *zone)
1121{
f623f0db
RW
1122 unsigned long pfn, max_zone_pfn;
1123 unsigned long flags;
b2a0ac88 1124 int order, t;
1da177e4
LT
1125 struct list_head *curr;
1126
1127 if (!zone->spanned_pages)
1128 return;
1129
1130 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1131
1132 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1133 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1134 if (pfn_valid(pfn)) {
1135 struct page *page = pfn_to_page(pfn);
1136
7be98234
RW
1137 if (!swsusp_page_is_forbidden(page))
1138 swsusp_unset_page_free(page);
f623f0db 1139 }
1da177e4 1140
b2a0ac88
MG
1141 for_each_migratetype_order(order, t) {
1142 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1143 unsigned long i;
1da177e4 1144
f623f0db
RW
1145 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1146 for (i = 0; i < (1UL << order); i++)
7be98234 1147 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1148 }
b2a0ac88 1149 }
1da177e4
LT
1150 spin_unlock_irqrestore(&zone->lock, flags);
1151}
e2c55dc8 1152#endif /* CONFIG_PM */
1da177e4 1153
1da177e4
LT
1154/*
1155 * Free a 0-order page
fc91668e 1156 * cold == 1 ? free a cold page : free a hot page
1da177e4 1157 */
fc91668e 1158void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1159{
1160 struct zone *zone = page_zone(page);
1161 struct per_cpu_pages *pcp;
1162 unsigned long flags;
5f8dcc21 1163 int migratetype;
451ea25d 1164 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1165
ec95f53a 1166 if (!free_pages_prepare(page, 0))
689bcebf
HD
1167 return;
1168
5f8dcc21
MG
1169 migratetype = get_pageblock_migratetype(page);
1170 set_page_private(page, migratetype);
1da177e4 1171 local_irq_save(flags);
c277331d 1172 if (unlikely(wasMlocked))
da456f14 1173 free_page_mlock(page);
f8891e5e 1174 __count_vm_event(PGFREE);
da456f14 1175
5f8dcc21
MG
1176 /*
1177 * We only track unmovable, reclaimable and movable on pcp lists.
1178 * Free ISOLATE pages back to the allocator because they are being
1179 * offlined but treat RESERVE as movable pages so we can get those
1180 * areas back if necessary. Otherwise, we may have to free
1181 * excessively into the page allocator
1182 */
1183 if (migratetype >= MIGRATE_PCPTYPES) {
1184 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1185 free_one_page(zone, page, 0, migratetype);
1186 goto out;
1187 }
1188 migratetype = MIGRATE_MOVABLE;
1189 }
1190
99dcc3e5 1191 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1192 if (cold)
5f8dcc21 1193 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1194 else
5f8dcc21 1195 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1196 pcp->count++;
48db57f8 1197 if (pcp->count >= pcp->high) {
5f8dcc21 1198 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1199 pcp->count -= pcp->batch;
1200 }
5f8dcc21
MG
1201
1202out:
1da177e4 1203 local_irq_restore(flags);
1da177e4
LT
1204}
1205
8dfcc9ba
NP
1206/*
1207 * split_page takes a non-compound higher-order page, and splits it into
1208 * n (1<<order) sub-pages: page[0..n]
1209 * Each sub-page must be freed individually.
1210 *
1211 * Note: this is probably too low level an operation for use in drivers.
1212 * Please consult with lkml before using this in your driver.
1213 */
1214void split_page(struct page *page, unsigned int order)
1215{
1216 int i;
1217
725d704e
NP
1218 VM_BUG_ON(PageCompound(page));
1219 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1220
1221#ifdef CONFIG_KMEMCHECK
1222 /*
1223 * Split shadow pages too, because free(page[0]) would
1224 * otherwise free the whole shadow.
1225 */
1226 if (kmemcheck_page_is_tracked(page))
1227 split_page(virt_to_page(page[0].shadow), order);
1228#endif
1229
7835e98b
NP
1230 for (i = 1; i < (1 << order); i++)
1231 set_page_refcounted(page + i);
8dfcc9ba 1232}
8dfcc9ba 1233
748446bb
MG
1234/*
1235 * Similar to split_page except the page is already free. As this is only
1236 * being used for migration, the migratetype of the block also changes.
1237 * As this is called with interrupts disabled, the caller is responsible
1238 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1239 * are enabled.
1240 *
1241 * Note: this is probably too low level an operation for use in drivers.
1242 * Please consult with lkml before using this in your driver.
1243 */
1244int split_free_page(struct page *page)
1245{
1246 unsigned int order;
1247 unsigned long watermark;
1248 struct zone *zone;
1249
1250 BUG_ON(!PageBuddy(page));
1251
1252 zone = page_zone(page);
1253 order = page_order(page);
1254
1255 /* Obey watermarks as if the page was being allocated */
1256 watermark = low_wmark_pages(zone) + (1 << order);
1257 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1258 return 0;
1259
1260 /* Remove page from free list */
1261 list_del(&page->lru);
1262 zone->free_area[order].nr_free--;
1263 rmv_page_order(page);
1264 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1265
1266 /* Split into individual pages */
1267 set_page_refcounted(page);
1268 split_page(page, order);
1269
1270 if (order >= pageblock_order - 1) {
1271 struct page *endpage = page + (1 << order) - 1;
1272 for (; page < endpage; page += pageblock_nr_pages)
1273 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1274 }
1275
1276 return 1 << order;
1277}
1278
1da177e4
LT
1279/*
1280 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1281 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1282 * or two.
1283 */
0a15c3e9
MG
1284static inline
1285struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1286 struct zone *zone, int order, gfp_t gfp_flags,
1287 int migratetype)
1da177e4
LT
1288{
1289 unsigned long flags;
689bcebf 1290 struct page *page;
1da177e4
LT
1291 int cold = !!(gfp_flags & __GFP_COLD);
1292
689bcebf 1293again:
48db57f8 1294 if (likely(order == 0)) {
1da177e4 1295 struct per_cpu_pages *pcp;
5f8dcc21 1296 struct list_head *list;
1da177e4 1297
1da177e4 1298 local_irq_save(flags);
99dcc3e5
CL
1299 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1300 list = &pcp->lists[migratetype];
5f8dcc21 1301 if (list_empty(list)) {
535131e6 1302 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1303 pcp->batch, list,
e084b2d9 1304 migratetype, cold);
5f8dcc21 1305 if (unlikely(list_empty(list)))
6fb332fa 1306 goto failed;
535131e6 1307 }
b92a6edd 1308
5f8dcc21
MG
1309 if (cold)
1310 page = list_entry(list->prev, struct page, lru);
1311 else
1312 page = list_entry(list->next, struct page, lru);
1313
b92a6edd
MG
1314 list_del(&page->lru);
1315 pcp->count--;
7fb1d9fc 1316 } else {
dab48dab
AM
1317 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1318 /*
1319 * __GFP_NOFAIL is not to be used in new code.
1320 *
1321 * All __GFP_NOFAIL callers should be fixed so that they
1322 * properly detect and handle allocation failures.
1323 *
1324 * We most definitely don't want callers attempting to
4923abf9 1325 * allocate greater than order-1 page units with
dab48dab
AM
1326 * __GFP_NOFAIL.
1327 */
4923abf9 1328 WARN_ON_ONCE(order > 1);
dab48dab 1329 }
1da177e4 1330 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1331 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1332 spin_unlock(&zone->lock);
1333 if (!page)
1334 goto failed;
6ccf80eb 1335 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1336 }
1337
f8891e5e 1338 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1339 zone_statistics(preferred_zone, zone);
a74609fa 1340 local_irq_restore(flags);
1da177e4 1341
725d704e 1342 VM_BUG_ON(bad_range(zone, page));
17cf4406 1343 if (prep_new_page(page, order, gfp_flags))
a74609fa 1344 goto again;
1da177e4 1345 return page;
a74609fa
NP
1346
1347failed:
1348 local_irq_restore(flags);
a74609fa 1349 return NULL;
1da177e4
LT
1350}
1351
41858966
MG
1352/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1353#define ALLOC_WMARK_MIN WMARK_MIN
1354#define ALLOC_WMARK_LOW WMARK_LOW
1355#define ALLOC_WMARK_HIGH WMARK_HIGH
1356#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1357
1358/* Mask to get the watermark bits */
1359#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1360
3148890b
NP
1361#define ALLOC_HARDER 0x10 /* try to alloc harder */
1362#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1363#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1364
933e312e
AM
1365#ifdef CONFIG_FAIL_PAGE_ALLOC
1366
1367static struct fail_page_alloc_attr {
1368 struct fault_attr attr;
1369
1370 u32 ignore_gfp_highmem;
1371 u32 ignore_gfp_wait;
54114994 1372 u32 min_order;
933e312e
AM
1373
1374#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1375
1376 struct dentry *ignore_gfp_highmem_file;
1377 struct dentry *ignore_gfp_wait_file;
54114994 1378 struct dentry *min_order_file;
933e312e
AM
1379
1380#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1381
1382} fail_page_alloc = {
1383 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1384 .ignore_gfp_wait = 1,
1385 .ignore_gfp_highmem = 1,
54114994 1386 .min_order = 1,
933e312e
AM
1387};
1388
1389static int __init setup_fail_page_alloc(char *str)
1390{
1391 return setup_fault_attr(&fail_page_alloc.attr, str);
1392}
1393__setup("fail_page_alloc=", setup_fail_page_alloc);
1394
1395static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1396{
54114994
AM
1397 if (order < fail_page_alloc.min_order)
1398 return 0;
933e312e
AM
1399 if (gfp_mask & __GFP_NOFAIL)
1400 return 0;
1401 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1404 return 0;
1405
1406 return should_fail(&fail_page_alloc.attr, 1 << order);
1407}
1408
1409#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1410
1411static int __init fail_page_alloc_debugfs(void)
1412{
1413 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1414 struct dentry *dir;
1415 int err;
1416
1417 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1418 "fail_page_alloc");
1419 if (err)
1420 return err;
1421 dir = fail_page_alloc.attr.dentries.dir;
1422
1423 fail_page_alloc.ignore_gfp_wait_file =
1424 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1425 &fail_page_alloc.ignore_gfp_wait);
1426
1427 fail_page_alloc.ignore_gfp_highmem_file =
1428 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1429 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1430 fail_page_alloc.min_order_file =
1431 debugfs_create_u32("min-order", mode, dir,
1432 &fail_page_alloc.min_order);
933e312e
AM
1433
1434 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1435 !fail_page_alloc.ignore_gfp_highmem_file ||
1436 !fail_page_alloc.min_order_file) {
933e312e
AM
1437 err = -ENOMEM;
1438 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1439 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1440 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1441 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1442 }
1443
1444 return err;
1445}
1446
1447late_initcall(fail_page_alloc_debugfs);
1448
1449#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1450
1451#else /* CONFIG_FAIL_PAGE_ALLOC */
1452
1453static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1454{
1455 return 0;
1456}
1457
1458#endif /* CONFIG_FAIL_PAGE_ALLOC */
1459
1da177e4 1460/*
88f5acf8 1461 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1462 * of the allocation.
1463 */
88f5acf8
MG
1464static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1465 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1466{
1467 /* free_pages my go negative - that's OK */
d23ad423 1468 long min = mark;
1da177e4
LT
1469 int o;
1470
88f5acf8 1471 free_pages -= (1 << order) + 1;
7fb1d9fc 1472 if (alloc_flags & ALLOC_HIGH)
1da177e4 1473 min -= min / 2;
7fb1d9fc 1474 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1475 min -= min / 4;
1476
1477 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1478 return false;
1da177e4
LT
1479 for (o = 0; o < order; o++) {
1480 /* At the next order, this order's pages become unavailable */
1481 free_pages -= z->free_area[o].nr_free << o;
1482
1483 /* Require fewer higher order pages to be free */
1484 min >>= 1;
1485
1486 if (free_pages <= min)
88f5acf8 1487 return false;
1da177e4 1488 }
88f5acf8
MG
1489 return true;
1490}
1491
1492bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1493 int classzone_idx, int alloc_flags)
1494{
1495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1496 zone_page_state(z, NR_FREE_PAGES));
1497}
1498
1499bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1500 int classzone_idx, int alloc_flags)
1501{
1502 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1503
1504 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1505 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1506
1507 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1508 free_pages);
1da177e4
LT
1509}
1510
9276b1bc
PJ
1511#ifdef CONFIG_NUMA
1512/*
1513 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1514 * skip over zones that are not allowed by the cpuset, or that have
1515 * been recently (in last second) found to be nearly full. See further
1516 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1517 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1518 *
1519 * If the zonelist cache is present in the passed in zonelist, then
1520 * returns a pointer to the allowed node mask (either the current
37b07e41 1521 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1522 *
1523 * If the zonelist cache is not available for this zonelist, does
1524 * nothing and returns NULL.
1525 *
1526 * If the fullzones BITMAP in the zonelist cache is stale (more than
1527 * a second since last zap'd) then we zap it out (clear its bits.)
1528 *
1529 * We hold off even calling zlc_setup, until after we've checked the
1530 * first zone in the zonelist, on the theory that most allocations will
1531 * be satisfied from that first zone, so best to examine that zone as
1532 * quickly as we can.
1533 */
1534static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1535{
1536 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1537 nodemask_t *allowednodes; /* zonelist_cache approximation */
1538
1539 zlc = zonelist->zlcache_ptr;
1540 if (!zlc)
1541 return NULL;
1542
f05111f5 1543 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1544 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1545 zlc->last_full_zap = jiffies;
1546 }
1547
1548 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1549 &cpuset_current_mems_allowed :
37b07e41 1550 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1551 return allowednodes;
1552}
1553
1554/*
1555 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1556 * if it is worth looking at further for free memory:
1557 * 1) Check that the zone isn't thought to be full (doesn't have its
1558 * bit set in the zonelist_cache fullzones BITMAP).
1559 * 2) Check that the zones node (obtained from the zonelist_cache
1560 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1561 * Return true (non-zero) if zone is worth looking at further, or
1562 * else return false (zero) if it is not.
1563 *
1564 * This check -ignores- the distinction between various watermarks,
1565 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1566 * found to be full for any variation of these watermarks, it will
1567 * be considered full for up to one second by all requests, unless
1568 * we are so low on memory on all allowed nodes that we are forced
1569 * into the second scan of the zonelist.
1570 *
1571 * In the second scan we ignore this zonelist cache and exactly
1572 * apply the watermarks to all zones, even it is slower to do so.
1573 * We are low on memory in the second scan, and should leave no stone
1574 * unturned looking for a free page.
1575 */
dd1a239f 1576static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1577 nodemask_t *allowednodes)
1578{
1579 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1580 int i; /* index of *z in zonelist zones */
1581 int n; /* node that zone *z is on */
1582
1583 zlc = zonelist->zlcache_ptr;
1584 if (!zlc)
1585 return 1;
1586
dd1a239f 1587 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1588 n = zlc->z_to_n[i];
1589
1590 /* This zone is worth trying if it is allowed but not full */
1591 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1592}
1593
1594/*
1595 * Given 'z' scanning a zonelist, set the corresponding bit in
1596 * zlc->fullzones, so that subsequent attempts to allocate a page
1597 * from that zone don't waste time re-examining it.
1598 */
dd1a239f 1599static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1600{
1601 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1602 int i; /* index of *z in zonelist zones */
1603
1604 zlc = zonelist->zlcache_ptr;
1605 if (!zlc)
1606 return;
1607
dd1a239f 1608 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1609
1610 set_bit(i, zlc->fullzones);
1611}
1612
1613#else /* CONFIG_NUMA */
1614
1615static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1616{
1617 return NULL;
1618}
1619
dd1a239f 1620static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1621 nodemask_t *allowednodes)
1622{
1623 return 1;
1624}
1625
dd1a239f 1626static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1627{
1628}
1629#endif /* CONFIG_NUMA */
1630
7fb1d9fc 1631/*
0798e519 1632 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1633 * a page.
1634 */
1635static struct page *
19770b32 1636get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1637 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1638 struct zone *preferred_zone, int migratetype)
753ee728 1639{
dd1a239f 1640 struct zoneref *z;
7fb1d9fc 1641 struct page *page = NULL;
54a6eb5c 1642 int classzone_idx;
5117f45d 1643 struct zone *zone;
9276b1bc
PJ
1644 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1645 int zlc_active = 0; /* set if using zonelist_cache */
1646 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1647
19770b32 1648 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1649zonelist_scan:
7fb1d9fc 1650 /*
9276b1bc 1651 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1652 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1653 */
19770b32
MG
1654 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1655 high_zoneidx, nodemask) {
9276b1bc
PJ
1656 if (NUMA_BUILD && zlc_active &&
1657 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1658 continue;
7fb1d9fc 1659 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1660 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1661 goto try_next_zone;
7fb1d9fc 1662
41858966 1663 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1664 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1665 unsigned long mark;
fa5e084e
MG
1666 int ret;
1667
41858966 1668 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1669 if (zone_watermark_ok(zone, order, mark,
1670 classzone_idx, alloc_flags))
1671 goto try_this_zone;
1672
1673 if (zone_reclaim_mode == 0)
1674 goto this_zone_full;
1675
1676 ret = zone_reclaim(zone, gfp_mask, order);
1677 switch (ret) {
1678 case ZONE_RECLAIM_NOSCAN:
1679 /* did not scan */
1680 goto try_next_zone;
1681 case ZONE_RECLAIM_FULL:
1682 /* scanned but unreclaimable */
1683 goto this_zone_full;
1684 default:
1685 /* did we reclaim enough */
1686 if (!zone_watermark_ok(zone, order, mark,
1687 classzone_idx, alloc_flags))
9276b1bc 1688 goto this_zone_full;
0798e519 1689 }
7fb1d9fc
RS
1690 }
1691
fa5e084e 1692try_this_zone:
3dd28266
MG
1693 page = buffered_rmqueue(preferred_zone, zone, order,
1694 gfp_mask, migratetype);
0798e519 1695 if (page)
7fb1d9fc 1696 break;
9276b1bc
PJ
1697this_zone_full:
1698 if (NUMA_BUILD)
1699 zlc_mark_zone_full(zonelist, z);
1700try_next_zone:
62bc62a8 1701 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1702 /*
1703 * we do zlc_setup after the first zone is tried but only
1704 * if there are multiple nodes make it worthwhile
1705 */
9276b1bc
PJ
1706 allowednodes = zlc_setup(zonelist, alloc_flags);
1707 zlc_active = 1;
1708 did_zlc_setup = 1;
1709 }
54a6eb5c 1710 }
9276b1bc
PJ
1711
1712 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1713 /* Disable zlc cache for second zonelist scan */
1714 zlc_active = 0;
1715 goto zonelist_scan;
1716 }
7fb1d9fc 1717 return page;
753ee728
MH
1718}
1719
11e33f6a
MG
1720static inline int
1721should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1722 unsigned long pages_reclaimed)
1da177e4 1723{
11e33f6a
MG
1724 /* Do not loop if specifically requested */
1725 if (gfp_mask & __GFP_NORETRY)
1726 return 0;
1da177e4 1727
11e33f6a
MG
1728 /*
1729 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1730 * means __GFP_NOFAIL, but that may not be true in other
1731 * implementations.
1732 */
1733 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1734 return 1;
1735
1736 /*
1737 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1738 * specified, then we retry until we no longer reclaim any pages
1739 * (above), or we've reclaimed an order of pages at least as
1740 * large as the allocation's order. In both cases, if the
1741 * allocation still fails, we stop retrying.
1742 */
1743 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1744 return 1;
cf40bd16 1745
11e33f6a
MG
1746 /*
1747 * Don't let big-order allocations loop unless the caller
1748 * explicitly requests that.
1749 */
1750 if (gfp_mask & __GFP_NOFAIL)
1751 return 1;
1da177e4 1752
11e33f6a
MG
1753 return 0;
1754}
933e312e 1755
11e33f6a
MG
1756static inline struct page *
1757__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1758 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1759 nodemask_t *nodemask, struct zone *preferred_zone,
1760 int migratetype)
11e33f6a
MG
1761{
1762 struct page *page;
1763
1764 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1765 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1766 schedule_timeout_uninterruptible(1);
1da177e4
LT
1767 return NULL;
1768 }
6b1de916 1769
11e33f6a
MG
1770 /*
1771 * Go through the zonelist yet one more time, keep very high watermark
1772 * here, this is only to catch a parallel oom killing, we must fail if
1773 * we're still under heavy pressure.
1774 */
1775 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1776 order, zonelist, high_zoneidx,
5117f45d 1777 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1778 preferred_zone, migratetype);
7fb1d9fc 1779 if (page)
11e33f6a
MG
1780 goto out;
1781
4365a567
KH
1782 if (!(gfp_mask & __GFP_NOFAIL)) {
1783 /* The OOM killer will not help higher order allocs */
1784 if (order > PAGE_ALLOC_COSTLY_ORDER)
1785 goto out;
03668b3c
DR
1786 /* The OOM killer does not needlessly kill tasks for lowmem */
1787 if (high_zoneidx < ZONE_NORMAL)
1788 goto out;
4365a567
KH
1789 /*
1790 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1791 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1792 * The caller should handle page allocation failure by itself if
1793 * it specifies __GFP_THISNODE.
1794 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1795 */
1796 if (gfp_mask & __GFP_THISNODE)
1797 goto out;
1798 }
11e33f6a 1799 /* Exhausted what can be done so it's blamo time */
4365a567 1800 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1801
1802out:
1803 clear_zonelist_oom(zonelist, gfp_mask);
1804 return page;
1805}
1806
56de7263
MG
1807#ifdef CONFIG_COMPACTION
1808/* Try memory compaction for high-order allocations before reclaim */
1809static struct page *
1810__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1811 struct zonelist *zonelist, enum zone_type high_zoneidx,
1812 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1813 int migratetype, unsigned long *did_some_progress,
1814 bool sync_migration)
56de7263
MG
1815{
1816 struct page *page;
3e7d3449 1817 struct task_struct *tsk = current;
56de7263 1818
4f92e258 1819 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1820 return NULL;
1821
3e7d3449 1822 tsk->flags |= PF_MEMALLOC;
56de7263 1823 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1824 nodemask, sync_migration);
3e7d3449 1825 tsk->flags &= ~PF_MEMALLOC;
56de7263
MG
1826 if (*did_some_progress != COMPACT_SKIPPED) {
1827
1828 /* Page migration frees to the PCP lists but we want merging */
1829 drain_pages(get_cpu());
1830 put_cpu();
1831
1832 page = get_page_from_freelist(gfp_mask, nodemask,
1833 order, zonelist, high_zoneidx,
1834 alloc_flags, preferred_zone,
1835 migratetype);
1836 if (page) {
4f92e258
MG
1837 preferred_zone->compact_considered = 0;
1838 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1839 count_vm_event(COMPACTSUCCESS);
1840 return page;
1841 }
1842
1843 /*
1844 * It's bad if compaction run occurs and fails.
1845 * The most likely reason is that pages exist,
1846 * but not enough to satisfy watermarks.
1847 */
1848 count_vm_event(COMPACTFAIL);
4f92e258 1849 defer_compaction(preferred_zone);
56de7263
MG
1850
1851 cond_resched();
1852 }
1853
1854 return NULL;
1855}
1856#else
1857static inline struct page *
1858__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1859 struct zonelist *zonelist, enum zone_type high_zoneidx,
1860 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1861 int migratetype, unsigned long *did_some_progress,
1862 bool sync_migration)
56de7263
MG
1863{
1864 return NULL;
1865}
1866#endif /* CONFIG_COMPACTION */
1867
11e33f6a
MG
1868/* The really slow allocator path where we enter direct reclaim */
1869static inline struct page *
1870__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1871 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1872 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1873 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1874{
1875 struct page *page = NULL;
1876 struct reclaim_state reclaim_state;
1877 struct task_struct *p = current;
9ee493ce 1878 bool drained = false;
11e33f6a
MG
1879
1880 cond_resched();
1881
1882 /* We now go into synchronous reclaim */
1883 cpuset_memory_pressure_bump();
11e33f6a
MG
1884 p->flags |= PF_MEMALLOC;
1885 lockdep_set_current_reclaim_state(gfp_mask);
1886 reclaim_state.reclaimed_slab = 0;
1887 p->reclaim_state = &reclaim_state;
1888
1889 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1890
1891 p->reclaim_state = NULL;
1892 lockdep_clear_current_reclaim_state();
1893 p->flags &= ~PF_MEMALLOC;
1894
1895 cond_resched();
1896
9ee493ce
MG
1897 if (unlikely(!(*did_some_progress)))
1898 return NULL;
11e33f6a 1899
9ee493ce
MG
1900retry:
1901 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1902 zonelist, high_zoneidx,
3dd28266
MG
1903 alloc_flags, preferred_zone,
1904 migratetype);
9ee493ce
MG
1905
1906 /*
1907 * If an allocation failed after direct reclaim, it could be because
1908 * pages are pinned on the per-cpu lists. Drain them and try again
1909 */
1910 if (!page && !drained) {
1911 drain_all_pages();
1912 drained = true;
1913 goto retry;
1914 }
1915
11e33f6a
MG
1916 return page;
1917}
1918
1da177e4 1919/*
11e33f6a
MG
1920 * This is called in the allocator slow-path if the allocation request is of
1921 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1922 */
11e33f6a
MG
1923static inline struct page *
1924__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1925 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1926 nodemask_t *nodemask, struct zone *preferred_zone,
1927 int migratetype)
11e33f6a
MG
1928{
1929 struct page *page;
1930
1931 do {
1932 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1933 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1934 preferred_zone, migratetype);
11e33f6a
MG
1935
1936 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1937 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1938 } while (!page && (gfp_mask & __GFP_NOFAIL));
1939
1940 return page;
1941}
1942
1943static inline
1944void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
1945 enum zone_type high_zoneidx,
1946 enum zone_type classzone_idx)
1da177e4 1947{
dd1a239f
MG
1948 struct zoneref *z;
1949 struct zone *zone;
1da177e4 1950
11e33f6a 1951 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 1952 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 1953}
cf40bd16 1954
341ce06f
PZ
1955static inline int
1956gfp_to_alloc_flags(gfp_t gfp_mask)
1957{
1958 struct task_struct *p = current;
1959 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1960 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1961
a56f57ff 1962 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 1963 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 1964
341ce06f
PZ
1965 /*
1966 * The caller may dip into page reserves a bit more if the caller
1967 * cannot run direct reclaim, or if the caller has realtime scheduling
1968 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1969 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1970 */
e6223a3b 1971 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 1972
341ce06f
PZ
1973 if (!wait) {
1974 alloc_flags |= ALLOC_HARDER;
523b9458 1975 /*
341ce06f
PZ
1976 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1977 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1978 */
341ce06f 1979 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1980 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1981 alloc_flags |= ALLOC_HARDER;
1982
1983 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1984 if (!in_interrupt() &&
1985 ((p->flags & PF_MEMALLOC) ||
1986 unlikely(test_thread_flag(TIF_MEMDIE))))
1987 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1988 }
6b1de916 1989
341ce06f
PZ
1990 return alloc_flags;
1991}
1992
11e33f6a
MG
1993static inline struct page *
1994__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1995 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1996 nodemask_t *nodemask, struct zone *preferred_zone,
1997 int migratetype)
11e33f6a
MG
1998{
1999 const gfp_t wait = gfp_mask & __GFP_WAIT;
2000 struct page *page = NULL;
2001 int alloc_flags;
2002 unsigned long pages_reclaimed = 0;
2003 unsigned long did_some_progress;
2004 struct task_struct *p = current;
77f1fe6b 2005 bool sync_migration = false;
1da177e4 2006
72807a74
MG
2007 /*
2008 * In the slowpath, we sanity check order to avoid ever trying to
2009 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2010 * be using allocators in order of preference for an area that is
2011 * too large.
2012 */
1fc28b70
MG
2013 if (order >= MAX_ORDER) {
2014 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2015 return NULL;
1fc28b70 2016 }
1da177e4 2017
952f3b51
CL
2018 /*
2019 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2020 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2021 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2022 * using a larger set of nodes after it has established that the
2023 * allowed per node queues are empty and that nodes are
2024 * over allocated.
2025 */
2026 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2027 goto nopage;
2028
cc4a6851 2029restart:
99504748
MG
2030 wake_all_kswapd(order, zonelist, high_zoneidx,
2031 zone_idx(preferred_zone));
1da177e4 2032
9bf2229f 2033 /*
7fb1d9fc
RS
2034 * OK, we're below the kswapd watermark and have kicked background
2035 * reclaim. Now things get more complex, so set up alloc_flags according
2036 * to how we want to proceed.
9bf2229f 2037 */
341ce06f 2038 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2039
341ce06f 2040 /* This is the last chance, in general, before the goto nopage. */
19770b32 2041 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2042 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2043 preferred_zone, migratetype);
7fb1d9fc
RS
2044 if (page)
2045 goto got_pg;
1da177e4 2046
b43a57bb 2047rebalance:
11e33f6a 2048 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2049 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2050 page = __alloc_pages_high_priority(gfp_mask, order,
2051 zonelist, high_zoneidx, nodemask,
2052 preferred_zone, migratetype);
2053 if (page)
2054 goto got_pg;
1da177e4
LT
2055 }
2056
2057 /* Atomic allocations - we can't balance anything */
2058 if (!wait)
2059 goto nopage;
2060
341ce06f
PZ
2061 /* Avoid recursion of direct reclaim */
2062 if (p->flags & PF_MEMALLOC)
2063 goto nopage;
2064
6583bb64
DR
2065 /* Avoid allocations with no watermarks from looping endlessly */
2066 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2067 goto nopage;
2068
77f1fe6b
MG
2069 /*
2070 * Try direct compaction. The first pass is asynchronous. Subsequent
2071 * attempts after direct reclaim are synchronous
2072 */
56de7263
MG
2073 page = __alloc_pages_direct_compact(gfp_mask, order,
2074 zonelist, high_zoneidx,
2075 nodemask,
2076 alloc_flags, preferred_zone,
77f1fe6b
MG
2077 migratetype, &did_some_progress,
2078 sync_migration);
56de7263
MG
2079 if (page)
2080 goto got_pg;
77f1fe6b 2081 sync_migration = true;
56de7263 2082
11e33f6a
MG
2083 /* Try direct reclaim and then allocating */
2084 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2085 zonelist, high_zoneidx,
2086 nodemask,
5117f45d 2087 alloc_flags, preferred_zone,
3dd28266 2088 migratetype, &did_some_progress);
11e33f6a
MG
2089 if (page)
2090 goto got_pg;
1da177e4 2091
e33c3b5e 2092 /*
11e33f6a
MG
2093 * If we failed to make any progress reclaiming, then we are
2094 * running out of options and have to consider going OOM
e33c3b5e 2095 */
11e33f6a
MG
2096 if (!did_some_progress) {
2097 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2098 if (oom_killer_disabled)
2099 goto nopage;
11e33f6a
MG
2100 page = __alloc_pages_may_oom(gfp_mask, order,
2101 zonelist, high_zoneidx,
3dd28266
MG
2102 nodemask, preferred_zone,
2103 migratetype);
11e33f6a
MG
2104 if (page)
2105 goto got_pg;
1da177e4 2106
03668b3c
DR
2107 if (!(gfp_mask & __GFP_NOFAIL)) {
2108 /*
2109 * The oom killer is not called for high-order
2110 * allocations that may fail, so if no progress
2111 * is being made, there are no other options and
2112 * retrying is unlikely to help.
2113 */
2114 if (order > PAGE_ALLOC_COSTLY_ORDER)
2115 goto nopage;
2116 /*
2117 * The oom killer is not called for lowmem
2118 * allocations to prevent needlessly killing
2119 * innocent tasks.
2120 */
2121 if (high_zoneidx < ZONE_NORMAL)
2122 goto nopage;
2123 }
e2c55dc8 2124
ff0ceb9d
DR
2125 goto restart;
2126 }
1da177e4
LT
2127 }
2128
11e33f6a 2129 /* Check if we should retry the allocation */
a41f24ea 2130 pages_reclaimed += did_some_progress;
11e33f6a
MG
2131 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2132 /* Wait for some write requests to complete then retry */
0e093d99 2133 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2134 goto rebalance;
3e7d3449
MG
2135 } else {
2136 /*
2137 * High-order allocations do not necessarily loop after
2138 * direct reclaim and reclaim/compaction depends on compaction
2139 * being called after reclaim so call directly if necessary
2140 */
2141 page = __alloc_pages_direct_compact(gfp_mask, order,
2142 zonelist, high_zoneidx,
2143 nodemask,
2144 alloc_flags, preferred_zone,
77f1fe6b
MG
2145 migratetype, &did_some_progress,
2146 sync_migration);
3e7d3449
MG
2147 if (page)
2148 goto got_pg;
1da177e4
LT
2149 }
2150
2151nopage:
2152 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2153 printk(KERN_WARNING "%s: page allocation failure."
2154 " order:%d, mode:0x%x\n",
2155 p->comm, order, gfp_mask);
2156 dump_stack();
578c2fd6 2157 show_mem();
1da177e4 2158 }
b1eeab67 2159 return page;
1da177e4 2160got_pg:
b1eeab67
VN
2161 if (kmemcheck_enabled)
2162 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2163 return page;
11e33f6a 2164
1da177e4 2165}
11e33f6a
MG
2166
2167/*
2168 * This is the 'heart' of the zoned buddy allocator.
2169 */
2170struct page *
2171__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2172 struct zonelist *zonelist, nodemask_t *nodemask)
2173{
2174 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2175 struct zone *preferred_zone;
11e33f6a 2176 struct page *page;
3dd28266 2177 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2178
dcce284a
BH
2179 gfp_mask &= gfp_allowed_mask;
2180
11e33f6a
MG
2181 lockdep_trace_alloc(gfp_mask);
2182
2183 might_sleep_if(gfp_mask & __GFP_WAIT);
2184
2185 if (should_fail_alloc_page(gfp_mask, order))
2186 return NULL;
2187
2188 /*
2189 * Check the zones suitable for the gfp_mask contain at least one
2190 * valid zone. It's possible to have an empty zonelist as a result
2191 * of GFP_THISNODE and a memoryless node
2192 */
2193 if (unlikely(!zonelist->_zonerefs->zone))
2194 return NULL;
2195
c0ff7453 2196 get_mems_allowed();
5117f45d
MG
2197 /* The preferred zone is used for statistics later */
2198 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2199 if (!preferred_zone) {
2200 put_mems_allowed();
5117f45d 2201 return NULL;
c0ff7453 2202 }
5117f45d
MG
2203
2204 /* First allocation attempt */
11e33f6a 2205 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2206 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2207 preferred_zone, migratetype);
11e33f6a
MG
2208 if (unlikely(!page))
2209 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2210 zonelist, high_zoneidx, nodemask,
3dd28266 2211 preferred_zone, migratetype);
c0ff7453 2212 put_mems_allowed();
11e33f6a 2213
4b4f278c 2214 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2215 return page;
1da177e4 2216}
d239171e 2217EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2218
2219/*
2220 * Common helper functions.
2221 */
920c7a5d 2222unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2223{
945a1113
AM
2224 struct page *page;
2225
2226 /*
2227 * __get_free_pages() returns a 32-bit address, which cannot represent
2228 * a highmem page
2229 */
2230 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2231
1da177e4
LT
2232 page = alloc_pages(gfp_mask, order);
2233 if (!page)
2234 return 0;
2235 return (unsigned long) page_address(page);
2236}
1da177e4
LT
2237EXPORT_SYMBOL(__get_free_pages);
2238
920c7a5d 2239unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2240{
945a1113 2241 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2242}
1da177e4
LT
2243EXPORT_SYMBOL(get_zeroed_page);
2244
2245void __pagevec_free(struct pagevec *pvec)
2246{
2247 int i = pagevec_count(pvec);
2248
4b4f278c
MG
2249 while (--i >= 0) {
2250 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2251 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2252 }
1da177e4
LT
2253}
2254
920c7a5d 2255void __free_pages(struct page *page, unsigned int order)
1da177e4 2256{
b5810039 2257 if (put_page_testzero(page)) {
1da177e4 2258 if (order == 0)
fc91668e 2259 free_hot_cold_page(page, 0);
1da177e4
LT
2260 else
2261 __free_pages_ok(page, order);
2262 }
2263}
2264
2265EXPORT_SYMBOL(__free_pages);
2266
920c7a5d 2267void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2268{
2269 if (addr != 0) {
725d704e 2270 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2271 __free_pages(virt_to_page((void *)addr), order);
2272 }
2273}
2274
2275EXPORT_SYMBOL(free_pages);
2276
2be0ffe2
TT
2277/**
2278 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2279 * @size: the number of bytes to allocate
2280 * @gfp_mask: GFP flags for the allocation
2281 *
2282 * This function is similar to alloc_pages(), except that it allocates the
2283 * minimum number of pages to satisfy the request. alloc_pages() can only
2284 * allocate memory in power-of-two pages.
2285 *
2286 * This function is also limited by MAX_ORDER.
2287 *
2288 * Memory allocated by this function must be released by free_pages_exact().
2289 */
2290void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2291{
2292 unsigned int order = get_order(size);
2293 unsigned long addr;
2294
2295 addr = __get_free_pages(gfp_mask, order);
2296 if (addr) {
2297 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2298 unsigned long used = addr + PAGE_ALIGN(size);
2299
5bfd7560 2300 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2301 while (used < alloc_end) {
2302 free_page(used);
2303 used += PAGE_SIZE;
2304 }
2305 }
2306
2307 return (void *)addr;
2308}
2309EXPORT_SYMBOL(alloc_pages_exact);
2310
2311/**
2312 * free_pages_exact - release memory allocated via alloc_pages_exact()
2313 * @virt: the value returned by alloc_pages_exact.
2314 * @size: size of allocation, same value as passed to alloc_pages_exact().
2315 *
2316 * Release the memory allocated by a previous call to alloc_pages_exact.
2317 */
2318void free_pages_exact(void *virt, size_t size)
2319{
2320 unsigned long addr = (unsigned long)virt;
2321 unsigned long end = addr + PAGE_ALIGN(size);
2322
2323 while (addr < end) {
2324 free_page(addr);
2325 addr += PAGE_SIZE;
2326 }
2327}
2328EXPORT_SYMBOL(free_pages_exact);
2329
1da177e4
LT
2330static unsigned int nr_free_zone_pages(int offset)
2331{
dd1a239f 2332 struct zoneref *z;
54a6eb5c
MG
2333 struct zone *zone;
2334
e310fd43 2335 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2336 unsigned int sum = 0;
2337
0e88460d 2338 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2339
54a6eb5c 2340 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2341 unsigned long size = zone->present_pages;
41858966 2342 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2343 if (size > high)
2344 sum += size - high;
1da177e4
LT
2345 }
2346
2347 return sum;
2348}
2349
2350/*
2351 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2352 */
2353unsigned int nr_free_buffer_pages(void)
2354{
af4ca457 2355 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2356}
c2f1a551 2357EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2358
2359/*
2360 * Amount of free RAM allocatable within all zones
2361 */
2362unsigned int nr_free_pagecache_pages(void)
2363{
2a1e274a 2364 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2365}
08e0f6a9
CL
2366
2367static inline void show_node(struct zone *zone)
1da177e4 2368{
08e0f6a9 2369 if (NUMA_BUILD)
25ba77c1 2370 printk("Node %d ", zone_to_nid(zone));
1da177e4 2371}
1da177e4 2372
1da177e4
LT
2373void si_meminfo(struct sysinfo *val)
2374{
2375 val->totalram = totalram_pages;
2376 val->sharedram = 0;
d23ad423 2377 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2378 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2379 val->totalhigh = totalhigh_pages;
2380 val->freehigh = nr_free_highpages();
1da177e4
LT
2381 val->mem_unit = PAGE_SIZE;
2382}
2383
2384EXPORT_SYMBOL(si_meminfo);
2385
2386#ifdef CONFIG_NUMA
2387void si_meminfo_node(struct sysinfo *val, int nid)
2388{
2389 pg_data_t *pgdat = NODE_DATA(nid);
2390
2391 val->totalram = pgdat->node_present_pages;
d23ad423 2392 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2393#ifdef CONFIG_HIGHMEM
1da177e4 2394 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2395 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2396 NR_FREE_PAGES);
98d2b0eb
CL
2397#else
2398 val->totalhigh = 0;
2399 val->freehigh = 0;
2400#endif
1da177e4
LT
2401 val->mem_unit = PAGE_SIZE;
2402}
2403#endif
2404
2405#define K(x) ((x) << (PAGE_SHIFT-10))
2406
2407/*
2408 * Show free area list (used inside shift_scroll-lock stuff)
2409 * We also calculate the percentage fragmentation. We do this by counting the
2410 * memory on each free list with the exception of the first item on the list.
2411 */
2412void show_free_areas(void)
2413{
c7241913 2414 int cpu;
1da177e4
LT
2415 struct zone *zone;
2416
ee99c71c 2417 for_each_populated_zone(zone) {
c7241913
JS
2418 show_node(zone);
2419 printk("%s per-cpu:\n", zone->name);
1da177e4 2420
6b482c67 2421 for_each_online_cpu(cpu) {
1da177e4
LT
2422 struct per_cpu_pageset *pageset;
2423
99dcc3e5 2424 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2425
3dfa5721
CL
2426 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2427 cpu, pageset->pcp.high,
2428 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2429 }
2430 }
2431
a731286d
KM
2432 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2433 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2434 " unevictable:%lu"
b76146ed 2435 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2436 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2437 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2438 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2439 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2440 global_page_state(NR_ISOLATED_ANON),
2441 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2442 global_page_state(NR_INACTIVE_FILE),
a731286d 2443 global_page_state(NR_ISOLATED_FILE),
7b854121 2444 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2445 global_page_state(NR_FILE_DIRTY),
ce866b34 2446 global_page_state(NR_WRITEBACK),
fd39fc85 2447 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2448 global_page_state(NR_FREE_PAGES),
3701b033
KM
2449 global_page_state(NR_SLAB_RECLAIMABLE),
2450 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2451 global_page_state(NR_FILE_MAPPED),
4b02108a 2452 global_page_state(NR_SHMEM),
a25700a5
AM
2453 global_page_state(NR_PAGETABLE),
2454 global_page_state(NR_BOUNCE));
1da177e4 2455
ee99c71c 2456 for_each_populated_zone(zone) {
1da177e4
LT
2457 int i;
2458
2459 show_node(zone);
2460 printk("%s"
2461 " free:%lukB"
2462 " min:%lukB"
2463 " low:%lukB"
2464 " high:%lukB"
4f98a2fe
RR
2465 " active_anon:%lukB"
2466 " inactive_anon:%lukB"
2467 " active_file:%lukB"
2468 " inactive_file:%lukB"
7b854121 2469 " unevictable:%lukB"
a731286d
KM
2470 " isolated(anon):%lukB"
2471 " isolated(file):%lukB"
1da177e4 2472 " present:%lukB"
4a0aa73f
KM
2473 " mlocked:%lukB"
2474 " dirty:%lukB"
2475 " writeback:%lukB"
2476 " mapped:%lukB"
4b02108a 2477 " shmem:%lukB"
4a0aa73f
KM
2478 " slab_reclaimable:%lukB"
2479 " slab_unreclaimable:%lukB"
c6a7f572 2480 " kernel_stack:%lukB"
4a0aa73f
KM
2481 " pagetables:%lukB"
2482 " unstable:%lukB"
2483 " bounce:%lukB"
2484 " writeback_tmp:%lukB"
1da177e4
LT
2485 " pages_scanned:%lu"
2486 " all_unreclaimable? %s"
2487 "\n",
2488 zone->name,
88f5acf8 2489 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2490 K(min_wmark_pages(zone)),
2491 K(low_wmark_pages(zone)),
2492 K(high_wmark_pages(zone)),
4f98a2fe
RR
2493 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2494 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2495 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2496 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2497 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2498 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2499 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2500 K(zone->present_pages),
4a0aa73f
KM
2501 K(zone_page_state(zone, NR_MLOCK)),
2502 K(zone_page_state(zone, NR_FILE_DIRTY)),
2503 K(zone_page_state(zone, NR_WRITEBACK)),
2504 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2505 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2506 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2507 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2508 zone_page_state(zone, NR_KERNEL_STACK) *
2509 THREAD_SIZE / 1024,
4a0aa73f
KM
2510 K(zone_page_state(zone, NR_PAGETABLE)),
2511 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2512 K(zone_page_state(zone, NR_BOUNCE)),
2513 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2514 zone->pages_scanned,
93e4a89a 2515 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2516 );
2517 printk("lowmem_reserve[]:");
2518 for (i = 0; i < MAX_NR_ZONES; i++)
2519 printk(" %lu", zone->lowmem_reserve[i]);
2520 printk("\n");
2521 }
2522
ee99c71c 2523 for_each_populated_zone(zone) {
8f9de51a 2524 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2525
2526 show_node(zone);
2527 printk("%s: ", zone->name);
1da177e4
LT
2528
2529 spin_lock_irqsave(&zone->lock, flags);
2530 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2531 nr[order] = zone->free_area[order].nr_free;
2532 total += nr[order] << order;
1da177e4
LT
2533 }
2534 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2535 for (order = 0; order < MAX_ORDER; order++)
2536 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2537 printk("= %lukB\n", K(total));
2538 }
2539
e6f3602d
LW
2540 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2541
1da177e4
LT
2542 show_swap_cache_info();
2543}
2544
19770b32
MG
2545static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2546{
2547 zoneref->zone = zone;
2548 zoneref->zone_idx = zone_idx(zone);
2549}
2550
1da177e4
LT
2551/*
2552 * Builds allocation fallback zone lists.
1a93205b
CL
2553 *
2554 * Add all populated zones of a node to the zonelist.
1da177e4 2555 */
f0c0b2b8
KH
2556static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2557 int nr_zones, enum zone_type zone_type)
1da177e4 2558{
1a93205b
CL
2559 struct zone *zone;
2560
98d2b0eb 2561 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2562 zone_type++;
02a68a5e
CL
2563
2564 do {
2f6726e5 2565 zone_type--;
070f8032 2566 zone = pgdat->node_zones + zone_type;
1a93205b 2567 if (populated_zone(zone)) {
dd1a239f
MG
2568 zoneref_set_zone(zone,
2569 &zonelist->_zonerefs[nr_zones++]);
070f8032 2570 check_highest_zone(zone_type);
1da177e4 2571 }
02a68a5e 2572
2f6726e5 2573 } while (zone_type);
070f8032 2574 return nr_zones;
1da177e4
LT
2575}
2576
f0c0b2b8
KH
2577
2578/*
2579 * zonelist_order:
2580 * 0 = automatic detection of better ordering.
2581 * 1 = order by ([node] distance, -zonetype)
2582 * 2 = order by (-zonetype, [node] distance)
2583 *
2584 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2585 * the same zonelist. So only NUMA can configure this param.
2586 */
2587#define ZONELIST_ORDER_DEFAULT 0
2588#define ZONELIST_ORDER_NODE 1
2589#define ZONELIST_ORDER_ZONE 2
2590
2591/* zonelist order in the kernel.
2592 * set_zonelist_order() will set this to NODE or ZONE.
2593 */
2594static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2595static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2596
2597
1da177e4 2598#ifdef CONFIG_NUMA
f0c0b2b8
KH
2599/* The value user specified ....changed by config */
2600static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2601/* string for sysctl */
2602#define NUMA_ZONELIST_ORDER_LEN 16
2603char numa_zonelist_order[16] = "default";
2604
2605/*
2606 * interface for configure zonelist ordering.
2607 * command line option "numa_zonelist_order"
2608 * = "[dD]efault - default, automatic configuration.
2609 * = "[nN]ode - order by node locality, then by zone within node
2610 * = "[zZ]one - order by zone, then by locality within zone
2611 */
2612
2613static int __parse_numa_zonelist_order(char *s)
2614{
2615 if (*s == 'd' || *s == 'D') {
2616 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2617 } else if (*s == 'n' || *s == 'N') {
2618 user_zonelist_order = ZONELIST_ORDER_NODE;
2619 } else if (*s == 'z' || *s == 'Z') {
2620 user_zonelist_order = ZONELIST_ORDER_ZONE;
2621 } else {
2622 printk(KERN_WARNING
2623 "Ignoring invalid numa_zonelist_order value: "
2624 "%s\n", s);
2625 return -EINVAL;
2626 }
2627 return 0;
2628}
2629
2630static __init int setup_numa_zonelist_order(char *s)
2631{
ecb256f8
VL
2632 int ret;
2633
2634 if (!s)
2635 return 0;
2636
2637 ret = __parse_numa_zonelist_order(s);
2638 if (ret == 0)
2639 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2640
2641 return ret;
f0c0b2b8
KH
2642}
2643early_param("numa_zonelist_order", setup_numa_zonelist_order);
2644
2645/*
2646 * sysctl handler for numa_zonelist_order
2647 */
2648int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2649 void __user *buffer, size_t *length,
f0c0b2b8
KH
2650 loff_t *ppos)
2651{
2652 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2653 int ret;
443c6f14 2654 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2655
443c6f14 2656 mutex_lock(&zl_order_mutex);
f0c0b2b8 2657 if (write)
443c6f14 2658 strcpy(saved_string, (char*)table->data);
8d65af78 2659 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2660 if (ret)
443c6f14 2661 goto out;
f0c0b2b8
KH
2662 if (write) {
2663 int oldval = user_zonelist_order;
2664 if (__parse_numa_zonelist_order((char*)table->data)) {
2665 /*
2666 * bogus value. restore saved string
2667 */
2668 strncpy((char*)table->data, saved_string,
2669 NUMA_ZONELIST_ORDER_LEN);
2670 user_zonelist_order = oldval;
4eaf3f64
HL
2671 } else if (oldval != user_zonelist_order) {
2672 mutex_lock(&zonelists_mutex);
1f522509 2673 build_all_zonelists(NULL);
4eaf3f64
HL
2674 mutex_unlock(&zonelists_mutex);
2675 }
f0c0b2b8 2676 }
443c6f14
AK
2677out:
2678 mutex_unlock(&zl_order_mutex);
2679 return ret;
f0c0b2b8
KH
2680}
2681
2682
62bc62a8 2683#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2684static int node_load[MAX_NUMNODES];
2685
1da177e4 2686/**
4dc3b16b 2687 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2688 * @node: node whose fallback list we're appending
2689 * @used_node_mask: nodemask_t of already used nodes
2690 *
2691 * We use a number of factors to determine which is the next node that should
2692 * appear on a given node's fallback list. The node should not have appeared
2693 * already in @node's fallback list, and it should be the next closest node
2694 * according to the distance array (which contains arbitrary distance values
2695 * from each node to each node in the system), and should also prefer nodes
2696 * with no CPUs, since presumably they'll have very little allocation pressure
2697 * on them otherwise.
2698 * It returns -1 if no node is found.
2699 */
f0c0b2b8 2700static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2701{
4cf808eb 2702 int n, val;
1da177e4
LT
2703 int min_val = INT_MAX;
2704 int best_node = -1;
a70f7302 2705 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2706
4cf808eb
LT
2707 /* Use the local node if we haven't already */
2708 if (!node_isset(node, *used_node_mask)) {
2709 node_set(node, *used_node_mask);
2710 return node;
2711 }
1da177e4 2712
37b07e41 2713 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2714
2715 /* Don't want a node to appear more than once */
2716 if (node_isset(n, *used_node_mask))
2717 continue;
2718
1da177e4
LT
2719 /* Use the distance array to find the distance */
2720 val = node_distance(node, n);
2721
4cf808eb
LT
2722 /* Penalize nodes under us ("prefer the next node") */
2723 val += (n < node);
2724
1da177e4 2725 /* Give preference to headless and unused nodes */
a70f7302
RR
2726 tmp = cpumask_of_node(n);
2727 if (!cpumask_empty(tmp))
1da177e4
LT
2728 val += PENALTY_FOR_NODE_WITH_CPUS;
2729
2730 /* Slight preference for less loaded node */
2731 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2732 val += node_load[n];
2733
2734 if (val < min_val) {
2735 min_val = val;
2736 best_node = n;
2737 }
2738 }
2739
2740 if (best_node >= 0)
2741 node_set(best_node, *used_node_mask);
2742
2743 return best_node;
2744}
2745
f0c0b2b8
KH
2746
2747/*
2748 * Build zonelists ordered by node and zones within node.
2749 * This results in maximum locality--normal zone overflows into local
2750 * DMA zone, if any--but risks exhausting DMA zone.
2751 */
2752static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2753{
f0c0b2b8 2754 int j;
1da177e4 2755 struct zonelist *zonelist;
f0c0b2b8 2756
54a6eb5c 2757 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2758 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2759 ;
2760 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2761 MAX_NR_ZONES - 1);
dd1a239f
MG
2762 zonelist->_zonerefs[j].zone = NULL;
2763 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2764}
2765
523b9458
CL
2766/*
2767 * Build gfp_thisnode zonelists
2768 */
2769static void build_thisnode_zonelists(pg_data_t *pgdat)
2770{
523b9458
CL
2771 int j;
2772 struct zonelist *zonelist;
2773
54a6eb5c
MG
2774 zonelist = &pgdat->node_zonelists[1];
2775 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2776 zonelist->_zonerefs[j].zone = NULL;
2777 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2778}
2779
f0c0b2b8
KH
2780/*
2781 * Build zonelists ordered by zone and nodes within zones.
2782 * This results in conserving DMA zone[s] until all Normal memory is
2783 * exhausted, but results in overflowing to remote node while memory
2784 * may still exist in local DMA zone.
2785 */
2786static int node_order[MAX_NUMNODES];
2787
2788static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2789{
f0c0b2b8
KH
2790 int pos, j, node;
2791 int zone_type; /* needs to be signed */
2792 struct zone *z;
2793 struct zonelist *zonelist;
2794
54a6eb5c
MG
2795 zonelist = &pgdat->node_zonelists[0];
2796 pos = 0;
2797 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2798 for (j = 0; j < nr_nodes; j++) {
2799 node = node_order[j];
2800 z = &NODE_DATA(node)->node_zones[zone_type];
2801 if (populated_zone(z)) {
dd1a239f
MG
2802 zoneref_set_zone(z,
2803 &zonelist->_zonerefs[pos++]);
54a6eb5c 2804 check_highest_zone(zone_type);
f0c0b2b8
KH
2805 }
2806 }
f0c0b2b8 2807 }
dd1a239f
MG
2808 zonelist->_zonerefs[pos].zone = NULL;
2809 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2810}
2811
2812static int default_zonelist_order(void)
2813{
2814 int nid, zone_type;
2815 unsigned long low_kmem_size,total_size;
2816 struct zone *z;
2817 int average_size;
2818 /*
88393161 2819 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2820 * If they are really small and used heavily, the system can fall
2821 * into OOM very easily.
e325c90f 2822 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2823 */
2824 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2825 low_kmem_size = 0;
2826 total_size = 0;
2827 for_each_online_node(nid) {
2828 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2829 z = &NODE_DATA(nid)->node_zones[zone_type];
2830 if (populated_zone(z)) {
2831 if (zone_type < ZONE_NORMAL)
2832 low_kmem_size += z->present_pages;
2833 total_size += z->present_pages;
e325c90f
DR
2834 } else if (zone_type == ZONE_NORMAL) {
2835 /*
2836 * If any node has only lowmem, then node order
2837 * is preferred to allow kernel allocations
2838 * locally; otherwise, they can easily infringe
2839 * on other nodes when there is an abundance of
2840 * lowmem available to allocate from.
2841 */
2842 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2843 }
2844 }
2845 }
2846 if (!low_kmem_size || /* there are no DMA area. */
2847 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2848 return ZONELIST_ORDER_NODE;
2849 /*
2850 * look into each node's config.
2851 * If there is a node whose DMA/DMA32 memory is very big area on
2852 * local memory, NODE_ORDER may be suitable.
2853 */
37b07e41
LS
2854 average_size = total_size /
2855 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2856 for_each_online_node(nid) {
2857 low_kmem_size = 0;
2858 total_size = 0;
2859 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2860 z = &NODE_DATA(nid)->node_zones[zone_type];
2861 if (populated_zone(z)) {
2862 if (zone_type < ZONE_NORMAL)
2863 low_kmem_size += z->present_pages;
2864 total_size += z->present_pages;
2865 }
2866 }
2867 if (low_kmem_size &&
2868 total_size > average_size && /* ignore small node */
2869 low_kmem_size > total_size * 70/100)
2870 return ZONELIST_ORDER_NODE;
2871 }
2872 return ZONELIST_ORDER_ZONE;
2873}
2874
2875static void set_zonelist_order(void)
2876{
2877 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2878 current_zonelist_order = default_zonelist_order();
2879 else
2880 current_zonelist_order = user_zonelist_order;
2881}
2882
2883static void build_zonelists(pg_data_t *pgdat)
2884{
2885 int j, node, load;
2886 enum zone_type i;
1da177e4 2887 nodemask_t used_mask;
f0c0b2b8
KH
2888 int local_node, prev_node;
2889 struct zonelist *zonelist;
2890 int order = current_zonelist_order;
1da177e4
LT
2891
2892 /* initialize zonelists */
523b9458 2893 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2894 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2895 zonelist->_zonerefs[0].zone = NULL;
2896 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2897 }
2898
2899 /* NUMA-aware ordering of nodes */
2900 local_node = pgdat->node_id;
62bc62a8 2901 load = nr_online_nodes;
1da177e4
LT
2902 prev_node = local_node;
2903 nodes_clear(used_mask);
f0c0b2b8 2904
f0c0b2b8
KH
2905 memset(node_order, 0, sizeof(node_order));
2906 j = 0;
2907
1da177e4 2908 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2909 int distance = node_distance(local_node, node);
2910
2911 /*
2912 * If another node is sufficiently far away then it is better
2913 * to reclaim pages in a zone before going off node.
2914 */
2915 if (distance > RECLAIM_DISTANCE)
2916 zone_reclaim_mode = 1;
2917
1da177e4
LT
2918 /*
2919 * We don't want to pressure a particular node.
2920 * So adding penalty to the first node in same
2921 * distance group to make it round-robin.
2922 */
9eeff239 2923 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2924 node_load[node] = load;
2925
1da177e4
LT
2926 prev_node = node;
2927 load--;
f0c0b2b8
KH
2928 if (order == ZONELIST_ORDER_NODE)
2929 build_zonelists_in_node_order(pgdat, node);
2930 else
2931 node_order[j++] = node; /* remember order */
2932 }
1da177e4 2933
f0c0b2b8
KH
2934 if (order == ZONELIST_ORDER_ZONE) {
2935 /* calculate node order -- i.e., DMA last! */
2936 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2937 }
523b9458
CL
2938
2939 build_thisnode_zonelists(pgdat);
1da177e4
LT
2940}
2941
9276b1bc 2942/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2943static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2944{
54a6eb5c
MG
2945 struct zonelist *zonelist;
2946 struct zonelist_cache *zlc;
dd1a239f 2947 struct zoneref *z;
9276b1bc 2948
54a6eb5c
MG
2949 zonelist = &pgdat->node_zonelists[0];
2950 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2951 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2952 for (z = zonelist->_zonerefs; z->zone; z++)
2953 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2954}
2955
7aac7898
LS
2956#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2957/*
2958 * Return node id of node used for "local" allocations.
2959 * I.e., first node id of first zone in arg node's generic zonelist.
2960 * Used for initializing percpu 'numa_mem', which is used primarily
2961 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2962 */
2963int local_memory_node(int node)
2964{
2965 struct zone *zone;
2966
2967 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2968 gfp_zone(GFP_KERNEL),
2969 NULL,
2970 &zone);
2971 return zone->node;
2972}
2973#endif
f0c0b2b8 2974
1da177e4
LT
2975#else /* CONFIG_NUMA */
2976
f0c0b2b8
KH
2977static void set_zonelist_order(void)
2978{
2979 current_zonelist_order = ZONELIST_ORDER_ZONE;
2980}
2981
2982static void build_zonelists(pg_data_t *pgdat)
1da177e4 2983{
19655d34 2984 int node, local_node;
54a6eb5c
MG
2985 enum zone_type j;
2986 struct zonelist *zonelist;
1da177e4
LT
2987
2988 local_node = pgdat->node_id;
1da177e4 2989
54a6eb5c
MG
2990 zonelist = &pgdat->node_zonelists[0];
2991 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2992
54a6eb5c
MG
2993 /*
2994 * Now we build the zonelist so that it contains the zones
2995 * of all the other nodes.
2996 * We don't want to pressure a particular node, so when
2997 * building the zones for node N, we make sure that the
2998 * zones coming right after the local ones are those from
2999 * node N+1 (modulo N)
3000 */
3001 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3002 if (!node_online(node))
3003 continue;
3004 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3005 MAX_NR_ZONES - 1);
1da177e4 3006 }
54a6eb5c
MG
3007 for (node = 0; node < local_node; node++) {
3008 if (!node_online(node))
3009 continue;
3010 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3011 MAX_NR_ZONES - 1);
3012 }
3013
dd1a239f
MG
3014 zonelist->_zonerefs[j].zone = NULL;
3015 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3016}
3017
9276b1bc 3018/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3019static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3020{
54a6eb5c 3021 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3022}
3023
1da177e4
LT
3024#endif /* CONFIG_NUMA */
3025
99dcc3e5
CL
3026/*
3027 * Boot pageset table. One per cpu which is going to be used for all
3028 * zones and all nodes. The parameters will be set in such a way
3029 * that an item put on a list will immediately be handed over to
3030 * the buddy list. This is safe since pageset manipulation is done
3031 * with interrupts disabled.
3032 *
3033 * The boot_pagesets must be kept even after bootup is complete for
3034 * unused processors and/or zones. They do play a role for bootstrapping
3035 * hotplugged processors.
3036 *
3037 * zoneinfo_show() and maybe other functions do
3038 * not check if the processor is online before following the pageset pointer.
3039 * Other parts of the kernel may not check if the zone is available.
3040 */
3041static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3042static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3043static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3044
4eaf3f64
HL
3045/*
3046 * Global mutex to protect against size modification of zonelists
3047 * as well as to serialize pageset setup for the new populated zone.
3048 */
3049DEFINE_MUTEX(zonelists_mutex);
3050
9b1a4d38 3051/* return values int ....just for stop_machine() */
1f522509 3052static __init_refok int __build_all_zonelists(void *data)
1da177e4 3053{
6811378e 3054 int nid;
99dcc3e5 3055 int cpu;
9276b1bc 3056
7f9cfb31
BL
3057#ifdef CONFIG_NUMA
3058 memset(node_load, 0, sizeof(node_load));
3059#endif
9276b1bc 3060 for_each_online_node(nid) {
7ea1530a
CL
3061 pg_data_t *pgdat = NODE_DATA(nid);
3062
3063 build_zonelists(pgdat);
3064 build_zonelist_cache(pgdat);
9276b1bc 3065 }
99dcc3e5
CL
3066
3067 /*
3068 * Initialize the boot_pagesets that are going to be used
3069 * for bootstrapping processors. The real pagesets for
3070 * each zone will be allocated later when the per cpu
3071 * allocator is available.
3072 *
3073 * boot_pagesets are used also for bootstrapping offline
3074 * cpus if the system is already booted because the pagesets
3075 * are needed to initialize allocators on a specific cpu too.
3076 * F.e. the percpu allocator needs the page allocator which
3077 * needs the percpu allocator in order to allocate its pagesets
3078 * (a chicken-egg dilemma).
3079 */
7aac7898 3080 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3081 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3082
7aac7898
LS
3083#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3084 /*
3085 * We now know the "local memory node" for each node--
3086 * i.e., the node of the first zone in the generic zonelist.
3087 * Set up numa_mem percpu variable for on-line cpus. During
3088 * boot, only the boot cpu should be on-line; we'll init the
3089 * secondary cpus' numa_mem as they come on-line. During
3090 * node/memory hotplug, we'll fixup all on-line cpus.
3091 */
3092 if (cpu_online(cpu))
3093 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3094#endif
3095 }
3096
6811378e
YG
3097 return 0;
3098}
3099
4eaf3f64
HL
3100/*
3101 * Called with zonelists_mutex held always
3102 * unless system_state == SYSTEM_BOOTING.
3103 */
1f522509 3104void build_all_zonelists(void *data)
6811378e 3105{
f0c0b2b8
KH
3106 set_zonelist_order();
3107
6811378e 3108 if (system_state == SYSTEM_BOOTING) {
423b41d7 3109 __build_all_zonelists(NULL);
68ad8df4 3110 mminit_verify_zonelist();
6811378e
YG
3111 cpuset_init_current_mems_allowed();
3112 } else {
183ff22b 3113 /* we have to stop all cpus to guarantee there is no user
6811378e 3114 of zonelist */
e9959f0f
KH
3115#ifdef CONFIG_MEMORY_HOTPLUG
3116 if (data)
3117 setup_zone_pageset((struct zone *)data);
3118#endif
3119 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3120 /* cpuset refresh routine should be here */
3121 }
bd1e22b8 3122 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3123 /*
3124 * Disable grouping by mobility if the number of pages in the
3125 * system is too low to allow the mechanism to work. It would be
3126 * more accurate, but expensive to check per-zone. This check is
3127 * made on memory-hotadd so a system can start with mobility
3128 * disabled and enable it later
3129 */
d9c23400 3130 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3131 page_group_by_mobility_disabled = 1;
3132 else
3133 page_group_by_mobility_disabled = 0;
3134
3135 printk("Built %i zonelists in %s order, mobility grouping %s. "
3136 "Total pages: %ld\n",
62bc62a8 3137 nr_online_nodes,
f0c0b2b8 3138 zonelist_order_name[current_zonelist_order],
9ef9acb0 3139 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3140 vm_total_pages);
3141#ifdef CONFIG_NUMA
3142 printk("Policy zone: %s\n", zone_names[policy_zone]);
3143#endif
1da177e4
LT
3144}
3145
3146/*
3147 * Helper functions to size the waitqueue hash table.
3148 * Essentially these want to choose hash table sizes sufficiently
3149 * large so that collisions trying to wait on pages are rare.
3150 * But in fact, the number of active page waitqueues on typical
3151 * systems is ridiculously low, less than 200. So this is even
3152 * conservative, even though it seems large.
3153 *
3154 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3155 * waitqueues, i.e. the size of the waitq table given the number of pages.
3156 */
3157#define PAGES_PER_WAITQUEUE 256
3158
cca448fe 3159#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3160static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3161{
3162 unsigned long size = 1;
3163
3164 pages /= PAGES_PER_WAITQUEUE;
3165
3166 while (size < pages)
3167 size <<= 1;
3168
3169 /*
3170 * Once we have dozens or even hundreds of threads sleeping
3171 * on IO we've got bigger problems than wait queue collision.
3172 * Limit the size of the wait table to a reasonable size.
3173 */
3174 size = min(size, 4096UL);
3175
3176 return max(size, 4UL);
3177}
cca448fe
YG
3178#else
3179/*
3180 * A zone's size might be changed by hot-add, so it is not possible to determine
3181 * a suitable size for its wait_table. So we use the maximum size now.
3182 *
3183 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3184 *
3185 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3186 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3187 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3188 *
3189 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3190 * or more by the traditional way. (See above). It equals:
3191 *
3192 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3193 * ia64(16K page size) : = ( 8G + 4M)byte.
3194 * powerpc (64K page size) : = (32G +16M)byte.
3195 */
3196static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3197{
3198 return 4096UL;
3199}
3200#endif
1da177e4
LT
3201
3202/*
3203 * This is an integer logarithm so that shifts can be used later
3204 * to extract the more random high bits from the multiplicative
3205 * hash function before the remainder is taken.
3206 */
3207static inline unsigned long wait_table_bits(unsigned long size)
3208{
3209 return ffz(~size);
3210}
3211
3212#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3213
56fd56b8 3214/*
d9c23400 3215 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3216 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3217 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3218 * higher will lead to a bigger reserve which will get freed as contiguous
3219 * blocks as reclaim kicks in
3220 */
3221static void setup_zone_migrate_reserve(struct zone *zone)
3222{
3223 unsigned long start_pfn, pfn, end_pfn;
3224 struct page *page;
78986a67
MG
3225 unsigned long block_migratetype;
3226 int reserve;
56fd56b8
MG
3227
3228 /* Get the start pfn, end pfn and the number of blocks to reserve */
3229 start_pfn = zone->zone_start_pfn;
3230 end_pfn = start_pfn + zone->spanned_pages;
41858966 3231 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3232 pageblock_order;
56fd56b8 3233
78986a67
MG
3234 /*
3235 * Reserve blocks are generally in place to help high-order atomic
3236 * allocations that are short-lived. A min_free_kbytes value that
3237 * would result in more than 2 reserve blocks for atomic allocations
3238 * is assumed to be in place to help anti-fragmentation for the
3239 * future allocation of hugepages at runtime.
3240 */
3241 reserve = min(2, reserve);
3242
d9c23400 3243 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3244 if (!pfn_valid(pfn))
3245 continue;
3246 page = pfn_to_page(pfn);
3247
344c790e
AL
3248 /* Watch out for overlapping nodes */
3249 if (page_to_nid(page) != zone_to_nid(zone))
3250 continue;
3251
56fd56b8
MG
3252 /* Blocks with reserved pages will never free, skip them. */
3253 if (PageReserved(page))
3254 continue;
3255
3256 block_migratetype = get_pageblock_migratetype(page);
3257
3258 /* If this block is reserved, account for it */
3259 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3260 reserve--;
3261 continue;
3262 }
3263
3264 /* Suitable for reserving if this block is movable */
3265 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3266 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3267 move_freepages_block(zone, page, MIGRATE_RESERVE);
3268 reserve--;
3269 continue;
3270 }
3271
3272 /*
3273 * If the reserve is met and this is a previous reserved block,
3274 * take it back
3275 */
3276 if (block_migratetype == MIGRATE_RESERVE) {
3277 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3278 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3279 }
3280 }
3281}
ac0e5b7a 3282
1da177e4
LT
3283/*
3284 * Initially all pages are reserved - free ones are freed
3285 * up by free_all_bootmem() once the early boot process is
3286 * done. Non-atomic initialization, single-pass.
3287 */
c09b4240 3288void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3289 unsigned long start_pfn, enum memmap_context context)
1da177e4 3290{
1da177e4 3291 struct page *page;
29751f69
AW
3292 unsigned long end_pfn = start_pfn + size;
3293 unsigned long pfn;
86051ca5 3294 struct zone *z;
1da177e4 3295
22b31eec
HD
3296 if (highest_memmap_pfn < end_pfn - 1)
3297 highest_memmap_pfn = end_pfn - 1;
3298
86051ca5 3299 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3300 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3301 /*
3302 * There can be holes in boot-time mem_map[]s
3303 * handed to this function. They do not
3304 * exist on hotplugged memory.
3305 */
3306 if (context == MEMMAP_EARLY) {
3307 if (!early_pfn_valid(pfn))
3308 continue;
3309 if (!early_pfn_in_nid(pfn, nid))
3310 continue;
3311 }
d41dee36
AW
3312 page = pfn_to_page(pfn);
3313 set_page_links(page, zone, nid, pfn);
708614e6 3314 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3315 init_page_count(page);
1da177e4
LT
3316 reset_page_mapcount(page);
3317 SetPageReserved(page);
b2a0ac88
MG
3318 /*
3319 * Mark the block movable so that blocks are reserved for
3320 * movable at startup. This will force kernel allocations
3321 * to reserve their blocks rather than leaking throughout
3322 * the address space during boot when many long-lived
56fd56b8
MG
3323 * kernel allocations are made. Later some blocks near
3324 * the start are marked MIGRATE_RESERVE by
3325 * setup_zone_migrate_reserve()
86051ca5
KH
3326 *
3327 * bitmap is created for zone's valid pfn range. but memmap
3328 * can be created for invalid pages (for alignment)
3329 * check here not to call set_pageblock_migratetype() against
3330 * pfn out of zone.
b2a0ac88 3331 */
86051ca5
KH
3332 if ((z->zone_start_pfn <= pfn)
3333 && (pfn < z->zone_start_pfn + z->spanned_pages)
3334 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3335 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3336
1da177e4
LT
3337 INIT_LIST_HEAD(&page->lru);
3338#ifdef WANT_PAGE_VIRTUAL
3339 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3340 if (!is_highmem_idx(zone))
3212c6be 3341 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3342#endif
1da177e4
LT
3343 }
3344}
3345
1e548deb 3346static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3347{
b2a0ac88
MG
3348 int order, t;
3349 for_each_migratetype_order(order, t) {
3350 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3351 zone->free_area[order].nr_free = 0;
3352 }
3353}
3354
3355#ifndef __HAVE_ARCH_MEMMAP_INIT
3356#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3357 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3358#endif
3359
1d6f4e60 3360static int zone_batchsize(struct zone *zone)
e7c8d5c9 3361{
3a6be87f 3362#ifdef CONFIG_MMU
e7c8d5c9
CL
3363 int batch;
3364
3365 /*
3366 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3367 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3368 *
3369 * OK, so we don't know how big the cache is. So guess.
3370 */
3371 batch = zone->present_pages / 1024;
ba56e91c
SR
3372 if (batch * PAGE_SIZE > 512 * 1024)
3373 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3374 batch /= 4; /* We effectively *= 4 below */
3375 if (batch < 1)
3376 batch = 1;
3377
3378 /*
0ceaacc9
NP
3379 * Clamp the batch to a 2^n - 1 value. Having a power
3380 * of 2 value was found to be more likely to have
3381 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3382 *
0ceaacc9
NP
3383 * For example if 2 tasks are alternately allocating
3384 * batches of pages, one task can end up with a lot
3385 * of pages of one half of the possible page colors
3386 * and the other with pages of the other colors.
e7c8d5c9 3387 */
9155203a 3388 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3389
e7c8d5c9 3390 return batch;
3a6be87f
DH
3391
3392#else
3393 /* The deferral and batching of frees should be suppressed under NOMMU
3394 * conditions.
3395 *
3396 * The problem is that NOMMU needs to be able to allocate large chunks
3397 * of contiguous memory as there's no hardware page translation to
3398 * assemble apparent contiguous memory from discontiguous pages.
3399 *
3400 * Queueing large contiguous runs of pages for batching, however,
3401 * causes the pages to actually be freed in smaller chunks. As there
3402 * can be a significant delay between the individual batches being
3403 * recycled, this leads to the once large chunks of space being
3404 * fragmented and becoming unavailable for high-order allocations.
3405 */
3406 return 0;
3407#endif
e7c8d5c9
CL
3408}
3409
b69a7288 3410static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3411{
3412 struct per_cpu_pages *pcp;
5f8dcc21 3413 int migratetype;
2caaad41 3414
1c6fe946
MD
3415 memset(p, 0, sizeof(*p));
3416
3dfa5721 3417 pcp = &p->pcp;
2caaad41 3418 pcp->count = 0;
2caaad41
CL
3419 pcp->high = 6 * batch;
3420 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3421 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3422 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3423}
3424
8ad4b1fb
RS
3425/*
3426 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3427 * to the value high for the pageset p.
3428 */
3429
3430static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3431 unsigned long high)
3432{
3433 struct per_cpu_pages *pcp;
3434
3dfa5721 3435 pcp = &p->pcp;
8ad4b1fb
RS
3436 pcp->high = high;
3437 pcp->batch = max(1UL, high/4);
3438 if ((high/4) > (PAGE_SHIFT * 8))
3439 pcp->batch = PAGE_SHIFT * 8;
3440}
3441
319774e2
WF
3442static __meminit void setup_zone_pageset(struct zone *zone)
3443{
3444 int cpu;
3445
3446 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3447
3448 for_each_possible_cpu(cpu) {
3449 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3450
3451 setup_pageset(pcp, zone_batchsize(zone));
3452
3453 if (percpu_pagelist_fraction)
3454 setup_pagelist_highmark(pcp,
3455 (zone->present_pages /
3456 percpu_pagelist_fraction));
3457 }
3458}
3459
2caaad41 3460/*
99dcc3e5
CL
3461 * Allocate per cpu pagesets and initialize them.
3462 * Before this call only boot pagesets were available.
e7c8d5c9 3463 */
99dcc3e5 3464void __init setup_per_cpu_pageset(void)
e7c8d5c9 3465{
99dcc3e5 3466 struct zone *zone;
e7c8d5c9 3467
319774e2
WF
3468 for_each_populated_zone(zone)
3469 setup_zone_pageset(zone);
e7c8d5c9
CL
3470}
3471
577a32f6 3472static noinline __init_refok
cca448fe 3473int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3474{
3475 int i;
3476 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3477 size_t alloc_size;
ed8ece2e
DH
3478
3479 /*
3480 * The per-page waitqueue mechanism uses hashed waitqueues
3481 * per zone.
3482 */
02b694de
YG
3483 zone->wait_table_hash_nr_entries =
3484 wait_table_hash_nr_entries(zone_size_pages);
3485 zone->wait_table_bits =
3486 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3487 alloc_size = zone->wait_table_hash_nr_entries
3488 * sizeof(wait_queue_head_t);
3489
cd94b9db 3490 if (!slab_is_available()) {
cca448fe
YG
3491 zone->wait_table = (wait_queue_head_t *)
3492 alloc_bootmem_node(pgdat, alloc_size);
3493 } else {
3494 /*
3495 * This case means that a zone whose size was 0 gets new memory
3496 * via memory hot-add.
3497 * But it may be the case that a new node was hot-added. In
3498 * this case vmalloc() will not be able to use this new node's
3499 * memory - this wait_table must be initialized to use this new
3500 * node itself as well.
3501 * To use this new node's memory, further consideration will be
3502 * necessary.
3503 */
8691f3a7 3504 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3505 }
3506 if (!zone->wait_table)
3507 return -ENOMEM;
ed8ece2e 3508
02b694de 3509 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3510 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3511
3512 return 0;
ed8ece2e
DH
3513}
3514
112067f0
SL
3515static int __zone_pcp_update(void *data)
3516{
3517 struct zone *zone = data;
3518 int cpu;
3519 unsigned long batch = zone_batchsize(zone), flags;
3520
2d30a1f6 3521 for_each_possible_cpu(cpu) {
112067f0
SL
3522 struct per_cpu_pageset *pset;
3523 struct per_cpu_pages *pcp;
3524
99dcc3e5 3525 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3526 pcp = &pset->pcp;
3527
3528 local_irq_save(flags);
5f8dcc21 3529 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3530 setup_pageset(pset, batch);
3531 local_irq_restore(flags);
3532 }
3533 return 0;
3534}
3535
3536void zone_pcp_update(struct zone *zone)
3537{
3538 stop_machine(__zone_pcp_update, zone, NULL);
3539}
3540
c09b4240 3541static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3542{
99dcc3e5
CL
3543 /*
3544 * per cpu subsystem is not up at this point. The following code
3545 * relies on the ability of the linker to provide the
3546 * offset of a (static) per cpu variable into the per cpu area.
3547 */
3548 zone->pageset = &boot_pageset;
ed8ece2e 3549
f5335c0f 3550 if (zone->present_pages)
99dcc3e5
CL
3551 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3552 zone->name, zone->present_pages,
3553 zone_batchsize(zone));
ed8ece2e
DH
3554}
3555
718127cc
YG
3556__meminit int init_currently_empty_zone(struct zone *zone,
3557 unsigned long zone_start_pfn,
a2f3aa02
DH
3558 unsigned long size,
3559 enum memmap_context context)
ed8ece2e
DH
3560{
3561 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3562 int ret;
3563 ret = zone_wait_table_init(zone, size);
3564 if (ret)
3565 return ret;
ed8ece2e
DH
3566 pgdat->nr_zones = zone_idx(zone) + 1;
3567
ed8ece2e
DH
3568 zone->zone_start_pfn = zone_start_pfn;
3569
708614e6
MG
3570 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3571 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3572 pgdat->node_id,
3573 (unsigned long)zone_idx(zone),
3574 zone_start_pfn, (zone_start_pfn + size));
3575
1e548deb 3576 zone_init_free_lists(zone);
718127cc
YG
3577
3578 return 0;
ed8ece2e
DH
3579}
3580
c713216d
MG
3581#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3582/*
3583 * Basic iterator support. Return the first range of PFNs for a node
3584 * Note: nid == MAX_NUMNODES returns first region regardless of node
3585 */
a3142c8e 3586static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3587{
3588 int i;
3589
3590 for (i = 0; i < nr_nodemap_entries; i++)
3591 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3592 return i;
3593
3594 return -1;
3595}
3596
3597/*
3598 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3599 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3600 */
a3142c8e 3601static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3602{
3603 for (index = index + 1; index < nr_nodemap_entries; index++)
3604 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3605 return index;
3606
3607 return -1;
3608}
3609
3610#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3611/*
3612 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3613 * Architectures may implement their own version but if add_active_range()
3614 * was used and there are no special requirements, this is a convenient
3615 * alternative
3616 */
f2dbcfa7 3617int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3618{
3619 int i;
3620
3621 for (i = 0; i < nr_nodemap_entries; i++) {
3622 unsigned long start_pfn = early_node_map[i].start_pfn;
3623 unsigned long end_pfn = early_node_map[i].end_pfn;
3624
3625 if (start_pfn <= pfn && pfn < end_pfn)
3626 return early_node_map[i].nid;
3627 }
cc2559bc
KH
3628 /* This is a memory hole */
3629 return -1;
c713216d
MG
3630}
3631#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3632
f2dbcfa7
KH
3633int __meminit early_pfn_to_nid(unsigned long pfn)
3634{
cc2559bc
KH
3635 int nid;
3636
3637 nid = __early_pfn_to_nid(pfn);
3638 if (nid >= 0)
3639 return nid;
3640 /* just returns 0 */
3641 return 0;
f2dbcfa7
KH
3642}
3643
cc2559bc
KH
3644#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3645bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3646{
3647 int nid;
3648
3649 nid = __early_pfn_to_nid(pfn);
3650 if (nid >= 0 && nid != node)
3651 return false;
3652 return true;
3653}
3654#endif
f2dbcfa7 3655
c713216d
MG
3656/* Basic iterator support to walk early_node_map[] */
3657#define for_each_active_range_index_in_nid(i, nid) \
3658 for (i = first_active_region_index_in_nid(nid); i != -1; \
3659 i = next_active_region_index_in_nid(i, nid))
3660
3661/**
3662 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3663 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3664 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3665 *
3666 * If an architecture guarantees that all ranges registered with
3667 * add_active_ranges() contain no holes and may be freed, this
3668 * this function may be used instead of calling free_bootmem() manually.
3669 */
3670void __init free_bootmem_with_active_regions(int nid,
3671 unsigned long max_low_pfn)
3672{
3673 int i;
3674
3675 for_each_active_range_index_in_nid(i, nid) {
3676 unsigned long size_pages = 0;
3677 unsigned long end_pfn = early_node_map[i].end_pfn;
3678
3679 if (early_node_map[i].start_pfn >= max_low_pfn)
3680 continue;
3681
3682 if (end_pfn > max_low_pfn)
3683 end_pfn = max_low_pfn;
3684
3685 size_pages = end_pfn - early_node_map[i].start_pfn;
3686 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3687 PFN_PHYS(early_node_map[i].start_pfn),
3688 size_pages << PAGE_SHIFT);
3689 }
3690}
3691
edbe7d23
YL
3692#ifdef CONFIG_HAVE_MEMBLOCK
3693u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3694 u64 goal, u64 limit)
3695{
3696 int i;
3697
3698 /* Need to go over early_node_map to find out good range for node */
3699 for_each_active_range_index_in_nid(i, nid) {
3700 u64 addr;
3701 u64 ei_start, ei_last;
3702 u64 final_start, final_end;
3703
3704 ei_last = early_node_map[i].end_pfn;
3705 ei_last <<= PAGE_SHIFT;
3706 ei_start = early_node_map[i].start_pfn;
3707 ei_start <<= PAGE_SHIFT;
3708
3709 final_start = max(ei_start, goal);
3710 final_end = min(ei_last, limit);
3711
3712 if (final_start >= final_end)
3713 continue;
3714
3715 addr = memblock_find_in_range(final_start, final_end, size, align);
3716
3717 if (addr == MEMBLOCK_ERROR)
3718 continue;
3719
3720 return addr;
3721 }
3722
3723 return MEMBLOCK_ERROR;
3724}
3725#endif
3726
08677214
YL
3727int __init add_from_early_node_map(struct range *range, int az,
3728 int nr_range, int nid)
3729{
3730 int i;
3731 u64 start, end;
3732
3733 /* need to go over early_node_map to find out good range for node */
3734 for_each_active_range_index_in_nid(i, nid) {
3735 start = early_node_map[i].start_pfn;
3736 end = early_node_map[i].end_pfn;
3737 nr_range = add_range(range, az, nr_range, start, end);
3738 }
3739 return nr_range;
3740}
3741
2ee78f7b 3742#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3743void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3744 u64 goal, u64 limit)
3745{
08677214 3746 void *ptr;
72d7c3b3 3747 u64 addr;
08677214 3748
72d7c3b3
YL
3749 if (limit > memblock.current_limit)
3750 limit = memblock.current_limit;
b8ab9f82 3751
72d7c3b3 3752 addr = find_memory_core_early(nid, size, align, goal, limit);
08677214 3753
72d7c3b3
YL
3754 if (addr == MEMBLOCK_ERROR)
3755 return NULL;
08677214 3756
72d7c3b3
YL
3757 ptr = phys_to_virt(addr);
3758 memset(ptr, 0, size);
3759 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3760 /*
3761 * The min_count is set to 0 so that bootmem allocated blocks
3762 * are never reported as leaks.
3763 */
3764 kmemleak_alloc(ptr, size, 0, 0);
3765 return ptr;
08677214 3766}
2ee78f7b 3767#endif
08677214
YL
3768
3769
b5bc6c0e
YL
3770void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3771{
3772 int i;
d52d53b8 3773 int ret;
b5bc6c0e 3774
d52d53b8
YL
3775 for_each_active_range_index_in_nid(i, nid) {
3776 ret = work_fn(early_node_map[i].start_pfn,
3777 early_node_map[i].end_pfn, data);
3778 if (ret)
3779 break;
3780 }
b5bc6c0e 3781}
c713216d
MG
3782/**
3783 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3784 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3785 *
3786 * If an architecture guarantees that all ranges registered with
3787 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3788 * function may be used instead of calling memory_present() manually.
c713216d
MG
3789 */
3790void __init sparse_memory_present_with_active_regions(int nid)
3791{
3792 int i;
3793
3794 for_each_active_range_index_in_nid(i, nid)
3795 memory_present(early_node_map[i].nid,
3796 early_node_map[i].start_pfn,
3797 early_node_map[i].end_pfn);
3798}
3799
3800/**
3801 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3802 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3803 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3804 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3805 *
3806 * It returns the start and end page frame of a node based on information
3807 * provided by an arch calling add_active_range(). If called for a node
3808 * with no available memory, a warning is printed and the start and end
88ca3b94 3809 * PFNs will be 0.
c713216d 3810 */
a3142c8e 3811void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3812 unsigned long *start_pfn, unsigned long *end_pfn)
3813{
3814 int i;
3815 *start_pfn = -1UL;
3816 *end_pfn = 0;
3817
3818 for_each_active_range_index_in_nid(i, nid) {
3819 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3820 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3821 }
3822
633c0666 3823 if (*start_pfn == -1UL)
c713216d 3824 *start_pfn = 0;
c713216d
MG
3825}
3826
2a1e274a
MG
3827/*
3828 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3829 * assumption is made that zones within a node are ordered in monotonic
3830 * increasing memory addresses so that the "highest" populated zone is used
3831 */
b69a7288 3832static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3833{
3834 int zone_index;
3835 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3836 if (zone_index == ZONE_MOVABLE)
3837 continue;
3838
3839 if (arch_zone_highest_possible_pfn[zone_index] >
3840 arch_zone_lowest_possible_pfn[zone_index])
3841 break;
3842 }
3843
3844 VM_BUG_ON(zone_index == -1);
3845 movable_zone = zone_index;
3846}
3847
3848/*
3849 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3850 * because it is sized independant of architecture. Unlike the other zones,
3851 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3852 * in each node depending on the size of each node and how evenly kernelcore
3853 * is distributed. This helper function adjusts the zone ranges
3854 * provided by the architecture for a given node by using the end of the
3855 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3856 * zones within a node are in order of monotonic increases memory addresses
3857 */
b69a7288 3858static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3859 unsigned long zone_type,
3860 unsigned long node_start_pfn,
3861 unsigned long node_end_pfn,
3862 unsigned long *zone_start_pfn,
3863 unsigned long *zone_end_pfn)
3864{
3865 /* Only adjust if ZONE_MOVABLE is on this node */
3866 if (zone_movable_pfn[nid]) {
3867 /* Size ZONE_MOVABLE */
3868 if (zone_type == ZONE_MOVABLE) {
3869 *zone_start_pfn = zone_movable_pfn[nid];
3870 *zone_end_pfn = min(node_end_pfn,
3871 arch_zone_highest_possible_pfn[movable_zone]);
3872
3873 /* Adjust for ZONE_MOVABLE starting within this range */
3874 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3875 *zone_end_pfn > zone_movable_pfn[nid]) {
3876 *zone_end_pfn = zone_movable_pfn[nid];
3877
3878 /* Check if this whole range is within ZONE_MOVABLE */
3879 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3880 *zone_start_pfn = *zone_end_pfn;
3881 }
3882}
3883
c713216d
MG
3884/*
3885 * Return the number of pages a zone spans in a node, including holes
3886 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3887 */
6ea6e688 3888static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3889 unsigned long zone_type,
3890 unsigned long *ignored)
3891{
3892 unsigned long node_start_pfn, node_end_pfn;
3893 unsigned long zone_start_pfn, zone_end_pfn;
3894
3895 /* Get the start and end of the node and zone */
3896 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3897 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3898 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3899 adjust_zone_range_for_zone_movable(nid, zone_type,
3900 node_start_pfn, node_end_pfn,
3901 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3902
3903 /* Check that this node has pages within the zone's required range */
3904 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3905 return 0;
3906
3907 /* Move the zone boundaries inside the node if necessary */
3908 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3909 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3910
3911 /* Return the spanned pages */
3912 return zone_end_pfn - zone_start_pfn;
3913}
3914
3915/*
3916 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3917 * then all holes in the requested range will be accounted for.
c713216d 3918 */
32996250 3919unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3920 unsigned long range_start_pfn,
3921 unsigned long range_end_pfn)
3922{
3923 int i = 0;
3924 unsigned long prev_end_pfn = 0, hole_pages = 0;
3925 unsigned long start_pfn;
3926
3927 /* Find the end_pfn of the first active range of pfns in the node */
3928 i = first_active_region_index_in_nid(nid);
3929 if (i == -1)
3930 return 0;
3931
b5445f95
MG
3932 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3933
9c7cd687
MG
3934 /* Account for ranges before physical memory on this node */
3935 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3936 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3937
3938 /* Find all holes for the zone within the node */
3939 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3940
3941 /* No need to continue if prev_end_pfn is outside the zone */
3942 if (prev_end_pfn >= range_end_pfn)
3943 break;
3944
3945 /* Make sure the end of the zone is not within the hole */
3946 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3947 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3948
3949 /* Update the hole size cound and move on */
3950 if (start_pfn > range_start_pfn) {
3951 BUG_ON(prev_end_pfn > start_pfn);
3952 hole_pages += start_pfn - prev_end_pfn;
3953 }
3954 prev_end_pfn = early_node_map[i].end_pfn;
3955 }
3956
9c7cd687
MG
3957 /* Account for ranges past physical memory on this node */
3958 if (range_end_pfn > prev_end_pfn)
0c6cb974 3959 hole_pages += range_end_pfn -
9c7cd687
MG
3960 max(range_start_pfn, prev_end_pfn);
3961
c713216d
MG
3962 return hole_pages;
3963}
3964
3965/**
3966 * absent_pages_in_range - Return number of page frames in holes within a range
3967 * @start_pfn: The start PFN to start searching for holes
3968 * @end_pfn: The end PFN to stop searching for holes
3969 *
88ca3b94 3970 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3971 */
3972unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3973 unsigned long end_pfn)
3974{
3975 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3976}
3977
3978/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3979static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3980 unsigned long zone_type,
3981 unsigned long *ignored)
3982{
9c7cd687
MG
3983 unsigned long node_start_pfn, node_end_pfn;
3984 unsigned long zone_start_pfn, zone_end_pfn;
3985
3986 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3987 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3988 node_start_pfn);
3989 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3990 node_end_pfn);
3991
2a1e274a
MG
3992 adjust_zone_range_for_zone_movable(nid, zone_type,
3993 node_start_pfn, node_end_pfn,
3994 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3995 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3996}
0e0b864e 3997
c713216d 3998#else
6ea6e688 3999static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4000 unsigned long zone_type,
4001 unsigned long *zones_size)
4002{
4003 return zones_size[zone_type];
4004}
4005
6ea6e688 4006static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4007 unsigned long zone_type,
4008 unsigned long *zholes_size)
4009{
4010 if (!zholes_size)
4011 return 0;
4012
4013 return zholes_size[zone_type];
4014}
0e0b864e 4015
c713216d
MG
4016#endif
4017
a3142c8e 4018static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4019 unsigned long *zones_size, unsigned long *zholes_size)
4020{
4021 unsigned long realtotalpages, totalpages = 0;
4022 enum zone_type i;
4023
4024 for (i = 0; i < MAX_NR_ZONES; i++)
4025 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4026 zones_size);
4027 pgdat->node_spanned_pages = totalpages;
4028
4029 realtotalpages = totalpages;
4030 for (i = 0; i < MAX_NR_ZONES; i++)
4031 realtotalpages -=
4032 zone_absent_pages_in_node(pgdat->node_id, i,
4033 zholes_size);
4034 pgdat->node_present_pages = realtotalpages;
4035 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4036 realtotalpages);
4037}
4038
835c134e
MG
4039#ifndef CONFIG_SPARSEMEM
4040/*
4041 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4042 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4043 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4044 * round what is now in bits to nearest long in bits, then return it in
4045 * bytes.
4046 */
4047static unsigned long __init usemap_size(unsigned long zonesize)
4048{
4049 unsigned long usemapsize;
4050
d9c23400
MG
4051 usemapsize = roundup(zonesize, pageblock_nr_pages);
4052 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4053 usemapsize *= NR_PAGEBLOCK_BITS;
4054 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4055
4056 return usemapsize / 8;
4057}
4058
4059static void __init setup_usemap(struct pglist_data *pgdat,
4060 struct zone *zone, unsigned long zonesize)
4061{
4062 unsigned long usemapsize = usemap_size(zonesize);
4063 zone->pageblock_flags = NULL;
58a01a45 4064 if (usemapsize)
835c134e 4065 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4066}
4067#else
fa9f90be 4068static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4069 struct zone *zone, unsigned long zonesize) {}
4070#endif /* CONFIG_SPARSEMEM */
4071
d9c23400 4072#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4073
4074/* Return a sensible default order for the pageblock size. */
4075static inline int pageblock_default_order(void)
4076{
4077 if (HPAGE_SHIFT > PAGE_SHIFT)
4078 return HUGETLB_PAGE_ORDER;
4079
4080 return MAX_ORDER-1;
4081}
4082
d9c23400
MG
4083/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4084static inline void __init set_pageblock_order(unsigned int order)
4085{
4086 /* Check that pageblock_nr_pages has not already been setup */
4087 if (pageblock_order)
4088 return;
4089
4090 /*
4091 * Assume the largest contiguous order of interest is a huge page.
4092 * This value may be variable depending on boot parameters on IA64
4093 */
4094 pageblock_order = order;
4095}
4096#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4097
ba72cb8c
MG
4098/*
4099 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4100 * and pageblock_default_order() are unused as pageblock_order is set
4101 * at compile-time. See include/linux/pageblock-flags.h for the values of
4102 * pageblock_order based on the kernel config
4103 */
4104static inline int pageblock_default_order(unsigned int order)
4105{
4106 return MAX_ORDER-1;
4107}
d9c23400
MG
4108#define set_pageblock_order(x) do {} while (0)
4109
4110#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4111
1da177e4
LT
4112/*
4113 * Set up the zone data structures:
4114 * - mark all pages reserved
4115 * - mark all memory queues empty
4116 * - clear the memory bitmaps
4117 */
b5a0e011 4118static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4119 unsigned long *zones_size, unsigned long *zholes_size)
4120{
2f1b6248 4121 enum zone_type j;
ed8ece2e 4122 int nid = pgdat->node_id;
1da177e4 4123 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4124 int ret;
1da177e4 4125
208d54e5 4126 pgdat_resize_init(pgdat);
1da177e4
LT
4127 pgdat->nr_zones = 0;
4128 init_waitqueue_head(&pgdat->kswapd_wait);
4129 pgdat->kswapd_max_order = 0;
52d4b9ac 4130 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4131
4132 for (j = 0; j < MAX_NR_ZONES; j++) {
4133 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4134 unsigned long size, realsize, memmap_pages;
b69408e8 4135 enum lru_list l;
1da177e4 4136
c713216d
MG
4137 size = zone_spanned_pages_in_node(nid, j, zones_size);
4138 realsize = size - zone_absent_pages_in_node(nid, j,
4139 zholes_size);
1da177e4 4140
0e0b864e
MG
4141 /*
4142 * Adjust realsize so that it accounts for how much memory
4143 * is used by this zone for memmap. This affects the watermark
4144 * and per-cpu initialisations
4145 */
f7232154
JW
4146 memmap_pages =
4147 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4148 if (realsize >= memmap_pages) {
4149 realsize -= memmap_pages;
5594c8c8
YL
4150 if (memmap_pages)
4151 printk(KERN_DEBUG
4152 " %s zone: %lu pages used for memmap\n",
4153 zone_names[j], memmap_pages);
0e0b864e
MG
4154 } else
4155 printk(KERN_WARNING
4156 " %s zone: %lu pages exceeds realsize %lu\n",
4157 zone_names[j], memmap_pages, realsize);
4158
6267276f
CL
4159 /* Account for reserved pages */
4160 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4161 realsize -= dma_reserve;
d903ef9f 4162 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4163 zone_names[0], dma_reserve);
0e0b864e
MG
4164 }
4165
98d2b0eb 4166 if (!is_highmem_idx(j))
1da177e4
LT
4167 nr_kernel_pages += realsize;
4168 nr_all_pages += realsize;
4169
4170 zone->spanned_pages = size;
4171 zone->present_pages = realsize;
9614634f 4172#ifdef CONFIG_NUMA
d5f541ed 4173 zone->node = nid;
8417bba4 4174 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4175 / 100;
0ff38490 4176 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4177#endif
1da177e4
LT
4178 zone->name = zone_names[j];
4179 spin_lock_init(&zone->lock);
4180 spin_lock_init(&zone->lru_lock);
bdc8cb98 4181 zone_seqlock_init(zone);
1da177e4 4182 zone->zone_pgdat = pgdat;
1da177e4 4183
ed8ece2e 4184 zone_pcp_init(zone);
b69408e8
CL
4185 for_each_lru(l) {
4186 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4187 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4188 }
6e901571
KM
4189 zone->reclaim_stat.recent_rotated[0] = 0;
4190 zone->reclaim_stat.recent_rotated[1] = 0;
4191 zone->reclaim_stat.recent_scanned[0] = 0;
4192 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4193 zap_zone_vm_stats(zone);
e815af95 4194 zone->flags = 0;
1da177e4
LT
4195 if (!size)
4196 continue;
4197
ba72cb8c 4198 set_pageblock_order(pageblock_default_order());
835c134e 4199 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4200 ret = init_currently_empty_zone(zone, zone_start_pfn,
4201 size, MEMMAP_EARLY);
718127cc 4202 BUG_ON(ret);
76cdd58e 4203 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4204 zone_start_pfn += size;
1da177e4
LT
4205 }
4206}
4207
577a32f6 4208static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4209{
1da177e4
LT
4210 /* Skip empty nodes */
4211 if (!pgdat->node_spanned_pages)
4212 return;
4213
d41dee36 4214#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4215 /* ia64 gets its own node_mem_map, before this, without bootmem */
4216 if (!pgdat->node_mem_map) {
e984bb43 4217 unsigned long size, start, end;
d41dee36
AW
4218 struct page *map;
4219
e984bb43
BP
4220 /*
4221 * The zone's endpoints aren't required to be MAX_ORDER
4222 * aligned but the node_mem_map endpoints must be in order
4223 * for the buddy allocator to function correctly.
4224 */
4225 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4226 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4227 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4228 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4229 map = alloc_remap(pgdat->node_id, size);
4230 if (!map)
4231 map = alloc_bootmem_node(pgdat, size);
e984bb43 4232 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4233 }
12d810c1 4234#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4235 /*
4236 * With no DISCONTIG, the global mem_map is just set as node 0's
4237 */
c713216d 4238 if (pgdat == NODE_DATA(0)) {
1da177e4 4239 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4240#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4241 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4242 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4243#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4244 }
1da177e4 4245#endif
d41dee36 4246#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4247}
4248
9109fb7b
JW
4249void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4250 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4251{
9109fb7b
JW
4252 pg_data_t *pgdat = NODE_DATA(nid);
4253
1da177e4
LT
4254 pgdat->node_id = nid;
4255 pgdat->node_start_pfn = node_start_pfn;
c713216d 4256 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4257
4258 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4259#ifdef CONFIG_FLAT_NODE_MEM_MAP
4260 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4261 nid, (unsigned long)pgdat,
4262 (unsigned long)pgdat->node_mem_map);
4263#endif
1da177e4
LT
4264
4265 free_area_init_core(pgdat, zones_size, zholes_size);
4266}
4267
c713216d 4268#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4269
4270#if MAX_NUMNODES > 1
4271/*
4272 * Figure out the number of possible node ids.
4273 */
4274static void __init setup_nr_node_ids(void)
4275{
4276 unsigned int node;
4277 unsigned int highest = 0;
4278
4279 for_each_node_mask(node, node_possible_map)
4280 highest = node;
4281 nr_node_ids = highest + 1;
4282}
4283#else
4284static inline void setup_nr_node_ids(void)
4285{
4286}
4287#endif
4288
c713216d
MG
4289/**
4290 * add_active_range - Register a range of PFNs backed by physical memory
4291 * @nid: The node ID the range resides on
4292 * @start_pfn: The start PFN of the available physical memory
4293 * @end_pfn: The end PFN of the available physical memory
4294 *
4295 * These ranges are stored in an early_node_map[] and later used by
4296 * free_area_init_nodes() to calculate zone sizes and holes. If the
4297 * range spans a memory hole, it is up to the architecture to ensure
4298 * the memory is not freed by the bootmem allocator. If possible
4299 * the range being registered will be merged with existing ranges.
4300 */
4301void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4302 unsigned long end_pfn)
4303{
4304 int i;
4305
6b74ab97
MG
4306 mminit_dprintk(MMINIT_TRACE, "memory_register",
4307 "Entering add_active_range(%d, %#lx, %#lx) "
4308 "%d entries of %d used\n",
4309 nid, start_pfn, end_pfn,
4310 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4311
2dbb51c4
MG
4312 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4313
c713216d
MG
4314 /* Merge with existing active regions if possible */
4315 for (i = 0; i < nr_nodemap_entries; i++) {
4316 if (early_node_map[i].nid != nid)
4317 continue;
4318
4319 /* Skip if an existing region covers this new one */
4320 if (start_pfn >= early_node_map[i].start_pfn &&
4321 end_pfn <= early_node_map[i].end_pfn)
4322 return;
4323
4324 /* Merge forward if suitable */
4325 if (start_pfn <= early_node_map[i].end_pfn &&
4326 end_pfn > early_node_map[i].end_pfn) {
4327 early_node_map[i].end_pfn = end_pfn;
4328 return;
4329 }
4330
4331 /* Merge backward if suitable */
d2dbe08d 4332 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4333 end_pfn >= early_node_map[i].start_pfn) {
4334 early_node_map[i].start_pfn = start_pfn;
4335 return;
4336 }
4337 }
4338
4339 /* Check that early_node_map is large enough */
4340 if (i >= MAX_ACTIVE_REGIONS) {
4341 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4342 MAX_ACTIVE_REGIONS);
4343 return;
4344 }
4345
4346 early_node_map[i].nid = nid;
4347 early_node_map[i].start_pfn = start_pfn;
4348 early_node_map[i].end_pfn = end_pfn;
4349 nr_nodemap_entries = i + 1;
4350}
4351
4352/**
cc1050ba 4353 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4354 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4355 * @start_pfn: The new PFN of the range
4356 * @end_pfn: The new PFN of the range
c713216d
MG
4357 *
4358 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4359 * The map is kept near the end physical page range that has already been
4360 * registered. This function allows an arch to shrink an existing registered
4361 * range.
c713216d 4362 */
cc1050ba
YL
4363void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4364 unsigned long end_pfn)
c713216d 4365{
cc1a9d86
YL
4366 int i, j;
4367 int removed = 0;
c713216d 4368
cc1050ba
YL
4369 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4370 nid, start_pfn, end_pfn);
4371
c713216d 4372 /* Find the old active region end and shrink */
cc1a9d86 4373 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4374 if (early_node_map[i].start_pfn >= start_pfn &&
4375 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4376 /* clear it */
cc1050ba 4377 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4378 early_node_map[i].end_pfn = 0;
4379 removed = 1;
4380 continue;
4381 }
cc1050ba
YL
4382 if (early_node_map[i].start_pfn < start_pfn &&
4383 early_node_map[i].end_pfn > start_pfn) {
4384 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4385 early_node_map[i].end_pfn = start_pfn;
4386 if (temp_end_pfn > end_pfn)
4387 add_active_range(nid, end_pfn, temp_end_pfn);
4388 continue;
4389 }
4390 if (early_node_map[i].start_pfn >= start_pfn &&
4391 early_node_map[i].end_pfn > end_pfn &&
4392 early_node_map[i].start_pfn < end_pfn) {
4393 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4394 continue;
c713216d 4395 }
cc1a9d86
YL
4396 }
4397
4398 if (!removed)
4399 return;
4400
4401 /* remove the blank ones */
4402 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4403 if (early_node_map[i].nid != nid)
4404 continue;
4405 if (early_node_map[i].end_pfn)
4406 continue;
4407 /* we found it, get rid of it */
4408 for (j = i; j < nr_nodemap_entries - 1; j++)
4409 memcpy(&early_node_map[j], &early_node_map[j+1],
4410 sizeof(early_node_map[j]));
4411 j = nr_nodemap_entries - 1;
4412 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4413 nr_nodemap_entries--;
4414 }
c713216d
MG
4415}
4416
4417/**
4418 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4419 *
c713216d
MG
4420 * During discovery, it may be found that a table like SRAT is invalid
4421 * and an alternative discovery method must be used. This function removes
4422 * all currently registered regions.
4423 */
88ca3b94 4424void __init remove_all_active_ranges(void)
c713216d
MG
4425{
4426 memset(early_node_map, 0, sizeof(early_node_map));
4427 nr_nodemap_entries = 0;
4428}
4429
4430/* Compare two active node_active_regions */
4431static int __init cmp_node_active_region(const void *a, const void *b)
4432{
4433 struct node_active_region *arange = (struct node_active_region *)a;
4434 struct node_active_region *brange = (struct node_active_region *)b;
4435
4436 /* Done this way to avoid overflows */
4437 if (arange->start_pfn > brange->start_pfn)
4438 return 1;
4439 if (arange->start_pfn < brange->start_pfn)
4440 return -1;
4441
4442 return 0;
4443}
4444
4445/* sort the node_map by start_pfn */
32996250 4446void __init sort_node_map(void)
c713216d
MG
4447{
4448 sort(early_node_map, (size_t)nr_nodemap_entries,
4449 sizeof(struct node_active_region),
4450 cmp_node_active_region, NULL);
4451}
4452
a6af2bc3 4453/* Find the lowest pfn for a node */
b69a7288 4454static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4455{
4456 int i;
a6af2bc3 4457 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4458
c713216d
MG
4459 /* Assuming a sorted map, the first range found has the starting pfn */
4460 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4461 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4462
a6af2bc3
MG
4463 if (min_pfn == ULONG_MAX) {
4464 printk(KERN_WARNING
2bc0d261 4465 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4466 return 0;
4467 }
4468
4469 return min_pfn;
c713216d
MG
4470}
4471
4472/**
4473 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4474 *
4475 * It returns the minimum PFN based on information provided via
88ca3b94 4476 * add_active_range().
c713216d
MG
4477 */
4478unsigned long __init find_min_pfn_with_active_regions(void)
4479{
4480 return find_min_pfn_for_node(MAX_NUMNODES);
4481}
4482
37b07e41
LS
4483/*
4484 * early_calculate_totalpages()
4485 * Sum pages in active regions for movable zone.
4486 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4487 */
484f51f8 4488static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4489{
4490 int i;
4491 unsigned long totalpages = 0;
4492
37b07e41
LS
4493 for (i = 0; i < nr_nodemap_entries; i++) {
4494 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4495 early_node_map[i].start_pfn;
37b07e41
LS
4496 totalpages += pages;
4497 if (pages)
4498 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4499 }
4500 return totalpages;
7e63efef
MG
4501}
4502
2a1e274a
MG
4503/*
4504 * Find the PFN the Movable zone begins in each node. Kernel memory
4505 * is spread evenly between nodes as long as the nodes have enough
4506 * memory. When they don't, some nodes will have more kernelcore than
4507 * others
4508 */
b69a7288 4509static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4510{
4511 int i, nid;
4512 unsigned long usable_startpfn;
4513 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4514 /* save the state before borrow the nodemask */
4515 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4516 unsigned long totalpages = early_calculate_totalpages();
4517 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4518
7e63efef
MG
4519 /*
4520 * If movablecore was specified, calculate what size of
4521 * kernelcore that corresponds so that memory usable for
4522 * any allocation type is evenly spread. If both kernelcore
4523 * and movablecore are specified, then the value of kernelcore
4524 * will be used for required_kernelcore if it's greater than
4525 * what movablecore would have allowed.
4526 */
4527 if (required_movablecore) {
7e63efef
MG
4528 unsigned long corepages;
4529
4530 /*
4531 * Round-up so that ZONE_MOVABLE is at least as large as what
4532 * was requested by the user
4533 */
4534 required_movablecore =
4535 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4536 corepages = totalpages - required_movablecore;
4537
4538 required_kernelcore = max(required_kernelcore, corepages);
4539 }
4540
2a1e274a
MG
4541 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4542 if (!required_kernelcore)
66918dcd 4543 goto out;
2a1e274a
MG
4544
4545 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4546 find_usable_zone_for_movable();
4547 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4548
4549restart:
4550 /* Spread kernelcore memory as evenly as possible throughout nodes */
4551 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4552 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4553 /*
4554 * Recalculate kernelcore_node if the division per node
4555 * now exceeds what is necessary to satisfy the requested
4556 * amount of memory for the kernel
4557 */
4558 if (required_kernelcore < kernelcore_node)
4559 kernelcore_node = required_kernelcore / usable_nodes;
4560
4561 /*
4562 * As the map is walked, we track how much memory is usable
4563 * by the kernel using kernelcore_remaining. When it is
4564 * 0, the rest of the node is usable by ZONE_MOVABLE
4565 */
4566 kernelcore_remaining = kernelcore_node;
4567
4568 /* Go through each range of PFNs within this node */
4569 for_each_active_range_index_in_nid(i, nid) {
4570 unsigned long start_pfn, end_pfn;
4571 unsigned long size_pages;
4572
4573 start_pfn = max(early_node_map[i].start_pfn,
4574 zone_movable_pfn[nid]);
4575 end_pfn = early_node_map[i].end_pfn;
4576 if (start_pfn >= end_pfn)
4577 continue;
4578
4579 /* Account for what is only usable for kernelcore */
4580 if (start_pfn < usable_startpfn) {
4581 unsigned long kernel_pages;
4582 kernel_pages = min(end_pfn, usable_startpfn)
4583 - start_pfn;
4584
4585 kernelcore_remaining -= min(kernel_pages,
4586 kernelcore_remaining);
4587 required_kernelcore -= min(kernel_pages,
4588 required_kernelcore);
4589
4590 /* Continue if range is now fully accounted */
4591 if (end_pfn <= usable_startpfn) {
4592
4593 /*
4594 * Push zone_movable_pfn to the end so
4595 * that if we have to rebalance
4596 * kernelcore across nodes, we will
4597 * not double account here
4598 */
4599 zone_movable_pfn[nid] = end_pfn;
4600 continue;
4601 }
4602 start_pfn = usable_startpfn;
4603 }
4604
4605 /*
4606 * The usable PFN range for ZONE_MOVABLE is from
4607 * start_pfn->end_pfn. Calculate size_pages as the
4608 * number of pages used as kernelcore
4609 */
4610 size_pages = end_pfn - start_pfn;
4611 if (size_pages > kernelcore_remaining)
4612 size_pages = kernelcore_remaining;
4613 zone_movable_pfn[nid] = start_pfn + size_pages;
4614
4615 /*
4616 * Some kernelcore has been met, update counts and
4617 * break if the kernelcore for this node has been
4618 * satisified
4619 */
4620 required_kernelcore -= min(required_kernelcore,
4621 size_pages);
4622 kernelcore_remaining -= size_pages;
4623 if (!kernelcore_remaining)
4624 break;
4625 }
4626 }
4627
4628 /*
4629 * If there is still required_kernelcore, we do another pass with one
4630 * less node in the count. This will push zone_movable_pfn[nid] further
4631 * along on the nodes that still have memory until kernelcore is
4632 * satisified
4633 */
4634 usable_nodes--;
4635 if (usable_nodes && required_kernelcore > usable_nodes)
4636 goto restart;
4637
4638 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4639 for (nid = 0; nid < MAX_NUMNODES; nid++)
4640 zone_movable_pfn[nid] =
4641 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4642
4643out:
4644 /* restore the node_state */
4645 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4646}
4647
37b07e41
LS
4648/* Any regular memory on that node ? */
4649static void check_for_regular_memory(pg_data_t *pgdat)
4650{
4651#ifdef CONFIG_HIGHMEM
4652 enum zone_type zone_type;
4653
4654 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4655 struct zone *zone = &pgdat->node_zones[zone_type];
4656 if (zone->present_pages)
4657 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4658 }
4659#endif
4660}
4661
c713216d
MG
4662/**
4663 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4664 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4665 *
4666 * This will call free_area_init_node() for each active node in the system.
4667 * Using the page ranges provided by add_active_range(), the size of each
4668 * zone in each node and their holes is calculated. If the maximum PFN
4669 * between two adjacent zones match, it is assumed that the zone is empty.
4670 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4671 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4672 * starts where the previous one ended. For example, ZONE_DMA32 starts
4673 * at arch_max_dma_pfn.
4674 */
4675void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4676{
4677 unsigned long nid;
db99100d 4678 int i;
c713216d 4679
a6af2bc3
MG
4680 /* Sort early_node_map as initialisation assumes it is sorted */
4681 sort_node_map();
4682
c713216d
MG
4683 /* Record where the zone boundaries are */
4684 memset(arch_zone_lowest_possible_pfn, 0,
4685 sizeof(arch_zone_lowest_possible_pfn));
4686 memset(arch_zone_highest_possible_pfn, 0,
4687 sizeof(arch_zone_highest_possible_pfn));
4688 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4689 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4690 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4691 if (i == ZONE_MOVABLE)
4692 continue;
c713216d
MG
4693 arch_zone_lowest_possible_pfn[i] =
4694 arch_zone_highest_possible_pfn[i-1];
4695 arch_zone_highest_possible_pfn[i] =
4696 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4697 }
2a1e274a
MG
4698 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4699 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4700
4701 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4702 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4703 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4704
c713216d
MG
4705 /* Print out the zone ranges */
4706 printk("Zone PFN ranges:\n");
2a1e274a
MG
4707 for (i = 0; i < MAX_NR_ZONES; i++) {
4708 if (i == ZONE_MOVABLE)
4709 continue;
72f0ba02
DR
4710 printk(" %-8s ", zone_names[i]);
4711 if (arch_zone_lowest_possible_pfn[i] ==
4712 arch_zone_highest_possible_pfn[i])
4713 printk("empty\n");
4714 else
4715 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4716 arch_zone_lowest_possible_pfn[i],
4717 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4718 }
4719
4720 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4721 printk("Movable zone start PFN for each node\n");
4722 for (i = 0; i < MAX_NUMNODES; i++) {
4723 if (zone_movable_pfn[i])
4724 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4725 }
c713216d
MG
4726
4727 /* Print out the early_node_map[] */
4728 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4729 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4730 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4731 early_node_map[i].start_pfn,
4732 early_node_map[i].end_pfn);
4733
4734 /* Initialise every node */
708614e6 4735 mminit_verify_pageflags_layout();
8ef82866 4736 setup_nr_node_ids();
c713216d
MG
4737 for_each_online_node(nid) {
4738 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4739 free_area_init_node(nid, NULL,
c713216d 4740 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4741
4742 /* Any memory on that node */
4743 if (pgdat->node_present_pages)
4744 node_set_state(nid, N_HIGH_MEMORY);
4745 check_for_regular_memory(pgdat);
c713216d
MG
4746 }
4747}
2a1e274a 4748
7e63efef 4749static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4750{
4751 unsigned long long coremem;
4752 if (!p)
4753 return -EINVAL;
4754
4755 coremem = memparse(p, &p);
7e63efef 4756 *core = coremem >> PAGE_SHIFT;
2a1e274a 4757
7e63efef 4758 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4759 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4760
4761 return 0;
4762}
ed7ed365 4763
7e63efef
MG
4764/*
4765 * kernelcore=size sets the amount of memory for use for allocations that
4766 * cannot be reclaimed or migrated.
4767 */
4768static int __init cmdline_parse_kernelcore(char *p)
4769{
4770 return cmdline_parse_core(p, &required_kernelcore);
4771}
4772
4773/*
4774 * movablecore=size sets the amount of memory for use for allocations that
4775 * can be reclaimed or migrated.
4776 */
4777static int __init cmdline_parse_movablecore(char *p)
4778{
4779 return cmdline_parse_core(p, &required_movablecore);
4780}
4781
ed7ed365 4782early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4783early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4784
c713216d
MG
4785#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4786
0e0b864e 4787/**
88ca3b94
RD
4788 * set_dma_reserve - set the specified number of pages reserved in the first zone
4789 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4790 *
4791 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4792 * In the DMA zone, a significant percentage may be consumed by kernel image
4793 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4794 * function may optionally be used to account for unfreeable pages in the
4795 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4796 * smaller per-cpu batchsize.
0e0b864e
MG
4797 */
4798void __init set_dma_reserve(unsigned long new_dma_reserve)
4799{
4800 dma_reserve = new_dma_reserve;
4801}
4802
93b7504e 4803#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4804struct pglist_data __refdata contig_page_data = {
4805#ifndef CONFIG_NO_BOOTMEM
4806 .bdata = &bootmem_node_data[0]
4807#endif
4808 };
1da177e4 4809EXPORT_SYMBOL(contig_page_data);
93b7504e 4810#endif
1da177e4
LT
4811
4812void __init free_area_init(unsigned long *zones_size)
4813{
9109fb7b 4814 free_area_init_node(0, zones_size,
1da177e4
LT
4815 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4816}
1da177e4 4817
1da177e4
LT
4818static int page_alloc_cpu_notify(struct notifier_block *self,
4819 unsigned long action, void *hcpu)
4820{
4821 int cpu = (unsigned long)hcpu;
1da177e4 4822
8bb78442 4823 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4824 drain_pages(cpu);
4825
4826 /*
4827 * Spill the event counters of the dead processor
4828 * into the current processors event counters.
4829 * This artificially elevates the count of the current
4830 * processor.
4831 */
f8891e5e 4832 vm_events_fold_cpu(cpu);
9f8f2172
CL
4833
4834 /*
4835 * Zero the differential counters of the dead processor
4836 * so that the vm statistics are consistent.
4837 *
4838 * This is only okay since the processor is dead and cannot
4839 * race with what we are doing.
4840 */
2244b95a 4841 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4842 }
4843 return NOTIFY_OK;
4844}
1da177e4
LT
4845
4846void __init page_alloc_init(void)
4847{
4848 hotcpu_notifier(page_alloc_cpu_notify, 0);
4849}
4850
cb45b0e9
HA
4851/*
4852 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4853 * or min_free_kbytes changes.
4854 */
4855static void calculate_totalreserve_pages(void)
4856{
4857 struct pglist_data *pgdat;
4858 unsigned long reserve_pages = 0;
2f6726e5 4859 enum zone_type i, j;
cb45b0e9
HA
4860
4861 for_each_online_pgdat(pgdat) {
4862 for (i = 0; i < MAX_NR_ZONES; i++) {
4863 struct zone *zone = pgdat->node_zones + i;
4864 unsigned long max = 0;
4865
4866 /* Find valid and maximum lowmem_reserve in the zone */
4867 for (j = i; j < MAX_NR_ZONES; j++) {
4868 if (zone->lowmem_reserve[j] > max)
4869 max = zone->lowmem_reserve[j];
4870 }
4871
41858966
MG
4872 /* we treat the high watermark as reserved pages. */
4873 max += high_wmark_pages(zone);
cb45b0e9
HA
4874
4875 if (max > zone->present_pages)
4876 max = zone->present_pages;
4877 reserve_pages += max;
4878 }
4879 }
4880 totalreserve_pages = reserve_pages;
4881}
4882
1da177e4
LT
4883/*
4884 * setup_per_zone_lowmem_reserve - called whenever
4885 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4886 * has a correct pages reserved value, so an adequate number of
4887 * pages are left in the zone after a successful __alloc_pages().
4888 */
4889static void setup_per_zone_lowmem_reserve(void)
4890{
4891 struct pglist_data *pgdat;
2f6726e5 4892 enum zone_type j, idx;
1da177e4 4893
ec936fc5 4894 for_each_online_pgdat(pgdat) {
1da177e4
LT
4895 for (j = 0; j < MAX_NR_ZONES; j++) {
4896 struct zone *zone = pgdat->node_zones + j;
4897 unsigned long present_pages = zone->present_pages;
4898
4899 zone->lowmem_reserve[j] = 0;
4900
2f6726e5
CL
4901 idx = j;
4902 while (idx) {
1da177e4
LT
4903 struct zone *lower_zone;
4904
2f6726e5
CL
4905 idx--;
4906
1da177e4
LT
4907 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4908 sysctl_lowmem_reserve_ratio[idx] = 1;
4909
4910 lower_zone = pgdat->node_zones + idx;
4911 lower_zone->lowmem_reserve[j] = present_pages /
4912 sysctl_lowmem_reserve_ratio[idx];
4913 present_pages += lower_zone->present_pages;
4914 }
4915 }
4916 }
cb45b0e9
HA
4917
4918 /* update totalreserve_pages */
4919 calculate_totalreserve_pages();
1da177e4
LT
4920}
4921
88ca3b94 4922/**
bc75d33f 4923 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4924 * or when memory is hot-{added|removed}
88ca3b94 4925 *
bc75d33f
MK
4926 * Ensures that the watermark[min,low,high] values for each zone are set
4927 * correctly with respect to min_free_kbytes.
1da177e4 4928 */
bc75d33f 4929void setup_per_zone_wmarks(void)
1da177e4
LT
4930{
4931 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4932 unsigned long lowmem_pages = 0;
4933 struct zone *zone;
4934 unsigned long flags;
4935
4936 /* Calculate total number of !ZONE_HIGHMEM pages */
4937 for_each_zone(zone) {
4938 if (!is_highmem(zone))
4939 lowmem_pages += zone->present_pages;
4940 }
4941
4942 for_each_zone(zone) {
ac924c60
AM
4943 u64 tmp;
4944
1125b4e3 4945 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4946 tmp = (u64)pages_min * zone->present_pages;
4947 do_div(tmp, lowmem_pages);
1da177e4
LT
4948 if (is_highmem(zone)) {
4949 /*
669ed175
NP
4950 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4951 * need highmem pages, so cap pages_min to a small
4952 * value here.
4953 *
41858966 4954 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4955 * deltas controls asynch page reclaim, and so should
4956 * not be capped for highmem.
1da177e4
LT
4957 */
4958 int min_pages;
4959
4960 min_pages = zone->present_pages / 1024;
4961 if (min_pages < SWAP_CLUSTER_MAX)
4962 min_pages = SWAP_CLUSTER_MAX;
4963 if (min_pages > 128)
4964 min_pages = 128;
41858966 4965 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4966 } else {
669ed175
NP
4967 /*
4968 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4969 * proportionate to the zone's size.
4970 */
41858966 4971 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4972 }
4973
41858966
MG
4974 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4975 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4976 setup_zone_migrate_reserve(zone);
1125b4e3 4977 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4978 }
cb45b0e9
HA
4979
4980 /* update totalreserve_pages */
4981 calculate_totalreserve_pages();
1da177e4
LT
4982}
4983
55a4462a 4984/*
556adecb
RR
4985 * The inactive anon list should be small enough that the VM never has to
4986 * do too much work, but large enough that each inactive page has a chance
4987 * to be referenced again before it is swapped out.
4988 *
4989 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4990 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4991 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4992 * the anonymous pages are kept on the inactive list.
4993 *
4994 * total target max
4995 * memory ratio inactive anon
4996 * -------------------------------------
4997 * 10MB 1 5MB
4998 * 100MB 1 50MB
4999 * 1GB 3 250MB
5000 * 10GB 10 0.9GB
5001 * 100GB 31 3GB
5002 * 1TB 101 10GB
5003 * 10TB 320 32GB
5004 */
96cb4df5 5005void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5006{
96cb4df5 5007 unsigned int gb, ratio;
556adecb 5008
96cb4df5
MK
5009 /* Zone size in gigabytes */
5010 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5011 if (gb)
556adecb 5012 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5013 else
5014 ratio = 1;
556adecb 5015
96cb4df5
MK
5016 zone->inactive_ratio = ratio;
5017}
556adecb 5018
96cb4df5
MK
5019static void __init setup_per_zone_inactive_ratio(void)
5020{
5021 struct zone *zone;
5022
5023 for_each_zone(zone)
5024 calculate_zone_inactive_ratio(zone);
556adecb
RR
5025}
5026
1da177e4
LT
5027/*
5028 * Initialise min_free_kbytes.
5029 *
5030 * For small machines we want it small (128k min). For large machines
5031 * we want it large (64MB max). But it is not linear, because network
5032 * bandwidth does not increase linearly with machine size. We use
5033 *
5034 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5035 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5036 *
5037 * which yields
5038 *
5039 * 16MB: 512k
5040 * 32MB: 724k
5041 * 64MB: 1024k
5042 * 128MB: 1448k
5043 * 256MB: 2048k
5044 * 512MB: 2896k
5045 * 1024MB: 4096k
5046 * 2048MB: 5792k
5047 * 4096MB: 8192k
5048 * 8192MB: 11584k
5049 * 16384MB: 16384k
5050 */
bc75d33f 5051static int __init init_per_zone_wmark_min(void)
1da177e4
LT
5052{
5053 unsigned long lowmem_kbytes;
5054
5055 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5056
5057 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5058 if (min_free_kbytes < 128)
5059 min_free_kbytes = 128;
5060 if (min_free_kbytes > 65536)
5061 min_free_kbytes = 65536;
bc75d33f 5062 setup_per_zone_wmarks();
1da177e4 5063 setup_per_zone_lowmem_reserve();
556adecb 5064 setup_per_zone_inactive_ratio();
1da177e4
LT
5065 return 0;
5066}
bc75d33f 5067module_init(init_per_zone_wmark_min)
1da177e4
LT
5068
5069/*
5070 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5071 * that we can call two helper functions whenever min_free_kbytes
5072 * changes.
5073 */
5074int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5075 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5076{
8d65af78 5077 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5078 if (write)
bc75d33f 5079 setup_per_zone_wmarks();
1da177e4
LT
5080 return 0;
5081}
5082
9614634f
CL
5083#ifdef CONFIG_NUMA
5084int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5085 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5086{
5087 struct zone *zone;
5088 int rc;
5089
8d65af78 5090 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5091 if (rc)
5092 return rc;
5093
5094 for_each_zone(zone)
8417bba4 5095 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5096 sysctl_min_unmapped_ratio) / 100;
5097 return 0;
5098}
0ff38490
CL
5099
5100int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5101 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5102{
5103 struct zone *zone;
5104 int rc;
5105
8d65af78 5106 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5107 if (rc)
5108 return rc;
5109
5110 for_each_zone(zone)
5111 zone->min_slab_pages = (zone->present_pages *
5112 sysctl_min_slab_ratio) / 100;
5113 return 0;
5114}
9614634f
CL
5115#endif
5116
1da177e4
LT
5117/*
5118 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5119 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5120 * whenever sysctl_lowmem_reserve_ratio changes.
5121 *
5122 * The reserve ratio obviously has absolutely no relation with the
41858966 5123 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5124 * if in function of the boot time zone sizes.
5125 */
5126int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5127 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5128{
8d65af78 5129 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5130 setup_per_zone_lowmem_reserve();
5131 return 0;
5132}
5133
8ad4b1fb
RS
5134/*
5135 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5136 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5137 * can have before it gets flushed back to buddy allocator.
5138 */
5139
5140int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5141 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5142{
5143 struct zone *zone;
5144 unsigned int cpu;
5145 int ret;
5146
8d65af78 5147 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5148 if (!write || (ret == -EINVAL))
5149 return ret;
364df0eb 5150 for_each_populated_zone(zone) {
99dcc3e5 5151 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5152 unsigned long high;
5153 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5154 setup_pagelist_highmark(
5155 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5156 }
5157 }
5158 return 0;
5159}
5160
f034b5d4 5161int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5162
5163#ifdef CONFIG_NUMA
5164static int __init set_hashdist(char *str)
5165{
5166 if (!str)
5167 return 0;
5168 hashdist = simple_strtoul(str, &str, 0);
5169 return 1;
5170}
5171__setup("hashdist=", set_hashdist);
5172#endif
5173
5174/*
5175 * allocate a large system hash table from bootmem
5176 * - it is assumed that the hash table must contain an exact power-of-2
5177 * quantity of entries
5178 * - limit is the number of hash buckets, not the total allocation size
5179 */
5180void *__init alloc_large_system_hash(const char *tablename,
5181 unsigned long bucketsize,
5182 unsigned long numentries,
5183 int scale,
5184 int flags,
5185 unsigned int *_hash_shift,
5186 unsigned int *_hash_mask,
5187 unsigned long limit)
5188{
5189 unsigned long long max = limit;
5190 unsigned long log2qty, size;
5191 void *table = NULL;
5192
5193 /* allow the kernel cmdline to have a say */
5194 if (!numentries) {
5195 /* round applicable memory size up to nearest megabyte */
04903664 5196 numentries = nr_kernel_pages;
1da177e4
LT
5197 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5198 numentries >>= 20 - PAGE_SHIFT;
5199 numentries <<= 20 - PAGE_SHIFT;
5200
5201 /* limit to 1 bucket per 2^scale bytes of low memory */
5202 if (scale > PAGE_SHIFT)
5203 numentries >>= (scale - PAGE_SHIFT);
5204 else
5205 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5206
5207 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5208 if (unlikely(flags & HASH_SMALL)) {
5209 /* Makes no sense without HASH_EARLY */
5210 WARN_ON(!(flags & HASH_EARLY));
5211 if (!(numentries >> *_hash_shift)) {
5212 numentries = 1UL << *_hash_shift;
5213 BUG_ON(!numentries);
5214 }
5215 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5216 numentries = PAGE_SIZE / bucketsize;
1da177e4 5217 }
6e692ed3 5218 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5219
5220 /* limit allocation size to 1/16 total memory by default */
5221 if (max == 0) {
5222 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5223 do_div(max, bucketsize);
5224 }
5225
5226 if (numentries > max)
5227 numentries = max;
5228
f0d1b0b3 5229 log2qty = ilog2(numentries);
1da177e4
LT
5230
5231 do {
5232 size = bucketsize << log2qty;
5233 if (flags & HASH_EARLY)
74768ed8 5234 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5235 else if (hashdist)
5236 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5237 else {
1037b83b
ED
5238 /*
5239 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5240 * some pages at the end of hash table which
5241 * alloc_pages_exact() automatically does
1037b83b 5242 */
264ef8a9 5243 if (get_order(size) < MAX_ORDER) {
a1dd268c 5244 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5245 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5246 }
1da177e4
LT
5247 }
5248 } while (!table && size > PAGE_SIZE && --log2qty);
5249
5250 if (!table)
5251 panic("Failed to allocate %s hash table\n", tablename);
5252
f241e660 5253 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5254 tablename,
f241e660 5255 (1UL << log2qty),
f0d1b0b3 5256 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5257 size);
5258
5259 if (_hash_shift)
5260 *_hash_shift = log2qty;
5261 if (_hash_mask)
5262 *_hash_mask = (1 << log2qty) - 1;
5263
5264 return table;
5265}
a117e66e 5266
835c134e
MG
5267/* Return a pointer to the bitmap storing bits affecting a block of pages */
5268static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5269 unsigned long pfn)
5270{
5271#ifdef CONFIG_SPARSEMEM
5272 return __pfn_to_section(pfn)->pageblock_flags;
5273#else
5274 return zone->pageblock_flags;
5275#endif /* CONFIG_SPARSEMEM */
5276}
5277
5278static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5279{
5280#ifdef CONFIG_SPARSEMEM
5281 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5282 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5283#else
5284 pfn = pfn - zone->zone_start_pfn;
d9c23400 5285 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5286#endif /* CONFIG_SPARSEMEM */
5287}
5288
5289/**
d9c23400 5290 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5291 * @page: The page within the block of interest
5292 * @start_bitidx: The first bit of interest to retrieve
5293 * @end_bitidx: The last bit of interest
5294 * returns pageblock_bits flags
5295 */
5296unsigned long get_pageblock_flags_group(struct page *page,
5297 int start_bitidx, int end_bitidx)
5298{
5299 struct zone *zone;
5300 unsigned long *bitmap;
5301 unsigned long pfn, bitidx;
5302 unsigned long flags = 0;
5303 unsigned long value = 1;
5304
5305 zone = page_zone(page);
5306 pfn = page_to_pfn(page);
5307 bitmap = get_pageblock_bitmap(zone, pfn);
5308 bitidx = pfn_to_bitidx(zone, pfn);
5309
5310 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5311 if (test_bit(bitidx + start_bitidx, bitmap))
5312 flags |= value;
6220ec78 5313
835c134e
MG
5314 return flags;
5315}
5316
5317/**
d9c23400 5318 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5319 * @page: The page within the block of interest
5320 * @start_bitidx: The first bit of interest
5321 * @end_bitidx: The last bit of interest
5322 * @flags: The flags to set
5323 */
5324void set_pageblock_flags_group(struct page *page, unsigned long flags,
5325 int start_bitidx, int end_bitidx)
5326{
5327 struct zone *zone;
5328 unsigned long *bitmap;
5329 unsigned long pfn, bitidx;
5330 unsigned long value = 1;
5331
5332 zone = page_zone(page);
5333 pfn = page_to_pfn(page);
5334 bitmap = get_pageblock_bitmap(zone, pfn);
5335 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5336 VM_BUG_ON(pfn < zone->zone_start_pfn);
5337 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5338
5339 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5340 if (flags & value)
5341 __set_bit(bitidx + start_bitidx, bitmap);
5342 else
5343 __clear_bit(bitidx + start_bitidx, bitmap);
5344}
a5d76b54
KH
5345
5346/*
5347 * This is designed as sub function...plz see page_isolation.c also.
5348 * set/clear page block's type to be ISOLATE.
5349 * page allocater never alloc memory from ISOLATE block.
5350 */
5351
49ac8255
KH
5352static int
5353__count_immobile_pages(struct zone *zone, struct page *page, int count)
5354{
5355 unsigned long pfn, iter, found;
5356 /*
5357 * For avoiding noise data, lru_add_drain_all() should be called
5358 * If ZONE_MOVABLE, the zone never contains immobile pages
5359 */
5360 if (zone_idx(zone) == ZONE_MOVABLE)
5361 return true;
5362
5363 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5364 return true;
5365
5366 pfn = page_to_pfn(page);
5367 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5368 unsigned long check = pfn + iter;
5369
5370 if (!pfn_valid_within(check)) {
5371 iter++;
5372 continue;
5373 }
5374 page = pfn_to_page(check);
5375 if (!page_count(page)) {
5376 if (PageBuddy(page))
5377 iter += (1 << page_order(page)) - 1;
5378 continue;
5379 }
5380 if (!PageLRU(page))
5381 found++;
5382 /*
5383 * If there are RECLAIMABLE pages, we need to check it.
5384 * But now, memory offline itself doesn't call shrink_slab()
5385 * and it still to be fixed.
5386 */
5387 /*
5388 * If the page is not RAM, page_count()should be 0.
5389 * we don't need more check. This is an _used_ not-movable page.
5390 *
5391 * The problematic thing here is PG_reserved pages. PG_reserved
5392 * is set to both of a memory hole page and a _used_ kernel
5393 * page at boot.
5394 */
5395 if (found > count)
5396 return false;
5397 }
5398 return true;
5399}
5400
5401bool is_pageblock_removable_nolock(struct page *page)
5402{
5403 struct zone *zone = page_zone(page);
5404 return __count_immobile_pages(zone, page, 0);
5405}
5406
a5d76b54
KH
5407int set_migratetype_isolate(struct page *page)
5408{
5409 struct zone *zone;
49ac8255 5410 unsigned long flags, pfn;
925cc71e
RJ
5411 struct memory_isolate_notify arg;
5412 int notifier_ret;
a5d76b54 5413 int ret = -EBUSY;
8e7e40d9 5414 int zone_idx;
a5d76b54
KH
5415
5416 zone = page_zone(page);
8e7e40d9 5417 zone_idx = zone_idx(zone);
925cc71e 5418
a5d76b54 5419 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5420
5421 pfn = page_to_pfn(page);
5422 arg.start_pfn = pfn;
5423 arg.nr_pages = pageblock_nr_pages;
5424 arg.pages_found = 0;
5425
a5d76b54 5426 /*
925cc71e
RJ
5427 * It may be possible to isolate a pageblock even if the
5428 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5429 * notifier chain is used by balloon drivers to return the
5430 * number of pages in a range that are held by the balloon
5431 * driver to shrink memory. If all the pages are accounted for
5432 * by balloons, are free, or on the LRU, isolation can continue.
5433 * Later, for example, when memory hotplug notifier runs, these
5434 * pages reported as "can be isolated" should be isolated(freed)
5435 * by the balloon driver through the memory notifier chain.
a5d76b54 5436 */
925cc71e
RJ
5437 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5438 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5439 if (notifier_ret)
a5d76b54 5440 goto out;
49ac8255
KH
5441 /*
5442 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5443 * We just check MOVABLE pages.
5444 */
5445 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5446 ret = 0;
5447
49ac8255
KH
5448 /*
5449 * immobile means "not-on-lru" paes. If immobile is larger than
5450 * removable-by-driver pages reported by notifier, we'll fail.
5451 */
5452
a5d76b54 5453out:
925cc71e
RJ
5454 if (!ret) {
5455 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5456 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5457 }
5458
a5d76b54
KH
5459 spin_unlock_irqrestore(&zone->lock, flags);
5460 if (!ret)
9f8f2172 5461 drain_all_pages();
a5d76b54
KH
5462 return ret;
5463}
5464
5465void unset_migratetype_isolate(struct page *page)
5466{
5467 struct zone *zone;
5468 unsigned long flags;
5469 zone = page_zone(page);
5470 spin_lock_irqsave(&zone->lock, flags);
5471 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5472 goto out;
5473 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5474 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5475out:
5476 spin_unlock_irqrestore(&zone->lock, flags);
5477}
0c0e6195
KH
5478
5479#ifdef CONFIG_MEMORY_HOTREMOVE
5480/*
5481 * All pages in the range must be isolated before calling this.
5482 */
5483void
5484__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5485{
5486 struct page *page;
5487 struct zone *zone;
5488 int order, i;
5489 unsigned long pfn;
5490 unsigned long flags;
5491 /* find the first valid pfn */
5492 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5493 if (pfn_valid(pfn))
5494 break;
5495 if (pfn == end_pfn)
5496 return;
5497 zone = page_zone(pfn_to_page(pfn));
5498 spin_lock_irqsave(&zone->lock, flags);
5499 pfn = start_pfn;
5500 while (pfn < end_pfn) {
5501 if (!pfn_valid(pfn)) {
5502 pfn++;
5503 continue;
5504 }
5505 page = pfn_to_page(pfn);
5506 BUG_ON(page_count(page));
5507 BUG_ON(!PageBuddy(page));
5508 order = page_order(page);
5509#ifdef CONFIG_DEBUG_VM
5510 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5511 pfn, 1 << order, end_pfn);
5512#endif
5513 list_del(&page->lru);
5514 rmv_page_order(page);
5515 zone->free_area[order].nr_free--;
5516 __mod_zone_page_state(zone, NR_FREE_PAGES,
5517 - (1UL << order));
5518 for (i = 0; i < (1 << order); i++)
5519 SetPageReserved((page+i));
5520 pfn += (1 << order);
5521 }
5522 spin_unlock_irqrestore(&zone->lock, flags);
5523}
5524#endif
8d22ba1b
WF
5525
5526#ifdef CONFIG_MEMORY_FAILURE
5527bool is_free_buddy_page(struct page *page)
5528{
5529 struct zone *zone = page_zone(page);
5530 unsigned long pfn = page_to_pfn(page);
5531 unsigned long flags;
5532 int order;
5533
5534 spin_lock_irqsave(&zone->lock, flags);
5535 for (order = 0; order < MAX_ORDER; order++) {
5536 struct page *page_head = page - (pfn & ((1 << order) - 1));
5537
5538 if (PageBuddy(page_head) && page_order(page_head) >= order)
5539 break;
5540 }
5541 spin_unlock_irqrestore(&zone->lock, flags);
5542
5543 return order < MAX_ORDER;
5544}
5545#endif
718a3821
WF
5546
5547static struct trace_print_flags pageflag_names[] = {
5548 {1UL << PG_locked, "locked" },
5549 {1UL << PG_error, "error" },
5550 {1UL << PG_referenced, "referenced" },
5551 {1UL << PG_uptodate, "uptodate" },
5552 {1UL << PG_dirty, "dirty" },
5553 {1UL << PG_lru, "lru" },
5554 {1UL << PG_active, "active" },
5555 {1UL << PG_slab, "slab" },
5556 {1UL << PG_owner_priv_1, "owner_priv_1" },
5557 {1UL << PG_arch_1, "arch_1" },
5558 {1UL << PG_reserved, "reserved" },
5559 {1UL << PG_private, "private" },
5560 {1UL << PG_private_2, "private_2" },
5561 {1UL << PG_writeback, "writeback" },
5562#ifdef CONFIG_PAGEFLAGS_EXTENDED
5563 {1UL << PG_head, "head" },
5564 {1UL << PG_tail, "tail" },
5565#else
5566 {1UL << PG_compound, "compound" },
5567#endif
5568 {1UL << PG_swapcache, "swapcache" },
5569 {1UL << PG_mappedtodisk, "mappedtodisk" },
5570 {1UL << PG_reclaim, "reclaim" },
5571 {1UL << PG_buddy, "buddy" },
5572 {1UL << PG_swapbacked, "swapbacked" },
5573 {1UL << PG_unevictable, "unevictable" },
5574#ifdef CONFIG_MMU
5575 {1UL << PG_mlocked, "mlocked" },
5576#endif
5577#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5578 {1UL << PG_uncached, "uncached" },
5579#endif
5580#ifdef CONFIG_MEMORY_FAILURE
5581 {1UL << PG_hwpoison, "hwpoison" },
5582#endif
5583 {-1UL, NULL },
5584};
5585
5586static void dump_page_flags(unsigned long flags)
5587{
5588 const char *delim = "";
5589 unsigned long mask;
5590 int i;
5591
5592 printk(KERN_ALERT "page flags: %#lx(", flags);
5593
5594 /* remove zone id */
5595 flags &= (1UL << NR_PAGEFLAGS) - 1;
5596
5597 for (i = 0; pageflag_names[i].name && flags; i++) {
5598
5599 mask = pageflag_names[i].mask;
5600 if ((flags & mask) != mask)
5601 continue;
5602
5603 flags &= ~mask;
5604 printk("%s%s", delim, pageflag_names[i].name);
5605 delim = "|";
5606 }
5607
5608 /* check for left over flags */
5609 if (flags)
5610 printk("%s%#lx", delim, flags);
5611
5612 printk(")\n");
5613}
5614
5615void dump_page(struct page *page)
5616{
5617 printk(KERN_ALERT
5618 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5619 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5620 page->mapping, page->index);
5621 dump_page_flags(page->flags);
5622}