]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
bootmem: micro optimize freeing pages in bulk
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
8ad4b1fb 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
b2a0ac88
MG
221static void set_pageblock_migratetype(struct page *page, int migratetype)
222{
49255c61
MG
223
224 if (unlikely(page_group_by_mobility_disabled))
225 migratetype = MIGRATE_UNMOVABLE;
226
b2a0ac88
MG
227 set_pageblock_flags_group(page, (unsigned long)migratetype,
228 PB_migrate, PB_migrate_end);
229}
230
7f33d49a
RW
231bool oom_killer_disabled __read_mostly;
232
13e7444b 233#ifdef CONFIG_DEBUG_VM
c6a57e19 234static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 235{
bdc8cb98
DH
236 int ret = 0;
237 unsigned seq;
238 unsigned long pfn = page_to_pfn(page);
c6a57e19 239
bdc8cb98
DH
240 do {
241 seq = zone_span_seqbegin(zone);
242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 ret = 1;
244 else if (pfn < zone->zone_start_pfn)
245 ret = 1;
246 } while (zone_span_seqretry(zone, seq));
247
248 return ret;
c6a57e19
DH
249}
250
251static int page_is_consistent(struct zone *zone, struct page *page)
252{
14e07298 253 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 254 return 0;
1da177e4 255 if (zone != page_zone(page))
c6a57e19
DH
256 return 0;
257
258 return 1;
259}
260/*
261 * Temporary debugging check for pages not lying within a given zone.
262 */
263static int bad_range(struct zone *zone, struct page *page)
264{
265 if (page_outside_zone_boundaries(zone, page))
1da177e4 266 return 1;
c6a57e19
DH
267 if (!page_is_consistent(zone, page))
268 return 1;
269
1da177e4
LT
270 return 0;
271}
13e7444b
NP
272#else
273static inline int bad_range(struct zone *zone, struct page *page)
274{
275 return 0;
276}
277#endif
278
224abf92 279static void bad_page(struct page *page)
1da177e4 280{
d936cf9b
HD
281 static unsigned long resume;
282 static unsigned long nr_shown;
283 static unsigned long nr_unshown;
284
2a7684a2
WF
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page)) {
ef2b4b95 287 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
288 return;
289 }
290
d936cf9b
HD
291 /*
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
294 */
295 if (nr_shown == 60) {
296 if (time_before(jiffies, resume)) {
297 nr_unshown++;
298 goto out;
299 }
300 if (nr_unshown) {
1e9e6365
HD
301 printk(KERN_ALERT
302 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
303 nr_unshown);
304 nr_unshown = 0;
305 }
306 nr_shown = 0;
307 }
308 if (nr_shown++ == 0)
309 resume = jiffies + 60 * HZ;
310
1e9e6365 311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 312 current->comm, page_to_pfn(page));
718a3821 313 dump_page(page);
3dc14741 314
4f31888c 315 print_modules();
1da177e4 316 dump_stack();
d936cf9b 317out:
8cc3b392 318 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 319 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 320 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
321}
322
1da177e4
LT
323/*
324 * Higher-order pages are called "compound pages". They are structured thusly:
325 *
326 * The first PAGE_SIZE page is called the "head page".
327 *
328 * The remaining PAGE_SIZE pages are called "tail pages".
329 *
6416b9fa
WSH
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
1da177e4 332 *
41d78ba5
HD
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
1da177e4 336 */
d98c7a09
HD
337
338static void free_compound_page(struct page *page)
339{
d85f3385 340 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
341}
342
01ad1c08 343void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
344{
345 int i;
346 int nr_pages = 1 << order;
347
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
18229df5 353 __SetPageTail(p);
58a84aa9 354 set_page_count(p, 0);
18229df5
AW
355 p->first_page = page;
356 }
357}
358
59ff4216 359/* update __split_huge_page_refcount if you change this function */
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
c0a32fc5
SG
400#ifdef CONFIG_DEBUG_PAGEALLOC
401unsigned int _debug_guardpage_minorder;
402
403static int __init debug_guardpage_minorder_setup(char *buf)
404{
405 unsigned long res;
406
407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 return 0;
410 }
411 _debug_guardpage_minorder = res;
412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 return 0;
414}
415__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416
417static inline void set_page_guard_flag(struct page *page)
418{
419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420}
421
422static inline void clear_page_guard_flag(struct page *page)
423{
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426#else
427static inline void set_page_guard_flag(struct page *page) { }
428static inline void clear_page_guard_flag(struct page *page) { }
429#endif
430
6aa3001b
AM
431static inline void set_page_order(struct page *page, int order)
432{
4c21e2f2 433 set_page_private(page, order);
676165a8 434 __SetPageBuddy(page);
1da177e4
LT
435}
436
437static inline void rmv_page_order(struct page *page)
438{
676165a8 439 __ClearPageBuddy(page);
4c21e2f2 440 set_page_private(page, 0);
1da177e4
LT
441}
442
443/*
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
446 *
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 * B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453 *
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 * P = B & ~(1 << O)
457 *
d6e05edc 458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 459 */
1da177e4 460static inline unsigned long
43506fad 461__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 462{
43506fad 463 return page_idx ^ (1 << order);
1da177e4
LT
464}
465
466/*
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
13e7444b 469 * (a) the buddy is not in a hole &&
676165a8 470 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
676165a8 473 *
5f24ce5f
AA
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 476 *
676165a8 477 * For recording page's order, we use page_private(page).
1da177e4 478 */
cb2b95e1
AW
479static inline int page_is_buddy(struct page *page, struct page *buddy,
480 int order)
1da177e4 481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 483 return 0;
13e7444b 484
cb2b95e1
AW
485 if (page_zone_id(page) != page_zone_id(buddy))
486 return 0;
487
c0a32fc5
SG
488 if (page_is_guard(buddy) && page_order(buddy) == order) {
489 VM_BUG_ON(page_count(buddy) != 0);
490 return 1;
491 }
492
cb2b95e1 493 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 494 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 495 return 1;
676165a8 496 }
6aa3001b 497 return 0;
1da177e4
LT
498}
499
500/*
501 * Freeing function for a buddy system allocator.
502 *
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 514 * order is recorded in page_private(page) field.
1da177e4
LT
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
520 *
521 * -- wli
522 */
523
48db57f8 524static inline void __free_one_page(struct page *page,
ed0ae21d
MG
525 struct zone *zone, unsigned int order,
526 int migratetype)
1da177e4
LT
527{
528 unsigned long page_idx;
6dda9d55 529 unsigned long combined_idx;
43506fad 530 unsigned long uninitialized_var(buddy_idx);
6dda9d55 531 struct page *buddy;
1da177e4 532
224abf92 533 if (unlikely(PageCompound(page)))
8cc3b392
HD
534 if (unlikely(destroy_compound_page(page, order)))
535 return;
1da177e4 536
ed0ae21d
MG
537 VM_BUG_ON(migratetype == -1);
538
1da177e4
LT
539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540
f2260e6b 541 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 542 VM_BUG_ON(bad_range(zone, page));
1da177e4 543
1da177e4 544 while (order < MAX_ORDER-1) {
43506fad
KC
545 buddy_idx = __find_buddy_index(page_idx, order);
546 buddy = page + (buddy_idx - page_idx);
cb2b95e1 547 if (!page_is_buddy(page, buddy, order))
3c82d0ce 548 break;
c0a32fc5
SG
549 /*
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
552 */
553 if (page_is_guard(buddy)) {
554 clear_page_guard_flag(buddy);
555 set_page_private(page, 0);
556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 } else {
558 list_del(&buddy->lru);
559 zone->free_area[order].nr_free--;
560 rmv_page_order(buddy);
561 }
43506fad 562 combined_idx = buddy_idx & page_idx;
1da177e4
LT
563 page = page + (combined_idx - page_idx);
564 page_idx = combined_idx;
565 order++;
566 }
567 set_page_order(page, order);
6dda9d55
CZ
568
569 /*
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
576 */
b7f50cfa 577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 578 struct page *higher_page, *higher_buddy;
43506fad
KC
579 combined_idx = buddy_idx & page_idx;
580 higher_page = page + (combined_idx - page_idx);
581 buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 list_add_tail(&page->lru,
585 &zone->free_area[order].free_list[migratetype]);
586 goto out;
587 }
588 }
589
590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591out:
1da177e4
LT
592 zone->free_area[order].nr_free++;
593}
594
092cead6
KM
595/*
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
599 */
600static inline void free_page_mlock(struct page *page)
601{
092cead6
KM
602 __dec_zone_page_state(page, NR_MLOCK);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED);
604}
092cead6 605
224abf92 606static inline int free_pages_check(struct page *page)
1da177e4 607{
92be2e33
NP
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
a3af9c38 610 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
224abf92 613 bad_page(page);
79f4b7bf 614 return 1;
8cc3b392 615 }
79f4b7bf
HD
616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 return 0;
1da177e4
LT
619}
620
621/*
5f8dcc21 622 * Frees a number of pages from the PCP lists
1da177e4 623 * Assumes all pages on list are in same zone, and of same order.
207f36ee 624 * count is the number of pages to free.
1da177e4
LT
625 *
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
628 *
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
631 */
5f8dcc21
MG
632static void free_pcppages_bulk(struct zone *zone, int count,
633 struct per_cpu_pages *pcp)
1da177e4 634{
5f8dcc21 635 int migratetype = 0;
a6f9edd6 636 int batch_free = 0;
72853e29 637 int to_free = count;
5f8dcc21 638
c54ad30c 639 spin_lock(&zone->lock);
93e4a89a 640 zone->all_unreclaimable = 0;
1da177e4 641 zone->pages_scanned = 0;
f2260e6b 642
72853e29 643 while (to_free) {
48db57f8 644 struct page *page;
5f8dcc21
MG
645 struct list_head *list;
646
647 /*
a6f9edd6
MG
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
652 * lists
5f8dcc21
MG
653 */
654 do {
a6f9edd6 655 batch_free++;
5f8dcc21
MG
656 if (++migratetype == MIGRATE_PCPTYPES)
657 migratetype = 0;
658 list = &pcp->lists[migratetype];
659 } while (list_empty(list));
48db57f8 660
1d16871d
NK
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free == MIGRATE_PCPTYPES)
663 batch_free = to_free;
664
a6f9edd6
MG
665 do {
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
a7016235
HD
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page, zone, 0, page_private(page));
671 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
72853e29 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 687 spin_unlock(&zone->lock);
48db57f8
NP
688}
689
ec95f53a 690static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 691{
1da177e4 692 int i;
8cc3b392 693 int bad = 0;
1da177e4 694
b413d48a 695 trace_mm_page_free(page, order);
b1eeab67
VN
696 kmemcheck_free_shadow(page, order);
697
8dd60a3a
AA
698 if (PageAnon(page))
699 page->mapping = NULL;
700 for (i = 0; i < (1 << order); i++)
701 bad += free_pages_check(page + i);
8cc3b392 702 if (bad)
ec95f53a 703 return false;
689bcebf 704
3ac7fe5a 705 if (!PageHighMem(page)) {
9858db50 706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
707 debug_check_no_obj_freed(page_address(page),
708 PAGE_SIZE << order);
709 }
dafb1367 710 arch_free_page(page, order);
48db57f8 711 kernel_map_pages(page, 1 << order, 0);
dafb1367 712
ec95f53a
KM
713 return true;
714}
715
716static void __free_pages_ok(struct page *page, unsigned int order)
717{
718 unsigned long flags;
719 int wasMlocked = __TestClearPageMlocked(page);
720
721 if (!free_pages_prepare(page, order))
722 return;
723
c54ad30c 724 local_irq_save(flags);
c277331d 725 if (unlikely(wasMlocked))
da456f14 726 free_page_mlock(page);
f8891e5e 727 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
728 free_one_page(page_zone(page), page, order,
729 get_pageblock_migratetype(page));
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
a226f6c8
DH
733/*
734 * permit the bootmem allocator to evade page validation on high-order frees
735 */
af370fb8 736void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
737{
738 if (order == 0) {
739 __ClearPageReserved(page);
740 set_page_count(page, 0);
7835e98b 741 set_page_refcounted(page);
545b1ea9 742 __free_page(page);
a226f6c8 743 } else {
a226f6c8
DH
744 int loop;
745
545b1ea9 746 prefetchw(page);
53348f27 747 for (loop = 0; loop < (1 << order); loop++) {
a226f6c8
DH
748 struct page *p = &page[loop];
749
53348f27 750 if (loop + 1 < (1 << order))
545b1ea9 751 prefetchw(p + 1);
a226f6c8
DH
752 __ClearPageReserved(p);
753 set_page_count(p, 0);
754 }
755
7835e98b 756 set_page_refcounted(page);
545b1ea9 757 __free_pages(page, order);
a226f6c8
DH
758 }
759}
760
1da177e4
LT
761
762/*
763 * The order of subdivision here is critical for the IO subsystem.
764 * Please do not alter this order without good reasons and regression
765 * testing. Specifically, as large blocks of memory are subdivided,
766 * the order in which smaller blocks are delivered depends on the order
767 * they're subdivided in this function. This is the primary factor
768 * influencing the order in which pages are delivered to the IO
769 * subsystem according to empirical testing, and this is also justified
770 * by considering the behavior of a buddy system containing a single
771 * large block of memory acted on by a series of small allocations.
772 * This behavior is a critical factor in sglist merging's success.
773 *
774 * -- wli
775 */
085cc7d5 776static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
777 int low, int high, struct free_area *area,
778 int migratetype)
1da177e4
LT
779{
780 unsigned long size = 1 << high;
781
782 while (high > low) {
783 area--;
784 high--;
785 size >>= 1;
725d704e 786 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
787
788#ifdef CONFIG_DEBUG_PAGEALLOC
789 if (high < debug_guardpage_minorder()) {
790 /*
791 * Mark as guard pages (or page), that will allow to
792 * merge back to allocator when buddy will be freed.
793 * Corresponding page table entries will not be touched,
794 * pages will stay not present in virtual address space
795 */
796 INIT_LIST_HEAD(&page[size].lru);
797 set_page_guard_flag(&page[size]);
798 set_page_private(&page[size], high);
799 /* Guard pages are not available for any usage */
800 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
801 continue;
802 }
803#endif
b2a0ac88 804 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
805 area->nr_free++;
806 set_page_order(&page[size], high);
807 }
1da177e4
LT
808}
809
1da177e4
LT
810/*
811 * This page is about to be returned from the page allocator
812 */
2a7684a2 813static inline int check_new_page(struct page *page)
1da177e4 814{
92be2e33
NP
815 if (unlikely(page_mapcount(page) |
816 (page->mapping != NULL) |
a3af9c38 817 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
818 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
819 (mem_cgroup_bad_page_check(page)))) {
224abf92 820 bad_page(page);
689bcebf 821 return 1;
8cc3b392 822 }
2a7684a2
WF
823 return 0;
824}
825
826static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
827{
828 int i;
829
830 for (i = 0; i < (1 << order); i++) {
831 struct page *p = page + i;
832 if (unlikely(check_new_page(p)))
833 return 1;
834 }
689bcebf 835
4c21e2f2 836 set_page_private(page, 0);
7835e98b 837 set_page_refcounted(page);
cc102509
NP
838
839 arch_alloc_page(page, order);
1da177e4 840 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
841
842 if (gfp_flags & __GFP_ZERO)
843 prep_zero_page(page, order, gfp_flags);
844
845 if (order && (gfp_flags & __GFP_COMP))
846 prep_compound_page(page, order);
847
689bcebf 848 return 0;
1da177e4
LT
849}
850
56fd56b8
MG
851/*
852 * Go through the free lists for the given migratetype and remove
853 * the smallest available page from the freelists
854 */
728ec980
MG
855static inline
856struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
857 int migratetype)
858{
859 unsigned int current_order;
860 struct free_area * area;
861 struct page *page;
862
863 /* Find a page of the appropriate size in the preferred list */
864 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
865 area = &(zone->free_area[current_order]);
866 if (list_empty(&area->free_list[migratetype]))
867 continue;
868
869 page = list_entry(area->free_list[migratetype].next,
870 struct page, lru);
871 list_del(&page->lru);
872 rmv_page_order(page);
873 area->nr_free--;
56fd56b8
MG
874 expand(zone, page, order, current_order, area, migratetype);
875 return page;
876 }
877
878 return NULL;
879}
880
881
b2a0ac88
MG
882/*
883 * This array describes the order lists are fallen back to when
884 * the free lists for the desirable migrate type are depleted
885 */
886static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
887 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
888 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
889 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
890 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
891};
892
c361be55
MG
893/*
894 * Move the free pages in a range to the free lists of the requested type.
d9c23400 895 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
896 * boundary. If alignment is required, use move_freepages_block()
897 */
b69a7288
AB
898static int move_freepages(struct zone *zone,
899 struct page *start_page, struct page *end_page,
900 int migratetype)
c361be55
MG
901{
902 struct page *page;
903 unsigned long order;
d100313f 904 int pages_moved = 0;
c361be55
MG
905
906#ifndef CONFIG_HOLES_IN_ZONE
907 /*
908 * page_zone is not safe to call in this context when
909 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
910 * anyway as we check zone boundaries in move_freepages_block().
911 * Remove at a later date when no bug reports exist related to
ac0e5b7a 912 * grouping pages by mobility
c361be55
MG
913 */
914 BUG_ON(page_zone(start_page) != page_zone(end_page));
915#endif
916
917 for (page = start_page; page <= end_page;) {
344c790e
AL
918 /* Make sure we are not inadvertently changing nodes */
919 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
920
c361be55
MG
921 if (!pfn_valid_within(page_to_pfn(page))) {
922 page++;
923 continue;
924 }
925
926 if (!PageBuddy(page)) {
927 page++;
928 continue;
929 }
930
931 order = page_order(page);
84be48d8
KS
932 list_move(&page->lru,
933 &zone->free_area[order].free_list[migratetype]);
c361be55 934 page += 1 << order;
d100313f 935 pages_moved += 1 << order;
c361be55
MG
936 }
937
d100313f 938 return pages_moved;
c361be55
MG
939}
940
b69a7288
AB
941static int move_freepages_block(struct zone *zone, struct page *page,
942 int migratetype)
c361be55
MG
943{
944 unsigned long start_pfn, end_pfn;
945 struct page *start_page, *end_page;
946
947 start_pfn = page_to_pfn(page);
d9c23400 948 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 949 start_page = pfn_to_page(start_pfn);
d9c23400
MG
950 end_page = start_page + pageblock_nr_pages - 1;
951 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
952
953 /* Do not cross zone boundaries */
954 if (start_pfn < zone->zone_start_pfn)
955 start_page = page;
956 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
957 return 0;
958
959 return move_freepages(zone, start_page, end_page, migratetype);
960}
961
2f66a68f
MG
962static void change_pageblock_range(struct page *pageblock_page,
963 int start_order, int migratetype)
964{
965 int nr_pageblocks = 1 << (start_order - pageblock_order);
966
967 while (nr_pageblocks--) {
968 set_pageblock_migratetype(pageblock_page, migratetype);
969 pageblock_page += pageblock_nr_pages;
970 }
971}
972
b2a0ac88 973/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
974static inline struct page *
975__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
976{
977 struct free_area * area;
978 int current_order;
979 struct page *page;
980 int migratetype, i;
981
982 /* Find the largest possible block of pages in the other list */
983 for (current_order = MAX_ORDER-1; current_order >= order;
984 --current_order) {
985 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
986 migratetype = fallbacks[start_migratetype][i];
987
56fd56b8
MG
988 /* MIGRATE_RESERVE handled later if necessary */
989 if (migratetype == MIGRATE_RESERVE)
990 continue;
e010487d 991
b2a0ac88
MG
992 area = &(zone->free_area[current_order]);
993 if (list_empty(&area->free_list[migratetype]))
994 continue;
995
996 page = list_entry(area->free_list[migratetype].next,
997 struct page, lru);
998 area->nr_free--;
999
1000 /*
c361be55 1001 * If breaking a large block of pages, move all free
46dafbca
MG
1002 * pages to the preferred allocation list. If falling
1003 * back for a reclaimable kernel allocation, be more
25985edc 1004 * aggressive about taking ownership of free pages
b2a0ac88 1005 */
d9c23400 1006 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
1007 start_migratetype == MIGRATE_RECLAIMABLE ||
1008 page_group_by_mobility_disabled) {
46dafbca
MG
1009 unsigned long pages;
1010 pages = move_freepages_block(zone, page,
1011 start_migratetype);
1012
1013 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1014 if (pages >= (1 << (pageblock_order-1)) ||
1015 page_group_by_mobility_disabled)
46dafbca
MG
1016 set_pageblock_migratetype(page,
1017 start_migratetype);
1018
b2a0ac88 1019 migratetype = start_migratetype;
c361be55 1020 }
b2a0ac88
MG
1021
1022 /* Remove the page from the freelists */
1023 list_del(&page->lru);
1024 rmv_page_order(page);
b2a0ac88 1025
2f66a68f
MG
1026 /* Take ownership for orders >= pageblock_order */
1027 if (current_order >= pageblock_order)
1028 change_pageblock_range(page, current_order,
b2a0ac88
MG
1029 start_migratetype);
1030
1031 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
1032
1033 trace_mm_page_alloc_extfrag(page, order, current_order,
1034 start_migratetype, migratetype);
1035
b2a0ac88
MG
1036 return page;
1037 }
1038 }
1039
728ec980 1040 return NULL;
b2a0ac88
MG
1041}
1042
56fd56b8 1043/*
1da177e4
LT
1044 * Do the hard work of removing an element from the buddy allocator.
1045 * Call me with the zone->lock already held.
1046 */
b2a0ac88
MG
1047static struct page *__rmqueue(struct zone *zone, unsigned int order,
1048 int migratetype)
1da177e4 1049{
1da177e4
LT
1050 struct page *page;
1051
728ec980 1052retry_reserve:
56fd56b8 1053 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1054
728ec980 1055 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1056 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1057
728ec980
MG
1058 /*
1059 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1060 * is used because __rmqueue_smallest is an inline function
1061 * and we want just one call site
1062 */
1063 if (!page) {
1064 migratetype = MIGRATE_RESERVE;
1065 goto retry_reserve;
1066 }
1067 }
1068
0d3d062a 1069 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1070 return page;
1da177e4
LT
1071}
1072
1073/*
1074 * Obtain a specified number of elements from the buddy allocator, all under
1075 * a single hold of the lock, for efficiency. Add them to the supplied list.
1076 * Returns the number of new pages which were placed at *list.
1077 */
1078static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1079 unsigned long count, struct list_head *list,
e084b2d9 1080 int migratetype, int cold)
1da177e4 1081{
1da177e4 1082 int i;
1da177e4 1083
c54ad30c 1084 spin_lock(&zone->lock);
1da177e4 1085 for (i = 0; i < count; ++i) {
b2a0ac88 1086 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1087 if (unlikely(page == NULL))
1da177e4 1088 break;
81eabcbe
MG
1089
1090 /*
1091 * Split buddy pages returned by expand() are received here
1092 * in physical page order. The page is added to the callers and
1093 * list and the list head then moves forward. From the callers
1094 * perspective, the linked list is ordered by page number in
1095 * some conditions. This is useful for IO devices that can
1096 * merge IO requests if the physical pages are ordered
1097 * properly.
1098 */
e084b2d9
MG
1099 if (likely(cold == 0))
1100 list_add(&page->lru, list);
1101 else
1102 list_add_tail(&page->lru, list);
535131e6 1103 set_page_private(page, migratetype);
81eabcbe 1104 list = &page->lru;
1da177e4 1105 }
f2260e6b 1106 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1107 spin_unlock(&zone->lock);
085cc7d5 1108 return i;
1da177e4
LT
1109}
1110
4ae7c039 1111#ifdef CONFIG_NUMA
8fce4d8e 1112/*
4037d452
CL
1113 * Called from the vmstat counter updater to drain pagesets of this
1114 * currently executing processor on remote nodes after they have
1115 * expired.
1116 *
879336c3
CL
1117 * Note that this function must be called with the thread pinned to
1118 * a single processor.
8fce4d8e 1119 */
4037d452 1120void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1121{
4ae7c039 1122 unsigned long flags;
4037d452 1123 int to_drain;
4ae7c039 1124
4037d452
CL
1125 local_irq_save(flags);
1126 if (pcp->count >= pcp->batch)
1127 to_drain = pcp->batch;
1128 else
1129 to_drain = pcp->count;
5f8dcc21 1130 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1131 pcp->count -= to_drain;
1132 local_irq_restore(flags);
4ae7c039
CL
1133}
1134#endif
1135
9f8f2172
CL
1136/*
1137 * Drain pages of the indicated processor.
1138 *
1139 * The processor must either be the current processor and the
1140 * thread pinned to the current processor or a processor that
1141 * is not online.
1142 */
1143static void drain_pages(unsigned int cpu)
1da177e4 1144{
c54ad30c 1145 unsigned long flags;
1da177e4 1146 struct zone *zone;
1da177e4 1147
ee99c71c 1148 for_each_populated_zone(zone) {
1da177e4 1149 struct per_cpu_pageset *pset;
3dfa5721 1150 struct per_cpu_pages *pcp;
1da177e4 1151
99dcc3e5
CL
1152 local_irq_save(flags);
1153 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1154
1155 pcp = &pset->pcp;
2ff754fa
DR
1156 if (pcp->count) {
1157 free_pcppages_bulk(zone, pcp->count, pcp);
1158 pcp->count = 0;
1159 }
3dfa5721 1160 local_irq_restore(flags);
1da177e4
LT
1161 }
1162}
1da177e4 1163
9f8f2172
CL
1164/*
1165 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1166 */
1167void drain_local_pages(void *arg)
1168{
1169 drain_pages(smp_processor_id());
1170}
1171
1172/*
1173 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1174 */
1175void drain_all_pages(void)
1176{
15c8b6c1 1177 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1178}
1179
296699de 1180#ifdef CONFIG_HIBERNATION
1da177e4
LT
1181
1182void mark_free_pages(struct zone *zone)
1183{
f623f0db
RW
1184 unsigned long pfn, max_zone_pfn;
1185 unsigned long flags;
b2a0ac88 1186 int order, t;
1da177e4
LT
1187 struct list_head *curr;
1188
1189 if (!zone->spanned_pages)
1190 return;
1191
1192 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1193
1194 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1195 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1196 if (pfn_valid(pfn)) {
1197 struct page *page = pfn_to_page(pfn);
1198
7be98234
RW
1199 if (!swsusp_page_is_forbidden(page))
1200 swsusp_unset_page_free(page);
f623f0db 1201 }
1da177e4 1202
b2a0ac88
MG
1203 for_each_migratetype_order(order, t) {
1204 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1205 unsigned long i;
1da177e4 1206
f623f0db
RW
1207 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1208 for (i = 0; i < (1UL << order); i++)
7be98234 1209 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1210 }
b2a0ac88 1211 }
1da177e4
LT
1212 spin_unlock_irqrestore(&zone->lock, flags);
1213}
e2c55dc8 1214#endif /* CONFIG_PM */
1da177e4 1215
1da177e4
LT
1216/*
1217 * Free a 0-order page
fc91668e 1218 * cold == 1 ? free a cold page : free a hot page
1da177e4 1219 */
fc91668e 1220void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1221{
1222 struct zone *zone = page_zone(page);
1223 struct per_cpu_pages *pcp;
1224 unsigned long flags;
5f8dcc21 1225 int migratetype;
451ea25d 1226 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1227
ec95f53a 1228 if (!free_pages_prepare(page, 0))
689bcebf
HD
1229 return;
1230
5f8dcc21
MG
1231 migratetype = get_pageblock_migratetype(page);
1232 set_page_private(page, migratetype);
1da177e4 1233 local_irq_save(flags);
c277331d 1234 if (unlikely(wasMlocked))
da456f14 1235 free_page_mlock(page);
f8891e5e 1236 __count_vm_event(PGFREE);
da456f14 1237
5f8dcc21
MG
1238 /*
1239 * We only track unmovable, reclaimable and movable on pcp lists.
1240 * Free ISOLATE pages back to the allocator because they are being
1241 * offlined but treat RESERVE as movable pages so we can get those
1242 * areas back if necessary. Otherwise, we may have to free
1243 * excessively into the page allocator
1244 */
1245 if (migratetype >= MIGRATE_PCPTYPES) {
1246 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1247 free_one_page(zone, page, 0, migratetype);
1248 goto out;
1249 }
1250 migratetype = MIGRATE_MOVABLE;
1251 }
1252
99dcc3e5 1253 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1254 if (cold)
5f8dcc21 1255 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1256 else
5f8dcc21 1257 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1258 pcp->count++;
48db57f8 1259 if (pcp->count >= pcp->high) {
5f8dcc21 1260 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1261 pcp->count -= pcp->batch;
1262 }
5f8dcc21
MG
1263
1264out:
1da177e4 1265 local_irq_restore(flags);
1da177e4
LT
1266}
1267
cc59850e
KK
1268/*
1269 * Free a list of 0-order pages
1270 */
1271void free_hot_cold_page_list(struct list_head *list, int cold)
1272{
1273 struct page *page, *next;
1274
1275 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1276 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1277 free_hot_cold_page(page, cold);
1278 }
1279}
1280
8dfcc9ba
NP
1281/*
1282 * split_page takes a non-compound higher-order page, and splits it into
1283 * n (1<<order) sub-pages: page[0..n]
1284 * Each sub-page must be freed individually.
1285 *
1286 * Note: this is probably too low level an operation for use in drivers.
1287 * Please consult with lkml before using this in your driver.
1288 */
1289void split_page(struct page *page, unsigned int order)
1290{
1291 int i;
1292
725d704e
NP
1293 VM_BUG_ON(PageCompound(page));
1294 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1295
1296#ifdef CONFIG_KMEMCHECK
1297 /*
1298 * Split shadow pages too, because free(page[0]) would
1299 * otherwise free the whole shadow.
1300 */
1301 if (kmemcheck_page_is_tracked(page))
1302 split_page(virt_to_page(page[0].shadow), order);
1303#endif
1304
7835e98b
NP
1305 for (i = 1; i < (1 << order); i++)
1306 set_page_refcounted(page + i);
8dfcc9ba 1307}
8dfcc9ba 1308
748446bb
MG
1309/*
1310 * Similar to split_page except the page is already free. As this is only
1311 * being used for migration, the migratetype of the block also changes.
1312 * As this is called with interrupts disabled, the caller is responsible
1313 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1314 * are enabled.
1315 *
1316 * Note: this is probably too low level an operation for use in drivers.
1317 * Please consult with lkml before using this in your driver.
1318 */
1319int split_free_page(struct page *page)
1320{
1321 unsigned int order;
1322 unsigned long watermark;
1323 struct zone *zone;
1324
1325 BUG_ON(!PageBuddy(page));
1326
1327 zone = page_zone(page);
1328 order = page_order(page);
1329
1330 /* Obey watermarks as if the page was being allocated */
1331 watermark = low_wmark_pages(zone) + (1 << order);
1332 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1333 return 0;
1334
1335 /* Remove page from free list */
1336 list_del(&page->lru);
1337 zone->free_area[order].nr_free--;
1338 rmv_page_order(page);
1339 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1340
1341 /* Split into individual pages */
1342 set_page_refcounted(page);
1343 split_page(page, order);
1344
1345 if (order >= pageblock_order - 1) {
1346 struct page *endpage = page + (1 << order) - 1;
1347 for (; page < endpage; page += pageblock_nr_pages)
1348 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1349 }
1350
1351 return 1 << order;
1352}
1353
1da177e4
LT
1354/*
1355 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1356 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1357 * or two.
1358 */
0a15c3e9
MG
1359static inline
1360struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1361 struct zone *zone, int order, gfp_t gfp_flags,
1362 int migratetype)
1da177e4
LT
1363{
1364 unsigned long flags;
689bcebf 1365 struct page *page;
1da177e4
LT
1366 int cold = !!(gfp_flags & __GFP_COLD);
1367
689bcebf 1368again:
48db57f8 1369 if (likely(order == 0)) {
1da177e4 1370 struct per_cpu_pages *pcp;
5f8dcc21 1371 struct list_head *list;
1da177e4 1372
1da177e4 1373 local_irq_save(flags);
99dcc3e5
CL
1374 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1375 list = &pcp->lists[migratetype];
5f8dcc21 1376 if (list_empty(list)) {
535131e6 1377 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1378 pcp->batch, list,
e084b2d9 1379 migratetype, cold);
5f8dcc21 1380 if (unlikely(list_empty(list)))
6fb332fa 1381 goto failed;
535131e6 1382 }
b92a6edd 1383
5f8dcc21
MG
1384 if (cold)
1385 page = list_entry(list->prev, struct page, lru);
1386 else
1387 page = list_entry(list->next, struct page, lru);
1388
b92a6edd
MG
1389 list_del(&page->lru);
1390 pcp->count--;
7fb1d9fc 1391 } else {
dab48dab
AM
1392 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1393 /*
1394 * __GFP_NOFAIL is not to be used in new code.
1395 *
1396 * All __GFP_NOFAIL callers should be fixed so that they
1397 * properly detect and handle allocation failures.
1398 *
1399 * We most definitely don't want callers attempting to
4923abf9 1400 * allocate greater than order-1 page units with
dab48dab
AM
1401 * __GFP_NOFAIL.
1402 */
4923abf9 1403 WARN_ON_ONCE(order > 1);
dab48dab 1404 }
1da177e4 1405 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1406 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1407 spin_unlock(&zone->lock);
1408 if (!page)
1409 goto failed;
6ccf80eb 1410 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1411 }
1412
f8891e5e 1413 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1414 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1415 local_irq_restore(flags);
1da177e4 1416
725d704e 1417 VM_BUG_ON(bad_range(zone, page));
17cf4406 1418 if (prep_new_page(page, order, gfp_flags))
a74609fa 1419 goto again;
1da177e4 1420 return page;
a74609fa
NP
1421
1422failed:
1423 local_irq_restore(flags);
a74609fa 1424 return NULL;
1da177e4
LT
1425}
1426
41858966
MG
1427/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1428#define ALLOC_WMARK_MIN WMARK_MIN
1429#define ALLOC_WMARK_LOW WMARK_LOW
1430#define ALLOC_WMARK_HIGH WMARK_HIGH
1431#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1432
1433/* Mask to get the watermark bits */
1434#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1435
3148890b
NP
1436#define ALLOC_HARDER 0x10 /* try to alloc harder */
1437#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1438#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1439
933e312e
AM
1440#ifdef CONFIG_FAIL_PAGE_ALLOC
1441
b2588c4b 1442static struct {
933e312e
AM
1443 struct fault_attr attr;
1444
1445 u32 ignore_gfp_highmem;
1446 u32 ignore_gfp_wait;
54114994 1447 u32 min_order;
933e312e
AM
1448} fail_page_alloc = {
1449 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1450 .ignore_gfp_wait = 1,
1451 .ignore_gfp_highmem = 1,
54114994 1452 .min_order = 1,
933e312e
AM
1453};
1454
1455static int __init setup_fail_page_alloc(char *str)
1456{
1457 return setup_fault_attr(&fail_page_alloc.attr, str);
1458}
1459__setup("fail_page_alloc=", setup_fail_page_alloc);
1460
1461static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1462{
54114994
AM
1463 if (order < fail_page_alloc.min_order)
1464 return 0;
933e312e
AM
1465 if (gfp_mask & __GFP_NOFAIL)
1466 return 0;
1467 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1468 return 0;
1469 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1470 return 0;
1471
1472 return should_fail(&fail_page_alloc.attr, 1 << order);
1473}
1474
1475#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1476
1477static int __init fail_page_alloc_debugfs(void)
1478{
f4ae40a6 1479 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1480 struct dentry *dir;
933e312e 1481
dd48c085
AM
1482 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1483 &fail_page_alloc.attr);
1484 if (IS_ERR(dir))
1485 return PTR_ERR(dir);
933e312e 1486
b2588c4b
AM
1487 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1488 &fail_page_alloc.ignore_gfp_wait))
1489 goto fail;
1490 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1491 &fail_page_alloc.ignore_gfp_highmem))
1492 goto fail;
1493 if (!debugfs_create_u32("min-order", mode, dir,
1494 &fail_page_alloc.min_order))
1495 goto fail;
1496
1497 return 0;
1498fail:
dd48c085 1499 debugfs_remove_recursive(dir);
933e312e 1500
b2588c4b 1501 return -ENOMEM;
933e312e
AM
1502}
1503
1504late_initcall(fail_page_alloc_debugfs);
1505
1506#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1507
1508#else /* CONFIG_FAIL_PAGE_ALLOC */
1509
1510static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1511{
1512 return 0;
1513}
1514
1515#endif /* CONFIG_FAIL_PAGE_ALLOC */
1516
1da177e4 1517/*
88f5acf8 1518 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1519 * of the allocation.
1520 */
88f5acf8
MG
1521static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1522 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1523{
1524 /* free_pages my go negative - that's OK */
d23ad423 1525 long min = mark;
1da177e4
LT
1526 int o;
1527
88f5acf8 1528 free_pages -= (1 << order) + 1;
7fb1d9fc 1529 if (alloc_flags & ALLOC_HIGH)
1da177e4 1530 min -= min / 2;
7fb1d9fc 1531 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1532 min -= min / 4;
1533
1534 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1535 return false;
1da177e4
LT
1536 for (o = 0; o < order; o++) {
1537 /* At the next order, this order's pages become unavailable */
1538 free_pages -= z->free_area[o].nr_free << o;
1539
1540 /* Require fewer higher order pages to be free */
1541 min >>= 1;
1542
1543 if (free_pages <= min)
88f5acf8 1544 return false;
1da177e4 1545 }
88f5acf8
MG
1546 return true;
1547}
1548
1549bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1550 int classzone_idx, int alloc_flags)
1551{
1552 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1553 zone_page_state(z, NR_FREE_PAGES));
1554}
1555
1556bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1557 int classzone_idx, int alloc_flags)
1558{
1559 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1560
1561 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1562 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1563
1564 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1565 free_pages);
1da177e4
LT
1566}
1567
9276b1bc
PJ
1568#ifdef CONFIG_NUMA
1569/*
1570 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1571 * skip over zones that are not allowed by the cpuset, or that have
1572 * been recently (in last second) found to be nearly full. See further
1573 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1574 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1575 *
1576 * If the zonelist cache is present in the passed in zonelist, then
1577 * returns a pointer to the allowed node mask (either the current
37b07e41 1578 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1579 *
1580 * If the zonelist cache is not available for this zonelist, does
1581 * nothing and returns NULL.
1582 *
1583 * If the fullzones BITMAP in the zonelist cache is stale (more than
1584 * a second since last zap'd) then we zap it out (clear its bits.)
1585 *
1586 * We hold off even calling zlc_setup, until after we've checked the
1587 * first zone in the zonelist, on the theory that most allocations will
1588 * be satisfied from that first zone, so best to examine that zone as
1589 * quickly as we can.
1590 */
1591static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1592{
1593 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1594 nodemask_t *allowednodes; /* zonelist_cache approximation */
1595
1596 zlc = zonelist->zlcache_ptr;
1597 if (!zlc)
1598 return NULL;
1599
f05111f5 1600 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1601 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1602 zlc->last_full_zap = jiffies;
1603 }
1604
1605 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1606 &cpuset_current_mems_allowed :
37b07e41 1607 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1608 return allowednodes;
1609}
1610
1611/*
1612 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1613 * if it is worth looking at further for free memory:
1614 * 1) Check that the zone isn't thought to be full (doesn't have its
1615 * bit set in the zonelist_cache fullzones BITMAP).
1616 * 2) Check that the zones node (obtained from the zonelist_cache
1617 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1618 * Return true (non-zero) if zone is worth looking at further, or
1619 * else return false (zero) if it is not.
1620 *
1621 * This check -ignores- the distinction between various watermarks,
1622 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1623 * found to be full for any variation of these watermarks, it will
1624 * be considered full for up to one second by all requests, unless
1625 * we are so low on memory on all allowed nodes that we are forced
1626 * into the second scan of the zonelist.
1627 *
1628 * In the second scan we ignore this zonelist cache and exactly
1629 * apply the watermarks to all zones, even it is slower to do so.
1630 * We are low on memory in the second scan, and should leave no stone
1631 * unturned looking for a free page.
1632 */
dd1a239f 1633static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1634 nodemask_t *allowednodes)
1635{
1636 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1637 int i; /* index of *z in zonelist zones */
1638 int n; /* node that zone *z is on */
1639
1640 zlc = zonelist->zlcache_ptr;
1641 if (!zlc)
1642 return 1;
1643
dd1a239f 1644 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1645 n = zlc->z_to_n[i];
1646
1647 /* This zone is worth trying if it is allowed but not full */
1648 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1649}
1650
1651/*
1652 * Given 'z' scanning a zonelist, set the corresponding bit in
1653 * zlc->fullzones, so that subsequent attempts to allocate a page
1654 * from that zone don't waste time re-examining it.
1655 */
dd1a239f 1656static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1657{
1658 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1659 int i; /* index of *z in zonelist zones */
1660
1661 zlc = zonelist->zlcache_ptr;
1662 if (!zlc)
1663 return;
1664
dd1a239f 1665 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1666
1667 set_bit(i, zlc->fullzones);
1668}
1669
76d3fbf8
MG
1670/*
1671 * clear all zones full, called after direct reclaim makes progress so that
1672 * a zone that was recently full is not skipped over for up to a second
1673 */
1674static void zlc_clear_zones_full(struct zonelist *zonelist)
1675{
1676 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1677
1678 zlc = zonelist->zlcache_ptr;
1679 if (!zlc)
1680 return;
1681
1682 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1683}
1684
9276b1bc
PJ
1685#else /* CONFIG_NUMA */
1686
1687static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1688{
1689 return NULL;
1690}
1691
dd1a239f 1692static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1693 nodemask_t *allowednodes)
1694{
1695 return 1;
1696}
1697
dd1a239f 1698static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1699{
1700}
76d3fbf8
MG
1701
1702static void zlc_clear_zones_full(struct zonelist *zonelist)
1703{
1704}
9276b1bc
PJ
1705#endif /* CONFIG_NUMA */
1706
7fb1d9fc 1707/*
0798e519 1708 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1709 * a page.
1710 */
1711static struct page *
19770b32 1712get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1713 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1714 struct zone *preferred_zone, int migratetype)
753ee728 1715{
dd1a239f 1716 struct zoneref *z;
7fb1d9fc 1717 struct page *page = NULL;
54a6eb5c 1718 int classzone_idx;
5117f45d 1719 struct zone *zone;
9276b1bc
PJ
1720 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1721 int zlc_active = 0; /* set if using zonelist_cache */
1722 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1723
19770b32 1724 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1725zonelist_scan:
7fb1d9fc 1726 /*
9276b1bc 1727 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1728 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1729 */
19770b32
MG
1730 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1731 high_zoneidx, nodemask) {
9276b1bc
PJ
1732 if (NUMA_BUILD && zlc_active &&
1733 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1734 continue;
7fb1d9fc 1735 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1736 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1737 continue;
a756cf59
JW
1738 /*
1739 * When allocating a page cache page for writing, we
1740 * want to get it from a zone that is within its dirty
1741 * limit, such that no single zone holds more than its
1742 * proportional share of globally allowed dirty pages.
1743 * The dirty limits take into account the zone's
1744 * lowmem reserves and high watermark so that kswapd
1745 * should be able to balance it without having to
1746 * write pages from its LRU list.
1747 *
1748 * This may look like it could increase pressure on
1749 * lower zones by failing allocations in higher zones
1750 * before they are full. But the pages that do spill
1751 * over are limited as the lower zones are protected
1752 * by this very same mechanism. It should not become
1753 * a practical burden to them.
1754 *
1755 * XXX: For now, allow allocations to potentially
1756 * exceed the per-zone dirty limit in the slowpath
1757 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1758 * which is important when on a NUMA setup the allowed
1759 * zones are together not big enough to reach the
1760 * global limit. The proper fix for these situations
1761 * will require awareness of zones in the
1762 * dirty-throttling and the flusher threads.
1763 */
1764 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1765 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1766 goto this_zone_full;
7fb1d9fc 1767
41858966 1768 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1769 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1770 unsigned long mark;
fa5e084e
MG
1771 int ret;
1772
41858966 1773 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1774 if (zone_watermark_ok(zone, order, mark,
1775 classzone_idx, alloc_flags))
1776 goto try_this_zone;
1777
cd38b115
MG
1778 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1779 /*
1780 * we do zlc_setup if there are multiple nodes
1781 * and before considering the first zone allowed
1782 * by the cpuset.
1783 */
1784 allowednodes = zlc_setup(zonelist, alloc_flags);
1785 zlc_active = 1;
1786 did_zlc_setup = 1;
1787 }
1788
fa5e084e
MG
1789 if (zone_reclaim_mode == 0)
1790 goto this_zone_full;
1791
cd38b115
MG
1792 /*
1793 * As we may have just activated ZLC, check if the first
1794 * eligible zone has failed zone_reclaim recently.
1795 */
1796 if (NUMA_BUILD && zlc_active &&
1797 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1798 continue;
1799
fa5e084e
MG
1800 ret = zone_reclaim(zone, gfp_mask, order);
1801 switch (ret) {
1802 case ZONE_RECLAIM_NOSCAN:
1803 /* did not scan */
cd38b115 1804 continue;
fa5e084e
MG
1805 case ZONE_RECLAIM_FULL:
1806 /* scanned but unreclaimable */
cd38b115 1807 continue;
fa5e084e
MG
1808 default:
1809 /* did we reclaim enough */
1810 if (!zone_watermark_ok(zone, order, mark,
1811 classzone_idx, alloc_flags))
9276b1bc 1812 goto this_zone_full;
0798e519 1813 }
7fb1d9fc
RS
1814 }
1815
fa5e084e 1816try_this_zone:
3dd28266
MG
1817 page = buffered_rmqueue(preferred_zone, zone, order,
1818 gfp_mask, migratetype);
0798e519 1819 if (page)
7fb1d9fc 1820 break;
9276b1bc
PJ
1821this_zone_full:
1822 if (NUMA_BUILD)
1823 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1824 }
9276b1bc
PJ
1825
1826 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1827 /* Disable zlc cache for second zonelist scan */
1828 zlc_active = 0;
1829 goto zonelist_scan;
1830 }
7fb1d9fc 1831 return page;
753ee728
MH
1832}
1833
29423e77
DR
1834/*
1835 * Large machines with many possible nodes should not always dump per-node
1836 * meminfo in irq context.
1837 */
1838static inline bool should_suppress_show_mem(void)
1839{
1840 bool ret = false;
1841
1842#if NODES_SHIFT > 8
1843 ret = in_interrupt();
1844#endif
1845 return ret;
1846}
1847
a238ab5b
DH
1848static DEFINE_RATELIMIT_STATE(nopage_rs,
1849 DEFAULT_RATELIMIT_INTERVAL,
1850 DEFAULT_RATELIMIT_BURST);
1851
1852void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1853{
a238ab5b
DH
1854 unsigned int filter = SHOW_MEM_FILTER_NODES;
1855
c0a32fc5
SG
1856 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1857 debug_guardpage_minorder() > 0)
a238ab5b
DH
1858 return;
1859
1860 /*
1861 * This documents exceptions given to allocations in certain
1862 * contexts that are allowed to allocate outside current's set
1863 * of allowed nodes.
1864 */
1865 if (!(gfp_mask & __GFP_NOMEMALLOC))
1866 if (test_thread_flag(TIF_MEMDIE) ||
1867 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1868 filter &= ~SHOW_MEM_FILTER_NODES;
1869 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1870 filter &= ~SHOW_MEM_FILTER_NODES;
1871
1872 if (fmt) {
3ee9a4f0
JP
1873 struct va_format vaf;
1874 va_list args;
1875
a238ab5b 1876 va_start(args, fmt);
3ee9a4f0
JP
1877
1878 vaf.fmt = fmt;
1879 vaf.va = &args;
1880
1881 pr_warn("%pV", &vaf);
1882
a238ab5b
DH
1883 va_end(args);
1884 }
1885
3ee9a4f0
JP
1886 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1887 current->comm, order, gfp_mask);
a238ab5b
DH
1888
1889 dump_stack();
1890 if (!should_suppress_show_mem())
1891 show_mem(filter);
1892}
1893
11e33f6a
MG
1894static inline int
1895should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1896 unsigned long did_some_progress,
11e33f6a 1897 unsigned long pages_reclaimed)
1da177e4 1898{
11e33f6a
MG
1899 /* Do not loop if specifically requested */
1900 if (gfp_mask & __GFP_NORETRY)
1901 return 0;
1da177e4 1902
f90ac398
MG
1903 /* Always retry if specifically requested */
1904 if (gfp_mask & __GFP_NOFAIL)
1905 return 1;
1906
1907 /*
1908 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1909 * making forward progress without invoking OOM. Suspend also disables
1910 * storage devices so kswapd will not help. Bail if we are suspending.
1911 */
1912 if (!did_some_progress && pm_suspended_storage())
1913 return 0;
1914
11e33f6a
MG
1915 /*
1916 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1917 * means __GFP_NOFAIL, but that may not be true in other
1918 * implementations.
1919 */
1920 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1921 return 1;
1922
1923 /*
1924 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1925 * specified, then we retry until we no longer reclaim any pages
1926 * (above), or we've reclaimed an order of pages at least as
1927 * large as the allocation's order. In both cases, if the
1928 * allocation still fails, we stop retrying.
1929 */
1930 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1931 return 1;
cf40bd16 1932
11e33f6a
MG
1933 return 0;
1934}
933e312e 1935
11e33f6a
MG
1936static inline struct page *
1937__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1938 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1939 nodemask_t *nodemask, struct zone *preferred_zone,
1940 int migratetype)
11e33f6a
MG
1941{
1942 struct page *page;
1943
1944 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1945 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1946 schedule_timeout_uninterruptible(1);
1da177e4
LT
1947 return NULL;
1948 }
6b1de916 1949
11e33f6a
MG
1950 /*
1951 * Go through the zonelist yet one more time, keep very high watermark
1952 * here, this is only to catch a parallel oom killing, we must fail if
1953 * we're still under heavy pressure.
1954 */
1955 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1956 order, zonelist, high_zoneidx,
5117f45d 1957 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1958 preferred_zone, migratetype);
7fb1d9fc 1959 if (page)
11e33f6a
MG
1960 goto out;
1961
4365a567
KH
1962 if (!(gfp_mask & __GFP_NOFAIL)) {
1963 /* The OOM killer will not help higher order allocs */
1964 if (order > PAGE_ALLOC_COSTLY_ORDER)
1965 goto out;
03668b3c
DR
1966 /* The OOM killer does not needlessly kill tasks for lowmem */
1967 if (high_zoneidx < ZONE_NORMAL)
1968 goto out;
4365a567
KH
1969 /*
1970 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1971 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1972 * The caller should handle page allocation failure by itself if
1973 * it specifies __GFP_THISNODE.
1974 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1975 */
1976 if (gfp_mask & __GFP_THISNODE)
1977 goto out;
1978 }
11e33f6a 1979 /* Exhausted what can be done so it's blamo time */
4365a567 1980 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1981
1982out:
1983 clear_zonelist_oom(zonelist, gfp_mask);
1984 return page;
1985}
1986
56de7263
MG
1987#ifdef CONFIG_COMPACTION
1988/* Try memory compaction for high-order allocations before reclaim */
1989static struct page *
1990__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1991 struct zonelist *zonelist, enum zone_type high_zoneidx,
1992 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1993 int migratetype, unsigned long *did_some_progress,
1994 bool sync_migration)
56de7263
MG
1995{
1996 struct page *page;
1997
4f92e258 1998 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1999 return NULL;
2000
c06b1fca 2001 current->flags |= PF_MEMALLOC;
56de7263 2002 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 2003 nodemask, sync_migration);
c06b1fca 2004 current->flags &= ~PF_MEMALLOC;
56de7263
MG
2005 if (*did_some_progress != COMPACT_SKIPPED) {
2006
2007 /* Page migration frees to the PCP lists but we want merging */
2008 drain_pages(get_cpu());
2009 put_cpu();
2010
2011 page = get_page_from_freelist(gfp_mask, nodemask,
2012 order, zonelist, high_zoneidx,
2013 alloc_flags, preferred_zone,
2014 migratetype);
2015 if (page) {
4f92e258
MG
2016 preferred_zone->compact_considered = 0;
2017 preferred_zone->compact_defer_shift = 0;
56de7263
MG
2018 count_vm_event(COMPACTSUCCESS);
2019 return page;
2020 }
2021
2022 /*
2023 * It's bad if compaction run occurs and fails.
2024 * The most likely reason is that pages exist,
2025 * but not enough to satisfy watermarks.
2026 */
2027 count_vm_event(COMPACTFAIL);
4f92e258 2028 defer_compaction(preferred_zone);
56de7263
MG
2029
2030 cond_resched();
2031 }
2032
2033 return NULL;
2034}
2035#else
2036static inline struct page *
2037__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2038 struct zonelist *zonelist, enum zone_type high_zoneidx,
2039 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
2040 int migratetype, unsigned long *did_some_progress,
2041 bool sync_migration)
56de7263
MG
2042{
2043 return NULL;
2044}
2045#endif /* CONFIG_COMPACTION */
2046
11e33f6a
MG
2047/* The really slow allocator path where we enter direct reclaim */
2048static inline struct page *
2049__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2050 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 2051 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 2052 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
2053{
2054 struct page *page = NULL;
2055 struct reclaim_state reclaim_state;
9ee493ce 2056 bool drained = false;
11e33f6a
MG
2057
2058 cond_resched();
2059
2060 /* We now go into synchronous reclaim */
2061 cpuset_memory_pressure_bump();
c06b1fca 2062 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2063 lockdep_set_current_reclaim_state(gfp_mask);
2064 reclaim_state.reclaimed_slab = 0;
c06b1fca 2065 current->reclaim_state = &reclaim_state;
11e33f6a
MG
2066
2067 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2068
c06b1fca 2069 current->reclaim_state = NULL;
11e33f6a 2070 lockdep_clear_current_reclaim_state();
c06b1fca 2071 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2072
2073 cond_resched();
2074
9ee493ce
MG
2075 if (unlikely(!(*did_some_progress)))
2076 return NULL;
11e33f6a 2077
76d3fbf8
MG
2078 /* After successful reclaim, reconsider all zones for allocation */
2079 if (NUMA_BUILD)
2080 zlc_clear_zones_full(zonelist);
2081
9ee493ce
MG
2082retry:
2083 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2084 zonelist, high_zoneidx,
3dd28266
MG
2085 alloc_flags, preferred_zone,
2086 migratetype);
9ee493ce
MG
2087
2088 /*
2089 * If an allocation failed after direct reclaim, it could be because
2090 * pages are pinned on the per-cpu lists. Drain them and try again
2091 */
2092 if (!page && !drained) {
2093 drain_all_pages();
2094 drained = true;
2095 goto retry;
2096 }
2097
11e33f6a
MG
2098 return page;
2099}
2100
1da177e4 2101/*
11e33f6a
MG
2102 * This is called in the allocator slow-path if the allocation request is of
2103 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2104 */
11e33f6a
MG
2105static inline struct page *
2106__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2107 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2108 nodemask_t *nodemask, struct zone *preferred_zone,
2109 int migratetype)
11e33f6a
MG
2110{
2111 struct page *page;
2112
2113 do {
2114 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2115 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2116 preferred_zone, migratetype);
11e33f6a
MG
2117
2118 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2119 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2120 } while (!page && (gfp_mask & __GFP_NOFAIL));
2121
2122 return page;
2123}
2124
2125static inline
2126void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2127 enum zone_type high_zoneidx,
2128 enum zone_type classzone_idx)
1da177e4 2129{
dd1a239f
MG
2130 struct zoneref *z;
2131 struct zone *zone;
1da177e4 2132
11e33f6a 2133 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2134 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2135}
cf40bd16 2136
341ce06f
PZ
2137static inline int
2138gfp_to_alloc_flags(gfp_t gfp_mask)
2139{
341ce06f
PZ
2140 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2141 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2142
a56f57ff 2143 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2144 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2145
341ce06f
PZ
2146 /*
2147 * The caller may dip into page reserves a bit more if the caller
2148 * cannot run direct reclaim, or if the caller has realtime scheduling
2149 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2150 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2151 */
e6223a3b 2152 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2153
341ce06f 2154 if (!wait) {
5c3240d9
AA
2155 /*
2156 * Not worth trying to allocate harder for
2157 * __GFP_NOMEMALLOC even if it can't schedule.
2158 */
2159 if (!(gfp_mask & __GFP_NOMEMALLOC))
2160 alloc_flags |= ALLOC_HARDER;
523b9458 2161 /*
341ce06f
PZ
2162 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2163 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2164 */
341ce06f 2165 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2166 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2167 alloc_flags |= ALLOC_HARDER;
2168
2169 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2170 if (!in_interrupt() &&
c06b1fca 2171 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2172 unlikely(test_thread_flag(TIF_MEMDIE))))
2173 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2174 }
6b1de916 2175
341ce06f
PZ
2176 return alloc_flags;
2177}
2178
11e33f6a
MG
2179static inline struct page *
2180__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2181 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2182 nodemask_t *nodemask, struct zone *preferred_zone,
2183 int migratetype)
11e33f6a
MG
2184{
2185 const gfp_t wait = gfp_mask & __GFP_WAIT;
2186 struct page *page = NULL;
2187 int alloc_flags;
2188 unsigned long pages_reclaimed = 0;
2189 unsigned long did_some_progress;
77f1fe6b 2190 bool sync_migration = false;
1da177e4 2191
72807a74
MG
2192 /*
2193 * In the slowpath, we sanity check order to avoid ever trying to
2194 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2195 * be using allocators in order of preference for an area that is
2196 * too large.
2197 */
1fc28b70
MG
2198 if (order >= MAX_ORDER) {
2199 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2200 return NULL;
1fc28b70 2201 }
1da177e4 2202
952f3b51
CL
2203 /*
2204 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2205 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2206 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2207 * using a larger set of nodes after it has established that the
2208 * allowed per node queues are empty and that nodes are
2209 * over allocated.
2210 */
2211 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2212 goto nopage;
2213
cc4a6851 2214restart:
32dba98e
AA
2215 if (!(gfp_mask & __GFP_NO_KSWAPD))
2216 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2217 zone_idx(preferred_zone));
1da177e4 2218
9bf2229f 2219 /*
7fb1d9fc
RS
2220 * OK, we're below the kswapd watermark and have kicked background
2221 * reclaim. Now things get more complex, so set up alloc_flags according
2222 * to how we want to proceed.
9bf2229f 2223 */
341ce06f 2224 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2225
f33261d7
DR
2226 /*
2227 * Find the true preferred zone if the allocation is unconstrained by
2228 * cpusets.
2229 */
2230 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2231 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2232 &preferred_zone);
2233
cfa54a0f 2234rebalance:
341ce06f 2235 /* This is the last chance, in general, before the goto nopage. */
19770b32 2236 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2237 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2238 preferred_zone, migratetype);
7fb1d9fc
RS
2239 if (page)
2240 goto got_pg;
1da177e4 2241
11e33f6a 2242 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2243 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2244 page = __alloc_pages_high_priority(gfp_mask, order,
2245 zonelist, high_zoneidx, nodemask,
2246 preferred_zone, migratetype);
2247 if (page)
2248 goto got_pg;
1da177e4
LT
2249 }
2250
2251 /* Atomic allocations - we can't balance anything */
2252 if (!wait)
2253 goto nopage;
2254
341ce06f 2255 /* Avoid recursion of direct reclaim */
c06b1fca 2256 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2257 goto nopage;
2258
6583bb64
DR
2259 /* Avoid allocations with no watermarks from looping endlessly */
2260 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2261 goto nopage;
2262
77f1fe6b
MG
2263 /*
2264 * Try direct compaction. The first pass is asynchronous. Subsequent
2265 * attempts after direct reclaim are synchronous
2266 */
56de7263
MG
2267 page = __alloc_pages_direct_compact(gfp_mask, order,
2268 zonelist, high_zoneidx,
2269 nodemask,
2270 alloc_flags, preferred_zone,
77f1fe6b
MG
2271 migratetype, &did_some_progress,
2272 sync_migration);
56de7263
MG
2273 if (page)
2274 goto got_pg;
c6a140bf 2275 sync_migration = true;
56de7263 2276
11e33f6a
MG
2277 /* Try direct reclaim and then allocating */
2278 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2279 zonelist, high_zoneidx,
2280 nodemask,
5117f45d 2281 alloc_flags, preferred_zone,
3dd28266 2282 migratetype, &did_some_progress);
11e33f6a
MG
2283 if (page)
2284 goto got_pg;
1da177e4 2285
e33c3b5e 2286 /*
11e33f6a
MG
2287 * If we failed to make any progress reclaiming, then we are
2288 * running out of options and have to consider going OOM
e33c3b5e 2289 */
11e33f6a
MG
2290 if (!did_some_progress) {
2291 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2292 if (oom_killer_disabled)
2293 goto nopage;
11e33f6a
MG
2294 page = __alloc_pages_may_oom(gfp_mask, order,
2295 zonelist, high_zoneidx,
3dd28266
MG
2296 nodemask, preferred_zone,
2297 migratetype);
11e33f6a
MG
2298 if (page)
2299 goto got_pg;
1da177e4 2300
03668b3c
DR
2301 if (!(gfp_mask & __GFP_NOFAIL)) {
2302 /*
2303 * The oom killer is not called for high-order
2304 * allocations that may fail, so if no progress
2305 * is being made, there are no other options and
2306 * retrying is unlikely to help.
2307 */
2308 if (order > PAGE_ALLOC_COSTLY_ORDER)
2309 goto nopage;
2310 /*
2311 * The oom killer is not called for lowmem
2312 * allocations to prevent needlessly killing
2313 * innocent tasks.
2314 */
2315 if (high_zoneidx < ZONE_NORMAL)
2316 goto nopage;
2317 }
e2c55dc8 2318
ff0ceb9d
DR
2319 goto restart;
2320 }
1da177e4
LT
2321 }
2322
11e33f6a 2323 /* Check if we should retry the allocation */
a41f24ea 2324 pages_reclaimed += did_some_progress;
f90ac398
MG
2325 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2326 pages_reclaimed)) {
11e33f6a 2327 /* Wait for some write requests to complete then retry */
0e093d99 2328 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2329 goto rebalance;
3e7d3449
MG
2330 } else {
2331 /*
2332 * High-order allocations do not necessarily loop after
2333 * direct reclaim and reclaim/compaction depends on compaction
2334 * being called after reclaim so call directly if necessary
2335 */
2336 page = __alloc_pages_direct_compact(gfp_mask, order,
2337 zonelist, high_zoneidx,
2338 nodemask,
2339 alloc_flags, preferred_zone,
77f1fe6b
MG
2340 migratetype, &did_some_progress,
2341 sync_migration);
3e7d3449
MG
2342 if (page)
2343 goto got_pg;
1da177e4
LT
2344 }
2345
2346nopage:
a238ab5b 2347 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2348 return page;
1da177e4 2349got_pg:
b1eeab67
VN
2350 if (kmemcheck_enabled)
2351 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2352 return page;
11e33f6a 2353
1da177e4 2354}
11e33f6a
MG
2355
2356/*
2357 * This is the 'heart' of the zoned buddy allocator.
2358 */
2359struct page *
2360__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2361 struct zonelist *zonelist, nodemask_t *nodemask)
2362{
2363 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2364 struct zone *preferred_zone;
11e33f6a 2365 struct page *page;
3dd28266 2366 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2367
dcce284a
BH
2368 gfp_mask &= gfp_allowed_mask;
2369
11e33f6a
MG
2370 lockdep_trace_alloc(gfp_mask);
2371
2372 might_sleep_if(gfp_mask & __GFP_WAIT);
2373
2374 if (should_fail_alloc_page(gfp_mask, order))
2375 return NULL;
2376
2377 /*
2378 * Check the zones suitable for the gfp_mask contain at least one
2379 * valid zone. It's possible to have an empty zonelist as a result
2380 * of GFP_THISNODE and a memoryless node
2381 */
2382 if (unlikely(!zonelist->_zonerefs->zone))
2383 return NULL;
2384
c0ff7453 2385 get_mems_allowed();
5117f45d 2386 /* The preferred zone is used for statistics later */
f33261d7
DR
2387 first_zones_zonelist(zonelist, high_zoneidx,
2388 nodemask ? : &cpuset_current_mems_allowed,
2389 &preferred_zone);
c0ff7453
MX
2390 if (!preferred_zone) {
2391 put_mems_allowed();
5117f45d 2392 return NULL;
c0ff7453 2393 }
5117f45d
MG
2394
2395 /* First allocation attempt */
11e33f6a 2396 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2397 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2398 preferred_zone, migratetype);
11e33f6a
MG
2399 if (unlikely(!page))
2400 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2401 zonelist, high_zoneidx, nodemask,
3dd28266 2402 preferred_zone, migratetype);
c0ff7453 2403 put_mems_allowed();
11e33f6a 2404
4b4f278c 2405 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2406 return page;
1da177e4 2407}
d239171e 2408EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2409
2410/*
2411 * Common helper functions.
2412 */
920c7a5d 2413unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2414{
945a1113
AM
2415 struct page *page;
2416
2417 /*
2418 * __get_free_pages() returns a 32-bit address, which cannot represent
2419 * a highmem page
2420 */
2421 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2422
1da177e4
LT
2423 page = alloc_pages(gfp_mask, order);
2424 if (!page)
2425 return 0;
2426 return (unsigned long) page_address(page);
2427}
1da177e4
LT
2428EXPORT_SYMBOL(__get_free_pages);
2429
920c7a5d 2430unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2431{
945a1113 2432 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2433}
1da177e4
LT
2434EXPORT_SYMBOL(get_zeroed_page);
2435
920c7a5d 2436void __free_pages(struct page *page, unsigned int order)
1da177e4 2437{
b5810039 2438 if (put_page_testzero(page)) {
1da177e4 2439 if (order == 0)
fc91668e 2440 free_hot_cold_page(page, 0);
1da177e4
LT
2441 else
2442 __free_pages_ok(page, order);
2443 }
2444}
2445
2446EXPORT_SYMBOL(__free_pages);
2447
920c7a5d 2448void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2449{
2450 if (addr != 0) {
725d704e 2451 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2452 __free_pages(virt_to_page((void *)addr), order);
2453 }
2454}
2455
2456EXPORT_SYMBOL(free_pages);
2457
ee85c2e1
AK
2458static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2459{
2460 if (addr) {
2461 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2462 unsigned long used = addr + PAGE_ALIGN(size);
2463
2464 split_page(virt_to_page((void *)addr), order);
2465 while (used < alloc_end) {
2466 free_page(used);
2467 used += PAGE_SIZE;
2468 }
2469 }
2470 return (void *)addr;
2471}
2472
2be0ffe2
TT
2473/**
2474 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2475 * @size: the number of bytes to allocate
2476 * @gfp_mask: GFP flags for the allocation
2477 *
2478 * This function is similar to alloc_pages(), except that it allocates the
2479 * minimum number of pages to satisfy the request. alloc_pages() can only
2480 * allocate memory in power-of-two pages.
2481 *
2482 * This function is also limited by MAX_ORDER.
2483 *
2484 * Memory allocated by this function must be released by free_pages_exact().
2485 */
2486void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2487{
2488 unsigned int order = get_order(size);
2489 unsigned long addr;
2490
2491 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2492 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2493}
2494EXPORT_SYMBOL(alloc_pages_exact);
2495
ee85c2e1
AK
2496/**
2497 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2498 * pages on a node.
b5e6ab58 2499 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2500 * @size: the number of bytes to allocate
2501 * @gfp_mask: GFP flags for the allocation
2502 *
2503 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2504 * back.
2505 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2506 * but is not exact.
2507 */
2508void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2509{
2510 unsigned order = get_order(size);
2511 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2512 if (!p)
2513 return NULL;
2514 return make_alloc_exact((unsigned long)page_address(p), order, size);
2515}
2516EXPORT_SYMBOL(alloc_pages_exact_nid);
2517
2be0ffe2
TT
2518/**
2519 * free_pages_exact - release memory allocated via alloc_pages_exact()
2520 * @virt: the value returned by alloc_pages_exact.
2521 * @size: size of allocation, same value as passed to alloc_pages_exact().
2522 *
2523 * Release the memory allocated by a previous call to alloc_pages_exact.
2524 */
2525void free_pages_exact(void *virt, size_t size)
2526{
2527 unsigned long addr = (unsigned long)virt;
2528 unsigned long end = addr + PAGE_ALIGN(size);
2529
2530 while (addr < end) {
2531 free_page(addr);
2532 addr += PAGE_SIZE;
2533 }
2534}
2535EXPORT_SYMBOL(free_pages_exact);
2536
1da177e4
LT
2537static unsigned int nr_free_zone_pages(int offset)
2538{
dd1a239f 2539 struct zoneref *z;
54a6eb5c
MG
2540 struct zone *zone;
2541
e310fd43 2542 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2543 unsigned int sum = 0;
2544
0e88460d 2545 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2546
54a6eb5c 2547 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2548 unsigned long size = zone->present_pages;
41858966 2549 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2550 if (size > high)
2551 sum += size - high;
1da177e4
LT
2552 }
2553
2554 return sum;
2555}
2556
2557/*
2558 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2559 */
2560unsigned int nr_free_buffer_pages(void)
2561{
af4ca457 2562 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2563}
c2f1a551 2564EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2565
2566/*
2567 * Amount of free RAM allocatable within all zones
2568 */
2569unsigned int nr_free_pagecache_pages(void)
2570{
2a1e274a 2571 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2572}
08e0f6a9
CL
2573
2574static inline void show_node(struct zone *zone)
1da177e4 2575{
08e0f6a9 2576 if (NUMA_BUILD)
25ba77c1 2577 printk("Node %d ", zone_to_nid(zone));
1da177e4 2578}
1da177e4 2579
1da177e4
LT
2580void si_meminfo(struct sysinfo *val)
2581{
2582 val->totalram = totalram_pages;
2583 val->sharedram = 0;
d23ad423 2584 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2585 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2586 val->totalhigh = totalhigh_pages;
2587 val->freehigh = nr_free_highpages();
1da177e4
LT
2588 val->mem_unit = PAGE_SIZE;
2589}
2590
2591EXPORT_SYMBOL(si_meminfo);
2592
2593#ifdef CONFIG_NUMA
2594void si_meminfo_node(struct sysinfo *val, int nid)
2595{
2596 pg_data_t *pgdat = NODE_DATA(nid);
2597
2598 val->totalram = pgdat->node_present_pages;
d23ad423 2599 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2600#ifdef CONFIG_HIGHMEM
1da177e4 2601 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2602 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2603 NR_FREE_PAGES);
98d2b0eb
CL
2604#else
2605 val->totalhigh = 0;
2606 val->freehigh = 0;
2607#endif
1da177e4
LT
2608 val->mem_unit = PAGE_SIZE;
2609}
2610#endif
2611
ddd588b5 2612/*
7bf02ea2
DR
2613 * Determine whether the node should be displayed or not, depending on whether
2614 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2615 */
7bf02ea2 2616bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2617{
2618 bool ret = false;
2619
2620 if (!(flags & SHOW_MEM_FILTER_NODES))
2621 goto out;
2622
2623 get_mems_allowed();
7bf02ea2 2624 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2625 put_mems_allowed();
2626out:
2627 return ret;
2628}
2629
1da177e4
LT
2630#define K(x) ((x) << (PAGE_SHIFT-10))
2631
2632/*
2633 * Show free area list (used inside shift_scroll-lock stuff)
2634 * We also calculate the percentage fragmentation. We do this by counting the
2635 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2636 * Suppresses nodes that are not allowed by current's cpuset if
2637 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2638 */
7bf02ea2 2639void show_free_areas(unsigned int filter)
1da177e4 2640{
c7241913 2641 int cpu;
1da177e4
LT
2642 struct zone *zone;
2643
ee99c71c 2644 for_each_populated_zone(zone) {
7bf02ea2 2645 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2646 continue;
c7241913
JS
2647 show_node(zone);
2648 printk("%s per-cpu:\n", zone->name);
1da177e4 2649
6b482c67 2650 for_each_online_cpu(cpu) {
1da177e4
LT
2651 struct per_cpu_pageset *pageset;
2652
99dcc3e5 2653 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2654
3dfa5721
CL
2655 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2656 cpu, pageset->pcp.high,
2657 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2658 }
2659 }
2660
a731286d
KM
2661 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2662 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2663 " unevictable:%lu"
b76146ed 2664 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2665 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2666 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2667 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2668 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2669 global_page_state(NR_ISOLATED_ANON),
2670 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2671 global_page_state(NR_INACTIVE_FILE),
a731286d 2672 global_page_state(NR_ISOLATED_FILE),
7b854121 2673 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2674 global_page_state(NR_FILE_DIRTY),
ce866b34 2675 global_page_state(NR_WRITEBACK),
fd39fc85 2676 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2677 global_page_state(NR_FREE_PAGES),
3701b033
KM
2678 global_page_state(NR_SLAB_RECLAIMABLE),
2679 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2680 global_page_state(NR_FILE_MAPPED),
4b02108a 2681 global_page_state(NR_SHMEM),
a25700a5
AM
2682 global_page_state(NR_PAGETABLE),
2683 global_page_state(NR_BOUNCE));
1da177e4 2684
ee99c71c 2685 for_each_populated_zone(zone) {
1da177e4
LT
2686 int i;
2687
7bf02ea2 2688 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2689 continue;
1da177e4
LT
2690 show_node(zone);
2691 printk("%s"
2692 " free:%lukB"
2693 " min:%lukB"
2694 " low:%lukB"
2695 " high:%lukB"
4f98a2fe
RR
2696 " active_anon:%lukB"
2697 " inactive_anon:%lukB"
2698 " active_file:%lukB"
2699 " inactive_file:%lukB"
7b854121 2700 " unevictable:%lukB"
a731286d
KM
2701 " isolated(anon):%lukB"
2702 " isolated(file):%lukB"
1da177e4 2703 " present:%lukB"
4a0aa73f
KM
2704 " mlocked:%lukB"
2705 " dirty:%lukB"
2706 " writeback:%lukB"
2707 " mapped:%lukB"
4b02108a 2708 " shmem:%lukB"
4a0aa73f
KM
2709 " slab_reclaimable:%lukB"
2710 " slab_unreclaimable:%lukB"
c6a7f572 2711 " kernel_stack:%lukB"
4a0aa73f
KM
2712 " pagetables:%lukB"
2713 " unstable:%lukB"
2714 " bounce:%lukB"
2715 " writeback_tmp:%lukB"
1da177e4
LT
2716 " pages_scanned:%lu"
2717 " all_unreclaimable? %s"
2718 "\n",
2719 zone->name,
88f5acf8 2720 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2721 K(min_wmark_pages(zone)),
2722 K(low_wmark_pages(zone)),
2723 K(high_wmark_pages(zone)),
4f98a2fe
RR
2724 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2725 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2726 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2727 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2728 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2729 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2730 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2731 K(zone->present_pages),
4a0aa73f
KM
2732 K(zone_page_state(zone, NR_MLOCK)),
2733 K(zone_page_state(zone, NR_FILE_DIRTY)),
2734 K(zone_page_state(zone, NR_WRITEBACK)),
2735 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2736 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2737 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2738 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2739 zone_page_state(zone, NR_KERNEL_STACK) *
2740 THREAD_SIZE / 1024,
4a0aa73f
KM
2741 K(zone_page_state(zone, NR_PAGETABLE)),
2742 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2743 K(zone_page_state(zone, NR_BOUNCE)),
2744 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2745 zone->pages_scanned,
93e4a89a 2746 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2747 );
2748 printk("lowmem_reserve[]:");
2749 for (i = 0; i < MAX_NR_ZONES; i++)
2750 printk(" %lu", zone->lowmem_reserve[i]);
2751 printk("\n");
2752 }
2753
ee99c71c 2754 for_each_populated_zone(zone) {
8f9de51a 2755 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2756
7bf02ea2 2757 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2758 continue;
1da177e4
LT
2759 show_node(zone);
2760 printk("%s: ", zone->name);
1da177e4
LT
2761
2762 spin_lock_irqsave(&zone->lock, flags);
2763 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2764 nr[order] = zone->free_area[order].nr_free;
2765 total += nr[order] << order;
1da177e4
LT
2766 }
2767 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2768 for (order = 0; order < MAX_ORDER; order++)
2769 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2770 printk("= %lukB\n", K(total));
2771 }
2772
e6f3602d
LW
2773 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2774
1da177e4
LT
2775 show_swap_cache_info();
2776}
2777
19770b32
MG
2778static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2779{
2780 zoneref->zone = zone;
2781 zoneref->zone_idx = zone_idx(zone);
2782}
2783
1da177e4
LT
2784/*
2785 * Builds allocation fallback zone lists.
1a93205b
CL
2786 *
2787 * Add all populated zones of a node to the zonelist.
1da177e4 2788 */
f0c0b2b8
KH
2789static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2790 int nr_zones, enum zone_type zone_type)
1da177e4 2791{
1a93205b
CL
2792 struct zone *zone;
2793
98d2b0eb 2794 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2795 zone_type++;
02a68a5e
CL
2796
2797 do {
2f6726e5 2798 zone_type--;
070f8032 2799 zone = pgdat->node_zones + zone_type;
1a93205b 2800 if (populated_zone(zone)) {
dd1a239f
MG
2801 zoneref_set_zone(zone,
2802 &zonelist->_zonerefs[nr_zones++]);
070f8032 2803 check_highest_zone(zone_type);
1da177e4 2804 }
02a68a5e 2805
2f6726e5 2806 } while (zone_type);
070f8032 2807 return nr_zones;
1da177e4
LT
2808}
2809
f0c0b2b8
KH
2810
2811/*
2812 * zonelist_order:
2813 * 0 = automatic detection of better ordering.
2814 * 1 = order by ([node] distance, -zonetype)
2815 * 2 = order by (-zonetype, [node] distance)
2816 *
2817 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2818 * the same zonelist. So only NUMA can configure this param.
2819 */
2820#define ZONELIST_ORDER_DEFAULT 0
2821#define ZONELIST_ORDER_NODE 1
2822#define ZONELIST_ORDER_ZONE 2
2823
2824/* zonelist order in the kernel.
2825 * set_zonelist_order() will set this to NODE or ZONE.
2826 */
2827static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2828static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2829
2830
1da177e4 2831#ifdef CONFIG_NUMA
f0c0b2b8
KH
2832/* The value user specified ....changed by config */
2833static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2834/* string for sysctl */
2835#define NUMA_ZONELIST_ORDER_LEN 16
2836char numa_zonelist_order[16] = "default";
2837
2838/*
2839 * interface for configure zonelist ordering.
2840 * command line option "numa_zonelist_order"
2841 * = "[dD]efault - default, automatic configuration.
2842 * = "[nN]ode - order by node locality, then by zone within node
2843 * = "[zZ]one - order by zone, then by locality within zone
2844 */
2845
2846static int __parse_numa_zonelist_order(char *s)
2847{
2848 if (*s == 'd' || *s == 'D') {
2849 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2850 } else if (*s == 'n' || *s == 'N') {
2851 user_zonelist_order = ZONELIST_ORDER_NODE;
2852 } else if (*s == 'z' || *s == 'Z') {
2853 user_zonelist_order = ZONELIST_ORDER_ZONE;
2854 } else {
2855 printk(KERN_WARNING
2856 "Ignoring invalid numa_zonelist_order value: "
2857 "%s\n", s);
2858 return -EINVAL;
2859 }
2860 return 0;
2861}
2862
2863static __init int setup_numa_zonelist_order(char *s)
2864{
ecb256f8
VL
2865 int ret;
2866
2867 if (!s)
2868 return 0;
2869
2870 ret = __parse_numa_zonelist_order(s);
2871 if (ret == 0)
2872 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2873
2874 return ret;
f0c0b2b8
KH
2875}
2876early_param("numa_zonelist_order", setup_numa_zonelist_order);
2877
2878/*
2879 * sysctl handler for numa_zonelist_order
2880 */
2881int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2882 void __user *buffer, size_t *length,
f0c0b2b8
KH
2883 loff_t *ppos)
2884{
2885 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2886 int ret;
443c6f14 2887 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2888
443c6f14 2889 mutex_lock(&zl_order_mutex);
f0c0b2b8 2890 if (write)
443c6f14 2891 strcpy(saved_string, (char*)table->data);
8d65af78 2892 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2893 if (ret)
443c6f14 2894 goto out;
f0c0b2b8
KH
2895 if (write) {
2896 int oldval = user_zonelist_order;
2897 if (__parse_numa_zonelist_order((char*)table->data)) {
2898 /*
2899 * bogus value. restore saved string
2900 */
2901 strncpy((char*)table->data, saved_string,
2902 NUMA_ZONELIST_ORDER_LEN);
2903 user_zonelist_order = oldval;
4eaf3f64
HL
2904 } else if (oldval != user_zonelist_order) {
2905 mutex_lock(&zonelists_mutex);
1f522509 2906 build_all_zonelists(NULL);
4eaf3f64
HL
2907 mutex_unlock(&zonelists_mutex);
2908 }
f0c0b2b8 2909 }
443c6f14
AK
2910out:
2911 mutex_unlock(&zl_order_mutex);
2912 return ret;
f0c0b2b8
KH
2913}
2914
2915
62bc62a8 2916#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2917static int node_load[MAX_NUMNODES];
2918
1da177e4 2919/**
4dc3b16b 2920 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2921 * @node: node whose fallback list we're appending
2922 * @used_node_mask: nodemask_t of already used nodes
2923 *
2924 * We use a number of factors to determine which is the next node that should
2925 * appear on a given node's fallback list. The node should not have appeared
2926 * already in @node's fallback list, and it should be the next closest node
2927 * according to the distance array (which contains arbitrary distance values
2928 * from each node to each node in the system), and should also prefer nodes
2929 * with no CPUs, since presumably they'll have very little allocation pressure
2930 * on them otherwise.
2931 * It returns -1 if no node is found.
2932 */
f0c0b2b8 2933static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2934{
4cf808eb 2935 int n, val;
1da177e4
LT
2936 int min_val = INT_MAX;
2937 int best_node = -1;
a70f7302 2938 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2939
4cf808eb
LT
2940 /* Use the local node if we haven't already */
2941 if (!node_isset(node, *used_node_mask)) {
2942 node_set(node, *used_node_mask);
2943 return node;
2944 }
1da177e4 2945
37b07e41 2946 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2947
2948 /* Don't want a node to appear more than once */
2949 if (node_isset(n, *used_node_mask))
2950 continue;
2951
1da177e4
LT
2952 /* Use the distance array to find the distance */
2953 val = node_distance(node, n);
2954
4cf808eb
LT
2955 /* Penalize nodes under us ("prefer the next node") */
2956 val += (n < node);
2957
1da177e4 2958 /* Give preference to headless and unused nodes */
a70f7302
RR
2959 tmp = cpumask_of_node(n);
2960 if (!cpumask_empty(tmp))
1da177e4
LT
2961 val += PENALTY_FOR_NODE_WITH_CPUS;
2962
2963 /* Slight preference for less loaded node */
2964 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2965 val += node_load[n];
2966
2967 if (val < min_val) {
2968 min_val = val;
2969 best_node = n;
2970 }
2971 }
2972
2973 if (best_node >= 0)
2974 node_set(best_node, *used_node_mask);
2975
2976 return best_node;
2977}
2978
f0c0b2b8
KH
2979
2980/*
2981 * Build zonelists ordered by node and zones within node.
2982 * This results in maximum locality--normal zone overflows into local
2983 * DMA zone, if any--but risks exhausting DMA zone.
2984 */
2985static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2986{
f0c0b2b8 2987 int j;
1da177e4 2988 struct zonelist *zonelist;
f0c0b2b8 2989
54a6eb5c 2990 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2991 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2992 ;
2993 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2994 MAX_NR_ZONES - 1);
dd1a239f
MG
2995 zonelist->_zonerefs[j].zone = NULL;
2996 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2997}
2998
523b9458
CL
2999/*
3000 * Build gfp_thisnode zonelists
3001 */
3002static void build_thisnode_zonelists(pg_data_t *pgdat)
3003{
523b9458
CL
3004 int j;
3005 struct zonelist *zonelist;
3006
54a6eb5c
MG
3007 zonelist = &pgdat->node_zonelists[1];
3008 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3009 zonelist->_zonerefs[j].zone = NULL;
3010 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3011}
3012
f0c0b2b8
KH
3013/*
3014 * Build zonelists ordered by zone and nodes within zones.
3015 * This results in conserving DMA zone[s] until all Normal memory is
3016 * exhausted, but results in overflowing to remote node while memory
3017 * may still exist in local DMA zone.
3018 */
3019static int node_order[MAX_NUMNODES];
3020
3021static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3022{
f0c0b2b8
KH
3023 int pos, j, node;
3024 int zone_type; /* needs to be signed */
3025 struct zone *z;
3026 struct zonelist *zonelist;
3027
54a6eb5c
MG
3028 zonelist = &pgdat->node_zonelists[0];
3029 pos = 0;
3030 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3031 for (j = 0; j < nr_nodes; j++) {
3032 node = node_order[j];
3033 z = &NODE_DATA(node)->node_zones[zone_type];
3034 if (populated_zone(z)) {
dd1a239f
MG
3035 zoneref_set_zone(z,
3036 &zonelist->_zonerefs[pos++]);
54a6eb5c 3037 check_highest_zone(zone_type);
f0c0b2b8
KH
3038 }
3039 }
f0c0b2b8 3040 }
dd1a239f
MG
3041 zonelist->_zonerefs[pos].zone = NULL;
3042 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3043}
3044
3045static int default_zonelist_order(void)
3046{
3047 int nid, zone_type;
3048 unsigned long low_kmem_size,total_size;
3049 struct zone *z;
3050 int average_size;
3051 /*
88393161 3052 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3053 * If they are really small and used heavily, the system can fall
3054 * into OOM very easily.
e325c90f 3055 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3056 */
3057 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3058 low_kmem_size = 0;
3059 total_size = 0;
3060 for_each_online_node(nid) {
3061 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3062 z = &NODE_DATA(nid)->node_zones[zone_type];
3063 if (populated_zone(z)) {
3064 if (zone_type < ZONE_NORMAL)
3065 low_kmem_size += z->present_pages;
3066 total_size += z->present_pages;
e325c90f
DR
3067 } else if (zone_type == ZONE_NORMAL) {
3068 /*
3069 * If any node has only lowmem, then node order
3070 * is preferred to allow kernel allocations
3071 * locally; otherwise, they can easily infringe
3072 * on other nodes when there is an abundance of
3073 * lowmem available to allocate from.
3074 */
3075 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3076 }
3077 }
3078 }
3079 if (!low_kmem_size || /* there are no DMA area. */
3080 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3081 return ZONELIST_ORDER_NODE;
3082 /*
3083 * look into each node's config.
3084 * If there is a node whose DMA/DMA32 memory is very big area on
3085 * local memory, NODE_ORDER may be suitable.
3086 */
37b07e41
LS
3087 average_size = total_size /
3088 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3089 for_each_online_node(nid) {
3090 low_kmem_size = 0;
3091 total_size = 0;
3092 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3093 z = &NODE_DATA(nid)->node_zones[zone_type];
3094 if (populated_zone(z)) {
3095 if (zone_type < ZONE_NORMAL)
3096 low_kmem_size += z->present_pages;
3097 total_size += z->present_pages;
3098 }
3099 }
3100 if (low_kmem_size &&
3101 total_size > average_size && /* ignore small node */
3102 low_kmem_size > total_size * 70/100)
3103 return ZONELIST_ORDER_NODE;
3104 }
3105 return ZONELIST_ORDER_ZONE;
3106}
3107
3108static void set_zonelist_order(void)
3109{
3110 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3111 current_zonelist_order = default_zonelist_order();
3112 else
3113 current_zonelist_order = user_zonelist_order;
3114}
3115
3116static void build_zonelists(pg_data_t *pgdat)
3117{
3118 int j, node, load;
3119 enum zone_type i;
1da177e4 3120 nodemask_t used_mask;
f0c0b2b8
KH
3121 int local_node, prev_node;
3122 struct zonelist *zonelist;
3123 int order = current_zonelist_order;
1da177e4
LT
3124
3125 /* initialize zonelists */
523b9458 3126 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3127 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3128 zonelist->_zonerefs[0].zone = NULL;
3129 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3130 }
3131
3132 /* NUMA-aware ordering of nodes */
3133 local_node = pgdat->node_id;
62bc62a8 3134 load = nr_online_nodes;
1da177e4
LT
3135 prev_node = local_node;
3136 nodes_clear(used_mask);
f0c0b2b8 3137
f0c0b2b8
KH
3138 memset(node_order, 0, sizeof(node_order));
3139 j = 0;
3140
1da177e4 3141 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3142 int distance = node_distance(local_node, node);
3143
3144 /*
3145 * If another node is sufficiently far away then it is better
3146 * to reclaim pages in a zone before going off node.
3147 */
3148 if (distance > RECLAIM_DISTANCE)
3149 zone_reclaim_mode = 1;
3150
1da177e4
LT
3151 /*
3152 * We don't want to pressure a particular node.
3153 * So adding penalty to the first node in same
3154 * distance group to make it round-robin.
3155 */
9eeff239 3156 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3157 node_load[node] = load;
3158
1da177e4
LT
3159 prev_node = node;
3160 load--;
f0c0b2b8
KH
3161 if (order == ZONELIST_ORDER_NODE)
3162 build_zonelists_in_node_order(pgdat, node);
3163 else
3164 node_order[j++] = node; /* remember order */
3165 }
1da177e4 3166
f0c0b2b8
KH
3167 if (order == ZONELIST_ORDER_ZONE) {
3168 /* calculate node order -- i.e., DMA last! */
3169 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3170 }
523b9458
CL
3171
3172 build_thisnode_zonelists(pgdat);
1da177e4
LT
3173}
3174
9276b1bc 3175/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3176static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3177{
54a6eb5c
MG
3178 struct zonelist *zonelist;
3179 struct zonelist_cache *zlc;
dd1a239f 3180 struct zoneref *z;
9276b1bc 3181
54a6eb5c
MG
3182 zonelist = &pgdat->node_zonelists[0];
3183 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3184 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3185 for (z = zonelist->_zonerefs; z->zone; z++)
3186 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3187}
3188
7aac7898
LS
3189#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3190/*
3191 * Return node id of node used for "local" allocations.
3192 * I.e., first node id of first zone in arg node's generic zonelist.
3193 * Used for initializing percpu 'numa_mem', which is used primarily
3194 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3195 */
3196int local_memory_node(int node)
3197{
3198 struct zone *zone;
3199
3200 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3201 gfp_zone(GFP_KERNEL),
3202 NULL,
3203 &zone);
3204 return zone->node;
3205}
3206#endif
f0c0b2b8 3207
1da177e4
LT
3208#else /* CONFIG_NUMA */
3209
f0c0b2b8
KH
3210static void set_zonelist_order(void)
3211{
3212 current_zonelist_order = ZONELIST_ORDER_ZONE;
3213}
3214
3215static void build_zonelists(pg_data_t *pgdat)
1da177e4 3216{
19655d34 3217 int node, local_node;
54a6eb5c
MG
3218 enum zone_type j;
3219 struct zonelist *zonelist;
1da177e4
LT
3220
3221 local_node = pgdat->node_id;
1da177e4 3222
54a6eb5c
MG
3223 zonelist = &pgdat->node_zonelists[0];
3224 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3225
54a6eb5c
MG
3226 /*
3227 * Now we build the zonelist so that it contains the zones
3228 * of all the other nodes.
3229 * We don't want to pressure a particular node, so when
3230 * building the zones for node N, we make sure that the
3231 * zones coming right after the local ones are those from
3232 * node N+1 (modulo N)
3233 */
3234 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3235 if (!node_online(node))
3236 continue;
3237 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3238 MAX_NR_ZONES - 1);
1da177e4 3239 }
54a6eb5c
MG
3240 for (node = 0; node < local_node; node++) {
3241 if (!node_online(node))
3242 continue;
3243 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3244 MAX_NR_ZONES - 1);
3245 }
3246
dd1a239f
MG
3247 zonelist->_zonerefs[j].zone = NULL;
3248 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3249}
3250
9276b1bc 3251/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3252static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3253{
54a6eb5c 3254 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3255}
3256
1da177e4
LT
3257#endif /* CONFIG_NUMA */
3258
99dcc3e5
CL
3259/*
3260 * Boot pageset table. One per cpu which is going to be used for all
3261 * zones and all nodes. The parameters will be set in such a way
3262 * that an item put on a list will immediately be handed over to
3263 * the buddy list. This is safe since pageset manipulation is done
3264 * with interrupts disabled.
3265 *
3266 * The boot_pagesets must be kept even after bootup is complete for
3267 * unused processors and/or zones. They do play a role for bootstrapping
3268 * hotplugged processors.
3269 *
3270 * zoneinfo_show() and maybe other functions do
3271 * not check if the processor is online before following the pageset pointer.
3272 * Other parts of the kernel may not check if the zone is available.
3273 */
3274static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3275static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3276static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3277
4eaf3f64
HL
3278/*
3279 * Global mutex to protect against size modification of zonelists
3280 * as well as to serialize pageset setup for the new populated zone.
3281 */
3282DEFINE_MUTEX(zonelists_mutex);
3283
9b1a4d38 3284/* return values int ....just for stop_machine() */
1f522509 3285static __init_refok int __build_all_zonelists(void *data)
1da177e4 3286{
6811378e 3287 int nid;
99dcc3e5 3288 int cpu;
9276b1bc 3289
7f9cfb31
BL
3290#ifdef CONFIG_NUMA
3291 memset(node_load, 0, sizeof(node_load));
3292#endif
9276b1bc 3293 for_each_online_node(nid) {
7ea1530a
CL
3294 pg_data_t *pgdat = NODE_DATA(nid);
3295
3296 build_zonelists(pgdat);
3297 build_zonelist_cache(pgdat);
9276b1bc 3298 }
99dcc3e5
CL
3299
3300 /*
3301 * Initialize the boot_pagesets that are going to be used
3302 * for bootstrapping processors. The real pagesets for
3303 * each zone will be allocated later when the per cpu
3304 * allocator is available.
3305 *
3306 * boot_pagesets are used also for bootstrapping offline
3307 * cpus if the system is already booted because the pagesets
3308 * are needed to initialize allocators on a specific cpu too.
3309 * F.e. the percpu allocator needs the page allocator which
3310 * needs the percpu allocator in order to allocate its pagesets
3311 * (a chicken-egg dilemma).
3312 */
7aac7898 3313 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3314 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3315
7aac7898
LS
3316#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3317 /*
3318 * We now know the "local memory node" for each node--
3319 * i.e., the node of the first zone in the generic zonelist.
3320 * Set up numa_mem percpu variable for on-line cpus. During
3321 * boot, only the boot cpu should be on-line; we'll init the
3322 * secondary cpus' numa_mem as they come on-line. During
3323 * node/memory hotplug, we'll fixup all on-line cpus.
3324 */
3325 if (cpu_online(cpu))
3326 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3327#endif
3328 }
3329
6811378e
YG
3330 return 0;
3331}
3332
4eaf3f64
HL
3333/*
3334 * Called with zonelists_mutex held always
3335 * unless system_state == SYSTEM_BOOTING.
3336 */
9f6ae448 3337void __ref build_all_zonelists(void *data)
6811378e 3338{
f0c0b2b8
KH
3339 set_zonelist_order();
3340
6811378e 3341 if (system_state == SYSTEM_BOOTING) {
423b41d7 3342 __build_all_zonelists(NULL);
68ad8df4 3343 mminit_verify_zonelist();
6811378e
YG
3344 cpuset_init_current_mems_allowed();
3345 } else {
183ff22b 3346 /* we have to stop all cpus to guarantee there is no user
6811378e 3347 of zonelist */
e9959f0f
KH
3348#ifdef CONFIG_MEMORY_HOTPLUG
3349 if (data)
3350 setup_zone_pageset((struct zone *)data);
3351#endif
3352 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3353 /* cpuset refresh routine should be here */
3354 }
bd1e22b8 3355 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3356 /*
3357 * Disable grouping by mobility if the number of pages in the
3358 * system is too low to allow the mechanism to work. It would be
3359 * more accurate, but expensive to check per-zone. This check is
3360 * made on memory-hotadd so a system can start with mobility
3361 * disabled and enable it later
3362 */
d9c23400 3363 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3364 page_group_by_mobility_disabled = 1;
3365 else
3366 page_group_by_mobility_disabled = 0;
3367
3368 printk("Built %i zonelists in %s order, mobility grouping %s. "
3369 "Total pages: %ld\n",
62bc62a8 3370 nr_online_nodes,
f0c0b2b8 3371 zonelist_order_name[current_zonelist_order],
9ef9acb0 3372 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3373 vm_total_pages);
3374#ifdef CONFIG_NUMA
3375 printk("Policy zone: %s\n", zone_names[policy_zone]);
3376#endif
1da177e4
LT
3377}
3378
3379/*
3380 * Helper functions to size the waitqueue hash table.
3381 * Essentially these want to choose hash table sizes sufficiently
3382 * large so that collisions trying to wait on pages are rare.
3383 * But in fact, the number of active page waitqueues on typical
3384 * systems is ridiculously low, less than 200. So this is even
3385 * conservative, even though it seems large.
3386 *
3387 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3388 * waitqueues, i.e. the size of the waitq table given the number of pages.
3389 */
3390#define PAGES_PER_WAITQUEUE 256
3391
cca448fe 3392#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3393static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3394{
3395 unsigned long size = 1;
3396
3397 pages /= PAGES_PER_WAITQUEUE;
3398
3399 while (size < pages)
3400 size <<= 1;
3401
3402 /*
3403 * Once we have dozens or even hundreds of threads sleeping
3404 * on IO we've got bigger problems than wait queue collision.
3405 * Limit the size of the wait table to a reasonable size.
3406 */
3407 size = min(size, 4096UL);
3408
3409 return max(size, 4UL);
3410}
cca448fe
YG
3411#else
3412/*
3413 * A zone's size might be changed by hot-add, so it is not possible to determine
3414 * a suitable size for its wait_table. So we use the maximum size now.
3415 *
3416 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3417 *
3418 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3419 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3420 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3421 *
3422 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3423 * or more by the traditional way. (See above). It equals:
3424 *
3425 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3426 * ia64(16K page size) : = ( 8G + 4M)byte.
3427 * powerpc (64K page size) : = (32G +16M)byte.
3428 */
3429static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3430{
3431 return 4096UL;
3432}
3433#endif
1da177e4
LT
3434
3435/*
3436 * This is an integer logarithm so that shifts can be used later
3437 * to extract the more random high bits from the multiplicative
3438 * hash function before the remainder is taken.
3439 */
3440static inline unsigned long wait_table_bits(unsigned long size)
3441{
3442 return ffz(~size);
3443}
3444
3445#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3446
6d3163ce
AH
3447/*
3448 * Check if a pageblock contains reserved pages
3449 */
3450static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3451{
3452 unsigned long pfn;
3453
3454 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3455 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3456 return 1;
3457 }
3458 return 0;
3459}
3460
56fd56b8 3461/*
d9c23400 3462 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3463 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3464 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3465 * higher will lead to a bigger reserve which will get freed as contiguous
3466 * blocks as reclaim kicks in
3467 */
3468static void setup_zone_migrate_reserve(struct zone *zone)
3469{
6d3163ce 3470 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3471 struct page *page;
78986a67
MG
3472 unsigned long block_migratetype;
3473 int reserve;
56fd56b8 3474
d0215638
MH
3475 /*
3476 * Get the start pfn, end pfn and the number of blocks to reserve
3477 * We have to be careful to be aligned to pageblock_nr_pages to
3478 * make sure that we always check pfn_valid for the first page in
3479 * the block.
3480 */
56fd56b8
MG
3481 start_pfn = zone->zone_start_pfn;
3482 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3483 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3484 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3485 pageblock_order;
56fd56b8 3486
78986a67
MG
3487 /*
3488 * Reserve blocks are generally in place to help high-order atomic
3489 * allocations that are short-lived. A min_free_kbytes value that
3490 * would result in more than 2 reserve blocks for atomic allocations
3491 * is assumed to be in place to help anti-fragmentation for the
3492 * future allocation of hugepages at runtime.
3493 */
3494 reserve = min(2, reserve);
3495
d9c23400 3496 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3497 if (!pfn_valid(pfn))
3498 continue;
3499 page = pfn_to_page(pfn);
3500
344c790e
AL
3501 /* Watch out for overlapping nodes */
3502 if (page_to_nid(page) != zone_to_nid(zone))
3503 continue;
3504
56fd56b8
MG
3505 block_migratetype = get_pageblock_migratetype(page);
3506
938929f1
MG
3507 /* Only test what is necessary when the reserves are not met */
3508 if (reserve > 0) {
3509 /*
3510 * Blocks with reserved pages will never free, skip
3511 * them.
3512 */
3513 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3514 if (pageblock_is_reserved(pfn, block_end_pfn))
3515 continue;
56fd56b8 3516
938929f1
MG
3517 /* If this block is reserved, account for it */
3518 if (block_migratetype == MIGRATE_RESERVE) {
3519 reserve--;
3520 continue;
3521 }
3522
3523 /* Suitable for reserving if this block is movable */
3524 if (block_migratetype == MIGRATE_MOVABLE) {
3525 set_pageblock_migratetype(page,
3526 MIGRATE_RESERVE);
3527 move_freepages_block(zone, page,
3528 MIGRATE_RESERVE);
3529 reserve--;
3530 continue;
3531 }
56fd56b8
MG
3532 }
3533
3534 /*
3535 * If the reserve is met and this is a previous reserved block,
3536 * take it back
3537 */
3538 if (block_migratetype == MIGRATE_RESERVE) {
3539 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3540 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3541 }
3542 }
3543}
ac0e5b7a 3544
1da177e4
LT
3545/*
3546 * Initially all pages are reserved - free ones are freed
3547 * up by free_all_bootmem() once the early boot process is
3548 * done. Non-atomic initialization, single-pass.
3549 */
c09b4240 3550void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3551 unsigned long start_pfn, enum memmap_context context)
1da177e4 3552{
1da177e4 3553 struct page *page;
29751f69
AW
3554 unsigned long end_pfn = start_pfn + size;
3555 unsigned long pfn;
86051ca5 3556 struct zone *z;
1da177e4 3557
22b31eec
HD
3558 if (highest_memmap_pfn < end_pfn - 1)
3559 highest_memmap_pfn = end_pfn - 1;
3560
86051ca5 3561 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3562 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3563 /*
3564 * There can be holes in boot-time mem_map[]s
3565 * handed to this function. They do not
3566 * exist on hotplugged memory.
3567 */
3568 if (context == MEMMAP_EARLY) {
3569 if (!early_pfn_valid(pfn))
3570 continue;
3571 if (!early_pfn_in_nid(pfn, nid))
3572 continue;
3573 }
d41dee36
AW
3574 page = pfn_to_page(pfn);
3575 set_page_links(page, zone, nid, pfn);
708614e6 3576 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3577 init_page_count(page);
1da177e4
LT
3578 reset_page_mapcount(page);
3579 SetPageReserved(page);
b2a0ac88
MG
3580 /*
3581 * Mark the block movable so that blocks are reserved for
3582 * movable at startup. This will force kernel allocations
3583 * to reserve their blocks rather than leaking throughout
3584 * the address space during boot when many long-lived
56fd56b8
MG
3585 * kernel allocations are made. Later some blocks near
3586 * the start are marked MIGRATE_RESERVE by
3587 * setup_zone_migrate_reserve()
86051ca5
KH
3588 *
3589 * bitmap is created for zone's valid pfn range. but memmap
3590 * can be created for invalid pages (for alignment)
3591 * check here not to call set_pageblock_migratetype() against
3592 * pfn out of zone.
b2a0ac88 3593 */
86051ca5
KH
3594 if ((z->zone_start_pfn <= pfn)
3595 && (pfn < z->zone_start_pfn + z->spanned_pages)
3596 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3597 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3598
1da177e4
LT
3599 INIT_LIST_HEAD(&page->lru);
3600#ifdef WANT_PAGE_VIRTUAL
3601 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3602 if (!is_highmem_idx(zone))
3212c6be 3603 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3604#endif
1da177e4
LT
3605 }
3606}
3607
1e548deb 3608static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3609{
b2a0ac88
MG
3610 int order, t;
3611 for_each_migratetype_order(order, t) {
3612 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3613 zone->free_area[order].nr_free = 0;
3614 }
3615}
3616
3617#ifndef __HAVE_ARCH_MEMMAP_INIT
3618#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3619 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3620#endif
3621
1d6f4e60 3622static int zone_batchsize(struct zone *zone)
e7c8d5c9 3623{
3a6be87f 3624#ifdef CONFIG_MMU
e7c8d5c9
CL
3625 int batch;
3626
3627 /*
3628 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3629 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3630 *
3631 * OK, so we don't know how big the cache is. So guess.
3632 */
3633 batch = zone->present_pages / 1024;
ba56e91c
SR
3634 if (batch * PAGE_SIZE > 512 * 1024)
3635 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3636 batch /= 4; /* We effectively *= 4 below */
3637 if (batch < 1)
3638 batch = 1;
3639
3640 /*
0ceaacc9
NP
3641 * Clamp the batch to a 2^n - 1 value. Having a power
3642 * of 2 value was found to be more likely to have
3643 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3644 *
0ceaacc9
NP
3645 * For example if 2 tasks are alternately allocating
3646 * batches of pages, one task can end up with a lot
3647 * of pages of one half of the possible page colors
3648 * and the other with pages of the other colors.
e7c8d5c9 3649 */
9155203a 3650 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3651
e7c8d5c9 3652 return batch;
3a6be87f
DH
3653
3654#else
3655 /* The deferral and batching of frees should be suppressed under NOMMU
3656 * conditions.
3657 *
3658 * The problem is that NOMMU needs to be able to allocate large chunks
3659 * of contiguous memory as there's no hardware page translation to
3660 * assemble apparent contiguous memory from discontiguous pages.
3661 *
3662 * Queueing large contiguous runs of pages for batching, however,
3663 * causes the pages to actually be freed in smaller chunks. As there
3664 * can be a significant delay between the individual batches being
3665 * recycled, this leads to the once large chunks of space being
3666 * fragmented and becoming unavailable for high-order allocations.
3667 */
3668 return 0;
3669#endif
e7c8d5c9
CL
3670}
3671
b69a7288 3672static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3673{
3674 struct per_cpu_pages *pcp;
5f8dcc21 3675 int migratetype;
2caaad41 3676
1c6fe946
MD
3677 memset(p, 0, sizeof(*p));
3678
3dfa5721 3679 pcp = &p->pcp;
2caaad41 3680 pcp->count = 0;
2caaad41
CL
3681 pcp->high = 6 * batch;
3682 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3683 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3684 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3685}
3686
8ad4b1fb
RS
3687/*
3688 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3689 * to the value high for the pageset p.
3690 */
3691
3692static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3693 unsigned long high)
3694{
3695 struct per_cpu_pages *pcp;
3696
3dfa5721 3697 pcp = &p->pcp;
8ad4b1fb
RS
3698 pcp->high = high;
3699 pcp->batch = max(1UL, high/4);
3700 if ((high/4) > (PAGE_SHIFT * 8))
3701 pcp->batch = PAGE_SHIFT * 8;
3702}
3703
58c2ee40 3704static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3705{
3706 int cpu;
3707
3708 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3709
3710 for_each_possible_cpu(cpu) {
3711 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3712
3713 setup_pageset(pcp, zone_batchsize(zone));
3714
3715 if (percpu_pagelist_fraction)
3716 setup_pagelist_highmark(pcp,
3717 (zone->present_pages /
3718 percpu_pagelist_fraction));
3719 }
3720}
3721
2caaad41 3722/*
99dcc3e5
CL
3723 * Allocate per cpu pagesets and initialize them.
3724 * Before this call only boot pagesets were available.
e7c8d5c9 3725 */
99dcc3e5 3726void __init setup_per_cpu_pageset(void)
e7c8d5c9 3727{
99dcc3e5 3728 struct zone *zone;
e7c8d5c9 3729
319774e2
WF
3730 for_each_populated_zone(zone)
3731 setup_zone_pageset(zone);
e7c8d5c9
CL
3732}
3733
577a32f6 3734static noinline __init_refok
cca448fe 3735int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3736{
3737 int i;
3738 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3739 size_t alloc_size;
ed8ece2e
DH
3740
3741 /*
3742 * The per-page waitqueue mechanism uses hashed waitqueues
3743 * per zone.
3744 */
02b694de
YG
3745 zone->wait_table_hash_nr_entries =
3746 wait_table_hash_nr_entries(zone_size_pages);
3747 zone->wait_table_bits =
3748 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3749 alloc_size = zone->wait_table_hash_nr_entries
3750 * sizeof(wait_queue_head_t);
3751
cd94b9db 3752 if (!slab_is_available()) {
cca448fe 3753 zone->wait_table = (wait_queue_head_t *)
8f389a99 3754 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3755 } else {
3756 /*
3757 * This case means that a zone whose size was 0 gets new memory
3758 * via memory hot-add.
3759 * But it may be the case that a new node was hot-added. In
3760 * this case vmalloc() will not be able to use this new node's
3761 * memory - this wait_table must be initialized to use this new
3762 * node itself as well.
3763 * To use this new node's memory, further consideration will be
3764 * necessary.
3765 */
8691f3a7 3766 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3767 }
3768 if (!zone->wait_table)
3769 return -ENOMEM;
ed8ece2e 3770
02b694de 3771 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3772 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3773
3774 return 0;
ed8ece2e
DH
3775}
3776
112067f0
SL
3777static int __zone_pcp_update(void *data)
3778{
3779 struct zone *zone = data;
3780 int cpu;
3781 unsigned long batch = zone_batchsize(zone), flags;
3782
2d30a1f6 3783 for_each_possible_cpu(cpu) {
112067f0
SL
3784 struct per_cpu_pageset *pset;
3785 struct per_cpu_pages *pcp;
3786
99dcc3e5 3787 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3788 pcp = &pset->pcp;
3789
3790 local_irq_save(flags);
5f8dcc21 3791 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3792 setup_pageset(pset, batch);
3793 local_irq_restore(flags);
3794 }
3795 return 0;
3796}
3797
3798void zone_pcp_update(struct zone *zone)
3799{
3800 stop_machine(__zone_pcp_update, zone, NULL);
3801}
3802
c09b4240 3803static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3804{
99dcc3e5
CL
3805 /*
3806 * per cpu subsystem is not up at this point. The following code
3807 * relies on the ability of the linker to provide the
3808 * offset of a (static) per cpu variable into the per cpu area.
3809 */
3810 zone->pageset = &boot_pageset;
ed8ece2e 3811
f5335c0f 3812 if (zone->present_pages)
99dcc3e5
CL
3813 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3814 zone->name, zone->present_pages,
3815 zone_batchsize(zone));
ed8ece2e
DH
3816}
3817
718127cc
YG
3818__meminit int init_currently_empty_zone(struct zone *zone,
3819 unsigned long zone_start_pfn,
a2f3aa02
DH
3820 unsigned long size,
3821 enum memmap_context context)
ed8ece2e
DH
3822{
3823 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3824 int ret;
3825 ret = zone_wait_table_init(zone, size);
3826 if (ret)
3827 return ret;
ed8ece2e
DH
3828 pgdat->nr_zones = zone_idx(zone) + 1;
3829
ed8ece2e
DH
3830 zone->zone_start_pfn = zone_start_pfn;
3831
708614e6
MG
3832 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3833 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3834 pgdat->node_id,
3835 (unsigned long)zone_idx(zone),
3836 zone_start_pfn, (zone_start_pfn + size));
3837
1e548deb 3838 zone_init_free_lists(zone);
718127cc
YG
3839
3840 return 0;
ed8ece2e
DH
3841}
3842
0ee332c1 3843#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3844#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3845/*
3846 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3847 * Architectures may implement their own version but if add_active_range()
3848 * was used and there are no special requirements, this is a convenient
3849 * alternative
3850 */
f2dbcfa7 3851int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3852{
c13291a5
TH
3853 unsigned long start_pfn, end_pfn;
3854 int i, nid;
c713216d 3855
c13291a5 3856 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3857 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3858 return nid;
cc2559bc
KH
3859 /* This is a memory hole */
3860 return -1;
c713216d
MG
3861}
3862#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3863
f2dbcfa7
KH
3864int __meminit early_pfn_to_nid(unsigned long pfn)
3865{
cc2559bc
KH
3866 int nid;
3867
3868 nid = __early_pfn_to_nid(pfn);
3869 if (nid >= 0)
3870 return nid;
3871 /* just returns 0 */
3872 return 0;
f2dbcfa7
KH
3873}
3874
cc2559bc
KH
3875#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3876bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3877{
3878 int nid;
3879
3880 nid = __early_pfn_to_nid(pfn);
3881 if (nid >= 0 && nid != node)
3882 return false;
3883 return true;
3884}
3885#endif
f2dbcfa7 3886
c713216d
MG
3887/**
3888 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3889 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3890 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3891 *
3892 * If an architecture guarantees that all ranges registered with
3893 * add_active_ranges() contain no holes and may be freed, this
3894 * this function may be used instead of calling free_bootmem() manually.
3895 */
c13291a5 3896void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 3897{
c13291a5
TH
3898 unsigned long start_pfn, end_pfn;
3899 int i, this_nid;
edbe7d23 3900
c13291a5
TH
3901 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3902 start_pfn = min(start_pfn, max_low_pfn);
3903 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 3904
c13291a5
TH
3905 if (start_pfn < end_pfn)
3906 free_bootmem_node(NODE_DATA(this_nid),
3907 PFN_PHYS(start_pfn),
3908 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 3909 }
edbe7d23 3910}
edbe7d23 3911
08677214
YL
3912int __init add_from_early_node_map(struct range *range, int az,
3913 int nr_range, int nid)
3914{
c13291a5 3915 unsigned long start_pfn, end_pfn;
08677214 3916 int i;
08677214
YL
3917
3918 /* need to go over early_node_map to find out good range for node */
c13291a5
TH
3919 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3920 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
08677214
YL
3921 return nr_range;
3922}
3923
c713216d
MG
3924/**
3925 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3926 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3927 *
3928 * If an architecture guarantees that all ranges registered with
3929 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3930 * function may be used instead of calling memory_present() manually.
c713216d
MG
3931 */
3932void __init sparse_memory_present_with_active_regions(int nid)
3933{
c13291a5
TH
3934 unsigned long start_pfn, end_pfn;
3935 int i, this_nid;
c713216d 3936
c13291a5
TH
3937 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3938 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
3939}
3940
3941/**
3942 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3943 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3944 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3945 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3946 *
3947 * It returns the start and end page frame of a node based on information
3948 * provided by an arch calling add_active_range(). If called for a node
3949 * with no available memory, a warning is printed and the start and end
88ca3b94 3950 * PFNs will be 0.
c713216d 3951 */
a3142c8e 3952void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3953 unsigned long *start_pfn, unsigned long *end_pfn)
3954{
c13291a5 3955 unsigned long this_start_pfn, this_end_pfn;
c713216d 3956 int i;
c13291a5 3957
c713216d
MG
3958 *start_pfn = -1UL;
3959 *end_pfn = 0;
3960
c13291a5
TH
3961 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3962 *start_pfn = min(*start_pfn, this_start_pfn);
3963 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
3964 }
3965
633c0666 3966 if (*start_pfn == -1UL)
c713216d 3967 *start_pfn = 0;
c713216d
MG
3968}
3969
2a1e274a
MG
3970/*
3971 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3972 * assumption is made that zones within a node are ordered in monotonic
3973 * increasing memory addresses so that the "highest" populated zone is used
3974 */
b69a7288 3975static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3976{
3977 int zone_index;
3978 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3979 if (zone_index == ZONE_MOVABLE)
3980 continue;
3981
3982 if (arch_zone_highest_possible_pfn[zone_index] >
3983 arch_zone_lowest_possible_pfn[zone_index])
3984 break;
3985 }
3986
3987 VM_BUG_ON(zone_index == -1);
3988 movable_zone = zone_index;
3989}
3990
3991/*
3992 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 3993 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
3994 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3995 * in each node depending on the size of each node and how evenly kernelcore
3996 * is distributed. This helper function adjusts the zone ranges
3997 * provided by the architecture for a given node by using the end of the
3998 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3999 * zones within a node are in order of monotonic increases memory addresses
4000 */
b69a7288 4001static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4002 unsigned long zone_type,
4003 unsigned long node_start_pfn,
4004 unsigned long node_end_pfn,
4005 unsigned long *zone_start_pfn,
4006 unsigned long *zone_end_pfn)
4007{
4008 /* Only adjust if ZONE_MOVABLE is on this node */
4009 if (zone_movable_pfn[nid]) {
4010 /* Size ZONE_MOVABLE */
4011 if (zone_type == ZONE_MOVABLE) {
4012 *zone_start_pfn = zone_movable_pfn[nid];
4013 *zone_end_pfn = min(node_end_pfn,
4014 arch_zone_highest_possible_pfn[movable_zone]);
4015
4016 /* Adjust for ZONE_MOVABLE starting within this range */
4017 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4018 *zone_end_pfn > zone_movable_pfn[nid]) {
4019 *zone_end_pfn = zone_movable_pfn[nid];
4020
4021 /* Check if this whole range is within ZONE_MOVABLE */
4022 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4023 *zone_start_pfn = *zone_end_pfn;
4024 }
4025}
4026
c713216d
MG
4027/*
4028 * Return the number of pages a zone spans in a node, including holes
4029 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4030 */
6ea6e688 4031static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4032 unsigned long zone_type,
4033 unsigned long *ignored)
4034{
4035 unsigned long node_start_pfn, node_end_pfn;
4036 unsigned long zone_start_pfn, zone_end_pfn;
4037
4038 /* Get the start and end of the node and zone */
4039 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4040 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4041 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4042 adjust_zone_range_for_zone_movable(nid, zone_type,
4043 node_start_pfn, node_end_pfn,
4044 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4045
4046 /* Check that this node has pages within the zone's required range */
4047 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4048 return 0;
4049
4050 /* Move the zone boundaries inside the node if necessary */
4051 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4052 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4053
4054 /* Return the spanned pages */
4055 return zone_end_pfn - zone_start_pfn;
4056}
4057
4058/*
4059 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4060 * then all holes in the requested range will be accounted for.
c713216d 4061 */
32996250 4062unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4063 unsigned long range_start_pfn,
4064 unsigned long range_end_pfn)
4065{
96e907d1
TH
4066 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4067 unsigned long start_pfn, end_pfn;
4068 int i;
c713216d 4069
96e907d1
TH
4070 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4071 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4072 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4073 nr_absent -= end_pfn - start_pfn;
c713216d 4074 }
96e907d1 4075 return nr_absent;
c713216d
MG
4076}
4077
4078/**
4079 * absent_pages_in_range - Return number of page frames in holes within a range
4080 * @start_pfn: The start PFN to start searching for holes
4081 * @end_pfn: The end PFN to stop searching for holes
4082 *
88ca3b94 4083 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4084 */
4085unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4086 unsigned long end_pfn)
4087{
4088 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4089}
4090
4091/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4092static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4093 unsigned long zone_type,
4094 unsigned long *ignored)
4095{
96e907d1
TH
4096 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4097 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4098 unsigned long node_start_pfn, node_end_pfn;
4099 unsigned long zone_start_pfn, zone_end_pfn;
4100
4101 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4102 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4103 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4104
2a1e274a
MG
4105 adjust_zone_range_for_zone_movable(nid, zone_type,
4106 node_start_pfn, node_end_pfn,
4107 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4108 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4109}
0e0b864e 4110
0ee332c1 4111#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4112static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4113 unsigned long zone_type,
4114 unsigned long *zones_size)
4115{
4116 return zones_size[zone_type];
4117}
4118
6ea6e688 4119static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4120 unsigned long zone_type,
4121 unsigned long *zholes_size)
4122{
4123 if (!zholes_size)
4124 return 0;
4125
4126 return zholes_size[zone_type];
4127}
0e0b864e 4128
0ee332c1 4129#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4130
a3142c8e 4131static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4132 unsigned long *zones_size, unsigned long *zholes_size)
4133{
4134 unsigned long realtotalpages, totalpages = 0;
4135 enum zone_type i;
4136
4137 for (i = 0; i < MAX_NR_ZONES; i++)
4138 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4139 zones_size);
4140 pgdat->node_spanned_pages = totalpages;
4141
4142 realtotalpages = totalpages;
4143 for (i = 0; i < MAX_NR_ZONES; i++)
4144 realtotalpages -=
4145 zone_absent_pages_in_node(pgdat->node_id, i,
4146 zholes_size);
4147 pgdat->node_present_pages = realtotalpages;
4148 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4149 realtotalpages);
4150}
4151
835c134e
MG
4152#ifndef CONFIG_SPARSEMEM
4153/*
4154 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4155 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4156 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4157 * round what is now in bits to nearest long in bits, then return it in
4158 * bytes.
4159 */
4160static unsigned long __init usemap_size(unsigned long zonesize)
4161{
4162 unsigned long usemapsize;
4163
d9c23400
MG
4164 usemapsize = roundup(zonesize, pageblock_nr_pages);
4165 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4166 usemapsize *= NR_PAGEBLOCK_BITS;
4167 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4168
4169 return usemapsize / 8;
4170}
4171
4172static void __init setup_usemap(struct pglist_data *pgdat,
4173 struct zone *zone, unsigned long zonesize)
4174{
4175 unsigned long usemapsize = usemap_size(zonesize);
4176 zone->pageblock_flags = NULL;
58a01a45 4177 if (usemapsize)
8f389a99
YL
4178 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4179 usemapsize);
835c134e
MG
4180}
4181#else
fa9f90be 4182static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4183 struct zone *zone, unsigned long zonesize) {}
4184#endif /* CONFIG_SPARSEMEM */
4185
d9c23400 4186#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4187
4188/* Return a sensible default order for the pageblock size. */
4189static inline int pageblock_default_order(void)
4190{
4191 if (HPAGE_SHIFT > PAGE_SHIFT)
4192 return HUGETLB_PAGE_ORDER;
4193
4194 return MAX_ORDER-1;
4195}
4196
d9c23400
MG
4197/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4198static inline void __init set_pageblock_order(unsigned int order)
4199{
4200 /* Check that pageblock_nr_pages has not already been setup */
4201 if (pageblock_order)
4202 return;
4203
4204 /*
4205 * Assume the largest contiguous order of interest is a huge page.
4206 * This value may be variable depending on boot parameters on IA64
4207 */
4208 pageblock_order = order;
4209}
4210#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4211
ba72cb8c
MG
4212/*
4213 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4214 * and pageblock_default_order() are unused as pageblock_order is set
4215 * at compile-time. See include/linux/pageblock-flags.h for the values of
4216 * pageblock_order based on the kernel config
4217 */
4218static inline int pageblock_default_order(unsigned int order)
4219{
4220 return MAX_ORDER-1;
4221}
d9c23400
MG
4222#define set_pageblock_order(x) do {} while (0)
4223
4224#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4225
1da177e4
LT
4226/*
4227 * Set up the zone data structures:
4228 * - mark all pages reserved
4229 * - mark all memory queues empty
4230 * - clear the memory bitmaps
4231 */
b5a0e011 4232static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4233 unsigned long *zones_size, unsigned long *zholes_size)
4234{
2f1b6248 4235 enum zone_type j;
ed8ece2e 4236 int nid = pgdat->node_id;
1da177e4 4237 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4238 int ret;
1da177e4 4239
208d54e5 4240 pgdat_resize_init(pgdat);
1da177e4
LT
4241 pgdat->nr_zones = 0;
4242 init_waitqueue_head(&pgdat->kswapd_wait);
4243 pgdat->kswapd_max_order = 0;
52d4b9ac 4244 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4245
4246 for (j = 0; j < MAX_NR_ZONES; j++) {
4247 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4248 unsigned long size, realsize, memmap_pages;
b69408e8 4249 enum lru_list l;
1da177e4 4250
c713216d
MG
4251 size = zone_spanned_pages_in_node(nid, j, zones_size);
4252 realsize = size - zone_absent_pages_in_node(nid, j,
4253 zholes_size);
1da177e4 4254
0e0b864e
MG
4255 /*
4256 * Adjust realsize so that it accounts for how much memory
4257 * is used by this zone for memmap. This affects the watermark
4258 * and per-cpu initialisations
4259 */
f7232154
JW
4260 memmap_pages =
4261 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4262 if (realsize >= memmap_pages) {
4263 realsize -= memmap_pages;
5594c8c8
YL
4264 if (memmap_pages)
4265 printk(KERN_DEBUG
4266 " %s zone: %lu pages used for memmap\n",
4267 zone_names[j], memmap_pages);
0e0b864e
MG
4268 } else
4269 printk(KERN_WARNING
4270 " %s zone: %lu pages exceeds realsize %lu\n",
4271 zone_names[j], memmap_pages, realsize);
4272
6267276f
CL
4273 /* Account for reserved pages */
4274 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4275 realsize -= dma_reserve;
d903ef9f 4276 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4277 zone_names[0], dma_reserve);
0e0b864e
MG
4278 }
4279
98d2b0eb 4280 if (!is_highmem_idx(j))
1da177e4
LT
4281 nr_kernel_pages += realsize;
4282 nr_all_pages += realsize;
4283
4284 zone->spanned_pages = size;
4285 zone->present_pages = realsize;
9614634f 4286#ifdef CONFIG_NUMA
d5f541ed 4287 zone->node = nid;
8417bba4 4288 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4289 / 100;
0ff38490 4290 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4291#endif
1da177e4
LT
4292 zone->name = zone_names[j];
4293 spin_lock_init(&zone->lock);
4294 spin_lock_init(&zone->lru_lock);
bdc8cb98 4295 zone_seqlock_init(zone);
1da177e4 4296 zone->zone_pgdat = pgdat;
1da177e4 4297
ed8ece2e 4298 zone_pcp_init(zone);
246e87a9 4299 for_each_lru(l)
b69408e8 4300 INIT_LIST_HEAD(&zone->lru[l].list);
6e901571
KM
4301 zone->reclaim_stat.recent_rotated[0] = 0;
4302 zone->reclaim_stat.recent_rotated[1] = 0;
4303 zone->reclaim_stat.recent_scanned[0] = 0;
4304 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4305 zap_zone_vm_stats(zone);
e815af95 4306 zone->flags = 0;
1da177e4
LT
4307 if (!size)
4308 continue;
4309
ba72cb8c 4310 set_pageblock_order(pageblock_default_order());
835c134e 4311 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4312 ret = init_currently_empty_zone(zone, zone_start_pfn,
4313 size, MEMMAP_EARLY);
718127cc 4314 BUG_ON(ret);
76cdd58e 4315 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4316 zone_start_pfn += size;
1da177e4
LT
4317 }
4318}
4319
577a32f6 4320static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4321{
1da177e4
LT
4322 /* Skip empty nodes */
4323 if (!pgdat->node_spanned_pages)
4324 return;
4325
d41dee36 4326#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4327 /* ia64 gets its own node_mem_map, before this, without bootmem */
4328 if (!pgdat->node_mem_map) {
e984bb43 4329 unsigned long size, start, end;
d41dee36
AW
4330 struct page *map;
4331
e984bb43
BP
4332 /*
4333 * The zone's endpoints aren't required to be MAX_ORDER
4334 * aligned but the node_mem_map endpoints must be in order
4335 * for the buddy allocator to function correctly.
4336 */
4337 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4338 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4339 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4340 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4341 map = alloc_remap(pgdat->node_id, size);
4342 if (!map)
8f389a99 4343 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4344 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4345 }
12d810c1 4346#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4347 /*
4348 * With no DISCONTIG, the global mem_map is just set as node 0's
4349 */
c713216d 4350 if (pgdat == NODE_DATA(0)) {
1da177e4 4351 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4352#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4353 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4354 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4355#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4356 }
1da177e4 4357#endif
d41dee36 4358#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4359}
4360
9109fb7b
JW
4361void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4362 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4363{
9109fb7b
JW
4364 pg_data_t *pgdat = NODE_DATA(nid);
4365
1da177e4
LT
4366 pgdat->node_id = nid;
4367 pgdat->node_start_pfn = node_start_pfn;
c713216d 4368 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4369
4370 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4371#ifdef CONFIG_FLAT_NODE_MEM_MAP
4372 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4373 nid, (unsigned long)pgdat,
4374 (unsigned long)pgdat->node_mem_map);
4375#endif
1da177e4
LT
4376
4377 free_area_init_core(pgdat, zones_size, zholes_size);
4378}
4379
0ee332c1 4380#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4381
4382#if MAX_NUMNODES > 1
4383/*
4384 * Figure out the number of possible node ids.
4385 */
4386static void __init setup_nr_node_ids(void)
4387{
4388 unsigned int node;
4389 unsigned int highest = 0;
4390
4391 for_each_node_mask(node, node_possible_map)
4392 highest = node;
4393 nr_node_ids = highest + 1;
4394}
4395#else
4396static inline void setup_nr_node_ids(void)
4397{
4398}
4399#endif
4400
1e01979c
TH
4401/**
4402 * node_map_pfn_alignment - determine the maximum internode alignment
4403 *
4404 * This function should be called after node map is populated and sorted.
4405 * It calculates the maximum power of two alignment which can distinguish
4406 * all the nodes.
4407 *
4408 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4409 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4410 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4411 * shifted, 1GiB is enough and this function will indicate so.
4412 *
4413 * This is used to test whether pfn -> nid mapping of the chosen memory
4414 * model has fine enough granularity to avoid incorrect mapping for the
4415 * populated node map.
4416 *
4417 * Returns the determined alignment in pfn's. 0 if there is no alignment
4418 * requirement (single node).
4419 */
4420unsigned long __init node_map_pfn_alignment(void)
4421{
4422 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4423 unsigned long start, end, mask;
1e01979c 4424 int last_nid = -1;
c13291a5 4425 int i, nid;
1e01979c 4426
c13291a5 4427 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4428 if (!start || last_nid < 0 || last_nid == nid) {
4429 last_nid = nid;
4430 last_end = end;
4431 continue;
4432 }
4433
4434 /*
4435 * Start with a mask granular enough to pin-point to the
4436 * start pfn and tick off bits one-by-one until it becomes
4437 * too coarse to separate the current node from the last.
4438 */
4439 mask = ~((1 << __ffs(start)) - 1);
4440 while (mask && last_end <= (start & (mask << 1)))
4441 mask <<= 1;
4442
4443 /* accumulate all internode masks */
4444 accl_mask |= mask;
4445 }
4446
4447 /* convert mask to number of pages */
4448 return ~accl_mask + 1;
4449}
4450
a6af2bc3 4451/* Find the lowest pfn for a node */
b69a7288 4452static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4453{
a6af2bc3 4454 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4455 unsigned long start_pfn;
4456 int i;
1abbfb41 4457
c13291a5
TH
4458 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4459 min_pfn = min(min_pfn, start_pfn);
c713216d 4460
a6af2bc3
MG
4461 if (min_pfn == ULONG_MAX) {
4462 printk(KERN_WARNING
2bc0d261 4463 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4464 return 0;
4465 }
4466
4467 return min_pfn;
c713216d
MG
4468}
4469
4470/**
4471 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4472 *
4473 * It returns the minimum PFN based on information provided via
88ca3b94 4474 * add_active_range().
c713216d
MG
4475 */
4476unsigned long __init find_min_pfn_with_active_regions(void)
4477{
4478 return find_min_pfn_for_node(MAX_NUMNODES);
4479}
4480
37b07e41
LS
4481/*
4482 * early_calculate_totalpages()
4483 * Sum pages in active regions for movable zone.
4484 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4485 */
484f51f8 4486static unsigned long __init early_calculate_totalpages(void)
7e63efef 4487{
7e63efef 4488 unsigned long totalpages = 0;
c13291a5
TH
4489 unsigned long start_pfn, end_pfn;
4490 int i, nid;
4491
4492 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4493 unsigned long pages = end_pfn - start_pfn;
7e63efef 4494
37b07e41
LS
4495 totalpages += pages;
4496 if (pages)
c13291a5 4497 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4498 }
4499 return totalpages;
7e63efef
MG
4500}
4501
2a1e274a
MG
4502/*
4503 * Find the PFN the Movable zone begins in each node. Kernel memory
4504 * is spread evenly between nodes as long as the nodes have enough
4505 * memory. When they don't, some nodes will have more kernelcore than
4506 * others
4507 */
b69a7288 4508static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4509{
4510 int i, nid;
4511 unsigned long usable_startpfn;
4512 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4513 /* save the state before borrow the nodemask */
4514 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4515 unsigned long totalpages = early_calculate_totalpages();
4516 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4517
7e63efef
MG
4518 /*
4519 * If movablecore was specified, calculate what size of
4520 * kernelcore that corresponds so that memory usable for
4521 * any allocation type is evenly spread. If both kernelcore
4522 * and movablecore are specified, then the value of kernelcore
4523 * will be used for required_kernelcore if it's greater than
4524 * what movablecore would have allowed.
4525 */
4526 if (required_movablecore) {
7e63efef
MG
4527 unsigned long corepages;
4528
4529 /*
4530 * Round-up so that ZONE_MOVABLE is at least as large as what
4531 * was requested by the user
4532 */
4533 required_movablecore =
4534 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4535 corepages = totalpages - required_movablecore;
4536
4537 required_kernelcore = max(required_kernelcore, corepages);
4538 }
4539
2a1e274a
MG
4540 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4541 if (!required_kernelcore)
66918dcd 4542 goto out;
2a1e274a
MG
4543
4544 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4545 find_usable_zone_for_movable();
4546 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4547
4548restart:
4549 /* Spread kernelcore memory as evenly as possible throughout nodes */
4550 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4551 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4552 unsigned long start_pfn, end_pfn;
4553
2a1e274a
MG
4554 /*
4555 * Recalculate kernelcore_node if the division per node
4556 * now exceeds what is necessary to satisfy the requested
4557 * amount of memory for the kernel
4558 */
4559 if (required_kernelcore < kernelcore_node)
4560 kernelcore_node = required_kernelcore / usable_nodes;
4561
4562 /*
4563 * As the map is walked, we track how much memory is usable
4564 * by the kernel using kernelcore_remaining. When it is
4565 * 0, the rest of the node is usable by ZONE_MOVABLE
4566 */
4567 kernelcore_remaining = kernelcore_node;
4568
4569 /* Go through each range of PFNs within this node */
c13291a5 4570 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4571 unsigned long size_pages;
4572
c13291a5 4573 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4574 if (start_pfn >= end_pfn)
4575 continue;
4576
4577 /* Account for what is only usable for kernelcore */
4578 if (start_pfn < usable_startpfn) {
4579 unsigned long kernel_pages;
4580 kernel_pages = min(end_pfn, usable_startpfn)
4581 - start_pfn;
4582
4583 kernelcore_remaining -= min(kernel_pages,
4584 kernelcore_remaining);
4585 required_kernelcore -= min(kernel_pages,
4586 required_kernelcore);
4587
4588 /* Continue if range is now fully accounted */
4589 if (end_pfn <= usable_startpfn) {
4590
4591 /*
4592 * Push zone_movable_pfn to the end so
4593 * that if we have to rebalance
4594 * kernelcore across nodes, we will
4595 * not double account here
4596 */
4597 zone_movable_pfn[nid] = end_pfn;
4598 continue;
4599 }
4600 start_pfn = usable_startpfn;
4601 }
4602
4603 /*
4604 * The usable PFN range for ZONE_MOVABLE is from
4605 * start_pfn->end_pfn. Calculate size_pages as the
4606 * number of pages used as kernelcore
4607 */
4608 size_pages = end_pfn - start_pfn;
4609 if (size_pages > kernelcore_remaining)
4610 size_pages = kernelcore_remaining;
4611 zone_movable_pfn[nid] = start_pfn + size_pages;
4612
4613 /*
4614 * Some kernelcore has been met, update counts and
4615 * break if the kernelcore for this node has been
4616 * satisified
4617 */
4618 required_kernelcore -= min(required_kernelcore,
4619 size_pages);
4620 kernelcore_remaining -= size_pages;
4621 if (!kernelcore_remaining)
4622 break;
4623 }
4624 }
4625
4626 /*
4627 * If there is still required_kernelcore, we do another pass with one
4628 * less node in the count. This will push zone_movable_pfn[nid] further
4629 * along on the nodes that still have memory until kernelcore is
4630 * satisified
4631 */
4632 usable_nodes--;
4633 if (usable_nodes && required_kernelcore > usable_nodes)
4634 goto restart;
4635
4636 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4637 for (nid = 0; nid < MAX_NUMNODES; nid++)
4638 zone_movable_pfn[nid] =
4639 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4640
4641out:
4642 /* restore the node_state */
4643 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4644}
4645
37b07e41
LS
4646/* Any regular memory on that node ? */
4647static void check_for_regular_memory(pg_data_t *pgdat)
4648{
4649#ifdef CONFIG_HIGHMEM
4650 enum zone_type zone_type;
4651
4652 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4653 struct zone *zone = &pgdat->node_zones[zone_type];
4654 if (zone->present_pages)
4655 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4656 }
4657#endif
4658}
4659
c713216d
MG
4660/**
4661 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4662 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4663 *
4664 * This will call free_area_init_node() for each active node in the system.
4665 * Using the page ranges provided by add_active_range(), the size of each
4666 * zone in each node and their holes is calculated. If the maximum PFN
4667 * between two adjacent zones match, it is assumed that the zone is empty.
4668 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4669 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4670 * starts where the previous one ended. For example, ZONE_DMA32 starts
4671 * at arch_max_dma_pfn.
4672 */
4673void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4674{
c13291a5
TH
4675 unsigned long start_pfn, end_pfn;
4676 int i, nid;
a6af2bc3 4677
c713216d
MG
4678 /* Record where the zone boundaries are */
4679 memset(arch_zone_lowest_possible_pfn, 0,
4680 sizeof(arch_zone_lowest_possible_pfn));
4681 memset(arch_zone_highest_possible_pfn, 0,
4682 sizeof(arch_zone_highest_possible_pfn));
4683 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4684 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4685 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4686 if (i == ZONE_MOVABLE)
4687 continue;
c713216d
MG
4688 arch_zone_lowest_possible_pfn[i] =
4689 arch_zone_highest_possible_pfn[i-1];
4690 arch_zone_highest_possible_pfn[i] =
4691 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4692 }
2a1e274a
MG
4693 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4694 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4695
4696 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4697 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4698 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4699
c713216d
MG
4700 /* Print out the zone ranges */
4701 printk("Zone PFN ranges:\n");
2a1e274a
MG
4702 for (i = 0; i < MAX_NR_ZONES; i++) {
4703 if (i == ZONE_MOVABLE)
4704 continue;
72f0ba02
DR
4705 printk(" %-8s ", zone_names[i]);
4706 if (arch_zone_lowest_possible_pfn[i] ==
4707 arch_zone_highest_possible_pfn[i])
4708 printk("empty\n");
4709 else
4710 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4711 arch_zone_lowest_possible_pfn[i],
4712 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4713 }
4714
4715 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4716 printk("Movable zone start PFN for each node\n");
4717 for (i = 0; i < MAX_NUMNODES; i++) {
4718 if (zone_movable_pfn[i])
4719 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4720 }
c713216d
MG
4721
4722 /* Print out the early_node_map[] */
c13291a5
TH
4723 printk("Early memory PFN ranges\n");
4724 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4725 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
c713216d
MG
4726
4727 /* Initialise every node */
708614e6 4728 mminit_verify_pageflags_layout();
8ef82866 4729 setup_nr_node_ids();
c713216d
MG
4730 for_each_online_node(nid) {
4731 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4732 free_area_init_node(nid, NULL,
c713216d 4733 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4734
4735 /* Any memory on that node */
4736 if (pgdat->node_present_pages)
4737 node_set_state(nid, N_HIGH_MEMORY);
4738 check_for_regular_memory(pgdat);
c713216d
MG
4739 }
4740}
2a1e274a 4741
7e63efef 4742static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4743{
4744 unsigned long long coremem;
4745 if (!p)
4746 return -EINVAL;
4747
4748 coremem = memparse(p, &p);
7e63efef 4749 *core = coremem >> PAGE_SHIFT;
2a1e274a 4750
7e63efef 4751 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4752 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4753
4754 return 0;
4755}
ed7ed365 4756
7e63efef
MG
4757/*
4758 * kernelcore=size sets the amount of memory for use for allocations that
4759 * cannot be reclaimed or migrated.
4760 */
4761static int __init cmdline_parse_kernelcore(char *p)
4762{
4763 return cmdline_parse_core(p, &required_kernelcore);
4764}
4765
4766/*
4767 * movablecore=size sets the amount of memory for use for allocations that
4768 * can be reclaimed or migrated.
4769 */
4770static int __init cmdline_parse_movablecore(char *p)
4771{
4772 return cmdline_parse_core(p, &required_movablecore);
4773}
4774
ed7ed365 4775early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4776early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4777
0ee332c1 4778#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4779
0e0b864e 4780/**
88ca3b94
RD
4781 * set_dma_reserve - set the specified number of pages reserved in the first zone
4782 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4783 *
4784 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4785 * In the DMA zone, a significant percentage may be consumed by kernel image
4786 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4787 * function may optionally be used to account for unfreeable pages in the
4788 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4789 * smaller per-cpu batchsize.
0e0b864e
MG
4790 */
4791void __init set_dma_reserve(unsigned long new_dma_reserve)
4792{
4793 dma_reserve = new_dma_reserve;
4794}
4795
1da177e4
LT
4796void __init free_area_init(unsigned long *zones_size)
4797{
9109fb7b 4798 free_area_init_node(0, zones_size,
1da177e4
LT
4799 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4800}
1da177e4 4801
1da177e4
LT
4802static int page_alloc_cpu_notify(struct notifier_block *self,
4803 unsigned long action, void *hcpu)
4804{
4805 int cpu = (unsigned long)hcpu;
1da177e4 4806
8bb78442 4807 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4808 drain_pages(cpu);
4809
4810 /*
4811 * Spill the event counters of the dead processor
4812 * into the current processors event counters.
4813 * This artificially elevates the count of the current
4814 * processor.
4815 */
f8891e5e 4816 vm_events_fold_cpu(cpu);
9f8f2172
CL
4817
4818 /*
4819 * Zero the differential counters of the dead processor
4820 * so that the vm statistics are consistent.
4821 *
4822 * This is only okay since the processor is dead and cannot
4823 * race with what we are doing.
4824 */
2244b95a 4825 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4826 }
4827 return NOTIFY_OK;
4828}
1da177e4
LT
4829
4830void __init page_alloc_init(void)
4831{
4832 hotcpu_notifier(page_alloc_cpu_notify, 0);
4833}
4834
cb45b0e9
HA
4835/*
4836 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4837 * or min_free_kbytes changes.
4838 */
4839static void calculate_totalreserve_pages(void)
4840{
4841 struct pglist_data *pgdat;
4842 unsigned long reserve_pages = 0;
2f6726e5 4843 enum zone_type i, j;
cb45b0e9
HA
4844
4845 for_each_online_pgdat(pgdat) {
4846 for (i = 0; i < MAX_NR_ZONES; i++) {
4847 struct zone *zone = pgdat->node_zones + i;
4848 unsigned long max = 0;
4849
4850 /* Find valid and maximum lowmem_reserve in the zone */
4851 for (j = i; j < MAX_NR_ZONES; j++) {
4852 if (zone->lowmem_reserve[j] > max)
4853 max = zone->lowmem_reserve[j];
4854 }
4855
41858966
MG
4856 /* we treat the high watermark as reserved pages. */
4857 max += high_wmark_pages(zone);
cb45b0e9
HA
4858
4859 if (max > zone->present_pages)
4860 max = zone->present_pages;
4861 reserve_pages += max;
ab8fabd4
JW
4862 /*
4863 * Lowmem reserves are not available to
4864 * GFP_HIGHUSER page cache allocations and
4865 * kswapd tries to balance zones to their high
4866 * watermark. As a result, neither should be
4867 * regarded as dirtyable memory, to prevent a
4868 * situation where reclaim has to clean pages
4869 * in order to balance the zones.
4870 */
4871 zone->dirty_balance_reserve = max;
cb45b0e9
HA
4872 }
4873 }
ab8fabd4 4874 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
4875 totalreserve_pages = reserve_pages;
4876}
4877
1da177e4
LT
4878/*
4879 * setup_per_zone_lowmem_reserve - called whenever
4880 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4881 * has a correct pages reserved value, so an adequate number of
4882 * pages are left in the zone after a successful __alloc_pages().
4883 */
4884static void setup_per_zone_lowmem_reserve(void)
4885{
4886 struct pglist_data *pgdat;
2f6726e5 4887 enum zone_type j, idx;
1da177e4 4888
ec936fc5 4889 for_each_online_pgdat(pgdat) {
1da177e4
LT
4890 for (j = 0; j < MAX_NR_ZONES; j++) {
4891 struct zone *zone = pgdat->node_zones + j;
4892 unsigned long present_pages = zone->present_pages;
4893
4894 zone->lowmem_reserve[j] = 0;
4895
2f6726e5
CL
4896 idx = j;
4897 while (idx) {
1da177e4
LT
4898 struct zone *lower_zone;
4899
2f6726e5
CL
4900 idx--;
4901
1da177e4
LT
4902 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4903 sysctl_lowmem_reserve_ratio[idx] = 1;
4904
4905 lower_zone = pgdat->node_zones + idx;
4906 lower_zone->lowmem_reserve[j] = present_pages /
4907 sysctl_lowmem_reserve_ratio[idx];
4908 present_pages += lower_zone->present_pages;
4909 }
4910 }
4911 }
cb45b0e9
HA
4912
4913 /* update totalreserve_pages */
4914 calculate_totalreserve_pages();
1da177e4
LT
4915}
4916
88ca3b94 4917/**
bc75d33f 4918 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4919 * or when memory is hot-{added|removed}
88ca3b94 4920 *
bc75d33f
MK
4921 * Ensures that the watermark[min,low,high] values for each zone are set
4922 * correctly with respect to min_free_kbytes.
1da177e4 4923 */
bc75d33f 4924void setup_per_zone_wmarks(void)
1da177e4
LT
4925{
4926 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4927 unsigned long lowmem_pages = 0;
4928 struct zone *zone;
4929 unsigned long flags;
4930
4931 /* Calculate total number of !ZONE_HIGHMEM pages */
4932 for_each_zone(zone) {
4933 if (!is_highmem(zone))
4934 lowmem_pages += zone->present_pages;
4935 }
4936
4937 for_each_zone(zone) {
ac924c60
AM
4938 u64 tmp;
4939
1125b4e3 4940 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4941 tmp = (u64)pages_min * zone->present_pages;
4942 do_div(tmp, lowmem_pages);
1da177e4
LT
4943 if (is_highmem(zone)) {
4944 /*
669ed175
NP
4945 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4946 * need highmem pages, so cap pages_min to a small
4947 * value here.
4948 *
41858966 4949 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4950 * deltas controls asynch page reclaim, and so should
4951 * not be capped for highmem.
1da177e4
LT
4952 */
4953 int min_pages;
4954
4955 min_pages = zone->present_pages / 1024;
4956 if (min_pages < SWAP_CLUSTER_MAX)
4957 min_pages = SWAP_CLUSTER_MAX;
4958 if (min_pages > 128)
4959 min_pages = 128;
41858966 4960 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4961 } else {
669ed175
NP
4962 /*
4963 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4964 * proportionate to the zone's size.
4965 */
41858966 4966 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4967 }
4968
41858966
MG
4969 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4970 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4971 setup_zone_migrate_reserve(zone);
1125b4e3 4972 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4973 }
cb45b0e9
HA
4974
4975 /* update totalreserve_pages */
4976 calculate_totalreserve_pages();
1da177e4
LT
4977}
4978
55a4462a 4979/*
556adecb
RR
4980 * The inactive anon list should be small enough that the VM never has to
4981 * do too much work, but large enough that each inactive page has a chance
4982 * to be referenced again before it is swapped out.
4983 *
4984 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4985 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4986 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4987 * the anonymous pages are kept on the inactive list.
4988 *
4989 * total target max
4990 * memory ratio inactive anon
4991 * -------------------------------------
4992 * 10MB 1 5MB
4993 * 100MB 1 50MB
4994 * 1GB 3 250MB
4995 * 10GB 10 0.9GB
4996 * 100GB 31 3GB
4997 * 1TB 101 10GB
4998 * 10TB 320 32GB
4999 */
1b79acc9 5000static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5001{
96cb4df5 5002 unsigned int gb, ratio;
556adecb 5003
96cb4df5
MK
5004 /* Zone size in gigabytes */
5005 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5006 if (gb)
556adecb 5007 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5008 else
5009 ratio = 1;
556adecb 5010
96cb4df5
MK
5011 zone->inactive_ratio = ratio;
5012}
556adecb 5013
839a4fcc 5014static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5015{
5016 struct zone *zone;
5017
5018 for_each_zone(zone)
5019 calculate_zone_inactive_ratio(zone);
556adecb
RR
5020}
5021
1da177e4
LT
5022/*
5023 * Initialise min_free_kbytes.
5024 *
5025 * For small machines we want it small (128k min). For large machines
5026 * we want it large (64MB max). But it is not linear, because network
5027 * bandwidth does not increase linearly with machine size. We use
5028 *
5029 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5030 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5031 *
5032 * which yields
5033 *
5034 * 16MB: 512k
5035 * 32MB: 724k
5036 * 64MB: 1024k
5037 * 128MB: 1448k
5038 * 256MB: 2048k
5039 * 512MB: 2896k
5040 * 1024MB: 4096k
5041 * 2048MB: 5792k
5042 * 4096MB: 8192k
5043 * 8192MB: 11584k
5044 * 16384MB: 16384k
5045 */
1b79acc9 5046int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5047{
5048 unsigned long lowmem_kbytes;
5049
5050 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5051
5052 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5053 if (min_free_kbytes < 128)
5054 min_free_kbytes = 128;
5055 if (min_free_kbytes > 65536)
5056 min_free_kbytes = 65536;
bc75d33f 5057 setup_per_zone_wmarks();
a6cccdc3 5058 refresh_zone_stat_thresholds();
1da177e4 5059 setup_per_zone_lowmem_reserve();
556adecb 5060 setup_per_zone_inactive_ratio();
1da177e4
LT
5061 return 0;
5062}
bc75d33f 5063module_init(init_per_zone_wmark_min)
1da177e4
LT
5064
5065/*
5066 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5067 * that we can call two helper functions whenever min_free_kbytes
5068 * changes.
5069 */
5070int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5071 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5072{
8d65af78 5073 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5074 if (write)
bc75d33f 5075 setup_per_zone_wmarks();
1da177e4
LT
5076 return 0;
5077}
5078
9614634f
CL
5079#ifdef CONFIG_NUMA
5080int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5081 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5082{
5083 struct zone *zone;
5084 int rc;
5085
8d65af78 5086 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5087 if (rc)
5088 return rc;
5089
5090 for_each_zone(zone)
8417bba4 5091 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5092 sysctl_min_unmapped_ratio) / 100;
5093 return 0;
5094}
0ff38490
CL
5095
5096int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5097 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5098{
5099 struct zone *zone;
5100 int rc;
5101
8d65af78 5102 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5103 if (rc)
5104 return rc;
5105
5106 for_each_zone(zone)
5107 zone->min_slab_pages = (zone->present_pages *
5108 sysctl_min_slab_ratio) / 100;
5109 return 0;
5110}
9614634f
CL
5111#endif
5112
1da177e4
LT
5113/*
5114 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5115 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5116 * whenever sysctl_lowmem_reserve_ratio changes.
5117 *
5118 * The reserve ratio obviously has absolutely no relation with the
41858966 5119 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5120 * if in function of the boot time zone sizes.
5121 */
5122int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5123 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5124{
8d65af78 5125 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5126 setup_per_zone_lowmem_reserve();
5127 return 0;
5128}
5129
8ad4b1fb
RS
5130/*
5131 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5132 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5133 * can have before it gets flushed back to buddy allocator.
5134 */
5135
5136int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5137 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5138{
5139 struct zone *zone;
5140 unsigned int cpu;
5141 int ret;
5142
8d65af78 5143 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5144 if (!write || (ret == -EINVAL))
5145 return ret;
364df0eb 5146 for_each_populated_zone(zone) {
99dcc3e5 5147 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5148 unsigned long high;
5149 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5150 setup_pagelist_highmark(
5151 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5152 }
5153 }
5154 return 0;
5155}
5156
f034b5d4 5157int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5158
5159#ifdef CONFIG_NUMA
5160static int __init set_hashdist(char *str)
5161{
5162 if (!str)
5163 return 0;
5164 hashdist = simple_strtoul(str, &str, 0);
5165 return 1;
5166}
5167__setup("hashdist=", set_hashdist);
5168#endif
5169
5170/*
5171 * allocate a large system hash table from bootmem
5172 * - it is assumed that the hash table must contain an exact power-of-2
5173 * quantity of entries
5174 * - limit is the number of hash buckets, not the total allocation size
5175 */
5176void *__init alloc_large_system_hash(const char *tablename,
5177 unsigned long bucketsize,
5178 unsigned long numentries,
5179 int scale,
5180 int flags,
5181 unsigned int *_hash_shift,
5182 unsigned int *_hash_mask,
5183 unsigned long limit)
5184{
5185 unsigned long long max = limit;
5186 unsigned long log2qty, size;
5187 void *table = NULL;
5188
5189 /* allow the kernel cmdline to have a say */
5190 if (!numentries) {
5191 /* round applicable memory size up to nearest megabyte */
04903664 5192 numentries = nr_kernel_pages;
1da177e4
LT
5193 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5194 numentries >>= 20 - PAGE_SHIFT;
5195 numentries <<= 20 - PAGE_SHIFT;
5196
5197 /* limit to 1 bucket per 2^scale bytes of low memory */
5198 if (scale > PAGE_SHIFT)
5199 numentries >>= (scale - PAGE_SHIFT);
5200 else
5201 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5202
5203 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5204 if (unlikely(flags & HASH_SMALL)) {
5205 /* Makes no sense without HASH_EARLY */
5206 WARN_ON(!(flags & HASH_EARLY));
5207 if (!(numentries >> *_hash_shift)) {
5208 numentries = 1UL << *_hash_shift;
5209 BUG_ON(!numentries);
5210 }
5211 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5212 numentries = PAGE_SIZE / bucketsize;
1da177e4 5213 }
6e692ed3 5214 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5215
5216 /* limit allocation size to 1/16 total memory by default */
5217 if (max == 0) {
5218 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5219 do_div(max, bucketsize);
5220 }
5221
5222 if (numentries > max)
5223 numentries = max;
5224
f0d1b0b3 5225 log2qty = ilog2(numentries);
1da177e4
LT
5226
5227 do {
5228 size = bucketsize << log2qty;
5229 if (flags & HASH_EARLY)
74768ed8 5230 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5231 else if (hashdist)
5232 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5233 else {
1037b83b
ED
5234 /*
5235 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5236 * some pages at the end of hash table which
5237 * alloc_pages_exact() automatically does
1037b83b 5238 */
264ef8a9 5239 if (get_order(size) < MAX_ORDER) {
a1dd268c 5240 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5241 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5242 }
1da177e4
LT
5243 }
5244 } while (!table && size > PAGE_SIZE && --log2qty);
5245
5246 if (!table)
5247 panic("Failed to allocate %s hash table\n", tablename);
5248
f241e660 5249 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5250 tablename,
f241e660 5251 (1UL << log2qty),
f0d1b0b3 5252 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5253 size);
5254
5255 if (_hash_shift)
5256 *_hash_shift = log2qty;
5257 if (_hash_mask)
5258 *_hash_mask = (1 << log2qty) - 1;
5259
5260 return table;
5261}
a117e66e 5262
835c134e
MG
5263/* Return a pointer to the bitmap storing bits affecting a block of pages */
5264static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5265 unsigned long pfn)
5266{
5267#ifdef CONFIG_SPARSEMEM
5268 return __pfn_to_section(pfn)->pageblock_flags;
5269#else
5270 return zone->pageblock_flags;
5271#endif /* CONFIG_SPARSEMEM */
5272}
5273
5274static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5275{
5276#ifdef CONFIG_SPARSEMEM
5277 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5278 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5279#else
5280 pfn = pfn - zone->zone_start_pfn;
d9c23400 5281 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5282#endif /* CONFIG_SPARSEMEM */
5283}
5284
5285/**
d9c23400 5286 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5287 * @page: The page within the block of interest
5288 * @start_bitidx: The first bit of interest to retrieve
5289 * @end_bitidx: The last bit of interest
5290 * returns pageblock_bits flags
5291 */
5292unsigned long get_pageblock_flags_group(struct page *page,
5293 int start_bitidx, int end_bitidx)
5294{
5295 struct zone *zone;
5296 unsigned long *bitmap;
5297 unsigned long pfn, bitidx;
5298 unsigned long flags = 0;
5299 unsigned long value = 1;
5300
5301 zone = page_zone(page);
5302 pfn = page_to_pfn(page);
5303 bitmap = get_pageblock_bitmap(zone, pfn);
5304 bitidx = pfn_to_bitidx(zone, pfn);
5305
5306 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5307 if (test_bit(bitidx + start_bitidx, bitmap))
5308 flags |= value;
6220ec78 5309
835c134e
MG
5310 return flags;
5311}
5312
5313/**
d9c23400 5314 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5315 * @page: The page within the block of interest
5316 * @start_bitidx: The first bit of interest
5317 * @end_bitidx: The last bit of interest
5318 * @flags: The flags to set
5319 */
5320void set_pageblock_flags_group(struct page *page, unsigned long flags,
5321 int start_bitidx, int end_bitidx)
5322{
5323 struct zone *zone;
5324 unsigned long *bitmap;
5325 unsigned long pfn, bitidx;
5326 unsigned long value = 1;
5327
5328 zone = page_zone(page);
5329 pfn = page_to_pfn(page);
5330 bitmap = get_pageblock_bitmap(zone, pfn);
5331 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5332 VM_BUG_ON(pfn < zone->zone_start_pfn);
5333 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5334
5335 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5336 if (flags & value)
5337 __set_bit(bitidx + start_bitidx, bitmap);
5338 else
5339 __clear_bit(bitidx + start_bitidx, bitmap);
5340}
a5d76b54
KH
5341
5342/*
5343 * This is designed as sub function...plz see page_isolation.c also.
5344 * set/clear page block's type to be ISOLATE.
5345 * page allocater never alloc memory from ISOLATE block.
5346 */
5347
49ac8255
KH
5348static int
5349__count_immobile_pages(struct zone *zone, struct page *page, int count)
5350{
5351 unsigned long pfn, iter, found;
5352 /*
5353 * For avoiding noise data, lru_add_drain_all() should be called
5354 * If ZONE_MOVABLE, the zone never contains immobile pages
5355 */
5356 if (zone_idx(zone) == ZONE_MOVABLE)
5357 return true;
5358
5359 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5360 return true;
5361
5362 pfn = page_to_pfn(page);
5363 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5364 unsigned long check = pfn + iter;
5365
29723fcc 5366 if (!pfn_valid_within(check))
49ac8255 5367 continue;
29723fcc 5368
49ac8255
KH
5369 page = pfn_to_page(check);
5370 if (!page_count(page)) {
5371 if (PageBuddy(page))
5372 iter += (1 << page_order(page)) - 1;
5373 continue;
5374 }
5375 if (!PageLRU(page))
5376 found++;
5377 /*
5378 * If there are RECLAIMABLE pages, we need to check it.
5379 * But now, memory offline itself doesn't call shrink_slab()
5380 * and it still to be fixed.
5381 */
5382 /*
5383 * If the page is not RAM, page_count()should be 0.
5384 * we don't need more check. This is an _used_ not-movable page.
5385 *
5386 * The problematic thing here is PG_reserved pages. PG_reserved
5387 * is set to both of a memory hole page and a _used_ kernel
5388 * page at boot.
5389 */
5390 if (found > count)
5391 return false;
5392 }
5393 return true;
5394}
5395
5396bool is_pageblock_removable_nolock(struct page *page)
5397{
5398 struct zone *zone = page_zone(page);
5399 return __count_immobile_pages(zone, page, 0);
5400}
5401
a5d76b54
KH
5402int set_migratetype_isolate(struct page *page)
5403{
5404 struct zone *zone;
49ac8255 5405 unsigned long flags, pfn;
925cc71e
RJ
5406 struct memory_isolate_notify arg;
5407 int notifier_ret;
a5d76b54
KH
5408 int ret = -EBUSY;
5409
5410 zone = page_zone(page);
925cc71e 5411
a5d76b54 5412 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5413
5414 pfn = page_to_pfn(page);
5415 arg.start_pfn = pfn;
5416 arg.nr_pages = pageblock_nr_pages;
5417 arg.pages_found = 0;
5418
a5d76b54 5419 /*
925cc71e
RJ
5420 * It may be possible to isolate a pageblock even if the
5421 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5422 * notifier chain is used by balloon drivers to return the
5423 * number of pages in a range that are held by the balloon
5424 * driver to shrink memory. If all the pages are accounted for
5425 * by balloons, are free, or on the LRU, isolation can continue.
5426 * Later, for example, when memory hotplug notifier runs, these
5427 * pages reported as "can be isolated" should be isolated(freed)
5428 * by the balloon driver through the memory notifier chain.
a5d76b54 5429 */
925cc71e
RJ
5430 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5431 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5432 if (notifier_ret)
a5d76b54 5433 goto out;
49ac8255
KH
5434 /*
5435 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5436 * We just check MOVABLE pages.
5437 */
5438 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5439 ret = 0;
5440
49ac8255
KH
5441 /*
5442 * immobile means "not-on-lru" paes. If immobile is larger than
5443 * removable-by-driver pages reported by notifier, we'll fail.
5444 */
5445
a5d76b54 5446out:
925cc71e
RJ
5447 if (!ret) {
5448 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5449 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5450 }
5451
a5d76b54
KH
5452 spin_unlock_irqrestore(&zone->lock, flags);
5453 if (!ret)
9f8f2172 5454 drain_all_pages();
a5d76b54
KH
5455 return ret;
5456}
5457
5458void unset_migratetype_isolate(struct page *page)
5459{
5460 struct zone *zone;
5461 unsigned long flags;
5462 zone = page_zone(page);
5463 spin_lock_irqsave(&zone->lock, flags);
5464 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5465 goto out;
5466 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5467 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5468out:
5469 spin_unlock_irqrestore(&zone->lock, flags);
5470}
0c0e6195
KH
5471
5472#ifdef CONFIG_MEMORY_HOTREMOVE
5473/*
5474 * All pages in the range must be isolated before calling this.
5475 */
5476void
5477__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5478{
5479 struct page *page;
5480 struct zone *zone;
5481 int order, i;
5482 unsigned long pfn;
5483 unsigned long flags;
5484 /* find the first valid pfn */
5485 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5486 if (pfn_valid(pfn))
5487 break;
5488 if (pfn == end_pfn)
5489 return;
5490 zone = page_zone(pfn_to_page(pfn));
5491 spin_lock_irqsave(&zone->lock, flags);
5492 pfn = start_pfn;
5493 while (pfn < end_pfn) {
5494 if (!pfn_valid(pfn)) {
5495 pfn++;
5496 continue;
5497 }
5498 page = pfn_to_page(pfn);
5499 BUG_ON(page_count(page));
5500 BUG_ON(!PageBuddy(page));
5501 order = page_order(page);
5502#ifdef CONFIG_DEBUG_VM
5503 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5504 pfn, 1 << order, end_pfn);
5505#endif
5506 list_del(&page->lru);
5507 rmv_page_order(page);
5508 zone->free_area[order].nr_free--;
5509 __mod_zone_page_state(zone, NR_FREE_PAGES,
5510 - (1UL << order));
5511 for (i = 0; i < (1 << order); i++)
5512 SetPageReserved((page+i));
5513 pfn += (1 << order);
5514 }
5515 spin_unlock_irqrestore(&zone->lock, flags);
5516}
5517#endif
8d22ba1b
WF
5518
5519#ifdef CONFIG_MEMORY_FAILURE
5520bool is_free_buddy_page(struct page *page)
5521{
5522 struct zone *zone = page_zone(page);
5523 unsigned long pfn = page_to_pfn(page);
5524 unsigned long flags;
5525 int order;
5526
5527 spin_lock_irqsave(&zone->lock, flags);
5528 for (order = 0; order < MAX_ORDER; order++) {
5529 struct page *page_head = page - (pfn & ((1 << order) - 1));
5530
5531 if (PageBuddy(page_head) && page_order(page_head) >= order)
5532 break;
5533 }
5534 spin_unlock_irqrestore(&zone->lock, flags);
5535
5536 return order < MAX_ORDER;
5537}
5538#endif
718a3821
WF
5539
5540static struct trace_print_flags pageflag_names[] = {
5541 {1UL << PG_locked, "locked" },
5542 {1UL << PG_error, "error" },
5543 {1UL << PG_referenced, "referenced" },
5544 {1UL << PG_uptodate, "uptodate" },
5545 {1UL << PG_dirty, "dirty" },
5546 {1UL << PG_lru, "lru" },
5547 {1UL << PG_active, "active" },
5548 {1UL << PG_slab, "slab" },
5549 {1UL << PG_owner_priv_1, "owner_priv_1" },
5550 {1UL << PG_arch_1, "arch_1" },
5551 {1UL << PG_reserved, "reserved" },
5552 {1UL << PG_private, "private" },
5553 {1UL << PG_private_2, "private_2" },
5554 {1UL << PG_writeback, "writeback" },
5555#ifdef CONFIG_PAGEFLAGS_EXTENDED
5556 {1UL << PG_head, "head" },
5557 {1UL << PG_tail, "tail" },
5558#else
5559 {1UL << PG_compound, "compound" },
5560#endif
5561 {1UL << PG_swapcache, "swapcache" },
5562 {1UL << PG_mappedtodisk, "mappedtodisk" },
5563 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5564 {1UL << PG_swapbacked, "swapbacked" },
5565 {1UL << PG_unevictable, "unevictable" },
5566#ifdef CONFIG_MMU
5567 {1UL << PG_mlocked, "mlocked" },
5568#endif
5569#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5570 {1UL << PG_uncached, "uncached" },
5571#endif
5572#ifdef CONFIG_MEMORY_FAILURE
5573 {1UL << PG_hwpoison, "hwpoison" },
5574#endif
5575 {-1UL, NULL },
5576};
5577
5578static void dump_page_flags(unsigned long flags)
5579{
5580 const char *delim = "";
5581 unsigned long mask;
5582 int i;
5583
5584 printk(KERN_ALERT "page flags: %#lx(", flags);
5585
5586 /* remove zone id */
5587 flags &= (1UL << NR_PAGEFLAGS) - 1;
5588
5589 for (i = 0; pageflag_names[i].name && flags; i++) {
5590
5591 mask = pageflag_names[i].mask;
5592 if ((flags & mask) != mask)
5593 continue;
5594
5595 flags &= ~mask;
5596 printk("%s%s", delim, pageflag_names[i].name);
5597 delim = "|";
5598 }
5599
5600 /* check for left over flags */
5601 if (flags)
5602 printk("%s%#lx", delim, flags);
5603
5604 printk(")\n");
5605}
5606
5607void dump_page(struct page *page)
5608{
5609 printk(KERN_ALERT
5610 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5611 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5612 page->mapping, page->index);
5613 dump_page_flags(page->flags);
f212ad7c 5614 mem_cgroup_print_bad_page(page);
718a3821 5615}