]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm: defer ZONE_DEVICE page initialization to the point where we init pgmap
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53
MG
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
38addce8 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 104volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
1da177e4 108/*
13808910 109 * Array of node states.
1da177e4 110 */
13808910
CL
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 118#endif
20b2f52b 119 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
c3d5f5f0
JL
125/* Protect totalram_pages and zone->managed_pages */
126static DEFINE_SPINLOCK(managed_page_count_lock);
127
6c231b7b 128unsigned long totalram_pages __read_mostly;
cb45b0e9 129unsigned long totalreserve_pages __read_mostly;
e48322ab 130unsigned long totalcma_pages __read_mostly;
ab8fabd4 131
1b76b02f 132int percpu_pagelist_fraction;
dcce284a 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 134
bb14c2c7
VB
135/*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143static inline int get_pcppage_migratetype(struct page *page)
144{
145 return page->index;
146}
147
148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149{
150 page->index = migratetype;
151}
152
452aa699
RW
153#ifdef CONFIG_PM_SLEEP
154/*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
158 * they should always be called with system_transition_mutex held
159 * (gfp_allowed_mask also should only be modified with system_transition_mutex
160 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161 * with that modification).
452aa699 162 */
c9e664f1
RW
163
164static gfp_t saved_gfp_mask;
165
166void pm_restore_gfp_mask(void)
452aa699 167{
55f2503c 168 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
452aa699
RW
173}
174
c9e664f1 175void pm_restrict_gfp_mask(void)
452aa699 176{
55f2503c 177 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
d0164adc 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 181}
f90ac398
MG
182
183bool pm_suspended_storage(void)
184{
d0164adc 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
186 return false;
187 return true;
188}
452aa699
RW
189#endif /* CONFIG_PM_SLEEP */
190
d9c23400 191#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 192unsigned int pageblock_order __read_mostly;
d9c23400
MG
193#endif
194
d98c7a09 195static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 196
1da177e4
LT
197/*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
1da177e4 207 */
d3cda233 208int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
d3cda233 210 [ZONE_DMA] = 256,
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
d3cda233 213 [ZONE_DMA32] = 256,
fb0e7942 214#endif
d3cda233 215 [ZONE_NORMAL] = 32,
e53ef38d 216#ifdef CONFIG_HIGHMEM
d3cda233 217 [ZONE_HIGHMEM] = 0,
e53ef38d 218#endif
d3cda233 219 [ZONE_MOVABLE] = 0,
2f1b6248 220};
1da177e4
LT
221
222EXPORT_SYMBOL(totalram_pages);
1da177e4 223
15ad7cdc 224static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 225#ifdef CONFIG_ZONE_DMA
2f1b6248 226 "DMA",
4b51d669 227#endif
fb0e7942 228#ifdef CONFIG_ZONE_DMA32
2f1b6248 229 "DMA32",
fb0e7942 230#endif
2f1b6248 231 "Normal",
e53ef38d 232#ifdef CONFIG_HIGHMEM
2a1e274a 233 "HighMem",
e53ef38d 234#endif
2a1e274a 235 "Movable",
033fbae9
DW
236#ifdef CONFIG_ZONE_DEVICE
237 "Device",
238#endif
2f1b6248
CL
239};
240
60f30350
VB
241char * const migratetype_names[MIGRATE_TYPES] = {
242 "Unmovable",
243 "Movable",
244 "Reclaimable",
245 "HighAtomic",
246#ifdef CONFIG_CMA
247 "CMA",
248#endif
249#ifdef CONFIG_MEMORY_ISOLATION
250 "Isolate",
251#endif
252};
253
f1e61557
KS
254compound_page_dtor * const compound_page_dtors[] = {
255 NULL,
256 free_compound_page,
257#ifdef CONFIG_HUGETLB_PAGE
258 free_huge_page,
259#endif
9a982250
KS
260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 free_transhuge_page,
262#endif
f1e61557
KS
263};
264
1da177e4 265int min_free_kbytes = 1024;
42aa83cb 266int user_min_free_kbytes = -1;
795ae7a0 267int watermark_scale_factor = 10;
1da177e4 268
7f16f91f
DR
269static unsigned long nr_kernel_pages __meminitdata;
270static unsigned long nr_all_pages __meminitdata;
271static unsigned long dma_reserve __meminitdata;
1da177e4 272
0ee332c1 273#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7f16f91f
DR
274static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276static unsigned long required_kernelcore __initdata;
a5c6d650 277static unsigned long required_kernelcore_percent __initdata;
7f16f91f 278static unsigned long required_movablecore __initdata;
a5c6d650 279static unsigned long required_movablecore_percent __initdata;
7f16f91f
DR
280static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
282
283/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284int movable_zone;
285EXPORT_SYMBOL(movable_zone);
286#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 287
418508c1
MS
288#if MAX_NUMNODES > 1
289int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 290int nr_online_nodes __read_mostly = 1;
418508c1 291EXPORT_SYMBOL(nr_node_ids);
62bc62a8 292EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
293#endif
294
9ef9acb0
MG
295int page_group_by_mobility_disabled __read_mostly;
296
3a80a7fa 297#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3a80a7fa 298/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 299static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 300{
ef70b6f4
MG
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
304 return true;
305
306 return false;
307}
308
309/*
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
312 */
313static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
316{
3c2c6488 317 /* Always populate low zones for address-constrained allocations */
3a80a7fa
MG
318 if (zone_end < pgdat_end_pfn(pgdat))
319 return true;
3a80a7fa 320 (*nr_initialised)++;
d135e575 321 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
322 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
323 pgdat->first_deferred_pfn = pfn;
324 return false;
325 }
326
327 return true;
328}
329#else
3a80a7fa
MG
330static inline bool early_page_uninitialised(unsigned long pfn)
331{
332 return false;
333}
334
335static inline bool update_defer_init(pg_data_t *pgdat,
336 unsigned long pfn, unsigned long zone_end,
337 unsigned long *nr_initialised)
338{
339 return true;
340}
341#endif
342
0b423ca2
MG
343/* Return a pointer to the bitmap storing bits affecting a block of pages */
344static inline unsigned long *get_pageblock_bitmap(struct page *page,
345 unsigned long pfn)
346{
347#ifdef CONFIG_SPARSEMEM
348 return __pfn_to_section(pfn)->pageblock_flags;
349#else
350 return page_zone(page)->pageblock_flags;
351#endif /* CONFIG_SPARSEMEM */
352}
353
354static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
355{
356#ifdef CONFIG_SPARSEMEM
357 pfn &= (PAGES_PER_SECTION-1);
358 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
359#else
360 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362#endif /* CONFIG_SPARSEMEM */
363}
364
365/**
366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
367 * @page: The page within the block of interest
368 * @pfn: The target page frame number
369 * @end_bitidx: The last bit of interest to retrieve
370 * @mask: mask of bits that the caller is interested in
371 *
372 * Return: pageblock_bits flags
373 */
374static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
375 unsigned long pfn,
376 unsigned long end_bitidx,
377 unsigned long mask)
378{
379 unsigned long *bitmap;
380 unsigned long bitidx, word_bitidx;
381 unsigned long word;
382
383 bitmap = get_pageblock_bitmap(page, pfn);
384 bitidx = pfn_to_bitidx(page, pfn);
385 word_bitidx = bitidx / BITS_PER_LONG;
386 bitidx &= (BITS_PER_LONG-1);
387
388 word = bitmap[word_bitidx];
389 bitidx += end_bitidx;
390 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
391}
392
393unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
394 unsigned long end_bitidx,
395 unsigned long mask)
396{
397 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
398}
399
400static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
401{
402 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
403}
404
405/**
406 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
407 * @page: The page within the block of interest
408 * @flags: The flags to set
409 * @pfn: The target page frame number
410 * @end_bitidx: The last bit of interest
411 * @mask: mask of bits that the caller is interested in
412 */
413void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
414 unsigned long pfn,
415 unsigned long end_bitidx,
416 unsigned long mask)
417{
418 unsigned long *bitmap;
419 unsigned long bitidx, word_bitidx;
420 unsigned long old_word, word;
421
422 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
423
424 bitmap = get_pageblock_bitmap(page, pfn);
425 bitidx = pfn_to_bitidx(page, pfn);
426 word_bitidx = bitidx / BITS_PER_LONG;
427 bitidx &= (BITS_PER_LONG-1);
428
429 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
430
431 bitidx += end_bitidx;
432 mask <<= (BITS_PER_LONG - bitidx - 1);
433 flags <<= (BITS_PER_LONG - bitidx - 1);
434
435 word = READ_ONCE(bitmap[word_bitidx]);
436 for (;;) {
437 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
438 if (word == old_word)
439 break;
440 word = old_word;
441 }
442}
3a80a7fa 443
ee6f509c 444void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 445{
5d0f3f72
KM
446 if (unlikely(page_group_by_mobility_disabled &&
447 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
448 migratetype = MIGRATE_UNMOVABLE;
449
b2a0ac88
MG
450 set_pageblock_flags_group(page, (unsigned long)migratetype,
451 PB_migrate, PB_migrate_end);
452}
453
13e7444b 454#ifdef CONFIG_DEBUG_VM
c6a57e19 455static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 456{
bdc8cb98
DH
457 int ret = 0;
458 unsigned seq;
459 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 460 unsigned long sp, start_pfn;
c6a57e19 461
bdc8cb98
DH
462 do {
463 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
464 start_pfn = zone->zone_start_pfn;
465 sp = zone->spanned_pages;
108bcc96 466 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
467 ret = 1;
468 } while (zone_span_seqretry(zone, seq));
469
b5e6a5a2 470 if (ret)
613813e8
DH
471 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
472 pfn, zone_to_nid(zone), zone->name,
473 start_pfn, start_pfn + sp);
b5e6a5a2 474
bdc8cb98 475 return ret;
c6a57e19
DH
476}
477
478static int page_is_consistent(struct zone *zone, struct page *page)
479{
14e07298 480 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 481 return 0;
1da177e4 482 if (zone != page_zone(page))
c6a57e19
DH
483 return 0;
484
485 return 1;
486}
487/*
488 * Temporary debugging check for pages not lying within a given zone.
489 */
d73d3c9f 490static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
491{
492 if (page_outside_zone_boundaries(zone, page))
1da177e4 493 return 1;
c6a57e19
DH
494 if (!page_is_consistent(zone, page))
495 return 1;
496
1da177e4
LT
497 return 0;
498}
13e7444b 499#else
d73d3c9f 500static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
501{
502 return 0;
503}
504#endif
505
d230dec1
KS
506static void bad_page(struct page *page, const char *reason,
507 unsigned long bad_flags)
1da177e4 508{
d936cf9b
HD
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
512
513 /*
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
516 */
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
519 nr_unshown++;
520 goto out;
521 }
522 if (nr_unshown) {
ff8e8116 523 pr_alert(
1e9e6365 524 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532
ff8e8116 533 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 534 current->comm, page_to_pfn(page));
ff8e8116
VB
535 __dump_page(page, reason);
536 bad_flags &= page->flags;
537 if (bad_flags)
538 pr_alert("bad because of flags: %#lx(%pGp)\n",
539 bad_flags, &bad_flags);
4e462112 540 dump_page_owner(page);
3dc14741 541
4f31888c 542 print_modules();
1da177e4 543 dump_stack();
d936cf9b 544out:
8cc3b392 545 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 546 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
548}
549
1da177e4
LT
550/*
551 * Higher-order pages are called "compound pages". They are structured thusly:
552 *
1d798ca3 553 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 554 *
1d798ca3
KS
555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 557 *
1d798ca3
KS
558 * The first tail page's ->compound_dtor holds the offset in array of compound
559 * page destructors. See compound_page_dtors.
1da177e4 560 *
1d798ca3 561 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 562 * This usage means that zero-order pages may not be compound.
1da177e4 563 */
d98c7a09 564
9a982250 565void free_compound_page(struct page *page)
d98c7a09 566{
d85f3385 567 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
568}
569
d00181b9 570void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
571{
572 int i;
573 int nr_pages = 1 << order;
574
f1e61557 575 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
576 set_compound_order(page, order);
577 __SetPageHead(page);
578 for (i = 1; i < nr_pages; i++) {
579 struct page *p = page + i;
58a84aa9 580 set_page_count(p, 0);
1c290f64 581 p->mapping = TAIL_MAPPING;
1d798ca3 582 set_compound_head(p, page);
18229df5 583 }
53f9263b 584 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
585}
586
c0a32fc5
SG
587#ifdef CONFIG_DEBUG_PAGEALLOC
588unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
589bool _debug_pagealloc_enabled __read_mostly
590 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 591EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
592bool _debug_guardpage_enabled __read_mostly;
593
031bc574
JK
594static int __init early_debug_pagealloc(char *buf)
595{
596 if (!buf)
597 return -EINVAL;
2a138dc7 598 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
599}
600early_param("debug_pagealloc", early_debug_pagealloc);
601
e30825f1
JK
602static bool need_debug_guardpage(void)
603{
031bc574
JK
604 /* If we don't use debug_pagealloc, we don't need guard page */
605 if (!debug_pagealloc_enabled())
606 return false;
607
f1c1e9f7
JK
608 if (!debug_guardpage_minorder())
609 return false;
610
e30825f1
JK
611 return true;
612}
613
614static void init_debug_guardpage(void)
615{
031bc574
JK
616 if (!debug_pagealloc_enabled())
617 return;
618
f1c1e9f7
JK
619 if (!debug_guardpage_minorder())
620 return;
621
e30825f1
JK
622 _debug_guardpage_enabled = true;
623}
624
625struct page_ext_operations debug_guardpage_ops = {
626 .need = need_debug_guardpage,
627 .init = init_debug_guardpage,
628};
c0a32fc5
SG
629
630static int __init debug_guardpage_minorder_setup(char *buf)
631{
632 unsigned long res;
633
634 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 635 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
636 return 0;
637 }
638 _debug_guardpage_minorder = res;
1170532b 639 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
640 return 0;
641}
f1c1e9f7 642early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 643
acbc15a4 644static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 645 unsigned int order, int migratetype)
c0a32fc5 646{
e30825f1
JK
647 struct page_ext *page_ext;
648
649 if (!debug_guardpage_enabled())
acbc15a4
JK
650 return false;
651
652 if (order >= debug_guardpage_minorder())
653 return false;
e30825f1
JK
654
655 page_ext = lookup_page_ext(page);
f86e4271 656 if (unlikely(!page_ext))
acbc15a4 657 return false;
f86e4271 658
e30825f1
JK
659 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
660
2847cf95
JK
661 INIT_LIST_HEAD(&page->lru);
662 set_page_private(page, order);
663 /* Guard pages are not available for any usage */
664 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
665
666 return true;
c0a32fc5
SG
667}
668
2847cf95
JK
669static inline void clear_page_guard(struct zone *zone, struct page *page,
670 unsigned int order, int migratetype)
c0a32fc5 671{
e30825f1
JK
672 struct page_ext *page_ext;
673
674 if (!debug_guardpage_enabled())
675 return;
676
677 page_ext = lookup_page_ext(page);
f86e4271
YS
678 if (unlikely(!page_ext))
679 return;
680
e30825f1
JK
681 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682
2847cf95
JK
683 set_page_private(page, 0);
684 if (!is_migrate_isolate(migratetype))
685 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
686}
687#else
980ac167 688struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
689static inline bool set_page_guard(struct zone *zone, struct page *page,
690 unsigned int order, int migratetype) { return false; }
2847cf95
JK
691static inline void clear_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype) {}
c0a32fc5
SG
693#endif
694
7aeb09f9 695static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 696{
4c21e2f2 697 set_page_private(page, order);
676165a8 698 __SetPageBuddy(page);
1da177e4
LT
699}
700
701static inline void rmv_page_order(struct page *page)
702{
676165a8 703 __ClearPageBuddy(page);
4c21e2f2 704 set_page_private(page, 0);
1da177e4
LT
705}
706
1da177e4
LT
707/*
708 * This function checks whether a page is free && is the buddy
6e292b9b 709 * we can coalesce a page and its buddy if
13ad59df 710 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 711 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
712 * (c) a page and its buddy have the same order &&
713 * (d) a page and its buddy are in the same zone.
676165a8 714 *
6e292b9b
MW
715 * For recording whether a page is in the buddy system, we set PageBuddy.
716 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 717 *
676165a8 718 * For recording page's order, we use page_private(page).
1da177e4 719 */
cb2b95e1 720static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 721 unsigned int order)
1da177e4 722{
c0a32fc5 723 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
724 if (page_zone_id(page) != page_zone_id(buddy))
725 return 0;
726
4c5018ce
WY
727 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
728
c0a32fc5
SG
729 return 1;
730 }
731
cb2b95e1 732 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
733 /*
734 * zone check is done late to avoid uselessly
735 * calculating zone/node ids for pages that could
736 * never merge.
737 */
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
4c5018ce
WY
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
6aa3001b 743 return 1;
676165a8 744 }
6aa3001b 745 return 0;
1da177e4
LT
746}
747
748/*
749 * Freeing function for a buddy system allocator.
750 *
751 * The concept of a buddy system is to maintain direct-mapped table
752 * (containing bit values) for memory blocks of various "orders".
753 * The bottom level table contains the map for the smallest allocatable
754 * units of memory (here, pages), and each level above it describes
755 * pairs of units from the levels below, hence, "buddies".
756 * At a high level, all that happens here is marking the table entry
757 * at the bottom level available, and propagating the changes upward
758 * as necessary, plus some accounting needed to play nicely with other
759 * parts of the VM system.
760 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
761 * free pages of length of (1 << order) and marked with PageBuddy.
762 * Page's order is recorded in page_private(page) field.
1da177e4 763 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
764 * other. That is, if we allocate a small block, and both were
765 * free, the remainder of the region must be split into blocks.
1da177e4 766 * If a block is freed, and its buddy is also free, then this
5f63b720 767 * triggers coalescing into a block of larger size.
1da177e4 768 *
6d49e352 769 * -- nyc
1da177e4
LT
770 */
771
48db57f8 772static inline void __free_one_page(struct page *page,
dc4b0caf 773 unsigned long pfn,
ed0ae21d
MG
774 struct zone *zone, unsigned int order,
775 int migratetype)
1da177e4 776{
76741e77
VB
777 unsigned long combined_pfn;
778 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 779 struct page *buddy;
d9dddbf5
VB
780 unsigned int max_order;
781
782 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 783
d29bb978 784 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 785 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 786
ed0ae21d 787 VM_BUG_ON(migratetype == -1);
d9dddbf5 788 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 789 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 790
76741e77 791 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 793
d9dddbf5 794continue_merging:
3c605096 795 while (order < max_order - 1) {
76741e77
VB
796 buddy_pfn = __find_buddy_pfn(pfn, order);
797 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
798
799 if (!pfn_valid_within(buddy_pfn))
800 goto done_merging;
cb2b95e1 801 if (!page_is_buddy(page, buddy, order))
d9dddbf5 802 goto done_merging;
c0a32fc5
SG
803 /*
804 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
805 * merge with it and move up one order.
806 */
807 if (page_is_guard(buddy)) {
2847cf95 808 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
809 } else {
810 list_del(&buddy->lru);
811 zone->free_area[order].nr_free--;
812 rmv_page_order(buddy);
813 }
76741e77
VB
814 combined_pfn = buddy_pfn & pfn;
815 page = page + (combined_pfn - pfn);
816 pfn = combined_pfn;
1da177e4
LT
817 order++;
818 }
d9dddbf5
VB
819 if (max_order < MAX_ORDER) {
820 /* If we are here, it means order is >= pageblock_order.
821 * We want to prevent merge between freepages on isolate
822 * pageblock and normal pageblock. Without this, pageblock
823 * isolation could cause incorrect freepage or CMA accounting.
824 *
825 * We don't want to hit this code for the more frequent
826 * low-order merging.
827 */
828 if (unlikely(has_isolate_pageblock(zone))) {
829 int buddy_mt;
830
76741e77
VB
831 buddy_pfn = __find_buddy_pfn(pfn, order);
832 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
833 buddy_mt = get_pageblock_migratetype(buddy);
834
835 if (migratetype != buddy_mt
836 && (is_migrate_isolate(migratetype) ||
837 is_migrate_isolate(buddy_mt)))
838 goto done_merging;
839 }
840 max_order++;
841 goto continue_merging;
842 }
843
844done_merging:
1da177e4 845 set_page_order(page, order);
6dda9d55
CZ
846
847 /*
848 * If this is not the largest possible page, check if the buddy
849 * of the next-highest order is free. If it is, it's possible
850 * that pages are being freed that will coalesce soon. In case,
851 * that is happening, add the free page to the tail of the list
852 * so it's less likely to be used soon and more likely to be merged
853 * as a higher order page
854 */
13ad59df 855 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 856 struct page *higher_page, *higher_buddy;
76741e77
VB
857 combined_pfn = buddy_pfn & pfn;
858 higher_page = page + (combined_pfn - pfn);
859 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
860 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
861 if (pfn_valid_within(buddy_pfn) &&
862 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
863 list_add_tail(&page->lru,
864 &zone->free_area[order].free_list[migratetype]);
865 goto out;
866 }
867 }
868
869 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
870out:
1da177e4
LT
871 zone->free_area[order].nr_free++;
872}
873
7bfec6f4
MG
874/*
875 * A bad page could be due to a number of fields. Instead of multiple branches,
876 * try and check multiple fields with one check. The caller must do a detailed
877 * check if necessary.
878 */
879static inline bool page_expected_state(struct page *page,
880 unsigned long check_flags)
881{
882 if (unlikely(atomic_read(&page->_mapcount) != -1))
883 return false;
884
885 if (unlikely((unsigned long)page->mapping |
886 page_ref_count(page) |
887#ifdef CONFIG_MEMCG
888 (unsigned long)page->mem_cgroup |
889#endif
890 (page->flags & check_flags)))
891 return false;
892
893 return true;
894}
895
bb552ac6 896static void free_pages_check_bad(struct page *page)
1da177e4 897{
7bfec6f4
MG
898 const char *bad_reason;
899 unsigned long bad_flags;
900
7bfec6f4
MG
901 bad_reason = NULL;
902 bad_flags = 0;
f0b791a3 903
53f9263b 904 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
905 bad_reason = "nonzero mapcount";
906 if (unlikely(page->mapping != NULL))
907 bad_reason = "non-NULL mapping";
fe896d18 908 if (unlikely(page_ref_count(page) != 0))
0139aa7b 909 bad_reason = "nonzero _refcount";
f0b791a3
DH
910 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
911 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
912 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
913 }
9edad6ea
JW
914#ifdef CONFIG_MEMCG
915 if (unlikely(page->mem_cgroup))
916 bad_reason = "page still charged to cgroup";
917#endif
7bfec6f4 918 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
919}
920
921static inline int free_pages_check(struct page *page)
922{
da838d4f 923 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 924 return 0;
bb552ac6
MG
925
926 /* Something has gone sideways, find it */
927 free_pages_check_bad(page);
7bfec6f4 928 return 1;
1da177e4
LT
929}
930
4db7548c
MG
931static int free_tail_pages_check(struct page *head_page, struct page *page)
932{
933 int ret = 1;
934
935 /*
936 * We rely page->lru.next never has bit 0 set, unless the page
937 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 */
939 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
940
941 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
942 ret = 0;
943 goto out;
944 }
945 switch (page - head_page) {
946 case 1:
4da1984e 947 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
948 if (unlikely(compound_mapcount(page))) {
949 bad_page(page, "nonzero compound_mapcount", 0);
950 goto out;
951 }
952 break;
953 case 2:
954 /*
955 * the second tail page: ->mapping is
fa3015b7 956 * deferred_list.next -- ignore value.
4db7548c
MG
957 */
958 break;
959 default:
960 if (page->mapping != TAIL_MAPPING) {
961 bad_page(page, "corrupted mapping in tail page", 0);
962 goto out;
963 }
964 break;
965 }
966 if (unlikely(!PageTail(page))) {
967 bad_page(page, "PageTail not set", 0);
968 goto out;
969 }
970 if (unlikely(compound_head(page) != head_page)) {
971 bad_page(page, "compound_head not consistent", 0);
972 goto out;
973 }
974 ret = 0;
975out:
976 page->mapping = NULL;
977 clear_compound_head(page);
978 return ret;
979}
980
e2769dbd
MG
981static __always_inline bool free_pages_prepare(struct page *page,
982 unsigned int order, bool check_free)
4db7548c 983{
e2769dbd 984 int bad = 0;
4db7548c 985
4db7548c
MG
986 VM_BUG_ON_PAGE(PageTail(page), page);
987
e2769dbd 988 trace_mm_page_free(page, order);
e2769dbd
MG
989
990 /*
991 * Check tail pages before head page information is cleared to
992 * avoid checking PageCompound for order-0 pages.
993 */
994 if (unlikely(order)) {
995 bool compound = PageCompound(page);
996 int i;
997
998 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 999
9a73f61b
KS
1000 if (compound)
1001 ClearPageDoubleMap(page);
e2769dbd
MG
1002 for (i = 1; i < (1 << order); i++) {
1003 if (compound)
1004 bad += free_tail_pages_check(page, page + i);
1005 if (unlikely(free_pages_check(page + i))) {
1006 bad++;
1007 continue;
1008 }
1009 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1010 }
1011 }
bda807d4 1012 if (PageMappingFlags(page))
4db7548c 1013 page->mapping = NULL;
c4159a75 1014 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1015 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1016 if (check_free)
1017 bad += free_pages_check(page);
1018 if (bad)
1019 return false;
4db7548c 1020
e2769dbd
MG
1021 page_cpupid_reset_last(page);
1022 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 reset_page_owner(page, order);
4db7548c
MG
1024
1025 if (!PageHighMem(page)) {
1026 debug_check_no_locks_freed(page_address(page),
e2769dbd 1027 PAGE_SIZE << order);
4db7548c 1028 debug_check_no_obj_freed(page_address(page),
e2769dbd 1029 PAGE_SIZE << order);
4db7548c 1030 }
e2769dbd
MG
1031 arch_free_page(page, order);
1032 kernel_poison_pages(page, 1 << order, 0);
1033 kernel_map_pages(page, 1 << order, 0);
29b52de1 1034 kasan_free_pages(page, order);
4db7548c 1035
4db7548c
MG
1036 return true;
1037}
1038
e2769dbd
MG
1039#ifdef CONFIG_DEBUG_VM
1040static inline bool free_pcp_prepare(struct page *page)
1041{
1042 return free_pages_prepare(page, 0, true);
1043}
1044
1045static inline bool bulkfree_pcp_prepare(struct page *page)
1046{
1047 return false;
1048}
1049#else
1050static bool free_pcp_prepare(struct page *page)
1051{
1052 return free_pages_prepare(page, 0, false);
1053}
1054
4db7548c
MG
1055static bool bulkfree_pcp_prepare(struct page *page)
1056{
1057 return free_pages_check(page);
1058}
1059#endif /* CONFIG_DEBUG_VM */
1060
97334162
AL
1061static inline void prefetch_buddy(struct page *page)
1062{
1063 unsigned long pfn = page_to_pfn(page);
1064 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1065 struct page *buddy = page + (buddy_pfn - pfn);
1066
1067 prefetch(buddy);
1068}
1069
1da177e4 1070/*
5f8dcc21 1071 * Frees a number of pages from the PCP lists
1da177e4 1072 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1073 * count is the number of pages to free.
1da177e4
LT
1074 *
1075 * If the zone was previously in an "all pages pinned" state then look to
1076 * see if this freeing clears that state.
1077 *
1078 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1079 * pinned" detection logic.
1080 */
5f8dcc21
MG
1081static void free_pcppages_bulk(struct zone *zone, int count,
1082 struct per_cpu_pages *pcp)
1da177e4 1083{
5f8dcc21 1084 int migratetype = 0;
a6f9edd6 1085 int batch_free = 0;
97334162 1086 int prefetch_nr = 0;
3777999d 1087 bool isolated_pageblocks;
0a5f4e5b
AL
1088 struct page *page, *tmp;
1089 LIST_HEAD(head);
f2260e6b 1090
e5b31ac2 1091 while (count) {
5f8dcc21
MG
1092 struct list_head *list;
1093
1094 /*
a6f9edd6
MG
1095 * Remove pages from lists in a round-robin fashion. A
1096 * batch_free count is maintained that is incremented when an
1097 * empty list is encountered. This is so more pages are freed
1098 * off fuller lists instead of spinning excessively around empty
1099 * lists
5f8dcc21
MG
1100 */
1101 do {
a6f9edd6 1102 batch_free++;
5f8dcc21
MG
1103 if (++migratetype == MIGRATE_PCPTYPES)
1104 migratetype = 0;
1105 list = &pcp->lists[migratetype];
1106 } while (list_empty(list));
48db57f8 1107
1d16871d
NK
1108 /* This is the only non-empty list. Free them all. */
1109 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1110 batch_free = count;
1d16871d 1111
a6f9edd6 1112 do {
a16601c5 1113 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1114 /* must delete to avoid corrupting pcp list */
a6f9edd6 1115 list_del(&page->lru);
77ba9062 1116 pcp->count--;
aa016d14 1117
4db7548c
MG
1118 if (bulkfree_pcp_prepare(page))
1119 continue;
1120
0a5f4e5b 1121 list_add_tail(&page->lru, &head);
97334162
AL
1122
1123 /*
1124 * We are going to put the page back to the global
1125 * pool, prefetch its buddy to speed up later access
1126 * under zone->lock. It is believed the overhead of
1127 * an additional test and calculating buddy_pfn here
1128 * can be offset by reduced memory latency later. To
1129 * avoid excessive prefetching due to large count, only
1130 * prefetch buddy for the first pcp->batch nr of pages.
1131 */
1132 if (prefetch_nr++ < pcp->batch)
1133 prefetch_buddy(page);
e5b31ac2 1134 } while (--count && --batch_free && !list_empty(list));
1da177e4 1135 }
0a5f4e5b
AL
1136
1137 spin_lock(&zone->lock);
1138 isolated_pageblocks = has_isolate_pageblock(zone);
1139
1140 /*
1141 * Use safe version since after __free_one_page(),
1142 * page->lru.next will not point to original list.
1143 */
1144 list_for_each_entry_safe(page, tmp, &head, lru) {
1145 int mt = get_pcppage_migratetype(page);
1146 /* MIGRATE_ISOLATE page should not go to pcplists */
1147 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1148 /* Pageblock could have been isolated meanwhile */
1149 if (unlikely(isolated_pageblocks))
1150 mt = get_pageblock_migratetype(page);
1151
1152 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1153 trace_mm_page_pcpu_drain(page, 0, mt);
1154 }
d34b0733 1155 spin_unlock(&zone->lock);
1da177e4
LT
1156}
1157
dc4b0caf
MG
1158static void free_one_page(struct zone *zone,
1159 struct page *page, unsigned long pfn,
7aeb09f9 1160 unsigned int order,
ed0ae21d 1161 int migratetype)
1da177e4 1162{
d34b0733 1163 spin_lock(&zone->lock);
ad53f92e
JK
1164 if (unlikely(has_isolate_pageblock(zone) ||
1165 is_migrate_isolate(migratetype))) {
1166 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1167 }
dc4b0caf 1168 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1169 spin_unlock(&zone->lock);
48db57f8
NP
1170}
1171
1e8ce83c 1172static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1173 unsigned long zone, int nid)
1e8ce83c 1174{
d0dc12e8 1175 mm_zero_struct_page(page);
1e8ce83c 1176 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1177 init_page_count(page);
1178 page_mapcount_reset(page);
1179 page_cpupid_reset_last(page);
1e8ce83c 1180
1e8ce83c
RH
1181 INIT_LIST_HEAD(&page->lru);
1182#ifdef WANT_PAGE_VIRTUAL
1183 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1184 if (!is_highmem_idx(zone))
1185 set_page_address(page, __va(pfn << PAGE_SHIFT));
1186#endif
1187}
1188
7e18adb4 1189#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1190static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1191{
1192 pg_data_t *pgdat;
1193 int nid, zid;
1194
1195 if (!early_page_uninitialised(pfn))
1196 return;
1197
1198 nid = early_pfn_to_nid(pfn);
1199 pgdat = NODE_DATA(nid);
1200
1201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 struct zone *zone = &pgdat->node_zones[zid];
1203
1204 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 break;
1206 }
d0dc12e8 1207 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1208}
1209#else
1210static inline void init_reserved_page(unsigned long pfn)
1211{
1212}
1213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1214
92923ca3
NZ
1215/*
1216 * Initialised pages do not have PageReserved set. This function is
1217 * called for each range allocated by the bootmem allocator and
1218 * marks the pages PageReserved. The remaining valid pages are later
1219 * sent to the buddy page allocator.
1220 */
4b50bcc7 1221void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1222{
1223 unsigned long start_pfn = PFN_DOWN(start);
1224 unsigned long end_pfn = PFN_UP(end);
1225
7e18adb4
MG
1226 for (; start_pfn < end_pfn; start_pfn++) {
1227 if (pfn_valid(start_pfn)) {
1228 struct page *page = pfn_to_page(start_pfn);
1229
1230 init_reserved_page(start_pfn);
1d798ca3
KS
1231
1232 /* Avoid false-positive PageTail() */
1233 INIT_LIST_HEAD(&page->lru);
1234
d483da5b
AD
1235 /*
1236 * no need for atomic set_bit because the struct
1237 * page is not visible yet so nobody should
1238 * access it yet.
1239 */
1240 __SetPageReserved(page);
7e18adb4
MG
1241 }
1242 }
92923ca3
NZ
1243}
1244
ec95f53a
KM
1245static void __free_pages_ok(struct page *page, unsigned int order)
1246{
d34b0733 1247 unsigned long flags;
95e34412 1248 int migratetype;
dc4b0caf 1249 unsigned long pfn = page_to_pfn(page);
ec95f53a 1250
e2769dbd 1251 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1252 return;
1253
cfc47a28 1254 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1255 local_irq_save(flags);
1256 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1257 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1258 local_irq_restore(flags);
1da177e4
LT
1259}
1260
949698a3 1261static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1262{
c3993076 1263 unsigned int nr_pages = 1 << order;
e2d0bd2b 1264 struct page *p = page;
c3993076 1265 unsigned int loop;
a226f6c8 1266
e2d0bd2b
YL
1267 prefetchw(p);
1268 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1269 prefetchw(p + 1);
c3993076
JW
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
a226f6c8 1272 }
e2d0bd2b
YL
1273 __ClearPageReserved(p);
1274 set_page_count(p, 0);
c3993076 1275
e2d0bd2b 1276 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1277 set_page_refcounted(page);
1278 __free_pages(page, order);
a226f6c8
DH
1279}
1280
75a592a4
MG
1281#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1282 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1283
75a592a4
MG
1284static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1285
1286int __meminit early_pfn_to_nid(unsigned long pfn)
1287{
7ace9917 1288 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1289 int nid;
1290
7ace9917 1291 spin_lock(&early_pfn_lock);
75a592a4 1292 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1293 if (nid < 0)
e4568d38 1294 nid = first_online_node;
7ace9917
MG
1295 spin_unlock(&early_pfn_lock);
1296
1297 return nid;
75a592a4
MG
1298}
1299#endif
1300
1301#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1302static inline bool __meminit __maybe_unused
1303meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
75a592a4
MG
1305{
1306 int nid;
1307
1308 nid = __early_pfn_to_nid(pfn, state);
1309 if (nid >= 0 && nid != node)
1310 return false;
1311 return true;
1312}
1313
1314/* Only safe to use early in boot when initialisation is single-threaded */
1315static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1316{
1317 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1318}
1319
1320#else
1321
1322static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323{
1324 return true;
1325}
d73d3c9f
MK
1326static inline bool __meminit __maybe_unused
1327meminit_pfn_in_nid(unsigned long pfn, int node,
1328 struct mminit_pfnnid_cache *state)
75a592a4
MG
1329{
1330 return true;
1331}
1332#endif
1333
1334
0e1cc95b 1335void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1336 unsigned int order)
1337{
1338 if (early_page_uninitialised(pfn))
1339 return;
949698a3 1340 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1341}
1342
7cf91a98
JK
1343/*
1344 * Check that the whole (or subset of) a pageblock given by the interval of
1345 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1346 * with the migration of free compaction scanner. The scanners then need to
1347 * use only pfn_valid_within() check for arches that allow holes within
1348 * pageblocks.
1349 *
1350 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1351 *
1352 * It's possible on some configurations to have a setup like node0 node1 node0
1353 * i.e. it's possible that all pages within a zones range of pages do not
1354 * belong to a single zone. We assume that a border between node0 and node1
1355 * can occur within a single pageblock, but not a node0 node1 node0
1356 * interleaving within a single pageblock. It is therefore sufficient to check
1357 * the first and last page of a pageblock and avoid checking each individual
1358 * page in a pageblock.
1359 */
1360struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1361 unsigned long end_pfn, struct zone *zone)
1362{
1363 struct page *start_page;
1364 struct page *end_page;
1365
1366 /* end_pfn is one past the range we are checking */
1367 end_pfn--;
1368
1369 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1370 return NULL;
1371
2d070eab
MH
1372 start_page = pfn_to_online_page(start_pfn);
1373 if (!start_page)
1374 return NULL;
7cf91a98
JK
1375
1376 if (page_zone(start_page) != zone)
1377 return NULL;
1378
1379 end_page = pfn_to_page(end_pfn);
1380
1381 /* This gives a shorter code than deriving page_zone(end_page) */
1382 if (page_zone_id(start_page) != page_zone_id(end_page))
1383 return NULL;
1384
1385 return start_page;
1386}
1387
1388void set_zone_contiguous(struct zone *zone)
1389{
1390 unsigned long block_start_pfn = zone->zone_start_pfn;
1391 unsigned long block_end_pfn;
1392
1393 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1394 for (; block_start_pfn < zone_end_pfn(zone);
1395 block_start_pfn = block_end_pfn,
1396 block_end_pfn += pageblock_nr_pages) {
1397
1398 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1399
1400 if (!__pageblock_pfn_to_page(block_start_pfn,
1401 block_end_pfn, zone))
1402 return;
1403 }
1404
1405 /* We confirm that there is no hole */
1406 zone->contiguous = true;
1407}
1408
1409void clear_zone_contiguous(struct zone *zone)
1410{
1411 zone->contiguous = false;
1412}
1413
7e18adb4 1414#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1415static void __init deferred_free_range(unsigned long pfn,
1416 unsigned long nr_pages)
a4de83dd 1417{
2f47a91f
PT
1418 struct page *page;
1419 unsigned long i;
a4de83dd 1420
2f47a91f 1421 if (!nr_pages)
a4de83dd
MG
1422 return;
1423
2f47a91f
PT
1424 page = pfn_to_page(pfn);
1425
a4de83dd 1426 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1427 if (nr_pages == pageblock_nr_pages &&
1428 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1430 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1431 return;
1432 }
1433
e780149b
XQ
1434 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1435 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1437 __free_pages_boot_core(page, 0);
e780149b 1438 }
a4de83dd
MG
1439}
1440
d3cd131d
NS
1441/* Completion tracking for deferred_init_memmap() threads */
1442static atomic_t pgdat_init_n_undone __initdata;
1443static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1444
1445static inline void __init pgdat_init_report_one_done(void)
1446{
1447 if (atomic_dec_and_test(&pgdat_init_n_undone))
1448 complete(&pgdat_init_all_done_comp);
1449}
0e1cc95b 1450
2f47a91f 1451/*
80b1f41c
PT
1452 * Returns true if page needs to be initialized or freed to buddy allocator.
1453 *
1454 * First we check if pfn is valid on architectures where it is possible to have
1455 * holes within pageblock_nr_pages. On systems where it is not possible, this
1456 * function is optimized out.
1457 *
1458 * Then, we check if a current large page is valid by only checking the validity
1459 * of the head pfn.
1460 *
1461 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1462 * within a node: a pfn is between start and end of a node, but does not belong
1463 * to this memory node.
2f47a91f 1464 */
80b1f41c
PT
1465static inline bool __init
1466deferred_pfn_valid(int nid, unsigned long pfn,
1467 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1468{
80b1f41c
PT
1469 if (!pfn_valid_within(pfn))
1470 return false;
1471 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1472 return false;
1473 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1474 return false;
1475 return true;
1476}
2f47a91f 1477
80b1f41c
PT
1478/*
1479 * Free pages to buddy allocator. Try to free aligned pages in
1480 * pageblock_nr_pages sizes.
1481 */
1482static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1483 unsigned long end_pfn)
1484{
1485 struct mminit_pfnnid_cache nid_init_state = { };
1486 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1487 unsigned long nr_free = 0;
2f47a91f 1488
80b1f41c
PT
1489 for (; pfn < end_pfn; pfn++) {
1490 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1491 deferred_free_range(pfn - nr_free, nr_free);
1492 nr_free = 0;
1493 } else if (!(pfn & nr_pgmask)) {
1494 deferred_free_range(pfn - nr_free, nr_free);
1495 nr_free = 1;
3a2d7fa8 1496 touch_nmi_watchdog();
80b1f41c
PT
1497 } else {
1498 nr_free++;
1499 }
1500 }
1501 /* Free the last block of pages to allocator */
1502 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1503}
1504
80b1f41c
PT
1505/*
1506 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1507 * by performing it only once every pageblock_nr_pages.
1508 * Return number of pages initialized.
1509 */
1510static unsigned long __init deferred_init_pages(int nid, int zid,
1511 unsigned long pfn,
1512 unsigned long end_pfn)
2f47a91f
PT
1513{
1514 struct mminit_pfnnid_cache nid_init_state = { };
1515 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1516 unsigned long nr_pages = 0;
2f47a91f 1517 struct page *page = NULL;
2f47a91f 1518
80b1f41c
PT
1519 for (; pfn < end_pfn; pfn++) {
1520 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1521 page = NULL;
2f47a91f 1522 continue;
80b1f41c 1523 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1524 page = pfn_to_page(pfn);
3a2d7fa8 1525 touch_nmi_watchdog();
80b1f41c
PT
1526 } else {
1527 page++;
2f47a91f 1528 }
d0dc12e8 1529 __init_single_page(page, pfn, zid, nid);
80b1f41c 1530 nr_pages++;
2f47a91f 1531 }
80b1f41c 1532 return (nr_pages);
2f47a91f
PT
1533}
1534
7e18adb4 1535/* Initialise remaining memory on a node */
0e1cc95b 1536static int __init deferred_init_memmap(void *data)
7e18adb4 1537{
0e1cc95b
MG
1538 pg_data_t *pgdat = data;
1539 int nid = pgdat->node_id;
7e18adb4
MG
1540 unsigned long start = jiffies;
1541 unsigned long nr_pages = 0;
3a2d7fa8 1542 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1543 phys_addr_t spa, epa;
1544 int zid;
7e18adb4 1545 struct zone *zone;
0e1cc95b 1546 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1547 u64 i;
7e18adb4 1548
3a2d7fa8
PT
1549 /* Bind memory initialisation thread to a local node if possible */
1550 if (!cpumask_empty(cpumask))
1551 set_cpus_allowed_ptr(current, cpumask);
1552
1553 pgdat_resize_lock(pgdat, &flags);
1554 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1555 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1556 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1557 pgdat_init_report_one_done();
0e1cc95b
MG
1558 return 0;
1559 }
1560
7e18adb4
MG
1561 /* Sanity check boundaries */
1562 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1563 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1564 pgdat->first_deferred_pfn = ULONG_MAX;
1565
1566 /* Only the highest zone is deferred so find it */
1567 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1568 zone = pgdat->node_zones + zid;
1569 if (first_init_pfn < zone_end_pfn(zone))
1570 break;
1571 }
2f47a91f 1572 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1573
80b1f41c
PT
1574 /*
1575 * Initialize and free pages. We do it in two loops: first we initialize
1576 * struct page, than free to buddy allocator, because while we are
1577 * freeing pages we can access pages that are ahead (computing buddy
1578 * page in __free_one_page()).
1579 */
1580 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1581 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1582 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1583 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1584 }
2f47a91f
PT
1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1588 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1589 }
3a2d7fa8 1590 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1591
1592 /* Sanity check that the next zone really is unpopulated */
1593 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1594
0e1cc95b 1595 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1596 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1597
1598 pgdat_init_report_one_done();
0e1cc95b
MG
1599 return 0;
1600}
c9e97a19
PT
1601
1602/*
1603 * During boot we initialize deferred pages on-demand, as needed, but once
1604 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1605 * and we can permanently disable that path.
1606 */
1607static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1608
1609/*
1610 * If this zone has deferred pages, try to grow it by initializing enough
1611 * deferred pages to satisfy the allocation specified by order, rounded up to
1612 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1613 * of SECTION_SIZE bytes by initializing struct pages in increments of
1614 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1615 *
1616 * Return true when zone was grown, otherwise return false. We return true even
1617 * when we grow less than requested, to let the caller decide if there are
1618 * enough pages to satisfy the allocation.
1619 *
1620 * Note: We use noinline because this function is needed only during boot, and
1621 * it is called from a __ref function _deferred_grow_zone. This way we are
1622 * making sure that it is not inlined into permanent text section.
1623 */
1624static noinline bool __init
1625deferred_grow_zone(struct zone *zone, unsigned int order)
1626{
1627 int zid = zone_idx(zone);
1628 int nid = zone_to_nid(zone);
1629 pg_data_t *pgdat = NODE_DATA(nid);
1630 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1631 unsigned long nr_pages = 0;
1632 unsigned long first_init_pfn, spfn, epfn, t, flags;
1633 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1634 phys_addr_t spa, epa;
1635 u64 i;
1636
1637 /* Only the last zone may have deferred pages */
1638 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1639 return false;
1640
1641 pgdat_resize_lock(pgdat, &flags);
1642
1643 /*
1644 * If deferred pages have been initialized while we were waiting for
1645 * the lock, return true, as the zone was grown. The caller will retry
1646 * this zone. We won't return to this function since the caller also
1647 * has this static branch.
1648 */
1649 if (!static_branch_unlikely(&deferred_pages)) {
1650 pgdat_resize_unlock(pgdat, &flags);
1651 return true;
1652 }
1653
1654 /*
1655 * If someone grew this zone while we were waiting for spinlock, return
1656 * true, as there might be enough pages already.
1657 */
1658 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1659 pgdat_resize_unlock(pgdat, &flags);
1660 return true;
1661 }
1662
1663 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1664
1665 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1666 pgdat_resize_unlock(pgdat, &flags);
1667 return false;
1668 }
1669
1670 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1671 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1672 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1673
1674 while (spfn < epfn && nr_pages < nr_pages_needed) {
1675 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1676 first_deferred_pfn = min(t, epfn);
1677 nr_pages += deferred_init_pages(nid, zid, spfn,
1678 first_deferred_pfn);
1679 spfn = first_deferred_pfn;
1680 }
1681
1682 if (nr_pages >= nr_pages_needed)
1683 break;
1684 }
1685
1686 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1687 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1688 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1689 deferred_free_pages(nid, zid, spfn, epfn);
1690
1691 if (first_deferred_pfn == epfn)
1692 break;
1693 }
1694 pgdat->first_deferred_pfn = first_deferred_pfn;
1695 pgdat_resize_unlock(pgdat, &flags);
1696
1697 return nr_pages > 0;
1698}
1699
1700/*
1701 * deferred_grow_zone() is __init, but it is called from
1702 * get_page_from_freelist() during early boot until deferred_pages permanently
1703 * disables this call. This is why we have refdata wrapper to avoid warning,
1704 * and to ensure that the function body gets unloaded.
1705 */
1706static bool __ref
1707_deferred_grow_zone(struct zone *zone, unsigned int order)
1708{
1709 return deferred_grow_zone(zone, order);
1710}
1711
7cf91a98 1712#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1713
1714void __init page_alloc_init_late(void)
1715{
7cf91a98
JK
1716 struct zone *zone;
1717
1718#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1719 int nid;
1720
d3cd131d
NS
1721 /* There will be num_node_state(N_MEMORY) threads */
1722 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1723 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1724 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1725 }
1726
1727 /* Block until all are initialised */
d3cd131d 1728 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1729
c9e97a19
PT
1730 /*
1731 * We initialized the rest of the deferred pages. Permanently disable
1732 * on-demand struct page initialization.
1733 */
1734 static_branch_disable(&deferred_pages);
1735
4248b0da
MG
1736 /* Reinit limits that are based on free pages after the kernel is up */
1737 files_maxfiles_init();
7cf91a98 1738#endif
3010f876
PT
1739#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1740 /* Discard memblock private memory */
1741 memblock_discard();
1742#endif
7cf91a98
JK
1743
1744 for_each_populated_zone(zone)
1745 set_zone_contiguous(zone);
7e18adb4 1746}
7e18adb4 1747
47118af0 1748#ifdef CONFIG_CMA
9cf510a5 1749/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1750void __init init_cma_reserved_pageblock(struct page *page)
1751{
1752 unsigned i = pageblock_nr_pages;
1753 struct page *p = page;
1754
1755 do {
1756 __ClearPageReserved(p);
1757 set_page_count(p, 0);
d883c6cf 1758 } while (++p, --i);
47118af0 1759
47118af0 1760 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1761
1762 if (pageblock_order >= MAX_ORDER) {
1763 i = pageblock_nr_pages;
1764 p = page;
1765 do {
1766 set_page_refcounted(p);
1767 __free_pages(p, MAX_ORDER - 1);
1768 p += MAX_ORDER_NR_PAGES;
1769 } while (i -= MAX_ORDER_NR_PAGES);
1770 } else {
1771 set_page_refcounted(page);
1772 __free_pages(page, pageblock_order);
1773 }
1774
3dcc0571 1775 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1776}
1777#endif
1da177e4
LT
1778
1779/*
1780 * The order of subdivision here is critical for the IO subsystem.
1781 * Please do not alter this order without good reasons and regression
1782 * testing. Specifically, as large blocks of memory are subdivided,
1783 * the order in which smaller blocks are delivered depends on the order
1784 * they're subdivided in this function. This is the primary factor
1785 * influencing the order in which pages are delivered to the IO
1786 * subsystem according to empirical testing, and this is also justified
1787 * by considering the behavior of a buddy system containing a single
1788 * large block of memory acted on by a series of small allocations.
1789 * This behavior is a critical factor in sglist merging's success.
1790 *
6d49e352 1791 * -- nyc
1da177e4 1792 */
085cc7d5 1793static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1794 int low, int high, struct free_area *area,
1795 int migratetype)
1da177e4
LT
1796{
1797 unsigned long size = 1 << high;
1798
1799 while (high > low) {
1800 area--;
1801 high--;
1802 size >>= 1;
309381fe 1803 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1804
acbc15a4
JK
1805 /*
1806 * Mark as guard pages (or page), that will allow to
1807 * merge back to allocator when buddy will be freed.
1808 * Corresponding page table entries will not be touched,
1809 * pages will stay not present in virtual address space
1810 */
1811 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1812 continue;
acbc15a4 1813
b2a0ac88 1814 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1815 area->nr_free++;
1816 set_page_order(&page[size], high);
1817 }
1da177e4
LT
1818}
1819
4e611801 1820static void check_new_page_bad(struct page *page)
1da177e4 1821{
4e611801
VB
1822 const char *bad_reason = NULL;
1823 unsigned long bad_flags = 0;
7bfec6f4 1824
53f9263b 1825 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1826 bad_reason = "nonzero mapcount";
1827 if (unlikely(page->mapping != NULL))
1828 bad_reason = "non-NULL mapping";
fe896d18 1829 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1830 bad_reason = "nonzero _count";
f4c18e6f
NH
1831 if (unlikely(page->flags & __PG_HWPOISON)) {
1832 bad_reason = "HWPoisoned (hardware-corrupted)";
1833 bad_flags = __PG_HWPOISON;
e570f56c
NH
1834 /* Don't complain about hwpoisoned pages */
1835 page_mapcount_reset(page); /* remove PageBuddy */
1836 return;
f4c18e6f 1837 }
f0b791a3
DH
1838 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1839 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1840 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1841 }
9edad6ea
JW
1842#ifdef CONFIG_MEMCG
1843 if (unlikely(page->mem_cgroup))
1844 bad_reason = "page still charged to cgroup";
1845#endif
4e611801
VB
1846 bad_page(page, bad_reason, bad_flags);
1847}
1848
1849/*
1850 * This page is about to be returned from the page allocator
1851 */
1852static inline int check_new_page(struct page *page)
1853{
1854 if (likely(page_expected_state(page,
1855 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1856 return 0;
1857
1858 check_new_page_bad(page);
1859 return 1;
2a7684a2
WF
1860}
1861
bd33ef36 1862static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1863{
1864 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1865 page_poisoning_enabled();
1414c7f4
LA
1866}
1867
479f854a
MG
1868#ifdef CONFIG_DEBUG_VM
1869static bool check_pcp_refill(struct page *page)
1870{
1871 return false;
1872}
1873
1874static bool check_new_pcp(struct page *page)
1875{
1876 return check_new_page(page);
1877}
1878#else
1879static bool check_pcp_refill(struct page *page)
1880{
1881 return check_new_page(page);
1882}
1883static bool check_new_pcp(struct page *page)
1884{
1885 return false;
1886}
1887#endif /* CONFIG_DEBUG_VM */
1888
1889static bool check_new_pages(struct page *page, unsigned int order)
1890{
1891 int i;
1892 for (i = 0; i < (1 << order); i++) {
1893 struct page *p = page + i;
1894
1895 if (unlikely(check_new_page(p)))
1896 return true;
1897 }
1898
1899 return false;
1900}
1901
46f24fd8
JK
1902inline void post_alloc_hook(struct page *page, unsigned int order,
1903 gfp_t gfp_flags)
1904{
1905 set_page_private(page, 0);
1906 set_page_refcounted(page);
1907
1908 arch_alloc_page(page, order);
1909 kernel_map_pages(page, 1 << order, 1);
1910 kernel_poison_pages(page, 1 << order, 1);
1911 kasan_alloc_pages(page, order);
1912 set_page_owner(page, order, gfp_flags);
1913}
1914
479f854a 1915static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1916 unsigned int alloc_flags)
2a7684a2
WF
1917{
1918 int i;
689bcebf 1919
46f24fd8 1920 post_alloc_hook(page, order, gfp_flags);
17cf4406 1921
bd33ef36 1922 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1923 for (i = 0; i < (1 << order); i++)
1924 clear_highpage(page + i);
17cf4406
NP
1925
1926 if (order && (gfp_flags & __GFP_COMP))
1927 prep_compound_page(page, order);
1928
75379191 1929 /*
2f064f34 1930 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1931 * allocate the page. The expectation is that the caller is taking
1932 * steps that will free more memory. The caller should avoid the page
1933 * being used for !PFMEMALLOC purposes.
1934 */
2f064f34
MH
1935 if (alloc_flags & ALLOC_NO_WATERMARKS)
1936 set_page_pfmemalloc(page);
1937 else
1938 clear_page_pfmemalloc(page);
1da177e4
LT
1939}
1940
56fd56b8
MG
1941/*
1942 * Go through the free lists for the given migratetype and remove
1943 * the smallest available page from the freelists
1944 */
85ccc8fa 1945static __always_inline
728ec980 1946struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1947 int migratetype)
1948{
1949 unsigned int current_order;
b8af2941 1950 struct free_area *area;
56fd56b8
MG
1951 struct page *page;
1952
1953 /* Find a page of the appropriate size in the preferred list */
1954 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1955 area = &(zone->free_area[current_order]);
a16601c5 1956 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1957 struct page, lru);
a16601c5
GT
1958 if (!page)
1959 continue;
56fd56b8
MG
1960 list_del(&page->lru);
1961 rmv_page_order(page);
1962 area->nr_free--;
56fd56b8 1963 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1964 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1965 return page;
1966 }
1967
1968 return NULL;
1969}
1970
1971
b2a0ac88
MG
1972/*
1973 * This array describes the order lists are fallen back to when
1974 * the free lists for the desirable migrate type are depleted
1975 */
47118af0 1976static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1977 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1978 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1979 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1980#ifdef CONFIG_CMA
974a786e 1981 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1982#endif
194159fb 1983#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1984 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1985#endif
b2a0ac88
MG
1986};
1987
dc67647b 1988#ifdef CONFIG_CMA
85ccc8fa 1989static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1990 unsigned int order)
1991{
1992 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1993}
1994#else
1995static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 unsigned int order) { return NULL; }
1997#endif
1998
c361be55
MG
1999/*
2000 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2001 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2002 * boundary. If alignment is required, use move_freepages_block()
2003 */
02aa0cdd 2004static int move_freepages(struct zone *zone,
b69a7288 2005 struct page *start_page, struct page *end_page,
02aa0cdd 2006 int migratetype, int *num_movable)
c361be55
MG
2007{
2008 struct page *page;
d00181b9 2009 unsigned int order;
d100313f 2010 int pages_moved = 0;
c361be55
MG
2011
2012#ifndef CONFIG_HOLES_IN_ZONE
2013 /*
2014 * page_zone is not safe to call in this context when
2015 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2016 * anyway as we check zone boundaries in move_freepages_block().
2017 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2018 * grouping pages by mobility
c361be55 2019 */
3e04040d
AB
2020 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2021 pfn_valid(page_to_pfn(end_page)) &&
2022 page_zone(start_page) != page_zone(end_page));
c361be55
MG
2023#endif
2024
02aa0cdd
VB
2025 if (num_movable)
2026 *num_movable = 0;
2027
c361be55
MG
2028 for (page = start_page; page <= end_page;) {
2029 if (!pfn_valid_within(page_to_pfn(page))) {
2030 page++;
2031 continue;
2032 }
2033
f073bdc5
AB
2034 /* Make sure we are not inadvertently changing nodes */
2035 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2036
c361be55 2037 if (!PageBuddy(page)) {
02aa0cdd
VB
2038 /*
2039 * We assume that pages that could be isolated for
2040 * migration are movable. But we don't actually try
2041 * isolating, as that would be expensive.
2042 */
2043 if (num_movable &&
2044 (PageLRU(page) || __PageMovable(page)))
2045 (*num_movable)++;
2046
c361be55
MG
2047 page++;
2048 continue;
2049 }
2050
2051 order = page_order(page);
84be48d8
KS
2052 list_move(&page->lru,
2053 &zone->free_area[order].free_list[migratetype]);
c361be55 2054 page += 1 << order;
d100313f 2055 pages_moved += 1 << order;
c361be55
MG
2056 }
2057
d100313f 2058 return pages_moved;
c361be55
MG
2059}
2060
ee6f509c 2061int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2062 int migratetype, int *num_movable)
c361be55
MG
2063{
2064 unsigned long start_pfn, end_pfn;
2065 struct page *start_page, *end_page;
2066
2067 start_pfn = page_to_pfn(page);
d9c23400 2068 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2069 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2070 end_page = start_page + pageblock_nr_pages - 1;
2071 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2072
2073 /* Do not cross zone boundaries */
108bcc96 2074 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2075 start_page = page;
108bcc96 2076 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2077 return 0;
2078
02aa0cdd
VB
2079 return move_freepages(zone, start_page, end_page, migratetype,
2080 num_movable);
c361be55
MG
2081}
2082
2f66a68f
MG
2083static void change_pageblock_range(struct page *pageblock_page,
2084 int start_order, int migratetype)
2085{
2086 int nr_pageblocks = 1 << (start_order - pageblock_order);
2087
2088 while (nr_pageblocks--) {
2089 set_pageblock_migratetype(pageblock_page, migratetype);
2090 pageblock_page += pageblock_nr_pages;
2091 }
2092}
2093
fef903ef 2094/*
9c0415eb
VB
2095 * When we are falling back to another migratetype during allocation, try to
2096 * steal extra free pages from the same pageblocks to satisfy further
2097 * allocations, instead of polluting multiple pageblocks.
2098 *
2099 * If we are stealing a relatively large buddy page, it is likely there will
2100 * be more free pages in the pageblock, so try to steal them all. For
2101 * reclaimable and unmovable allocations, we steal regardless of page size,
2102 * as fragmentation caused by those allocations polluting movable pageblocks
2103 * is worse than movable allocations stealing from unmovable and reclaimable
2104 * pageblocks.
fef903ef 2105 */
4eb7dce6
JK
2106static bool can_steal_fallback(unsigned int order, int start_mt)
2107{
2108 /*
2109 * Leaving this order check is intended, although there is
2110 * relaxed order check in next check. The reason is that
2111 * we can actually steal whole pageblock if this condition met,
2112 * but, below check doesn't guarantee it and that is just heuristic
2113 * so could be changed anytime.
2114 */
2115 if (order >= pageblock_order)
2116 return true;
2117
2118 if (order >= pageblock_order / 2 ||
2119 start_mt == MIGRATE_RECLAIMABLE ||
2120 start_mt == MIGRATE_UNMOVABLE ||
2121 page_group_by_mobility_disabled)
2122 return true;
2123
2124 return false;
2125}
2126
2127/*
2128 * This function implements actual steal behaviour. If order is large enough,
2129 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2130 * pageblock to our migratetype and determine how many already-allocated pages
2131 * are there in the pageblock with a compatible migratetype. If at least half
2132 * of pages are free or compatible, we can change migratetype of the pageblock
2133 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2134 */
2135static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2136 int start_type, bool whole_block)
fef903ef 2137{
d00181b9 2138 unsigned int current_order = page_order(page);
3bc48f96 2139 struct free_area *area;
02aa0cdd
VB
2140 int free_pages, movable_pages, alike_pages;
2141 int old_block_type;
2142
2143 old_block_type = get_pageblock_migratetype(page);
fef903ef 2144
3bc48f96
VB
2145 /*
2146 * This can happen due to races and we want to prevent broken
2147 * highatomic accounting.
2148 */
02aa0cdd 2149 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2150 goto single_page;
2151
fef903ef
SB
2152 /* Take ownership for orders >= pageblock_order */
2153 if (current_order >= pageblock_order) {
2154 change_pageblock_range(page, current_order, start_type);
3bc48f96 2155 goto single_page;
fef903ef
SB
2156 }
2157
3bc48f96
VB
2158 /* We are not allowed to try stealing from the whole block */
2159 if (!whole_block)
2160 goto single_page;
2161
02aa0cdd
VB
2162 free_pages = move_freepages_block(zone, page, start_type,
2163 &movable_pages);
2164 /*
2165 * Determine how many pages are compatible with our allocation.
2166 * For movable allocation, it's the number of movable pages which
2167 * we just obtained. For other types it's a bit more tricky.
2168 */
2169 if (start_type == MIGRATE_MOVABLE) {
2170 alike_pages = movable_pages;
2171 } else {
2172 /*
2173 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2174 * to MOVABLE pageblock, consider all non-movable pages as
2175 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2176 * vice versa, be conservative since we can't distinguish the
2177 * exact migratetype of non-movable pages.
2178 */
2179 if (old_block_type == MIGRATE_MOVABLE)
2180 alike_pages = pageblock_nr_pages
2181 - (free_pages + movable_pages);
2182 else
2183 alike_pages = 0;
2184 }
2185
3bc48f96 2186 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2187 if (!free_pages)
3bc48f96 2188 goto single_page;
fef903ef 2189
02aa0cdd
VB
2190 /*
2191 * If a sufficient number of pages in the block are either free or of
2192 * comparable migratability as our allocation, claim the whole block.
2193 */
2194 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2195 page_group_by_mobility_disabled)
2196 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2197
2198 return;
2199
2200single_page:
2201 area = &zone->free_area[current_order];
2202 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2203}
2204
2149cdae
JK
2205/*
2206 * Check whether there is a suitable fallback freepage with requested order.
2207 * If only_stealable is true, this function returns fallback_mt only if
2208 * we can steal other freepages all together. This would help to reduce
2209 * fragmentation due to mixed migratetype pages in one pageblock.
2210 */
2211int find_suitable_fallback(struct free_area *area, unsigned int order,
2212 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2213{
2214 int i;
2215 int fallback_mt;
2216
2217 if (area->nr_free == 0)
2218 return -1;
2219
2220 *can_steal = false;
2221 for (i = 0;; i++) {
2222 fallback_mt = fallbacks[migratetype][i];
974a786e 2223 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2224 break;
2225
2226 if (list_empty(&area->free_list[fallback_mt]))
2227 continue;
fef903ef 2228
4eb7dce6
JK
2229 if (can_steal_fallback(order, migratetype))
2230 *can_steal = true;
2231
2149cdae
JK
2232 if (!only_stealable)
2233 return fallback_mt;
2234
2235 if (*can_steal)
2236 return fallback_mt;
fef903ef 2237 }
4eb7dce6
JK
2238
2239 return -1;
fef903ef
SB
2240}
2241
0aaa29a5
MG
2242/*
2243 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2244 * there are no empty page blocks that contain a page with a suitable order
2245 */
2246static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2247 unsigned int alloc_order)
2248{
2249 int mt;
2250 unsigned long max_managed, flags;
2251
2252 /*
2253 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2254 * Check is race-prone but harmless.
2255 */
2256 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2257 if (zone->nr_reserved_highatomic >= max_managed)
2258 return;
2259
2260 spin_lock_irqsave(&zone->lock, flags);
2261
2262 /* Recheck the nr_reserved_highatomic limit under the lock */
2263 if (zone->nr_reserved_highatomic >= max_managed)
2264 goto out_unlock;
2265
2266 /* Yoink! */
2267 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2268 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2269 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2270 zone->nr_reserved_highatomic += pageblock_nr_pages;
2271 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2272 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2273 }
2274
2275out_unlock:
2276 spin_unlock_irqrestore(&zone->lock, flags);
2277}
2278
2279/*
2280 * Used when an allocation is about to fail under memory pressure. This
2281 * potentially hurts the reliability of high-order allocations when under
2282 * intense memory pressure but failed atomic allocations should be easier
2283 * to recover from than an OOM.
29fac03b
MK
2284 *
2285 * If @force is true, try to unreserve a pageblock even though highatomic
2286 * pageblock is exhausted.
0aaa29a5 2287 */
29fac03b
MK
2288static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2289 bool force)
0aaa29a5
MG
2290{
2291 struct zonelist *zonelist = ac->zonelist;
2292 unsigned long flags;
2293 struct zoneref *z;
2294 struct zone *zone;
2295 struct page *page;
2296 int order;
04c8716f 2297 bool ret;
0aaa29a5
MG
2298
2299 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2300 ac->nodemask) {
29fac03b
MK
2301 /*
2302 * Preserve at least one pageblock unless memory pressure
2303 * is really high.
2304 */
2305 if (!force && zone->nr_reserved_highatomic <=
2306 pageblock_nr_pages)
0aaa29a5
MG
2307 continue;
2308
2309 spin_lock_irqsave(&zone->lock, flags);
2310 for (order = 0; order < MAX_ORDER; order++) {
2311 struct free_area *area = &(zone->free_area[order]);
2312
a16601c5
GT
2313 page = list_first_entry_or_null(
2314 &area->free_list[MIGRATE_HIGHATOMIC],
2315 struct page, lru);
2316 if (!page)
0aaa29a5
MG
2317 continue;
2318
0aaa29a5 2319 /*
4855e4a7
MK
2320 * In page freeing path, migratetype change is racy so
2321 * we can counter several free pages in a pageblock
2322 * in this loop althoug we changed the pageblock type
2323 * from highatomic to ac->migratetype. So we should
2324 * adjust the count once.
0aaa29a5 2325 */
a6ffdc07 2326 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2327 /*
2328 * It should never happen but changes to
2329 * locking could inadvertently allow a per-cpu
2330 * drain to add pages to MIGRATE_HIGHATOMIC
2331 * while unreserving so be safe and watch for
2332 * underflows.
2333 */
2334 zone->nr_reserved_highatomic -= min(
2335 pageblock_nr_pages,
2336 zone->nr_reserved_highatomic);
2337 }
0aaa29a5
MG
2338
2339 /*
2340 * Convert to ac->migratetype and avoid the normal
2341 * pageblock stealing heuristics. Minimally, the caller
2342 * is doing the work and needs the pages. More
2343 * importantly, if the block was always converted to
2344 * MIGRATE_UNMOVABLE or another type then the number
2345 * of pageblocks that cannot be completely freed
2346 * may increase.
2347 */
2348 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2349 ret = move_freepages_block(zone, page, ac->migratetype,
2350 NULL);
29fac03b
MK
2351 if (ret) {
2352 spin_unlock_irqrestore(&zone->lock, flags);
2353 return ret;
2354 }
0aaa29a5
MG
2355 }
2356 spin_unlock_irqrestore(&zone->lock, flags);
2357 }
04c8716f
MK
2358
2359 return false;
0aaa29a5
MG
2360}
2361
3bc48f96
VB
2362/*
2363 * Try finding a free buddy page on the fallback list and put it on the free
2364 * list of requested migratetype, possibly along with other pages from the same
2365 * block, depending on fragmentation avoidance heuristics. Returns true if
2366 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2367 *
2368 * The use of signed ints for order and current_order is a deliberate
2369 * deviation from the rest of this file, to make the for loop
2370 * condition simpler.
3bc48f96 2371 */
85ccc8fa 2372static __always_inline bool
b002529d 2373__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2374{
b8af2941 2375 struct free_area *area;
b002529d 2376 int current_order;
b2a0ac88 2377 struct page *page;
4eb7dce6
JK
2378 int fallback_mt;
2379 bool can_steal;
b2a0ac88 2380
7a8f58f3
VB
2381 /*
2382 * Find the largest available free page in the other list. This roughly
2383 * approximates finding the pageblock with the most free pages, which
2384 * would be too costly to do exactly.
2385 */
b002529d 2386 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2387 --current_order) {
4eb7dce6
JK
2388 area = &(zone->free_area[current_order]);
2389 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2390 start_migratetype, false, &can_steal);
4eb7dce6
JK
2391 if (fallback_mt == -1)
2392 continue;
b2a0ac88 2393
7a8f58f3
VB
2394 /*
2395 * We cannot steal all free pages from the pageblock and the
2396 * requested migratetype is movable. In that case it's better to
2397 * steal and split the smallest available page instead of the
2398 * largest available page, because even if the next movable
2399 * allocation falls back into a different pageblock than this
2400 * one, it won't cause permanent fragmentation.
2401 */
2402 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2403 && current_order > order)
2404 goto find_smallest;
b2a0ac88 2405
7a8f58f3
VB
2406 goto do_steal;
2407 }
e0fff1bd 2408
7a8f58f3 2409 return false;
e0fff1bd 2410
7a8f58f3
VB
2411find_smallest:
2412 for (current_order = order; current_order < MAX_ORDER;
2413 current_order++) {
2414 area = &(zone->free_area[current_order]);
2415 fallback_mt = find_suitable_fallback(area, current_order,
2416 start_migratetype, false, &can_steal);
2417 if (fallback_mt != -1)
2418 break;
b2a0ac88
MG
2419 }
2420
7a8f58f3
VB
2421 /*
2422 * This should not happen - we already found a suitable fallback
2423 * when looking for the largest page.
2424 */
2425 VM_BUG_ON(current_order == MAX_ORDER);
2426
2427do_steal:
2428 page = list_first_entry(&area->free_list[fallback_mt],
2429 struct page, lru);
2430
2431 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2432
2433 trace_mm_page_alloc_extfrag(page, order, current_order,
2434 start_migratetype, fallback_mt);
2435
2436 return true;
2437
b2a0ac88
MG
2438}
2439
56fd56b8 2440/*
1da177e4
LT
2441 * Do the hard work of removing an element from the buddy allocator.
2442 * Call me with the zone->lock already held.
2443 */
85ccc8fa
AL
2444static __always_inline struct page *
2445__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2446{
1da177e4
LT
2447 struct page *page;
2448
3bc48f96 2449retry:
56fd56b8 2450 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2451 if (unlikely(!page)) {
dc67647b
JK
2452 if (migratetype == MIGRATE_MOVABLE)
2453 page = __rmqueue_cma_fallback(zone, order);
2454
3bc48f96
VB
2455 if (!page && __rmqueue_fallback(zone, order, migratetype))
2456 goto retry;
728ec980
MG
2457 }
2458
0d3d062a 2459 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2460 return page;
1da177e4
LT
2461}
2462
5f63b720 2463/*
1da177e4
LT
2464 * Obtain a specified number of elements from the buddy allocator, all under
2465 * a single hold of the lock, for efficiency. Add them to the supplied list.
2466 * Returns the number of new pages which were placed at *list.
2467 */
5f63b720 2468static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2469 unsigned long count, struct list_head *list,
453f85d4 2470 int migratetype)
1da177e4 2471{
a6de734b 2472 int i, alloced = 0;
5f63b720 2473
d34b0733 2474 spin_lock(&zone->lock);
1da177e4 2475 for (i = 0; i < count; ++i) {
6ac0206b 2476 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2477 if (unlikely(page == NULL))
1da177e4 2478 break;
81eabcbe 2479
479f854a
MG
2480 if (unlikely(check_pcp_refill(page)))
2481 continue;
2482
81eabcbe 2483 /*
0fac3ba5
VB
2484 * Split buddy pages returned by expand() are received here in
2485 * physical page order. The page is added to the tail of
2486 * caller's list. From the callers perspective, the linked list
2487 * is ordered by page number under some conditions. This is
2488 * useful for IO devices that can forward direction from the
2489 * head, thus also in the physical page order. This is useful
2490 * for IO devices that can merge IO requests if the physical
2491 * pages are ordered properly.
81eabcbe 2492 */
0fac3ba5 2493 list_add_tail(&page->lru, list);
a6de734b 2494 alloced++;
bb14c2c7 2495 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2496 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2497 -(1 << order));
1da177e4 2498 }
a6de734b
MG
2499
2500 /*
2501 * i pages were removed from the buddy list even if some leak due
2502 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2503 * on i. Do not confuse with 'alloced' which is the number of
2504 * pages added to the pcp list.
2505 */
f2260e6b 2506 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2507 spin_unlock(&zone->lock);
a6de734b 2508 return alloced;
1da177e4
LT
2509}
2510
4ae7c039 2511#ifdef CONFIG_NUMA
8fce4d8e 2512/*
4037d452
CL
2513 * Called from the vmstat counter updater to drain pagesets of this
2514 * currently executing processor on remote nodes after they have
2515 * expired.
2516 *
879336c3
CL
2517 * Note that this function must be called with the thread pinned to
2518 * a single processor.
8fce4d8e 2519 */
4037d452 2520void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2521{
4ae7c039 2522 unsigned long flags;
7be12fc9 2523 int to_drain, batch;
4ae7c039 2524
4037d452 2525 local_irq_save(flags);
4db0c3c2 2526 batch = READ_ONCE(pcp->batch);
7be12fc9 2527 to_drain = min(pcp->count, batch);
77ba9062 2528 if (to_drain > 0)
2a13515c 2529 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2530 local_irq_restore(flags);
4ae7c039
CL
2531}
2532#endif
2533
9f8f2172 2534/*
93481ff0 2535 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2536 *
2537 * The processor must either be the current processor and the
2538 * thread pinned to the current processor or a processor that
2539 * is not online.
2540 */
93481ff0 2541static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2542{
c54ad30c 2543 unsigned long flags;
93481ff0
VB
2544 struct per_cpu_pageset *pset;
2545 struct per_cpu_pages *pcp;
1da177e4 2546
93481ff0
VB
2547 local_irq_save(flags);
2548 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2549
93481ff0 2550 pcp = &pset->pcp;
77ba9062 2551 if (pcp->count)
93481ff0 2552 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2553 local_irq_restore(flags);
2554}
3dfa5721 2555
93481ff0
VB
2556/*
2557 * Drain pcplists of all zones on the indicated processor.
2558 *
2559 * The processor must either be the current processor and the
2560 * thread pinned to the current processor or a processor that
2561 * is not online.
2562 */
2563static void drain_pages(unsigned int cpu)
2564{
2565 struct zone *zone;
2566
2567 for_each_populated_zone(zone) {
2568 drain_pages_zone(cpu, zone);
1da177e4
LT
2569 }
2570}
1da177e4 2571
9f8f2172
CL
2572/*
2573 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2574 *
2575 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2576 * the single zone's pages.
9f8f2172 2577 */
93481ff0 2578void drain_local_pages(struct zone *zone)
9f8f2172 2579{
93481ff0
VB
2580 int cpu = smp_processor_id();
2581
2582 if (zone)
2583 drain_pages_zone(cpu, zone);
2584 else
2585 drain_pages(cpu);
9f8f2172
CL
2586}
2587
0ccce3b9
MG
2588static void drain_local_pages_wq(struct work_struct *work)
2589{
a459eeb7
MH
2590 /*
2591 * drain_all_pages doesn't use proper cpu hotplug protection so
2592 * we can race with cpu offline when the WQ can move this from
2593 * a cpu pinned worker to an unbound one. We can operate on a different
2594 * cpu which is allright but we also have to make sure to not move to
2595 * a different one.
2596 */
2597 preempt_disable();
0ccce3b9 2598 drain_local_pages(NULL);
a459eeb7 2599 preempt_enable();
0ccce3b9
MG
2600}
2601
9f8f2172 2602/*
74046494
GBY
2603 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2604 *
93481ff0
VB
2605 * When zone parameter is non-NULL, spill just the single zone's pages.
2606 *
0ccce3b9 2607 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2608 */
93481ff0 2609void drain_all_pages(struct zone *zone)
9f8f2172 2610{
74046494 2611 int cpu;
74046494
GBY
2612
2613 /*
2614 * Allocate in the BSS so we wont require allocation in
2615 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2616 */
2617 static cpumask_t cpus_with_pcps;
2618
ce612879
MH
2619 /*
2620 * Make sure nobody triggers this path before mm_percpu_wq is fully
2621 * initialized.
2622 */
2623 if (WARN_ON_ONCE(!mm_percpu_wq))
2624 return;
2625
bd233f53
MG
2626 /*
2627 * Do not drain if one is already in progress unless it's specific to
2628 * a zone. Such callers are primarily CMA and memory hotplug and need
2629 * the drain to be complete when the call returns.
2630 */
2631 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2632 if (!zone)
2633 return;
2634 mutex_lock(&pcpu_drain_mutex);
2635 }
0ccce3b9 2636
74046494
GBY
2637 /*
2638 * We don't care about racing with CPU hotplug event
2639 * as offline notification will cause the notified
2640 * cpu to drain that CPU pcps and on_each_cpu_mask
2641 * disables preemption as part of its processing
2642 */
2643 for_each_online_cpu(cpu) {
93481ff0
VB
2644 struct per_cpu_pageset *pcp;
2645 struct zone *z;
74046494 2646 bool has_pcps = false;
93481ff0
VB
2647
2648 if (zone) {
74046494 2649 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2650 if (pcp->pcp.count)
74046494 2651 has_pcps = true;
93481ff0
VB
2652 } else {
2653 for_each_populated_zone(z) {
2654 pcp = per_cpu_ptr(z->pageset, cpu);
2655 if (pcp->pcp.count) {
2656 has_pcps = true;
2657 break;
2658 }
74046494
GBY
2659 }
2660 }
93481ff0 2661
74046494
GBY
2662 if (has_pcps)
2663 cpumask_set_cpu(cpu, &cpus_with_pcps);
2664 else
2665 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2666 }
0ccce3b9 2667
bd233f53
MG
2668 for_each_cpu(cpu, &cpus_with_pcps) {
2669 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2670 INIT_WORK(work, drain_local_pages_wq);
ce612879 2671 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2672 }
bd233f53
MG
2673 for_each_cpu(cpu, &cpus_with_pcps)
2674 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2675
2676 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2677}
2678
296699de 2679#ifdef CONFIG_HIBERNATION
1da177e4 2680
556b969a
CY
2681/*
2682 * Touch the watchdog for every WD_PAGE_COUNT pages.
2683 */
2684#define WD_PAGE_COUNT (128*1024)
2685
1da177e4
LT
2686void mark_free_pages(struct zone *zone)
2687{
556b969a 2688 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2689 unsigned long flags;
7aeb09f9 2690 unsigned int order, t;
86760a2c 2691 struct page *page;
1da177e4 2692
8080fc03 2693 if (zone_is_empty(zone))
1da177e4
LT
2694 return;
2695
2696 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2697
108bcc96 2698 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2699 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2700 if (pfn_valid(pfn)) {
86760a2c 2701 page = pfn_to_page(pfn);
ba6b0979 2702
556b969a
CY
2703 if (!--page_count) {
2704 touch_nmi_watchdog();
2705 page_count = WD_PAGE_COUNT;
2706 }
2707
ba6b0979
JK
2708 if (page_zone(page) != zone)
2709 continue;
2710
7be98234
RW
2711 if (!swsusp_page_is_forbidden(page))
2712 swsusp_unset_page_free(page);
f623f0db 2713 }
1da177e4 2714
b2a0ac88 2715 for_each_migratetype_order(order, t) {
86760a2c
GT
2716 list_for_each_entry(page,
2717 &zone->free_area[order].free_list[t], lru) {
f623f0db 2718 unsigned long i;
1da177e4 2719
86760a2c 2720 pfn = page_to_pfn(page);
556b969a
CY
2721 for (i = 0; i < (1UL << order); i++) {
2722 if (!--page_count) {
2723 touch_nmi_watchdog();
2724 page_count = WD_PAGE_COUNT;
2725 }
7be98234 2726 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2727 }
f623f0db 2728 }
b2a0ac88 2729 }
1da177e4
LT
2730 spin_unlock_irqrestore(&zone->lock, flags);
2731}
e2c55dc8 2732#endif /* CONFIG_PM */
1da177e4 2733
2d4894b5 2734static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2735{
5f8dcc21 2736 int migratetype;
1da177e4 2737
4db7548c 2738 if (!free_pcp_prepare(page))
9cca35d4 2739 return false;
689bcebf 2740
dc4b0caf 2741 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2742 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2743 return true;
2744}
2745
2d4894b5 2746static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2747{
2748 struct zone *zone = page_zone(page);
2749 struct per_cpu_pages *pcp;
2750 int migratetype;
2751
2752 migratetype = get_pcppage_migratetype(page);
d34b0733 2753 __count_vm_event(PGFREE);
da456f14 2754
5f8dcc21
MG
2755 /*
2756 * We only track unmovable, reclaimable and movable on pcp lists.
2757 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2758 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2759 * areas back if necessary. Otherwise, we may have to free
2760 * excessively into the page allocator
2761 */
2762 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2763 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2764 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2765 return;
5f8dcc21
MG
2766 }
2767 migratetype = MIGRATE_MOVABLE;
2768 }
2769
99dcc3e5 2770 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2771 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2772 pcp->count++;
48db57f8 2773 if (pcp->count >= pcp->high) {
4db0c3c2 2774 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2775 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2776 }
9cca35d4 2777}
5f8dcc21 2778
9cca35d4
MG
2779/*
2780 * Free a 0-order page
9cca35d4 2781 */
2d4894b5 2782void free_unref_page(struct page *page)
9cca35d4
MG
2783{
2784 unsigned long flags;
2785 unsigned long pfn = page_to_pfn(page);
2786
2d4894b5 2787 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2788 return;
2789
2790 local_irq_save(flags);
2d4894b5 2791 free_unref_page_commit(page, pfn);
d34b0733 2792 local_irq_restore(flags);
1da177e4
LT
2793}
2794
cc59850e
KK
2795/*
2796 * Free a list of 0-order pages
2797 */
2d4894b5 2798void free_unref_page_list(struct list_head *list)
cc59850e
KK
2799{
2800 struct page *page, *next;
9cca35d4 2801 unsigned long flags, pfn;
c24ad77d 2802 int batch_count = 0;
9cca35d4
MG
2803
2804 /* Prepare pages for freeing */
2805 list_for_each_entry_safe(page, next, list, lru) {
2806 pfn = page_to_pfn(page);
2d4894b5 2807 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2808 list_del(&page->lru);
2809 set_page_private(page, pfn);
2810 }
cc59850e 2811
9cca35d4 2812 local_irq_save(flags);
cc59850e 2813 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2814 unsigned long pfn = page_private(page);
2815
2816 set_page_private(page, 0);
2d4894b5
MG
2817 trace_mm_page_free_batched(page);
2818 free_unref_page_commit(page, pfn);
c24ad77d
LS
2819
2820 /*
2821 * Guard against excessive IRQ disabled times when we get
2822 * a large list of pages to free.
2823 */
2824 if (++batch_count == SWAP_CLUSTER_MAX) {
2825 local_irq_restore(flags);
2826 batch_count = 0;
2827 local_irq_save(flags);
2828 }
cc59850e 2829 }
9cca35d4 2830 local_irq_restore(flags);
cc59850e
KK
2831}
2832
8dfcc9ba
NP
2833/*
2834 * split_page takes a non-compound higher-order page, and splits it into
2835 * n (1<<order) sub-pages: page[0..n]
2836 * Each sub-page must be freed individually.
2837 *
2838 * Note: this is probably too low level an operation for use in drivers.
2839 * Please consult with lkml before using this in your driver.
2840 */
2841void split_page(struct page *page, unsigned int order)
2842{
2843 int i;
2844
309381fe
SL
2845 VM_BUG_ON_PAGE(PageCompound(page), page);
2846 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2847
a9627bc5 2848 for (i = 1; i < (1 << order); i++)
7835e98b 2849 set_page_refcounted(page + i);
a9627bc5 2850 split_page_owner(page, order);
8dfcc9ba 2851}
5853ff23 2852EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2853
3c605096 2854int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2855{
748446bb
MG
2856 unsigned long watermark;
2857 struct zone *zone;
2139cbe6 2858 int mt;
748446bb
MG
2859
2860 BUG_ON(!PageBuddy(page));
2861
2862 zone = page_zone(page);
2e30abd1 2863 mt = get_pageblock_migratetype(page);
748446bb 2864
194159fb 2865 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2866 /*
2867 * Obey watermarks as if the page was being allocated. We can
2868 * emulate a high-order watermark check with a raised order-0
2869 * watermark, because we already know our high-order page
2870 * exists.
2871 */
2872 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2873 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2874 return 0;
2875
8fb74b9f 2876 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2877 }
748446bb
MG
2878
2879 /* Remove page from free list */
2880 list_del(&page->lru);
2881 zone->free_area[order].nr_free--;
2882 rmv_page_order(page);
2139cbe6 2883
400bc7fd 2884 /*
2885 * Set the pageblock if the isolated page is at least half of a
2886 * pageblock
2887 */
748446bb
MG
2888 if (order >= pageblock_order - 1) {
2889 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2890 for (; page < endpage; page += pageblock_nr_pages) {
2891 int mt = get_pageblock_migratetype(page);
88ed365e 2892 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2893 && !is_migrate_highatomic(mt))
47118af0
MN
2894 set_pageblock_migratetype(page,
2895 MIGRATE_MOVABLE);
2896 }
748446bb
MG
2897 }
2898
f3a14ced 2899
8fb74b9f 2900 return 1UL << order;
1fb3f8ca
MG
2901}
2902
060e7417
MG
2903/*
2904 * Update NUMA hit/miss statistics
2905 *
2906 * Must be called with interrupts disabled.
060e7417 2907 */
41b6167e 2908static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2909{
2910#ifdef CONFIG_NUMA
3a321d2a 2911 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2912
4518085e
KW
2913 /* skip numa counters update if numa stats is disabled */
2914 if (!static_branch_likely(&vm_numa_stat_key))
2915 return;
2916
c1093b74 2917 if (zone_to_nid(z) != numa_node_id())
060e7417 2918 local_stat = NUMA_OTHER;
060e7417 2919
c1093b74 2920 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 2921 __inc_numa_state(z, NUMA_HIT);
2df26639 2922 else {
3a321d2a
KW
2923 __inc_numa_state(z, NUMA_MISS);
2924 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2925 }
3a321d2a 2926 __inc_numa_state(z, local_stat);
060e7417
MG
2927#endif
2928}
2929
066b2393
MG
2930/* Remove page from the per-cpu list, caller must protect the list */
2931static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2932 struct per_cpu_pages *pcp,
066b2393
MG
2933 struct list_head *list)
2934{
2935 struct page *page;
2936
2937 do {
2938 if (list_empty(list)) {
2939 pcp->count += rmqueue_bulk(zone, 0,
2940 pcp->batch, list,
453f85d4 2941 migratetype);
066b2393
MG
2942 if (unlikely(list_empty(list)))
2943 return NULL;
2944 }
2945
453f85d4 2946 page = list_first_entry(list, struct page, lru);
066b2393
MG
2947 list_del(&page->lru);
2948 pcp->count--;
2949 } while (check_new_pcp(page));
2950
2951 return page;
2952}
2953
2954/* Lock and remove page from the per-cpu list */
2955static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2956 struct zone *zone, unsigned int order,
2957 gfp_t gfp_flags, int migratetype)
2958{
2959 struct per_cpu_pages *pcp;
2960 struct list_head *list;
066b2393 2961 struct page *page;
d34b0733 2962 unsigned long flags;
066b2393 2963
d34b0733 2964 local_irq_save(flags);
066b2393
MG
2965 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2966 list = &pcp->lists[migratetype];
453f85d4 2967 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2968 if (page) {
2969 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2970 zone_statistics(preferred_zone, zone);
2971 }
d34b0733 2972 local_irq_restore(flags);
066b2393
MG
2973 return page;
2974}
2975
1da177e4 2976/*
75379191 2977 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2978 */
0a15c3e9 2979static inline
066b2393 2980struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2981 struct zone *zone, unsigned int order,
c603844b
MG
2982 gfp_t gfp_flags, unsigned int alloc_flags,
2983 int migratetype)
1da177e4
LT
2984{
2985 unsigned long flags;
689bcebf 2986 struct page *page;
1da177e4 2987
d34b0733 2988 if (likely(order == 0)) {
066b2393
MG
2989 page = rmqueue_pcplist(preferred_zone, zone, order,
2990 gfp_flags, migratetype);
2991 goto out;
2992 }
83b9355b 2993
066b2393
MG
2994 /*
2995 * We most definitely don't want callers attempting to
2996 * allocate greater than order-1 page units with __GFP_NOFAIL.
2997 */
2998 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2999 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3000
066b2393
MG
3001 do {
3002 page = NULL;
3003 if (alloc_flags & ALLOC_HARDER) {
3004 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3005 if (page)
3006 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3007 }
a74609fa 3008 if (!page)
066b2393
MG
3009 page = __rmqueue(zone, order, migratetype);
3010 } while (page && check_new_pages(page, order));
3011 spin_unlock(&zone->lock);
3012 if (!page)
3013 goto failed;
3014 __mod_zone_freepage_state(zone, -(1 << order),
3015 get_pcppage_migratetype(page));
1da177e4 3016
16709d1d 3017 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3018 zone_statistics(preferred_zone, zone);
a74609fa 3019 local_irq_restore(flags);
1da177e4 3020
066b2393
MG
3021out:
3022 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3023 return page;
a74609fa
NP
3024
3025failed:
3026 local_irq_restore(flags);
a74609fa 3027 return NULL;
1da177e4
LT
3028}
3029
933e312e
AM
3030#ifdef CONFIG_FAIL_PAGE_ALLOC
3031
b2588c4b 3032static struct {
933e312e
AM
3033 struct fault_attr attr;
3034
621a5f7a 3035 bool ignore_gfp_highmem;
71baba4b 3036 bool ignore_gfp_reclaim;
54114994 3037 u32 min_order;
933e312e
AM
3038} fail_page_alloc = {
3039 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3040 .ignore_gfp_reclaim = true,
621a5f7a 3041 .ignore_gfp_highmem = true,
54114994 3042 .min_order = 1,
933e312e
AM
3043};
3044
3045static int __init setup_fail_page_alloc(char *str)
3046{
3047 return setup_fault_attr(&fail_page_alloc.attr, str);
3048}
3049__setup("fail_page_alloc=", setup_fail_page_alloc);
3050
deaf386e 3051static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3052{
54114994 3053 if (order < fail_page_alloc.min_order)
deaf386e 3054 return false;
933e312e 3055 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3056 return false;
933e312e 3057 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3058 return false;
71baba4b
MG
3059 if (fail_page_alloc.ignore_gfp_reclaim &&
3060 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3061 return false;
933e312e
AM
3062
3063 return should_fail(&fail_page_alloc.attr, 1 << order);
3064}
3065
3066#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3067
3068static int __init fail_page_alloc_debugfs(void)
3069{
0825a6f9 3070 umode_t mode = S_IFREG | 0600;
933e312e 3071 struct dentry *dir;
933e312e 3072
dd48c085
AM
3073 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3074 &fail_page_alloc.attr);
3075 if (IS_ERR(dir))
3076 return PTR_ERR(dir);
933e312e 3077
b2588c4b 3078 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3079 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3080 goto fail;
3081 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3082 &fail_page_alloc.ignore_gfp_highmem))
3083 goto fail;
3084 if (!debugfs_create_u32("min-order", mode, dir,
3085 &fail_page_alloc.min_order))
3086 goto fail;
3087
3088 return 0;
3089fail:
dd48c085 3090 debugfs_remove_recursive(dir);
933e312e 3091
b2588c4b 3092 return -ENOMEM;
933e312e
AM
3093}
3094
3095late_initcall(fail_page_alloc_debugfs);
3096
3097#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3098
3099#else /* CONFIG_FAIL_PAGE_ALLOC */
3100
deaf386e 3101static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3102{
deaf386e 3103 return false;
933e312e
AM
3104}
3105
3106#endif /* CONFIG_FAIL_PAGE_ALLOC */
3107
1da177e4 3108/*
97a16fc8
MG
3109 * Return true if free base pages are above 'mark'. For high-order checks it
3110 * will return true of the order-0 watermark is reached and there is at least
3111 * one free page of a suitable size. Checking now avoids taking the zone lock
3112 * to check in the allocation paths if no pages are free.
1da177e4 3113 */
86a294a8
MH
3114bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3115 int classzone_idx, unsigned int alloc_flags,
3116 long free_pages)
1da177e4 3117{
d23ad423 3118 long min = mark;
1da177e4 3119 int o;
cd04ae1e 3120 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3121
0aaa29a5 3122 /* free_pages may go negative - that's OK */
df0a6daa 3123 free_pages -= (1 << order) - 1;
0aaa29a5 3124
7fb1d9fc 3125 if (alloc_flags & ALLOC_HIGH)
1da177e4 3126 min -= min / 2;
0aaa29a5
MG
3127
3128 /*
3129 * If the caller does not have rights to ALLOC_HARDER then subtract
3130 * the high-atomic reserves. This will over-estimate the size of the
3131 * atomic reserve but it avoids a search.
3132 */
cd04ae1e 3133 if (likely(!alloc_harder)) {
0aaa29a5 3134 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3135 } else {
3136 /*
3137 * OOM victims can try even harder than normal ALLOC_HARDER
3138 * users on the grounds that it's definitely going to be in
3139 * the exit path shortly and free memory. Any allocation it
3140 * makes during the free path will be small and short-lived.
3141 */
3142 if (alloc_flags & ALLOC_OOM)
3143 min -= min / 2;
3144 else
3145 min -= min / 4;
3146 }
3147
e2b19197 3148
d883c6cf
JK
3149#ifdef CONFIG_CMA
3150 /* If allocation can't use CMA areas don't use free CMA pages */
3151 if (!(alloc_flags & ALLOC_CMA))
3152 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3153#endif
3154
97a16fc8
MG
3155 /*
3156 * Check watermarks for an order-0 allocation request. If these
3157 * are not met, then a high-order request also cannot go ahead
3158 * even if a suitable page happened to be free.
3159 */
3160 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3161 return false;
1da177e4 3162
97a16fc8
MG
3163 /* If this is an order-0 request then the watermark is fine */
3164 if (!order)
3165 return true;
3166
3167 /* For a high-order request, check at least one suitable page is free */
3168 for (o = order; o < MAX_ORDER; o++) {
3169 struct free_area *area = &z->free_area[o];
3170 int mt;
3171
3172 if (!area->nr_free)
3173 continue;
3174
97a16fc8
MG
3175 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3176 if (!list_empty(&area->free_list[mt]))
3177 return true;
3178 }
3179
3180#ifdef CONFIG_CMA
d883c6cf
JK
3181 if ((alloc_flags & ALLOC_CMA) &&
3182 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3183 return true;
d883c6cf 3184 }
97a16fc8 3185#endif
b050e376
VB
3186 if (alloc_harder &&
3187 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3188 return true;
1da177e4 3189 }
97a16fc8 3190 return false;
88f5acf8
MG
3191}
3192
7aeb09f9 3193bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3194 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3195{
3196 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3197 zone_page_state(z, NR_FREE_PAGES));
3198}
3199
48ee5f36
MG
3200static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3201 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3202{
3203 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3204 long cma_pages = 0;
3205
3206#ifdef CONFIG_CMA
3207 /* If allocation can't use CMA areas don't use free CMA pages */
3208 if (!(alloc_flags & ALLOC_CMA))
3209 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3210#endif
48ee5f36
MG
3211
3212 /*
3213 * Fast check for order-0 only. If this fails then the reserves
3214 * need to be calculated. There is a corner case where the check
3215 * passes but only the high-order atomic reserve are free. If
3216 * the caller is !atomic then it'll uselessly search the free
3217 * list. That corner case is then slower but it is harmless.
3218 */
d883c6cf 3219 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3220 return true;
3221
3222 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3223 free_pages);
3224}
3225
7aeb09f9 3226bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3227 unsigned long mark, int classzone_idx)
88f5acf8
MG
3228{
3229 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3230
3231 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3232 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3233
e2b19197 3234 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3235 free_pages);
1da177e4
LT
3236}
3237
9276b1bc 3238#ifdef CONFIG_NUMA
957f822a
DR
3239static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240{
e02dc017 3241 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3242 RECLAIM_DISTANCE;
957f822a 3243}
9276b1bc 3244#else /* CONFIG_NUMA */
957f822a
DR
3245static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3246{
3247 return true;
3248}
9276b1bc
PJ
3249#endif /* CONFIG_NUMA */
3250
7fb1d9fc 3251/*
0798e519 3252 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3253 * a page.
3254 */
3255static struct page *
a9263751
VB
3256get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3257 const struct alloc_context *ac)
753ee728 3258{
c33d6c06 3259 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3260 struct zone *zone;
3b8c0be4
MG
3261 struct pglist_data *last_pgdat_dirty_limit = NULL;
3262
7fb1d9fc 3263 /*
9276b1bc 3264 * Scan zonelist, looking for a zone with enough free.
344736f2 3265 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3266 */
c33d6c06 3267 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3268 ac->nodemask) {
be06af00 3269 struct page *page;
e085dbc5
JW
3270 unsigned long mark;
3271
664eedde
MG
3272 if (cpusets_enabled() &&
3273 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3274 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3275 continue;
a756cf59
JW
3276 /*
3277 * When allocating a page cache page for writing, we
281e3726
MG
3278 * want to get it from a node that is within its dirty
3279 * limit, such that no single node holds more than its
a756cf59 3280 * proportional share of globally allowed dirty pages.
281e3726 3281 * The dirty limits take into account the node's
a756cf59
JW
3282 * lowmem reserves and high watermark so that kswapd
3283 * should be able to balance it without having to
3284 * write pages from its LRU list.
3285 *
a756cf59 3286 * XXX: For now, allow allocations to potentially
281e3726 3287 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3288 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3289 * which is important when on a NUMA setup the allowed
281e3726 3290 * nodes are together not big enough to reach the
a756cf59 3291 * global limit. The proper fix for these situations
281e3726 3292 * will require awareness of nodes in the
a756cf59
JW
3293 * dirty-throttling and the flusher threads.
3294 */
3b8c0be4
MG
3295 if (ac->spread_dirty_pages) {
3296 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3297 continue;
3298
3299 if (!node_dirty_ok(zone->zone_pgdat)) {
3300 last_pgdat_dirty_limit = zone->zone_pgdat;
3301 continue;
3302 }
3303 }
7fb1d9fc 3304
e085dbc5 3305 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3306 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3307 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3308 int ret;
3309
c9e97a19
PT
3310#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3311 /*
3312 * Watermark failed for this zone, but see if we can
3313 * grow this zone if it contains deferred pages.
3314 */
3315 if (static_branch_unlikely(&deferred_pages)) {
3316 if (_deferred_grow_zone(zone, order))
3317 goto try_this_zone;
3318 }
3319#endif
5dab2911
MG
3320 /* Checked here to keep the fast path fast */
3321 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3322 if (alloc_flags & ALLOC_NO_WATERMARKS)
3323 goto try_this_zone;
3324
a5f5f91d 3325 if (node_reclaim_mode == 0 ||
c33d6c06 3326 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3327 continue;
3328
a5f5f91d 3329 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3330 switch (ret) {
a5f5f91d 3331 case NODE_RECLAIM_NOSCAN:
fa5e084e 3332 /* did not scan */
cd38b115 3333 continue;
a5f5f91d 3334 case NODE_RECLAIM_FULL:
fa5e084e 3335 /* scanned but unreclaimable */
cd38b115 3336 continue;
fa5e084e
MG
3337 default:
3338 /* did we reclaim enough */
fed2719e 3339 if (zone_watermark_ok(zone, order, mark,
93ea9964 3340 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3341 goto try_this_zone;
3342
fed2719e 3343 continue;
0798e519 3344 }
7fb1d9fc
RS
3345 }
3346
fa5e084e 3347try_this_zone:
066b2393 3348 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3349 gfp_mask, alloc_flags, ac->migratetype);
75379191 3350 if (page) {
479f854a 3351 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3352
3353 /*
3354 * If this is a high-order atomic allocation then check
3355 * if the pageblock should be reserved for the future
3356 */
3357 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3358 reserve_highatomic_pageblock(page, zone, order);
3359
75379191 3360 return page;
c9e97a19
PT
3361 } else {
3362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3363 /* Try again if zone has deferred pages */
3364 if (static_branch_unlikely(&deferred_pages)) {
3365 if (_deferred_grow_zone(zone, order))
3366 goto try_this_zone;
3367 }
3368#endif
75379191 3369 }
54a6eb5c 3370 }
9276b1bc 3371
4ffeaf35 3372 return NULL;
753ee728
MH
3373}
3374
9af744d7 3375static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3376{
a238ab5b 3377 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3378 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3379
2c029a1e 3380 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3381 return;
3382
3383 /*
3384 * This documents exceptions given to allocations in certain
3385 * contexts that are allowed to allocate outside current's set
3386 * of allowed nodes.
3387 */
3388 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3389 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3390 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3391 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3392 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3393 filter &= ~SHOW_MEM_FILTER_NODES;
3394
9af744d7 3395 show_mem(filter, nodemask);
aa187507
MH
3396}
3397
a8e99259 3398void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3399{
3400 struct va_format vaf;
3401 va_list args;
3402 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3403 DEFAULT_RATELIMIT_BURST);
3404
0f7896f1 3405 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3406 return;
3407
7877cdcc
MH
3408 va_start(args, fmt);
3409 vaf.fmt = fmt;
3410 vaf.va = &args;
0205f755
MH
3411 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3412 current->comm, &vaf, gfp_mask, &gfp_mask,
3413 nodemask_pr_args(nodemask));
7877cdcc 3414 va_end(args);
3ee9a4f0 3415
a8e99259 3416 cpuset_print_current_mems_allowed();
3ee9a4f0 3417
a238ab5b 3418 dump_stack();
685dbf6f 3419 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3420}
3421
6c18ba7a
MH
3422static inline struct page *
3423__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3424 unsigned int alloc_flags,
3425 const struct alloc_context *ac)
3426{
3427 struct page *page;
3428
3429 page = get_page_from_freelist(gfp_mask, order,
3430 alloc_flags|ALLOC_CPUSET, ac);
3431 /*
3432 * fallback to ignore cpuset restriction if our nodes
3433 * are depleted
3434 */
3435 if (!page)
3436 page = get_page_from_freelist(gfp_mask, order,
3437 alloc_flags, ac);
3438
3439 return page;
3440}
3441
11e33f6a
MG
3442static inline struct page *
3443__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3444 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3445{
6e0fc46d
DR
3446 struct oom_control oc = {
3447 .zonelist = ac->zonelist,
3448 .nodemask = ac->nodemask,
2a966b77 3449 .memcg = NULL,
6e0fc46d
DR
3450 .gfp_mask = gfp_mask,
3451 .order = order,
6e0fc46d 3452 };
11e33f6a
MG
3453 struct page *page;
3454
9879de73
JW
3455 *did_some_progress = 0;
3456
9879de73 3457 /*
dc56401f
JW
3458 * Acquire the oom lock. If that fails, somebody else is
3459 * making progress for us.
9879de73 3460 */
dc56401f 3461 if (!mutex_trylock(&oom_lock)) {
9879de73 3462 *did_some_progress = 1;
11e33f6a 3463 schedule_timeout_uninterruptible(1);
1da177e4
LT
3464 return NULL;
3465 }
6b1de916 3466
11e33f6a
MG
3467 /*
3468 * Go through the zonelist yet one more time, keep very high watermark
3469 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3470 * we're still under heavy pressure. But make sure that this reclaim
3471 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3472 * allocation which will never fail due to oom_lock already held.
11e33f6a 3473 */
e746bf73
TH
3474 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3475 ~__GFP_DIRECT_RECLAIM, order,
3476 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3477 if (page)
11e33f6a
MG
3478 goto out;
3479
06ad276a
MH
3480 /* Coredumps can quickly deplete all memory reserves */
3481 if (current->flags & PF_DUMPCORE)
3482 goto out;
3483 /* The OOM killer will not help higher order allocs */
3484 if (order > PAGE_ALLOC_COSTLY_ORDER)
3485 goto out;
dcda9b04
MH
3486 /*
3487 * We have already exhausted all our reclaim opportunities without any
3488 * success so it is time to admit defeat. We will skip the OOM killer
3489 * because it is very likely that the caller has a more reasonable
3490 * fallback than shooting a random task.
3491 */
3492 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3493 goto out;
06ad276a
MH
3494 /* The OOM killer does not needlessly kill tasks for lowmem */
3495 if (ac->high_zoneidx < ZONE_NORMAL)
3496 goto out;
3497 if (pm_suspended_storage())
3498 goto out;
3499 /*
3500 * XXX: GFP_NOFS allocations should rather fail than rely on
3501 * other request to make a forward progress.
3502 * We are in an unfortunate situation where out_of_memory cannot
3503 * do much for this context but let's try it to at least get
3504 * access to memory reserved if the current task is killed (see
3505 * out_of_memory). Once filesystems are ready to handle allocation
3506 * failures more gracefully we should just bail out here.
3507 */
3508
3509 /* The OOM killer may not free memory on a specific node */
3510 if (gfp_mask & __GFP_THISNODE)
3511 goto out;
3da88fb3 3512
3c2c6488 3513 /* Exhausted what can be done so it's blame time */
5020e285 3514 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3515 *did_some_progress = 1;
5020e285 3516
6c18ba7a
MH
3517 /*
3518 * Help non-failing allocations by giving them access to memory
3519 * reserves
3520 */
3521 if (gfp_mask & __GFP_NOFAIL)
3522 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3523 ALLOC_NO_WATERMARKS, ac);
5020e285 3524 }
11e33f6a 3525out:
dc56401f 3526 mutex_unlock(&oom_lock);
11e33f6a
MG
3527 return page;
3528}
3529
33c2d214
MH
3530/*
3531 * Maximum number of compaction retries wit a progress before OOM
3532 * killer is consider as the only way to move forward.
3533 */
3534#define MAX_COMPACT_RETRIES 16
3535
56de7263
MG
3536#ifdef CONFIG_COMPACTION
3537/* Try memory compaction for high-order allocations before reclaim */
3538static struct page *
3539__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3540 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3541 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3542{
98dd3b48 3543 struct page *page;
eb414681 3544 unsigned long pflags;
499118e9 3545 unsigned int noreclaim_flag;
53853e2d
VB
3546
3547 if (!order)
66199712 3548 return NULL;
66199712 3549
eb414681 3550 psi_memstall_enter(&pflags);
499118e9 3551 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3552
c5d01d0d 3553 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3554 prio);
eb414681 3555
499118e9 3556 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3557 psi_memstall_leave(&pflags);
56de7263 3558
c5d01d0d 3559 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3560 return NULL;
53853e2d 3561
98dd3b48
VB
3562 /*
3563 * At least in one zone compaction wasn't deferred or skipped, so let's
3564 * count a compaction stall
3565 */
3566 count_vm_event(COMPACTSTALL);
8fb74b9f 3567
31a6c190 3568 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3569
98dd3b48
VB
3570 if (page) {
3571 struct zone *zone = page_zone(page);
53853e2d 3572
98dd3b48
VB
3573 zone->compact_blockskip_flush = false;
3574 compaction_defer_reset(zone, order, true);
3575 count_vm_event(COMPACTSUCCESS);
3576 return page;
3577 }
56de7263 3578
98dd3b48
VB
3579 /*
3580 * It's bad if compaction run occurs and fails. The most likely reason
3581 * is that pages exist, but not enough to satisfy watermarks.
3582 */
3583 count_vm_event(COMPACTFAIL);
66199712 3584
98dd3b48 3585 cond_resched();
56de7263
MG
3586
3587 return NULL;
3588}
33c2d214 3589
3250845d
VB
3590static inline bool
3591should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3592 enum compact_result compact_result,
3593 enum compact_priority *compact_priority,
d9436498 3594 int *compaction_retries)
3250845d
VB
3595{
3596 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3597 int min_priority;
65190cff
MH
3598 bool ret = false;
3599 int retries = *compaction_retries;
3600 enum compact_priority priority = *compact_priority;
3250845d
VB
3601
3602 if (!order)
3603 return false;
3604
d9436498
VB
3605 if (compaction_made_progress(compact_result))
3606 (*compaction_retries)++;
3607
3250845d
VB
3608 /*
3609 * compaction considers all the zone as desperately out of memory
3610 * so it doesn't really make much sense to retry except when the
3611 * failure could be caused by insufficient priority
3612 */
d9436498
VB
3613 if (compaction_failed(compact_result))
3614 goto check_priority;
3250845d
VB
3615
3616 /*
3617 * make sure the compaction wasn't deferred or didn't bail out early
3618 * due to locks contention before we declare that we should give up.
3619 * But do not retry if the given zonelist is not suitable for
3620 * compaction.
3621 */
65190cff
MH
3622 if (compaction_withdrawn(compact_result)) {
3623 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3624 goto out;
3625 }
3250845d
VB
3626
3627 /*
dcda9b04 3628 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3629 * costly ones because they are de facto nofail and invoke OOM
3630 * killer to move on while costly can fail and users are ready
3631 * to cope with that. 1/4 retries is rather arbitrary but we
3632 * would need much more detailed feedback from compaction to
3633 * make a better decision.
3634 */
3635 if (order > PAGE_ALLOC_COSTLY_ORDER)
3636 max_retries /= 4;
65190cff
MH
3637 if (*compaction_retries <= max_retries) {
3638 ret = true;
3639 goto out;
3640 }
3250845d 3641
d9436498
VB
3642 /*
3643 * Make sure there are attempts at the highest priority if we exhausted
3644 * all retries or failed at the lower priorities.
3645 */
3646check_priority:
c2033b00
VB
3647 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3648 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3649
c2033b00 3650 if (*compact_priority > min_priority) {
d9436498
VB
3651 (*compact_priority)--;
3652 *compaction_retries = 0;
65190cff 3653 ret = true;
d9436498 3654 }
65190cff
MH
3655out:
3656 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3657 return ret;
3250845d 3658}
56de7263
MG
3659#else
3660static inline struct page *
3661__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3662 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3663 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3664{
33c2d214 3665 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3666 return NULL;
3667}
33c2d214
MH
3668
3669static inline bool
86a294a8
MH
3670should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3671 enum compact_result compact_result,
a5508cd8 3672 enum compact_priority *compact_priority,
d9436498 3673 int *compaction_retries)
33c2d214 3674{
31e49bfd
MH
3675 struct zone *zone;
3676 struct zoneref *z;
3677
3678 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3679 return false;
3680
3681 /*
3682 * There are setups with compaction disabled which would prefer to loop
3683 * inside the allocator rather than hit the oom killer prematurely.
3684 * Let's give them a good hope and keep retrying while the order-0
3685 * watermarks are OK.
3686 */
3687 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3688 ac->nodemask) {
3689 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3690 ac_classzone_idx(ac), alloc_flags))
3691 return true;
3692 }
33c2d214
MH
3693 return false;
3694}
3250845d 3695#endif /* CONFIG_COMPACTION */
56de7263 3696
d92a8cfc 3697#ifdef CONFIG_LOCKDEP
93781325 3698static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3699 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3700
3701static bool __need_fs_reclaim(gfp_t gfp_mask)
3702{
3703 gfp_mask = current_gfp_context(gfp_mask);
3704
3705 /* no reclaim without waiting on it */
3706 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3707 return false;
3708
3709 /* this guy won't enter reclaim */
2e517d68 3710 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3711 return false;
3712
3713 /* We're only interested __GFP_FS allocations for now */
3714 if (!(gfp_mask & __GFP_FS))
3715 return false;
3716
3717 if (gfp_mask & __GFP_NOLOCKDEP)
3718 return false;
3719
3720 return true;
3721}
3722
93781325
OS
3723void __fs_reclaim_acquire(void)
3724{
3725 lock_map_acquire(&__fs_reclaim_map);
3726}
3727
3728void __fs_reclaim_release(void)
3729{
3730 lock_map_release(&__fs_reclaim_map);
3731}
3732
d92a8cfc
PZ
3733void fs_reclaim_acquire(gfp_t gfp_mask)
3734{
3735 if (__need_fs_reclaim(gfp_mask))
93781325 3736 __fs_reclaim_acquire();
d92a8cfc
PZ
3737}
3738EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3739
3740void fs_reclaim_release(gfp_t gfp_mask)
3741{
3742 if (__need_fs_reclaim(gfp_mask))
93781325 3743 __fs_reclaim_release();
d92a8cfc
PZ
3744}
3745EXPORT_SYMBOL_GPL(fs_reclaim_release);
3746#endif
3747
bba90710
MS
3748/* Perform direct synchronous page reclaim */
3749static int
a9263751
VB
3750__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3751 const struct alloc_context *ac)
11e33f6a 3752{
11e33f6a 3753 struct reclaim_state reclaim_state;
bba90710 3754 int progress;
499118e9 3755 unsigned int noreclaim_flag;
eb414681 3756 unsigned long pflags;
11e33f6a
MG
3757
3758 cond_resched();
3759
3760 /* We now go into synchronous reclaim */
3761 cpuset_memory_pressure_bump();
eb414681 3762 psi_memstall_enter(&pflags);
d92a8cfc 3763 fs_reclaim_acquire(gfp_mask);
93781325 3764 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3765 reclaim_state.reclaimed_slab = 0;
c06b1fca 3766 current->reclaim_state = &reclaim_state;
11e33f6a 3767
a9263751
VB
3768 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3769 ac->nodemask);
11e33f6a 3770
c06b1fca 3771 current->reclaim_state = NULL;
499118e9 3772 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3773 fs_reclaim_release(gfp_mask);
eb414681 3774 psi_memstall_leave(&pflags);
11e33f6a
MG
3775
3776 cond_resched();
3777
bba90710
MS
3778 return progress;
3779}
3780
3781/* The really slow allocator path where we enter direct reclaim */
3782static inline struct page *
3783__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3784 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3785 unsigned long *did_some_progress)
bba90710
MS
3786{
3787 struct page *page = NULL;
3788 bool drained = false;
3789
a9263751 3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3791 if (unlikely(!(*did_some_progress)))
3792 return NULL;
11e33f6a 3793
9ee493ce 3794retry:
31a6c190 3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3796
3797 /*
3798 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
9ee493ce
MG
3801 */
3802 if (!page && !drained) {
29fac03b 3803 unreserve_highatomic_pageblock(ac, false);
93481ff0 3804 drain_all_pages(NULL);
9ee493ce
MG
3805 drained = true;
3806 goto retry;
3807 }
3808
11e33f6a
MG
3809 return page;
3810}
3811
5ecd9d40
DR
3812static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813 const struct alloc_context *ac)
3a025760
JW
3814{
3815 struct zoneref *z;
3816 struct zone *zone;
e1a55637 3817 pg_data_t *last_pgdat = NULL;
5ecd9d40 3818 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3819
5ecd9d40
DR
3820 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3821 ac->nodemask) {
e1a55637 3822 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3823 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3824 last_pgdat = zone->zone_pgdat;
3825 }
3a025760
JW
3826}
3827
c603844b 3828static inline unsigned int
341ce06f
PZ
3829gfp_to_alloc_flags(gfp_t gfp_mask)
3830{
c603844b 3831 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3832
a56f57ff 3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3834 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3835
341ce06f
PZ
3836 /*
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3841 */
e6223a3b 3842 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3843
d0164adc 3844 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3845 /*
b104a35d
DR
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
5c3240d9 3848 */
b104a35d 3849 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3850 alloc_flags |= ALLOC_HARDER;
523b9458 3851 /*
b104a35d 3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3853 * comment for __cpuset_node_allowed().
523b9458 3854 */
341ce06f 3855 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3856 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3857 alloc_flags |= ALLOC_HARDER;
3858
d883c6cf
JK
3859#ifdef CONFIG_CMA
3860 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3861 alloc_flags |= ALLOC_CMA;
3862#endif
341ce06f
PZ
3863 return alloc_flags;
3864}
3865
cd04ae1e 3866static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3867{
cd04ae1e
MH
3868 if (!tsk_is_oom_victim(tsk))
3869 return false;
3870
3871 /*
3872 * !MMU doesn't have oom reaper so give access to memory reserves
3873 * only to the thread with TIF_MEMDIE set
3874 */
3875 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3876 return false;
3877
cd04ae1e
MH
3878 return true;
3879}
3880
3881/*
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3884 */
3885static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3886{
3887 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3888 return 0;
31a6c190 3889 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3890 return ALLOC_NO_WATERMARKS;
31a6c190 3891 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3892 return ALLOC_NO_WATERMARKS;
3893 if (!in_interrupt()) {
3894 if (current->flags & PF_MEMALLOC)
3895 return ALLOC_NO_WATERMARKS;
3896 else if (oom_reserves_allowed(current))
3897 return ALLOC_OOM;
3898 }
31a6c190 3899
cd04ae1e
MH
3900 return 0;
3901}
3902
3903bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3904{
3905 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3906}
3907
0a0337e0
MH
3908/*
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
491d79ae
JW
3911 *
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3915 *
3916 * Returns true if a retry is viable or false to enter the oom path.
3917 */
3918static inline bool
3919should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3920 struct alloc_context *ac, int alloc_flags,
423b452e 3921 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3922{
3923 struct zone *zone;
3924 struct zoneref *z;
15f570bf 3925 bool ret = false;
0a0337e0 3926
423b452e
VB
3927 /*
3928 * Costly allocations might have made a progress but this doesn't mean
3929 * their order will become available due to high fragmentation so
3930 * always increment the no progress counter for them
3931 */
3932 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3933 *no_progress_loops = 0;
3934 else
3935 (*no_progress_loops)++;
3936
0a0337e0
MH
3937 /*
3938 * Make sure we converge to OOM if we cannot make any progress
3939 * several times in the row.
3940 */
04c8716f
MK
3941 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3942 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3943 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3944 }
0a0337e0 3945
bca67592
MG
3946 /*
3947 * Keep reclaiming pages while there is a chance this will lead
3948 * somewhere. If none of the target zones can satisfy our allocation
3949 * request even if all reclaimable pages are considered then we are
3950 * screwed and have to go OOM.
0a0337e0
MH
3951 */
3952 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3953 ac->nodemask) {
3954 unsigned long available;
ede37713 3955 unsigned long reclaimable;
d379f01d
MH
3956 unsigned long min_wmark = min_wmark_pages(zone);
3957 bool wmark;
0a0337e0 3958
5a1c84b4 3959 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3960 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3961
3962 /*
491d79ae
JW
3963 * Would the allocation succeed if we reclaimed all
3964 * reclaimable pages?
0a0337e0 3965 */
d379f01d
MH
3966 wmark = __zone_watermark_ok(zone, order, min_wmark,
3967 ac_classzone_idx(ac), alloc_flags, available);
3968 trace_reclaim_retry_zone(z, order, reclaimable,
3969 available, min_wmark, *no_progress_loops, wmark);
3970 if (wmark) {
ede37713
MH
3971 /*
3972 * If we didn't make any progress and have a lot of
3973 * dirty + writeback pages then we should wait for
3974 * an IO to complete to slow down the reclaim and
3975 * prevent from pre mature OOM
3976 */
3977 if (!did_some_progress) {
11fb9989 3978 unsigned long write_pending;
ede37713 3979
5a1c84b4
MG
3980 write_pending = zone_page_state_snapshot(zone,
3981 NR_ZONE_WRITE_PENDING);
ede37713 3982
11fb9989 3983 if (2 * write_pending > reclaimable) {
ede37713
MH
3984 congestion_wait(BLK_RW_ASYNC, HZ/10);
3985 return true;
3986 }
3987 }
5a1c84b4 3988
15f570bf
MH
3989 ret = true;
3990 goto out;
0a0337e0
MH
3991 }
3992 }
3993
15f570bf
MH
3994out:
3995 /*
3996 * Memory allocation/reclaim might be called from a WQ context and the
3997 * current implementation of the WQ concurrency control doesn't
3998 * recognize that a particular WQ is congested if the worker thread is
3999 * looping without ever sleeping. Therefore we have to do a short sleep
4000 * here rather than calling cond_resched().
4001 */
4002 if (current->flags & PF_WQ_WORKER)
4003 schedule_timeout_uninterruptible(1);
4004 else
4005 cond_resched();
4006 return ret;
0a0337e0
MH
4007}
4008
902b6281
VB
4009static inline bool
4010check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4011{
4012 /*
4013 * It's possible that cpuset's mems_allowed and the nodemask from
4014 * mempolicy don't intersect. This should be normally dealt with by
4015 * policy_nodemask(), but it's possible to race with cpuset update in
4016 * such a way the check therein was true, and then it became false
4017 * before we got our cpuset_mems_cookie here.
4018 * This assumes that for all allocations, ac->nodemask can come only
4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 * when it does not intersect with the cpuset restrictions) or the
4021 * caller can deal with a violated nodemask.
4022 */
4023 if (cpusets_enabled() && ac->nodemask &&
4024 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4025 ac->nodemask = NULL;
4026 return true;
4027 }
4028
4029 /*
4030 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 * possible to race with parallel threads in such a way that our
4032 * allocation can fail while the mask is being updated. If we are about
4033 * to fail, check if the cpuset changed during allocation and if so,
4034 * retry.
4035 */
4036 if (read_mems_allowed_retry(cpuset_mems_cookie))
4037 return true;
4038
4039 return false;
4040}
4041
11e33f6a
MG
4042static inline struct page *
4043__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4044 struct alloc_context *ac)
11e33f6a 4045{
d0164adc 4046 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4047 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4048 struct page *page = NULL;
c603844b 4049 unsigned int alloc_flags;
11e33f6a 4050 unsigned long did_some_progress;
5ce9bfef 4051 enum compact_priority compact_priority;
c5d01d0d 4052 enum compact_result compact_result;
5ce9bfef
VB
4053 int compaction_retries;
4054 int no_progress_loops;
5ce9bfef 4055 unsigned int cpuset_mems_cookie;
cd04ae1e 4056 int reserve_flags;
1da177e4 4057
72807a74
MG
4058 /*
4059 * In the slowpath, we sanity check order to avoid ever trying to
4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 * be using allocators in order of preference for an area that is
4062 * too large.
4063 */
1fc28b70
MG
4064 if (order >= MAX_ORDER) {
4065 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 4066 return NULL;
1fc28b70 4067 }
1da177e4 4068
d0164adc
MG
4069 /*
4070 * We also sanity check to catch abuse of atomic reserves being used by
4071 * callers that are not in atomic context.
4072 */
4073 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4074 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4075 gfp_mask &= ~__GFP_ATOMIC;
4076
5ce9bfef
VB
4077retry_cpuset:
4078 compaction_retries = 0;
4079 no_progress_loops = 0;
4080 compact_priority = DEF_COMPACT_PRIORITY;
4081 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4082
4083 /*
4084 * The fast path uses conservative alloc_flags to succeed only until
4085 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 * alloc_flags precisely. So we do that now.
4087 */
4088 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4089
e47483bc
VB
4090 /*
4091 * We need to recalculate the starting point for the zonelist iterator
4092 * because we might have used different nodemask in the fast path, or
4093 * there was a cpuset modification and we are retrying - otherwise we
4094 * could end up iterating over non-eligible zones endlessly.
4095 */
4096 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4097 ac->high_zoneidx, ac->nodemask);
4098 if (!ac->preferred_zoneref->zone)
4099 goto nopage;
4100
23771235 4101 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4102 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4103
4104 /*
4105 * The adjusted alloc_flags might result in immediate success, so try
4106 * that first
4107 */
4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109 if (page)
4110 goto got_pg;
4111
a8161d1e
VB
4112 /*
4113 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4117 * same migratetype.
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4120 */
282722b0
VB
4121 if (can_direct_reclaim &&
4122 (costly_order ||
4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4125 page = __alloc_pages_direct_compact(gfp_mask, order,
4126 alloc_flags, ac,
a5508cd8 4127 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4128 &compact_result);
4129 if (page)
4130 goto got_pg;
4131
3eb2771b
VB
4132 /*
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes THP page fault allocations
4135 */
282722b0 4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4137 /*
4138 * If compaction is deferred for high-order allocations,
4139 * it is because sync compaction recently failed. If
4140 * this is the case and the caller requested a THP
4141 * allocation, we do not want to heavily disrupt the
4142 * system, so we fail the allocation instead of entering
4143 * direct reclaim.
4144 */
4145 if (compact_result == COMPACT_DEFERRED)
4146 goto nopage;
4147
a8161d1e 4148 /*
3eb2771b
VB
4149 * Looks like reclaim/compaction is worth trying, but
4150 * sync compaction could be very expensive, so keep
25160354 4151 * using async compaction.
a8161d1e 4152 */
a5508cd8 4153 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4154 }
4155 }
23771235 4156
31a6c190 4157retry:
23771235 4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190 4159 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4160 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4161
cd04ae1e
MH
4162 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4163 if (reserve_flags)
4164 alloc_flags = reserve_flags;
23771235 4165
e46e7b77 4166 /*
d6a24df0
VB
4167 * Reset the nodemask and zonelist iterators if memory policies can be
4168 * ignored. These allocations are high priority and system rather than
4169 * user oriented.
e46e7b77 4170 */
cd04ae1e 4171 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4172 ac->nodemask = NULL;
e46e7b77
MG
4173 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4174 ac->high_zoneidx, ac->nodemask);
4175 }
4176
23771235 4177 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4178 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4179 if (page)
4180 goto got_pg;
1da177e4 4181
d0164adc 4182 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4183 if (!can_direct_reclaim)
1da177e4
LT
4184 goto nopage;
4185
9a67f648
MH
4186 /* Avoid recursion of direct reclaim */
4187 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4188 goto nopage;
4189
a8161d1e
VB
4190 /* Try direct reclaim and then allocating */
4191 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4192 &did_some_progress);
4193 if (page)
4194 goto got_pg;
4195
4196 /* Try direct compaction and then allocating */
a9263751 4197 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4198 compact_priority, &compact_result);
56de7263
MG
4199 if (page)
4200 goto got_pg;
75f30861 4201
9083905a
JW
4202 /* Do not loop if specifically requested */
4203 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4204 goto nopage;
9083905a 4205
0a0337e0
MH
4206 /*
4207 * Do not retry costly high order allocations unless they are
dcda9b04 4208 * __GFP_RETRY_MAYFAIL
0a0337e0 4209 */
dcda9b04 4210 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4211 goto nopage;
0a0337e0 4212
0a0337e0 4213 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4214 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4215 goto retry;
4216
33c2d214
MH
4217 /*
4218 * It doesn't make any sense to retry for the compaction if the order-0
4219 * reclaim is not able to make any progress because the current
4220 * implementation of the compaction depends on the sufficient amount
4221 * of free memory (see __compaction_suitable)
4222 */
4223 if (did_some_progress > 0 &&
86a294a8 4224 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4225 compact_result, &compact_priority,
d9436498 4226 &compaction_retries))
33c2d214
MH
4227 goto retry;
4228
902b6281
VB
4229
4230 /* Deal with possible cpuset update races before we start OOM killing */
4231 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4232 goto retry_cpuset;
4233
9083905a
JW
4234 /* Reclaim has failed us, start killing things */
4235 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4236 if (page)
4237 goto got_pg;
4238
9a67f648 4239 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4240 if (tsk_is_oom_victim(current) &&
4241 (alloc_flags == ALLOC_OOM ||
c288983d 4242 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4243 goto nopage;
4244
9083905a 4245 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4246 if (did_some_progress) {
4247 no_progress_loops = 0;
9083905a 4248 goto retry;
0a0337e0 4249 }
9083905a 4250
1da177e4 4251nopage:
902b6281
VB
4252 /* Deal with possible cpuset update races before we fail */
4253 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4254 goto retry_cpuset;
4255
9a67f648
MH
4256 /*
4257 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4258 * we always retry
4259 */
4260 if (gfp_mask & __GFP_NOFAIL) {
4261 /*
4262 * All existing users of the __GFP_NOFAIL are blockable, so warn
4263 * of any new users that actually require GFP_NOWAIT
4264 */
4265 if (WARN_ON_ONCE(!can_direct_reclaim))
4266 goto fail;
4267
4268 /*
4269 * PF_MEMALLOC request from this context is rather bizarre
4270 * because we cannot reclaim anything and only can loop waiting
4271 * for somebody to do a work for us
4272 */
4273 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4274
4275 /*
4276 * non failing costly orders are a hard requirement which we
4277 * are not prepared for much so let's warn about these users
4278 * so that we can identify them and convert them to something
4279 * else.
4280 */
4281 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4282
6c18ba7a
MH
4283 /*
4284 * Help non-failing allocations by giving them access to memory
4285 * reserves but do not use ALLOC_NO_WATERMARKS because this
4286 * could deplete whole memory reserves which would just make
4287 * the situation worse
4288 */
4289 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4290 if (page)
4291 goto got_pg;
4292
9a67f648
MH
4293 cond_resched();
4294 goto retry;
4295 }
4296fail:
a8e99259 4297 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4298 "page allocation failure: order:%u", order);
1da177e4 4299got_pg:
072bb0aa 4300 return page;
1da177e4 4301}
11e33f6a 4302
9cd75558 4303static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4304 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4305 struct alloc_context *ac, gfp_t *alloc_mask,
4306 unsigned int *alloc_flags)
11e33f6a 4307{
9cd75558 4308 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4309 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4310 ac->nodemask = nodemask;
4311 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4312
682a3385 4313 if (cpusets_enabled()) {
9cd75558 4314 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4315 if (!ac->nodemask)
4316 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4317 else
4318 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4319 }
4320
d92a8cfc
PZ
4321 fs_reclaim_acquire(gfp_mask);
4322 fs_reclaim_release(gfp_mask);
11e33f6a 4323
d0164adc 4324 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4325
4326 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4327 return false;
11e33f6a 4328
d883c6cf
JK
4329 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4330 *alloc_flags |= ALLOC_CMA;
4331
9cd75558
MG
4332 return true;
4333}
21bb9bd1 4334
9cd75558 4335/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4336static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4337{
c9ab0c4f 4338 /* Dirty zone balancing only done in the fast path */
9cd75558 4339 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4340
e46e7b77
MG
4341 /*
4342 * The preferred zone is used for statistics but crucially it is
4343 * also used as the starting point for the zonelist iterator. It
4344 * may get reset for allocations that ignore memory policies.
4345 */
9cd75558
MG
4346 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4347 ac->high_zoneidx, ac->nodemask);
4348}
4349
4350/*
4351 * This is the 'heart' of the zoned buddy allocator.
4352 */
4353struct page *
04ec6264
VB
4354__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4355 nodemask_t *nodemask)
9cd75558
MG
4356{
4357 struct page *page;
4358 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4359 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4360 struct alloc_context ac = { };
4361
4362 gfp_mask &= gfp_allowed_mask;
f19360f0 4363 alloc_mask = gfp_mask;
04ec6264 4364 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4365 return NULL;
4366
a380b40a 4367 finalise_ac(gfp_mask, &ac);
5bb1b169 4368
5117f45d 4369 /* First allocation attempt */
a9263751 4370 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4371 if (likely(page))
4372 goto out;
11e33f6a 4373
4fcb0971 4374 /*
7dea19f9
MH
4375 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4376 * resp. GFP_NOIO which has to be inherited for all allocation requests
4377 * from a particular context which has been marked by
4378 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4379 */
7dea19f9 4380 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4381 ac.spread_dirty_pages = false;
23f086f9 4382
4741526b
MG
4383 /*
4384 * Restore the original nodemask if it was potentially replaced with
4385 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4386 */
e47483bc 4387 if (unlikely(ac.nodemask != nodemask))
4741526b 4388 ac.nodemask = nodemask;
16096c25 4389
4fcb0971 4390 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4391
4fcb0971 4392out:
c4159a75
VD
4393 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4394 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4395 __free_pages(page, order);
4396 page = NULL;
4949148a
VD
4397 }
4398
4fcb0971
MG
4399 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4400
11e33f6a 4401 return page;
1da177e4 4402}
d239171e 4403EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4404
4405/*
9ea9a680
MH
4406 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4407 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4408 * you need to access high mem.
1da177e4 4409 */
920c7a5d 4410unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4411{
945a1113
AM
4412 struct page *page;
4413
9ea9a680 4414 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4415 if (!page)
4416 return 0;
4417 return (unsigned long) page_address(page);
4418}
1da177e4
LT
4419EXPORT_SYMBOL(__get_free_pages);
4420
920c7a5d 4421unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4422{
945a1113 4423 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4424}
1da177e4
LT
4425EXPORT_SYMBOL(get_zeroed_page);
4426
920c7a5d 4427void __free_pages(struct page *page, unsigned int order)
1da177e4 4428{
b5810039 4429 if (put_page_testzero(page)) {
1da177e4 4430 if (order == 0)
2d4894b5 4431 free_unref_page(page);
1da177e4
LT
4432 else
4433 __free_pages_ok(page, order);
4434 }
4435}
4436
4437EXPORT_SYMBOL(__free_pages);
4438
920c7a5d 4439void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4440{
4441 if (addr != 0) {
725d704e 4442 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4443 __free_pages(virt_to_page((void *)addr), order);
4444 }
4445}
4446
4447EXPORT_SYMBOL(free_pages);
4448
b63ae8ca
AD
4449/*
4450 * Page Fragment:
4451 * An arbitrary-length arbitrary-offset area of memory which resides
4452 * within a 0 or higher order page. Multiple fragments within that page
4453 * are individually refcounted, in the page's reference counter.
4454 *
4455 * The page_frag functions below provide a simple allocation framework for
4456 * page fragments. This is used by the network stack and network device
4457 * drivers to provide a backing region of memory for use as either an
4458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4459 */
2976db80
AD
4460static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4461 gfp_t gfp_mask)
b63ae8ca
AD
4462{
4463 struct page *page = NULL;
4464 gfp_t gfp = gfp_mask;
4465
4466#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4467 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4468 __GFP_NOMEMALLOC;
4469 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4470 PAGE_FRAG_CACHE_MAX_ORDER);
4471 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4472#endif
4473 if (unlikely(!page))
4474 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4475
4476 nc->va = page ? page_address(page) : NULL;
4477
4478 return page;
4479}
4480
2976db80 4481void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4482{
4483 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4484
4485 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4486 unsigned int order = compound_order(page);
4487
44fdffd7 4488 if (order == 0)
2d4894b5 4489 free_unref_page(page);
44fdffd7
AD
4490 else
4491 __free_pages_ok(page, order);
4492 }
4493}
2976db80 4494EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4495
8c2dd3e4
AD
4496void *page_frag_alloc(struct page_frag_cache *nc,
4497 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4498{
4499 unsigned int size = PAGE_SIZE;
4500 struct page *page;
4501 int offset;
4502
4503 if (unlikely(!nc->va)) {
4504refill:
2976db80 4505 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4506 if (!page)
4507 return NULL;
4508
4509#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4510 /* if size can vary use size else just use PAGE_SIZE */
4511 size = nc->size;
4512#endif
4513 /* Even if we own the page, we do not use atomic_set().
4514 * This would break get_page_unless_zero() users.
4515 */
fe896d18 4516 page_ref_add(page, size - 1);
b63ae8ca
AD
4517
4518 /* reset page count bias and offset to start of new frag */
2f064f34 4519 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4520 nc->pagecnt_bias = size;
4521 nc->offset = size;
4522 }
4523
4524 offset = nc->offset - fragsz;
4525 if (unlikely(offset < 0)) {
4526 page = virt_to_page(nc->va);
4527
fe896d18 4528 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4529 goto refill;
4530
4531#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4532 /* if size can vary use size else just use PAGE_SIZE */
4533 size = nc->size;
4534#endif
4535 /* OK, page count is 0, we can safely set it */
fe896d18 4536 set_page_count(page, size);
b63ae8ca
AD
4537
4538 /* reset page count bias and offset to start of new frag */
4539 nc->pagecnt_bias = size;
4540 offset = size - fragsz;
4541 }
4542
4543 nc->pagecnt_bias--;
4544 nc->offset = offset;
4545
4546 return nc->va + offset;
4547}
8c2dd3e4 4548EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4549
4550/*
4551 * Frees a page fragment allocated out of either a compound or order 0 page.
4552 */
8c2dd3e4 4553void page_frag_free(void *addr)
b63ae8ca
AD
4554{
4555 struct page *page = virt_to_head_page(addr);
4556
4557 if (unlikely(put_page_testzero(page)))
4558 __free_pages_ok(page, compound_order(page));
4559}
8c2dd3e4 4560EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4561
d00181b9
KS
4562static void *make_alloc_exact(unsigned long addr, unsigned int order,
4563 size_t size)
ee85c2e1
AK
4564{
4565 if (addr) {
4566 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4567 unsigned long used = addr + PAGE_ALIGN(size);
4568
4569 split_page(virt_to_page((void *)addr), order);
4570 while (used < alloc_end) {
4571 free_page(used);
4572 used += PAGE_SIZE;
4573 }
4574 }
4575 return (void *)addr;
4576}
4577
2be0ffe2
TT
4578/**
4579 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4580 * @size: the number of bytes to allocate
4581 * @gfp_mask: GFP flags for the allocation
4582 *
4583 * This function is similar to alloc_pages(), except that it allocates the
4584 * minimum number of pages to satisfy the request. alloc_pages() can only
4585 * allocate memory in power-of-two pages.
4586 *
4587 * This function is also limited by MAX_ORDER.
4588 *
4589 * Memory allocated by this function must be released by free_pages_exact().
4590 */
4591void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4592{
4593 unsigned int order = get_order(size);
4594 unsigned long addr;
4595
4596 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4597 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4598}
4599EXPORT_SYMBOL(alloc_pages_exact);
4600
ee85c2e1
AK
4601/**
4602 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4603 * pages on a node.
b5e6ab58 4604 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4605 * @size: the number of bytes to allocate
4606 * @gfp_mask: GFP flags for the allocation
4607 *
4608 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4609 * back.
ee85c2e1 4610 */
e1931811 4611void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4612{
d00181b9 4613 unsigned int order = get_order(size);
ee85c2e1
AK
4614 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4615 if (!p)
4616 return NULL;
4617 return make_alloc_exact((unsigned long)page_address(p), order, size);
4618}
ee85c2e1 4619
2be0ffe2
TT
4620/**
4621 * free_pages_exact - release memory allocated via alloc_pages_exact()
4622 * @virt: the value returned by alloc_pages_exact.
4623 * @size: size of allocation, same value as passed to alloc_pages_exact().
4624 *
4625 * Release the memory allocated by a previous call to alloc_pages_exact.
4626 */
4627void free_pages_exact(void *virt, size_t size)
4628{
4629 unsigned long addr = (unsigned long)virt;
4630 unsigned long end = addr + PAGE_ALIGN(size);
4631
4632 while (addr < end) {
4633 free_page(addr);
4634 addr += PAGE_SIZE;
4635 }
4636}
4637EXPORT_SYMBOL(free_pages_exact);
4638
e0fb5815
ZY
4639/**
4640 * nr_free_zone_pages - count number of pages beyond high watermark
4641 * @offset: The zone index of the highest zone
4642 *
4643 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4644 * high watermark within all zones at or below a given zone index. For each
4645 * zone, the number of pages is calculated as:
0e056eb5
MCC
4646 *
4647 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4648 */
ebec3862 4649static unsigned long nr_free_zone_pages(int offset)
1da177e4 4650{
dd1a239f 4651 struct zoneref *z;
54a6eb5c
MG
4652 struct zone *zone;
4653
e310fd43 4654 /* Just pick one node, since fallback list is circular */
ebec3862 4655 unsigned long sum = 0;
1da177e4 4656
0e88460d 4657 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4658
54a6eb5c 4659 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4660 unsigned long size = zone->managed_pages;
41858966 4661 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4662 if (size > high)
4663 sum += size - high;
1da177e4
LT
4664 }
4665
4666 return sum;
4667}
4668
e0fb5815
ZY
4669/**
4670 * nr_free_buffer_pages - count number of pages beyond high watermark
4671 *
4672 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4673 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4674 */
ebec3862 4675unsigned long nr_free_buffer_pages(void)
1da177e4 4676{
af4ca457 4677 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4678}
c2f1a551 4679EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4680
e0fb5815
ZY
4681/**
4682 * nr_free_pagecache_pages - count number of pages beyond high watermark
4683 *
4684 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4685 * high watermark within all zones.
1da177e4 4686 */
ebec3862 4687unsigned long nr_free_pagecache_pages(void)
1da177e4 4688{
2a1e274a 4689 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4690}
08e0f6a9
CL
4691
4692static inline void show_node(struct zone *zone)
1da177e4 4693{
e5adfffc 4694 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4695 printk("Node %d ", zone_to_nid(zone));
1da177e4 4696}
1da177e4 4697
d02bd27b
IR
4698long si_mem_available(void)
4699{
4700 long available;
4701 unsigned long pagecache;
4702 unsigned long wmark_low = 0;
4703 unsigned long pages[NR_LRU_LISTS];
b29940c1 4704 unsigned long reclaimable;
d02bd27b
IR
4705 struct zone *zone;
4706 int lru;
4707
4708 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4709 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4710
4711 for_each_zone(zone)
4712 wmark_low += zone->watermark[WMARK_LOW];
4713
4714 /*
4715 * Estimate the amount of memory available for userspace allocations,
4716 * without causing swapping.
4717 */
c41f012a 4718 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4719
4720 /*
4721 * Not all the page cache can be freed, otherwise the system will
4722 * start swapping. Assume at least half of the page cache, or the
4723 * low watermark worth of cache, needs to stay.
4724 */
4725 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4726 pagecache -= min(pagecache / 2, wmark_low);
4727 available += pagecache;
4728
4729 /*
b29940c1
VB
4730 * Part of the reclaimable slab and other kernel memory consists of
4731 * items that are in use, and cannot be freed. Cap this estimate at the
4732 * low watermark.
d02bd27b 4733 */
b29940c1
VB
4734 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4735 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4736 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4737
d02bd27b
IR
4738 if (available < 0)
4739 available = 0;
4740 return available;
4741}
4742EXPORT_SYMBOL_GPL(si_mem_available);
4743
1da177e4
LT
4744void si_meminfo(struct sysinfo *val)
4745{
4746 val->totalram = totalram_pages;
11fb9989 4747 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4748 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4749 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4750 val->totalhigh = totalhigh_pages;
4751 val->freehigh = nr_free_highpages();
1da177e4
LT
4752 val->mem_unit = PAGE_SIZE;
4753}
4754
4755EXPORT_SYMBOL(si_meminfo);
4756
4757#ifdef CONFIG_NUMA
4758void si_meminfo_node(struct sysinfo *val, int nid)
4759{
cdd91a77
JL
4760 int zone_type; /* needs to be signed */
4761 unsigned long managed_pages = 0;
fc2bd799
JK
4762 unsigned long managed_highpages = 0;
4763 unsigned long free_highpages = 0;
1da177e4
LT
4764 pg_data_t *pgdat = NODE_DATA(nid);
4765
cdd91a77
JL
4766 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4767 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4768 val->totalram = managed_pages;
11fb9989 4769 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4770 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4771#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4773 struct zone *zone = &pgdat->node_zones[zone_type];
4774
4775 if (is_highmem(zone)) {
4776 managed_highpages += zone->managed_pages;
4777 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4778 }
4779 }
4780 val->totalhigh = managed_highpages;
4781 val->freehigh = free_highpages;
98d2b0eb 4782#else
fc2bd799
JK
4783 val->totalhigh = managed_highpages;
4784 val->freehigh = free_highpages;
98d2b0eb 4785#endif
1da177e4
LT
4786 val->mem_unit = PAGE_SIZE;
4787}
4788#endif
4789
ddd588b5 4790/*
7bf02ea2
DR
4791 * Determine whether the node should be displayed or not, depending on whether
4792 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4793 */
9af744d7 4794static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4795{
ddd588b5 4796 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4797 return false;
ddd588b5 4798
9af744d7
MH
4799 /*
4800 * no node mask - aka implicit memory numa policy. Do not bother with
4801 * the synchronization - read_mems_allowed_begin - because we do not
4802 * have to be precise here.
4803 */
4804 if (!nodemask)
4805 nodemask = &cpuset_current_mems_allowed;
4806
4807 return !node_isset(nid, *nodemask);
ddd588b5
DR
4808}
4809
1da177e4
LT
4810#define K(x) ((x) << (PAGE_SHIFT-10))
4811
377e4f16
RV
4812static void show_migration_types(unsigned char type)
4813{
4814 static const char types[MIGRATE_TYPES] = {
4815 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4816 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4817 [MIGRATE_RECLAIMABLE] = 'E',
4818 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4819#ifdef CONFIG_CMA
4820 [MIGRATE_CMA] = 'C',
4821#endif
194159fb 4822#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4823 [MIGRATE_ISOLATE] = 'I',
194159fb 4824#endif
377e4f16
RV
4825 };
4826 char tmp[MIGRATE_TYPES + 1];
4827 char *p = tmp;
4828 int i;
4829
4830 for (i = 0; i < MIGRATE_TYPES; i++) {
4831 if (type & (1 << i))
4832 *p++ = types[i];
4833 }
4834
4835 *p = '\0';
1f84a18f 4836 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4837}
4838
1da177e4
LT
4839/*
4840 * Show free area list (used inside shift_scroll-lock stuff)
4841 * We also calculate the percentage fragmentation. We do this by counting the
4842 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4843 *
4844 * Bits in @filter:
4845 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4846 * cpuset.
1da177e4 4847 */
9af744d7 4848void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4849{
d1bfcdb8 4850 unsigned long free_pcp = 0;
c7241913 4851 int cpu;
1da177e4 4852 struct zone *zone;
599d0c95 4853 pg_data_t *pgdat;
1da177e4 4854
ee99c71c 4855 for_each_populated_zone(zone) {
9af744d7 4856 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4857 continue;
d1bfcdb8 4858
761b0677
KK
4859 for_each_online_cpu(cpu)
4860 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4861 }
4862
a731286d
KM
4863 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4864 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4865 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4866 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4867 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4868 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4869 global_node_page_state(NR_ACTIVE_ANON),
4870 global_node_page_state(NR_INACTIVE_ANON),
4871 global_node_page_state(NR_ISOLATED_ANON),
4872 global_node_page_state(NR_ACTIVE_FILE),
4873 global_node_page_state(NR_INACTIVE_FILE),
4874 global_node_page_state(NR_ISOLATED_FILE),
4875 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4876 global_node_page_state(NR_FILE_DIRTY),
4877 global_node_page_state(NR_WRITEBACK),
4878 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4879 global_node_page_state(NR_SLAB_RECLAIMABLE),
4880 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4881 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4882 global_node_page_state(NR_SHMEM),
c41f012a
MH
4883 global_zone_page_state(NR_PAGETABLE),
4884 global_zone_page_state(NR_BOUNCE),
4885 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4886 free_pcp,
c41f012a 4887 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4888
599d0c95 4889 for_each_online_pgdat(pgdat) {
9af744d7 4890 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4891 continue;
4892
599d0c95
MG
4893 printk("Node %d"
4894 " active_anon:%lukB"
4895 " inactive_anon:%lukB"
4896 " active_file:%lukB"
4897 " inactive_file:%lukB"
4898 " unevictable:%lukB"
4899 " isolated(anon):%lukB"
4900 " isolated(file):%lukB"
50658e2e 4901 " mapped:%lukB"
11fb9989
MG
4902 " dirty:%lukB"
4903 " writeback:%lukB"
4904 " shmem:%lukB"
4905#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4906 " shmem_thp: %lukB"
4907 " shmem_pmdmapped: %lukB"
4908 " anon_thp: %lukB"
4909#endif
4910 " writeback_tmp:%lukB"
4911 " unstable:%lukB"
599d0c95
MG
4912 " all_unreclaimable? %s"
4913 "\n",
4914 pgdat->node_id,
4915 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4916 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4917 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4918 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4919 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4920 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4921 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4922 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4923 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4924 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4925 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4926#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4927 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4928 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4929 * HPAGE_PMD_NR),
4930 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4931#endif
11fb9989
MG
4932 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4933 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4934 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4935 "yes" : "no");
599d0c95
MG
4936 }
4937
ee99c71c 4938 for_each_populated_zone(zone) {
1da177e4
LT
4939 int i;
4940
9af744d7 4941 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4942 continue;
d1bfcdb8
KK
4943
4944 free_pcp = 0;
4945 for_each_online_cpu(cpu)
4946 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4947
1da177e4 4948 show_node(zone);
1f84a18f
JP
4949 printk(KERN_CONT
4950 "%s"
1da177e4
LT
4951 " free:%lukB"
4952 " min:%lukB"
4953 " low:%lukB"
4954 " high:%lukB"
71c799f4
MK
4955 " active_anon:%lukB"
4956 " inactive_anon:%lukB"
4957 " active_file:%lukB"
4958 " inactive_file:%lukB"
4959 " unevictable:%lukB"
5a1c84b4 4960 " writepending:%lukB"
1da177e4 4961 " present:%lukB"
9feedc9d 4962 " managed:%lukB"
4a0aa73f 4963 " mlocked:%lukB"
c6a7f572 4964 " kernel_stack:%lukB"
4a0aa73f 4965 " pagetables:%lukB"
4a0aa73f 4966 " bounce:%lukB"
d1bfcdb8
KK
4967 " free_pcp:%lukB"
4968 " local_pcp:%ukB"
d1ce749a 4969 " free_cma:%lukB"
1da177e4
LT
4970 "\n",
4971 zone->name,
88f5acf8 4972 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4973 K(min_wmark_pages(zone)),
4974 K(low_wmark_pages(zone)),
4975 K(high_wmark_pages(zone)),
71c799f4
MK
4976 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4977 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4978 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4979 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4980 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4981 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4982 K(zone->present_pages),
9feedc9d 4983 K(zone->managed_pages),
4a0aa73f 4984 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4985 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4986 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4987 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4988 K(free_pcp),
4989 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4990 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4991 printk("lowmem_reserve[]:");
4992 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4993 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4994 printk(KERN_CONT "\n");
1da177e4
LT
4995 }
4996
ee99c71c 4997 for_each_populated_zone(zone) {
d00181b9
KS
4998 unsigned int order;
4999 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5000 unsigned char types[MAX_ORDER];
1da177e4 5001
9af744d7 5002 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5003 continue;
1da177e4 5004 show_node(zone);
1f84a18f 5005 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5006
5007 spin_lock_irqsave(&zone->lock, flags);
5008 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5009 struct free_area *area = &zone->free_area[order];
5010 int type;
5011
5012 nr[order] = area->nr_free;
8f9de51a 5013 total += nr[order] << order;
377e4f16
RV
5014
5015 types[order] = 0;
5016 for (type = 0; type < MIGRATE_TYPES; type++) {
5017 if (!list_empty(&area->free_list[type]))
5018 types[order] |= 1 << type;
5019 }
1da177e4
LT
5020 }
5021 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5022 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5023 printk(KERN_CONT "%lu*%lukB ",
5024 nr[order], K(1UL) << order);
377e4f16
RV
5025 if (nr[order])
5026 show_migration_types(types[order]);
5027 }
1f84a18f 5028 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5029 }
5030
949f7ec5
DR
5031 hugetlb_show_meminfo();
5032
11fb9989 5033 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5034
1da177e4
LT
5035 show_swap_cache_info();
5036}
5037
19770b32
MG
5038static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5039{
5040 zoneref->zone = zone;
5041 zoneref->zone_idx = zone_idx(zone);
5042}
5043
1da177e4
LT
5044/*
5045 * Builds allocation fallback zone lists.
1a93205b
CL
5046 *
5047 * Add all populated zones of a node to the zonelist.
1da177e4 5048 */
9d3be21b 5049static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5050{
1a93205b 5051 struct zone *zone;
bc732f1d 5052 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5053 int nr_zones = 0;
02a68a5e
CL
5054
5055 do {
2f6726e5 5056 zone_type--;
070f8032 5057 zone = pgdat->node_zones + zone_type;
6aa303de 5058 if (managed_zone(zone)) {
9d3be21b 5059 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5060 check_highest_zone(zone_type);
1da177e4 5061 }
2f6726e5 5062 } while (zone_type);
bc732f1d 5063
070f8032 5064 return nr_zones;
1da177e4
LT
5065}
5066
5067#ifdef CONFIG_NUMA
f0c0b2b8
KH
5068
5069static int __parse_numa_zonelist_order(char *s)
5070{
c9bff3ee
MH
5071 /*
5072 * We used to support different zonlists modes but they turned
5073 * out to be just not useful. Let's keep the warning in place
5074 * if somebody still use the cmd line parameter so that we do
5075 * not fail it silently
5076 */
5077 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5078 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5079 return -EINVAL;
5080 }
5081 return 0;
5082}
5083
5084static __init int setup_numa_zonelist_order(char *s)
5085{
ecb256f8
VL
5086 if (!s)
5087 return 0;
5088
c9bff3ee 5089 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5090}
5091early_param("numa_zonelist_order", setup_numa_zonelist_order);
5092
c9bff3ee
MH
5093char numa_zonelist_order[] = "Node";
5094
f0c0b2b8
KH
5095/*
5096 * sysctl handler for numa_zonelist_order
5097 */
cccad5b9 5098int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5099 void __user *buffer, size_t *length,
f0c0b2b8
KH
5100 loff_t *ppos)
5101{
c9bff3ee 5102 char *str;
f0c0b2b8
KH
5103 int ret;
5104
c9bff3ee
MH
5105 if (!write)
5106 return proc_dostring(table, write, buffer, length, ppos);
5107 str = memdup_user_nul(buffer, 16);
5108 if (IS_ERR(str))
5109 return PTR_ERR(str);
dacbde09 5110
c9bff3ee
MH
5111 ret = __parse_numa_zonelist_order(str);
5112 kfree(str);
443c6f14 5113 return ret;
f0c0b2b8
KH
5114}
5115
5116
62bc62a8 5117#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5118static int node_load[MAX_NUMNODES];
5119
1da177e4 5120/**
4dc3b16b 5121 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5122 * @node: node whose fallback list we're appending
5123 * @used_node_mask: nodemask_t of already used nodes
5124 *
5125 * We use a number of factors to determine which is the next node that should
5126 * appear on a given node's fallback list. The node should not have appeared
5127 * already in @node's fallback list, and it should be the next closest node
5128 * according to the distance array (which contains arbitrary distance values
5129 * from each node to each node in the system), and should also prefer nodes
5130 * with no CPUs, since presumably they'll have very little allocation pressure
5131 * on them otherwise.
5132 * It returns -1 if no node is found.
5133 */
f0c0b2b8 5134static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5135{
4cf808eb 5136 int n, val;
1da177e4 5137 int min_val = INT_MAX;
00ef2d2f 5138 int best_node = NUMA_NO_NODE;
a70f7302 5139 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5140
4cf808eb
LT
5141 /* Use the local node if we haven't already */
5142 if (!node_isset(node, *used_node_mask)) {
5143 node_set(node, *used_node_mask);
5144 return node;
5145 }
1da177e4 5146
4b0ef1fe 5147 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5148
5149 /* Don't want a node to appear more than once */
5150 if (node_isset(n, *used_node_mask))
5151 continue;
5152
1da177e4
LT
5153 /* Use the distance array to find the distance */
5154 val = node_distance(node, n);
5155
4cf808eb
LT
5156 /* Penalize nodes under us ("prefer the next node") */
5157 val += (n < node);
5158
1da177e4 5159 /* Give preference to headless and unused nodes */
a70f7302
RR
5160 tmp = cpumask_of_node(n);
5161 if (!cpumask_empty(tmp))
1da177e4
LT
5162 val += PENALTY_FOR_NODE_WITH_CPUS;
5163
5164 /* Slight preference for less loaded node */
5165 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5166 val += node_load[n];
5167
5168 if (val < min_val) {
5169 min_val = val;
5170 best_node = n;
5171 }
5172 }
5173
5174 if (best_node >= 0)
5175 node_set(best_node, *used_node_mask);
5176
5177 return best_node;
5178}
5179
f0c0b2b8
KH
5180
5181/*
5182 * Build zonelists ordered by node and zones within node.
5183 * This results in maximum locality--normal zone overflows into local
5184 * DMA zone, if any--but risks exhausting DMA zone.
5185 */
9d3be21b
MH
5186static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5187 unsigned nr_nodes)
1da177e4 5188{
9d3be21b
MH
5189 struct zoneref *zonerefs;
5190 int i;
5191
5192 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5193
5194 for (i = 0; i < nr_nodes; i++) {
5195 int nr_zones;
5196
5197 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5198
9d3be21b
MH
5199 nr_zones = build_zonerefs_node(node, zonerefs);
5200 zonerefs += nr_zones;
5201 }
5202 zonerefs->zone = NULL;
5203 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5204}
5205
523b9458
CL
5206/*
5207 * Build gfp_thisnode zonelists
5208 */
5209static void build_thisnode_zonelists(pg_data_t *pgdat)
5210{
9d3be21b
MH
5211 struct zoneref *zonerefs;
5212 int nr_zones;
523b9458 5213
9d3be21b
MH
5214 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5215 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5216 zonerefs += nr_zones;
5217 zonerefs->zone = NULL;
5218 zonerefs->zone_idx = 0;
523b9458
CL
5219}
5220
f0c0b2b8
KH
5221/*
5222 * Build zonelists ordered by zone and nodes within zones.
5223 * This results in conserving DMA zone[s] until all Normal memory is
5224 * exhausted, but results in overflowing to remote node while memory
5225 * may still exist in local DMA zone.
5226 */
f0c0b2b8 5227
f0c0b2b8
KH
5228static void build_zonelists(pg_data_t *pgdat)
5229{
9d3be21b
MH
5230 static int node_order[MAX_NUMNODES];
5231 int node, load, nr_nodes = 0;
1da177e4 5232 nodemask_t used_mask;
f0c0b2b8 5233 int local_node, prev_node;
1da177e4
LT
5234
5235 /* NUMA-aware ordering of nodes */
5236 local_node = pgdat->node_id;
62bc62a8 5237 load = nr_online_nodes;
1da177e4
LT
5238 prev_node = local_node;
5239 nodes_clear(used_mask);
f0c0b2b8 5240
f0c0b2b8 5241 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5242 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5243 /*
5244 * We don't want to pressure a particular node.
5245 * So adding penalty to the first node in same
5246 * distance group to make it round-robin.
5247 */
957f822a
DR
5248 if (node_distance(local_node, node) !=
5249 node_distance(local_node, prev_node))
f0c0b2b8
KH
5250 node_load[node] = load;
5251
9d3be21b 5252 node_order[nr_nodes++] = node;
1da177e4
LT
5253 prev_node = node;
5254 load--;
1da177e4 5255 }
523b9458 5256
9d3be21b 5257 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5258 build_thisnode_zonelists(pgdat);
1da177e4
LT
5259}
5260
7aac7898
LS
5261#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5262/*
5263 * Return node id of node used for "local" allocations.
5264 * I.e., first node id of first zone in arg node's generic zonelist.
5265 * Used for initializing percpu 'numa_mem', which is used primarily
5266 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5267 */
5268int local_memory_node(int node)
5269{
c33d6c06 5270 struct zoneref *z;
7aac7898 5271
c33d6c06 5272 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5273 gfp_zone(GFP_KERNEL),
c33d6c06 5274 NULL);
c1093b74 5275 return zone_to_nid(z->zone);
7aac7898
LS
5276}
5277#endif
f0c0b2b8 5278
6423aa81
JK
5279static void setup_min_unmapped_ratio(void);
5280static void setup_min_slab_ratio(void);
1da177e4
LT
5281#else /* CONFIG_NUMA */
5282
f0c0b2b8 5283static void build_zonelists(pg_data_t *pgdat)
1da177e4 5284{
19655d34 5285 int node, local_node;
9d3be21b
MH
5286 struct zoneref *zonerefs;
5287 int nr_zones;
1da177e4
LT
5288
5289 local_node = pgdat->node_id;
1da177e4 5290
9d3be21b
MH
5291 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5292 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5293 zonerefs += nr_zones;
1da177e4 5294
54a6eb5c
MG
5295 /*
5296 * Now we build the zonelist so that it contains the zones
5297 * of all the other nodes.
5298 * We don't want to pressure a particular node, so when
5299 * building the zones for node N, we make sure that the
5300 * zones coming right after the local ones are those from
5301 * node N+1 (modulo N)
5302 */
5303 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5304 if (!node_online(node))
5305 continue;
9d3be21b
MH
5306 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5307 zonerefs += nr_zones;
1da177e4 5308 }
54a6eb5c
MG
5309 for (node = 0; node < local_node; node++) {
5310 if (!node_online(node))
5311 continue;
9d3be21b
MH
5312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5313 zonerefs += nr_zones;
54a6eb5c
MG
5314 }
5315
9d3be21b
MH
5316 zonerefs->zone = NULL;
5317 zonerefs->zone_idx = 0;
1da177e4
LT
5318}
5319
5320#endif /* CONFIG_NUMA */
5321
99dcc3e5
CL
5322/*
5323 * Boot pageset table. One per cpu which is going to be used for all
5324 * zones and all nodes. The parameters will be set in such a way
5325 * that an item put on a list will immediately be handed over to
5326 * the buddy list. This is safe since pageset manipulation is done
5327 * with interrupts disabled.
5328 *
5329 * The boot_pagesets must be kept even after bootup is complete for
5330 * unused processors and/or zones. They do play a role for bootstrapping
5331 * hotplugged processors.
5332 *
5333 * zoneinfo_show() and maybe other functions do
5334 * not check if the processor is online before following the pageset pointer.
5335 * Other parts of the kernel may not check if the zone is available.
5336 */
5337static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5338static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5339static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5340
11cd8638 5341static void __build_all_zonelists(void *data)
1da177e4 5342{
6811378e 5343 int nid;
afb6ebb3 5344 int __maybe_unused cpu;
9adb62a5 5345 pg_data_t *self = data;
b93e0f32
MH
5346 static DEFINE_SPINLOCK(lock);
5347
5348 spin_lock(&lock);
9276b1bc 5349
7f9cfb31
BL
5350#ifdef CONFIG_NUMA
5351 memset(node_load, 0, sizeof(node_load));
5352#endif
9adb62a5 5353
c1152583
WY
5354 /*
5355 * This node is hotadded and no memory is yet present. So just
5356 * building zonelists is fine - no need to touch other nodes.
5357 */
9adb62a5
JL
5358 if (self && !node_online(self->node_id)) {
5359 build_zonelists(self);
c1152583
WY
5360 } else {
5361 for_each_online_node(nid) {
5362 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5363
c1152583
WY
5364 build_zonelists(pgdat);
5365 }
99dcc3e5 5366
7aac7898
LS
5367#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5368 /*
5369 * We now know the "local memory node" for each node--
5370 * i.e., the node of the first zone in the generic zonelist.
5371 * Set up numa_mem percpu variable for on-line cpus. During
5372 * boot, only the boot cpu should be on-line; we'll init the
5373 * secondary cpus' numa_mem as they come on-line. During
5374 * node/memory hotplug, we'll fixup all on-line cpus.
5375 */
d9c9a0b9 5376 for_each_online_cpu(cpu)
7aac7898 5377 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5378#endif
d9c9a0b9 5379 }
b93e0f32
MH
5380
5381 spin_unlock(&lock);
6811378e
YG
5382}
5383
061f67bc
RV
5384static noinline void __init
5385build_all_zonelists_init(void)
5386{
afb6ebb3
MH
5387 int cpu;
5388
061f67bc 5389 __build_all_zonelists(NULL);
afb6ebb3
MH
5390
5391 /*
5392 * Initialize the boot_pagesets that are going to be used
5393 * for bootstrapping processors. The real pagesets for
5394 * each zone will be allocated later when the per cpu
5395 * allocator is available.
5396 *
5397 * boot_pagesets are used also for bootstrapping offline
5398 * cpus if the system is already booted because the pagesets
5399 * are needed to initialize allocators on a specific cpu too.
5400 * F.e. the percpu allocator needs the page allocator which
5401 * needs the percpu allocator in order to allocate its pagesets
5402 * (a chicken-egg dilemma).
5403 */
5404 for_each_possible_cpu(cpu)
5405 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5406
061f67bc
RV
5407 mminit_verify_zonelist();
5408 cpuset_init_current_mems_allowed();
5409}
5410
4eaf3f64 5411/*
4eaf3f64 5412 * unless system_state == SYSTEM_BOOTING.
061f67bc 5413 *
72675e13 5414 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5415 * [protected by SYSTEM_BOOTING].
4eaf3f64 5416 */
72675e13 5417void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5418{
5419 if (system_state == SYSTEM_BOOTING) {
061f67bc 5420 build_all_zonelists_init();
6811378e 5421 } else {
11cd8638 5422 __build_all_zonelists(pgdat);
6811378e
YG
5423 /* cpuset refresh routine should be here */
5424 }
bd1e22b8 5425 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5426 /*
5427 * Disable grouping by mobility if the number of pages in the
5428 * system is too low to allow the mechanism to work. It would be
5429 * more accurate, but expensive to check per-zone. This check is
5430 * made on memory-hotadd so a system can start with mobility
5431 * disabled and enable it later
5432 */
d9c23400 5433 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5434 page_group_by_mobility_disabled = 1;
5435 else
5436 page_group_by_mobility_disabled = 0;
5437
c9bff3ee 5438 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5439 nr_online_nodes,
756a025f
JP
5440 page_group_by_mobility_disabled ? "off" : "on",
5441 vm_total_pages);
f0c0b2b8 5442#ifdef CONFIG_NUMA
f88dfff5 5443 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5444#endif
1da177e4
LT
5445}
5446
1da177e4
LT
5447/*
5448 * Initially all pages are reserved - free ones are freed
5449 * up by free_all_bootmem() once the early boot process is
5450 * done. Non-atomic initialization, single-pass.
5451 */
c09b4240 5452void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5453 unsigned long start_pfn, enum memmap_context context,
5454 struct vmem_altmap *altmap)
1da177e4 5455{
29751f69 5456 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5457 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5458 unsigned long pfn;
3a80a7fa 5459 unsigned long nr_initialised = 0;
d0dc12e8 5460 struct page *page;
342332e6
TI
5461#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5462 struct memblock_region *r = NULL, *tmp;
5463#endif
1da177e4 5464
22b31eec
HD
5465 if (highest_memmap_pfn < end_pfn - 1)
5466 highest_memmap_pfn = end_pfn - 1;
5467
966cf44f 5468#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5469 /*
5470 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5471 * memory. We limit the total number of pages to initialize to just
5472 * those that might contain the memory mapping. We will defer the
5473 * ZONE_DEVICE page initialization until after we have released
5474 * the hotplug lock.
4b94ffdc 5475 */
966cf44f
AD
5476 if (zone == ZONE_DEVICE) {
5477 if (!altmap)
5478 return;
5479
5480 if (start_pfn == altmap->base_pfn)
5481 start_pfn += altmap->reserve;
5482 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5483 }
5484#endif
4b94ffdc 5485
cbe8dd4a 5486 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5487 /*
b72d0ffb
AM
5488 * There can be holes in boot-time mem_map[]s handed to this
5489 * function. They do not exist on hotplugged memory.
a2f3aa02 5490 */
b72d0ffb
AM
5491 if (context != MEMMAP_EARLY)
5492 goto not_early;
5493
f59f1caf 5494 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5495 continue;
5496 if (!early_pfn_in_nid(pfn, nid))
5497 continue;
5498 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5499 break;
342332e6
TI
5500
5501#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5502 /*
5503 * Check given memblock attribute by firmware which can affect
5504 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5505 * mirrored, it's an overlapped memmap init. skip it.
5506 */
5507 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5508 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5509 for_each_memblock(memory, tmp)
5510 if (pfn < memblock_region_memory_end_pfn(tmp))
5511 break;
5512 r = tmp;
5513 }
5514 if (pfn >= memblock_region_memory_base_pfn(r) &&
5515 memblock_is_mirror(r)) {
5516 /* already initialized as NORMAL */
5517 pfn = memblock_region_memory_end_pfn(r);
5518 continue;
342332e6 5519 }
a2f3aa02 5520 }
b72d0ffb 5521#endif
ac5d2539 5522
b72d0ffb 5523not_early:
d0dc12e8
PT
5524 page = pfn_to_page(pfn);
5525 __init_single_page(page, pfn, zone, nid);
5526 if (context == MEMMAP_HOTPLUG)
d483da5b 5527 __SetPageReserved(page);
d0dc12e8 5528
ac5d2539
MG
5529 /*
5530 * Mark the block movable so that blocks are reserved for
5531 * movable at startup. This will force kernel allocations
5532 * to reserve their blocks rather than leaking throughout
5533 * the address space during boot when many long-lived
974a786e 5534 * kernel allocations are made.
ac5d2539
MG
5535 *
5536 * bitmap is created for zone's valid pfn range. but memmap
5537 * can be created for invalid pages (for alignment)
5538 * check here not to call set_pageblock_migratetype() against
5539 * pfn out of zone.
9bb5a391
MH
5540 *
5541 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5542 * because this is done early in sparse_add_one_section
ac5d2539
MG
5543 */
5544 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5545 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5546 cond_resched();
ac5d2539 5547 }
1da177e4
LT
5548 }
5549}
5550
966cf44f
AD
5551#ifdef CONFIG_ZONE_DEVICE
5552void __ref memmap_init_zone_device(struct zone *zone,
5553 unsigned long start_pfn,
5554 unsigned long size,
5555 struct dev_pagemap *pgmap)
5556{
5557 unsigned long pfn, end_pfn = start_pfn + size;
5558 struct pglist_data *pgdat = zone->zone_pgdat;
5559 unsigned long zone_idx = zone_idx(zone);
5560 unsigned long start = jiffies;
5561 int nid = pgdat->node_id;
5562
5563 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5564 return;
5565
5566 /*
5567 * The call to memmap_init_zone should have already taken care
5568 * of the pages reserved for the memmap, so we can just jump to
5569 * the end of that region and start processing the device pages.
5570 */
5571 if (pgmap->altmap_valid) {
5572 struct vmem_altmap *altmap = &pgmap->altmap;
5573
5574 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5575 size = end_pfn - start_pfn;
5576 }
5577
5578 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5579 struct page *page = pfn_to_page(pfn);
5580
5581 __init_single_page(page, pfn, zone_idx, nid);
5582
5583 /*
5584 * Mark page reserved as it will need to wait for onlining
5585 * phase for it to be fully associated with a zone.
5586 *
5587 * We can use the non-atomic __set_bit operation for setting
5588 * the flag as we are still initializing the pages.
5589 */
5590 __SetPageReserved(page);
5591
5592 /*
5593 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5594 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5595 * page is ever freed or placed on a driver-private list.
5596 */
5597 page->pgmap = pgmap;
5598 page->hmm_data = 0;
5599
5600 /*
5601 * Mark the block movable so that blocks are reserved for
5602 * movable at startup. This will force kernel allocations
5603 * to reserve their blocks rather than leaking throughout
5604 * the address space during boot when many long-lived
5605 * kernel allocations are made.
5606 *
5607 * bitmap is created for zone's valid pfn range. but memmap
5608 * can be created for invalid pages (for alignment)
5609 * check here not to call set_pageblock_migratetype() against
5610 * pfn out of zone.
5611 *
5612 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5613 * because this is done early in sparse_add_one_section
5614 */
5615 if (!(pfn & (pageblock_nr_pages - 1))) {
5616 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5617 cond_resched();
5618 }
5619 }
5620
5621 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5622 size, jiffies_to_msecs(jiffies - start));
5623}
5624
5625#endif
1e548deb 5626static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5627{
7aeb09f9 5628 unsigned int order, t;
b2a0ac88
MG
5629 for_each_migratetype_order(order, t) {
5630 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5631 zone->free_area[order].nr_free = 0;
5632 }
5633}
5634
5635#ifndef __HAVE_ARCH_MEMMAP_INIT
5636#define memmap_init(size, nid, zone, start_pfn) \
a99583e7 5637 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
1da177e4
LT
5638#endif
5639
7cd2b0a3 5640static int zone_batchsize(struct zone *zone)
e7c8d5c9 5641{
3a6be87f 5642#ifdef CONFIG_MMU
e7c8d5c9
CL
5643 int batch;
5644
5645 /*
5646 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5647 * size of the zone.
e7c8d5c9 5648 */
b40da049 5649 batch = zone->managed_pages / 1024;
d8a759b5
AL
5650 /* But no more than a meg. */
5651 if (batch * PAGE_SIZE > 1024 * 1024)
5652 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5653 batch /= 4; /* We effectively *= 4 below */
5654 if (batch < 1)
5655 batch = 1;
5656
5657 /*
0ceaacc9
NP
5658 * Clamp the batch to a 2^n - 1 value. Having a power
5659 * of 2 value was found to be more likely to have
5660 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5661 *
0ceaacc9
NP
5662 * For example if 2 tasks are alternately allocating
5663 * batches of pages, one task can end up with a lot
5664 * of pages of one half of the possible page colors
5665 * and the other with pages of the other colors.
e7c8d5c9 5666 */
9155203a 5667 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5668
e7c8d5c9 5669 return batch;
3a6be87f
DH
5670
5671#else
5672 /* The deferral and batching of frees should be suppressed under NOMMU
5673 * conditions.
5674 *
5675 * The problem is that NOMMU needs to be able to allocate large chunks
5676 * of contiguous memory as there's no hardware page translation to
5677 * assemble apparent contiguous memory from discontiguous pages.
5678 *
5679 * Queueing large contiguous runs of pages for batching, however,
5680 * causes the pages to actually be freed in smaller chunks. As there
5681 * can be a significant delay between the individual batches being
5682 * recycled, this leads to the once large chunks of space being
5683 * fragmented and becoming unavailable for high-order allocations.
5684 */
5685 return 0;
5686#endif
e7c8d5c9
CL
5687}
5688
8d7a8fa9
CS
5689/*
5690 * pcp->high and pcp->batch values are related and dependent on one another:
5691 * ->batch must never be higher then ->high.
5692 * The following function updates them in a safe manner without read side
5693 * locking.
5694 *
5695 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5696 * those fields changing asynchronously (acording the the above rule).
5697 *
5698 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5699 * outside of boot time (or some other assurance that no concurrent updaters
5700 * exist).
5701 */
5702static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5703 unsigned long batch)
5704{
5705 /* start with a fail safe value for batch */
5706 pcp->batch = 1;
5707 smp_wmb();
5708
5709 /* Update high, then batch, in order */
5710 pcp->high = high;
5711 smp_wmb();
5712
5713 pcp->batch = batch;
5714}
5715
3664033c 5716/* a companion to pageset_set_high() */
4008bab7
CS
5717static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5718{
8d7a8fa9 5719 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5720}
5721
88c90dbc 5722static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5723{
5724 struct per_cpu_pages *pcp;
5f8dcc21 5725 int migratetype;
2caaad41 5726
1c6fe946
MD
5727 memset(p, 0, sizeof(*p));
5728
3dfa5721 5729 pcp = &p->pcp;
2caaad41 5730 pcp->count = 0;
5f8dcc21
MG
5731 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5732 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5733}
5734
88c90dbc
CS
5735static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5736{
5737 pageset_init(p);
5738 pageset_set_batch(p, batch);
5739}
5740
8ad4b1fb 5741/*
3664033c 5742 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5743 * to the value high for the pageset p.
5744 */
3664033c 5745static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5746 unsigned long high)
5747{
8d7a8fa9
CS
5748 unsigned long batch = max(1UL, high / 4);
5749 if ((high / 4) > (PAGE_SHIFT * 8))
5750 batch = PAGE_SHIFT * 8;
8ad4b1fb 5751
8d7a8fa9 5752 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5753}
5754
7cd2b0a3
DR
5755static void pageset_set_high_and_batch(struct zone *zone,
5756 struct per_cpu_pageset *pcp)
56cef2b8 5757{
56cef2b8 5758 if (percpu_pagelist_fraction)
3664033c 5759 pageset_set_high(pcp,
56cef2b8
CS
5760 (zone->managed_pages /
5761 percpu_pagelist_fraction));
5762 else
5763 pageset_set_batch(pcp, zone_batchsize(zone));
5764}
5765
169f6c19
CS
5766static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5767{
5768 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5769
5770 pageset_init(pcp);
5771 pageset_set_high_and_batch(zone, pcp);
5772}
5773
72675e13 5774void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5775{
5776 int cpu;
319774e2 5777 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5778 for_each_possible_cpu(cpu)
5779 zone_pageset_init(zone, cpu);
319774e2
WF
5780}
5781
2caaad41 5782/*
99dcc3e5
CL
5783 * Allocate per cpu pagesets and initialize them.
5784 * Before this call only boot pagesets were available.
e7c8d5c9 5785 */
99dcc3e5 5786void __init setup_per_cpu_pageset(void)
e7c8d5c9 5787{
b4911ea2 5788 struct pglist_data *pgdat;
99dcc3e5 5789 struct zone *zone;
e7c8d5c9 5790
319774e2
WF
5791 for_each_populated_zone(zone)
5792 setup_zone_pageset(zone);
b4911ea2
MG
5793
5794 for_each_online_pgdat(pgdat)
5795 pgdat->per_cpu_nodestats =
5796 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5797}
5798
c09b4240 5799static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5800{
99dcc3e5
CL
5801 /*
5802 * per cpu subsystem is not up at this point. The following code
5803 * relies on the ability of the linker to provide the
5804 * offset of a (static) per cpu variable into the per cpu area.
5805 */
5806 zone->pageset = &boot_pageset;
ed8ece2e 5807
b38a8725 5808 if (populated_zone(zone))
99dcc3e5
CL
5809 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5810 zone->name, zone->present_pages,
5811 zone_batchsize(zone));
ed8ece2e
DH
5812}
5813
dc0bbf3b 5814void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5815 unsigned long zone_start_pfn,
b171e409 5816 unsigned long size)
ed8ece2e
DH
5817{
5818 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5819
ed8ece2e
DH
5820 pgdat->nr_zones = zone_idx(zone) + 1;
5821
ed8ece2e
DH
5822 zone->zone_start_pfn = zone_start_pfn;
5823
708614e6
MG
5824 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5825 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5826 pgdat->node_id,
5827 (unsigned long)zone_idx(zone),
5828 zone_start_pfn, (zone_start_pfn + size));
5829
1e548deb 5830 zone_init_free_lists(zone);
9dcb8b68 5831 zone->initialized = 1;
ed8ece2e
DH
5832}
5833
0ee332c1 5834#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5835#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5836
c713216d
MG
5837/*
5838 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5839 */
8a942fde
MG
5840int __meminit __early_pfn_to_nid(unsigned long pfn,
5841 struct mminit_pfnnid_cache *state)
c713216d 5842{
c13291a5 5843 unsigned long start_pfn, end_pfn;
e76b63f8 5844 int nid;
7c243c71 5845
8a942fde
MG
5846 if (state->last_start <= pfn && pfn < state->last_end)
5847 return state->last_nid;
c713216d 5848
e76b63f8
YL
5849 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5850 if (nid != -1) {
8a942fde
MG
5851 state->last_start = start_pfn;
5852 state->last_end = end_pfn;
5853 state->last_nid = nid;
e76b63f8
YL
5854 }
5855
5856 return nid;
c713216d
MG
5857}
5858#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5859
c713216d 5860/**
6782832e 5861 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5862 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5863 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5864 *
7d018176
ZZ
5865 * If an architecture guarantees that all ranges registered contain no holes
5866 * and may be freed, this this function may be used instead of calling
5867 * memblock_free_early_nid() manually.
c713216d 5868 */
c13291a5 5869void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5870{
c13291a5
TH
5871 unsigned long start_pfn, end_pfn;
5872 int i, this_nid;
edbe7d23 5873
c13291a5
TH
5874 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5875 start_pfn = min(start_pfn, max_low_pfn);
5876 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5877
c13291a5 5878 if (start_pfn < end_pfn)
6782832e
SS
5879 memblock_free_early_nid(PFN_PHYS(start_pfn),
5880 (end_pfn - start_pfn) << PAGE_SHIFT,
5881 this_nid);
edbe7d23 5882 }
edbe7d23 5883}
edbe7d23 5884
c713216d
MG
5885/**
5886 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5887 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5888 *
7d018176
ZZ
5889 * If an architecture guarantees that all ranges registered contain no holes and may
5890 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5891 */
5892void __init sparse_memory_present_with_active_regions(int nid)
5893{
c13291a5
TH
5894 unsigned long start_pfn, end_pfn;
5895 int i, this_nid;
c713216d 5896
c13291a5
TH
5897 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5898 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5899}
5900
5901/**
5902 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5903 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5904 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5905 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5906 *
5907 * It returns the start and end page frame of a node based on information
7d018176 5908 * provided by memblock_set_node(). If called for a node
c713216d 5909 * with no available memory, a warning is printed and the start and end
88ca3b94 5910 * PFNs will be 0.
c713216d 5911 */
a3142c8e 5912void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5913 unsigned long *start_pfn, unsigned long *end_pfn)
5914{
c13291a5 5915 unsigned long this_start_pfn, this_end_pfn;
c713216d 5916 int i;
c13291a5 5917
c713216d
MG
5918 *start_pfn = -1UL;
5919 *end_pfn = 0;
5920
c13291a5
TH
5921 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5922 *start_pfn = min(*start_pfn, this_start_pfn);
5923 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5924 }
5925
633c0666 5926 if (*start_pfn == -1UL)
c713216d 5927 *start_pfn = 0;
c713216d
MG
5928}
5929
2a1e274a
MG
5930/*
5931 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5932 * assumption is made that zones within a node are ordered in monotonic
5933 * increasing memory addresses so that the "highest" populated zone is used
5934 */
b69a7288 5935static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5936{
5937 int zone_index;
5938 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5939 if (zone_index == ZONE_MOVABLE)
5940 continue;
5941
5942 if (arch_zone_highest_possible_pfn[zone_index] >
5943 arch_zone_lowest_possible_pfn[zone_index])
5944 break;
5945 }
5946
5947 VM_BUG_ON(zone_index == -1);
5948 movable_zone = zone_index;
5949}
5950
5951/*
5952 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5953 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5954 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5955 * in each node depending on the size of each node and how evenly kernelcore
5956 * is distributed. This helper function adjusts the zone ranges
5957 * provided by the architecture for a given node by using the end of the
5958 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5959 * zones within a node are in order of monotonic increases memory addresses
5960 */
b69a7288 5961static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5962 unsigned long zone_type,
5963 unsigned long node_start_pfn,
5964 unsigned long node_end_pfn,
5965 unsigned long *zone_start_pfn,
5966 unsigned long *zone_end_pfn)
5967{
5968 /* Only adjust if ZONE_MOVABLE is on this node */
5969 if (zone_movable_pfn[nid]) {
5970 /* Size ZONE_MOVABLE */
5971 if (zone_type == ZONE_MOVABLE) {
5972 *zone_start_pfn = zone_movable_pfn[nid];
5973 *zone_end_pfn = min(node_end_pfn,
5974 arch_zone_highest_possible_pfn[movable_zone]);
5975
e506b996
XQ
5976 /* Adjust for ZONE_MOVABLE starting within this range */
5977 } else if (!mirrored_kernelcore &&
5978 *zone_start_pfn < zone_movable_pfn[nid] &&
5979 *zone_end_pfn > zone_movable_pfn[nid]) {
5980 *zone_end_pfn = zone_movable_pfn[nid];
5981
2a1e274a
MG
5982 /* Check if this whole range is within ZONE_MOVABLE */
5983 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5984 *zone_start_pfn = *zone_end_pfn;
5985 }
5986}
5987
c713216d
MG
5988/*
5989 * Return the number of pages a zone spans in a node, including holes
5990 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5991 */
6ea6e688 5992static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5993 unsigned long zone_type,
7960aedd
ZY
5994 unsigned long node_start_pfn,
5995 unsigned long node_end_pfn,
d91749c1
TI
5996 unsigned long *zone_start_pfn,
5997 unsigned long *zone_end_pfn,
c713216d
MG
5998 unsigned long *ignored)
5999{
b5685e92 6000 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6001 if (!node_start_pfn && !node_end_pfn)
6002 return 0;
6003
7960aedd 6004 /* Get the start and end of the zone */
d91749c1
TI
6005 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6006 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6007 adjust_zone_range_for_zone_movable(nid, zone_type,
6008 node_start_pfn, node_end_pfn,
d91749c1 6009 zone_start_pfn, zone_end_pfn);
c713216d
MG
6010
6011 /* Check that this node has pages within the zone's required range */
d91749c1 6012 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6013 return 0;
6014
6015 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6016 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6017 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6018
6019 /* Return the spanned pages */
d91749c1 6020 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6021}
6022
6023/*
6024 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6025 * then all holes in the requested range will be accounted for.
c713216d 6026 */
32996250 6027unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
6028 unsigned long range_start_pfn,
6029 unsigned long range_end_pfn)
6030{
96e907d1
TH
6031 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6032 unsigned long start_pfn, end_pfn;
6033 int i;
c713216d 6034
96e907d1
TH
6035 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6036 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6037 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6038 nr_absent -= end_pfn - start_pfn;
c713216d 6039 }
96e907d1 6040 return nr_absent;
c713216d
MG
6041}
6042
6043/**
6044 * absent_pages_in_range - Return number of page frames in holes within a range
6045 * @start_pfn: The start PFN to start searching for holes
6046 * @end_pfn: The end PFN to stop searching for holes
6047 *
88ca3b94 6048 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6049 */
6050unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6051 unsigned long end_pfn)
6052{
6053 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6054}
6055
6056/* Return the number of page frames in holes in a zone on a node */
6ea6e688 6057static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6058 unsigned long zone_type,
7960aedd
ZY
6059 unsigned long node_start_pfn,
6060 unsigned long node_end_pfn,
c713216d
MG
6061 unsigned long *ignored)
6062{
96e907d1
TH
6063 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6064 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6065 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6066 unsigned long nr_absent;
9c7cd687 6067
b5685e92 6068 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6069 if (!node_start_pfn && !node_end_pfn)
6070 return 0;
6071
96e907d1
TH
6072 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6073 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6074
2a1e274a
MG
6075 adjust_zone_range_for_zone_movable(nid, zone_type,
6076 node_start_pfn, node_end_pfn,
6077 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6078 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6079
6080 /*
6081 * ZONE_MOVABLE handling.
6082 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6083 * and vice versa.
6084 */
e506b996
XQ
6085 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6086 unsigned long start_pfn, end_pfn;
6087 struct memblock_region *r;
6088
6089 for_each_memblock(memory, r) {
6090 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6091 zone_start_pfn, zone_end_pfn);
6092 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6093 zone_start_pfn, zone_end_pfn);
6094
6095 if (zone_type == ZONE_MOVABLE &&
6096 memblock_is_mirror(r))
6097 nr_absent += end_pfn - start_pfn;
6098
6099 if (zone_type == ZONE_NORMAL &&
6100 !memblock_is_mirror(r))
6101 nr_absent += end_pfn - start_pfn;
342332e6
TI
6102 }
6103 }
6104
6105 return nr_absent;
c713216d 6106}
0e0b864e 6107
0ee332c1 6108#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 6109static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6110 unsigned long zone_type,
7960aedd
ZY
6111 unsigned long node_start_pfn,
6112 unsigned long node_end_pfn,
d91749c1
TI
6113 unsigned long *zone_start_pfn,
6114 unsigned long *zone_end_pfn,
c713216d
MG
6115 unsigned long *zones_size)
6116{
d91749c1
TI
6117 unsigned int zone;
6118
6119 *zone_start_pfn = node_start_pfn;
6120 for (zone = 0; zone < zone_type; zone++)
6121 *zone_start_pfn += zones_size[zone];
6122
6123 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6124
c713216d
MG
6125 return zones_size[zone_type];
6126}
6127
6ea6e688 6128static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6129 unsigned long zone_type,
7960aedd
ZY
6130 unsigned long node_start_pfn,
6131 unsigned long node_end_pfn,
c713216d
MG
6132 unsigned long *zholes_size)
6133{
6134 if (!zholes_size)
6135 return 0;
6136
6137 return zholes_size[zone_type];
6138}
20e6926d 6139
0ee332c1 6140#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6141
a3142c8e 6142static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6143 unsigned long node_start_pfn,
6144 unsigned long node_end_pfn,
6145 unsigned long *zones_size,
6146 unsigned long *zholes_size)
c713216d 6147{
febd5949 6148 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6149 enum zone_type i;
6150
febd5949
GZ
6151 for (i = 0; i < MAX_NR_ZONES; i++) {
6152 struct zone *zone = pgdat->node_zones + i;
d91749c1 6153 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6154 unsigned long size, real_size;
c713216d 6155
febd5949
GZ
6156 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6157 node_start_pfn,
6158 node_end_pfn,
d91749c1
TI
6159 &zone_start_pfn,
6160 &zone_end_pfn,
febd5949
GZ
6161 zones_size);
6162 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6163 node_start_pfn, node_end_pfn,
6164 zholes_size);
d91749c1
TI
6165 if (size)
6166 zone->zone_start_pfn = zone_start_pfn;
6167 else
6168 zone->zone_start_pfn = 0;
febd5949
GZ
6169 zone->spanned_pages = size;
6170 zone->present_pages = real_size;
6171
6172 totalpages += size;
6173 realtotalpages += real_size;
6174 }
6175
6176 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6177 pgdat->node_present_pages = realtotalpages;
6178 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6179 realtotalpages);
6180}
6181
835c134e
MG
6182#ifndef CONFIG_SPARSEMEM
6183/*
6184 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6185 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6186 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6187 * round what is now in bits to nearest long in bits, then return it in
6188 * bytes.
6189 */
7c45512d 6190static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6191{
6192 unsigned long usemapsize;
6193
7c45512d 6194 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6195 usemapsize = roundup(zonesize, pageblock_nr_pages);
6196 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6197 usemapsize *= NR_PAGEBLOCK_BITS;
6198 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6199
6200 return usemapsize / 8;
6201}
6202
7cc2a959 6203static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6204 struct zone *zone,
6205 unsigned long zone_start_pfn,
6206 unsigned long zonesize)
835c134e 6207{
7c45512d 6208 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6209 zone->pageblock_flags = NULL;
58a01a45 6210 if (usemapsize)
6782832e
SS
6211 zone->pageblock_flags =
6212 memblock_virt_alloc_node_nopanic(usemapsize,
6213 pgdat->node_id);
835c134e
MG
6214}
6215#else
7c45512d
LT
6216static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6217 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6218#endif /* CONFIG_SPARSEMEM */
6219
d9c23400 6220#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6221
d9c23400 6222/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6223void __init set_pageblock_order(void)
d9c23400 6224{
955c1cd7
AM
6225 unsigned int order;
6226
d9c23400
MG
6227 /* Check that pageblock_nr_pages has not already been setup */
6228 if (pageblock_order)
6229 return;
6230
955c1cd7
AM
6231 if (HPAGE_SHIFT > PAGE_SHIFT)
6232 order = HUGETLB_PAGE_ORDER;
6233 else
6234 order = MAX_ORDER - 1;
6235
d9c23400
MG
6236 /*
6237 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6238 * This value may be variable depending on boot parameters on IA64 and
6239 * powerpc.
d9c23400
MG
6240 */
6241 pageblock_order = order;
6242}
6243#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6244
ba72cb8c
MG
6245/*
6246 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6247 * is unused as pageblock_order is set at compile-time. See
6248 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6249 * the kernel config
ba72cb8c 6250 */
03e85f9d 6251void __init set_pageblock_order(void)
ba72cb8c 6252{
ba72cb8c 6253}
d9c23400
MG
6254
6255#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6256
03e85f9d 6257static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6258 unsigned long present_pages)
01cefaef
JL
6259{
6260 unsigned long pages = spanned_pages;
6261
6262 /*
6263 * Provide a more accurate estimation if there are holes within
6264 * the zone and SPARSEMEM is in use. If there are holes within the
6265 * zone, each populated memory region may cost us one or two extra
6266 * memmap pages due to alignment because memmap pages for each
89d790ab 6267 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6268 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6269 */
6270 if (spanned_pages > present_pages + (present_pages >> 4) &&
6271 IS_ENABLED(CONFIG_SPARSEMEM))
6272 pages = present_pages;
6273
6274 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6275}
6276
ace1db39
OS
6277#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6278static void pgdat_init_split_queue(struct pglist_data *pgdat)
6279{
6280 spin_lock_init(&pgdat->split_queue_lock);
6281 INIT_LIST_HEAD(&pgdat->split_queue);
6282 pgdat->split_queue_len = 0;
6283}
6284#else
6285static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6286#endif
6287
6288#ifdef CONFIG_COMPACTION
6289static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6290{
6291 init_waitqueue_head(&pgdat->kcompactd_wait);
6292}
6293#else
6294static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6295#endif
6296
03e85f9d 6297static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6298{
208d54e5 6299 pgdat_resize_init(pgdat);
ace1db39 6300
ace1db39
OS
6301 pgdat_init_split_queue(pgdat);
6302 pgdat_init_kcompactd(pgdat);
6303
1da177e4 6304 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6305 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6306
eefa864b 6307 pgdat_page_ext_init(pgdat);
a52633d8 6308 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6309 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6310}
6311
6312static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6313 unsigned long remaining_pages)
6314{
6315 zone->managed_pages = remaining_pages;
6316 zone_set_nid(zone, nid);
6317 zone->name = zone_names[idx];
6318 zone->zone_pgdat = NODE_DATA(nid);
6319 spin_lock_init(&zone->lock);
6320 zone_seqlock_init(zone);
6321 zone_pcp_init(zone);
6322}
6323
6324/*
6325 * Set up the zone data structures
6326 * - init pgdat internals
6327 * - init all zones belonging to this node
6328 *
6329 * NOTE: this function is only called during memory hotplug
6330 */
6331#ifdef CONFIG_MEMORY_HOTPLUG
6332void __ref free_area_init_core_hotplug(int nid)
6333{
6334 enum zone_type z;
6335 pg_data_t *pgdat = NODE_DATA(nid);
6336
6337 pgdat_init_internals(pgdat);
6338 for (z = 0; z < MAX_NR_ZONES; z++)
6339 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6340}
6341#endif
6342
6343/*
6344 * Set up the zone data structures:
6345 * - mark all pages reserved
6346 * - mark all memory queues empty
6347 * - clear the memory bitmaps
6348 *
6349 * NOTE: pgdat should get zeroed by caller.
6350 * NOTE: this function is only called during early init.
6351 */
6352static void __init free_area_init_core(struct pglist_data *pgdat)
6353{
6354 enum zone_type j;
6355 int nid = pgdat->node_id;
5f63b720 6356
03e85f9d 6357 pgdat_init_internals(pgdat);
385386cf
JW
6358 pgdat->per_cpu_nodestats = &boot_nodestats;
6359
1da177e4
LT
6360 for (j = 0; j < MAX_NR_ZONES; j++) {
6361 struct zone *zone = pgdat->node_zones + j;
e6943859 6362 unsigned long size, freesize, memmap_pages;
d91749c1 6363 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6364
febd5949 6365 size = zone->spanned_pages;
e6943859 6366 freesize = zone->present_pages;
1da177e4 6367
0e0b864e 6368 /*
9feedc9d 6369 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6370 * is used by this zone for memmap. This affects the watermark
6371 * and per-cpu initialisations
6372 */
e6943859 6373 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6374 if (!is_highmem_idx(j)) {
6375 if (freesize >= memmap_pages) {
6376 freesize -= memmap_pages;
6377 if (memmap_pages)
6378 printk(KERN_DEBUG
6379 " %s zone: %lu pages used for memmap\n",
6380 zone_names[j], memmap_pages);
6381 } else
1170532b 6382 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6383 zone_names[j], memmap_pages, freesize);
6384 }
0e0b864e 6385
6267276f 6386 /* Account for reserved pages */
9feedc9d
JL
6387 if (j == 0 && freesize > dma_reserve) {
6388 freesize -= dma_reserve;
d903ef9f 6389 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6390 zone_names[0], dma_reserve);
0e0b864e
MG
6391 }
6392
98d2b0eb 6393 if (!is_highmem_idx(j))
9feedc9d 6394 nr_kernel_pages += freesize;
01cefaef
JL
6395 /* Charge for highmem memmap if there are enough kernel pages */
6396 else if (nr_kernel_pages > memmap_pages * 2)
6397 nr_kernel_pages -= memmap_pages;
9feedc9d 6398 nr_all_pages += freesize;
1da177e4 6399
9feedc9d
JL
6400 /*
6401 * Set an approximate value for lowmem here, it will be adjusted
6402 * when the bootmem allocator frees pages into the buddy system.
6403 * And all highmem pages will be managed by the buddy system.
6404 */
03e85f9d 6405 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6406
d883c6cf 6407 if (!size)
1da177e4
LT
6408 continue;
6409
955c1cd7 6410 set_pageblock_order();
d883c6cf
JK
6411 setup_usemap(pgdat, zone, zone_start_pfn, size);
6412 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6413 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6414 }
6415}
6416
0cd842f9 6417#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6418static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6419{
b0aeba74 6420 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6421 unsigned long __maybe_unused offset = 0;
6422
1da177e4
LT
6423 /* Skip empty nodes */
6424 if (!pgdat->node_spanned_pages)
6425 return;
6426
b0aeba74
TL
6427 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6428 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6429 /* ia64 gets its own node_mem_map, before this, without bootmem */
6430 if (!pgdat->node_mem_map) {
b0aeba74 6431 unsigned long size, end;
d41dee36
AW
6432 struct page *map;
6433
e984bb43
BP
6434 /*
6435 * The zone's endpoints aren't required to be MAX_ORDER
6436 * aligned but the node_mem_map endpoints must be in order
6437 * for the buddy allocator to function correctly.
6438 */
108bcc96 6439 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6440 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6441 size = (end - start) * sizeof(struct page);
79375ea3 6442 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6443 pgdat->node_mem_map = map + offset;
1da177e4 6444 }
0cd842f9
OS
6445 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6446 __func__, pgdat->node_id, (unsigned long)pgdat,
6447 (unsigned long)pgdat->node_mem_map);
12d810c1 6448#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6449 /*
6450 * With no DISCONTIG, the global mem_map is just set as node 0's
6451 */
c713216d 6452 if (pgdat == NODE_DATA(0)) {
1da177e4 6453 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6454#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6455 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6456 mem_map -= offset;
0ee332c1 6457#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6458 }
1da177e4
LT
6459#endif
6460}
0cd842f9
OS
6461#else
6462static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6463#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6464
0188dc98
OS
6465#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6466static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6467{
6468 /*
6469 * We start only with one section of pages, more pages are added as
6470 * needed until the rest of deferred pages are initialized.
6471 */
6472 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6473 pgdat->node_spanned_pages);
6474 pgdat->first_deferred_pfn = ULONG_MAX;
6475}
6476#else
6477static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6478#endif
6479
03e85f9d 6480void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6481 unsigned long node_start_pfn,
6482 unsigned long *zholes_size)
1da177e4 6483{
9109fb7b 6484 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6485 unsigned long start_pfn = 0;
6486 unsigned long end_pfn = 0;
9109fb7b 6487
88fdf75d 6488 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6489 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6490
1da177e4
LT
6491 pgdat->node_id = nid;
6492 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6493 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6494#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6495 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6496 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6497 (u64)start_pfn << PAGE_SHIFT,
6498 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6499#else
6500 start_pfn = node_start_pfn;
7960aedd
ZY
6501#endif
6502 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6503 zones_size, zholes_size);
1da177e4
LT
6504
6505 alloc_node_mem_map(pgdat);
0188dc98 6506 pgdat_set_deferred_range(pgdat);
1da177e4 6507
7f3eb55b 6508 free_area_init_core(pgdat);
1da177e4
LT
6509}
6510
d1b47a7c 6511#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
6512/*
6513 * Only struct pages that are backed by physical memory are zeroed and
6514 * initialized by going through __init_single_page(). But, there are some
6515 * struct pages which are reserved in memblock allocator and their fields
6516 * may be accessed (for example page_to_pfn() on some configuration accesses
6517 * flags). We must explicitly zero those struct pages.
6518 */
03e85f9d 6519void __init zero_resv_unavail(void)
a4a3ede2
PT
6520{
6521 phys_addr_t start, end;
6522 unsigned long pfn;
6523 u64 i, pgcnt;
6524
6525 /*
6526 * Loop through ranges that are reserved, but do not have reported
6527 * physical memory backing.
6528 */
6529 pgcnt = 0;
6530 for_each_resv_unavail_range(i, &start, &end) {
6531 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
720e14eb
PT
6532 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6533 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6534 + pageblock_nr_pages - 1;
e8c24773 6535 continue;
720e14eb 6536 }
a4a3ede2
PT
6537 mm_zero_struct_page(pfn_to_page(pfn));
6538 pgcnt++;
6539 }
6540 }
6541
6542 /*
6543 * Struct pages that do not have backing memory. This could be because
6544 * firmware is using some of this memory, or for some other reasons.
6545 * Once memblock is changed so such behaviour is not allowed: i.e.
6546 * list of "reserved" memory must be a subset of list of "memory", then
6547 * this code can be removed.
6548 */
6549 if (pgcnt)
6550 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6551}
d1b47a7c 6552#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6553
0ee332c1 6554#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6555
6556#if MAX_NUMNODES > 1
6557/*
6558 * Figure out the number of possible node ids.
6559 */
f9872caf 6560void __init setup_nr_node_ids(void)
418508c1 6561{
904a9553 6562 unsigned int highest;
418508c1 6563
904a9553 6564 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6565 nr_node_ids = highest + 1;
6566}
418508c1
MS
6567#endif
6568
1e01979c
TH
6569/**
6570 * node_map_pfn_alignment - determine the maximum internode alignment
6571 *
6572 * This function should be called after node map is populated and sorted.
6573 * It calculates the maximum power of two alignment which can distinguish
6574 * all the nodes.
6575 *
6576 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6577 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6578 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6579 * shifted, 1GiB is enough and this function will indicate so.
6580 *
6581 * This is used to test whether pfn -> nid mapping of the chosen memory
6582 * model has fine enough granularity to avoid incorrect mapping for the
6583 * populated node map.
6584 *
6585 * Returns the determined alignment in pfn's. 0 if there is no alignment
6586 * requirement (single node).
6587 */
6588unsigned long __init node_map_pfn_alignment(void)
6589{
6590 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6591 unsigned long start, end, mask;
1e01979c 6592 int last_nid = -1;
c13291a5 6593 int i, nid;
1e01979c 6594
c13291a5 6595 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6596 if (!start || last_nid < 0 || last_nid == nid) {
6597 last_nid = nid;
6598 last_end = end;
6599 continue;
6600 }
6601
6602 /*
6603 * Start with a mask granular enough to pin-point to the
6604 * start pfn and tick off bits one-by-one until it becomes
6605 * too coarse to separate the current node from the last.
6606 */
6607 mask = ~((1 << __ffs(start)) - 1);
6608 while (mask && last_end <= (start & (mask << 1)))
6609 mask <<= 1;
6610
6611 /* accumulate all internode masks */
6612 accl_mask |= mask;
6613 }
6614
6615 /* convert mask to number of pages */
6616 return ~accl_mask + 1;
6617}
6618
a6af2bc3 6619/* Find the lowest pfn for a node */
b69a7288 6620static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6621{
a6af2bc3 6622 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6623 unsigned long start_pfn;
6624 int i;
1abbfb41 6625
c13291a5
TH
6626 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6627 min_pfn = min(min_pfn, start_pfn);
c713216d 6628
a6af2bc3 6629 if (min_pfn == ULONG_MAX) {
1170532b 6630 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6631 return 0;
6632 }
6633
6634 return min_pfn;
c713216d
MG
6635}
6636
6637/**
6638 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6639 *
6640 * It returns the minimum PFN based on information provided via
7d018176 6641 * memblock_set_node().
c713216d
MG
6642 */
6643unsigned long __init find_min_pfn_with_active_regions(void)
6644{
6645 return find_min_pfn_for_node(MAX_NUMNODES);
6646}
6647
37b07e41
LS
6648/*
6649 * early_calculate_totalpages()
6650 * Sum pages in active regions for movable zone.
4b0ef1fe 6651 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6652 */
484f51f8 6653static unsigned long __init early_calculate_totalpages(void)
7e63efef 6654{
7e63efef 6655 unsigned long totalpages = 0;
c13291a5
TH
6656 unsigned long start_pfn, end_pfn;
6657 int i, nid;
6658
6659 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6660 unsigned long pages = end_pfn - start_pfn;
7e63efef 6661
37b07e41
LS
6662 totalpages += pages;
6663 if (pages)
4b0ef1fe 6664 node_set_state(nid, N_MEMORY);
37b07e41 6665 }
b8af2941 6666 return totalpages;
7e63efef
MG
6667}
6668
2a1e274a
MG
6669/*
6670 * Find the PFN the Movable zone begins in each node. Kernel memory
6671 * is spread evenly between nodes as long as the nodes have enough
6672 * memory. When they don't, some nodes will have more kernelcore than
6673 * others
6674 */
b224ef85 6675static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6676{
6677 int i, nid;
6678 unsigned long usable_startpfn;
6679 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6680 /* save the state before borrow the nodemask */
4b0ef1fe 6681 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6682 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6683 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6684 struct memblock_region *r;
b2f3eebe
TC
6685
6686 /* Need to find movable_zone earlier when movable_node is specified. */
6687 find_usable_zone_for_movable();
6688
6689 /*
6690 * If movable_node is specified, ignore kernelcore and movablecore
6691 * options.
6692 */
6693 if (movable_node_is_enabled()) {
136199f0
EM
6694 for_each_memblock(memory, r) {
6695 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6696 continue;
6697
136199f0 6698 nid = r->nid;
b2f3eebe 6699
136199f0 6700 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6701 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6702 min(usable_startpfn, zone_movable_pfn[nid]) :
6703 usable_startpfn;
6704 }
6705
6706 goto out2;
6707 }
2a1e274a 6708
342332e6
TI
6709 /*
6710 * If kernelcore=mirror is specified, ignore movablecore option
6711 */
6712 if (mirrored_kernelcore) {
6713 bool mem_below_4gb_not_mirrored = false;
6714
6715 for_each_memblock(memory, r) {
6716 if (memblock_is_mirror(r))
6717 continue;
6718
6719 nid = r->nid;
6720
6721 usable_startpfn = memblock_region_memory_base_pfn(r);
6722
6723 if (usable_startpfn < 0x100000) {
6724 mem_below_4gb_not_mirrored = true;
6725 continue;
6726 }
6727
6728 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6729 min(usable_startpfn, zone_movable_pfn[nid]) :
6730 usable_startpfn;
6731 }
6732
6733 if (mem_below_4gb_not_mirrored)
6734 pr_warn("This configuration results in unmirrored kernel memory.");
6735
6736 goto out2;
6737 }
6738
7e63efef 6739 /*
a5c6d650
DR
6740 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6741 * amount of necessary memory.
6742 */
6743 if (required_kernelcore_percent)
6744 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6745 10000UL;
6746 if (required_movablecore_percent)
6747 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6748 10000UL;
6749
6750 /*
6751 * If movablecore= was specified, calculate what size of
7e63efef
MG
6752 * kernelcore that corresponds so that memory usable for
6753 * any allocation type is evenly spread. If both kernelcore
6754 * and movablecore are specified, then the value of kernelcore
6755 * will be used for required_kernelcore if it's greater than
6756 * what movablecore would have allowed.
6757 */
6758 if (required_movablecore) {
7e63efef
MG
6759 unsigned long corepages;
6760
6761 /*
6762 * Round-up so that ZONE_MOVABLE is at least as large as what
6763 * was requested by the user
6764 */
6765 required_movablecore =
6766 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6767 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6768 corepages = totalpages - required_movablecore;
6769
6770 required_kernelcore = max(required_kernelcore, corepages);
6771 }
6772
bde304bd
XQ
6773 /*
6774 * If kernelcore was not specified or kernelcore size is larger
6775 * than totalpages, there is no ZONE_MOVABLE.
6776 */
6777 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6778 goto out;
2a1e274a
MG
6779
6780 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6781 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6782
6783restart:
6784 /* Spread kernelcore memory as evenly as possible throughout nodes */
6785 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6786 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6787 unsigned long start_pfn, end_pfn;
6788
2a1e274a
MG
6789 /*
6790 * Recalculate kernelcore_node if the division per node
6791 * now exceeds what is necessary to satisfy the requested
6792 * amount of memory for the kernel
6793 */
6794 if (required_kernelcore < kernelcore_node)
6795 kernelcore_node = required_kernelcore / usable_nodes;
6796
6797 /*
6798 * As the map is walked, we track how much memory is usable
6799 * by the kernel using kernelcore_remaining. When it is
6800 * 0, the rest of the node is usable by ZONE_MOVABLE
6801 */
6802 kernelcore_remaining = kernelcore_node;
6803
6804 /* Go through each range of PFNs within this node */
c13291a5 6805 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6806 unsigned long size_pages;
6807
c13291a5 6808 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6809 if (start_pfn >= end_pfn)
6810 continue;
6811
6812 /* Account for what is only usable for kernelcore */
6813 if (start_pfn < usable_startpfn) {
6814 unsigned long kernel_pages;
6815 kernel_pages = min(end_pfn, usable_startpfn)
6816 - start_pfn;
6817
6818 kernelcore_remaining -= min(kernel_pages,
6819 kernelcore_remaining);
6820 required_kernelcore -= min(kernel_pages,
6821 required_kernelcore);
6822
6823 /* Continue if range is now fully accounted */
6824 if (end_pfn <= usable_startpfn) {
6825
6826 /*
6827 * Push zone_movable_pfn to the end so
6828 * that if we have to rebalance
6829 * kernelcore across nodes, we will
6830 * not double account here
6831 */
6832 zone_movable_pfn[nid] = end_pfn;
6833 continue;
6834 }
6835 start_pfn = usable_startpfn;
6836 }
6837
6838 /*
6839 * The usable PFN range for ZONE_MOVABLE is from
6840 * start_pfn->end_pfn. Calculate size_pages as the
6841 * number of pages used as kernelcore
6842 */
6843 size_pages = end_pfn - start_pfn;
6844 if (size_pages > kernelcore_remaining)
6845 size_pages = kernelcore_remaining;
6846 zone_movable_pfn[nid] = start_pfn + size_pages;
6847
6848 /*
6849 * Some kernelcore has been met, update counts and
6850 * break if the kernelcore for this node has been
b8af2941 6851 * satisfied
2a1e274a
MG
6852 */
6853 required_kernelcore -= min(required_kernelcore,
6854 size_pages);
6855 kernelcore_remaining -= size_pages;
6856 if (!kernelcore_remaining)
6857 break;
6858 }
6859 }
6860
6861 /*
6862 * If there is still required_kernelcore, we do another pass with one
6863 * less node in the count. This will push zone_movable_pfn[nid] further
6864 * along on the nodes that still have memory until kernelcore is
b8af2941 6865 * satisfied
2a1e274a
MG
6866 */
6867 usable_nodes--;
6868 if (usable_nodes && required_kernelcore > usable_nodes)
6869 goto restart;
6870
b2f3eebe 6871out2:
2a1e274a
MG
6872 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6873 for (nid = 0; nid < MAX_NUMNODES; nid++)
6874 zone_movable_pfn[nid] =
6875 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6876
20e6926d 6877out:
66918dcd 6878 /* restore the node_state */
4b0ef1fe 6879 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6880}
6881
4b0ef1fe
LJ
6882/* Any regular or high memory on that node ? */
6883static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6884{
37b07e41
LS
6885 enum zone_type zone_type;
6886
4b0ef1fe 6887 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6888 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6889 if (populated_zone(zone)) {
7b0e0c0e
OS
6890 if (IS_ENABLED(CONFIG_HIGHMEM))
6891 node_set_state(nid, N_HIGH_MEMORY);
6892 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 6893 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6894 break;
6895 }
37b07e41 6896 }
37b07e41
LS
6897}
6898
c713216d
MG
6899/**
6900 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6901 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6902 *
6903 * This will call free_area_init_node() for each active node in the system.
7d018176 6904 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6905 * zone in each node and their holes is calculated. If the maximum PFN
6906 * between two adjacent zones match, it is assumed that the zone is empty.
6907 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6908 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6909 * starts where the previous one ended. For example, ZONE_DMA32 starts
6910 * at arch_max_dma_pfn.
6911 */
6912void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6913{
c13291a5
TH
6914 unsigned long start_pfn, end_pfn;
6915 int i, nid;
a6af2bc3 6916
c713216d
MG
6917 /* Record where the zone boundaries are */
6918 memset(arch_zone_lowest_possible_pfn, 0,
6919 sizeof(arch_zone_lowest_possible_pfn));
6920 memset(arch_zone_highest_possible_pfn, 0,
6921 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6922
6923 start_pfn = find_min_pfn_with_active_regions();
6924
6925 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6926 if (i == ZONE_MOVABLE)
6927 continue;
90cae1fe
OH
6928
6929 end_pfn = max(max_zone_pfn[i], start_pfn);
6930 arch_zone_lowest_possible_pfn[i] = start_pfn;
6931 arch_zone_highest_possible_pfn[i] = end_pfn;
6932
6933 start_pfn = end_pfn;
c713216d 6934 }
2a1e274a
MG
6935
6936 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6937 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6938 find_zone_movable_pfns_for_nodes();
c713216d 6939
c713216d 6940 /* Print out the zone ranges */
f88dfff5 6941 pr_info("Zone ranges:\n");
2a1e274a
MG
6942 for (i = 0; i < MAX_NR_ZONES; i++) {
6943 if (i == ZONE_MOVABLE)
6944 continue;
f88dfff5 6945 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6946 if (arch_zone_lowest_possible_pfn[i] ==
6947 arch_zone_highest_possible_pfn[i])
f88dfff5 6948 pr_cont("empty\n");
72f0ba02 6949 else
8d29e18a
JG
6950 pr_cont("[mem %#018Lx-%#018Lx]\n",
6951 (u64)arch_zone_lowest_possible_pfn[i]
6952 << PAGE_SHIFT,
6953 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6954 << PAGE_SHIFT) - 1);
2a1e274a
MG
6955 }
6956
6957 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6958 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6959 for (i = 0; i < MAX_NUMNODES; i++) {
6960 if (zone_movable_pfn[i])
8d29e18a
JG
6961 pr_info(" Node %d: %#018Lx\n", i,
6962 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6963 }
c713216d 6964
f2d52fe5 6965 /* Print out the early node map */
f88dfff5 6966 pr_info("Early memory node ranges\n");
c13291a5 6967 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6968 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6969 (u64)start_pfn << PAGE_SHIFT,
6970 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6971
6972 /* Initialise every node */
708614e6 6973 mminit_verify_pageflags_layout();
8ef82866 6974 setup_nr_node_ids();
e181ae0c 6975 zero_resv_unavail();
c713216d
MG
6976 for_each_online_node(nid) {
6977 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6978 free_area_init_node(nid, NULL,
c713216d 6979 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6980
6981 /* Any memory on that node */
6982 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6983 node_set_state(nid, N_MEMORY);
6984 check_for_memory(pgdat, nid);
c713216d
MG
6985 }
6986}
2a1e274a 6987
a5c6d650
DR
6988static int __init cmdline_parse_core(char *p, unsigned long *core,
6989 unsigned long *percent)
2a1e274a
MG
6990{
6991 unsigned long long coremem;
a5c6d650
DR
6992 char *endptr;
6993
2a1e274a
MG
6994 if (!p)
6995 return -EINVAL;
6996
a5c6d650
DR
6997 /* Value may be a percentage of total memory, otherwise bytes */
6998 coremem = simple_strtoull(p, &endptr, 0);
6999 if (*endptr == '%') {
7000 /* Paranoid check for percent values greater than 100 */
7001 WARN_ON(coremem > 100);
2a1e274a 7002
a5c6d650
DR
7003 *percent = coremem;
7004 } else {
7005 coremem = memparse(p, &p);
7006 /* Paranoid check that UL is enough for the coremem value */
7007 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7008
a5c6d650
DR
7009 *core = coremem >> PAGE_SHIFT;
7010 *percent = 0UL;
7011 }
2a1e274a
MG
7012 return 0;
7013}
ed7ed365 7014
7e63efef
MG
7015/*
7016 * kernelcore=size sets the amount of memory for use for allocations that
7017 * cannot be reclaimed or migrated.
7018 */
7019static int __init cmdline_parse_kernelcore(char *p)
7020{
342332e6
TI
7021 /* parse kernelcore=mirror */
7022 if (parse_option_str(p, "mirror")) {
7023 mirrored_kernelcore = true;
7024 return 0;
7025 }
7026
a5c6d650
DR
7027 return cmdline_parse_core(p, &required_kernelcore,
7028 &required_kernelcore_percent);
7e63efef
MG
7029}
7030
7031/*
7032 * movablecore=size sets the amount of memory for use for allocations that
7033 * can be reclaimed or migrated.
7034 */
7035static int __init cmdline_parse_movablecore(char *p)
7036{
a5c6d650
DR
7037 return cmdline_parse_core(p, &required_movablecore,
7038 &required_movablecore_percent);
7e63efef
MG
7039}
7040
ed7ed365 7041early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7042early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7043
0ee332c1 7044#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7045
c3d5f5f0
JL
7046void adjust_managed_page_count(struct page *page, long count)
7047{
7048 spin_lock(&managed_page_count_lock);
7049 page_zone(page)->managed_pages += count;
7050 totalram_pages += count;
3dcc0571
JL
7051#ifdef CONFIG_HIGHMEM
7052 if (PageHighMem(page))
7053 totalhigh_pages += count;
7054#endif
c3d5f5f0
JL
7055 spin_unlock(&managed_page_count_lock);
7056}
3dcc0571 7057EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7058
11199692 7059unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 7060{
11199692
JL
7061 void *pos;
7062 unsigned long pages = 0;
69afade7 7063
11199692
JL
7064 start = (void *)PAGE_ALIGN((unsigned long)start);
7065 end = (void *)((unsigned long)end & PAGE_MASK);
7066 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7067 struct page *page = virt_to_page(pos);
7068 void *direct_map_addr;
7069
7070 /*
7071 * 'direct_map_addr' might be different from 'pos'
7072 * because some architectures' virt_to_page()
7073 * work with aliases. Getting the direct map
7074 * address ensures that we get a _writeable_
7075 * alias for the memset().
7076 */
7077 direct_map_addr = page_address(page);
dbe67df4 7078 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7079 memset(direct_map_addr, poison, PAGE_SIZE);
7080
7081 free_reserved_page(page);
69afade7
JL
7082 }
7083
7084 if (pages && s)
adb1fe9a
JP
7085 pr_info("Freeing %s memory: %ldK\n",
7086 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7087
7088 return pages;
7089}
11199692 7090EXPORT_SYMBOL(free_reserved_area);
69afade7 7091
cfa11e08
JL
7092#ifdef CONFIG_HIGHMEM
7093void free_highmem_page(struct page *page)
7094{
7095 __free_reserved_page(page);
7096 totalram_pages++;
7b4b2a0d 7097 page_zone(page)->managed_pages++;
cfa11e08
JL
7098 totalhigh_pages++;
7099}
7100#endif
7101
7ee3d4e8
JL
7102
7103void __init mem_init_print_info(const char *str)
7104{
7105 unsigned long physpages, codesize, datasize, rosize, bss_size;
7106 unsigned long init_code_size, init_data_size;
7107
7108 physpages = get_num_physpages();
7109 codesize = _etext - _stext;
7110 datasize = _edata - _sdata;
7111 rosize = __end_rodata - __start_rodata;
7112 bss_size = __bss_stop - __bss_start;
7113 init_data_size = __init_end - __init_begin;
7114 init_code_size = _einittext - _sinittext;
7115
7116 /*
7117 * Detect special cases and adjust section sizes accordingly:
7118 * 1) .init.* may be embedded into .data sections
7119 * 2) .init.text.* may be out of [__init_begin, __init_end],
7120 * please refer to arch/tile/kernel/vmlinux.lds.S.
7121 * 3) .rodata.* may be embedded into .text or .data sections.
7122 */
7123#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7124 do { \
7125 if (start <= pos && pos < end && size > adj) \
7126 size -= adj; \
7127 } while (0)
7ee3d4e8
JL
7128
7129 adj_init_size(__init_begin, __init_end, init_data_size,
7130 _sinittext, init_code_size);
7131 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7132 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7133 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7134 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7135
7136#undef adj_init_size
7137
756a025f 7138 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7139#ifdef CONFIG_HIGHMEM
756a025f 7140 ", %luK highmem"
7ee3d4e8 7141#endif
756a025f
JP
7142 "%s%s)\n",
7143 nr_free_pages() << (PAGE_SHIFT - 10),
7144 physpages << (PAGE_SHIFT - 10),
7145 codesize >> 10, datasize >> 10, rosize >> 10,
7146 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7147 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7148 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7149#ifdef CONFIG_HIGHMEM
756a025f 7150 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7151#endif
756a025f 7152 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7153}
7154
0e0b864e 7155/**
88ca3b94
RD
7156 * set_dma_reserve - set the specified number of pages reserved in the first zone
7157 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7158 *
013110a7 7159 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7160 * In the DMA zone, a significant percentage may be consumed by kernel image
7161 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7162 * function may optionally be used to account for unfreeable pages in the
7163 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7164 * smaller per-cpu batchsize.
0e0b864e
MG
7165 */
7166void __init set_dma_reserve(unsigned long new_dma_reserve)
7167{
7168 dma_reserve = new_dma_reserve;
7169}
7170
1da177e4
LT
7171void __init free_area_init(unsigned long *zones_size)
7172{
e181ae0c 7173 zero_resv_unavail();
9109fb7b 7174 free_area_init_node(0, zones_size,
1da177e4
LT
7175 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7176}
1da177e4 7177
005fd4bb 7178static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7179{
1da177e4 7180
005fd4bb
SAS
7181 lru_add_drain_cpu(cpu);
7182 drain_pages(cpu);
9f8f2172 7183
005fd4bb
SAS
7184 /*
7185 * Spill the event counters of the dead processor
7186 * into the current processors event counters.
7187 * This artificially elevates the count of the current
7188 * processor.
7189 */
7190 vm_events_fold_cpu(cpu);
9f8f2172 7191
005fd4bb
SAS
7192 /*
7193 * Zero the differential counters of the dead processor
7194 * so that the vm statistics are consistent.
7195 *
7196 * This is only okay since the processor is dead and cannot
7197 * race with what we are doing.
7198 */
7199 cpu_vm_stats_fold(cpu);
7200 return 0;
1da177e4 7201}
1da177e4
LT
7202
7203void __init page_alloc_init(void)
7204{
005fd4bb
SAS
7205 int ret;
7206
7207 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7208 "mm/page_alloc:dead", NULL,
7209 page_alloc_cpu_dead);
7210 WARN_ON(ret < 0);
1da177e4
LT
7211}
7212
cb45b0e9 7213/*
34b10060 7214 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7215 * or min_free_kbytes changes.
7216 */
7217static void calculate_totalreserve_pages(void)
7218{
7219 struct pglist_data *pgdat;
7220 unsigned long reserve_pages = 0;
2f6726e5 7221 enum zone_type i, j;
cb45b0e9
HA
7222
7223 for_each_online_pgdat(pgdat) {
281e3726
MG
7224
7225 pgdat->totalreserve_pages = 0;
7226
cb45b0e9
HA
7227 for (i = 0; i < MAX_NR_ZONES; i++) {
7228 struct zone *zone = pgdat->node_zones + i;
3484b2de 7229 long max = 0;
cb45b0e9
HA
7230
7231 /* Find valid and maximum lowmem_reserve in the zone */
7232 for (j = i; j < MAX_NR_ZONES; j++) {
7233 if (zone->lowmem_reserve[j] > max)
7234 max = zone->lowmem_reserve[j];
7235 }
7236
41858966
MG
7237 /* we treat the high watermark as reserved pages. */
7238 max += high_wmark_pages(zone);
cb45b0e9 7239
b40da049
JL
7240 if (max > zone->managed_pages)
7241 max = zone->managed_pages;
a8d01437 7242
281e3726 7243 pgdat->totalreserve_pages += max;
a8d01437 7244
cb45b0e9
HA
7245 reserve_pages += max;
7246 }
7247 }
7248 totalreserve_pages = reserve_pages;
7249}
7250
1da177e4
LT
7251/*
7252 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7253 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7254 * has a correct pages reserved value, so an adequate number of
7255 * pages are left in the zone after a successful __alloc_pages().
7256 */
7257static void setup_per_zone_lowmem_reserve(void)
7258{
7259 struct pglist_data *pgdat;
2f6726e5 7260 enum zone_type j, idx;
1da177e4 7261
ec936fc5 7262 for_each_online_pgdat(pgdat) {
1da177e4
LT
7263 for (j = 0; j < MAX_NR_ZONES; j++) {
7264 struct zone *zone = pgdat->node_zones + j;
b40da049 7265 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
7266
7267 zone->lowmem_reserve[j] = 0;
7268
2f6726e5
CL
7269 idx = j;
7270 while (idx) {
1da177e4
LT
7271 struct zone *lower_zone;
7272
2f6726e5 7273 idx--;
1da177e4 7274 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7275
7276 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7277 sysctl_lowmem_reserve_ratio[idx] = 0;
7278 lower_zone->lowmem_reserve[j] = 0;
7279 } else {
7280 lower_zone->lowmem_reserve[j] =
7281 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7282 }
b40da049 7283 managed_pages += lower_zone->managed_pages;
1da177e4
LT
7284 }
7285 }
7286 }
cb45b0e9
HA
7287
7288 /* update totalreserve_pages */
7289 calculate_totalreserve_pages();
1da177e4
LT
7290}
7291
cfd3da1e 7292static void __setup_per_zone_wmarks(void)
1da177e4
LT
7293{
7294 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7295 unsigned long lowmem_pages = 0;
7296 struct zone *zone;
7297 unsigned long flags;
7298
7299 /* Calculate total number of !ZONE_HIGHMEM pages */
7300 for_each_zone(zone) {
7301 if (!is_highmem(zone))
b40da049 7302 lowmem_pages += zone->managed_pages;
1da177e4
LT
7303 }
7304
7305 for_each_zone(zone) {
ac924c60
AM
7306 u64 tmp;
7307
1125b4e3 7308 spin_lock_irqsave(&zone->lock, flags);
b40da049 7309 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7310 do_div(tmp, lowmem_pages);
1da177e4
LT
7311 if (is_highmem(zone)) {
7312 /*
669ed175
NP
7313 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7314 * need highmem pages, so cap pages_min to a small
7315 * value here.
7316 *
41858966 7317 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7318 * deltas control asynch page reclaim, and so should
669ed175 7319 * not be capped for highmem.
1da177e4 7320 */
90ae8d67 7321 unsigned long min_pages;
1da177e4 7322
b40da049 7323 min_pages = zone->managed_pages / 1024;
90ae8d67 7324 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7325 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7326 } else {
669ed175
NP
7327 /*
7328 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7329 * proportionate to the zone's size.
7330 */
41858966 7331 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7332 }
7333
795ae7a0
JW
7334 /*
7335 * Set the kswapd watermarks distance according to the
7336 * scale factor in proportion to available memory, but
7337 * ensure a minimum size on small systems.
7338 */
7339 tmp = max_t(u64, tmp >> 2,
7340 mult_frac(zone->managed_pages,
7341 watermark_scale_factor, 10000));
7342
7343 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7344 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7345
1125b4e3 7346 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7347 }
cb45b0e9
HA
7348
7349 /* update totalreserve_pages */
7350 calculate_totalreserve_pages();
1da177e4
LT
7351}
7352
cfd3da1e
MG
7353/**
7354 * setup_per_zone_wmarks - called when min_free_kbytes changes
7355 * or when memory is hot-{added|removed}
7356 *
7357 * Ensures that the watermark[min,low,high] values for each zone are set
7358 * correctly with respect to min_free_kbytes.
7359 */
7360void setup_per_zone_wmarks(void)
7361{
b93e0f32
MH
7362 static DEFINE_SPINLOCK(lock);
7363
7364 spin_lock(&lock);
cfd3da1e 7365 __setup_per_zone_wmarks();
b93e0f32 7366 spin_unlock(&lock);
cfd3da1e
MG
7367}
7368
1da177e4
LT
7369/*
7370 * Initialise min_free_kbytes.
7371 *
7372 * For small machines we want it small (128k min). For large machines
7373 * we want it large (64MB max). But it is not linear, because network
7374 * bandwidth does not increase linearly with machine size. We use
7375 *
b8af2941 7376 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7377 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7378 *
7379 * which yields
7380 *
7381 * 16MB: 512k
7382 * 32MB: 724k
7383 * 64MB: 1024k
7384 * 128MB: 1448k
7385 * 256MB: 2048k
7386 * 512MB: 2896k
7387 * 1024MB: 4096k
7388 * 2048MB: 5792k
7389 * 4096MB: 8192k
7390 * 8192MB: 11584k
7391 * 16384MB: 16384k
7392 */
1b79acc9 7393int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7394{
7395 unsigned long lowmem_kbytes;
5f12733e 7396 int new_min_free_kbytes;
1da177e4
LT
7397
7398 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7399 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7400
7401 if (new_min_free_kbytes > user_min_free_kbytes) {
7402 min_free_kbytes = new_min_free_kbytes;
7403 if (min_free_kbytes < 128)
7404 min_free_kbytes = 128;
7405 if (min_free_kbytes > 65536)
7406 min_free_kbytes = 65536;
7407 } else {
7408 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7409 new_min_free_kbytes, user_min_free_kbytes);
7410 }
bc75d33f 7411 setup_per_zone_wmarks();
a6cccdc3 7412 refresh_zone_stat_thresholds();
1da177e4 7413 setup_per_zone_lowmem_reserve();
6423aa81
JK
7414
7415#ifdef CONFIG_NUMA
7416 setup_min_unmapped_ratio();
7417 setup_min_slab_ratio();
7418#endif
7419
1da177e4
LT
7420 return 0;
7421}
bc22af74 7422core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7423
7424/*
b8af2941 7425 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7426 * that we can call two helper functions whenever min_free_kbytes
7427 * changes.
7428 */
cccad5b9 7429int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7430 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7431{
da8c757b
HP
7432 int rc;
7433
7434 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7435 if (rc)
7436 return rc;
7437
5f12733e
MH
7438 if (write) {
7439 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7440 setup_per_zone_wmarks();
5f12733e 7441 }
1da177e4
LT
7442 return 0;
7443}
7444
795ae7a0
JW
7445int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7446 void __user *buffer, size_t *length, loff_t *ppos)
7447{
7448 int rc;
7449
7450 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7451 if (rc)
7452 return rc;
7453
7454 if (write)
7455 setup_per_zone_wmarks();
7456
7457 return 0;
7458}
7459
9614634f 7460#ifdef CONFIG_NUMA
6423aa81 7461static void setup_min_unmapped_ratio(void)
9614634f 7462{
6423aa81 7463 pg_data_t *pgdat;
9614634f 7464 struct zone *zone;
9614634f 7465
a5f5f91d 7466 for_each_online_pgdat(pgdat)
81cbcbc2 7467 pgdat->min_unmapped_pages = 0;
a5f5f91d 7468
9614634f 7469 for_each_zone(zone)
a5f5f91d 7470 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7471 sysctl_min_unmapped_ratio) / 100;
9614634f 7472}
0ff38490 7473
6423aa81
JK
7474
7475int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7476 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7477{
0ff38490
CL
7478 int rc;
7479
8d65af78 7480 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7481 if (rc)
7482 return rc;
7483
6423aa81
JK
7484 setup_min_unmapped_ratio();
7485
7486 return 0;
7487}
7488
7489static void setup_min_slab_ratio(void)
7490{
7491 pg_data_t *pgdat;
7492 struct zone *zone;
7493
a5f5f91d
MG
7494 for_each_online_pgdat(pgdat)
7495 pgdat->min_slab_pages = 0;
7496
0ff38490 7497 for_each_zone(zone)
a5f5f91d 7498 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7499 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7500}
7501
7502int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7503 void __user *buffer, size_t *length, loff_t *ppos)
7504{
7505 int rc;
7506
7507 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7508 if (rc)
7509 return rc;
7510
7511 setup_min_slab_ratio();
7512
0ff38490
CL
7513 return 0;
7514}
9614634f
CL
7515#endif
7516
1da177e4
LT
7517/*
7518 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7519 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7520 * whenever sysctl_lowmem_reserve_ratio changes.
7521 *
7522 * The reserve ratio obviously has absolutely no relation with the
41858966 7523 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7524 * if in function of the boot time zone sizes.
7525 */
cccad5b9 7526int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7527 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7528{
8d65af78 7529 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7530 setup_per_zone_lowmem_reserve();
7531 return 0;
7532}
7533
8ad4b1fb
RS
7534/*
7535 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7536 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7537 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7538 */
cccad5b9 7539int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7540 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7541{
7542 struct zone *zone;
7cd2b0a3 7543 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7544 int ret;
7545
7cd2b0a3
DR
7546 mutex_lock(&pcp_batch_high_lock);
7547 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7548
8d65af78 7549 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7550 if (!write || ret < 0)
7551 goto out;
7552
7553 /* Sanity checking to avoid pcp imbalance */
7554 if (percpu_pagelist_fraction &&
7555 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7556 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7557 ret = -EINVAL;
7558 goto out;
7559 }
7560
7561 /* No change? */
7562 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7563 goto out;
c8e251fa 7564
364df0eb 7565 for_each_populated_zone(zone) {
7cd2b0a3
DR
7566 unsigned int cpu;
7567
22a7f12b 7568 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7569 pageset_set_high_and_batch(zone,
7570 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7571 }
7cd2b0a3 7572out:
c8e251fa 7573 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7574 return ret;
8ad4b1fb
RS
7575}
7576
a9919c79 7577#ifdef CONFIG_NUMA
f034b5d4 7578int hashdist = HASHDIST_DEFAULT;
1da177e4 7579
1da177e4
LT
7580static int __init set_hashdist(char *str)
7581{
7582 if (!str)
7583 return 0;
7584 hashdist = simple_strtoul(str, &str, 0);
7585 return 1;
7586}
7587__setup("hashdist=", set_hashdist);
7588#endif
7589
f6f34b43
SD
7590#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7591/*
7592 * Returns the number of pages that arch has reserved but
7593 * is not known to alloc_large_system_hash().
7594 */
7595static unsigned long __init arch_reserved_kernel_pages(void)
7596{
7597 return 0;
7598}
7599#endif
7600
9017217b
PT
7601/*
7602 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7603 * machines. As memory size is increased the scale is also increased but at
7604 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7605 * quadruples the scale is increased by one, which means the size of hash table
7606 * only doubles, instead of quadrupling as well.
7607 * Because 32-bit systems cannot have large physical memory, where this scaling
7608 * makes sense, it is disabled on such platforms.
7609 */
7610#if __BITS_PER_LONG > 32
7611#define ADAPT_SCALE_BASE (64ul << 30)
7612#define ADAPT_SCALE_SHIFT 2
7613#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7614#endif
7615
1da177e4
LT
7616/*
7617 * allocate a large system hash table from bootmem
7618 * - it is assumed that the hash table must contain an exact power-of-2
7619 * quantity of entries
7620 * - limit is the number of hash buckets, not the total allocation size
7621 */
7622void *__init alloc_large_system_hash(const char *tablename,
7623 unsigned long bucketsize,
7624 unsigned long numentries,
7625 int scale,
7626 int flags,
7627 unsigned int *_hash_shift,
7628 unsigned int *_hash_mask,
31fe62b9
TB
7629 unsigned long low_limit,
7630 unsigned long high_limit)
1da177e4 7631{
31fe62b9 7632 unsigned long long max = high_limit;
1da177e4
LT
7633 unsigned long log2qty, size;
7634 void *table = NULL;
3749a8f0 7635 gfp_t gfp_flags;
1da177e4
LT
7636
7637 /* allow the kernel cmdline to have a say */
7638 if (!numentries) {
7639 /* round applicable memory size up to nearest megabyte */
04903664 7640 numentries = nr_kernel_pages;
f6f34b43 7641 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7642
7643 /* It isn't necessary when PAGE_SIZE >= 1MB */
7644 if (PAGE_SHIFT < 20)
7645 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7646
9017217b
PT
7647#if __BITS_PER_LONG > 32
7648 if (!high_limit) {
7649 unsigned long adapt;
7650
7651 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7652 adapt <<= ADAPT_SCALE_SHIFT)
7653 scale++;
7654 }
7655#endif
7656
1da177e4
LT
7657 /* limit to 1 bucket per 2^scale bytes of low memory */
7658 if (scale > PAGE_SHIFT)
7659 numentries >>= (scale - PAGE_SHIFT);
7660 else
7661 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7662
7663 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7664 if (unlikely(flags & HASH_SMALL)) {
7665 /* Makes no sense without HASH_EARLY */
7666 WARN_ON(!(flags & HASH_EARLY));
7667 if (!(numentries >> *_hash_shift)) {
7668 numentries = 1UL << *_hash_shift;
7669 BUG_ON(!numentries);
7670 }
7671 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7672 numentries = PAGE_SIZE / bucketsize;
1da177e4 7673 }
6e692ed3 7674 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7675
7676 /* limit allocation size to 1/16 total memory by default */
7677 if (max == 0) {
7678 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7679 do_div(max, bucketsize);
7680 }
074b8517 7681 max = min(max, 0x80000000ULL);
1da177e4 7682
31fe62b9
TB
7683 if (numentries < low_limit)
7684 numentries = low_limit;
1da177e4
LT
7685 if (numentries > max)
7686 numentries = max;
7687
f0d1b0b3 7688 log2qty = ilog2(numentries);
1da177e4 7689
3749a8f0 7690 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7691 do {
7692 size = bucketsize << log2qty;
ea1f5f37
PT
7693 if (flags & HASH_EARLY) {
7694 if (flags & HASH_ZERO)
7695 table = memblock_virt_alloc_nopanic(size, 0);
7696 else
7697 table = memblock_virt_alloc_raw(size, 0);
7698 } else if (hashdist) {
3749a8f0 7699 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7700 } else {
1037b83b
ED
7701 /*
7702 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7703 * some pages at the end of hash table which
7704 * alloc_pages_exact() automatically does
1037b83b 7705 */
264ef8a9 7706 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7707 table = alloc_pages_exact(size, gfp_flags);
7708 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7709 }
1da177e4
LT
7710 }
7711 } while (!table && size > PAGE_SIZE && --log2qty);
7712
7713 if (!table)
7714 panic("Failed to allocate %s hash table\n", tablename);
7715
1170532b
JP
7716 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7717 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7718
7719 if (_hash_shift)
7720 *_hash_shift = log2qty;
7721 if (_hash_mask)
7722 *_hash_mask = (1 << log2qty) - 1;
7723
7724 return table;
7725}
a117e66e 7726
a5d76b54 7727/*
80934513
MK
7728 * This function checks whether pageblock includes unmovable pages or not.
7729 * If @count is not zero, it is okay to include less @count unmovable pages
7730 *
b8af2941 7731 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7732 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7733 * check without lock_page also may miss some movable non-lru pages at
7734 * race condition. So you can't expect this function should be exact.
a5d76b54 7735 */
b023f468 7736bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7737 int migratetype,
b023f468 7738 bool skip_hwpoisoned_pages)
49ac8255
KH
7739{
7740 unsigned long pfn, iter, found;
47118af0 7741
49ac8255 7742 /*
15c30bc0
MH
7743 * TODO we could make this much more efficient by not checking every
7744 * page in the range if we know all of them are in MOVABLE_ZONE and
7745 * that the movable zone guarantees that pages are migratable but
7746 * the later is not the case right now unfortunatelly. E.g. movablecore
7747 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7748 */
49ac8255 7749
4da2ce25
MH
7750 /*
7751 * CMA allocations (alloc_contig_range) really need to mark isolate
7752 * CMA pageblocks even when they are not movable in fact so consider
7753 * them movable here.
7754 */
7755 if (is_migrate_cma(migratetype) &&
7756 is_migrate_cma(get_pageblock_migratetype(page)))
7757 return false;
7758
49ac8255
KH
7759 pfn = page_to_pfn(page);
7760 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7761 unsigned long check = pfn + iter;
7762
29723fcc 7763 if (!pfn_valid_within(check))
49ac8255 7764 continue;
29723fcc 7765
49ac8255 7766 page = pfn_to_page(check);
c8721bbb 7767
d7ab3672 7768 if (PageReserved(page))
15c30bc0 7769 goto unmovable;
d7ab3672 7770
c8721bbb
NH
7771 /*
7772 * Hugepages are not in LRU lists, but they're movable.
7773 * We need not scan over tail pages bacause we don't
7774 * handle each tail page individually in migration.
7775 */
7776 if (PageHuge(page)) {
464c7ffb
AK
7777
7778 if (!hugepage_migration_supported(page_hstate(page)))
7779 goto unmovable;
7780
c8721bbb
NH
7781 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7782 continue;
7783 }
7784
97d255c8
MK
7785 /*
7786 * We can't use page_count without pin a page
7787 * because another CPU can free compound page.
7788 * This check already skips compound tails of THP
0139aa7b 7789 * because their page->_refcount is zero at all time.
97d255c8 7790 */
fe896d18 7791 if (!page_ref_count(page)) {
49ac8255
KH
7792 if (PageBuddy(page))
7793 iter += (1 << page_order(page)) - 1;
7794 continue;
7795 }
97d255c8 7796
b023f468
WC
7797 /*
7798 * The HWPoisoned page may be not in buddy system, and
7799 * page_count() is not 0.
7800 */
7801 if (skip_hwpoisoned_pages && PageHWPoison(page))
7802 continue;
7803
0efadf48
YX
7804 if (__PageMovable(page))
7805 continue;
7806
49ac8255
KH
7807 if (!PageLRU(page))
7808 found++;
7809 /*
6b4f7799
JW
7810 * If there are RECLAIMABLE pages, we need to check
7811 * it. But now, memory offline itself doesn't call
7812 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7813 */
7814 /*
7815 * If the page is not RAM, page_count()should be 0.
7816 * we don't need more check. This is an _used_ not-movable page.
7817 *
7818 * The problematic thing here is PG_reserved pages. PG_reserved
7819 * is set to both of a memory hole page and a _used_ kernel
7820 * page at boot.
7821 */
7822 if (found > count)
15c30bc0 7823 goto unmovable;
49ac8255 7824 }
80934513 7825 return false;
15c30bc0
MH
7826unmovable:
7827 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7828 return true;
49ac8255
KH
7829}
7830
080fe206 7831#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7832
7833static unsigned long pfn_max_align_down(unsigned long pfn)
7834{
7835 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7836 pageblock_nr_pages) - 1);
7837}
7838
7839static unsigned long pfn_max_align_up(unsigned long pfn)
7840{
7841 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7842 pageblock_nr_pages));
7843}
7844
041d3a8c 7845/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7846static int __alloc_contig_migrate_range(struct compact_control *cc,
7847 unsigned long start, unsigned long end)
041d3a8c
MN
7848{
7849 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7850 unsigned long nr_reclaimed;
041d3a8c
MN
7851 unsigned long pfn = start;
7852 unsigned int tries = 0;
7853 int ret = 0;
7854
be49a6e1 7855 migrate_prep();
041d3a8c 7856
bb13ffeb 7857 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7858 if (fatal_signal_pending(current)) {
7859 ret = -EINTR;
7860 break;
7861 }
7862
bb13ffeb
MG
7863 if (list_empty(&cc->migratepages)) {
7864 cc->nr_migratepages = 0;
edc2ca61 7865 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7866 if (!pfn) {
7867 ret = -EINTR;
7868 break;
7869 }
7870 tries = 0;
7871 } else if (++tries == 5) {
7872 ret = ret < 0 ? ret : -EBUSY;
7873 break;
7874 }
7875
beb51eaa
MK
7876 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7877 &cc->migratepages);
7878 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7879
9c620e2b 7880 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 7881 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 7882 }
2a6f5124
SP
7883 if (ret < 0) {
7884 putback_movable_pages(&cc->migratepages);
7885 return ret;
7886 }
7887 return 0;
041d3a8c
MN
7888}
7889
7890/**
7891 * alloc_contig_range() -- tries to allocate given range of pages
7892 * @start: start PFN to allocate
7893 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7894 * @migratetype: migratetype of the underlaying pageblocks (either
7895 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7896 * in range must have the same migratetype and it must
7897 * be either of the two.
ca96b625 7898 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7899 *
7900 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 7901 * aligned. The PFN range must belong to a single zone.
041d3a8c 7902 *
2c7452a0
MK
7903 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7904 * pageblocks in the range. Once isolated, the pageblocks should not
7905 * be modified by others.
041d3a8c
MN
7906 *
7907 * Returns zero on success or negative error code. On success all
7908 * pages which PFN is in [start, end) are allocated for the caller and
7909 * need to be freed with free_contig_range().
7910 */
0815f3d8 7911int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7912 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7913{
041d3a8c 7914 unsigned long outer_start, outer_end;
d00181b9
KS
7915 unsigned int order;
7916 int ret = 0;
041d3a8c 7917
bb13ffeb
MG
7918 struct compact_control cc = {
7919 .nr_migratepages = 0,
7920 .order = -1,
7921 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7922 .mode = MIGRATE_SYNC,
bb13ffeb 7923 .ignore_skip_hint = true,
2583d671 7924 .no_set_skip_hint = true,
7dea19f9 7925 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7926 };
7927 INIT_LIST_HEAD(&cc.migratepages);
7928
041d3a8c
MN
7929 /*
7930 * What we do here is we mark all pageblocks in range as
7931 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7932 * have different sizes, and due to the way page allocator
7933 * work, we align the range to biggest of the two pages so
7934 * that page allocator won't try to merge buddies from
7935 * different pageblocks and change MIGRATE_ISOLATE to some
7936 * other migration type.
7937 *
7938 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7939 * migrate the pages from an unaligned range (ie. pages that
7940 * we are interested in). This will put all the pages in
7941 * range back to page allocator as MIGRATE_ISOLATE.
7942 *
7943 * When this is done, we take the pages in range from page
7944 * allocator removing them from the buddy system. This way
7945 * page allocator will never consider using them.
7946 *
7947 * This lets us mark the pageblocks back as
7948 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7949 * aligned range but not in the unaligned, original range are
7950 * put back to page allocator so that buddy can use them.
7951 */
7952
7953 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7954 pfn_max_align_up(end), migratetype,
7955 false);
041d3a8c 7956 if (ret)
86a595f9 7957 return ret;
041d3a8c 7958
8ef5849f
JK
7959 /*
7960 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7961 * So, just fall through. test_pages_isolated() has a tracepoint
7962 * which will report the busy page.
7963 *
7964 * It is possible that busy pages could become available before
7965 * the call to test_pages_isolated, and the range will actually be
7966 * allocated. So, if we fall through be sure to clear ret so that
7967 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7968 */
bb13ffeb 7969 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7970 if (ret && ret != -EBUSY)
041d3a8c 7971 goto done;
63cd4489 7972 ret =0;
041d3a8c
MN
7973
7974 /*
7975 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7976 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7977 * more, all pages in [start, end) are free in page allocator.
7978 * What we are going to do is to allocate all pages from
7979 * [start, end) (that is remove them from page allocator).
7980 *
7981 * The only problem is that pages at the beginning and at the
7982 * end of interesting range may be not aligned with pages that
7983 * page allocator holds, ie. they can be part of higher order
7984 * pages. Because of this, we reserve the bigger range and
7985 * once this is done free the pages we are not interested in.
7986 *
7987 * We don't have to hold zone->lock here because the pages are
7988 * isolated thus they won't get removed from buddy.
7989 */
7990
7991 lru_add_drain_all();
510f5507 7992 drain_all_pages(cc.zone);
041d3a8c
MN
7993
7994 order = 0;
7995 outer_start = start;
7996 while (!PageBuddy(pfn_to_page(outer_start))) {
7997 if (++order >= MAX_ORDER) {
8ef5849f
JK
7998 outer_start = start;
7999 break;
041d3a8c
MN
8000 }
8001 outer_start &= ~0UL << order;
8002 }
8003
8ef5849f
JK
8004 if (outer_start != start) {
8005 order = page_order(pfn_to_page(outer_start));
8006
8007 /*
8008 * outer_start page could be small order buddy page and
8009 * it doesn't include start page. Adjust outer_start
8010 * in this case to report failed page properly
8011 * on tracepoint in test_pages_isolated()
8012 */
8013 if (outer_start + (1UL << order) <= start)
8014 outer_start = start;
8015 }
8016
041d3a8c 8017 /* Make sure the range is really isolated. */
b023f468 8018 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8019 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8020 __func__, outer_start, end);
041d3a8c
MN
8021 ret = -EBUSY;
8022 goto done;
8023 }
8024
49f223a9 8025 /* Grab isolated pages from freelists. */
bb13ffeb 8026 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8027 if (!outer_end) {
8028 ret = -EBUSY;
8029 goto done;
8030 }
8031
8032 /* Free head and tail (if any) */
8033 if (start != outer_start)
8034 free_contig_range(outer_start, start - outer_start);
8035 if (end != outer_end)
8036 free_contig_range(end, outer_end - end);
8037
8038done:
8039 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8040 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8041 return ret;
8042}
8043
8044void free_contig_range(unsigned long pfn, unsigned nr_pages)
8045{
bcc2b02f
MS
8046 unsigned int count = 0;
8047
8048 for (; nr_pages--; pfn++) {
8049 struct page *page = pfn_to_page(pfn);
8050
8051 count += page_count(page) != 1;
8052 __free_page(page);
8053 }
8054 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8055}
8056#endif
8057
d883c6cf 8058#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8059/*
8060 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8061 * page high values need to be recalulated.
8062 */
4ed7e022
JL
8063void __meminit zone_pcp_update(struct zone *zone)
8064{
0a647f38 8065 unsigned cpu;
c8e251fa 8066 mutex_lock(&pcp_batch_high_lock);
0a647f38 8067 for_each_possible_cpu(cpu)
169f6c19
CS
8068 pageset_set_high_and_batch(zone,
8069 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8070 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8071}
8072#endif
8073
340175b7
JL
8074void zone_pcp_reset(struct zone *zone)
8075{
8076 unsigned long flags;
5a883813
MK
8077 int cpu;
8078 struct per_cpu_pageset *pset;
340175b7
JL
8079
8080 /* avoid races with drain_pages() */
8081 local_irq_save(flags);
8082 if (zone->pageset != &boot_pageset) {
5a883813
MK
8083 for_each_online_cpu(cpu) {
8084 pset = per_cpu_ptr(zone->pageset, cpu);
8085 drain_zonestat(zone, pset);
8086 }
340175b7
JL
8087 free_percpu(zone->pageset);
8088 zone->pageset = &boot_pageset;
8089 }
8090 local_irq_restore(flags);
8091}
8092
6dcd73d7 8093#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8094/*
b9eb6319
JK
8095 * All pages in the range must be in a single zone and isolated
8096 * before calling this.
0c0e6195
KH
8097 */
8098void
8099__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8100{
8101 struct page *page;
8102 struct zone *zone;
7aeb09f9 8103 unsigned int order, i;
0c0e6195
KH
8104 unsigned long pfn;
8105 unsigned long flags;
8106 /* find the first valid pfn */
8107 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8108 if (pfn_valid(pfn))
8109 break;
8110 if (pfn == end_pfn)
8111 return;
2d070eab 8112 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8113 zone = page_zone(pfn_to_page(pfn));
8114 spin_lock_irqsave(&zone->lock, flags);
8115 pfn = start_pfn;
8116 while (pfn < end_pfn) {
8117 if (!pfn_valid(pfn)) {
8118 pfn++;
8119 continue;
8120 }
8121 page = pfn_to_page(pfn);
b023f468
WC
8122 /*
8123 * The HWPoisoned page may be not in buddy system, and
8124 * page_count() is not 0.
8125 */
8126 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8127 pfn++;
8128 SetPageReserved(page);
8129 continue;
8130 }
8131
0c0e6195
KH
8132 BUG_ON(page_count(page));
8133 BUG_ON(!PageBuddy(page));
8134 order = page_order(page);
8135#ifdef CONFIG_DEBUG_VM
1170532b
JP
8136 pr_info("remove from free list %lx %d %lx\n",
8137 pfn, 1 << order, end_pfn);
0c0e6195
KH
8138#endif
8139 list_del(&page->lru);
8140 rmv_page_order(page);
8141 zone->free_area[order].nr_free--;
0c0e6195
KH
8142 for (i = 0; i < (1 << order); i++)
8143 SetPageReserved((page+i));
8144 pfn += (1 << order);
8145 }
8146 spin_unlock_irqrestore(&zone->lock, flags);
8147}
8148#endif
8d22ba1b 8149
8d22ba1b
WF
8150bool is_free_buddy_page(struct page *page)
8151{
8152 struct zone *zone = page_zone(page);
8153 unsigned long pfn = page_to_pfn(page);
8154 unsigned long flags;
7aeb09f9 8155 unsigned int order;
8d22ba1b
WF
8156
8157 spin_lock_irqsave(&zone->lock, flags);
8158 for (order = 0; order < MAX_ORDER; order++) {
8159 struct page *page_head = page - (pfn & ((1 << order) - 1));
8160
8161 if (PageBuddy(page_head) && page_order(page_head) >= order)
8162 break;
8163 }
8164 spin_unlock_irqrestore(&zone->lock, flags);
8165
8166 return order < MAX_ORDER;
8167}
d4ae9916
NH
8168
8169#ifdef CONFIG_MEMORY_FAILURE
8170/*
8171 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8172 * test is performed under the zone lock to prevent a race against page
8173 * allocation.
8174 */
8175bool set_hwpoison_free_buddy_page(struct page *page)
8176{
8177 struct zone *zone = page_zone(page);
8178 unsigned long pfn = page_to_pfn(page);
8179 unsigned long flags;
8180 unsigned int order;
8181 bool hwpoisoned = false;
8182
8183 spin_lock_irqsave(&zone->lock, flags);
8184 for (order = 0; order < MAX_ORDER; order++) {
8185 struct page *page_head = page - (pfn & ((1 << order) - 1));
8186
8187 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8188 if (!TestSetPageHWPoison(page))
8189 hwpoisoned = true;
8190 break;
8191 }
8192 }
8193 spin_unlock_irqrestore(&zone->lock, flags);
8194
8195 return hwpoisoned;
8196}
8197#endif