]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/page_alloc.c
mm: convert zone->managed_pages to atomic variable
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
edbe7d23 23#include <linux/memblock.h>
1da177e4 24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b8c73fc2 26#include <linux/kasan.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
a238ab5b 32#include <linux/ratelimit.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
a6cccdc3 41#include <linux/vmstat.h>
4be38e35 42#include <linux/mempolicy.h>
4b94ffdc 43#include <linux/memremap.h>
6811378e 44#include <linux/stop_machine.h>
c713216d
MG
45#include <linux/sort.h>
46#include <linux/pfn.h>
3fcfab16 47#include <linux/backing-dev.h>
933e312e 48#include <linux/fault-inject.h>
a5d76b54 49#include <linux/page-isolation.h>
eefa864b 50#include <linux/page_ext.h>
3ac7fe5a 51#include <linux/debugobjects.h>
dbb1f81c 52#include <linux/kmemleak.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
d379f01d 55#include <trace/events/oom.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
949f7ec5 59#include <linux/hugetlb.h>
8bd75c77 60#include <linux/sched/rt.h>
5b3cc15a 61#include <linux/sched/mm.h>
48c96a36 62#include <linux/page_owner.h>
0e1cc95b 63#include <linux/kthread.h>
4949148a 64#include <linux/memcontrol.h>
42c269c8 65#include <linux/ftrace.h>
d92a8cfc 66#include <linux/lockdep.h>
556b969a 67#include <linux/nmi.h>
eb414681 68#include <linux/psi.h>
1da177e4 69
7ee3d4e8 70#include <asm/sections.h>
1da177e4 71#include <asm/tlbflush.h>
ac924c60 72#include <asm/div64.h>
1da177e4
LT
73#include "internal.h"
74
c8e251fa
CS
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 77#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 78
72812019
LS
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
4518085e
KW
84DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
7aac7898
LS
86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
87/*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 95int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
96#endif
97
bd233f53
MG
98/* work_structs for global per-cpu drains */
99DEFINE_MUTEX(pcpu_drain_mutex);
100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
38addce8 102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 103volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
104EXPORT_SYMBOL(latent_entropy);
105#endif
106
1da177e4 107/*
13808910 108 * Array of node states.
1da177e4 109 */
13808910
CL
110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113#ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115#ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 117#endif
20b2f52b 118 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
bb14c2c7
VB
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
452aa699
RW
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
452aa699 161 */
c9e664f1
RW
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
452aa699 166{
55f2503c 167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
452aa699
RW
172}
173
c9e664f1 174void pm_restrict_gfp_mask(void)
452aa699 175{
55f2503c 176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
d0164adc 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 180}
f90ac398
MG
181
182bool pm_suspended_storage(void)
183{
d0164adc 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
185 return false;
186 return true;
187}
452aa699
RW
188#endif /* CONFIG_PM_SLEEP */
189
d9c23400 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 191unsigned int pageblock_order __read_mostly;
d9c23400
MG
192#endif
193
d98c7a09 194static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 195
1da177e4
LT
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
1da177e4 206 */
d3cda233 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 208#ifdef CONFIG_ZONE_DMA
d3cda233 209 [ZONE_DMA] = 256,
4b51d669 210#endif
fb0e7942 211#ifdef CONFIG_ZONE_DMA32
d3cda233 212 [ZONE_DMA32] = 256,
fb0e7942 213#endif
d3cda233 214 [ZONE_NORMAL] = 32,
e53ef38d 215#ifdef CONFIG_HIGHMEM
d3cda233 216 [ZONE_HIGHMEM] = 0,
e53ef38d 217#endif
d3cda233 218 [ZONE_MOVABLE] = 0,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
7f16f91f
DR
268static unsigned long nr_kernel_pages __meminitdata;
269static unsigned long nr_all_pages __meminitdata;
270static unsigned long dma_reserve __meminitdata;
1da177e4 271
0ee332c1 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7f16f91f
DR
273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long required_kernelcore __initdata;
a5c6d650 276static unsigned long required_kernelcore_percent __initdata;
7f16f91f 277static unsigned long required_movablecore __initdata;
a5c6d650 278static unsigned long required_movablecore_percent __initdata;
7f16f91f
DR
279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
281
282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283int movable_zone;
284EXPORT_SYMBOL(movable_zone);
285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 286
418508c1
MS
287#if MAX_NUMNODES > 1
288int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 289int nr_online_nodes __read_mostly = 1;
418508c1 290EXPORT_SYMBOL(nr_node_ids);
62bc62a8 291EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
292#endif
293
9ef9acb0
MG
294int page_group_by_mobility_disabled __read_mostly;
295
3a80a7fa 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3a80a7fa 297/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 299{
ef70b6f4
MG
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
303 return true;
304
305 return false;
306}
307
308/*
d3035be4 309 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
310 * later in the boot cycle when it can be parallelised.
311 */
d3035be4
PT
312static bool __meminit
313defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 314{
d3035be4
PT
315 static unsigned long prev_end_pfn, nr_initialised;
316
317 /*
318 * prev_end_pfn static that contains the end of previous zone
319 * No need to protect because called very early in boot before smp_init.
320 */
321 if (prev_end_pfn != end_pfn) {
322 prev_end_pfn = end_pfn;
323 nr_initialised = 0;
324 }
325
3c2c6488 326 /* Always populate low zones for address-constrained allocations */
d3035be4 327 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 328 return false;
d3035be4
PT
329 nr_initialised++;
330 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 NODE_DATA(nid)->first_deferred_pfn = pfn;
333 return true;
3a80a7fa 334 }
d3035be4 335 return false;
3a80a7fa
MG
336}
337#else
3a80a7fa
MG
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
d3035be4 343static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 344{
d3035be4 345 return false;
3a80a7fa
MG
346}
347#endif
348
0b423ca2
MG
349/* Return a pointer to the bitmap storing bits affecting a block of pages */
350static inline unsigned long *get_pageblock_bitmap(struct page *page,
351 unsigned long pfn)
352{
353#ifdef CONFIG_SPARSEMEM
354 return __pfn_to_section(pfn)->pageblock_flags;
355#else
356 return page_zone(page)->pageblock_flags;
357#endif /* CONFIG_SPARSEMEM */
358}
359
360static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
361{
362#ifdef CONFIG_SPARSEMEM
363 pfn &= (PAGES_PER_SECTION-1);
364 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365#else
366 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368#endif /* CONFIG_SPARSEMEM */
369}
370
371/**
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @end_bitidx: The last bit of interest to retrieve
376 * @mask: mask of bits that the caller is interested in
377 *
378 * Return: pageblock_bits flags
379 */
380static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
381 unsigned long pfn,
382 unsigned long end_bitidx,
383 unsigned long mask)
384{
385 unsigned long *bitmap;
386 unsigned long bitidx, word_bitidx;
387 unsigned long word;
388
389 bitmap = get_pageblock_bitmap(page, pfn);
390 bitidx = pfn_to_bitidx(page, pfn);
391 word_bitidx = bitidx / BITS_PER_LONG;
392 bitidx &= (BITS_PER_LONG-1);
393
394 word = bitmap[word_bitidx];
395 bitidx += end_bitidx;
396 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
397}
398
399unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402{
403 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
404}
405
406static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
407{
408 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
409}
410
411/**
412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413 * @page: The page within the block of interest
414 * @flags: The flags to set
415 * @pfn: The target page frame number
416 * @end_bitidx: The last bit of interest
417 * @mask: mask of bits that the caller is interested in
418 */
419void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
420 unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423{
424 unsigned long *bitmap;
425 unsigned long bitidx, word_bitidx;
426 unsigned long old_word, word;
427
428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
429
430 bitmap = get_pageblock_bitmap(page, pfn);
431 bitidx = pfn_to_bitidx(page, pfn);
432 word_bitidx = bitidx / BITS_PER_LONG;
433 bitidx &= (BITS_PER_LONG-1);
434
435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
436
437 bitidx += end_bitidx;
438 mask <<= (BITS_PER_LONG - bitidx - 1);
439 flags <<= (BITS_PER_LONG - bitidx - 1);
440
441 word = READ_ONCE(bitmap[word_bitidx]);
442 for (;;) {
443 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
444 if (word == old_word)
445 break;
446 word = old_word;
447 }
448}
3a80a7fa 449
ee6f509c 450void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 451{
5d0f3f72
KM
452 if (unlikely(page_group_by_mobility_disabled &&
453 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
454 migratetype = MIGRATE_UNMOVABLE;
455
b2a0ac88
MG
456 set_pageblock_flags_group(page, (unsigned long)migratetype,
457 PB_migrate, PB_migrate_end);
458}
459
13e7444b 460#ifdef CONFIG_DEBUG_VM
c6a57e19 461static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 462{
bdc8cb98
DH
463 int ret = 0;
464 unsigned seq;
465 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 466 unsigned long sp, start_pfn;
c6a57e19 467
bdc8cb98
DH
468 do {
469 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
470 start_pfn = zone->zone_start_pfn;
471 sp = zone->spanned_pages;
108bcc96 472 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
473 ret = 1;
474 } while (zone_span_seqretry(zone, seq));
475
b5e6a5a2 476 if (ret)
613813e8
DH
477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 pfn, zone_to_nid(zone), zone->name,
479 start_pfn, start_pfn + sp);
b5e6a5a2 480
bdc8cb98 481 return ret;
c6a57e19
DH
482}
483
484static int page_is_consistent(struct zone *zone, struct page *page)
485{
14e07298 486 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 487 return 0;
1da177e4 488 if (zone != page_zone(page))
c6a57e19
DH
489 return 0;
490
491 return 1;
492}
493/*
494 * Temporary debugging check for pages not lying within a given zone.
495 */
d73d3c9f 496static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
497{
498 if (page_outside_zone_boundaries(zone, page))
1da177e4 499 return 1;
c6a57e19
DH
500 if (!page_is_consistent(zone, page))
501 return 1;
502
1da177e4
LT
503 return 0;
504}
13e7444b 505#else
d73d3c9f 506static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
507{
508 return 0;
509}
510#endif
511
d230dec1
KS
512static void bad_page(struct page *page, const char *reason,
513 unsigned long bad_flags)
1da177e4 514{
d936cf9b
HD
515 static unsigned long resume;
516 static unsigned long nr_shown;
517 static unsigned long nr_unshown;
518
519 /*
520 * Allow a burst of 60 reports, then keep quiet for that minute;
521 * or allow a steady drip of one report per second.
522 */
523 if (nr_shown == 60) {
524 if (time_before(jiffies, resume)) {
525 nr_unshown++;
526 goto out;
527 }
528 if (nr_unshown) {
ff8e8116 529 pr_alert(
1e9e6365 530 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
531 nr_unshown);
532 nr_unshown = 0;
533 }
534 nr_shown = 0;
535 }
536 if (nr_shown++ == 0)
537 resume = jiffies + 60 * HZ;
538
ff8e8116 539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 540 current->comm, page_to_pfn(page));
ff8e8116
VB
541 __dump_page(page, reason);
542 bad_flags &= page->flags;
543 if (bad_flags)
544 pr_alert("bad because of flags: %#lx(%pGp)\n",
545 bad_flags, &bad_flags);
4e462112 546 dump_page_owner(page);
3dc14741 547
4f31888c 548 print_modules();
1da177e4 549 dump_stack();
d936cf9b 550out:
8cc3b392 551 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 552 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 553 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
554}
555
1da177e4
LT
556/*
557 * Higher-order pages are called "compound pages". They are structured thusly:
558 *
1d798ca3 559 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 560 *
1d798ca3
KS
561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 563 *
1d798ca3
KS
564 * The first tail page's ->compound_dtor holds the offset in array of compound
565 * page destructors. See compound_page_dtors.
1da177e4 566 *
1d798ca3 567 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 568 * This usage means that zero-order pages may not be compound.
1da177e4 569 */
d98c7a09 570
9a982250 571void free_compound_page(struct page *page)
d98c7a09 572{
d85f3385 573 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
574}
575
d00181b9 576void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
577{
578 int i;
579 int nr_pages = 1 << order;
580
f1e61557 581 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++) {
585 struct page *p = page + i;
58a84aa9 586 set_page_count(p, 0);
1c290f64 587 p->mapping = TAIL_MAPPING;
1d798ca3 588 set_compound_head(p, page);
18229df5 589 }
53f9263b 590 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
591}
592
c0a32fc5
SG
593#ifdef CONFIG_DEBUG_PAGEALLOC
594unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
595bool _debug_pagealloc_enabled __read_mostly
596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 597EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
598bool _debug_guardpage_enabled __read_mostly;
599
031bc574
JK
600static int __init early_debug_pagealloc(char *buf)
601{
602 if (!buf)
603 return -EINVAL;
2a138dc7 604 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
605}
606early_param("debug_pagealloc", early_debug_pagealloc);
607
e30825f1
JK
608static bool need_debug_guardpage(void)
609{
031bc574
JK
610 /* If we don't use debug_pagealloc, we don't need guard page */
611 if (!debug_pagealloc_enabled())
612 return false;
613
f1c1e9f7
JK
614 if (!debug_guardpage_minorder())
615 return false;
616
e30825f1
JK
617 return true;
618}
619
620static void init_debug_guardpage(void)
621{
031bc574
JK
622 if (!debug_pagealloc_enabled())
623 return;
624
f1c1e9f7
JK
625 if (!debug_guardpage_minorder())
626 return;
627
e30825f1
JK
628 _debug_guardpage_enabled = true;
629}
630
631struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
634};
c0a32fc5
SG
635
636static int __init debug_guardpage_minorder_setup(char *buf)
637{
638 unsigned long res;
639
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 641 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
642 return 0;
643 }
644 _debug_guardpage_minorder = res;
1170532b 645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
646 return 0;
647}
f1c1e9f7 648early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 649
acbc15a4 650static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 651 unsigned int order, int migratetype)
c0a32fc5 652{
e30825f1
JK
653 struct page_ext *page_ext;
654
655 if (!debug_guardpage_enabled())
acbc15a4
JK
656 return false;
657
658 if (order >= debug_guardpage_minorder())
659 return false;
e30825f1
JK
660
661 page_ext = lookup_page_ext(page);
f86e4271 662 if (unlikely(!page_ext))
acbc15a4 663 return false;
f86e4271 664
e30825f1
JK
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
2847cf95
JK
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
671
672 return true;
c0a32fc5
SG
673}
674
2847cf95
JK
675static inline void clear_page_guard(struct zone *zone, struct page *page,
676 unsigned int order, int migratetype)
c0a32fc5 677{
e30825f1
JK
678 struct page_ext *page_ext;
679
680 if (!debug_guardpage_enabled())
681 return;
682
683 page_ext = lookup_page_ext(page);
f86e4271
YS
684 if (unlikely(!page_ext))
685 return;
686
e30825f1
JK
687 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688
2847cf95
JK
689 set_page_private(page, 0);
690 if (!is_migrate_isolate(migratetype))
691 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
692}
693#else
980ac167 694struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
695static inline bool set_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) { return false; }
2847cf95
JK
697static inline void clear_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
c0a32fc5
SG
699#endif
700
7aeb09f9 701static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 702{
4c21e2f2 703 set_page_private(page, order);
676165a8 704 __SetPageBuddy(page);
1da177e4
LT
705}
706
707static inline void rmv_page_order(struct page *page)
708{
676165a8 709 __ClearPageBuddy(page);
4c21e2f2 710 set_page_private(page, 0);
1da177e4
LT
711}
712
1da177e4
LT
713/*
714 * This function checks whether a page is free && is the buddy
6e292b9b 715 * we can coalesce a page and its buddy if
13ad59df 716 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 717 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
718 * (c) a page and its buddy have the same order &&
719 * (d) a page and its buddy are in the same zone.
676165a8 720 *
6e292b9b
MW
721 * For recording whether a page is in the buddy system, we set PageBuddy.
722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 723 *
676165a8 724 * For recording page's order, we use page_private(page).
1da177e4 725 */
cb2b95e1 726static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 727 unsigned int order)
1da177e4 728{
c0a32fc5 729 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
4c5018ce
WY
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
c0a32fc5
SG
735 return 1;
736 }
737
cb2b95e1 738 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
4c5018ce
WY
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
6aa3001b 749 return 1;
676165a8 750 }
6aa3001b 751 return 0;
1da177e4
LT
752}
753
754/*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
767 * free pages of length of (1 << order) and marked with PageBuddy.
768 * Page's order is recorded in page_private(page) field.
1da177e4 769 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
770 * other. That is, if we allocate a small block, and both were
771 * free, the remainder of the region must be split into blocks.
1da177e4 772 * If a block is freed, and its buddy is also free, then this
5f63b720 773 * triggers coalescing into a block of larger size.
1da177e4 774 *
6d49e352 775 * -- nyc
1da177e4
LT
776 */
777
48db57f8 778static inline void __free_one_page(struct page *page,
dc4b0caf 779 unsigned long pfn,
ed0ae21d
MG
780 struct zone *zone, unsigned int order,
781 int migratetype)
1da177e4 782{
76741e77
VB
783 unsigned long combined_pfn;
784 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 785 struct page *buddy;
d9dddbf5
VB
786 unsigned int max_order;
787
788 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 789
d29bb978 790 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 792
ed0ae21d 793 VM_BUG_ON(migratetype == -1);
d9dddbf5 794 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 795 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 796
76741e77 797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 799
d9dddbf5 800continue_merging:
3c605096 801 while (order < max_order - 1) {
76741e77
VB
802 buddy_pfn = __find_buddy_pfn(pfn, order);
803 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
804
805 if (!pfn_valid_within(buddy_pfn))
806 goto done_merging;
cb2b95e1 807 if (!page_is_buddy(page, buddy, order))
d9dddbf5 808 goto done_merging;
c0a32fc5
SG
809 /*
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
812 */
813 if (page_is_guard(buddy)) {
2847cf95 814 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
815 } else {
816 list_del(&buddy->lru);
817 zone->free_area[order].nr_free--;
818 rmv_page_order(buddy);
819 }
76741e77
VB
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
1da177e4
LT
823 order++;
824 }
d9dddbf5
VB
825 if (max_order < MAX_ORDER) {
826 /* If we are here, it means order is >= pageblock_order.
827 * We want to prevent merge between freepages on isolate
828 * pageblock and normal pageblock. Without this, pageblock
829 * isolation could cause incorrect freepage or CMA accounting.
830 *
831 * We don't want to hit this code for the more frequent
832 * low-order merging.
833 */
834 if (unlikely(has_isolate_pageblock(zone))) {
835 int buddy_mt;
836
76741e77
VB
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
839 buddy_mt = get_pageblock_migratetype(buddy);
840
841 if (migratetype != buddy_mt
842 && (is_migrate_isolate(migratetype) ||
843 is_migrate_isolate(buddy_mt)))
844 goto done_merging;
845 }
846 max_order++;
847 goto continue_merging;
848 }
849
850done_merging:
1da177e4 851 set_page_order(page, order);
6dda9d55
CZ
852
853 /*
854 * If this is not the largest possible page, check if the buddy
855 * of the next-highest order is free. If it is, it's possible
856 * that pages are being freed that will coalesce soon. In case,
857 * that is happening, add the free page to the tail of the list
858 * so it's less likely to be used soon and more likely to be merged
859 * as a higher order page
860 */
13ad59df 861 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 862 struct page *higher_page, *higher_buddy;
76741e77
VB
863 combined_pfn = buddy_pfn & pfn;
864 higher_page = page + (combined_pfn - pfn);
865 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
866 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
867 if (pfn_valid_within(buddy_pfn) &&
868 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876out:
1da177e4
LT
877 zone->free_area[order].nr_free++;
878}
879
7bfec6f4
MG
880/*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887{
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893#ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895#endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900}
901
bb552ac6 902static void free_pages_check_bad(struct page *page)
1da177e4 903{
7bfec6f4
MG
904 const char *bad_reason;
905 unsigned long bad_flags;
906
7bfec6f4
MG
907 bad_reason = NULL;
908 bad_flags = 0;
f0b791a3 909
53f9263b 910 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
fe896d18 914 if (unlikely(page_ref_count(page) != 0))
0139aa7b 915 bad_reason = "nonzero _refcount";
f0b791a3
DH
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
9edad6ea
JW
920#ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923#endif
7bfec6f4 924 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
925}
926
927static inline int free_pages_check(struct page *page)
928{
da838d4f 929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 930 return 0;
bb552ac6
MG
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
7bfec6f4 934 return 1;
1da177e4
LT
935}
936
4db7548c
MG
937static int free_tail_pages_check(struct page *head_page, struct page *page)
938{
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
4da1984e 953 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
fa3015b7 962 * deferred_list.next -- ignore value.
4db7548c
MG
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985}
986
e2769dbd
MG
987static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
4db7548c 989{
e2769dbd 990 int bad = 0;
4db7548c 991
4db7548c
MG
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
e2769dbd 994 trace_mm_page_free(page, order);
e2769dbd
MG
995
996 /*
997 * Check tail pages before head page information is cleared to
998 * avoid checking PageCompound for order-0 pages.
999 */
1000 if (unlikely(order)) {
1001 bool compound = PageCompound(page);
1002 int i;
1003
1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1005
9a73f61b
KS
1006 if (compound)
1007 ClearPageDoubleMap(page);
e2769dbd
MG
1008 for (i = 1; i < (1 << order); i++) {
1009 if (compound)
1010 bad += free_tail_pages_check(page, page + i);
1011 if (unlikely(free_pages_check(page + i))) {
1012 bad++;
1013 continue;
1014 }
1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1016 }
1017 }
bda807d4 1018 if (PageMappingFlags(page))
4db7548c 1019 page->mapping = NULL;
c4159a75 1020 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1021 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1022 if (check_free)
1023 bad += free_pages_check(page);
1024 if (bad)
1025 return false;
4db7548c 1026
e2769dbd
MG
1027 page_cpupid_reset_last(page);
1028 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 reset_page_owner(page, order);
4db7548c
MG
1030
1031 if (!PageHighMem(page)) {
1032 debug_check_no_locks_freed(page_address(page),
e2769dbd 1033 PAGE_SIZE << order);
4db7548c 1034 debug_check_no_obj_freed(page_address(page),
e2769dbd 1035 PAGE_SIZE << order);
4db7548c 1036 }
e2769dbd
MG
1037 arch_free_page(page, order);
1038 kernel_poison_pages(page, 1 << order, 0);
1039 kernel_map_pages(page, 1 << order, 0);
29b52de1 1040 kasan_free_pages(page, order);
4db7548c 1041
4db7548c
MG
1042 return true;
1043}
1044
e2769dbd
MG
1045#ifdef CONFIG_DEBUG_VM
1046static inline bool free_pcp_prepare(struct page *page)
1047{
1048 return free_pages_prepare(page, 0, true);
1049}
1050
1051static inline bool bulkfree_pcp_prepare(struct page *page)
1052{
1053 return false;
1054}
1055#else
1056static bool free_pcp_prepare(struct page *page)
1057{
1058 return free_pages_prepare(page, 0, false);
1059}
1060
4db7548c
MG
1061static bool bulkfree_pcp_prepare(struct page *page)
1062{
1063 return free_pages_check(page);
1064}
1065#endif /* CONFIG_DEBUG_VM */
1066
97334162
AL
1067static inline void prefetch_buddy(struct page *page)
1068{
1069 unsigned long pfn = page_to_pfn(page);
1070 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1071 struct page *buddy = page + (buddy_pfn - pfn);
1072
1073 prefetch(buddy);
1074}
1075
1da177e4 1076/*
5f8dcc21 1077 * Frees a number of pages from the PCP lists
1da177e4 1078 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1079 * count is the number of pages to free.
1da177e4
LT
1080 *
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1083 *
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1086 */
5f8dcc21
MG
1087static void free_pcppages_bulk(struct zone *zone, int count,
1088 struct per_cpu_pages *pcp)
1da177e4 1089{
5f8dcc21 1090 int migratetype = 0;
a6f9edd6 1091 int batch_free = 0;
97334162 1092 int prefetch_nr = 0;
3777999d 1093 bool isolated_pageblocks;
0a5f4e5b
AL
1094 struct page *page, *tmp;
1095 LIST_HEAD(head);
f2260e6b 1096
e5b31ac2 1097 while (count) {
5f8dcc21
MG
1098 struct list_head *list;
1099
1100 /*
a6f9edd6
MG
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
5f8dcc21
MG
1106 */
1107 do {
a6f9edd6 1108 batch_free++;
5f8dcc21
MG
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
48db57f8 1113
1d16871d
NK
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1116 batch_free = count;
1d16871d 1117
a6f9edd6 1118 do {
a16601c5 1119 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1120 /* must delete to avoid corrupting pcp list */
a6f9edd6 1121 list_del(&page->lru);
77ba9062 1122 pcp->count--;
aa016d14 1123
4db7548c
MG
1124 if (bulkfree_pcp_prepare(page))
1125 continue;
1126
0a5f4e5b 1127 list_add_tail(&page->lru, &head);
97334162
AL
1128
1129 /*
1130 * We are going to put the page back to the global
1131 * pool, prefetch its buddy to speed up later access
1132 * under zone->lock. It is believed the overhead of
1133 * an additional test and calculating buddy_pfn here
1134 * can be offset by reduced memory latency later. To
1135 * avoid excessive prefetching due to large count, only
1136 * prefetch buddy for the first pcp->batch nr of pages.
1137 */
1138 if (prefetch_nr++ < pcp->batch)
1139 prefetch_buddy(page);
e5b31ac2 1140 } while (--count && --batch_free && !list_empty(list));
1da177e4 1141 }
0a5f4e5b
AL
1142
1143 spin_lock(&zone->lock);
1144 isolated_pageblocks = has_isolate_pageblock(zone);
1145
1146 /*
1147 * Use safe version since after __free_one_page(),
1148 * page->lru.next will not point to original list.
1149 */
1150 list_for_each_entry_safe(page, tmp, &head, lru) {
1151 int mt = get_pcppage_migratetype(page);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks))
1156 mt = get_pageblock_migratetype(page);
1157
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 }
d34b0733 1161 spin_unlock(&zone->lock);
1da177e4
LT
1162}
1163
dc4b0caf
MG
1164static void free_one_page(struct zone *zone,
1165 struct page *page, unsigned long pfn,
7aeb09f9 1166 unsigned int order,
ed0ae21d 1167 int migratetype)
1da177e4 1168{
d34b0733 1169 spin_lock(&zone->lock);
ad53f92e
JK
1170 if (unlikely(has_isolate_pageblock(zone) ||
1171 is_migrate_isolate(migratetype))) {
1172 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1173 }
dc4b0caf 1174 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1175 spin_unlock(&zone->lock);
48db57f8
NP
1176}
1177
1e8ce83c 1178static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1179 unsigned long zone, int nid)
1e8ce83c 1180{
d0dc12e8 1181 mm_zero_struct_page(page);
1e8ce83c 1182 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1183 init_page_count(page);
1184 page_mapcount_reset(page);
1185 page_cpupid_reset_last(page);
2813b9c0 1186 page_kasan_tag_reset(page);
1e8ce83c 1187
1e8ce83c
RH
1188 INIT_LIST_HEAD(&page->lru);
1189#ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1193#endif
1194}
1195
7e18adb4 1196#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1197static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1198{
1199 pg_data_t *pgdat;
1200 int nid, zid;
1201
1202 if (!early_page_uninitialised(pfn))
1203 return;
1204
1205 nid = early_pfn_to_nid(pfn);
1206 pgdat = NODE_DATA(nid);
1207
1208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1209 struct zone *zone = &pgdat->node_zones[zid];
1210
1211 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1212 break;
1213 }
d0dc12e8 1214 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1215}
1216#else
1217static inline void init_reserved_page(unsigned long pfn)
1218{
1219}
1220#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1221
92923ca3
NZ
1222/*
1223 * Initialised pages do not have PageReserved set. This function is
1224 * called for each range allocated by the bootmem allocator and
1225 * marks the pages PageReserved. The remaining valid pages are later
1226 * sent to the buddy page allocator.
1227 */
4b50bcc7 1228void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1229{
1230 unsigned long start_pfn = PFN_DOWN(start);
1231 unsigned long end_pfn = PFN_UP(end);
1232
7e18adb4
MG
1233 for (; start_pfn < end_pfn; start_pfn++) {
1234 if (pfn_valid(start_pfn)) {
1235 struct page *page = pfn_to_page(start_pfn);
1236
1237 init_reserved_page(start_pfn);
1d798ca3
KS
1238
1239 /* Avoid false-positive PageTail() */
1240 INIT_LIST_HEAD(&page->lru);
1241
d483da5b
AD
1242 /*
1243 * no need for atomic set_bit because the struct
1244 * page is not visible yet so nobody should
1245 * access it yet.
1246 */
1247 __SetPageReserved(page);
7e18adb4
MG
1248 }
1249 }
92923ca3
NZ
1250}
1251
ec95f53a
KM
1252static void __free_pages_ok(struct page *page, unsigned int order)
1253{
d34b0733 1254 unsigned long flags;
95e34412 1255 int migratetype;
dc4b0caf 1256 unsigned long pfn = page_to_pfn(page);
ec95f53a 1257
e2769dbd 1258 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1259 return;
1260
cfc47a28 1261 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1262 local_irq_save(flags);
1263 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1264 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1265 local_irq_restore(flags);
1da177e4
LT
1266}
1267
949698a3 1268static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1269{
c3993076 1270 unsigned int nr_pages = 1 << order;
e2d0bd2b 1271 struct page *p = page;
c3993076 1272 unsigned int loop;
a226f6c8 1273
e2d0bd2b
YL
1274 prefetchw(p);
1275 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1276 prefetchw(p + 1);
c3993076
JW
1277 __ClearPageReserved(p);
1278 set_page_count(p, 0);
a226f6c8 1279 }
e2d0bd2b
YL
1280 __ClearPageReserved(p);
1281 set_page_count(p, 0);
c3993076 1282
9705bea5 1283 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1284 set_page_refcounted(page);
1285 __free_pages(page, order);
a226f6c8
DH
1286}
1287
75a592a4
MG
1288#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1289 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1290
75a592a4
MG
1291static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1292
1293int __meminit early_pfn_to_nid(unsigned long pfn)
1294{
7ace9917 1295 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1296 int nid;
1297
7ace9917 1298 spin_lock(&early_pfn_lock);
75a592a4 1299 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1300 if (nid < 0)
e4568d38 1301 nid = first_online_node;
7ace9917
MG
1302 spin_unlock(&early_pfn_lock);
1303
1304 return nid;
75a592a4
MG
1305}
1306#endif
1307
1308#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1309static inline bool __meminit __maybe_unused
1310meminit_pfn_in_nid(unsigned long pfn, int node,
1311 struct mminit_pfnnid_cache *state)
75a592a4
MG
1312{
1313 int nid;
1314
1315 nid = __early_pfn_to_nid(pfn, state);
1316 if (nid >= 0 && nid != node)
1317 return false;
1318 return true;
1319}
1320
1321/* Only safe to use early in boot when initialisation is single-threaded */
1322static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323{
1324 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1325}
1326
1327#else
1328
1329static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1330{
1331 return true;
1332}
d73d3c9f
MK
1333static inline bool __meminit __maybe_unused
1334meminit_pfn_in_nid(unsigned long pfn, int node,
1335 struct mminit_pfnnid_cache *state)
75a592a4
MG
1336{
1337 return true;
1338}
1339#endif
1340
1341
7c2ee349 1342void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1343 unsigned int order)
1344{
1345 if (early_page_uninitialised(pfn))
1346 return;
949698a3 1347 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1348}
1349
7cf91a98
JK
1350/*
1351 * Check that the whole (or subset of) a pageblock given by the interval of
1352 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1353 * with the migration of free compaction scanner. The scanners then need to
1354 * use only pfn_valid_within() check for arches that allow holes within
1355 * pageblocks.
1356 *
1357 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1358 *
1359 * It's possible on some configurations to have a setup like node0 node1 node0
1360 * i.e. it's possible that all pages within a zones range of pages do not
1361 * belong to a single zone. We assume that a border between node0 and node1
1362 * can occur within a single pageblock, but not a node0 node1 node0
1363 * interleaving within a single pageblock. It is therefore sufficient to check
1364 * the first and last page of a pageblock and avoid checking each individual
1365 * page in a pageblock.
1366 */
1367struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1368 unsigned long end_pfn, struct zone *zone)
1369{
1370 struct page *start_page;
1371 struct page *end_page;
1372
1373 /* end_pfn is one past the range we are checking */
1374 end_pfn--;
1375
1376 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1377 return NULL;
1378
2d070eab
MH
1379 start_page = pfn_to_online_page(start_pfn);
1380 if (!start_page)
1381 return NULL;
7cf91a98
JK
1382
1383 if (page_zone(start_page) != zone)
1384 return NULL;
1385
1386 end_page = pfn_to_page(end_pfn);
1387
1388 /* This gives a shorter code than deriving page_zone(end_page) */
1389 if (page_zone_id(start_page) != page_zone_id(end_page))
1390 return NULL;
1391
1392 return start_page;
1393}
1394
1395void set_zone_contiguous(struct zone *zone)
1396{
1397 unsigned long block_start_pfn = zone->zone_start_pfn;
1398 unsigned long block_end_pfn;
1399
1400 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1401 for (; block_start_pfn < zone_end_pfn(zone);
1402 block_start_pfn = block_end_pfn,
1403 block_end_pfn += pageblock_nr_pages) {
1404
1405 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1406
1407 if (!__pageblock_pfn_to_page(block_start_pfn,
1408 block_end_pfn, zone))
1409 return;
1410 }
1411
1412 /* We confirm that there is no hole */
1413 zone->contiguous = true;
1414}
1415
1416void clear_zone_contiguous(struct zone *zone)
1417{
1418 zone->contiguous = false;
1419}
1420
7e18adb4 1421#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1422static void __init deferred_free_range(unsigned long pfn,
1423 unsigned long nr_pages)
a4de83dd 1424{
2f47a91f
PT
1425 struct page *page;
1426 unsigned long i;
a4de83dd 1427
2f47a91f 1428 if (!nr_pages)
a4de83dd
MG
1429 return;
1430
2f47a91f
PT
1431 page = pfn_to_page(pfn);
1432
a4de83dd 1433 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1434 if (nr_pages == pageblock_nr_pages &&
1435 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1437 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1438 return;
1439 }
1440
e780149b
XQ
1441 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1442 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1443 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1444 __free_pages_boot_core(page, 0);
e780149b 1445 }
a4de83dd
MG
1446}
1447
d3cd131d
NS
1448/* Completion tracking for deferred_init_memmap() threads */
1449static atomic_t pgdat_init_n_undone __initdata;
1450static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1451
1452static inline void __init pgdat_init_report_one_done(void)
1453{
1454 if (atomic_dec_and_test(&pgdat_init_n_undone))
1455 complete(&pgdat_init_all_done_comp);
1456}
0e1cc95b 1457
2f47a91f 1458/*
80b1f41c
PT
1459 * Returns true if page needs to be initialized or freed to buddy allocator.
1460 *
1461 * First we check if pfn is valid on architectures where it is possible to have
1462 * holes within pageblock_nr_pages. On systems where it is not possible, this
1463 * function is optimized out.
1464 *
1465 * Then, we check if a current large page is valid by only checking the validity
1466 * of the head pfn.
1467 *
1468 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1469 * within a node: a pfn is between start and end of a node, but does not belong
1470 * to this memory node.
2f47a91f 1471 */
80b1f41c
PT
1472static inline bool __init
1473deferred_pfn_valid(int nid, unsigned long pfn,
1474 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1475{
80b1f41c
PT
1476 if (!pfn_valid_within(pfn))
1477 return false;
1478 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1479 return false;
1480 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1481 return false;
1482 return true;
1483}
2f47a91f 1484
80b1f41c
PT
1485/*
1486 * Free pages to buddy allocator. Try to free aligned pages in
1487 * pageblock_nr_pages sizes.
1488 */
1489static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1490 unsigned long end_pfn)
1491{
1492 struct mminit_pfnnid_cache nid_init_state = { };
1493 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1494 unsigned long nr_free = 0;
2f47a91f 1495
80b1f41c
PT
1496 for (; pfn < end_pfn; pfn++) {
1497 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1498 deferred_free_range(pfn - nr_free, nr_free);
1499 nr_free = 0;
1500 } else if (!(pfn & nr_pgmask)) {
1501 deferred_free_range(pfn - nr_free, nr_free);
1502 nr_free = 1;
3a2d7fa8 1503 touch_nmi_watchdog();
80b1f41c
PT
1504 } else {
1505 nr_free++;
1506 }
1507 }
1508 /* Free the last block of pages to allocator */
1509 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1510}
1511
80b1f41c
PT
1512/*
1513 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1514 * by performing it only once every pageblock_nr_pages.
1515 * Return number of pages initialized.
1516 */
1517static unsigned long __init deferred_init_pages(int nid, int zid,
1518 unsigned long pfn,
1519 unsigned long end_pfn)
2f47a91f
PT
1520{
1521 struct mminit_pfnnid_cache nid_init_state = { };
1522 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1523 unsigned long nr_pages = 0;
2f47a91f 1524 struct page *page = NULL;
2f47a91f 1525
80b1f41c
PT
1526 for (; pfn < end_pfn; pfn++) {
1527 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1528 page = NULL;
2f47a91f 1529 continue;
80b1f41c 1530 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1531 page = pfn_to_page(pfn);
3a2d7fa8 1532 touch_nmi_watchdog();
80b1f41c
PT
1533 } else {
1534 page++;
2f47a91f 1535 }
d0dc12e8 1536 __init_single_page(page, pfn, zid, nid);
80b1f41c 1537 nr_pages++;
2f47a91f 1538 }
80b1f41c 1539 return (nr_pages);
2f47a91f
PT
1540}
1541
7e18adb4 1542/* Initialise remaining memory on a node */
0e1cc95b 1543static int __init deferred_init_memmap(void *data)
7e18adb4 1544{
0e1cc95b
MG
1545 pg_data_t *pgdat = data;
1546 int nid = pgdat->node_id;
7e18adb4
MG
1547 unsigned long start = jiffies;
1548 unsigned long nr_pages = 0;
3a2d7fa8 1549 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1550 phys_addr_t spa, epa;
1551 int zid;
7e18adb4 1552 struct zone *zone;
0e1cc95b 1553 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1554 u64 i;
7e18adb4 1555
3a2d7fa8
PT
1556 /* Bind memory initialisation thread to a local node if possible */
1557 if (!cpumask_empty(cpumask))
1558 set_cpus_allowed_ptr(current, cpumask);
1559
1560 pgdat_resize_lock(pgdat, &flags);
1561 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1562 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1563 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1564 pgdat_init_report_one_done();
0e1cc95b
MG
1565 return 0;
1566 }
1567
7e18adb4
MG
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 pgdat->first_deferred_pfn = ULONG_MAX;
1572
1573 /* Only the highest zone is deferred so find it */
1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 zone = pgdat->node_zones + zid;
1576 if (first_init_pfn < zone_end_pfn(zone))
1577 break;
1578 }
2f47a91f 1579 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1580
80b1f41c
PT
1581 /*
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1586 */
1587 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1591 }
2f47a91f
PT
1592 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1595 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1596 }
3a2d7fa8 1597 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1598
1599 /* Sanity check that the next zone really is unpopulated */
1600 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1601
0e1cc95b 1602 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1603 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1604
1605 pgdat_init_report_one_done();
0e1cc95b
MG
1606 return 0;
1607}
c9e97a19
PT
1608
1609/*
1610 * During boot we initialize deferred pages on-demand, as needed, but once
1611 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1612 * and we can permanently disable that path.
1613 */
1614static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1615
1616/*
1617 * If this zone has deferred pages, try to grow it by initializing enough
1618 * deferred pages to satisfy the allocation specified by order, rounded up to
1619 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1620 * of SECTION_SIZE bytes by initializing struct pages in increments of
1621 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1622 *
1623 * Return true when zone was grown, otherwise return false. We return true even
1624 * when we grow less than requested, to let the caller decide if there are
1625 * enough pages to satisfy the allocation.
1626 *
1627 * Note: We use noinline because this function is needed only during boot, and
1628 * it is called from a __ref function _deferred_grow_zone. This way we are
1629 * making sure that it is not inlined into permanent text section.
1630 */
1631static noinline bool __init
1632deferred_grow_zone(struct zone *zone, unsigned int order)
1633{
1634 int zid = zone_idx(zone);
1635 int nid = zone_to_nid(zone);
1636 pg_data_t *pgdat = NODE_DATA(nid);
1637 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1638 unsigned long nr_pages = 0;
1639 unsigned long first_init_pfn, spfn, epfn, t, flags;
1640 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1641 phys_addr_t spa, epa;
1642 u64 i;
1643
1644 /* Only the last zone may have deferred pages */
1645 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1646 return false;
1647
1648 pgdat_resize_lock(pgdat, &flags);
1649
1650 /*
1651 * If deferred pages have been initialized while we were waiting for
1652 * the lock, return true, as the zone was grown. The caller will retry
1653 * this zone. We won't return to this function since the caller also
1654 * has this static branch.
1655 */
1656 if (!static_branch_unlikely(&deferred_pages)) {
1657 pgdat_resize_unlock(pgdat, &flags);
1658 return true;
1659 }
1660
1661 /*
1662 * If someone grew this zone while we were waiting for spinlock, return
1663 * true, as there might be enough pages already.
1664 */
1665 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1666 pgdat_resize_unlock(pgdat, &flags);
1667 return true;
1668 }
1669
1670 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1671
1672 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1673 pgdat_resize_unlock(pgdat, &flags);
1674 return false;
1675 }
1676
1677 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1678 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1679 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1680
1681 while (spfn < epfn && nr_pages < nr_pages_needed) {
1682 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1683 first_deferred_pfn = min(t, epfn);
1684 nr_pages += deferred_init_pages(nid, zid, spfn,
1685 first_deferred_pfn);
1686 spfn = first_deferred_pfn;
1687 }
1688
1689 if (nr_pages >= nr_pages_needed)
1690 break;
1691 }
1692
1693 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1694 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1695 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1696 deferred_free_pages(nid, zid, spfn, epfn);
1697
1698 if (first_deferred_pfn == epfn)
1699 break;
1700 }
1701 pgdat->first_deferred_pfn = first_deferred_pfn;
1702 pgdat_resize_unlock(pgdat, &flags);
1703
1704 return nr_pages > 0;
1705}
1706
1707/*
1708 * deferred_grow_zone() is __init, but it is called from
1709 * get_page_from_freelist() during early boot until deferred_pages permanently
1710 * disables this call. This is why we have refdata wrapper to avoid warning,
1711 * and to ensure that the function body gets unloaded.
1712 */
1713static bool __ref
1714_deferred_grow_zone(struct zone *zone, unsigned int order)
1715{
1716 return deferred_grow_zone(zone, order);
1717}
1718
7cf91a98 1719#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1720
1721void __init page_alloc_init_late(void)
1722{
7cf91a98
JK
1723 struct zone *zone;
1724
1725#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1726 int nid;
1727
d3cd131d
NS
1728 /* There will be num_node_state(N_MEMORY) threads */
1729 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1730 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1731 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1732 }
1733
1734 /* Block until all are initialised */
d3cd131d 1735 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1736
c9e97a19
PT
1737 /*
1738 * We initialized the rest of the deferred pages. Permanently disable
1739 * on-demand struct page initialization.
1740 */
1741 static_branch_disable(&deferred_pages);
1742
4248b0da
MG
1743 /* Reinit limits that are based on free pages after the kernel is up */
1744 files_maxfiles_init();
7cf91a98 1745#endif
3010f876
PT
1746#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1747 /* Discard memblock private memory */
1748 memblock_discard();
1749#endif
7cf91a98
JK
1750
1751 for_each_populated_zone(zone)
1752 set_zone_contiguous(zone);
7e18adb4 1753}
7e18adb4 1754
47118af0 1755#ifdef CONFIG_CMA
9cf510a5 1756/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1757void __init init_cma_reserved_pageblock(struct page *page)
1758{
1759 unsigned i = pageblock_nr_pages;
1760 struct page *p = page;
1761
1762 do {
1763 __ClearPageReserved(p);
1764 set_page_count(p, 0);
d883c6cf 1765 } while (++p, --i);
47118af0 1766
47118af0 1767 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1768
1769 if (pageblock_order >= MAX_ORDER) {
1770 i = pageblock_nr_pages;
1771 p = page;
1772 do {
1773 set_page_refcounted(p);
1774 __free_pages(p, MAX_ORDER - 1);
1775 p += MAX_ORDER_NR_PAGES;
1776 } while (i -= MAX_ORDER_NR_PAGES);
1777 } else {
1778 set_page_refcounted(page);
1779 __free_pages(page, pageblock_order);
1780 }
1781
3dcc0571 1782 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1783}
1784#endif
1da177e4
LT
1785
1786/*
1787 * The order of subdivision here is critical for the IO subsystem.
1788 * Please do not alter this order without good reasons and regression
1789 * testing. Specifically, as large blocks of memory are subdivided,
1790 * the order in which smaller blocks are delivered depends on the order
1791 * they're subdivided in this function. This is the primary factor
1792 * influencing the order in which pages are delivered to the IO
1793 * subsystem according to empirical testing, and this is also justified
1794 * by considering the behavior of a buddy system containing a single
1795 * large block of memory acted on by a series of small allocations.
1796 * This behavior is a critical factor in sglist merging's success.
1797 *
6d49e352 1798 * -- nyc
1da177e4 1799 */
085cc7d5 1800static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1801 int low, int high, struct free_area *area,
1802 int migratetype)
1da177e4
LT
1803{
1804 unsigned long size = 1 << high;
1805
1806 while (high > low) {
1807 area--;
1808 high--;
1809 size >>= 1;
309381fe 1810 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1811
acbc15a4
JK
1812 /*
1813 * Mark as guard pages (or page), that will allow to
1814 * merge back to allocator when buddy will be freed.
1815 * Corresponding page table entries will not be touched,
1816 * pages will stay not present in virtual address space
1817 */
1818 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1819 continue;
acbc15a4 1820
b2a0ac88 1821 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1822 area->nr_free++;
1823 set_page_order(&page[size], high);
1824 }
1da177e4
LT
1825}
1826
4e611801 1827static void check_new_page_bad(struct page *page)
1da177e4 1828{
4e611801
VB
1829 const char *bad_reason = NULL;
1830 unsigned long bad_flags = 0;
7bfec6f4 1831
53f9263b 1832 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1833 bad_reason = "nonzero mapcount";
1834 if (unlikely(page->mapping != NULL))
1835 bad_reason = "non-NULL mapping";
fe896d18 1836 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1837 bad_reason = "nonzero _count";
f4c18e6f
NH
1838 if (unlikely(page->flags & __PG_HWPOISON)) {
1839 bad_reason = "HWPoisoned (hardware-corrupted)";
1840 bad_flags = __PG_HWPOISON;
e570f56c
NH
1841 /* Don't complain about hwpoisoned pages */
1842 page_mapcount_reset(page); /* remove PageBuddy */
1843 return;
f4c18e6f 1844 }
f0b791a3
DH
1845 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1846 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1847 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1848 }
9edad6ea
JW
1849#ifdef CONFIG_MEMCG
1850 if (unlikely(page->mem_cgroup))
1851 bad_reason = "page still charged to cgroup";
1852#endif
4e611801
VB
1853 bad_page(page, bad_reason, bad_flags);
1854}
1855
1856/*
1857 * This page is about to be returned from the page allocator
1858 */
1859static inline int check_new_page(struct page *page)
1860{
1861 if (likely(page_expected_state(page,
1862 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1863 return 0;
1864
1865 check_new_page_bad(page);
1866 return 1;
2a7684a2
WF
1867}
1868
bd33ef36 1869static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1870{
1871 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1872 page_poisoning_enabled();
1414c7f4
LA
1873}
1874
479f854a
MG
1875#ifdef CONFIG_DEBUG_VM
1876static bool check_pcp_refill(struct page *page)
1877{
1878 return false;
1879}
1880
1881static bool check_new_pcp(struct page *page)
1882{
1883 return check_new_page(page);
1884}
1885#else
1886static bool check_pcp_refill(struct page *page)
1887{
1888 return check_new_page(page);
1889}
1890static bool check_new_pcp(struct page *page)
1891{
1892 return false;
1893}
1894#endif /* CONFIG_DEBUG_VM */
1895
1896static bool check_new_pages(struct page *page, unsigned int order)
1897{
1898 int i;
1899 for (i = 0; i < (1 << order); i++) {
1900 struct page *p = page + i;
1901
1902 if (unlikely(check_new_page(p)))
1903 return true;
1904 }
1905
1906 return false;
1907}
1908
46f24fd8
JK
1909inline void post_alloc_hook(struct page *page, unsigned int order,
1910 gfp_t gfp_flags)
1911{
1912 set_page_private(page, 0);
1913 set_page_refcounted(page);
1914
1915 arch_alloc_page(page, order);
1916 kernel_map_pages(page, 1 << order, 1);
1917 kernel_poison_pages(page, 1 << order, 1);
1918 kasan_alloc_pages(page, order);
1919 set_page_owner(page, order, gfp_flags);
1920}
1921
479f854a 1922static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1923 unsigned int alloc_flags)
2a7684a2
WF
1924{
1925 int i;
689bcebf 1926
46f24fd8 1927 post_alloc_hook(page, order, gfp_flags);
17cf4406 1928
bd33ef36 1929 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1930 for (i = 0; i < (1 << order); i++)
1931 clear_highpage(page + i);
17cf4406
NP
1932
1933 if (order && (gfp_flags & __GFP_COMP))
1934 prep_compound_page(page, order);
1935
75379191 1936 /*
2f064f34 1937 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1938 * allocate the page. The expectation is that the caller is taking
1939 * steps that will free more memory. The caller should avoid the page
1940 * being used for !PFMEMALLOC purposes.
1941 */
2f064f34
MH
1942 if (alloc_flags & ALLOC_NO_WATERMARKS)
1943 set_page_pfmemalloc(page);
1944 else
1945 clear_page_pfmemalloc(page);
1da177e4
LT
1946}
1947
56fd56b8
MG
1948/*
1949 * Go through the free lists for the given migratetype and remove
1950 * the smallest available page from the freelists
1951 */
85ccc8fa 1952static __always_inline
728ec980 1953struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1954 int migratetype)
1955{
1956 unsigned int current_order;
b8af2941 1957 struct free_area *area;
56fd56b8
MG
1958 struct page *page;
1959
1960 /* Find a page of the appropriate size in the preferred list */
1961 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1962 area = &(zone->free_area[current_order]);
a16601c5 1963 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1964 struct page, lru);
a16601c5
GT
1965 if (!page)
1966 continue;
56fd56b8
MG
1967 list_del(&page->lru);
1968 rmv_page_order(page);
1969 area->nr_free--;
56fd56b8 1970 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1971 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1972 return page;
1973 }
1974
1975 return NULL;
1976}
1977
1978
b2a0ac88
MG
1979/*
1980 * This array describes the order lists are fallen back to when
1981 * the free lists for the desirable migrate type are depleted
1982 */
47118af0 1983static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1984 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1986 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1987#ifdef CONFIG_CMA
974a786e 1988 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1989#endif
194159fb 1990#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1991 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1992#endif
b2a0ac88
MG
1993};
1994
dc67647b 1995#ifdef CONFIG_CMA
85ccc8fa 1996static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1997 unsigned int order)
1998{
1999 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2000}
2001#else
2002static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2003 unsigned int order) { return NULL; }
2004#endif
2005
c361be55
MG
2006/*
2007 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2008 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2009 * boundary. If alignment is required, use move_freepages_block()
2010 */
02aa0cdd 2011static int move_freepages(struct zone *zone,
b69a7288 2012 struct page *start_page, struct page *end_page,
02aa0cdd 2013 int migratetype, int *num_movable)
c361be55
MG
2014{
2015 struct page *page;
d00181b9 2016 unsigned int order;
d100313f 2017 int pages_moved = 0;
c361be55
MG
2018
2019#ifndef CONFIG_HOLES_IN_ZONE
2020 /*
2021 * page_zone is not safe to call in this context when
2022 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2023 * anyway as we check zone boundaries in move_freepages_block().
2024 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2025 * grouping pages by mobility
c361be55 2026 */
3e04040d
AB
2027 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2028 pfn_valid(page_to_pfn(end_page)) &&
2029 page_zone(start_page) != page_zone(end_page));
c361be55 2030#endif
c361be55
MG
2031 for (page = start_page; page <= end_page;) {
2032 if (!pfn_valid_within(page_to_pfn(page))) {
2033 page++;
2034 continue;
2035 }
2036
f073bdc5
AB
2037 /* Make sure we are not inadvertently changing nodes */
2038 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2039
c361be55 2040 if (!PageBuddy(page)) {
02aa0cdd
VB
2041 /*
2042 * We assume that pages that could be isolated for
2043 * migration are movable. But we don't actually try
2044 * isolating, as that would be expensive.
2045 */
2046 if (num_movable &&
2047 (PageLRU(page) || __PageMovable(page)))
2048 (*num_movable)++;
2049
c361be55
MG
2050 page++;
2051 continue;
2052 }
2053
2054 order = page_order(page);
84be48d8
KS
2055 list_move(&page->lru,
2056 &zone->free_area[order].free_list[migratetype]);
c361be55 2057 page += 1 << order;
d100313f 2058 pages_moved += 1 << order;
c361be55
MG
2059 }
2060
d100313f 2061 return pages_moved;
c361be55
MG
2062}
2063
ee6f509c 2064int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2065 int migratetype, int *num_movable)
c361be55
MG
2066{
2067 unsigned long start_pfn, end_pfn;
2068 struct page *start_page, *end_page;
2069
4a222127
DR
2070 if (num_movable)
2071 *num_movable = 0;
2072
c361be55 2073 start_pfn = page_to_pfn(page);
d9c23400 2074 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2075 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2076 end_page = start_page + pageblock_nr_pages - 1;
2077 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2078
2079 /* Do not cross zone boundaries */
108bcc96 2080 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2081 start_page = page;
108bcc96 2082 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2083 return 0;
2084
02aa0cdd
VB
2085 return move_freepages(zone, start_page, end_page, migratetype,
2086 num_movable);
c361be55
MG
2087}
2088
2f66a68f
MG
2089static void change_pageblock_range(struct page *pageblock_page,
2090 int start_order, int migratetype)
2091{
2092 int nr_pageblocks = 1 << (start_order - pageblock_order);
2093
2094 while (nr_pageblocks--) {
2095 set_pageblock_migratetype(pageblock_page, migratetype);
2096 pageblock_page += pageblock_nr_pages;
2097 }
2098}
2099
fef903ef 2100/*
9c0415eb
VB
2101 * When we are falling back to another migratetype during allocation, try to
2102 * steal extra free pages from the same pageblocks to satisfy further
2103 * allocations, instead of polluting multiple pageblocks.
2104 *
2105 * If we are stealing a relatively large buddy page, it is likely there will
2106 * be more free pages in the pageblock, so try to steal them all. For
2107 * reclaimable and unmovable allocations, we steal regardless of page size,
2108 * as fragmentation caused by those allocations polluting movable pageblocks
2109 * is worse than movable allocations stealing from unmovable and reclaimable
2110 * pageblocks.
fef903ef 2111 */
4eb7dce6
JK
2112static bool can_steal_fallback(unsigned int order, int start_mt)
2113{
2114 /*
2115 * Leaving this order check is intended, although there is
2116 * relaxed order check in next check. The reason is that
2117 * we can actually steal whole pageblock if this condition met,
2118 * but, below check doesn't guarantee it and that is just heuristic
2119 * so could be changed anytime.
2120 */
2121 if (order >= pageblock_order)
2122 return true;
2123
2124 if (order >= pageblock_order / 2 ||
2125 start_mt == MIGRATE_RECLAIMABLE ||
2126 start_mt == MIGRATE_UNMOVABLE ||
2127 page_group_by_mobility_disabled)
2128 return true;
2129
2130 return false;
2131}
2132
2133/*
2134 * This function implements actual steal behaviour. If order is large enough,
2135 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2136 * pageblock to our migratetype and determine how many already-allocated pages
2137 * are there in the pageblock with a compatible migratetype. If at least half
2138 * of pages are free or compatible, we can change migratetype of the pageblock
2139 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2140 */
2141static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2142 int start_type, bool whole_block)
fef903ef 2143{
d00181b9 2144 unsigned int current_order = page_order(page);
3bc48f96 2145 struct free_area *area;
02aa0cdd
VB
2146 int free_pages, movable_pages, alike_pages;
2147 int old_block_type;
2148
2149 old_block_type = get_pageblock_migratetype(page);
fef903ef 2150
3bc48f96
VB
2151 /*
2152 * This can happen due to races and we want to prevent broken
2153 * highatomic accounting.
2154 */
02aa0cdd 2155 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2156 goto single_page;
2157
fef903ef
SB
2158 /* Take ownership for orders >= pageblock_order */
2159 if (current_order >= pageblock_order) {
2160 change_pageblock_range(page, current_order, start_type);
3bc48f96 2161 goto single_page;
fef903ef
SB
2162 }
2163
3bc48f96
VB
2164 /* We are not allowed to try stealing from the whole block */
2165 if (!whole_block)
2166 goto single_page;
2167
02aa0cdd
VB
2168 free_pages = move_freepages_block(zone, page, start_type,
2169 &movable_pages);
2170 /*
2171 * Determine how many pages are compatible with our allocation.
2172 * For movable allocation, it's the number of movable pages which
2173 * we just obtained. For other types it's a bit more tricky.
2174 */
2175 if (start_type == MIGRATE_MOVABLE) {
2176 alike_pages = movable_pages;
2177 } else {
2178 /*
2179 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2180 * to MOVABLE pageblock, consider all non-movable pages as
2181 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2182 * vice versa, be conservative since we can't distinguish the
2183 * exact migratetype of non-movable pages.
2184 */
2185 if (old_block_type == MIGRATE_MOVABLE)
2186 alike_pages = pageblock_nr_pages
2187 - (free_pages + movable_pages);
2188 else
2189 alike_pages = 0;
2190 }
2191
3bc48f96 2192 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2193 if (!free_pages)
3bc48f96 2194 goto single_page;
fef903ef 2195
02aa0cdd
VB
2196 /*
2197 * If a sufficient number of pages in the block are either free or of
2198 * comparable migratability as our allocation, claim the whole block.
2199 */
2200 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2201 page_group_by_mobility_disabled)
2202 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2203
2204 return;
2205
2206single_page:
2207 area = &zone->free_area[current_order];
2208 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2209}
2210
2149cdae
JK
2211/*
2212 * Check whether there is a suitable fallback freepage with requested order.
2213 * If only_stealable is true, this function returns fallback_mt only if
2214 * we can steal other freepages all together. This would help to reduce
2215 * fragmentation due to mixed migratetype pages in one pageblock.
2216 */
2217int find_suitable_fallback(struct free_area *area, unsigned int order,
2218 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2219{
2220 int i;
2221 int fallback_mt;
2222
2223 if (area->nr_free == 0)
2224 return -1;
2225
2226 *can_steal = false;
2227 for (i = 0;; i++) {
2228 fallback_mt = fallbacks[migratetype][i];
974a786e 2229 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2230 break;
2231
2232 if (list_empty(&area->free_list[fallback_mt]))
2233 continue;
fef903ef 2234
4eb7dce6
JK
2235 if (can_steal_fallback(order, migratetype))
2236 *can_steal = true;
2237
2149cdae
JK
2238 if (!only_stealable)
2239 return fallback_mt;
2240
2241 if (*can_steal)
2242 return fallback_mt;
fef903ef 2243 }
4eb7dce6
JK
2244
2245 return -1;
fef903ef
SB
2246}
2247
0aaa29a5
MG
2248/*
2249 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2250 * there are no empty page blocks that contain a page with a suitable order
2251 */
2252static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2253 unsigned int alloc_order)
2254{
2255 int mt;
2256 unsigned long max_managed, flags;
2257
2258 /*
2259 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2260 * Check is race-prone but harmless.
2261 */
9705bea5 2262 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2263 if (zone->nr_reserved_highatomic >= max_managed)
2264 return;
2265
2266 spin_lock_irqsave(&zone->lock, flags);
2267
2268 /* Recheck the nr_reserved_highatomic limit under the lock */
2269 if (zone->nr_reserved_highatomic >= max_managed)
2270 goto out_unlock;
2271
2272 /* Yoink! */
2273 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2274 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2275 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2276 zone->nr_reserved_highatomic += pageblock_nr_pages;
2277 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2278 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2279 }
2280
2281out_unlock:
2282 spin_unlock_irqrestore(&zone->lock, flags);
2283}
2284
2285/*
2286 * Used when an allocation is about to fail under memory pressure. This
2287 * potentially hurts the reliability of high-order allocations when under
2288 * intense memory pressure but failed atomic allocations should be easier
2289 * to recover from than an OOM.
29fac03b
MK
2290 *
2291 * If @force is true, try to unreserve a pageblock even though highatomic
2292 * pageblock is exhausted.
0aaa29a5 2293 */
29fac03b
MK
2294static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2295 bool force)
0aaa29a5
MG
2296{
2297 struct zonelist *zonelist = ac->zonelist;
2298 unsigned long flags;
2299 struct zoneref *z;
2300 struct zone *zone;
2301 struct page *page;
2302 int order;
04c8716f 2303 bool ret;
0aaa29a5
MG
2304
2305 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2306 ac->nodemask) {
29fac03b
MK
2307 /*
2308 * Preserve at least one pageblock unless memory pressure
2309 * is really high.
2310 */
2311 if (!force && zone->nr_reserved_highatomic <=
2312 pageblock_nr_pages)
0aaa29a5
MG
2313 continue;
2314
2315 spin_lock_irqsave(&zone->lock, flags);
2316 for (order = 0; order < MAX_ORDER; order++) {
2317 struct free_area *area = &(zone->free_area[order]);
2318
a16601c5
GT
2319 page = list_first_entry_or_null(
2320 &area->free_list[MIGRATE_HIGHATOMIC],
2321 struct page, lru);
2322 if (!page)
0aaa29a5
MG
2323 continue;
2324
0aaa29a5 2325 /*
4855e4a7
MK
2326 * In page freeing path, migratetype change is racy so
2327 * we can counter several free pages in a pageblock
2328 * in this loop althoug we changed the pageblock type
2329 * from highatomic to ac->migratetype. So we should
2330 * adjust the count once.
0aaa29a5 2331 */
a6ffdc07 2332 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2333 /*
2334 * It should never happen but changes to
2335 * locking could inadvertently allow a per-cpu
2336 * drain to add pages to MIGRATE_HIGHATOMIC
2337 * while unreserving so be safe and watch for
2338 * underflows.
2339 */
2340 zone->nr_reserved_highatomic -= min(
2341 pageblock_nr_pages,
2342 zone->nr_reserved_highatomic);
2343 }
0aaa29a5
MG
2344
2345 /*
2346 * Convert to ac->migratetype and avoid the normal
2347 * pageblock stealing heuristics. Minimally, the caller
2348 * is doing the work and needs the pages. More
2349 * importantly, if the block was always converted to
2350 * MIGRATE_UNMOVABLE or another type then the number
2351 * of pageblocks that cannot be completely freed
2352 * may increase.
2353 */
2354 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2355 ret = move_freepages_block(zone, page, ac->migratetype,
2356 NULL);
29fac03b
MK
2357 if (ret) {
2358 spin_unlock_irqrestore(&zone->lock, flags);
2359 return ret;
2360 }
0aaa29a5
MG
2361 }
2362 spin_unlock_irqrestore(&zone->lock, flags);
2363 }
04c8716f
MK
2364
2365 return false;
0aaa29a5
MG
2366}
2367
3bc48f96
VB
2368/*
2369 * Try finding a free buddy page on the fallback list and put it on the free
2370 * list of requested migratetype, possibly along with other pages from the same
2371 * block, depending on fragmentation avoidance heuristics. Returns true if
2372 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2373 *
2374 * The use of signed ints for order and current_order is a deliberate
2375 * deviation from the rest of this file, to make the for loop
2376 * condition simpler.
3bc48f96 2377 */
85ccc8fa 2378static __always_inline bool
b002529d 2379__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2380{
b8af2941 2381 struct free_area *area;
b002529d 2382 int current_order;
b2a0ac88 2383 struct page *page;
4eb7dce6
JK
2384 int fallback_mt;
2385 bool can_steal;
b2a0ac88 2386
7a8f58f3
VB
2387 /*
2388 * Find the largest available free page in the other list. This roughly
2389 * approximates finding the pageblock with the most free pages, which
2390 * would be too costly to do exactly.
2391 */
b002529d 2392 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2393 --current_order) {
4eb7dce6
JK
2394 area = &(zone->free_area[current_order]);
2395 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2396 start_migratetype, false, &can_steal);
4eb7dce6
JK
2397 if (fallback_mt == -1)
2398 continue;
b2a0ac88 2399
7a8f58f3
VB
2400 /*
2401 * We cannot steal all free pages from the pageblock and the
2402 * requested migratetype is movable. In that case it's better to
2403 * steal and split the smallest available page instead of the
2404 * largest available page, because even if the next movable
2405 * allocation falls back into a different pageblock than this
2406 * one, it won't cause permanent fragmentation.
2407 */
2408 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2409 && current_order > order)
2410 goto find_smallest;
b2a0ac88 2411
7a8f58f3
VB
2412 goto do_steal;
2413 }
e0fff1bd 2414
7a8f58f3 2415 return false;
e0fff1bd 2416
7a8f58f3
VB
2417find_smallest:
2418 for (current_order = order; current_order < MAX_ORDER;
2419 current_order++) {
2420 area = &(zone->free_area[current_order]);
2421 fallback_mt = find_suitable_fallback(area, current_order,
2422 start_migratetype, false, &can_steal);
2423 if (fallback_mt != -1)
2424 break;
b2a0ac88
MG
2425 }
2426
7a8f58f3
VB
2427 /*
2428 * This should not happen - we already found a suitable fallback
2429 * when looking for the largest page.
2430 */
2431 VM_BUG_ON(current_order == MAX_ORDER);
2432
2433do_steal:
2434 page = list_first_entry(&area->free_list[fallback_mt],
2435 struct page, lru);
2436
2437 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2438
2439 trace_mm_page_alloc_extfrag(page, order, current_order,
2440 start_migratetype, fallback_mt);
2441
2442 return true;
2443
b2a0ac88
MG
2444}
2445
56fd56b8 2446/*
1da177e4
LT
2447 * Do the hard work of removing an element from the buddy allocator.
2448 * Call me with the zone->lock already held.
2449 */
85ccc8fa
AL
2450static __always_inline struct page *
2451__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2452{
1da177e4
LT
2453 struct page *page;
2454
3bc48f96 2455retry:
56fd56b8 2456 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2457 if (unlikely(!page)) {
dc67647b
JK
2458 if (migratetype == MIGRATE_MOVABLE)
2459 page = __rmqueue_cma_fallback(zone, order);
2460
3bc48f96
VB
2461 if (!page && __rmqueue_fallback(zone, order, migratetype))
2462 goto retry;
728ec980
MG
2463 }
2464
0d3d062a 2465 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2466 return page;
1da177e4
LT
2467}
2468
5f63b720 2469/*
1da177e4
LT
2470 * Obtain a specified number of elements from the buddy allocator, all under
2471 * a single hold of the lock, for efficiency. Add them to the supplied list.
2472 * Returns the number of new pages which were placed at *list.
2473 */
5f63b720 2474static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2475 unsigned long count, struct list_head *list,
453f85d4 2476 int migratetype)
1da177e4 2477{
a6de734b 2478 int i, alloced = 0;
5f63b720 2479
d34b0733 2480 spin_lock(&zone->lock);
1da177e4 2481 for (i = 0; i < count; ++i) {
6ac0206b 2482 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2483 if (unlikely(page == NULL))
1da177e4 2484 break;
81eabcbe 2485
479f854a
MG
2486 if (unlikely(check_pcp_refill(page)))
2487 continue;
2488
81eabcbe 2489 /*
0fac3ba5
VB
2490 * Split buddy pages returned by expand() are received here in
2491 * physical page order. The page is added to the tail of
2492 * caller's list. From the callers perspective, the linked list
2493 * is ordered by page number under some conditions. This is
2494 * useful for IO devices that can forward direction from the
2495 * head, thus also in the physical page order. This is useful
2496 * for IO devices that can merge IO requests if the physical
2497 * pages are ordered properly.
81eabcbe 2498 */
0fac3ba5 2499 list_add_tail(&page->lru, list);
a6de734b 2500 alloced++;
bb14c2c7 2501 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2502 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2503 -(1 << order));
1da177e4 2504 }
a6de734b
MG
2505
2506 /*
2507 * i pages were removed from the buddy list even if some leak due
2508 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2509 * on i. Do not confuse with 'alloced' which is the number of
2510 * pages added to the pcp list.
2511 */
f2260e6b 2512 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2513 spin_unlock(&zone->lock);
a6de734b 2514 return alloced;
1da177e4
LT
2515}
2516
4ae7c039 2517#ifdef CONFIG_NUMA
8fce4d8e 2518/*
4037d452
CL
2519 * Called from the vmstat counter updater to drain pagesets of this
2520 * currently executing processor on remote nodes after they have
2521 * expired.
2522 *
879336c3
CL
2523 * Note that this function must be called with the thread pinned to
2524 * a single processor.
8fce4d8e 2525 */
4037d452 2526void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2527{
4ae7c039 2528 unsigned long flags;
7be12fc9 2529 int to_drain, batch;
4ae7c039 2530
4037d452 2531 local_irq_save(flags);
4db0c3c2 2532 batch = READ_ONCE(pcp->batch);
7be12fc9 2533 to_drain = min(pcp->count, batch);
77ba9062 2534 if (to_drain > 0)
2a13515c 2535 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2536 local_irq_restore(flags);
4ae7c039
CL
2537}
2538#endif
2539
9f8f2172 2540/*
93481ff0 2541 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2542 *
2543 * The processor must either be the current processor and the
2544 * thread pinned to the current processor or a processor that
2545 * is not online.
2546 */
93481ff0 2547static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2548{
c54ad30c 2549 unsigned long flags;
93481ff0
VB
2550 struct per_cpu_pageset *pset;
2551 struct per_cpu_pages *pcp;
1da177e4 2552
93481ff0
VB
2553 local_irq_save(flags);
2554 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2555
93481ff0 2556 pcp = &pset->pcp;
77ba9062 2557 if (pcp->count)
93481ff0 2558 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2559 local_irq_restore(flags);
2560}
3dfa5721 2561
93481ff0
VB
2562/*
2563 * Drain pcplists of all zones on the indicated processor.
2564 *
2565 * The processor must either be the current processor and the
2566 * thread pinned to the current processor or a processor that
2567 * is not online.
2568 */
2569static void drain_pages(unsigned int cpu)
2570{
2571 struct zone *zone;
2572
2573 for_each_populated_zone(zone) {
2574 drain_pages_zone(cpu, zone);
1da177e4
LT
2575 }
2576}
1da177e4 2577
9f8f2172
CL
2578/*
2579 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2580 *
2581 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2582 * the single zone's pages.
9f8f2172 2583 */
93481ff0 2584void drain_local_pages(struct zone *zone)
9f8f2172 2585{
93481ff0
VB
2586 int cpu = smp_processor_id();
2587
2588 if (zone)
2589 drain_pages_zone(cpu, zone);
2590 else
2591 drain_pages(cpu);
9f8f2172
CL
2592}
2593
0ccce3b9
MG
2594static void drain_local_pages_wq(struct work_struct *work)
2595{
a459eeb7
MH
2596 /*
2597 * drain_all_pages doesn't use proper cpu hotplug protection so
2598 * we can race with cpu offline when the WQ can move this from
2599 * a cpu pinned worker to an unbound one. We can operate on a different
2600 * cpu which is allright but we also have to make sure to not move to
2601 * a different one.
2602 */
2603 preempt_disable();
0ccce3b9 2604 drain_local_pages(NULL);
a459eeb7 2605 preempt_enable();
0ccce3b9
MG
2606}
2607
9f8f2172 2608/*
74046494
GBY
2609 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2610 *
93481ff0
VB
2611 * When zone parameter is non-NULL, spill just the single zone's pages.
2612 *
0ccce3b9 2613 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2614 */
93481ff0 2615void drain_all_pages(struct zone *zone)
9f8f2172 2616{
74046494 2617 int cpu;
74046494
GBY
2618
2619 /*
2620 * Allocate in the BSS so we wont require allocation in
2621 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2622 */
2623 static cpumask_t cpus_with_pcps;
2624
ce612879
MH
2625 /*
2626 * Make sure nobody triggers this path before mm_percpu_wq is fully
2627 * initialized.
2628 */
2629 if (WARN_ON_ONCE(!mm_percpu_wq))
2630 return;
2631
bd233f53
MG
2632 /*
2633 * Do not drain if one is already in progress unless it's specific to
2634 * a zone. Such callers are primarily CMA and memory hotplug and need
2635 * the drain to be complete when the call returns.
2636 */
2637 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2638 if (!zone)
2639 return;
2640 mutex_lock(&pcpu_drain_mutex);
2641 }
0ccce3b9 2642
74046494
GBY
2643 /*
2644 * We don't care about racing with CPU hotplug event
2645 * as offline notification will cause the notified
2646 * cpu to drain that CPU pcps and on_each_cpu_mask
2647 * disables preemption as part of its processing
2648 */
2649 for_each_online_cpu(cpu) {
93481ff0
VB
2650 struct per_cpu_pageset *pcp;
2651 struct zone *z;
74046494 2652 bool has_pcps = false;
93481ff0
VB
2653
2654 if (zone) {
74046494 2655 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2656 if (pcp->pcp.count)
74046494 2657 has_pcps = true;
93481ff0
VB
2658 } else {
2659 for_each_populated_zone(z) {
2660 pcp = per_cpu_ptr(z->pageset, cpu);
2661 if (pcp->pcp.count) {
2662 has_pcps = true;
2663 break;
2664 }
74046494
GBY
2665 }
2666 }
93481ff0 2667
74046494
GBY
2668 if (has_pcps)
2669 cpumask_set_cpu(cpu, &cpus_with_pcps);
2670 else
2671 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2672 }
0ccce3b9 2673
bd233f53
MG
2674 for_each_cpu(cpu, &cpus_with_pcps) {
2675 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2676 INIT_WORK(work, drain_local_pages_wq);
ce612879 2677 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2678 }
bd233f53
MG
2679 for_each_cpu(cpu, &cpus_with_pcps)
2680 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2681
2682 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2683}
2684
296699de 2685#ifdef CONFIG_HIBERNATION
1da177e4 2686
556b969a
CY
2687/*
2688 * Touch the watchdog for every WD_PAGE_COUNT pages.
2689 */
2690#define WD_PAGE_COUNT (128*1024)
2691
1da177e4
LT
2692void mark_free_pages(struct zone *zone)
2693{
556b969a 2694 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2695 unsigned long flags;
7aeb09f9 2696 unsigned int order, t;
86760a2c 2697 struct page *page;
1da177e4 2698
8080fc03 2699 if (zone_is_empty(zone))
1da177e4
LT
2700 return;
2701
2702 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2703
108bcc96 2704 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2705 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2706 if (pfn_valid(pfn)) {
86760a2c 2707 page = pfn_to_page(pfn);
ba6b0979 2708
556b969a
CY
2709 if (!--page_count) {
2710 touch_nmi_watchdog();
2711 page_count = WD_PAGE_COUNT;
2712 }
2713
ba6b0979
JK
2714 if (page_zone(page) != zone)
2715 continue;
2716
7be98234
RW
2717 if (!swsusp_page_is_forbidden(page))
2718 swsusp_unset_page_free(page);
f623f0db 2719 }
1da177e4 2720
b2a0ac88 2721 for_each_migratetype_order(order, t) {
86760a2c
GT
2722 list_for_each_entry(page,
2723 &zone->free_area[order].free_list[t], lru) {
f623f0db 2724 unsigned long i;
1da177e4 2725
86760a2c 2726 pfn = page_to_pfn(page);
556b969a
CY
2727 for (i = 0; i < (1UL << order); i++) {
2728 if (!--page_count) {
2729 touch_nmi_watchdog();
2730 page_count = WD_PAGE_COUNT;
2731 }
7be98234 2732 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2733 }
f623f0db 2734 }
b2a0ac88 2735 }
1da177e4
LT
2736 spin_unlock_irqrestore(&zone->lock, flags);
2737}
e2c55dc8 2738#endif /* CONFIG_PM */
1da177e4 2739
2d4894b5 2740static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2741{
5f8dcc21 2742 int migratetype;
1da177e4 2743
4db7548c 2744 if (!free_pcp_prepare(page))
9cca35d4 2745 return false;
689bcebf 2746
dc4b0caf 2747 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2748 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2749 return true;
2750}
2751
2d4894b5 2752static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2753{
2754 struct zone *zone = page_zone(page);
2755 struct per_cpu_pages *pcp;
2756 int migratetype;
2757
2758 migratetype = get_pcppage_migratetype(page);
d34b0733 2759 __count_vm_event(PGFREE);
da456f14 2760
5f8dcc21
MG
2761 /*
2762 * We only track unmovable, reclaimable and movable on pcp lists.
2763 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2764 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2765 * areas back if necessary. Otherwise, we may have to free
2766 * excessively into the page allocator
2767 */
2768 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2769 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2770 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2771 return;
5f8dcc21
MG
2772 }
2773 migratetype = MIGRATE_MOVABLE;
2774 }
2775
99dcc3e5 2776 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2777 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2778 pcp->count++;
48db57f8 2779 if (pcp->count >= pcp->high) {
4db0c3c2 2780 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2781 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2782 }
9cca35d4 2783}
5f8dcc21 2784
9cca35d4
MG
2785/*
2786 * Free a 0-order page
9cca35d4 2787 */
2d4894b5 2788void free_unref_page(struct page *page)
9cca35d4
MG
2789{
2790 unsigned long flags;
2791 unsigned long pfn = page_to_pfn(page);
2792
2d4894b5 2793 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2794 return;
2795
2796 local_irq_save(flags);
2d4894b5 2797 free_unref_page_commit(page, pfn);
d34b0733 2798 local_irq_restore(flags);
1da177e4
LT
2799}
2800
cc59850e
KK
2801/*
2802 * Free a list of 0-order pages
2803 */
2d4894b5 2804void free_unref_page_list(struct list_head *list)
cc59850e
KK
2805{
2806 struct page *page, *next;
9cca35d4 2807 unsigned long flags, pfn;
c24ad77d 2808 int batch_count = 0;
9cca35d4
MG
2809
2810 /* Prepare pages for freeing */
2811 list_for_each_entry_safe(page, next, list, lru) {
2812 pfn = page_to_pfn(page);
2d4894b5 2813 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2814 list_del(&page->lru);
2815 set_page_private(page, pfn);
2816 }
cc59850e 2817
9cca35d4 2818 local_irq_save(flags);
cc59850e 2819 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2820 unsigned long pfn = page_private(page);
2821
2822 set_page_private(page, 0);
2d4894b5
MG
2823 trace_mm_page_free_batched(page);
2824 free_unref_page_commit(page, pfn);
c24ad77d
LS
2825
2826 /*
2827 * Guard against excessive IRQ disabled times when we get
2828 * a large list of pages to free.
2829 */
2830 if (++batch_count == SWAP_CLUSTER_MAX) {
2831 local_irq_restore(flags);
2832 batch_count = 0;
2833 local_irq_save(flags);
2834 }
cc59850e 2835 }
9cca35d4 2836 local_irq_restore(flags);
cc59850e
KK
2837}
2838
8dfcc9ba
NP
2839/*
2840 * split_page takes a non-compound higher-order page, and splits it into
2841 * n (1<<order) sub-pages: page[0..n]
2842 * Each sub-page must be freed individually.
2843 *
2844 * Note: this is probably too low level an operation for use in drivers.
2845 * Please consult with lkml before using this in your driver.
2846 */
2847void split_page(struct page *page, unsigned int order)
2848{
2849 int i;
2850
309381fe
SL
2851 VM_BUG_ON_PAGE(PageCompound(page), page);
2852 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2853
a9627bc5 2854 for (i = 1; i < (1 << order); i++)
7835e98b 2855 set_page_refcounted(page + i);
a9627bc5 2856 split_page_owner(page, order);
8dfcc9ba 2857}
5853ff23 2858EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2859
3c605096 2860int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2861{
748446bb
MG
2862 unsigned long watermark;
2863 struct zone *zone;
2139cbe6 2864 int mt;
748446bb
MG
2865
2866 BUG_ON(!PageBuddy(page));
2867
2868 zone = page_zone(page);
2e30abd1 2869 mt = get_pageblock_migratetype(page);
748446bb 2870
194159fb 2871 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2872 /*
2873 * Obey watermarks as if the page was being allocated. We can
2874 * emulate a high-order watermark check with a raised order-0
2875 * watermark, because we already know our high-order page
2876 * exists.
2877 */
2878 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2879 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2880 return 0;
2881
8fb74b9f 2882 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2883 }
748446bb
MG
2884
2885 /* Remove page from free list */
2886 list_del(&page->lru);
2887 zone->free_area[order].nr_free--;
2888 rmv_page_order(page);
2139cbe6 2889
400bc7fd 2890 /*
2891 * Set the pageblock if the isolated page is at least half of a
2892 * pageblock
2893 */
748446bb
MG
2894 if (order >= pageblock_order - 1) {
2895 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2896 for (; page < endpage; page += pageblock_nr_pages) {
2897 int mt = get_pageblock_migratetype(page);
88ed365e 2898 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2899 && !is_migrate_highatomic(mt))
47118af0
MN
2900 set_pageblock_migratetype(page,
2901 MIGRATE_MOVABLE);
2902 }
748446bb
MG
2903 }
2904
f3a14ced 2905
8fb74b9f 2906 return 1UL << order;
1fb3f8ca
MG
2907}
2908
060e7417
MG
2909/*
2910 * Update NUMA hit/miss statistics
2911 *
2912 * Must be called with interrupts disabled.
060e7417 2913 */
41b6167e 2914static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2915{
2916#ifdef CONFIG_NUMA
3a321d2a 2917 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2918
4518085e
KW
2919 /* skip numa counters update if numa stats is disabled */
2920 if (!static_branch_likely(&vm_numa_stat_key))
2921 return;
2922
c1093b74 2923 if (zone_to_nid(z) != numa_node_id())
060e7417 2924 local_stat = NUMA_OTHER;
060e7417 2925
c1093b74 2926 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 2927 __inc_numa_state(z, NUMA_HIT);
2df26639 2928 else {
3a321d2a
KW
2929 __inc_numa_state(z, NUMA_MISS);
2930 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2931 }
3a321d2a 2932 __inc_numa_state(z, local_stat);
060e7417
MG
2933#endif
2934}
2935
066b2393
MG
2936/* Remove page from the per-cpu list, caller must protect the list */
2937static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2938 struct per_cpu_pages *pcp,
066b2393
MG
2939 struct list_head *list)
2940{
2941 struct page *page;
2942
2943 do {
2944 if (list_empty(list)) {
2945 pcp->count += rmqueue_bulk(zone, 0,
2946 pcp->batch, list,
453f85d4 2947 migratetype);
066b2393
MG
2948 if (unlikely(list_empty(list)))
2949 return NULL;
2950 }
2951
453f85d4 2952 page = list_first_entry(list, struct page, lru);
066b2393
MG
2953 list_del(&page->lru);
2954 pcp->count--;
2955 } while (check_new_pcp(page));
2956
2957 return page;
2958}
2959
2960/* Lock and remove page from the per-cpu list */
2961static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2962 struct zone *zone, unsigned int order,
2963 gfp_t gfp_flags, int migratetype)
2964{
2965 struct per_cpu_pages *pcp;
2966 struct list_head *list;
066b2393 2967 struct page *page;
d34b0733 2968 unsigned long flags;
066b2393 2969
d34b0733 2970 local_irq_save(flags);
066b2393
MG
2971 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2972 list = &pcp->lists[migratetype];
453f85d4 2973 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2974 if (page) {
2975 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2976 zone_statistics(preferred_zone, zone);
2977 }
d34b0733 2978 local_irq_restore(flags);
066b2393
MG
2979 return page;
2980}
2981
1da177e4 2982/*
75379191 2983 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2984 */
0a15c3e9 2985static inline
066b2393 2986struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2987 struct zone *zone, unsigned int order,
c603844b
MG
2988 gfp_t gfp_flags, unsigned int alloc_flags,
2989 int migratetype)
1da177e4
LT
2990{
2991 unsigned long flags;
689bcebf 2992 struct page *page;
1da177e4 2993
d34b0733 2994 if (likely(order == 0)) {
066b2393
MG
2995 page = rmqueue_pcplist(preferred_zone, zone, order,
2996 gfp_flags, migratetype);
2997 goto out;
2998 }
83b9355b 2999
066b2393
MG
3000 /*
3001 * We most definitely don't want callers attempting to
3002 * allocate greater than order-1 page units with __GFP_NOFAIL.
3003 */
3004 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3005 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3006
066b2393
MG
3007 do {
3008 page = NULL;
3009 if (alloc_flags & ALLOC_HARDER) {
3010 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3011 if (page)
3012 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3013 }
a74609fa 3014 if (!page)
066b2393
MG
3015 page = __rmqueue(zone, order, migratetype);
3016 } while (page && check_new_pages(page, order));
3017 spin_unlock(&zone->lock);
3018 if (!page)
3019 goto failed;
3020 __mod_zone_freepage_state(zone, -(1 << order),
3021 get_pcppage_migratetype(page));
1da177e4 3022
16709d1d 3023 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3024 zone_statistics(preferred_zone, zone);
a74609fa 3025 local_irq_restore(flags);
1da177e4 3026
066b2393
MG
3027out:
3028 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3029 return page;
a74609fa
NP
3030
3031failed:
3032 local_irq_restore(flags);
a74609fa 3033 return NULL;
1da177e4
LT
3034}
3035
933e312e
AM
3036#ifdef CONFIG_FAIL_PAGE_ALLOC
3037
b2588c4b 3038static struct {
933e312e
AM
3039 struct fault_attr attr;
3040
621a5f7a 3041 bool ignore_gfp_highmem;
71baba4b 3042 bool ignore_gfp_reclaim;
54114994 3043 u32 min_order;
933e312e
AM
3044} fail_page_alloc = {
3045 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3046 .ignore_gfp_reclaim = true,
621a5f7a 3047 .ignore_gfp_highmem = true,
54114994 3048 .min_order = 1,
933e312e
AM
3049};
3050
3051static int __init setup_fail_page_alloc(char *str)
3052{
3053 return setup_fault_attr(&fail_page_alloc.attr, str);
3054}
3055__setup("fail_page_alloc=", setup_fail_page_alloc);
3056
deaf386e 3057static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3058{
54114994 3059 if (order < fail_page_alloc.min_order)
deaf386e 3060 return false;
933e312e 3061 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3062 return false;
933e312e 3063 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3064 return false;
71baba4b
MG
3065 if (fail_page_alloc.ignore_gfp_reclaim &&
3066 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3067 return false;
933e312e
AM
3068
3069 return should_fail(&fail_page_alloc.attr, 1 << order);
3070}
3071
3072#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3073
3074static int __init fail_page_alloc_debugfs(void)
3075{
0825a6f9 3076 umode_t mode = S_IFREG | 0600;
933e312e 3077 struct dentry *dir;
933e312e 3078
dd48c085
AM
3079 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3080 &fail_page_alloc.attr);
3081 if (IS_ERR(dir))
3082 return PTR_ERR(dir);
933e312e 3083
b2588c4b 3084 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3085 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3086 goto fail;
3087 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3088 &fail_page_alloc.ignore_gfp_highmem))
3089 goto fail;
3090 if (!debugfs_create_u32("min-order", mode, dir,
3091 &fail_page_alloc.min_order))
3092 goto fail;
3093
3094 return 0;
3095fail:
dd48c085 3096 debugfs_remove_recursive(dir);
933e312e 3097
b2588c4b 3098 return -ENOMEM;
933e312e
AM
3099}
3100
3101late_initcall(fail_page_alloc_debugfs);
3102
3103#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3104
3105#else /* CONFIG_FAIL_PAGE_ALLOC */
3106
deaf386e 3107static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3108{
deaf386e 3109 return false;
933e312e
AM
3110}
3111
3112#endif /* CONFIG_FAIL_PAGE_ALLOC */
3113
1da177e4 3114/*
97a16fc8
MG
3115 * Return true if free base pages are above 'mark'. For high-order checks it
3116 * will return true of the order-0 watermark is reached and there is at least
3117 * one free page of a suitable size. Checking now avoids taking the zone lock
3118 * to check in the allocation paths if no pages are free.
1da177e4 3119 */
86a294a8
MH
3120bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3121 int classzone_idx, unsigned int alloc_flags,
3122 long free_pages)
1da177e4 3123{
d23ad423 3124 long min = mark;
1da177e4 3125 int o;
cd04ae1e 3126 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3127
0aaa29a5 3128 /* free_pages may go negative - that's OK */
df0a6daa 3129 free_pages -= (1 << order) - 1;
0aaa29a5 3130
7fb1d9fc 3131 if (alloc_flags & ALLOC_HIGH)
1da177e4 3132 min -= min / 2;
0aaa29a5
MG
3133
3134 /*
3135 * If the caller does not have rights to ALLOC_HARDER then subtract
3136 * the high-atomic reserves. This will over-estimate the size of the
3137 * atomic reserve but it avoids a search.
3138 */
cd04ae1e 3139 if (likely(!alloc_harder)) {
0aaa29a5 3140 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3141 } else {
3142 /*
3143 * OOM victims can try even harder than normal ALLOC_HARDER
3144 * users on the grounds that it's definitely going to be in
3145 * the exit path shortly and free memory. Any allocation it
3146 * makes during the free path will be small and short-lived.
3147 */
3148 if (alloc_flags & ALLOC_OOM)
3149 min -= min / 2;
3150 else
3151 min -= min / 4;
3152 }
3153
e2b19197 3154
d883c6cf
JK
3155#ifdef CONFIG_CMA
3156 /* If allocation can't use CMA areas don't use free CMA pages */
3157 if (!(alloc_flags & ALLOC_CMA))
3158 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3159#endif
3160
97a16fc8
MG
3161 /*
3162 * Check watermarks for an order-0 allocation request. If these
3163 * are not met, then a high-order request also cannot go ahead
3164 * even if a suitable page happened to be free.
3165 */
3166 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3167 return false;
1da177e4 3168
97a16fc8
MG
3169 /* If this is an order-0 request then the watermark is fine */
3170 if (!order)
3171 return true;
3172
3173 /* For a high-order request, check at least one suitable page is free */
3174 for (o = order; o < MAX_ORDER; o++) {
3175 struct free_area *area = &z->free_area[o];
3176 int mt;
3177
3178 if (!area->nr_free)
3179 continue;
3180
97a16fc8
MG
3181 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3182 if (!list_empty(&area->free_list[mt]))
3183 return true;
3184 }
3185
3186#ifdef CONFIG_CMA
d883c6cf
JK
3187 if ((alloc_flags & ALLOC_CMA) &&
3188 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3189 return true;
d883c6cf 3190 }
97a16fc8 3191#endif
b050e376
VB
3192 if (alloc_harder &&
3193 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3194 return true;
1da177e4 3195 }
97a16fc8 3196 return false;
88f5acf8
MG
3197}
3198
7aeb09f9 3199bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3200 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3201{
3202 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3203 zone_page_state(z, NR_FREE_PAGES));
3204}
3205
48ee5f36
MG
3206static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3207 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3208{
3209 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3210 long cma_pages = 0;
3211
3212#ifdef CONFIG_CMA
3213 /* If allocation can't use CMA areas don't use free CMA pages */
3214 if (!(alloc_flags & ALLOC_CMA))
3215 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3216#endif
48ee5f36
MG
3217
3218 /*
3219 * Fast check for order-0 only. If this fails then the reserves
3220 * need to be calculated. There is a corner case where the check
3221 * passes but only the high-order atomic reserve are free. If
3222 * the caller is !atomic then it'll uselessly search the free
3223 * list. That corner case is then slower but it is harmless.
3224 */
d883c6cf 3225 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3226 return true;
3227
3228 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3229 free_pages);
3230}
3231
7aeb09f9 3232bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3233 unsigned long mark, int classzone_idx)
88f5acf8
MG
3234{
3235 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3236
3237 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3238 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3239
e2b19197 3240 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3241 free_pages);
1da177e4
LT
3242}
3243
9276b1bc 3244#ifdef CONFIG_NUMA
957f822a
DR
3245static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3246{
e02dc017 3247 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3248 RECLAIM_DISTANCE;
957f822a 3249}
9276b1bc 3250#else /* CONFIG_NUMA */
957f822a
DR
3251static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3252{
3253 return true;
3254}
9276b1bc
PJ
3255#endif /* CONFIG_NUMA */
3256
7fb1d9fc 3257/*
0798e519 3258 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3259 * a page.
3260 */
3261static struct page *
a9263751
VB
3262get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3263 const struct alloc_context *ac)
753ee728 3264{
c33d6c06 3265 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3266 struct zone *zone;
3b8c0be4
MG
3267 struct pglist_data *last_pgdat_dirty_limit = NULL;
3268
7fb1d9fc 3269 /*
9276b1bc 3270 * Scan zonelist, looking for a zone with enough free.
344736f2 3271 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3272 */
c33d6c06 3273 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3274 ac->nodemask) {
be06af00 3275 struct page *page;
e085dbc5
JW
3276 unsigned long mark;
3277
664eedde
MG
3278 if (cpusets_enabled() &&
3279 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3280 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3281 continue;
a756cf59
JW
3282 /*
3283 * When allocating a page cache page for writing, we
281e3726
MG
3284 * want to get it from a node that is within its dirty
3285 * limit, such that no single node holds more than its
a756cf59 3286 * proportional share of globally allowed dirty pages.
281e3726 3287 * The dirty limits take into account the node's
a756cf59
JW
3288 * lowmem reserves and high watermark so that kswapd
3289 * should be able to balance it without having to
3290 * write pages from its LRU list.
3291 *
a756cf59 3292 * XXX: For now, allow allocations to potentially
281e3726 3293 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3294 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3295 * which is important when on a NUMA setup the allowed
281e3726 3296 * nodes are together not big enough to reach the
a756cf59 3297 * global limit. The proper fix for these situations
281e3726 3298 * will require awareness of nodes in the
a756cf59
JW
3299 * dirty-throttling and the flusher threads.
3300 */
3b8c0be4
MG
3301 if (ac->spread_dirty_pages) {
3302 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3303 continue;
3304
3305 if (!node_dirty_ok(zone->zone_pgdat)) {
3306 last_pgdat_dirty_limit = zone->zone_pgdat;
3307 continue;
3308 }
3309 }
7fb1d9fc 3310
e085dbc5 3311 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3312 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3313 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3314 int ret;
3315
c9e97a19
PT
3316#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3317 /*
3318 * Watermark failed for this zone, but see if we can
3319 * grow this zone if it contains deferred pages.
3320 */
3321 if (static_branch_unlikely(&deferred_pages)) {
3322 if (_deferred_grow_zone(zone, order))
3323 goto try_this_zone;
3324 }
3325#endif
5dab2911
MG
3326 /* Checked here to keep the fast path fast */
3327 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3328 if (alloc_flags & ALLOC_NO_WATERMARKS)
3329 goto try_this_zone;
3330
a5f5f91d 3331 if (node_reclaim_mode == 0 ||
c33d6c06 3332 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3333 continue;
3334
a5f5f91d 3335 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3336 switch (ret) {
a5f5f91d 3337 case NODE_RECLAIM_NOSCAN:
fa5e084e 3338 /* did not scan */
cd38b115 3339 continue;
a5f5f91d 3340 case NODE_RECLAIM_FULL:
fa5e084e 3341 /* scanned but unreclaimable */
cd38b115 3342 continue;
fa5e084e
MG
3343 default:
3344 /* did we reclaim enough */
fed2719e 3345 if (zone_watermark_ok(zone, order, mark,
93ea9964 3346 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3347 goto try_this_zone;
3348
fed2719e 3349 continue;
0798e519 3350 }
7fb1d9fc
RS
3351 }
3352
fa5e084e 3353try_this_zone:
066b2393 3354 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3355 gfp_mask, alloc_flags, ac->migratetype);
75379191 3356 if (page) {
479f854a 3357 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3358
3359 /*
3360 * If this is a high-order atomic allocation then check
3361 * if the pageblock should be reserved for the future
3362 */
3363 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3364 reserve_highatomic_pageblock(page, zone, order);
3365
75379191 3366 return page;
c9e97a19
PT
3367 } else {
3368#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3369 /* Try again if zone has deferred pages */
3370 if (static_branch_unlikely(&deferred_pages)) {
3371 if (_deferred_grow_zone(zone, order))
3372 goto try_this_zone;
3373 }
3374#endif
75379191 3375 }
54a6eb5c 3376 }
9276b1bc 3377
4ffeaf35 3378 return NULL;
753ee728
MH
3379}
3380
9af744d7 3381static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3382{
a238ab5b 3383 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3384 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3385
2c029a1e 3386 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3387 return;
3388
3389 /*
3390 * This documents exceptions given to allocations in certain
3391 * contexts that are allowed to allocate outside current's set
3392 * of allowed nodes.
3393 */
3394 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3395 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3396 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3397 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3398 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3399 filter &= ~SHOW_MEM_FILTER_NODES;
3400
9af744d7 3401 show_mem(filter, nodemask);
aa187507
MH
3402}
3403
a8e99259 3404void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3405{
3406 struct va_format vaf;
3407 va_list args;
3408 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3409 DEFAULT_RATELIMIT_BURST);
3410
0f7896f1 3411 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3412 return;
3413
7877cdcc
MH
3414 va_start(args, fmt);
3415 vaf.fmt = fmt;
3416 vaf.va = &args;
0205f755
MH
3417 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3418 current->comm, &vaf, gfp_mask, &gfp_mask,
3419 nodemask_pr_args(nodemask));
7877cdcc 3420 va_end(args);
3ee9a4f0 3421
a8e99259 3422 cpuset_print_current_mems_allowed();
3ee9a4f0 3423
a238ab5b 3424 dump_stack();
685dbf6f 3425 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3426}
3427
6c18ba7a
MH
3428static inline struct page *
3429__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3430 unsigned int alloc_flags,
3431 const struct alloc_context *ac)
3432{
3433 struct page *page;
3434
3435 page = get_page_from_freelist(gfp_mask, order,
3436 alloc_flags|ALLOC_CPUSET, ac);
3437 /*
3438 * fallback to ignore cpuset restriction if our nodes
3439 * are depleted
3440 */
3441 if (!page)
3442 page = get_page_from_freelist(gfp_mask, order,
3443 alloc_flags, ac);
3444
3445 return page;
3446}
3447
11e33f6a
MG
3448static inline struct page *
3449__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3450 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3451{
6e0fc46d
DR
3452 struct oom_control oc = {
3453 .zonelist = ac->zonelist,
3454 .nodemask = ac->nodemask,
2a966b77 3455 .memcg = NULL,
6e0fc46d
DR
3456 .gfp_mask = gfp_mask,
3457 .order = order,
6e0fc46d 3458 };
11e33f6a
MG
3459 struct page *page;
3460
9879de73
JW
3461 *did_some_progress = 0;
3462
9879de73 3463 /*
dc56401f
JW
3464 * Acquire the oom lock. If that fails, somebody else is
3465 * making progress for us.
9879de73 3466 */
dc56401f 3467 if (!mutex_trylock(&oom_lock)) {
9879de73 3468 *did_some_progress = 1;
11e33f6a 3469 schedule_timeout_uninterruptible(1);
1da177e4
LT
3470 return NULL;
3471 }
6b1de916 3472
11e33f6a
MG
3473 /*
3474 * Go through the zonelist yet one more time, keep very high watermark
3475 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3476 * we're still under heavy pressure. But make sure that this reclaim
3477 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3478 * allocation which will never fail due to oom_lock already held.
11e33f6a 3479 */
e746bf73
TH
3480 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3481 ~__GFP_DIRECT_RECLAIM, order,
3482 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3483 if (page)
11e33f6a
MG
3484 goto out;
3485
06ad276a
MH
3486 /* Coredumps can quickly deplete all memory reserves */
3487 if (current->flags & PF_DUMPCORE)
3488 goto out;
3489 /* The OOM killer will not help higher order allocs */
3490 if (order > PAGE_ALLOC_COSTLY_ORDER)
3491 goto out;
dcda9b04
MH
3492 /*
3493 * We have already exhausted all our reclaim opportunities without any
3494 * success so it is time to admit defeat. We will skip the OOM killer
3495 * because it is very likely that the caller has a more reasonable
3496 * fallback than shooting a random task.
3497 */
3498 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3499 goto out;
06ad276a
MH
3500 /* The OOM killer does not needlessly kill tasks for lowmem */
3501 if (ac->high_zoneidx < ZONE_NORMAL)
3502 goto out;
3503 if (pm_suspended_storage())
3504 goto out;
3505 /*
3506 * XXX: GFP_NOFS allocations should rather fail than rely on
3507 * other request to make a forward progress.
3508 * We are in an unfortunate situation where out_of_memory cannot
3509 * do much for this context but let's try it to at least get
3510 * access to memory reserved if the current task is killed (see
3511 * out_of_memory). Once filesystems are ready to handle allocation
3512 * failures more gracefully we should just bail out here.
3513 */
3514
3515 /* The OOM killer may not free memory on a specific node */
3516 if (gfp_mask & __GFP_THISNODE)
3517 goto out;
3da88fb3 3518
3c2c6488 3519 /* Exhausted what can be done so it's blame time */
5020e285 3520 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3521 *did_some_progress = 1;
5020e285 3522
6c18ba7a
MH
3523 /*
3524 * Help non-failing allocations by giving them access to memory
3525 * reserves
3526 */
3527 if (gfp_mask & __GFP_NOFAIL)
3528 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3529 ALLOC_NO_WATERMARKS, ac);
5020e285 3530 }
11e33f6a 3531out:
dc56401f 3532 mutex_unlock(&oom_lock);
11e33f6a
MG
3533 return page;
3534}
3535
33c2d214
MH
3536/*
3537 * Maximum number of compaction retries wit a progress before OOM
3538 * killer is consider as the only way to move forward.
3539 */
3540#define MAX_COMPACT_RETRIES 16
3541
56de7263
MG
3542#ifdef CONFIG_COMPACTION
3543/* Try memory compaction for high-order allocations before reclaim */
3544static struct page *
3545__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3546 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3547 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3548{
98dd3b48 3549 struct page *page;
eb414681 3550 unsigned long pflags;
499118e9 3551 unsigned int noreclaim_flag;
53853e2d
VB
3552
3553 if (!order)
66199712 3554 return NULL;
66199712 3555
eb414681 3556 psi_memstall_enter(&pflags);
499118e9 3557 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3558
c5d01d0d 3559 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3560 prio);
eb414681 3561
499118e9 3562 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3563 psi_memstall_leave(&pflags);
56de7263 3564
c5d01d0d 3565 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3566 return NULL;
53853e2d 3567
98dd3b48
VB
3568 /*
3569 * At least in one zone compaction wasn't deferred or skipped, so let's
3570 * count a compaction stall
3571 */
3572 count_vm_event(COMPACTSTALL);
8fb74b9f 3573
31a6c190 3574 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3575
98dd3b48
VB
3576 if (page) {
3577 struct zone *zone = page_zone(page);
53853e2d 3578
98dd3b48
VB
3579 zone->compact_blockskip_flush = false;
3580 compaction_defer_reset(zone, order, true);
3581 count_vm_event(COMPACTSUCCESS);
3582 return page;
3583 }
56de7263 3584
98dd3b48
VB
3585 /*
3586 * It's bad if compaction run occurs and fails. The most likely reason
3587 * is that pages exist, but not enough to satisfy watermarks.
3588 */
3589 count_vm_event(COMPACTFAIL);
66199712 3590
98dd3b48 3591 cond_resched();
56de7263
MG
3592
3593 return NULL;
3594}
33c2d214 3595
3250845d
VB
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598 enum compact_result compact_result,
3599 enum compact_priority *compact_priority,
d9436498 3600 int *compaction_retries)
3250845d
VB
3601{
3602 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3603 int min_priority;
65190cff
MH
3604 bool ret = false;
3605 int retries = *compaction_retries;
3606 enum compact_priority priority = *compact_priority;
3250845d
VB
3607
3608 if (!order)
3609 return false;
3610
d9436498
VB
3611 if (compaction_made_progress(compact_result))
3612 (*compaction_retries)++;
3613
3250845d
VB
3614 /*
3615 * compaction considers all the zone as desperately out of memory
3616 * so it doesn't really make much sense to retry except when the
3617 * failure could be caused by insufficient priority
3618 */
d9436498
VB
3619 if (compaction_failed(compact_result))
3620 goto check_priority;
3250845d
VB
3621
3622 /*
3623 * make sure the compaction wasn't deferred or didn't bail out early
3624 * due to locks contention before we declare that we should give up.
3625 * But do not retry if the given zonelist is not suitable for
3626 * compaction.
3627 */
65190cff
MH
3628 if (compaction_withdrawn(compact_result)) {
3629 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630 goto out;
3631 }
3250845d
VB
3632
3633 /*
dcda9b04 3634 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3635 * costly ones because they are de facto nofail and invoke OOM
3636 * killer to move on while costly can fail and users are ready
3637 * to cope with that. 1/4 retries is rather arbitrary but we
3638 * would need much more detailed feedback from compaction to
3639 * make a better decision.
3640 */
3641 if (order > PAGE_ALLOC_COSTLY_ORDER)
3642 max_retries /= 4;
65190cff
MH
3643 if (*compaction_retries <= max_retries) {
3644 ret = true;
3645 goto out;
3646 }
3250845d 3647
d9436498
VB
3648 /*
3649 * Make sure there are attempts at the highest priority if we exhausted
3650 * all retries or failed at the lower priorities.
3651 */
3652check_priority:
c2033b00
VB
3653 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3655
c2033b00 3656 if (*compact_priority > min_priority) {
d9436498
VB
3657 (*compact_priority)--;
3658 *compaction_retries = 0;
65190cff 3659 ret = true;
d9436498 3660 }
65190cff
MH
3661out:
3662 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663 return ret;
3250845d 3664}
56de7263
MG
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3668 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3669 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3670{
33c2d214 3671 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3672 return NULL;
3673}
33c2d214
MH
3674
3675static inline bool
86a294a8
MH
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677 enum compact_result compact_result,
a5508cd8 3678 enum compact_priority *compact_priority,
d9436498 3679 int *compaction_retries)
33c2d214 3680{
31e49bfd
MH
3681 struct zone *zone;
3682 struct zoneref *z;
3683
3684 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685 return false;
3686
3687 /*
3688 * There are setups with compaction disabled which would prefer to loop
3689 * inside the allocator rather than hit the oom killer prematurely.
3690 * Let's give them a good hope and keep retrying while the order-0
3691 * watermarks are OK.
3692 */
3693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694 ac->nodemask) {
3695 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696 ac_classzone_idx(ac), alloc_flags))
3697 return true;
3698 }
33c2d214
MH
3699 return false;
3700}
3250845d 3701#endif /* CONFIG_COMPACTION */
56de7263 3702
d92a8cfc 3703#ifdef CONFIG_LOCKDEP
93781325 3704static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3705 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709 gfp_mask = current_gfp_context(gfp_mask);
3710
3711 /* no reclaim without waiting on it */
3712 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713 return false;
3714
3715 /* this guy won't enter reclaim */
2e517d68 3716 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3717 return false;
3718
3719 /* We're only interested __GFP_FS allocations for now */
3720 if (!(gfp_mask & __GFP_FS))
3721 return false;
3722
3723 if (gfp_mask & __GFP_NOLOCKDEP)
3724 return false;
3725
3726 return true;
3727}
3728
93781325
OS
3729void __fs_reclaim_acquire(void)
3730{
3731 lock_map_acquire(&__fs_reclaim_map);
3732}
3733
3734void __fs_reclaim_release(void)
3735{
3736 lock_map_release(&__fs_reclaim_map);
3737}
3738
d92a8cfc
PZ
3739void fs_reclaim_acquire(gfp_t gfp_mask)
3740{
3741 if (__need_fs_reclaim(gfp_mask))
93781325 3742 __fs_reclaim_acquire();
d92a8cfc
PZ
3743}
3744EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3745
3746void fs_reclaim_release(gfp_t gfp_mask)
3747{
3748 if (__need_fs_reclaim(gfp_mask))
93781325 3749 __fs_reclaim_release();
d92a8cfc
PZ
3750}
3751EXPORT_SYMBOL_GPL(fs_reclaim_release);
3752#endif
3753
bba90710
MS
3754/* Perform direct synchronous page reclaim */
3755static int
a9263751
VB
3756__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3757 const struct alloc_context *ac)
11e33f6a 3758{
11e33f6a 3759 struct reclaim_state reclaim_state;
bba90710 3760 int progress;
499118e9 3761 unsigned int noreclaim_flag;
eb414681 3762 unsigned long pflags;
11e33f6a
MG
3763
3764 cond_resched();
3765
3766 /* We now go into synchronous reclaim */
3767 cpuset_memory_pressure_bump();
eb414681 3768 psi_memstall_enter(&pflags);
d92a8cfc 3769 fs_reclaim_acquire(gfp_mask);
93781325 3770 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3771 reclaim_state.reclaimed_slab = 0;
c06b1fca 3772 current->reclaim_state = &reclaim_state;
11e33f6a 3773
a9263751
VB
3774 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775 ac->nodemask);
11e33f6a 3776
c06b1fca 3777 current->reclaim_state = NULL;
499118e9 3778 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3779 fs_reclaim_release(gfp_mask);
eb414681 3780 psi_memstall_leave(&pflags);
11e33f6a
MG
3781
3782 cond_resched();
3783
bba90710
MS
3784 return progress;
3785}
3786
3787/* The really slow allocator path where we enter direct reclaim */
3788static inline struct page *
3789__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3790 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3791 unsigned long *did_some_progress)
bba90710
MS
3792{
3793 struct page *page = NULL;
3794 bool drained = false;
3795
a9263751 3796 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3797 if (unlikely(!(*did_some_progress)))
3798 return NULL;
11e33f6a 3799
9ee493ce 3800retry:
31a6c190 3801 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3802
3803 /*
3804 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3805 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806 * Shrink them them and try again
9ee493ce
MG
3807 */
3808 if (!page && !drained) {
29fac03b 3809 unreserve_highatomic_pageblock(ac, false);
93481ff0 3810 drain_all_pages(NULL);
9ee493ce
MG
3811 drained = true;
3812 goto retry;
3813 }
3814
11e33f6a
MG
3815 return page;
3816}
3817
5ecd9d40
DR
3818static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3819 const struct alloc_context *ac)
3a025760
JW
3820{
3821 struct zoneref *z;
3822 struct zone *zone;
e1a55637 3823 pg_data_t *last_pgdat = NULL;
5ecd9d40 3824 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3825
5ecd9d40
DR
3826 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3827 ac->nodemask) {
e1a55637 3828 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3829 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3830 last_pgdat = zone->zone_pgdat;
3831 }
3a025760
JW
3832}
3833
c603844b 3834static inline unsigned int
341ce06f
PZ
3835gfp_to_alloc_flags(gfp_t gfp_mask)
3836{
c603844b 3837 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3838
a56f57ff 3839 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3840 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3841
341ce06f
PZ
3842 /*
3843 * The caller may dip into page reserves a bit more if the caller
3844 * cannot run direct reclaim, or if the caller has realtime scheduling
3845 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3846 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3847 */
e6223a3b 3848 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3849
d0164adc 3850 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3851 /*
b104a35d
DR
3852 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3853 * if it can't schedule.
5c3240d9 3854 */
b104a35d 3855 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3856 alloc_flags |= ALLOC_HARDER;
523b9458 3857 /*
b104a35d 3858 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3859 * comment for __cpuset_node_allowed().
523b9458 3860 */
341ce06f 3861 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3862 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3863 alloc_flags |= ALLOC_HARDER;
3864
d883c6cf
JK
3865#ifdef CONFIG_CMA
3866 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3867 alloc_flags |= ALLOC_CMA;
3868#endif
341ce06f
PZ
3869 return alloc_flags;
3870}
3871
cd04ae1e 3872static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3873{
cd04ae1e
MH
3874 if (!tsk_is_oom_victim(tsk))
3875 return false;
3876
3877 /*
3878 * !MMU doesn't have oom reaper so give access to memory reserves
3879 * only to the thread with TIF_MEMDIE set
3880 */
3881 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3882 return false;
3883
cd04ae1e
MH
3884 return true;
3885}
3886
3887/*
3888 * Distinguish requests which really need access to full memory
3889 * reserves from oom victims which can live with a portion of it
3890 */
3891static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3892{
3893 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3894 return 0;
31a6c190 3895 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3896 return ALLOC_NO_WATERMARKS;
31a6c190 3897 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3898 return ALLOC_NO_WATERMARKS;
3899 if (!in_interrupt()) {
3900 if (current->flags & PF_MEMALLOC)
3901 return ALLOC_NO_WATERMARKS;
3902 else if (oom_reserves_allowed(current))
3903 return ALLOC_OOM;
3904 }
31a6c190 3905
cd04ae1e
MH
3906 return 0;
3907}
3908
3909bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3910{
3911 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3912}
3913
0a0337e0
MH
3914/*
3915 * Checks whether it makes sense to retry the reclaim to make a forward progress
3916 * for the given allocation request.
491d79ae
JW
3917 *
3918 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3919 * without success, or when we couldn't even meet the watermark if we
3920 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3921 *
3922 * Returns true if a retry is viable or false to enter the oom path.
3923 */
3924static inline bool
3925should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3926 struct alloc_context *ac, int alloc_flags,
423b452e 3927 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3928{
3929 struct zone *zone;
3930 struct zoneref *z;
15f570bf 3931 bool ret = false;
0a0337e0 3932
423b452e
VB
3933 /*
3934 * Costly allocations might have made a progress but this doesn't mean
3935 * their order will become available due to high fragmentation so
3936 * always increment the no progress counter for them
3937 */
3938 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3939 *no_progress_loops = 0;
3940 else
3941 (*no_progress_loops)++;
3942
0a0337e0
MH
3943 /*
3944 * Make sure we converge to OOM if we cannot make any progress
3945 * several times in the row.
3946 */
04c8716f
MK
3947 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3948 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3949 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3950 }
0a0337e0 3951
bca67592
MG
3952 /*
3953 * Keep reclaiming pages while there is a chance this will lead
3954 * somewhere. If none of the target zones can satisfy our allocation
3955 * request even if all reclaimable pages are considered then we are
3956 * screwed and have to go OOM.
0a0337e0
MH
3957 */
3958 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3959 ac->nodemask) {
3960 unsigned long available;
ede37713 3961 unsigned long reclaimable;
d379f01d
MH
3962 unsigned long min_wmark = min_wmark_pages(zone);
3963 bool wmark;
0a0337e0 3964
5a1c84b4 3965 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3966 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3967
3968 /*
491d79ae
JW
3969 * Would the allocation succeed if we reclaimed all
3970 * reclaimable pages?
0a0337e0 3971 */
d379f01d
MH
3972 wmark = __zone_watermark_ok(zone, order, min_wmark,
3973 ac_classzone_idx(ac), alloc_flags, available);
3974 trace_reclaim_retry_zone(z, order, reclaimable,
3975 available, min_wmark, *no_progress_loops, wmark);
3976 if (wmark) {
ede37713
MH
3977 /*
3978 * If we didn't make any progress and have a lot of
3979 * dirty + writeback pages then we should wait for
3980 * an IO to complete to slow down the reclaim and
3981 * prevent from pre mature OOM
3982 */
3983 if (!did_some_progress) {
11fb9989 3984 unsigned long write_pending;
ede37713 3985
5a1c84b4
MG
3986 write_pending = zone_page_state_snapshot(zone,
3987 NR_ZONE_WRITE_PENDING);
ede37713 3988
11fb9989 3989 if (2 * write_pending > reclaimable) {
ede37713
MH
3990 congestion_wait(BLK_RW_ASYNC, HZ/10);
3991 return true;
3992 }
3993 }
5a1c84b4 3994
15f570bf
MH
3995 ret = true;
3996 goto out;
0a0337e0
MH
3997 }
3998 }
3999
15f570bf
MH
4000out:
4001 /*
4002 * Memory allocation/reclaim might be called from a WQ context and the
4003 * current implementation of the WQ concurrency control doesn't
4004 * recognize that a particular WQ is congested if the worker thread is
4005 * looping without ever sleeping. Therefore we have to do a short sleep
4006 * here rather than calling cond_resched().
4007 */
4008 if (current->flags & PF_WQ_WORKER)
4009 schedule_timeout_uninterruptible(1);
4010 else
4011 cond_resched();
4012 return ret;
0a0337e0
MH
4013}
4014
902b6281
VB
4015static inline bool
4016check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4017{
4018 /*
4019 * It's possible that cpuset's mems_allowed and the nodemask from
4020 * mempolicy don't intersect. This should be normally dealt with by
4021 * policy_nodemask(), but it's possible to race with cpuset update in
4022 * such a way the check therein was true, and then it became false
4023 * before we got our cpuset_mems_cookie here.
4024 * This assumes that for all allocations, ac->nodemask can come only
4025 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4026 * when it does not intersect with the cpuset restrictions) or the
4027 * caller can deal with a violated nodemask.
4028 */
4029 if (cpusets_enabled() && ac->nodemask &&
4030 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4031 ac->nodemask = NULL;
4032 return true;
4033 }
4034
4035 /*
4036 * When updating a task's mems_allowed or mempolicy nodemask, it is
4037 * possible to race with parallel threads in such a way that our
4038 * allocation can fail while the mask is being updated. If we are about
4039 * to fail, check if the cpuset changed during allocation and if so,
4040 * retry.
4041 */
4042 if (read_mems_allowed_retry(cpuset_mems_cookie))
4043 return true;
4044
4045 return false;
4046}
4047
11e33f6a
MG
4048static inline struct page *
4049__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4050 struct alloc_context *ac)
11e33f6a 4051{
d0164adc 4052 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4053 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4054 struct page *page = NULL;
c603844b 4055 unsigned int alloc_flags;
11e33f6a 4056 unsigned long did_some_progress;
5ce9bfef 4057 enum compact_priority compact_priority;
c5d01d0d 4058 enum compact_result compact_result;
5ce9bfef
VB
4059 int compaction_retries;
4060 int no_progress_loops;
5ce9bfef 4061 unsigned int cpuset_mems_cookie;
cd04ae1e 4062 int reserve_flags;
1da177e4 4063
d0164adc
MG
4064 /*
4065 * We also sanity check to catch abuse of atomic reserves being used by
4066 * callers that are not in atomic context.
4067 */
4068 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4069 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4070 gfp_mask &= ~__GFP_ATOMIC;
4071
5ce9bfef
VB
4072retry_cpuset:
4073 compaction_retries = 0;
4074 no_progress_loops = 0;
4075 compact_priority = DEF_COMPACT_PRIORITY;
4076 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4077
4078 /*
4079 * The fast path uses conservative alloc_flags to succeed only until
4080 * kswapd needs to be woken up, and to avoid the cost of setting up
4081 * alloc_flags precisely. So we do that now.
4082 */
4083 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4084
e47483bc
VB
4085 /*
4086 * We need to recalculate the starting point for the zonelist iterator
4087 * because we might have used different nodemask in the fast path, or
4088 * there was a cpuset modification and we are retrying - otherwise we
4089 * could end up iterating over non-eligible zones endlessly.
4090 */
4091 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4092 ac->high_zoneidx, ac->nodemask);
4093 if (!ac->preferred_zoneref->zone)
4094 goto nopage;
4095
23771235 4096 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4097 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4098
4099 /*
4100 * The adjusted alloc_flags might result in immediate success, so try
4101 * that first
4102 */
4103 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4104 if (page)
4105 goto got_pg;
4106
a8161d1e
VB
4107 /*
4108 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4109 * that we have enough base pages and don't need to reclaim. For non-
4110 * movable high-order allocations, do that as well, as compaction will
4111 * try prevent permanent fragmentation by migrating from blocks of the
4112 * same migratetype.
4113 * Don't try this for allocations that are allowed to ignore
4114 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4115 */
282722b0
VB
4116 if (can_direct_reclaim &&
4117 (costly_order ||
4118 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4119 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4120 page = __alloc_pages_direct_compact(gfp_mask, order,
4121 alloc_flags, ac,
a5508cd8 4122 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4123 &compact_result);
4124 if (page)
4125 goto got_pg;
4126
3eb2771b
VB
4127 /*
4128 * Checks for costly allocations with __GFP_NORETRY, which
4129 * includes THP page fault allocations
4130 */
282722b0 4131 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4132 /*
4133 * If compaction is deferred for high-order allocations,
4134 * it is because sync compaction recently failed. If
4135 * this is the case and the caller requested a THP
4136 * allocation, we do not want to heavily disrupt the
4137 * system, so we fail the allocation instead of entering
4138 * direct reclaim.
4139 */
4140 if (compact_result == COMPACT_DEFERRED)
4141 goto nopage;
4142
a8161d1e 4143 /*
3eb2771b
VB
4144 * Looks like reclaim/compaction is worth trying, but
4145 * sync compaction could be very expensive, so keep
25160354 4146 * using async compaction.
a8161d1e 4147 */
a5508cd8 4148 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4149 }
4150 }
23771235 4151
31a6c190 4152retry:
23771235 4153 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190 4154 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4155 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4156
cd04ae1e
MH
4157 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4158 if (reserve_flags)
4159 alloc_flags = reserve_flags;
23771235 4160
e46e7b77 4161 /*
d6a24df0
VB
4162 * Reset the nodemask and zonelist iterators if memory policies can be
4163 * ignored. These allocations are high priority and system rather than
4164 * user oriented.
e46e7b77 4165 */
cd04ae1e 4166 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4167 ac->nodemask = NULL;
e46e7b77
MG
4168 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4169 ac->high_zoneidx, ac->nodemask);
4170 }
4171
23771235 4172 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4173 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4174 if (page)
4175 goto got_pg;
1da177e4 4176
d0164adc 4177 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4178 if (!can_direct_reclaim)
1da177e4
LT
4179 goto nopage;
4180
9a67f648
MH
4181 /* Avoid recursion of direct reclaim */
4182 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4183 goto nopage;
4184
a8161d1e
VB
4185 /* Try direct reclaim and then allocating */
4186 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4187 &did_some_progress);
4188 if (page)
4189 goto got_pg;
4190
4191 /* Try direct compaction and then allocating */
a9263751 4192 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4193 compact_priority, &compact_result);
56de7263
MG
4194 if (page)
4195 goto got_pg;
75f30861 4196
9083905a
JW
4197 /* Do not loop if specifically requested */
4198 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4199 goto nopage;
9083905a 4200
0a0337e0
MH
4201 /*
4202 * Do not retry costly high order allocations unless they are
dcda9b04 4203 * __GFP_RETRY_MAYFAIL
0a0337e0 4204 */
dcda9b04 4205 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4206 goto nopage;
0a0337e0 4207
0a0337e0 4208 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4209 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4210 goto retry;
4211
33c2d214
MH
4212 /*
4213 * It doesn't make any sense to retry for the compaction if the order-0
4214 * reclaim is not able to make any progress because the current
4215 * implementation of the compaction depends on the sufficient amount
4216 * of free memory (see __compaction_suitable)
4217 */
4218 if (did_some_progress > 0 &&
86a294a8 4219 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4220 compact_result, &compact_priority,
d9436498 4221 &compaction_retries))
33c2d214
MH
4222 goto retry;
4223
902b6281
VB
4224
4225 /* Deal with possible cpuset update races before we start OOM killing */
4226 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4227 goto retry_cpuset;
4228
9083905a
JW
4229 /* Reclaim has failed us, start killing things */
4230 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4231 if (page)
4232 goto got_pg;
4233
9a67f648 4234 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4235 if (tsk_is_oom_victim(current) &&
4236 (alloc_flags == ALLOC_OOM ||
c288983d 4237 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4238 goto nopage;
4239
9083905a 4240 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4241 if (did_some_progress) {
4242 no_progress_loops = 0;
9083905a 4243 goto retry;
0a0337e0 4244 }
9083905a 4245
1da177e4 4246nopage:
902b6281
VB
4247 /* Deal with possible cpuset update races before we fail */
4248 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4249 goto retry_cpuset;
4250
9a67f648
MH
4251 /*
4252 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4253 * we always retry
4254 */
4255 if (gfp_mask & __GFP_NOFAIL) {
4256 /*
4257 * All existing users of the __GFP_NOFAIL are blockable, so warn
4258 * of any new users that actually require GFP_NOWAIT
4259 */
4260 if (WARN_ON_ONCE(!can_direct_reclaim))
4261 goto fail;
4262
4263 /*
4264 * PF_MEMALLOC request from this context is rather bizarre
4265 * because we cannot reclaim anything and only can loop waiting
4266 * for somebody to do a work for us
4267 */
4268 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4269
4270 /*
4271 * non failing costly orders are a hard requirement which we
4272 * are not prepared for much so let's warn about these users
4273 * so that we can identify them and convert them to something
4274 * else.
4275 */
4276 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4277
6c18ba7a
MH
4278 /*
4279 * Help non-failing allocations by giving them access to memory
4280 * reserves but do not use ALLOC_NO_WATERMARKS because this
4281 * could deplete whole memory reserves which would just make
4282 * the situation worse
4283 */
4284 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4285 if (page)
4286 goto got_pg;
4287
9a67f648
MH
4288 cond_resched();
4289 goto retry;
4290 }
4291fail:
a8e99259 4292 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4293 "page allocation failure: order:%u", order);
1da177e4 4294got_pg:
072bb0aa 4295 return page;
1da177e4 4296}
11e33f6a 4297
9cd75558 4298static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4299 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4300 struct alloc_context *ac, gfp_t *alloc_mask,
4301 unsigned int *alloc_flags)
11e33f6a 4302{
9cd75558 4303 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4304 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4305 ac->nodemask = nodemask;
4306 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4307
682a3385 4308 if (cpusets_enabled()) {
9cd75558 4309 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4310 if (!ac->nodemask)
4311 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4312 else
4313 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4314 }
4315
d92a8cfc
PZ
4316 fs_reclaim_acquire(gfp_mask);
4317 fs_reclaim_release(gfp_mask);
11e33f6a 4318
d0164adc 4319 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4320
4321 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4322 return false;
11e33f6a 4323
d883c6cf
JK
4324 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4325 *alloc_flags |= ALLOC_CMA;
4326
9cd75558
MG
4327 return true;
4328}
21bb9bd1 4329
9cd75558 4330/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4331static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4332{
c9ab0c4f 4333 /* Dirty zone balancing only done in the fast path */
9cd75558 4334 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4335
e46e7b77
MG
4336 /*
4337 * The preferred zone is used for statistics but crucially it is
4338 * also used as the starting point for the zonelist iterator. It
4339 * may get reset for allocations that ignore memory policies.
4340 */
9cd75558
MG
4341 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4342 ac->high_zoneidx, ac->nodemask);
4343}
4344
4345/*
4346 * This is the 'heart' of the zoned buddy allocator.
4347 */
4348struct page *
04ec6264
VB
4349__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4350 nodemask_t *nodemask)
9cd75558
MG
4351{
4352 struct page *page;
4353 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4354 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4355 struct alloc_context ac = { };
4356
c63ae43b
MH
4357 /*
4358 * There are several places where we assume that the order value is sane
4359 * so bail out early if the request is out of bound.
4360 */
4361 if (unlikely(order >= MAX_ORDER)) {
4362 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4363 return NULL;
4364 }
4365
9cd75558 4366 gfp_mask &= gfp_allowed_mask;
f19360f0 4367 alloc_mask = gfp_mask;
04ec6264 4368 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4369 return NULL;
4370
a380b40a 4371 finalise_ac(gfp_mask, &ac);
5bb1b169 4372
5117f45d 4373 /* First allocation attempt */
a9263751 4374 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4375 if (likely(page))
4376 goto out;
11e33f6a 4377
4fcb0971 4378 /*
7dea19f9
MH
4379 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4380 * resp. GFP_NOIO which has to be inherited for all allocation requests
4381 * from a particular context which has been marked by
4382 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4383 */
7dea19f9 4384 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4385 ac.spread_dirty_pages = false;
23f086f9 4386
4741526b
MG
4387 /*
4388 * Restore the original nodemask if it was potentially replaced with
4389 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4390 */
e47483bc 4391 if (unlikely(ac.nodemask != nodemask))
4741526b 4392 ac.nodemask = nodemask;
16096c25 4393
4fcb0971 4394 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4395
4fcb0971 4396out:
c4159a75
VD
4397 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4398 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4399 __free_pages(page, order);
4400 page = NULL;
4949148a
VD
4401 }
4402
4fcb0971
MG
4403 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4404
11e33f6a 4405 return page;
1da177e4 4406}
d239171e 4407EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4408
4409/*
9ea9a680
MH
4410 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4411 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4412 * you need to access high mem.
1da177e4 4413 */
920c7a5d 4414unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4415{
945a1113
AM
4416 struct page *page;
4417
9ea9a680 4418 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4419 if (!page)
4420 return 0;
4421 return (unsigned long) page_address(page);
4422}
1da177e4
LT
4423EXPORT_SYMBOL(__get_free_pages);
4424
920c7a5d 4425unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4426{
945a1113 4427 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4428}
1da177e4
LT
4429EXPORT_SYMBOL(get_zeroed_page);
4430
920c7a5d 4431void __free_pages(struct page *page, unsigned int order)
1da177e4 4432{
b5810039 4433 if (put_page_testzero(page)) {
1da177e4 4434 if (order == 0)
2d4894b5 4435 free_unref_page(page);
1da177e4
LT
4436 else
4437 __free_pages_ok(page, order);
4438 }
4439}
4440
4441EXPORT_SYMBOL(__free_pages);
4442
920c7a5d 4443void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4444{
4445 if (addr != 0) {
725d704e 4446 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4447 __free_pages(virt_to_page((void *)addr), order);
4448 }
4449}
4450
4451EXPORT_SYMBOL(free_pages);
4452
b63ae8ca
AD
4453/*
4454 * Page Fragment:
4455 * An arbitrary-length arbitrary-offset area of memory which resides
4456 * within a 0 or higher order page. Multiple fragments within that page
4457 * are individually refcounted, in the page's reference counter.
4458 *
4459 * The page_frag functions below provide a simple allocation framework for
4460 * page fragments. This is used by the network stack and network device
4461 * drivers to provide a backing region of memory for use as either an
4462 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4463 */
2976db80
AD
4464static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4465 gfp_t gfp_mask)
b63ae8ca
AD
4466{
4467 struct page *page = NULL;
4468 gfp_t gfp = gfp_mask;
4469
4470#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4471 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4472 __GFP_NOMEMALLOC;
4473 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4474 PAGE_FRAG_CACHE_MAX_ORDER);
4475 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4476#endif
4477 if (unlikely(!page))
4478 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4479
4480 nc->va = page ? page_address(page) : NULL;
4481
4482 return page;
4483}
4484
2976db80 4485void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4486{
4487 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4488
4489 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4490 unsigned int order = compound_order(page);
4491
44fdffd7 4492 if (order == 0)
2d4894b5 4493 free_unref_page(page);
44fdffd7
AD
4494 else
4495 __free_pages_ok(page, order);
4496 }
4497}
2976db80 4498EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4499
8c2dd3e4
AD
4500void *page_frag_alloc(struct page_frag_cache *nc,
4501 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4502{
4503 unsigned int size = PAGE_SIZE;
4504 struct page *page;
4505 int offset;
4506
4507 if (unlikely(!nc->va)) {
4508refill:
2976db80 4509 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4510 if (!page)
4511 return NULL;
4512
4513#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4514 /* if size can vary use size else just use PAGE_SIZE */
4515 size = nc->size;
4516#endif
4517 /* Even if we own the page, we do not use atomic_set().
4518 * This would break get_page_unless_zero() users.
4519 */
fe896d18 4520 page_ref_add(page, size - 1);
b63ae8ca
AD
4521
4522 /* reset page count bias and offset to start of new frag */
2f064f34 4523 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4524 nc->pagecnt_bias = size;
4525 nc->offset = size;
4526 }
4527
4528 offset = nc->offset - fragsz;
4529 if (unlikely(offset < 0)) {
4530 page = virt_to_page(nc->va);
4531
fe896d18 4532 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4533 goto refill;
4534
4535#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4536 /* if size can vary use size else just use PAGE_SIZE */
4537 size = nc->size;
4538#endif
4539 /* OK, page count is 0, we can safely set it */
fe896d18 4540 set_page_count(page, size);
b63ae8ca
AD
4541
4542 /* reset page count bias and offset to start of new frag */
4543 nc->pagecnt_bias = size;
4544 offset = size - fragsz;
4545 }
4546
4547 nc->pagecnt_bias--;
4548 nc->offset = offset;
4549
4550 return nc->va + offset;
4551}
8c2dd3e4 4552EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4553
4554/*
4555 * Frees a page fragment allocated out of either a compound or order 0 page.
4556 */
8c2dd3e4 4557void page_frag_free(void *addr)
b63ae8ca
AD
4558{
4559 struct page *page = virt_to_head_page(addr);
4560
4561 if (unlikely(put_page_testzero(page)))
4562 __free_pages_ok(page, compound_order(page));
4563}
8c2dd3e4 4564EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4565
d00181b9
KS
4566static void *make_alloc_exact(unsigned long addr, unsigned int order,
4567 size_t size)
ee85c2e1
AK
4568{
4569 if (addr) {
4570 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4571 unsigned long used = addr + PAGE_ALIGN(size);
4572
4573 split_page(virt_to_page((void *)addr), order);
4574 while (used < alloc_end) {
4575 free_page(used);
4576 used += PAGE_SIZE;
4577 }
4578 }
4579 return (void *)addr;
4580}
4581
2be0ffe2
TT
4582/**
4583 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4584 * @size: the number of bytes to allocate
4585 * @gfp_mask: GFP flags for the allocation
4586 *
4587 * This function is similar to alloc_pages(), except that it allocates the
4588 * minimum number of pages to satisfy the request. alloc_pages() can only
4589 * allocate memory in power-of-two pages.
4590 *
4591 * This function is also limited by MAX_ORDER.
4592 *
4593 * Memory allocated by this function must be released by free_pages_exact().
4594 */
4595void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4596{
4597 unsigned int order = get_order(size);
4598 unsigned long addr;
4599
4600 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4601 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4602}
4603EXPORT_SYMBOL(alloc_pages_exact);
4604
ee85c2e1
AK
4605/**
4606 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4607 * pages on a node.
b5e6ab58 4608 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4609 * @size: the number of bytes to allocate
4610 * @gfp_mask: GFP flags for the allocation
4611 *
4612 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4613 * back.
ee85c2e1 4614 */
e1931811 4615void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4616{
d00181b9 4617 unsigned int order = get_order(size);
ee85c2e1
AK
4618 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4619 if (!p)
4620 return NULL;
4621 return make_alloc_exact((unsigned long)page_address(p), order, size);
4622}
ee85c2e1 4623
2be0ffe2
TT
4624/**
4625 * free_pages_exact - release memory allocated via alloc_pages_exact()
4626 * @virt: the value returned by alloc_pages_exact.
4627 * @size: size of allocation, same value as passed to alloc_pages_exact().
4628 *
4629 * Release the memory allocated by a previous call to alloc_pages_exact.
4630 */
4631void free_pages_exact(void *virt, size_t size)
4632{
4633 unsigned long addr = (unsigned long)virt;
4634 unsigned long end = addr + PAGE_ALIGN(size);
4635
4636 while (addr < end) {
4637 free_page(addr);
4638 addr += PAGE_SIZE;
4639 }
4640}
4641EXPORT_SYMBOL(free_pages_exact);
4642
e0fb5815
ZY
4643/**
4644 * nr_free_zone_pages - count number of pages beyond high watermark
4645 * @offset: The zone index of the highest zone
4646 *
4647 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4648 * high watermark within all zones at or below a given zone index. For each
4649 * zone, the number of pages is calculated as:
0e056eb5
MCC
4650 *
4651 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4652 */
ebec3862 4653static unsigned long nr_free_zone_pages(int offset)
1da177e4 4654{
dd1a239f 4655 struct zoneref *z;
54a6eb5c
MG
4656 struct zone *zone;
4657
e310fd43 4658 /* Just pick one node, since fallback list is circular */
ebec3862 4659 unsigned long sum = 0;
1da177e4 4660
0e88460d 4661 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4662
54a6eb5c 4663 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4664 unsigned long size = zone_managed_pages(zone);
41858966 4665 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4666 if (size > high)
4667 sum += size - high;
1da177e4
LT
4668 }
4669
4670 return sum;
4671}
4672
e0fb5815
ZY
4673/**
4674 * nr_free_buffer_pages - count number of pages beyond high watermark
4675 *
4676 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4677 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4678 */
ebec3862 4679unsigned long nr_free_buffer_pages(void)
1da177e4 4680{
af4ca457 4681 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4682}
c2f1a551 4683EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4684
e0fb5815
ZY
4685/**
4686 * nr_free_pagecache_pages - count number of pages beyond high watermark
4687 *
4688 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4689 * high watermark within all zones.
1da177e4 4690 */
ebec3862 4691unsigned long nr_free_pagecache_pages(void)
1da177e4 4692{
2a1e274a 4693 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4694}
08e0f6a9
CL
4695
4696static inline void show_node(struct zone *zone)
1da177e4 4697{
e5adfffc 4698 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4699 printk("Node %d ", zone_to_nid(zone));
1da177e4 4700}
1da177e4 4701
d02bd27b
IR
4702long si_mem_available(void)
4703{
4704 long available;
4705 unsigned long pagecache;
4706 unsigned long wmark_low = 0;
4707 unsigned long pages[NR_LRU_LISTS];
b29940c1 4708 unsigned long reclaimable;
d02bd27b
IR
4709 struct zone *zone;
4710 int lru;
4711
4712 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4713 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4714
4715 for_each_zone(zone)
4716 wmark_low += zone->watermark[WMARK_LOW];
4717
4718 /*
4719 * Estimate the amount of memory available for userspace allocations,
4720 * without causing swapping.
4721 */
c41f012a 4722 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4723
4724 /*
4725 * Not all the page cache can be freed, otherwise the system will
4726 * start swapping. Assume at least half of the page cache, or the
4727 * low watermark worth of cache, needs to stay.
4728 */
4729 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4730 pagecache -= min(pagecache / 2, wmark_low);
4731 available += pagecache;
4732
4733 /*
b29940c1
VB
4734 * Part of the reclaimable slab and other kernel memory consists of
4735 * items that are in use, and cannot be freed. Cap this estimate at the
4736 * low watermark.
d02bd27b 4737 */
b29940c1
VB
4738 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4739 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4740 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4741
d02bd27b
IR
4742 if (available < 0)
4743 available = 0;
4744 return available;
4745}
4746EXPORT_SYMBOL_GPL(si_mem_available);
4747
1da177e4
LT
4748void si_meminfo(struct sysinfo *val)
4749{
4750 val->totalram = totalram_pages;
11fb9989 4751 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4752 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4753 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4754 val->totalhigh = totalhigh_pages;
4755 val->freehigh = nr_free_highpages();
1da177e4
LT
4756 val->mem_unit = PAGE_SIZE;
4757}
4758
4759EXPORT_SYMBOL(si_meminfo);
4760
4761#ifdef CONFIG_NUMA
4762void si_meminfo_node(struct sysinfo *val, int nid)
4763{
cdd91a77
JL
4764 int zone_type; /* needs to be signed */
4765 unsigned long managed_pages = 0;
fc2bd799
JK
4766 unsigned long managed_highpages = 0;
4767 unsigned long free_highpages = 0;
1da177e4
LT
4768 pg_data_t *pgdat = NODE_DATA(nid);
4769
cdd91a77 4770 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 4771 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 4772 val->totalram = managed_pages;
11fb9989 4773 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4774 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4775#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4776 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4777 struct zone *zone = &pgdat->node_zones[zone_type];
4778
4779 if (is_highmem(zone)) {
9705bea5 4780 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
4781 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4782 }
4783 }
4784 val->totalhigh = managed_highpages;
4785 val->freehigh = free_highpages;
98d2b0eb 4786#else
fc2bd799
JK
4787 val->totalhigh = managed_highpages;
4788 val->freehigh = free_highpages;
98d2b0eb 4789#endif
1da177e4
LT
4790 val->mem_unit = PAGE_SIZE;
4791}
4792#endif
4793
ddd588b5 4794/*
7bf02ea2
DR
4795 * Determine whether the node should be displayed or not, depending on whether
4796 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4797 */
9af744d7 4798static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4799{
ddd588b5 4800 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4801 return false;
ddd588b5 4802
9af744d7
MH
4803 /*
4804 * no node mask - aka implicit memory numa policy. Do not bother with
4805 * the synchronization - read_mems_allowed_begin - because we do not
4806 * have to be precise here.
4807 */
4808 if (!nodemask)
4809 nodemask = &cpuset_current_mems_allowed;
4810
4811 return !node_isset(nid, *nodemask);
ddd588b5
DR
4812}
4813
1da177e4
LT
4814#define K(x) ((x) << (PAGE_SHIFT-10))
4815
377e4f16
RV
4816static void show_migration_types(unsigned char type)
4817{
4818 static const char types[MIGRATE_TYPES] = {
4819 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4820 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4821 [MIGRATE_RECLAIMABLE] = 'E',
4822 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4823#ifdef CONFIG_CMA
4824 [MIGRATE_CMA] = 'C',
4825#endif
194159fb 4826#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4827 [MIGRATE_ISOLATE] = 'I',
194159fb 4828#endif
377e4f16
RV
4829 };
4830 char tmp[MIGRATE_TYPES + 1];
4831 char *p = tmp;
4832 int i;
4833
4834 for (i = 0; i < MIGRATE_TYPES; i++) {
4835 if (type & (1 << i))
4836 *p++ = types[i];
4837 }
4838
4839 *p = '\0';
1f84a18f 4840 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4841}
4842
1da177e4
LT
4843/*
4844 * Show free area list (used inside shift_scroll-lock stuff)
4845 * We also calculate the percentage fragmentation. We do this by counting the
4846 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4847 *
4848 * Bits in @filter:
4849 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4850 * cpuset.
1da177e4 4851 */
9af744d7 4852void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4853{
d1bfcdb8 4854 unsigned long free_pcp = 0;
c7241913 4855 int cpu;
1da177e4 4856 struct zone *zone;
599d0c95 4857 pg_data_t *pgdat;
1da177e4 4858
ee99c71c 4859 for_each_populated_zone(zone) {
9af744d7 4860 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4861 continue;
d1bfcdb8 4862
761b0677
KK
4863 for_each_online_cpu(cpu)
4864 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4865 }
4866
a731286d
KM
4867 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4868 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4869 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4870 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4871 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4872 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4873 global_node_page_state(NR_ACTIVE_ANON),
4874 global_node_page_state(NR_INACTIVE_ANON),
4875 global_node_page_state(NR_ISOLATED_ANON),
4876 global_node_page_state(NR_ACTIVE_FILE),
4877 global_node_page_state(NR_INACTIVE_FILE),
4878 global_node_page_state(NR_ISOLATED_FILE),
4879 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4880 global_node_page_state(NR_FILE_DIRTY),
4881 global_node_page_state(NR_WRITEBACK),
4882 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4883 global_node_page_state(NR_SLAB_RECLAIMABLE),
4884 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4885 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4886 global_node_page_state(NR_SHMEM),
c41f012a
MH
4887 global_zone_page_state(NR_PAGETABLE),
4888 global_zone_page_state(NR_BOUNCE),
4889 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4890 free_pcp,
c41f012a 4891 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4892
599d0c95 4893 for_each_online_pgdat(pgdat) {
9af744d7 4894 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4895 continue;
4896
599d0c95
MG
4897 printk("Node %d"
4898 " active_anon:%lukB"
4899 " inactive_anon:%lukB"
4900 " active_file:%lukB"
4901 " inactive_file:%lukB"
4902 " unevictable:%lukB"
4903 " isolated(anon):%lukB"
4904 " isolated(file):%lukB"
50658e2e 4905 " mapped:%lukB"
11fb9989
MG
4906 " dirty:%lukB"
4907 " writeback:%lukB"
4908 " shmem:%lukB"
4909#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4910 " shmem_thp: %lukB"
4911 " shmem_pmdmapped: %lukB"
4912 " anon_thp: %lukB"
4913#endif
4914 " writeback_tmp:%lukB"
4915 " unstable:%lukB"
599d0c95
MG
4916 " all_unreclaimable? %s"
4917 "\n",
4918 pgdat->node_id,
4919 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4920 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4921 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4922 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4923 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4924 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4925 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4926 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4927 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4928 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4929 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4932 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4933 * HPAGE_PMD_NR),
4934 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4935#endif
11fb9989
MG
4936 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4937 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4938 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4939 "yes" : "no");
599d0c95
MG
4940 }
4941
ee99c71c 4942 for_each_populated_zone(zone) {
1da177e4
LT
4943 int i;
4944
9af744d7 4945 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4946 continue;
d1bfcdb8
KK
4947
4948 free_pcp = 0;
4949 for_each_online_cpu(cpu)
4950 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4951
1da177e4 4952 show_node(zone);
1f84a18f
JP
4953 printk(KERN_CONT
4954 "%s"
1da177e4
LT
4955 " free:%lukB"
4956 " min:%lukB"
4957 " low:%lukB"
4958 " high:%lukB"
71c799f4
MK
4959 " active_anon:%lukB"
4960 " inactive_anon:%lukB"
4961 " active_file:%lukB"
4962 " inactive_file:%lukB"
4963 " unevictable:%lukB"
5a1c84b4 4964 " writepending:%lukB"
1da177e4 4965 " present:%lukB"
9feedc9d 4966 " managed:%lukB"
4a0aa73f 4967 " mlocked:%lukB"
c6a7f572 4968 " kernel_stack:%lukB"
4a0aa73f 4969 " pagetables:%lukB"
4a0aa73f 4970 " bounce:%lukB"
d1bfcdb8
KK
4971 " free_pcp:%lukB"
4972 " local_pcp:%ukB"
d1ce749a 4973 " free_cma:%lukB"
1da177e4
LT
4974 "\n",
4975 zone->name,
88f5acf8 4976 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4977 K(min_wmark_pages(zone)),
4978 K(low_wmark_pages(zone)),
4979 K(high_wmark_pages(zone)),
71c799f4
MK
4980 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4981 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4982 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4983 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4984 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4985 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4986 K(zone->present_pages),
9705bea5 4987 K(zone_managed_pages(zone)),
4a0aa73f 4988 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4989 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4990 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4991 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4992 K(free_pcp),
4993 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4994 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4995 printk("lowmem_reserve[]:");
4996 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4997 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4998 printk(KERN_CONT "\n");
1da177e4
LT
4999 }
5000
ee99c71c 5001 for_each_populated_zone(zone) {
d00181b9
KS
5002 unsigned int order;
5003 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5004 unsigned char types[MAX_ORDER];
1da177e4 5005
9af744d7 5006 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5007 continue;
1da177e4 5008 show_node(zone);
1f84a18f 5009 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5010
5011 spin_lock_irqsave(&zone->lock, flags);
5012 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5013 struct free_area *area = &zone->free_area[order];
5014 int type;
5015
5016 nr[order] = area->nr_free;
8f9de51a 5017 total += nr[order] << order;
377e4f16
RV
5018
5019 types[order] = 0;
5020 for (type = 0; type < MIGRATE_TYPES; type++) {
5021 if (!list_empty(&area->free_list[type]))
5022 types[order] |= 1 << type;
5023 }
1da177e4
LT
5024 }
5025 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5026 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5027 printk(KERN_CONT "%lu*%lukB ",
5028 nr[order], K(1UL) << order);
377e4f16
RV
5029 if (nr[order])
5030 show_migration_types(types[order]);
5031 }
1f84a18f 5032 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5033 }
5034
949f7ec5
DR
5035 hugetlb_show_meminfo();
5036
11fb9989 5037 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5038
1da177e4
LT
5039 show_swap_cache_info();
5040}
5041
19770b32
MG
5042static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5043{
5044 zoneref->zone = zone;
5045 zoneref->zone_idx = zone_idx(zone);
5046}
5047
1da177e4
LT
5048/*
5049 * Builds allocation fallback zone lists.
1a93205b
CL
5050 *
5051 * Add all populated zones of a node to the zonelist.
1da177e4 5052 */
9d3be21b 5053static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5054{
1a93205b 5055 struct zone *zone;
bc732f1d 5056 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5057 int nr_zones = 0;
02a68a5e
CL
5058
5059 do {
2f6726e5 5060 zone_type--;
070f8032 5061 zone = pgdat->node_zones + zone_type;
6aa303de 5062 if (managed_zone(zone)) {
9d3be21b 5063 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5064 check_highest_zone(zone_type);
1da177e4 5065 }
2f6726e5 5066 } while (zone_type);
bc732f1d 5067
070f8032 5068 return nr_zones;
1da177e4
LT
5069}
5070
5071#ifdef CONFIG_NUMA
f0c0b2b8
KH
5072
5073static int __parse_numa_zonelist_order(char *s)
5074{
c9bff3ee
MH
5075 /*
5076 * We used to support different zonlists modes but they turned
5077 * out to be just not useful. Let's keep the warning in place
5078 * if somebody still use the cmd line parameter so that we do
5079 * not fail it silently
5080 */
5081 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5082 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5083 return -EINVAL;
5084 }
5085 return 0;
5086}
5087
5088static __init int setup_numa_zonelist_order(char *s)
5089{
ecb256f8
VL
5090 if (!s)
5091 return 0;
5092
c9bff3ee 5093 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5094}
5095early_param("numa_zonelist_order", setup_numa_zonelist_order);
5096
c9bff3ee
MH
5097char numa_zonelist_order[] = "Node";
5098
f0c0b2b8
KH
5099/*
5100 * sysctl handler for numa_zonelist_order
5101 */
cccad5b9 5102int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5103 void __user *buffer, size_t *length,
f0c0b2b8
KH
5104 loff_t *ppos)
5105{
c9bff3ee 5106 char *str;
f0c0b2b8
KH
5107 int ret;
5108
c9bff3ee
MH
5109 if (!write)
5110 return proc_dostring(table, write, buffer, length, ppos);
5111 str = memdup_user_nul(buffer, 16);
5112 if (IS_ERR(str))
5113 return PTR_ERR(str);
dacbde09 5114
c9bff3ee
MH
5115 ret = __parse_numa_zonelist_order(str);
5116 kfree(str);
443c6f14 5117 return ret;
f0c0b2b8
KH
5118}
5119
5120
62bc62a8 5121#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5122static int node_load[MAX_NUMNODES];
5123
1da177e4 5124/**
4dc3b16b 5125 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5126 * @node: node whose fallback list we're appending
5127 * @used_node_mask: nodemask_t of already used nodes
5128 *
5129 * We use a number of factors to determine which is the next node that should
5130 * appear on a given node's fallback list. The node should not have appeared
5131 * already in @node's fallback list, and it should be the next closest node
5132 * according to the distance array (which contains arbitrary distance values
5133 * from each node to each node in the system), and should also prefer nodes
5134 * with no CPUs, since presumably they'll have very little allocation pressure
5135 * on them otherwise.
5136 * It returns -1 if no node is found.
5137 */
f0c0b2b8 5138static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5139{
4cf808eb 5140 int n, val;
1da177e4 5141 int min_val = INT_MAX;
00ef2d2f 5142 int best_node = NUMA_NO_NODE;
a70f7302 5143 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5144
4cf808eb
LT
5145 /* Use the local node if we haven't already */
5146 if (!node_isset(node, *used_node_mask)) {
5147 node_set(node, *used_node_mask);
5148 return node;
5149 }
1da177e4 5150
4b0ef1fe 5151 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5152
5153 /* Don't want a node to appear more than once */
5154 if (node_isset(n, *used_node_mask))
5155 continue;
5156
1da177e4
LT
5157 /* Use the distance array to find the distance */
5158 val = node_distance(node, n);
5159
4cf808eb
LT
5160 /* Penalize nodes under us ("prefer the next node") */
5161 val += (n < node);
5162
1da177e4 5163 /* Give preference to headless and unused nodes */
a70f7302
RR
5164 tmp = cpumask_of_node(n);
5165 if (!cpumask_empty(tmp))
1da177e4
LT
5166 val += PENALTY_FOR_NODE_WITH_CPUS;
5167
5168 /* Slight preference for less loaded node */
5169 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5170 val += node_load[n];
5171
5172 if (val < min_val) {
5173 min_val = val;
5174 best_node = n;
5175 }
5176 }
5177
5178 if (best_node >= 0)
5179 node_set(best_node, *used_node_mask);
5180
5181 return best_node;
5182}
5183
f0c0b2b8
KH
5184
5185/*
5186 * Build zonelists ordered by node and zones within node.
5187 * This results in maximum locality--normal zone overflows into local
5188 * DMA zone, if any--but risks exhausting DMA zone.
5189 */
9d3be21b
MH
5190static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5191 unsigned nr_nodes)
1da177e4 5192{
9d3be21b
MH
5193 struct zoneref *zonerefs;
5194 int i;
5195
5196 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5197
5198 for (i = 0; i < nr_nodes; i++) {
5199 int nr_zones;
5200
5201 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5202
9d3be21b
MH
5203 nr_zones = build_zonerefs_node(node, zonerefs);
5204 zonerefs += nr_zones;
5205 }
5206 zonerefs->zone = NULL;
5207 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5208}
5209
523b9458
CL
5210/*
5211 * Build gfp_thisnode zonelists
5212 */
5213static void build_thisnode_zonelists(pg_data_t *pgdat)
5214{
9d3be21b
MH
5215 struct zoneref *zonerefs;
5216 int nr_zones;
523b9458 5217
9d3be21b
MH
5218 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5219 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5220 zonerefs += nr_zones;
5221 zonerefs->zone = NULL;
5222 zonerefs->zone_idx = 0;
523b9458
CL
5223}
5224
f0c0b2b8
KH
5225/*
5226 * Build zonelists ordered by zone and nodes within zones.
5227 * This results in conserving DMA zone[s] until all Normal memory is
5228 * exhausted, but results in overflowing to remote node while memory
5229 * may still exist in local DMA zone.
5230 */
f0c0b2b8 5231
f0c0b2b8
KH
5232static void build_zonelists(pg_data_t *pgdat)
5233{
9d3be21b
MH
5234 static int node_order[MAX_NUMNODES];
5235 int node, load, nr_nodes = 0;
1da177e4 5236 nodemask_t used_mask;
f0c0b2b8 5237 int local_node, prev_node;
1da177e4
LT
5238
5239 /* NUMA-aware ordering of nodes */
5240 local_node = pgdat->node_id;
62bc62a8 5241 load = nr_online_nodes;
1da177e4
LT
5242 prev_node = local_node;
5243 nodes_clear(used_mask);
f0c0b2b8 5244
f0c0b2b8 5245 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5246 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5247 /*
5248 * We don't want to pressure a particular node.
5249 * So adding penalty to the first node in same
5250 * distance group to make it round-robin.
5251 */
957f822a
DR
5252 if (node_distance(local_node, node) !=
5253 node_distance(local_node, prev_node))
f0c0b2b8
KH
5254 node_load[node] = load;
5255
9d3be21b 5256 node_order[nr_nodes++] = node;
1da177e4
LT
5257 prev_node = node;
5258 load--;
1da177e4 5259 }
523b9458 5260
9d3be21b 5261 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5262 build_thisnode_zonelists(pgdat);
1da177e4
LT
5263}
5264
7aac7898
LS
5265#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5266/*
5267 * Return node id of node used for "local" allocations.
5268 * I.e., first node id of first zone in arg node's generic zonelist.
5269 * Used for initializing percpu 'numa_mem', which is used primarily
5270 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5271 */
5272int local_memory_node(int node)
5273{
c33d6c06 5274 struct zoneref *z;
7aac7898 5275
c33d6c06 5276 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5277 gfp_zone(GFP_KERNEL),
c33d6c06 5278 NULL);
c1093b74 5279 return zone_to_nid(z->zone);
7aac7898
LS
5280}
5281#endif
f0c0b2b8 5282
6423aa81
JK
5283static void setup_min_unmapped_ratio(void);
5284static void setup_min_slab_ratio(void);
1da177e4
LT
5285#else /* CONFIG_NUMA */
5286
f0c0b2b8 5287static void build_zonelists(pg_data_t *pgdat)
1da177e4 5288{
19655d34 5289 int node, local_node;
9d3be21b
MH
5290 struct zoneref *zonerefs;
5291 int nr_zones;
1da177e4
LT
5292
5293 local_node = pgdat->node_id;
1da177e4 5294
9d3be21b
MH
5295 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5296 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5297 zonerefs += nr_zones;
1da177e4 5298
54a6eb5c
MG
5299 /*
5300 * Now we build the zonelist so that it contains the zones
5301 * of all the other nodes.
5302 * We don't want to pressure a particular node, so when
5303 * building the zones for node N, we make sure that the
5304 * zones coming right after the local ones are those from
5305 * node N+1 (modulo N)
5306 */
5307 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5308 if (!node_online(node))
5309 continue;
9d3be21b
MH
5310 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5311 zonerefs += nr_zones;
1da177e4 5312 }
54a6eb5c
MG
5313 for (node = 0; node < local_node; node++) {
5314 if (!node_online(node))
5315 continue;
9d3be21b
MH
5316 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5317 zonerefs += nr_zones;
54a6eb5c
MG
5318 }
5319
9d3be21b
MH
5320 zonerefs->zone = NULL;
5321 zonerefs->zone_idx = 0;
1da177e4
LT
5322}
5323
5324#endif /* CONFIG_NUMA */
5325
99dcc3e5
CL
5326/*
5327 * Boot pageset table. One per cpu which is going to be used for all
5328 * zones and all nodes. The parameters will be set in such a way
5329 * that an item put on a list will immediately be handed over to
5330 * the buddy list. This is safe since pageset manipulation is done
5331 * with interrupts disabled.
5332 *
5333 * The boot_pagesets must be kept even after bootup is complete for
5334 * unused processors and/or zones. They do play a role for bootstrapping
5335 * hotplugged processors.
5336 *
5337 * zoneinfo_show() and maybe other functions do
5338 * not check if the processor is online before following the pageset pointer.
5339 * Other parts of the kernel may not check if the zone is available.
5340 */
5341static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5342static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5343static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5344
11cd8638 5345static void __build_all_zonelists(void *data)
1da177e4 5346{
6811378e 5347 int nid;
afb6ebb3 5348 int __maybe_unused cpu;
9adb62a5 5349 pg_data_t *self = data;
b93e0f32
MH
5350 static DEFINE_SPINLOCK(lock);
5351
5352 spin_lock(&lock);
9276b1bc 5353
7f9cfb31
BL
5354#ifdef CONFIG_NUMA
5355 memset(node_load, 0, sizeof(node_load));
5356#endif
9adb62a5 5357
c1152583
WY
5358 /*
5359 * This node is hotadded and no memory is yet present. So just
5360 * building zonelists is fine - no need to touch other nodes.
5361 */
9adb62a5
JL
5362 if (self && !node_online(self->node_id)) {
5363 build_zonelists(self);
c1152583
WY
5364 } else {
5365 for_each_online_node(nid) {
5366 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5367
c1152583
WY
5368 build_zonelists(pgdat);
5369 }
99dcc3e5 5370
7aac7898
LS
5371#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5372 /*
5373 * We now know the "local memory node" for each node--
5374 * i.e., the node of the first zone in the generic zonelist.
5375 * Set up numa_mem percpu variable for on-line cpus. During
5376 * boot, only the boot cpu should be on-line; we'll init the
5377 * secondary cpus' numa_mem as they come on-line. During
5378 * node/memory hotplug, we'll fixup all on-line cpus.
5379 */
d9c9a0b9 5380 for_each_online_cpu(cpu)
7aac7898 5381 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5382#endif
d9c9a0b9 5383 }
b93e0f32
MH
5384
5385 spin_unlock(&lock);
6811378e
YG
5386}
5387
061f67bc
RV
5388static noinline void __init
5389build_all_zonelists_init(void)
5390{
afb6ebb3
MH
5391 int cpu;
5392
061f67bc 5393 __build_all_zonelists(NULL);
afb6ebb3
MH
5394
5395 /*
5396 * Initialize the boot_pagesets that are going to be used
5397 * for bootstrapping processors. The real pagesets for
5398 * each zone will be allocated later when the per cpu
5399 * allocator is available.
5400 *
5401 * boot_pagesets are used also for bootstrapping offline
5402 * cpus if the system is already booted because the pagesets
5403 * are needed to initialize allocators on a specific cpu too.
5404 * F.e. the percpu allocator needs the page allocator which
5405 * needs the percpu allocator in order to allocate its pagesets
5406 * (a chicken-egg dilemma).
5407 */
5408 for_each_possible_cpu(cpu)
5409 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5410
061f67bc
RV
5411 mminit_verify_zonelist();
5412 cpuset_init_current_mems_allowed();
5413}
5414
4eaf3f64 5415/*
4eaf3f64 5416 * unless system_state == SYSTEM_BOOTING.
061f67bc 5417 *
72675e13 5418 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5419 * [protected by SYSTEM_BOOTING].
4eaf3f64 5420 */
72675e13 5421void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5422{
5423 if (system_state == SYSTEM_BOOTING) {
061f67bc 5424 build_all_zonelists_init();
6811378e 5425 } else {
11cd8638 5426 __build_all_zonelists(pgdat);
6811378e
YG
5427 /* cpuset refresh routine should be here */
5428 }
bd1e22b8 5429 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5430 /*
5431 * Disable grouping by mobility if the number of pages in the
5432 * system is too low to allow the mechanism to work. It would be
5433 * more accurate, but expensive to check per-zone. This check is
5434 * made on memory-hotadd so a system can start with mobility
5435 * disabled and enable it later
5436 */
d9c23400 5437 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5438 page_group_by_mobility_disabled = 1;
5439 else
5440 page_group_by_mobility_disabled = 0;
5441
c9bff3ee 5442 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5443 nr_online_nodes,
756a025f
JP
5444 page_group_by_mobility_disabled ? "off" : "on",
5445 vm_total_pages);
f0c0b2b8 5446#ifdef CONFIG_NUMA
f88dfff5 5447 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5448#endif
1da177e4
LT
5449}
5450
a9a9e77f
PT
5451/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5452static bool __meminit
5453overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5454{
5455#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5456 static struct memblock_region *r;
5457
5458 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5459 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5460 for_each_memblock(memory, r) {
5461 if (*pfn < memblock_region_memory_end_pfn(r))
5462 break;
5463 }
5464 }
5465 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5466 memblock_is_mirror(r)) {
5467 *pfn = memblock_region_memory_end_pfn(r);
5468 return true;
5469 }
5470 }
5471#endif
5472 return false;
5473}
5474
1da177e4
LT
5475/*
5476 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5477 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5478 * done. Non-atomic initialization, single-pass.
5479 */
c09b4240 5480void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5481 unsigned long start_pfn, enum memmap_context context,
5482 struct vmem_altmap *altmap)
1da177e4 5483{
a9a9e77f 5484 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5485 struct page *page;
1da177e4 5486
22b31eec
HD
5487 if (highest_memmap_pfn < end_pfn - 1)
5488 highest_memmap_pfn = end_pfn - 1;
5489
966cf44f 5490#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5491 /*
5492 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5493 * memory. We limit the total number of pages to initialize to just
5494 * those that might contain the memory mapping. We will defer the
5495 * ZONE_DEVICE page initialization until after we have released
5496 * the hotplug lock.
4b94ffdc 5497 */
966cf44f
AD
5498 if (zone == ZONE_DEVICE) {
5499 if (!altmap)
5500 return;
5501
5502 if (start_pfn == altmap->base_pfn)
5503 start_pfn += altmap->reserve;
5504 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5505 }
5506#endif
4b94ffdc 5507
cbe8dd4a 5508 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5509 /*
b72d0ffb
AM
5510 * There can be holes in boot-time mem_map[]s handed to this
5511 * function. They do not exist on hotplugged memory.
a2f3aa02 5512 */
a9a9e77f
PT
5513 if (context == MEMMAP_EARLY) {
5514 if (!early_pfn_valid(pfn))
b72d0ffb 5515 continue;
a9a9e77f
PT
5516 if (!early_pfn_in_nid(pfn, nid))
5517 continue;
5518 if (overlap_memmap_init(zone, &pfn))
5519 continue;
5520 if (defer_init(nid, pfn, end_pfn))
5521 break;
a2f3aa02 5522 }
ac5d2539 5523
d0dc12e8
PT
5524 page = pfn_to_page(pfn);
5525 __init_single_page(page, pfn, zone, nid);
5526 if (context == MEMMAP_HOTPLUG)
d483da5b 5527 __SetPageReserved(page);
d0dc12e8 5528
ac5d2539
MG
5529 /*
5530 * Mark the block movable so that blocks are reserved for
5531 * movable at startup. This will force kernel allocations
5532 * to reserve their blocks rather than leaking throughout
5533 * the address space during boot when many long-lived
974a786e 5534 * kernel allocations are made.
ac5d2539
MG
5535 *
5536 * bitmap is created for zone's valid pfn range. but memmap
5537 * can be created for invalid pages (for alignment)
5538 * check here not to call set_pageblock_migratetype() against
5539 * pfn out of zone.
5540 */
5541 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5542 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5543 cond_resched();
ac5d2539 5544 }
1da177e4 5545 }
2830bf6f
MZ
5546#ifdef CONFIG_SPARSEMEM
5547 /*
5548 * If the zone does not span the rest of the section then
5549 * we should at least initialize those pages. Otherwise we
5550 * could blow up on a poisoned page in some paths which depend
5551 * on full sections being initialized (e.g. memory hotplug).
5552 */
5553 while (end_pfn % PAGES_PER_SECTION) {
5554 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5555 end_pfn++;
5556 }
5557#endif
1da177e4
LT
5558}
5559
966cf44f
AD
5560#ifdef CONFIG_ZONE_DEVICE
5561void __ref memmap_init_zone_device(struct zone *zone,
5562 unsigned long start_pfn,
5563 unsigned long size,
5564 struct dev_pagemap *pgmap)
5565{
5566 unsigned long pfn, end_pfn = start_pfn + size;
5567 struct pglist_data *pgdat = zone->zone_pgdat;
5568 unsigned long zone_idx = zone_idx(zone);
5569 unsigned long start = jiffies;
5570 int nid = pgdat->node_id;
5571
5572 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5573 return;
5574
5575 /*
5576 * The call to memmap_init_zone should have already taken care
5577 * of the pages reserved for the memmap, so we can just jump to
5578 * the end of that region and start processing the device pages.
5579 */
5580 if (pgmap->altmap_valid) {
5581 struct vmem_altmap *altmap = &pgmap->altmap;
5582
5583 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5584 size = end_pfn - start_pfn;
5585 }
5586
5587 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5588 struct page *page = pfn_to_page(pfn);
5589
5590 __init_single_page(page, pfn, zone_idx, nid);
5591
5592 /*
5593 * Mark page reserved as it will need to wait for onlining
5594 * phase for it to be fully associated with a zone.
5595 *
5596 * We can use the non-atomic __set_bit operation for setting
5597 * the flag as we are still initializing the pages.
5598 */
5599 __SetPageReserved(page);
5600
5601 /*
5602 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5603 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5604 * page is ever freed or placed on a driver-private list.
5605 */
5606 page->pgmap = pgmap;
5607 page->hmm_data = 0;
5608
5609 /*
5610 * Mark the block movable so that blocks are reserved for
5611 * movable at startup. This will force kernel allocations
5612 * to reserve their blocks rather than leaking throughout
5613 * the address space during boot when many long-lived
5614 * kernel allocations are made.
5615 *
5616 * bitmap is created for zone's valid pfn range. but memmap
5617 * can be created for invalid pages (for alignment)
5618 * check here not to call set_pageblock_migratetype() against
5619 * pfn out of zone.
5620 *
5621 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5622 * because this is done early in sparse_add_one_section
5623 */
5624 if (!(pfn & (pageblock_nr_pages - 1))) {
5625 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5626 cond_resched();
5627 }
5628 }
5629
5630 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5631 size, jiffies_to_msecs(jiffies - start));
5632}
5633
5634#endif
1e548deb 5635static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5636{
7aeb09f9 5637 unsigned int order, t;
b2a0ac88
MG
5638 for_each_migratetype_order(order, t) {
5639 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5640 zone->free_area[order].nr_free = 0;
5641 }
5642}
5643
dfb3ccd0
PT
5644void __meminit __weak memmap_init(unsigned long size, int nid,
5645 unsigned long zone, unsigned long start_pfn)
5646{
5647 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5648}
1da177e4 5649
7cd2b0a3 5650static int zone_batchsize(struct zone *zone)
e7c8d5c9 5651{
3a6be87f 5652#ifdef CONFIG_MMU
e7c8d5c9
CL
5653 int batch;
5654
5655 /*
5656 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5657 * size of the zone.
e7c8d5c9 5658 */
9705bea5 5659 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5660 /* But no more than a meg. */
5661 if (batch * PAGE_SIZE > 1024 * 1024)
5662 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5663 batch /= 4; /* We effectively *= 4 below */
5664 if (batch < 1)
5665 batch = 1;
5666
5667 /*
0ceaacc9
NP
5668 * Clamp the batch to a 2^n - 1 value. Having a power
5669 * of 2 value was found to be more likely to have
5670 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5671 *
0ceaacc9
NP
5672 * For example if 2 tasks are alternately allocating
5673 * batches of pages, one task can end up with a lot
5674 * of pages of one half of the possible page colors
5675 * and the other with pages of the other colors.
e7c8d5c9 5676 */
9155203a 5677 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5678
e7c8d5c9 5679 return batch;
3a6be87f
DH
5680
5681#else
5682 /* The deferral and batching of frees should be suppressed under NOMMU
5683 * conditions.
5684 *
5685 * The problem is that NOMMU needs to be able to allocate large chunks
5686 * of contiguous memory as there's no hardware page translation to
5687 * assemble apparent contiguous memory from discontiguous pages.
5688 *
5689 * Queueing large contiguous runs of pages for batching, however,
5690 * causes the pages to actually be freed in smaller chunks. As there
5691 * can be a significant delay between the individual batches being
5692 * recycled, this leads to the once large chunks of space being
5693 * fragmented and becoming unavailable for high-order allocations.
5694 */
5695 return 0;
5696#endif
e7c8d5c9
CL
5697}
5698
8d7a8fa9
CS
5699/*
5700 * pcp->high and pcp->batch values are related and dependent on one another:
5701 * ->batch must never be higher then ->high.
5702 * The following function updates them in a safe manner without read side
5703 * locking.
5704 *
5705 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5706 * those fields changing asynchronously (acording the the above rule).
5707 *
5708 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5709 * outside of boot time (or some other assurance that no concurrent updaters
5710 * exist).
5711 */
5712static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5713 unsigned long batch)
5714{
5715 /* start with a fail safe value for batch */
5716 pcp->batch = 1;
5717 smp_wmb();
5718
5719 /* Update high, then batch, in order */
5720 pcp->high = high;
5721 smp_wmb();
5722
5723 pcp->batch = batch;
5724}
5725
3664033c 5726/* a companion to pageset_set_high() */
4008bab7
CS
5727static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5728{
8d7a8fa9 5729 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5730}
5731
88c90dbc 5732static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5733{
5734 struct per_cpu_pages *pcp;
5f8dcc21 5735 int migratetype;
2caaad41 5736
1c6fe946
MD
5737 memset(p, 0, sizeof(*p));
5738
3dfa5721 5739 pcp = &p->pcp;
5f8dcc21
MG
5740 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5741 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5742}
5743
88c90dbc
CS
5744static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5745{
5746 pageset_init(p);
5747 pageset_set_batch(p, batch);
5748}
5749
8ad4b1fb 5750/*
3664033c 5751 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5752 * to the value high for the pageset p.
5753 */
3664033c 5754static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5755 unsigned long high)
5756{
8d7a8fa9
CS
5757 unsigned long batch = max(1UL, high / 4);
5758 if ((high / 4) > (PAGE_SHIFT * 8))
5759 batch = PAGE_SHIFT * 8;
8ad4b1fb 5760
8d7a8fa9 5761 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5762}
5763
7cd2b0a3
DR
5764static void pageset_set_high_and_batch(struct zone *zone,
5765 struct per_cpu_pageset *pcp)
56cef2b8 5766{
56cef2b8 5767 if (percpu_pagelist_fraction)
3664033c 5768 pageset_set_high(pcp,
9705bea5 5769 (zone_managed_pages(zone) /
56cef2b8
CS
5770 percpu_pagelist_fraction));
5771 else
5772 pageset_set_batch(pcp, zone_batchsize(zone));
5773}
5774
169f6c19
CS
5775static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5776{
5777 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5778
5779 pageset_init(pcp);
5780 pageset_set_high_and_batch(zone, pcp);
5781}
5782
72675e13 5783void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5784{
5785 int cpu;
319774e2 5786 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5787 for_each_possible_cpu(cpu)
5788 zone_pageset_init(zone, cpu);
319774e2
WF
5789}
5790
2caaad41 5791/*
99dcc3e5
CL
5792 * Allocate per cpu pagesets and initialize them.
5793 * Before this call only boot pagesets were available.
e7c8d5c9 5794 */
99dcc3e5 5795void __init setup_per_cpu_pageset(void)
e7c8d5c9 5796{
b4911ea2 5797 struct pglist_data *pgdat;
99dcc3e5 5798 struct zone *zone;
e7c8d5c9 5799
319774e2
WF
5800 for_each_populated_zone(zone)
5801 setup_zone_pageset(zone);
b4911ea2
MG
5802
5803 for_each_online_pgdat(pgdat)
5804 pgdat->per_cpu_nodestats =
5805 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5806}
5807
c09b4240 5808static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5809{
99dcc3e5
CL
5810 /*
5811 * per cpu subsystem is not up at this point. The following code
5812 * relies on the ability of the linker to provide the
5813 * offset of a (static) per cpu variable into the per cpu area.
5814 */
5815 zone->pageset = &boot_pageset;
ed8ece2e 5816
b38a8725 5817 if (populated_zone(zone))
99dcc3e5
CL
5818 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5819 zone->name, zone->present_pages,
5820 zone_batchsize(zone));
ed8ece2e
DH
5821}
5822
dc0bbf3b 5823void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5824 unsigned long zone_start_pfn,
b171e409 5825 unsigned long size)
ed8ece2e
DH
5826{
5827 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 5828 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5829
8f416836
WY
5830 if (zone_idx > pgdat->nr_zones)
5831 pgdat->nr_zones = zone_idx;
ed8ece2e 5832
ed8ece2e
DH
5833 zone->zone_start_pfn = zone_start_pfn;
5834
708614e6
MG
5835 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5836 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5837 pgdat->node_id,
5838 (unsigned long)zone_idx(zone),
5839 zone_start_pfn, (zone_start_pfn + size));
5840
1e548deb 5841 zone_init_free_lists(zone);
9dcb8b68 5842 zone->initialized = 1;
ed8ece2e
DH
5843}
5844
0ee332c1 5845#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5846#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5847
c713216d
MG
5848/*
5849 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5850 */
8a942fde
MG
5851int __meminit __early_pfn_to_nid(unsigned long pfn,
5852 struct mminit_pfnnid_cache *state)
c713216d 5853{
c13291a5 5854 unsigned long start_pfn, end_pfn;
e76b63f8 5855 int nid;
7c243c71 5856
8a942fde
MG
5857 if (state->last_start <= pfn && pfn < state->last_end)
5858 return state->last_nid;
c713216d 5859
e76b63f8
YL
5860 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5861 if (nid != -1) {
8a942fde
MG
5862 state->last_start = start_pfn;
5863 state->last_end = end_pfn;
5864 state->last_nid = nid;
e76b63f8
YL
5865 }
5866
5867 return nid;
c713216d
MG
5868}
5869#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5870
c713216d 5871/**
6782832e 5872 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5873 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5874 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5875 *
7d018176
ZZ
5876 * If an architecture guarantees that all ranges registered contain no holes
5877 * and may be freed, this this function may be used instead of calling
5878 * memblock_free_early_nid() manually.
c713216d 5879 */
c13291a5 5880void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5881{
c13291a5
TH
5882 unsigned long start_pfn, end_pfn;
5883 int i, this_nid;
edbe7d23 5884
c13291a5
TH
5885 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5886 start_pfn = min(start_pfn, max_low_pfn);
5887 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5888
c13291a5 5889 if (start_pfn < end_pfn)
6782832e
SS
5890 memblock_free_early_nid(PFN_PHYS(start_pfn),
5891 (end_pfn - start_pfn) << PAGE_SHIFT,
5892 this_nid);
edbe7d23 5893 }
edbe7d23 5894}
edbe7d23 5895
c713216d
MG
5896/**
5897 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5898 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5899 *
7d018176
ZZ
5900 * If an architecture guarantees that all ranges registered contain no holes and may
5901 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5902 */
5903void __init sparse_memory_present_with_active_regions(int nid)
5904{
c13291a5
TH
5905 unsigned long start_pfn, end_pfn;
5906 int i, this_nid;
c713216d 5907
c13291a5
TH
5908 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5909 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5910}
5911
5912/**
5913 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5914 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5915 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5916 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5917 *
5918 * It returns the start and end page frame of a node based on information
7d018176 5919 * provided by memblock_set_node(). If called for a node
c713216d 5920 * with no available memory, a warning is printed and the start and end
88ca3b94 5921 * PFNs will be 0.
c713216d 5922 */
a3142c8e 5923void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5924 unsigned long *start_pfn, unsigned long *end_pfn)
5925{
c13291a5 5926 unsigned long this_start_pfn, this_end_pfn;
c713216d 5927 int i;
c13291a5 5928
c713216d
MG
5929 *start_pfn = -1UL;
5930 *end_pfn = 0;
5931
c13291a5
TH
5932 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5933 *start_pfn = min(*start_pfn, this_start_pfn);
5934 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5935 }
5936
633c0666 5937 if (*start_pfn == -1UL)
c713216d 5938 *start_pfn = 0;
c713216d
MG
5939}
5940
2a1e274a
MG
5941/*
5942 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5943 * assumption is made that zones within a node are ordered in monotonic
5944 * increasing memory addresses so that the "highest" populated zone is used
5945 */
b69a7288 5946static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5947{
5948 int zone_index;
5949 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5950 if (zone_index == ZONE_MOVABLE)
5951 continue;
5952
5953 if (arch_zone_highest_possible_pfn[zone_index] >
5954 arch_zone_lowest_possible_pfn[zone_index])
5955 break;
5956 }
5957
5958 VM_BUG_ON(zone_index == -1);
5959 movable_zone = zone_index;
5960}
5961
5962/*
5963 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5964 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5965 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5966 * in each node depending on the size of each node and how evenly kernelcore
5967 * is distributed. This helper function adjusts the zone ranges
5968 * provided by the architecture for a given node by using the end of the
5969 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5970 * zones within a node are in order of monotonic increases memory addresses
5971 */
b69a7288 5972static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5973 unsigned long zone_type,
5974 unsigned long node_start_pfn,
5975 unsigned long node_end_pfn,
5976 unsigned long *zone_start_pfn,
5977 unsigned long *zone_end_pfn)
5978{
5979 /* Only adjust if ZONE_MOVABLE is on this node */
5980 if (zone_movable_pfn[nid]) {
5981 /* Size ZONE_MOVABLE */
5982 if (zone_type == ZONE_MOVABLE) {
5983 *zone_start_pfn = zone_movable_pfn[nid];
5984 *zone_end_pfn = min(node_end_pfn,
5985 arch_zone_highest_possible_pfn[movable_zone]);
5986
e506b996
XQ
5987 /* Adjust for ZONE_MOVABLE starting within this range */
5988 } else if (!mirrored_kernelcore &&
5989 *zone_start_pfn < zone_movable_pfn[nid] &&
5990 *zone_end_pfn > zone_movable_pfn[nid]) {
5991 *zone_end_pfn = zone_movable_pfn[nid];
5992
2a1e274a
MG
5993 /* Check if this whole range is within ZONE_MOVABLE */
5994 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5995 *zone_start_pfn = *zone_end_pfn;
5996 }
5997}
5998
c713216d
MG
5999/*
6000 * Return the number of pages a zone spans in a node, including holes
6001 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6002 */
6ea6e688 6003static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6004 unsigned long zone_type,
7960aedd
ZY
6005 unsigned long node_start_pfn,
6006 unsigned long node_end_pfn,
d91749c1
TI
6007 unsigned long *zone_start_pfn,
6008 unsigned long *zone_end_pfn,
c713216d
MG
6009 unsigned long *ignored)
6010{
b5685e92 6011 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6012 if (!node_start_pfn && !node_end_pfn)
6013 return 0;
6014
7960aedd 6015 /* Get the start and end of the zone */
d91749c1
TI
6016 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6017 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6018 adjust_zone_range_for_zone_movable(nid, zone_type,
6019 node_start_pfn, node_end_pfn,
d91749c1 6020 zone_start_pfn, zone_end_pfn);
c713216d
MG
6021
6022 /* Check that this node has pages within the zone's required range */
d91749c1 6023 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6024 return 0;
6025
6026 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6027 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6028 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6029
6030 /* Return the spanned pages */
d91749c1 6031 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6032}
6033
6034/*
6035 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6036 * then all holes in the requested range will be accounted for.
c713216d 6037 */
32996250 6038unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
6039 unsigned long range_start_pfn,
6040 unsigned long range_end_pfn)
6041{
96e907d1
TH
6042 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6043 unsigned long start_pfn, end_pfn;
6044 int i;
c713216d 6045
96e907d1
TH
6046 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6047 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6048 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6049 nr_absent -= end_pfn - start_pfn;
c713216d 6050 }
96e907d1 6051 return nr_absent;
c713216d
MG
6052}
6053
6054/**
6055 * absent_pages_in_range - Return number of page frames in holes within a range
6056 * @start_pfn: The start PFN to start searching for holes
6057 * @end_pfn: The end PFN to stop searching for holes
6058 *
88ca3b94 6059 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6060 */
6061unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6062 unsigned long end_pfn)
6063{
6064 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6065}
6066
6067/* Return the number of page frames in holes in a zone on a node */
6ea6e688 6068static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6069 unsigned long zone_type,
7960aedd
ZY
6070 unsigned long node_start_pfn,
6071 unsigned long node_end_pfn,
c713216d
MG
6072 unsigned long *ignored)
6073{
96e907d1
TH
6074 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6075 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6076 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6077 unsigned long nr_absent;
9c7cd687 6078
b5685e92 6079 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6080 if (!node_start_pfn && !node_end_pfn)
6081 return 0;
6082
96e907d1
TH
6083 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6084 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6085
2a1e274a
MG
6086 adjust_zone_range_for_zone_movable(nid, zone_type,
6087 node_start_pfn, node_end_pfn,
6088 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6089 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6090
6091 /*
6092 * ZONE_MOVABLE handling.
6093 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6094 * and vice versa.
6095 */
e506b996
XQ
6096 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6097 unsigned long start_pfn, end_pfn;
6098 struct memblock_region *r;
6099
6100 for_each_memblock(memory, r) {
6101 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6102 zone_start_pfn, zone_end_pfn);
6103 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6104 zone_start_pfn, zone_end_pfn);
6105
6106 if (zone_type == ZONE_MOVABLE &&
6107 memblock_is_mirror(r))
6108 nr_absent += end_pfn - start_pfn;
6109
6110 if (zone_type == ZONE_NORMAL &&
6111 !memblock_is_mirror(r))
6112 nr_absent += end_pfn - start_pfn;
342332e6
TI
6113 }
6114 }
6115
6116 return nr_absent;
c713216d 6117}
0e0b864e 6118
0ee332c1 6119#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 6120static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6121 unsigned long zone_type,
7960aedd
ZY
6122 unsigned long node_start_pfn,
6123 unsigned long node_end_pfn,
d91749c1
TI
6124 unsigned long *zone_start_pfn,
6125 unsigned long *zone_end_pfn,
c713216d
MG
6126 unsigned long *zones_size)
6127{
d91749c1
TI
6128 unsigned int zone;
6129
6130 *zone_start_pfn = node_start_pfn;
6131 for (zone = 0; zone < zone_type; zone++)
6132 *zone_start_pfn += zones_size[zone];
6133
6134 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6135
c713216d
MG
6136 return zones_size[zone_type];
6137}
6138
6ea6e688 6139static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6140 unsigned long zone_type,
7960aedd
ZY
6141 unsigned long node_start_pfn,
6142 unsigned long node_end_pfn,
c713216d
MG
6143 unsigned long *zholes_size)
6144{
6145 if (!zholes_size)
6146 return 0;
6147
6148 return zholes_size[zone_type];
6149}
20e6926d 6150
0ee332c1 6151#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6152
a3142c8e 6153static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6154 unsigned long node_start_pfn,
6155 unsigned long node_end_pfn,
6156 unsigned long *zones_size,
6157 unsigned long *zholes_size)
c713216d 6158{
febd5949 6159 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6160 enum zone_type i;
6161
febd5949
GZ
6162 for (i = 0; i < MAX_NR_ZONES; i++) {
6163 struct zone *zone = pgdat->node_zones + i;
d91749c1 6164 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6165 unsigned long size, real_size;
c713216d 6166
febd5949
GZ
6167 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6168 node_start_pfn,
6169 node_end_pfn,
d91749c1
TI
6170 &zone_start_pfn,
6171 &zone_end_pfn,
febd5949
GZ
6172 zones_size);
6173 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6174 node_start_pfn, node_end_pfn,
6175 zholes_size);
d91749c1
TI
6176 if (size)
6177 zone->zone_start_pfn = zone_start_pfn;
6178 else
6179 zone->zone_start_pfn = 0;
febd5949
GZ
6180 zone->spanned_pages = size;
6181 zone->present_pages = real_size;
6182
6183 totalpages += size;
6184 realtotalpages += real_size;
6185 }
6186
6187 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6188 pgdat->node_present_pages = realtotalpages;
6189 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6190 realtotalpages);
6191}
6192
835c134e
MG
6193#ifndef CONFIG_SPARSEMEM
6194/*
6195 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6196 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6197 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6198 * round what is now in bits to nearest long in bits, then return it in
6199 * bytes.
6200 */
7c45512d 6201static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6202{
6203 unsigned long usemapsize;
6204
7c45512d 6205 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6206 usemapsize = roundup(zonesize, pageblock_nr_pages);
6207 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6208 usemapsize *= NR_PAGEBLOCK_BITS;
6209 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6210
6211 return usemapsize / 8;
6212}
6213
7cc2a959 6214static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6215 struct zone *zone,
6216 unsigned long zone_start_pfn,
6217 unsigned long zonesize)
835c134e 6218{
7c45512d 6219 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6220 zone->pageblock_flags = NULL;
58a01a45 6221 if (usemapsize)
6782832e 6222 zone->pageblock_flags =
eb31d559 6223 memblock_alloc_node_nopanic(usemapsize,
6782832e 6224 pgdat->node_id);
835c134e
MG
6225}
6226#else
7c45512d
LT
6227static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6228 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6229#endif /* CONFIG_SPARSEMEM */
6230
d9c23400 6231#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6232
d9c23400 6233/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6234void __init set_pageblock_order(void)
d9c23400 6235{
955c1cd7
AM
6236 unsigned int order;
6237
d9c23400
MG
6238 /* Check that pageblock_nr_pages has not already been setup */
6239 if (pageblock_order)
6240 return;
6241
955c1cd7
AM
6242 if (HPAGE_SHIFT > PAGE_SHIFT)
6243 order = HUGETLB_PAGE_ORDER;
6244 else
6245 order = MAX_ORDER - 1;
6246
d9c23400
MG
6247 /*
6248 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6249 * This value may be variable depending on boot parameters on IA64 and
6250 * powerpc.
d9c23400
MG
6251 */
6252 pageblock_order = order;
6253}
6254#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6255
ba72cb8c
MG
6256/*
6257 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6258 * is unused as pageblock_order is set at compile-time. See
6259 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6260 * the kernel config
ba72cb8c 6261 */
03e85f9d 6262void __init set_pageblock_order(void)
ba72cb8c 6263{
ba72cb8c 6264}
d9c23400
MG
6265
6266#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6267
03e85f9d 6268static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6269 unsigned long present_pages)
01cefaef
JL
6270{
6271 unsigned long pages = spanned_pages;
6272
6273 /*
6274 * Provide a more accurate estimation if there are holes within
6275 * the zone and SPARSEMEM is in use. If there are holes within the
6276 * zone, each populated memory region may cost us one or two extra
6277 * memmap pages due to alignment because memmap pages for each
89d790ab 6278 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6279 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6280 */
6281 if (spanned_pages > present_pages + (present_pages >> 4) &&
6282 IS_ENABLED(CONFIG_SPARSEMEM))
6283 pages = present_pages;
6284
6285 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6286}
6287
ace1db39
OS
6288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6289static void pgdat_init_split_queue(struct pglist_data *pgdat)
6290{
6291 spin_lock_init(&pgdat->split_queue_lock);
6292 INIT_LIST_HEAD(&pgdat->split_queue);
6293 pgdat->split_queue_len = 0;
6294}
6295#else
6296static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6297#endif
6298
6299#ifdef CONFIG_COMPACTION
6300static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6301{
6302 init_waitqueue_head(&pgdat->kcompactd_wait);
6303}
6304#else
6305static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6306#endif
6307
03e85f9d 6308static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6309{
208d54e5 6310 pgdat_resize_init(pgdat);
ace1db39 6311
ace1db39
OS
6312 pgdat_init_split_queue(pgdat);
6313 pgdat_init_kcompactd(pgdat);
6314
1da177e4 6315 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6316 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6317
eefa864b 6318 pgdat_page_ext_init(pgdat);
a52633d8 6319 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6320 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6321}
6322
6323static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6324 unsigned long remaining_pages)
6325{
9705bea5 6326 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6327 zone_set_nid(zone, nid);
6328 zone->name = zone_names[idx];
6329 zone->zone_pgdat = NODE_DATA(nid);
6330 spin_lock_init(&zone->lock);
6331 zone_seqlock_init(zone);
6332 zone_pcp_init(zone);
6333}
6334
6335/*
6336 * Set up the zone data structures
6337 * - init pgdat internals
6338 * - init all zones belonging to this node
6339 *
6340 * NOTE: this function is only called during memory hotplug
6341 */
6342#ifdef CONFIG_MEMORY_HOTPLUG
6343void __ref free_area_init_core_hotplug(int nid)
6344{
6345 enum zone_type z;
6346 pg_data_t *pgdat = NODE_DATA(nid);
6347
6348 pgdat_init_internals(pgdat);
6349 for (z = 0; z < MAX_NR_ZONES; z++)
6350 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6351}
6352#endif
6353
6354/*
6355 * Set up the zone data structures:
6356 * - mark all pages reserved
6357 * - mark all memory queues empty
6358 * - clear the memory bitmaps
6359 *
6360 * NOTE: pgdat should get zeroed by caller.
6361 * NOTE: this function is only called during early init.
6362 */
6363static void __init free_area_init_core(struct pglist_data *pgdat)
6364{
6365 enum zone_type j;
6366 int nid = pgdat->node_id;
5f63b720 6367
03e85f9d 6368 pgdat_init_internals(pgdat);
385386cf
JW
6369 pgdat->per_cpu_nodestats = &boot_nodestats;
6370
1da177e4
LT
6371 for (j = 0; j < MAX_NR_ZONES; j++) {
6372 struct zone *zone = pgdat->node_zones + j;
e6943859 6373 unsigned long size, freesize, memmap_pages;
d91749c1 6374 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6375
febd5949 6376 size = zone->spanned_pages;
e6943859 6377 freesize = zone->present_pages;
1da177e4 6378
0e0b864e 6379 /*
9feedc9d 6380 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6381 * is used by this zone for memmap. This affects the watermark
6382 * and per-cpu initialisations
6383 */
e6943859 6384 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6385 if (!is_highmem_idx(j)) {
6386 if (freesize >= memmap_pages) {
6387 freesize -= memmap_pages;
6388 if (memmap_pages)
6389 printk(KERN_DEBUG
6390 " %s zone: %lu pages used for memmap\n",
6391 zone_names[j], memmap_pages);
6392 } else
1170532b 6393 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6394 zone_names[j], memmap_pages, freesize);
6395 }
0e0b864e 6396
6267276f 6397 /* Account for reserved pages */
9feedc9d
JL
6398 if (j == 0 && freesize > dma_reserve) {
6399 freesize -= dma_reserve;
d903ef9f 6400 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6401 zone_names[0], dma_reserve);
0e0b864e
MG
6402 }
6403
98d2b0eb 6404 if (!is_highmem_idx(j))
9feedc9d 6405 nr_kernel_pages += freesize;
01cefaef
JL
6406 /* Charge for highmem memmap if there are enough kernel pages */
6407 else if (nr_kernel_pages > memmap_pages * 2)
6408 nr_kernel_pages -= memmap_pages;
9feedc9d 6409 nr_all_pages += freesize;
1da177e4 6410
9feedc9d
JL
6411 /*
6412 * Set an approximate value for lowmem here, it will be adjusted
6413 * when the bootmem allocator frees pages into the buddy system.
6414 * And all highmem pages will be managed by the buddy system.
6415 */
03e85f9d 6416 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6417
d883c6cf 6418 if (!size)
1da177e4
LT
6419 continue;
6420
955c1cd7 6421 set_pageblock_order();
d883c6cf
JK
6422 setup_usemap(pgdat, zone, zone_start_pfn, size);
6423 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6424 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6425 }
6426}
6427
0cd842f9 6428#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6429static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6430{
b0aeba74 6431 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6432 unsigned long __maybe_unused offset = 0;
6433
1da177e4
LT
6434 /* Skip empty nodes */
6435 if (!pgdat->node_spanned_pages)
6436 return;
6437
b0aeba74
TL
6438 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6439 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6440 /* ia64 gets its own node_mem_map, before this, without bootmem */
6441 if (!pgdat->node_mem_map) {
b0aeba74 6442 unsigned long size, end;
d41dee36
AW
6443 struct page *map;
6444
e984bb43
BP
6445 /*
6446 * The zone's endpoints aren't required to be MAX_ORDER
6447 * aligned but the node_mem_map endpoints must be in order
6448 * for the buddy allocator to function correctly.
6449 */
108bcc96 6450 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6451 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6452 size = (end - start) * sizeof(struct page);
eb31d559 6453 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6454 pgdat->node_mem_map = map + offset;
1da177e4 6455 }
0cd842f9
OS
6456 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6457 __func__, pgdat->node_id, (unsigned long)pgdat,
6458 (unsigned long)pgdat->node_mem_map);
12d810c1 6459#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6460 /*
6461 * With no DISCONTIG, the global mem_map is just set as node 0's
6462 */
c713216d 6463 if (pgdat == NODE_DATA(0)) {
1da177e4 6464 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6465#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6466 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6467 mem_map -= offset;
0ee332c1 6468#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6469 }
1da177e4
LT
6470#endif
6471}
0cd842f9
OS
6472#else
6473static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6474#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6475
0188dc98
OS
6476#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6477static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6478{
6479 /*
6480 * We start only with one section of pages, more pages are added as
6481 * needed until the rest of deferred pages are initialized.
6482 */
6483 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6484 pgdat->node_spanned_pages);
6485 pgdat->first_deferred_pfn = ULONG_MAX;
6486}
6487#else
6488static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6489#endif
6490
03e85f9d 6491void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6492 unsigned long node_start_pfn,
6493 unsigned long *zholes_size)
1da177e4 6494{
9109fb7b 6495 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6496 unsigned long start_pfn = 0;
6497 unsigned long end_pfn = 0;
9109fb7b 6498
88fdf75d 6499 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6500 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6501
1da177e4
LT
6502 pgdat->node_id = nid;
6503 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6504 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6505#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6506 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6507 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6508 (u64)start_pfn << PAGE_SHIFT,
6509 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6510#else
6511 start_pfn = node_start_pfn;
7960aedd
ZY
6512#endif
6513 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6514 zones_size, zholes_size);
1da177e4
LT
6515
6516 alloc_node_mem_map(pgdat);
0188dc98 6517 pgdat_set_deferred_range(pgdat);
1da177e4 6518
7f3eb55b 6519 free_area_init_core(pgdat);
1da177e4
LT
6520}
6521
aca52c39 6522#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6523/*
6524 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6525 * pages zeroed
6526 */
6527static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6528{
6529 unsigned long pfn;
6530 u64 pgcnt = 0;
6531
6532 for (pfn = spfn; pfn < epfn; pfn++) {
6533 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6534 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6535 + pageblock_nr_pages - 1;
6536 continue;
6537 }
6538 mm_zero_struct_page(pfn_to_page(pfn));
6539 pgcnt++;
6540 }
6541
6542 return pgcnt;
6543}
6544
a4a3ede2
PT
6545/*
6546 * Only struct pages that are backed by physical memory are zeroed and
6547 * initialized by going through __init_single_page(). But, there are some
6548 * struct pages which are reserved in memblock allocator and their fields
6549 * may be accessed (for example page_to_pfn() on some configuration accesses
6550 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6551 *
6552 * This function also addresses a similar issue where struct pages are left
6553 * uninitialized because the physical address range is not covered by
6554 * memblock.memory or memblock.reserved. That could happen when memblock
6555 * layout is manually configured via memmap=.
a4a3ede2 6556 */
03e85f9d 6557void __init zero_resv_unavail(void)
a4a3ede2
PT
6558{
6559 phys_addr_t start, end;
a4a3ede2 6560 u64 i, pgcnt;
907ec5fc 6561 phys_addr_t next = 0;
a4a3ede2
PT
6562
6563 /*
907ec5fc 6564 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6565 */
6566 pgcnt = 0;
907ec5fc
NH
6567 for_each_mem_range(i, &memblock.memory, NULL,
6568 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6569 if (next < start)
6570 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6571 next = end;
6572 }
ec393a0f 6573 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6574
a4a3ede2
PT
6575 /*
6576 * Struct pages that do not have backing memory. This could be because
6577 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6578 */
6579 if (pgcnt)
907ec5fc 6580 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6581}
aca52c39 6582#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6583
0ee332c1 6584#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6585
6586#if MAX_NUMNODES > 1
6587/*
6588 * Figure out the number of possible node ids.
6589 */
f9872caf 6590void __init setup_nr_node_ids(void)
418508c1 6591{
904a9553 6592 unsigned int highest;
418508c1 6593
904a9553 6594 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6595 nr_node_ids = highest + 1;
6596}
418508c1
MS
6597#endif
6598
1e01979c
TH
6599/**
6600 * node_map_pfn_alignment - determine the maximum internode alignment
6601 *
6602 * This function should be called after node map is populated and sorted.
6603 * It calculates the maximum power of two alignment which can distinguish
6604 * all the nodes.
6605 *
6606 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6607 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6608 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6609 * shifted, 1GiB is enough and this function will indicate so.
6610 *
6611 * This is used to test whether pfn -> nid mapping of the chosen memory
6612 * model has fine enough granularity to avoid incorrect mapping for the
6613 * populated node map.
6614 *
6615 * Returns the determined alignment in pfn's. 0 if there is no alignment
6616 * requirement (single node).
6617 */
6618unsigned long __init node_map_pfn_alignment(void)
6619{
6620 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6621 unsigned long start, end, mask;
1e01979c 6622 int last_nid = -1;
c13291a5 6623 int i, nid;
1e01979c 6624
c13291a5 6625 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6626 if (!start || last_nid < 0 || last_nid == nid) {
6627 last_nid = nid;
6628 last_end = end;
6629 continue;
6630 }
6631
6632 /*
6633 * Start with a mask granular enough to pin-point to the
6634 * start pfn and tick off bits one-by-one until it becomes
6635 * too coarse to separate the current node from the last.
6636 */
6637 mask = ~((1 << __ffs(start)) - 1);
6638 while (mask && last_end <= (start & (mask << 1)))
6639 mask <<= 1;
6640
6641 /* accumulate all internode masks */
6642 accl_mask |= mask;
6643 }
6644
6645 /* convert mask to number of pages */
6646 return ~accl_mask + 1;
6647}
6648
a6af2bc3 6649/* Find the lowest pfn for a node */
b69a7288 6650static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6651{
a6af2bc3 6652 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6653 unsigned long start_pfn;
6654 int i;
1abbfb41 6655
c13291a5
TH
6656 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6657 min_pfn = min(min_pfn, start_pfn);
c713216d 6658
a6af2bc3 6659 if (min_pfn == ULONG_MAX) {
1170532b 6660 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6661 return 0;
6662 }
6663
6664 return min_pfn;
c713216d
MG
6665}
6666
6667/**
6668 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6669 *
6670 * It returns the minimum PFN based on information provided via
7d018176 6671 * memblock_set_node().
c713216d
MG
6672 */
6673unsigned long __init find_min_pfn_with_active_regions(void)
6674{
6675 return find_min_pfn_for_node(MAX_NUMNODES);
6676}
6677
37b07e41
LS
6678/*
6679 * early_calculate_totalpages()
6680 * Sum pages in active regions for movable zone.
4b0ef1fe 6681 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6682 */
484f51f8 6683static unsigned long __init early_calculate_totalpages(void)
7e63efef 6684{
7e63efef 6685 unsigned long totalpages = 0;
c13291a5
TH
6686 unsigned long start_pfn, end_pfn;
6687 int i, nid;
6688
6689 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6690 unsigned long pages = end_pfn - start_pfn;
7e63efef 6691
37b07e41
LS
6692 totalpages += pages;
6693 if (pages)
4b0ef1fe 6694 node_set_state(nid, N_MEMORY);
37b07e41 6695 }
b8af2941 6696 return totalpages;
7e63efef
MG
6697}
6698
2a1e274a
MG
6699/*
6700 * Find the PFN the Movable zone begins in each node. Kernel memory
6701 * is spread evenly between nodes as long as the nodes have enough
6702 * memory. When they don't, some nodes will have more kernelcore than
6703 * others
6704 */
b224ef85 6705static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6706{
6707 int i, nid;
6708 unsigned long usable_startpfn;
6709 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6710 /* save the state before borrow the nodemask */
4b0ef1fe 6711 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6712 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6713 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6714 struct memblock_region *r;
b2f3eebe
TC
6715
6716 /* Need to find movable_zone earlier when movable_node is specified. */
6717 find_usable_zone_for_movable();
6718
6719 /*
6720 * If movable_node is specified, ignore kernelcore and movablecore
6721 * options.
6722 */
6723 if (movable_node_is_enabled()) {
136199f0
EM
6724 for_each_memblock(memory, r) {
6725 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6726 continue;
6727
136199f0 6728 nid = r->nid;
b2f3eebe 6729
136199f0 6730 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6731 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6732 min(usable_startpfn, zone_movable_pfn[nid]) :
6733 usable_startpfn;
6734 }
6735
6736 goto out2;
6737 }
2a1e274a 6738
342332e6
TI
6739 /*
6740 * If kernelcore=mirror is specified, ignore movablecore option
6741 */
6742 if (mirrored_kernelcore) {
6743 bool mem_below_4gb_not_mirrored = false;
6744
6745 for_each_memblock(memory, r) {
6746 if (memblock_is_mirror(r))
6747 continue;
6748
6749 nid = r->nid;
6750
6751 usable_startpfn = memblock_region_memory_base_pfn(r);
6752
6753 if (usable_startpfn < 0x100000) {
6754 mem_below_4gb_not_mirrored = true;
6755 continue;
6756 }
6757
6758 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6759 min(usable_startpfn, zone_movable_pfn[nid]) :
6760 usable_startpfn;
6761 }
6762
6763 if (mem_below_4gb_not_mirrored)
6764 pr_warn("This configuration results in unmirrored kernel memory.");
6765
6766 goto out2;
6767 }
6768
7e63efef 6769 /*
a5c6d650
DR
6770 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6771 * amount of necessary memory.
6772 */
6773 if (required_kernelcore_percent)
6774 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6775 10000UL;
6776 if (required_movablecore_percent)
6777 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6778 10000UL;
6779
6780 /*
6781 * If movablecore= was specified, calculate what size of
7e63efef
MG
6782 * kernelcore that corresponds so that memory usable for
6783 * any allocation type is evenly spread. If both kernelcore
6784 * and movablecore are specified, then the value of kernelcore
6785 * will be used for required_kernelcore if it's greater than
6786 * what movablecore would have allowed.
6787 */
6788 if (required_movablecore) {
7e63efef
MG
6789 unsigned long corepages;
6790
6791 /*
6792 * Round-up so that ZONE_MOVABLE is at least as large as what
6793 * was requested by the user
6794 */
6795 required_movablecore =
6796 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6797 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6798 corepages = totalpages - required_movablecore;
6799
6800 required_kernelcore = max(required_kernelcore, corepages);
6801 }
6802
bde304bd
XQ
6803 /*
6804 * If kernelcore was not specified or kernelcore size is larger
6805 * than totalpages, there is no ZONE_MOVABLE.
6806 */
6807 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6808 goto out;
2a1e274a
MG
6809
6810 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6811 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6812
6813restart:
6814 /* Spread kernelcore memory as evenly as possible throughout nodes */
6815 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6816 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6817 unsigned long start_pfn, end_pfn;
6818
2a1e274a
MG
6819 /*
6820 * Recalculate kernelcore_node if the division per node
6821 * now exceeds what is necessary to satisfy the requested
6822 * amount of memory for the kernel
6823 */
6824 if (required_kernelcore < kernelcore_node)
6825 kernelcore_node = required_kernelcore / usable_nodes;
6826
6827 /*
6828 * As the map is walked, we track how much memory is usable
6829 * by the kernel using kernelcore_remaining. When it is
6830 * 0, the rest of the node is usable by ZONE_MOVABLE
6831 */
6832 kernelcore_remaining = kernelcore_node;
6833
6834 /* Go through each range of PFNs within this node */
c13291a5 6835 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6836 unsigned long size_pages;
6837
c13291a5 6838 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6839 if (start_pfn >= end_pfn)
6840 continue;
6841
6842 /* Account for what is only usable for kernelcore */
6843 if (start_pfn < usable_startpfn) {
6844 unsigned long kernel_pages;
6845 kernel_pages = min(end_pfn, usable_startpfn)
6846 - start_pfn;
6847
6848 kernelcore_remaining -= min(kernel_pages,
6849 kernelcore_remaining);
6850 required_kernelcore -= min(kernel_pages,
6851 required_kernelcore);
6852
6853 /* Continue if range is now fully accounted */
6854 if (end_pfn <= usable_startpfn) {
6855
6856 /*
6857 * Push zone_movable_pfn to the end so
6858 * that if we have to rebalance
6859 * kernelcore across nodes, we will
6860 * not double account here
6861 */
6862 zone_movable_pfn[nid] = end_pfn;
6863 continue;
6864 }
6865 start_pfn = usable_startpfn;
6866 }
6867
6868 /*
6869 * The usable PFN range for ZONE_MOVABLE is from
6870 * start_pfn->end_pfn. Calculate size_pages as the
6871 * number of pages used as kernelcore
6872 */
6873 size_pages = end_pfn - start_pfn;
6874 if (size_pages > kernelcore_remaining)
6875 size_pages = kernelcore_remaining;
6876 zone_movable_pfn[nid] = start_pfn + size_pages;
6877
6878 /*
6879 * Some kernelcore has been met, update counts and
6880 * break if the kernelcore for this node has been
b8af2941 6881 * satisfied
2a1e274a
MG
6882 */
6883 required_kernelcore -= min(required_kernelcore,
6884 size_pages);
6885 kernelcore_remaining -= size_pages;
6886 if (!kernelcore_remaining)
6887 break;
6888 }
6889 }
6890
6891 /*
6892 * If there is still required_kernelcore, we do another pass with one
6893 * less node in the count. This will push zone_movable_pfn[nid] further
6894 * along on the nodes that still have memory until kernelcore is
b8af2941 6895 * satisfied
2a1e274a
MG
6896 */
6897 usable_nodes--;
6898 if (usable_nodes && required_kernelcore > usable_nodes)
6899 goto restart;
6900
b2f3eebe 6901out2:
2a1e274a
MG
6902 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6903 for (nid = 0; nid < MAX_NUMNODES; nid++)
6904 zone_movable_pfn[nid] =
6905 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6906
20e6926d 6907out:
66918dcd 6908 /* restore the node_state */
4b0ef1fe 6909 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6910}
6911
4b0ef1fe
LJ
6912/* Any regular or high memory on that node ? */
6913static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6914{
37b07e41
LS
6915 enum zone_type zone_type;
6916
4b0ef1fe 6917 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6918 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6919 if (populated_zone(zone)) {
7b0e0c0e
OS
6920 if (IS_ENABLED(CONFIG_HIGHMEM))
6921 node_set_state(nid, N_HIGH_MEMORY);
6922 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 6923 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6924 break;
6925 }
37b07e41 6926 }
37b07e41
LS
6927}
6928
c713216d
MG
6929/**
6930 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6931 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6932 *
6933 * This will call free_area_init_node() for each active node in the system.
7d018176 6934 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6935 * zone in each node and their holes is calculated. If the maximum PFN
6936 * between two adjacent zones match, it is assumed that the zone is empty.
6937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6939 * starts where the previous one ended. For example, ZONE_DMA32 starts
6940 * at arch_max_dma_pfn.
6941 */
6942void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6943{
c13291a5
TH
6944 unsigned long start_pfn, end_pfn;
6945 int i, nid;
a6af2bc3 6946
c713216d
MG
6947 /* Record where the zone boundaries are */
6948 memset(arch_zone_lowest_possible_pfn, 0,
6949 sizeof(arch_zone_lowest_possible_pfn));
6950 memset(arch_zone_highest_possible_pfn, 0,
6951 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6952
6953 start_pfn = find_min_pfn_with_active_regions();
6954
6955 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6956 if (i == ZONE_MOVABLE)
6957 continue;
90cae1fe
OH
6958
6959 end_pfn = max(max_zone_pfn[i], start_pfn);
6960 arch_zone_lowest_possible_pfn[i] = start_pfn;
6961 arch_zone_highest_possible_pfn[i] = end_pfn;
6962
6963 start_pfn = end_pfn;
c713216d 6964 }
2a1e274a
MG
6965
6966 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6967 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6968 find_zone_movable_pfns_for_nodes();
c713216d 6969
c713216d 6970 /* Print out the zone ranges */
f88dfff5 6971 pr_info("Zone ranges:\n");
2a1e274a
MG
6972 for (i = 0; i < MAX_NR_ZONES; i++) {
6973 if (i == ZONE_MOVABLE)
6974 continue;
f88dfff5 6975 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6976 if (arch_zone_lowest_possible_pfn[i] ==
6977 arch_zone_highest_possible_pfn[i])
f88dfff5 6978 pr_cont("empty\n");
72f0ba02 6979 else
8d29e18a
JG
6980 pr_cont("[mem %#018Lx-%#018Lx]\n",
6981 (u64)arch_zone_lowest_possible_pfn[i]
6982 << PAGE_SHIFT,
6983 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6984 << PAGE_SHIFT) - 1);
2a1e274a
MG
6985 }
6986
6987 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6988 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6989 for (i = 0; i < MAX_NUMNODES; i++) {
6990 if (zone_movable_pfn[i])
8d29e18a
JG
6991 pr_info(" Node %d: %#018Lx\n", i,
6992 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6993 }
c713216d 6994
f2d52fe5 6995 /* Print out the early node map */
f88dfff5 6996 pr_info("Early memory node ranges\n");
c13291a5 6997 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6998 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6999 (u64)start_pfn << PAGE_SHIFT,
7000 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7001
7002 /* Initialise every node */
708614e6 7003 mminit_verify_pageflags_layout();
8ef82866 7004 setup_nr_node_ids();
e181ae0c 7005 zero_resv_unavail();
c713216d
MG
7006 for_each_online_node(nid) {
7007 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7008 free_area_init_node(nid, NULL,
c713216d 7009 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7010
7011 /* Any memory on that node */
7012 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7013 node_set_state(nid, N_MEMORY);
7014 check_for_memory(pgdat, nid);
c713216d
MG
7015 }
7016}
2a1e274a 7017
a5c6d650
DR
7018static int __init cmdline_parse_core(char *p, unsigned long *core,
7019 unsigned long *percent)
2a1e274a
MG
7020{
7021 unsigned long long coremem;
a5c6d650
DR
7022 char *endptr;
7023
2a1e274a
MG
7024 if (!p)
7025 return -EINVAL;
7026
a5c6d650
DR
7027 /* Value may be a percentage of total memory, otherwise bytes */
7028 coremem = simple_strtoull(p, &endptr, 0);
7029 if (*endptr == '%') {
7030 /* Paranoid check for percent values greater than 100 */
7031 WARN_ON(coremem > 100);
2a1e274a 7032
a5c6d650
DR
7033 *percent = coremem;
7034 } else {
7035 coremem = memparse(p, &p);
7036 /* Paranoid check that UL is enough for the coremem value */
7037 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7038
a5c6d650
DR
7039 *core = coremem >> PAGE_SHIFT;
7040 *percent = 0UL;
7041 }
2a1e274a
MG
7042 return 0;
7043}
ed7ed365 7044
7e63efef
MG
7045/*
7046 * kernelcore=size sets the amount of memory for use for allocations that
7047 * cannot be reclaimed or migrated.
7048 */
7049static int __init cmdline_parse_kernelcore(char *p)
7050{
342332e6
TI
7051 /* parse kernelcore=mirror */
7052 if (parse_option_str(p, "mirror")) {
7053 mirrored_kernelcore = true;
7054 return 0;
7055 }
7056
a5c6d650
DR
7057 return cmdline_parse_core(p, &required_kernelcore,
7058 &required_kernelcore_percent);
7e63efef
MG
7059}
7060
7061/*
7062 * movablecore=size sets the amount of memory for use for allocations that
7063 * can be reclaimed or migrated.
7064 */
7065static int __init cmdline_parse_movablecore(char *p)
7066{
a5c6d650
DR
7067 return cmdline_parse_core(p, &required_movablecore,
7068 &required_movablecore_percent);
7e63efef
MG
7069}
7070
ed7ed365 7071early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7072early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7073
0ee332c1 7074#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7075
c3d5f5f0
JL
7076void adjust_managed_page_count(struct page *page, long count)
7077{
7078 spin_lock(&managed_page_count_lock);
9705bea5 7079 atomic_long_add(count, &page_zone(page)->managed_pages);
c3d5f5f0 7080 totalram_pages += count;
3dcc0571
JL
7081#ifdef CONFIG_HIGHMEM
7082 if (PageHighMem(page))
7083 totalhigh_pages += count;
7084#endif
c3d5f5f0
JL
7085 spin_unlock(&managed_page_count_lock);
7086}
3dcc0571 7087EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7088
11199692 7089unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 7090{
11199692
JL
7091 void *pos;
7092 unsigned long pages = 0;
69afade7 7093
11199692
JL
7094 start = (void *)PAGE_ALIGN((unsigned long)start);
7095 end = (void *)((unsigned long)end & PAGE_MASK);
7096 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7097 struct page *page = virt_to_page(pos);
7098 void *direct_map_addr;
7099
7100 /*
7101 * 'direct_map_addr' might be different from 'pos'
7102 * because some architectures' virt_to_page()
7103 * work with aliases. Getting the direct map
7104 * address ensures that we get a _writeable_
7105 * alias for the memset().
7106 */
7107 direct_map_addr = page_address(page);
dbe67df4 7108 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7109 memset(direct_map_addr, poison, PAGE_SIZE);
7110
7111 free_reserved_page(page);
69afade7
JL
7112 }
7113
7114 if (pages && s)
adb1fe9a
JP
7115 pr_info("Freeing %s memory: %ldK\n",
7116 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7117
7118 return pages;
7119}
11199692 7120EXPORT_SYMBOL(free_reserved_area);
69afade7 7121
cfa11e08
JL
7122#ifdef CONFIG_HIGHMEM
7123void free_highmem_page(struct page *page)
7124{
7125 __free_reserved_page(page);
7126 totalram_pages++;
9705bea5 7127 atomic_long_inc(&page_zone(page)->managed_pages);
cfa11e08
JL
7128 totalhigh_pages++;
7129}
7130#endif
7131
7ee3d4e8
JL
7132
7133void __init mem_init_print_info(const char *str)
7134{
7135 unsigned long physpages, codesize, datasize, rosize, bss_size;
7136 unsigned long init_code_size, init_data_size;
7137
7138 physpages = get_num_physpages();
7139 codesize = _etext - _stext;
7140 datasize = _edata - _sdata;
7141 rosize = __end_rodata - __start_rodata;
7142 bss_size = __bss_stop - __bss_start;
7143 init_data_size = __init_end - __init_begin;
7144 init_code_size = _einittext - _sinittext;
7145
7146 /*
7147 * Detect special cases and adjust section sizes accordingly:
7148 * 1) .init.* may be embedded into .data sections
7149 * 2) .init.text.* may be out of [__init_begin, __init_end],
7150 * please refer to arch/tile/kernel/vmlinux.lds.S.
7151 * 3) .rodata.* may be embedded into .text or .data sections.
7152 */
7153#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7154 do { \
7155 if (start <= pos && pos < end && size > adj) \
7156 size -= adj; \
7157 } while (0)
7ee3d4e8
JL
7158
7159 adj_init_size(__init_begin, __init_end, init_data_size,
7160 _sinittext, init_code_size);
7161 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7162 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7163 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7164 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7165
7166#undef adj_init_size
7167
756a025f 7168 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7169#ifdef CONFIG_HIGHMEM
756a025f 7170 ", %luK highmem"
7ee3d4e8 7171#endif
756a025f
JP
7172 "%s%s)\n",
7173 nr_free_pages() << (PAGE_SHIFT - 10),
7174 physpages << (PAGE_SHIFT - 10),
7175 codesize >> 10, datasize >> 10, rosize >> 10,
7176 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7177 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7178 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7179#ifdef CONFIG_HIGHMEM
756a025f 7180 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7181#endif
756a025f 7182 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7183}
7184
0e0b864e 7185/**
88ca3b94
RD
7186 * set_dma_reserve - set the specified number of pages reserved in the first zone
7187 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7188 *
013110a7 7189 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7190 * In the DMA zone, a significant percentage may be consumed by kernel image
7191 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7192 * function may optionally be used to account for unfreeable pages in the
7193 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7194 * smaller per-cpu batchsize.
0e0b864e
MG
7195 */
7196void __init set_dma_reserve(unsigned long new_dma_reserve)
7197{
7198 dma_reserve = new_dma_reserve;
7199}
7200
1da177e4
LT
7201void __init free_area_init(unsigned long *zones_size)
7202{
e181ae0c 7203 zero_resv_unavail();
9109fb7b 7204 free_area_init_node(0, zones_size,
1da177e4
LT
7205 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7206}
1da177e4 7207
005fd4bb 7208static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7209{
1da177e4 7210
005fd4bb
SAS
7211 lru_add_drain_cpu(cpu);
7212 drain_pages(cpu);
9f8f2172 7213
005fd4bb
SAS
7214 /*
7215 * Spill the event counters of the dead processor
7216 * into the current processors event counters.
7217 * This artificially elevates the count of the current
7218 * processor.
7219 */
7220 vm_events_fold_cpu(cpu);
9f8f2172 7221
005fd4bb
SAS
7222 /*
7223 * Zero the differential counters of the dead processor
7224 * so that the vm statistics are consistent.
7225 *
7226 * This is only okay since the processor is dead and cannot
7227 * race with what we are doing.
7228 */
7229 cpu_vm_stats_fold(cpu);
7230 return 0;
1da177e4 7231}
1da177e4
LT
7232
7233void __init page_alloc_init(void)
7234{
005fd4bb
SAS
7235 int ret;
7236
7237 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7238 "mm/page_alloc:dead", NULL,
7239 page_alloc_cpu_dead);
7240 WARN_ON(ret < 0);
1da177e4
LT
7241}
7242
cb45b0e9 7243/*
34b10060 7244 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7245 * or min_free_kbytes changes.
7246 */
7247static void calculate_totalreserve_pages(void)
7248{
7249 struct pglist_data *pgdat;
7250 unsigned long reserve_pages = 0;
2f6726e5 7251 enum zone_type i, j;
cb45b0e9
HA
7252
7253 for_each_online_pgdat(pgdat) {
281e3726
MG
7254
7255 pgdat->totalreserve_pages = 0;
7256
cb45b0e9
HA
7257 for (i = 0; i < MAX_NR_ZONES; i++) {
7258 struct zone *zone = pgdat->node_zones + i;
3484b2de 7259 long max = 0;
9705bea5 7260 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7261
7262 /* Find valid and maximum lowmem_reserve in the zone */
7263 for (j = i; j < MAX_NR_ZONES; j++) {
7264 if (zone->lowmem_reserve[j] > max)
7265 max = zone->lowmem_reserve[j];
7266 }
7267
41858966
MG
7268 /* we treat the high watermark as reserved pages. */
7269 max += high_wmark_pages(zone);
cb45b0e9 7270
3d6357de
AK
7271 if (max > managed_pages)
7272 max = managed_pages;
a8d01437 7273
281e3726 7274 pgdat->totalreserve_pages += max;
a8d01437 7275
cb45b0e9
HA
7276 reserve_pages += max;
7277 }
7278 }
7279 totalreserve_pages = reserve_pages;
7280}
7281
1da177e4
LT
7282/*
7283 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7284 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7285 * has a correct pages reserved value, so an adequate number of
7286 * pages are left in the zone after a successful __alloc_pages().
7287 */
7288static void setup_per_zone_lowmem_reserve(void)
7289{
7290 struct pglist_data *pgdat;
2f6726e5 7291 enum zone_type j, idx;
1da177e4 7292
ec936fc5 7293 for_each_online_pgdat(pgdat) {
1da177e4
LT
7294 for (j = 0; j < MAX_NR_ZONES; j++) {
7295 struct zone *zone = pgdat->node_zones + j;
9705bea5 7296 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7297
7298 zone->lowmem_reserve[j] = 0;
7299
2f6726e5
CL
7300 idx = j;
7301 while (idx) {
1da177e4
LT
7302 struct zone *lower_zone;
7303
2f6726e5 7304 idx--;
1da177e4 7305 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7306
7307 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7308 sysctl_lowmem_reserve_ratio[idx] = 0;
7309 lower_zone->lowmem_reserve[j] = 0;
7310 } else {
7311 lower_zone->lowmem_reserve[j] =
7312 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7313 }
9705bea5 7314 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7315 }
7316 }
7317 }
cb45b0e9
HA
7318
7319 /* update totalreserve_pages */
7320 calculate_totalreserve_pages();
1da177e4
LT
7321}
7322
cfd3da1e 7323static void __setup_per_zone_wmarks(void)
1da177e4
LT
7324{
7325 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7326 unsigned long lowmem_pages = 0;
7327 struct zone *zone;
7328 unsigned long flags;
7329
7330 /* Calculate total number of !ZONE_HIGHMEM pages */
7331 for_each_zone(zone) {
7332 if (!is_highmem(zone))
9705bea5 7333 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7334 }
7335
7336 for_each_zone(zone) {
ac924c60
AM
7337 u64 tmp;
7338
1125b4e3 7339 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7340 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7341 do_div(tmp, lowmem_pages);
1da177e4
LT
7342 if (is_highmem(zone)) {
7343 /*
669ed175
NP
7344 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7345 * need highmem pages, so cap pages_min to a small
7346 * value here.
7347 *
41858966 7348 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7349 * deltas control asynch page reclaim, and so should
669ed175 7350 * not be capped for highmem.
1da177e4 7351 */
90ae8d67 7352 unsigned long min_pages;
1da177e4 7353
9705bea5 7354 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7355 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7356 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7357 } else {
669ed175
NP
7358 /*
7359 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7360 * proportionate to the zone's size.
7361 */
41858966 7362 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7363 }
7364
795ae7a0
JW
7365 /*
7366 * Set the kswapd watermarks distance according to the
7367 * scale factor in proportion to available memory, but
7368 * ensure a minimum size on small systems.
7369 */
7370 tmp = max_t(u64, tmp >> 2,
9705bea5 7371 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7372 watermark_scale_factor, 10000));
7373
7374 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7375 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7376
1125b4e3 7377 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7378 }
cb45b0e9
HA
7379
7380 /* update totalreserve_pages */
7381 calculate_totalreserve_pages();
1da177e4
LT
7382}
7383
cfd3da1e
MG
7384/**
7385 * setup_per_zone_wmarks - called when min_free_kbytes changes
7386 * or when memory is hot-{added|removed}
7387 *
7388 * Ensures that the watermark[min,low,high] values for each zone are set
7389 * correctly with respect to min_free_kbytes.
7390 */
7391void setup_per_zone_wmarks(void)
7392{
b93e0f32
MH
7393 static DEFINE_SPINLOCK(lock);
7394
7395 spin_lock(&lock);
cfd3da1e 7396 __setup_per_zone_wmarks();
b93e0f32 7397 spin_unlock(&lock);
cfd3da1e
MG
7398}
7399
1da177e4
LT
7400/*
7401 * Initialise min_free_kbytes.
7402 *
7403 * For small machines we want it small (128k min). For large machines
7404 * we want it large (64MB max). But it is not linear, because network
7405 * bandwidth does not increase linearly with machine size. We use
7406 *
b8af2941 7407 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7408 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7409 *
7410 * which yields
7411 *
7412 * 16MB: 512k
7413 * 32MB: 724k
7414 * 64MB: 1024k
7415 * 128MB: 1448k
7416 * 256MB: 2048k
7417 * 512MB: 2896k
7418 * 1024MB: 4096k
7419 * 2048MB: 5792k
7420 * 4096MB: 8192k
7421 * 8192MB: 11584k
7422 * 16384MB: 16384k
7423 */
1b79acc9 7424int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7425{
7426 unsigned long lowmem_kbytes;
5f12733e 7427 int new_min_free_kbytes;
1da177e4
LT
7428
7429 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7430 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7431
7432 if (new_min_free_kbytes > user_min_free_kbytes) {
7433 min_free_kbytes = new_min_free_kbytes;
7434 if (min_free_kbytes < 128)
7435 min_free_kbytes = 128;
7436 if (min_free_kbytes > 65536)
7437 min_free_kbytes = 65536;
7438 } else {
7439 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7440 new_min_free_kbytes, user_min_free_kbytes);
7441 }
bc75d33f 7442 setup_per_zone_wmarks();
a6cccdc3 7443 refresh_zone_stat_thresholds();
1da177e4 7444 setup_per_zone_lowmem_reserve();
6423aa81
JK
7445
7446#ifdef CONFIG_NUMA
7447 setup_min_unmapped_ratio();
7448 setup_min_slab_ratio();
7449#endif
7450
1da177e4
LT
7451 return 0;
7452}
bc22af74 7453core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7454
7455/*
b8af2941 7456 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7457 * that we can call two helper functions whenever min_free_kbytes
7458 * changes.
7459 */
cccad5b9 7460int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7461 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7462{
da8c757b
HP
7463 int rc;
7464
7465 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7466 if (rc)
7467 return rc;
7468
5f12733e
MH
7469 if (write) {
7470 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7471 setup_per_zone_wmarks();
5f12733e 7472 }
1da177e4
LT
7473 return 0;
7474}
7475
795ae7a0
JW
7476int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7477 void __user *buffer, size_t *length, loff_t *ppos)
7478{
7479 int rc;
7480
7481 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7482 if (rc)
7483 return rc;
7484
7485 if (write)
7486 setup_per_zone_wmarks();
7487
7488 return 0;
7489}
7490
9614634f 7491#ifdef CONFIG_NUMA
6423aa81 7492static void setup_min_unmapped_ratio(void)
9614634f 7493{
6423aa81 7494 pg_data_t *pgdat;
9614634f 7495 struct zone *zone;
9614634f 7496
a5f5f91d 7497 for_each_online_pgdat(pgdat)
81cbcbc2 7498 pgdat->min_unmapped_pages = 0;
a5f5f91d 7499
9614634f 7500 for_each_zone(zone)
9705bea5
AK
7501 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7502 sysctl_min_unmapped_ratio) / 100;
9614634f 7503}
0ff38490 7504
6423aa81
JK
7505
7506int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7507 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7508{
0ff38490
CL
7509 int rc;
7510
8d65af78 7511 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7512 if (rc)
7513 return rc;
7514
6423aa81
JK
7515 setup_min_unmapped_ratio();
7516
7517 return 0;
7518}
7519
7520static void setup_min_slab_ratio(void)
7521{
7522 pg_data_t *pgdat;
7523 struct zone *zone;
7524
a5f5f91d
MG
7525 for_each_online_pgdat(pgdat)
7526 pgdat->min_slab_pages = 0;
7527
0ff38490 7528 for_each_zone(zone)
9705bea5
AK
7529 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7530 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7531}
7532
7533int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7534 void __user *buffer, size_t *length, loff_t *ppos)
7535{
7536 int rc;
7537
7538 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7539 if (rc)
7540 return rc;
7541
7542 setup_min_slab_ratio();
7543
0ff38490
CL
7544 return 0;
7545}
9614634f
CL
7546#endif
7547
1da177e4
LT
7548/*
7549 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7550 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7551 * whenever sysctl_lowmem_reserve_ratio changes.
7552 *
7553 * The reserve ratio obviously has absolutely no relation with the
41858966 7554 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7555 * if in function of the boot time zone sizes.
7556 */
cccad5b9 7557int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7558 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7559{
8d65af78 7560 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7561 setup_per_zone_lowmem_reserve();
7562 return 0;
7563}
7564
8ad4b1fb
RS
7565/*
7566 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7567 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7568 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7569 */
cccad5b9 7570int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7571 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7572{
7573 struct zone *zone;
7cd2b0a3 7574 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7575 int ret;
7576
7cd2b0a3
DR
7577 mutex_lock(&pcp_batch_high_lock);
7578 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7579
8d65af78 7580 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7581 if (!write || ret < 0)
7582 goto out;
7583
7584 /* Sanity checking to avoid pcp imbalance */
7585 if (percpu_pagelist_fraction &&
7586 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7587 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7588 ret = -EINVAL;
7589 goto out;
7590 }
7591
7592 /* No change? */
7593 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7594 goto out;
c8e251fa 7595
364df0eb 7596 for_each_populated_zone(zone) {
7cd2b0a3
DR
7597 unsigned int cpu;
7598
22a7f12b 7599 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7600 pageset_set_high_and_batch(zone,
7601 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7602 }
7cd2b0a3 7603out:
c8e251fa 7604 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7605 return ret;
8ad4b1fb
RS
7606}
7607
a9919c79 7608#ifdef CONFIG_NUMA
f034b5d4 7609int hashdist = HASHDIST_DEFAULT;
1da177e4 7610
1da177e4
LT
7611static int __init set_hashdist(char *str)
7612{
7613 if (!str)
7614 return 0;
7615 hashdist = simple_strtoul(str, &str, 0);
7616 return 1;
7617}
7618__setup("hashdist=", set_hashdist);
7619#endif
7620
f6f34b43
SD
7621#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7622/*
7623 * Returns the number of pages that arch has reserved but
7624 * is not known to alloc_large_system_hash().
7625 */
7626static unsigned long __init arch_reserved_kernel_pages(void)
7627{
7628 return 0;
7629}
7630#endif
7631
9017217b
PT
7632/*
7633 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7634 * machines. As memory size is increased the scale is also increased but at
7635 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7636 * quadruples the scale is increased by one, which means the size of hash table
7637 * only doubles, instead of quadrupling as well.
7638 * Because 32-bit systems cannot have large physical memory, where this scaling
7639 * makes sense, it is disabled on such platforms.
7640 */
7641#if __BITS_PER_LONG > 32
7642#define ADAPT_SCALE_BASE (64ul << 30)
7643#define ADAPT_SCALE_SHIFT 2
7644#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7645#endif
7646
1da177e4
LT
7647/*
7648 * allocate a large system hash table from bootmem
7649 * - it is assumed that the hash table must contain an exact power-of-2
7650 * quantity of entries
7651 * - limit is the number of hash buckets, not the total allocation size
7652 */
7653void *__init alloc_large_system_hash(const char *tablename,
7654 unsigned long bucketsize,
7655 unsigned long numentries,
7656 int scale,
7657 int flags,
7658 unsigned int *_hash_shift,
7659 unsigned int *_hash_mask,
31fe62b9
TB
7660 unsigned long low_limit,
7661 unsigned long high_limit)
1da177e4 7662{
31fe62b9 7663 unsigned long long max = high_limit;
1da177e4
LT
7664 unsigned long log2qty, size;
7665 void *table = NULL;
3749a8f0 7666 gfp_t gfp_flags;
1da177e4
LT
7667
7668 /* allow the kernel cmdline to have a say */
7669 if (!numentries) {
7670 /* round applicable memory size up to nearest megabyte */
04903664 7671 numentries = nr_kernel_pages;
f6f34b43 7672 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7673
7674 /* It isn't necessary when PAGE_SIZE >= 1MB */
7675 if (PAGE_SHIFT < 20)
7676 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7677
9017217b
PT
7678#if __BITS_PER_LONG > 32
7679 if (!high_limit) {
7680 unsigned long adapt;
7681
7682 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7683 adapt <<= ADAPT_SCALE_SHIFT)
7684 scale++;
7685 }
7686#endif
7687
1da177e4
LT
7688 /* limit to 1 bucket per 2^scale bytes of low memory */
7689 if (scale > PAGE_SHIFT)
7690 numentries >>= (scale - PAGE_SHIFT);
7691 else
7692 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7693
7694 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7695 if (unlikely(flags & HASH_SMALL)) {
7696 /* Makes no sense without HASH_EARLY */
7697 WARN_ON(!(flags & HASH_EARLY));
7698 if (!(numentries >> *_hash_shift)) {
7699 numentries = 1UL << *_hash_shift;
7700 BUG_ON(!numentries);
7701 }
7702 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7703 numentries = PAGE_SIZE / bucketsize;
1da177e4 7704 }
6e692ed3 7705 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7706
7707 /* limit allocation size to 1/16 total memory by default */
7708 if (max == 0) {
7709 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7710 do_div(max, bucketsize);
7711 }
074b8517 7712 max = min(max, 0x80000000ULL);
1da177e4 7713
31fe62b9
TB
7714 if (numentries < low_limit)
7715 numentries = low_limit;
1da177e4
LT
7716 if (numentries > max)
7717 numentries = max;
7718
f0d1b0b3 7719 log2qty = ilog2(numentries);
1da177e4 7720
3749a8f0 7721 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7722 do {
7723 size = bucketsize << log2qty;
ea1f5f37
PT
7724 if (flags & HASH_EARLY) {
7725 if (flags & HASH_ZERO)
7e1c4e27
MR
7726 table = memblock_alloc_nopanic(size,
7727 SMP_CACHE_BYTES);
ea1f5f37 7728 else
7e1c4e27
MR
7729 table = memblock_alloc_raw(size,
7730 SMP_CACHE_BYTES);
ea1f5f37 7731 } else if (hashdist) {
3749a8f0 7732 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7733 } else {
1037b83b
ED
7734 /*
7735 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7736 * some pages at the end of hash table which
7737 * alloc_pages_exact() automatically does
1037b83b 7738 */
264ef8a9 7739 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7740 table = alloc_pages_exact(size, gfp_flags);
7741 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7742 }
1da177e4
LT
7743 }
7744 } while (!table && size > PAGE_SIZE && --log2qty);
7745
7746 if (!table)
7747 panic("Failed to allocate %s hash table\n", tablename);
7748
1170532b
JP
7749 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7750 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7751
7752 if (_hash_shift)
7753 *_hash_shift = log2qty;
7754 if (_hash_mask)
7755 *_hash_mask = (1 << log2qty) - 1;
7756
7757 return table;
7758}
a117e66e 7759
a5d76b54 7760/*
80934513
MK
7761 * This function checks whether pageblock includes unmovable pages or not.
7762 * If @count is not zero, it is okay to include less @count unmovable pages
7763 *
b8af2941 7764 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7765 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7766 * check without lock_page also may miss some movable non-lru pages at
7767 * race condition. So you can't expect this function should be exact.
a5d76b54 7768 */
b023f468 7769bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 7770 int migratetype, int flags)
49ac8255
KH
7771{
7772 unsigned long pfn, iter, found;
47118af0 7773
49ac8255 7774 /*
15c30bc0
MH
7775 * TODO we could make this much more efficient by not checking every
7776 * page in the range if we know all of them are in MOVABLE_ZONE and
7777 * that the movable zone guarantees that pages are migratable but
7778 * the later is not the case right now unfortunatelly. E.g. movablecore
7779 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7780 */
49ac8255 7781
4da2ce25
MH
7782 /*
7783 * CMA allocations (alloc_contig_range) really need to mark isolate
7784 * CMA pageblocks even when they are not movable in fact so consider
7785 * them movable here.
7786 */
7787 if (is_migrate_cma(migratetype) &&
7788 is_migrate_cma(get_pageblock_migratetype(page)))
7789 return false;
7790
49ac8255
KH
7791 pfn = page_to_pfn(page);
7792 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7793 unsigned long check = pfn + iter;
7794
29723fcc 7795 if (!pfn_valid_within(check))
49ac8255 7796 continue;
29723fcc 7797
49ac8255 7798 page = pfn_to_page(check);
c8721bbb 7799
d7ab3672 7800 if (PageReserved(page))
15c30bc0 7801 goto unmovable;
d7ab3672 7802
9d789999
MH
7803 /*
7804 * If the zone is movable and we have ruled out all reserved
7805 * pages then it should be reasonably safe to assume the rest
7806 * is movable.
7807 */
7808 if (zone_idx(zone) == ZONE_MOVABLE)
7809 continue;
7810
c8721bbb
NH
7811 /*
7812 * Hugepages are not in LRU lists, but they're movable.
7813 * We need not scan over tail pages bacause we don't
7814 * handle each tail page individually in migration.
7815 */
7816 if (PageHuge(page)) {
17e2e7d7
OS
7817 struct page *head = compound_head(page);
7818 unsigned int skip_pages;
464c7ffb 7819
17e2e7d7 7820 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
7821 goto unmovable;
7822
17e2e7d7
OS
7823 skip_pages = (1 << compound_order(head)) - (page - head);
7824 iter += skip_pages - 1;
c8721bbb
NH
7825 continue;
7826 }
7827
97d255c8
MK
7828 /*
7829 * We can't use page_count without pin a page
7830 * because another CPU can free compound page.
7831 * This check already skips compound tails of THP
0139aa7b 7832 * because their page->_refcount is zero at all time.
97d255c8 7833 */
fe896d18 7834 if (!page_ref_count(page)) {
49ac8255
KH
7835 if (PageBuddy(page))
7836 iter += (1 << page_order(page)) - 1;
7837 continue;
7838 }
97d255c8 7839
b023f468
WC
7840 /*
7841 * The HWPoisoned page may be not in buddy system, and
7842 * page_count() is not 0.
7843 */
d381c547 7844 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
7845 continue;
7846
0efadf48
YX
7847 if (__PageMovable(page))
7848 continue;
7849
49ac8255
KH
7850 if (!PageLRU(page))
7851 found++;
7852 /*
6b4f7799
JW
7853 * If there are RECLAIMABLE pages, we need to check
7854 * it. But now, memory offline itself doesn't call
7855 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7856 */
7857 /*
7858 * If the page is not RAM, page_count()should be 0.
7859 * we don't need more check. This is an _used_ not-movable page.
7860 *
7861 * The problematic thing here is PG_reserved pages. PG_reserved
7862 * is set to both of a memory hole page and a _used_ kernel
7863 * page at boot.
7864 */
7865 if (found > count)
15c30bc0 7866 goto unmovable;
49ac8255 7867 }
80934513 7868 return false;
15c30bc0
MH
7869unmovable:
7870 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547
MH
7871 if (flags & REPORT_FAILURE)
7872 dump_page(pfn_to_page(pfn+iter), "unmovable page");
15c30bc0 7873 return true;
49ac8255
KH
7874}
7875
080fe206 7876#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7877
7878static unsigned long pfn_max_align_down(unsigned long pfn)
7879{
7880 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7881 pageblock_nr_pages) - 1);
7882}
7883
7884static unsigned long pfn_max_align_up(unsigned long pfn)
7885{
7886 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7887 pageblock_nr_pages));
7888}
7889
041d3a8c 7890/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7891static int __alloc_contig_migrate_range(struct compact_control *cc,
7892 unsigned long start, unsigned long end)
041d3a8c
MN
7893{
7894 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7895 unsigned long nr_reclaimed;
041d3a8c
MN
7896 unsigned long pfn = start;
7897 unsigned int tries = 0;
7898 int ret = 0;
7899
be49a6e1 7900 migrate_prep();
041d3a8c 7901
bb13ffeb 7902 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7903 if (fatal_signal_pending(current)) {
7904 ret = -EINTR;
7905 break;
7906 }
7907
bb13ffeb
MG
7908 if (list_empty(&cc->migratepages)) {
7909 cc->nr_migratepages = 0;
edc2ca61 7910 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7911 if (!pfn) {
7912 ret = -EINTR;
7913 break;
7914 }
7915 tries = 0;
7916 } else if (++tries == 5) {
7917 ret = ret < 0 ? ret : -EBUSY;
7918 break;
7919 }
7920
beb51eaa
MK
7921 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7922 &cc->migratepages);
7923 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7924
9c620e2b 7925 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 7926 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 7927 }
2a6f5124
SP
7928 if (ret < 0) {
7929 putback_movable_pages(&cc->migratepages);
7930 return ret;
7931 }
7932 return 0;
041d3a8c
MN
7933}
7934
7935/**
7936 * alloc_contig_range() -- tries to allocate given range of pages
7937 * @start: start PFN to allocate
7938 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7939 * @migratetype: migratetype of the underlaying pageblocks (either
7940 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7941 * in range must have the same migratetype and it must
7942 * be either of the two.
ca96b625 7943 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7944 *
7945 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 7946 * aligned. The PFN range must belong to a single zone.
041d3a8c 7947 *
2c7452a0
MK
7948 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7949 * pageblocks in the range. Once isolated, the pageblocks should not
7950 * be modified by others.
041d3a8c
MN
7951 *
7952 * Returns zero on success or negative error code. On success all
7953 * pages which PFN is in [start, end) are allocated for the caller and
7954 * need to be freed with free_contig_range().
7955 */
0815f3d8 7956int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7957 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7958{
041d3a8c 7959 unsigned long outer_start, outer_end;
d00181b9
KS
7960 unsigned int order;
7961 int ret = 0;
041d3a8c 7962
bb13ffeb
MG
7963 struct compact_control cc = {
7964 .nr_migratepages = 0,
7965 .order = -1,
7966 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7967 .mode = MIGRATE_SYNC,
bb13ffeb 7968 .ignore_skip_hint = true,
2583d671 7969 .no_set_skip_hint = true,
7dea19f9 7970 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7971 };
7972 INIT_LIST_HEAD(&cc.migratepages);
7973
041d3a8c
MN
7974 /*
7975 * What we do here is we mark all pageblocks in range as
7976 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7977 * have different sizes, and due to the way page allocator
7978 * work, we align the range to biggest of the two pages so
7979 * that page allocator won't try to merge buddies from
7980 * different pageblocks and change MIGRATE_ISOLATE to some
7981 * other migration type.
7982 *
7983 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7984 * migrate the pages from an unaligned range (ie. pages that
7985 * we are interested in). This will put all the pages in
7986 * range back to page allocator as MIGRATE_ISOLATE.
7987 *
7988 * When this is done, we take the pages in range from page
7989 * allocator removing them from the buddy system. This way
7990 * page allocator will never consider using them.
7991 *
7992 * This lets us mark the pageblocks back as
7993 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7994 * aligned range but not in the unaligned, original range are
7995 * put back to page allocator so that buddy can use them.
7996 */
7997
7998 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 7999 pfn_max_align_up(end), migratetype, 0);
041d3a8c 8000 if (ret)
86a595f9 8001 return ret;
041d3a8c 8002
8ef5849f
JK
8003 /*
8004 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8005 * So, just fall through. test_pages_isolated() has a tracepoint
8006 * which will report the busy page.
8007 *
8008 * It is possible that busy pages could become available before
8009 * the call to test_pages_isolated, and the range will actually be
8010 * allocated. So, if we fall through be sure to clear ret so that
8011 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8012 */
bb13ffeb 8013 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8014 if (ret && ret != -EBUSY)
041d3a8c 8015 goto done;
63cd4489 8016 ret =0;
041d3a8c
MN
8017
8018 /*
8019 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8020 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8021 * more, all pages in [start, end) are free in page allocator.
8022 * What we are going to do is to allocate all pages from
8023 * [start, end) (that is remove them from page allocator).
8024 *
8025 * The only problem is that pages at the beginning and at the
8026 * end of interesting range may be not aligned with pages that
8027 * page allocator holds, ie. they can be part of higher order
8028 * pages. Because of this, we reserve the bigger range and
8029 * once this is done free the pages we are not interested in.
8030 *
8031 * We don't have to hold zone->lock here because the pages are
8032 * isolated thus they won't get removed from buddy.
8033 */
8034
8035 lru_add_drain_all();
510f5507 8036 drain_all_pages(cc.zone);
041d3a8c
MN
8037
8038 order = 0;
8039 outer_start = start;
8040 while (!PageBuddy(pfn_to_page(outer_start))) {
8041 if (++order >= MAX_ORDER) {
8ef5849f
JK
8042 outer_start = start;
8043 break;
041d3a8c
MN
8044 }
8045 outer_start &= ~0UL << order;
8046 }
8047
8ef5849f
JK
8048 if (outer_start != start) {
8049 order = page_order(pfn_to_page(outer_start));
8050
8051 /*
8052 * outer_start page could be small order buddy page and
8053 * it doesn't include start page. Adjust outer_start
8054 * in this case to report failed page properly
8055 * on tracepoint in test_pages_isolated()
8056 */
8057 if (outer_start + (1UL << order) <= start)
8058 outer_start = start;
8059 }
8060
041d3a8c 8061 /* Make sure the range is really isolated. */
b023f468 8062 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8063 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8064 __func__, outer_start, end);
041d3a8c
MN
8065 ret = -EBUSY;
8066 goto done;
8067 }
8068
49f223a9 8069 /* Grab isolated pages from freelists. */
bb13ffeb 8070 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8071 if (!outer_end) {
8072 ret = -EBUSY;
8073 goto done;
8074 }
8075
8076 /* Free head and tail (if any) */
8077 if (start != outer_start)
8078 free_contig_range(outer_start, start - outer_start);
8079 if (end != outer_end)
8080 free_contig_range(end, outer_end - end);
8081
8082done:
8083 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8084 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8085 return ret;
8086}
8087
8088void free_contig_range(unsigned long pfn, unsigned nr_pages)
8089{
bcc2b02f
MS
8090 unsigned int count = 0;
8091
8092 for (; nr_pages--; pfn++) {
8093 struct page *page = pfn_to_page(pfn);
8094
8095 count += page_count(page) != 1;
8096 __free_page(page);
8097 }
8098 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8099}
8100#endif
8101
d883c6cf 8102#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8103/*
8104 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8105 * page high values need to be recalulated.
8106 */
4ed7e022
JL
8107void __meminit zone_pcp_update(struct zone *zone)
8108{
0a647f38 8109 unsigned cpu;
c8e251fa 8110 mutex_lock(&pcp_batch_high_lock);
0a647f38 8111 for_each_possible_cpu(cpu)
169f6c19
CS
8112 pageset_set_high_and_batch(zone,
8113 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8114 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8115}
8116#endif
8117
340175b7
JL
8118void zone_pcp_reset(struct zone *zone)
8119{
8120 unsigned long flags;
5a883813
MK
8121 int cpu;
8122 struct per_cpu_pageset *pset;
340175b7
JL
8123
8124 /* avoid races with drain_pages() */
8125 local_irq_save(flags);
8126 if (zone->pageset != &boot_pageset) {
5a883813
MK
8127 for_each_online_cpu(cpu) {
8128 pset = per_cpu_ptr(zone->pageset, cpu);
8129 drain_zonestat(zone, pset);
8130 }
340175b7
JL
8131 free_percpu(zone->pageset);
8132 zone->pageset = &boot_pageset;
8133 }
8134 local_irq_restore(flags);
8135}
8136
6dcd73d7 8137#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8138/*
b9eb6319
JK
8139 * All pages in the range must be in a single zone and isolated
8140 * before calling this.
0c0e6195
KH
8141 */
8142void
8143__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8144{
8145 struct page *page;
8146 struct zone *zone;
7aeb09f9 8147 unsigned int order, i;
0c0e6195
KH
8148 unsigned long pfn;
8149 unsigned long flags;
8150 /* find the first valid pfn */
8151 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8152 if (pfn_valid(pfn))
8153 break;
8154 if (pfn == end_pfn)
8155 return;
2d070eab 8156 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8157 zone = page_zone(pfn_to_page(pfn));
8158 spin_lock_irqsave(&zone->lock, flags);
8159 pfn = start_pfn;
8160 while (pfn < end_pfn) {
8161 if (!pfn_valid(pfn)) {
8162 pfn++;
8163 continue;
8164 }
8165 page = pfn_to_page(pfn);
b023f468
WC
8166 /*
8167 * The HWPoisoned page may be not in buddy system, and
8168 * page_count() is not 0.
8169 */
8170 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8171 pfn++;
8172 SetPageReserved(page);
8173 continue;
8174 }
8175
0c0e6195
KH
8176 BUG_ON(page_count(page));
8177 BUG_ON(!PageBuddy(page));
8178 order = page_order(page);
8179#ifdef CONFIG_DEBUG_VM
1170532b
JP
8180 pr_info("remove from free list %lx %d %lx\n",
8181 pfn, 1 << order, end_pfn);
0c0e6195
KH
8182#endif
8183 list_del(&page->lru);
8184 rmv_page_order(page);
8185 zone->free_area[order].nr_free--;
0c0e6195
KH
8186 for (i = 0; i < (1 << order); i++)
8187 SetPageReserved((page+i));
8188 pfn += (1 << order);
8189 }
8190 spin_unlock_irqrestore(&zone->lock, flags);
8191}
8192#endif
8d22ba1b 8193
8d22ba1b
WF
8194bool is_free_buddy_page(struct page *page)
8195{
8196 struct zone *zone = page_zone(page);
8197 unsigned long pfn = page_to_pfn(page);
8198 unsigned long flags;
7aeb09f9 8199 unsigned int order;
8d22ba1b
WF
8200
8201 spin_lock_irqsave(&zone->lock, flags);
8202 for (order = 0; order < MAX_ORDER; order++) {
8203 struct page *page_head = page - (pfn & ((1 << order) - 1));
8204
8205 if (PageBuddy(page_head) && page_order(page_head) >= order)
8206 break;
8207 }
8208 spin_unlock_irqrestore(&zone->lock, flags);
8209
8210 return order < MAX_ORDER;
8211}
d4ae9916
NH
8212
8213#ifdef CONFIG_MEMORY_FAILURE
8214/*
8215 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8216 * test is performed under the zone lock to prevent a race against page
8217 * allocation.
8218 */
8219bool set_hwpoison_free_buddy_page(struct page *page)
8220{
8221 struct zone *zone = page_zone(page);
8222 unsigned long pfn = page_to_pfn(page);
8223 unsigned long flags;
8224 unsigned int order;
8225 bool hwpoisoned = false;
8226
8227 spin_lock_irqsave(&zone->lock, flags);
8228 for (order = 0; order < MAX_ORDER; order++) {
8229 struct page *page_head = page - (pfn & ((1 << order) - 1));
8230
8231 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8232 if (!TestSetPageHWPoison(page))
8233 hwpoisoned = true;
8234 break;
8235 }
8236 }
8237 spin_unlock_irqrestore(&zone->lock, flags);
8238
8239 return hwpoisoned;
8240}
8241#endif