]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm, compaction: make full priority ignore pageblock suitability
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
f1c1e9f7
JK
610 if (!debug_guardpage_minorder())
611 return false;
612
e30825f1
JK
613 return true;
614}
615
616static void init_debug_guardpage(void)
617{
031bc574
JK
618 if (!debug_pagealloc_enabled())
619 return;
620
f1c1e9f7
JK
621 if (!debug_guardpage_minorder())
622 return;
623
e30825f1
JK
624 _debug_guardpage_enabled = true;
625}
626
627struct page_ext_operations debug_guardpage_ops = {
628 .need = need_debug_guardpage,
629 .init = init_debug_guardpage,
630};
c0a32fc5
SG
631
632static int __init debug_guardpage_minorder_setup(char *buf)
633{
634 unsigned long res;
635
636 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 637 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
638 return 0;
639 }
640 _debug_guardpage_minorder = res;
1170532b 641 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
642 return 0;
643}
f1c1e9f7 644early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 645
acbc15a4 646static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 647 unsigned int order, int migratetype)
c0a32fc5 648{
e30825f1
JK
649 struct page_ext *page_ext;
650
651 if (!debug_guardpage_enabled())
acbc15a4
JK
652 return false;
653
654 if (order >= debug_guardpage_minorder())
655 return false;
e30825f1
JK
656
657 page_ext = lookup_page_ext(page);
f86e4271 658 if (unlikely(!page_ext))
acbc15a4 659 return false;
f86e4271 660
e30825f1
JK
661 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
662
2847cf95
JK
663 INIT_LIST_HEAD(&page->lru);
664 set_page_private(page, order);
665 /* Guard pages are not available for any usage */
666 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
667
668 return true;
c0a32fc5
SG
669}
670
2847cf95
JK
671static inline void clear_page_guard(struct zone *zone, struct page *page,
672 unsigned int order, int migratetype)
c0a32fc5 673{
e30825f1
JK
674 struct page_ext *page_ext;
675
676 if (!debug_guardpage_enabled())
677 return;
678
679 page_ext = lookup_page_ext(page);
f86e4271
YS
680 if (unlikely(!page_ext))
681 return;
682
e30825f1
JK
683 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
2847cf95
JK
685 set_page_private(page, 0);
686 if (!is_migrate_isolate(migratetype))
687 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
688}
689#else
980ac167 690struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
691static inline bool set_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype) { return false; }
2847cf95
JK
693static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype) {}
c0a32fc5
SG
695#endif
696
7aeb09f9 697static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 698{
4c21e2f2 699 set_page_private(page, order);
676165a8 700 __SetPageBuddy(page);
1da177e4
LT
701}
702
703static inline void rmv_page_order(struct page *page)
704{
676165a8 705 __ClearPageBuddy(page);
4c21e2f2 706 set_page_private(page, 0);
1da177e4
LT
707}
708
1da177e4
LT
709/*
710 * This function checks whether a page is free && is the buddy
711 * we can do coalesce a page and its buddy if
13e7444b 712 * (a) the buddy is not in a hole &&
676165a8 713 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
714 * (c) a page and its buddy have the same order &&
715 * (d) a page and its buddy are in the same zone.
676165a8 716 *
cf6fe945
WSH
717 * For recording whether a page is in the buddy system, we set ->_mapcount
718 * PAGE_BUDDY_MAPCOUNT_VALUE.
719 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
720 * serialized by zone->lock.
1da177e4 721 *
676165a8 722 * For recording page's order, we use page_private(page).
1da177e4 723 */
cb2b95e1 724static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 725 unsigned int order)
1da177e4 726{
14e07298 727 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 728 return 0;
13e7444b 729
c0a32fc5 730 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
731 if (page_zone_id(page) != page_zone_id(buddy))
732 return 0;
733
4c5018ce
WY
734 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735
c0a32fc5
SG
736 return 1;
737 }
738
cb2b95e1 739 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
740 /*
741 * zone check is done late to avoid uselessly
742 * calculating zone/node ids for pages that could
743 * never merge.
744 */
745 if (page_zone_id(page) != page_zone_id(buddy))
746 return 0;
747
4c5018ce
WY
748 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749
6aa3001b 750 return 1;
676165a8 751 }
6aa3001b 752 return 0;
1da177e4
LT
753}
754
755/*
756 * Freeing function for a buddy system allocator.
757 *
758 * The concept of a buddy system is to maintain direct-mapped table
759 * (containing bit values) for memory blocks of various "orders".
760 * The bottom level table contains the map for the smallest allocatable
761 * units of memory (here, pages), and each level above it describes
762 * pairs of units from the levels below, hence, "buddies".
763 * At a high level, all that happens here is marking the table entry
764 * at the bottom level available, and propagating the changes upward
765 * as necessary, plus some accounting needed to play nicely with other
766 * parts of the VM system.
767 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
768 * free pages of length of (1 << order) and marked with _mapcount
769 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
770 * field.
1da177e4 771 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
772 * other. That is, if we allocate a small block, and both were
773 * free, the remainder of the region must be split into blocks.
1da177e4 774 * If a block is freed, and its buddy is also free, then this
5f63b720 775 * triggers coalescing into a block of larger size.
1da177e4 776 *
6d49e352 777 * -- nyc
1da177e4
LT
778 */
779
48db57f8 780static inline void __free_one_page(struct page *page,
dc4b0caf 781 unsigned long pfn,
ed0ae21d
MG
782 struct zone *zone, unsigned int order,
783 int migratetype)
1da177e4
LT
784{
785 unsigned long page_idx;
6dda9d55 786 unsigned long combined_idx;
43506fad 787 unsigned long uninitialized_var(buddy_idx);
6dda9d55 788 struct page *buddy;
d9dddbf5
VB
789 unsigned int max_order;
790
791 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 792
d29bb978 793 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 794 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 795
ed0ae21d 796 VM_BUG_ON(migratetype == -1);
d9dddbf5 797 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 798 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 799
d9dddbf5 800 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 801
309381fe
SL
802 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 804
d9dddbf5 805continue_merging:
3c605096 806 while (order < max_order - 1) {
43506fad
KC
807 buddy_idx = __find_buddy_index(page_idx, order);
808 buddy = page + (buddy_idx - page_idx);
cb2b95e1 809 if (!page_is_buddy(page, buddy, order))
d9dddbf5 810 goto done_merging;
c0a32fc5
SG
811 /*
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
814 */
815 if (page_is_guard(buddy)) {
2847cf95 816 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
817 } else {
818 list_del(&buddy->lru);
819 zone->free_area[order].nr_free--;
820 rmv_page_order(buddy);
821 }
43506fad 822 combined_idx = buddy_idx & page_idx;
1da177e4
LT
823 page = page + (combined_idx - page_idx);
824 page_idx = combined_idx;
825 order++;
826 }
d9dddbf5
VB
827 if (max_order < MAX_ORDER) {
828 /* If we are here, it means order is >= pageblock_order.
829 * We want to prevent merge between freepages on isolate
830 * pageblock and normal pageblock. Without this, pageblock
831 * isolation could cause incorrect freepage or CMA accounting.
832 *
833 * We don't want to hit this code for the more frequent
834 * low-order merging.
835 */
836 if (unlikely(has_isolate_pageblock(zone))) {
837 int buddy_mt;
838
839 buddy_idx = __find_buddy_index(page_idx, order);
840 buddy = page + (buddy_idx - page_idx);
841 buddy_mt = get_pageblock_migratetype(buddy);
842
843 if (migratetype != buddy_mt
844 && (is_migrate_isolate(migratetype) ||
845 is_migrate_isolate(buddy_mt)))
846 goto done_merging;
847 }
848 max_order++;
849 goto continue_merging;
850 }
851
852done_merging:
1da177e4 853 set_page_order(page, order);
6dda9d55
CZ
854
855 /*
856 * If this is not the largest possible page, check if the buddy
857 * of the next-highest order is free. If it is, it's possible
858 * that pages are being freed that will coalesce soon. In case,
859 * that is happening, add the free page to the tail of the list
860 * so it's less likely to be used soon and more likely to be merged
861 * as a higher order page
862 */
b7f50cfa 863 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 864 struct page *higher_page, *higher_buddy;
43506fad
KC
865 combined_idx = buddy_idx & page_idx;
866 higher_page = page + (combined_idx - page_idx);
867 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 868 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
869 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
870 list_add_tail(&page->lru,
871 &zone->free_area[order].free_list[migratetype]);
872 goto out;
873 }
874 }
875
876 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
877out:
1da177e4
LT
878 zone->free_area[order].nr_free++;
879}
880
7bfec6f4
MG
881/*
882 * A bad page could be due to a number of fields. Instead of multiple branches,
883 * try and check multiple fields with one check. The caller must do a detailed
884 * check if necessary.
885 */
886static inline bool page_expected_state(struct page *page,
887 unsigned long check_flags)
888{
889 if (unlikely(atomic_read(&page->_mapcount) != -1))
890 return false;
891
892 if (unlikely((unsigned long)page->mapping |
893 page_ref_count(page) |
894#ifdef CONFIG_MEMCG
895 (unsigned long)page->mem_cgroup |
896#endif
897 (page->flags & check_flags)))
898 return false;
899
900 return true;
901}
902
bb552ac6 903static void free_pages_check_bad(struct page *page)
1da177e4 904{
7bfec6f4
MG
905 const char *bad_reason;
906 unsigned long bad_flags;
907
7bfec6f4
MG
908 bad_reason = NULL;
909 bad_flags = 0;
f0b791a3 910
53f9263b 911 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
912 bad_reason = "nonzero mapcount";
913 if (unlikely(page->mapping != NULL))
914 bad_reason = "non-NULL mapping";
fe896d18 915 if (unlikely(page_ref_count(page) != 0))
0139aa7b 916 bad_reason = "nonzero _refcount";
f0b791a3
DH
917 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 }
9edad6ea
JW
921#ifdef CONFIG_MEMCG
922 if (unlikely(page->mem_cgroup))
923 bad_reason = "page still charged to cgroup";
924#endif
7bfec6f4 925 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
926}
927
928static inline int free_pages_check(struct page *page)
929{
da838d4f 930 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 931 return 0;
bb552ac6
MG
932
933 /* Something has gone sideways, find it */
934 free_pages_check_bad(page);
7bfec6f4 935 return 1;
1da177e4
LT
936}
937
4db7548c
MG
938static int free_tail_pages_check(struct page *head_page, struct page *page)
939{
940 int ret = 1;
941
942 /*
943 * We rely page->lru.next never has bit 0 set, unless the page
944 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 */
946 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947
948 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
949 ret = 0;
950 goto out;
951 }
952 switch (page - head_page) {
953 case 1:
954 /* the first tail page: ->mapping is compound_mapcount() */
955 if (unlikely(compound_mapcount(page))) {
956 bad_page(page, "nonzero compound_mapcount", 0);
957 goto out;
958 }
959 break;
960 case 2:
961 /*
962 * the second tail page: ->mapping is
963 * page_deferred_list().next -- ignore value.
964 */
965 break;
966 default:
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page", 0);
969 goto out;
970 }
971 break;
972 }
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set", 0);
975 goto out;
976 }
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent", 0);
979 goto out;
980 }
981 ret = 0;
982out:
983 page->mapping = NULL;
984 clear_compound_head(page);
985 return ret;
986}
987
e2769dbd
MG
988static __always_inline bool free_pages_prepare(struct page *page,
989 unsigned int order, bool check_free)
4db7548c 990{
e2769dbd 991 int bad = 0;
4db7548c 992
4db7548c
MG
993 VM_BUG_ON_PAGE(PageTail(page), page);
994
e2769dbd
MG
995 trace_mm_page_free(page, order);
996 kmemcheck_free_shadow(page, order);
e2769dbd
MG
997
998 /*
999 * Check tail pages before head page information is cleared to
1000 * avoid checking PageCompound for order-0 pages.
1001 */
1002 if (unlikely(order)) {
1003 bool compound = PageCompound(page);
1004 int i;
1005
1006 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1007
9a73f61b
KS
1008 if (compound)
1009 ClearPageDoubleMap(page);
e2769dbd
MG
1010 for (i = 1; i < (1 << order); i++) {
1011 if (compound)
1012 bad += free_tail_pages_check(page, page + i);
1013 if (unlikely(free_pages_check(page + i))) {
1014 bad++;
1015 continue;
1016 }
1017 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 }
1019 }
bda807d4 1020 if (PageMappingFlags(page))
4db7548c 1021 page->mapping = NULL;
c4159a75 1022 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1023 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1024 if (check_free)
1025 bad += free_pages_check(page);
1026 if (bad)
1027 return false;
4db7548c 1028
e2769dbd
MG
1029 page_cpupid_reset_last(page);
1030 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1031 reset_page_owner(page, order);
4db7548c
MG
1032
1033 if (!PageHighMem(page)) {
1034 debug_check_no_locks_freed(page_address(page),
e2769dbd 1035 PAGE_SIZE << order);
4db7548c 1036 debug_check_no_obj_freed(page_address(page),
e2769dbd 1037 PAGE_SIZE << order);
4db7548c 1038 }
e2769dbd
MG
1039 arch_free_page(page, order);
1040 kernel_poison_pages(page, 1 << order, 0);
1041 kernel_map_pages(page, 1 << order, 0);
29b52de1 1042 kasan_free_pages(page, order);
4db7548c 1043
4db7548c
MG
1044 return true;
1045}
1046
e2769dbd
MG
1047#ifdef CONFIG_DEBUG_VM
1048static inline bool free_pcp_prepare(struct page *page)
1049{
1050 return free_pages_prepare(page, 0, true);
1051}
1052
1053static inline bool bulkfree_pcp_prepare(struct page *page)
1054{
1055 return false;
1056}
1057#else
1058static bool free_pcp_prepare(struct page *page)
1059{
1060 return free_pages_prepare(page, 0, false);
1061}
1062
4db7548c
MG
1063static bool bulkfree_pcp_prepare(struct page *page)
1064{
1065 return free_pages_check(page);
1066}
1067#endif /* CONFIG_DEBUG_VM */
1068
1da177e4 1069/*
5f8dcc21 1070 * Frees a number of pages from the PCP lists
1da177e4 1071 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1072 * count is the number of pages to free.
1da177e4
LT
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
5f8dcc21
MG
1080static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1da177e4 1082{
5f8dcc21 1083 int migratetype = 0;
a6f9edd6 1084 int batch_free = 0;
0d5d823a 1085 unsigned long nr_scanned;
3777999d 1086 bool isolated_pageblocks;
5f8dcc21 1087
c54ad30c 1088 spin_lock(&zone->lock);
3777999d 1089 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1090 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1091 if (nr_scanned)
599d0c95 1092 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1093
e5b31ac2 1094 while (count) {
48db57f8 1095 struct page *page;
5f8dcc21
MG
1096 struct list_head *list;
1097
1098 /*
a6f9edd6
MG
1099 * Remove pages from lists in a round-robin fashion. A
1100 * batch_free count is maintained that is incremented when an
1101 * empty list is encountered. This is so more pages are freed
1102 * off fuller lists instead of spinning excessively around empty
1103 * lists
5f8dcc21
MG
1104 */
1105 do {
a6f9edd6 1106 batch_free++;
5f8dcc21
MG
1107 if (++migratetype == MIGRATE_PCPTYPES)
1108 migratetype = 0;
1109 list = &pcp->lists[migratetype];
1110 } while (list_empty(list));
48db57f8 1111
1d16871d
NK
1112 /* This is the only non-empty list. Free them all. */
1113 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1114 batch_free = count;
1d16871d 1115
a6f9edd6 1116 do {
770c8aaa
BZ
1117 int mt; /* migratetype of the to-be-freed page */
1118
a16601c5 1119 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1120 /* must delete as __free_one_page list manipulates */
1121 list_del(&page->lru);
aa016d14 1122
bb14c2c7 1123 mt = get_pcppage_migratetype(page);
aa016d14
VB
1124 /* MIGRATE_ISOLATE page should not go to pcplists */
1125 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1126 /* Pageblock could have been isolated meanwhile */
3777999d 1127 if (unlikely(isolated_pageblocks))
51bb1a40 1128 mt = get_pageblock_migratetype(page);
51bb1a40 1129
4db7548c
MG
1130 if (bulkfree_pcp_prepare(page))
1131 continue;
1132
dc4b0caf 1133 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1134 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1135 } while (--count && --batch_free && !list_empty(list));
1da177e4 1136 }
c54ad30c 1137 spin_unlock(&zone->lock);
1da177e4
LT
1138}
1139
dc4b0caf
MG
1140static void free_one_page(struct zone *zone,
1141 struct page *page, unsigned long pfn,
7aeb09f9 1142 unsigned int order,
ed0ae21d 1143 int migratetype)
1da177e4 1144{
0d5d823a 1145 unsigned long nr_scanned;
006d22d9 1146 spin_lock(&zone->lock);
599d0c95 1147 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1148 if (nr_scanned)
599d0c95 1149 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1150
ad53f92e
JK
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1154 }
dc4b0caf 1155 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1156 spin_unlock(&zone->lock);
48db57f8
NP
1157}
1158
1e8ce83c
RH
1159static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161{
1e8ce83c 1162 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1e8ce83c 1166
1e8ce83c
RH
1167 INIT_LIST_HEAD(&page->lru);
1168#ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172#endif
1173}
1174
1175static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177{
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179}
1180
7e18adb4
MG
1181#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182static void init_reserved_page(unsigned long pfn)
1183{
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200}
1201#else
1202static inline void init_reserved_page(unsigned long pfn)
1203{
1204}
1205#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
92923ca3
NZ
1207/*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
4b50bcc7 1213void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1214{
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
7e18adb4
MG
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1d798ca3
KS
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
7e18adb4
MG
1227 SetPageReserved(page);
1228 }
1229 }
92923ca3
NZ
1230}
1231
ec95f53a
KM
1232static void __free_pages_ok(struct page *page, unsigned int order)
1233{
1234 unsigned long flags;
95e34412 1235 int migratetype;
dc4b0caf 1236 unsigned long pfn = page_to_pfn(page);
ec95f53a 1237
e2769dbd 1238 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1239 return;
1240
cfc47a28 1241 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1242 local_irq_save(flags);
f8891e5e 1243 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1245 local_irq_restore(flags);
1da177e4
LT
1246}
1247
949698a3 1248static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1249{
c3993076 1250 unsigned int nr_pages = 1 << order;
e2d0bd2b 1251 struct page *p = page;
c3993076 1252 unsigned int loop;
a226f6c8 1253
e2d0bd2b
YL
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
c3993076
JW
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
a226f6c8 1259 }
e2d0bd2b
YL
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
c3993076 1262
e2d0bd2b 1263 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
a226f6c8
DH
1266}
1267
75a592a4
MG
1268#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1270
75a592a4
MG
1271static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273int __meminit early_pfn_to_nid(unsigned long pfn)
1274{
7ace9917 1275 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1276 int nid;
1277
7ace9917 1278 spin_lock(&early_pfn_lock);
75a592a4 1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1280 if (nid < 0)
e4568d38 1281 nid = first_online_node;
7ace9917
MG
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
75a592a4
MG
1285}
1286#endif
1287
1288#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291{
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298}
1299
1300/* Only safe to use early in boot when initialisation is single-threaded */
1301static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302{
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304}
1305
1306#else
1307
1308static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309{
1310 return true;
1311}
1312static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314{
1315 return true;
1316}
1317#endif
1318
1319
0e1cc95b 1320void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1321 unsigned int order)
1322{
1323 if (early_page_uninitialised(pfn))
1324 return;
949698a3 1325 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1326}
1327
7cf91a98
JK
1328/*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347{
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369}
1370
1371void set_zone_contiguous(struct zone *zone)
1372{
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390}
1391
1392void clear_zone_contiguous(struct zone *zone)
1393{
1394 zone->contiguous = false;
1395}
1396
7e18adb4 1397#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1398static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1399 unsigned long pfn, int nr_pages)
1400{
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1410 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1411 return;
1412 }
1413
e780149b
XQ
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1417 __free_pages_boot_core(page, 0);
e780149b 1418 }
a4de83dd
MG
1419}
1420
d3cd131d
NS
1421/* Completion tracking for deferred_init_memmap() threads */
1422static atomic_t pgdat_init_n_undone __initdata;
1423static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425static inline void __init pgdat_init_report_one_done(void)
1426{
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429}
0e1cc95b 1430
7e18adb4 1431/* Initialise remaining memory on a node */
0e1cc95b 1432static int __init deferred_init_memmap(void *data)
7e18adb4 1433{
0e1cc95b
MG
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
7e18adb4
MG
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
7e18adb4 1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1444
0e1cc95b 1445 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1446 pgdat_init_report_one_done();
0e1cc95b
MG
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
54608c3f 1468 struct page *page = NULL;
a4de83dd
MG
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
7e18adb4
MG
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
54608c3f 1481 if (!pfn_valid_within(pfn))
a4de83dd 1482 goto free_range;
7e18adb4 1483
54608c3f
MG
1484 /*
1485 * Ensure pfn_valid is checked every
e780149b 1486 * pageblock_nr_pages for memory holes
54608c3f 1487 */
e780149b 1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
a4de83dd 1497 goto free_range;
54608c3f
MG
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
e780149b 1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1502 page++;
1503 } else {
a4de83dd
MG
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
54608c3f
MG
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
7e18adb4
MG
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1516 goto free_range;
7e18adb4
MG
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
7e18adb4 1536 }
e780149b
XQ
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1540
7e18adb4
MG
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
0e1cc95b 1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1548 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1549
1550 pgdat_init_report_one_done();
0e1cc95b
MG
1551 return 0;
1552}
7cf91a98 1553#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1554
1555void __init page_alloc_init_late(void)
1556{
7cf91a98
JK
1557 struct zone *zone;
1558
1559#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1560 int nid;
1561
d3cd131d
NS
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1564 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
d3cd131d 1569 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
7cf91a98
JK
1573#endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
7e18adb4 1577}
7e18adb4 1578
47118af0 1579#ifdef CONFIG_CMA
9cf510a5 1580/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1581void __init init_cma_reserved_pageblock(struct page *page)
1582{
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
47118af0 1591 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
3dcc0571 1606 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1607}
1608#endif
1da177e4
LT
1609
1610/*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
6d49e352 1622 * -- nyc
1da177e4 1623 */
085cc7d5 1624static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1da177e4
LT
1627{
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
309381fe 1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1635
acbc15a4
JK
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1643 continue;
acbc15a4 1644
b2a0ac88 1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1da177e4
LT
1649}
1650
4e611801 1651static void check_new_page_bad(struct page *page)
1da177e4 1652{
4e611801
VB
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
7bfec6f4 1655
53f9263b 1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
fe896d18 1660 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1661 bad_reason = "nonzero _count";
f4c18e6f
NH
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
e570f56c
NH
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
f4c18e6f 1668 }
f0b791a3
DH
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
9edad6ea
JW
1673#ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676#endif
4e611801
VB
1677 bad_page(page, bad_reason, bad_flags);
1678}
1679
1680/*
1681 * This page is about to be returned from the page allocator
1682 */
1683static inline int check_new_page(struct page *page)
1684{
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
2a7684a2
WF
1691}
1692
1414c7f4
LA
1693static inline bool free_pages_prezeroed(bool poisoned)
1694{
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled() && poisoned;
1697}
1698
479f854a
MG
1699#ifdef CONFIG_DEBUG_VM
1700static bool check_pcp_refill(struct page *page)
1701{
1702 return false;
1703}
1704
1705static bool check_new_pcp(struct page *page)
1706{
1707 return check_new_page(page);
1708}
1709#else
1710static bool check_pcp_refill(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714static bool check_new_pcp(struct page *page)
1715{
1716 return false;
1717}
1718#endif /* CONFIG_DEBUG_VM */
1719
1720static bool check_new_pages(struct page *page, unsigned int order)
1721{
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731}
1732
46f24fd8
JK
1733inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735{
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744}
1745
479f854a 1746static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1747 unsigned int alloc_flags)
2a7684a2
WF
1748{
1749 int i;
1414c7f4 1750 bool poisoned = true;
2a7684a2
WF
1751
1752 for (i = 0; i < (1 << order); i++) {
1753 struct page *p = page + i;
1414c7f4
LA
1754 if (poisoned)
1755 poisoned &= page_is_poisoned(p);
2a7684a2 1756 }
689bcebf 1757
46f24fd8 1758 post_alloc_hook(page, order, gfp_flags);
17cf4406 1759
1414c7f4 1760 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1761 for (i = 0; i < (1 << order); i++)
1762 clear_highpage(page + i);
17cf4406
NP
1763
1764 if (order && (gfp_flags & __GFP_COMP))
1765 prep_compound_page(page, order);
1766
75379191 1767 /*
2f064f34 1768 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1769 * allocate the page. The expectation is that the caller is taking
1770 * steps that will free more memory. The caller should avoid the page
1771 * being used for !PFMEMALLOC purposes.
1772 */
2f064f34
MH
1773 if (alloc_flags & ALLOC_NO_WATERMARKS)
1774 set_page_pfmemalloc(page);
1775 else
1776 clear_page_pfmemalloc(page);
1da177e4
LT
1777}
1778
56fd56b8
MG
1779/*
1780 * Go through the free lists for the given migratetype and remove
1781 * the smallest available page from the freelists
1782 */
728ec980
MG
1783static inline
1784struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1785 int migratetype)
1786{
1787 unsigned int current_order;
b8af2941 1788 struct free_area *area;
56fd56b8
MG
1789 struct page *page;
1790
1791 /* Find a page of the appropriate size in the preferred list */
1792 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1793 area = &(zone->free_area[current_order]);
a16601c5 1794 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1795 struct page, lru);
a16601c5
GT
1796 if (!page)
1797 continue;
56fd56b8
MG
1798 list_del(&page->lru);
1799 rmv_page_order(page);
1800 area->nr_free--;
56fd56b8 1801 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1802 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1803 return page;
1804 }
1805
1806 return NULL;
1807}
1808
1809
b2a0ac88
MG
1810/*
1811 * This array describes the order lists are fallen back to when
1812 * the free lists for the desirable migrate type are depleted
1813 */
47118af0 1814static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1815 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1817 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1818#ifdef CONFIG_CMA
974a786e 1819 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1820#endif
194159fb 1821#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1822 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1823#endif
b2a0ac88
MG
1824};
1825
dc67647b
JK
1826#ifdef CONFIG_CMA
1827static struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order)
1829{
1830 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831}
1832#else
1833static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order) { return NULL; }
1835#endif
1836
c361be55
MG
1837/*
1838 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1839 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1840 * boundary. If alignment is required, use move_freepages_block()
1841 */
435b405c 1842int move_freepages(struct zone *zone,
b69a7288
AB
1843 struct page *start_page, struct page *end_page,
1844 int migratetype)
c361be55
MG
1845{
1846 struct page *page;
d00181b9 1847 unsigned int order;
d100313f 1848 int pages_moved = 0;
c361be55
MG
1849
1850#ifndef CONFIG_HOLES_IN_ZONE
1851 /*
1852 * page_zone is not safe to call in this context when
1853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1854 * anyway as we check zone boundaries in move_freepages_block().
1855 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1856 * grouping pages by mobility
c361be55 1857 */
97ee4ba7 1858 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1859#endif
1860
1861 for (page = start_page; page <= end_page;) {
344c790e 1862 /* Make sure we are not inadvertently changing nodes */
309381fe 1863 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1864
c361be55
MG
1865 if (!pfn_valid_within(page_to_pfn(page))) {
1866 page++;
1867 continue;
1868 }
1869
1870 if (!PageBuddy(page)) {
1871 page++;
1872 continue;
1873 }
1874
1875 order = page_order(page);
84be48d8
KS
1876 list_move(&page->lru,
1877 &zone->free_area[order].free_list[migratetype]);
c361be55 1878 page += 1 << order;
d100313f 1879 pages_moved += 1 << order;
c361be55
MG
1880 }
1881
d100313f 1882 return pages_moved;
c361be55
MG
1883}
1884
ee6f509c 1885int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1886 int migratetype)
c361be55
MG
1887{
1888 unsigned long start_pfn, end_pfn;
1889 struct page *start_page, *end_page;
1890
1891 start_pfn = page_to_pfn(page);
d9c23400 1892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1893 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1894 end_page = start_page + pageblock_nr_pages - 1;
1895 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1896
1897 /* Do not cross zone boundaries */
108bcc96 1898 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1899 start_page = page;
108bcc96 1900 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1901 return 0;
1902
1903 return move_freepages(zone, start_page, end_page, migratetype);
1904}
1905
2f66a68f
MG
1906static void change_pageblock_range(struct page *pageblock_page,
1907 int start_order, int migratetype)
1908{
1909 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910
1911 while (nr_pageblocks--) {
1912 set_pageblock_migratetype(pageblock_page, migratetype);
1913 pageblock_page += pageblock_nr_pages;
1914 }
1915}
1916
fef903ef 1917/*
9c0415eb
VB
1918 * When we are falling back to another migratetype during allocation, try to
1919 * steal extra free pages from the same pageblocks to satisfy further
1920 * allocations, instead of polluting multiple pageblocks.
1921 *
1922 * If we are stealing a relatively large buddy page, it is likely there will
1923 * be more free pages in the pageblock, so try to steal them all. For
1924 * reclaimable and unmovable allocations, we steal regardless of page size,
1925 * as fragmentation caused by those allocations polluting movable pageblocks
1926 * is worse than movable allocations stealing from unmovable and reclaimable
1927 * pageblocks.
fef903ef 1928 */
4eb7dce6
JK
1929static bool can_steal_fallback(unsigned int order, int start_mt)
1930{
1931 /*
1932 * Leaving this order check is intended, although there is
1933 * relaxed order check in next check. The reason is that
1934 * we can actually steal whole pageblock if this condition met,
1935 * but, below check doesn't guarantee it and that is just heuristic
1936 * so could be changed anytime.
1937 */
1938 if (order >= pageblock_order)
1939 return true;
1940
1941 if (order >= pageblock_order / 2 ||
1942 start_mt == MIGRATE_RECLAIMABLE ||
1943 start_mt == MIGRATE_UNMOVABLE ||
1944 page_group_by_mobility_disabled)
1945 return true;
1946
1947 return false;
1948}
1949
1950/*
1951 * This function implements actual steal behaviour. If order is large enough,
1952 * we can steal whole pageblock. If not, we first move freepages in this
1953 * pageblock and check whether half of pages are moved or not. If half of
1954 * pages are moved, we can change migratetype of pageblock and permanently
1955 * use it's pages as requested migratetype in the future.
1956 */
1957static void steal_suitable_fallback(struct zone *zone, struct page *page,
1958 int start_type)
fef903ef 1959{
d00181b9 1960 unsigned int current_order = page_order(page);
4eb7dce6 1961 int pages;
fef903ef 1962
fef903ef
SB
1963 /* Take ownership for orders >= pageblock_order */
1964 if (current_order >= pageblock_order) {
1965 change_pageblock_range(page, current_order, start_type);
3a1086fb 1966 return;
fef903ef
SB
1967 }
1968
4eb7dce6 1969 pages = move_freepages_block(zone, page, start_type);
fef903ef 1970
4eb7dce6
JK
1971 /* Claim the whole block if over half of it is free */
1972 if (pages >= (1 << (pageblock_order-1)) ||
1973 page_group_by_mobility_disabled)
1974 set_pageblock_migratetype(page, start_type);
1975}
1976
2149cdae
JK
1977/*
1978 * Check whether there is a suitable fallback freepage with requested order.
1979 * If only_stealable is true, this function returns fallback_mt only if
1980 * we can steal other freepages all together. This would help to reduce
1981 * fragmentation due to mixed migratetype pages in one pageblock.
1982 */
1983int find_suitable_fallback(struct free_area *area, unsigned int order,
1984 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1985{
1986 int i;
1987 int fallback_mt;
1988
1989 if (area->nr_free == 0)
1990 return -1;
1991
1992 *can_steal = false;
1993 for (i = 0;; i++) {
1994 fallback_mt = fallbacks[migratetype][i];
974a786e 1995 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1996 break;
1997
1998 if (list_empty(&area->free_list[fallback_mt]))
1999 continue;
fef903ef 2000
4eb7dce6
JK
2001 if (can_steal_fallback(order, migratetype))
2002 *can_steal = true;
2003
2149cdae
JK
2004 if (!only_stealable)
2005 return fallback_mt;
2006
2007 if (*can_steal)
2008 return fallback_mt;
fef903ef 2009 }
4eb7dce6
JK
2010
2011 return -1;
fef903ef
SB
2012}
2013
0aaa29a5
MG
2014/*
2015 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2016 * there are no empty page blocks that contain a page with a suitable order
2017 */
2018static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2019 unsigned int alloc_order)
2020{
2021 int mt;
2022 unsigned long max_managed, flags;
2023
2024 /*
2025 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2026 * Check is race-prone but harmless.
2027 */
2028 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 return;
2031
2032 spin_lock_irqsave(&zone->lock, flags);
2033
2034 /* Recheck the nr_reserved_highatomic limit under the lock */
2035 if (zone->nr_reserved_highatomic >= max_managed)
2036 goto out_unlock;
2037
2038 /* Yoink! */
2039 mt = get_pageblock_migratetype(page);
2040 if (mt != MIGRATE_HIGHATOMIC &&
2041 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2042 zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2044 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2045 }
2046
2047out_unlock:
2048 spin_unlock_irqrestore(&zone->lock, flags);
2049}
2050
2051/*
2052 * Used when an allocation is about to fail under memory pressure. This
2053 * potentially hurts the reliability of high-order allocations when under
2054 * intense memory pressure but failed atomic allocations should be easier
2055 * to recover from than an OOM.
2056 */
2057static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2058{
2059 struct zonelist *zonelist = ac->zonelist;
2060 unsigned long flags;
2061 struct zoneref *z;
2062 struct zone *zone;
2063 struct page *page;
2064 int order;
2065
2066 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2067 ac->nodemask) {
2068 /* Preserve at least one pageblock */
2069 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2070 continue;
2071
2072 spin_lock_irqsave(&zone->lock, flags);
2073 for (order = 0; order < MAX_ORDER; order++) {
2074 struct free_area *area = &(zone->free_area[order]);
2075
a16601c5
GT
2076 page = list_first_entry_or_null(
2077 &area->free_list[MIGRATE_HIGHATOMIC],
2078 struct page, lru);
2079 if (!page)
0aaa29a5
MG
2080 continue;
2081
0aaa29a5
MG
2082 /*
2083 * It should never happen but changes to locking could
2084 * inadvertently allow a per-cpu drain to add pages
2085 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2086 * and watch for underflows.
2087 */
2088 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2089 zone->nr_reserved_highatomic);
2090
2091 /*
2092 * Convert to ac->migratetype and avoid the normal
2093 * pageblock stealing heuristics. Minimally, the caller
2094 * is doing the work and needs the pages. More
2095 * importantly, if the block was always converted to
2096 * MIGRATE_UNMOVABLE or another type then the number
2097 * of pageblocks that cannot be completely freed
2098 * may increase.
2099 */
2100 set_pageblock_migratetype(page, ac->migratetype);
2101 move_freepages_block(zone, page, ac->migratetype);
2102 spin_unlock_irqrestore(&zone->lock, flags);
2103 return;
2104 }
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107}
2108
b2a0ac88 2109/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2110static inline struct page *
7aeb09f9 2111__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2112{
b8af2941 2113 struct free_area *area;
7aeb09f9 2114 unsigned int current_order;
b2a0ac88 2115 struct page *page;
4eb7dce6
JK
2116 int fallback_mt;
2117 bool can_steal;
b2a0ac88
MG
2118
2119 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2120 for (current_order = MAX_ORDER-1;
2121 current_order >= order && current_order <= MAX_ORDER-1;
2122 --current_order) {
4eb7dce6
JK
2123 area = &(zone->free_area[current_order]);
2124 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2125 start_migratetype, false, &can_steal);
4eb7dce6
JK
2126 if (fallback_mt == -1)
2127 continue;
b2a0ac88 2128
a16601c5 2129 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2130 struct page, lru);
2131 if (can_steal)
2132 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2133
4eb7dce6
JK
2134 /* Remove the page from the freelists */
2135 area->nr_free--;
2136 list_del(&page->lru);
2137 rmv_page_order(page);
3a1086fb 2138
4eb7dce6
JK
2139 expand(zone, page, order, current_order, area,
2140 start_migratetype);
2141 /*
bb14c2c7 2142 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2143 * migratetype depending on the decisions in
bb14c2c7
VB
2144 * find_suitable_fallback(). This is OK as long as it does not
2145 * differ for MIGRATE_CMA pageblocks. Those can be used as
2146 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2147 */
bb14c2c7 2148 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2149
4eb7dce6
JK
2150 trace_mm_page_alloc_extfrag(page, order, current_order,
2151 start_migratetype, fallback_mt);
e0fff1bd 2152
4eb7dce6 2153 return page;
b2a0ac88
MG
2154 }
2155
728ec980 2156 return NULL;
b2a0ac88
MG
2157}
2158
56fd56b8 2159/*
1da177e4
LT
2160 * Do the hard work of removing an element from the buddy allocator.
2161 * Call me with the zone->lock already held.
2162 */
b2a0ac88 2163static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2164 int migratetype)
1da177e4 2165{
1da177e4
LT
2166 struct page *page;
2167
56fd56b8 2168 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2169 if (unlikely(!page)) {
dc67647b
JK
2170 if (migratetype == MIGRATE_MOVABLE)
2171 page = __rmqueue_cma_fallback(zone, order);
2172
2173 if (!page)
2174 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2175 }
2176
0d3d062a 2177 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2178 return page;
1da177e4
LT
2179}
2180
5f63b720 2181/*
1da177e4
LT
2182 * Obtain a specified number of elements from the buddy allocator, all under
2183 * a single hold of the lock, for efficiency. Add them to the supplied list.
2184 * Returns the number of new pages which were placed at *list.
2185 */
5f63b720 2186static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2187 unsigned long count, struct list_head *list,
b745bc85 2188 int migratetype, bool cold)
1da177e4 2189{
5bcc9f86 2190 int i;
5f63b720 2191
c54ad30c 2192 spin_lock(&zone->lock);
1da177e4 2193 for (i = 0; i < count; ++i) {
6ac0206b 2194 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2195 if (unlikely(page == NULL))
1da177e4 2196 break;
81eabcbe 2197
479f854a
MG
2198 if (unlikely(check_pcp_refill(page)))
2199 continue;
2200
81eabcbe
MG
2201 /*
2202 * Split buddy pages returned by expand() are received here
2203 * in physical page order. The page is added to the callers and
2204 * list and the list head then moves forward. From the callers
2205 * perspective, the linked list is ordered by page number in
2206 * some conditions. This is useful for IO devices that can
2207 * merge IO requests if the physical pages are ordered
2208 * properly.
2209 */
b745bc85 2210 if (likely(!cold))
e084b2d9
MG
2211 list_add(&page->lru, list);
2212 else
2213 list_add_tail(&page->lru, list);
81eabcbe 2214 list = &page->lru;
bb14c2c7 2215 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2216 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2217 -(1 << order));
1da177e4 2218 }
f2260e6b 2219 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2220 spin_unlock(&zone->lock);
085cc7d5 2221 return i;
1da177e4
LT
2222}
2223
4ae7c039 2224#ifdef CONFIG_NUMA
8fce4d8e 2225/*
4037d452
CL
2226 * Called from the vmstat counter updater to drain pagesets of this
2227 * currently executing processor on remote nodes after they have
2228 * expired.
2229 *
879336c3
CL
2230 * Note that this function must be called with the thread pinned to
2231 * a single processor.
8fce4d8e 2232 */
4037d452 2233void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2234{
4ae7c039 2235 unsigned long flags;
7be12fc9 2236 int to_drain, batch;
4ae7c039 2237
4037d452 2238 local_irq_save(flags);
4db0c3c2 2239 batch = READ_ONCE(pcp->batch);
7be12fc9 2240 to_drain = min(pcp->count, batch);
2a13515c
KM
2241 if (to_drain > 0) {
2242 free_pcppages_bulk(zone, to_drain, pcp);
2243 pcp->count -= to_drain;
2244 }
4037d452 2245 local_irq_restore(flags);
4ae7c039
CL
2246}
2247#endif
2248
9f8f2172 2249/*
93481ff0 2250 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2251 *
2252 * The processor must either be the current processor and the
2253 * thread pinned to the current processor or a processor that
2254 * is not online.
2255 */
93481ff0 2256static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2257{
c54ad30c 2258 unsigned long flags;
93481ff0
VB
2259 struct per_cpu_pageset *pset;
2260 struct per_cpu_pages *pcp;
1da177e4 2261
93481ff0
VB
2262 local_irq_save(flags);
2263 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2264
93481ff0
VB
2265 pcp = &pset->pcp;
2266 if (pcp->count) {
2267 free_pcppages_bulk(zone, pcp->count, pcp);
2268 pcp->count = 0;
2269 }
2270 local_irq_restore(flags);
2271}
3dfa5721 2272
93481ff0
VB
2273/*
2274 * Drain pcplists of all zones on the indicated processor.
2275 *
2276 * The processor must either be the current processor and the
2277 * thread pinned to the current processor or a processor that
2278 * is not online.
2279 */
2280static void drain_pages(unsigned int cpu)
2281{
2282 struct zone *zone;
2283
2284 for_each_populated_zone(zone) {
2285 drain_pages_zone(cpu, zone);
1da177e4
LT
2286 }
2287}
1da177e4 2288
9f8f2172
CL
2289/*
2290 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2291 *
2292 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2293 * the single zone's pages.
9f8f2172 2294 */
93481ff0 2295void drain_local_pages(struct zone *zone)
9f8f2172 2296{
93481ff0
VB
2297 int cpu = smp_processor_id();
2298
2299 if (zone)
2300 drain_pages_zone(cpu, zone);
2301 else
2302 drain_pages(cpu);
9f8f2172
CL
2303}
2304
2305/*
74046494
GBY
2306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2307 *
93481ff0
VB
2308 * When zone parameter is non-NULL, spill just the single zone's pages.
2309 *
74046494
GBY
2310 * Note that this code is protected against sending an IPI to an offline
2311 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2312 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2313 * nothing keeps CPUs from showing up after we populated the cpumask and
2314 * before the call to on_each_cpu_mask().
9f8f2172 2315 */
93481ff0 2316void drain_all_pages(struct zone *zone)
9f8f2172 2317{
74046494 2318 int cpu;
74046494
GBY
2319
2320 /*
2321 * Allocate in the BSS so we wont require allocation in
2322 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2323 */
2324 static cpumask_t cpus_with_pcps;
2325
2326 /*
2327 * We don't care about racing with CPU hotplug event
2328 * as offline notification will cause the notified
2329 * cpu to drain that CPU pcps and on_each_cpu_mask
2330 * disables preemption as part of its processing
2331 */
2332 for_each_online_cpu(cpu) {
93481ff0
VB
2333 struct per_cpu_pageset *pcp;
2334 struct zone *z;
74046494 2335 bool has_pcps = false;
93481ff0
VB
2336
2337 if (zone) {
74046494 2338 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2339 if (pcp->pcp.count)
74046494 2340 has_pcps = true;
93481ff0
VB
2341 } else {
2342 for_each_populated_zone(z) {
2343 pcp = per_cpu_ptr(z->pageset, cpu);
2344 if (pcp->pcp.count) {
2345 has_pcps = true;
2346 break;
2347 }
74046494
GBY
2348 }
2349 }
93481ff0 2350
74046494
GBY
2351 if (has_pcps)
2352 cpumask_set_cpu(cpu, &cpus_with_pcps);
2353 else
2354 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2355 }
93481ff0
VB
2356 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2357 zone, 1);
9f8f2172
CL
2358}
2359
296699de 2360#ifdef CONFIG_HIBERNATION
1da177e4
LT
2361
2362void mark_free_pages(struct zone *zone)
2363{
f623f0db
RW
2364 unsigned long pfn, max_zone_pfn;
2365 unsigned long flags;
7aeb09f9 2366 unsigned int order, t;
86760a2c 2367 struct page *page;
1da177e4 2368
8080fc03 2369 if (zone_is_empty(zone))
1da177e4
LT
2370 return;
2371
2372 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2373
108bcc96 2374 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2376 if (pfn_valid(pfn)) {
86760a2c 2377 page = pfn_to_page(pfn);
ba6b0979
JK
2378
2379 if (page_zone(page) != zone)
2380 continue;
2381
7be98234
RW
2382 if (!swsusp_page_is_forbidden(page))
2383 swsusp_unset_page_free(page);
f623f0db 2384 }
1da177e4 2385
b2a0ac88 2386 for_each_migratetype_order(order, t) {
86760a2c
GT
2387 list_for_each_entry(page,
2388 &zone->free_area[order].free_list[t], lru) {
f623f0db 2389 unsigned long i;
1da177e4 2390
86760a2c 2391 pfn = page_to_pfn(page);
f623f0db 2392 for (i = 0; i < (1UL << order); i++)
7be98234 2393 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2394 }
b2a0ac88 2395 }
1da177e4
LT
2396 spin_unlock_irqrestore(&zone->lock, flags);
2397}
e2c55dc8 2398#endif /* CONFIG_PM */
1da177e4 2399
1da177e4
LT
2400/*
2401 * Free a 0-order page
b745bc85 2402 * cold == true ? free a cold page : free a hot page
1da177e4 2403 */
b745bc85 2404void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2405{
2406 struct zone *zone = page_zone(page);
2407 struct per_cpu_pages *pcp;
2408 unsigned long flags;
dc4b0caf 2409 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2410 int migratetype;
1da177e4 2411
4db7548c 2412 if (!free_pcp_prepare(page))
689bcebf
HD
2413 return;
2414
dc4b0caf 2415 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2416 set_pcppage_migratetype(page, migratetype);
1da177e4 2417 local_irq_save(flags);
f8891e5e 2418 __count_vm_event(PGFREE);
da456f14 2419
5f8dcc21
MG
2420 /*
2421 * We only track unmovable, reclaimable and movable on pcp lists.
2422 * Free ISOLATE pages back to the allocator because they are being
2423 * offlined but treat RESERVE as movable pages so we can get those
2424 * areas back if necessary. Otherwise, we may have to free
2425 * excessively into the page allocator
2426 */
2427 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2428 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2429 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2430 goto out;
2431 }
2432 migratetype = MIGRATE_MOVABLE;
2433 }
2434
99dcc3e5 2435 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2436 if (!cold)
5f8dcc21 2437 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2438 else
2439 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2440 pcp->count++;
48db57f8 2441 if (pcp->count >= pcp->high) {
4db0c3c2 2442 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2443 free_pcppages_bulk(zone, batch, pcp);
2444 pcp->count -= batch;
48db57f8 2445 }
5f8dcc21
MG
2446
2447out:
1da177e4 2448 local_irq_restore(flags);
1da177e4
LT
2449}
2450
cc59850e
KK
2451/*
2452 * Free a list of 0-order pages
2453 */
b745bc85 2454void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2455{
2456 struct page *page, *next;
2457
2458 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2459 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2460 free_hot_cold_page(page, cold);
2461 }
2462}
2463
8dfcc9ba
NP
2464/*
2465 * split_page takes a non-compound higher-order page, and splits it into
2466 * n (1<<order) sub-pages: page[0..n]
2467 * Each sub-page must be freed individually.
2468 *
2469 * Note: this is probably too low level an operation for use in drivers.
2470 * Please consult with lkml before using this in your driver.
2471 */
2472void split_page(struct page *page, unsigned int order)
2473{
2474 int i;
2475
309381fe
SL
2476 VM_BUG_ON_PAGE(PageCompound(page), page);
2477 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2478
2479#ifdef CONFIG_KMEMCHECK
2480 /*
2481 * Split shadow pages too, because free(page[0]) would
2482 * otherwise free the whole shadow.
2483 */
2484 if (kmemcheck_page_is_tracked(page))
2485 split_page(virt_to_page(page[0].shadow), order);
2486#endif
2487
a9627bc5 2488 for (i = 1; i < (1 << order); i++)
7835e98b 2489 set_page_refcounted(page + i);
a9627bc5 2490 split_page_owner(page, order);
8dfcc9ba 2491}
5853ff23 2492EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2493
3c605096 2494int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2495{
748446bb
MG
2496 unsigned long watermark;
2497 struct zone *zone;
2139cbe6 2498 int mt;
748446bb
MG
2499
2500 BUG_ON(!PageBuddy(page));
2501
2502 zone = page_zone(page);
2e30abd1 2503 mt = get_pageblock_migratetype(page);
748446bb 2504
194159fb 2505 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2506 /*
2507 * Obey watermarks as if the page was being allocated. We can
2508 * emulate a high-order watermark check with a raised order-0
2509 * watermark, because we already know our high-order page
2510 * exists.
2511 */
2512 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2513 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2514 return 0;
2515
8fb74b9f 2516 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2517 }
748446bb
MG
2518
2519 /* Remove page from free list */
2520 list_del(&page->lru);
2521 zone->free_area[order].nr_free--;
2522 rmv_page_order(page);
2139cbe6 2523
400bc7fd 2524 /*
2525 * Set the pageblock if the isolated page is at least half of a
2526 * pageblock
2527 */
748446bb
MG
2528 if (order >= pageblock_order - 1) {
2529 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2530 for (; page < endpage; page += pageblock_nr_pages) {
2531 int mt = get_pageblock_migratetype(page);
194159fb 2532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2533 set_pageblock_migratetype(page,
2534 MIGRATE_MOVABLE);
2535 }
748446bb
MG
2536 }
2537
f3a14ced 2538
8fb74b9f 2539 return 1UL << order;
1fb3f8ca
MG
2540}
2541
060e7417
MG
2542/*
2543 * Update NUMA hit/miss statistics
2544 *
2545 * Must be called with interrupts disabled.
2546 *
2547 * When __GFP_OTHER_NODE is set assume the node of the preferred
2548 * zone is the local node. This is useful for daemons who allocate
2549 * memory on behalf of other processes.
2550 */
2551static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2552 gfp_t flags)
2553{
2554#ifdef CONFIG_NUMA
2555 int local_nid = numa_node_id();
2556 enum zone_stat_item local_stat = NUMA_LOCAL;
2557
2558 if (unlikely(flags & __GFP_OTHER_NODE)) {
2559 local_stat = NUMA_OTHER;
2560 local_nid = preferred_zone->node;
2561 }
2562
2563 if (z->node == local_nid) {
2564 __inc_zone_state(z, NUMA_HIT);
2565 __inc_zone_state(z, local_stat);
2566 } else {
2567 __inc_zone_state(z, NUMA_MISS);
2568 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2569 }
2570#endif
2571}
2572
1da177e4 2573/*
75379191 2574 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2575 */
0a15c3e9
MG
2576static inline
2577struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2578 struct zone *zone, unsigned int order,
c603844b
MG
2579 gfp_t gfp_flags, unsigned int alloc_flags,
2580 int migratetype)
1da177e4
LT
2581{
2582 unsigned long flags;
689bcebf 2583 struct page *page;
b745bc85 2584 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2585
48db57f8 2586 if (likely(order == 0)) {
1da177e4 2587 struct per_cpu_pages *pcp;
5f8dcc21 2588 struct list_head *list;
1da177e4 2589
1da177e4 2590 local_irq_save(flags);
479f854a
MG
2591 do {
2592 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2593 list = &pcp->lists[migratetype];
2594 if (list_empty(list)) {
2595 pcp->count += rmqueue_bulk(zone, 0,
2596 pcp->batch, list,
2597 migratetype, cold);
2598 if (unlikely(list_empty(list)))
2599 goto failed;
2600 }
b92a6edd 2601
479f854a
MG
2602 if (cold)
2603 page = list_last_entry(list, struct page, lru);
2604 else
2605 page = list_first_entry(list, struct page, lru);
5f8dcc21 2606
83b9355b
VB
2607 list_del(&page->lru);
2608 pcp->count--;
2609
2610 } while (check_new_pcp(page));
7fb1d9fc 2611 } else {
0f352e53
MH
2612 /*
2613 * We most definitely don't want callers attempting to
2614 * allocate greater than order-1 page units with __GFP_NOFAIL.
2615 */
2616 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2617 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2618
479f854a
MG
2619 do {
2620 page = NULL;
2621 if (alloc_flags & ALLOC_HARDER) {
2622 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2623 if (page)
2624 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2625 }
2626 if (!page)
2627 page = __rmqueue(zone, order, migratetype);
2628 } while (page && check_new_pages(page, order));
a74609fa
NP
2629 spin_unlock(&zone->lock);
2630 if (!page)
2631 goto failed;
d1ce749a 2632 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2633 get_pcppage_migratetype(page));
1da177e4
LT
2634 }
2635
16709d1d 2636 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2637 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2638 local_irq_restore(flags);
1da177e4 2639
309381fe 2640 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2641 return page;
a74609fa
NP
2642
2643failed:
2644 local_irq_restore(flags);
a74609fa 2645 return NULL;
1da177e4
LT
2646}
2647
933e312e
AM
2648#ifdef CONFIG_FAIL_PAGE_ALLOC
2649
b2588c4b 2650static struct {
933e312e
AM
2651 struct fault_attr attr;
2652
621a5f7a 2653 bool ignore_gfp_highmem;
71baba4b 2654 bool ignore_gfp_reclaim;
54114994 2655 u32 min_order;
933e312e
AM
2656} fail_page_alloc = {
2657 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2658 .ignore_gfp_reclaim = true,
621a5f7a 2659 .ignore_gfp_highmem = true,
54114994 2660 .min_order = 1,
933e312e
AM
2661};
2662
2663static int __init setup_fail_page_alloc(char *str)
2664{
2665 return setup_fault_attr(&fail_page_alloc.attr, str);
2666}
2667__setup("fail_page_alloc=", setup_fail_page_alloc);
2668
deaf386e 2669static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2670{
54114994 2671 if (order < fail_page_alloc.min_order)
deaf386e 2672 return false;
933e312e 2673 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2674 return false;
933e312e 2675 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2676 return false;
71baba4b
MG
2677 if (fail_page_alloc.ignore_gfp_reclaim &&
2678 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2679 return false;
933e312e
AM
2680
2681 return should_fail(&fail_page_alloc.attr, 1 << order);
2682}
2683
2684#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2685
2686static int __init fail_page_alloc_debugfs(void)
2687{
f4ae40a6 2688 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2689 struct dentry *dir;
933e312e 2690
dd48c085
AM
2691 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2692 &fail_page_alloc.attr);
2693 if (IS_ERR(dir))
2694 return PTR_ERR(dir);
933e312e 2695
b2588c4b 2696 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2697 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2698 goto fail;
2699 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2700 &fail_page_alloc.ignore_gfp_highmem))
2701 goto fail;
2702 if (!debugfs_create_u32("min-order", mode, dir,
2703 &fail_page_alloc.min_order))
2704 goto fail;
2705
2706 return 0;
2707fail:
dd48c085 2708 debugfs_remove_recursive(dir);
933e312e 2709
b2588c4b 2710 return -ENOMEM;
933e312e
AM
2711}
2712
2713late_initcall(fail_page_alloc_debugfs);
2714
2715#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2716
2717#else /* CONFIG_FAIL_PAGE_ALLOC */
2718
deaf386e 2719static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2720{
deaf386e 2721 return false;
933e312e
AM
2722}
2723
2724#endif /* CONFIG_FAIL_PAGE_ALLOC */
2725
1da177e4 2726/*
97a16fc8
MG
2727 * Return true if free base pages are above 'mark'. For high-order checks it
2728 * will return true of the order-0 watermark is reached and there is at least
2729 * one free page of a suitable size. Checking now avoids taking the zone lock
2730 * to check in the allocation paths if no pages are free.
1da177e4 2731 */
86a294a8
MH
2732bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2733 int classzone_idx, unsigned int alloc_flags,
2734 long free_pages)
1da177e4 2735{
d23ad423 2736 long min = mark;
1da177e4 2737 int o;
c603844b 2738 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2739
0aaa29a5 2740 /* free_pages may go negative - that's OK */
df0a6daa 2741 free_pages -= (1 << order) - 1;
0aaa29a5 2742
7fb1d9fc 2743 if (alloc_flags & ALLOC_HIGH)
1da177e4 2744 min -= min / 2;
0aaa29a5
MG
2745
2746 /*
2747 * If the caller does not have rights to ALLOC_HARDER then subtract
2748 * the high-atomic reserves. This will over-estimate the size of the
2749 * atomic reserve but it avoids a search.
2750 */
97a16fc8 2751 if (likely(!alloc_harder))
0aaa29a5
MG
2752 free_pages -= z->nr_reserved_highatomic;
2753 else
1da177e4 2754 min -= min / 4;
e2b19197 2755
d95ea5d1
BZ
2756#ifdef CONFIG_CMA
2757 /* If allocation can't use CMA areas don't use free CMA pages */
2758 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2759 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2760#endif
026b0814 2761
97a16fc8
MG
2762 /*
2763 * Check watermarks for an order-0 allocation request. If these
2764 * are not met, then a high-order request also cannot go ahead
2765 * even if a suitable page happened to be free.
2766 */
2767 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2768 return false;
1da177e4 2769
97a16fc8
MG
2770 /* If this is an order-0 request then the watermark is fine */
2771 if (!order)
2772 return true;
2773
2774 /* For a high-order request, check at least one suitable page is free */
2775 for (o = order; o < MAX_ORDER; o++) {
2776 struct free_area *area = &z->free_area[o];
2777 int mt;
2778
2779 if (!area->nr_free)
2780 continue;
2781
2782 if (alloc_harder)
2783 return true;
1da177e4 2784
97a16fc8
MG
2785 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2786 if (!list_empty(&area->free_list[mt]))
2787 return true;
2788 }
2789
2790#ifdef CONFIG_CMA
2791 if ((alloc_flags & ALLOC_CMA) &&
2792 !list_empty(&area->free_list[MIGRATE_CMA])) {
2793 return true;
2794 }
2795#endif
1da177e4 2796 }
97a16fc8 2797 return false;
88f5acf8
MG
2798}
2799
7aeb09f9 2800bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2801 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2802{
2803 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2804 zone_page_state(z, NR_FREE_PAGES));
2805}
2806
48ee5f36
MG
2807static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2808 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2809{
2810 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2811 long cma_pages = 0;
2812
2813#ifdef CONFIG_CMA
2814 /* If allocation can't use CMA areas don't use free CMA pages */
2815 if (!(alloc_flags & ALLOC_CMA))
2816 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2817#endif
2818
2819 /*
2820 * Fast check for order-0 only. If this fails then the reserves
2821 * need to be calculated. There is a corner case where the check
2822 * passes but only the high-order atomic reserve are free. If
2823 * the caller is !atomic then it'll uselessly search the free
2824 * list. That corner case is then slower but it is harmless.
2825 */
2826 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2827 return true;
2828
2829 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2830 free_pages);
2831}
2832
7aeb09f9 2833bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2834 unsigned long mark, int classzone_idx)
88f5acf8
MG
2835{
2836 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2837
2838 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2839 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2840
e2b19197 2841 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2842 free_pages);
1da177e4
LT
2843}
2844
9276b1bc 2845#ifdef CONFIG_NUMA
957f822a
DR
2846static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2847{
5f7a75ac
MG
2848 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2849 RECLAIM_DISTANCE;
957f822a 2850}
9276b1bc 2851#else /* CONFIG_NUMA */
957f822a
DR
2852static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2853{
2854 return true;
2855}
9276b1bc
PJ
2856#endif /* CONFIG_NUMA */
2857
7fb1d9fc 2858/*
0798e519 2859 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2860 * a page.
2861 */
2862static struct page *
a9263751
VB
2863get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2864 const struct alloc_context *ac)
753ee728 2865{
c33d6c06 2866 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2867 struct zone *zone;
3b8c0be4
MG
2868 struct pglist_data *last_pgdat_dirty_limit = NULL;
2869
7fb1d9fc 2870 /*
9276b1bc 2871 * Scan zonelist, looking for a zone with enough free.
344736f2 2872 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2873 */
c33d6c06 2874 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2875 ac->nodemask) {
be06af00 2876 struct page *page;
e085dbc5
JW
2877 unsigned long mark;
2878
664eedde
MG
2879 if (cpusets_enabled() &&
2880 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2881 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2882 continue;
a756cf59
JW
2883 /*
2884 * When allocating a page cache page for writing, we
281e3726
MG
2885 * want to get it from a node that is within its dirty
2886 * limit, such that no single node holds more than its
a756cf59 2887 * proportional share of globally allowed dirty pages.
281e3726 2888 * The dirty limits take into account the node's
a756cf59
JW
2889 * lowmem reserves and high watermark so that kswapd
2890 * should be able to balance it without having to
2891 * write pages from its LRU list.
2892 *
a756cf59 2893 * XXX: For now, allow allocations to potentially
281e3726 2894 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2895 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2896 * which is important when on a NUMA setup the allowed
281e3726 2897 * nodes are together not big enough to reach the
a756cf59 2898 * global limit. The proper fix for these situations
281e3726 2899 * will require awareness of nodes in the
a756cf59
JW
2900 * dirty-throttling and the flusher threads.
2901 */
3b8c0be4
MG
2902 if (ac->spread_dirty_pages) {
2903 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2904 continue;
2905
2906 if (!node_dirty_ok(zone->zone_pgdat)) {
2907 last_pgdat_dirty_limit = zone->zone_pgdat;
2908 continue;
2909 }
2910 }
7fb1d9fc 2911
e085dbc5 2912 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2913 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2914 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2915 int ret;
2916
5dab2911
MG
2917 /* Checked here to keep the fast path fast */
2918 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2919 if (alloc_flags & ALLOC_NO_WATERMARKS)
2920 goto try_this_zone;
2921
a5f5f91d 2922 if (node_reclaim_mode == 0 ||
c33d6c06 2923 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2924 continue;
2925
a5f5f91d 2926 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2927 switch (ret) {
a5f5f91d 2928 case NODE_RECLAIM_NOSCAN:
fa5e084e 2929 /* did not scan */
cd38b115 2930 continue;
a5f5f91d 2931 case NODE_RECLAIM_FULL:
fa5e084e 2932 /* scanned but unreclaimable */
cd38b115 2933 continue;
fa5e084e
MG
2934 default:
2935 /* did we reclaim enough */
fed2719e 2936 if (zone_watermark_ok(zone, order, mark,
93ea9964 2937 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2938 goto try_this_zone;
2939
fed2719e 2940 continue;
0798e519 2941 }
7fb1d9fc
RS
2942 }
2943
fa5e084e 2944try_this_zone:
c33d6c06 2945 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2946 gfp_mask, alloc_flags, ac->migratetype);
75379191 2947 if (page) {
479f854a 2948 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2949
2950 /*
2951 * If this is a high-order atomic allocation then check
2952 * if the pageblock should be reserved for the future
2953 */
2954 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2955 reserve_highatomic_pageblock(page, zone, order);
2956
75379191
VB
2957 return page;
2958 }
54a6eb5c 2959 }
9276b1bc 2960
4ffeaf35 2961 return NULL;
753ee728
MH
2962}
2963
29423e77
DR
2964/*
2965 * Large machines with many possible nodes should not always dump per-node
2966 * meminfo in irq context.
2967 */
2968static inline bool should_suppress_show_mem(void)
2969{
2970 bool ret = false;
2971
2972#if NODES_SHIFT > 8
2973 ret = in_interrupt();
2974#endif
2975 return ret;
2976}
2977
a238ab5b
DH
2978static DEFINE_RATELIMIT_STATE(nopage_rs,
2979 DEFAULT_RATELIMIT_INTERVAL,
2980 DEFAULT_RATELIMIT_BURST);
2981
d00181b9 2982void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2983{
a238ab5b
DH
2984 unsigned int filter = SHOW_MEM_FILTER_NODES;
2985
c0a32fc5
SG
2986 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2987 debug_guardpage_minorder() > 0)
a238ab5b
DH
2988 return;
2989
2990 /*
2991 * This documents exceptions given to allocations in certain
2992 * contexts that are allowed to allocate outside current's set
2993 * of allowed nodes.
2994 */
2995 if (!(gfp_mask & __GFP_NOMEMALLOC))
2996 if (test_thread_flag(TIF_MEMDIE) ||
2997 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2998 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2999 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3000 filter &= ~SHOW_MEM_FILTER_NODES;
3001
3002 if (fmt) {
3ee9a4f0
JP
3003 struct va_format vaf;
3004 va_list args;
3005
a238ab5b 3006 va_start(args, fmt);
3ee9a4f0
JP
3007
3008 vaf.fmt = fmt;
3009 vaf.va = &args;
3010
3011 pr_warn("%pV", &vaf);
3012
a238ab5b
DH
3013 va_end(args);
3014 }
3015
c5c990e8
VB
3016 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3017 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3018 dump_stack();
3019 if (!should_suppress_show_mem())
3020 show_mem(filter);
3021}
3022
11e33f6a
MG
3023static inline struct page *
3024__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3025 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3026{
6e0fc46d
DR
3027 struct oom_control oc = {
3028 .zonelist = ac->zonelist,
3029 .nodemask = ac->nodemask,
2a966b77 3030 .memcg = NULL,
6e0fc46d
DR
3031 .gfp_mask = gfp_mask,
3032 .order = order,
6e0fc46d 3033 };
11e33f6a
MG
3034 struct page *page;
3035
9879de73
JW
3036 *did_some_progress = 0;
3037
9879de73 3038 /*
dc56401f
JW
3039 * Acquire the oom lock. If that fails, somebody else is
3040 * making progress for us.
9879de73 3041 */
dc56401f 3042 if (!mutex_trylock(&oom_lock)) {
9879de73 3043 *did_some_progress = 1;
11e33f6a 3044 schedule_timeout_uninterruptible(1);
1da177e4
LT
3045 return NULL;
3046 }
6b1de916 3047
11e33f6a
MG
3048 /*
3049 * Go through the zonelist yet one more time, keep very high watermark
3050 * here, this is only to catch a parallel oom killing, we must fail if
3051 * we're still under heavy pressure.
3052 */
a9263751
VB
3053 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3054 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3055 if (page)
11e33f6a
MG
3056 goto out;
3057
4365a567 3058 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3059 /* Coredumps can quickly deplete all memory reserves */
3060 if (current->flags & PF_DUMPCORE)
3061 goto out;
4365a567
KH
3062 /* The OOM killer will not help higher order allocs */
3063 if (order > PAGE_ALLOC_COSTLY_ORDER)
3064 goto out;
03668b3c 3065 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3066 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3067 goto out;
9083905a
JW
3068 if (pm_suspended_storage())
3069 goto out;
3da88fb3
MH
3070 /*
3071 * XXX: GFP_NOFS allocations should rather fail than rely on
3072 * other request to make a forward progress.
3073 * We are in an unfortunate situation where out_of_memory cannot
3074 * do much for this context but let's try it to at least get
3075 * access to memory reserved if the current task is killed (see
3076 * out_of_memory). Once filesystems are ready to handle allocation
3077 * failures more gracefully we should just bail out here.
3078 */
3079
4167e9b2 3080 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3081 if (gfp_mask & __GFP_THISNODE)
3082 goto out;
3083 }
11e33f6a 3084 /* Exhausted what can be done so it's blamo time */
5020e285 3085 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3086 *did_some_progress = 1;
5020e285
MH
3087
3088 if (gfp_mask & __GFP_NOFAIL) {
3089 page = get_page_from_freelist(gfp_mask, order,
3090 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3091 /*
3092 * fallback to ignore cpuset restriction if our nodes
3093 * are depleted
3094 */
3095 if (!page)
3096 page = get_page_from_freelist(gfp_mask, order,
3097 ALLOC_NO_WATERMARKS, ac);
3098 }
3099 }
11e33f6a 3100out:
dc56401f 3101 mutex_unlock(&oom_lock);
11e33f6a
MG
3102 return page;
3103}
3104
33c2d214
MH
3105/*
3106 * Maximum number of compaction retries wit a progress before OOM
3107 * killer is consider as the only way to move forward.
3108 */
3109#define MAX_COMPACT_RETRIES 16
3110
56de7263
MG
3111#ifdef CONFIG_COMPACTION
3112/* Try memory compaction for high-order allocations before reclaim */
3113static struct page *
3114__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3115 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3116 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3117{
98dd3b48 3118 struct page *page;
53853e2d
VB
3119
3120 if (!order)
66199712 3121 return NULL;
66199712 3122
c06b1fca 3123 current->flags |= PF_MEMALLOC;
c5d01d0d 3124 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3125 prio);
c06b1fca 3126 current->flags &= ~PF_MEMALLOC;
56de7263 3127
c5d01d0d 3128 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3129 return NULL;
53853e2d 3130
98dd3b48
VB
3131 /*
3132 * At least in one zone compaction wasn't deferred or skipped, so let's
3133 * count a compaction stall
3134 */
3135 count_vm_event(COMPACTSTALL);
8fb74b9f 3136
31a6c190 3137 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3138
98dd3b48
VB
3139 if (page) {
3140 struct zone *zone = page_zone(page);
53853e2d 3141
98dd3b48
VB
3142 zone->compact_blockskip_flush = false;
3143 compaction_defer_reset(zone, order, true);
3144 count_vm_event(COMPACTSUCCESS);
3145 return page;
3146 }
56de7263 3147
98dd3b48
VB
3148 /*
3149 * It's bad if compaction run occurs and fails. The most likely reason
3150 * is that pages exist, but not enough to satisfy watermarks.
3151 */
3152 count_vm_event(COMPACTFAIL);
66199712 3153
98dd3b48 3154 cond_resched();
56de7263
MG
3155
3156 return NULL;
3157}
33c2d214 3158
3250845d
VB
3159static inline bool
3160should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3161 enum compact_result compact_result,
3162 enum compact_priority *compact_priority,
d9436498 3163 int *compaction_retries)
3250845d
VB
3164{
3165 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3166 int min_priority;
3250845d
VB
3167
3168 if (!order)
3169 return false;
3170
d9436498
VB
3171 if (compaction_made_progress(compact_result))
3172 (*compaction_retries)++;
3173
3250845d
VB
3174 /*
3175 * compaction considers all the zone as desperately out of memory
3176 * so it doesn't really make much sense to retry except when the
3177 * failure could be caused by insufficient priority
3178 */
d9436498
VB
3179 if (compaction_failed(compact_result))
3180 goto check_priority;
3250845d
VB
3181
3182 /*
3183 * make sure the compaction wasn't deferred or didn't bail out early
3184 * due to locks contention before we declare that we should give up.
3185 * But do not retry if the given zonelist is not suitable for
3186 * compaction.
3187 */
3188 if (compaction_withdrawn(compact_result))
3189 return compaction_zonelist_suitable(ac, order, alloc_flags);
3190
3191 /*
3192 * !costly requests are much more important than __GFP_REPEAT
3193 * costly ones because they are de facto nofail and invoke OOM
3194 * killer to move on while costly can fail and users are ready
3195 * to cope with that. 1/4 retries is rather arbitrary but we
3196 * would need much more detailed feedback from compaction to
3197 * make a better decision.
3198 */
3199 if (order > PAGE_ALLOC_COSTLY_ORDER)
3200 max_retries /= 4;
d9436498 3201 if (*compaction_retries <= max_retries)
3250845d
VB
3202 return true;
3203
d9436498
VB
3204 /*
3205 * Make sure there are attempts at the highest priority if we exhausted
3206 * all retries or failed at the lower priorities.
3207 */
3208check_priority:
c2033b00
VB
3209 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3210 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3211 if (*compact_priority > min_priority) {
d9436498
VB
3212 (*compact_priority)--;
3213 *compaction_retries = 0;
3214 return true;
3215 }
3250845d
VB
3216 return false;
3217}
56de7263
MG
3218#else
3219static inline struct page *
3220__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3221 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3222 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3223{
33c2d214 3224 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3225 return NULL;
3226}
33c2d214
MH
3227
3228static inline bool
86a294a8
MH
3229should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3230 enum compact_result compact_result,
a5508cd8 3231 enum compact_priority *compact_priority,
d9436498 3232 int *compaction_retries)
33c2d214 3233{
31e49bfd
MH
3234 struct zone *zone;
3235 struct zoneref *z;
3236
3237 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3238 return false;
3239
3240 /*
3241 * There are setups with compaction disabled which would prefer to loop
3242 * inside the allocator rather than hit the oom killer prematurely.
3243 * Let's give them a good hope and keep retrying while the order-0
3244 * watermarks are OK.
3245 */
3246 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3247 ac->nodemask) {
3248 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3249 ac_classzone_idx(ac), alloc_flags))
3250 return true;
3251 }
33c2d214
MH
3252 return false;
3253}
3250845d 3254#endif /* CONFIG_COMPACTION */
56de7263 3255
bba90710
MS
3256/* Perform direct synchronous page reclaim */
3257static int
a9263751
VB
3258__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3259 const struct alloc_context *ac)
11e33f6a 3260{
11e33f6a 3261 struct reclaim_state reclaim_state;
bba90710 3262 int progress;
11e33f6a
MG
3263
3264 cond_resched();
3265
3266 /* We now go into synchronous reclaim */
3267 cpuset_memory_pressure_bump();
c06b1fca 3268 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3269 lockdep_set_current_reclaim_state(gfp_mask);
3270 reclaim_state.reclaimed_slab = 0;
c06b1fca 3271 current->reclaim_state = &reclaim_state;
11e33f6a 3272
a9263751
VB
3273 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3274 ac->nodemask);
11e33f6a 3275
c06b1fca 3276 current->reclaim_state = NULL;
11e33f6a 3277 lockdep_clear_current_reclaim_state();
c06b1fca 3278 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3279
3280 cond_resched();
3281
bba90710
MS
3282 return progress;
3283}
3284
3285/* The really slow allocator path where we enter direct reclaim */
3286static inline struct page *
3287__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3288 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3289 unsigned long *did_some_progress)
bba90710
MS
3290{
3291 struct page *page = NULL;
3292 bool drained = false;
3293
a9263751 3294 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3295 if (unlikely(!(*did_some_progress)))
3296 return NULL;
11e33f6a 3297
9ee493ce 3298retry:
31a6c190 3299 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3300
3301 /*
3302 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3303 * pages are pinned on the per-cpu lists or in high alloc reserves.
3304 * Shrink them them and try again
9ee493ce
MG
3305 */
3306 if (!page && !drained) {
0aaa29a5 3307 unreserve_highatomic_pageblock(ac);
93481ff0 3308 drain_all_pages(NULL);
9ee493ce
MG
3309 drained = true;
3310 goto retry;
3311 }
3312
11e33f6a
MG
3313 return page;
3314}
3315
a9263751 3316static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3317{
3318 struct zoneref *z;
3319 struct zone *zone;
e1a55637 3320 pg_data_t *last_pgdat = NULL;
3a025760 3321
a9263751 3322 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3323 ac->high_zoneidx, ac->nodemask) {
3324 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3325 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3326 last_pgdat = zone->zone_pgdat;
3327 }
3a025760
JW
3328}
3329
c603844b 3330static inline unsigned int
341ce06f
PZ
3331gfp_to_alloc_flags(gfp_t gfp_mask)
3332{
c603844b 3333 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3334
a56f57ff 3335 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3336 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3337
341ce06f
PZ
3338 /*
3339 * The caller may dip into page reserves a bit more if the caller
3340 * cannot run direct reclaim, or if the caller has realtime scheduling
3341 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3342 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3343 */
e6223a3b 3344 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3345
d0164adc 3346 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3347 /*
b104a35d
DR
3348 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3349 * if it can't schedule.
5c3240d9 3350 */
b104a35d 3351 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3352 alloc_flags |= ALLOC_HARDER;
523b9458 3353 /*
b104a35d 3354 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3355 * comment for __cpuset_node_allowed().
523b9458 3356 */
341ce06f 3357 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3358 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3359 alloc_flags |= ALLOC_HARDER;
3360
d95ea5d1 3361#ifdef CONFIG_CMA
43e7a34d 3362 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3363 alloc_flags |= ALLOC_CMA;
3364#endif
341ce06f
PZ
3365 return alloc_flags;
3366}
3367
072bb0aa
MG
3368bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3369{
31a6c190
VB
3370 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3371 return false;
3372
3373 if (gfp_mask & __GFP_MEMALLOC)
3374 return true;
3375 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3376 return true;
3377 if (!in_interrupt() &&
3378 ((current->flags & PF_MEMALLOC) ||
3379 unlikely(test_thread_flag(TIF_MEMDIE))))
3380 return true;
3381
3382 return false;
072bb0aa
MG
3383}
3384
0a0337e0
MH
3385/*
3386 * Maximum number of reclaim retries without any progress before OOM killer
3387 * is consider as the only way to move forward.
3388 */
3389#define MAX_RECLAIM_RETRIES 16
3390
3391/*
3392 * Checks whether it makes sense to retry the reclaim to make a forward progress
3393 * for the given allocation request.
3394 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3395 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3396 * any progress in a row) is considered as well as the reclaimable pages on the
3397 * applicable zone list (with a backoff mechanism which is a function of
3398 * no_progress_loops).
0a0337e0
MH
3399 *
3400 * Returns true if a retry is viable or false to enter the oom path.
3401 */
3402static inline bool
3403should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3404 struct alloc_context *ac, int alloc_flags,
7854ea6c 3405 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3406{
3407 struct zone *zone;
3408 struct zoneref *z;
3409
3410 /*
3411 * Make sure we converge to OOM if we cannot make any progress
3412 * several times in the row.
3413 */
3414 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3415 return false;
3416
bca67592
MG
3417 /*
3418 * Keep reclaiming pages while there is a chance this will lead
3419 * somewhere. If none of the target zones can satisfy our allocation
3420 * request even if all reclaimable pages are considered then we are
3421 * screwed and have to go OOM.
0a0337e0
MH
3422 */
3423 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3424 ac->nodemask) {
3425 unsigned long available;
ede37713 3426 unsigned long reclaimable;
0a0337e0 3427
5a1c84b4 3428 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3429 available -= DIV_ROUND_UP(no_progress_loops * available,
3430 MAX_RECLAIM_RETRIES);
5a1c84b4 3431 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3432
3433 /*
3434 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3435 * available?
0a0337e0 3436 */
5a1c84b4
MG
3437 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3438 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3439 /*
3440 * If we didn't make any progress and have a lot of
3441 * dirty + writeback pages then we should wait for
3442 * an IO to complete to slow down the reclaim and
3443 * prevent from pre mature OOM
3444 */
3445 if (!did_some_progress) {
11fb9989 3446 unsigned long write_pending;
ede37713 3447
5a1c84b4
MG
3448 write_pending = zone_page_state_snapshot(zone,
3449 NR_ZONE_WRITE_PENDING);
ede37713 3450
11fb9989 3451 if (2 * write_pending > reclaimable) {
ede37713
MH
3452 congestion_wait(BLK_RW_ASYNC, HZ/10);
3453 return true;
3454 }
3455 }
5a1c84b4 3456
ede37713
MH
3457 /*
3458 * Memory allocation/reclaim might be called from a WQ
3459 * context and the current implementation of the WQ
3460 * concurrency control doesn't recognize that
3461 * a particular WQ is congested if the worker thread is
3462 * looping without ever sleeping. Therefore we have to
3463 * do a short sleep here rather than calling
3464 * cond_resched().
3465 */
3466 if (current->flags & PF_WQ_WORKER)
3467 schedule_timeout_uninterruptible(1);
3468 else
3469 cond_resched();
3470
0a0337e0
MH
3471 return true;
3472 }
3473 }
3474
3475 return false;
3476}
3477
11e33f6a
MG
3478static inline struct page *
3479__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3480 struct alloc_context *ac)
11e33f6a 3481{
d0164adc 3482 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3483 struct page *page = NULL;
c603844b 3484 unsigned int alloc_flags;
11e33f6a 3485 unsigned long did_some_progress;
a5508cd8 3486 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3487 enum compact_result compact_result;
33c2d214 3488 int compaction_retries = 0;
0a0337e0 3489 int no_progress_loops = 0;
1da177e4 3490
72807a74
MG
3491 /*
3492 * In the slowpath, we sanity check order to avoid ever trying to
3493 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3494 * be using allocators in order of preference for an area that is
3495 * too large.
3496 */
1fc28b70
MG
3497 if (order >= MAX_ORDER) {
3498 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3499 return NULL;
1fc28b70 3500 }
1da177e4 3501
d0164adc
MG
3502 /*
3503 * We also sanity check to catch abuse of atomic reserves being used by
3504 * callers that are not in atomic context.
3505 */
3506 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3507 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3508 gfp_mask &= ~__GFP_ATOMIC;
3509
9bf2229f 3510 /*
31a6c190
VB
3511 * The fast path uses conservative alloc_flags to succeed only until
3512 * kswapd needs to be woken up, and to avoid the cost of setting up
3513 * alloc_flags precisely. So we do that now.
9bf2229f 3514 */
341ce06f 3515 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3516
23771235
VB
3517 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3518 wake_all_kswapds(order, ac);
3519
3520 /*
3521 * The adjusted alloc_flags might result in immediate success, so try
3522 * that first
3523 */
3524 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3525 if (page)
3526 goto got_pg;
3527
a8161d1e
VB
3528 /*
3529 * For costly allocations, try direct compaction first, as it's likely
3530 * that we have enough base pages and don't need to reclaim. Don't try
3531 * that for allocations that are allowed to ignore watermarks, as the
3532 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3533 */
3534 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3535 !gfp_pfmemalloc_allowed(gfp_mask)) {
3536 page = __alloc_pages_direct_compact(gfp_mask, order,
3537 alloc_flags, ac,
a5508cd8 3538 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3539 &compact_result);
3540 if (page)
3541 goto got_pg;
3542
3eb2771b
VB
3543 /*
3544 * Checks for costly allocations with __GFP_NORETRY, which
3545 * includes THP page fault allocations
3546 */
3547 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3548 /*
3549 * If compaction is deferred for high-order allocations,
3550 * it is because sync compaction recently failed. If
3551 * this is the case and the caller requested a THP
3552 * allocation, we do not want to heavily disrupt the
3553 * system, so we fail the allocation instead of entering
3554 * direct reclaim.
3555 */
3556 if (compact_result == COMPACT_DEFERRED)
3557 goto nopage;
3558
a8161d1e 3559 /*
3eb2771b
VB
3560 * Looks like reclaim/compaction is worth trying, but
3561 * sync compaction could be very expensive, so keep
25160354 3562 * using async compaction.
a8161d1e 3563 */
a5508cd8 3564 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3565 }
3566 }
23771235 3567
31a6c190 3568retry:
23771235 3569 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3570 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3571 wake_all_kswapds(order, ac);
3572
23771235
VB
3573 if (gfp_pfmemalloc_allowed(gfp_mask))
3574 alloc_flags = ALLOC_NO_WATERMARKS;
3575
e46e7b77
MG
3576 /*
3577 * Reset the zonelist iterators if memory policies can be ignored.
3578 * These allocations are high priority and system rather than user
3579 * orientated.
3580 */
23771235 3581 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3582 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3583 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3584 ac->high_zoneidx, ac->nodemask);
3585 }
3586
23771235 3587 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3588 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3589 if (page)
3590 goto got_pg;
1da177e4 3591
d0164adc
MG
3592 /* Caller is not willing to reclaim, we can't balance anything */
3593 if (!can_direct_reclaim) {
aed0a0e3 3594 /*
33d53103
MH
3595 * All existing users of the __GFP_NOFAIL are blockable, so warn
3596 * of any new users that actually allow this type of allocation
3597 * to fail.
aed0a0e3
DR
3598 */
3599 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3600 goto nopage;
aed0a0e3 3601 }
1da177e4 3602
341ce06f 3603 /* Avoid recursion of direct reclaim */
33d53103
MH
3604 if (current->flags & PF_MEMALLOC) {
3605 /*
3606 * __GFP_NOFAIL request from this context is rather bizarre
3607 * because we cannot reclaim anything and only can loop waiting
3608 * for somebody to do a work for us.
3609 */
3610 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3611 cond_resched();
3612 goto retry;
3613 }
341ce06f 3614 goto nopage;
33d53103 3615 }
341ce06f 3616
6583bb64
DR
3617 /* Avoid allocations with no watermarks from looping endlessly */
3618 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3619 goto nopage;
3620
a8161d1e
VB
3621
3622 /* Try direct reclaim and then allocating */
3623 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3624 &did_some_progress);
3625 if (page)
3626 goto got_pg;
3627
3628 /* Try direct compaction and then allocating */
a9263751 3629 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3630 compact_priority, &compact_result);
56de7263
MG
3631 if (page)
3632 goto got_pg;
75f30861 3633
9083905a
JW
3634 /* Do not loop if specifically requested */
3635 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3636 goto nopage;
9083905a 3637
0a0337e0
MH
3638 /*
3639 * Do not retry costly high order allocations unless they are
3640 * __GFP_REPEAT
3641 */
3642 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3643 goto nopage;
0a0337e0 3644
7854ea6c
MH
3645 /*
3646 * Costly allocations might have made a progress but this doesn't mean
3647 * their order will become available due to high fragmentation so
3648 * always increment the no progress counter for them
3649 */
3650 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3651 no_progress_loops = 0;
7854ea6c 3652 else
0a0337e0 3653 no_progress_loops++;
1da177e4 3654
0a0337e0 3655 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3656 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3657 goto retry;
3658
33c2d214
MH
3659 /*
3660 * It doesn't make any sense to retry for the compaction if the order-0
3661 * reclaim is not able to make any progress because the current
3662 * implementation of the compaction depends on the sufficient amount
3663 * of free memory (see __compaction_suitable)
3664 */
3665 if (did_some_progress > 0 &&
86a294a8 3666 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3667 compact_result, &compact_priority,
d9436498 3668 &compaction_retries))
33c2d214
MH
3669 goto retry;
3670
9083905a
JW
3671 /* Reclaim has failed us, start killing things */
3672 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3673 if (page)
3674 goto got_pg;
3675
3676 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3677 if (did_some_progress) {
3678 no_progress_loops = 0;
9083905a 3679 goto retry;
0a0337e0 3680 }
9083905a 3681
1da177e4 3682nopage:
a238ab5b 3683 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3684got_pg:
072bb0aa 3685 return page;
1da177e4 3686}
11e33f6a
MG
3687
3688/*
3689 * This is the 'heart' of the zoned buddy allocator.
3690 */
3691struct page *
3692__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3693 struct zonelist *zonelist, nodemask_t *nodemask)
3694{
5bb1b169 3695 struct page *page;
cc9a6c87 3696 unsigned int cpuset_mems_cookie;
e6cbd7f2 3697 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3698 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3699 struct alloc_context ac = {
3700 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3701 .zonelist = zonelist,
a9263751
VB
3702 .nodemask = nodemask,
3703 .migratetype = gfpflags_to_migratetype(gfp_mask),
3704 };
11e33f6a 3705
682a3385 3706 if (cpusets_enabled()) {
83d4ca81 3707 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3708 alloc_flags |= ALLOC_CPUSET;
3709 if (!ac.nodemask)
3710 ac.nodemask = &cpuset_current_mems_allowed;
3711 }
3712
dcce284a
BH
3713 gfp_mask &= gfp_allowed_mask;
3714
11e33f6a
MG
3715 lockdep_trace_alloc(gfp_mask);
3716
d0164adc 3717 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3718
3719 if (should_fail_alloc_page(gfp_mask, order))
3720 return NULL;
3721
3722 /*
3723 * Check the zones suitable for the gfp_mask contain at least one
3724 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3725 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3726 */
3727 if (unlikely(!zonelist->_zonerefs->zone))
3728 return NULL;
3729
a9263751 3730 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3731 alloc_flags |= ALLOC_CMA;
3732
cc9a6c87 3733retry_cpuset:
d26914d1 3734 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3735
c9ab0c4f
MG
3736 /* Dirty zone balancing only done in the fast path */
3737 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3738
e46e7b77
MG
3739 /*
3740 * The preferred zone is used for statistics but crucially it is
3741 * also used as the starting point for the zonelist iterator. It
3742 * may get reset for allocations that ignore memory policies.
3743 */
c33d6c06
MG
3744 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3745 ac.high_zoneidx, ac.nodemask);
3746 if (!ac.preferred_zoneref) {
5bb1b169 3747 page = NULL;
4fcb0971 3748 goto no_zone;
5bb1b169
MG
3749 }
3750
5117f45d 3751 /* First allocation attempt */
a9263751 3752 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3753 if (likely(page))
3754 goto out;
11e33f6a 3755
4fcb0971
MG
3756 /*
3757 * Runtime PM, block IO and its error handling path can deadlock
3758 * because I/O on the device might not complete.
3759 */
3760 alloc_mask = memalloc_noio_flags(gfp_mask);
3761 ac.spread_dirty_pages = false;
23f086f9 3762
4741526b
MG
3763 /*
3764 * Restore the original nodemask if it was potentially replaced with
3765 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3766 */
3767 if (cpusets_enabled())
3768 ac.nodemask = nodemask;
4fcb0971 3769 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3770
4fcb0971 3771no_zone:
cc9a6c87
MG
3772 /*
3773 * When updating a task's mems_allowed, it is possible to race with
3774 * parallel threads in such a way that an allocation can fail while
3775 * the mask is being updated. If a page allocation is about to fail,
3776 * check if the cpuset changed during allocation and if so, retry.
3777 */
83d4ca81
MG
3778 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3779 alloc_mask = gfp_mask;
cc9a6c87 3780 goto retry_cpuset;
83d4ca81 3781 }
cc9a6c87 3782
4fcb0971 3783out:
c4159a75
VD
3784 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3785 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3786 __free_pages(page, order);
3787 page = NULL;
4949148a
VD
3788 }
3789
4fcb0971
MG
3790 if (kmemcheck_enabled && page)
3791 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3792
3793 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3794
11e33f6a 3795 return page;
1da177e4 3796}
d239171e 3797EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3798
3799/*
3800 * Common helper functions.
3801 */
920c7a5d 3802unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3803{
945a1113
AM
3804 struct page *page;
3805
3806 /*
3807 * __get_free_pages() returns a 32-bit address, which cannot represent
3808 * a highmem page
3809 */
3810 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3811
1da177e4
LT
3812 page = alloc_pages(gfp_mask, order);
3813 if (!page)
3814 return 0;
3815 return (unsigned long) page_address(page);
3816}
1da177e4
LT
3817EXPORT_SYMBOL(__get_free_pages);
3818
920c7a5d 3819unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3820{
945a1113 3821 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3822}
1da177e4
LT
3823EXPORT_SYMBOL(get_zeroed_page);
3824
920c7a5d 3825void __free_pages(struct page *page, unsigned int order)
1da177e4 3826{
b5810039 3827 if (put_page_testzero(page)) {
1da177e4 3828 if (order == 0)
b745bc85 3829 free_hot_cold_page(page, false);
1da177e4
LT
3830 else
3831 __free_pages_ok(page, order);
3832 }
3833}
3834
3835EXPORT_SYMBOL(__free_pages);
3836
920c7a5d 3837void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3838{
3839 if (addr != 0) {
725d704e 3840 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3841 __free_pages(virt_to_page((void *)addr), order);
3842 }
3843}
3844
3845EXPORT_SYMBOL(free_pages);
3846
b63ae8ca
AD
3847/*
3848 * Page Fragment:
3849 * An arbitrary-length arbitrary-offset area of memory which resides
3850 * within a 0 or higher order page. Multiple fragments within that page
3851 * are individually refcounted, in the page's reference counter.
3852 *
3853 * The page_frag functions below provide a simple allocation framework for
3854 * page fragments. This is used by the network stack and network device
3855 * drivers to provide a backing region of memory for use as either an
3856 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3857 */
3858static struct page *__page_frag_refill(struct page_frag_cache *nc,
3859 gfp_t gfp_mask)
3860{
3861 struct page *page = NULL;
3862 gfp_t gfp = gfp_mask;
3863
3864#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3865 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3866 __GFP_NOMEMALLOC;
3867 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3868 PAGE_FRAG_CACHE_MAX_ORDER);
3869 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3870#endif
3871 if (unlikely(!page))
3872 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3873
3874 nc->va = page ? page_address(page) : NULL;
3875
3876 return page;
3877}
3878
3879void *__alloc_page_frag(struct page_frag_cache *nc,
3880 unsigned int fragsz, gfp_t gfp_mask)
3881{
3882 unsigned int size = PAGE_SIZE;
3883 struct page *page;
3884 int offset;
3885
3886 if (unlikely(!nc->va)) {
3887refill:
3888 page = __page_frag_refill(nc, gfp_mask);
3889 if (!page)
3890 return NULL;
3891
3892#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3893 /* if size can vary use size else just use PAGE_SIZE */
3894 size = nc->size;
3895#endif
3896 /* Even if we own the page, we do not use atomic_set().
3897 * This would break get_page_unless_zero() users.
3898 */
fe896d18 3899 page_ref_add(page, size - 1);
b63ae8ca
AD
3900
3901 /* reset page count bias and offset to start of new frag */
2f064f34 3902 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3903 nc->pagecnt_bias = size;
3904 nc->offset = size;
3905 }
3906
3907 offset = nc->offset - fragsz;
3908 if (unlikely(offset < 0)) {
3909 page = virt_to_page(nc->va);
3910
fe896d18 3911 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3912 goto refill;
3913
3914#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3915 /* if size can vary use size else just use PAGE_SIZE */
3916 size = nc->size;
3917#endif
3918 /* OK, page count is 0, we can safely set it */
fe896d18 3919 set_page_count(page, size);
b63ae8ca
AD
3920
3921 /* reset page count bias and offset to start of new frag */
3922 nc->pagecnt_bias = size;
3923 offset = size - fragsz;
3924 }
3925
3926 nc->pagecnt_bias--;
3927 nc->offset = offset;
3928
3929 return nc->va + offset;
3930}
3931EXPORT_SYMBOL(__alloc_page_frag);
3932
3933/*
3934 * Frees a page fragment allocated out of either a compound or order 0 page.
3935 */
3936void __free_page_frag(void *addr)
3937{
3938 struct page *page = virt_to_head_page(addr);
3939
3940 if (unlikely(put_page_testzero(page)))
3941 __free_pages_ok(page, compound_order(page));
3942}
3943EXPORT_SYMBOL(__free_page_frag);
3944
d00181b9
KS
3945static void *make_alloc_exact(unsigned long addr, unsigned int order,
3946 size_t size)
ee85c2e1
AK
3947{
3948 if (addr) {
3949 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3950 unsigned long used = addr + PAGE_ALIGN(size);
3951
3952 split_page(virt_to_page((void *)addr), order);
3953 while (used < alloc_end) {
3954 free_page(used);
3955 used += PAGE_SIZE;
3956 }
3957 }
3958 return (void *)addr;
3959}
3960
2be0ffe2
TT
3961/**
3962 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3963 * @size: the number of bytes to allocate
3964 * @gfp_mask: GFP flags for the allocation
3965 *
3966 * This function is similar to alloc_pages(), except that it allocates the
3967 * minimum number of pages to satisfy the request. alloc_pages() can only
3968 * allocate memory in power-of-two pages.
3969 *
3970 * This function is also limited by MAX_ORDER.
3971 *
3972 * Memory allocated by this function must be released by free_pages_exact().
3973 */
3974void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3975{
3976 unsigned int order = get_order(size);
3977 unsigned long addr;
3978
3979 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3980 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3981}
3982EXPORT_SYMBOL(alloc_pages_exact);
3983
ee85c2e1
AK
3984/**
3985 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3986 * pages on a node.
b5e6ab58 3987 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3988 * @size: the number of bytes to allocate
3989 * @gfp_mask: GFP flags for the allocation
3990 *
3991 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3992 * back.
ee85c2e1 3993 */
e1931811 3994void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3995{
d00181b9 3996 unsigned int order = get_order(size);
ee85c2e1
AK
3997 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3998 if (!p)
3999 return NULL;
4000 return make_alloc_exact((unsigned long)page_address(p), order, size);
4001}
ee85c2e1 4002
2be0ffe2
TT
4003/**
4004 * free_pages_exact - release memory allocated via alloc_pages_exact()
4005 * @virt: the value returned by alloc_pages_exact.
4006 * @size: size of allocation, same value as passed to alloc_pages_exact().
4007 *
4008 * Release the memory allocated by a previous call to alloc_pages_exact.
4009 */
4010void free_pages_exact(void *virt, size_t size)
4011{
4012 unsigned long addr = (unsigned long)virt;
4013 unsigned long end = addr + PAGE_ALIGN(size);
4014
4015 while (addr < end) {
4016 free_page(addr);
4017 addr += PAGE_SIZE;
4018 }
4019}
4020EXPORT_SYMBOL(free_pages_exact);
4021
e0fb5815
ZY
4022/**
4023 * nr_free_zone_pages - count number of pages beyond high watermark
4024 * @offset: The zone index of the highest zone
4025 *
4026 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4027 * high watermark within all zones at or below a given zone index. For each
4028 * zone, the number of pages is calculated as:
834405c3 4029 * managed_pages - high_pages
e0fb5815 4030 */
ebec3862 4031static unsigned long nr_free_zone_pages(int offset)
1da177e4 4032{
dd1a239f 4033 struct zoneref *z;
54a6eb5c
MG
4034 struct zone *zone;
4035
e310fd43 4036 /* Just pick one node, since fallback list is circular */
ebec3862 4037 unsigned long sum = 0;
1da177e4 4038
0e88460d 4039 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4040
54a6eb5c 4041 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4042 unsigned long size = zone->managed_pages;
41858966 4043 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4044 if (size > high)
4045 sum += size - high;
1da177e4
LT
4046 }
4047
4048 return sum;
4049}
4050
e0fb5815
ZY
4051/**
4052 * nr_free_buffer_pages - count number of pages beyond high watermark
4053 *
4054 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4055 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4056 */
ebec3862 4057unsigned long nr_free_buffer_pages(void)
1da177e4 4058{
af4ca457 4059 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4060}
c2f1a551 4061EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4062
e0fb5815
ZY
4063/**
4064 * nr_free_pagecache_pages - count number of pages beyond high watermark
4065 *
4066 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4067 * high watermark within all zones.
1da177e4 4068 */
ebec3862 4069unsigned long nr_free_pagecache_pages(void)
1da177e4 4070{
2a1e274a 4071 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4072}
08e0f6a9
CL
4073
4074static inline void show_node(struct zone *zone)
1da177e4 4075{
e5adfffc 4076 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4077 printk("Node %d ", zone_to_nid(zone));
1da177e4 4078}
1da177e4 4079
d02bd27b
IR
4080long si_mem_available(void)
4081{
4082 long available;
4083 unsigned long pagecache;
4084 unsigned long wmark_low = 0;
4085 unsigned long pages[NR_LRU_LISTS];
4086 struct zone *zone;
4087 int lru;
4088
4089 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4090 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4091
4092 for_each_zone(zone)
4093 wmark_low += zone->watermark[WMARK_LOW];
4094
4095 /*
4096 * Estimate the amount of memory available for userspace allocations,
4097 * without causing swapping.
4098 */
4099 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4100
4101 /*
4102 * Not all the page cache can be freed, otherwise the system will
4103 * start swapping. Assume at least half of the page cache, or the
4104 * low watermark worth of cache, needs to stay.
4105 */
4106 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4107 pagecache -= min(pagecache / 2, wmark_low);
4108 available += pagecache;
4109
4110 /*
4111 * Part of the reclaimable slab consists of items that are in use,
4112 * and cannot be freed. Cap this estimate at the low watermark.
4113 */
4114 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4115 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4116
4117 if (available < 0)
4118 available = 0;
4119 return available;
4120}
4121EXPORT_SYMBOL_GPL(si_mem_available);
4122
1da177e4
LT
4123void si_meminfo(struct sysinfo *val)
4124{
4125 val->totalram = totalram_pages;
11fb9989 4126 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4127 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4128 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4129 val->totalhigh = totalhigh_pages;
4130 val->freehigh = nr_free_highpages();
1da177e4
LT
4131 val->mem_unit = PAGE_SIZE;
4132}
4133
4134EXPORT_SYMBOL(si_meminfo);
4135
4136#ifdef CONFIG_NUMA
4137void si_meminfo_node(struct sysinfo *val, int nid)
4138{
cdd91a77
JL
4139 int zone_type; /* needs to be signed */
4140 unsigned long managed_pages = 0;
fc2bd799
JK
4141 unsigned long managed_highpages = 0;
4142 unsigned long free_highpages = 0;
1da177e4
LT
4143 pg_data_t *pgdat = NODE_DATA(nid);
4144
cdd91a77
JL
4145 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4146 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4147 val->totalram = managed_pages;
11fb9989 4148 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4149 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4150#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4151 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4152 struct zone *zone = &pgdat->node_zones[zone_type];
4153
4154 if (is_highmem(zone)) {
4155 managed_highpages += zone->managed_pages;
4156 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4157 }
4158 }
4159 val->totalhigh = managed_highpages;
4160 val->freehigh = free_highpages;
98d2b0eb 4161#else
fc2bd799
JK
4162 val->totalhigh = managed_highpages;
4163 val->freehigh = free_highpages;
98d2b0eb 4164#endif
1da177e4
LT
4165 val->mem_unit = PAGE_SIZE;
4166}
4167#endif
4168
ddd588b5 4169/*
7bf02ea2
DR
4170 * Determine whether the node should be displayed or not, depending on whether
4171 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4172 */
7bf02ea2 4173bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4174{
4175 bool ret = false;
cc9a6c87 4176 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4177
4178 if (!(flags & SHOW_MEM_FILTER_NODES))
4179 goto out;
4180
cc9a6c87 4181 do {
d26914d1 4182 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4183 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4184 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4185out:
4186 return ret;
4187}
4188
1da177e4
LT
4189#define K(x) ((x) << (PAGE_SHIFT-10))
4190
377e4f16
RV
4191static void show_migration_types(unsigned char type)
4192{
4193 static const char types[MIGRATE_TYPES] = {
4194 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4195 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4196 [MIGRATE_RECLAIMABLE] = 'E',
4197 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4198#ifdef CONFIG_CMA
4199 [MIGRATE_CMA] = 'C',
4200#endif
194159fb 4201#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4202 [MIGRATE_ISOLATE] = 'I',
194159fb 4203#endif
377e4f16
RV
4204 };
4205 char tmp[MIGRATE_TYPES + 1];
4206 char *p = tmp;
4207 int i;
4208
4209 for (i = 0; i < MIGRATE_TYPES; i++) {
4210 if (type & (1 << i))
4211 *p++ = types[i];
4212 }
4213
4214 *p = '\0';
4215 printk("(%s) ", tmp);
4216}
4217
1da177e4
LT
4218/*
4219 * Show free area list (used inside shift_scroll-lock stuff)
4220 * We also calculate the percentage fragmentation. We do this by counting the
4221 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4222 *
4223 * Bits in @filter:
4224 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4225 * cpuset.
1da177e4 4226 */
7bf02ea2 4227void show_free_areas(unsigned int filter)
1da177e4 4228{
d1bfcdb8 4229 unsigned long free_pcp = 0;
c7241913 4230 int cpu;
1da177e4 4231 struct zone *zone;
599d0c95 4232 pg_data_t *pgdat;
1da177e4 4233
ee99c71c 4234 for_each_populated_zone(zone) {
7bf02ea2 4235 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4236 continue;
d1bfcdb8 4237
761b0677
KK
4238 for_each_online_cpu(cpu)
4239 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4240 }
4241
a731286d
KM
4242 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4243 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4244 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4245 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4246 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4247 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4248 global_node_page_state(NR_ACTIVE_ANON),
4249 global_node_page_state(NR_INACTIVE_ANON),
4250 global_node_page_state(NR_ISOLATED_ANON),
4251 global_node_page_state(NR_ACTIVE_FILE),
4252 global_node_page_state(NR_INACTIVE_FILE),
4253 global_node_page_state(NR_ISOLATED_FILE),
4254 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4255 global_node_page_state(NR_FILE_DIRTY),
4256 global_node_page_state(NR_WRITEBACK),
4257 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4258 global_page_state(NR_SLAB_RECLAIMABLE),
4259 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4260 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4261 global_node_page_state(NR_SHMEM),
a25700a5 4262 global_page_state(NR_PAGETABLE),
d1ce749a 4263 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4264 global_page_state(NR_FREE_PAGES),
4265 free_pcp,
d1ce749a 4266 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4267
599d0c95
MG
4268 for_each_online_pgdat(pgdat) {
4269 printk("Node %d"
4270 " active_anon:%lukB"
4271 " inactive_anon:%lukB"
4272 " active_file:%lukB"
4273 " inactive_file:%lukB"
4274 " unevictable:%lukB"
4275 " isolated(anon):%lukB"
4276 " isolated(file):%lukB"
50658e2e 4277 " mapped:%lukB"
11fb9989
MG
4278 " dirty:%lukB"
4279 " writeback:%lukB"
4280 " shmem:%lukB"
4281#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4282 " shmem_thp: %lukB"
4283 " shmem_pmdmapped: %lukB"
4284 " anon_thp: %lukB"
4285#endif
4286 " writeback_tmp:%lukB"
4287 " unstable:%lukB"
33e077bd 4288 " pages_scanned:%lu"
599d0c95
MG
4289 " all_unreclaimable? %s"
4290 "\n",
4291 pgdat->node_id,
4292 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4293 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4294 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4295 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4296 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4297 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4298 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4299 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4300 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4301 K(node_page_state(pgdat, NR_WRITEBACK)),
4302#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4303 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4304 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4305 * HPAGE_PMD_NR),
4306 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4307#endif
4308 K(node_page_state(pgdat, NR_SHMEM)),
4309 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4310 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4311 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4312 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4313 }
4314
ee99c71c 4315 for_each_populated_zone(zone) {
1da177e4
LT
4316 int i;
4317
7bf02ea2 4318 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4319 continue;
d1bfcdb8
KK
4320
4321 free_pcp = 0;
4322 for_each_online_cpu(cpu)
4323 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4324
1da177e4
LT
4325 show_node(zone);
4326 printk("%s"
4327 " free:%lukB"
4328 " min:%lukB"
4329 " low:%lukB"
4330 " high:%lukB"
71c799f4
MK
4331 " active_anon:%lukB"
4332 " inactive_anon:%lukB"
4333 " active_file:%lukB"
4334 " inactive_file:%lukB"
4335 " unevictable:%lukB"
5a1c84b4 4336 " writepending:%lukB"
1da177e4 4337 " present:%lukB"
9feedc9d 4338 " managed:%lukB"
4a0aa73f 4339 " mlocked:%lukB"
4a0aa73f
KM
4340 " slab_reclaimable:%lukB"
4341 " slab_unreclaimable:%lukB"
c6a7f572 4342 " kernel_stack:%lukB"
4a0aa73f 4343 " pagetables:%lukB"
4a0aa73f 4344 " bounce:%lukB"
d1bfcdb8
KK
4345 " free_pcp:%lukB"
4346 " local_pcp:%ukB"
d1ce749a 4347 " free_cma:%lukB"
1da177e4
LT
4348 "\n",
4349 zone->name,
88f5acf8 4350 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4351 K(min_wmark_pages(zone)),
4352 K(low_wmark_pages(zone)),
4353 K(high_wmark_pages(zone)),
71c799f4
MK
4354 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4355 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4356 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4357 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4358 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4359 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4360 K(zone->present_pages),
9feedc9d 4361 K(zone->managed_pages),
4a0aa73f 4362 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4363 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4364 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4365 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4366 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4367 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4368 K(free_pcp),
4369 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4370 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4371 printk("lowmem_reserve[]:");
4372 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4373 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4374 printk("\n");
4375 }
4376
ee99c71c 4377 for_each_populated_zone(zone) {
d00181b9
KS
4378 unsigned int order;
4379 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4380 unsigned char types[MAX_ORDER];
1da177e4 4381
7bf02ea2 4382 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4383 continue;
1da177e4
LT
4384 show_node(zone);
4385 printk("%s: ", zone->name);
1da177e4
LT
4386
4387 spin_lock_irqsave(&zone->lock, flags);
4388 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4389 struct free_area *area = &zone->free_area[order];
4390 int type;
4391
4392 nr[order] = area->nr_free;
8f9de51a 4393 total += nr[order] << order;
377e4f16
RV
4394
4395 types[order] = 0;
4396 for (type = 0; type < MIGRATE_TYPES; type++) {
4397 if (!list_empty(&area->free_list[type]))
4398 types[order] |= 1 << type;
4399 }
1da177e4
LT
4400 }
4401 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4402 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4403 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4404 if (nr[order])
4405 show_migration_types(types[order]);
4406 }
1da177e4
LT
4407 printk("= %lukB\n", K(total));
4408 }
4409
949f7ec5
DR
4410 hugetlb_show_meminfo();
4411
11fb9989 4412 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4413
1da177e4
LT
4414 show_swap_cache_info();
4415}
4416
19770b32
MG
4417static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4418{
4419 zoneref->zone = zone;
4420 zoneref->zone_idx = zone_idx(zone);
4421}
4422
1da177e4
LT
4423/*
4424 * Builds allocation fallback zone lists.
1a93205b
CL
4425 *
4426 * Add all populated zones of a node to the zonelist.
1da177e4 4427 */
f0c0b2b8 4428static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4429 int nr_zones)
1da177e4 4430{
1a93205b 4431 struct zone *zone;
bc732f1d 4432 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4433
4434 do {
2f6726e5 4435 zone_type--;
070f8032 4436 zone = pgdat->node_zones + zone_type;
6aa303de 4437 if (managed_zone(zone)) {
dd1a239f
MG
4438 zoneref_set_zone(zone,
4439 &zonelist->_zonerefs[nr_zones++]);
070f8032 4440 check_highest_zone(zone_type);
1da177e4 4441 }
2f6726e5 4442 } while (zone_type);
bc732f1d 4443
070f8032 4444 return nr_zones;
1da177e4
LT
4445}
4446
f0c0b2b8
KH
4447
4448/*
4449 * zonelist_order:
4450 * 0 = automatic detection of better ordering.
4451 * 1 = order by ([node] distance, -zonetype)
4452 * 2 = order by (-zonetype, [node] distance)
4453 *
4454 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4455 * the same zonelist. So only NUMA can configure this param.
4456 */
4457#define ZONELIST_ORDER_DEFAULT 0
4458#define ZONELIST_ORDER_NODE 1
4459#define ZONELIST_ORDER_ZONE 2
4460
4461/* zonelist order in the kernel.
4462 * set_zonelist_order() will set this to NODE or ZONE.
4463 */
4464static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4465static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4466
4467
1da177e4 4468#ifdef CONFIG_NUMA
f0c0b2b8
KH
4469/* The value user specified ....changed by config */
4470static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4471/* string for sysctl */
4472#define NUMA_ZONELIST_ORDER_LEN 16
4473char numa_zonelist_order[16] = "default";
4474
4475/*
4476 * interface for configure zonelist ordering.
4477 * command line option "numa_zonelist_order"
4478 * = "[dD]efault - default, automatic configuration.
4479 * = "[nN]ode - order by node locality, then by zone within node
4480 * = "[zZ]one - order by zone, then by locality within zone
4481 */
4482
4483static int __parse_numa_zonelist_order(char *s)
4484{
4485 if (*s == 'd' || *s == 'D') {
4486 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4487 } else if (*s == 'n' || *s == 'N') {
4488 user_zonelist_order = ZONELIST_ORDER_NODE;
4489 } else if (*s == 'z' || *s == 'Z') {
4490 user_zonelist_order = ZONELIST_ORDER_ZONE;
4491 } else {
1170532b 4492 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4493 return -EINVAL;
4494 }
4495 return 0;
4496}
4497
4498static __init int setup_numa_zonelist_order(char *s)
4499{
ecb256f8
VL
4500 int ret;
4501
4502 if (!s)
4503 return 0;
4504
4505 ret = __parse_numa_zonelist_order(s);
4506 if (ret == 0)
4507 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4508
4509 return ret;
f0c0b2b8
KH
4510}
4511early_param("numa_zonelist_order", setup_numa_zonelist_order);
4512
4513/*
4514 * sysctl handler for numa_zonelist_order
4515 */
cccad5b9 4516int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4517 void __user *buffer, size_t *length,
f0c0b2b8
KH
4518 loff_t *ppos)
4519{
4520 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4521 int ret;
443c6f14 4522 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4523
443c6f14 4524 mutex_lock(&zl_order_mutex);
dacbde09
CG
4525 if (write) {
4526 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4527 ret = -EINVAL;
4528 goto out;
4529 }
4530 strcpy(saved_string, (char *)table->data);
4531 }
8d65af78 4532 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4533 if (ret)
443c6f14 4534 goto out;
f0c0b2b8
KH
4535 if (write) {
4536 int oldval = user_zonelist_order;
dacbde09
CG
4537
4538 ret = __parse_numa_zonelist_order((char *)table->data);
4539 if (ret) {
f0c0b2b8
KH
4540 /*
4541 * bogus value. restore saved string
4542 */
dacbde09 4543 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4544 NUMA_ZONELIST_ORDER_LEN);
4545 user_zonelist_order = oldval;
4eaf3f64
HL
4546 } else if (oldval != user_zonelist_order) {
4547 mutex_lock(&zonelists_mutex);
9adb62a5 4548 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4549 mutex_unlock(&zonelists_mutex);
4550 }
f0c0b2b8 4551 }
443c6f14
AK
4552out:
4553 mutex_unlock(&zl_order_mutex);
4554 return ret;
f0c0b2b8
KH
4555}
4556
4557
62bc62a8 4558#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4559static int node_load[MAX_NUMNODES];
4560
1da177e4 4561/**
4dc3b16b 4562 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4563 * @node: node whose fallback list we're appending
4564 * @used_node_mask: nodemask_t of already used nodes
4565 *
4566 * We use a number of factors to determine which is the next node that should
4567 * appear on a given node's fallback list. The node should not have appeared
4568 * already in @node's fallback list, and it should be the next closest node
4569 * according to the distance array (which contains arbitrary distance values
4570 * from each node to each node in the system), and should also prefer nodes
4571 * with no CPUs, since presumably they'll have very little allocation pressure
4572 * on them otherwise.
4573 * It returns -1 if no node is found.
4574 */
f0c0b2b8 4575static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4576{
4cf808eb 4577 int n, val;
1da177e4 4578 int min_val = INT_MAX;
00ef2d2f 4579 int best_node = NUMA_NO_NODE;
a70f7302 4580 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4581
4cf808eb
LT
4582 /* Use the local node if we haven't already */
4583 if (!node_isset(node, *used_node_mask)) {
4584 node_set(node, *used_node_mask);
4585 return node;
4586 }
1da177e4 4587
4b0ef1fe 4588 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4589
4590 /* Don't want a node to appear more than once */
4591 if (node_isset(n, *used_node_mask))
4592 continue;
4593
1da177e4
LT
4594 /* Use the distance array to find the distance */
4595 val = node_distance(node, n);
4596
4cf808eb
LT
4597 /* Penalize nodes under us ("prefer the next node") */
4598 val += (n < node);
4599
1da177e4 4600 /* Give preference to headless and unused nodes */
a70f7302
RR
4601 tmp = cpumask_of_node(n);
4602 if (!cpumask_empty(tmp))
1da177e4
LT
4603 val += PENALTY_FOR_NODE_WITH_CPUS;
4604
4605 /* Slight preference for less loaded node */
4606 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4607 val += node_load[n];
4608
4609 if (val < min_val) {
4610 min_val = val;
4611 best_node = n;
4612 }
4613 }
4614
4615 if (best_node >= 0)
4616 node_set(best_node, *used_node_mask);
4617
4618 return best_node;
4619}
4620
f0c0b2b8
KH
4621
4622/*
4623 * Build zonelists ordered by node and zones within node.
4624 * This results in maximum locality--normal zone overflows into local
4625 * DMA zone, if any--but risks exhausting DMA zone.
4626 */
4627static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4628{
f0c0b2b8 4629 int j;
1da177e4 4630 struct zonelist *zonelist;
f0c0b2b8 4631
c9634cf0 4632 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4633 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4634 ;
bc732f1d 4635 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4636 zonelist->_zonerefs[j].zone = NULL;
4637 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4638}
4639
523b9458
CL
4640/*
4641 * Build gfp_thisnode zonelists
4642 */
4643static void build_thisnode_zonelists(pg_data_t *pgdat)
4644{
523b9458
CL
4645 int j;
4646 struct zonelist *zonelist;
4647
c9634cf0 4648 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4649 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4650 zonelist->_zonerefs[j].zone = NULL;
4651 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4652}
4653
f0c0b2b8
KH
4654/*
4655 * Build zonelists ordered by zone and nodes within zones.
4656 * This results in conserving DMA zone[s] until all Normal memory is
4657 * exhausted, but results in overflowing to remote node while memory
4658 * may still exist in local DMA zone.
4659 */
4660static int node_order[MAX_NUMNODES];
4661
4662static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4663{
f0c0b2b8
KH
4664 int pos, j, node;
4665 int zone_type; /* needs to be signed */
4666 struct zone *z;
4667 struct zonelist *zonelist;
4668
c9634cf0 4669 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4670 pos = 0;
4671 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4672 for (j = 0; j < nr_nodes; j++) {
4673 node = node_order[j];
4674 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4675 if (managed_zone(z)) {
dd1a239f
MG
4676 zoneref_set_zone(z,
4677 &zonelist->_zonerefs[pos++]);
54a6eb5c 4678 check_highest_zone(zone_type);
f0c0b2b8
KH
4679 }
4680 }
f0c0b2b8 4681 }
dd1a239f
MG
4682 zonelist->_zonerefs[pos].zone = NULL;
4683 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4684}
4685
3193913c
MG
4686#if defined(CONFIG_64BIT)
4687/*
4688 * Devices that require DMA32/DMA are relatively rare and do not justify a
4689 * penalty to every machine in case the specialised case applies. Default
4690 * to Node-ordering on 64-bit NUMA machines
4691 */
4692static int default_zonelist_order(void)
4693{
4694 return ZONELIST_ORDER_NODE;
4695}
4696#else
4697/*
4698 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4699 * by the kernel. If processes running on node 0 deplete the low memory zone
4700 * then reclaim will occur more frequency increasing stalls and potentially
4701 * be easier to OOM if a large percentage of the zone is under writeback or
4702 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4703 * Hence, default to zone ordering on 32-bit.
4704 */
f0c0b2b8
KH
4705static int default_zonelist_order(void)
4706{
f0c0b2b8
KH
4707 return ZONELIST_ORDER_ZONE;
4708}
3193913c 4709#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4710
4711static void set_zonelist_order(void)
4712{
4713 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4714 current_zonelist_order = default_zonelist_order();
4715 else
4716 current_zonelist_order = user_zonelist_order;
4717}
4718
4719static void build_zonelists(pg_data_t *pgdat)
4720{
c00eb15a 4721 int i, node, load;
1da177e4 4722 nodemask_t used_mask;
f0c0b2b8
KH
4723 int local_node, prev_node;
4724 struct zonelist *zonelist;
d00181b9 4725 unsigned int order = current_zonelist_order;
1da177e4
LT
4726
4727 /* initialize zonelists */
523b9458 4728 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4729 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4730 zonelist->_zonerefs[0].zone = NULL;
4731 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4732 }
4733
4734 /* NUMA-aware ordering of nodes */
4735 local_node = pgdat->node_id;
62bc62a8 4736 load = nr_online_nodes;
1da177e4
LT
4737 prev_node = local_node;
4738 nodes_clear(used_mask);
f0c0b2b8 4739
f0c0b2b8 4740 memset(node_order, 0, sizeof(node_order));
c00eb15a 4741 i = 0;
f0c0b2b8 4742
1da177e4
LT
4743 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4744 /*
4745 * We don't want to pressure a particular node.
4746 * So adding penalty to the first node in same
4747 * distance group to make it round-robin.
4748 */
957f822a
DR
4749 if (node_distance(local_node, node) !=
4750 node_distance(local_node, prev_node))
f0c0b2b8
KH
4751 node_load[node] = load;
4752
1da177e4
LT
4753 prev_node = node;
4754 load--;
f0c0b2b8
KH
4755 if (order == ZONELIST_ORDER_NODE)
4756 build_zonelists_in_node_order(pgdat, node);
4757 else
c00eb15a 4758 node_order[i++] = node; /* remember order */
f0c0b2b8 4759 }
1da177e4 4760
f0c0b2b8
KH
4761 if (order == ZONELIST_ORDER_ZONE) {
4762 /* calculate node order -- i.e., DMA last! */
c00eb15a 4763 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4764 }
523b9458
CL
4765
4766 build_thisnode_zonelists(pgdat);
1da177e4
LT
4767}
4768
7aac7898
LS
4769#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4770/*
4771 * Return node id of node used for "local" allocations.
4772 * I.e., first node id of first zone in arg node's generic zonelist.
4773 * Used for initializing percpu 'numa_mem', which is used primarily
4774 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4775 */
4776int local_memory_node(int node)
4777{
c33d6c06 4778 struct zoneref *z;
7aac7898 4779
c33d6c06 4780 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4781 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4782 NULL);
4783 return z->zone->node;
7aac7898
LS
4784}
4785#endif
f0c0b2b8 4786
6423aa81
JK
4787static void setup_min_unmapped_ratio(void);
4788static void setup_min_slab_ratio(void);
1da177e4
LT
4789#else /* CONFIG_NUMA */
4790
f0c0b2b8
KH
4791static void set_zonelist_order(void)
4792{
4793 current_zonelist_order = ZONELIST_ORDER_ZONE;
4794}
4795
4796static void build_zonelists(pg_data_t *pgdat)
1da177e4 4797{
19655d34 4798 int node, local_node;
54a6eb5c
MG
4799 enum zone_type j;
4800 struct zonelist *zonelist;
1da177e4
LT
4801
4802 local_node = pgdat->node_id;
1da177e4 4803
c9634cf0 4804 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4805 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4806
54a6eb5c
MG
4807 /*
4808 * Now we build the zonelist so that it contains the zones
4809 * of all the other nodes.
4810 * We don't want to pressure a particular node, so when
4811 * building the zones for node N, we make sure that the
4812 * zones coming right after the local ones are those from
4813 * node N+1 (modulo N)
4814 */
4815 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4816 if (!node_online(node))
4817 continue;
bc732f1d 4818 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4819 }
54a6eb5c
MG
4820 for (node = 0; node < local_node; node++) {
4821 if (!node_online(node))
4822 continue;
bc732f1d 4823 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4824 }
4825
dd1a239f
MG
4826 zonelist->_zonerefs[j].zone = NULL;
4827 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4828}
4829
4830#endif /* CONFIG_NUMA */
4831
99dcc3e5
CL
4832/*
4833 * Boot pageset table. One per cpu which is going to be used for all
4834 * zones and all nodes. The parameters will be set in such a way
4835 * that an item put on a list will immediately be handed over to
4836 * the buddy list. This is safe since pageset manipulation is done
4837 * with interrupts disabled.
4838 *
4839 * The boot_pagesets must be kept even after bootup is complete for
4840 * unused processors and/or zones. They do play a role for bootstrapping
4841 * hotplugged processors.
4842 *
4843 * zoneinfo_show() and maybe other functions do
4844 * not check if the processor is online before following the pageset pointer.
4845 * Other parts of the kernel may not check if the zone is available.
4846 */
4847static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4848static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4849static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4850
4eaf3f64
HL
4851/*
4852 * Global mutex to protect against size modification of zonelists
4853 * as well as to serialize pageset setup for the new populated zone.
4854 */
4855DEFINE_MUTEX(zonelists_mutex);
4856
9b1a4d38 4857/* return values int ....just for stop_machine() */
4ed7e022 4858static int __build_all_zonelists(void *data)
1da177e4 4859{
6811378e 4860 int nid;
99dcc3e5 4861 int cpu;
9adb62a5 4862 pg_data_t *self = data;
9276b1bc 4863
7f9cfb31
BL
4864#ifdef CONFIG_NUMA
4865 memset(node_load, 0, sizeof(node_load));
4866#endif
9adb62a5
JL
4867
4868 if (self && !node_online(self->node_id)) {
4869 build_zonelists(self);
9adb62a5
JL
4870 }
4871
9276b1bc 4872 for_each_online_node(nid) {
7ea1530a
CL
4873 pg_data_t *pgdat = NODE_DATA(nid);
4874
4875 build_zonelists(pgdat);
9276b1bc 4876 }
99dcc3e5
CL
4877
4878 /*
4879 * Initialize the boot_pagesets that are going to be used
4880 * for bootstrapping processors. The real pagesets for
4881 * each zone will be allocated later when the per cpu
4882 * allocator is available.
4883 *
4884 * boot_pagesets are used also for bootstrapping offline
4885 * cpus if the system is already booted because the pagesets
4886 * are needed to initialize allocators on a specific cpu too.
4887 * F.e. the percpu allocator needs the page allocator which
4888 * needs the percpu allocator in order to allocate its pagesets
4889 * (a chicken-egg dilemma).
4890 */
7aac7898 4891 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4892 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4893
7aac7898
LS
4894#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4895 /*
4896 * We now know the "local memory node" for each node--
4897 * i.e., the node of the first zone in the generic zonelist.
4898 * Set up numa_mem percpu variable for on-line cpus. During
4899 * boot, only the boot cpu should be on-line; we'll init the
4900 * secondary cpus' numa_mem as they come on-line. During
4901 * node/memory hotplug, we'll fixup all on-line cpus.
4902 */
4903 if (cpu_online(cpu))
4904 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4905#endif
4906 }
4907
6811378e
YG
4908 return 0;
4909}
4910
061f67bc
RV
4911static noinline void __init
4912build_all_zonelists_init(void)
4913{
4914 __build_all_zonelists(NULL);
4915 mminit_verify_zonelist();
4916 cpuset_init_current_mems_allowed();
4917}
4918
4eaf3f64
HL
4919/*
4920 * Called with zonelists_mutex held always
4921 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4922 *
4923 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4924 * [we're only called with non-NULL zone through __meminit paths] and
4925 * (2) call of __init annotated helper build_all_zonelists_init
4926 * [protected by SYSTEM_BOOTING].
4eaf3f64 4927 */
9adb62a5 4928void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4929{
f0c0b2b8
KH
4930 set_zonelist_order();
4931
6811378e 4932 if (system_state == SYSTEM_BOOTING) {
061f67bc 4933 build_all_zonelists_init();
6811378e 4934 } else {
e9959f0f 4935#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4936 if (zone)
4937 setup_zone_pageset(zone);
e9959f0f 4938#endif
dd1895e2
CS
4939 /* we have to stop all cpus to guarantee there is no user
4940 of zonelist */
9adb62a5 4941 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4942 /* cpuset refresh routine should be here */
4943 }
bd1e22b8 4944 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4945 /*
4946 * Disable grouping by mobility if the number of pages in the
4947 * system is too low to allow the mechanism to work. It would be
4948 * more accurate, but expensive to check per-zone. This check is
4949 * made on memory-hotadd so a system can start with mobility
4950 * disabled and enable it later
4951 */
d9c23400 4952 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4953 page_group_by_mobility_disabled = 1;
4954 else
4955 page_group_by_mobility_disabled = 0;
4956
756a025f
JP
4957 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4958 nr_online_nodes,
4959 zonelist_order_name[current_zonelist_order],
4960 page_group_by_mobility_disabled ? "off" : "on",
4961 vm_total_pages);
f0c0b2b8 4962#ifdef CONFIG_NUMA
f88dfff5 4963 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4964#endif
1da177e4
LT
4965}
4966
4967/*
4968 * Helper functions to size the waitqueue hash table.
4969 * Essentially these want to choose hash table sizes sufficiently
4970 * large so that collisions trying to wait on pages are rare.
4971 * But in fact, the number of active page waitqueues on typical
4972 * systems is ridiculously low, less than 200. So this is even
4973 * conservative, even though it seems large.
4974 *
4975 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4976 * waitqueues, i.e. the size of the waitq table given the number of pages.
4977 */
4978#define PAGES_PER_WAITQUEUE 256
4979
cca448fe 4980#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4981static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4982{
4983 unsigned long size = 1;
4984
4985 pages /= PAGES_PER_WAITQUEUE;
4986
4987 while (size < pages)
4988 size <<= 1;
4989
4990 /*
4991 * Once we have dozens or even hundreds of threads sleeping
4992 * on IO we've got bigger problems than wait queue collision.
4993 * Limit the size of the wait table to a reasonable size.
4994 */
4995 size = min(size, 4096UL);
4996
4997 return max(size, 4UL);
4998}
cca448fe
YG
4999#else
5000/*
5001 * A zone's size might be changed by hot-add, so it is not possible to determine
5002 * a suitable size for its wait_table. So we use the maximum size now.
5003 *
5004 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5005 *
5006 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5007 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5008 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5009 *
5010 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5011 * or more by the traditional way. (See above). It equals:
5012 *
5013 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5014 * ia64(16K page size) : = ( 8G + 4M)byte.
5015 * powerpc (64K page size) : = (32G +16M)byte.
5016 */
5017static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5018{
5019 return 4096UL;
5020}
5021#endif
1da177e4
LT
5022
5023/*
5024 * This is an integer logarithm so that shifts can be used later
5025 * to extract the more random high bits from the multiplicative
5026 * hash function before the remainder is taken.
5027 */
5028static inline unsigned long wait_table_bits(unsigned long size)
5029{
5030 return ffz(~size);
5031}
5032
1da177e4
LT
5033/*
5034 * Initially all pages are reserved - free ones are freed
5035 * up by free_all_bootmem() once the early boot process is
5036 * done. Non-atomic initialization, single-pass.
5037 */
c09b4240 5038void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5039 unsigned long start_pfn, enum memmap_context context)
1da177e4 5040{
4b94ffdc 5041 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5042 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5043 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5044 unsigned long pfn;
3a80a7fa 5045 unsigned long nr_initialised = 0;
342332e6
TI
5046#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5047 struct memblock_region *r = NULL, *tmp;
5048#endif
1da177e4 5049
22b31eec
HD
5050 if (highest_memmap_pfn < end_pfn - 1)
5051 highest_memmap_pfn = end_pfn - 1;
5052
4b94ffdc
DW
5053 /*
5054 * Honor reservation requested by the driver for this ZONE_DEVICE
5055 * memory
5056 */
5057 if (altmap && start_pfn == altmap->base_pfn)
5058 start_pfn += altmap->reserve;
5059
cbe8dd4a 5060 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5061 /*
b72d0ffb
AM
5062 * There can be holes in boot-time mem_map[]s handed to this
5063 * function. They do not exist on hotplugged memory.
a2f3aa02 5064 */
b72d0ffb
AM
5065 if (context != MEMMAP_EARLY)
5066 goto not_early;
5067
5068 if (!early_pfn_valid(pfn))
5069 continue;
5070 if (!early_pfn_in_nid(pfn, nid))
5071 continue;
5072 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5073 break;
342332e6
TI
5074
5075#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5076 /*
5077 * Check given memblock attribute by firmware which can affect
5078 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5079 * mirrored, it's an overlapped memmap init. skip it.
5080 */
5081 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5082 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5083 for_each_memblock(memory, tmp)
5084 if (pfn < memblock_region_memory_end_pfn(tmp))
5085 break;
5086 r = tmp;
5087 }
5088 if (pfn >= memblock_region_memory_base_pfn(r) &&
5089 memblock_is_mirror(r)) {
5090 /* already initialized as NORMAL */
5091 pfn = memblock_region_memory_end_pfn(r);
5092 continue;
342332e6 5093 }
a2f3aa02 5094 }
b72d0ffb 5095#endif
ac5d2539 5096
b72d0ffb 5097not_early:
ac5d2539
MG
5098 /*
5099 * Mark the block movable so that blocks are reserved for
5100 * movable at startup. This will force kernel allocations
5101 * to reserve their blocks rather than leaking throughout
5102 * the address space during boot when many long-lived
974a786e 5103 * kernel allocations are made.
ac5d2539
MG
5104 *
5105 * bitmap is created for zone's valid pfn range. but memmap
5106 * can be created for invalid pages (for alignment)
5107 * check here not to call set_pageblock_migratetype() against
5108 * pfn out of zone.
5109 */
5110 if (!(pfn & (pageblock_nr_pages - 1))) {
5111 struct page *page = pfn_to_page(pfn);
5112
5113 __init_single_page(page, pfn, zone, nid);
5114 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5115 } else {
5116 __init_single_pfn(pfn, zone, nid);
5117 }
1da177e4
LT
5118 }
5119}
5120
1e548deb 5121static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5122{
7aeb09f9 5123 unsigned int order, t;
b2a0ac88
MG
5124 for_each_migratetype_order(order, t) {
5125 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5126 zone->free_area[order].nr_free = 0;
5127 }
5128}
5129
5130#ifndef __HAVE_ARCH_MEMMAP_INIT
5131#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5132 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5133#endif
5134
7cd2b0a3 5135static int zone_batchsize(struct zone *zone)
e7c8d5c9 5136{
3a6be87f 5137#ifdef CONFIG_MMU
e7c8d5c9
CL
5138 int batch;
5139
5140 /*
5141 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5142 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5143 *
5144 * OK, so we don't know how big the cache is. So guess.
5145 */
b40da049 5146 batch = zone->managed_pages / 1024;
ba56e91c
SR
5147 if (batch * PAGE_SIZE > 512 * 1024)
5148 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5149 batch /= 4; /* We effectively *= 4 below */
5150 if (batch < 1)
5151 batch = 1;
5152
5153 /*
0ceaacc9
NP
5154 * Clamp the batch to a 2^n - 1 value. Having a power
5155 * of 2 value was found to be more likely to have
5156 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5157 *
0ceaacc9
NP
5158 * For example if 2 tasks are alternately allocating
5159 * batches of pages, one task can end up with a lot
5160 * of pages of one half of the possible page colors
5161 * and the other with pages of the other colors.
e7c8d5c9 5162 */
9155203a 5163 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5164
e7c8d5c9 5165 return batch;
3a6be87f
DH
5166
5167#else
5168 /* The deferral and batching of frees should be suppressed under NOMMU
5169 * conditions.
5170 *
5171 * The problem is that NOMMU needs to be able to allocate large chunks
5172 * of contiguous memory as there's no hardware page translation to
5173 * assemble apparent contiguous memory from discontiguous pages.
5174 *
5175 * Queueing large contiguous runs of pages for batching, however,
5176 * causes the pages to actually be freed in smaller chunks. As there
5177 * can be a significant delay between the individual batches being
5178 * recycled, this leads to the once large chunks of space being
5179 * fragmented and becoming unavailable for high-order allocations.
5180 */
5181 return 0;
5182#endif
e7c8d5c9
CL
5183}
5184
8d7a8fa9
CS
5185/*
5186 * pcp->high and pcp->batch values are related and dependent on one another:
5187 * ->batch must never be higher then ->high.
5188 * The following function updates them in a safe manner without read side
5189 * locking.
5190 *
5191 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5192 * those fields changing asynchronously (acording the the above rule).
5193 *
5194 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5195 * outside of boot time (or some other assurance that no concurrent updaters
5196 * exist).
5197 */
5198static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5199 unsigned long batch)
5200{
5201 /* start with a fail safe value for batch */
5202 pcp->batch = 1;
5203 smp_wmb();
5204
5205 /* Update high, then batch, in order */
5206 pcp->high = high;
5207 smp_wmb();
5208
5209 pcp->batch = batch;
5210}
5211
3664033c 5212/* a companion to pageset_set_high() */
4008bab7
CS
5213static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5214{
8d7a8fa9 5215 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5216}
5217
88c90dbc 5218static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5219{
5220 struct per_cpu_pages *pcp;
5f8dcc21 5221 int migratetype;
2caaad41 5222
1c6fe946
MD
5223 memset(p, 0, sizeof(*p));
5224
3dfa5721 5225 pcp = &p->pcp;
2caaad41 5226 pcp->count = 0;
5f8dcc21
MG
5227 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5228 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5229}
5230
88c90dbc
CS
5231static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5232{
5233 pageset_init(p);
5234 pageset_set_batch(p, batch);
5235}
5236
8ad4b1fb 5237/*
3664033c 5238 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5239 * to the value high for the pageset p.
5240 */
3664033c 5241static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5242 unsigned long high)
5243{
8d7a8fa9
CS
5244 unsigned long batch = max(1UL, high / 4);
5245 if ((high / 4) > (PAGE_SHIFT * 8))
5246 batch = PAGE_SHIFT * 8;
8ad4b1fb 5247
8d7a8fa9 5248 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5249}
5250
7cd2b0a3
DR
5251static void pageset_set_high_and_batch(struct zone *zone,
5252 struct per_cpu_pageset *pcp)
56cef2b8 5253{
56cef2b8 5254 if (percpu_pagelist_fraction)
3664033c 5255 pageset_set_high(pcp,
56cef2b8
CS
5256 (zone->managed_pages /
5257 percpu_pagelist_fraction));
5258 else
5259 pageset_set_batch(pcp, zone_batchsize(zone));
5260}
5261
169f6c19
CS
5262static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5263{
5264 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5265
5266 pageset_init(pcp);
5267 pageset_set_high_and_batch(zone, pcp);
5268}
5269
4ed7e022 5270static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5271{
5272 int cpu;
319774e2 5273 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5274 for_each_possible_cpu(cpu)
5275 zone_pageset_init(zone, cpu);
319774e2
WF
5276}
5277
2caaad41 5278/*
99dcc3e5
CL
5279 * Allocate per cpu pagesets and initialize them.
5280 * Before this call only boot pagesets were available.
e7c8d5c9 5281 */
99dcc3e5 5282void __init setup_per_cpu_pageset(void)
e7c8d5c9 5283{
b4911ea2 5284 struct pglist_data *pgdat;
99dcc3e5 5285 struct zone *zone;
e7c8d5c9 5286
319774e2
WF
5287 for_each_populated_zone(zone)
5288 setup_zone_pageset(zone);
b4911ea2
MG
5289
5290 for_each_online_pgdat(pgdat)
5291 pgdat->per_cpu_nodestats =
5292 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5293}
5294
bd721ea7 5295static noinline __ref
cca448fe 5296int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5297{
5298 int i;
cca448fe 5299 size_t alloc_size;
ed8ece2e
DH
5300
5301 /*
5302 * The per-page waitqueue mechanism uses hashed waitqueues
5303 * per zone.
5304 */
02b694de
YG
5305 zone->wait_table_hash_nr_entries =
5306 wait_table_hash_nr_entries(zone_size_pages);
5307 zone->wait_table_bits =
5308 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5309 alloc_size = zone->wait_table_hash_nr_entries
5310 * sizeof(wait_queue_head_t);
5311
cd94b9db 5312 if (!slab_is_available()) {
cca448fe 5313 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5314 memblock_virt_alloc_node_nopanic(
5315 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5316 } else {
5317 /*
5318 * This case means that a zone whose size was 0 gets new memory
5319 * via memory hot-add.
5320 * But it may be the case that a new node was hot-added. In
5321 * this case vmalloc() will not be able to use this new node's
5322 * memory - this wait_table must be initialized to use this new
5323 * node itself as well.
5324 * To use this new node's memory, further consideration will be
5325 * necessary.
5326 */
8691f3a7 5327 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5328 }
5329 if (!zone->wait_table)
5330 return -ENOMEM;
ed8ece2e 5331
b8af2941 5332 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5333 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5334
5335 return 0;
ed8ece2e
DH
5336}
5337
c09b4240 5338static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5339{
99dcc3e5
CL
5340 /*
5341 * per cpu subsystem is not up at this point. The following code
5342 * relies on the ability of the linker to provide the
5343 * offset of a (static) per cpu variable into the per cpu area.
5344 */
5345 zone->pageset = &boot_pageset;
ed8ece2e 5346
b38a8725 5347 if (populated_zone(zone))
99dcc3e5
CL
5348 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5349 zone->name, zone->present_pages,
5350 zone_batchsize(zone));
ed8ece2e
DH
5351}
5352
4ed7e022 5353int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5354 unsigned long zone_start_pfn,
b171e409 5355 unsigned long size)
ed8ece2e
DH
5356{
5357 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5358 int ret;
5359 ret = zone_wait_table_init(zone, size);
5360 if (ret)
5361 return ret;
ed8ece2e
DH
5362 pgdat->nr_zones = zone_idx(zone) + 1;
5363
ed8ece2e
DH
5364 zone->zone_start_pfn = zone_start_pfn;
5365
708614e6
MG
5366 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5367 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5368 pgdat->node_id,
5369 (unsigned long)zone_idx(zone),
5370 zone_start_pfn, (zone_start_pfn + size));
5371
1e548deb 5372 zone_init_free_lists(zone);
718127cc
YG
5373
5374 return 0;
ed8ece2e
DH
5375}
5376
0ee332c1 5377#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5378#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5379
c713216d
MG
5380/*
5381 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5382 */
8a942fde
MG
5383int __meminit __early_pfn_to_nid(unsigned long pfn,
5384 struct mminit_pfnnid_cache *state)
c713216d 5385{
c13291a5 5386 unsigned long start_pfn, end_pfn;
e76b63f8 5387 int nid;
7c243c71 5388
8a942fde
MG
5389 if (state->last_start <= pfn && pfn < state->last_end)
5390 return state->last_nid;
c713216d 5391
e76b63f8
YL
5392 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5393 if (nid != -1) {
8a942fde
MG
5394 state->last_start = start_pfn;
5395 state->last_end = end_pfn;
5396 state->last_nid = nid;
e76b63f8
YL
5397 }
5398
5399 return nid;
c713216d
MG
5400}
5401#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5402
c713216d 5403/**
6782832e 5404 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5405 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5406 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5407 *
7d018176
ZZ
5408 * If an architecture guarantees that all ranges registered contain no holes
5409 * and may be freed, this this function may be used instead of calling
5410 * memblock_free_early_nid() manually.
c713216d 5411 */
c13291a5 5412void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5413{
c13291a5
TH
5414 unsigned long start_pfn, end_pfn;
5415 int i, this_nid;
edbe7d23 5416
c13291a5
TH
5417 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5418 start_pfn = min(start_pfn, max_low_pfn);
5419 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5420
c13291a5 5421 if (start_pfn < end_pfn)
6782832e
SS
5422 memblock_free_early_nid(PFN_PHYS(start_pfn),
5423 (end_pfn - start_pfn) << PAGE_SHIFT,
5424 this_nid);
edbe7d23 5425 }
edbe7d23 5426}
edbe7d23 5427
c713216d
MG
5428/**
5429 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5430 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5431 *
7d018176
ZZ
5432 * If an architecture guarantees that all ranges registered contain no holes and may
5433 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5434 */
5435void __init sparse_memory_present_with_active_regions(int nid)
5436{
c13291a5
TH
5437 unsigned long start_pfn, end_pfn;
5438 int i, this_nid;
c713216d 5439
c13291a5
TH
5440 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5441 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5442}
5443
5444/**
5445 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5446 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5447 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5448 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5449 *
5450 * It returns the start and end page frame of a node based on information
7d018176 5451 * provided by memblock_set_node(). If called for a node
c713216d 5452 * with no available memory, a warning is printed and the start and end
88ca3b94 5453 * PFNs will be 0.
c713216d 5454 */
a3142c8e 5455void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5456 unsigned long *start_pfn, unsigned long *end_pfn)
5457{
c13291a5 5458 unsigned long this_start_pfn, this_end_pfn;
c713216d 5459 int i;
c13291a5 5460
c713216d
MG
5461 *start_pfn = -1UL;
5462 *end_pfn = 0;
5463
c13291a5
TH
5464 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5465 *start_pfn = min(*start_pfn, this_start_pfn);
5466 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5467 }
5468
633c0666 5469 if (*start_pfn == -1UL)
c713216d 5470 *start_pfn = 0;
c713216d
MG
5471}
5472
2a1e274a
MG
5473/*
5474 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5475 * assumption is made that zones within a node are ordered in monotonic
5476 * increasing memory addresses so that the "highest" populated zone is used
5477 */
b69a7288 5478static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5479{
5480 int zone_index;
5481 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5482 if (zone_index == ZONE_MOVABLE)
5483 continue;
5484
5485 if (arch_zone_highest_possible_pfn[zone_index] >
5486 arch_zone_lowest_possible_pfn[zone_index])
5487 break;
5488 }
5489
5490 VM_BUG_ON(zone_index == -1);
5491 movable_zone = zone_index;
5492}
5493
5494/*
5495 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5496 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5497 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5498 * in each node depending on the size of each node and how evenly kernelcore
5499 * is distributed. This helper function adjusts the zone ranges
5500 * provided by the architecture for a given node by using the end of the
5501 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5502 * zones within a node are in order of monotonic increases memory addresses
5503 */
b69a7288 5504static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5505 unsigned long zone_type,
5506 unsigned long node_start_pfn,
5507 unsigned long node_end_pfn,
5508 unsigned long *zone_start_pfn,
5509 unsigned long *zone_end_pfn)
5510{
5511 /* Only adjust if ZONE_MOVABLE is on this node */
5512 if (zone_movable_pfn[nid]) {
5513 /* Size ZONE_MOVABLE */
5514 if (zone_type == ZONE_MOVABLE) {
5515 *zone_start_pfn = zone_movable_pfn[nid];
5516 *zone_end_pfn = min(node_end_pfn,
5517 arch_zone_highest_possible_pfn[movable_zone]);
5518
e506b996
XQ
5519 /* Adjust for ZONE_MOVABLE starting within this range */
5520 } else if (!mirrored_kernelcore &&
5521 *zone_start_pfn < zone_movable_pfn[nid] &&
5522 *zone_end_pfn > zone_movable_pfn[nid]) {
5523 *zone_end_pfn = zone_movable_pfn[nid];
5524
2a1e274a
MG
5525 /* Check if this whole range is within ZONE_MOVABLE */
5526 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5527 *zone_start_pfn = *zone_end_pfn;
5528 }
5529}
5530
c713216d
MG
5531/*
5532 * Return the number of pages a zone spans in a node, including holes
5533 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5534 */
6ea6e688 5535static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5536 unsigned long zone_type,
7960aedd
ZY
5537 unsigned long node_start_pfn,
5538 unsigned long node_end_pfn,
d91749c1
TI
5539 unsigned long *zone_start_pfn,
5540 unsigned long *zone_end_pfn,
c713216d
MG
5541 unsigned long *ignored)
5542{
b5685e92 5543 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5544 if (!node_start_pfn && !node_end_pfn)
5545 return 0;
5546
7960aedd 5547 /* Get the start and end of the zone */
d91749c1
TI
5548 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5549 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5550 adjust_zone_range_for_zone_movable(nid, zone_type,
5551 node_start_pfn, node_end_pfn,
d91749c1 5552 zone_start_pfn, zone_end_pfn);
c713216d
MG
5553
5554 /* Check that this node has pages within the zone's required range */
d91749c1 5555 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5556 return 0;
5557
5558 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5559 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5560 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5561
5562 /* Return the spanned pages */
d91749c1 5563 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5564}
5565
5566/*
5567 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5568 * then all holes in the requested range will be accounted for.
c713216d 5569 */
32996250 5570unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5571 unsigned long range_start_pfn,
5572 unsigned long range_end_pfn)
5573{
96e907d1
TH
5574 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5575 unsigned long start_pfn, end_pfn;
5576 int i;
c713216d 5577
96e907d1
TH
5578 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5579 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5580 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5581 nr_absent -= end_pfn - start_pfn;
c713216d 5582 }
96e907d1 5583 return nr_absent;
c713216d
MG
5584}
5585
5586/**
5587 * absent_pages_in_range - Return number of page frames in holes within a range
5588 * @start_pfn: The start PFN to start searching for holes
5589 * @end_pfn: The end PFN to stop searching for holes
5590 *
88ca3b94 5591 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5592 */
5593unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5594 unsigned long end_pfn)
5595{
5596 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5597}
5598
5599/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5600static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5601 unsigned long zone_type,
7960aedd
ZY
5602 unsigned long node_start_pfn,
5603 unsigned long node_end_pfn,
c713216d
MG
5604 unsigned long *ignored)
5605{
96e907d1
TH
5606 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5607 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5608 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5609 unsigned long nr_absent;
9c7cd687 5610
b5685e92 5611 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5612 if (!node_start_pfn && !node_end_pfn)
5613 return 0;
5614
96e907d1
TH
5615 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5616 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5617
2a1e274a
MG
5618 adjust_zone_range_for_zone_movable(nid, zone_type,
5619 node_start_pfn, node_end_pfn,
5620 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5621 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5622
5623 /*
5624 * ZONE_MOVABLE handling.
5625 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5626 * and vice versa.
5627 */
e506b996
XQ
5628 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5629 unsigned long start_pfn, end_pfn;
5630 struct memblock_region *r;
5631
5632 for_each_memblock(memory, r) {
5633 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5634 zone_start_pfn, zone_end_pfn);
5635 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5636 zone_start_pfn, zone_end_pfn);
5637
5638 if (zone_type == ZONE_MOVABLE &&
5639 memblock_is_mirror(r))
5640 nr_absent += end_pfn - start_pfn;
5641
5642 if (zone_type == ZONE_NORMAL &&
5643 !memblock_is_mirror(r))
5644 nr_absent += end_pfn - start_pfn;
342332e6
TI
5645 }
5646 }
5647
5648 return nr_absent;
c713216d 5649}
0e0b864e 5650
0ee332c1 5651#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5652static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5653 unsigned long zone_type,
7960aedd
ZY
5654 unsigned long node_start_pfn,
5655 unsigned long node_end_pfn,
d91749c1
TI
5656 unsigned long *zone_start_pfn,
5657 unsigned long *zone_end_pfn,
c713216d
MG
5658 unsigned long *zones_size)
5659{
d91749c1
TI
5660 unsigned int zone;
5661
5662 *zone_start_pfn = node_start_pfn;
5663 for (zone = 0; zone < zone_type; zone++)
5664 *zone_start_pfn += zones_size[zone];
5665
5666 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5667
c713216d
MG
5668 return zones_size[zone_type];
5669}
5670
6ea6e688 5671static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5672 unsigned long zone_type,
7960aedd
ZY
5673 unsigned long node_start_pfn,
5674 unsigned long node_end_pfn,
c713216d
MG
5675 unsigned long *zholes_size)
5676{
5677 if (!zholes_size)
5678 return 0;
5679
5680 return zholes_size[zone_type];
5681}
20e6926d 5682
0ee332c1 5683#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5684
a3142c8e 5685static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5686 unsigned long node_start_pfn,
5687 unsigned long node_end_pfn,
5688 unsigned long *zones_size,
5689 unsigned long *zholes_size)
c713216d 5690{
febd5949 5691 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5692 enum zone_type i;
5693
febd5949
GZ
5694 for (i = 0; i < MAX_NR_ZONES; i++) {
5695 struct zone *zone = pgdat->node_zones + i;
d91749c1 5696 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5697 unsigned long size, real_size;
c713216d 5698
febd5949
GZ
5699 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5700 node_start_pfn,
5701 node_end_pfn,
d91749c1
TI
5702 &zone_start_pfn,
5703 &zone_end_pfn,
febd5949
GZ
5704 zones_size);
5705 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5706 node_start_pfn, node_end_pfn,
5707 zholes_size);
d91749c1
TI
5708 if (size)
5709 zone->zone_start_pfn = zone_start_pfn;
5710 else
5711 zone->zone_start_pfn = 0;
febd5949
GZ
5712 zone->spanned_pages = size;
5713 zone->present_pages = real_size;
5714
5715 totalpages += size;
5716 realtotalpages += real_size;
5717 }
5718
5719 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5720 pgdat->node_present_pages = realtotalpages;
5721 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5722 realtotalpages);
5723}
5724
835c134e
MG
5725#ifndef CONFIG_SPARSEMEM
5726/*
5727 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5728 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5729 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5730 * round what is now in bits to nearest long in bits, then return it in
5731 * bytes.
5732 */
7c45512d 5733static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5734{
5735 unsigned long usemapsize;
5736
7c45512d 5737 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5738 usemapsize = roundup(zonesize, pageblock_nr_pages);
5739 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5740 usemapsize *= NR_PAGEBLOCK_BITS;
5741 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5742
5743 return usemapsize / 8;
5744}
5745
5746static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5747 struct zone *zone,
5748 unsigned long zone_start_pfn,
5749 unsigned long zonesize)
835c134e 5750{
7c45512d 5751 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5752 zone->pageblock_flags = NULL;
58a01a45 5753 if (usemapsize)
6782832e
SS
5754 zone->pageblock_flags =
5755 memblock_virt_alloc_node_nopanic(usemapsize,
5756 pgdat->node_id);
835c134e
MG
5757}
5758#else
7c45512d
LT
5759static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5760 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5761#endif /* CONFIG_SPARSEMEM */
5762
d9c23400 5763#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5764
d9c23400 5765/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5766void __paginginit set_pageblock_order(void)
d9c23400 5767{
955c1cd7
AM
5768 unsigned int order;
5769
d9c23400
MG
5770 /* Check that pageblock_nr_pages has not already been setup */
5771 if (pageblock_order)
5772 return;
5773
955c1cd7
AM
5774 if (HPAGE_SHIFT > PAGE_SHIFT)
5775 order = HUGETLB_PAGE_ORDER;
5776 else
5777 order = MAX_ORDER - 1;
5778
d9c23400
MG
5779 /*
5780 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5781 * This value may be variable depending on boot parameters on IA64 and
5782 * powerpc.
d9c23400
MG
5783 */
5784 pageblock_order = order;
5785}
5786#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5787
ba72cb8c
MG
5788/*
5789 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5790 * is unused as pageblock_order is set at compile-time. See
5791 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5792 * the kernel config
ba72cb8c 5793 */
15ca220e 5794void __paginginit set_pageblock_order(void)
ba72cb8c 5795{
ba72cb8c 5796}
d9c23400
MG
5797
5798#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5799
01cefaef
JL
5800static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5801 unsigned long present_pages)
5802{
5803 unsigned long pages = spanned_pages;
5804
5805 /*
5806 * Provide a more accurate estimation if there are holes within
5807 * the zone and SPARSEMEM is in use. If there are holes within the
5808 * zone, each populated memory region may cost us one or two extra
5809 * memmap pages due to alignment because memmap pages for each
5810 * populated regions may not naturally algined on page boundary.
5811 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5812 */
5813 if (spanned_pages > present_pages + (present_pages >> 4) &&
5814 IS_ENABLED(CONFIG_SPARSEMEM))
5815 pages = present_pages;
5816
5817 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5818}
5819
1da177e4
LT
5820/*
5821 * Set up the zone data structures:
5822 * - mark all pages reserved
5823 * - mark all memory queues empty
5824 * - clear the memory bitmaps
6527af5d
MK
5825 *
5826 * NOTE: pgdat should get zeroed by caller.
1da177e4 5827 */
7f3eb55b 5828static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5829{
2f1b6248 5830 enum zone_type j;
ed8ece2e 5831 int nid = pgdat->node_id;
718127cc 5832 int ret;
1da177e4 5833
208d54e5 5834 pgdat_resize_init(pgdat);
8177a420
AA
5835#ifdef CONFIG_NUMA_BALANCING
5836 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5837 pgdat->numabalancing_migrate_nr_pages = 0;
5838 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5839#endif
5840#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5841 spin_lock_init(&pgdat->split_queue_lock);
5842 INIT_LIST_HEAD(&pgdat->split_queue);
5843 pgdat->split_queue_len = 0;
8177a420 5844#endif
1da177e4 5845 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5846 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5847#ifdef CONFIG_COMPACTION
5848 init_waitqueue_head(&pgdat->kcompactd_wait);
5849#endif
eefa864b 5850 pgdat_page_ext_init(pgdat);
a52633d8 5851 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5852 lruvec_init(node_lruvec(pgdat));
5f63b720 5853
1da177e4
LT
5854 for (j = 0; j < MAX_NR_ZONES; j++) {
5855 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5856 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5857 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5858
febd5949
GZ
5859 size = zone->spanned_pages;
5860 realsize = freesize = zone->present_pages;
1da177e4 5861
0e0b864e 5862 /*
9feedc9d 5863 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5864 * is used by this zone for memmap. This affects the watermark
5865 * and per-cpu initialisations
5866 */
01cefaef 5867 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5868 if (!is_highmem_idx(j)) {
5869 if (freesize >= memmap_pages) {
5870 freesize -= memmap_pages;
5871 if (memmap_pages)
5872 printk(KERN_DEBUG
5873 " %s zone: %lu pages used for memmap\n",
5874 zone_names[j], memmap_pages);
5875 } else
1170532b 5876 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5877 zone_names[j], memmap_pages, freesize);
5878 }
0e0b864e 5879
6267276f 5880 /* Account for reserved pages */
9feedc9d
JL
5881 if (j == 0 && freesize > dma_reserve) {
5882 freesize -= dma_reserve;
d903ef9f 5883 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5884 zone_names[0], dma_reserve);
0e0b864e
MG
5885 }
5886
98d2b0eb 5887 if (!is_highmem_idx(j))
9feedc9d 5888 nr_kernel_pages += freesize;
01cefaef
JL
5889 /* Charge for highmem memmap if there are enough kernel pages */
5890 else if (nr_kernel_pages > memmap_pages * 2)
5891 nr_kernel_pages -= memmap_pages;
9feedc9d 5892 nr_all_pages += freesize;
1da177e4 5893
9feedc9d
JL
5894 /*
5895 * Set an approximate value for lowmem here, it will be adjusted
5896 * when the bootmem allocator frees pages into the buddy system.
5897 * And all highmem pages will be managed by the buddy system.
5898 */
5899 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5900#ifdef CONFIG_NUMA
d5f541ed 5901 zone->node = nid;
9614634f 5902#endif
1da177e4 5903 zone->name = zone_names[j];
a52633d8 5904 zone->zone_pgdat = pgdat;
1da177e4 5905 spin_lock_init(&zone->lock);
bdc8cb98 5906 zone_seqlock_init(zone);
ed8ece2e 5907 zone_pcp_init(zone);
81c0a2bb 5908
1da177e4
LT
5909 if (!size)
5910 continue;
5911
955c1cd7 5912 set_pageblock_order();
7c45512d 5913 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5914 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5915 BUG_ON(ret);
76cdd58e 5916 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5917 }
5918}
5919
bd721ea7 5920static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5921{
b0aeba74 5922 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5923 unsigned long __maybe_unused offset = 0;
5924
1da177e4
LT
5925 /* Skip empty nodes */
5926 if (!pgdat->node_spanned_pages)
5927 return;
5928
d41dee36 5929#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5930 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5931 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5932 /* ia64 gets its own node_mem_map, before this, without bootmem */
5933 if (!pgdat->node_mem_map) {
b0aeba74 5934 unsigned long size, end;
d41dee36
AW
5935 struct page *map;
5936
e984bb43
BP
5937 /*
5938 * The zone's endpoints aren't required to be MAX_ORDER
5939 * aligned but the node_mem_map endpoints must be in order
5940 * for the buddy allocator to function correctly.
5941 */
108bcc96 5942 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5943 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5944 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5945 map = alloc_remap(pgdat->node_id, size);
5946 if (!map)
6782832e
SS
5947 map = memblock_virt_alloc_node_nopanic(size,
5948 pgdat->node_id);
a1c34a3b 5949 pgdat->node_mem_map = map + offset;
1da177e4 5950 }
12d810c1 5951#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5952 /*
5953 * With no DISCONTIG, the global mem_map is just set as node 0's
5954 */
c713216d 5955 if (pgdat == NODE_DATA(0)) {
1da177e4 5956 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5957#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5958 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5959 mem_map -= offset;
0ee332c1 5960#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5961 }
1da177e4 5962#endif
d41dee36 5963#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5964}
5965
9109fb7b
JW
5966void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5967 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5968{
9109fb7b 5969 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5970 unsigned long start_pfn = 0;
5971 unsigned long end_pfn = 0;
9109fb7b 5972
88fdf75d 5973 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5974 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5975
3a80a7fa 5976 reset_deferred_meminit(pgdat);
1da177e4
LT
5977 pgdat->node_id = nid;
5978 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5979 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5980#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5981 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5982 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5983 (u64)start_pfn << PAGE_SHIFT,
5984 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5985#else
5986 start_pfn = node_start_pfn;
7960aedd
ZY
5987#endif
5988 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5989 zones_size, zholes_size);
1da177e4
LT
5990
5991 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5992#ifdef CONFIG_FLAT_NODE_MEM_MAP
5993 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5994 nid, (unsigned long)pgdat,
5995 (unsigned long)pgdat->node_mem_map);
5996#endif
1da177e4 5997
7f3eb55b 5998 free_area_init_core(pgdat);
1da177e4
LT
5999}
6000
0ee332c1 6001#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6002
6003#if MAX_NUMNODES > 1
6004/*
6005 * Figure out the number of possible node ids.
6006 */
f9872caf 6007void __init setup_nr_node_ids(void)
418508c1 6008{
904a9553 6009 unsigned int highest;
418508c1 6010
904a9553 6011 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6012 nr_node_ids = highest + 1;
6013}
418508c1
MS
6014#endif
6015
1e01979c
TH
6016/**
6017 * node_map_pfn_alignment - determine the maximum internode alignment
6018 *
6019 * This function should be called after node map is populated and sorted.
6020 * It calculates the maximum power of two alignment which can distinguish
6021 * all the nodes.
6022 *
6023 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6024 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6025 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6026 * shifted, 1GiB is enough and this function will indicate so.
6027 *
6028 * This is used to test whether pfn -> nid mapping of the chosen memory
6029 * model has fine enough granularity to avoid incorrect mapping for the
6030 * populated node map.
6031 *
6032 * Returns the determined alignment in pfn's. 0 if there is no alignment
6033 * requirement (single node).
6034 */
6035unsigned long __init node_map_pfn_alignment(void)
6036{
6037 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6038 unsigned long start, end, mask;
1e01979c 6039 int last_nid = -1;
c13291a5 6040 int i, nid;
1e01979c 6041
c13291a5 6042 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6043 if (!start || last_nid < 0 || last_nid == nid) {
6044 last_nid = nid;
6045 last_end = end;
6046 continue;
6047 }
6048
6049 /*
6050 * Start with a mask granular enough to pin-point to the
6051 * start pfn and tick off bits one-by-one until it becomes
6052 * too coarse to separate the current node from the last.
6053 */
6054 mask = ~((1 << __ffs(start)) - 1);
6055 while (mask && last_end <= (start & (mask << 1)))
6056 mask <<= 1;
6057
6058 /* accumulate all internode masks */
6059 accl_mask |= mask;
6060 }
6061
6062 /* convert mask to number of pages */
6063 return ~accl_mask + 1;
6064}
6065
a6af2bc3 6066/* Find the lowest pfn for a node */
b69a7288 6067static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6068{
a6af2bc3 6069 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6070 unsigned long start_pfn;
6071 int i;
1abbfb41 6072
c13291a5
TH
6073 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6074 min_pfn = min(min_pfn, start_pfn);
c713216d 6075
a6af2bc3 6076 if (min_pfn == ULONG_MAX) {
1170532b 6077 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6078 return 0;
6079 }
6080
6081 return min_pfn;
c713216d
MG
6082}
6083
6084/**
6085 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6086 *
6087 * It returns the minimum PFN based on information provided via
7d018176 6088 * memblock_set_node().
c713216d
MG
6089 */
6090unsigned long __init find_min_pfn_with_active_regions(void)
6091{
6092 return find_min_pfn_for_node(MAX_NUMNODES);
6093}
6094
37b07e41
LS
6095/*
6096 * early_calculate_totalpages()
6097 * Sum pages in active regions for movable zone.
4b0ef1fe 6098 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6099 */
484f51f8 6100static unsigned long __init early_calculate_totalpages(void)
7e63efef 6101{
7e63efef 6102 unsigned long totalpages = 0;
c13291a5
TH
6103 unsigned long start_pfn, end_pfn;
6104 int i, nid;
6105
6106 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6107 unsigned long pages = end_pfn - start_pfn;
7e63efef 6108
37b07e41
LS
6109 totalpages += pages;
6110 if (pages)
4b0ef1fe 6111 node_set_state(nid, N_MEMORY);
37b07e41 6112 }
b8af2941 6113 return totalpages;
7e63efef
MG
6114}
6115
2a1e274a
MG
6116/*
6117 * Find the PFN the Movable zone begins in each node. Kernel memory
6118 * is spread evenly between nodes as long as the nodes have enough
6119 * memory. When they don't, some nodes will have more kernelcore than
6120 * others
6121 */
b224ef85 6122static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6123{
6124 int i, nid;
6125 unsigned long usable_startpfn;
6126 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6127 /* save the state before borrow the nodemask */
4b0ef1fe 6128 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6129 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6130 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6131 struct memblock_region *r;
b2f3eebe
TC
6132
6133 /* Need to find movable_zone earlier when movable_node is specified. */
6134 find_usable_zone_for_movable();
6135
6136 /*
6137 * If movable_node is specified, ignore kernelcore and movablecore
6138 * options.
6139 */
6140 if (movable_node_is_enabled()) {
136199f0
EM
6141 for_each_memblock(memory, r) {
6142 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6143 continue;
6144
136199f0 6145 nid = r->nid;
b2f3eebe 6146
136199f0 6147 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6148 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6149 min(usable_startpfn, zone_movable_pfn[nid]) :
6150 usable_startpfn;
6151 }
6152
6153 goto out2;
6154 }
2a1e274a 6155
342332e6
TI
6156 /*
6157 * If kernelcore=mirror is specified, ignore movablecore option
6158 */
6159 if (mirrored_kernelcore) {
6160 bool mem_below_4gb_not_mirrored = false;
6161
6162 for_each_memblock(memory, r) {
6163 if (memblock_is_mirror(r))
6164 continue;
6165
6166 nid = r->nid;
6167
6168 usable_startpfn = memblock_region_memory_base_pfn(r);
6169
6170 if (usable_startpfn < 0x100000) {
6171 mem_below_4gb_not_mirrored = true;
6172 continue;
6173 }
6174
6175 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6176 min(usable_startpfn, zone_movable_pfn[nid]) :
6177 usable_startpfn;
6178 }
6179
6180 if (mem_below_4gb_not_mirrored)
6181 pr_warn("This configuration results in unmirrored kernel memory.");
6182
6183 goto out2;
6184 }
6185
7e63efef 6186 /*
b2f3eebe 6187 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6188 * kernelcore that corresponds so that memory usable for
6189 * any allocation type is evenly spread. If both kernelcore
6190 * and movablecore are specified, then the value of kernelcore
6191 * will be used for required_kernelcore if it's greater than
6192 * what movablecore would have allowed.
6193 */
6194 if (required_movablecore) {
7e63efef
MG
6195 unsigned long corepages;
6196
6197 /*
6198 * Round-up so that ZONE_MOVABLE is at least as large as what
6199 * was requested by the user
6200 */
6201 required_movablecore =
6202 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6203 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6204 corepages = totalpages - required_movablecore;
6205
6206 required_kernelcore = max(required_kernelcore, corepages);
6207 }
6208
bde304bd
XQ
6209 /*
6210 * If kernelcore was not specified or kernelcore size is larger
6211 * than totalpages, there is no ZONE_MOVABLE.
6212 */
6213 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6214 goto out;
2a1e274a
MG
6215
6216 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6217 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6218
6219restart:
6220 /* Spread kernelcore memory as evenly as possible throughout nodes */
6221 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6222 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6223 unsigned long start_pfn, end_pfn;
6224
2a1e274a
MG
6225 /*
6226 * Recalculate kernelcore_node if the division per node
6227 * now exceeds what is necessary to satisfy the requested
6228 * amount of memory for the kernel
6229 */
6230 if (required_kernelcore < kernelcore_node)
6231 kernelcore_node = required_kernelcore / usable_nodes;
6232
6233 /*
6234 * As the map is walked, we track how much memory is usable
6235 * by the kernel using kernelcore_remaining. When it is
6236 * 0, the rest of the node is usable by ZONE_MOVABLE
6237 */
6238 kernelcore_remaining = kernelcore_node;
6239
6240 /* Go through each range of PFNs within this node */
c13291a5 6241 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6242 unsigned long size_pages;
6243
c13291a5 6244 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6245 if (start_pfn >= end_pfn)
6246 continue;
6247
6248 /* Account for what is only usable for kernelcore */
6249 if (start_pfn < usable_startpfn) {
6250 unsigned long kernel_pages;
6251 kernel_pages = min(end_pfn, usable_startpfn)
6252 - start_pfn;
6253
6254 kernelcore_remaining -= min(kernel_pages,
6255 kernelcore_remaining);
6256 required_kernelcore -= min(kernel_pages,
6257 required_kernelcore);
6258
6259 /* Continue if range is now fully accounted */
6260 if (end_pfn <= usable_startpfn) {
6261
6262 /*
6263 * Push zone_movable_pfn to the end so
6264 * that if we have to rebalance
6265 * kernelcore across nodes, we will
6266 * not double account here
6267 */
6268 zone_movable_pfn[nid] = end_pfn;
6269 continue;
6270 }
6271 start_pfn = usable_startpfn;
6272 }
6273
6274 /*
6275 * The usable PFN range for ZONE_MOVABLE is from
6276 * start_pfn->end_pfn. Calculate size_pages as the
6277 * number of pages used as kernelcore
6278 */
6279 size_pages = end_pfn - start_pfn;
6280 if (size_pages > kernelcore_remaining)
6281 size_pages = kernelcore_remaining;
6282 zone_movable_pfn[nid] = start_pfn + size_pages;
6283
6284 /*
6285 * Some kernelcore has been met, update counts and
6286 * break if the kernelcore for this node has been
b8af2941 6287 * satisfied
2a1e274a
MG
6288 */
6289 required_kernelcore -= min(required_kernelcore,
6290 size_pages);
6291 kernelcore_remaining -= size_pages;
6292 if (!kernelcore_remaining)
6293 break;
6294 }
6295 }
6296
6297 /*
6298 * If there is still required_kernelcore, we do another pass with one
6299 * less node in the count. This will push zone_movable_pfn[nid] further
6300 * along on the nodes that still have memory until kernelcore is
b8af2941 6301 * satisfied
2a1e274a
MG
6302 */
6303 usable_nodes--;
6304 if (usable_nodes && required_kernelcore > usable_nodes)
6305 goto restart;
6306
b2f3eebe 6307out2:
2a1e274a
MG
6308 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6309 for (nid = 0; nid < MAX_NUMNODES; nid++)
6310 zone_movable_pfn[nid] =
6311 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6312
20e6926d 6313out:
66918dcd 6314 /* restore the node_state */
4b0ef1fe 6315 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6316}
6317
4b0ef1fe
LJ
6318/* Any regular or high memory on that node ? */
6319static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6320{
37b07e41
LS
6321 enum zone_type zone_type;
6322
4b0ef1fe
LJ
6323 if (N_MEMORY == N_NORMAL_MEMORY)
6324 return;
6325
6326 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6327 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6328 if (populated_zone(zone)) {
4b0ef1fe
LJ
6329 node_set_state(nid, N_HIGH_MEMORY);
6330 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6331 zone_type <= ZONE_NORMAL)
6332 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6333 break;
6334 }
37b07e41 6335 }
37b07e41
LS
6336}
6337
c713216d
MG
6338/**
6339 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6340 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6341 *
6342 * This will call free_area_init_node() for each active node in the system.
7d018176 6343 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6344 * zone in each node and their holes is calculated. If the maximum PFN
6345 * between two adjacent zones match, it is assumed that the zone is empty.
6346 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6347 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6348 * starts where the previous one ended. For example, ZONE_DMA32 starts
6349 * at arch_max_dma_pfn.
6350 */
6351void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6352{
c13291a5
TH
6353 unsigned long start_pfn, end_pfn;
6354 int i, nid;
a6af2bc3 6355
c713216d
MG
6356 /* Record where the zone boundaries are */
6357 memset(arch_zone_lowest_possible_pfn, 0,
6358 sizeof(arch_zone_lowest_possible_pfn));
6359 memset(arch_zone_highest_possible_pfn, 0,
6360 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6361
6362 start_pfn = find_min_pfn_with_active_regions();
6363
6364 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6365 if (i == ZONE_MOVABLE)
6366 continue;
90cae1fe
OH
6367
6368 end_pfn = max(max_zone_pfn[i], start_pfn);
6369 arch_zone_lowest_possible_pfn[i] = start_pfn;
6370 arch_zone_highest_possible_pfn[i] = end_pfn;
6371
6372 start_pfn = end_pfn;
c713216d 6373 }
2a1e274a
MG
6374 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6375 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6376
6377 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6378 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6379 find_zone_movable_pfns_for_nodes();
c713216d 6380
c713216d 6381 /* Print out the zone ranges */
f88dfff5 6382 pr_info("Zone ranges:\n");
2a1e274a
MG
6383 for (i = 0; i < MAX_NR_ZONES; i++) {
6384 if (i == ZONE_MOVABLE)
6385 continue;
f88dfff5 6386 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6387 if (arch_zone_lowest_possible_pfn[i] ==
6388 arch_zone_highest_possible_pfn[i])
f88dfff5 6389 pr_cont("empty\n");
72f0ba02 6390 else
8d29e18a
JG
6391 pr_cont("[mem %#018Lx-%#018Lx]\n",
6392 (u64)arch_zone_lowest_possible_pfn[i]
6393 << PAGE_SHIFT,
6394 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6395 << PAGE_SHIFT) - 1);
2a1e274a
MG
6396 }
6397
6398 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6399 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6400 for (i = 0; i < MAX_NUMNODES; i++) {
6401 if (zone_movable_pfn[i])
8d29e18a
JG
6402 pr_info(" Node %d: %#018Lx\n", i,
6403 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6404 }
c713216d 6405
f2d52fe5 6406 /* Print out the early node map */
f88dfff5 6407 pr_info("Early memory node ranges\n");
c13291a5 6408 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6409 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6410 (u64)start_pfn << PAGE_SHIFT,
6411 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6412
6413 /* Initialise every node */
708614e6 6414 mminit_verify_pageflags_layout();
8ef82866 6415 setup_nr_node_ids();
c713216d
MG
6416 for_each_online_node(nid) {
6417 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6418 free_area_init_node(nid, NULL,
c713216d 6419 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6420
6421 /* Any memory on that node */
6422 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6423 node_set_state(nid, N_MEMORY);
6424 check_for_memory(pgdat, nid);
c713216d
MG
6425 }
6426}
2a1e274a 6427
7e63efef 6428static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6429{
6430 unsigned long long coremem;
6431 if (!p)
6432 return -EINVAL;
6433
6434 coremem = memparse(p, &p);
7e63efef 6435 *core = coremem >> PAGE_SHIFT;
2a1e274a 6436
7e63efef 6437 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6438 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6439
6440 return 0;
6441}
ed7ed365 6442
7e63efef
MG
6443/*
6444 * kernelcore=size sets the amount of memory for use for allocations that
6445 * cannot be reclaimed or migrated.
6446 */
6447static int __init cmdline_parse_kernelcore(char *p)
6448{
342332e6
TI
6449 /* parse kernelcore=mirror */
6450 if (parse_option_str(p, "mirror")) {
6451 mirrored_kernelcore = true;
6452 return 0;
6453 }
6454
7e63efef
MG
6455 return cmdline_parse_core(p, &required_kernelcore);
6456}
6457
6458/*
6459 * movablecore=size sets the amount of memory for use for allocations that
6460 * can be reclaimed or migrated.
6461 */
6462static int __init cmdline_parse_movablecore(char *p)
6463{
6464 return cmdline_parse_core(p, &required_movablecore);
6465}
6466
ed7ed365 6467early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6468early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6469
0ee332c1 6470#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6471
c3d5f5f0
JL
6472void adjust_managed_page_count(struct page *page, long count)
6473{
6474 spin_lock(&managed_page_count_lock);
6475 page_zone(page)->managed_pages += count;
6476 totalram_pages += count;
3dcc0571
JL
6477#ifdef CONFIG_HIGHMEM
6478 if (PageHighMem(page))
6479 totalhigh_pages += count;
6480#endif
c3d5f5f0
JL
6481 spin_unlock(&managed_page_count_lock);
6482}
3dcc0571 6483EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6484
11199692 6485unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6486{
11199692
JL
6487 void *pos;
6488 unsigned long pages = 0;
69afade7 6489
11199692
JL
6490 start = (void *)PAGE_ALIGN((unsigned long)start);
6491 end = (void *)((unsigned long)end & PAGE_MASK);
6492 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6493 if ((unsigned int)poison <= 0xFF)
11199692
JL
6494 memset(pos, poison, PAGE_SIZE);
6495 free_reserved_page(virt_to_page(pos));
69afade7
JL
6496 }
6497
6498 if (pages && s)
11199692 6499 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6500 s, pages << (PAGE_SHIFT - 10), start, end);
6501
6502 return pages;
6503}
11199692 6504EXPORT_SYMBOL(free_reserved_area);
69afade7 6505
cfa11e08
JL
6506#ifdef CONFIG_HIGHMEM
6507void free_highmem_page(struct page *page)
6508{
6509 __free_reserved_page(page);
6510 totalram_pages++;
7b4b2a0d 6511 page_zone(page)->managed_pages++;
cfa11e08
JL
6512 totalhigh_pages++;
6513}
6514#endif
6515
7ee3d4e8
JL
6516
6517void __init mem_init_print_info(const char *str)
6518{
6519 unsigned long physpages, codesize, datasize, rosize, bss_size;
6520 unsigned long init_code_size, init_data_size;
6521
6522 physpages = get_num_physpages();
6523 codesize = _etext - _stext;
6524 datasize = _edata - _sdata;
6525 rosize = __end_rodata - __start_rodata;
6526 bss_size = __bss_stop - __bss_start;
6527 init_data_size = __init_end - __init_begin;
6528 init_code_size = _einittext - _sinittext;
6529
6530 /*
6531 * Detect special cases and adjust section sizes accordingly:
6532 * 1) .init.* may be embedded into .data sections
6533 * 2) .init.text.* may be out of [__init_begin, __init_end],
6534 * please refer to arch/tile/kernel/vmlinux.lds.S.
6535 * 3) .rodata.* may be embedded into .text or .data sections.
6536 */
6537#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6538 do { \
6539 if (start <= pos && pos < end && size > adj) \
6540 size -= adj; \
6541 } while (0)
7ee3d4e8
JL
6542
6543 adj_init_size(__init_begin, __init_end, init_data_size,
6544 _sinittext, init_code_size);
6545 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6546 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6547 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6548 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6549
6550#undef adj_init_size
6551
756a025f 6552 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6553#ifdef CONFIG_HIGHMEM
756a025f 6554 ", %luK highmem"
7ee3d4e8 6555#endif
756a025f
JP
6556 "%s%s)\n",
6557 nr_free_pages() << (PAGE_SHIFT - 10),
6558 physpages << (PAGE_SHIFT - 10),
6559 codesize >> 10, datasize >> 10, rosize >> 10,
6560 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6561 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6562 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6563#ifdef CONFIG_HIGHMEM
756a025f 6564 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6565#endif
756a025f 6566 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6567}
6568
0e0b864e 6569/**
88ca3b94
RD
6570 * set_dma_reserve - set the specified number of pages reserved in the first zone
6571 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6572 *
013110a7 6573 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6574 * In the DMA zone, a significant percentage may be consumed by kernel image
6575 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6576 * function may optionally be used to account for unfreeable pages in the
6577 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6578 * smaller per-cpu batchsize.
0e0b864e
MG
6579 */
6580void __init set_dma_reserve(unsigned long new_dma_reserve)
6581{
6582 dma_reserve = new_dma_reserve;
6583}
6584
1da177e4
LT
6585void __init free_area_init(unsigned long *zones_size)
6586{
9109fb7b 6587 free_area_init_node(0, zones_size,
1da177e4
LT
6588 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6589}
1da177e4 6590
1da177e4
LT
6591static int page_alloc_cpu_notify(struct notifier_block *self,
6592 unsigned long action, void *hcpu)
6593{
6594 int cpu = (unsigned long)hcpu;
1da177e4 6595
8bb78442 6596 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6597 lru_add_drain_cpu(cpu);
9f8f2172
CL
6598 drain_pages(cpu);
6599
6600 /*
6601 * Spill the event counters of the dead processor
6602 * into the current processors event counters.
6603 * This artificially elevates the count of the current
6604 * processor.
6605 */
f8891e5e 6606 vm_events_fold_cpu(cpu);
9f8f2172
CL
6607
6608 /*
6609 * Zero the differential counters of the dead processor
6610 * so that the vm statistics are consistent.
6611 *
6612 * This is only okay since the processor is dead and cannot
6613 * race with what we are doing.
6614 */
2bb921e5 6615 cpu_vm_stats_fold(cpu);
1da177e4
LT
6616 }
6617 return NOTIFY_OK;
6618}
1da177e4
LT
6619
6620void __init page_alloc_init(void)
6621{
6622 hotcpu_notifier(page_alloc_cpu_notify, 0);
6623}
6624
cb45b0e9 6625/*
34b10060 6626 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6627 * or min_free_kbytes changes.
6628 */
6629static void calculate_totalreserve_pages(void)
6630{
6631 struct pglist_data *pgdat;
6632 unsigned long reserve_pages = 0;
2f6726e5 6633 enum zone_type i, j;
cb45b0e9
HA
6634
6635 for_each_online_pgdat(pgdat) {
281e3726
MG
6636
6637 pgdat->totalreserve_pages = 0;
6638
cb45b0e9
HA
6639 for (i = 0; i < MAX_NR_ZONES; i++) {
6640 struct zone *zone = pgdat->node_zones + i;
3484b2de 6641 long max = 0;
cb45b0e9
HA
6642
6643 /* Find valid and maximum lowmem_reserve in the zone */
6644 for (j = i; j < MAX_NR_ZONES; j++) {
6645 if (zone->lowmem_reserve[j] > max)
6646 max = zone->lowmem_reserve[j];
6647 }
6648
41858966
MG
6649 /* we treat the high watermark as reserved pages. */
6650 max += high_wmark_pages(zone);
cb45b0e9 6651
b40da049
JL
6652 if (max > zone->managed_pages)
6653 max = zone->managed_pages;
a8d01437 6654
281e3726 6655 pgdat->totalreserve_pages += max;
a8d01437 6656
cb45b0e9
HA
6657 reserve_pages += max;
6658 }
6659 }
6660 totalreserve_pages = reserve_pages;
6661}
6662
1da177e4
LT
6663/*
6664 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6665 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6666 * has a correct pages reserved value, so an adequate number of
6667 * pages are left in the zone after a successful __alloc_pages().
6668 */
6669static void setup_per_zone_lowmem_reserve(void)
6670{
6671 struct pglist_data *pgdat;
2f6726e5 6672 enum zone_type j, idx;
1da177e4 6673
ec936fc5 6674 for_each_online_pgdat(pgdat) {
1da177e4
LT
6675 for (j = 0; j < MAX_NR_ZONES; j++) {
6676 struct zone *zone = pgdat->node_zones + j;
b40da049 6677 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6678
6679 zone->lowmem_reserve[j] = 0;
6680
2f6726e5
CL
6681 idx = j;
6682 while (idx) {
1da177e4
LT
6683 struct zone *lower_zone;
6684
2f6726e5
CL
6685 idx--;
6686
1da177e4
LT
6687 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6688 sysctl_lowmem_reserve_ratio[idx] = 1;
6689
6690 lower_zone = pgdat->node_zones + idx;
b40da049 6691 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6692 sysctl_lowmem_reserve_ratio[idx];
b40da049 6693 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6694 }
6695 }
6696 }
cb45b0e9
HA
6697
6698 /* update totalreserve_pages */
6699 calculate_totalreserve_pages();
1da177e4
LT
6700}
6701
cfd3da1e 6702static void __setup_per_zone_wmarks(void)
1da177e4
LT
6703{
6704 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6705 unsigned long lowmem_pages = 0;
6706 struct zone *zone;
6707 unsigned long flags;
6708
6709 /* Calculate total number of !ZONE_HIGHMEM pages */
6710 for_each_zone(zone) {
6711 if (!is_highmem(zone))
b40da049 6712 lowmem_pages += zone->managed_pages;
1da177e4
LT
6713 }
6714
6715 for_each_zone(zone) {
ac924c60
AM
6716 u64 tmp;
6717
1125b4e3 6718 spin_lock_irqsave(&zone->lock, flags);
b40da049 6719 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6720 do_div(tmp, lowmem_pages);
1da177e4
LT
6721 if (is_highmem(zone)) {
6722 /*
669ed175
NP
6723 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6724 * need highmem pages, so cap pages_min to a small
6725 * value here.
6726 *
41858966 6727 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6728 * deltas control asynch page reclaim, and so should
669ed175 6729 * not be capped for highmem.
1da177e4 6730 */
90ae8d67 6731 unsigned long min_pages;
1da177e4 6732
b40da049 6733 min_pages = zone->managed_pages / 1024;
90ae8d67 6734 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6735 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6736 } else {
669ed175
NP
6737 /*
6738 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6739 * proportionate to the zone's size.
6740 */
41858966 6741 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6742 }
6743
795ae7a0
JW
6744 /*
6745 * Set the kswapd watermarks distance according to the
6746 * scale factor in proportion to available memory, but
6747 * ensure a minimum size on small systems.
6748 */
6749 tmp = max_t(u64, tmp >> 2,
6750 mult_frac(zone->managed_pages,
6751 watermark_scale_factor, 10000));
6752
6753 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6754 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6755
1125b4e3 6756 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6757 }
cb45b0e9
HA
6758
6759 /* update totalreserve_pages */
6760 calculate_totalreserve_pages();
1da177e4
LT
6761}
6762
cfd3da1e
MG
6763/**
6764 * setup_per_zone_wmarks - called when min_free_kbytes changes
6765 * or when memory is hot-{added|removed}
6766 *
6767 * Ensures that the watermark[min,low,high] values for each zone are set
6768 * correctly with respect to min_free_kbytes.
6769 */
6770void setup_per_zone_wmarks(void)
6771{
6772 mutex_lock(&zonelists_mutex);
6773 __setup_per_zone_wmarks();
6774 mutex_unlock(&zonelists_mutex);
6775}
6776
1da177e4
LT
6777/*
6778 * Initialise min_free_kbytes.
6779 *
6780 * For small machines we want it small (128k min). For large machines
6781 * we want it large (64MB max). But it is not linear, because network
6782 * bandwidth does not increase linearly with machine size. We use
6783 *
b8af2941 6784 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6785 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6786 *
6787 * which yields
6788 *
6789 * 16MB: 512k
6790 * 32MB: 724k
6791 * 64MB: 1024k
6792 * 128MB: 1448k
6793 * 256MB: 2048k
6794 * 512MB: 2896k
6795 * 1024MB: 4096k
6796 * 2048MB: 5792k
6797 * 4096MB: 8192k
6798 * 8192MB: 11584k
6799 * 16384MB: 16384k
6800 */
1b79acc9 6801int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6802{
6803 unsigned long lowmem_kbytes;
5f12733e 6804 int new_min_free_kbytes;
1da177e4
LT
6805
6806 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6807 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6808
6809 if (new_min_free_kbytes > user_min_free_kbytes) {
6810 min_free_kbytes = new_min_free_kbytes;
6811 if (min_free_kbytes < 128)
6812 min_free_kbytes = 128;
6813 if (min_free_kbytes > 65536)
6814 min_free_kbytes = 65536;
6815 } else {
6816 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6817 new_min_free_kbytes, user_min_free_kbytes);
6818 }
bc75d33f 6819 setup_per_zone_wmarks();
a6cccdc3 6820 refresh_zone_stat_thresholds();
1da177e4 6821 setup_per_zone_lowmem_reserve();
6423aa81
JK
6822
6823#ifdef CONFIG_NUMA
6824 setup_min_unmapped_ratio();
6825 setup_min_slab_ratio();
6826#endif
6827
1da177e4
LT
6828 return 0;
6829}
bc22af74 6830core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6831
6832/*
b8af2941 6833 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6834 * that we can call two helper functions whenever min_free_kbytes
6835 * changes.
6836 */
cccad5b9 6837int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6838 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6839{
da8c757b
HP
6840 int rc;
6841
6842 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6843 if (rc)
6844 return rc;
6845
5f12733e
MH
6846 if (write) {
6847 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6848 setup_per_zone_wmarks();
5f12733e 6849 }
1da177e4
LT
6850 return 0;
6851}
6852
795ae7a0
JW
6853int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6854 void __user *buffer, size_t *length, loff_t *ppos)
6855{
6856 int rc;
6857
6858 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6859 if (rc)
6860 return rc;
6861
6862 if (write)
6863 setup_per_zone_wmarks();
6864
6865 return 0;
6866}
6867
9614634f 6868#ifdef CONFIG_NUMA
6423aa81 6869static void setup_min_unmapped_ratio(void)
9614634f 6870{
6423aa81 6871 pg_data_t *pgdat;
9614634f 6872 struct zone *zone;
9614634f 6873
a5f5f91d 6874 for_each_online_pgdat(pgdat)
81cbcbc2 6875 pgdat->min_unmapped_pages = 0;
a5f5f91d 6876
9614634f 6877 for_each_zone(zone)
a5f5f91d 6878 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6879 sysctl_min_unmapped_ratio) / 100;
9614634f 6880}
0ff38490 6881
6423aa81
JK
6882
6883int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6884 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6885{
0ff38490
CL
6886 int rc;
6887
8d65af78 6888 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6889 if (rc)
6890 return rc;
6891
6423aa81
JK
6892 setup_min_unmapped_ratio();
6893
6894 return 0;
6895}
6896
6897static void setup_min_slab_ratio(void)
6898{
6899 pg_data_t *pgdat;
6900 struct zone *zone;
6901
a5f5f91d
MG
6902 for_each_online_pgdat(pgdat)
6903 pgdat->min_slab_pages = 0;
6904
0ff38490 6905 for_each_zone(zone)
a5f5f91d 6906 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6907 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6908}
6909
6910int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6911 void __user *buffer, size_t *length, loff_t *ppos)
6912{
6913 int rc;
6914
6915 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6916 if (rc)
6917 return rc;
6918
6919 setup_min_slab_ratio();
6920
0ff38490
CL
6921 return 0;
6922}
9614634f
CL
6923#endif
6924
1da177e4
LT
6925/*
6926 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6927 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6928 * whenever sysctl_lowmem_reserve_ratio changes.
6929 *
6930 * The reserve ratio obviously has absolutely no relation with the
41858966 6931 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6932 * if in function of the boot time zone sizes.
6933 */
cccad5b9 6934int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6935 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6936{
8d65af78 6937 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6938 setup_per_zone_lowmem_reserve();
6939 return 0;
6940}
6941
8ad4b1fb
RS
6942/*
6943 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6944 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6945 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6946 */
cccad5b9 6947int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6948 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6949{
6950 struct zone *zone;
7cd2b0a3 6951 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6952 int ret;
6953
7cd2b0a3
DR
6954 mutex_lock(&pcp_batch_high_lock);
6955 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6956
8d65af78 6957 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6958 if (!write || ret < 0)
6959 goto out;
6960
6961 /* Sanity checking to avoid pcp imbalance */
6962 if (percpu_pagelist_fraction &&
6963 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6964 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6965 ret = -EINVAL;
6966 goto out;
6967 }
6968
6969 /* No change? */
6970 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6971 goto out;
c8e251fa 6972
364df0eb 6973 for_each_populated_zone(zone) {
7cd2b0a3
DR
6974 unsigned int cpu;
6975
22a7f12b 6976 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6977 pageset_set_high_and_batch(zone,
6978 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6979 }
7cd2b0a3 6980out:
c8e251fa 6981 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6982 return ret;
8ad4b1fb
RS
6983}
6984
a9919c79 6985#ifdef CONFIG_NUMA
f034b5d4 6986int hashdist = HASHDIST_DEFAULT;
1da177e4 6987
1da177e4
LT
6988static int __init set_hashdist(char *str)
6989{
6990 if (!str)
6991 return 0;
6992 hashdist = simple_strtoul(str, &str, 0);
6993 return 1;
6994}
6995__setup("hashdist=", set_hashdist);
6996#endif
6997
f6f34b43
SD
6998#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6999/*
7000 * Returns the number of pages that arch has reserved but
7001 * is not known to alloc_large_system_hash().
7002 */
7003static unsigned long __init arch_reserved_kernel_pages(void)
7004{
7005 return 0;
7006}
7007#endif
7008
1da177e4
LT
7009/*
7010 * allocate a large system hash table from bootmem
7011 * - it is assumed that the hash table must contain an exact power-of-2
7012 * quantity of entries
7013 * - limit is the number of hash buckets, not the total allocation size
7014 */
7015void *__init alloc_large_system_hash(const char *tablename,
7016 unsigned long bucketsize,
7017 unsigned long numentries,
7018 int scale,
7019 int flags,
7020 unsigned int *_hash_shift,
7021 unsigned int *_hash_mask,
31fe62b9
TB
7022 unsigned long low_limit,
7023 unsigned long high_limit)
1da177e4 7024{
31fe62b9 7025 unsigned long long max = high_limit;
1da177e4
LT
7026 unsigned long log2qty, size;
7027 void *table = NULL;
7028
7029 /* allow the kernel cmdline to have a say */
7030 if (!numentries) {
7031 /* round applicable memory size up to nearest megabyte */
04903664 7032 numentries = nr_kernel_pages;
f6f34b43 7033 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7034
7035 /* It isn't necessary when PAGE_SIZE >= 1MB */
7036 if (PAGE_SHIFT < 20)
7037 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7038
7039 /* limit to 1 bucket per 2^scale bytes of low memory */
7040 if (scale > PAGE_SHIFT)
7041 numentries >>= (scale - PAGE_SHIFT);
7042 else
7043 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7044
7045 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7046 if (unlikely(flags & HASH_SMALL)) {
7047 /* Makes no sense without HASH_EARLY */
7048 WARN_ON(!(flags & HASH_EARLY));
7049 if (!(numentries >> *_hash_shift)) {
7050 numentries = 1UL << *_hash_shift;
7051 BUG_ON(!numentries);
7052 }
7053 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7054 numentries = PAGE_SIZE / bucketsize;
1da177e4 7055 }
6e692ed3 7056 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7057
7058 /* limit allocation size to 1/16 total memory by default */
7059 if (max == 0) {
7060 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7061 do_div(max, bucketsize);
7062 }
074b8517 7063 max = min(max, 0x80000000ULL);
1da177e4 7064
31fe62b9
TB
7065 if (numentries < low_limit)
7066 numentries = low_limit;
1da177e4
LT
7067 if (numentries > max)
7068 numentries = max;
7069
f0d1b0b3 7070 log2qty = ilog2(numentries);
1da177e4
LT
7071
7072 do {
7073 size = bucketsize << log2qty;
7074 if (flags & HASH_EARLY)
6782832e 7075 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7076 else if (hashdist)
7077 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7078 else {
1037b83b
ED
7079 /*
7080 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7081 * some pages at the end of hash table which
7082 * alloc_pages_exact() automatically does
1037b83b 7083 */
264ef8a9 7084 if (get_order(size) < MAX_ORDER) {
a1dd268c 7085 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7086 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7087 }
1da177e4
LT
7088 }
7089 } while (!table && size > PAGE_SIZE && --log2qty);
7090
7091 if (!table)
7092 panic("Failed to allocate %s hash table\n", tablename);
7093
1170532b
JP
7094 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7095 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7096
7097 if (_hash_shift)
7098 *_hash_shift = log2qty;
7099 if (_hash_mask)
7100 *_hash_mask = (1 << log2qty) - 1;
7101
7102 return table;
7103}
a117e66e 7104
a5d76b54 7105/*
80934513
MK
7106 * This function checks whether pageblock includes unmovable pages or not.
7107 * If @count is not zero, it is okay to include less @count unmovable pages
7108 *
b8af2941 7109 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7110 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7111 * expect this function should be exact.
a5d76b54 7112 */
b023f468
WC
7113bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7114 bool skip_hwpoisoned_pages)
49ac8255
KH
7115{
7116 unsigned long pfn, iter, found;
47118af0
MN
7117 int mt;
7118
49ac8255
KH
7119 /*
7120 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7121 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7122 */
7123 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7124 return false;
47118af0
MN
7125 mt = get_pageblock_migratetype(page);
7126 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7127 return false;
49ac8255
KH
7128
7129 pfn = page_to_pfn(page);
7130 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7131 unsigned long check = pfn + iter;
7132
29723fcc 7133 if (!pfn_valid_within(check))
49ac8255 7134 continue;
29723fcc 7135
49ac8255 7136 page = pfn_to_page(check);
c8721bbb
NH
7137
7138 /*
7139 * Hugepages are not in LRU lists, but they're movable.
7140 * We need not scan over tail pages bacause we don't
7141 * handle each tail page individually in migration.
7142 */
7143 if (PageHuge(page)) {
7144 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7145 continue;
7146 }
7147
97d255c8
MK
7148 /*
7149 * We can't use page_count without pin a page
7150 * because another CPU can free compound page.
7151 * This check already skips compound tails of THP
0139aa7b 7152 * because their page->_refcount is zero at all time.
97d255c8 7153 */
fe896d18 7154 if (!page_ref_count(page)) {
49ac8255
KH
7155 if (PageBuddy(page))
7156 iter += (1 << page_order(page)) - 1;
7157 continue;
7158 }
97d255c8 7159
b023f468
WC
7160 /*
7161 * The HWPoisoned page may be not in buddy system, and
7162 * page_count() is not 0.
7163 */
7164 if (skip_hwpoisoned_pages && PageHWPoison(page))
7165 continue;
7166
49ac8255
KH
7167 if (!PageLRU(page))
7168 found++;
7169 /*
6b4f7799
JW
7170 * If there are RECLAIMABLE pages, we need to check
7171 * it. But now, memory offline itself doesn't call
7172 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7173 */
7174 /*
7175 * If the page is not RAM, page_count()should be 0.
7176 * we don't need more check. This is an _used_ not-movable page.
7177 *
7178 * The problematic thing here is PG_reserved pages. PG_reserved
7179 * is set to both of a memory hole page and a _used_ kernel
7180 * page at boot.
7181 */
7182 if (found > count)
80934513 7183 return true;
49ac8255 7184 }
80934513 7185 return false;
49ac8255
KH
7186}
7187
7188bool is_pageblock_removable_nolock(struct page *page)
7189{
656a0706
MH
7190 struct zone *zone;
7191 unsigned long pfn;
687875fb
MH
7192
7193 /*
7194 * We have to be careful here because we are iterating over memory
7195 * sections which are not zone aware so we might end up outside of
7196 * the zone but still within the section.
656a0706
MH
7197 * We have to take care about the node as well. If the node is offline
7198 * its NODE_DATA will be NULL - see page_zone.
687875fb 7199 */
656a0706
MH
7200 if (!node_online(page_to_nid(page)))
7201 return false;
7202
7203 zone = page_zone(page);
7204 pfn = page_to_pfn(page);
108bcc96 7205 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7206 return false;
7207
b023f468 7208 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7209}
0c0e6195 7210
080fe206 7211#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7212
7213static unsigned long pfn_max_align_down(unsigned long pfn)
7214{
7215 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7216 pageblock_nr_pages) - 1);
7217}
7218
7219static unsigned long pfn_max_align_up(unsigned long pfn)
7220{
7221 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7222 pageblock_nr_pages));
7223}
7224
041d3a8c 7225/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7226static int __alloc_contig_migrate_range(struct compact_control *cc,
7227 unsigned long start, unsigned long end)
041d3a8c
MN
7228{
7229 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7230 unsigned long nr_reclaimed;
041d3a8c
MN
7231 unsigned long pfn = start;
7232 unsigned int tries = 0;
7233 int ret = 0;
7234
be49a6e1 7235 migrate_prep();
041d3a8c 7236
bb13ffeb 7237 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7238 if (fatal_signal_pending(current)) {
7239 ret = -EINTR;
7240 break;
7241 }
7242
bb13ffeb
MG
7243 if (list_empty(&cc->migratepages)) {
7244 cc->nr_migratepages = 0;
edc2ca61 7245 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7246 if (!pfn) {
7247 ret = -EINTR;
7248 break;
7249 }
7250 tries = 0;
7251 } else if (++tries == 5) {
7252 ret = ret < 0 ? ret : -EBUSY;
7253 break;
7254 }
7255
beb51eaa
MK
7256 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7257 &cc->migratepages);
7258 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7259
9c620e2b 7260 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7261 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7262 }
2a6f5124
SP
7263 if (ret < 0) {
7264 putback_movable_pages(&cc->migratepages);
7265 return ret;
7266 }
7267 return 0;
041d3a8c
MN
7268}
7269
7270/**
7271 * alloc_contig_range() -- tries to allocate given range of pages
7272 * @start: start PFN to allocate
7273 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7274 * @migratetype: migratetype of the underlaying pageblocks (either
7275 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7276 * in range must have the same migratetype and it must
7277 * be either of the two.
041d3a8c
MN
7278 *
7279 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7280 * aligned, however it's the caller's responsibility to guarantee that
7281 * we are the only thread that changes migrate type of pageblocks the
7282 * pages fall in.
7283 *
7284 * The PFN range must belong to a single zone.
7285 *
7286 * Returns zero on success or negative error code. On success all
7287 * pages which PFN is in [start, end) are allocated for the caller and
7288 * need to be freed with free_contig_range().
7289 */
0815f3d8
MN
7290int alloc_contig_range(unsigned long start, unsigned long end,
7291 unsigned migratetype)
041d3a8c 7292{
041d3a8c 7293 unsigned long outer_start, outer_end;
d00181b9
KS
7294 unsigned int order;
7295 int ret = 0;
041d3a8c 7296
bb13ffeb
MG
7297 struct compact_control cc = {
7298 .nr_migratepages = 0,
7299 .order = -1,
7300 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7301 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7302 .ignore_skip_hint = true,
7303 };
7304 INIT_LIST_HEAD(&cc.migratepages);
7305
041d3a8c
MN
7306 /*
7307 * What we do here is we mark all pageblocks in range as
7308 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7309 * have different sizes, and due to the way page allocator
7310 * work, we align the range to biggest of the two pages so
7311 * that page allocator won't try to merge buddies from
7312 * different pageblocks and change MIGRATE_ISOLATE to some
7313 * other migration type.
7314 *
7315 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7316 * migrate the pages from an unaligned range (ie. pages that
7317 * we are interested in). This will put all the pages in
7318 * range back to page allocator as MIGRATE_ISOLATE.
7319 *
7320 * When this is done, we take the pages in range from page
7321 * allocator removing them from the buddy system. This way
7322 * page allocator will never consider using them.
7323 *
7324 * This lets us mark the pageblocks back as
7325 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7326 * aligned range but not in the unaligned, original range are
7327 * put back to page allocator so that buddy can use them.
7328 */
7329
7330 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7331 pfn_max_align_up(end), migratetype,
7332 false);
041d3a8c 7333 if (ret)
86a595f9 7334 return ret;
041d3a8c 7335
8ef5849f
JK
7336 /*
7337 * In case of -EBUSY, we'd like to know which page causes problem.
7338 * So, just fall through. We will check it in test_pages_isolated().
7339 */
bb13ffeb 7340 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7341 if (ret && ret != -EBUSY)
041d3a8c
MN
7342 goto done;
7343
7344 /*
7345 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7346 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7347 * more, all pages in [start, end) are free in page allocator.
7348 * What we are going to do is to allocate all pages from
7349 * [start, end) (that is remove them from page allocator).
7350 *
7351 * The only problem is that pages at the beginning and at the
7352 * end of interesting range may be not aligned with pages that
7353 * page allocator holds, ie. they can be part of higher order
7354 * pages. Because of this, we reserve the bigger range and
7355 * once this is done free the pages we are not interested in.
7356 *
7357 * We don't have to hold zone->lock here because the pages are
7358 * isolated thus they won't get removed from buddy.
7359 */
7360
7361 lru_add_drain_all();
510f5507 7362 drain_all_pages(cc.zone);
041d3a8c
MN
7363
7364 order = 0;
7365 outer_start = start;
7366 while (!PageBuddy(pfn_to_page(outer_start))) {
7367 if (++order >= MAX_ORDER) {
8ef5849f
JK
7368 outer_start = start;
7369 break;
041d3a8c
MN
7370 }
7371 outer_start &= ~0UL << order;
7372 }
7373
8ef5849f
JK
7374 if (outer_start != start) {
7375 order = page_order(pfn_to_page(outer_start));
7376
7377 /*
7378 * outer_start page could be small order buddy page and
7379 * it doesn't include start page. Adjust outer_start
7380 * in this case to report failed page properly
7381 * on tracepoint in test_pages_isolated()
7382 */
7383 if (outer_start + (1UL << order) <= start)
7384 outer_start = start;
7385 }
7386
041d3a8c 7387 /* Make sure the range is really isolated. */
b023f468 7388 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7389 pr_info("%s: [%lx, %lx) PFNs busy\n",
7390 __func__, outer_start, end);
041d3a8c
MN
7391 ret = -EBUSY;
7392 goto done;
7393 }
7394
49f223a9 7395 /* Grab isolated pages from freelists. */
bb13ffeb 7396 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7397 if (!outer_end) {
7398 ret = -EBUSY;
7399 goto done;
7400 }
7401
7402 /* Free head and tail (if any) */
7403 if (start != outer_start)
7404 free_contig_range(outer_start, start - outer_start);
7405 if (end != outer_end)
7406 free_contig_range(end, outer_end - end);
7407
7408done:
7409 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7410 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7411 return ret;
7412}
7413
7414void free_contig_range(unsigned long pfn, unsigned nr_pages)
7415{
bcc2b02f
MS
7416 unsigned int count = 0;
7417
7418 for (; nr_pages--; pfn++) {
7419 struct page *page = pfn_to_page(pfn);
7420
7421 count += page_count(page) != 1;
7422 __free_page(page);
7423 }
7424 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7425}
7426#endif
7427
4ed7e022 7428#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7429/*
7430 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7431 * page high values need to be recalulated.
7432 */
4ed7e022
JL
7433void __meminit zone_pcp_update(struct zone *zone)
7434{
0a647f38 7435 unsigned cpu;
c8e251fa 7436 mutex_lock(&pcp_batch_high_lock);
0a647f38 7437 for_each_possible_cpu(cpu)
169f6c19
CS
7438 pageset_set_high_and_batch(zone,
7439 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7440 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7441}
7442#endif
7443
340175b7
JL
7444void zone_pcp_reset(struct zone *zone)
7445{
7446 unsigned long flags;
5a883813
MK
7447 int cpu;
7448 struct per_cpu_pageset *pset;
340175b7
JL
7449
7450 /* avoid races with drain_pages() */
7451 local_irq_save(flags);
7452 if (zone->pageset != &boot_pageset) {
5a883813
MK
7453 for_each_online_cpu(cpu) {
7454 pset = per_cpu_ptr(zone->pageset, cpu);
7455 drain_zonestat(zone, pset);
7456 }
340175b7
JL
7457 free_percpu(zone->pageset);
7458 zone->pageset = &boot_pageset;
7459 }
7460 local_irq_restore(flags);
7461}
7462
6dcd73d7 7463#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7464/*
b9eb6319
JK
7465 * All pages in the range must be in a single zone and isolated
7466 * before calling this.
0c0e6195
KH
7467 */
7468void
7469__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7470{
7471 struct page *page;
7472 struct zone *zone;
7aeb09f9 7473 unsigned int order, i;
0c0e6195
KH
7474 unsigned long pfn;
7475 unsigned long flags;
7476 /* find the first valid pfn */
7477 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7478 if (pfn_valid(pfn))
7479 break;
7480 if (pfn == end_pfn)
7481 return;
7482 zone = page_zone(pfn_to_page(pfn));
7483 spin_lock_irqsave(&zone->lock, flags);
7484 pfn = start_pfn;
7485 while (pfn < end_pfn) {
7486 if (!pfn_valid(pfn)) {
7487 pfn++;
7488 continue;
7489 }
7490 page = pfn_to_page(pfn);
b023f468
WC
7491 /*
7492 * The HWPoisoned page may be not in buddy system, and
7493 * page_count() is not 0.
7494 */
7495 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7496 pfn++;
7497 SetPageReserved(page);
7498 continue;
7499 }
7500
0c0e6195
KH
7501 BUG_ON(page_count(page));
7502 BUG_ON(!PageBuddy(page));
7503 order = page_order(page);
7504#ifdef CONFIG_DEBUG_VM
1170532b
JP
7505 pr_info("remove from free list %lx %d %lx\n",
7506 pfn, 1 << order, end_pfn);
0c0e6195
KH
7507#endif
7508 list_del(&page->lru);
7509 rmv_page_order(page);
7510 zone->free_area[order].nr_free--;
0c0e6195
KH
7511 for (i = 0; i < (1 << order); i++)
7512 SetPageReserved((page+i));
7513 pfn += (1 << order);
7514 }
7515 spin_unlock_irqrestore(&zone->lock, flags);
7516}
7517#endif
8d22ba1b 7518
8d22ba1b
WF
7519bool is_free_buddy_page(struct page *page)
7520{
7521 struct zone *zone = page_zone(page);
7522 unsigned long pfn = page_to_pfn(page);
7523 unsigned long flags;
7aeb09f9 7524 unsigned int order;
8d22ba1b
WF
7525
7526 spin_lock_irqsave(&zone->lock, flags);
7527 for (order = 0; order < MAX_ORDER; order++) {
7528 struct page *page_head = page - (pfn & ((1 << order) - 1));
7529
7530 if (PageBuddy(page_head) && page_order(page_head) >= order)
7531 break;
7532 }
7533 spin_unlock_irqrestore(&zone->lock, flags);
7534
7535 return order < MAX_ORDER;
7536}