]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/page_alloc.c
kasan: initialize shadow to TAG_INVALID for SW_TAGS
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
121e6f32 75#include <linux/vmalloc.h>
1da177e4 76
7ee3d4e8 77#include <asm/sections.h>
1da177e4 78#include <asm/tlbflush.h>
ac924c60 79#include <asm/div64.h>
1da177e4 80#include "internal.h"
e900a918 81#include "shuffle.h"
36e66c55 82#include "page_reporting.h"
1da177e4 83
f04a5d5d
DH
84/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
85typedef int __bitwise fpi_t;
86
87/* No special request */
88#define FPI_NONE ((__force fpi_t)0)
89
90/*
91 * Skip free page reporting notification for the (possibly merged) page.
92 * This does not hinder free page reporting from grabbing the page,
93 * reporting it and marking it "reported" - it only skips notifying
94 * the free page reporting infrastructure about a newly freed page. For
95 * example, used when temporarily pulling a page from a freelist and
96 * putting it back unmodified.
97 */
98#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
99
47b6a24a
DH
100/*
101 * Place the (possibly merged) page to the tail of the freelist. Will ignore
102 * page shuffling (relevant code - e.g., memory onlining - is expected to
103 * shuffle the whole zone).
104 *
105 * Note: No code should rely on this flag for correctness - it's purely
106 * to allow for optimizations when handing back either fresh pages
107 * (memory onlining) or untouched pages (page isolation, free page
108 * reporting).
109 */
110#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
111
c8e251fa
CS
112/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
113static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 114#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 115
72812019
LS
116#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
117DEFINE_PER_CPU(int, numa_node);
118EXPORT_PER_CPU_SYMBOL(numa_node);
119#endif
120
4518085e
KW
121DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
122
7aac7898
LS
123#ifdef CONFIG_HAVE_MEMORYLESS_NODES
124/*
125 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
126 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
127 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
128 * defined in <linux/topology.h>.
129 */
130DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
131EXPORT_PER_CPU_SYMBOL(_numa_mem_);
132#endif
133
bd233f53 134/* work_structs for global per-cpu drains */
d9367bd0
WY
135struct pcpu_drain {
136 struct zone *zone;
137 struct work_struct work;
138};
8b885f53
JY
139static DEFINE_MUTEX(pcpu_drain_mutex);
140static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 141
38addce8 142#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 143volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
144EXPORT_SYMBOL(latent_entropy);
145#endif
146
1da177e4 147/*
13808910 148 * Array of node states.
1da177e4 149 */
13808910
CL
150nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
151 [N_POSSIBLE] = NODE_MASK_ALL,
152 [N_ONLINE] = { { [0] = 1UL } },
153#ifndef CONFIG_NUMA
154 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
155#ifdef CONFIG_HIGHMEM
156 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 157#endif
20b2f52b 158 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
159 [N_CPU] = { { [0] = 1UL } },
160#endif /* NUMA */
161};
162EXPORT_SYMBOL(node_states);
163
ca79b0c2
AK
164atomic_long_t _totalram_pages __read_mostly;
165EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 166unsigned long totalreserve_pages __read_mostly;
e48322ab 167unsigned long totalcma_pages __read_mostly;
ab8fabd4 168
1b76b02f 169int percpu_pagelist_fraction;
dcce284a 170gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 171DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
172EXPORT_SYMBOL(init_on_alloc);
173
51cba1eb 174DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
175EXPORT_SYMBOL(init_on_free);
176
04013513
VB
177static bool _init_on_alloc_enabled_early __read_mostly
178 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
179static int __init early_init_on_alloc(char *buf)
180{
6471384a 181
04013513 182 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
183}
184early_param("init_on_alloc", early_init_on_alloc);
185
04013513
VB
186static bool _init_on_free_enabled_early __read_mostly
187 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
188static int __init early_init_on_free(char *buf)
189{
04013513 190 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
191}
192early_param("init_on_free", early_init_on_free);
1da177e4 193
bb14c2c7
VB
194/*
195 * A cached value of the page's pageblock's migratetype, used when the page is
196 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
197 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
198 * Also the migratetype set in the page does not necessarily match the pcplist
199 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
200 * other index - this ensures that it will be put on the correct CMA freelist.
201 */
202static inline int get_pcppage_migratetype(struct page *page)
203{
204 return page->index;
205}
206
207static inline void set_pcppage_migratetype(struct page *page, int migratetype)
208{
209 page->index = migratetype;
210}
211
452aa699
RW
212#ifdef CONFIG_PM_SLEEP
213/*
214 * The following functions are used by the suspend/hibernate code to temporarily
215 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
216 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
217 * they should always be called with system_transition_mutex held
218 * (gfp_allowed_mask also should only be modified with system_transition_mutex
219 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
220 * with that modification).
452aa699 221 */
c9e664f1
RW
222
223static gfp_t saved_gfp_mask;
224
225void pm_restore_gfp_mask(void)
452aa699 226{
55f2503c 227 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
228 if (saved_gfp_mask) {
229 gfp_allowed_mask = saved_gfp_mask;
230 saved_gfp_mask = 0;
231 }
452aa699
RW
232}
233
c9e664f1 234void pm_restrict_gfp_mask(void)
452aa699 235{
55f2503c 236 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
237 WARN_ON(saved_gfp_mask);
238 saved_gfp_mask = gfp_allowed_mask;
d0164adc 239 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 240}
f90ac398
MG
241
242bool pm_suspended_storage(void)
243{
d0164adc 244 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
245 return false;
246 return true;
247}
452aa699
RW
248#endif /* CONFIG_PM_SLEEP */
249
d9c23400 250#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 251unsigned int pageblock_order __read_mostly;
d9c23400
MG
252#endif
253
7fef431b
DH
254static void __free_pages_ok(struct page *page, unsigned int order,
255 fpi_t fpi_flags);
a226f6c8 256
1da177e4
LT
257/*
258 * results with 256, 32 in the lowmem_reserve sysctl:
259 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
260 * 1G machine -> (16M dma, 784M normal, 224M high)
261 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
262 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 263 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
264 *
265 * TBD: should special case ZONE_DMA32 machines here - in those we normally
266 * don't need any ZONE_NORMAL reservation
1da177e4 267 */
d3cda233 268int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 269#ifdef CONFIG_ZONE_DMA
d3cda233 270 [ZONE_DMA] = 256,
4b51d669 271#endif
fb0e7942 272#ifdef CONFIG_ZONE_DMA32
d3cda233 273 [ZONE_DMA32] = 256,
fb0e7942 274#endif
d3cda233 275 [ZONE_NORMAL] = 32,
e53ef38d 276#ifdef CONFIG_HIGHMEM
d3cda233 277 [ZONE_HIGHMEM] = 0,
e53ef38d 278#endif
d3cda233 279 [ZONE_MOVABLE] = 0,
2f1b6248 280};
1da177e4 281
15ad7cdc 282static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 283#ifdef CONFIG_ZONE_DMA
2f1b6248 284 "DMA",
4b51d669 285#endif
fb0e7942 286#ifdef CONFIG_ZONE_DMA32
2f1b6248 287 "DMA32",
fb0e7942 288#endif
2f1b6248 289 "Normal",
e53ef38d 290#ifdef CONFIG_HIGHMEM
2a1e274a 291 "HighMem",
e53ef38d 292#endif
2a1e274a 293 "Movable",
033fbae9
DW
294#ifdef CONFIG_ZONE_DEVICE
295 "Device",
296#endif
2f1b6248
CL
297};
298
c999fbd3 299const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
300 "Unmovable",
301 "Movable",
302 "Reclaimable",
303 "HighAtomic",
304#ifdef CONFIG_CMA
305 "CMA",
306#endif
307#ifdef CONFIG_MEMORY_ISOLATION
308 "Isolate",
309#endif
310};
311
ae70eddd
AK
312compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
313 [NULL_COMPOUND_DTOR] = NULL,
314 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 315#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 316 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 317#endif
9a982250 318#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 319 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 320#endif
f1e61557
KS
321};
322
1da177e4 323int min_free_kbytes = 1024;
42aa83cb 324int user_min_free_kbytes = -1;
24512228
MG
325#ifdef CONFIG_DISCONTIGMEM
326/*
327 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
328 * are not on separate NUMA nodes. Functionally this works but with
329 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
330 * quite small. By default, do not boost watermarks on discontigmem as in
331 * many cases very high-order allocations like THP are likely to be
332 * unsupported and the premature reclaim offsets the advantage of long-term
333 * fragmentation avoidance.
334 */
335int watermark_boost_factor __read_mostly;
336#else
1c30844d 337int watermark_boost_factor __read_mostly = 15000;
24512228 338#endif
795ae7a0 339int watermark_scale_factor = 10;
1da177e4 340
bbe5d993
OS
341static unsigned long nr_kernel_pages __initdata;
342static unsigned long nr_all_pages __initdata;
343static unsigned long dma_reserve __initdata;
1da177e4 344
bbe5d993
OS
345static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
346static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 347static unsigned long required_kernelcore __initdata;
a5c6d650 348static unsigned long required_kernelcore_percent __initdata;
7f16f91f 349static unsigned long required_movablecore __initdata;
a5c6d650 350static unsigned long required_movablecore_percent __initdata;
bbe5d993 351static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 352static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
353
354/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
355int movable_zone;
356EXPORT_SYMBOL(movable_zone);
c713216d 357
418508c1 358#if MAX_NUMNODES > 1
b9726c26 359unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 360unsigned int nr_online_nodes __read_mostly = 1;
418508c1 361EXPORT_SYMBOL(nr_node_ids);
62bc62a8 362EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
363#endif
364
9ef9acb0
MG
365int page_group_by_mobility_disabled __read_mostly;
366
3a80a7fa 367#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
368/*
369 * During boot we initialize deferred pages on-demand, as needed, but once
370 * page_alloc_init_late() has finished, the deferred pages are all initialized,
371 * and we can permanently disable that path.
372 */
373static DEFINE_STATIC_KEY_TRUE(deferred_pages);
374
375/*
376 * Calling kasan_free_pages() only after deferred memory initialization
377 * has completed. Poisoning pages during deferred memory init will greatly
378 * lengthen the process and cause problem in large memory systems as the
379 * deferred pages initialization is done with interrupt disabled.
380 *
381 * Assuming that there will be no reference to those newly initialized
382 * pages before they are ever allocated, this should have no effect on
383 * KASAN memory tracking as the poison will be properly inserted at page
384 * allocation time. The only corner case is when pages are allocated by
385 * on-demand allocation and then freed again before the deferred pages
386 * initialization is done, but this is not likely to happen.
387 */
388static inline void kasan_free_nondeferred_pages(struct page *page, int order)
389{
390 if (!static_branch_unlikely(&deferred_pages))
391 kasan_free_pages(page, order);
392}
393
3a80a7fa 394/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 395static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 396{
ef70b6f4
MG
397 int nid = early_pfn_to_nid(pfn);
398
399 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
400 return true;
401
402 return false;
403}
404
405/*
d3035be4 406 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
407 * later in the boot cycle when it can be parallelised.
408 */
d3035be4
PT
409static bool __meminit
410defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 411{
d3035be4
PT
412 static unsigned long prev_end_pfn, nr_initialised;
413
414 /*
415 * prev_end_pfn static that contains the end of previous zone
416 * No need to protect because called very early in boot before smp_init.
417 */
418 if (prev_end_pfn != end_pfn) {
419 prev_end_pfn = end_pfn;
420 nr_initialised = 0;
421 }
422
3c2c6488 423 /* Always populate low zones for address-constrained allocations */
d3035be4 424 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 425 return false;
23b68cfa 426
dc2da7b4
BH
427 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
428 return true;
23b68cfa
WY
429 /*
430 * We start only with one section of pages, more pages are added as
431 * needed until the rest of deferred pages are initialized.
432 */
d3035be4 433 nr_initialised++;
23b68cfa 434 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
435 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
436 NODE_DATA(nid)->first_deferred_pfn = pfn;
437 return true;
3a80a7fa 438 }
d3035be4 439 return false;
3a80a7fa
MG
440}
441#else
3c0c12cc
WL
442#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
443
3a80a7fa
MG
444static inline bool early_page_uninitialised(unsigned long pfn)
445{
446 return false;
447}
448
d3035be4 449static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 450{
d3035be4 451 return false;
3a80a7fa
MG
452}
453#endif
454
0b423ca2
MG
455/* Return a pointer to the bitmap storing bits affecting a block of pages */
456static inline unsigned long *get_pageblock_bitmap(struct page *page,
457 unsigned long pfn)
458{
459#ifdef CONFIG_SPARSEMEM
f1eca35a 460 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
461#else
462 return page_zone(page)->pageblock_flags;
463#endif /* CONFIG_SPARSEMEM */
464}
465
466static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
467{
468#ifdef CONFIG_SPARSEMEM
469 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
470#else
471 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 472#endif /* CONFIG_SPARSEMEM */
399b795b 473 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
474}
475
535b81e2
WY
476static __always_inline
477unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 478 unsigned long pfn,
0b423ca2
MG
479 unsigned long mask)
480{
481 unsigned long *bitmap;
482 unsigned long bitidx, word_bitidx;
483 unsigned long word;
484
485 bitmap = get_pageblock_bitmap(page, pfn);
486 bitidx = pfn_to_bitidx(page, pfn);
487 word_bitidx = bitidx / BITS_PER_LONG;
488 bitidx &= (BITS_PER_LONG-1);
489
490 word = bitmap[word_bitidx];
d93d5ab9 491 return (word >> bitidx) & mask;
0b423ca2
MG
492}
493
a00cda3f
MCC
494/**
495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
496 * @page: The page within the block of interest
497 * @pfn: The target page frame number
498 * @mask: mask of bits that the caller is interested in
499 *
500 * Return: pageblock_bits flags
501 */
0b423ca2 502unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
503 unsigned long mask)
504{
535b81e2 505 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
506}
507
508static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
509{
535b81e2 510 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
511}
512
513/**
514 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
515 * @page: The page within the block of interest
516 * @flags: The flags to set
517 * @pfn: The target page frame number
0b423ca2
MG
518 * @mask: mask of bits that the caller is interested in
519 */
520void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
521 unsigned long pfn,
0b423ca2
MG
522 unsigned long mask)
523{
524 unsigned long *bitmap;
525 unsigned long bitidx, word_bitidx;
526 unsigned long old_word, word;
527
528 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 529 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
530
531 bitmap = get_pageblock_bitmap(page, pfn);
532 bitidx = pfn_to_bitidx(page, pfn);
533 word_bitidx = bitidx / BITS_PER_LONG;
534 bitidx &= (BITS_PER_LONG-1);
535
536 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
537
d93d5ab9
WY
538 mask <<= bitidx;
539 flags <<= bitidx;
0b423ca2
MG
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
d93d5ab9 556 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 557 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
82a3241a 612static void bad_page(struct page *page, const char *reason)
1da177e4 613{
d936cf9b
HD
614 static unsigned long resume;
615 static unsigned long nr_shown;
616 static unsigned long nr_unshown;
617
618 /*
619 * Allow a burst of 60 reports, then keep quiet for that minute;
620 * or allow a steady drip of one report per second.
621 */
622 if (nr_shown == 60) {
623 if (time_before(jiffies, resume)) {
624 nr_unshown++;
625 goto out;
626 }
627 if (nr_unshown) {
ff8e8116 628 pr_alert(
1e9e6365 629 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
630 nr_unshown);
631 nr_unshown = 0;
632 }
633 nr_shown = 0;
634 }
635 if (nr_shown++ == 0)
636 resume = jiffies + 60 * HZ;
637
ff8e8116 638 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 639 current->comm, page_to_pfn(page));
ff8e8116 640 __dump_page(page, reason);
4e462112 641 dump_page_owner(page);
3dc14741 642
4f31888c 643 print_modules();
1da177e4 644 dump_stack();
d936cf9b 645out:
8cc3b392 646 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 647 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
649}
650
1da177e4
LT
651/*
652 * Higher-order pages are called "compound pages". They are structured thusly:
653 *
1d798ca3 654 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 655 *
1d798ca3
KS
656 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
657 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 658 *
1d798ca3
KS
659 * The first tail page's ->compound_dtor holds the offset in array of compound
660 * page destructors. See compound_page_dtors.
1da177e4 661 *
1d798ca3 662 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 663 * This usage means that zero-order pages may not be compound.
1da177e4 664 */
d98c7a09 665
9a982250 666void free_compound_page(struct page *page)
d98c7a09 667{
7ae88534 668 mem_cgroup_uncharge(page);
7fef431b 669 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
670}
671
d00181b9 672void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
673{
674 int i;
675 int nr_pages = 1 << order;
676
18229df5
AW
677 __SetPageHead(page);
678 for (i = 1; i < nr_pages; i++) {
679 struct page *p = page + i;
58a84aa9 680 set_page_count(p, 0);
1c290f64 681 p->mapping = TAIL_MAPPING;
1d798ca3 682 set_compound_head(p, page);
18229df5 683 }
1378a5ee
MWO
684
685 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
686 set_compound_order(page, order);
53f9263b 687 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
688 if (hpage_pincount_available(page))
689 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
690}
691
c0a32fc5
SG
692#ifdef CONFIG_DEBUG_PAGEALLOC
693unsigned int _debug_guardpage_minorder;
96a2b03f 694
8e57f8ac
VB
695bool _debug_pagealloc_enabled_early __read_mostly
696 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
697EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 698DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 699EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
700
701DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 702
031bc574
JK
703static int __init early_debug_pagealloc(char *buf)
704{
8e57f8ac 705 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
706}
707early_param("debug_pagealloc", early_debug_pagealloc);
708
c0a32fc5
SG
709static int __init debug_guardpage_minorder_setup(char *buf)
710{
711 unsigned long res;
712
713 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 714 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
715 return 0;
716 }
717 _debug_guardpage_minorder = res;
1170532b 718 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
719 return 0;
720}
f1c1e9f7 721early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 722
acbc15a4 723static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 724 unsigned int order, int migratetype)
c0a32fc5 725{
e30825f1 726 if (!debug_guardpage_enabled())
acbc15a4
JK
727 return false;
728
729 if (order >= debug_guardpage_minorder())
730 return false;
e30825f1 731
3972f6bb 732 __SetPageGuard(page);
2847cf95
JK
733 INIT_LIST_HEAD(&page->lru);
734 set_page_private(page, order);
735 /* Guard pages are not available for any usage */
736 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
737
738 return true;
c0a32fc5
SG
739}
740
2847cf95
JK
741static inline void clear_page_guard(struct zone *zone, struct page *page,
742 unsigned int order, int migratetype)
c0a32fc5 743{
e30825f1
JK
744 if (!debug_guardpage_enabled())
745 return;
746
3972f6bb 747 __ClearPageGuard(page);
e30825f1 748
2847cf95
JK
749 set_page_private(page, 0);
750 if (!is_migrate_isolate(migratetype))
751 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
752}
753#else
acbc15a4
JK
754static inline bool set_page_guard(struct zone *zone, struct page *page,
755 unsigned int order, int migratetype) { return false; }
2847cf95
JK
756static inline void clear_page_guard(struct zone *zone, struct page *page,
757 unsigned int order, int migratetype) {}
c0a32fc5
SG
758#endif
759
04013513
VB
760/*
761 * Enable static keys related to various memory debugging and hardening options.
762 * Some override others, and depend on early params that are evaluated in the
763 * order of appearance. So we need to first gather the full picture of what was
764 * enabled, and then make decisions.
765 */
766void init_mem_debugging_and_hardening(void)
767{
768 if (_init_on_alloc_enabled_early) {
769 if (page_poisoning_enabled())
770 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
771 "will take precedence over init_on_alloc\n");
772 else
773 static_branch_enable(&init_on_alloc);
774 }
775 if (_init_on_free_enabled_early) {
776 if (page_poisoning_enabled())
777 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
778 "will take precedence over init_on_free\n");
779 else
780 static_branch_enable(&init_on_free);
781 }
782
8db26a3d
VB
783#ifdef CONFIG_PAGE_POISONING
784 /*
785 * Page poisoning is debug page alloc for some arches. If
786 * either of those options are enabled, enable poisoning.
787 */
788 if (page_poisoning_enabled() ||
789 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
790 debug_pagealloc_enabled()))
791 static_branch_enable(&_page_poisoning_enabled);
792#endif
793
04013513
VB
794#ifdef CONFIG_DEBUG_PAGEALLOC
795 if (!debug_pagealloc_enabled())
796 return;
797
798 static_branch_enable(&_debug_pagealloc_enabled);
799
800 if (!debug_guardpage_minorder())
801 return;
802
803 static_branch_enable(&_debug_guardpage_enabled);
804#endif
805}
806
ab130f91 807static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 808{
4c21e2f2 809 set_page_private(page, order);
676165a8 810 __SetPageBuddy(page);
1da177e4
LT
811}
812
1da177e4
LT
813/*
814 * This function checks whether a page is free && is the buddy
6e292b9b 815 * we can coalesce a page and its buddy if
13ad59df 816 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 817 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
818 * (c) a page and its buddy have the same order &&
819 * (d) a page and its buddy are in the same zone.
676165a8 820 *
6e292b9b
MW
821 * For recording whether a page is in the buddy system, we set PageBuddy.
822 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 823 *
676165a8 824 * For recording page's order, we use page_private(page).
1da177e4 825 */
fe925c0c 826static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 827 unsigned int order)
1da177e4 828{
fe925c0c 829 if (!page_is_guard(buddy) && !PageBuddy(buddy))
830 return false;
4c5018ce 831
ab130f91 832 if (buddy_order(buddy) != order)
fe925c0c 833 return false;
c0a32fc5 834
fe925c0c 835 /*
836 * zone check is done late to avoid uselessly calculating
837 * zone/node ids for pages that could never merge.
838 */
839 if (page_zone_id(page) != page_zone_id(buddy))
840 return false;
d34c5fa0 841
fe925c0c 842 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 843
fe925c0c 844 return true;
1da177e4
LT
845}
846
5e1f0f09
MG
847#ifdef CONFIG_COMPACTION
848static inline struct capture_control *task_capc(struct zone *zone)
849{
850 struct capture_control *capc = current->capture_control;
851
deba0487 852 return unlikely(capc) &&
5e1f0f09
MG
853 !(current->flags & PF_KTHREAD) &&
854 !capc->page &&
deba0487 855 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
856}
857
858static inline bool
859compaction_capture(struct capture_control *capc, struct page *page,
860 int order, int migratetype)
861{
862 if (!capc || order != capc->cc->order)
863 return false;
864
865 /* Do not accidentally pollute CMA or isolated regions*/
866 if (is_migrate_cma(migratetype) ||
867 is_migrate_isolate(migratetype))
868 return false;
869
870 /*
871 * Do not let lower order allocations polluate a movable pageblock.
872 * This might let an unmovable request use a reclaimable pageblock
873 * and vice-versa but no more than normal fallback logic which can
874 * have trouble finding a high-order free page.
875 */
876 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
877 return false;
878
879 capc->page = page;
880 return true;
881}
882
883#else
884static inline struct capture_control *task_capc(struct zone *zone)
885{
886 return NULL;
887}
888
889static inline bool
890compaction_capture(struct capture_control *capc, struct page *page,
891 int order, int migratetype)
892{
893 return false;
894}
895#endif /* CONFIG_COMPACTION */
896
6ab01363
AD
897/* Used for pages not on another list */
898static inline void add_to_free_list(struct page *page, struct zone *zone,
899 unsigned int order, int migratetype)
900{
901 struct free_area *area = &zone->free_area[order];
902
903 list_add(&page->lru, &area->free_list[migratetype]);
904 area->nr_free++;
905}
906
907/* Used for pages not on another list */
908static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
909 unsigned int order, int migratetype)
910{
911 struct free_area *area = &zone->free_area[order];
912
913 list_add_tail(&page->lru, &area->free_list[migratetype]);
914 area->nr_free++;
915}
916
293ffa5e
DH
917/*
918 * Used for pages which are on another list. Move the pages to the tail
919 * of the list - so the moved pages won't immediately be considered for
920 * allocation again (e.g., optimization for memory onlining).
921 */
6ab01363
AD
922static inline void move_to_free_list(struct page *page, struct zone *zone,
923 unsigned int order, int migratetype)
924{
925 struct free_area *area = &zone->free_area[order];
926
293ffa5e 927 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
928}
929
930static inline void del_page_from_free_list(struct page *page, struct zone *zone,
931 unsigned int order)
932{
36e66c55
AD
933 /* clear reported state and update reported page count */
934 if (page_reported(page))
935 __ClearPageReported(page);
936
6ab01363
AD
937 list_del(&page->lru);
938 __ClearPageBuddy(page);
939 set_page_private(page, 0);
940 zone->free_area[order].nr_free--;
941}
942
a2129f24
AD
943/*
944 * If this is not the largest possible page, check if the buddy
945 * of the next-highest order is free. If it is, it's possible
946 * that pages are being freed that will coalesce soon. In case,
947 * that is happening, add the free page to the tail of the list
948 * so it's less likely to be used soon and more likely to be merged
949 * as a higher order page
950 */
951static inline bool
952buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
953 struct page *page, unsigned int order)
954{
955 struct page *higher_page, *higher_buddy;
956 unsigned long combined_pfn;
957
958 if (order >= MAX_ORDER - 2)
959 return false;
960
961 if (!pfn_valid_within(buddy_pfn))
962 return false;
963
964 combined_pfn = buddy_pfn & pfn;
965 higher_page = page + (combined_pfn - pfn);
966 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
967 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
968
969 return pfn_valid_within(buddy_pfn) &&
970 page_is_buddy(higher_page, higher_buddy, order + 1);
971}
972
1da177e4
LT
973/*
974 * Freeing function for a buddy system allocator.
975 *
976 * The concept of a buddy system is to maintain direct-mapped table
977 * (containing bit values) for memory blocks of various "orders".
978 * The bottom level table contains the map for the smallest allocatable
979 * units of memory (here, pages), and each level above it describes
980 * pairs of units from the levels below, hence, "buddies".
981 * At a high level, all that happens here is marking the table entry
982 * at the bottom level available, and propagating the changes upward
983 * as necessary, plus some accounting needed to play nicely with other
984 * parts of the VM system.
985 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
986 * free pages of length of (1 << order) and marked with PageBuddy.
987 * Page's order is recorded in page_private(page) field.
1da177e4 988 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
989 * other. That is, if we allocate a small block, and both were
990 * free, the remainder of the region must be split into blocks.
1da177e4 991 * If a block is freed, and its buddy is also free, then this
5f63b720 992 * triggers coalescing into a block of larger size.
1da177e4 993 *
6d49e352 994 * -- nyc
1da177e4
LT
995 */
996
48db57f8 997static inline void __free_one_page(struct page *page,
dc4b0caf 998 unsigned long pfn,
ed0ae21d 999 struct zone *zone, unsigned int order,
f04a5d5d 1000 int migratetype, fpi_t fpi_flags)
1da177e4 1001{
a2129f24 1002 struct capture_control *capc = task_capc(zone);
3f649ab7 1003 unsigned long buddy_pfn;
a2129f24 1004 unsigned long combined_pfn;
d9dddbf5 1005 unsigned int max_order;
a2129f24
AD
1006 struct page *buddy;
1007 bool to_tail;
d9dddbf5 1008
7ad69832 1009 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1010
d29bb978 1011 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1012 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1013
ed0ae21d 1014 VM_BUG_ON(migratetype == -1);
d9dddbf5 1015 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1016 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1017
76741e77 1018 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1019 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1020
d9dddbf5 1021continue_merging:
7ad69832 1022 while (order < max_order) {
5e1f0f09
MG
1023 if (compaction_capture(capc, page, order, migratetype)) {
1024 __mod_zone_freepage_state(zone, -(1 << order),
1025 migratetype);
1026 return;
1027 }
76741e77
VB
1028 buddy_pfn = __find_buddy_pfn(pfn, order);
1029 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1030
1031 if (!pfn_valid_within(buddy_pfn))
1032 goto done_merging;
cb2b95e1 1033 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1034 goto done_merging;
c0a32fc5
SG
1035 /*
1036 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1037 * merge with it and move up one order.
1038 */
b03641af 1039 if (page_is_guard(buddy))
2847cf95 1040 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1041 else
6ab01363 1042 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1043 combined_pfn = buddy_pfn & pfn;
1044 page = page + (combined_pfn - pfn);
1045 pfn = combined_pfn;
1da177e4
LT
1046 order++;
1047 }
7ad69832 1048 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1049 /* If we are here, it means order is >= pageblock_order.
1050 * We want to prevent merge between freepages on isolate
1051 * pageblock and normal pageblock. Without this, pageblock
1052 * isolation could cause incorrect freepage or CMA accounting.
1053 *
1054 * We don't want to hit this code for the more frequent
1055 * low-order merging.
1056 */
1057 if (unlikely(has_isolate_pageblock(zone))) {
1058 int buddy_mt;
1059
76741e77
VB
1060 buddy_pfn = __find_buddy_pfn(pfn, order);
1061 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1062 buddy_mt = get_pageblock_migratetype(buddy);
1063
1064 if (migratetype != buddy_mt
1065 && (is_migrate_isolate(migratetype) ||
1066 is_migrate_isolate(buddy_mt)))
1067 goto done_merging;
1068 }
7ad69832 1069 max_order = order + 1;
d9dddbf5
VB
1070 goto continue_merging;
1071 }
1072
1073done_merging:
ab130f91 1074 set_buddy_order(page, order);
6dda9d55 1075
47b6a24a
DH
1076 if (fpi_flags & FPI_TO_TAIL)
1077 to_tail = true;
1078 else if (is_shuffle_order(order))
a2129f24 1079 to_tail = shuffle_pick_tail();
97500a4a 1080 else
a2129f24 1081 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1082
a2129f24 1083 if (to_tail)
6ab01363 1084 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1085 else
6ab01363 1086 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1087
1088 /* Notify page reporting subsystem of freed page */
f04a5d5d 1089 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1090 page_reporting_notify_free(order);
1da177e4
LT
1091}
1092
7bfec6f4
MG
1093/*
1094 * A bad page could be due to a number of fields. Instead of multiple branches,
1095 * try and check multiple fields with one check. The caller must do a detailed
1096 * check if necessary.
1097 */
1098static inline bool page_expected_state(struct page *page,
1099 unsigned long check_flags)
1100{
1101 if (unlikely(atomic_read(&page->_mapcount) != -1))
1102 return false;
1103
1104 if (unlikely((unsigned long)page->mapping |
1105 page_ref_count(page) |
1106#ifdef CONFIG_MEMCG
48060834 1107 page->memcg_data |
7bfec6f4
MG
1108#endif
1109 (page->flags & check_flags)))
1110 return false;
1111
1112 return true;
1113}
1114
58b7f119 1115static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1116{
82a3241a 1117 const char *bad_reason = NULL;
f0b791a3 1118
53f9263b 1119 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1120 bad_reason = "nonzero mapcount";
1121 if (unlikely(page->mapping != NULL))
1122 bad_reason = "non-NULL mapping";
fe896d18 1123 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1124 bad_reason = "nonzero _refcount";
58b7f119
WY
1125 if (unlikely(page->flags & flags)) {
1126 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1127 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1128 else
1129 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1130 }
9edad6ea 1131#ifdef CONFIG_MEMCG
48060834 1132 if (unlikely(page->memcg_data))
9edad6ea
JW
1133 bad_reason = "page still charged to cgroup";
1134#endif
58b7f119
WY
1135 return bad_reason;
1136}
1137
1138static void check_free_page_bad(struct page *page)
1139{
1140 bad_page(page,
1141 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1142}
1143
534fe5e3 1144static inline int check_free_page(struct page *page)
bb552ac6 1145{
da838d4f 1146 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1147 return 0;
bb552ac6
MG
1148
1149 /* Something has gone sideways, find it */
0d0c48a2 1150 check_free_page_bad(page);
7bfec6f4 1151 return 1;
1da177e4
LT
1152}
1153
4db7548c
MG
1154static int free_tail_pages_check(struct page *head_page, struct page *page)
1155{
1156 int ret = 1;
1157
1158 /*
1159 * We rely page->lru.next never has bit 0 set, unless the page
1160 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1161 */
1162 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1163
1164 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1165 ret = 0;
1166 goto out;
1167 }
1168 switch (page - head_page) {
1169 case 1:
4da1984e 1170 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1171 if (unlikely(compound_mapcount(page))) {
82a3241a 1172 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1173 goto out;
1174 }
1175 break;
1176 case 2:
1177 /*
1178 * the second tail page: ->mapping is
fa3015b7 1179 * deferred_list.next -- ignore value.
4db7548c
MG
1180 */
1181 break;
1182 default:
1183 if (page->mapping != TAIL_MAPPING) {
82a3241a 1184 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1185 goto out;
1186 }
1187 break;
1188 }
1189 if (unlikely(!PageTail(page))) {
82a3241a 1190 bad_page(page, "PageTail not set");
4db7548c
MG
1191 goto out;
1192 }
1193 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1194 bad_page(page, "compound_head not consistent");
4db7548c
MG
1195 goto out;
1196 }
1197 ret = 0;
1198out:
1199 page->mapping = NULL;
1200 clear_compound_head(page);
1201 return ret;
1202}
1203
6471384a
AP
1204static void kernel_init_free_pages(struct page *page, int numpages)
1205{
1206 int i;
1207
9e15afa5
QC
1208 /* s390's use of memset() could override KASAN redzones. */
1209 kasan_disable_current();
aa1ef4d7 1210 for (i = 0; i < numpages; i++) {
acb35b17 1211 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1212 page_kasan_tag_reset(page + i);
6471384a 1213 clear_highpage(page + i);
acb35b17 1214 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1215 }
9e15afa5 1216 kasan_enable_current();
6471384a
AP
1217}
1218
e2769dbd
MG
1219static __always_inline bool free_pages_prepare(struct page *page,
1220 unsigned int order, bool check_free)
4db7548c 1221{
e2769dbd 1222 int bad = 0;
4db7548c 1223
4db7548c
MG
1224 VM_BUG_ON_PAGE(PageTail(page), page);
1225
e2769dbd 1226 trace_mm_page_free(page, order);
e2769dbd 1227
79f5f8fa
OS
1228 if (unlikely(PageHWPoison(page)) && !order) {
1229 /*
1230 * Do not let hwpoison pages hit pcplists/buddy
1231 * Untie memcg state and reset page's owner
1232 */
18b2db3b 1233 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1234 __memcg_kmem_uncharge_page(page, order);
1235 reset_page_owner(page, order);
1236 return false;
1237 }
1238
e2769dbd
MG
1239 /*
1240 * Check tail pages before head page information is cleared to
1241 * avoid checking PageCompound for order-0 pages.
1242 */
1243 if (unlikely(order)) {
1244 bool compound = PageCompound(page);
1245 int i;
1246
1247 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1248
9a73f61b
KS
1249 if (compound)
1250 ClearPageDoubleMap(page);
e2769dbd
MG
1251 for (i = 1; i < (1 << order); i++) {
1252 if (compound)
1253 bad += free_tail_pages_check(page, page + i);
534fe5e3 1254 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1255 bad++;
1256 continue;
1257 }
1258 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1259 }
1260 }
bda807d4 1261 if (PageMappingFlags(page))
4db7548c 1262 page->mapping = NULL;
18b2db3b 1263 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1264 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1265 if (check_free)
534fe5e3 1266 bad += check_free_page(page);
e2769dbd
MG
1267 if (bad)
1268 return false;
4db7548c 1269
e2769dbd
MG
1270 page_cpupid_reset_last(page);
1271 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1272 reset_page_owner(page, order);
4db7548c
MG
1273
1274 if (!PageHighMem(page)) {
1275 debug_check_no_locks_freed(page_address(page),
e2769dbd 1276 PAGE_SIZE << order);
4db7548c 1277 debug_check_no_obj_freed(page_address(page),
e2769dbd 1278 PAGE_SIZE << order);
4db7548c 1279 }
6471384a
AP
1280 if (want_init_on_free())
1281 kernel_init_free_pages(page, 1 << order);
1282
8db26a3d
VB
1283 kernel_poison_pages(page, 1 << order);
1284
f9d79e8d
AK
1285 /*
1286 * With hardware tag-based KASAN, memory tags must be set before the
1287 * page becomes unavailable via debug_pagealloc or arch_free_page.
1288 */
1289 kasan_free_nondeferred_pages(page, order);
1290
234fdce8
QC
1291 /*
1292 * arch_free_page() can make the page's contents inaccessible. s390
1293 * does this. So nothing which can access the page's contents should
1294 * happen after this.
1295 */
1296 arch_free_page(page, order);
1297
77bc7fd6 1298 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1299
4db7548c
MG
1300 return true;
1301}
1302
e2769dbd 1303#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1304/*
1305 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1306 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1307 * moved from pcp lists to free lists.
1308 */
1309static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1310{
1311 return free_pages_prepare(page, 0, true);
1312}
1313
4462b32c 1314static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1315{
8e57f8ac 1316 if (debug_pagealloc_enabled_static())
534fe5e3 1317 return check_free_page(page);
4462b32c
VB
1318 else
1319 return false;
e2769dbd
MG
1320}
1321#else
4462b32c
VB
1322/*
1323 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1324 * moving from pcp lists to free list in order to reduce overhead. With
1325 * debug_pagealloc enabled, they are checked also immediately when being freed
1326 * to the pcp lists.
1327 */
e2769dbd
MG
1328static bool free_pcp_prepare(struct page *page)
1329{
8e57f8ac 1330 if (debug_pagealloc_enabled_static())
4462b32c
VB
1331 return free_pages_prepare(page, 0, true);
1332 else
1333 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1334}
1335
4db7548c
MG
1336static bool bulkfree_pcp_prepare(struct page *page)
1337{
534fe5e3 1338 return check_free_page(page);
4db7548c
MG
1339}
1340#endif /* CONFIG_DEBUG_VM */
1341
97334162
AL
1342static inline void prefetch_buddy(struct page *page)
1343{
1344 unsigned long pfn = page_to_pfn(page);
1345 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1346 struct page *buddy = page + (buddy_pfn - pfn);
1347
1348 prefetch(buddy);
1349}
1350
1da177e4 1351/*
5f8dcc21 1352 * Frees a number of pages from the PCP lists
1da177e4 1353 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1354 * count is the number of pages to free.
1da177e4
LT
1355 *
1356 * If the zone was previously in an "all pages pinned" state then look to
1357 * see if this freeing clears that state.
1358 *
1359 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1360 * pinned" detection logic.
1361 */
5f8dcc21
MG
1362static void free_pcppages_bulk(struct zone *zone, int count,
1363 struct per_cpu_pages *pcp)
1da177e4 1364{
5f8dcc21 1365 int migratetype = 0;
a6f9edd6 1366 int batch_free = 0;
5c3ad2eb 1367 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1368 bool isolated_pageblocks;
0a5f4e5b
AL
1369 struct page *page, *tmp;
1370 LIST_HEAD(head);
f2260e6b 1371
88e8ac11
CTR
1372 /*
1373 * Ensure proper count is passed which otherwise would stuck in the
1374 * below while (list_empty(list)) loop.
1375 */
1376 count = min(pcp->count, count);
e5b31ac2 1377 while (count) {
5f8dcc21
MG
1378 struct list_head *list;
1379
1380 /*
a6f9edd6
MG
1381 * Remove pages from lists in a round-robin fashion. A
1382 * batch_free count is maintained that is incremented when an
1383 * empty list is encountered. This is so more pages are freed
1384 * off fuller lists instead of spinning excessively around empty
1385 * lists
5f8dcc21
MG
1386 */
1387 do {
a6f9edd6 1388 batch_free++;
5f8dcc21
MG
1389 if (++migratetype == MIGRATE_PCPTYPES)
1390 migratetype = 0;
1391 list = &pcp->lists[migratetype];
1392 } while (list_empty(list));
48db57f8 1393
1d16871d
NK
1394 /* This is the only non-empty list. Free them all. */
1395 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1396 batch_free = count;
1d16871d 1397
a6f9edd6 1398 do {
a16601c5 1399 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1400 /* must delete to avoid corrupting pcp list */
a6f9edd6 1401 list_del(&page->lru);
77ba9062 1402 pcp->count--;
aa016d14 1403
4db7548c
MG
1404 if (bulkfree_pcp_prepare(page))
1405 continue;
1406
0a5f4e5b 1407 list_add_tail(&page->lru, &head);
97334162
AL
1408
1409 /*
1410 * We are going to put the page back to the global
1411 * pool, prefetch its buddy to speed up later access
1412 * under zone->lock. It is believed the overhead of
1413 * an additional test and calculating buddy_pfn here
1414 * can be offset by reduced memory latency later. To
1415 * avoid excessive prefetching due to large count, only
1416 * prefetch buddy for the first pcp->batch nr of pages.
1417 */
5c3ad2eb 1418 if (prefetch_nr) {
97334162 1419 prefetch_buddy(page);
5c3ad2eb
VB
1420 prefetch_nr--;
1421 }
e5b31ac2 1422 } while (--count && --batch_free && !list_empty(list));
1da177e4 1423 }
0a5f4e5b
AL
1424
1425 spin_lock(&zone->lock);
1426 isolated_pageblocks = has_isolate_pageblock(zone);
1427
1428 /*
1429 * Use safe version since after __free_one_page(),
1430 * page->lru.next will not point to original list.
1431 */
1432 list_for_each_entry_safe(page, tmp, &head, lru) {
1433 int mt = get_pcppage_migratetype(page);
1434 /* MIGRATE_ISOLATE page should not go to pcplists */
1435 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1436 /* Pageblock could have been isolated meanwhile */
1437 if (unlikely(isolated_pageblocks))
1438 mt = get_pageblock_migratetype(page);
1439
f04a5d5d 1440 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1441 trace_mm_page_pcpu_drain(page, 0, mt);
1442 }
d34b0733 1443 spin_unlock(&zone->lock);
1da177e4
LT
1444}
1445
dc4b0caf
MG
1446static void free_one_page(struct zone *zone,
1447 struct page *page, unsigned long pfn,
7aeb09f9 1448 unsigned int order,
7fef431b 1449 int migratetype, fpi_t fpi_flags)
1da177e4 1450{
d34b0733 1451 spin_lock(&zone->lock);
ad53f92e
JK
1452 if (unlikely(has_isolate_pageblock(zone) ||
1453 is_migrate_isolate(migratetype))) {
1454 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1455 }
7fef431b 1456 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1457 spin_unlock(&zone->lock);
48db57f8
NP
1458}
1459
1e8ce83c 1460static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1461 unsigned long zone, int nid)
1e8ce83c 1462{
d0dc12e8 1463 mm_zero_struct_page(page);
1e8ce83c 1464 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1465 init_page_count(page);
1466 page_mapcount_reset(page);
1467 page_cpupid_reset_last(page);
2813b9c0 1468 page_kasan_tag_reset(page);
1e8ce83c 1469
1e8ce83c
RH
1470 INIT_LIST_HEAD(&page->lru);
1471#ifdef WANT_PAGE_VIRTUAL
1472 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1473 if (!is_highmem_idx(zone))
1474 set_page_address(page, __va(pfn << PAGE_SHIFT));
1475#endif
1476}
1477
7e18adb4 1478#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1479static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1480{
1481 pg_data_t *pgdat;
1482 int nid, zid;
1483
1484 if (!early_page_uninitialised(pfn))
1485 return;
1486
1487 nid = early_pfn_to_nid(pfn);
1488 pgdat = NODE_DATA(nid);
1489
1490 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1491 struct zone *zone = &pgdat->node_zones[zid];
1492
1493 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1494 break;
1495 }
d0dc12e8 1496 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1497}
1498#else
1499static inline void init_reserved_page(unsigned long pfn)
1500{
1501}
1502#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1503
92923ca3
NZ
1504/*
1505 * Initialised pages do not have PageReserved set. This function is
1506 * called for each range allocated by the bootmem allocator and
1507 * marks the pages PageReserved. The remaining valid pages are later
1508 * sent to the buddy page allocator.
1509 */
4b50bcc7 1510void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1511{
1512 unsigned long start_pfn = PFN_DOWN(start);
1513 unsigned long end_pfn = PFN_UP(end);
1514
7e18adb4
MG
1515 for (; start_pfn < end_pfn; start_pfn++) {
1516 if (pfn_valid(start_pfn)) {
1517 struct page *page = pfn_to_page(start_pfn);
1518
1519 init_reserved_page(start_pfn);
1d798ca3
KS
1520
1521 /* Avoid false-positive PageTail() */
1522 INIT_LIST_HEAD(&page->lru);
1523
d483da5b
AD
1524 /*
1525 * no need for atomic set_bit because the struct
1526 * page is not visible yet so nobody should
1527 * access it yet.
1528 */
1529 __SetPageReserved(page);
7e18adb4
MG
1530 }
1531 }
92923ca3
NZ
1532}
1533
7fef431b
DH
1534static void __free_pages_ok(struct page *page, unsigned int order,
1535 fpi_t fpi_flags)
ec95f53a 1536{
d34b0733 1537 unsigned long flags;
95e34412 1538 int migratetype;
dc4b0caf 1539 unsigned long pfn = page_to_pfn(page);
ec95f53a 1540
e2769dbd 1541 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1542 return;
1543
cfc47a28 1544 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1545 local_irq_save(flags);
1546 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1547 free_one_page(page_zone(page), page, pfn, order, migratetype,
1548 fpi_flags);
d34b0733 1549 local_irq_restore(flags);
1da177e4
LT
1550}
1551
a9cd410a 1552void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1553{
c3993076 1554 unsigned int nr_pages = 1 << order;
e2d0bd2b 1555 struct page *p = page;
c3993076 1556 unsigned int loop;
a226f6c8 1557
7fef431b
DH
1558 /*
1559 * When initializing the memmap, __init_single_page() sets the refcount
1560 * of all pages to 1 ("allocated"/"not free"). We have to set the
1561 * refcount of all involved pages to 0.
1562 */
e2d0bd2b
YL
1563 prefetchw(p);
1564 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1565 prefetchw(p + 1);
c3993076
JW
1566 __ClearPageReserved(p);
1567 set_page_count(p, 0);
a226f6c8 1568 }
e2d0bd2b
YL
1569 __ClearPageReserved(p);
1570 set_page_count(p, 0);
c3993076 1571
9705bea5 1572 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1573
1574 /*
1575 * Bypass PCP and place fresh pages right to the tail, primarily
1576 * relevant for memory onlining.
1577 */
1578 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1579}
1580
3f08a302 1581#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1582
03e92a5e
MR
1583/*
1584 * During memory init memblocks map pfns to nids. The search is expensive and
1585 * this caches recent lookups. The implementation of __early_pfn_to_nid
1586 * treats start/end as pfns.
1587 */
1588struct mminit_pfnnid_cache {
1589 unsigned long last_start;
1590 unsigned long last_end;
1591 int last_nid;
1592};
75a592a4 1593
03e92a5e 1594static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1595
1596/*
1597 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1598 */
03e92a5e 1599static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1600 struct mminit_pfnnid_cache *state)
75a592a4 1601{
6f24fbd3 1602 unsigned long start_pfn, end_pfn;
75a592a4
MG
1603 int nid;
1604
6f24fbd3
MR
1605 if (state->last_start <= pfn && pfn < state->last_end)
1606 return state->last_nid;
1607
1608 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1609 if (nid != NUMA_NO_NODE) {
1610 state->last_start = start_pfn;
1611 state->last_end = end_pfn;
1612 state->last_nid = nid;
1613 }
7ace9917
MG
1614
1615 return nid;
75a592a4 1616}
75a592a4 1617
75a592a4 1618int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1619{
7ace9917 1620 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1621 int nid;
1622
7ace9917 1623 spin_lock(&early_pfn_lock);
56ec43d8 1624 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1625 if (nid < 0)
e4568d38 1626 nid = first_online_node;
7ace9917 1627 spin_unlock(&early_pfn_lock);
75a592a4 1628
7ace9917 1629 return nid;
75a592a4 1630}
3f08a302 1631#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1632
7c2ee349 1633void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1634 unsigned int order)
1635{
1636 if (early_page_uninitialised(pfn))
1637 return;
a9cd410a 1638 __free_pages_core(page, order);
3a80a7fa
MG
1639}
1640
7cf91a98
JK
1641/*
1642 * Check that the whole (or subset of) a pageblock given by the interval of
1643 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1644 * with the migration of free compaction scanner. The scanners then need to
1645 * use only pfn_valid_within() check for arches that allow holes within
1646 * pageblocks.
1647 *
1648 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1649 *
1650 * It's possible on some configurations to have a setup like node0 node1 node0
1651 * i.e. it's possible that all pages within a zones range of pages do not
1652 * belong to a single zone. We assume that a border between node0 and node1
1653 * can occur within a single pageblock, but not a node0 node1 node0
1654 * interleaving within a single pageblock. It is therefore sufficient to check
1655 * the first and last page of a pageblock and avoid checking each individual
1656 * page in a pageblock.
1657 */
1658struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1659 unsigned long end_pfn, struct zone *zone)
1660{
1661 struct page *start_page;
1662 struct page *end_page;
1663
1664 /* end_pfn is one past the range we are checking */
1665 end_pfn--;
1666
1667 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1668 return NULL;
1669
2d070eab
MH
1670 start_page = pfn_to_online_page(start_pfn);
1671 if (!start_page)
1672 return NULL;
7cf91a98
JK
1673
1674 if (page_zone(start_page) != zone)
1675 return NULL;
1676
1677 end_page = pfn_to_page(end_pfn);
1678
1679 /* This gives a shorter code than deriving page_zone(end_page) */
1680 if (page_zone_id(start_page) != page_zone_id(end_page))
1681 return NULL;
1682
1683 return start_page;
1684}
1685
1686void set_zone_contiguous(struct zone *zone)
1687{
1688 unsigned long block_start_pfn = zone->zone_start_pfn;
1689 unsigned long block_end_pfn;
1690
1691 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1692 for (; block_start_pfn < zone_end_pfn(zone);
1693 block_start_pfn = block_end_pfn,
1694 block_end_pfn += pageblock_nr_pages) {
1695
1696 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1697
1698 if (!__pageblock_pfn_to_page(block_start_pfn,
1699 block_end_pfn, zone))
1700 return;
e84fe99b 1701 cond_resched();
7cf91a98
JK
1702 }
1703
1704 /* We confirm that there is no hole */
1705 zone->contiguous = true;
1706}
1707
1708void clear_zone_contiguous(struct zone *zone)
1709{
1710 zone->contiguous = false;
1711}
1712
7e18adb4 1713#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1714static void __init deferred_free_range(unsigned long pfn,
1715 unsigned long nr_pages)
a4de83dd 1716{
2f47a91f
PT
1717 struct page *page;
1718 unsigned long i;
a4de83dd 1719
2f47a91f 1720 if (!nr_pages)
a4de83dd
MG
1721 return;
1722
2f47a91f
PT
1723 page = pfn_to_page(pfn);
1724
a4de83dd 1725 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1726 if (nr_pages == pageblock_nr_pages &&
1727 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1728 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1729 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1730 return;
1731 }
1732
e780149b
XQ
1733 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1734 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1735 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1736 __free_pages_core(page, 0);
e780149b 1737 }
a4de83dd
MG
1738}
1739
d3cd131d
NS
1740/* Completion tracking for deferred_init_memmap() threads */
1741static atomic_t pgdat_init_n_undone __initdata;
1742static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1743
1744static inline void __init pgdat_init_report_one_done(void)
1745{
1746 if (atomic_dec_and_test(&pgdat_init_n_undone))
1747 complete(&pgdat_init_all_done_comp);
1748}
0e1cc95b 1749
2f47a91f 1750/*
80b1f41c
PT
1751 * Returns true if page needs to be initialized or freed to buddy allocator.
1752 *
1753 * First we check if pfn is valid on architectures where it is possible to have
1754 * holes within pageblock_nr_pages. On systems where it is not possible, this
1755 * function is optimized out.
1756 *
1757 * Then, we check if a current large page is valid by only checking the validity
1758 * of the head pfn.
2f47a91f 1759 */
56ec43d8 1760static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1761{
80b1f41c
PT
1762 if (!pfn_valid_within(pfn))
1763 return false;
1764 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1765 return false;
80b1f41c
PT
1766 return true;
1767}
2f47a91f 1768
80b1f41c
PT
1769/*
1770 * Free pages to buddy allocator. Try to free aligned pages in
1771 * pageblock_nr_pages sizes.
1772 */
56ec43d8 1773static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1774 unsigned long end_pfn)
1775{
80b1f41c
PT
1776 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1777 unsigned long nr_free = 0;
2f47a91f 1778
80b1f41c 1779 for (; pfn < end_pfn; pfn++) {
56ec43d8 1780 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1781 deferred_free_range(pfn - nr_free, nr_free);
1782 nr_free = 0;
1783 } else if (!(pfn & nr_pgmask)) {
1784 deferred_free_range(pfn - nr_free, nr_free);
1785 nr_free = 1;
80b1f41c
PT
1786 } else {
1787 nr_free++;
1788 }
1789 }
1790 /* Free the last block of pages to allocator */
1791 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1792}
1793
80b1f41c
PT
1794/*
1795 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1796 * by performing it only once every pageblock_nr_pages.
1797 * Return number of pages initialized.
1798 */
56ec43d8 1799static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1800 unsigned long pfn,
1801 unsigned long end_pfn)
2f47a91f 1802{
2f47a91f 1803 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1804 int nid = zone_to_nid(zone);
2f47a91f 1805 unsigned long nr_pages = 0;
56ec43d8 1806 int zid = zone_idx(zone);
2f47a91f 1807 struct page *page = NULL;
2f47a91f 1808
80b1f41c 1809 for (; pfn < end_pfn; pfn++) {
56ec43d8 1810 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1811 page = NULL;
2f47a91f 1812 continue;
80b1f41c 1813 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1814 page = pfn_to_page(pfn);
80b1f41c
PT
1815 } else {
1816 page++;
2f47a91f 1817 }
d0dc12e8 1818 __init_single_page(page, pfn, zid, nid);
80b1f41c 1819 nr_pages++;
2f47a91f 1820 }
80b1f41c 1821 return (nr_pages);
2f47a91f
PT
1822}
1823
0e56acae
AD
1824/*
1825 * This function is meant to pre-load the iterator for the zone init.
1826 * Specifically it walks through the ranges until we are caught up to the
1827 * first_init_pfn value and exits there. If we never encounter the value we
1828 * return false indicating there are no valid ranges left.
1829 */
1830static bool __init
1831deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1832 unsigned long *spfn, unsigned long *epfn,
1833 unsigned long first_init_pfn)
1834{
1835 u64 j;
1836
1837 /*
1838 * Start out by walking through the ranges in this zone that have
1839 * already been initialized. We don't need to do anything with them
1840 * so we just need to flush them out of the system.
1841 */
1842 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1843 if (*epfn <= first_init_pfn)
1844 continue;
1845 if (*spfn < first_init_pfn)
1846 *spfn = first_init_pfn;
1847 *i = j;
1848 return true;
1849 }
1850
1851 return false;
1852}
1853
1854/*
1855 * Initialize and free pages. We do it in two loops: first we initialize
1856 * struct page, then free to buddy allocator, because while we are
1857 * freeing pages we can access pages that are ahead (computing buddy
1858 * page in __free_one_page()).
1859 *
1860 * In order to try and keep some memory in the cache we have the loop
1861 * broken along max page order boundaries. This way we will not cause
1862 * any issues with the buddy page computation.
1863 */
1864static unsigned long __init
1865deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1866 unsigned long *end_pfn)
1867{
1868 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1869 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1870 unsigned long nr_pages = 0;
1871 u64 j = *i;
1872
1873 /* First we loop through and initialize the page values */
1874 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1875 unsigned long t;
1876
1877 if (mo_pfn <= *start_pfn)
1878 break;
1879
1880 t = min(mo_pfn, *end_pfn);
1881 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1882
1883 if (mo_pfn < *end_pfn) {
1884 *start_pfn = mo_pfn;
1885 break;
1886 }
1887 }
1888
1889 /* Reset values and now loop through freeing pages as needed */
1890 swap(j, *i);
1891
1892 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1893 unsigned long t;
1894
1895 if (mo_pfn <= spfn)
1896 break;
1897
1898 t = min(mo_pfn, epfn);
1899 deferred_free_pages(spfn, t);
1900
1901 if (mo_pfn <= epfn)
1902 break;
1903 }
1904
1905 return nr_pages;
1906}
1907
e4443149
DJ
1908static void __init
1909deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1910 void *arg)
1911{
1912 unsigned long spfn, epfn;
1913 struct zone *zone = arg;
1914 u64 i;
1915
1916 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1917
1918 /*
1919 * Initialize and free pages in MAX_ORDER sized increments so that we
1920 * can avoid introducing any issues with the buddy allocator.
1921 */
1922 while (spfn < end_pfn) {
1923 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1924 cond_resched();
1925 }
1926}
1927
ecd09650
DJ
1928/* An arch may override for more concurrency. */
1929__weak int __init
1930deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1931{
1932 return 1;
1933}
1934
7e18adb4 1935/* Initialise remaining memory on a node */
0e1cc95b 1936static int __init deferred_init_memmap(void *data)
7e18adb4 1937{
0e1cc95b 1938 pg_data_t *pgdat = data;
0e56acae 1939 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1940 unsigned long spfn = 0, epfn = 0;
0e56acae 1941 unsigned long first_init_pfn, flags;
7e18adb4 1942 unsigned long start = jiffies;
7e18adb4 1943 struct zone *zone;
e4443149 1944 int zid, max_threads;
2f47a91f 1945 u64 i;
7e18adb4 1946
3a2d7fa8
PT
1947 /* Bind memory initialisation thread to a local node if possible */
1948 if (!cpumask_empty(cpumask))
1949 set_cpus_allowed_ptr(current, cpumask);
1950
1951 pgdat_resize_lock(pgdat, &flags);
1952 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1953 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1954 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1955 pgdat_init_report_one_done();
0e1cc95b
MG
1956 return 0;
1957 }
1958
7e18adb4
MG
1959 /* Sanity check boundaries */
1960 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1961 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1962 pgdat->first_deferred_pfn = ULONG_MAX;
1963
3d060856
PT
1964 /*
1965 * Once we unlock here, the zone cannot be grown anymore, thus if an
1966 * interrupt thread must allocate this early in boot, zone must be
1967 * pre-grown prior to start of deferred page initialization.
1968 */
1969 pgdat_resize_unlock(pgdat, &flags);
1970
7e18adb4
MG
1971 /* Only the highest zone is deferred so find it */
1972 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1973 zone = pgdat->node_zones + zid;
1974 if (first_init_pfn < zone_end_pfn(zone))
1975 break;
1976 }
0e56acae
AD
1977
1978 /* If the zone is empty somebody else may have cleared out the zone */
1979 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1980 first_init_pfn))
1981 goto zone_empty;
7e18adb4 1982
ecd09650 1983 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1984
117003c3 1985 while (spfn < epfn) {
e4443149
DJ
1986 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1987 struct padata_mt_job job = {
1988 .thread_fn = deferred_init_memmap_chunk,
1989 .fn_arg = zone,
1990 .start = spfn,
1991 .size = epfn_align - spfn,
1992 .align = PAGES_PER_SECTION,
1993 .min_chunk = PAGES_PER_SECTION,
1994 .max_threads = max_threads,
1995 };
1996
1997 padata_do_multithreaded(&job);
1998 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1999 epfn_align);
117003c3 2000 }
0e56acae 2001zone_empty:
7e18adb4
MG
2002 /* Sanity check that the next zone really is unpopulated */
2003 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2004
89c7c402
DJ
2005 pr_info("node %d deferred pages initialised in %ums\n",
2006 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2007
2008 pgdat_init_report_one_done();
0e1cc95b
MG
2009 return 0;
2010}
c9e97a19 2011
c9e97a19
PT
2012/*
2013 * If this zone has deferred pages, try to grow it by initializing enough
2014 * deferred pages to satisfy the allocation specified by order, rounded up to
2015 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2016 * of SECTION_SIZE bytes by initializing struct pages in increments of
2017 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2018 *
2019 * Return true when zone was grown, otherwise return false. We return true even
2020 * when we grow less than requested, to let the caller decide if there are
2021 * enough pages to satisfy the allocation.
2022 *
2023 * Note: We use noinline because this function is needed only during boot, and
2024 * it is called from a __ref function _deferred_grow_zone. This way we are
2025 * making sure that it is not inlined into permanent text section.
2026 */
2027static noinline bool __init
2028deferred_grow_zone(struct zone *zone, unsigned int order)
2029{
c9e97a19 2030 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2031 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2032 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2033 unsigned long spfn, epfn, flags;
2034 unsigned long nr_pages = 0;
c9e97a19
PT
2035 u64 i;
2036
2037 /* Only the last zone may have deferred pages */
2038 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2039 return false;
2040
2041 pgdat_resize_lock(pgdat, &flags);
2042
c9e97a19
PT
2043 /*
2044 * If someone grew this zone while we were waiting for spinlock, return
2045 * true, as there might be enough pages already.
2046 */
2047 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2048 pgdat_resize_unlock(pgdat, &flags);
2049 return true;
2050 }
2051
0e56acae
AD
2052 /* If the zone is empty somebody else may have cleared out the zone */
2053 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2054 first_deferred_pfn)) {
2055 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2056 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2057 /* Retry only once. */
2058 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2059 }
2060
0e56acae
AD
2061 /*
2062 * Initialize and free pages in MAX_ORDER sized increments so
2063 * that we can avoid introducing any issues with the buddy
2064 * allocator.
2065 */
2066 while (spfn < epfn) {
2067 /* update our first deferred PFN for this section */
2068 first_deferred_pfn = spfn;
2069
2070 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2071 touch_nmi_watchdog();
c9e97a19 2072
0e56acae
AD
2073 /* We should only stop along section boundaries */
2074 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2075 continue;
c9e97a19 2076
0e56acae 2077 /* If our quota has been met we can stop here */
c9e97a19
PT
2078 if (nr_pages >= nr_pages_needed)
2079 break;
2080 }
2081
0e56acae 2082 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2083 pgdat_resize_unlock(pgdat, &flags);
2084
2085 return nr_pages > 0;
2086}
2087
2088/*
2089 * deferred_grow_zone() is __init, but it is called from
2090 * get_page_from_freelist() during early boot until deferred_pages permanently
2091 * disables this call. This is why we have refdata wrapper to avoid warning,
2092 * and to ensure that the function body gets unloaded.
2093 */
2094static bool __ref
2095_deferred_grow_zone(struct zone *zone, unsigned int order)
2096{
2097 return deferred_grow_zone(zone, order);
2098}
2099
7cf91a98 2100#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2101
2102void __init page_alloc_init_late(void)
2103{
7cf91a98 2104 struct zone *zone;
e900a918 2105 int nid;
7cf91a98
JK
2106
2107#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2108
d3cd131d
NS
2109 /* There will be num_node_state(N_MEMORY) threads */
2110 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2111 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2112 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2113 }
2114
2115 /* Block until all are initialised */
d3cd131d 2116 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2117
3e8fc007
MG
2118 /*
2119 * The number of managed pages has changed due to the initialisation
2120 * so the pcpu batch and high limits needs to be updated or the limits
2121 * will be artificially small.
2122 */
2123 for_each_populated_zone(zone)
2124 zone_pcp_update(zone);
2125
c9e97a19
PT
2126 /*
2127 * We initialized the rest of the deferred pages. Permanently disable
2128 * on-demand struct page initialization.
2129 */
2130 static_branch_disable(&deferred_pages);
2131
4248b0da
MG
2132 /* Reinit limits that are based on free pages after the kernel is up */
2133 files_maxfiles_init();
7cf91a98 2134#endif
350e88ba 2135
ba8f3587
LF
2136 buffer_init();
2137
3010f876
PT
2138 /* Discard memblock private memory */
2139 memblock_discard();
7cf91a98 2140
e900a918
DW
2141 for_each_node_state(nid, N_MEMORY)
2142 shuffle_free_memory(NODE_DATA(nid));
2143
7cf91a98
JK
2144 for_each_populated_zone(zone)
2145 set_zone_contiguous(zone);
7e18adb4 2146}
7e18adb4 2147
47118af0 2148#ifdef CONFIG_CMA
9cf510a5 2149/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2150void __init init_cma_reserved_pageblock(struct page *page)
2151{
2152 unsigned i = pageblock_nr_pages;
2153 struct page *p = page;
2154
2155 do {
2156 __ClearPageReserved(p);
2157 set_page_count(p, 0);
d883c6cf 2158 } while (++p, --i);
47118af0 2159
47118af0 2160 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2161
2162 if (pageblock_order >= MAX_ORDER) {
2163 i = pageblock_nr_pages;
2164 p = page;
2165 do {
2166 set_page_refcounted(p);
2167 __free_pages(p, MAX_ORDER - 1);
2168 p += MAX_ORDER_NR_PAGES;
2169 } while (i -= MAX_ORDER_NR_PAGES);
2170 } else {
2171 set_page_refcounted(page);
2172 __free_pages(page, pageblock_order);
2173 }
2174
3dcc0571 2175 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2176 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2177}
2178#endif
1da177e4
LT
2179
2180/*
2181 * The order of subdivision here is critical for the IO subsystem.
2182 * Please do not alter this order without good reasons and regression
2183 * testing. Specifically, as large blocks of memory are subdivided,
2184 * the order in which smaller blocks are delivered depends on the order
2185 * they're subdivided in this function. This is the primary factor
2186 * influencing the order in which pages are delivered to the IO
2187 * subsystem according to empirical testing, and this is also justified
2188 * by considering the behavior of a buddy system containing a single
2189 * large block of memory acted on by a series of small allocations.
2190 * This behavior is a critical factor in sglist merging's success.
2191 *
6d49e352 2192 * -- nyc
1da177e4 2193 */
085cc7d5 2194static inline void expand(struct zone *zone, struct page *page,
6ab01363 2195 int low, int high, int migratetype)
1da177e4
LT
2196{
2197 unsigned long size = 1 << high;
2198
2199 while (high > low) {
1da177e4
LT
2200 high--;
2201 size >>= 1;
309381fe 2202 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2203
acbc15a4
JK
2204 /*
2205 * Mark as guard pages (or page), that will allow to
2206 * merge back to allocator when buddy will be freed.
2207 * Corresponding page table entries will not be touched,
2208 * pages will stay not present in virtual address space
2209 */
2210 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2211 continue;
acbc15a4 2212
6ab01363 2213 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2214 set_buddy_order(&page[size], high);
1da177e4 2215 }
1da177e4
LT
2216}
2217
4e611801 2218static void check_new_page_bad(struct page *page)
1da177e4 2219{
f4c18e6f 2220 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2221 /* Don't complain about hwpoisoned pages */
2222 page_mapcount_reset(page); /* remove PageBuddy */
2223 return;
f4c18e6f 2224 }
58b7f119
WY
2225
2226 bad_page(page,
2227 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2228}
2229
2230/*
2231 * This page is about to be returned from the page allocator
2232 */
2233static inline int check_new_page(struct page *page)
2234{
2235 if (likely(page_expected_state(page,
2236 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2237 return 0;
2238
2239 check_new_page_bad(page);
2240 return 1;
2a7684a2
WF
2241}
2242
479f854a 2243#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2244/*
2245 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2246 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2247 * also checked when pcp lists are refilled from the free lists.
2248 */
2249static inline bool check_pcp_refill(struct page *page)
479f854a 2250{
8e57f8ac 2251 if (debug_pagealloc_enabled_static())
4462b32c
VB
2252 return check_new_page(page);
2253 else
2254 return false;
479f854a
MG
2255}
2256
4462b32c 2257static inline bool check_new_pcp(struct page *page)
479f854a
MG
2258{
2259 return check_new_page(page);
2260}
2261#else
4462b32c
VB
2262/*
2263 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2264 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2265 * enabled, they are also checked when being allocated from the pcp lists.
2266 */
2267static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2268{
2269 return check_new_page(page);
2270}
4462b32c 2271static inline bool check_new_pcp(struct page *page)
479f854a 2272{
8e57f8ac 2273 if (debug_pagealloc_enabled_static())
4462b32c
VB
2274 return check_new_page(page);
2275 else
2276 return false;
479f854a
MG
2277}
2278#endif /* CONFIG_DEBUG_VM */
2279
2280static bool check_new_pages(struct page *page, unsigned int order)
2281{
2282 int i;
2283 for (i = 0; i < (1 << order); i++) {
2284 struct page *p = page + i;
2285
2286 if (unlikely(check_new_page(p)))
2287 return true;
2288 }
2289
2290 return false;
2291}
2292
46f24fd8
JK
2293inline void post_alloc_hook(struct page *page, unsigned int order,
2294 gfp_t gfp_flags)
2295{
2296 set_page_private(page, 0);
2297 set_page_refcounted(page);
2298
2299 arch_alloc_page(page, order);
77bc7fd6 2300 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2301 kasan_alloc_pages(page, order);
8db26a3d 2302 kernel_unpoison_pages(page, 1 << order);
46f24fd8 2303 set_page_owner(page, order, gfp_flags);
862b6dee 2304
f289041e 2305 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
862b6dee 2306 kernel_init_free_pages(page, 1 << order);
46f24fd8
JK
2307}
2308
479f854a 2309static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2310 unsigned int alloc_flags)
2a7684a2 2311{
46f24fd8 2312 post_alloc_hook(page, order, gfp_flags);
17cf4406 2313
17cf4406
NP
2314 if (order && (gfp_flags & __GFP_COMP))
2315 prep_compound_page(page, order);
2316
75379191 2317 /*
2f064f34 2318 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2319 * allocate the page. The expectation is that the caller is taking
2320 * steps that will free more memory. The caller should avoid the page
2321 * being used for !PFMEMALLOC purposes.
2322 */
2f064f34
MH
2323 if (alloc_flags & ALLOC_NO_WATERMARKS)
2324 set_page_pfmemalloc(page);
2325 else
2326 clear_page_pfmemalloc(page);
1da177e4
LT
2327}
2328
56fd56b8
MG
2329/*
2330 * Go through the free lists for the given migratetype and remove
2331 * the smallest available page from the freelists
2332 */
85ccc8fa 2333static __always_inline
728ec980 2334struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2335 int migratetype)
2336{
2337 unsigned int current_order;
b8af2941 2338 struct free_area *area;
56fd56b8
MG
2339 struct page *page;
2340
2341 /* Find a page of the appropriate size in the preferred list */
2342 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2343 area = &(zone->free_area[current_order]);
b03641af 2344 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2345 if (!page)
2346 continue;
6ab01363
AD
2347 del_page_from_free_list(page, zone, current_order);
2348 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2349 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2350 return page;
2351 }
2352
2353 return NULL;
2354}
2355
2356
b2a0ac88
MG
2357/*
2358 * This array describes the order lists are fallen back to when
2359 * the free lists for the desirable migrate type are depleted
2360 */
da415663 2361static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2362 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2363 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2364 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2365#ifdef CONFIG_CMA
974a786e 2366 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2367#endif
194159fb 2368#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2369 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2370#endif
b2a0ac88
MG
2371};
2372
dc67647b 2373#ifdef CONFIG_CMA
85ccc8fa 2374static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2375 unsigned int order)
2376{
2377 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2378}
2379#else
2380static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2381 unsigned int order) { return NULL; }
2382#endif
2383
c361be55 2384/*
293ffa5e 2385 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2386 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2387 * boundary. If alignment is required, use move_freepages_block()
2388 */
02aa0cdd 2389static int move_freepages(struct zone *zone,
b69a7288 2390 struct page *start_page, struct page *end_page,
02aa0cdd 2391 int migratetype, int *num_movable)
c361be55
MG
2392{
2393 struct page *page;
d00181b9 2394 unsigned int order;
d100313f 2395 int pages_moved = 0;
c361be55 2396
c361be55
MG
2397 for (page = start_page; page <= end_page;) {
2398 if (!pfn_valid_within(page_to_pfn(page))) {
2399 page++;
2400 continue;
2401 }
2402
2403 if (!PageBuddy(page)) {
02aa0cdd
VB
2404 /*
2405 * We assume that pages that could be isolated for
2406 * migration are movable. But we don't actually try
2407 * isolating, as that would be expensive.
2408 */
2409 if (num_movable &&
2410 (PageLRU(page) || __PageMovable(page)))
2411 (*num_movable)++;
2412
c361be55
MG
2413 page++;
2414 continue;
2415 }
2416
cd961038
DR
2417 /* Make sure we are not inadvertently changing nodes */
2418 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2419 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2420
ab130f91 2421 order = buddy_order(page);
6ab01363 2422 move_to_free_list(page, zone, order, migratetype);
c361be55 2423 page += 1 << order;
d100313f 2424 pages_moved += 1 << order;
c361be55
MG
2425 }
2426
d100313f 2427 return pages_moved;
c361be55
MG
2428}
2429
ee6f509c 2430int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2431 int migratetype, int *num_movable)
c361be55
MG
2432{
2433 unsigned long start_pfn, end_pfn;
2434 struct page *start_page, *end_page;
2435
4a222127
DR
2436 if (num_movable)
2437 *num_movable = 0;
2438
c361be55 2439 start_pfn = page_to_pfn(page);
d9c23400 2440 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2441 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2442 end_page = start_page + pageblock_nr_pages - 1;
2443 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2444
2445 /* Do not cross zone boundaries */
108bcc96 2446 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2447 start_page = page;
108bcc96 2448 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2449 return 0;
2450
02aa0cdd
VB
2451 return move_freepages(zone, start_page, end_page, migratetype,
2452 num_movable);
c361be55
MG
2453}
2454
2f66a68f
MG
2455static void change_pageblock_range(struct page *pageblock_page,
2456 int start_order, int migratetype)
2457{
2458 int nr_pageblocks = 1 << (start_order - pageblock_order);
2459
2460 while (nr_pageblocks--) {
2461 set_pageblock_migratetype(pageblock_page, migratetype);
2462 pageblock_page += pageblock_nr_pages;
2463 }
2464}
2465
fef903ef 2466/*
9c0415eb
VB
2467 * When we are falling back to another migratetype during allocation, try to
2468 * steal extra free pages from the same pageblocks to satisfy further
2469 * allocations, instead of polluting multiple pageblocks.
2470 *
2471 * If we are stealing a relatively large buddy page, it is likely there will
2472 * be more free pages in the pageblock, so try to steal them all. For
2473 * reclaimable and unmovable allocations, we steal regardless of page size,
2474 * as fragmentation caused by those allocations polluting movable pageblocks
2475 * is worse than movable allocations stealing from unmovable and reclaimable
2476 * pageblocks.
fef903ef 2477 */
4eb7dce6
JK
2478static bool can_steal_fallback(unsigned int order, int start_mt)
2479{
2480 /*
2481 * Leaving this order check is intended, although there is
2482 * relaxed order check in next check. The reason is that
2483 * we can actually steal whole pageblock if this condition met,
2484 * but, below check doesn't guarantee it and that is just heuristic
2485 * so could be changed anytime.
2486 */
2487 if (order >= pageblock_order)
2488 return true;
2489
2490 if (order >= pageblock_order / 2 ||
2491 start_mt == MIGRATE_RECLAIMABLE ||
2492 start_mt == MIGRATE_UNMOVABLE ||
2493 page_group_by_mobility_disabled)
2494 return true;
2495
2496 return false;
2497}
2498
597c8920 2499static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2500{
2501 unsigned long max_boost;
2502
2503 if (!watermark_boost_factor)
597c8920 2504 return false;
14f69140
HW
2505 /*
2506 * Don't bother in zones that are unlikely to produce results.
2507 * On small machines, including kdump capture kernels running
2508 * in a small area, boosting the watermark can cause an out of
2509 * memory situation immediately.
2510 */
2511 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2512 return false;
1c30844d
MG
2513
2514 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2515 watermark_boost_factor, 10000);
94b3334c
MG
2516
2517 /*
2518 * high watermark may be uninitialised if fragmentation occurs
2519 * very early in boot so do not boost. We do not fall
2520 * through and boost by pageblock_nr_pages as failing
2521 * allocations that early means that reclaim is not going
2522 * to help and it may even be impossible to reclaim the
2523 * boosted watermark resulting in a hang.
2524 */
2525 if (!max_boost)
597c8920 2526 return false;
94b3334c 2527
1c30844d
MG
2528 max_boost = max(pageblock_nr_pages, max_boost);
2529
2530 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2531 max_boost);
597c8920
JW
2532
2533 return true;
1c30844d
MG
2534}
2535
4eb7dce6
JK
2536/*
2537 * This function implements actual steal behaviour. If order is large enough,
2538 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2539 * pageblock to our migratetype and determine how many already-allocated pages
2540 * are there in the pageblock with a compatible migratetype. If at least half
2541 * of pages are free or compatible, we can change migratetype of the pageblock
2542 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2543 */
2544static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2545 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2546{
ab130f91 2547 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2548 int free_pages, movable_pages, alike_pages;
2549 int old_block_type;
2550
2551 old_block_type = get_pageblock_migratetype(page);
fef903ef 2552
3bc48f96
VB
2553 /*
2554 * This can happen due to races and we want to prevent broken
2555 * highatomic accounting.
2556 */
02aa0cdd 2557 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2558 goto single_page;
2559
fef903ef
SB
2560 /* Take ownership for orders >= pageblock_order */
2561 if (current_order >= pageblock_order) {
2562 change_pageblock_range(page, current_order, start_type);
3bc48f96 2563 goto single_page;
fef903ef
SB
2564 }
2565
1c30844d
MG
2566 /*
2567 * Boost watermarks to increase reclaim pressure to reduce the
2568 * likelihood of future fallbacks. Wake kswapd now as the node
2569 * may be balanced overall and kswapd will not wake naturally.
2570 */
597c8920 2571 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2572 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2573
3bc48f96
VB
2574 /* We are not allowed to try stealing from the whole block */
2575 if (!whole_block)
2576 goto single_page;
2577
02aa0cdd
VB
2578 free_pages = move_freepages_block(zone, page, start_type,
2579 &movable_pages);
2580 /*
2581 * Determine how many pages are compatible with our allocation.
2582 * For movable allocation, it's the number of movable pages which
2583 * we just obtained. For other types it's a bit more tricky.
2584 */
2585 if (start_type == MIGRATE_MOVABLE) {
2586 alike_pages = movable_pages;
2587 } else {
2588 /*
2589 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2590 * to MOVABLE pageblock, consider all non-movable pages as
2591 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2592 * vice versa, be conservative since we can't distinguish the
2593 * exact migratetype of non-movable pages.
2594 */
2595 if (old_block_type == MIGRATE_MOVABLE)
2596 alike_pages = pageblock_nr_pages
2597 - (free_pages + movable_pages);
2598 else
2599 alike_pages = 0;
2600 }
2601
3bc48f96 2602 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2603 if (!free_pages)
3bc48f96 2604 goto single_page;
fef903ef 2605
02aa0cdd
VB
2606 /*
2607 * If a sufficient number of pages in the block are either free or of
2608 * comparable migratability as our allocation, claim the whole block.
2609 */
2610 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2611 page_group_by_mobility_disabled)
2612 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2613
2614 return;
2615
2616single_page:
6ab01363 2617 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2618}
2619
2149cdae
JK
2620/*
2621 * Check whether there is a suitable fallback freepage with requested order.
2622 * If only_stealable is true, this function returns fallback_mt only if
2623 * we can steal other freepages all together. This would help to reduce
2624 * fragmentation due to mixed migratetype pages in one pageblock.
2625 */
2626int find_suitable_fallback(struct free_area *area, unsigned int order,
2627 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2628{
2629 int i;
2630 int fallback_mt;
2631
2632 if (area->nr_free == 0)
2633 return -1;
2634
2635 *can_steal = false;
2636 for (i = 0;; i++) {
2637 fallback_mt = fallbacks[migratetype][i];
974a786e 2638 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2639 break;
2640
b03641af 2641 if (free_area_empty(area, fallback_mt))
4eb7dce6 2642 continue;
fef903ef 2643
4eb7dce6
JK
2644 if (can_steal_fallback(order, migratetype))
2645 *can_steal = true;
2646
2149cdae
JK
2647 if (!only_stealable)
2648 return fallback_mt;
2649
2650 if (*can_steal)
2651 return fallback_mt;
fef903ef 2652 }
4eb7dce6
JK
2653
2654 return -1;
fef903ef
SB
2655}
2656
0aaa29a5
MG
2657/*
2658 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2659 * there are no empty page blocks that contain a page with a suitable order
2660 */
2661static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2662 unsigned int alloc_order)
2663{
2664 int mt;
2665 unsigned long max_managed, flags;
2666
2667 /*
2668 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2669 * Check is race-prone but harmless.
2670 */
9705bea5 2671 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2672 if (zone->nr_reserved_highatomic >= max_managed)
2673 return;
2674
2675 spin_lock_irqsave(&zone->lock, flags);
2676
2677 /* Recheck the nr_reserved_highatomic limit under the lock */
2678 if (zone->nr_reserved_highatomic >= max_managed)
2679 goto out_unlock;
2680
2681 /* Yoink! */
2682 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2683 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2684 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2685 zone->nr_reserved_highatomic += pageblock_nr_pages;
2686 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2687 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2688 }
2689
2690out_unlock:
2691 spin_unlock_irqrestore(&zone->lock, flags);
2692}
2693
2694/*
2695 * Used when an allocation is about to fail under memory pressure. This
2696 * potentially hurts the reliability of high-order allocations when under
2697 * intense memory pressure but failed atomic allocations should be easier
2698 * to recover from than an OOM.
29fac03b
MK
2699 *
2700 * If @force is true, try to unreserve a pageblock even though highatomic
2701 * pageblock is exhausted.
0aaa29a5 2702 */
29fac03b
MK
2703static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2704 bool force)
0aaa29a5
MG
2705{
2706 struct zonelist *zonelist = ac->zonelist;
2707 unsigned long flags;
2708 struct zoneref *z;
2709 struct zone *zone;
2710 struct page *page;
2711 int order;
04c8716f 2712 bool ret;
0aaa29a5 2713
97a225e6 2714 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2715 ac->nodemask) {
29fac03b
MK
2716 /*
2717 * Preserve at least one pageblock unless memory pressure
2718 * is really high.
2719 */
2720 if (!force && zone->nr_reserved_highatomic <=
2721 pageblock_nr_pages)
0aaa29a5
MG
2722 continue;
2723
2724 spin_lock_irqsave(&zone->lock, flags);
2725 for (order = 0; order < MAX_ORDER; order++) {
2726 struct free_area *area = &(zone->free_area[order]);
2727
b03641af 2728 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2729 if (!page)
0aaa29a5
MG
2730 continue;
2731
0aaa29a5 2732 /*
4855e4a7
MK
2733 * In page freeing path, migratetype change is racy so
2734 * we can counter several free pages in a pageblock
2735 * in this loop althoug we changed the pageblock type
2736 * from highatomic to ac->migratetype. So we should
2737 * adjust the count once.
0aaa29a5 2738 */
a6ffdc07 2739 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2740 /*
2741 * It should never happen but changes to
2742 * locking could inadvertently allow a per-cpu
2743 * drain to add pages to MIGRATE_HIGHATOMIC
2744 * while unreserving so be safe and watch for
2745 * underflows.
2746 */
2747 zone->nr_reserved_highatomic -= min(
2748 pageblock_nr_pages,
2749 zone->nr_reserved_highatomic);
2750 }
0aaa29a5
MG
2751
2752 /*
2753 * Convert to ac->migratetype and avoid the normal
2754 * pageblock stealing heuristics. Minimally, the caller
2755 * is doing the work and needs the pages. More
2756 * importantly, if the block was always converted to
2757 * MIGRATE_UNMOVABLE or another type then the number
2758 * of pageblocks that cannot be completely freed
2759 * may increase.
2760 */
2761 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2762 ret = move_freepages_block(zone, page, ac->migratetype,
2763 NULL);
29fac03b
MK
2764 if (ret) {
2765 spin_unlock_irqrestore(&zone->lock, flags);
2766 return ret;
2767 }
0aaa29a5
MG
2768 }
2769 spin_unlock_irqrestore(&zone->lock, flags);
2770 }
04c8716f
MK
2771
2772 return false;
0aaa29a5
MG
2773}
2774
3bc48f96
VB
2775/*
2776 * Try finding a free buddy page on the fallback list and put it on the free
2777 * list of requested migratetype, possibly along with other pages from the same
2778 * block, depending on fragmentation avoidance heuristics. Returns true if
2779 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2780 *
2781 * The use of signed ints for order and current_order is a deliberate
2782 * deviation from the rest of this file, to make the for loop
2783 * condition simpler.
3bc48f96 2784 */
85ccc8fa 2785static __always_inline bool
6bb15450
MG
2786__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2787 unsigned int alloc_flags)
b2a0ac88 2788{
b8af2941 2789 struct free_area *area;
b002529d 2790 int current_order;
6bb15450 2791 int min_order = order;
b2a0ac88 2792 struct page *page;
4eb7dce6
JK
2793 int fallback_mt;
2794 bool can_steal;
b2a0ac88 2795
6bb15450
MG
2796 /*
2797 * Do not steal pages from freelists belonging to other pageblocks
2798 * i.e. orders < pageblock_order. If there are no local zones free,
2799 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2800 */
2801 if (alloc_flags & ALLOC_NOFRAGMENT)
2802 min_order = pageblock_order;
2803
7a8f58f3
VB
2804 /*
2805 * Find the largest available free page in the other list. This roughly
2806 * approximates finding the pageblock with the most free pages, which
2807 * would be too costly to do exactly.
2808 */
6bb15450 2809 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2810 --current_order) {
4eb7dce6
JK
2811 area = &(zone->free_area[current_order]);
2812 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2813 start_migratetype, false, &can_steal);
4eb7dce6
JK
2814 if (fallback_mt == -1)
2815 continue;
b2a0ac88 2816
7a8f58f3
VB
2817 /*
2818 * We cannot steal all free pages from the pageblock and the
2819 * requested migratetype is movable. In that case it's better to
2820 * steal and split the smallest available page instead of the
2821 * largest available page, because even if the next movable
2822 * allocation falls back into a different pageblock than this
2823 * one, it won't cause permanent fragmentation.
2824 */
2825 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2826 && current_order > order)
2827 goto find_smallest;
b2a0ac88 2828
7a8f58f3
VB
2829 goto do_steal;
2830 }
e0fff1bd 2831
7a8f58f3 2832 return false;
e0fff1bd 2833
7a8f58f3
VB
2834find_smallest:
2835 for (current_order = order; current_order < MAX_ORDER;
2836 current_order++) {
2837 area = &(zone->free_area[current_order]);
2838 fallback_mt = find_suitable_fallback(area, current_order,
2839 start_migratetype, false, &can_steal);
2840 if (fallback_mt != -1)
2841 break;
b2a0ac88
MG
2842 }
2843
7a8f58f3
VB
2844 /*
2845 * This should not happen - we already found a suitable fallback
2846 * when looking for the largest page.
2847 */
2848 VM_BUG_ON(current_order == MAX_ORDER);
2849
2850do_steal:
b03641af 2851 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2852
1c30844d
MG
2853 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2854 can_steal);
7a8f58f3
VB
2855
2856 trace_mm_page_alloc_extfrag(page, order, current_order,
2857 start_migratetype, fallback_mt);
2858
2859 return true;
2860
b2a0ac88
MG
2861}
2862
56fd56b8 2863/*
1da177e4
LT
2864 * Do the hard work of removing an element from the buddy allocator.
2865 * Call me with the zone->lock already held.
2866 */
85ccc8fa 2867static __always_inline struct page *
6bb15450
MG
2868__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2869 unsigned int alloc_flags)
1da177e4 2870{
1da177e4
LT
2871 struct page *page;
2872
ce8f86ee
H
2873 if (IS_ENABLED(CONFIG_CMA)) {
2874 /*
2875 * Balance movable allocations between regular and CMA areas by
2876 * allocating from CMA when over half of the zone's free memory
2877 * is in the CMA area.
2878 */
2879 if (alloc_flags & ALLOC_CMA &&
2880 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2881 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2882 page = __rmqueue_cma_fallback(zone, order);
2883 if (page)
2884 goto out;
2885 }
16867664 2886 }
3bc48f96 2887retry:
56fd56b8 2888 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2889 if (unlikely(!page)) {
8510e69c 2890 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2891 page = __rmqueue_cma_fallback(zone, order);
2892
6bb15450
MG
2893 if (!page && __rmqueue_fallback(zone, order, migratetype,
2894 alloc_flags))
3bc48f96 2895 goto retry;
728ec980 2896 }
ce8f86ee
H
2897out:
2898 if (page)
2899 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2900 return page;
1da177e4
LT
2901}
2902
5f63b720 2903/*
1da177e4
LT
2904 * Obtain a specified number of elements from the buddy allocator, all under
2905 * a single hold of the lock, for efficiency. Add them to the supplied list.
2906 * Returns the number of new pages which were placed at *list.
2907 */
5f63b720 2908static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2909 unsigned long count, struct list_head *list,
6bb15450 2910 int migratetype, unsigned int alloc_flags)
1da177e4 2911{
a6de734b 2912 int i, alloced = 0;
5f63b720 2913
d34b0733 2914 spin_lock(&zone->lock);
1da177e4 2915 for (i = 0; i < count; ++i) {
6bb15450
MG
2916 struct page *page = __rmqueue(zone, order, migratetype,
2917 alloc_flags);
085cc7d5 2918 if (unlikely(page == NULL))
1da177e4 2919 break;
81eabcbe 2920
479f854a
MG
2921 if (unlikely(check_pcp_refill(page)))
2922 continue;
2923
81eabcbe 2924 /*
0fac3ba5
VB
2925 * Split buddy pages returned by expand() are received here in
2926 * physical page order. The page is added to the tail of
2927 * caller's list. From the callers perspective, the linked list
2928 * is ordered by page number under some conditions. This is
2929 * useful for IO devices that can forward direction from the
2930 * head, thus also in the physical page order. This is useful
2931 * for IO devices that can merge IO requests if the physical
2932 * pages are ordered properly.
81eabcbe 2933 */
0fac3ba5 2934 list_add_tail(&page->lru, list);
a6de734b 2935 alloced++;
bb14c2c7 2936 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2937 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2938 -(1 << order));
1da177e4 2939 }
a6de734b
MG
2940
2941 /*
2942 * i pages were removed from the buddy list even if some leak due
2943 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2944 * on i. Do not confuse with 'alloced' which is the number of
2945 * pages added to the pcp list.
2946 */
f2260e6b 2947 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2948 spin_unlock(&zone->lock);
a6de734b 2949 return alloced;
1da177e4
LT
2950}
2951
4ae7c039 2952#ifdef CONFIG_NUMA
8fce4d8e 2953/*
4037d452
CL
2954 * Called from the vmstat counter updater to drain pagesets of this
2955 * currently executing processor on remote nodes after they have
2956 * expired.
2957 *
879336c3
CL
2958 * Note that this function must be called with the thread pinned to
2959 * a single processor.
8fce4d8e 2960 */
4037d452 2961void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2962{
4ae7c039 2963 unsigned long flags;
7be12fc9 2964 int to_drain, batch;
4ae7c039 2965
4037d452 2966 local_irq_save(flags);
4db0c3c2 2967 batch = READ_ONCE(pcp->batch);
7be12fc9 2968 to_drain = min(pcp->count, batch);
77ba9062 2969 if (to_drain > 0)
2a13515c 2970 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2971 local_irq_restore(flags);
4ae7c039
CL
2972}
2973#endif
2974
9f8f2172 2975/*
93481ff0 2976 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2977 *
2978 * The processor must either be the current processor and the
2979 * thread pinned to the current processor or a processor that
2980 * is not online.
2981 */
93481ff0 2982static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2983{
c54ad30c 2984 unsigned long flags;
93481ff0
VB
2985 struct per_cpu_pageset *pset;
2986 struct per_cpu_pages *pcp;
1da177e4 2987
93481ff0
VB
2988 local_irq_save(flags);
2989 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2990
93481ff0 2991 pcp = &pset->pcp;
77ba9062 2992 if (pcp->count)
93481ff0 2993 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2994 local_irq_restore(flags);
2995}
3dfa5721 2996
93481ff0
VB
2997/*
2998 * Drain pcplists of all zones on the indicated processor.
2999 *
3000 * The processor must either be the current processor and the
3001 * thread pinned to the current processor or a processor that
3002 * is not online.
3003 */
3004static void drain_pages(unsigned int cpu)
3005{
3006 struct zone *zone;
3007
3008 for_each_populated_zone(zone) {
3009 drain_pages_zone(cpu, zone);
1da177e4
LT
3010 }
3011}
1da177e4 3012
9f8f2172
CL
3013/*
3014 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3015 *
3016 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3017 * the single zone's pages.
9f8f2172 3018 */
93481ff0 3019void drain_local_pages(struct zone *zone)
9f8f2172 3020{
93481ff0
VB
3021 int cpu = smp_processor_id();
3022
3023 if (zone)
3024 drain_pages_zone(cpu, zone);
3025 else
3026 drain_pages(cpu);
9f8f2172
CL
3027}
3028
0ccce3b9
MG
3029static void drain_local_pages_wq(struct work_struct *work)
3030{
d9367bd0
WY
3031 struct pcpu_drain *drain;
3032
3033 drain = container_of(work, struct pcpu_drain, work);
3034
a459eeb7
MH
3035 /*
3036 * drain_all_pages doesn't use proper cpu hotplug protection so
3037 * we can race with cpu offline when the WQ can move this from
3038 * a cpu pinned worker to an unbound one. We can operate on a different
3039 * cpu which is allright but we also have to make sure to not move to
3040 * a different one.
3041 */
3042 preempt_disable();
d9367bd0 3043 drain_local_pages(drain->zone);
a459eeb7 3044 preempt_enable();
0ccce3b9
MG
3045}
3046
9f8f2172 3047/*
ec6e8c7e
VB
3048 * The implementation of drain_all_pages(), exposing an extra parameter to
3049 * drain on all cpus.
93481ff0 3050 *
ec6e8c7e
VB
3051 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3052 * not empty. The check for non-emptiness can however race with a free to
3053 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3054 * that need the guarantee that every CPU has drained can disable the
3055 * optimizing racy check.
9f8f2172 3056 */
3b1f3658 3057static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3058{
74046494 3059 int cpu;
74046494
GBY
3060
3061 /*
3062 * Allocate in the BSS so we wont require allocation in
3063 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3064 */
3065 static cpumask_t cpus_with_pcps;
3066
ce612879
MH
3067 /*
3068 * Make sure nobody triggers this path before mm_percpu_wq is fully
3069 * initialized.
3070 */
3071 if (WARN_ON_ONCE(!mm_percpu_wq))
3072 return;
3073
bd233f53
MG
3074 /*
3075 * Do not drain if one is already in progress unless it's specific to
3076 * a zone. Such callers are primarily CMA and memory hotplug and need
3077 * the drain to be complete when the call returns.
3078 */
3079 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3080 if (!zone)
3081 return;
3082 mutex_lock(&pcpu_drain_mutex);
3083 }
0ccce3b9 3084
74046494
GBY
3085 /*
3086 * We don't care about racing with CPU hotplug event
3087 * as offline notification will cause the notified
3088 * cpu to drain that CPU pcps and on_each_cpu_mask
3089 * disables preemption as part of its processing
3090 */
3091 for_each_online_cpu(cpu) {
93481ff0
VB
3092 struct per_cpu_pageset *pcp;
3093 struct zone *z;
74046494 3094 bool has_pcps = false;
93481ff0 3095
ec6e8c7e
VB
3096 if (force_all_cpus) {
3097 /*
3098 * The pcp.count check is racy, some callers need a
3099 * guarantee that no cpu is missed.
3100 */
3101 has_pcps = true;
3102 } else if (zone) {
74046494 3103 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3104 if (pcp->pcp.count)
74046494 3105 has_pcps = true;
93481ff0
VB
3106 } else {
3107 for_each_populated_zone(z) {
3108 pcp = per_cpu_ptr(z->pageset, cpu);
3109 if (pcp->pcp.count) {
3110 has_pcps = true;
3111 break;
3112 }
74046494
GBY
3113 }
3114 }
93481ff0 3115
74046494
GBY
3116 if (has_pcps)
3117 cpumask_set_cpu(cpu, &cpus_with_pcps);
3118 else
3119 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3120 }
0ccce3b9 3121
bd233f53 3122 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3123 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3124
3125 drain->zone = zone;
3126 INIT_WORK(&drain->work, drain_local_pages_wq);
3127 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3128 }
bd233f53 3129 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3130 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3131
3132 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3133}
3134
ec6e8c7e
VB
3135/*
3136 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3137 *
3138 * When zone parameter is non-NULL, spill just the single zone's pages.
3139 *
3140 * Note that this can be extremely slow as the draining happens in a workqueue.
3141 */
3142void drain_all_pages(struct zone *zone)
3143{
3144 __drain_all_pages(zone, false);
3145}
3146
296699de 3147#ifdef CONFIG_HIBERNATION
1da177e4 3148
556b969a
CY
3149/*
3150 * Touch the watchdog for every WD_PAGE_COUNT pages.
3151 */
3152#define WD_PAGE_COUNT (128*1024)
3153
1da177e4
LT
3154void mark_free_pages(struct zone *zone)
3155{
556b969a 3156 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3157 unsigned long flags;
7aeb09f9 3158 unsigned int order, t;
86760a2c 3159 struct page *page;
1da177e4 3160
8080fc03 3161 if (zone_is_empty(zone))
1da177e4
LT
3162 return;
3163
3164 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3165
108bcc96 3166 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3167 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3168 if (pfn_valid(pfn)) {
86760a2c 3169 page = pfn_to_page(pfn);
ba6b0979 3170
556b969a
CY
3171 if (!--page_count) {
3172 touch_nmi_watchdog();
3173 page_count = WD_PAGE_COUNT;
3174 }
3175
ba6b0979
JK
3176 if (page_zone(page) != zone)
3177 continue;
3178
7be98234
RW
3179 if (!swsusp_page_is_forbidden(page))
3180 swsusp_unset_page_free(page);
f623f0db 3181 }
1da177e4 3182
b2a0ac88 3183 for_each_migratetype_order(order, t) {
86760a2c
GT
3184 list_for_each_entry(page,
3185 &zone->free_area[order].free_list[t], lru) {
f623f0db 3186 unsigned long i;
1da177e4 3187
86760a2c 3188 pfn = page_to_pfn(page);
556b969a
CY
3189 for (i = 0; i < (1UL << order); i++) {
3190 if (!--page_count) {
3191 touch_nmi_watchdog();
3192 page_count = WD_PAGE_COUNT;
3193 }
7be98234 3194 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3195 }
f623f0db 3196 }
b2a0ac88 3197 }
1da177e4
LT
3198 spin_unlock_irqrestore(&zone->lock, flags);
3199}
e2c55dc8 3200#endif /* CONFIG_PM */
1da177e4 3201
2d4894b5 3202static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3203{
5f8dcc21 3204 int migratetype;
1da177e4 3205
4db7548c 3206 if (!free_pcp_prepare(page))
9cca35d4 3207 return false;
689bcebf 3208
dc4b0caf 3209 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3210 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3211 return true;
3212}
3213
2d4894b5 3214static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3215{
3216 struct zone *zone = page_zone(page);
3217 struct per_cpu_pages *pcp;
3218 int migratetype;
3219
3220 migratetype = get_pcppage_migratetype(page);
d34b0733 3221 __count_vm_event(PGFREE);
da456f14 3222
5f8dcc21
MG
3223 /*
3224 * We only track unmovable, reclaimable and movable on pcp lists.
3225 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3226 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3227 * areas back if necessary. Otherwise, we may have to free
3228 * excessively into the page allocator
3229 */
3230 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3231 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3232 free_one_page(zone, page, pfn, 0, migratetype,
3233 FPI_NONE);
9cca35d4 3234 return;
5f8dcc21
MG
3235 }
3236 migratetype = MIGRATE_MOVABLE;
3237 }
3238
99dcc3e5 3239 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3240 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3241 pcp->count++;
5c3ad2eb
VB
3242 if (pcp->count >= READ_ONCE(pcp->high))
3243 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3244}
5f8dcc21 3245
9cca35d4
MG
3246/*
3247 * Free a 0-order page
9cca35d4 3248 */
2d4894b5 3249void free_unref_page(struct page *page)
9cca35d4
MG
3250{
3251 unsigned long flags;
3252 unsigned long pfn = page_to_pfn(page);
3253
2d4894b5 3254 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3255 return;
3256
3257 local_irq_save(flags);
2d4894b5 3258 free_unref_page_commit(page, pfn);
d34b0733 3259 local_irq_restore(flags);
1da177e4
LT
3260}
3261
cc59850e
KK
3262/*
3263 * Free a list of 0-order pages
3264 */
2d4894b5 3265void free_unref_page_list(struct list_head *list)
cc59850e
KK
3266{
3267 struct page *page, *next;
9cca35d4 3268 unsigned long flags, pfn;
c24ad77d 3269 int batch_count = 0;
9cca35d4
MG
3270
3271 /* Prepare pages for freeing */
3272 list_for_each_entry_safe(page, next, list, lru) {
3273 pfn = page_to_pfn(page);
2d4894b5 3274 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3275 list_del(&page->lru);
3276 set_page_private(page, pfn);
3277 }
cc59850e 3278
9cca35d4 3279 local_irq_save(flags);
cc59850e 3280 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3281 unsigned long pfn = page_private(page);
3282
3283 set_page_private(page, 0);
2d4894b5
MG
3284 trace_mm_page_free_batched(page);
3285 free_unref_page_commit(page, pfn);
c24ad77d
LS
3286
3287 /*
3288 * Guard against excessive IRQ disabled times when we get
3289 * a large list of pages to free.
3290 */
3291 if (++batch_count == SWAP_CLUSTER_MAX) {
3292 local_irq_restore(flags);
3293 batch_count = 0;
3294 local_irq_save(flags);
3295 }
cc59850e 3296 }
9cca35d4 3297 local_irq_restore(flags);
cc59850e
KK
3298}
3299
8dfcc9ba
NP
3300/*
3301 * split_page takes a non-compound higher-order page, and splits it into
3302 * n (1<<order) sub-pages: page[0..n]
3303 * Each sub-page must be freed individually.
3304 *
3305 * Note: this is probably too low level an operation for use in drivers.
3306 * Please consult with lkml before using this in your driver.
3307 */
3308void split_page(struct page *page, unsigned int order)
3309{
3310 int i;
3311
309381fe
SL
3312 VM_BUG_ON_PAGE(PageCompound(page), page);
3313 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3314
a9627bc5 3315 for (i = 1; i < (1 << order); i++)
7835e98b 3316 set_page_refcounted(page + i);
8fb156c9 3317 split_page_owner(page, 1 << order);
e1baddf8 3318 split_page_memcg(page, 1 << order);
8dfcc9ba 3319}
5853ff23 3320EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3321
3c605096 3322int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3323{
748446bb
MG
3324 unsigned long watermark;
3325 struct zone *zone;
2139cbe6 3326 int mt;
748446bb
MG
3327
3328 BUG_ON(!PageBuddy(page));
3329
3330 zone = page_zone(page);
2e30abd1 3331 mt = get_pageblock_migratetype(page);
748446bb 3332
194159fb 3333 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3334 /*
3335 * Obey watermarks as if the page was being allocated. We can
3336 * emulate a high-order watermark check with a raised order-0
3337 * watermark, because we already know our high-order page
3338 * exists.
3339 */
fd1444b2 3340 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3341 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3342 return 0;
3343
8fb74b9f 3344 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3345 }
748446bb
MG
3346
3347 /* Remove page from free list */
b03641af 3348
6ab01363 3349 del_page_from_free_list(page, zone, order);
2139cbe6 3350
400bc7fd 3351 /*
3352 * Set the pageblock if the isolated page is at least half of a
3353 * pageblock
3354 */
748446bb
MG
3355 if (order >= pageblock_order - 1) {
3356 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3357 for (; page < endpage; page += pageblock_nr_pages) {
3358 int mt = get_pageblock_migratetype(page);
88ed365e 3359 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3360 && !is_migrate_highatomic(mt))
47118af0
MN
3361 set_pageblock_migratetype(page,
3362 MIGRATE_MOVABLE);
3363 }
748446bb
MG
3364 }
3365
f3a14ced 3366
8fb74b9f 3367 return 1UL << order;
1fb3f8ca
MG
3368}
3369
624f58d8
AD
3370/**
3371 * __putback_isolated_page - Return a now-isolated page back where we got it
3372 * @page: Page that was isolated
3373 * @order: Order of the isolated page
e6a0a7ad 3374 * @mt: The page's pageblock's migratetype
624f58d8
AD
3375 *
3376 * This function is meant to return a page pulled from the free lists via
3377 * __isolate_free_page back to the free lists they were pulled from.
3378 */
3379void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3380{
3381 struct zone *zone = page_zone(page);
3382
3383 /* zone lock should be held when this function is called */
3384 lockdep_assert_held(&zone->lock);
3385
3386 /* Return isolated page to tail of freelist. */
f04a5d5d 3387 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3388 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3389}
3390
060e7417
MG
3391/*
3392 * Update NUMA hit/miss statistics
3393 *
3394 * Must be called with interrupts disabled.
060e7417 3395 */
41b6167e 3396static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3397{
3398#ifdef CONFIG_NUMA
3a321d2a 3399 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3400
4518085e
KW
3401 /* skip numa counters update if numa stats is disabled */
3402 if (!static_branch_likely(&vm_numa_stat_key))
3403 return;
3404
c1093b74 3405 if (zone_to_nid(z) != numa_node_id())
060e7417 3406 local_stat = NUMA_OTHER;
060e7417 3407
c1093b74 3408 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3409 __inc_numa_state(z, NUMA_HIT);
2df26639 3410 else {
3a321d2a
KW
3411 __inc_numa_state(z, NUMA_MISS);
3412 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3413 }
3a321d2a 3414 __inc_numa_state(z, local_stat);
060e7417
MG
3415#endif
3416}
3417
066b2393
MG
3418/* Remove page from the per-cpu list, caller must protect the list */
3419static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3420 unsigned int alloc_flags,
453f85d4 3421 struct per_cpu_pages *pcp,
066b2393
MG
3422 struct list_head *list)
3423{
3424 struct page *page;
3425
3426 do {
3427 if (list_empty(list)) {
3428 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3429 READ_ONCE(pcp->batch), list,
6bb15450 3430 migratetype, alloc_flags);
066b2393
MG
3431 if (unlikely(list_empty(list)))
3432 return NULL;
3433 }
3434
453f85d4 3435 page = list_first_entry(list, struct page, lru);
066b2393
MG
3436 list_del(&page->lru);
3437 pcp->count--;
3438 } while (check_new_pcp(page));
3439
3440 return page;
3441}
3442
3443/* Lock and remove page from the per-cpu list */
3444static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3445 struct zone *zone, gfp_t gfp_flags,
3446 int migratetype, unsigned int alloc_flags)
066b2393
MG
3447{
3448 struct per_cpu_pages *pcp;
3449 struct list_head *list;
066b2393 3450 struct page *page;
d34b0733 3451 unsigned long flags;
066b2393 3452
d34b0733 3453 local_irq_save(flags);
066b2393
MG
3454 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3455 list = &pcp->lists[migratetype];
6bb15450 3456 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3457 if (page) {
1c52e6d0 3458 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3459 zone_statistics(preferred_zone, zone);
3460 }
d34b0733 3461 local_irq_restore(flags);
066b2393
MG
3462 return page;
3463}
3464
1da177e4 3465/*
75379191 3466 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3467 */
0a15c3e9 3468static inline
066b2393 3469struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3470 struct zone *zone, unsigned int order,
c603844b
MG
3471 gfp_t gfp_flags, unsigned int alloc_flags,
3472 int migratetype)
1da177e4
LT
3473{
3474 unsigned long flags;
689bcebf 3475 struct page *page;
1da177e4 3476
d34b0733 3477 if (likely(order == 0)) {
1d91df85
JK
3478 /*
3479 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3480 * we need to skip it when CMA area isn't allowed.
3481 */
3482 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3483 migratetype != MIGRATE_MOVABLE) {
3484 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3485 migratetype, alloc_flags);
1d91df85
JK
3486 goto out;
3487 }
066b2393 3488 }
83b9355b 3489
066b2393
MG
3490 /*
3491 * We most definitely don't want callers attempting to
3492 * allocate greater than order-1 page units with __GFP_NOFAIL.
3493 */
3494 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3495 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3496
066b2393
MG
3497 do {
3498 page = NULL;
1d91df85
JK
3499 /*
3500 * order-0 request can reach here when the pcplist is skipped
3501 * due to non-CMA allocation context. HIGHATOMIC area is
3502 * reserved for high-order atomic allocation, so order-0
3503 * request should skip it.
3504 */
3505 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3506 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3507 if (page)
3508 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3509 }
a74609fa 3510 if (!page)
6bb15450 3511 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3512 } while (page && check_new_pages(page, order));
3513 spin_unlock(&zone->lock);
3514 if (!page)
3515 goto failed;
3516 __mod_zone_freepage_state(zone, -(1 << order),
3517 get_pcppage_migratetype(page));
1da177e4 3518
16709d1d 3519 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3520 zone_statistics(preferred_zone, zone);
a74609fa 3521 local_irq_restore(flags);
1da177e4 3522
066b2393 3523out:
73444bc4
MG
3524 /* Separate test+clear to avoid unnecessary atomics */
3525 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3526 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3527 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3528 }
3529
066b2393 3530 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3531 return page;
a74609fa
NP
3532
3533failed:
3534 local_irq_restore(flags);
a74609fa 3535 return NULL;
1da177e4
LT
3536}
3537
933e312e
AM
3538#ifdef CONFIG_FAIL_PAGE_ALLOC
3539
b2588c4b 3540static struct {
933e312e
AM
3541 struct fault_attr attr;
3542
621a5f7a 3543 bool ignore_gfp_highmem;
71baba4b 3544 bool ignore_gfp_reclaim;
54114994 3545 u32 min_order;
933e312e
AM
3546} fail_page_alloc = {
3547 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3548 .ignore_gfp_reclaim = true,
621a5f7a 3549 .ignore_gfp_highmem = true,
54114994 3550 .min_order = 1,
933e312e
AM
3551};
3552
3553static int __init setup_fail_page_alloc(char *str)
3554{
3555 return setup_fault_attr(&fail_page_alloc.attr, str);
3556}
3557__setup("fail_page_alloc=", setup_fail_page_alloc);
3558
af3b8544 3559static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3560{
54114994 3561 if (order < fail_page_alloc.min_order)
deaf386e 3562 return false;
933e312e 3563 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3564 return false;
933e312e 3565 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3566 return false;
71baba4b
MG
3567 if (fail_page_alloc.ignore_gfp_reclaim &&
3568 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3569 return false;
933e312e
AM
3570
3571 return should_fail(&fail_page_alloc.attr, 1 << order);
3572}
3573
3574#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3575
3576static int __init fail_page_alloc_debugfs(void)
3577{
0825a6f9 3578 umode_t mode = S_IFREG | 0600;
933e312e 3579 struct dentry *dir;
933e312e 3580
dd48c085
AM
3581 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3582 &fail_page_alloc.attr);
b2588c4b 3583
d9f7979c
GKH
3584 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3585 &fail_page_alloc.ignore_gfp_reclaim);
3586 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3587 &fail_page_alloc.ignore_gfp_highmem);
3588 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3589
d9f7979c 3590 return 0;
933e312e
AM
3591}
3592
3593late_initcall(fail_page_alloc_debugfs);
3594
3595#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3596
3597#else /* CONFIG_FAIL_PAGE_ALLOC */
3598
af3b8544 3599static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3600{
deaf386e 3601 return false;
933e312e
AM
3602}
3603
3604#endif /* CONFIG_FAIL_PAGE_ALLOC */
3605
76cd6173 3606noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3607{
3608 return __should_fail_alloc_page(gfp_mask, order);
3609}
3610ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3611
f27ce0e1
JK
3612static inline long __zone_watermark_unusable_free(struct zone *z,
3613 unsigned int order, unsigned int alloc_flags)
3614{
3615 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3616 long unusable_free = (1 << order) - 1;
3617
3618 /*
3619 * If the caller does not have rights to ALLOC_HARDER then subtract
3620 * the high-atomic reserves. This will over-estimate the size of the
3621 * atomic reserve but it avoids a search.
3622 */
3623 if (likely(!alloc_harder))
3624 unusable_free += z->nr_reserved_highatomic;
3625
3626#ifdef CONFIG_CMA
3627 /* If allocation can't use CMA areas don't use free CMA pages */
3628 if (!(alloc_flags & ALLOC_CMA))
3629 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3630#endif
3631
3632 return unusable_free;
3633}
3634
1da177e4 3635/*
97a16fc8
MG
3636 * Return true if free base pages are above 'mark'. For high-order checks it
3637 * will return true of the order-0 watermark is reached and there is at least
3638 * one free page of a suitable size. Checking now avoids taking the zone lock
3639 * to check in the allocation paths if no pages are free.
1da177e4 3640 */
86a294a8 3641bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3642 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3643 long free_pages)
1da177e4 3644{
d23ad423 3645 long min = mark;
1da177e4 3646 int o;
cd04ae1e 3647 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3648
0aaa29a5 3649 /* free_pages may go negative - that's OK */
f27ce0e1 3650 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3651
7fb1d9fc 3652 if (alloc_flags & ALLOC_HIGH)
1da177e4 3653 min -= min / 2;
0aaa29a5 3654
f27ce0e1 3655 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3656 /*
3657 * OOM victims can try even harder than normal ALLOC_HARDER
3658 * users on the grounds that it's definitely going to be in
3659 * the exit path shortly and free memory. Any allocation it
3660 * makes during the free path will be small and short-lived.
3661 */
3662 if (alloc_flags & ALLOC_OOM)
3663 min -= min / 2;
3664 else
3665 min -= min / 4;
3666 }
3667
97a16fc8
MG
3668 /*
3669 * Check watermarks for an order-0 allocation request. If these
3670 * are not met, then a high-order request also cannot go ahead
3671 * even if a suitable page happened to be free.
3672 */
97a225e6 3673 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3674 return false;
1da177e4 3675
97a16fc8
MG
3676 /* If this is an order-0 request then the watermark is fine */
3677 if (!order)
3678 return true;
3679
3680 /* For a high-order request, check at least one suitable page is free */
3681 for (o = order; o < MAX_ORDER; o++) {
3682 struct free_area *area = &z->free_area[o];
3683 int mt;
3684
3685 if (!area->nr_free)
3686 continue;
3687
97a16fc8 3688 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3689 if (!free_area_empty(area, mt))
97a16fc8
MG
3690 return true;
3691 }
3692
3693#ifdef CONFIG_CMA
d883c6cf 3694 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3695 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3696 return true;
d883c6cf 3697 }
97a16fc8 3698#endif
76089d00 3699 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3700 return true;
1da177e4 3701 }
97a16fc8 3702 return false;
88f5acf8
MG
3703}
3704
7aeb09f9 3705bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3706 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3707{
97a225e6 3708 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3709 zone_page_state(z, NR_FREE_PAGES));
3710}
3711
48ee5f36 3712static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3713 unsigned long mark, int highest_zoneidx,
f80b08fc 3714 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3715{
f27ce0e1 3716 long free_pages;
d883c6cf 3717
f27ce0e1 3718 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3719
3720 /*
3721 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3722 * need to be calculated.
48ee5f36 3723 */
f27ce0e1
JK
3724 if (!order) {
3725 long fast_free;
3726
3727 fast_free = free_pages;
3728 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3729 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3730 return true;
3731 }
48ee5f36 3732
f80b08fc
CTR
3733 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3734 free_pages))
3735 return true;
3736 /*
3737 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3738 * when checking the min watermark. The min watermark is the
3739 * point where boosting is ignored so that kswapd is woken up
3740 * when below the low watermark.
3741 */
3742 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3743 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3744 mark = z->_watermark[WMARK_MIN];
3745 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3746 alloc_flags, free_pages);
3747 }
3748
3749 return false;
48ee5f36
MG
3750}
3751
7aeb09f9 3752bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3753 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3754{
3755 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3756
3757 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3758 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3759
97a225e6 3760 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3761 free_pages);
1da177e4
LT
3762}
3763
9276b1bc 3764#ifdef CONFIG_NUMA
957f822a
DR
3765static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3766{
e02dc017 3767 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3768 node_reclaim_distance;
957f822a 3769}
9276b1bc 3770#else /* CONFIG_NUMA */
957f822a
DR
3771static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3772{
3773 return true;
3774}
9276b1bc
PJ
3775#endif /* CONFIG_NUMA */
3776
6bb15450
MG
3777/*
3778 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3779 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3780 * premature use of a lower zone may cause lowmem pressure problems that
3781 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3782 * probably too small. It only makes sense to spread allocations to avoid
3783 * fragmentation between the Normal and DMA32 zones.
3784 */
3785static inline unsigned int
0a79cdad 3786alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3787{
736838e9 3788 unsigned int alloc_flags;
0a79cdad 3789
736838e9
MN
3790 /*
3791 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3792 * to save a branch.
3793 */
3794 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3795
3796#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3797 if (!zone)
3798 return alloc_flags;
3799
6bb15450 3800 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3801 return alloc_flags;
6bb15450
MG
3802
3803 /*
3804 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3805 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3806 * on UMA that if Normal is populated then so is DMA32.
3807 */
3808 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3809 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3810 return alloc_flags;
6bb15450 3811
8118b82e 3812 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3813#endif /* CONFIG_ZONE_DMA32 */
3814 return alloc_flags;
6bb15450 3815}
6bb15450 3816
8510e69c
JK
3817static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3818 unsigned int alloc_flags)
3819{
3820#ifdef CONFIG_CMA
3821 unsigned int pflags = current->flags;
3822
3823 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3824 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3825 alloc_flags |= ALLOC_CMA;
3826
3827#endif
3828 return alloc_flags;
3829}
3830
7fb1d9fc 3831/*
0798e519 3832 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3833 * a page.
3834 */
3835static struct page *
a9263751
VB
3836get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3837 const struct alloc_context *ac)
753ee728 3838{
6bb15450 3839 struct zoneref *z;
5117f45d 3840 struct zone *zone;
3b8c0be4 3841 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3842 bool no_fallback;
3b8c0be4 3843
6bb15450 3844retry:
7fb1d9fc 3845 /*
9276b1bc 3846 * Scan zonelist, looking for a zone with enough free.
344736f2 3847 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3848 */
6bb15450
MG
3849 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3850 z = ac->preferred_zoneref;
30d8ec73
MN
3851 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3852 ac->nodemask) {
be06af00 3853 struct page *page;
e085dbc5
JW
3854 unsigned long mark;
3855
664eedde
MG
3856 if (cpusets_enabled() &&
3857 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3858 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3859 continue;
a756cf59
JW
3860 /*
3861 * When allocating a page cache page for writing, we
281e3726
MG
3862 * want to get it from a node that is within its dirty
3863 * limit, such that no single node holds more than its
a756cf59 3864 * proportional share of globally allowed dirty pages.
281e3726 3865 * The dirty limits take into account the node's
a756cf59
JW
3866 * lowmem reserves and high watermark so that kswapd
3867 * should be able to balance it without having to
3868 * write pages from its LRU list.
3869 *
a756cf59 3870 * XXX: For now, allow allocations to potentially
281e3726 3871 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3872 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3873 * which is important when on a NUMA setup the allowed
281e3726 3874 * nodes are together not big enough to reach the
a756cf59 3875 * global limit. The proper fix for these situations
281e3726 3876 * will require awareness of nodes in the
a756cf59
JW
3877 * dirty-throttling and the flusher threads.
3878 */
3b8c0be4
MG
3879 if (ac->spread_dirty_pages) {
3880 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3881 continue;
3882
3883 if (!node_dirty_ok(zone->zone_pgdat)) {
3884 last_pgdat_dirty_limit = zone->zone_pgdat;
3885 continue;
3886 }
3887 }
7fb1d9fc 3888
6bb15450
MG
3889 if (no_fallback && nr_online_nodes > 1 &&
3890 zone != ac->preferred_zoneref->zone) {
3891 int local_nid;
3892
3893 /*
3894 * If moving to a remote node, retry but allow
3895 * fragmenting fallbacks. Locality is more important
3896 * than fragmentation avoidance.
3897 */
3898 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3899 if (zone_to_nid(zone) != local_nid) {
3900 alloc_flags &= ~ALLOC_NOFRAGMENT;
3901 goto retry;
3902 }
3903 }
3904
a9214443 3905 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3906 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3907 ac->highest_zoneidx, alloc_flags,
3908 gfp_mask)) {
fa5e084e
MG
3909 int ret;
3910
c9e97a19
PT
3911#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3912 /*
3913 * Watermark failed for this zone, but see if we can
3914 * grow this zone if it contains deferred pages.
3915 */
3916 if (static_branch_unlikely(&deferred_pages)) {
3917 if (_deferred_grow_zone(zone, order))
3918 goto try_this_zone;
3919 }
3920#endif
5dab2911
MG
3921 /* Checked here to keep the fast path fast */
3922 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3923 if (alloc_flags & ALLOC_NO_WATERMARKS)
3924 goto try_this_zone;
3925
a5f5f91d 3926 if (node_reclaim_mode == 0 ||
c33d6c06 3927 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3928 continue;
3929
a5f5f91d 3930 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3931 switch (ret) {
a5f5f91d 3932 case NODE_RECLAIM_NOSCAN:
fa5e084e 3933 /* did not scan */
cd38b115 3934 continue;
a5f5f91d 3935 case NODE_RECLAIM_FULL:
fa5e084e 3936 /* scanned but unreclaimable */
cd38b115 3937 continue;
fa5e084e
MG
3938 default:
3939 /* did we reclaim enough */
fed2719e 3940 if (zone_watermark_ok(zone, order, mark,
97a225e6 3941 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3942 goto try_this_zone;
3943
fed2719e 3944 continue;
0798e519 3945 }
7fb1d9fc
RS
3946 }
3947
fa5e084e 3948try_this_zone:
066b2393 3949 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3950 gfp_mask, alloc_flags, ac->migratetype);
75379191 3951 if (page) {
479f854a 3952 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3953
3954 /*
3955 * If this is a high-order atomic allocation then check
3956 * if the pageblock should be reserved for the future
3957 */
3958 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3959 reserve_highatomic_pageblock(page, zone, order);
3960
75379191 3961 return page;
c9e97a19
PT
3962 } else {
3963#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3964 /* Try again if zone has deferred pages */
3965 if (static_branch_unlikely(&deferred_pages)) {
3966 if (_deferred_grow_zone(zone, order))
3967 goto try_this_zone;
3968 }
3969#endif
75379191 3970 }
54a6eb5c 3971 }
9276b1bc 3972
6bb15450
MG
3973 /*
3974 * It's possible on a UMA machine to get through all zones that are
3975 * fragmented. If avoiding fragmentation, reset and try again.
3976 */
3977 if (no_fallback) {
3978 alloc_flags &= ~ALLOC_NOFRAGMENT;
3979 goto retry;
3980 }
3981
4ffeaf35 3982 return NULL;
753ee728
MH
3983}
3984
9af744d7 3985static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3986{
a238ab5b 3987 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3988
3989 /*
3990 * This documents exceptions given to allocations in certain
3991 * contexts that are allowed to allocate outside current's set
3992 * of allowed nodes.
3993 */
3994 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3995 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3996 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3997 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3998 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3999 filter &= ~SHOW_MEM_FILTER_NODES;
4000
9af744d7 4001 show_mem(filter, nodemask);
aa187507
MH
4002}
4003
a8e99259 4004void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4005{
4006 struct va_format vaf;
4007 va_list args;
1be334e5 4008 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4009
0f7896f1 4010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4011 return;
4012
7877cdcc
MH
4013 va_start(args, fmt);
4014 vaf.fmt = fmt;
4015 vaf.va = &args;
ef8444ea 4016 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4017 current->comm, &vaf, gfp_mask, &gfp_mask,
4018 nodemask_pr_args(nodemask));
7877cdcc 4019 va_end(args);
3ee9a4f0 4020
a8e99259 4021 cpuset_print_current_mems_allowed();
ef8444ea 4022 pr_cont("\n");
a238ab5b 4023 dump_stack();
685dbf6f 4024 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4025}
4026
6c18ba7a
MH
4027static inline struct page *
4028__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4029 unsigned int alloc_flags,
4030 const struct alloc_context *ac)
4031{
4032 struct page *page;
4033
4034 page = get_page_from_freelist(gfp_mask, order,
4035 alloc_flags|ALLOC_CPUSET, ac);
4036 /*
4037 * fallback to ignore cpuset restriction if our nodes
4038 * are depleted
4039 */
4040 if (!page)
4041 page = get_page_from_freelist(gfp_mask, order,
4042 alloc_flags, ac);
4043
4044 return page;
4045}
4046
11e33f6a
MG
4047static inline struct page *
4048__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4049 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4050{
6e0fc46d
DR
4051 struct oom_control oc = {
4052 .zonelist = ac->zonelist,
4053 .nodemask = ac->nodemask,
2a966b77 4054 .memcg = NULL,
6e0fc46d
DR
4055 .gfp_mask = gfp_mask,
4056 .order = order,
6e0fc46d 4057 };
11e33f6a
MG
4058 struct page *page;
4059
9879de73
JW
4060 *did_some_progress = 0;
4061
9879de73 4062 /*
dc56401f
JW
4063 * Acquire the oom lock. If that fails, somebody else is
4064 * making progress for us.
9879de73 4065 */
dc56401f 4066 if (!mutex_trylock(&oom_lock)) {
9879de73 4067 *did_some_progress = 1;
11e33f6a 4068 schedule_timeout_uninterruptible(1);
1da177e4
LT
4069 return NULL;
4070 }
6b1de916 4071
11e33f6a
MG
4072 /*
4073 * Go through the zonelist yet one more time, keep very high watermark
4074 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4075 * we're still under heavy pressure. But make sure that this reclaim
4076 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4077 * allocation which will never fail due to oom_lock already held.
11e33f6a 4078 */
e746bf73
TH
4079 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4080 ~__GFP_DIRECT_RECLAIM, order,
4081 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4082 if (page)
11e33f6a
MG
4083 goto out;
4084
06ad276a
MH
4085 /* Coredumps can quickly deplete all memory reserves */
4086 if (current->flags & PF_DUMPCORE)
4087 goto out;
4088 /* The OOM killer will not help higher order allocs */
4089 if (order > PAGE_ALLOC_COSTLY_ORDER)
4090 goto out;
dcda9b04
MH
4091 /*
4092 * We have already exhausted all our reclaim opportunities without any
4093 * success so it is time to admit defeat. We will skip the OOM killer
4094 * because it is very likely that the caller has a more reasonable
4095 * fallback than shooting a random task.
cfb4a541
MN
4096 *
4097 * The OOM killer may not free memory on a specific node.
dcda9b04 4098 */
cfb4a541 4099 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4100 goto out;
06ad276a 4101 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4102 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4103 goto out;
4104 if (pm_suspended_storage())
4105 goto out;
4106 /*
4107 * XXX: GFP_NOFS allocations should rather fail than rely on
4108 * other request to make a forward progress.
4109 * We are in an unfortunate situation where out_of_memory cannot
4110 * do much for this context but let's try it to at least get
4111 * access to memory reserved if the current task is killed (see
4112 * out_of_memory). Once filesystems are ready to handle allocation
4113 * failures more gracefully we should just bail out here.
4114 */
4115
3c2c6488 4116 /* Exhausted what can be done so it's blame time */
5020e285 4117 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4118 *did_some_progress = 1;
5020e285 4119
6c18ba7a
MH
4120 /*
4121 * Help non-failing allocations by giving them access to memory
4122 * reserves
4123 */
4124 if (gfp_mask & __GFP_NOFAIL)
4125 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4126 ALLOC_NO_WATERMARKS, ac);
5020e285 4127 }
11e33f6a 4128out:
dc56401f 4129 mutex_unlock(&oom_lock);
11e33f6a
MG
4130 return page;
4131}
4132
33c2d214
MH
4133/*
4134 * Maximum number of compaction retries wit a progress before OOM
4135 * killer is consider as the only way to move forward.
4136 */
4137#define MAX_COMPACT_RETRIES 16
4138
56de7263
MG
4139#ifdef CONFIG_COMPACTION
4140/* Try memory compaction for high-order allocations before reclaim */
4141static struct page *
4142__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4143 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4144 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4145{
5e1f0f09 4146 struct page *page = NULL;
eb414681 4147 unsigned long pflags;
499118e9 4148 unsigned int noreclaim_flag;
53853e2d
VB
4149
4150 if (!order)
66199712 4151 return NULL;
66199712 4152
eb414681 4153 psi_memstall_enter(&pflags);
499118e9 4154 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4155
c5d01d0d 4156 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4157 prio, &page);
eb414681 4158
499118e9 4159 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4160 psi_memstall_leave(&pflags);
56de7263 4161
98dd3b48
VB
4162 /*
4163 * At least in one zone compaction wasn't deferred or skipped, so let's
4164 * count a compaction stall
4165 */
4166 count_vm_event(COMPACTSTALL);
8fb74b9f 4167
5e1f0f09
MG
4168 /* Prep a captured page if available */
4169 if (page)
4170 prep_new_page(page, order, gfp_mask, alloc_flags);
4171
4172 /* Try get a page from the freelist if available */
4173 if (!page)
4174 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4175
98dd3b48
VB
4176 if (page) {
4177 struct zone *zone = page_zone(page);
53853e2d 4178
98dd3b48
VB
4179 zone->compact_blockskip_flush = false;
4180 compaction_defer_reset(zone, order, true);
4181 count_vm_event(COMPACTSUCCESS);
4182 return page;
4183 }
56de7263 4184
98dd3b48
VB
4185 /*
4186 * It's bad if compaction run occurs and fails. The most likely reason
4187 * is that pages exist, but not enough to satisfy watermarks.
4188 */
4189 count_vm_event(COMPACTFAIL);
66199712 4190
98dd3b48 4191 cond_resched();
56de7263
MG
4192
4193 return NULL;
4194}
33c2d214 4195
3250845d
VB
4196static inline bool
4197should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4198 enum compact_result compact_result,
4199 enum compact_priority *compact_priority,
d9436498 4200 int *compaction_retries)
3250845d
VB
4201{
4202 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4203 int min_priority;
65190cff
MH
4204 bool ret = false;
4205 int retries = *compaction_retries;
4206 enum compact_priority priority = *compact_priority;
3250845d
VB
4207
4208 if (!order)
4209 return false;
4210
d9436498
VB
4211 if (compaction_made_progress(compact_result))
4212 (*compaction_retries)++;
4213
3250845d
VB
4214 /*
4215 * compaction considers all the zone as desperately out of memory
4216 * so it doesn't really make much sense to retry except when the
4217 * failure could be caused by insufficient priority
4218 */
d9436498
VB
4219 if (compaction_failed(compact_result))
4220 goto check_priority;
3250845d 4221
49433085
VB
4222 /*
4223 * compaction was skipped because there are not enough order-0 pages
4224 * to work with, so we retry only if it looks like reclaim can help.
4225 */
4226 if (compaction_needs_reclaim(compact_result)) {
4227 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4228 goto out;
4229 }
4230
3250845d
VB
4231 /*
4232 * make sure the compaction wasn't deferred or didn't bail out early
4233 * due to locks contention before we declare that we should give up.
49433085
VB
4234 * But the next retry should use a higher priority if allowed, so
4235 * we don't just keep bailing out endlessly.
3250845d 4236 */
65190cff 4237 if (compaction_withdrawn(compact_result)) {
49433085 4238 goto check_priority;
65190cff 4239 }
3250845d
VB
4240
4241 /*
dcda9b04 4242 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4243 * costly ones because they are de facto nofail and invoke OOM
4244 * killer to move on while costly can fail and users are ready
4245 * to cope with that. 1/4 retries is rather arbitrary but we
4246 * would need much more detailed feedback from compaction to
4247 * make a better decision.
4248 */
4249 if (order > PAGE_ALLOC_COSTLY_ORDER)
4250 max_retries /= 4;
65190cff
MH
4251 if (*compaction_retries <= max_retries) {
4252 ret = true;
4253 goto out;
4254 }
3250845d 4255
d9436498
VB
4256 /*
4257 * Make sure there are attempts at the highest priority if we exhausted
4258 * all retries or failed at the lower priorities.
4259 */
4260check_priority:
c2033b00
VB
4261 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4262 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4263
c2033b00 4264 if (*compact_priority > min_priority) {
d9436498
VB
4265 (*compact_priority)--;
4266 *compaction_retries = 0;
65190cff 4267 ret = true;
d9436498 4268 }
65190cff
MH
4269out:
4270 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4271 return ret;
3250845d 4272}
56de7263
MG
4273#else
4274static inline struct page *
4275__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4276 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4277 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4278{
33c2d214 4279 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4280 return NULL;
4281}
33c2d214
MH
4282
4283static inline bool
86a294a8
MH
4284should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4285 enum compact_result compact_result,
a5508cd8 4286 enum compact_priority *compact_priority,
d9436498 4287 int *compaction_retries)
33c2d214 4288{
31e49bfd
MH
4289 struct zone *zone;
4290 struct zoneref *z;
4291
4292 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4293 return false;
4294
4295 /*
4296 * There are setups with compaction disabled which would prefer to loop
4297 * inside the allocator rather than hit the oom killer prematurely.
4298 * Let's give them a good hope and keep retrying while the order-0
4299 * watermarks are OK.
4300 */
97a225e6
JK
4301 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4302 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4303 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4304 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4305 return true;
4306 }
33c2d214
MH
4307 return false;
4308}
3250845d 4309#endif /* CONFIG_COMPACTION */
56de7263 4310
d92a8cfc 4311#ifdef CONFIG_LOCKDEP
93781325 4312static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4313 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4314
f920e413 4315static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4316{
d92a8cfc
PZ
4317 /* no reclaim without waiting on it */
4318 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4319 return false;
4320
4321 /* this guy won't enter reclaim */
2e517d68 4322 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4323 return false;
4324
d92a8cfc
PZ
4325 if (gfp_mask & __GFP_NOLOCKDEP)
4326 return false;
4327
4328 return true;
4329}
4330
93781325
OS
4331void __fs_reclaim_acquire(void)
4332{
4333 lock_map_acquire(&__fs_reclaim_map);
4334}
4335
4336void __fs_reclaim_release(void)
4337{
4338 lock_map_release(&__fs_reclaim_map);
4339}
4340
d92a8cfc
PZ
4341void fs_reclaim_acquire(gfp_t gfp_mask)
4342{
f920e413
DV
4343 gfp_mask = current_gfp_context(gfp_mask);
4344
4345 if (__need_reclaim(gfp_mask)) {
4346 if (gfp_mask & __GFP_FS)
4347 __fs_reclaim_acquire();
4348
4349#ifdef CONFIG_MMU_NOTIFIER
4350 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4351 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4352#endif
4353
4354 }
d92a8cfc
PZ
4355}
4356EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4357
4358void fs_reclaim_release(gfp_t gfp_mask)
4359{
f920e413
DV
4360 gfp_mask = current_gfp_context(gfp_mask);
4361
4362 if (__need_reclaim(gfp_mask)) {
4363 if (gfp_mask & __GFP_FS)
4364 __fs_reclaim_release();
4365 }
d92a8cfc
PZ
4366}
4367EXPORT_SYMBOL_GPL(fs_reclaim_release);
4368#endif
4369
bba90710 4370/* Perform direct synchronous page reclaim */
2187e17b 4371static unsigned long
a9263751
VB
4372__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4373 const struct alloc_context *ac)
11e33f6a 4374{
499118e9 4375 unsigned int noreclaim_flag;
2187e17b 4376 unsigned long pflags, progress;
11e33f6a
MG
4377
4378 cond_resched();
4379
4380 /* We now go into synchronous reclaim */
4381 cpuset_memory_pressure_bump();
eb414681 4382 psi_memstall_enter(&pflags);
d92a8cfc 4383 fs_reclaim_acquire(gfp_mask);
93781325 4384 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4385
a9263751
VB
4386 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4387 ac->nodemask);
11e33f6a 4388
499118e9 4389 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4390 fs_reclaim_release(gfp_mask);
eb414681 4391 psi_memstall_leave(&pflags);
11e33f6a
MG
4392
4393 cond_resched();
4394
bba90710
MS
4395 return progress;
4396}
4397
4398/* The really slow allocator path where we enter direct reclaim */
4399static inline struct page *
4400__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4401 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4402 unsigned long *did_some_progress)
bba90710
MS
4403{
4404 struct page *page = NULL;
4405 bool drained = false;
4406
a9263751 4407 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4408 if (unlikely(!(*did_some_progress)))
4409 return NULL;
11e33f6a 4410
9ee493ce 4411retry:
31a6c190 4412 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4413
4414 /*
4415 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4416 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4417 * Shrink them and try again
9ee493ce
MG
4418 */
4419 if (!page && !drained) {
29fac03b 4420 unreserve_highatomic_pageblock(ac, false);
93481ff0 4421 drain_all_pages(NULL);
9ee493ce
MG
4422 drained = true;
4423 goto retry;
4424 }
4425
11e33f6a
MG
4426 return page;
4427}
4428
5ecd9d40
DR
4429static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4430 const struct alloc_context *ac)
3a025760
JW
4431{
4432 struct zoneref *z;
4433 struct zone *zone;
e1a55637 4434 pg_data_t *last_pgdat = NULL;
97a225e6 4435 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4436
97a225e6 4437 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4438 ac->nodemask) {
e1a55637 4439 if (last_pgdat != zone->zone_pgdat)
97a225e6 4440 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4441 last_pgdat = zone->zone_pgdat;
4442 }
3a025760
JW
4443}
4444
c603844b 4445static inline unsigned int
341ce06f
PZ
4446gfp_to_alloc_flags(gfp_t gfp_mask)
4447{
c603844b 4448 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4449
736838e9
MN
4450 /*
4451 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4452 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4453 * to save two branches.
4454 */
e6223a3b 4455 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4456 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4457
341ce06f
PZ
4458 /*
4459 * The caller may dip into page reserves a bit more if the caller
4460 * cannot run direct reclaim, or if the caller has realtime scheduling
4461 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4462 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4463 */
736838e9
MN
4464 alloc_flags |= (__force int)
4465 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4466
d0164adc 4467 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4468 /*
b104a35d
DR
4469 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4470 * if it can't schedule.
5c3240d9 4471 */
b104a35d 4472 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4473 alloc_flags |= ALLOC_HARDER;
523b9458 4474 /*
b104a35d 4475 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4476 * comment for __cpuset_node_allowed().
523b9458 4477 */
341ce06f 4478 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4479 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4480 alloc_flags |= ALLOC_HARDER;
4481
8510e69c
JK
4482 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4483
341ce06f
PZ
4484 return alloc_flags;
4485}
4486
cd04ae1e 4487static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4488{
cd04ae1e
MH
4489 if (!tsk_is_oom_victim(tsk))
4490 return false;
4491
4492 /*
4493 * !MMU doesn't have oom reaper so give access to memory reserves
4494 * only to the thread with TIF_MEMDIE set
4495 */
4496 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4497 return false;
4498
cd04ae1e
MH
4499 return true;
4500}
4501
4502/*
4503 * Distinguish requests which really need access to full memory
4504 * reserves from oom victims which can live with a portion of it
4505 */
4506static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4507{
4508 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4509 return 0;
31a6c190 4510 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4511 return ALLOC_NO_WATERMARKS;
31a6c190 4512 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4513 return ALLOC_NO_WATERMARKS;
4514 if (!in_interrupt()) {
4515 if (current->flags & PF_MEMALLOC)
4516 return ALLOC_NO_WATERMARKS;
4517 else if (oom_reserves_allowed(current))
4518 return ALLOC_OOM;
4519 }
31a6c190 4520
cd04ae1e
MH
4521 return 0;
4522}
4523
4524bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4525{
4526 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4527}
4528
0a0337e0
MH
4529/*
4530 * Checks whether it makes sense to retry the reclaim to make a forward progress
4531 * for the given allocation request.
491d79ae
JW
4532 *
4533 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4534 * without success, or when we couldn't even meet the watermark if we
4535 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4536 *
4537 * Returns true if a retry is viable or false to enter the oom path.
4538 */
4539static inline bool
4540should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4541 struct alloc_context *ac, int alloc_flags,
423b452e 4542 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4543{
4544 struct zone *zone;
4545 struct zoneref *z;
15f570bf 4546 bool ret = false;
0a0337e0 4547
423b452e
VB
4548 /*
4549 * Costly allocations might have made a progress but this doesn't mean
4550 * their order will become available due to high fragmentation so
4551 * always increment the no progress counter for them
4552 */
4553 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4554 *no_progress_loops = 0;
4555 else
4556 (*no_progress_loops)++;
4557
0a0337e0
MH
4558 /*
4559 * Make sure we converge to OOM if we cannot make any progress
4560 * several times in the row.
4561 */
04c8716f
MK
4562 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4563 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4564 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4565 }
0a0337e0 4566
bca67592
MG
4567 /*
4568 * Keep reclaiming pages while there is a chance this will lead
4569 * somewhere. If none of the target zones can satisfy our allocation
4570 * request even if all reclaimable pages are considered then we are
4571 * screwed and have to go OOM.
0a0337e0 4572 */
97a225e6
JK
4573 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4574 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4575 unsigned long available;
ede37713 4576 unsigned long reclaimable;
d379f01d
MH
4577 unsigned long min_wmark = min_wmark_pages(zone);
4578 bool wmark;
0a0337e0 4579
5a1c84b4 4580 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4581 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4582
4583 /*
491d79ae
JW
4584 * Would the allocation succeed if we reclaimed all
4585 * reclaimable pages?
0a0337e0 4586 */
d379f01d 4587 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4588 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4589 trace_reclaim_retry_zone(z, order, reclaimable,
4590 available, min_wmark, *no_progress_loops, wmark);
4591 if (wmark) {
ede37713
MH
4592 /*
4593 * If we didn't make any progress and have a lot of
4594 * dirty + writeback pages then we should wait for
4595 * an IO to complete to slow down the reclaim and
4596 * prevent from pre mature OOM
4597 */
4598 if (!did_some_progress) {
11fb9989 4599 unsigned long write_pending;
ede37713 4600
5a1c84b4
MG
4601 write_pending = zone_page_state_snapshot(zone,
4602 NR_ZONE_WRITE_PENDING);
ede37713 4603
11fb9989 4604 if (2 * write_pending > reclaimable) {
ede37713
MH
4605 congestion_wait(BLK_RW_ASYNC, HZ/10);
4606 return true;
4607 }
4608 }
5a1c84b4 4609
15f570bf
MH
4610 ret = true;
4611 goto out;
0a0337e0
MH
4612 }
4613 }
4614
15f570bf
MH
4615out:
4616 /*
4617 * Memory allocation/reclaim might be called from a WQ context and the
4618 * current implementation of the WQ concurrency control doesn't
4619 * recognize that a particular WQ is congested if the worker thread is
4620 * looping without ever sleeping. Therefore we have to do a short sleep
4621 * here rather than calling cond_resched().
4622 */
4623 if (current->flags & PF_WQ_WORKER)
4624 schedule_timeout_uninterruptible(1);
4625 else
4626 cond_resched();
4627 return ret;
0a0337e0
MH
4628}
4629
902b6281
VB
4630static inline bool
4631check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4632{
4633 /*
4634 * It's possible that cpuset's mems_allowed and the nodemask from
4635 * mempolicy don't intersect. This should be normally dealt with by
4636 * policy_nodemask(), but it's possible to race with cpuset update in
4637 * such a way the check therein was true, and then it became false
4638 * before we got our cpuset_mems_cookie here.
4639 * This assumes that for all allocations, ac->nodemask can come only
4640 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4641 * when it does not intersect with the cpuset restrictions) or the
4642 * caller can deal with a violated nodemask.
4643 */
4644 if (cpusets_enabled() && ac->nodemask &&
4645 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4646 ac->nodemask = NULL;
4647 return true;
4648 }
4649
4650 /*
4651 * When updating a task's mems_allowed or mempolicy nodemask, it is
4652 * possible to race with parallel threads in such a way that our
4653 * allocation can fail while the mask is being updated. If we are about
4654 * to fail, check if the cpuset changed during allocation and if so,
4655 * retry.
4656 */
4657 if (read_mems_allowed_retry(cpuset_mems_cookie))
4658 return true;
4659
4660 return false;
4661}
4662
11e33f6a
MG
4663static inline struct page *
4664__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4665 struct alloc_context *ac)
11e33f6a 4666{
d0164adc 4667 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4668 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4669 struct page *page = NULL;
c603844b 4670 unsigned int alloc_flags;
11e33f6a 4671 unsigned long did_some_progress;
5ce9bfef 4672 enum compact_priority compact_priority;
c5d01d0d 4673 enum compact_result compact_result;
5ce9bfef
VB
4674 int compaction_retries;
4675 int no_progress_loops;
5ce9bfef 4676 unsigned int cpuset_mems_cookie;
cd04ae1e 4677 int reserve_flags;
1da177e4 4678
d0164adc
MG
4679 /*
4680 * We also sanity check to catch abuse of atomic reserves being used by
4681 * callers that are not in atomic context.
4682 */
4683 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4684 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4685 gfp_mask &= ~__GFP_ATOMIC;
4686
5ce9bfef
VB
4687retry_cpuset:
4688 compaction_retries = 0;
4689 no_progress_loops = 0;
4690 compact_priority = DEF_COMPACT_PRIORITY;
4691 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4692
4693 /*
4694 * The fast path uses conservative alloc_flags to succeed only until
4695 * kswapd needs to be woken up, and to avoid the cost of setting up
4696 * alloc_flags precisely. So we do that now.
4697 */
4698 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4699
e47483bc
VB
4700 /*
4701 * We need to recalculate the starting point for the zonelist iterator
4702 * because we might have used different nodemask in the fast path, or
4703 * there was a cpuset modification and we are retrying - otherwise we
4704 * could end up iterating over non-eligible zones endlessly.
4705 */
4706 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4707 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4708 if (!ac->preferred_zoneref->zone)
4709 goto nopage;
4710
0a79cdad 4711 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4712 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4713
4714 /*
4715 * The adjusted alloc_flags might result in immediate success, so try
4716 * that first
4717 */
4718 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4719 if (page)
4720 goto got_pg;
4721
a8161d1e
VB
4722 /*
4723 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4724 * that we have enough base pages and don't need to reclaim. For non-
4725 * movable high-order allocations, do that as well, as compaction will
4726 * try prevent permanent fragmentation by migrating from blocks of the
4727 * same migratetype.
4728 * Don't try this for allocations that are allowed to ignore
4729 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4730 */
282722b0
VB
4731 if (can_direct_reclaim &&
4732 (costly_order ||
4733 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4734 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4735 page = __alloc_pages_direct_compact(gfp_mask, order,
4736 alloc_flags, ac,
a5508cd8 4737 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4738 &compact_result);
4739 if (page)
4740 goto got_pg;
4741
cc638f32
VB
4742 /*
4743 * Checks for costly allocations with __GFP_NORETRY, which
4744 * includes some THP page fault allocations
4745 */
4746 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4747 /*
4748 * If allocating entire pageblock(s) and compaction
4749 * failed because all zones are below low watermarks
4750 * or is prohibited because it recently failed at this
3f36d866
DR
4751 * order, fail immediately unless the allocator has
4752 * requested compaction and reclaim retry.
b39d0ee2
DR
4753 *
4754 * Reclaim is
4755 * - potentially very expensive because zones are far
4756 * below their low watermarks or this is part of very
4757 * bursty high order allocations,
4758 * - not guaranteed to help because isolate_freepages()
4759 * may not iterate over freed pages as part of its
4760 * linear scan, and
4761 * - unlikely to make entire pageblocks free on its
4762 * own.
4763 */
4764 if (compact_result == COMPACT_SKIPPED ||
4765 compact_result == COMPACT_DEFERRED)
4766 goto nopage;
a8161d1e 4767
a8161d1e 4768 /*
3eb2771b
VB
4769 * Looks like reclaim/compaction is worth trying, but
4770 * sync compaction could be very expensive, so keep
25160354 4771 * using async compaction.
a8161d1e 4772 */
a5508cd8 4773 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4774 }
4775 }
23771235 4776
31a6c190 4777retry:
23771235 4778 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4779 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4780 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4781
cd04ae1e
MH
4782 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4783 if (reserve_flags)
8510e69c 4784 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4785
e46e7b77 4786 /*
d6a24df0
VB
4787 * Reset the nodemask and zonelist iterators if memory policies can be
4788 * ignored. These allocations are high priority and system rather than
4789 * user oriented.
e46e7b77 4790 */
cd04ae1e 4791 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4792 ac->nodemask = NULL;
e46e7b77 4793 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4794 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4795 }
4796
23771235 4797 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4798 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4799 if (page)
4800 goto got_pg;
1da177e4 4801
d0164adc 4802 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4803 if (!can_direct_reclaim)
1da177e4
LT
4804 goto nopage;
4805
9a67f648
MH
4806 /* Avoid recursion of direct reclaim */
4807 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4808 goto nopage;
4809
a8161d1e
VB
4810 /* Try direct reclaim and then allocating */
4811 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4812 &did_some_progress);
4813 if (page)
4814 goto got_pg;
4815
4816 /* Try direct compaction and then allocating */
a9263751 4817 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4818 compact_priority, &compact_result);
56de7263
MG
4819 if (page)
4820 goto got_pg;
75f30861 4821
9083905a
JW
4822 /* Do not loop if specifically requested */
4823 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4824 goto nopage;
9083905a 4825
0a0337e0
MH
4826 /*
4827 * Do not retry costly high order allocations unless they are
dcda9b04 4828 * __GFP_RETRY_MAYFAIL
0a0337e0 4829 */
dcda9b04 4830 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4831 goto nopage;
0a0337e0 4832
0a0337e0 4833 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4834 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4835 goto retry;
4836
33c2d214
MH
4837 /*
4838 * It doesn't make any sense to retry for the compaction if the order-0
4839 * reclaim is not able to make any progress because the current
4840 * implementation of the compaction depends on the sufficient amount
4841 * of free memory (see __compaction_suitable)
4842 */
4843 if (did_some_progress > 0 &&
86a294a8 4844 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4845 compact_result, &compact_priority,
d9436498 4846 &compaction_retries))
33c2d214
MH
4847 goto retry;
4848
902b6281
VB
4849
4850 /* Deal with possible cpuset update races before we start OOM killing */
4851 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4852 goto retry_cpuset;
4853
9083905a
JW
4854 /* Reclaim has failed us, start killing things */
4855 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4856 if (page)
4857 goto got_pg;
4858
9a67f648 4859 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4860 if (tsk_is_oom_victim(current) &&
8510e69c 4861 (alloc_flags & ALLOC_OOM ||
c288983d 4862 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4863 goto nopage;
4864
9083905a 4865 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4866 if (did_some_progress) {
4867 no_progress_loops = 0;
9083905a 4868 goto retry;
0a0337e0 4869 }
9083905a 4870
1da177e4 4871nopage:
902b6281
VB
4872 /* Deal with possible cpuset update races before we fail */
4873 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4874 goto retry_cpuset;
4875
9a67f648
MH
4876 /*
4877 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4878 * we always retry
4879 */
4880 if (gfp_mask & __GFP_NOFAIL) {
4881 /*
4882 * All existing users of the __GFP_NOFAIL are blockable, so warn
4883 * of any new users that actually require GFP_NOWAIT
4884 */
4885 if (WARN_ON_ONCE(!can_direct_reclaim))
4886 goto fail;
4887
4888 /*
4889 * PF_MEMALLOC request from this context is rather bizarre
4890 * because we cannot reclaim anything and only can loop waiting
4891 * for somebody to do a work for us
4892 */
4893 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4894
4895 /*
4896 * non failing costly orders are a hard requirement which we
4897 * are not prepared for much so let's warn about these users
4898 * so that we can identify them and convert them to something
4899 * else.
4900 */
4901 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4902
6c18ba7a
MH
4903 /*
4904 * Help non-failing allocations by giving them access to memory
4905 * reserves but do not use ALLOC_NO_WATERMARKS because this
4906 * could deplete whole memory reserves which would just make
4907 * the situation worse
4908 */
4909 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4910 if (page)
4911 goto got_pg;
4912
9a67f648
MH
4913 cond_resched();
4914 goto retry;
4915 }
4916fail:
a8e99259 4917 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4918 "page allocation failure: order:%u", order);
1da177e4 4919got_pg:
072bb0aa 4920 return page;
1da177e4 4921}
11e33f6a 4922
9cd75558 4923static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4924 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4925 struct alloc_context *ac, gfp_t *alloc_mask,
4926 unsigned int *alloc_flags)
11e33f6a 4927{
97a225e6 4928 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4929 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4930 ac->nodemask = nodemask;
01c0bfe0 4931 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4932
682a3385 4933 if (cpusets_enabled()) {
9cd75558 4934 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4935 /*
4936 * When we are in the interrupt context, it is irrelevant
4937 * to the current task context. It means that any node ok.
4938 */
4939 if (!in_interrupt() && !ac->nodemask)
9cd75558 4940 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4941 else
4942 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4943 }
4944
d92a8cfc
PZ
4945 fs_reclaim_acquire(gfp_mask);
4946 fs_reclaim_release(gfp_mask);
11e33f6a 4947
d0164adc 4948 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4949
4950 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4951 return false;
11e33f6a 4952
8510e69c 4953 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4954
c9ab0c4f 4955 /* Dirty zone balancing only done in the fast path */
9cd75558 4956 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4957
e46e7b77
MG
4958 /*
4959 * The preferred zone is used for statistics but crucially it is
4960 * also used as the starting point for the zonelist iterator. It
4961 * may get reset for allocations that ignore memory policies.
4962 */
9cd75558 4963 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4964 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4965
4966 return true;
9cd75558
MG
4967}
4968
4969/*
4970 * This is the 'heart' of the zoned buddy allocator.
4971 */
4972struct page *
04ec6264
VB
4973__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4974 nodemask_t *nodemask)
9cd75558
MG
4975{
4976 struct page *page;
4977 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4978 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4979 struct alloc_context ac = { };
4980
c63ae43b
MH
4981 /*
4982 * There are several places where we assume that the order value is sane
4983 * so bail out early if the request is out of bound.
4984 */
4985 if (unlikely(order >= MAX_ORDER)) {
4986 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4987 return NULL;
4988 }
4989
9cd75558 4990 gfp_mask &= gfp_allowed_mask;
f19360f0 4991 alloc_mask = gfp_mask;
04ec6264 4992 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4993 return NULL;
4994
6bb15450
MG
4995 /*
4996 * Forbid the first pass from falling back to types that fragment
4997 * memory until all local zones are considered.
4998 */
0a79cdad 4999 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 5000
5117f45d 5001 /* First allocation attempt */
a9263751 5002 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
5003 if (likely(page))
5004 goto out;
11e33f6a 5005
4fcb0971 5006 /*
7dea19f9
MH
5007 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5008 * resp. GFP_NOIO which has to be inherited for all allocation requests
5009 * from a particular context which has been marked by
5010 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 5011 */
7dea19f9 5012 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 5013 ac.spread_dirty_pages = false;
23f086f9 5014
4741526b
MG
5015 /*
5016 * Restore the original nodemask if it was potentially replaced with
5017 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5018 */
97ce86f9 5019 ac.nodemask = nodemask;
16096c25 5020
4fcb0971 5021 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 5022
4fcb0971 5023out:
c4159a75 5024 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 5025 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
5026 __free_pages(page, order);
5027 page = NULL;
4949148a
VD
5028 }
5029
4fcb0971
MG
5030 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5031
11e33f6a 5032 return page;
1da177e4 5033}
d239171e 5034EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
5035
5036/*
9ea9a680
MH
5037 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5038 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5039 * you need to access high mem.
1da177e4 5040 */
920c7a5d 5041unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5042{
945a1113
AM
5043 struct page *page;
5044
9ea9a680 5045 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5046 if (!page)
5047 return 0;
5048 return (unsigned long) page_address(page);
5049}
1da177e4
LT
5050EXPORT_SYMBOL(__get_free_pages);
5051
920c7a5d 5052unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5053{
945a1113 5054 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5055}
1da177e4
LT
5056EXPORT_SYMBOL(get_zeroed_page);
5057
742aa7fb 5058static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5059{
742aa7fb
AL
5060 if (order == 0) /* Via pcp? */
5061 free_unref_page(page);
5062 else
7fef431b 5063 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5064}
5065
7f194fbb
MWO
5066/**
5067 * __free_pages - Free pages allocated with alloc_pages().
5068 * @page: The page pointer returned from alloc_pages().
5069 * @order: The order of the allocation.
5070 *
5071 * This function can free multi-page allocations that are not compound
5072 * pages. It does not check that the @order passed in matches that of
5073 * the allocation, so it is easy to leak memory. Freeing more memory
5074 * than was allocated will probably emit a warning.
5075 *
5076 * If the last reference to this page is speculative, it will be released
5077 * by put_page() which only frees the first page of a non-compound
5078 * allocation. To prevent the remaining pages from being leaked, we free
5079 * the subsequent pages here. If you want to use the page's reference
5080 * count to decide when to free the allocation, you should allocate a
5081 * compound page, and use put_page() instead of __free_pages().
5082 *
5083 * Context: May be called in interrupt context or while holding a normal
5084 * spinlock, but not in NMI context or while holding a raw spinlock.
5085 */
742aa7fb
AL
5086void __free_pages(struct page *page, unsigned int order)
5087{
5088 if (put_page_testzero(page))
5089 free_the_page(page, order);
e320d301
MWO
5090 else if (!PageHead(page))
5091 while (order-- > 0)
5092 free_the_page(page + (1 << order), order);
742aa7fb 5093}
1da177e4
LT
5094EXPORT_SYMBOL(__free_pages);
5095
920c7a5d 5096void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5097{
5098 if (addr != 0) {
725d704e 5099 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5100 __free_pages(virt_to_page((void *)addr), order);
5101 }
5102}
5103
5104EXPORT_SYMBOL(free_pages);
5105
b63ae8ca
AD
5106/*
5107 * Page Fragment:
5108 * An arbitrary-length arbitrary-offset area of memory which resides
5109 * within a 0 or higher order page. Multiple fragments within that page
5110 * are individually refcounted, in the page's reference counter.
5111 *
5112 * The page_frag functions below provide a simple allocation framework for
5113 * page fragments. This is used by the network stack and network device
5114 * drivers to provide a backing region of memory for use as either an
5115 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5116 */
2976db80
AD
5117static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5118 gfp_t gfp_mask)
b63ae8ca
AD
5119{
5120 struct page *page = NULL;
5121 gfp_t gfp = gfp_mask;
5122
5123#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5124 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5125 __GFP_NOMEMALLOC;
5126 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5127 PAGE_FRAG_CACHE_MAX_ORDER);
5128 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5129#endif
5130 if (unlikely(!page))
5131 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5132
5133 nc->va = page ? page_address(page) : NULL;
5134
5135 return page;
5136}
5137
2976db80 5138void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5139{
5140 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5141
742aa7fb
AL
5142 if (page_ref_sub_and_test(page, count))
5143 free_the_page(page, compound_order(page));
44fdffd7 5144}
2976db80 5145EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5146
b358e212
KH
5147void *page_frag_alloc_align(struct page_frag_cache *nc,
5148 unsigned int fragsz, gfp_t gfp_mask,
5149 unsigned int align_mask)
b63ae8ca
AD
5150{
5151 unsigned int size = PAGE_SIZE;
5152 struct page *page;
5153 int offset;
5154
5155 if (unlikely(!nc->va)) {
5156refill:
2976db80 5157 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5158 if (!page)
5159 return NULL;
5160
5161#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5162 /* if size can vary use size else just use PAGE_SIZE */
5163 size = nc->size;
5164#endif
5165 /* Even if we own the page, we do not use atomic_set().
5166 * This would break get_page_unless_zero() users.
5167 */
86447726 5168 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5169
5170 /* reset page count bias and offset to start of new frag */
2f064f34 5171 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5172 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5173 nc->offset = size;
5174 }
5175
5176 offset = nc->offset - fragsz;
5177 if (unlikely(offset < 0)) {
5178 page = virt_to_page(nc->va);
5179
fe896d18 5180 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5181 goto refill;
5182
d8c19014
DZ
5183 if (unlikely(nc->pfmemalloc)) {
5184 free_the_page(page, compound_order(page));
5185 goto refill;
5186 }
5187
b63ae8ca
AD
5188#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5189 /* if size can vary use size else just use PAGE_SIZE */
5190 size = nc->size;
5191#endif
5192 /* OK, page count is 0, we can safely set it */
86447726 5193 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5194
5195 /* reset page count bias and offset to start of new frag */
86447726 5196 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5197 offset = size - fragsz;
5198 }
5199
5200 nc->pagecnt_bias--;
b358e212 5201 offset &= align_mask;
b63ae8ca
AD
5202 nc->offset = offset;
5203
5204 return nc->va + offset;
5205}
b358e212 5206EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5207
5208/*
5209 * Frees a page fragment allocated out of either a compound or order 0 page.
5210 */
8c2dd3e4 5211void page_frag_free(void *addr)
b63ae8ca
AD
5212{
5213 struct page *page = virt_to_head_page(addr);
5214
742aa7fb
AL
5215 if (unlikely(put_page_testzero(page)))
5216 free_the_page(page, compound_order(page));
b63ae8ca 5217}
8c2dd3e4 5218EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5219
d00181b9
KS
5220static void *make_alloc_exact(unsigned long addr, unsigned int order,
5221 size_t size)
ee85c2e1
AK
5222{
5223 if (addr) {
5224 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5225 unsigned long used = addr + PAGE_ALIGN(size);
5226
5227 split_page(virt_to_page((void *)addr), order);
5228 while (used < alloc_end) {
5229 free_page(used);
5230 used += PAGE_SIZE;
5231 }
5232 }
5233 return (void *)addr;
5234}
5235
2be0ffe2
TT
5236/**
5237 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5238 * @size: the number of bytes to allocate
63931eb9 5239 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5240 *
5241 * This function is similar to alloc_pages(), except that it allocates the
5242 * minimum number of pages to satisfy the request. alloc_pages() can only
5243 * allocate memory in power-of-two pages.
5244 *
5245 * This function is also limited by MAX_ORDER.
5246 *
5247 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5248 *
5249 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5250 */
5251void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5252{
5253 unsigned int order = get_order(size);
5254 unsigned long addr;
5255
63931eb9
VB
5256 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5257 gfp_mask &= ~__GFP_COMP;
5258
2be0ffe2 5259 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5260 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5261}
5262EXPORT_SYMBOL(alloc_pages_exact);
5263
ee85c2e1
AK
5264/**
5265 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5266 * pages on a node.
b5e6ab58 5267 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5268 * @size: the number of bytes to allocate
63931eb9 5269 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5270 *
5271 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5272 * back.
a862f68a
MR
5273 *
5274 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5275 */
e1931811 5276void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5277{
d00181b9 5278 unsigned int order = get_order(size);
63931eb9
VB
5279 struct page *p;
5280
5281 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5282 gfp_mask &= ~__GFP_COMP;
5283
5284 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5285 if (!p)
5286 return NULL;
5287 return make_alloc_exact((unsigned long)page_address(p), order, size);
5288}
ee85c2e1 5289
2be0ffe2
TT
5290/**
5291 * free_pages_exact - release memory allocated via alloc_pages_exact()
5292 * @virt: the value returned by alloc_pages_exact.
5293 * @size: size of allocation, same value as passed to alloc_pages_exact().
5294 *
5295 * Release the memory allocated by a previous call to alloc_pages_exact.
5296 */
5297void free_pages_exact(void *virt, size_t size)
5298{
5299 unsigned long addr = (unsigned long)virt;
5300 unsigned long end = addr + PAGE_ALIGN(size);
5301
5302 while (addr < end) {
5303 free_page(addr);
5304 addr += PAGE_SIZE;
5305 }
5306}
5307EXPORT_SYMBOL(free_pages_exact);
5308
e0fb5815
ZY
5309/**
5310 * nr_free_zone_pages - count number of pages beyond high watermark
5311 * @offset: The zone index of the highest zone
5312 *
a862f68a 5313 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5314 * high watermark within all zones at or below a given zone index. For each
5315 * zone, the number of pages is calculated as:
0e056eb5
MCC
5316 *
5317 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5318 *
5319 * Return: number of pages beyond high watermark.
e0fb5815 5320 */
ebec3862 5321static unsigned long nr_free_zone_pages(int offset)
1da177e4 5322{
dd1a239f 5323 struct zoneref *z;
54a6eb5c
MG
5324 struct zone *zone;
5325
e310fd43 5326 /* Just pick one node, since fallback list is circular */
ebec3862 5327 unsigned long sum = 0;
1da177e4 5328
0e88460d 5329 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5330
54a6eb5c 5331 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5332 unsigned long size = zone_managed_pages(zone);
41858966 5333 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5334 if (size > high)
5335 sum += size - high;
1da177e4
LT
5336 }
5337
5338 return sum;
5339}
5340
e0fb5815
ZY
5341/**
5342 * nr_free_buffer_pages - count number of pages beyond high watermark
5343 *
5344 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5345 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5346 *
5347 * Return: number of pages beyond high watermark within ZONE_DMA and
5348 * ZONE_NORMAL.
1da177e4 5349 */
ebec3862 5350unsigned long nr_free_buffer_pages(void)
1da177e4 5351{
af4ca457 5352 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5353}
c2f1a551 5354EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5355
08e0f6a9 5356static inline void show_node(struct zone *zone)
1da177e4 5357{
e5adfffc 5358 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5359 printk("Node %d ", zone_to_nid(zone));
1da177e4 5360}
1da177e4 5361
d02bd27b
IR
5362long si_mem_available(void)
5363{
5364 long available;
5365 unsigned long pagecache;
5366 unsigned long wmark_low = 0;
5367 unsigned long pages[NR_LRU_LISTS];
b29940c1 5368 unsigned long reclaimable;
d02bd27b
IR
5369 struct zone *zone;
5370 int lru;
5371
5372 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5373 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5374
5375 for_each_zone(zone)
a9214443 5376 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5377
5378 /*
5379 * Estimate the amount of memory available for userspace allocations,
5380 * without causing swapping.
5381 */
c41f012a 5382 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5383
5384 /*
5385 * Not all the page cache can be freed, otherwise the system will
5386 * start swapping. Assume at least half of the page cache, or the
5387 * low watermark worth of cache, needs to stay.
5388 */
5389 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5390 pagecache -= min(pagecache / 2, wmark_low);
5391 available += pagecache;
5392
5393 /*
b29940c1
VB
5394 * Part of the reclaimable slab and other kernel memory consists of
5395 * items that are in use, and cannot be freed. Cap this estimate at the
5396 * low watermark.
d02bd27b 5397 */
d42f3245
RG
5398 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5399 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5400 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5401
d02bd27b
IR
5402 if (available < 0)
5403 available = 0;
5404 return available;
5405}
5406EXPORT_SYMBOL_GPL(si_mem_available);
5407
1da177e4
LT
5408void si_meminfo(struct sysinfo *val)
5409{
ca79b0c2 5410 val->totalram = totalram_pages();
11fb9989 5411 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5412 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5413 val->bufferram = nr_blockdev_pages();
ca79b0c2 5414 val->totalhigh = totalhigh_pages();
1da177e4 5415 val->freehigh = nr_free_highpages();
1da177e4
LT
5416 val->mem_unit = PAGE_SIZE;
5417}
5418
5419EXPORT_SYMBOL(si_meminfo);
5420
5421#ifdef CONFIG_NUMA
5422void si_meminfo_node(struct sysinfo *val, int nid)
5423{
cdd91a77
JL
5424 int zone_type; /* needs to be signed */
5425 unsigned long managed_pages = 0;
fc2bd799
JK
5426 unsigned long managed_highpages = 0;
5427 unsigned long free_highpages = 0;
1da177e4
LT
5428 pg_data_t *pgdat = NODE_DATA(nid);
5429
cdd91a77 5430 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5431 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5432 val->totalram = managed_pages;
11fb9989 5433 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5434 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5435#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5436 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5437 struct zone *zone = &pgdat->node_zones[zone_type];
5438
5439 if (is_highmem(zone)) {
9705bea5 5440 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5441 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5442 }
5443 }
5444 val->totalhigh = managed_highpages;
5445 val->freehigh = free_highpages;
98d2b0eb 5446#else
fc2bd799
JK
5447 val->totalhigh = managed_highpages;
5448 val->freehigh = free_highpages;
98d2b0eb 5449#endif
1da177e4
LT
5450 val->mem_unit = PAGE_SIZE;
5451}
5452#endif
5453
ddd588b5 5454/*
7bf02ea2
DR
5455 * Determine whether the node should be displayed or not, depending on whether
5456 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5457 */
9af744d7 5458static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5459{
ddd588b5 5460 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5461 return false;
ddd588b5 5462
9af744d7
MH
5463 /*
5464 * no node mask - aka implicit memory numa policy. Do not bother with
5465 * the synchronization - read_mems_allowed_begin - because we do not
5466 * have to be precise here.
5467 */
5468 if (!nodemask)
5469 nodemask = &cpuset_current_mems_allowed;
5470
5471 return !node_isset(nid, *nodemask);
ddd588b5
DR
5472}
5473
1da177e4
LT
5474#define K(x) ((x) << (PAGE_SHIFT-10))
5475
377e4f16
RV
5476static void show_migration_types(unsigned char type)
5477{
5478 static const char types[MIGRATE_TYPES] = {
5479 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5480 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5481 [MIGRATE_RECLAIMABLE] = 'E',
5482 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5483#ifdef CONFIG_CMA
5484 [MIGRATE_CMA] = 'C',
5485#endif
194159fb 5486#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5487 [MIGRATE_ISOLATE] = 'I',
194159fb 5488#endif
377e4f16
RV
5489 };
5490 char tmp[MIGRATE_TYPES + 1];
5491 char *p = tmp;
5492 int i;
5493
5494 for (i = 0; i < MIGRATE_TYPES; i++) {
5495 if (type & (1 << i))
5496 *p++ = types[i];
5497 }
5498
5499 *p = '\0';
1f84a18f 5500 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5501}
5502
1da177e4
LT
5503/*
5504 * Show free area list (used inside shift_scroll-lock stuff)
5505 * We also calculate the percentage fragmentation. We do this by counting the
5506 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5507 *
5508 * Bits in @filter:
5509 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5510 * cpuset.
1da177e4 5511 */
9af744d7 5512void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5513{
d1bfcdb8 5514 unsigned long free_pcp = 0;
c7241913 5515 int cpu;
1da177e4 5516 struct zone *zone;
599d0c95 5517 pg_data_t *pgdat;
1da177e4 5518
ee99c71c 5519 for_each_populated_zone(zone) {
9af744d7 5520 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5521 continue;
d1bfcdb8 5522
761b0677
KK
5523 for_each_online_cpu(cpu)
5524 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5525 }
5526
a731286d
KM
5527 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5528 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5529 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5530 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5531 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5532 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5533 global_node_page_state(NR_ACTIVE_ANON),
5534 global_node_page_state(NR_INACTIVE_ANON),
5535 global_node_page_state(NR_ISOLATED_ANON),
5536 global_node_page_state(NR_ACTIVE_FILE),
5537 global_node_page_state(NR_INACTIVE_FILE),
5538 global_node_page_state(NR_ISOLATED_FILE),
5539 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5540 global_node_page_state(NR_FILE_DIRTY),
5541 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5542 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5543 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5544 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5545 global_node_page_state(NR_SHMEM),
f0c0c115 5546 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5547 global_zone_page_state(NR_BOUNCE),
5548 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5549 free_pcp,
c41f012a 5550 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5551
599d0c95 5552 for_each_online_pgdat(pgdat) {
9af744d7 5553 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5554 continue;
5555
599d0c95
MG
5556 printk("Node %d"
5557 " active_anon:%lukB"
5558 " inactive_anon:%lukB"
5559 " active_file:%lukB"
5560 " inactive_file:%lukB"
5561 " unevictable:%lukB"
5562 " isolated(anon):%lukB"
5563 " isolated(file):%lukB"
50658e2e 5564 " mapped:%lukB"
11fb9989
MG
5565 " dirty:%lukB"
5566 " writeback:%lukB"
5567 " shmem:%lukB"
5568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5569 " shmem_thp: %lukB"
5570 " shmem_pmdmapped: %lukB"
5571 " anon_thp: %lukB"
5572#endif
5573 " writeback_tmp:%lukB"
991e7673
SB
5574 " kernel_stack:%lukB"
5575#ifdef CONFIG_SHADOW_CALL_STACK
5576 " shadow_call_stack:%lukB"
5577#endif
f0c0c115 5578 " pagetables:%lukB"
599d0c95
MG
5579 " all_unreclaimable? %s"
5580 "\n",
5581 pgdat->node_id,
5582 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5583 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5584 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5585 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5586 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5587 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5588 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5589 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5590 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5591 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5592 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5593#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5594 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5595 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5596 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5597#endif
11fb9989 5598 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5599 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5600#ifdef CONFIG_SHADOW_CALL_STACK
5601 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5602#endif
f0c0c115 5603 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5604 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5605 "yes" : "no");
599d0c95
MG
5606 }
5607
ee99c71c 5608 for_each_populated_zone(zone) {
1da177e4
LT
5609 int i;
5610
9af744d7 5611 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5612 continue;
d1bfcdb8
KK
5613
5614 free_pcp = 0;
5615 for_each_online_cpu(cpu)
5616 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5617
1da177e4 5618 show_node(zone);
1f84a18f
JP
5619 printk(KERN_CONT
5620 "%s"
1da177e4
LT
5621 " free:%lukB"
5622 " min:%lukB"
5623 " low:%lukB"
5624 " high:%lukB"
e47b346a 5625 " reserved_highatomic:%luKB"
71c799f4
MK
5626 " active_anon:%lukB"
5627 " inactive_anon:%lukB"
5628 " active_file:%lukB"
5629 " inactive_file:%lukB"
5630 " unevictable:%lukB"
5a1c84b4 5631 " writepending:%lukB"
1da177e4 5632 " present:%lukB"
9feedc9d 5633 " managed:%lukB"
4a0aa73f 5634 " mlocked:%lukB"
4a0aa73f 5635 " bounce:%lukB"
d1bfcdb8
KK
5636 " free_pcp:%lukB"
5637 " local_pcp:%ukB"
d1ce749a 5638 " free_cma:%lukB"
1da177e4
LT
5639 "\n",
5640 zone->name,
88f5acf8 5641 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5642 K(min_wmark_pages(zone)),
5643 K(low_wmark_pages(zone)),
5644 K(high_wmark_pages(zone)),
e47b346a 5645 K(zone->nr_reserved_highatomic),
71c799f4
MK
5646 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5647 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5648 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5649 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5650 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5651 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5652 K(zone->present_pages),
9705bea5 5653 K(zone_managed_pages(zone)),
4a0aa73f 5654 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5655 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5656 K(free_pcp),
5657 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5658 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5659 printk("lowmem_reserve[]:");
5660 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5661 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5662 printk(KERN_CONT "\n");
1da177e4
LT
5663 }
5664
ee99c71c 5665 for_each_populated_zone(zone) {
d00181b9
KS
5666 unsigned int order;
5667 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5668 unsigned char types[MAX_ORDER];
1da177e4 5669
9af744d7 5670 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5671 continue;
1da177e4 5672 show_node(zone);
1f84a18f 5673 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5674
5675 spin_lock_irqsave(&zone->lock, flags);
5676 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5677 struct free_area *area = &zone->free_area[order];
5678 int type;
5679
5680 nr[order] = area->nr_free;
8f9de51a 5681 total += nr[order] << order;
377e4f16
RV
5682
5683 types[order] = 0;
5684 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5685 if (!free_area_empty(area, type))
377e4f16
RV
5686 types[order] |= 1 << type;
5687 }
1da177e4
LT
5688 }
5689 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5690 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5691 printk(KERN_CONT "%lu*%lukB ",
5692 nr[order], K(1UL) << order);
377e4f16
RV
5693 if (nr[order])
5694 show_migration_types(types[order]);
5695 }
1f84a18f 5696 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5697 }
5698
949f7ec5
DR
5699 hugetlb_show_meminfo();
5700
11fb9989 5701 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5702
1da177e4
LT
5703 show_swap_cache_info();
5704}
5705
19770b32
MG
5706static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5707{
5708 zoneref->zone = zone;
5709 zoneref->zone_idx = zone_idx(zone);
5710}
5711
1da177e4
LT
5712/*
5713 * Builds allocation fallback zone lists.
1a93205b
CL
5714 *
5715 * Add all populated zones of a node to the zonelist.
1da177e4 5716 */
9d3be21b 5717static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5718{
1a93205b 5719 struct zone *zone;
bc732f1d 5720 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5721 int nr_zones = 0;
02a68a5e
CL
5722
5723 do {
2f6726e5 5724 zone_type--;
070f8032 5725 zone = pgdat->node_zones + zone_type;
6aa303de 5726 if (managed_zone(zone)) {
9d3be21b 5727 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5728 check_highest_zone(zone_type);
1da177e4 5729 }
2f6726e5 5730 } while (zone_type);
bc732f1d 5731
070f8032 5732 return nr_zones;
1da177e4
LT
5733}
5734
5735#ifdef CONFIG_NUMA
f0c0b2b8
KH
5736
5737static int __parse_numa_zonelist_order(char *s)
5738{
c9bff3ee
MH
5739 /*
5740 * We used to support different zonlists modes but they turned
5741 * out to be just not useful. Let's keep the warning in place
5742 * if somebody still use the cmd line parameter so that we do
5743 * not fail it silently
5744 */
5745 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5746 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5747 return -EINVAL;
5748 }
5749 return 0;
5750}
5751
c9bff3ee
MH
5752char numa_zonelist_order[] = "Node";
5753
f0c0b2b8
KH
5754/*
5755 * sysctl handler for numa_zonelist_order
5756 */
cccad5b9 5757int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5758 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5759{
32927393
CH
5760 if (write)
5761 return __parse_numa_zonelist_order(buffer);
5762 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5763}
5764
5765
62bc62a8 5766#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5767static int node_load[MAX_NUMNODES];
5768
1da177e4 5769/**
4dc3b16b 5770 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5771 * @node: node whose fallback list we're appending
5772 * @used_node_mask: nodemask_t of already used nodes
5773 *
5774 * We use a number of factors to determine which is the next node that should
5775 * appear on a given node's fallback list. The node should not have appeared
5776 * already in @node's fallback list, and it should be the next closest node
5777 * according to the distance array (which contains arbitrary distance values
5778 * from each node to each node in the system), and should also prefer nodes
5779 * with no CPUs, since presumably they'll have very little allocation pressure
5780 * on them otherwise.
a862f68a
MR
5781 *
5782 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5783 */
f0c0b2b8 5784static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5785{
4cf808eb 5786 int n, val;
1da177e4 5787 int min_val = INT_MAX;
00ef2d2f 5788 int best_node = NUMA_NO_NODE;
1da177e4 5789
4cf808eb
LT
5790 /* Use the local node if we haven't already */
5791 if (!node_isset(node, *used_node_mask)) {
5792 node_set(node, *used_node_mask);
5793 return node;
5794 }
1da177e4 5795
4b0ef1fe 5796 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5797
5798 /* Don't want a node to appear more than once */
5799 if (node_isset(n, *used_node_mask))
5800 continue;
5801
1da177e4
LT
5802 /* Use the distance array to find the distance */
5803 val = node_distance(node, n);
5804
4cf808eb
LT
5805 /* Penalize nodes under us ("prefer the next node") */
5806 val += (n < node);
5807
1da177e4 5808 /* Give preference to headless and unused nodes */
b630749f 5809 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5810 val += PENALTY_FOR_NODE_WITH_CPUS;
5811
5812 /* Slight preference for less loaded node */
5813 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5814 val += node_load[n];
5815
5816 if (val < min_val) {
5817 min_val = val;
5818 best_node = n;
5819 }
5820 }
5821
5822 if (best_node >= 0)
5823 node_set(best_node, *used_node_mask);
5824
5825 return best_node;
5826}
5827
f0c0b2b8
KH
5828
5829/*
5830 * Build zonelists ordered by node and zones within node.
5831 * This results in maximum locality--normal zone overflows into local
5832 * DMA zone, if any--but risks exhausting DMA zone.
5833 */
9d3be21b
MH
5834static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5835 unsigned nr_nodes)
1da177e4 5836{
9d3be21b
MH
5837 struct zoneref *zonerefs;
5838 int i;
5839
5840 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5841
5842 for (i = 0; i < nr_nodes; i++) {
5843 int nr_zones;
5844
5845 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5846
9d3be21b
MH
5847 nr_zones = build_zonerefs_node(node, zonerefs);
5848 zonerefs += nr_zones;
5849 }
5850 zonerefs->zone = NULL;
5851 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5852}
5853
523b9458
CL
5854/*
5855 * Build gfp_thisnode zonelists
5856 */
5857static void build_thisnode_zonelists(pg_data_t *pgdat)
5858{
9d3be21b
MH
5859 struct zoneref *zonerefs;
5860 int nr_zones;
523b9458 5861
9d3be21b
MH
5862 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5863 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5864 zonerefs += nr_zones;
5865 zonerefs->zone = NULL;
5866 zonerefs->zone_idx = 0;
523b9458
CL
5867}
5868
f0c0b2b8
KH
5869/*
5870 * Build zonelists ordered by zone and nodes within zones.
5871 * This results in conserving DMA zone[s] until all Normal memory is
5872 * exhausted, but results in overflowing to remote node while memory
5873 * may still exist in local DMA zone.
5874 */
f0c0b2b8 5875
f0c0b2b8
KH
5876static void build_zonelists(pg_data_t *pgdat)
5877{
9d3be21b
MH
5878 static int node_order[MAX_NUMNODES];
5879 int node, load, nr_nodes = 0;
d0ddf49b 5880 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5881 int local_node, prev_node;
1da177e4
LT
5882
5883 /* NUMA-aware ordering of nodes */
5884 local_node = pgdat->node_id;
62bc62a8 5885 load = nr_online_nodes;
1da177e4 5886 prev_node = local_node;
f0c0b2b8 5887
f0c0b2b8 5888 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5889 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5890 /*
5891 * We don't want to pressure a particular node.
5892 * So adding penalty to the first node in same
5893 * distance group to make it round-robin.
5894 */
957f822a
DR
5895 if (node_distance(local_node, node) !=
5896 node_distance(local_node, prev_node))
f0c0b2b8
KH
5897 node_load[node] = load;
5898
9d3be21b 5899 node_order[nr_nodes++] = node;
1da177e4
LT
5900 prev_node = node;
5901 load--;
1da177e4 5902 }
523b9458 5903
9d3be21b 5904 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5905 build_thisnode_zonelists(pgdat);
1da177e4
LT
5906}
5907
7aac7898
LS
5908#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5909/*
5910 * Return node id of node used for "local" allocations.
5911 * I.e., first node id of first zone in arg node's generic zonelist.
5912 * Used for initializing percpu 'numa_mem', which is used primarily
5913 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5914 */
5915int local_memory_node(int node)
5916{
c33d6c06 5917 struct zoneref *z;
7aac7898 5918
c33d6c06 5919 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5920 gfp_zone(GFP_KERNEL),
c33d6c06 5921 NULL);
c1093b74 5922 return zone_to_nid(z->zone);
7aac7898
LS
5923}
5924#endif
f0c0b2b8 5925
6423aa81
JK
5926static void setup_min_unmapped_ratio(void);
5927static void setup_min_slab_ratio(void);
1da177e4
LT
5928#else /* CONFIG_NUMA */
5929
f0c0b2b8 5930static void build_zonelists(pg_data_t *pgdat)
1da177e4 5931{
19655d34 5932 int node, local_node;
9d3be21b
MH
5933 struct zoneref *zonerefs;
5934 int nr_zones;
1da177e4
LT
5935
5936 local_node = pgdat->node_id;
1da177e4 5937
9d3be21b
MH
5938 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5939 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5940 zonerefs += nr_zones;
1da177e4 5941
54a6eb5c
MG
5942 /*
5943 * Now we build the zonelist so that it contains the zones
5944 * of all the other nodes.
5945 * We don't want to pressure a particular node, so when
5946 * building the zones for node N, we make sure that the
5947 * zones coming right after the local ones are those from
5948 * node N+1 (modulo N)
5949 */
5950 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5951 if (!node_online(node))
5952 continue;
9d3be21b
MH
5953 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5954 zonerefs += nr_zones;
1da177e4 5955 }
54a6eb5c
MG
5956 for (node = 0; node < local_node; node++) {
5957 if (!node_online(node))
5958 continue;
9d3be21b
MH
5959 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5960 zonerefs += nr_zones;
54a6eb5c
MG
5961 }
5962
9d3be21b
MH
5963 zonerefs->zone = NULL;
5964 zonerefs->zone_idx = 0;
1da177e4
LT
5965}
5966
5967#endif /* CONFIG_NUMA */
5968
99dcc3e5
CL
5969/*
5970 * Boot pageset table. One per cpu which is going to be used for all
5971 * zones and all nodes. The parameters will be set in such a way
5972 * that an item put on a list will immediately be handed over to
5973 * the buddy list. This is safe since pageset manipulation is done
5974 * with interrupts disabled.
5975 *
5976 * The boot_pagesets must be kept even after bootup is complete for
5977 * unused processors and/or zones. They do play a role for bootstrapping
5978 * hotplugged processors.
5979 *
5980 * zoneinfo_show() and maybe other functions do
5981 * not check if the processor is online before following the pageset pointer.
5982 * Other parts of the kernel may not check if the zone is available.
5983 */
69a8396a 5984static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
5985/* These effectively disable the pcplists in the boot pageset completely */
5986#define BOOT_PAGESET_HIGH 0
5987#define BOOT_PAGESET_BATCH 1
99dcc3e5 5988static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5989static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5990
11cd8638 5991static void __build_all_zonelists(void *data)
1da177e4 5992{
6811378e 5993 int nid;
afb6ebb3 5994 int __maybe_unused cpu;
9adb62a5 5995 pg_data_t *self = data;
b93e0f32
MH
5996 static DEFINE_SPINLOCK(lock);
5997
5998 spin_lock(&lock);
9276b1bc 5999
7f9cfb31
BL
6000#ifdef CONFIG_NUMA
6001 memset(node_load, 0, sizeof(node_load));
6002#endif
9adb62a5 6003
c1152583
WY
6004 /*
6005 * This node is hotadded and no memory is yet present. So just
6006 * building zonelists is fine - no need to touch other nodes.
6007 */
9adb62a5
JL
6008 if (self && !node_online(self->node_id)) {
6009 build_zonelists(self);
c1152583
WY
6010 } else {
6011 for_each_online_node(nid) {
6012 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6013
c1152583
WY
6014 build_zonelists(pgdat);
6015 }
99dcc3e5 6016
7aac7898
LS
6017#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6018 /*
6019 * We now know the "local memory node" for each node--
6020 * i.e., the node of the first zone in the generic zonelist.
6021 * Set up numa_mem percpu variable for on-line cpus. During
6022 * boot, only the boot cpu should be on-line; we'll init the
6023 * secondary cpus' numa_mem as they come on-line. During
6024 * node/memory hotplug, we'll fixup all on-line cpus.
6025 */
d9c9a0b9 6026 for_each_online_cpu(cpu)
7aac7898 6027 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6028#endif
d9c9a0b9 6029 }
b93e0f32
MH
6030
6031 spin_unlock(&lock);
6811378e
YG
6032}
6033
061f67bc
RV
6034static noinline void __init
6035build_all_zonelists_init(void)
6036{
afb6ebb3
MH
6037 int cpu;
6038
061f67bc 6039 __build_all_zonelists(NULL);
afb6ebb3
MH
6040
6041 /*
6042 * Initialize the boot_pagesets that are going to be used
6043 * for bootstrapping processors. The real pagesets for
6044 * each zone will be allocated later when the per cpu
6045 * allocator is available.
6046 *
6047 * boot_pagesets are used also for bootstrapping offline
6048 * cpus if the system is already booted because the pagesets
6049 * are needed to initialize allocators on a specific cpu too.
6050 * F.e. the percpu allocator needs the page allocator which
6051 * needs the percpu allocator in order to allocate its pagesets
6052 * (a chicken-egg dilemma).
6053 */
6054 for_each_possible_cpu(cpu)
69a8396a 6055 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6056
061f67bc
RV
6057 mminit_verify_zonelist();
6058 cpuset_init_current_mems_allowed();
6059}
6060
4eaf3f64 6061/*
4eaf3f64 6062 * unless system_state == SYSTEM_BOOTING.
061f67bc 6063 *
72675e13 6064 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6065 * [protected by SYSTEM_BOOTING].
4eaf3f64 6066 */
72675e13 6067void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6068{
0a18e607
DH
6069 unsigned long vm_total_pages;
6070
6811378e 6071 if (system_state == SYSTEM_BOOTING) {
061f67bc 6072 build_all_zonelists_init();
6811378e 6073 } else {
11cd8638 6074 __build_all_zonelists(pgdat);
6811378e
YG
6075 /* cpuset refresh routine should be here */
6076 }
56b9413b
DH
6077 /* Get the number of free pages beyond high watermark in all zones. */
6078 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6079 /*
6080 * Disable grouping by mobility if the number of pages in the
6081 * system is too low to allow the mechanism to work. It would be
6082 * more accurate, but expensive to check per-zone. This check is
6083 * made on memory-hotadd so a system can start with mobility
6084 * disabled and enable it later
6085 */
d9c23400 6086 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6087 page_group_by_mobility_disabled = 1;
6088 else
6089 page_group_by_mobility_disabled = 0;
6090
ce0725f7 6091 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6092 nr_online_nodes,
756a025f
JP
6093 page_group_by_mobility_disabled ? "off" : "on",
6094 vm_total_pages);
f0c0b2b8 6095#ifdef CONFIG_NUMA
f88dfff5 6096 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6097#endif
1da177e4
LT
6098}
6099
a9a9e77f
PT
6100/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6101static bool __meminit
6102overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6103{
a9a9e77f
PT
6104 static struct memblock_region *r;
6105
6106 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6107 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6108 for_each_mem_region(r) {
a9a9e77f
PT
6109 if (*pfn < memblock_region_memory_end_pfn(r))
6110 break;
6111 }
6112 }
6113 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6114 memblock_is_mirror(r)) {
6115 *pfn = memblock_region_memory_end_pfn(r);
6116 return true;
6117 }
6118 }
a9a9e77f
PT
6119 return false;
6120}
6121
1da177e4
LT
6122/*
6123 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6124 * up by memblock_free_all() once the early boot process is
1da177e4 6125 * done. Non-atomic initialization, single-pass.
d882c006
DH
6126 *
6127 * All aligned pageblocks are initialized to the specified migratetype
6128 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6129 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6130 */
ab28cb6e 6131void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6132 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6133 enum meminit_context context,
6134 struct vmem_altmap *altmap, int migratetype)
1da177e4 6135{
a9a9e77f 6136 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6137 struct page *page;
1da177e4 6138
22b31eec
HD
6139 if (highest_memmap_pfn < end_pfn - 1)
6140 highest_memmap_pfn = end_pfn - 1;
6141
966cf44f 6142#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6143 /*
6144 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6145 * memory. We limit the total number of pages to initialize to just
6146 * those that might contain the memory mapping. We will defer the
6147 * ZONE_DEVICE page initialization until after we have released
6148 * the hotplug lock.
4b94ffdc 6149 */
966cf44f
AD
6150 if (zone == ZONE_DEVICE) {
6151 if (!altmap)
6152 return;
6153
6154 if (start_pfn == altmap->base_pfn)
6155 start_pfn += altmap->reserve;
6156 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6157 }
6158#endif
4b94ffdc 6159
948c436e 6160 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6161 /*
b72d0ffb
AM
6162 * There can be holes in boot-time mem_map[]s handed to this
6163 * function. They do not exist on hotplugged memory.
a2f3aa02 6164 */
c1d0da83 6165 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6166 if (overlap_memmap_init(zone, &pfn))
6167 continue;
dc2da7b4 6168 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6169 break;
a2f3aa02 6170 }
ac5d2539 6171
d0dc12e8
PT
6172 page = pfn_to_page(pfn);
6173 __init_single_page(page, pfn, zone, nid);
c1d0da83 6174 if (context == MEMINIT_HOTPLUG)
d483da5b 6175 __SetPageReserved(page);
d0dc12e8 6176
ac5d2539 6177 /*
d882c006
DH
6178 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6179 * such that unmovable allocations won't be scattered all
6180 * over the place during system boot.
ac5d2539 6181 */
4eb29bd9 6182 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6183 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6184 cond_resched();
ac5d2539 6185 }
948c436e 6186 pfn++;
1da177e4
LT
6187 }
6188}
6189
966cf44f
AD
6190#ifdef CONFIG_ZONE_DEVICE
6191void __ref memmap_init_zone_device(struct zone *zone,
6192 unsigned long start_pfn,
1f8d75c1 6193 unsigned long nr_pages,
966cf44f
AD
6194 struct dev_pagemap *pgmap)
6195{
1f8d75c1 6196 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6197 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6198 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6199 unsigned long zone_idx = zone_idx(zone);
6200 unsigned long start = jiffies;
6201 int nid = pgdat->node_id;
6202
46d945ae 6203 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6204 return;
6205
6206 /*
6207 * The call to memmap_init_zone should have already taken care
6208 * of the pages reserved for the memmap, so we can just jump to
6209 * the end of that region and start processing the device pages.
6210 */
514caf23 6211 if (altmap) {
966cf44f 6212 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6213 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6214 }
6215
6216 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6217 struct page *page = pfn_to_page(pfn);
6218
6219 __init_single_page(page, pfn, zone_idx, nid);
6220
6221 /*
6222 * Mark page reserved as it will need to wait for onlining
6223 * phase for it to be fully associated with a zone.
6224 *
6225 * We can use the non-atomic __set_bit operation for setting
6226 * the flag as we are still initializing the pages.
6227 */
6228 __SetPageReserved(page);
6229
6230 /*
8a164fef
CH
6231 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6232 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6233 * ever freed or placed on a driver-private list.
966cf44f
AD
6234 */
6235 page->pgmap = pgmap;
8a164fef 6236 page->zone_device_data = NULL;
966cf44f
AD
6237
6238 /*
6239 * Mark the block movable so that blocks are reserved for
6240 * movable at startup. This will force kernel allocations
6241 * to reserve their blocks rather than leaking throughout
6242 * the address space during boot when many long-lived
6243 * kernel allocations are made.
6244 *
c1d0da83 6245 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6246 * because this is done early in section_activate()
966cf44f 6247 */
4eb29bd9 6248 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6249 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6250 cond_resched();
6251 }
6252 }
6253
fdc029b1 6254 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6255 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6256}
6257
6258#endif
1e548deb 6259static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6260{
7aeb09f9 6261 unsigned int order, t;
b2a0ac88
MG
6262 for_each_migratetype_order(order, t) {
6263 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6264 zone->free_area[order].nr_free = 0;
6265 }
6266}
6267
0740a50b
MR
6268#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6269/*
6270 * Only struct pages that correspond to ranges defined by memblock.memory
6271 * are zeroed and initialized by going through __init_single_page() during
6272 * memmap_init_zone().
6273 *
6274 * But, there could be struct pages that correspond to holes in
6275 * memblock.memory. This can happen because of the following reasons:
6276 * - physical memory bank size is not necessarily the exact multiple of the
6277 * arbitrary section size
6278 * - early reserved memory may not be listed in memblock.memory
6279 * - memory layouts defined with memmap= kernel parameter may not align
6280 * nicely with memmap sections
6281 *
6282 * Explicitly initialize those struct pages so that:
6283 * - PG_Reserved is set
6284 * - zone and node links point to zone and node that span the page if the
6285 * hole is in the middle of a zone
6286 * - zone and node links point to adjacent zone/node if the hole falls on
6287 * the zone boundary; the pages in such holes will be prepended to the
6288 * zone/node above the hole except for the trailing pages in the last
6289 * section that will be appended to the zone/node below.
6290 */
6291static u64 __meminit init_unavailable_range(unsigned long spfn,
6292 unsigned long epfn,
6293 int zone, int node)
6294{
6295 unsigned long pfn;
6296 u64 pgcnt = 0;
6297
6298 for (pfn = spfn; pfn < epfn; pfn++) {
6299 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6300 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6301 + pageblock_nr_pages - 1;
6302 continue;
6303 }
6304 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6305 __SetPageReserved(pfn_to_page(pfn));
6306 pgcnt++;
6307 }
6308
6309 return pgcnt;
6310}
6311#else
6312static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6313 int zone, int node)
6314{
6315 return 0;
6316}
6317#endif
6318
3256ff83 6319void __meminit __weak memmap_init_zone(struct zone *zone)
dfb3ccd0 6320{
3256ff83
BH
6321 unsigned long zone_start_pfn = zone->zone_start_pfn;
6322 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6323 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
0740a50b 6324 static unsigned long hole_pfn;
73a6e474 6325 unsigned long start_pfn, end_pfn;
0740a50b 6326 u64 pgcnt = 0;
73a6e474
BH
6327
6328 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3256ff83
BH
6329 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6330 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
73a6e474 6331
3256ff83
BH
6332 if (end_pfn > start_pfn)
6333 memmap_init_range(end_pfn - start_pfn, nid,
6334 zone_id, start_pfn, zone_end_pfn,
6335 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
0740a50b
MR
6336
6337 if (hole_pfn < start_pfn)
6338 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6339 zone_id, nid);
6340 hole_pfn = end_pfn;
73a6e474 6341 }
0740a50b
MR
6342
6343#ifdef CONFIG_SPARSEMEM
6344 /*
6345 * Initialize the hole in the range [zone_end_pfn, section_end].
6346 * If zone boundary falls in the middle of a section, this hole
6347 * will be re-initialized during the call to this function for the
6348 * higher zone.
6349 */
6350 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6351 if (hole_pfn < end_pfn)
6352 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6353 zone_id, nid);
6354#endif
6355
6356 if (pgcnt)
6357 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6358 zone->name, pgcnt);
dfb3ccd0 6359}
1da177e4 6360
7cd2b0a3 6361static int zone_batchsize(struct zone *zone)
e7c8d5c9 6362{
3a6be87f 6363#ifdef CONFIG_MMU
e7c8d5c9
CL
6364 int batch;
6365
6366 /*
6367 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6368 * size of the zone.
e7c8d5c9 6369 */
9705bea5 6370 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6371 /* But no more than a meg. */
6372 if (batch * PAGE_SIZE > 1024 * 1024)
6373 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6374 batch /= 4; /* We effectively *= 4 below */
6375 if (batch < 1)
6376 batch = 1;
6377
6378 /*
0ceaacc9
NP
6379 * Clamp the batch to a 2^n - 1 value. Having a power
6380 * of 2 value was found to be more likely to have
6381 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6382 *
0ceaacc9
NP
6383 * For example if 2 tasks are alternately allocating
6384 * batches of pages, one task can end up with a lot
6385 * of pages of one half of the possible page colors
6386 * and the other with pages of the other colors.
e7c8d5c9 6387 */
9155203a 6388 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6389
e7c8d5c9 6390 return batch;
3a6be87f
DH
6391
6392#else
6393 /* The deferral and batching of frees should be suppressed under NOMMU
6394 * conditions.
6395 *
6396 * The problem is that NOMMU needs to be able to allocate large chunks
6397 * of contiguous memory as there's no hardware page translation to
6398 * assemble apparent contiguous memory from discontiguous pages.
6399 *
6400 * Queueing large contiguous runs of pages for batching, however,
6401 * causes the pages to actually be freed in smaller chunks. As there
6402 * can be a significant delay between the individual batches being
6403 * recycled, this leads to the once large chunks of space being
6404 * fragmented and becoming unavailable for high-order allocations.
6405 */
6406 return 0;
6407#endif
e7c8d5c9
CL
6408}
6409
8d7a8fa9 6410/*
5c3ad2eb
VB
6411 * pcp->high and pcp->batch values are related and generally batch is lower
6412 * than high. They are also related to pcp->count such that count is lower
6413 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6414 *
5c3ad2eb
VB
6415 * However, guaranteeing these relations at all times would require e.g. write
6416 * barriers here but also careful usage of read barriers at the read side, and
6417 * thus be prone to error and bad for performance. Thus the update only prevents
6418 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6419 * can cope with those fields changing asynchronously, and fully trust only the
6420 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6421 *
6422 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6423 * outside of boot time (or some other assurance that no concurrent updaters
6424 * exist).
6425 */
6426static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6427 unsigned long batch)
6428{
5c3ad2eb
VB
6429 WRITE_ONCE(pcp->batch, batch);
6430 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6431}
6432
88c90dbc 6433static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6434{
6435 struct per_cpu_pages *pcp;
5f8dcc21 6436 int migratetype;
2caaad41 6437
1c6fe946
MD
6438 memset(p, 0, sizeof(*p));
6439
3dfa5721 6440 pcp = &p->pcp;
5f8dcc21
MG
6441 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6442 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6443
69a8396a
VB
6444 /*
6445 * Set batch and high values safe for a boot pageset. A true percpu
6446 * pageset's initialization will update them subsequently. Here we don't
6447 * need to be as careful as pageset_update() as nobody can access the
6448 * pageset yet.
6449 */
952eaf81
VB
6450 pcp->high = BOOT_PAGESET_HIGH;
6451 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6452}
6453
3b1f3658 6454static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6455 unsigned long batch)
6456{
6457 struct per_cpu_pageset *p;
6458 int cpu;
6459
6460 for_each_possible_cpu(cpu) {
6461 p = per_cpu_ptr(zone->pageset, cpu);
6462 pageset_update(&p->pcp, high, batch);
6463 }
6464}
6465
8ad4b1fb 6466/*
0a8b4f1d 6467 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6468 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6469 */
0a8b4f1d 6470static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6471{
7115ac6e
VB
6472 unsigned long new_high, new_batch;
6473
6474 if (percpu_pagelist_fraction) {
6475 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6476 new_batch = max(1UL, new_high / 4);
6477 if ((new_high / 4) > (PAGE_SHIFT * 8))
6478 new_batch = PAGE_SHIFT * 8;
6479 } else {
6480 new_batch = zone_batchsize(zone);
6481 new_high = 6 * new_batch;
6482 new_batch = max(1UL, 1 * new_batch);
6483 }
169f6c19 6484
952eaf81
VB
6485 if (zone->pageset_high == new_high &&
6486 zone->pageset_batch == new_batch)
6487 return;
6488
6489 zone->pageset_high = new_high;
6490 zone->pageset_batch = new_batch;
6491
ec6e8c7e 6492 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6493}
6494
72675e13 6495void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6496{
0a8b4f1d 6497 struct per_cpu_pageset *p;
319774e2 6498 int cpu;
0a8b4f1d 6499
319774e2 6500 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6501 for_each_possible_cpu(cpu) {
6502 p = per_cpu_ptr(zone->pageset, cpu);
6503 pageset_init(p);
6504 }
6505
6506 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6507}
6508
2caaad41 6509/*
99dcc3e5
CL
6510 * Allocate per cpu pagesets and initialize them.
6511 * Before this call only boot pagesets were available.
e7c8d5c9 6512 */
99dcc3e5 6513void __init setup_per_cpu_pageset(void)
e7c8d5c9 6514{
b4911ea2 6515 struct pglist_data *pgdat;
99dcc3e5 6516 struct zone *zone;
b418a0f9 6517 int __maybe_unused cpu;
e7c8d5c9 6518
319774e2
WF
6519 for_each_populated_zone(zone)
6520 setup_zone_pageset(zone);
b4911ea2 6521
b418a0f9
SD
6522#ifdef CONFIG_NUMA
6523 /*
6524 * Unpopulated zones continue using the boot pagesets.
6525 * The numa stats for these pagesets need to be reset.
6526 * Otherwise, they will end up skewing the stats of
6527 * the nodes these zones are associated with.
6528 */
6529 for_each_possible_cpu(cpu) {
6530 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6531 memset(pcp->vm_numa_stat_diff, 0,
6532 sizeof(pcp->vm_numa_stat_diff));
6533 }
6534#endif
6535
b4911ea2
MG
6536 for_each_online_pgdat(pgdat)
6537 pgdat->per_cpu_nodestats =
6538 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6539}
6540
c09b4240 6541static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6542{
99dcc3e5
CL
6543 /*
6544 * per cpu subsystem is not up at this point. The following code
6545 * relies on the ability of the linker to provide the
6546 * offset of a (static) per cpu variable into the per cpu area.
6547 */
6548 zone->pageset = &boot_pageset;
952eaf81
VB
6549 zone->pageset_high = BOOT_PAGESET_HIGH;
6550 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6551
b38a8725 6552 if (populated_zone(zone))
99dcc3e5
CL
6553 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6554 zone->name, zone->present_pages,
6555 zone_batchsize(zone));
ed8ece2e
DH
6556}
6557
dc0bbf3b 6558void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6559 unsigned long zone_start_pfn,
b171e409 6560 unsigned long size)
ed8ece2e
DH
6561{
6562 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6563 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6564
8f416836
WY
6565 if (zone_idx > pgdat->nr_zones)
6566 pgdat->nr_zones = zone_idx;
ed8ece2e 6567
ed8ece2e
DH
6568 zone->zone_start_pfn = zone_start_pfn;
6569
708614e6
MG
6570 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6571 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6572 pgdat->node_id,
6573 (unsigned long)zone_idx(zone),
6574 zone_start_pfn, (zone_start_pfn + size));
6575
1e548deb 6576 zone_init_free_lists(zone);
9dcb8b68 6577 zone->initialized = 1;
ed8ece2e
DH
6578}
6579
c713216d
MG
6580/**
6581 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6582 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6583 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6584 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6585 *
6586 * It returns the start and end page frame of a node based on information
7d018176 6587 * provided by memblock_set_node(). If called for a node
c713216d 6588 * with no available memory, a warning is printed and the start and end
88ca3b94 6589 * PFNs will be 0.
c713216d 6590 */
bbe5d993 6591void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6592 unsigned long *start_pfn, unsigned long *end_pfn)
6593{
c13291a5 6594 unsigned long this_start_pfn, this_end_pfn;
c713216d 6595 int i;
c13291a5 6596
c713216d
MG
6597 *start_pfn = -1UL;
6598 *end_pfn = 0;
6599
c13291a5
TH
6600 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6601 *start_pfn = min(*start_pfn, this_start_pfn);
6602 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6603 }
6604
633c0666 6605 if (*start_pfn == -1UL)
c713216d 6606 *start_pfn = 0;
c713216d
MG
6607}
6608
2a1e274a
MG
6609/*
6610 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6611 * assumption is made that zones within a node are ordered in monotonic
6612 * increasing memory addresses so that the "highest" populated zone is used
6613 */
b69a7288 6614static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6615{
6616 int zone_index;
6617 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6618 if (zone_index == ZONE_MOVABLE)
6619 continue;
6620
6621 if (arch_zone_highest_possible_pfn[zone_index] >
6622 arch_zone_lowest_possible_pfn[zone_index])
6623 break;
6624 }
6625
6626 VM_BUG_ON(zone_index == -1);
6627 movable_zone = zone_index;
6628}
6629
6630/*
6631 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6632 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6633 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6634 * in each node depending on the size of each node and how evenly kernelcore
6635 * is distributed. This helper function adjusts the zone ranges
6636 * provided by the architecture for a given node by using the end of the
6637 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6638 * zones within a node are in order of monotonic increases memory addresses
6639 */
bbe5d993 6640static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6641 unsigned long zone_type,
6642 unsigned long node_start_pfn,
6643 unsigned long node_end_pfn,
6644 unsigned long *zone_start_pfn,
6645 unsigned long *zone_end_pfn)
6646{
6647 /* Only adjust if ZONE_MOVABLE is on this node */
6648 if (zone_movable_pfn[nid]) {
6649 /* Size ZONE_MOVABLE */
6650 if (zone_type == ZONE_MOVABLE) {
6651 *zone_start_pfn = zone_movable_pfn[nid];
6652 *zone_end_pfn = min(node_end_pfn,
6653 arch_zone_highest_possible_pfn[movable_zone]);
6654
e506b996
XQ
6655 /* Adjust for ZONE_MOVABLE starting within this range */
6656 } else if (!mirrored_kernelcore &&
6657 *zone_start_pfn < zone_movable_pfn[nid] &&
6658 *zone_end_pfn > zone_movable_pfn[nid]) {
6659 *zone_end_pfn = zone_movable_pfn[nid];
6660
2a1e274a
MG
6661 /* Check if this whole range is within ZONE_MOVABLE */
6662 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6663 *zone_start_pfn = *zone_end_pfn;
6664 }
6665}
6666
c713216d
MG
6667/*
6668 * Return the number of pages a zone spans in a node, including holes
6669 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6670 */
bbe5d993 6671static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6672 unsigned long zone_type,
7960aedd
ZY
6673 unsigned long node_start_pfn,
6674 unsigned long node_end_pfn,
d91749c1 6675 unsigned long *zone_start_pfn,
854e8848 6676 unsigned long *zone_end_pfn)
c713216d 6677{
299c83dc
LF
6678 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6679 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6680 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6681 if (!node_start_pfn && !node_end_pfn)
6682 return 0;
6683
7960aedd 6684 /* Get the start and end of the zone */
299c83dc
LF
6685 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6686 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6687 adjust_zone_range_for_zone_movable(nid, zone_type,
6688 node_start_pfn, node_end_pfn,
d91749c1 6689 zone_start_pfn, zone_end_pfn);
c713216d
MG
6690
6691 /* Check that this node has pages within the zone's required range */
d91749c1 6692 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6693 return 0;
6694
6695 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6696 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6697 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6698
6699 /* Return the spanned pages */
d91749c1 6700 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6701}
6702
6703/*
6704 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6705 * then all holes in the requested range will be accounted for.
c713216d 6706 */
bbe5d993 6707unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6708 unsigned long range_start_pfn,
6709 unsigned long range_end_pfn)
6710{
96e907d1
TH
6711 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6712 unsigned long start_pfn, end_pfn;
6713 int i;
c713216d 6714
96e907d1
TH
6715 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6716 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6717 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6718 nr_absent -= end_pfn - start_pfn;
c713216d 6719 }
96e907d1 6720 return nr_absent;
c713216d
MG
6721}
6722
6723/**
6724 * absent_pages_in_range - Return number of page frames in holes within a range
6725 * @start_pfn: The start PFN to start searching for holes
6726 * @end_pfn: The end PFN to stop searching for holes
6727 *
a862f68a 6728 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6729 */
6730unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6731 unsigned long end_pfn)
6732{
6733 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6734}
6735
6736/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6737static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6738 unsigned long zone_type,
7960aedd 6739 unsigned long node_start_pfn,
854e8848 6740 unsigned long node_end_pfn)
c713216d 6741{
96e907d1
TH
6742 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6743 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6744 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6745 unsigned long nr_absent;
9c7cd687 6746
b5685e92 6747 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6748 if (!node_start_pfn && !node_end_pfn)
6749 return 0;
6750
96e907d1
TH
6751 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6752 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6753
2a1e274a
MG
6754 adjust_zone_range_for_zone_movable(nid, zone_type,
6755 node_start_pfn, node_end_pfn,
6756 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6757 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6758
6759 /*
6760 * ZONE_MOVABLE handling.
6761 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6762 * and vice versa.
6763 */
e506b996
XQ
6764 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6765 unsigned long start_pfn, end_pfn;
6766 struct memblock_region *r;
6767
cc6de168 6768 for_each_mem_region(r) {
e506b996
XQ
6769 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6770 zone_start_pfn, zone_end_pfn);
6771 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6772 zone_start_pfn, zone_end_pfn);
6773
6774 if (zone_type == ZONE_MOVABLE &&
6775 memblock_is_mirror(r))
6776 nr_absent += end_pfn - start_pfn;
6777
6778 if (zone_type == ZONE_NORMAL &&
6779 !memblock_is_mirror(r))
6780 nr_absent += end_pfn - start_pfn;
342332e6
TI
6781 }
6782 }
6783
6784 return nr_absent;
c713216d 6785}
0e0b864e 6786
bbe5d993 6787static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6788 unsigned long node_start_pfn,
854e8848 6789 unsigned long node_end_pfn)
c713216d 6790{
febd5949 6791 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6792 enum zone_type i;
6793
febd5949
GZ
6794 for (i = 0; i < MAX_NR_ZONES; i++) {
6795 struct zone *zone = pgdat->node_zones + i;
d91749c1 6796 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6797 unsigned long spanned, absent;
febd5949 6798 unsigned long size, real_size;
c713216d 6799
854e8848
MR
6800 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6801 node_start_pfn,
6802 node_end_pfn,
6803 &zone_start_pfn,
6804 &zone_end_pfn);
6805 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6806 node_start_pfn,
6807 node_end_pfn);
3f08a302
MR
6808
6809 size = spanned;
6810 real_size = size - absent;
6811
d91749c1
TI
6812 if (size)
6813 zone->zone_start_pfn = zone_start_pfn;
6814 else
6815 zone->zone_start_pfn = 0;
febd5949
GZ
6816 zone->spanned_pages = size;
6817 zone->present_pages = real_size;
6818
6819 totalpages += size;
6820 realtotalpages += real_size;
6821 }
6822
6823 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6824 pgdat->node_present_pages = realtotalpages;
6825 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6826 realtotalpages);
6827}
6828
835c134e
MG
6829#ifndef CONFIG_SPARSEMEM
6830/*
6831 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6832 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6833 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6834 * round what is now in bits to nearest long in bits, then return it in
6835 * bytes.
6836 */
7c45512d 6837static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6838{
6839 unsigned long usemapsize;
6840
7c45512d 6841 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6842 usemapsize = roundup(zonesize, pageblock_nr_pages);
6843 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6844 usemapsize *= NR_PAGEBLOCK_BITS;
6845 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6846
6847 return usemapsize / 8;
6848}
6849
7010a6ec 6850static void __ref setup_usemap(struct zone *zone)
835c134e 6851{
7010a6ec
BH
6852 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
6853 zone->spanned_pages);
835c134e 6854 zone->pageblock_flags = NULL;
23a7052a 6855 if (usemapsize) {
6782832e 6856 zone->pageblock_flags =
26fb3dae 6857 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 6858 zone_to_nid(zone));
23a7052a
MR
6859 if (!zone->pageblock_flags)
6860 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 6861 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 6862 }
835c134e
MG
6863}
6864#else
7010a6ec 6865static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
6866#endif /* CONFIG_SPARSEMEM */
6867
d9c23400 6868#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6869
d9c23400 6870/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6871void __init set_pageblock_order(void)
d9c23400 6872{
955c1cd7
AM
6873 unsigned int order;
6874
d9c23400
MG
6875 /* Check that pageblock_nr_pages has not already been setup */
6876 if (pageblock_order)
6877 return;
6878
955c1cd7
AM
6879 if (HPAGE_SHIFT > PAGE_SHIFT)
6880 order = HUGETLB_PAGE_ORDER;
6881 else
6882 order = MAX_ORDER - 1;
6883
d9c23400
MG
6884 /*
6885 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6886 * This value may be variable depending on boot parameters on IA64 and
6887 * powerpc.
d9c23400
MG
6888 */
6889 pageblock_order = order;
6890}
6891#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6892
ba72cb8c
MG
6893/*
6894 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6895 * is unused as pageblock_order is set at compile-time. See
6896 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6897 * the kernel config
ba72cb8c 6898 */
03e85f9d 6899void __init set_pageblock_order(void)
ba72cb8c 6900{
ba72cb8c 6901}
d9c23400
MG
6902
6903#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6904
03e85f9d 6905static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6906 unsigned long present_pages)
01cefaef
JL
6907{
6908 unsigned long pages = spanned_pages;
6909
6910 /*
6911 * Provide a more accurate estimation if there are holes within
6912 * the zone and SPARSEMEM is in use. If there are holes within the
6913 * zone, each populated memory region may cost us one or two extra
6914 * memmap pages due to alignment because memmap pages for each
89d790ab 6915 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6916 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6917 */
6918 if (spanned_pages > present_pages + (present_pages >> 4) &&
6919 IS_ENABLED(CONFIG_SPARSEMEM))
6920 pages = present_pages;
6921
6922 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6923}
6924
ace1db39
OS
6925#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6926static void pgdat_init_split_queue(struct pglist_data *pgdat)
6927{
364c1eeb
YS
6928 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6929
6930 spin_lock_init(&ds_queue->split_queue_lock);
6931 INIT_LIST_HEAD(&ds_queue->split_queue);
6932 ds_queue->split_queue_len = 0;
ace1db39
OS
6933}
6934#else
6935static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6936#endif
6937
6938#ifdef CONFIG_COMPACTION
6939static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6940{
6941 init_waitqueue_head(&pgdat->kcompactd_wait);
6942}
6943#else
6944static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6945#endif
6946
03e85f9d 6947static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6948{
208d54e5 6949 pgdat_resize_init(pgdat);
ace1db39 6950
ace1db39
OS
6951 pgdat_init_split_queue(pgdat);
6952 pgdat_init_kcompactd(pgdat);
6953
1da177e4 6954 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6955 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6956
eefa864b 6957 pgdat_page_ext_init(pgdat);
867e5e1d 6958 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6959}
6960
6961static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6962 unsigned long remaining_pages)
6963{
9705bea5 6964 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6965 zone_set_nid(zone, nid);
6966 zone->name = zone_names[idx];
6967 zone->zone_pgdat = NODE_DATA(nid);
6968 spin_lock_init(&zone->lock);
6969 zone_seqlock_init(zone);
6970 zone_pcp_init(zone);
6971}
6972
6973/*
6974 * Set up the zone data structures
6975 * - init pgdat internals
6976 * - init all zones belonging to this node
6977 *
6978 * NOTE: this function is only called during memory hotplug
6979 */
6980#ifdef CONFIG_MEMORY_HOTPLUG
6981void __ref free_area_init_core_hotplug(int nid)
6982{
6983 enum zone_type z;
6984 pg_data_t *pgdat = NODE_DATA(nid);
6985
6986 pgdat_init_internals(pgdat);
6987 for (z = 0; z < MAX_NR_ZONES; z++)
6988 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6989}
6990#endif
6991
6992/*
6993 * Set up the zone data structures:
6994 * - mark all pages reserved
6995 * - mark all memory queues empty
6996 * - clear the memory bitmaps
6997 *
6998 * NOTE: pgdat should get zeroed by caller.
6999 * NOTE: this function is only called during early init.
7000 */
7001static void __init free_area_init_core(struct pglist_data *pgdat)
7002{
7003 enum zone_type j;
7004 int nid = pgdat->node_id;
5f63b720 7005
03e85f9d 7006 pgdat_init_internals(pgdat);
385386cf
JW
7007 pgdat->per_cpu_nodestats = &boot_nodestats;
7008
1da177e4
LT
7009 for (j = 0; j < MAX_NR_ZONES; j++) {
7010 struct zone *zone = pgdat->node_zones + j;
e6943859 7011 unsigned long size, freesize, memmap_pages;
1da177e4 7012
febd5949 7013 size = zone->spanned_pages;
e6943859 7014 freesize = zone->present_pages;
1da177e4 7015
0e0b864e 7016 /*
9feedc9d 7017 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7018 * is used by this zone for memmap. This affects the watermark
7019 * and per-cpu initialisations
7020 */
e6943859 7021 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7022 if (!is_highmem_idx(j)) {
7023 if (freesize >= memmap_pages) {
7024 freesize -= memmap_pages;
7025 if (memmap_pages)
7026 printk(KERN_DEBUG
7027 " %s zone: %lu pages used for memmap\n",
7028 zone_names[j], memmap_pages);
7029 } else
1170532b 7030 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
7031 zone_names[j], memmap_pages, freesize);
7032 }
0e0b864e 7033
6267276f 7034 /* Account for reserved pages */
9feedc9d
JL
7035 if (j == 0 && freesize > dma_reserve) {
7036 freesize -= dma_reserve;
d903ef9f 7037 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 7038 zone_names[0], dma_reserve);
0e0b864e
MG
7039 }
7040
98d2b0eb 7041 if (!is_highmem_idx(j))
9feedc9d 7042 nr_kernel_pages += freesize;
01cefaef
JL
7043 /* Charge for highmem memmap if there are enough kernel pages */
7044 else if (nr_kernel_pages > memmap_pages * 2)
7045 nr_kernel_pages -= memmap_pages;
9feedc9d 7046 nr_all_pages += freesize;
1da177e4 7047
9feedc9d
JL
7048 /*
7049 * Set an approximate value for lowmem here, it will be adjusted
7050 * when the bootmem allocator frees pages into the buddy system.
7051 * And all highmem pages will be managed by the buddy system.
7052 */
03e85f9d 7053 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7054
d883c6cf 7055 if (!size)
1da177e4
LT
7056 continue;
7057
955c1cd7 7058 set_pageblock_order();
7010a6ec 7059 setup_usemap(zone);
9699ee7b 7060 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
3256ff83 7061 memmap_init_zone(zone);
1da177e4
LT
7062 }
7063}
7064
0cd842f9 7065#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 7066static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7067{
b0aeba74 7068 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7069 unsigned long __maybe_unused offset = 0;
7070
1da177e4
LT
7071 /* Skip empty nodes */
7072 if (!pgdat->node_spanned_pages)
7073 return;
7074
b0aeba74
TL
7075 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7076 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7077 /* ia64 gets its own node_mem_map, before this, without bootmem */
7078 if (!pgdat->node_mem_map) {
b0aeba74 7079 unsigned long size, end;
d41dee36
AW
7080 struct page *map;
7081
e984bb43
BP
7082 /*
7083 * The zone's endpoints aren't required to be MAX_ORDER
7084 * aligned but the node_mem_map endpoints must be in order
7085 * for the buddy allocator to function correctly.
7086 */
108bcc96 7087 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7088 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7089 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7090 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7091 pgdat->node_id);
23a7052a
MR
7092 if (!map)
7093 panic("Failed to allocate %ld bytes for node %d memory map\n",
7094 size, pgdat->node_id);
a1c34a3b 7095 pgdat->node_mem_map = map + offset;
1da177e4 7096 }
0cd842f9
OS
7097 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7098 __func__, pgdat->node_id, (unsigned long)pgdat,
7099 (unsigned long)pgdat->node_mem_map);
12d810c1 7100#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7101 /*
7102 * With no DISCONTIG, the global mem_map is just set as node 0's
7103 */
c713216d 7104 if (pgdat == NODE_DATA(0)) {
1da177e4 7105 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7106 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7107 mem_map -= offset;
c713216d 7108 }
1da177e4
LT
7109#endif
7110}
0cd842f9
OS
7111#else
7112static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7113#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7114
0188dc98
OS
7115#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7116static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7117{
0188dc98
OS
7118 pgdat->first_deferred_pfn = ULONG_MAX;
7119}
7120#else
7121static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7122#endif
7123
854e8848 7124static void __init free_area_init_node(int nid)
1da177e4 7125{
9109fb7b 7126 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7127 unsigned long start_pfn = 0;
7128 unsigned long end_pfn = 0;
9109fb7b 7129
88fdf75d 7130 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7131 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7132
854e8848 7133 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7134
1da177e4 7135 pgdat->node_id = nid;
854e8848 7136 pgdat->node_start_pfn = start_pfn;
75ef7184 7137 pgdat->per_cpu_nodestats = NULL;
854e8848 7138
8d29e18a 7139 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7140 (u64)start_pfn << PAGE_SHIFT,
7141 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7142 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7143
7144 alloc_node_mem_map(pgdat);
0188dc98 7145 pgdat_set_deferred_range(pgdat);
1da177e4 7146
7f3eb55b 7147 free_area_init_core(pgdat);
1da177e4
LT
7148}
7149
bc9331a1 7150void __init free_area_init_memoryless_node(int nid)
3f08a302 7151{
854e8848 7152 free_area_init_node(nid);
3f08a302
MR
7153}
7154
418508c1
MS
7155#if MAX_NUMNODES > 1
7156/*
7157 * Figure out the number of possible node ids.
7158 */
f9872caf 7159void __init setup_nr_node_ids(void)
418508c1 7160{
904a9553 7161 unsigned int highest;
418508c1 7162
904a9553 7163 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7164 nr_node_ids = highest + 1;
7165}
418508c1
MS
7166#endif
7167
1e01979c
TH
7168/**
7169 * node_map_pfn_alignment - determine the maximum internode alignment
7170 *
7171 * This function should be called after node map is populated and sorted.
7172 * It calculates the maximum power of two alignment which can distinguish
7173 * all the nodes.
7174 *
7175 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7176 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7177 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7178 * shifted, 1GiB is enough and this function will indicate so.
7179 *
7180 * This is used to test whether pfn -> nid mapping of the chosen memory
7181 * model has fine enough granularity to avoid incorrect mapping for the
7182 * populated node map.
7183 *
a862f68a 7184 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7185 * requirement (single node).
7186 */
7187unsigned long __init node_map_pfn_alignment(void)
7188{
7189 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7190 unsigned long start, end, mask;
98fa15f3 7191 int last_nid = NUMA_NO_NODE;
c13291a5 7192 int i, nid;
1e01979c 7193
c13291a5 7194 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7195 if (!start || last_nid < 0 || last_nid == nid) {
7196 last_nid = nid;
7197 last_end = end;
7198 continue;
7199 }
7200
7201 /*
7202 * Start with a mask granular enough to pin-point to the
7203 * start pfn and tick off bits one-by-one until it becomes
7204 * too coarse to separate the current node from the last.
7205 */
7206 mask = ~((1 << __ffs(start)) - 1);
7207 while (mask && last_end <= (start & (mask << 1)))
7208 mask <<= 1;
7209
7210 /* accumulate all internode masks */
7211 accl_mask |= mask;
7212 }
7213
7214 /* convert mask to number of pages */
7215 return ~accl_mask + 1;
7216}
7217
c713216d
MG
7218/**
7219 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7220 *
a862f68a 7221 * Return: the minimum PFN based on information provided via
7d018176 7222 * memblock_set_node().
c713216d
MG
7223 */
7224unsigned long __init find_min_pfn_with_active_regions(void)
7225{
8a1b25fe 7226 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7227}
7228
37b07e41
LS
7229/*
7230 * early_calculate_totalpages()
7231 * Sum pages in active regions for movable zone.
4b0ef1fe 7232 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7233 */
484f51f8 7234static unsigned long __init early_calculate_totalpages(void)
7e63efef 7235{
7e63efef 7236 unsigned long totalpages = 0;
c13291a5
TH
7237 unsigned long start_pfn, end_pfn;
7238 int i, nid;
7239
7240 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7241 unsigned long pages = end_pfn - start_pfn;
7e63efef 7242
37b07e41
LS
7243 totalpages += pages;
7244 if (pages)
4b0ef1fe 7245 node_set_state(nid, N_MEMORY);
37b07e41 7246 }
b8af2941 7247 return totalpages;
7e63efef
MG
7248}
7249
2a1e274a
MG
7250/*
7251 * Find the PFN the Movable zone begins in each node. Kernel memory
7252 * is spread evenly between nodes as long as the nodes have enough
7253 * memory. When they don't, some nodes will have more kernelcore than
7254 * others
7255 */
b224ef85 7256static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7257{
7258 int i, nid;
7259 unsigned long usable_startpfn;
7260 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7261 /* save the state before borrow the nodemask */
4b0ef1fe 7262 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7263 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7264 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7265 struct memblock_region *r;
b2f3eebe
TC
7266
7267 /* Need to find movable_zone earlier when movable_node is specified. */
7268 find_usable_zone_for_movable();
7269
7270 /*
7271 * If movable_node is specified, ignore kernelcore and movablecore
7272 * options.
7273 */
7274 if (movable_node_is_enabled()) {
cc6de168 7275 for_each_mem_region(r) {
136199f0 7276 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7277 continue;
7278
d622abf7 7279 nid = memblock_get_region_node(r);
b2f3eebe 7280
136199f0 7281 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7282 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7283 min(usable_startpfn, zone_movable_pfn[nid]) :
7284 usable_startpfn;
7285 }
7286
7287 goto out2;
7288 }
2a1e274a 7289
342332e6
TI
7290 /*
7291 * If kernelcore=mirror is specified, ignore movablecore option
7292 */
7293 if (mirrored_kernelcore) {
7294 bool mem_below_4gb_not_mirrored = false;
7295
cc6de168 7296 for_each_mem_region(r) {
342332e6
TI
7297 if (memblock_is_mirror(r))
7298 continue;
7299
d622abf7 7300 nid = memblock_get_region_node(r);
342332e6
TI
7301
7302 usable_startpfn = memblock_region_memory_base_pfn(r);
7303
7304 if (usable_startpfn < 0x100000) {
7305 mem_below_4gb_not_mirrored = true;
7306 continue;
7307 }
7308
7309 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7310 min(usable_startpfn, zone_movable_pfn[nid]) :
7311 usable_startpfn;
7312 }
7313
7314 if (mem_below_4gb_not_mirrored)
633bf2fe 7315 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7316
7317 goto out2;
7318 }
7319
7e63efef 7320 /*
a5c6d650
DR
7321 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7322 * amount of necessary memory.
7323 */
7324 if (required_kernelcore_percent)
7325 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7326 10000UL;
7327 if (required_movablecore_percent)
7328 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7329 10000UL;
7330
7331 /*
7332 * If movablecore= was specified, calculate what size of
7e63efef
MG
7333 * kernelcore that corresponds so that memory usable for
7334 * any allocation type is evenly spread. If both kernelcore
7335 * and movablecore are specified, then the value of kernelcore
7336 * will be used for required_kernelcore if it's greater than
7337 * what movablecore would have allowed.
7338 */
7339 if (required_movablecore) {
7e63efef
MG
7340 unsigned long corepages;
7341
7342 /*
7343 * Round-up so that ZONE_MOVABLE is at least as large as what
7344 * was requested by the user
7345 */
7346 required_movablecore =
7347 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7348 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7349 corepages = totalpages - required_movablecore;
7350
7351 required_kernelcore = max(required_kernelcore, corepages);
7352 }
7353
bde304bd
XQ
7354 /*
7355 * If kernelcore was not specified or kernelcore size is larger
7356 * than totalpages, there is no ZONE_MOVABLE.
7357 */
7358 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7359 goto out;
2a1e274a
MG
7360
7361 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7362 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7363
7364restart:
7365 /* Spread kernelcore memory as evenly as possible throughout nodes */
7366 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7367 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7368 unsigned long start_pfn, end_pfn;
7369
2a1e274a
MG
7370 /*
7371 * Recalculate kernelcore_node if the division per node
7372 * now exceeds what is necessary to satisfy the requested
7373 * amount of memory for the kernel
7374 */
7375 if (required_kernelcore < kernelcore_node)
7376 kernelcore_node = required_kernelcore / usable_nodes;
7377
7378 /*
7379 * As the map is walked, we track how much memory is usable
7380 * by the kernel using kernelcore_remaining. When it is
7381 * 0, the rest of the node is usable by ZONE_MOVABLE
7382 */
7383 kernelcore_remaining = kernelcore_node;
7384
7385 /* Go through each range of PFNs within this node */
c13291a5 7386 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7387 unsigned long size_pages;
7388
c13291a5 7389 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7390 if (start_pfn >= end_pfn)
7391 continue;
7392
7393 /* Account for what is only usable for kernelcore */
7394 if (start_pfn < usable_startpfn) {
7395 unsigned long kernel_pages;
7396 kernel_pages = min(end_pfn, usable_startpfn)
7397 - start_pfn;
7398
7399 kernelcore_remaining -= min(kernel_pages,
7400 kernelcore_remaining);
7401 required_kernelcore -= min(kernel_pages,
7402 required_kernelcore);
7403
7404 /* Continue if range is now fully accounted */
7405 if (end_pfn <= usable_startpfn) {
7406
7407 /*
7408 * Push zone_movable_pfn to the end so
7409 * that if we have to rebalance
7410 * kernelcore across nodes, we will
7411 * not double account here
7412 */
7413 zone_movable_pfn[nid] = end_pfn;
7414 continue;
7415 }
7416 start_pfn = usable_startpfn;
7417 }
7418
7419 /*
7420 * The usable PFN range for ZONE_MOVABLE is from
7421 * start_pfn->end_pfn. Calculate size_pages as the
7422 * number of pages used as kernelcore
7423 */
7424 size_pages = end_pfn - start_pfn;
7425 if (size_pages > kernelcore_remaining)
7426 size_pages = kernelcore_remaining;
7427 zone_movable_pfn[nid] = start_pfn + size_pages;
7428
7429 /*
7430 * Some kernelcore has been met, update counts and
7431 * break if the kernelcore for this node has been
b8af2941 7432 * satisfied
2a1e274a
MG
7433 */
7434 required_kernelcore -= min(required_kernelcore,
7435 size_pages);
7436 kernelcore_remaining -= size_pages;
7437 if (!kernelcore_remaining)
7438 break;
7439 }
7440 }
7441
7442 /*
7443 * If there is still required_kernelcore, we do another pass with one
7444 * less node in the count. This will push zone_movable_pfn[nid] further
7445 * along on the nodes that still have memory until kernelcore is
b8af2941 7446 * satisfied
2a1e274a
MG
7447 */
7448 usable_nodes--;
7449 if (usable_nodes && required_kernelcore > usable_nodes)
7450 goto restart;
7451
b2f3eebe 7452out2:
2a1e274a
MG
7453 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7454 for (nid = 0; nid < MAX_NUMNODES; nid++)
7455 zone_movable_pfn[nid] =
7456 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7457
20e6926d 7458out:
66918dcd 7459 /* restore the node_state */
4b0ef1fe 7460 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7461}
7462
4b0ef1fe
LJ
7463/* Any regular or high memory on that node ? */
7464static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7465{
37b07e41
LS
7466 enum zone_type zone_type;
7467
4b0ef1fe 7468 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7469 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7470 if (populated_zone(zone)) {
7b0e0c0e
OS
7471 if (IS_ENABLED(CONFIG_HIGHMEM))
7472 node_set_state(nid, N_HIGH_MEMORY);
7473 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7474 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7475 break;
7476 }
37b07e41 7477 }
37b07e41
LS
7478}
7479
51930df5
MR
7480/*
7481 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7482 * such cases we allow max_zone_pfn sorted in the descending order
7483 */
7484bool __weak arch_has_descending_max_zone_pfns(void)
7485{
7486 return false;
7487}
7488
c713216d 7489/**
9691a071 7490 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7491 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7492 *
7493 * This will call free_area_init_node() for each active node in the system.
7d018176 7494 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7495 * zone in each node and their holes is calculated. If the maximum PFN
7496 * between two adjacent zones match, it is assumed that the zone is empty.
7497 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7498 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7499 * starts where the previous one ended. For example, ZONE_DMA32 starts
7500 * at arch_max_dma_pfn.
7501 */
9691a071 7502void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7503{
c13291a5 7504 unsigned long start_pfn, end_pfn;
51930df5
MR
7505 int i, nid, zone;
7506 bool descending;
a6af2bc3 7507
c713216d
MG
7508 /* Record where the zone boundaries are */
7509 memset(arch_zone_lowest_possible_pfn, 0,
7510 sizeof(arch_zone_lowest_possible_pfn));
7511 memset(arch_zone_highest_possible_pfn, 0,
7512 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7513
7514 start_pfn = find_min_pfn_with_active_regions();
51930df5 7515 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7516
7517 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7518 if (descending)
7519 zone = MAX_NR_ZONES - i - 1;
7520 else
7521 zone = i;
7522
7523 if (zone == ZONE_MOVABLE)
2a1e274a 7524 continue;
90cae1fe 7525
51930df5
MR
7526 end_pfn = max(max_zone_pfn[zone], start_pfn);
7527 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7528 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7529
7530 start_pfn = end_pfn;
c713216d 7531 }
2a1e274a
MG
7532
7533 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7534 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7535 find_zone_movable_pfns_for_nodes();
c713216d 7536
c713216d 7537 /* Print out the zone ranges */
f88dfff5 7538 pr_info("Zone ranges:\n");
2a1e274a
MG
7539 for (i = 0; i < MAX_NR_ZONES; i++) {
7540 if (i == ZONE_MOVABLE)
7541 continue;
f88dfff5 7542 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7543 if (arch_zone_lowest_possible_pfn[i] ==
7544 arch_zone_highest_possible_pfn[i])
f88dfff5 7545 pr_cont("empty\n");
72f0ba02 7546 else
8d29e18a
JG
7547 pr_cont("[mem %#018Lx-%#018Lx]\n",
7548 (u64)arch_zone_lowest_possible_pfn[i]
7549 << PAGE_SHIFT,
7550 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7551 << PAGE_SHIFT) - 1);
2a1e274a
MG
7552 }
7553
7554 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7555 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7556 for (i = 0; i < MAX_NUMNODES; i++) {
7557 if (zone_movable_pfn[i])
8d29e18a
JG
7558 pr_info(" Node %d: %#018Lx\n", i,
7559 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7560 }
c713216d 7561
f46edbd1
DW
7562 /*
7563 * Print out the early node map, and initialize the
7564 * subsection-map relative to active online memory ranges to
7565 * enable future "sub-section" extensions of the memory map.
7566 */
f88dfff5 7567 pr_info("Early memory node ranges\n");
f46edbd1 7568 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7569 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7570 (u64)start_pfn << PAGE_SHIFT,
7571 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7572 subsection_map_init(start_pfn, end_pfn - start_pfn);
7573 }
c713216d
MG
7574
7575 /* Initialise every node */
708614e6 7576 mminit_verify_pageflags_layout();
8ef82866 7577 setup_nr_node_ids();
c713216d
MG
7578 for_each_online_node(nid) {
7579 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7580 free_area_init_node(nid);
37b07e41
LS
7581
7582 /* Any memory on that node */
7583 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7584 node_set_state(nid, N_MEMORY);
7585 check_for_memory(pgdat, nid);
c713216d
MG
7586 }
7587}
2a1e274a 7588
a5c6d650
DR
7589static int __init cmdline_parse_core(char *p, unsigned long *core,
7590 unsigned long *percent)
2a1e274a
MG
7591{
7592 unsigned long long coremem;
a5c6d650
DR
7593 char *endptr;
7594
2a1e274a
MG
7595 if (!p)
7596 return -EINVAL;
7597
a5c6d650
DR
7598 /* Value may be a percentage of total memory, otherwise bytes */
7599 coremem = simple_strtoull(p, &endptr, 0);
7600 if (*endptr == '%') {
7601 /* Paranoid check for percent values greater than 100 */
7602 WARN_ON(coremem > 100);
2a1e274a 7603
a5c6d650
DR
7604 *percent = coremem;
7605 } else {
7606 coremem = memparse(p, &p);
7607 /* Paranoid check that UL is enough for the coremem value */
7608 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7609
a5c6d650
DR
7610 *core = coremem >> PAGE_SHIFT;
7611 *percent = 0UL;
7612 }
2a1e274a
MG
7613 return 0;
7614}
ed7ed365 7615
7e63efef
MG
7616/*
7617 * kernelcore=size sets the amount of memory for use for allocations that
7618 * cannot be reclaimed or migrated.
7619 */
7620static int __init cmdline_parse_kernelcore(char *p)
7621{
342332e6
TI
7622 /* parse kernelcore=mirror */
7623 if (parse_option_str(p, "mirror")) {
7624 mirrored_kernelcore = true;
7625 return 0;
7626 }
7627
a5c6d650
DR
7628 return cmdline_parse_core(p, &required_kernelcore,
7629 &required_kernelcore_percent);
7e63efef
MG
7630}
7631
7632/*
7633 * movablecore=size sets the amount of memory for use for allocations that
7634 * can be reclaimed or migrated.
7635 */
7636static int __init cmdline_parse_movablecore(char *p)
7637{
a5c6d650
DR
7638 return cmdline_parse_core(p, &required_movablecore,
7639 &required_movablecore_percent);
7e63efef
MG
7640}
7641
ed7ed365 7642early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7643early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7644
c3d5f5f0
JL
7645void adjust_managed_page_count(struct page *page, long count)
7646{
9705bea5 7647 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7648 totalram_pages_add(count);
3dcc0571
JL
7649#ifdef CONFIG_HIGHMEM
7650 if (PageHighMem(page))
ca79b0c2 7651 totalhigh_pages_add(count);
3dcc0571 7652#endif
c3d5f5f0 7653}
3dcc0571 7654EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7655
e5cb113f 7656unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7657{
11199692
JL
7658 void *pos;
7659 unsigned long pages = 0;
69afade7 7660
11199692
JL
7661 start = (void *)PAGE_ALIGN((unsigned long)start);
7662 end = (void *)((unsigned long)end & PAGE_MASK);
7663 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7664 struct page *page = virt_to_page(pos);
7665 void *direct_map_addr;
7666
7667 /*
7668 * 'direct_map_addr' might be different from 'pos'
7669 * because some architectures' virt_to_page()
7670 * work with aliases. Getting the direct map
7671 * address ensures that we get a _writeable_
7672 * alias for the memset().
7673 */
7674 direct_map_addr = page_address(page);
c746170d
VF
7675 /*
7676 * Perform a kasan-unchecked memset() since this memory
7677 * has not been initialized.
7678 */
7679 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7680 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7681 memset(direct_map_addr, poison, PAGE_SIZE);
7682
7683 free_reserved_page(page);
69afade7
JL
7684 }
7685
7686 if (pages && s)
adb1fe9a
JP
7687 pr_info("Freeing %s memory: %ldK\n",
7688 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7689
7690 return pages;
7691}
7692
7ee3d4e8
JL
7693void __init mem_init_print_info(const char *str)
7694{
7695 unsigned long physpages, codesize, datasize, rosize, bss_size;
7696 unsigned long init_code_size, init_data_size;
7697
7698 physpages = get_num_physpages();
7699 codesize = _etext - _stext;
7700 datasize = _edata - _sdata;
7701 rosize = __end_rodata - __start_rodata;
7702 bss_size = __bss_stop - __bss_start;
7703 init_data_size = __init_end - __init_begin;
7704 init_code_size = _einittext - _sinittext;
7705
7706 /*
7707 * Detect special cases and adjust section sizes accordingly:
7708 * 1) .init.* may be embedded into .data sections
7709 * 2) .init.text.* may be out of [__init_begin, __init_end],
7710 * please refer to arch/tile/kernel/vmlinux.lds.S.
7711 * 3) .rodata.* may be embedded into .text or .data sections.
7712 */
7713#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7714 do { \
7715 if (start <= pos && pos < end && size > adj) \
7716 size -= adj; \
7717 } while (0)
7ee3d4e8
JL
7718
7719 adj_init_size(__init_begin, __init_end, init_data_size,
7720 _sinittext, init_code_size);
7721 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7722 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7723 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7724 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7725
7726#undef adj_init_size
7727
756a025f 7728 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7729#ifdef CONFIG_HIGHMEM
756a025f 7730 ", %luK highmem"
7ee3d4e8 7731#endif
756a025f
JP
7732 "%s%s)\n",
7733 nr_free_pages() << (PAGE_SHIFT - 10),
7734 physpages << (PAGE_SHIFT - 10),
7735 codesize >> 10, datasize >> 10, rosize >> 10,
7736 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7737 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7738 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7739#ifdef CONFIG_HIGHMEM
ca79b0c2 7740 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7741#endif
756a025f 7742 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7743}
7744
0e0b864e 7745/**
88ca3b94
RD
7746 * set_dma_reserve - set the specified number of pages reserved in the first zone
7747 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7748 *
013110a7 7749 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7750 * In the DMA zone, a significant percentage may be consumed by kernel image
7751 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7752 * function may optionally be used to account for unfreeable pages in the
7753 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7754 * smaller per-cpu batchsize.
0e0b864e
MG
7755 */
7756void __init set_dma_reserve(unsigned long new_dma_reserve)
7757{
7758 dma_reserve = new_dma_reserve;
7759}
7760
005fd4bb 7761static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7762{
1da177e4 7763
005fd4bb
SAS
7764 lru_add_drain_cpu(cpu);
7765 drain_pages(cpu);
9f8f2172 7766
005fd4bb
SAS
7767 /*
7768 * Spill the event counters of the dead processor
7769 * into the current processors event counters.
7770 * This artificially elevates the count of the current
7771 * processor.
7772 */
7773 vm_events_fold_cpu(cpu);
9f8f2172 7774
005fd4bb
SAS
7775 /*
7776 * Zero the differential counters of the dead processor
7777 * so that the vm statistics are consistent.
7778 *
7779 * This is only okay since the processor is dead and cannot
7780 * race with what we are doing.
7781 */
7782 cpu_vm_stats_fold(cpu);
7783 return 0;
1da177e4 7784}
1da177e4 7785
e03a5125
NP
7786#ifdef CONFIG_NUMA
7787int hashdist = HASHDIST_DEFAULT;
7788
7789static int __init set_hashdist(char *str)
7790{
7791 if (!str)
7792 return 0;
7793 hashdist = simple_strtoul(str, &str, 0);
7794 return 1;
7795}
7796__setup("hashdist=", set_hashdist);
7797#endif
7798
1da177e4
LT
7799void __init page_alloc_init(void)
7800{
005fd4bb
SAS
7801 int ret;
7802
e03a5125
NP
7803#ifdef CONFIG_NUMA
7804 if (num_node_state(N_MEMORY) == 1)
7805 hashdist = 0;
7806#endif
7807
005fd4bb
SAS
7808 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7809 "mm/page_alloc:dead", NULL,
7810 page_alloc_cpu_dead);
7811 WARN_ON(ret < 0);
1da177e4
LT
7812}
7813
cb45b0e9 7814/*
34b10060 7815 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7816 * or min_free_kbytes changes.
7817 */
7818static void calculate_totalreserve_pages(void)
7819{
7820 struct pglist_data *pgdat;
7821 unsigned long reserve_pages = 0;
2f6726e5 7822 enum zone_type i, j;
cb45b0e9
HA
7823
7824 for_each_online_pgdat(pgdat) {
281e3726
MG
7825
7826 pgdat->totalreserve_pages = 0;
7827
cb45b0e9
HA
7828 for (i = 0; i < MAX_NR_ZONES; i++) {
7829 struct zone *zone = pgdat->node_zones + i;
3484b2de 7830 long max = 0;
9705bea5 7831 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7832
7833 /* Find valid and maximum lowmem_reserve in the zone */
7834 for (j = i; j < MAX_NR_ZONES; j++) {
7835 if (zone->lowmem_reserve[j] > max)
7836 max = zone->lowmem_reserve[j];
7837 }
7838
41858966
MG
7839 /* we treat the high watermark as reserved pages. */
7840 max += high_wmark_pages(zone);
cb45b0e9 7841
3d6357de
AK
7842 if (max > managed_pages)
7843 max = managed_pages;
a8d01437 7844
281e3726 7845 pgdat->totalreserve_pages += max;
a8d01437 7846
cb45b0e9
HA
7847 reserve_pages += max;
7848 }
7849 }
7850 totalreserve_pages = reserve_pages;
7851}
7852
1da177e4
LT
7853/*
7854 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7855 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7856 * has a correct pages reserved value, so an adequate number of
7857 * pages are left in the zone after a successful __alloc_pages().
7858 */
7859static void setup_per_zone_lowmem_reserve(void)
7860{
7861 struct pglist_data *pgdat;
470c61d7 7862 enum zone_type i, j;
1da177e4 7863
ec936fc5 7864 for_each_online_pgdat(pgdat) {
470c61d7
LS
7865 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7866 struct zone *zone = &pgdat->node_zones[i];
7867 int ratio = sysctl_lowmem_reserve_ratio[i];
7868 bool clear = !ratio || !zone_managed_pages(zone);
7869 unsigned long managed_pages = 0;
7870
7871 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7872 if (clear) {
7873 zone->lowmem_reserve[j] = 0;
d3cda233 7874 } else {
470c61d7
LS
7875 struct zone *upper_zone = &pgdat->node_zones[j];
7876
7877 managed_pages += zone_managed_pages(upper_zone);
7878 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 7879 }
1da177e4
LT
7880 }
7881 }
7882 }
cb45b0e9
HA
7883
7884 /* update totalreserve_pages */
7885 calculate_totalreserve_pages();
1da177e4
LT
7886}
7887
cfd3da1e 7888static void __setup_per_zone_wmarks(void)
1da177e4
LT
7889{
7890 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7891 unsigned long lowmem_pages = 0;
7892 struct zone *zone;
7893 unsigned long flags;
7894
7895 /* Calculate total number of !ZONE_HIGHMEM pages */
7896 for_each_zone(zone) {
7897 if (!is_highmem(zone))
9705bea5 7898 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7899 }
7900
7901 for_each_zone(zone) {
ac924c60
AM
7902 u64 tmp;
7903
1125b4e3 7904 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7905 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7906 do_div(tmp, lowmem_pages);
1da177e4
LT
7907 if (is_highmem(zone)) {
7908 /*
669ed175
NP
7909 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7910 * need highmem pages, so cap pages_min to a small
7911 * value here.
7912 *
41858966 7913 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7914 * deltas control async page reclaim, and so should
669ed175 7915 * not be capped for highmem.
1da177e4 7916 */
90ae8d67 7917 unsigned long min_pages;
1da177e4 7918
9705bea5 7919 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7920 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7921 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7922 } else {
669ed175
NP
7923 /*
7924 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7925 * proportionate to the zone's size.
7926 */
a9214443 7927 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7928 }
7929
795ae7a0
JW
7930 /*
7931 * Set the kswapd watermarks distance according to the
7932 * scale factor in proportion to available memory, but
7933 * ensure a minimum size on small systems.
7934 */
7935 tmp = max_t(u64, tmp >> 2,
9705bea5 7936 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7937 watermark_scale_factor, 10000));
7938
aa092591 7939 zone->watermark_boost = 0;
a9214443
MG
7940 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7941 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7942
1125b4e3 7943 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7944 }
cb45b0e9
HA
7945
7946 /* update totalreserve_pages */
7947 calculate_totalreserve_pages();
1da177e4
LT
7948}
7949
cfd3da1e
MG
7950/**
7951 * setup_per_zone_wmarks - called when min_free_kbytes changes
7952 * or when memory is hot-{added|removed}
7953 *
7954 * Ensures that the watermark[min,low,high] values for each zone are set
7955 * correctly with respect to min_free_kbytes.
7956 */
7957void setup_per_zone_wmarks(void)
7958{
b93e0f32
MH
7959 static DEFINE_SPINLOCK(lock);
7960
7961 spin_lock(&lock);
cfd3da1e 7962 __setup_per_zone_wmarks();
b93e0f32 7963 spin_unlock(&lock);
cfd3da1e
MG
7964}
7965
1da177e4
LT
7966/*
7967 * Initialise min_free_kbytes.
7968 *
7969 * For small machines we want it small (128k min). For large machines
8beeae86 7970 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7971 * bandwidth does not increase linearly with machine size. We use
7972 *
b8af2941 7973 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7974 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7975 *
7976 * which yields
7977 *
7978 * 16MB: 512k
7979 * 32MB: 724k
7980 * 64MB: 1024k
7981 * 128MB: 1448k
7982 * 256MB: 2048k
7983 * 512MB: 2896k
7984 * 1024MB: 4096k
7985 * 2048MB: 5792k
7986 * 4096MB: 8192k
7987 * 8192MB: 11584k
7988 * 16384MB: 16384k
7989 */
1b79acc9 7990int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7991{
7992 unsigned long lowmem_kbytes;
5f12733e 7993 int new_min_free_kbytes;
1da177e4
LT
7994
7995 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7996 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7997
7998 if (new_min_free_kbytes > user_min_free_kbytes) {
7999 min_free_kbytes = new_min_free_kbytes;
8000 if (min_free_kbytes < 128)
8001 min_free_kbytes = 128;
ee8eb9a5
JS
8002 if (min_free_kbytes > 262144)
8003 min_free_kbytes = 262144;
5f12733e
MH
8004 } else {
8005 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8006 new_min_free_kbytes, user_min_free_kbytes);
8007 }
bc75d33f 8008 setup_per_zone_wmarks();
a6cccdc3 8009 refresh_zone_stat_thresholds();
1da177e4 8010 setup_per_zone_lowmem_reserve();
6423aa81
JK
8011
8012#ifdef CONFIG_NUMA
8013 setup_min_unmapped_ratio();
8014 setup_min_slab_ratio();
8015#endif
8016
4aab2be0
VB
8017 khugepaged_min_free_kbytes_update();
8018
1da177e4
LT
8019 return 0;
8020}
e08d3fdf 8021postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8022
8023/*
b8af2941 8024 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8025 * that we can call two helper functions whenever min_free_kbytes
8026 * changes.
8027 */
cccad5b9 8028int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8029 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8030{
da8c757b
HP
8031 int rc;
8032
8033 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8034 if (rc)
8035 return rc;
8036
5f12733e
MH
8037 if (write) {
8038 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8039 setup_per_zone_wmarks();
5f12733e 8040 }
1da177e4
LT
8041 return 0;
8042}
8043
795ae7a0 8044int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8045 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8046{
8047 int rc;
8048
8049 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8050 if (rc)
8051 return rc;
8052
8053 if (write)
8054 setup_per_zone_wmarks();
8055
8056 return 0;
8057}
8058
9614634f 8059#ifdef CONFIG_NUMA
6423aa81 8060static void setup_min_unmapped_ratio(void)
9614634f 8061{
6423aa81 8062 pg_data_t *pgdat;
9614634f 8063 struct zone *zone;
9614634f 8064
a5f5f91d 8065 for_each_online_pgdat(pgdat)
81cbcbc2 8066 pgdat->min_unmapped_pages = 0;
a5f5f91d 8067
9614634f 8068 for_each_zone(zone)
9705bea5
AK
8069 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8070 sysctl_min_unmapped_ratio) / 100;
9614634f 8071}
0ff38490 8072
6423aa81
JK
8073
8074int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8075 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8076{
0ff38490
CL
8077 int rc;
8078
8d65af78 8079 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8080 if (rc)
8081 return rc;
8082
6423aa81
JK
8083 setup_min_unmapped_ratio();
8084
8085 return 0;
8086}
8087
8088static void setup_min_slab_ratio(void)
8089{
8090 pg_data_t *pgdat;
8091 struct zone *zone;
8092
a5f5f91d
MG
8093 for_each_online_pgdat(pgdat)
8094 pgdat->min_slab_pages = 0;
8095
0ff38490 8096 for_each_zone(zone)
9705bea5
AK
8097 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8098 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8099}
8100
8101int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8102 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8103{
8104 int rc;
8105
8106 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8107 if (rc)
8108 return rc;
8109
8110 setup_min_slab_ratio();
8111
0ff38490
CL
8112 return 0;
8113}
9614634f
CL
8114#endif
8115
1da177e4
LT
8116/*
8117 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8118 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8119 * whenever sysctl_lowmem_reserve_ratio changes.
8120 *
8121 * The reserve ratio obviously has absolutely no relation with the
41858966 8122 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8123 * if in function of the boot time zone sizes.
8124 */
cccad5b9 8125int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8126 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8127{
86aaf255
BH
8128 int i;
8129
8d65af78 8130 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8131
8132 for (i = 0; i < MAX_NR_ZONES; i++) {
8133 if (sysctl_lowmem_reserve_ratio[i] < 1)
8134 sysctl_lowmem_reserve_ratio[i] = 0;
8135 }
8136
1da177e4
LT
8137 setup_per_zone_lowmem_reserve();
8138 return 0;
8139}
8140
8ad4b1fb
RS
8141/*
8142 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8143 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8144 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8145 */
cccad5b9 8146int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8147 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8148{
8149 struct zone *zone;
7cd2b0a3 8150 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8151 int ret;
8152
7cd2b0a3
DR
8153 mutex_lock(&pcp_batch_high_lock);
8154 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8155
8d65af78 8156 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8157 if (!write || ret < 0)
8158 goto out;
8159
8160 /* Sanity checking to avoid pcp imbalance */
8161 if (percpu_pagelist_fraction &&
8162 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8163 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8164 ret = -EINVAL;
8165 goto out;
8166 }
8167
8168 /* No change? */
8169 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8170 goto out;
c8e251fa 8171
cb1ef534 8172 for_each_populated_zone(zone)
0a8b4f1d 8173 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8174out:
c8e251fa 8175 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8176 return ret;
8ad4b1fb
RS
8177}
8178
f6f34b43
SD
8179#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8180/*
8181 * Returns the number of pages that arch has reserved but
8182 * is not known to alloc_large_system_hash().
8183 */
8184static unsigned long __init arch_reserved_kernel_pages(void)
8185{
8186 return 0;
8187}
8188#endif
8189
9017217b
PT
8190/*
8191 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8192 * machines. As memory size is increased the scale is also increased but at
8193 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8194 * quadruples the scale is increased by one, which means the size of hash table
8195 * only doubles, instead of quadrupling as well.
8196 * Because 32-bit systems cannot have large physical memory, where this scaling
8197 * makes sense, it is disabled on such platforms.
8198 */
8199#if __BITS_PER_LONG > 32
8200#define ADAPT_SCALE_BASE (64ul << 30)
8201#define ADAPT_SCALE_SHIFT 2
8202#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8203#endif
8204
1da177e4
LT
8205/*
8206 * allocate a large system hash table from bootmem
8207 * - it is assumed that the hash table must contain an exact power-of-2
8208 * quantity of entries
8209 * - limit is the number of hash buckets, not the total allocation size
8210 */
8211void *__init alloc_large_system_hash(const char *tablename,
8212 unsigned long bucketsize,
8213 unsigned long numentries,
8214 int scale,
8215 int flags,
8216 unsigned int *_hash_shift,
8217 unsigned int *_hash_mask,
31fe62b9
TB
8218 unsigned long low_limit,
8219 unsigned long high_limit)
1da177e4 8220{
31fe62b9 8221 unsigned long long max = high_limit;
1da177e4
LT
8222 unsigned long log2qty, size;
8223 void *table = NULL;
3749a8f0 8224 gfp_t gfp_flags;
ec11408a 8225 bool virt;
121e6f32 8226 bool huge;
1da177e4
LT
8227
8228 /* allow the kernel cmdline to have a say */
8229 if (!numentries) {
8230 /* round applicable memory size up to nearest megabyte */
04903664 8231 numentries = nr_kernel_pages;
f6f34b43 8232 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8233
8234 /* It isn't necessary when PAGE_SIZE >= 1MB */
8235 if (PAGE_SHIFT < 20)
8236 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8237
9017217b
PT
8238#if __BITS_PER_LONG > 32
8239 if (!high_limit) {
8240 unsigned long adapt;
8241
8242 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8243 adapt <<= ADAPT_SCALE_SHIFT)
8244 scale++;
8245 }
8246#endif
8247
1da177e4
LT
8248 /* limit to 1 bucket per 2^scale bytes of low memory */
8249 if (scale > PAGE_SHIFT)
8250 numentries >>= (scale - PAGE_SHIFT);
8251 else
8252 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8253
8254 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8255 if (unlikely(flags & HASH_SMALL)) {
8256 /* Makes no sense without HASH_EARLY */
8257 WARN_ON(!(flags & HASH_EARLY));
8258 if (!(numentries >> *_hash_shift)) {
8259 numentries = 1UL << *_hash_shift;
8260 BUG_ON(!numentries);
8261 }
8262 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8263 numentries = PAGE_SIZE / bucketsize;
1da177e4 8264 }
6e692ed3 8265 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8266
8267 /* limit allocation size to 1/16 total memory by default */
8268 if (max == 0) {
8269 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8270 do_div(max, bucketsize);
8271 }
074b8517 8272 max = min(max, 0x80000000ULL);
1da177e4 8273
31fe62b9
TB
8274 if (numentries < low_limit)
8275 numentries = low_limit;
1da177e4
LT
8276 if (numentries > max)
8277 numentries = max;
8278
f0d1b0b3 8279 log2qty = ilog2(numentries);
1da177e4 8280
3749a8f0 8281 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8282 do {
ec11408a 8283 virt = false;
1da177e4 8284 size = bucketsize << log2qty;
ea1f5f37
PT
8285 if (flags & HASH_EARLY) {
8286 if (flags & HASH_ZERO)
26fb3dae 8287 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8288 else
7e1c4e27
MR
8289 table = memblock_alloc_raw(size,
8290 SMP_CACHE_BYTES);
ec11408a 8291 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8292 table = __vmalloc(size, gfp_flags);
ec11408a 8293 virt = true;
121e6f32 8294 huge = is_vm_area_hugepages(table);
ea1f5f37 8295 } else {
1037b83b
ED
8296 /*
8297 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8298 * some pages at the end of hash table which
8299 * alloc_pages_exact() automatically does
1037b83b 8300 */
ec11408a
NP
8301 table = alloc_pages_exact(size, gfp_flags);
8302 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8303 }
8304 } while (!table && size > PAGE_SIZE && --log2qty);
8305
8306 if (!table)
8307 panic("Failed to allocate %s hash table\n", tablename);
8308
ec11408a
NP
8309 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8310 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8311 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8312
8313 if (_hash_shift)
8314 *_hash_shift = log2qty;
8315 if (_hash_mask)
8316 *_hash_mask = (1 << log2qty) - 1;
8317
8318 return table;
8319}
a117e66e 8320
a5d76b54 8321/*
80934513 8322 * This function checks whether pageblock includes unmovable pages or not.
80934513 8323 *
b8af2941 8324 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8325 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8326 * check without lock_page also may miss some movable non-lru pages at
8327 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8328 *
8329 * Returns a page without holding a reference. If the caller wants to
047b9967 8330 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8331 * cannot get removed (e.g., via memory unplug) concurrently.
8332 *
a5d76b54 8333 */
4a55c047
QC
8334struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8335 int migratetype, int flags)
49ac8255 8336{
1a9f2191
QC
8337 unsigned long iter = 0;
8338 unsigned long pfn = page_to_pfn(page);
6a654e36 8339 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8340
1a9f2191
QC
8341 if (is_migrate_cma_page(page)) {
8342 /*
8343 * CMA allocations (alloc_contig_range) really need to mark
8344 * isolate CMA pageblocks even when they are not movable in fact
8345 * so consider them movable here.
8346 */
8347 if (is_migrate_cma(migratetype))
4a55c047 8348 return NULL;
1a9f2191 8349
3d680bdf 8350 return page;
1a9f2191 8351 }
4da2ce25 8352
6a654e36 8353 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8354 if (!pfn_valid_within(pfn + iter))
49ac8255 8355 continue;
29723fcc 8356
fe4c86c9 8357 page = pfn_to_page(pfn + iter);
c8721bbb 8358
c9c510dc
DH
8359 /*
8360 * Both, bootmem allocations and memory holes are marked
8361 * PG_reserved and are unmovable. We can even have unmovable
8362 * allocations inside ZONE_MOVABLE, for example when
8363 * specifying "movablecore".
8364 */
d7ab3672 8365 if (PageReserved(page))
3d680bdf 8366 return page;
d7ab3672 8367
9d789999
MH
8368 /*
8369 * If the zone is movable and we have ruled out all reserved
8370 * pages then it should be reasonably safe to assume the rest
8371 * is movable.
8372 */
8373 if (zone_idx(zone) == ZONE_MOVABLE)
8374 continue;
8375
c8721bbb
NH
8376 /*
8377 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8378 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8379 * We need not scan over tail pages because we don't
c8721bbb
NH
8380 * handle each tail page individually in migration.
8381 */
1da2f328 8382 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8383 struct page *head = compound_head(page);
8384 unsigned int skip_pages;
464c7ffb 8385
1da2f328
RR
8386 if (PageHuge(page)) {
8387 if (!hugepage_migration_supported(page_hstate(head)))
8388 return page;
8389 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8390 return page;
1da2f328 8391 }
464c7ffb 8392
d8c6546b 8393 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8394 iter += skip_pages - 1;
c8721bbb
NH
8395 continue;
8396 }
8397
97d255c8
MK
8398 /*
8399 * We can't use page_count without pin a page
8400 * because another CPU can free compound page.
8401 * This check already skips compound tails of THP
0139aa7b 8402 * because their page->_refcount is zero at all time.
97d255c8 8403 */
fe896d18 8404 if (!page_ref_count(page)) {
49ac8255 8405 if (PageBuddy(page))
ab130f91 8406 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8407 continue;
8408 }
97d255c8 8409
b023f468
WC
8410 /*
8411 * The HWPoisoned page may be not in buddy system, and
8412 * page_count() is not 0.
8413 */
756d25be 8414 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8415 continue;
8416
aa218795
DH
8417 /*
8418 * We treat all PageOffline() pages as movable when offlining
8419 * to give drivers a chance to decrement their reference count
8420 * in MEM_GOING_OFFLINE in order to indicate that these pages
8421 * can be offlined as there are no direct references anymore.
8422 * For actually unmovable PageOffline() where the driver does
8423 * not support this, we will fail later when trying to actually
8424 * move these pages that still have a reference count > 0.
8425 * (false negatives in this function only)
8426 */
8427 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8428 continue;
8429
fe4c86c9 8430 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8431 continue;
8432
49ac8255 8433 /*
6b4f7799
JW
8434 * If there are RECLAIMABLE pages, we need to check
8435 * it. But now, memory offline itself doesn't call
8436 * shrink_node_slabs() and it still to be fixed.
49ac8255 8437 */
3d680bdf 8438 return page;
49ac8255 8439 }
4a55c047 8440 return NULL;
49ac8255
KH
8441}
8442
8df995f6 8443#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8444static unsigned long pfn_max_align_down(unsigned long pfn)
8445{
8446 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8447 pageblock_nr_pages) - 1);
8448}
8449
8450static unsigned long pfn_max_align_up(unsigned long pfn)
8451{
8452 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8453 pageblock_nr_pages));
8454}
8455
041d3a8c 8456/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8457static int __alloc_contig_migrate_range(struct compact_control *cc,
8458 unsigned long start, unsigned long end)
041d3a8c
MN
8459{
8460 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8461 unsigned int nr_reclaimed;
041d3a8c
MN
8462 unsigned long pfn = start;
8463 unsigned int tries = 0;
8464 int ret = 0;
8b94e0b8
JK
8465 struct migration_target_control mtc = {
8466 .nid = zone_to_nid(cc->zone),
8467 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8468 };
041d3a8c 8469
be49a6e1 8470 migrate_prep();
041d3a8c 8471
bb13ffeb 8472 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8473 if (fatal_signal_pending(current)) {
8474 ret = -EINTR;
8475 break;
8476 }
8477
bb13ffeb
MG
8478 if (list_empty(&cc->migratepages)) {
8479 cc->nr_migratepages = 0;
edc2ca61 8480 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8481 if (!pfn) {
8482 ret = -EINTR;
8483 break;
8484 }
8485 tries = 0;
8486 } else if (++tries == 5) {
8487 ret = ret < 0 ? ret : -EBUSY;
8488 break;
8489 }
8490
beb51eaa
MK
8491 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8492 &cc->migratepages);
8493 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8494
8b94e0b8
JK
8495 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8496 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8497 }
2a6f5124
SP
8498 if (ret < 0) {
8499 putback_movable_pages(&cc->migratepages);
8500 return ret;
8501 }
8502 return 0;
041d3a8c
MN
8503}
8504
8505/**
8506 * alloc_contig_range() -- tries to allocate given range of pages
8507 * @start: start PFN to allocate
8508 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8509 * @migratetype: migratetype of the underlaying pageblocks (either
8510 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8511 * in range must have the same migratetype and it must
8512 * be either of the two.
ca96b625 8513 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8514 *
8515 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8516 * aligned. The PFN range must belong to a single zone.
041d3a8c 8517 *
2c7452a0
MK
8518 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8519 * pageblocks in the range. Once isolated, the pageblocks should not
8520 * be modified by others.
041d3a8c 8521 *
a862f68a 8522 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8523 * pages which PFN is in [start, end) are allocated for the caller and
8524 * need to be freed with free_contig_range().
8525 */
0815f3d8 8526int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8527 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8528{
041d3a8c 8529 unsigned long outer_start, outer_end;
d00181b9
KS
8530 unsigned int order;
8531 int ret = 0;
041d3a8c 8532
bb13ffeb
MG
8533 struct compact_control cc = {
8534 .nr_migratepages = 0,
8535 .order = -1,
8536 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8537 .mode = MIGRATE_SYNC,
bb13ffeb 8538 .ignore_skip_hint = true,
2583d671 8539 .no_set_skip_hint = true,
7dea19f9 8540 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8541 .alloc_contig = true,
bb13ffeb
MG
8542 };
8543 INIT_LIST_HEAD(&cc.migratepages);
8544
041d3a8c
MN
8545 /*
8546 * What we do here is we mark all pageblocks in range as
8547 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8548 * have different sizes, and due to the way page allocator
8549 * work, we align the range to biggest of the two pages so
8550 * that page allocator won't try to merge buddies from
8551 * different pageblocks and change MIGRATE_ISOLATE to some
8552 * other migration type.
8553 *
8554 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8555 * migrate the pages from an unaligned range (ie. pages that
8556 * we are interested in). This will put all the pages in
8557 * range back to page allocator as MIGRATE_ISOLATE.
8558 *
8559 * When this is done, we take the pages in range from page
8560 * allocator removing them from the buddy system. This way
8561 * page allocator will never consider using them.
8562 *
8563 * This lets us mark the pageblocks back as
8564 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8565 * aligned range but not in the unaligned, original range are
8566 * put back to page allocator so that buddy can use them.
8567 */
8568
8569 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8570 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8571 if (ret)
86a595f9 8572 return ret;
041d3a8c 8573
7612921f
VB
8574 drain_all_pages(cc.zone);
8575
8ef5849f
JK
8576 /*
8577 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8578 * So, just fall through. test_pages_isolated() has a tracepoint
8579 * which will report the busy page.
8580 *
8581 * It is possible that busy pages could become available before
8582 * the call to test_pages_isolated, and the range will actually be
8583 * allocated. So, if we fall through be sure to clear ret so that
8584 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8585 */
bb13ffeb 8586 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8587 if (ret && ret != -EBUSY)
041d3a8c 8588 goto done;
63cd4489 8589 ret =0;
041d3a8c
MN
8590
8591 /*
8592 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8593 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8594 * more, all pages in [start, end) are free in page allocator.
8595 * What we are going to do is to allocate all pages from
8596 * [start, end) (that is remove them from page allocator).
8597 *
8598 * The only problem is that pages at the beginning and at the
8599 * end of interesting range may be not aligned with pages that
8600 * page allocator holds, ie. they can be part of higher order
8601 * pages. Because of this, we reserve the bigger range and
8602 * once this is done free the pages we are not interested in.
8603 *
8604 * We don't have to hold zone->lock here because the pages are
8605 * isolated thus they won't get removed from buddy.
8606 */
8607
8608 lru_add_drain_all();
041d3a8c
MN
8609
8610 order = 0;
8611 outer_start = start;
8612 while (!PageBuddy(pfn_to_page(outer_start))) {
8613 if (++order >= MAX_ORDER) {
8ef5849f
JK
8614 outer_start = start;
8615 break;
041d3a8c
MN
8616 }
8617 outer_start &= ~0UL << order;
8618 }
8619
8ef5849f 8620 if (outer_start != start) {
ab130f91 8621 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8622
8623 /*
8624 * outer_start page could be small order buddy page and
8625 * it doesn't include start page. Adjust outer_start
8626 * in this case to report failed page properly
8627 * on tracepoint in test_pages_isolated()
8628 */
8629 if (outer_start + (1UL << order) <= start)
8630 outer_start = start;
8631 }
8632
041d3a8c 8633 /* Make sure the range is really isolated. */
756d25be 8634 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8635 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8636 __func__, outer_start, end);
041d3a8c
MN
8637 ret = -EBUSY;
8638 goto done;
8639 }
8640
49f223a9 8641 /* Grab isolated pages from freelists. */
bb13ffeb 8642 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8643 if (!outer_end) {
8644 ret = -EBUSY;
8645 goto done;
8646 }
8647
8648 /* Free head and tail (if any) */
8649 if (start != outer_start)
8650 free_contig_range(outer_start, start - outer_start);
8651 if (end != outer_end)
8652 free_contig_range(end, outer_end - end);
8653
8654done:
8655 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8656 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8657 return ret;
8658}
255f5985 8659EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8660
8661static int __alloc_contig_pages(unsigned long start_pfn,
8662 unsigned long nr_pages, gfp_t gfp_mask)
8663{
8664 unsigned long end_pfn = start_pfn + nr_pages;
8665
8666 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8667 gfp_mask);
8668}
8669
8670static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8671 unsigned long nr_pages)
8672{
8673 unsigned long i, end_pfn = start_pfn + nr_pages;
8674 struct page *page;
8675
8676 for (i = start_pfn; i < end_pfn; i++) {
8677 page = pfn_to_online_page(i);
8678 if (!page)
8679 return false;
8680
8681 if (page_zone(page) != z)
8682 return false;
8683
8684 if (PageReserved(page))
8685 return false;
8686
8687 if (page_count(page) > 0)
8688 return false;
8689
8690 if (PageHuge(page))
8691 return false;
8692 }
8693 return true;
8694}
8695
8696static bool zone_spans_last_pfn(const struct zone *zone,
8697 unsigned long start_pfn, unsigned long nr_pages)
8698{
8699 unsigned long last_pfn = start_pfn + nr_pages - 1;
8700
8701 return zone_spans_pfn(zone, last_pfn);
8702}
8703
8704/**
8705 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8706 * @nr_pages: Number of contiguous pages to allocate
8707 * @gfp_mask: GFP mask to limit search and used during compaction
8708 * @nid: Target node
8709 * @nodemask: Mask for other possible nodes
8710 *
8711 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8712 * on an applicable zonelist to find a contiguous pfn range which can then be
8713 * tried for allocation with alloc_contig_range(). This routine is intended
8714 * for allocation requests which can not be fulfilled with the buddy allocator.
8715 *
8716 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8717 * power of two then the alignment is guaranteed to be to the given nr_pages
8718 * (e.g. 1GB request would be aligned to 1GB).
8719 *
8720 * Allocated pages can be freed with free_contig_range() or by manually calling
8721 * __free_page() on each allocated page.
8722 *
8723 * Return: pointer to contiguous pages on success, or NULL if not successful.
8724 */
8725struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8726 int nid, nodemask_t *nodemask)
8727{
8728 unsigned long ret, pfn, flags;
8729 struct zonelist *zonelist;
8730 struct zone *zone;
8731 struct zoneref *z;
8732
8733 zonelist = node_zonelist(nid, gfp_mask);
8734 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8735 gfp_zone(gfp_mask), nodemask) {
8736 spin_lock_irqsave(&zone->lock, flags);
8737
8738 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8739 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8740 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8741 /*
8742 * We release the zone lock here because
8743 * alloc_contig_range() will also lock the zone
8744 * at some point. If there's an allocation
8745 * spinning on this lock, it may win the race
8746 * and cause alloc_contig_range() to fail...
8747 */
8748 spin_unlock_irqrestore(&zone->lock, flags);
8749 ret = __alloc_contig_pages(pfn, nr_pages,
8750 gfp_mask);
8751 if (!ret)
8752 return pfn_to_page(pfn);
8753 spin_lock_irqsave(&zone->lock, flags);
8754 }
8755 pfn += nr_pages;
8756 }
8757 spin_unlock_irqrestore(&zone->lock, flags);
8758 }
8759 return NULL;
8760}
4eb0716e 8761#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8762
4eb0716e 8763void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8764{
bcc2b02f
MS
8765 unsigned int count = 0;
8766
8767 for (; nr_pages--; pfn++) {
8768 struct page *page = pfn_to_page(pfn);
8769
8770 count += page_count(page) != 1;
8771 __free_page(page);
8772 }
8773 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8774}
255f5985 8775EXPORT_SYMBOL(free_contig_range);
041d3a8c 8776
0a647f38
CS
8777/*
8778 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8779 * page high values need to be recalulated.
8780 */
4ed7e022
JL
8781void __meminit zone_pcp_update(struct zone *zone)
8782{
c8e251fa 8783 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8784 zone_set_pageset_high_and_batch(zone);
c8e251fa 8785 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8786}
4ed7e022 8787
ec6e8c7e
VB
8788/*
8789 * Effectively disable pcplists for the zone by setting the high limit to 0
8790 * and draining all cpus. A concurrent page freeing on another CPU that's about
8791 * to put the page on pcplist will either finish before the drain and the page
8792 * will be drained, or observe the new high limit and skip the pcplist.
8793 *
8794 * Must be paired with a call to zone_pcp_enable().
8795 */
8796void zone_pcp_disable(struct zone *zone)
8797{
8798 mutex_lock(&pcp_batch_high_lock);
8799 __zone_set_pageset_high_and_batch(zone, 0, 1);
8800 __drain_all_pages(zone, true);
8801}
8802
8803void zone_pcp_enable(struct zone *zone)
8804{
8805 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8806 mutex_unlock(&pcp_batch_high_lock);
8807}
8808
340175b7
JL
8809void zone_pcp_reset(struct zone *zone)
8810{
8811 unsigned long flags;
5a883813
MK
8812 int cpu;
8813 struct per_cpu_pageset *pset;
340175b7
JL
8814
8815 /* avoid races with drain_pages() */
8816 local_irq_save(flags);
8817 if (zone->pageset != &boot_pageset) {
5a883813
MK
8818 for_each_online_cpu(cpu) {
8819 pset = per_cpu_ptr(zone->pageset, cpu);
8820 drain_zonestat(zone, pset);
8821 }
340175b7
JL
8822 free_percpu(zone->pageset);
8823 zone->pageset = &boot_pageset;
8824 }
8825 local_irq_restore(flags);
8826}
8827
6dcd73d7 8828#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8829/*
257bea71
DH
8830 * All pages in the range must be in a single zone, must not contain holes,
8831 * must span full sections, and must be isolated before calling this function.
0c0e6195 8832 */
257bea71 8833void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8834{
257bea71 8835 unsigned long pfn = start_pfn;
0c0e6195
KH
8836 struct page *page;
8837 struct zone *zone;
0ee5f4f3 8838 unsigned int order;
0c0e6195 8839 unsigned long flags;
5557c766 8840
2d070eab 8841 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8842 zone = page_zone(pfn_to_page(pfn));
8843 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8844 while (pfn < end_pfn) {
0c0e6195 8845 page = pfn_to_page(pfn);
b023f468
WC
8846 /*
8847 * The HWPoisoned page may be not in buddy system, and
8848 * page_count() is not 0.
8849 */
8850 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8851 pfn++;
b023f468
WC
8852 continue;
8853 }
aa218795
DH
8854 /*
8855 * At this point all remaining PageOffline() pages have a
8856 * reference count of 0 and can simply be skipped.
8857 */
8858 if (PageOffline(page)) {
8859 BUG_ON(page_count(page));
8860 BUG_ON(PageBuddy(page));
8861 pfn++;
aa218795
DH
8862 continue;
8863 }
b023f468 8864
0c0e6195
KH
8865 BUG_ON(page_count(page));
8866 BUG_ON(!PageBuddy(page));
ab130f91 8867 order = buddy_order(page);
6ab01363 8868 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8869 pfn += (1 << order);
8870 }
8871 spin_unlock_irqrestore(&zone->lock, flags);
8872}
8873#endif
8d22ba1b 8874
8d22ba1b
WF
8875bool is_free_buddy_page(struct page *page)
8876{
8877 struct zone *zone = page_zone(page);
8878 unsigned long pfn = page_to_pfn(page);
8879 unsigned long flags;
7aeb09f9 8880 unsigned int order;
8d22ba1b
WF
8881
8882 spin_lock_irqsave(&zone->lock, flags);
8883 for (order = 0; order < MAX_ORDER; order++) {
8884 struct page *page_head = page - (pfn & ((1 << order) - 1));
8885
ab130f91 8886 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8887 break;
8888 }
8889 spin_unlock_irqrestore(&zone->lock, flags);
8890
8891 return order < MAX_ORDER;
8892}
d4ae9916
NH
8893
8894#ifdef CONFIG_MEMORY_FAILURE
8895/*
06be6ff3
OS
8896 * Break down a higher-order page in sub-pages, and keep our target out of
8897 * buddy allocator.
d4ae9916 8898 */
06be6ff3
OS
8899static void break_down_buddy_pages(struct zone *zone, struct page *page,
8900 struct page *target, int low, int high,
8901 int migratetype)
8902{
8903 unsigned long size = 1 << high;
8904 struct page *current_buddy, *next_page;
8905
8906 while (high > low) {
8907 high--;
8908 size >>= 1;
8909
8910 if (target >= &page[size]) {
8911 next_page = page + size;
8912 current_buddy = page;
8913 } else {
8914 next_page = page;
8915 current_buddy = page + size;
8916 }
8917
8918 if (set_page_guard(zone, current_buddy, high, migratetype))
8919 continue;
8920
8921 if (current_buddy != target) {
8922 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8923 set_buddy_order(current_buddy, high);
06be6ff3
OS
8924 page = next_page;
8925 }
8926 }
8927}
8928
8929/*
8930 * Take a page that will be marked as poisoned off the buddy allocator.
8931 */
8932bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8933{
8934 struct zone *zone = page_zone(page);
8935 unsigned long pfn = page_to_pfn(page);
8936 unsigned long flags;
8937 unsigned int order;
06be6ff3 8938 bool ret = false;
d4ae9916
NH
8939
8940 spin_lock_irqsave(&zone->lock, flags);
8941 for (order = 0; order < MAX_ORDER; order++) {
8942 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8943 int page_order = buddy_order(page_head);
d4ae9916 8944
ab130f91 8945 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8946 unsigned long pfn_head = page_to_pfn(page_head);
8947 int migratetype = get_pfnblock_migratetype(page_head,
8948 pfn_head);
8949
ab130f91 8950 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8951 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8952 page_order, migratetype);
06be6ff3 8953 ret = true;
d4ae9916
NH
8954 break;
8955 }
06be6ff3
OS
8956 if (page_count(page_head) > 0)
8957 break;
d4ae9916
NH
8958 }
8959 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8960 return ret;
d4ae9916
NH
8961}
8962#endif