]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: restructure direct compaction handling in slowpath
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
e30825f1
JK
618 _debug_guardpage_enabled = true;
619}
620
621struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624};
c0a32fc5
SG
625
626static int __init debug_guardpage_minorder_setup(char *buf)
627{
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 631 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
1170532b 635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
636 return 0;
637}
638__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
2847cf95
JK
640static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
c0a32fc5 642{
e30825f1
JK
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
f86e4271
YS
649 if (unlikely(!page_ext))
650 return;
651
e30825f1
JK
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
2847cf95
JK
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
658}
659
2847cf95
JK
660static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
c0a32fc5 662{
e30825f1
JK
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
f86e4271
YS
669 if (unlikely(!page_ext))
670 return;
671
e30825f1
JK
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
677}
678#else
e30825f1 679struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
680static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
c0a32fc5
SG
684#endif
685
7aeb09f9 686static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 687{
4c21e2f2 688 set_page_private(page, order);
676165a8 689 __SetPageBuddy(page);
1da177e4
LT
690}
691
692static inline void rmv_page_order(struct page *page)
693{
676165a8 694 __ClearPageBuddy(page);
4c21e2f2 695 set_page_private(page, 0);
1da177e4
LT
696}
697
1da177e4
LT
698/*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
13e7444b 701 * (a) the buddy is not in a hole &&
676165a8 702 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
676165a8 705 *
cf6fe945
WSH
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
1da177e4 710 *
676165a8 711 * For recording page's order, we use page_private(page).
1da177e4 712 */
cb2b95e1 713static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 714 unsigned int order)
1da177e4 715{
14e07298 716 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 717 return 0;
13e7444b 718
c0a32fc5 719 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
4c5018ce
WY
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
c0a32fc5
SG
725 return 1;
726 }
727
cb2b95e1 728 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
4c5018ce
WY
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
6aa3001b 739 return 1;
676165a8 740 }
6aa3001b 741 return 0;
1da177e4
LT
742}
743
744/*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
1da177e4 760 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
1da177e4 763 * If a block is freed, and its buddy is also free, then this
5f63b720 764 * triggers coalescing into a block of larger size.
1da177e4 765 *
6d49e352 766 * -- nyc
1da177e4
LT
767 */
768
48db57f8 769static inline void __free_one_page(struct page *page,
dc4b0caf 770 unsigned long pfn,
ed0ae21d
MG
771 struct zone *zone, unsigned int order,
772 int migratetype)
1da177e4
LT
773{
774 unsigned long page_idx;
6dda9d55 775 unsigned long combined_idx;
43506fad 776 unsigned long uninitialized_var(buddy_idx);
6dda9d55 777 struct page *buddy;
d9dddbf5
VB
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 781
d29bb978 782 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 784
ed0ae21d 785 VM_BUG_ON(migratetype == -1);
d9dddbf5 786 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 788
d9dddbf5 789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 790
309381fe
SL
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 793
d9dddbf5 794continue_merging:
3c605096 795 while (order < max_order - 1) {
43506fad
KC
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
cb2b95e1 798 if (!page_is_buddy(page, buddy, order))
d9dddbf5 799 goto done_merging;
c0a32fc5
SG
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
2847cf95 805 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
43506fad 811 combined_idx = buddy_idx & page_idx;
1da177e4
LT
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
d9dddbf5
VB
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841done_merging:
1da177e4 842 set_page_order(page, order);
6dda9d55
CZ
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
b7f50cfa 852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 853 struct page *higher_page, *higher_buddy;
43506fad
KC
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 857 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866out:
1da177e4
LT
867 zone->free_area[order].nr_free++;
868}
869
7bfec6f4
MG
870/*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877{
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883#ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885#endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890}
891
bb552ac6 892static void free_pages_check_bad(struct page *page)
1da177e4 893{
7bfec6f4
MG
894 const char *bad_reason;
895 unsigned long bad_flags;
896
7bfec6f4
MG
897 bad_reason = NULL;
898 bad_flags = 0;
f0b791a3 899
53f9263b 900 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
fe896d18 904 if (unlikely(page_ref_count(page) != 0))
0139aa7b 905 bad_reason = "nonzero _refcount";
f0b791a3
DH
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
9edad6ea
JW
910#ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913#endif
7bfec6f4 914 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
915}
916
917static inline int free_pages_check(struct page *page)
918{
da838d4f 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 920 return 0;
bb552ac6
MG
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
7bfec6f4 924 return 1;
1da177e4
LT
925}
926
4db7548c
MG
927static int free_tail_pages_check(struct page *head_page, struct page *page)
928{
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975}
976
e2769dbd
MG
977static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
4db7548c 979{
e2769dbd 980 int bad = 0;
4db7548c 981
4db7548c
MG
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
e2769dbd
MG
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
e2769dbd
MG
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 996
9a73f61b
KS
997 if (compound)
998 ClearPageDoubleMap(page);
e2769dbd
MG
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
bda807d4 1009 if (PageMappingFlags(page))
4db7548c 1010 page->mapping = NULL;
4949148a
VD
1011 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1012 memcg_kmem_uncharge(page, order);
1013 __ClearPageKmemcg(page);
1014 }
e2769dbd
MG
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
4db7548c 1019
e2769dbd
MG
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
4db7548c
MG
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
e2769dbd 1026 PAGE_SIZE << order);
4db7548c 1027 debug_check_no_obj_freed(page_address(page),
e2769dbd 1028 PAGE_SIZE << order);
4db7548c 1029 }
e2769dbd
MG
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
29b52de1 1033 kasan_free_pages(page, order);
4db7548c 1034
4db7548c
MG
1035 return true;
1036}
1037
e2769dbd
MG
1038#ifdef CONFIG_DEBUG_VM
1039static inline bool free_pcp_prepare(struct page *page)
1040{
1041 return free_pages_prepare(page, 0, true);
1042}
1043
1044static inline bool bulkfree_pcp_prepare(struct page *page)
1045{
1046 return false;
1047}
1048#else
1049static bool free_pcp_prepare(struct page *page)
1050{
1051 return free_pages_prepare(page, 0, false);
1052}
1053
4db7548c
MG
1054static bool bulkfree_pcp_prepare(struct page *page)
1055{
1056 return free_pages_check(page);
1057}
1058#endif /* CONFIG_DEBUG_VM */
1059
1da177e4 1060/*
5f8dcc21 1061 * Frees a number of pages from the PCP lists
1da177e4 1062 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1063 * count is the number of pages to free.
1da177e4
LT
1064 *
1065 * If the zone was previously in an "all pages pinned" state then look to
1066 * see if this freeing clears that state.
1067 *
1068 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1069 * pinned" detection logic.
1070 */
5f8dcc21
MG
1071static void free_pcppages_bulk(struct zone *zone, int count,
1072 struct per_cpu_pages *pcp)
1da177e4 1073{
5f8dcc21 1074 int migratetype = 0;
a6f9edd6 1075 int batch_free = 0;
0d5d823a 1076 unsigned long nr_scanned;
3777999d 1077 bool isolated_pageblocks;
5f8dcc21 1078
c54ad30c 1079 spin_lock(&zone->lock);
3777999d 1080 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1081 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1082 if (nr_scanned)
599d0c95 1083 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1084
e5b31ac2 1085 while (count) {
48db57f8 1086 struct page *page;
5f8dcc21
MG
1087 struct list_head *list;
1088
1089 /*
a6f9edd6
MG
1090 * Remove pages from lists in a round-robin fashion. A
1091 * batch_free count is maintained that is incremented when an
1092 * empty list is encountered. This is so more pages are freed
1093 * off fuller lists instead of spinning excessively around empty
1094 * lists
5f8dcc21
MG
1095 */
1096 do {
a6f9edd6 1097 batch_free++;
5f8dcc21
MG
1098 if (++migratetype == MIGRATE_PCPTYPES)
1099 migratetype = 0;
1100 list = &pcp->lists[migratetype];
1101 } while (list_empty(list));
48db57f8 1102
1d16871d
NK
1103 /* This is the only non-empty list. Free them all. */
1104 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1105 batch_free = count;
1d16871d 1106
a6f9edd6 1107 do {
770c8aaa
BZ
1108 int mt; /* migratetype of the to-be-freed page */
1109
a16601c5 1110 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1111 /* must delete as __free_one_page list manipulates */
1112 list_del(&page->lru);
aa016d14 1113
bb14c2c7 1114 mt = get_pcppage_migratetype(page);
aa016d14
VB
1115 /* MIGRATE_ISOLATE page should not go to pcplists */
1116 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1117 /* Pageblock could have been isolated meanwhile */
3777999d 1118 if (unlikely(isolated_pageblocks))
51bb1a40 1119 mt = get_pageblock_migratetype(page);
51bb1a40 1120
4db7548c
MG
1121 if (bulkfree_pcp_prepare(page))
1122 continue;
1123
dc4b0caf 1124 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1125 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1126 } while (--count && --batch_free && !list_empty(list));
1da177e4 1127 }
c54ad30c 1128 spin_unlock(&zone->lock);
1da177e4
LT
1129}
1130
dc4b0caf
MG
1131static void free_one_page(struct zone *zone,
1132 struct page *page, unsigned long pfn,
7aeb09f9 1133 unsigned int order,
ed0ae21d 1134 int migratetype)
1da177e4 1135{
0d5d823a 1136 unsigned long nr_scanned;
006d22d9 1137 spin_lock(&zone->lock);
599d0c95 1138 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1139 if (nr_scanned)
599d0c95 1140 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1141
ad53f92e
JK
1142 if (unlikely(has_isolate_pageblock(zone) ||
1143 is_migrate_isolate(migratetype))) {
1144 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1145 }
dc4b0caf 1146 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1147 spin_unlock(&zone->lock);
48db57f8
NP
1148}
1149
1e8ce83c
RH
1150static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1151 unsigned long zone, int nid)
1152{
1e8ce83c 1153 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1154 init_page_count(page);
1155 page_mapcount_reset(page);
1156 page_cpupid_reset_last(page);
1e8ce83c 1157
1e8ce83c
RH
1158 INIT_LIST_HEAD(&page->lru);
1159#ifdef WANT_PAGE_VIRTUAL
1160 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1161 if (!is_highmem_idx(zone))
1162 set_page_address(page, __va(pfn << PAGE_SHIFT));
1163#endif
1164}
1165
1166static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1167 int nid)
1168{
1169 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1170}
1171
7e18adb4
MG
1172#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1173static void init_reserved_page(unsigned long pfn)
1174{
1175 pg_data_t *pgdat;
1176 int nid, zid;
1177
1178 if (!early_page_uninitialised(pfn))
1179 return;
1180
1181 nid = early_pfn_to_nid(pfn);
1182 pgdat = NODE_DATA(nid);
1183
1184 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1185 struct zone *zone = &pgdat->node_zones[zid];
1186
1187 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1188 break;
1189 }
1190 __init_single_pfn(pfn, zid, nid);
1191}
1192#else
1193static inline void init_reserved_page(unsigned long pfn)
1194{
1195}
1196#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1197
92923ca3
NZ
1198/*
1199 * Initialised pages do not have PageReserved set. This function is
1200 * called for each range allocated by the bootmem allocator and
1201 * marks the pages PageReserved. The remaining valid pages are later
1202 * sent to the buddy page allocator.
1203 */
4b50bcc7 1204void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1205{
1206 unsigned long start_pfn = PFN_DOWN(start);
1207 unsigned long end_pfn = PFN_UP(end);
1208
7e18adb4
MG
1209 for (; start_pfn < end_pfn; start_pfn++) {
1210 if (pfn_valid(start_pfn)) {
1211 struct page *page = pfn_to_page(start_pfn);
1212
1213 init_reserved_page(start_pfn);
1d798ca3
KS
1214
1215 /* Avoid false-positive PageTail() */
1216 INIT_LIST_HEAD(&page->lru);
1217
7e18adb4
MG
1218 SetPageReserved(page);
1219 }
1220 }
92923ca3
NZ
1221}
1222
ec95f53a
KM
1223static void __free_pages_ok(struct page *page, unsigned int order)
1224{
1225 unsigned long flags;
95e34412 1226 int migratetype;
dc4b0caf 1227 unsigned long pfn = page_to_pfn(page);
ec95f53a 1228
e2769dbd 1229 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1230 return;
1231
cfc47a28 1232 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1233 local_irq_save(flags);
f8891e5e 1234 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1235 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1236 local_irq_restore(flags);
1da177e4
LT
1237}
1238
949698a3 1239static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1240{
c3993076 1241 unsigned int nr_pages = 1 << order;
e2d0bd2b 1242 struct page *p = page;
c3993076 1243 unsigned int loop;
a226f6c8 1244
e2d0bd2b
YL
1245 prefetchw(p);
1246 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1247 prefetchw(p + 1);
c3993076
JW
1248 __ClearPageReserved(p);
1249 set_page_count(p, 0);
a226f6c8 1250 }
e2d0bd2b
YL
1251 __ClearPageReserved(p);
1252 set_page_count(p, 0);
c3993076 1253
e2d0bd2b 1254 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1255 set_page_refcounted(page);
1256 __free_pages(page, order);
a226f6c8
DH
1257}
1258
75a592a4
MG
1259#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1260 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1261
75a592a4
MG
1262static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1263
1264int __meminit early_pfn_to_nid(unsigned long pfn)
1265{
7ace9917 1266 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1267 int nid;
1268
7ace9917 1269 spin_lock(&early_pfn_lock);
75a592a4 1270 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1271 if (nid < 0)
e4568d38 1272 nid = first_online_node;
7ace9917
MG
1273 spin_unlock(&early_pfn_lock);
1274
1275 return nid;
75a592a4
MG
1276}
1277#endif
1278
1279#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1280static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1281 struct mminit_pfnnid_cache *state)
1282{
1283 int nid;
1284
1285 nid = __early_pfn_to_nid(pfn, state);
1286 if (nid >= 0 && nid != node)
1287 return false;
1288 return true;
1289}
1290
1291/* Only safe to use early in boot when initialisation is single-threaded */
1292static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1293{
1294 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1295}
1296
1297#else
1298
1299static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1300{
1301 return true;
1302}
1303static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
1305{
1306 return true;
1307}
1308#endif
1309
1310
0e1cc95b 1311void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1312 unsigned int order)
1313{
1314 if (early_page_uninitialised(pfn))
1315 return;
949698a3 1316 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1317}
1318
7cf91a98
JK
1319/*
1320 * Check that the whole (or subset of) a pageblock given by the interval of
1321 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1322 * with the migration of free compaction scanner. The scanners then need to
1323 * use only pfn_valid_within() check for arches that allow holes within
1324 * pageblocks.
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
1335 */
1336struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 unsigned long end_pfn, struct zone *zone)
1338{
1339 struct page *start_page;
1340 struct page *end_page;
1341
1342 /* end_pfn is one past the range we are checking */
1343 end_pfn--;
1344
1345 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1346 return NULL;
1347
1348 start_page = pfn_to_page(start_pfn);
1349
1350 if (page_zone(start_page) != zone)
1351 return NULL;
1352
1353 end_page = pfn_to_page(end_pfn);
1354
1355 /* This gives a shorter code than deriving page_zone(end_page) */
1356 if (page_zone_id(start_page) != page_zone_id(end_page))
1357 return NULL;
1358
1359 return start_page;
1360}
1361
1362void set_zone_contiguous(struct zone *zone)
1363{
1364 unsigned long block_start_pfn = zone->zone_start_pfn;
1365 unsigned long block_end_pfn;
1366
1367 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1368 for (; block_start_pfn < zone_end_pfn(zone);
1369 block_start_pfn = block_end_pfn,
1370 block_end_pfn += pageblock_nr_pages) {
1371
1372 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1373
1374 if (!__pageblock_pfn_to_page(block_start_pfn,
1375 block_end_pfn, zone))
1376 return;
1377 }
1378
1379 /* We confirm that there is no hole */
1380 zone->contiguous = true;
1381}
1382
1383void clear_zone_contiguous(struct zone *zone)
1384{
1385 zone->contiguous = false;
1386}
1387
7e18adb4 1388#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1389static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1390 unsigned long pfn, int nr_pages)
1391{
1392 int i;
1393
1394 if (!page)
1395 return;
1396
1397 /* Free a large naturally-aligned chunk if possible */
1398 if (nr_pages == MAX_ORDER_NR_PAGES &&
1399 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1400 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1401 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1402 return;
1403 }
1404
949698a3
LZ
1405 for (i = 0; i < nr_pages; i++, page++)
1406 __free_pages_boot_core(page, 0);
a4de83dd
MG
1407}
1408
d3cd131d
NS
1409/* Completion tracking for deferred_init_memmap() threads */
1410static atomic_t pgdat_init_n_undone __initdata;
1411static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1412
1413static inline void __init pgdat_init_report_one_done(void)
1414{
1415 if (atomic_dec_and_test(&pgdat_init_n_undone))
1416 complete(&pgdat_init_all_done_comp);
1417}
0e1cc95b 1418
7e18adb4 1419/* Initialise remaining memory on a node */
0e1cc95b 1420static int __init deferred_init_memmap(void *data)
7e18adb4 1421{
0e1cc95b
MG
1422 pg_data_t *pgdat = data;
1423 int nid = pgdat->node_id;
7e18adb4
MG
1424 struct mminit_pfnnid_cache nid_init_state = { };
1425 unsigned long start = jiffies;
1426 unsigned long nr_pages = 0;
1427 unsigned long walk_start, walk_end;
1428 int i, zid;
1429 struct zone *zone;
7e18adb4 1430 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1431 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1432
0e1cc95b 1433 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1434 pgdat_init_report_one_done();
0e1cc95b
MG
1435 return 0;
1436 }
1437
1438 /* Bind memory initialisation thread to a local node if possible */
1439 if (!cpumask_empty(cpumask))
1440 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1441
1442 /* Sanity check boundaries */
1443 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1444 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1445 pgdat->first_deferred_pfn = ULONG_MAX;
1446
1447 /* Only the highest zone is deferred so find it */
1448 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1449 zone = pgdat->node_zones + zid;
1450 if (first_init_pfn < zone_end_pfn(zone))
1451 break;
1452 }
1453
1454 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1455 unsigned long pfn, end_pfn;
54608c3f 1456 struct page *page = NULL;
a4de83dd
MG
1457 struct page *free_base_page = NULL;
1458 unsigned long free_base_pfn = 0;
1459 int nr_to_free = 0;
7e18adb4
MG
1460
1461 end_pfn = min(walk_end, zone_end_pfn(zone));
1462 pfn = first_init_pfn;
1463 if (pfn < walk_start)
1464 pfn = walk_start;
1465 if (pfn < zone->zone_start_pfn)
1466 pfn = zone->zone_start_pfn;
1467
1468 for (; pfn < end_pfn; pfn++) {
54608c3f 1469 if (!pfn_valid_within(pfn))
a4de83dd 1470 goto free_range;
7e18adb4 1471
54608c3f
MG
1472 /*
1473 * Ensure pfn_valid is checked every
1474 * MAX_ORDER_NR_PAGES for memory holes
1475 */
1476 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1477 if (!pfn_valid(pfn)) {
1478 page = NULL;
a4de83dd 1479 goto free_range;
54608c3f
MG
1480 }
1481 }
1482
1483 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487
1488 /* Minimise pfn page lookups and scheduler checks */
1489 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1490 page++;
1491 } else {
a4de83dd
MG
1492 nr_pages += nr_to_free;
1493 deferred_free_range(free_base_page,
1494 free_base_pfn, nr_to_free);
1495 free_base_page = NULL;
1496 free_base_pfn = nr_to_free = 0;
1497
54608c3f
MG
1498 page = pfn_to_page(pfn);
1499 cond_resched();
1500 }
7e18adb4
MG
1501
1502 if (page->flags) {
1503 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1504 goto free_range;
7e18adb4
MG
1505 }
1506
1507 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1508 if (!free_base_page) {
1509 free_base_page = page;
1510 free_base_pfn = pfn;
1511 nr_to_free = 0;
1512 }
1513 nr_to_free++;
1514
1515 /* Where possible, batch up pages for a single free */
1516 continue;
1517free_range:
1518 /* Free the current block of pages to allocator */
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page, free_base_pfn,
1521 nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
7e18adb4 1524 }
a4de83dd 1525
7e18adb4
MG
1526 first_init_pfn = max(end_pfn, first_init_pfn);
1527 }
1528
1529 /* Sanity check that the next zone really is unpopulated */
1530 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1531
0e1cc95b 1532 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1533 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1534
1535 pgdat_init_report_one_done();
0e1cc95b
MG
1536 return 0;
1537}
7cf91a98 1538#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1539
1540void __init page_alloc_init_late(void)
1541{
7cf91a98
JK
1542 struct zone *zone;
1543
1544#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1545 int nid;
1546
d3cd131d
NS
1547 /* There will be num_node_state(N_MEMORY) threads */
1548 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1549 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1550 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1551 }
1552
1553 /* Block until all are initialised */
d3cd131d 1554 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1555
1556 /* Reinit limits that are based on free pages after the kernel is up */
1557 files_maxfiles_init();
7cf91a98
JK
1558#endif
1559
1560 for_each_populated_zone(zone)
1561 set_zone_contiguous(zone);
7e18adb4 1562}
7e18adb4 1563
47118af0 1564#ifdef CONFIG_CMA
9cf510a5 1565/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1566void __init init_cma_reserved_pageblock(struct page *page)
1567{
1568 unsigned i = pageblock_nr_pages;
1569 struct page *p = page;
1570
1571 do {
1572 __ClearPageReserved(p);
1573 set_page_count(p, 0);
1574 } while (++p, --i);
1575
47118af0 1576 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1577
1578 if (pageblock_order >= MAX_ORDER) {
1579 i = pageblock_nr_pages;
1580 p = page;
1581 do {
1582 set_page_refcounted(p);
1583 __free_pages(p, MAX_ORDER - 1);
1584 p += MAX_ORDER_NR_PAGES;
1585 } while (i -= MAX_ORDER_NR_PAGES);
1586 } else {
1587 set_page_refcounted(page);
1588 __free_pages(page, pageblock_order);
1589 }
1590
3dcc0571 1591 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1592}
1593#endif
1da177e4
LT
1594
1595/*
1596 * The order of subdivision here is critical for the IO subsystem.
1597 * Please do not alter this order without good reasons and regression
1598 * testing. Specifically, as large blocks of memory are subdivided,
1599 * the order in which smaller blocks are delivered depends on the order
1600 * they're subdivided in this function. This is the primary factor
1601 * influencing the order in which pages are delivered to the IO
1602 * subsystem according to empirical testing, and this is also justified
1603 * by considering the behavior of a buddy system containing a single
1604 * large block of memory acted on by a series of small allocations.
1605 * This behavior is a critical factor in sglist merging's success.
1606 *
6d49e352 1607 * -- nyc
1da177e4 1608 */
085cc7d5 1609static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1610 int low, int high, struct free_area *area,
1611 int migratetype)
1da177e4
LT
1612{
1613 unsigned long size = 1 << high;
1614
1615 while (high > low) {
1616 area--;
1617 high--;
1618 size >>= 1;
309381fe 1619 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1620
2847cf95 1621 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1622 debug_guardpage_enabled() &&
2847cf95 1623 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1624 /*
1625 * Mark as guard pages (or page), that will allow to
1626 * merge back to allocator when buddy will be freed.
1627 * Corresponding page table entries will not be touched,
1628 * pages will stay not present in virtual address space
1629 */
2847cf95 1630 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1631 continue;
1632 }
b2a0ac88 1633 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1634 area->nr_free++;
1635 set_page_order(&page[size], high);
1636 }
1da177e4
LT
1637}
1638
4e611801 1639static void check_new_page_bad(struct page *page)
1da177e4 1640{
4e611801
VB
1641 const char *bad_reason = NULL;
1642 unsigned long bad_flags = 0;
7bfec6f4 1643
53f9263b 1644 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1645 bad_reason = "nonzero mapcount";
1646 if (unlikely(page->mapping != NULL))
1647 bad_reason = "non-NULL mapping";
fe896d18 1648 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1649 bad_reason = "nonzero _count";
f4c18e6f
NH
1650 if (unlikely(page->flags & __PG_HWPOISON)) {
1651 bad_reason = "HWPoisoned (hardware-corrupted)";
1652 bad_flags = __PG_HWPOISON;
e570f56c
NH
1653 /* Don't complain about hwpoisoned pages */
1654 page_mapcount_reset(page); /* remove PageBuddy */
1655 return;
f4c18e6f 1656 }
f0b791a3
DH
1657 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1658 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1659 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1660 }
9edad6ea
JW
1661#ifdef CONFIG_MEMCG
1662 if (unlikely(page->mem_cgroup))
1663 bad_reason = "page still charged to cgroup";
1664#endif
4e611801
VB
1665 bad_page(page, bad_reason, bad_flags);
1666}
1667
1668/*
1669 * This page is about to be returned from the page allocator
1670 */
1671static inline int check_new_page(struct page *page)
1672{
1673 if (likely(page_expected_state(page,
1674 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1675 return 0;
1676
1677 check_new_page_bad(page);
1678 return 1;
2a7684a2
WF
1679}
1680
1414c7f4
LA
1681static inline bool free_pages_prezeroed(bool poisoned)
1682{
1683 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1684 page_poisoning_enabled() && poisoned;
1685}
1686
479f854a
MG
1687#ifdef CONFIG_DEBUG_VM
1688static bool check_pcp_refill(struct page *page)
1689{
1690 return false;
1691}
1692
1693static bool check_new_pcp(struct page *page)
1694{
1695 return check_new_page(page);
1696}
1697#else
1698static bool check_pcp_refill(struct page *page)
1699{
1700 return check_new_page(page);
1701}
1702static bool check_new_pcp(struct page *page)
1703{
1704 return false;
1705}
1706#endif /* CONFIG_DEBUG_VM */
1707
1708static bool check_new_pages(struct page *page, unsigned int order)
1709{
1710 int i;
1711 for (i = 0; i < (1 << order); i++) {
1712 struct page *p = page + i;
1713
1714 if (unlikely(check_new_page(p)))
1715 return true;
1716 }
1717
1718 return false;
1719}
1720
46f24fd8
JK
1721inline void post_alloc_hook(struct page *page, unsigned int order,
1722 gfp_t gfp_flags)
1723{
1724 set_page_private(page, 0);
1725 set_page_refcounted(page);
1726
1727 arch_alloc_page(page, order);
1728 kernel_map_pages(page, 1 << order, 1);
1729 kernel_poison_pages(page, 1 << order, 1);
1730 kasan_alloc_pages(page, order);
1731 set_page_owner(page, order, gfp_flags);
1732}
1733
479f854a 1734static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1735 unsigned int alloc_flags)
2a7684a2
WF
1736{
1737 int i;
1414c7f4 1738 bool poisoned = true;
2a7684a2
WF
1739
1740 for (i = 0; i < (1 << order); i++) {
1741 struct page *p = page + i;
1414c7f4
LA
1742 if (poisoned)
1743 poisoned &= page_is_poisoned(p);
2a7684a2 1744 }
689bcebf 1745
46f24fd8 1746 post_alloc_hook(page, order, gfp_flags);
17cf4406 1747
1414c7f4 1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1749 for (i = 0; i < (1 << order); i++)
1750 clear_highpage(page + i);
17cf4406
NP
1751
1752 if (order && (gfp_flags & __GFP_COMP))
1753 prep_compound_page(page, order);
1754
75379191 1755 /*
2f064f34 1756 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1757 * allocate the page. The expectation is that the caller is taking
1758 * steps that will free more memory. The caller should avoid the page
1759 * being used for !PFMEMALLOC purposes.
1760 */
2f064f34
MH
1761 if (alloc_flags & ALLOC_NO_WATERMARKS)
1762 set_page_pfmemalloc(page);
1763 else
1764 clear_page_pfmemalloc(page);
1da177e4
LT
1765}
1766
56fd56b8
MG
1767/*
1768 * Go through the free lists for the given migratetype and remove
1769 * the smallest available page from the freelists
1770 */
728ec980
MG
1771static inline
1772struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1773 int migratetype)
1774{
1775 unsigned int current_order;
b8af2941 1776 struct free_area *area;
56fd56b8
MG
1777 struct page *page;
1778
1779 /* Find a page of the appropriate size in the preferred list */
1780 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1781 area = &(zone->free_area[current_order]);
a16601c5 1782 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1783 struct page, lru);
a16601c5
GT
1784 if (!page)
1785 continue;
56fd56b8
MG
1786 list_del(&page->lru);
1787 rmv_page_order(page);
1788 area->nr_free--;
56fd56b8 1789 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1790 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1791 return page;
1792 }
1793
1794 return NULL;
1795}
1796
1797
b2a0ac88
MG
1798/*
1799 * This array describes the order lists are fallen back to when
1800 * the free lists for the desirable migrate type are depleted
1801 */
47118af0 1802static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1803 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1806#ifdef CONFIG_CMA
974a786e 1807 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1808#endif
194159fb 1809#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1810 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1811#endif
b2a0ac88
MG
1812};
1813
dc67647b
JK
1814#ifdef CONFIG_CMA
1815static struct page *__rmqueue_cma_fallback(struct zone *zone,
1816 unsigned int order)
1817{
1818 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1819}
1820#else
1821static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 unsigned int order) { return NULL; }
1823#endif
1824
c361be55
MG
1825/*
1826 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1827 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1828 * boundary. If alignment is required, use move_freepages_block()
1829 */
435b405c 1830int move_freepages(struct zone *zone,
b69a7288
AB
1831 struct page *start_page, struct page *end_page,
1832 int migratetype)
c361be55
MG
1833{
1834 struct page *page;
d00181b9 1835 unsigned int order;
d100313f 1836 int pages_moved = 0;
c361be55
MG
1837
1838#ifndef CONFIG_HOLES_IN_ZONE
1839 /*
1840 * page_zone is not safe to call in this context when
1841 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1842 * anyway as we check zone boundaries in move_freepages_block().
1843 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1844 * grouping pages by mobility
c361be55 1845 */
97ee4ba7 1846 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1847#endif
1848
1849 for (page = start_page; page <= end_page;) {
344c790e 1850 /* Make sure we are not inadvertently changing nodes */
309381fe 1851 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1852
c361be55
MG
1853 if (!pfn_valid_within(page_to_pfn(page))) {
1854 page++;
1855 continue;
1856 }
1857
1858 if (!PageBuddy(page)) {
1859 page++;
1860 continue;
1861 }
1862
1863 order = page_order(page);
84be48d8
KS
1864 list_move(&page->lru,
1865 &zone->free_area[order].free_list[migratetype]);
c361be55 1866 page += 1 << order;
d100313f 1867 pages_moved += 1 << order;
c361be55
MG
1868 }
1869
d100313f 1870 return pages_moved;
c361be55
MG
1871}
1872
ee6f509c 1873int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1874 int migratetype)
c361be55
MG
1875{
1876 unsigned long start_pfn, end_pfn;
1877 struct page *start_page, *end_page;
1878
1879 start_pfn = page_to_pfn(page);
d9c23400 1880 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1881 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1882 end_page = start_page + pageblock_nr_pages - 1;
1883 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1884
1885 /* Do not cross zone boundaries */
108bcc96 1886 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1887 start_page = page;
108bcc96 1888 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1889 return 0;
1890
1891 return move_freepages(zone, start_page, end_page, migratetype);
1892}
1893
2f66a68f
MG
1894static void change_pageblock_range(struct page *pageblock_page,
1895 int start_order, int migratetype)
1896{
1897 int nr_pageblocks = 1 << (start_order - pageblock_order);
1898
1899 while (nr_pageblocks--) {
1900 set_pageblock_migratetype(pageblock_page, migratetype);
1901 pageblock_page += pageblock_nr_pages;
1902 }
1903}
1904
fef903ef 1905/*
9c0415eb
VB
1906 * When we are falling back to another migratetype during allocation, try to
1907 * steal extra free pages from the same pageblocks to satisfy further
1908 * allocations, instead of polluting multiple pageblocks.
1909 *
1910 * If we are stealing a relatively large buddy page, it is likely there will
1911 * be more free pages in the pageblock, so try to steal them all. For
1912 * reclaimable and unmovable allocations, we steal regardless of page size,
1913 * as fragmentation caused by those allocations polluting movable pageblocks
1914 * is worse than movable allocations stealing from unmovable and reclaimable
1915 * pageblocks.
fef903ef 1916 */
4eb7dce6
JK
1917static bool can_steal_fallback(unsigned int order, int start_mt)
1918{
1919 /*
1920 * Leaving this order check is intended, although there is
1921 * relaxed order check in next check. The reason is that
1922 * we can actually steal whole pageblock if this condition met,
1923 * but, below check doesn't guarantee it and that is just heuristic
1924 * so could be changed anytime.
1925 */
1926 if (order >= pageblock_order)
1927 return true;
1928
1929 if (order >= pageblock_order / 2 ||
1930 start_mt == MIGRATE_RECLAIMABLE ||
1931 start_mt == MIGRATE_UNMOVABLE ||
1932 page_group_by_mobility_disabled)
1933 return true;
1934
1935 return false;
1936}
1937
1938/*
1939 * This function implements actual steal behaviour. If order is large enough,
1940 * we can steal whole pageblock. If not, we first move freepages in this
1941 * pageblock and check whether half of pages are moved or not. If half of
1942 * pages are moved, we can change migratetype of pageblock and permanently
1943 * use it's pages as requested migratetype in the future.
1944 */
1945static void steal_suitable_fallback(struct zone *zone, struct page *page,
1946 int start_type)
fef903ef 1947{
d00181b9 1948 unsigned int current_order = page_order(page);
4eb7dce6 1949 int pages;
fef903ef 1950
fef903ef
SB
1951 /* Take ownership for orders >= pageblock_order */
1952 if (current_order >= pageblock_order) {
1953 change_pageblock_range(page, current_order, start_type);
3a1086fb 1954 return;
fef903ef
SB
1955 }
1956
4eb7dce6 1957 pages = move_freepages_block(zone, page, start_type);
fef903ef 1958
4eb7dce6
JK
1959 /* Claim the whole block if over half of it is free */
1960 if (pages >= (1 << (pageblock_order-1)) ||
1961 page_group_by_mobility_disabled)
1962 set_pageblock_migratetype(page, start_type);
1963}
1964
2149cdae
JK
1965/*
1966 * Check whether there is a suitable fallback freepage with requested order.
1967 * If only_stealable is true, this function returns fallback_mt only if
1968 * we can steal other freepages all together. This would help to reduce
1969 * fragmentation due to mixed migratetype pages in one pageblock.
1970 */
1971int find_suitable_fallback(struct free_area *area, unsigned int order,
1972 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1973{
1974 int i;
1975 int fallback_mt;
1976
1977 if (area->nr_free == 0)
1978 return -1;
1979
1980 *can_steal = false;
1981 for (i = 0;; i++) {
1982 fallback_mt = fallbacks[migratetype][i];
974a786e 1983 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1984 break;
1985
1986 if (list_empty(&area->free_list[fallback_mt]))
1987 continue;
fef903ef 1988
4eb7dce6
JK
1989 if (can_steal_fallback(order, migratetype))
1990 *can_steal = true;
1991
2149cdae
JK
1992 if (!only_stealable)
1993 return fallback_mt;
1994
1995 if (*can_steal)
1996 return fallback_mt;
fef903ef 1997 }
4eb7dce6
JK
1998
1999 return -1;
fef903ef
SB
2000}
2001
0aaa29a5
MG
2002/*
2003 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2004 * there are no empty page blocks that contain a page with a suitable order
2005 */
2006static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2007 unsigned int alloc_order)
2008{
2009 int mt;
2010 unsigned long max_managed, flags;
2011
2012 /*
2013 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2014 * Check is race-prone but harmless.
2015 */
2016 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2017 if (zone->nr_reserved_highatomic >= max_managed)
2018 return;
2019
2020 spin_lock_irqsave(&zone->lock, flags);
2021
2022 /* Recheck the nr_reserved_highatomic limit under the lock */
2023 if (zone->nr_reserved_highatomic >= max_managed)
2024 goto out_unlock;
2025
2026 /* Yoink! */
2027 mt = get_pageblock_migratetype(page);
2028 if (mt != MIGRATE_HIGHATOMIC &&
2029 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2030 zone->nr_reserved_highatomic += pageblock_nr_pages;
2031 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2032 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2033 }
2034
2035out_unlock:
2036 spin_unlock_irqrestore(&zone->lock, flags);
2037}
2038
2039/*
2040 * Used when an allocation is about to fail under memory pressure. This
2041 * potentially hurts the reliability of high-order allocations when under
2042 * intense memory pressure but failed atomic allocations should be easier
2043 * to recover from than an OOM.
2044 */
2045static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2046{
2047 struct zonelist *zonelist = ac->zonelist;
2048 unsigned long flags;
2049 struct zoneref *z;
2050 struct zone *zone;
2051 struct page *page;
2052 int order;
2053
2054 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2055 ac->nodemask) {
2056 /* Preserve at least one pageblock */
2057 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2058 continue;
2059
2060 spin_lock_irqsave(&zone->lock, flags);
2061 for (order = 0; order < MAX_ORDER; order++) {
2062 struct free_area *area = &(zone->free_area[order]);
2063
a16601c5
GT
2064 page = list_first_entry_or_null(
2065 &area->free_list[MIGRATE_HIGHATOMIC],
2066 struct page, lru);
2067 if (!page)
0aaa29a5
MG
2068 continue;
2069
0aaa29a5
MG
2070 /*
2071 * It should never happen but changes to locking could
2072 * inadvertently allow a per-cpu drain to add pages
2073 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2074 * and watch for underflows.
2075 */
2076 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2077 zone->nr_reserved_highatomic);
2078
2079 /*
2080 * Convert to ac->migratetype and avoid the normal
2081 * pageblock stealing heuristics. Minimally, the caller
2082 * is doing the work and needs the pages. More
2083 * importantly, if the block was always converted to
2084 * MIGRATE_UNMOVABLE or another type then the number
2085 * of pageblocks that cannot be completely freed
2086 * may increase.
2087 */
2088 set_pageblock_migratetype(page, ac->migratetype);
2089 move_freepages_block(zone, page, ac->migratetype);
2090 spin_unlock_irqrestore(&zone->lock, flags);
2091 return;
2092 }
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 }
2095}
2096
b2a0ac88 2097/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2098static inline struct page *
7aeb09f9 2099__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2100{
b8af2941 2101 struct free_area *area;
7aeb09f9 2102 unsigned int current_order;
b2a0ac88 2103 struct page *page;
4eb7dce6
JK
2104 int fallback_mt;
2105 bool can_steal;
b2a0ac88
MG
2106
2107 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2108 for (current_order = MAX_ORDER-1;
2109 current_order >= order && current_order <= MAX_ORDER-1;
2110 --current_order) {
4eb7dce6
JK
2111 area = &(zone->free_area[current_order]);
2112 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2113 start_migratetype, false, &can_steal);
4eb7dce6
JK
2114 if (fallback_mt == -1)
2115 continue;
b2a0ac88 2116
a16601c5 2117 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2118 struct page, lru);
2119 if (can_steal)
2120 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2121
4eb7dce6
JK
2122 /* Remove the page from the freelists */
2123 area->nr_free--;
2124 list_del(&page->lru);
2125 rmv_page_order(page);
3a1086fb 2126
4eb7dce6
JK
2127 expand(zone, page, order, current_order, area,
2128 start_migratetype);
2129 /*
bb14c2c7 2130 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2131 * migratetype depending on the decisions in
bb14c2c7
VB
2132 * find_suitable_fallback(). This is OK as long as it does not
2133 * differ for MIGRATE_CMA pageblocks. Those can be used as
2134 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2135 */
bb14c2c7 2136 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2137
4eb7dce6
JK
2138 trace_mm_page_alloc_extfrag(page, order, current_order,
2139 start_migratetype, fallback_mt);
e0fff1bd 2140
4eb7dce6 2141 return page;
b2a0ac88
MG
2142 }
2143
728ec980 2144 return NULL;
b2a0ac88
MG
2145}
2146
56fd56b8 2147/*
1da177e4
LT
2148 * Do the hard work of removing an element from the buddy allocator.
2149 * Call me with the zone->lock already held.
2150 */
b2a0ac88 2151static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2152 int migratetype)
1da177e4 2153{
1da177e4
LT
2154 struct page *page;
2155
56fd56b8 2156 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2157 if (unlikely(!page)) {
dc67647b
JK
2158 if (migratetype == MIGRATE_MOVABLE)
2159 page = __rmqueue_cma_fallback(zone, order);
2160
2161 if (!page)
2162 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2163 }
2164
0d3d062a 2165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2166 return page;
1da177e4
LT
2167}
2168
5f63b720 2169/*
1da177e4
LT
2170 * Obtain a specified number of elements from the buddy allocator, all under
2171 * a single hold of the lock, for efficiency. Add them to the supplied list.
2172 * Returns the number of new pages which were placed at *list.
2173 */
5f63b720 2174static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2175 unsigned long count, struct list_head *list,
b745bc85 2176 int migratetype, bool cold)
1da177e4 2177{
5bcc9f86 2178 int i;
5f63b720 2179
c54ad30c 2180 spin_lock(&zone->lock);
1da177e4 2181 for (i = 0; i < count; ++i) {
6ac0206b 2182 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2183 if (unlikely(page == NULL))
1da177e4 2184 break;
81eabcbe 2185
479f854a
MG
2186 if (unlikely(check_pcp_refill(page)))
2187 continue;
2188
81eabcbe
MG
2189 /*
2190 * Split buddy pages returned by expand() are received here
2191 * in physical page order. The page is added to the callers and
2192 * list and the list head then moves forward. From the callers
2193 * perspective, the linked list is ordered by page number in
2194 * some conditions. This is useful for IO devices that can
2195 * merge IO requests if the physical pages are ordered
2196 * properly.
2197 */
b745bc85 2198 if (likely(!cold))
e084b2d9
MG
2199 list_add(&page->lru, list);
2200 else
2201 list_add_tail(&page->lru, list);
81eabcbe 2202 list = &page->lru;
bb14c2c7 2203 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2205 -(1 << order));
1da177e4 2206 }
f2260e6b 2207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2208 spin_unlock(&zone->lock);
085cc7d5 2209 return i;
1da177e4
LT
2210}
2211
4ae7c039 2212#ifdef CONFIG_NUMA
8fce4d8e 2213/*
4037d452
CL
2214 * Called from the vmstat counter updater to drain pagesets of this
2215 * currently executing processor on remote nodes after they have
2216 * expired.
2217 *
879336c3
CL
2218 * Note that this function must be called with the thread pinned to
2219 * a single processor.
8fce4d8e 2220 */
4037d452 2221void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2222{
4ae7c039 2223 unsigned long flags;
7be12fc9 2224 int to_drain, batch;
4ae7c039 2225
4037d452 2226 local_irq_save(flags);
4db0c3c2 2227 batch = READ_ONCE(pcp->batch);
7be12fc9 2228 to_drain = min(pcp->count, batch);
2a13515c
KM
2229 if (to_drain > 0) {
2230 free_pcppages_bulk(zone, to_drain, pcp);
2231 pcp->count -= to_drain;
2232 }
4037d452 2233 local_irq_restore(flags);
4ae7c039
CL
2234}
2235#endif
2236
9f8f2172 2237/*
93481ff0 2238 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2239 *
2240 * The processor must either be the current processor and the
2241 * thread pinned to the current processor or a processor that
2242 * is not online.
2243 */
93481ff0 2244static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2245{
c54ad30c 2246 unsigned long flags;
93481ff0
VB
2247 struct per_cpu_pageset *pset;
2248 struct per_cpu_pages *pcp;
1da177e4 2249
93481ff0
VB
2250 local_irq_save(flags);
2251 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2252
93481ff0
VB
2253 pcp = &pset->pcp;
2254 if (pcp->count) {
2255 free_pcppages_bulk(zone, pcp->count, pcp);
2256 pcp->count = 0;
2257 }
2258 local_irq_restore(flags);
2259}
3dfa5721 2260
93481ff0
VB
2261/*
2262 * Drain pcplists of all zones on the indicated processor.
2263 *
2264 * The processor must either be the current processor and the
2265 * thread pinned to the current processor or a processor that
2266 * is not online.
2267 */
2268static void drain_pages(unsigned int cpu)
2269{
2270 struct zone *zone;
2271
2272 for_each_populated_zone(zone) {
2273 drain_pages_zone(cpu, zone);
1da177e4
LT
2274 }
2275}
1da177e4 2276
9f8f2172
CL
2277/*
2278 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2279 *
2280 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2281 * the single zone's pages.
9f8f2172 2282 */
93481ff0 2283void drain_local_pages(struct zone *zone)
9f8f2172 2284{
93481ff0
VB
2285 int cpu = smp_processor_id();
2286
2287 if (zone)
2288 drain_pages_zone(cpu, zone);
2289 else
2290 drain_pages(cpu);
9f8f2172
CL
2291}
2292
2293/*
74046494
GBY
2294 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295 *
93481ff0
VB
2296 * When zone parameter is non-NULL, spill just the single zone's pages.
2297 *
74046494
GBY
2298 * Note that this code is protected against sending an IPI to an offline
2299 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2300 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2301 * nothing keeps CPUs from showing up after we populated the cpumask and
2302 * before the call to on_each_cpu_mask().
9f8f2172 2303 */
93481ff0 2304void drain_all_pages(struct zone *zone)
9f8f2172 2305{
74046494 2306 int cpu;
74046494
GBY
2307
2308 /*
2309 * Allocate in the BSS so we wont require allocation in
2310 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 */
2312 static cpumask_t cpus_with_pcps;
2313
2314 /*
2315 * We don't care about racing with CPU hotplug event
2316 * as offline notification will cause the notified
2317 * cpu to drain that CPU pcps and on_each_cpu_mask
2318 * disables preemption as part of its processing
2319 */
2320 for_each_online_cpu(cpu) {
93481ff0
VB
2321 struct per_cpu_pageset *pcp;
2322 struct zone *z;
74046494 2323 bool has_pcps = false;
93481ff0
VB
2324
2325 if (zone) {
74046494 2326 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2327 if (pcp->pcp.count)
74046494 2328 has_pcps = true;
93481ff0
VB
2329 } else {
2330 for_each_populated_zone(z) {
2331 pcp = per_cpu_ptr(z->pageset, cpu);
2332 if (pcp->pcp.count) {
2333 has_pcps = true;
2334 break;
2335 }
74046494
GBY
2336 }
2337 }
93481ff0 2338
74046494
GBY
2339 if (has_pcps)
2340 cpumask_set_cpu(cpu, &cpus_with_pcps);
2341 else
2342 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 }
93481ff0
VB
2344 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2345 zone, 1);
9f8f2172
CL
2346}
2347
296699de 2348#ifdef CONFIG_HIBERNATION
1da177e4
LT
2349
2350void mark_free_pages(struct zone *zone)
2351{
f623f0db
RW
2352 unsigned long pfn, max_zone_pfn;
2353 unsigned long flags;
7aeb09f9 2354 unsigned int order, t;
86760a2c 2355 struct page *page;
1da177e4 2356
8080fc03 2357 if (zone_is_empty(zone))
1da177e4
LT
2358 return;
2359
2360 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2361
108bcc96 2362 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2363 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2364 if (pfn_valid(pfn)) {
86760a2c 2365 page = pfn_to_page(pfn);
ba6b0979
JK
2366
2367 if (page_zone(page) != zone)
2368 continue;
2369
7be98234
RW
2370 if (!swsusp_page_is_forbidden(page))
2371 swsusp_unset_page_free(page);
f623f0db 2372 }
1da177e4 2373
b2a0ac88 2374 for_each_migratetype_order(order, t) {
86760a2c
GT
2375 list_for_each_entry(page,
2376 &zone->free_area[order].free_list[t], lru) {
f623f0db 2377 unsigned long i;
1da177e4 2378
86760a2c 2379 pfn = page_to_pfn(page);
f623f0db 2380 for (i = 0; i < (1UL << order); i++)
7be98234 2381 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2382 }
b2a0ac88 2383 }
1da177e4
LT
2384 spin_unlock_irqrestore(&zone->lock, flags);
2385}
e2c55dc8 2386#endif /* CONFIG_PM */
1da177e4 2387
1da177e4
LT
2388/*
2389 * Free a 0-order page
b745bc85 2390 * cold == true ? free a cold page : free a hot page
1da177e4 2391 */
b745bc85 2392void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2393{
2394 struct zone *zone = page_zone(page);
2395 struct per_cpu_pages *pcp;
2396 unsigned long flags;
dc4b0caf 2397 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2398 int migratetype;
1da177e4 2399
4db7548c 2400 if (!free_pcp_prepare(page))
689bcebf
HD
2401 return;
2402
dc4b0caf 2403 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2404 set_pcppage_migratetype(page, migratetype);
1da177e4 2405 local_irq_save(flags);
f8891e5e 2406 __count_vm_event(PGFREE);
da456f14 2407
5f8dcc21
MG
2408 /*
2409 * We only track unmovable, reclaimable and movable on pcp lists.
2410 * Free ISOLATE pages back to the allocator because they are being
2411 * offlined but treat RESERVE as movable pages so we can get those
2412 * areas back if necessary. Otherwise, we may have to free
2413 * excessively into the page allocator
2414 */
2415 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2416 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2417 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2418 goto out;
2419 }
2420 migratetype = MIGRATE_MOVABLE;
2421 }
2422
99dcc3e5 2423 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2424 if (!cold)
5f8dcc21 2425 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2426 else
2427 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2428 pcp->count++;
48db57f8 2429 if (pcp->count >= pcp->high) {
4db0c3c2 2430 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2431 free_pcppages_bulk(zone, batch, pcp);
2432 pcp->count -= batch;
48db57f8 2433 }
5f8dcc21
MG
2434
2435out:
1da177e4 2436 local_irq_restore(flags);
1da177e4
LT
2437}
2438
cc59850e
KK
2439/*
2440 * Free a list of 0-order pages
2441 */
b745bc85 2442void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2443{
2444 struct page *page, *next;
2445
2446 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2447 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2448 free_hot_cold_page(page, cold);
2449 }
2450}
2451
8dfcc9ba
NP
2452/*
2453 * split_page takes a non-compound higher-order page, and splits it into
2454 * n (1<<order) sub-pages: page[0..n]
2455 * Each sub-page must be freed individually.
2456 *
2457 * Note: this is probably too low level an operation for use in drivers.
2458 * Please consult with lkml before using this in your driver.
2459 */
2460void split_page(struct page *page, unsigned int order)
2461{
2462 int i;
2463
309381fe
SL
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2466
2467#ifdef CONFIG_KMEMCHECK
2468 /*
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2471 */
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474#endif
2475
a9627bc5 2476 for (i = 1; i < (1 << order); i++)
7835e98b 2477 set_page_refcounted(page + i);
a9627bc5 2478 split_page_owner(page, order);
8dfcc9ba 2479}
5853ff23 2480EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2481
3c605096 2482int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2483{
748446bb
MG
2484 unsigned long watermark;
2485 struct zone *zone;
2139cbe6 2486 int mt;
748446bb
MG
2487
2488 BUG_ON(!PageBuddy(page));
2489
2490 zone = page_zone(page);
2e30abd1 2491 mt = get_pageblock_migratetype(page);
748446bb 2492
194159fb 2493 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2494 /* Obey watermarks as if the page was being allocated */
2495 watermark = low_wmark_pages(zone) + (1 << order);
2496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2497 return 0;
2498
8fb74b9f 2499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2500 }
748446bb
MG
2501
2502 /* Remove page from free list */
2503 list_del(&page->lru);
2504 zone->free_area[order].nr_free--;
2505 rmv_page_order(page);
2139cbe6 2506
400bc7fd 2507 /*
2508 * Set the pageblock if the isolated page is at least half of a
2509 * pageblock
2510 */
748446bb
MG
2511 if (order >= pageblock_order - 1) {
2512 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2513 for (; page < endpage; page += pageblock_nr_pages) {
2514 int mt = get_pageblock_migratetype(page);
194159fb 2515 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2516 set_pageblock_migratetype(page,
2517 MIGRATE_MOVABLE);
2518 }
748446bb
MG
2519 }
2520
f3a14ced 2521
8fb74b9f 2522 return 1UL << order;
1fb3f8ca
MG
2523}
2524
060e7417
MG
2525/*
2526 * Update NUMA hit/miss statistics
2527 *
2528 * Must be called with interrupts disabled.
2529 *
2530 * When __GFP_OTHER_NODE is set assume the node of the preferred
2531 * zone is the local node. This is useful for daemons who allocate
2532 * memory on behalf of other processes.
2533 */
2534static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2535 gfp_t flags)
2536{
2537#ifdef CONFIG_NUMA
2538 int local_nid = numa_node_id();
2539 enum zone_stat_item local_stat = NUMA_LOCAL;
2540
2541 if (unlikely(flags & __GFP_OTHER_NODE)) {
2542 local_stat = NUMA_OTHER;
2543 local_nid = preferred_zone->node;
2544 }
2545
2546 if (z->node == local_nid) {
2547 __inc_zone_state(z, NUMA_HIT);
2548 __inc_zone_state(z, local_stat);
2549 } else {
2550 __inc_zone_state(z, NUMA_MISS);
2551 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2552 }
2553#endif
2554}
2555
1da177e4 2556/*
75379191 2557 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2558 */
0a15c3e9
MG
2559static inline
2560struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2561 struct zone *zone, unsigned int order,
c603844b
MG
2562 gfp_t gfp_flags, unsigned int alloc_flags,
2563 int migratetype)
1da177e4
LT
2564{
2565 unsigned long flags;
689bcebf 2566 struct page *page;
b745bc85 2567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2568
48db57f8 2569 if (likely(order == 0)) {
1da177e4 2570 struct per_cpu_pages *pcp;
5f8dcc21 2571 struct list_head *list;
1da177e4 2572
1da177e4 2573 local_irq_save(flags);
479f854a
MG
2574 do {
2575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2576 list = &pcp->lists[migratetype];
2577 if (list_empty(list)) {
2578 pcp->count += rmqueue_bulk(zone, 0,
2579 pcp->batch, list,
2580 migratetype, cold);
2581 if (unlikely(list_empty(list)))
2582 goto failed;
2583 }
b92a6edd 2584
479f854a
MG
2585 if (cold)
2586 page = list_last_entry(list, struct page, lru);
2587 else
2588 page = list_first_entry(list, struct page, lru);
5f8dcc21 2589
83b9355b
VB
2590 list_del(&page->lru);
2591 pcp->count--;
2592
2593 } while (check_new_pcp(page));
7fb1d9fc 2594 } else {
0f352e53
MH
2595 /*
2596 * We most definitely don't want callers attempting to
2597 * allocate greater than order-1 page units with __GFP_NOFAIL.
2598 */
2599 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2600 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2601
479f854a
MG
2602 do {
2603 page = NULL;
2604 if (alloc_flags & ALLOC_HARDER) {
2605 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2606 if (page)
2607 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2608 }
2609 if (!page)
2610 page = __rmqueue(zone, order, migratetype);
2611 } while (page && check_new_pages(page, order));
a74609fa
NP
2612 spin_unlock(&zone->lock);
2613 if (!page)
2614 goto failed;
d1ce749a 2615 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2616 get_pcppage_migratetype(page));
1da177e4
LT
2617 }
2618
16709d1d 2619 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2620 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2621 local_irq_restore(flags);
1da177e4 2622
309381fe 2623 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2624 return page;
a74609fa
NP
2625
2626failed:
2627 local_irq_restore(flags);
a74609fa 2628 return NULL;
1da177e4
LT
2629}
2630
933e312e
AM
2631#ifdef CONFIG_FAIL_PAGE_ALLOC
2632
b2588c4b 2633static struct {
933e312e
AM
2634 struct fault_attr attr;
2635
621a5f7a 2636 bool ignore_gfp_highmem;
71baba4b 2637 bool ignore_gfp_reclaim;
54114994 2638 u32 min_order;
933e312e
AM
2639} fail_page_alloc = {
2640 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2641 .ignore_gfp_reclaim = true,
621a5f7a 2642 .ignore_gfp_highmem = true,
54114994 2643 .min_order = 1,
933e312e
AM
2644};
2645
2646static int __init setup_fail_page_alloc(char *str)
2647{
2648 return setup_fault_attr(&fail_page_alloc.attr, str);
2649}
2650__setup("fail_page_alloc=", setup_fail_page_alloc);
2651
deaf386e 2652static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2653{
54114994 2654 if (order < fail_page_alloc.min_order)
deaf386e 2655 return false;
933e312e 2656 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2657 return false;
933e312e 2658 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2659 return false;
71baba4b
MG
2660 if (fail_page_alloc.ignore_gfp_reclaim &&
2661 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2662 return false;
933e312e
AM
2663
2664 return should_fail(&fail_page_alloc.attr, 1 << order);
2665}
2666
2667#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2668
2669static int __init fail_page_alloc_debugfs(void)
2670{
f4ae40a6 2671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2672 struct dentry *dir;
933e312e 2673
dd48c085
AM
2674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2675 &fail_page_alloc.attr);
2676 if (IS_ERR(dir))
2677 return PTR_ERR(dir);
933e312e 2678
b2588c4b 2679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2680 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2681 goto fail;
2682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2683 &fail_page_alloc.ignore_gfp_highmem))
2684 goto fail;
2685 if (!debugfs_create_u32("min-order", mode, dir,
2686 &fail_page_alloc.min_order))
2687 goto fail;
2688
2689 return 0;
2690fail:
dd48c085 2691 debugfs_remove_recursive(dir);
933e312e 2692
b2588c4b 2693 return -ENOMEM;
933e312e
AM
2694}
2695
2696late_initcall(fail_page_alloc_debugfs);
2697
2698#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2699
2700#else /* CONFIG_FAIL_PAGE_ALLOC */
2701
deaf386e 2702static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2703{
deaf386e 2704 return false;
933e312e
AM
2705}
2706
2707#endif /* CONFIG_FAIL_PAGE_ALLOC */
2708
1da177e4 2709/*
97a16fc8
MG
2710 * Return true if free base pages are above 'mark'. For high-order checks it
2711 * will return true of the order-0 watermark is reached and there is at least
2712 * one free page of a suitable size. Checking now avoids taking the zone lock
2713 * to check in the allocation paths if no pages are free.
1da177e4 2714 */
86a294a8
MH
2715bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2716 int classzone_idx, unsigned int alloc_flags,
2717 long free_pages)
1da177e4 2718{
d23ad423 2719 long min = mark;
1da177e4 2720 int o;
c603844b 2721 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2722
0aaa29a5 2723 /* free_pages may go negative - that's OK */
df0a6daa 2724 free_pages -= (1 << order) - 1;
0aaa29a5 2725
7fb1d9fc 2726 if (alloc_flags & ALLOC_HIGH)
1da177e4 2727 min -= min / 2;
0aaa29a5
MG
2728
2729 /*
2730 * If the caller does not have rights to ALLOC_HARDER then subtract
2731 * the high-atomic reserves. This will over-estimate the size of the
2732 * atomic reserve but it avoids a search.
2733 */
97a16fc8 2734 if (likely(!alloc_harder))
0aaa29a5
MG
2735 free_pages -= z->nr_reserved_highatomic;
2736 else
1da177e4 2737 min -= min / 4;
e2b19197 2738
d95ea5d1
BZ
2739#ifdef CONFIG_CMA
2740 /* If allocation can't use CMA areas don't use free CMA pages */
2741 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2742 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2743#endif
026b0814 2744
97a16fc8
MG
2745 /*
2746 * Check watermarks for an order-0 allocation request. If these
2747 * are not met, then a high-order request also cannot go ahead
2748 * even if a suitable page happened to be free.
2749 */
2750 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2751 return false;
1da177e4 2752
97a16fc8
MG
2753 /* If this is an order-0 request then the watermark is fine */
2754 if (!order)
2755 return true;
2756
2757 /* For a high-order request, check at least one suitable page is free */
2758 for (o = order; o < MAX_ORDER; o++) {
2759 struct free_area *area = &z->free_area[o];
2760 int mt;
2761
2762 if (!area->nr_free)
2763 continue;
2764
2765 if (alloc_harder)
2766 return true;
1da177e4 2767
97a16fc8
MG
2768 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2769 if (!list_empty(&area->free_list[mt]))
2770 return true;
2771 }
2772
2773#ifdef CONFIG_CMA
2774 if ((alloc_flags & ALLOC_CMA) &&
2775 !list_empty(&area->free_list[MIGRATE_CMA])) {
2776 return true;
2777 }
2778#endif
1da177e4 2779 }
97a16fc8 2780 return false;
88f5acf8
MG
2781}
2782
7aeb09f9 2783bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2784 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2785{
2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 zone_page_state(z, NR_FREE_PAGES));
2788}
2789
48ee5f36
MG
2790static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2791 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2792{
2793 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794 long cma_pages = 0;
2795
2796#ifdef CONFIG_CMA
2797 /* If allocation can't use CMA areas don't use free CMA pages */
2798 if (!(alloc_flags & ALLOC_CMA))
2799 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2800#endif
2801
2802 /*
2803 * Fast check for order-0 only. If this fails then the reserves
2804 * need to be calculated. There is a corner case where the check
2805 * passes but only the high-order atomic reserve are free. If
2806 * the caller is !atomic then it'll uselessly search the free
2807 * list. That corner case is then slower but it is harmless.
2808 */
2809 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2810 return true;
2811
2812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2813 free_pages);
2814}
2815
7aeb09f9 2816bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2817 unsigned long mark, int classzone_idx)
88f5acf8
MG
2818{
2819 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2820
2821 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2822 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2823
e2b19197 2824 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2825 free_pages);
1da177e4
LT
2826}
2827
9276b1bc 2828#ifdef CONFIG_NUMA
957f822a
DR
2829static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2830{
5f7a75ac
MG
2831 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2832 RECLAIM_DISTANCE;
957f822a 2833}
9276b1bc 2834#else /* CONFIG_NUMA */
957f822a
DR
2835static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2836{
2837 return true;
2838}
9276b1bc
PJ
2839#endif /* CONFIG_NUMA */
2840
7fb1d9fc 2841/*
0798e519 2842 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2843 * a page.
2844 */
2845static struct page *
a9263751
VB
2846get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2847 const struct alloc_context *ac)
753ee728 2848{
c33d6c06 2849 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2850 struct zone *zone;
3b8c0be4
MG
2851 struct pglist_data *last_pgdat_dirty_limit = NULL;
2852
7fb1d9fc 2853 /*
9276b1bc 2854 * Scan zonelist, looking for a zone with enough free.
344736f2 2855 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2856 */
c33d6c06 2857 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2858 ac->nodemask) {
be06af00 2859 struct page *page;
e085dbc5
JW
2860 unsigned long mark;
2861
664eedde
MG
2862 if (cpusets_enabled() &&
2863 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2864 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2865 continue;
a756cf59
JW
2866 /*
2867 * When allocating a page cache page for writing, we
281e3726
MG
2868 * want to get it from a node that is within its dirty
2869 * limit, such that no single node holds more than its
a756cf59 2870 * proportional share of globally allowed dirty pages.
281e3726 2871 * The dirty limits take into account the node's
a756cf59
JW
2872 * lowmem reserves and high watermark so that kswapd
2873 * should be able to balance it without having to
2874 * write pages from its LRU list.
2875 *
a756cf59 2876 * XXX: For now, allow allocations to potentially
281e3726 2877 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2878 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2879 * which is important when on a NUMA setup the allowed
281e3726 2880 * nodes are together not big enough to reach the
a756cf59 2881 * global limit. The proper fix for these situations
281e3726 2882 * will require awareness of nodes in the
a756cf59
JW
2883 * dirty-throttling and the flusher threads.
2884 */
3b8c0be4
MG
2885 if (ac->spread_dirty_pages) {
2886 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2887 continue;
2888
2889 if (!node_dirty_ok(zone->zone_pgdat)) {
2890 last_pgdat_dirty_limit = zone->zone_pgdat;
2891 continue;
2892 }
2893 }
7fb1d9fc 2894
e085dbc5 2895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2896 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2897 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2898 int ret;
2899
5dab2911
MG
2900 /* Checked here to keep the fast path fast */
2901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2902 if (alloc_flags & ALLOC_NO_WATERMARKS)
2903 goto try_this_zone;
2904
a5f5f91d 2905 if (node_reclaim_mode == 0 ||
c33d6c06 2906 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2907 continue;
2908
a5f5f91d 2909 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2910 switch (ret) {
a5f5f91d 2911 case NODE_RECLAIM_NOSCAN:
fa5e084e 2912 /* did not scan */
cd38b115 2913 continue;
a5f5f91d 2914 case NODE_RECLAIM_FULL:
fa5e084e 2915 /* scanned but unreclaimable */
cd38b115 2916 continue;
fa5e084e
MG
2917 default:
2918 /* did we reclaim enough */
fed2719e 2919 if (zone_watermark_ok(zone, order, mark,
93ea9964 2920 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2921 goto try_this_zone;
2922
fed2719e 2923 continue;
0798e519 2924 }
7fb1d9fc
RS
2925 }
2926
fa5e084e 2927try_this_zone:
c33d6c06 2928 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2929 gfp_mask, alloc_flags, ac->migratetype);
75379191 2930 if (page) {
479f854a 2931 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2932
2933 /*
2934 * If this is a high-order atomic allocation then check
2935 * if the pageblock should be reserved for the future
2936 */
2937 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2938 reserve_highatomic_pageblock(page, zone, order);
2939
75379191
VB
2940 return page;
2941 }
54a6eb5c 2942 }
9276b1bc 2943
4ffeaf35 2944 return NULL;
753ee728
MH
2945}
2946
29423e77
DR
2947/*
2948 * Large machines with many possible nodes should not always dump per-node
2949 * meminfo in irq context.
2950 */
2951static inline bool should_suppress_show_mem(void)
2952{
2953 bool ret = false;
2954
2955#if NODES_SHIFT > 8
2956 ret = in_interrupt();
2957#endif
2958 return ret;
2959}
2960
a238ab5b
DH
2961static DEFINE_RATELIMIT_STATE(nopage_rs,
2962 DEFAULT_RATELIMIT_INTERVAL,
2963 DEFAULT_RATELIMIT_BURST);
2964
d00181b9 2965void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2966{
a238ab5b
DH
2967 unsigned int filter = SHOW_MEM_FILTER_NODES;
2968
c0a32fc5
SG
2969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2970 debug_guardpage_minorder() > 0)
a238ab5b
DH
2971 return;
2972
2973 /*
2974 * This documents exceptions given to allocations in certain
2975 * contexts that are allowed to allocate outside current's set
2976 * of allowed nodes.
2977 */
2978 if (!(gfp_mask & __GFP_NOMEMALLOC))
2979 if (test_thread_flag(TIF_MEMDIE) ||
2980 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2981 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2982 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2983 filter &= ~SHOW_MEM_FILTER_NODES;
2984
2985 if (fmt) {
3ee9a4f0
JP
2986 struct va_format vaf;
2987 va_list args;
2988
a238ab5b 2989 va_start(args, fmt);
3ee9a4f0
JP
2990
2991 vaf.fmt = fmt;
2992 vaf.va = &args;
2993
2994 pr_warn("%pV", &vaf);
2995
a238ab5b
DH
2996 va_end(args);
2997 }
2998
c5c990e8
VB
2999 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3000 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3001 dump_stack();
3002 if (!should_suppress_show_mem())
3003 show_mem(filter);
3004}
3005
11e33f6a
MG
3006static inline struct page *
3007__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3008 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3009{
6e0fc46d
DR
3010 struct oom_control oc = {
3011 .zonelist = ac->zonelist,
3012 .nodemask = ac->nodemask,
2a966b77 3013 .memcg = NULL,
6e0fc46d
DR
3014 .gfp_mask = gfp_mask,
3015 .order = order,
6e0fc46d 3016 };
11e33f6a
MG
3017 struct page *page;
3018
9879de73
JW
3019 *did_some_progress = 0;
3020
9879de73 3021 /*
dc56401f
JW
3022 * Acquire the oom lock. If that fails, somebody else is
3023 * making progress for us.
9879de73 3024 */
dc56401f 3025 if (!mutex_trylock(&oom_lock)) {
9879de73 3026 *did_some_progress = 1;
11e33f6a 3027 schedule_timeout_uninterruptible(1);
1da177e4
LT
3028 return NULL;
3029 }
6b1de916 3030
11e33f6a
MG
3031 /*
3032 * Go through the zonelist yet one more time, keep very high watermark
3033 * here, this is only to catch a parallel oom killing, we must fail if
3034 * we're still under heavy pressure.
3035 */
a9263751
VB
3036 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3037 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3038 if (page)
11e33f6a
MG
3039 goto out;
3040
4365a567 3041 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3042 /* Coredumps can quickly deplete all memory reserves */
3043 if (current->flags & PF_DUMPCORE)
3044 goto out;
4365a567
KH
3045 /* The OOM killer will not help higher order allocs */
3046 if (order > PAGE_ALLOC_COSTLY_ORDER)
3047 goto out;
03668b3c 3048 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3049 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3050 goto out;
9083905a
JW
3051 if (pm_suspended_storage())
3052 goto out;
3da88fb3
MH
3053 /*
3054 * XXX: GFP_NOFS allocations should rather fail than rely on
3055 * other request to make a forward progress.
3056 * We are in an unfortunate situation where out_of_memory cannot
3057 * do much for this context but let's try it to at least get
3058 * access to memory reserved if the current task is killed (see
3059 * out_of_memory). Once filesystems are ready to handle allocation
3060 * failures more gracefully we should just bail out here.
3061 */
3062
4167e9b2 3063 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3064 if (gfp_mask & __GFP_THISNODE)
3065 goto out;
3066 }
11e33f6a 3067 /* Exhausted what can be done so it's blamo time */
5020e285 3068 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3069 *did_some_progress = 1;
5020e285
MH
3070
3071 if (gfp_mask & __GFP_NOFAIL) {
3072 page = get_page_from_freelist(gfp_mask, order,
3073 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3074 /*
3075 * fallback to ignore cpuset restriction if our nodes
3076 * are depleted
3077 */
3078 if (!page)
3079 page = get_page_from_freelist(gfp_mask, order,
3080 ALLOC_NO_WATERMARKS, ac);
3081 }
3082 }
11e33f6a 3083out:
dc56401f 3084 mutex_unlock(&oom_lock);
11e33f6a
MG
3085 return page;
3086}
3087
33c2d214
MH
3088
3089/*
3090 * Maximum number of compaction retries wit a progress before OOM
3091 * killer is consider as the only way to move forward.
3092 */
3093#define MAX_COMPACT_RETRIES 16
3094
56de7263
MG
3095#ifdef CONFIG_COMPACTION
3096/* Try memory compaction for high-order allocations before reclaim */
3097static struct page *
3098__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3099 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3100 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3101{
98dd3b48 3102 struct page *page;
c5d01d0d 3103 int contended_compaction;
53853e2d
VB
3104
3105 if (!order)
66199712 3106 return NULL;
66199712 3107
c06b1fca 3108 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3109 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3110 mode, &contended_compaction);
c06b1fca 3111 current->flags &= ~PF_MEMALLOC;
56de7263 3112
c5d01d0d 3113 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3114 return NULL;
53853e2d 3115
98dd3b48
VB
3116 /*
3117 * At least in one zone compaction wasn't deferred or skipped, so let's
3118 * count a compaction stall
3119 */
3120 count_vm_event(COMPACTSTALL);
8fb74b9f 3121
31a6c190 3122 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3123
98dd3b48
VB
3124 if (page) {
3125 struct zone *zone = page_zone(page);
53853e2d 3126
98dd3b48
VB
3127 zone->compact_blockskip_flush = false;
3128 compaction_defer_reset(zone, order, true);
3129 count_vm_event(COMPACTSUCCESS);
3130 return page;
3131 }
56de7263 3132
98dd3b48
VB
3133 /*
3134 * It's bad if compaction run occurs and fails. The most likely reason
3135 * is that pages exist, but not enough to satisfy watermarks.
3136 */
3137 count_vm_event(COMPACTFAIL);
66199712 3138
c5d01d0d
MH
3139 /*
3140 * In all zones where compaction was attempted (and not
3141 * deferred or skipped), lock contention has been detected.
3142 * For THP allocation we do not want to disrupt the others
3143 * so we fallback to base pages instead.
3144 */
3145 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3146 *compact_result = COMPACT_CONTENDED;
3147
3148 /*
3149 * If compaction was aborted due to need_resched(), we do not
3150 * want to further increase allocation latency, unless it is
3151 * khugepaged trying to collapse.
3152 */
3153 if (contended_compaction == COMPACT_CONTENDED_SCHED
3154 && !(current->flags & PF_KTHREAD))
3155 *compact_result = COMPACT_CONTENDED;
3156
98dd3b48 3157 cond_resched();
56de7263
MG
3158
3159 return NULL;
3160}
33c2d214
MH
3161
3162static inline bool
86a294a8
MH
3163should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3164 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3165 int compaction_retries)
3166{
7854ea6c
MH
3167 int max_retries = MAX_COMPACT_RETRIES;
3168
33c2d214
MH
3169 if (!order)
3170 return false;
3171
3172 /*
3173 * compaction considers all the zone as desperately out of memory
3174 * so it doesn't really make much sense to retry except when the
3175 * failure could be caused by weak migration mode.
3176 */
3177 if (compaction_failed(compact_result)) {
3178 if (*migrate_mode == MIGRATE_ASYNC) {
3179 *migrate_mode = MIGRATE_SYNC_LIGHT;
3180 return true;
3181 }
3182 return false;
3183 }
3184
3185 /*
7854ea6c
MH
3186 * make sure the compaction wasn't deferred or didn't bail out early
3187 * due to locks contention before we declare that we should give up.
86a294a8
MH
3188 * But do not retry if the given zonelist is not suitable for
3189 * compaction.
33c2d214 3190 */
7854ea6c 3191 if (compaction_withdrawn(compact_result))
86a294a8 3192 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3193
3194 /*
3195 * !costly requests are much more important than __GFP_REPEAT
3196 * costly ones because they are de facto nofail and invoke OOM
3197 * killer to move on while costly can fail and users are ready
3198 * to cope with that. 1/4 retries is rather arbitrary but we
3199 * would need much more detailed feedback from compaction to
3200 * make a better decision.
3201 */
3202 if (order > PAGE_ALLOC_COSTLY_ORDER)
3203 max_retries /= 4;
3204 if (compaction_retries <= max_retries)
3205 return true;
33c2d214
MH
3206
3207 return false;
3208}
56de7263
MG
3209#else
3210static inline struct page *
3211__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3212 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3213 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3214{
33c2d214 3215 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3216 return NULL;
3217}
33c2d214
MH
3218
3219static inline bool
86a294a8
MH
3220should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3221 enum compact_result compact_result,
33c2d214
MH
3222 enum migrate_mode *migrate_mode,
3223 int compaction_retries)
3224{
31e49bfd
MH
3225 struct zone *zone;
3226 struct zoneref *z;
3227
3228 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3229 return false;
3230
3231 /*
3232 * There are setups with compaction disabled which would prefer to loop
3233 * inside the allocator rather than hit the oom killer prematurely.
3234 * Let's give them a good hope and keep retrying while the order-0
3235 * watermarks are OK.
3236 */
3237 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3238 ac->nodemask) {
3239 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3240 ac_classzone_idx(ac), alloc_flags))
3241 return true;
3242 }
33c2d214
MH
3243 return false;
3244}
56de7263
MG
3245#endif /* CONFIG_COMPACTION */
3246
bba90710
MS
3247/* Perform direct synchronous page reclaim */
3248static int
a9263751
VB
3249__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3250 const struct alloc_context *ac)
11e33f6a 3251{
11e33f6a 3252 struct reclaim_state reclaim_state;
bba90710 3253 int progress;
11e33f6a
MG
3254
3255 cond_resched();
3256
3257 /* We now go into synchronous reclaim */
3258 cpuset_memory_pressure_bump();
c06b1fca 3259 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3260 lockdep_set_current_reclaim_state(gfp_mask);
3261 reclaim_state.reclaimed_slab = 0;
c06b1fca 3262 current->reclaim_state = &reclaim_state;
11e33f6a 3263
a9263751
VB
3264 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3265 ac->nodemask);
11e33f6a 3266
c06b1fca 3267 current->reclaim_state = NULL;
11e33f6a 3268 lockdep_clear_current_reclaim_state();
c06b1fca 3269 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3270
3271 cond_resched();
3272
bba90710
MS
3273 return progress;
3274}
3275
3276/* The really slow allocator path where we enter direct reclaim */
3277static inline struct page *
3278__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3279 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3280 unsigned long *did_some_progress)
bba90710
MS
3281{
3282 struct page *page = NULL;
3283 bool drained = false;
3284
a9263751 3285 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3286 if (unlikely(!(*did_some_progress)))
3287 return NULL;
11e33f6a 3288
9ee493ce 3289retry:
31a6c190 3290 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3291
3292 /*
3293 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3294 * pages are pinned on the per-cpu lists or in high alloc reserves.
3295 * Shrink them them and try again
9ee493ce
MG
3296 */
3297 if (!page && !drained) {
0aaa29a5 3298 unreserve_highatomic_pageblock(ac);
93481ff0 3299 drain_all_pages(NULL);
9ee493ce
MG
3300 drained = true;
3301 goto retry;
3302 }
3303
11e33f6a
MG
3304 return page;
3305}
3306
a9263751 3307static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3308{
3309 struct zoneref *z;
3310 struct zone *zone;
e1a55637 3311 pg_data_t *last_pgdat = NULL;
3a025760 3312
a9263751 3313 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3314 ac->high_zoneidx, ac->nodemask) {
3315 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3316 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3317 last_pgdat = zone->zone_pgdat;
3318 }
3a025760
JW
3319}
3320
c603844b 3321static inline unsigned int
341ce06f
PZ
3322gfp_to_alloc_flags(gfp_t gfp_mask)
3323{
c603844b 3324 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3325
a56f57ff 3326 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3327 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3328
341ce06f
PZ
3329 /*
3330 * The caller may dip into page reserves a bit more if the caller
3331 * cannot run direct reclaim, or if the caller has realtime scheduling
3332 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3333 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3334 */
e6223a3b 3335 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3336
d0164adc 3337 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3338 /*
b104a35d
DR
3339 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3340 * if it can't schedule.
5c3240d9 3341 */
b104a35d 3342 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3343 alloc_flags |= ALLOC_HARDER;
523b9458 3344 /*
b104a35d 3345 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3346 * comment for __cpuset_node_allowed().
523b9458 3347 */
341ce06f 3348 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3349 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3350 alloc_flags |= ALLOC_HARDER;
3351
d95ea5d1 3352#ifdef CONFIG_CMA
43e7a34d 3353 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3354 alloc_flags |= ALLOC_CMA;
3355#endif
341ce06f
PZ
3356 return alloc_flags;
3357}
3358
072bb0aa
MG
3359bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3360{
31a6c190
VB
3361 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3362 return false;
3363
3364 if (gfp_mask & __GFP_MEMALLOC)
3365 return true;
3366 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3367 return true;
3368 if (!in_interrupt() &&
3369 ((current->flags & PF_MEMALLOC) ||
3370 unlikely(test_thread_flag(TIF_MEMDIE))))
3371 return true;
3372
3373 return false;
072bb0aa
MG
3374}
3375
d0164adc
MG
3376static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3377{
3378 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3379}
3380
0a0337e0
MH
3381/*
3382 * Maximum number of reclaim retries without any progress before OOM killer
3383 * is consider as the only way to move forward.
3384 */
3385#define MAX_RECLAIM_RETRIES 16
3386
3387/*
3388 * Checks whether it makes sense to retry the reclaim to make a forward progress
3389 * for the given allocation request.
3390 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3391 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3392 * any progress in a row) is considered as well as the reclaimable pages on the
3393 * applicable zone list (with a backoff mechanism which is a function of
3394 * no_progress_loops).
0a0337e0
MH
3395 *
3396 * Returns true if a retry is viable or false to enter the oom path.
3397 */
3398static inline bool
3399should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3400 struct alloc_context *ac, int alloc_flags,
7854ea6c 3401 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3402{
3403 struct zone *zone;
3404 struct zoneref *z;
3405
3406 /*
3407 * Make sure we converge to OOM if we cannot make any progress
3408 * several times in the row.
3409 */
3410 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3411 return false;
3412
bca67592
MG
3413 /*
3414 * Keep reclaiming pages while there is a chance this will lead
3415 * somewhere. If none of the target zones can satisfy our allocation
3416 * request even if all reclaimable pages are considered then we are
3417 * screwed and have to go OOM.
0a0337e0
MH
3418 */
3419 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3420 ac->nodemask) {
3421 unsigned long available;
ede37713 3422 unsigned long reclaimable;
0a0337e0 3423
5a1c84b4 3424 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3425 available -= DIV_ROUND_UP(no_progress_loops * available,
3426 MAX_RECLAIM_RETRIES);
5a1c84b4 3427 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3428
3429 /*
3430 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3431 * available?
0a0337e0 3432 */
5a1c84b4
MG
3433 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3434 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3435 /*
3436 * If we didn't make any progress and have a lot of
3437 * dirty + writeback pages then we should wait for
3438 * an IO to complete to slow down the reclaim and
3439 * prevent from pre mature OOM
3440 */
3441 if (!did_some_progress) {
11fb9989 3442 unsigned long write_pending;
ede37713 3443
5a1c84b4
MG
3444 write_pending = zone_page_state_snapshot(zone,
3445 NR_ZONE_WRITE_PENDING);
ede37713 3446
11fb9989 3447 if (2 * write_pending > reclaimable) {
ede37713
MH
3448 congestion_wait(BLK_RW_ASYNC, HZ/10);
3449 return true;
3450 }
3451 }
5a1c84b4 3452
ede37713
MH
3453 /*
3454 * Memory allocation/reclaim might be called from a WQ
3455 * context and the current implementation of the WQ
3456 * concurrency control doesn't recognize that
3457 * a particular WQ is congested if the worker thread is
3458 * looping without ever sleeping. Therefore we have to
3459 * do a short sleep here rather than calling
3460 * cond_resched().
3461 */
3462 if (current->flags & PF_WQ_WORKER)
3463 schedule_timeout_uninterruptible(1);
3464 else
3465 cond_resched();
3466
0a0337e0
MH
3467 return true;
3468 }
3469 }
3470
3471 return false;
3472}
3473
11e33f6a
MG
3474static inline struct page *
3475__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3476 struct alloc_context *ac)
11e33f6a 3477{
d0164adc 3478 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3479 struct page *page = NULL;
c603844b 3480 unsigned int alloc_flags;
11e33f6a 3481 unsigned long did_some_progress;
a8161d1e 3482 enum migrate_mode migration_mode = MIGRATE_SYNC_LIGHT;
c5d01d0d 3483 enum compact_result compact_result;
33c2d214 3484 int compaction_retries = 0;
0a0337e0 3485 int no_progress_loops = 0;
1da177e4 3486
72807a74
MG
3487 /*
3488 * In the slowpath, we sanity check order to avoid ever trying to
3489 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3490 * be using allocators in order of preference for an area that is
3491 * too large.
3492 */
1fc28b70
MG
3493 if (order >= MAX_ORDER) {
3494 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3495 return NULL;
1fc28b70 3496 }
1da177e4 3497
d0164adc
MG
3498 /*
3499 * We also sanity check to catch abuse of atomic reserves being used by
3500 * callers that are not in atomic context.
3501 */
3502 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3503 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3504 gfp_mask &= ~__GFP_ATOMIC;
3505
9bf2229f 3506 /*
31a6c190
VB
3507 * The fast path uses conservative alloc_flags to succeed only until
3508 * kswapd needs to be woken up, and to avoid the cost of setting up
3509 * alloc_flags precisely. So we do that now.
9bf2229f 3510 */
341ce06f 3511 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3512
23771235
VB
3513 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3514 wake_all_kswapds(order, ac);
3515
3516 /*
3517 * The adjusted alloc_flags might result in immediate success, so try
3518 * that first
3519 */
3520 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3521 if (page)
3522 goto got_pg;
3523
a8161d1e
VB
3524 /*
3525 * For costly allocations, try direct compaction first, as it's likely
3526 * that we have enough base pages and don't need to reclaim. Don't try
3527 * that for allocations that are allowed to ignore watermarks, as the
3528 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3529 */
3530 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3531 !gfp_pfmemalloc_allowed(gfp_mask)) {
3532 page = __alloc_pages_direct_compact(gfp_mask, order,
3533 alloc_flags, ac,
3534 MIGRATE_ASYNC,
3535 &compact_result);
3536 if (page)
3537 goto got_pg;
3538
3539 /* Checks for THP-specific high-order allocations */
3540 if (is_thp_gfp_mask(gfp_mask)) {
3541 /*
3542 * If compaction is deferred for high-order allocations,
3543 * it is because sync compaction recently failed. If
3544 * this is the case and the caller requested a THP
3545 * allocation, we do not want to heavily disrupt the
3546 * system, so we fail the allocation instead of entering
3547 * direct reclaim.
3548 */
3549 if (compact_result == COMPACT_DEFERRED)
3550 goto nopage;
3551
3552 /*
3553 * Compaction is contended so rather back off than cause
3554 * excessive stalls.
3555 */
3556 if (compact_result == COMPACT_CONTENDED)
3557 goto nopage;
3558
3559 /*
3560 * It can become very expensive to allocate transparent
3561 * hugepages at fault, so use asynchronous memory
3562 * compaction for THP unless it is khugepaged trying to
3563 * collapse. All other requests should tolerate at
3564 * least light sync migration.
3565 */
3566 if (!(current->flags & PF_KTHREAD))
3567 migration_mode = MIGRATE_ASYNC;
3568 }
3569 }
23771235 3570
31a6c190 3571retry:
23771235 3572 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3573 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3574 wake_all_kswapds(order, ac);
3575
23771235
VB
3576 if (gfp_pfmemalloc_allowed(gfp_mask))
3577 alloc_flags = ALLOC_NO_WATERMARKS;
3578
e46e7b77
MG
3579 /*
3580 * Reset the zonelist iterators if memory policies can be ignored.
3581 * These allocations are high priority and system rather than user
3582 * orientated.
3583 */
23771235 3584 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3585 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3586 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3587 ac->high_zoneidx, ac->nodemask);
3588 }
3589
23771235 3590 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3591 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3592 if (page)
3593 goto got_pg;
1da177e4 3594
d0164adc
MG
3595 /* Caller is not willing to reclaim, we can't balance anything */
3596 if (!can_direct_reclaim) {
aed0a0e3 3597 /*
33d53103
MH
3598 * All existing users of the __GFP_NOFAIL are blockable, so warn
3599 * of any new users that actually allow this type of allocation
3600 * to fail.
aed0a0e3
DR
3601 */
3602 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3603 goto nopage;
aed0a0e3 3604 }
1da177e4 3605
341ce06f 3606 /* Avoid recursion of direct reclaim */
33d53103
MH
3607 if (current->flags & PF_MEMALLOC) {
3608 /*
3609 * __GFP_NOFAIL request from this context is rather bizarre
3610 * because we cannot reclaim anything and only can loop waiting
3611 * for somebody to do a work for us.
3612 */
3613 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3614 cond_resched();
3615 goto retry;
3616 }
341ce06f 3617 goto nopage;
33d53103 3618 }
341ce06f 3619
6583bb64
DR
3620 /* Avoid allocations with no watermarks from looping endlessly */
3621 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3622 goto nopage;
3623
a8161d1e
VB
3624
3625 /* Try direct reclaim and then allocating */
3626 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3627 &did_some_progress);
3628 if (page)
3629 goto got_pg;
3630
3631 /* Try direct compaction and then allocating */
a9263751
VB
3632 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3633 migration_mode,
c5d01d0d 3634 &compact_result);
56de7263
MG
3635 if (page)
3636 goto got_pg;
75f30861 3637
33c2d214
MH
3638 if (order && compaction_made_progress(compact_result))
3639 compaction_retries++;
8fe78048 3640
9083905a
JW
3641 /* Do not loop if specifically requested */
3642 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3643 goto nopage;
9083905a 3644
0a0337e0
MH
3645 /*
3646 * Do not retry costly high order allocations unless they are
3647 * __GFP_REPEAT
3648 */
3649 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3650 goto nopage;
0a0337e0 3651
7854ea6c
MH
3652 /*
3653 * Costly allocations might have made a progress but this doesn't mean
3654 * their order will become available due to high fragmentation so
3655 * always increment the no progress counter for them
3656 */
3657 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3658 no_progress_loops = 0;
7854ea6c 3659 else
0a0337e0 3660 no_progress_loops++;
1da177e4 3661
0a0337e0 3662 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3663 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3664 goto retry;
3665
33c2d214
MH
3666 /*
3667 * It doesn't make any sense to retry for the compaction if the order-0
3668 * reclaim is not able to make any progress because the current
3669 * implementation of the compaction depends on the sufficient amount
3670 * of free memory (see __compaction_suitable)
3671 */
3672 if (did_some_progress > 0 &&
86a294a8
MH
3673 should_compact_retry(ac, order, alloc_flags,
3674 compact_result, &migration_mode,
3675 compaction_retries))
33c2d214
MH
3676 goto retry;
3677
9083905a
JW
3678 /* Reclaim has failed us, start killing things */
3679 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3680 if (page)
3681 goto got_pg;
3682
3683 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3684 if (did_some_progress) {
3685 no_progress_loops = 0;
9083905a 3686 goto retry;
0a0337e0 3687 }
9083905a 3688
1da177e4 3689nopage:
a238ab5b 3690 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3691got_pg:
072bb0aa 3692 return page;
1da177e4 3693}
11e33f6a
MG
3694
3695/*
3696 * This is the 'heart' of the zoned buddy allocator.
3697 */
3698struct page *
3699__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3700 struct zonelist *zonelist, nodemask_t *nodemask)
3701{
5bb1b169 3702 struct page *page;
cc9a6c87 3703 unsigned int cpuset_mems_cookie;
e6cbd7f2 3704 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3705 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3706 struct alloc_context ac = {
3707 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3708 .zonelist = zonelist,
a9263751
VB
3709 .nodemask = nodemask,
3710 .migratetype = gfpflags_to_migratetype(gfp_mask),
3711 };
11e33f6a 3712
682a3385 3713 if (cpusets_enabled()) {
83d4ca81 3714 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3715 alloc_flags |= ALLOC_CPUSET;
3716 if (!ac.nodemask)
3717 ac.nodemask = &cpuset_current_mems_allowed;
3718 }
3719
dcce284a
BH
3720 gfp_mask &= gfp_allowed_mask;
3721
11e33f6a
MG
3722 lockdep_trace_alloc(gfp_mask);
3723
d0164adc 3724 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3725
3726 if (should_fail_alloc_page(gfp_mask, order))
3727 return NULL;
3728
3729 /*
3730 * Check the zones suitable for the gfp_mask contain at least one
3731 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3732 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3733 */
3734 if (unlikely(!zonelist->_zonerefs->zone))
3735 return NULL;
3736
a9263751 3737 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3738 alloc_flags |= ALLOC_CMA;
3739
cc9a6c87 3740retry_cpuset:
d26914d1 3741 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3742
c9ab0c4f
MG
3743 /* Dirty zone balancing only done in the fast path */
3744 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3745
e46e7b77
MG
3746 /*
3747 * The preferred zone is used for statistics but crucially it is
3748 * also used as the starting point for the zonelist iterator. It
3749 * may get reset for allocations that ignore memory policies.
3750 */
c33d6c06
MG
3751 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3752 ac.high_zoneidx, ac.nodemask);
3753 if (!ac.preferred_zoneref) {
5bb1b169 3754 page = NULL;
4fcb0971 3755 goto no_zone;
5bb1b169
MG
3756 }
3757
5117f45d 3758 /* First allocation attempt */
a9263751 3759 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3760 if (likely(page))
3761 goto out;
11e33f6a 3762
4fcb0971
MG
3763 /*
3764 * Runtime PM, block IO and its error handling path can deadlock
3765 * because I/O on the device might not complete.
3766 */
3767 alloc_mask = memalloc_noio_flags(gfp_mask);
3768 ac.spread_dirty_pages = false;
23f086f9 3769
4741526b
MG
3770 /*
3771 * Restore the original nodemask if it was potentially replaced with
3772 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3773 */
3774 if (cpusets_enabled())
3775 ac.nodemask = nodemask;
4fcb0971 3776 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3777
4fcb0971 3778no_zone:
cc9a6c87
MG
3779 /*
3780 * When updating a task's mems_allowed, it is possible to race with
3781 * parallel threads in such a way that an allocation can fail while
3782 * the mask is being updated. If a page allocation is about to fail,
3783 * check if the cpuset changed during allocation and if so, retry.
3784 */
83d4ca81
MG
3785 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3786 alloc_mask = gfp_mask;
cc9a6c87 3787 goto retry_cpuset;
83d4ca81 3788 }
cc9a6c87 3789
4fcb0971 3790out:
4949148a
VD
3791 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3792 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3793 __free_pages(page, order);
3794 page = NULL;
3795 } else
3796 __SetPageKmemcg(page);
3797 }
3798
4fcb0971
MG
3799 if (kmemcheck_enabled && page)
3800 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3801
3802 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3803
11e33f6a 3804 return page;
1da177e4 3805}
d239171e 3806EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3807
3808/*
3809 * Common helper functions.
3810 */
920c7a5d 3811unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3812{
945a1113
AM
3813 struct page *page;
3814
3815 /*
3816 * __get_free_pages() returns a 32-bit address, which cannot represent
3817 * a highmem page
3818 */
3819 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3820
1da177e4
LT
3821 page = alloc_pages(gfp_mask, order);
3822 if (!page)
3823 return 0;
3824 return (unsigned long) page_address(page);
3825}
1da177e4
LT
3826EXPORT_SYMBOL(__get_free_pages);
3827
920c7a5d 3828unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3829{
945a1113 3830 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3831}
1da177e4
LT
3832EXPORT_SYMBOL(get_zeroed_page);
3833
920c7a5d 3834void __free_pages(struct page *page, unsigned int order)
1da177e4 3835{
b5810039 3836 if (put_page_testzero(page)) {
1da177e4 3837 if (order == 0)
b745bc85 3838 free_hot_cold_page(page, false);
1da177e4
LT
3839 else
3840 __free_pages_ok(page, order);
3841 }
3842}
3843
3844EXPORT_SYMBOL(__free_pages);
3845
920c7a5d 3846void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3847{
3848 if (addr != 0) {
725d704e 3849 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3850 __free_pages(virt_to_page((void *)addr), order);
3851 }
3852}
3853
3854EXPORT_SYMBOL(free_pages);
3855
b63ae8ca
AD
3856/*
3857 * Page Fragment:
3858 * An arbitrary-length arbitrary-offset area of memory which resides
3859 * within a 0 or higher order page. Multiple fragments within that page
3860 * are individually refcounted, in the page's reference counter.
3861 *
3862 * The page_frag functions below provide a simple allocation framework for
3863 * page fragments. This is used by the network stack and network device
3864 * drivers to provide a backing region of memory for use as either an
3865 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3866 */
3867static struct page *__page_frag_refill(struct page_frag_cache *nc,
3868 gfp_t gfp_mask)
3869{
3870 struct page *page = NULL;
3871 gfp_t gfp = gfp_mask;
3872
3873#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3874 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3875 __GFP_NOMEMALLOC;
3876 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3877 PAGE_FRAG_CACHE_MAX_ORDER);
3878 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3879#endif
3880 if (unlikely(!page))
3881 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3882
3883 nc->va = page ? page_address(page) : NULL;
3884
3885 return page;
3886}
3887
3888void *__alloc_page_frag(struct page_frag_cache *nc,
3889 unsigned int fragsz, gfp_t gfp_mask)
3890{
3891 unsigned int size = PAGE_SIZE;
3892 struct page *page;
3893 int offset;
3894
3895 if (unlikely(!nc->va)) {
3896refill:
3897 page = __page_frag_refill(nc, gfp_mask);
3898 if (!page)
3899 return NULL;
3900
3901#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3902 /* if size can vary use size else just use PAGE_SIZE */
3903 size = nc->size;
3904#endif
3905 /* Even if we own the page, we do not use atomic_set().
3906 * This would break get_page_unless_zero() users.
3907 */
fe896d18 3908 page_ref_add(page, size - 1);
b63ae8ca
AD
3909
3910 /* reset page count bias and offset to start of new frag */
2f064f34 3911 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3912 nc->pagecnt_bias = size;
3913 nc->offset = size;
3914 }
3915
3916 offset = nc->offset - fragsz;
3917 if (unlikely(offset < 0)) {
3918 page = virt_to_page(nc->va);
3919
fe896d18 3920 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3921 goto refill;
3922
3923#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3924 /* if size can vary use size else just use PAGE_SIZE */
3925 size = nc->size;
3926#endif
3927 /* OK, page count is 0, we can safely set it */
fe896d18 3928 set_page_count(page, size);
b63ae8ca
AD
3929
3930 /* reset page count bias and offset to start of new frag */
3931 nc->pagecnt_bias = size;
3932 offset = size - fragsz;
3933 }
3934
3935 nc->pagecnt_bias--;
3936 nc->offset = offset;
3937
3938 return nc->va + offset;
3939}
3940EXPORT_SYMBOL(__alloc_page_frag);
3941
3942/*
3943 * Frees a page fragment allocated out of either a compound or order 0 page.
3944 */
3945void __free_page_frag(void *addr)
3946{
3947 struct page *page = virt_to_head_page(addr);
3948
3949 if (unlikely(put_page_testzero(page)))
3950 __free_pages_ok(page, compound_order(page));
3951}
3952EXPORT_SYMBOL(__free_page_frag);
3953
d00181b9
KS
3954static void *make_alloc_exact(unsigned long addr, unsigned int order,
3955 size_t size)
ee85c2e1
AK
3956{
3957 if (addr) {
3958 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3959 unsigned long used = addr + PAGE_ALIGN(size);
3960
3961 split_page(virt_to_page((void *)addr), order);
3962 while (used < alloc_end) {
3963 free_page(used);
3964 used += PAGE_SIZE;
3965 }
3966 }
3967 return (void *)addr;
3968}
3969
2be0ffe2
TT
3970/**
3971 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3972 * @size: the number of bytes to allocate
3973 * @gfp_mask: GFP flags for the allocation
3974 *
3975 * This function is similar to alloc_pages(), except that it allocates the
3976 * minimum number of pages to satisfy the request. alloc_pages() can only
3977 * allocate memory in power-of-two pages.
3978 *
3979 * This function is also limited by MAX_ORDER.
3980 *
3981 * Memory allocated by this function must be released by free_pages_exact().
3982 */
3983void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3984{
3985 unsigned int order = get_order(size);
3986 unsigned long addr;
3987
3988 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3989 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3990}
3991EXPORT_SYMBOL(alloc_pages_exact);
3992
ee85c2e1
AK
3993/**
3994 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3995 * pages on a node.
b5e6ab58 3996 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3997 * @size: the number of bytes to allocate
3998 * @gfp_mask: GFP flags for the allocation
3999 *
4000 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4001 * back.
ee85c2e1 4002 */
e1931811 4003void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4004{
d00181b9 4005 unsigned int order = get_order(size);
ee85c2e1
AK
4006 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4007 if (!p)
4008 return NULL;
4009 return make_alloc_exact((unsigned long)page_address(p), order, size);
4010}
ee85c2e1 4011
2be0ffe2
TT
4012/**
4013 * free_pages_exact - release memory allocated via alloc_pages_exact()
4014 * @virt: the value returned by alloc_pages_exact.
4015 * @size: size of allocation, same value as passed to alloc_pages_exact().
4016 *
4017 * Release the memory allocated by a previous call to alloc_pages_exact.
4018 */
4019void free_pages_exact(void *virt, size_t size)
4020{
4021 unsigned long addr = (unsigned long)virt;
4022 unsigned long end = addr + PAGE_ALIGN(size);
4023
4024 while (addr < end) {
4025 free_page(addr);
4026 addr += PAGE_SIZE;
4027 }
4028}
4029EXPORT_SYMBOL(free_pages_exact);
4030
e0fb5815
ZY
4031/**
4032 * nr_free_zone_pages - count number of pages beyond high watermark
4033 * @offset: The zone index of the highest zone
4034 *
4035 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4036 * high watermark within all zones at or below a given zone index. For each
4037 * zone, the number of pages is calculated as:
834405c3 4038 * managed_pages - high_pages
e0fb5815 4039 */
ebec3862 4040static unsigned long nr_free_zone_pages(int offset)
1da177e4 4041{
dd1a239f 4042 struct zoneref *z;
54a6eb5c
MG
4043 struct zone *zone;
4044
e310fd43 4045 /* Just pick one node, since fallback list is circular */
ebec3862 4046 unsigned long sum = 0;
1da177e4 4047
0e88460d 4048 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4049
54a6eb5c 4050 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4051 unsigned long size = zone->managed_pages;
41858966 4052 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4053 if (size > high)
4054 sum += size - high;
1da177e4
LT
4055 }
4056
4057 return sum;
4058}
4059
e0fb5815
ZY
4060/**
4061 * nr_free_buffer_pages - count number of pages beyond high watermark
4062 *
4063 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4064 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4065 */
ebec3862 4066unsigned long nr_free_buffer_pages(void)
1da177e4 4067{
af4ca457 4068 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4069}
c2f1a551 4070EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4071
e0fb5815
ZY
4072/**
4073 * nr_free_pagecache_pages - count number of pages beyond high watermark
4074 *
4075 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4076 * high watermark within all zones.
1da177e4 4077 */
ebec3862 4078unsigned long nr_free_pagecache_pages(void)
1da177e4 4079{
2a1e274a 4080 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4081}
08e0f6a9
CL
4082
4083static inline void show_node(struct zone *zone)
1da177e4 4084{
e5adfffc 4085 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4086 printk("Node %d ", zone_to_nid(zone));
1da177e4 4087}
1da177e4 4088
d02bd27b
IR
4089long si_mem_available(void)
4090{
4091 long available;
4092 unsigned long pagecache;
4093 unsigned long wmark_low = 0;
4094 unsigned long pages[NR_LRU_LISTS];
4095 struct zone *zone;
4096 int lru;
4097
4098 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4099 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4100
4101 for_each_zone(zone)
4102 wmark_low += zone->watermark[WMARK_LOW];
4103
4104 /*
4105 * Estimate the amount of memory available for userspace allocations,
4106 * without causing swapping.
4107 */
4108 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4109
4110 /*
4111 * Not all the page cache can be freed, otherwise the system will
4112 * start swapping. Assume at least half of the page cache, or the
4113 * low watermark worth of cache, needs to stay.
4114 */
4115 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4116 pagecache -= min(pagecache / 2, wmark_low);
4117 available += pagecache;
4118
4119 /*
4120 * Part of the reclaimable slab consists of items that are in use,
4121 * and cannot be freed. Cap this estimate at the low watermark.
4122 */
4123 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4124 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4125
4126 if (available < 0)
4127 available = 0;
4128 return available;
4129}
4130EXPORT_SYMBOL_GPL(si_mem_available);
4131
1da177e4
LT
4132void si_meminfo(struct sysinfo *val)
4133{
4134 val->totalram = totalram_pages;
11fb9989 4135 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4136 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4137 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4138 val->totalhigh = totalhigh_pages;
4139 val->freehigh = nr_free_highpages();
1da177e4
LT
4140 val->mem_unit = PAGE_SIZE;
4141}
4142
4143EXPORT_SYMBOL(si_meminfo);
4144
4145#ifdef CONFIG_NUMA
4146void si_meminfo_node(struct sysinfo *val, int nid)
4147{
cdd91a77
JL
4148 int zone_type; /* needs to be signed */
4149 unsigned long managed_pages = 0;
fc2bd799
JK
4150 unsigned long managed_highpages = 0;
4151 unsigned long free_highpages = 0;
1da177e4
LT
4152 pg_data_t *pgdat = NODE_DATA(nid);
4153
cdd91a77
JL
4154 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4155 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4156 val->totalram = managed_pages;
11fb9989 4157 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4158 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4159#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4160 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4161 struct zone *zone = &pgdat->node_zones[zone_type];
4162
4163 if (is_highmem(zone)) {
4164 managed_highpages += zone->managed_pages;
4165 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4166 }
4167 }
4168 val->totalhigh = managed_highpages;
4169 val->freehigh = free_highpages;
98d2b0eb 4170#else
fc2bd799
JK
4171 val->totalhigh = managed_highpages;
4172 val->freehigh = free_highpages;
98d2b0eb 4173#endif
1da177e4
LT
4174 val->mem_unit = PAGE_SIZE;
4175}
4176#endif
4177
ddd588b5 4178/*
7bf02ea2
DR
4179 * Determine whether the node should be displayed or not, depending on whether
4180 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4181 */
7bf02ea2 4182bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4183{
4184 bool ret = false;
cc9a6c87 4185 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4186
4187 if (!(flags & SHOW_MEM_FILTER_NODES))
4188 goto out;
4189
cc9a6c87 4190 do {
d26914d1 4191 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4192 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4193 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4194out:
4195 return ret;
4196}
4197
1da177e4
LT
4198#define K(x) ((x) << (PAGE_SHIFT-10))
4199
377e4f16
RV
4200static void show_migration_types(unsigned char type)
4201{
4202 static const char types[MIGRATE_TYPES] = {
4203 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4204 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4205 [MIGRATE_RECLAIMABLE] = 'E',
4206 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4207#ifdef CONFIG_CMA
4208 [MIGRATE_CMA] = 'C',
4209#endif
194159fb 4210#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4211 [MIGRATE_ISOLATE] = 'I',
194159fb 4212#endif
377e4f16
RV
4213 };
4214 char tmp[MIGRATE_TYPES + 1];
4215 char *p = tmp;
4216 int i;
4217
4218 for (i = 0; i < MIGRATE_TYPES; i++) {
4219 if (type & (1 << i))
4220 *p++ = types[i];
4221 }
4222
4223 *p = '\0';
4224 printk("(%s) ", tmp);
4225}
4226
1da177e4
LT
4227/*
4228 * Show free area list (used inside shift_scroll-lock stuff)
4229 * We also calculate the percentage fragmentation. We do this by counting the
4230 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4231 *
4232 * Bits in @filter:
4233 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4234 * cpuset.
1da177e4 4235 */
7bf02ea2 4236void show_free_areas(unsigned int filter)
1da177e4 4237{
d1bfcdb8 4238 unsigned long free_pcp = 0;
c7241913 4239 int cpu;
1da177e4 4240 struct zone *zone;
599d0c95 4241 pg_data_t *pgdat;
1da177e4 4242
ee99c71c 4243 for_each_populated_zone(zone) {
7bf02ea2 4244 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4245 continue;
d1bfcdb8 4246
761b0677
KK
4247 for_each_online_cpu(cpu)
4248 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4249 }
4250
a731286d
KM
4251 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4252 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4253 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4254 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4255 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4256 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4257 global_node_page_state(NR_ACTIVE_ANON),
4258 global_node_page_state(NR_INACTIVE_ANON),
4259 global_node_page_state(NR_ISOLATED_ANON),
4260 global_node_page_state(NR_ACTIVE_FILE),
4261 global_node_page_state(NR_INACTIVE_FILE),
4262 global_node_page_state(NR_ISOLATED_FILE),
4263 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4264 global_node_page_state(NR_FILE_DIRTY),
4265 global_node_page_state(NR_WRITEBACK),
4266 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4267 global_page_state(NR_SLAB_RECLAIMABLE),
4268 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4269 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4270 global_node_page_state(NR_SHMEM),
a25700a5 4271 global_page_state(NR_PAGETABLE),
d1ce749a 4272 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4273 global_page_state(NR_FREE_PAGES),
4274 free_pcp,
d1ce749a 4275 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4276
599d0c95
MG
4277 for_each_online_pgdat(pgdat) {
4278 printk("Node %d"
4279 " active_anon:%lukB"
4280 " inactive_anon:%lukB"
4281 " active_file:%lukB"
4282 " inactive_file:%lukB"
4283 " unevictable:%lukB"
4284 " isolated(anon):%lukB"
4285 " isolated(file):%lukB"
50658e2e 4286 " mapped:%lukB"
11fb9989
MG
4287 " dirty:%lukB"
4288 " writeback:%lukB"
4289 " shmem:%lukB"
4290#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4291 " shmem_thp: %lukB"
4292 " shmem_pmdmapped: %lukB"
4293 " anon_thp: %lukB"
4294#endif
4295 " writeback_tmp:%lukB"
4296 " unstable:%lukB"
33e077bd 4297 " pages_scanned:%lu"
599d0c95
MG
4298 " all_unreclaimable? %s"
4299 "\n",
4300 pgdat->node_id,
4301 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4302 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4303 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4304 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4305 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4306 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4307 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4308 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4309 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4310 K(node_page_state(pgdat, NR_WRITEBACK)),
4311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4312 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4313 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4314 * HPAGE_PMD_NR),
4315 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4316#endif
4317 K(node_page_state(pgdat, NR_SHMEM)),
4318 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4319 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4320 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4321 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4322 }
4323
ee99c71c 4324 for_each_populated_zone(zone) {
1da177e4
LT
4325 int i;
4326
7bf02ea2 4327 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4328 continue;
d1bfcdb8
KK
4329
4330 free_pcp = 0;
4331 for_each_online_cpu(cpu)
4332 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4333
1da177e4
LT
4334 show_node(zone);
4335 printk("%s"
4336 " free:%lukB"
4337 " min:%lukB"
4338 " low:%lukB"
4339 " high:%lukB"
71c799f4
MK
4340 " active_anon:%lukB"
4341 " inactive_anon:%lukB"
4342 " active_file:%lukB"
4343 " inactive_file:%lukB"
4344 " unevictable:%lukB"
5a1c84b4 4345 " writepending:%lukB"
1da177e4 4346 " present:%lukB"
9feedc9d 4347 " managed:%lukB"
4a0aa73f 4348 " mlocked:%lukB"
4a0aa73f
KM
4349 " slab_reclaimable:%lukB"
4350 " slab_unreclaimable:%lukB"
c6a7f572 4351 " kernel_stack:%lukB"
4a0aa73f 4352 " pagetables:%lukB"
4a0aa73f 4353 " bounce:%lukB"
d1bfcdb8
KK
4354 " free_pcp:%lukB"
4355 " local_pcp:%ukB"
d1ce749a 4356 " free_cma:%lukB"
1da177e4
LT
4357 "\n",
4358 zone->name,
88f5acf8 4359 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4360 K(min_wmark_pages(zone)),
4361 K(low_wmark_pages(zone)),
4362 K(high_wmark_pages(zone)),
71c799f4
MK
4363 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4364 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4365 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4366 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4367 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4368 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4369 K(zone->present_pages),
9feedc9d 4370 K(zone->managed_pages),
4a0aa73f 4371 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4372 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4373 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4374 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4375 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4376 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4377 K(free_pcp),
4378 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4379 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4380 printk("lowmem_reserve[]:");
4381 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4382 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4383 printk("\n");
4384 }
4385
ee99c71c 4386 for_each_populated_zone(zone) {
d00181b9
KS
4387 unsigned int order;
4388 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4389 unsigned char types[MAX_ORDER];
1da177e4 4390
7bf02ea2 4391 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4392 continue;
1da177e4
LT
4393 show_node(zone);
4394 printk("%s: ", zone->name);
1da177e4
LT
4395
4396 spin_lock_irqsave(&zone->lock, flags);
4397 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4398 struct free_area *area = &zone->free_area[order];
4399 int type;
4400
4401 nr[order] = area->nr_free;
8f9de51a 4402 total += nr[order] << order;
377e4f16
RV
4403
4404 types[order] = 0;
4405 for (type = 0; type < MIGRATE_TYPES; type++) {
4406 if (!list_empty(&area->free_list[type]))
4407 types[order] |= 1 << type;
4408 }
1da177e4
LT
4409 }
4410 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4411 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4412 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4413 if (nr[order])
4414 show_migration_types(types[order]);
4415 }
1da177e4
LT
4416 printk("= %lukB\n", K(total));
4417 }
4418
949f7ec5
DR
4419 hugetlb_show_meminfo();
4420
11fb9989 4421 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4422
1da177e4
LT
4423 show_swap_cache_info();
4424}
4425
19770b32
MG
4426static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4427{
4428 zoneref->zone = zone;
4429 zoneref->zone_idx = zone_idx(zone);
4430}
4431
1da177e4
LT
4432/*
4433 * Builds allocation fallback zone lists.
1a93205b
CL
4434 *
4435 * Add all populated zones of a node to the zonelist.
1da177e4 4436 */
f0c0b2b8 4437static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4438 int nr_zones)
1da177e4 4439{
1a93205b 4440 struct zone *zone;
bc732f1d 4441 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4442
4443 do {
2f6726e5 4444 zone_type--;
070f8032 4445 zone = pgdat->node_zones + zone_type;
1a93205b 4446 if (populated_zone(zone)) {
dd1a239f
MG
4447 zoneref_set_zone(zone,
4448 &zonelist->_zonerefs[nr_zones++]);
070f8032 4449 check_highest_zone(zone_type);
1da177e4 4450 }
2f6726e5 4451 } while (zone_type);
bc732f1d 4452
070f8032 4453 return nr_zones;
1da177e4
LT
4454}
4455
f0c0b2b8
KH
4456
4457/*
4458 * zonelist_order:
4459 * 0 = automatic detection of better ordering.
4460 * 1 = order by ([node] distance, -zonetype)
4461 * 2 = order by (-zonetype, [node] distance)
4462 *
4463 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4464 * the same zonelist. So only NUMA can configure this param.
4465 */
4466#define ZONELIST_ORDER_DEFAULT 0
4467#define ZONELIST_ORDER_NODE 1
4468#define ZONELIST_ORDER_ZONE 2
4469
4470/* zonelist order in the kernel.
4471 * set_zonelist_order() will set this to NODE or ZONE.
4472 */
4473static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4474static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4475
4476
1da177e4 4477#ifdef CONFIG_NUMA
f0c0b2b8
KH
4478/* The value user specified ....changed by config */
4479static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4480/* string for sysctl */
4481#define NUMA_ZONELIST_ORDER_LEN 16
4482char numa_zonelist_order[16] = "default";
4483
4484/*
4485 * interface for configure zonelist ordering.
4486 * command line option "numa_zonelist_order"
4487 * = "[dD]efault - default, automatic configuration.
4488 * = "[nN]ode - order by node locality, then by zone within node
4489 * = "[zZ]one - order by zone, then by locality within zone
4490 */
4491
4492static int __parse_numa_zonelist_order(char *s)
4493{
4494 if (*s == 'd' || *s == 'D') {
4495 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4496 } else if (*s == 'n' || *s == 'N') {
4497 user_zonelist_order = ZONELIST_ORDER_NODE;
4498 } else if (*s == 'z' || *s == 'Z') {
4499 user_zonelist_order = ZONELIST_ORDER_ZONE;
4500 } else {
1170532b 4501 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4502 return -EINVAL;
4503 }
4504 return 0;
4505}
4506
4507static __init int setup_numa_zonelist_order(char *s)
4508{
ecb256f8
VL
4509 int ret;
4510
4511 if (!s)
4512 return 0;
4513
4514 ret = __parse_numa_zonelist_order(s);
4515 if (ret == 0)
4516 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4517
4518 return ret;
f0c0b2b8
KH
4519}
4520early_param("numa_zonelist_order", setup_numa_zonelist_order);
4521
4522/*
4523 * sysctl handler for numa_zonelist_order
4524 */
cccad5b9 4525int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4526 void __user *buffer, size_t *length,
f0c0b2b8
KH
4527 loff_t *ppos)
4528{
4529 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4530 int ret;
443c6f14 4531 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4532
443c6f14 4533 mutex_lock(&zl_order_mutex);
dacbde09
CG
4534 if (write) {
4535 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4536 ret = -EINVAL;
4537 goto out;
4538 }
4539 strcpy(saved_string, (char *)table->data);
4540 }
8d65af78 4541 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4542 if (ret)
443c6f14 4543 goto out;
f0c0b2b8
KH
4544 if (write) {
4545 int oldval = user_zonelist_order;
dacbde09
CG
4546
4547 ret = __parse_numa_zonelist_order((char *)table->data);
4548 if (ret) {
f0c0b2b8
KH
4549 /*
4550 * bogus value. restore saved string
4551 */
dacbde09 4552 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4553 NUMA_ZONELIST_ORDER_LEN);
4554 user_zonelist_order = oldval;
4eaf3f64
HL
4555 } else if (oldval != user_zonelist_order) {
4556 mutex_lock(&zonelists_mutex);
9adb62a5 4557 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4558 mutex_unlock(&zonelists_mutex);
4559 }
f0c0b2b8 4560 }
443c6f14
AK
4561out:
4562 mutex_unlock(&zl_order_mutex);
4563 return ret;
f0c0b2b8
KH
4564}
4565
4566
62bc62a8 4567#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4568static int node_load[MAX_NUMNODES];
4569
1da177e4 4570/**
4dc3b16b 4571 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4572 * @node: node whose fallback list we're appending
4573 * @used_node_mask: nodemask_t of already used nodes
4574 *
4575 * We use a number of factors to determine which is the next node that should
4576 * appear on a given node's fallback list. The node should not have appeared
4577 * already in @node's fallback list, and it should be the next closest node
4578 * according to the distance array (which contains arbitrary distance values
4579 * from each node to each node in the system), and should also prefer nodes
4580 * with no CPUs, since presumably they'll have very little allocation pressure
4581 * on them otherwise.
4582 * It returns -1 if no node is found.
4583 */
f0c0b2b8 4584static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4585{
4cf808eb 4586 int n, val;
1da177e4 4587 int min_val = INT_MAX;
00ef2d2f 4588 int best_node = NUMA_NO_NODE;
a70f7302 4589 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4590
4cf808eb
LT
4591 /* Use the local node if we haven't already */
4592 if (!node_isset(node, *used_node_mask)) {
4593 node_set(node, *used_node_mask);
4594 return node;
4595 }
1da177e4 4596
4b0ef1fe 4597 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4598
4599 /* Don't want a node to appear more than once */
4600 if (node_isset(n, *used_node_mask))
4601 continue;
4602
1da177e4
LT
4603 /* Use the distance array to find the distance */
4604 val = node_distance(node, n);
4605
4cf808eb
LT
4606 /* Penalize nodes under us ("prefer the next node") */
4607 val += (n < node);
4608
1da177e4 4609 /* Give preference to headless and unused nodes */
a70f7302
RR
4610 tmp = cpumask_of_node(n);
4611 if (!cpumask_empty(tmp))
1da177e4
LT
4612 val += PENALTY_FOR_NODE_WITH_CPUS;
4613
4614 /* Slight preference for less loaded node */
4615 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4616 val += node_load[n];
4617
4618 if (val < min_val) {
4619 min_val = val;
4620 best_node = n;
4621 }
4622 }
4623
4624 if (best_node >= 0)
4625 node_set(best_node, *used_node_mask);
4626
4627 return best_node;
4628}
4629
f0c0b2b8
KH
4630
4631/*
4632 * Build zonelists ordered by node and zones within node.
4633 * This results in maximum locality--normal zone overflows into local
4634 * DMA zone, if any--but risks exhausting DMA zone.
4635 */
4636static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4637{
f0c0b2b8 4638 int j;
1da177e4 4639 struct zonelist *zonelist;
f0c0b2b8 4640
54a6eb5c 4641 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4642 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4643 ;
bc732f1d 4644 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4645 zonelist->_zonerefs[j].zone = NULL;
4646 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4647}
4648
523b9458
CL
4649/*
4650 * Build gfp_thisnode zonelists
4651 */
4652static void build_thisnode_zonelists(pg_data_t *pgdat)
4653{
523b9458
CL
4654 int j;
4655 struct zonelist *zonelist;
4656
54a6eb5c 4657 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4658 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4659 zonelist->_zonerefs[j].zone = NULL;
4660 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4661}
4662
f0c0b2b8
KH
4663/*
4664 * Build zonelists ordered by zone and nodes within zones.
4665 * This results in conserving DMA zone[s] until all Normal memory is
4666 * exhausted, but results in overflowing to remote node while memory
4667 * may still exist in local DMA zone.
4668 */
4669static int node_order[MAX_NUMNODES];
4670
4671static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4672{
f0c0b2b8
KH
4673 int pos, j, node;
4674 int zone_type; /* needs to be signed */
4675 struct zone *z;
4676 struct zonelist *zonelist;
4677
54a6eb5c
MG
4678 zonelist = &pgdat->node_zonelists[0];
4679 pos = 0;
4680 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4681 for (j = 0; j < nr_nodes; j++) {
4682 node = node_order[j];
4683 z = &NODE_DATA(node)->node_zones[zone_type];
4684 if (populated_zone(z)) {
dd1a239f
MG
4685 zoneref_set_zone(z,
4686 &zonelist->_zonerefs[pos++]);
54a6eb5c 4687 check_highest_zone(zone_type);
f0c0b2b8
KH
4688 }
4689 }
f0c0b2b8 4690 }
dd1a239f
MG
4691 zonelist->_zonerefs[pos].zone = NULL;
4692 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4693}
4694
3193913c
MG
4695#if defined(CONFIG_64BIT)
4696/*
4697 * Devices that require DMA32/DMA are relatively rare and do not justify a
4698 * penalty to every machine in case the specialised case applies. Default
4699 * to Node-ordering on 64-bit NUMA machines
4700 */
4701static int default_zonelist_order(void)
4702{
4703 return ZONELIST_ORDER_NODE;
4704}
4705#else
4706/*
4707 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4708 * by the kernel. If processes running on node 0 deplete the low memory zone
4709 * then reclaim will occur more frequency increasing stalls and potentially
4710 * be easier to OOM if a large percentage of the zone is under writeback or
4711 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4712 * Hence, default to zone ordering on 32-bit.
4713 */
f0c0b2b8
KH
4714static int default_zonelist_order(void)
4715{
f0c0b2b8
KH
4716 return ZONELIST_ORDER_ZONE;
4717}
3193913c 4718#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4719
4720static void set_zonelist_order(void)
4721{
4722 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4723 current_zonelist_order = default_zonelist_order();
4724 else
4725 current_zonelist_order = user_zonelist_order;
4726}
4727
4728static void build_zonelists(pg_data_t *pgdat)
4729{
c00eb15a 4730 int i, node, load;
1da177e4 4731 nodemask_t used_mask;
f0c0b2b8
KH
4732 int local_node, prev_node;
4733 struct zonelist *zonelist;
d00181b9 4734 unsigned int order = current_zonelist_order;
1da177e4
LT
4735
4736 /* initialize zonelists */
523b9458 4737 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4738 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4739 zonelist->_zonerefs[0].zone = NULL;
4740 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4741 }
4742
4743 /* NUMA-aware ordering of nodes */
4744 local_node = pgdat->node_id;
62bc62a8 4745 load = nr_online_nodes;
1da177e4
LT
4746 prev_node = local_node;
4747 nodes_clear(used_mask);
f0c0b2b8 4748
f0c0b2b8 4749 memset(node_order, 0, sizeof(node_order));
c00eb15a 4750 i = 0;
f0c0b2b8 4751
1da177e4
LT
4752 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4753 /*
4754 * We don't want to pressure a particular node.
4755 * So adding penalty to the first node in same
4756 * distance group to make it round-robin.
4757 */
957f822a
DR
4758 if (node_distance(local_node, node) !=
4759 node_distance(local_node, prev_node))
f0c0b2b8
KH
4760 node_load[node] = load;
4761
1da177e4
LT
4762 prev_node = node;
4763 load--;
f0c0b2b8
KH
4764 if (order == ZONELIST_ORDER_NODE)
4765 build_zonelists_in_node_order(pgdat, node);
4766 else
c00eb15a 4767 node_order[i++] = node; /* remember order */
f0c0b2b8 4768 }
1da177e4 4769
f0c0b2b8
KH
4770 if (order == ZONELIST_ORDER_ZONE) {
4771 /* calculate node order -- i.e., DMA last! */
c00eb15a 4772 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4773 }
523b9458
CL
4774
4775 build_thisnode_zonelists(pgdat);
1da177e4
LT
4776}
4777
7aac7898
LS
4778#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4779/*
4780 * Return node id of node used for "local" allocations.
4781 * I.e., first node id of first zone in arg node's generic zonelist.
4782 * Used for initializing percpu 'numa_mem', which is used primarily
4783 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4784 */
4785int local_memory_node(int node)
4786{
c33d6c06 4787 struct zoneref *z;
7aac7898 4788
c33d6c06 4789 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4790 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4791 NULL);
4792 return z->zone->node;
7aac7898
LS
4793}
4794#endif
f0c0b2b8 4795
1da177e4
LT
4796#else /* CONFIG_NUMA */
4797
f0c0b2b8
KH
4798static void set_zonelist_order(void)
4799{
4800 current_zonelist_order = ZONELIST_ORDER_ZONE;
4801}
4802
4803static void build_zonelists(pg_data_t *pgdat)
1da177e4 4804{
19655d34 4805 int node, local_node;
54a6eb5c
MG
4806 enum zone_type j;
4807 struct zonelist *zonelist;
1da177e4
LT
4808
4809 local_node = pgdat->node_id;
1da177e4 4810
54a6eb5c 4811 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4812 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4813
54a6eb5c
MG
4814 /*
4815 * Now we build the zonelist so that it contains the zones
4816 * of all the other nodes.
4817 * We don't want to pressure a particular node, so when
4818 * building the zones for node N, we make sure that the
4819 * zones coming right after the local ones are those from
4820 * node N+1 (modulo N)
4821 */
4822 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4823 if (!node_online(node))
4824 continue;
bc732f1d 4825 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4826 }
54a6eb5c
MG
4827 for (node = 0; node < local_node; node++) {
4828 if (!node_online(node))
4829 continue;
bc732f1d 4830 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4831 }
4832
dd1a239f
MG
4833 zonelist->_zonerefs[j].zone = NULL;
4834 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4835}
4836
4837#endif /* CONFIG_NUMA */
4838
99dcc3e5
CL
4839/*
4840 * Boot pageset table. One per cpu which is going to be used for all
4841 * zones and all nodes. The parameters will be set in such a way
4842 * that an item put on a list will immediately be handed over to
4843 * the buddy list. This is safe since pageset manipulation is done
4844 * with interrupts disabled.
4845 *
4846 * The boot_pagesets must be kept even after bootup is complete for
4847 * unused processors and/or zones. They do play a role for bootstrapping
4848 * hotplugged processors.
4849 *
4850 * zoneinfo_show() and maybe other functions do
4851 * not check if the processor is online before following the pageset pointer.
4852 * Other parts of the kernel may not check if the zone is available.
4853 */
4854static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4855static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4856static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4857
4eaf3f64
HL
4858/*
4859 * Global mutex to protect against size modification of zonelists
4860 * as well as to serialize pageset setup for the new populated zone.
4861 */
4862DEFINE_MUTEX(zonelists_mutex);
4863
9b1a4d38 4864/* return values int ....just for stop_machine() */
4ed7e022 4865static int __build_all_zonelists(void *data)
1da177e4 4866{
6811378e 4867 int nid;
99dcc3e5 4868 int cpu;
9adb62a5 4869 pg_data_t *self = data;
9276b1bc 4870
7f9cfb31
BL
4871#ifdef CONFIG_NUMA
4872 memset(node_load, 0, sizeof(node_load));
4873#endif
9adb62a5
JL
4874
4875 if (self && !node_online(self->node_id)) {
4876 build_zonelists(self);
9adb62a5
JL
4877 }
4878
9276b1bc 4879 for_each_online_node(nid) {
7ea1530a
CL
4880 pg_data_t *pgdat = NODE_DATA(nid);
4881
4882 build_zonelists(pgdat);
9276b1bc 4883 }
99dcc3e5
CL
4884
4885 /*
4886 * Initialize the boot_pagesets that are going to be used
4887 * for bootstrapping processors. The real pagesets for
4888 * each zone will be allocated later when the per cpu
4889 * allocator is available.
4890 *
4891 * boot_pagesets are used also for bootstrapping offline
4892 * cpus if the system is already booted because the pagesets
4893 * are needed to initialize allocators on a specific cpu too.
4894 * F.e. the percpu allocator needs the page allocator which
4895 * needs the percpu allocator in order to allocate its pagesets
4896 * (a chicken-egg dilemma).
4897 */
7aac7898 4898 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4899 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4900
7aac7898
LS
4901#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4902 /*
4903 * We now know the "local memory node" for each node--
4904 * i.e., the node of the first zone in the generic zonelist.
4905 * Set up numa_mem percpu variable for on-line cpus. During
4906 * boot, only the boot cpu should be on-line; we'll init the
4907 * secondary cpus' numa_mem as they come on-line. During
4908 * node/memory hotplug, we'll fixup all on-line cpus.
4909 */
4910 if (cpu_online(cpu))
4911 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4912#endif
4913 }
4914
6811378e
YG
4915 return 0;
4916}
4917
061f67bc
RV
4918static noinline void __init
4919build_all_zonelists_init(void)
4920{
4921 __build_all_zonelists(NULL);
4922 mminit_verify_zonelist();
4923 cpuset_init_current_mems_allowed();
4924}
4925
4eaf3f64
HL
4926/*
4927 * Called with zonelists_mutex held always
4928 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4929 *
4930 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4931 * [we're only called with non-NULL zone through __meminit paths] and
4932 * (2) call of __init annotated helper build_all_zonelists_init
4933 * [protected by SYSTEM_BOOTING].
4eaf3f64 4934 */
9adb62a5 4935void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4936{
f0c0b2b8
KH
4937 set_zonelist_order();
4938
6811378e 4939 if (system_state == SYSTEM_BOOTING) {
061f67bc 4940 build_all_zonelists_init();
6811378e 4941 } else {
e9959f0f 4942#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4943 if (zone)
4944 setup_zone_pageset(zone);
e9959f0f 4945#endif
dd1895e2
CS
4946 /* we have to stop all cpus to guarantee there is no user
4947 of zonelist */
9adb62a5 4948 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4949 /* cpuset refresh routine should be here */
4950 }
bd1e22b8 4951 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4952 /*
4953 * Disable grouping by mobility if the number of pages in the
4954 * system is too low to allow the mechanism to work. It would be
4955 * more accurate, but expensive to check per-zone. This check is
4956 * made on memory-hotadd so a system can start with mobility
4957 * disabled and enable it later
4958 */
d9c23400 4959 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4960 page_group_by_mobility_disabled = 1;
4961 else
4962 page_group_by_mobility_disabled = 0;
4963
756a025f
JP
4964 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4965 nr_online_nodes,
4966 zonelist_order_name[current_zonelist_order],
4967 page_group_by_mobility_disabled ? "off" : "on",
4968 vm_total_pages);
f0c0b2b8 4969#ifdef CONFIG_NUMA
f88dfff5 4970 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4971#endif
1da177e4
LT
4972}
4973
4974/*
4975 * Helper functions to size the waitqueue hash table.
4976 * Essentially these want to choose hash table sizes sufficiently
4977 * large so that collisions trying to wait on pages are rare.
4978 * But in fact, the number of active page waitqueues on typical
4979 * systems is ridiculously low, less than 200. So this is even
4980 * conservative, even though it seems large.
4981 *
4982 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4983 * waitqueues, i.e. the size of the waitq table given the number of pages.
4984 */
4985#define PAGES_PER_WAITQUEUE 256
4986
cca448fe 4987#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4988static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4989{
4990 unsigned long size = 1;
4991
4992 pages /= PAGES_PER_WAITQUEUE;
4993
4994 while (size < pages)
4995 size <<= 1;
4996
4997 /*
4998 * Once we have dozens or even hundreds of threads sleeping
4999 * on IO we've got bigger problems than wait queue collision.
5000 * Limit the size of the wait table to a reasonable size.
5001 */
5002 size = min(size, 4096UL);
5003
5004 return max(size, 4UL);
5005}
cca448fe
YG
5006#else
5007/*
5008 * A zone's size might be changed by hot-add, so it is not possible to determine
5009 * a suitable size for its wait_table. So we use the maximum size now.
5010 *
5011 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5012 *
5013 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5014 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5015 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5016 *
5017 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5018 * or more by the traditional way. (See above). It equals:
5019 *
5020 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5021 * ia64(16K page size) : = ( 8G + 4M)byte.
5022 * powerpc (64K page size) : = (32G +16M)byte.
5023 */
5024static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5025{
5026 return 4096UL;
5027}
5028#endif
1da177e4
LT
5029
5030/*
5031 * This is an integer logarithm so that shifts can be used later
5032 * to extract the more random high bits from the multiplicative
5033 * hash function before the remainder is taken.
5034 */
5035static inline unsigned long wait_table_bits(unsigned long size)
5036{
5037 return ffz(~size);
5038}
5039
1da177e4
LT
5040/*
5041 * Initially all pages are reserved - free ones are freed
5042 * up by free_all_bootmem() once the early boot process is
5043 * done. Non-atomic initialization, single-pass.
5044 */
c09b4240 5045void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5046 unsigned long start_pfn, enum memmap_context context)
1da177e4 5047{
4b94ffdc 5048 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5049 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5050 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5051 unsigned long pfn;
3a80a7fa 5052 unsigned long nr_initialised = 0;
342332e6
TI
5053#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5054 struct memblock_region *r = NULL, *tmp;
5055#endif
1da177e4 5056
22b31eec
HD
5057 if (highest_memmap_pfn < end_pfn - 1)
5058 highest_memmap_pfn = end_pfn - 1;
5059
4b94ffdc
DW
5060 /*
5061 * Honor reservation requested by the driver for this ZONE_DEVICE
5062 * memory
5063 */
5064 if (altmap && start_pfn == altmap->base_pfn)
5065 start_pfn += altmap->reserve;
5066
cbe8dd4a 5067 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5068 /*
b72d0ffb
AM
5069 * There can be holes in boot-time mem_map[]s handed to this
5070 * function. They do not exist on hotplugged memory.
a2f3aa02 5071 */
b72d0ffb
AM
5072 if (context != MEMMAP_EARLY)
5073 goto not_early;
5074
5075 if (!early_pfn_valid(pfn))
5076 continue;
5077 if (!early_pfn_in_nid(pfn, nid))
5078 continue;
5079 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5080 break;
342332e6
TI
5081
5082#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5083 /*
5084 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5085 * from zone_movable_pfn[nid] to end of each node should be
5086 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5087 */
5088 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5089 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5090 continue;
342332e6 5091
b72d0ffb
AM
5092 /*
5093 * Check given memblock attribute by firmware which can affect
5094 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5095 * mirrored, it's an overlapped memmap init. skip it.
5096 */
5097 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5098 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5099 for_each_memblock(memory, tmp)
5100 if (pfn < memblock_region_memory_end_pfn(tmp))
5101 break;
5102 r = tmp;
5103 }
5104 if (pfn >= memblock_region_memory_base_pfn(r) &&
5105 memblock_is_mirror(r)) {
5106 /* already initialized as NORMAL */
5107 pfn = memblock_region_memory_end_pfn(r);
5108 continue;
342332e6 5109 }
a2f3aa02 5110 }
b72d0ffb 5111#endif
ac5d2539 5112
b72d0ffb 5113not_early:
ac5d2539
MG
5114 /*
5115 * Mark the block movable so that blocks are reserved for
5116 * movable at startup. This will force kernel allocations
5117 * to reserve their blocks rather than leaking throughout
5118 * the address space during boot when many long-lived
974a786e 5119 * kernel allocations are made.
ac5d2539
MG
5120 *
5121 * bitmap is created for zone's valid pfn range. but memmap
5122 * can be created for invalid pages (for alignment)
5123 * check here not to call set_pageblock_migratetype() against
5124 * pfn out of zone.
5125 */
5126 if (!(pfn & (pageblock_nr_pages - 1))) {
5127 struct page *page = pfn_to_page(pfn);
5128
5129 __init_single_page(page, pfn, zone, nid);
5130 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5131 } else {
5132 __init_single_pfn(pfn, zone, nid);
5133 }
1da177e4
LT
5134 }
5135}
5136
1e548deb 5137static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5138{
7aeb09f9 5139 unsigned int order, t;
b2a0ac88
MG
5140 for_each_migratetype_order(order, t) {
5141 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5142 zone->free_area[order].nr_free = 0;
5143 }
5144}
5145
5146#ifndef __HAVE_ARCH_MEMMAP_INIT
5147#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5148 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5149#endif
5150
7cd2b0a3 5151static int zone_batchsize(struct zone *zone)
e7c8d5c9 5152{
3a6be87f 5153#ifdef CONFIG_MMU
e7c8d5c9
CL
5154 int batch;
5155
5156 /*
5157 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5158 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5159 *
5160 * OK, so we don't know how big the cache is. So guess.
5161 */
b40da049 5162 batch = zone->managed_pages / 1024;
ba56e91c
SR
5163 if (batch * PAGE_SIZE > 512 * 1024)
5164 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5165 batch /= 4; /* We effectively *= 4 below */
5166 if (batch < 1)
5167 batch = 1;
5168
5169 /*
0ceaacc9
NP
5170 * Clamp the batch to a 2^n - 1 value. Having a power
5171 * of 2 value was found to be more likely to have
5172 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5173 *
0ceaacc9
NP
5174 * For example if 2 tasks are alternately allocating
5175 * batches of pages, one task can end up with a lot
5176 * of pages of one half of the possible page colors
5177 * and the other with pages of the other colors.
e7c8d5c9 5178 */
9155203a 5179 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5180
e7c8d5c9 5181 return batch;
3a6be87f
DH
5182
5183#else
5184 /* The deferral and batching of frees should be suppressed under NOMMU
5185 * conditions.
5186 *
5187 * The problem is that NOMMU needs to be able to allocate large chunks
5188 * of contiguous memory as there's no hardware page translation to
5189 * assemble apparent contiguous memory from discontiguous pages.
5190 *
5191 * Queueing large contiguous runs of pages for batching, however,
5192 * causes the pages to actually be freed in smaller chunks. As there
5193 * can be a significant delay between the individual batches being
5194 * recycled, this leads to the once large chunks of space being
5195 * fragmented and becoming unavailable for high-order allocations.
5196 */
5197 return 0;
5198#endif
e7c8d5c9
CL
5199}
5200
8d7a8fa9
CS
5201/*
5202 * pcp->high and pcp->batch values are related and dependent on one another:
5203 * ->batch must never be higher then ->high.
5204 * The following function updates them in a safe manner without read side
5205 * locking.
5206 *
5207 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5208 * those fields changing asynchronously (acording the the above rule).
5209 *
5210 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5211 * outside of boot time (or some other assurance that no concurrent updaters
5212 * exist).
5213 */
5214static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5215 unsigned long batch)
5216{
5217 /* start with a fail safe value for batch */
5218 pcp->batch = 1;
5219 smp_wmb();
5220
5221 /* Update high, then batch, in order */
5222 pcp->high = high;
5223 smp_wmb();
5224
5225 pcp->batch = batch;
5226}
5227
3664033c 5228/* a companion to pageset_set_high() */
4008bab7
CS
5229static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5230{
8d7a8fa9 5231 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5232}
5233
88c90dbc 5234static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5235{
5236 struct per_cpu_pages *pcp;
5f8dcc21 5237 int migratetype;
2caaad41 5238
1c6fe946
MD
5239 memset(p, 0, sizeof(*p));
5240
3dfa5721 5241 pcp = &p->pcp;
2caaad41 5242 pcp->count = 0;
5f8dcc21
MG
5243 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5244 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5245}
5246
88c90dbc
CS
5247static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5248{
5249 pageset_init(p);
5250 pageset_set_batch(p, batch);
5251}
5252
8ad4b1fb 5253/*
3664033c 5254 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5255 * to the value high for the pageset p.
5256 */
3664033c 5257static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5258 unsigned long high)
5259{
8d7a8fa9
CS
5260 unsigned long batch = max(1UL, high / 4);
5261 if ((high / 4) > (PAGE_SHIFT * 8))
5262 batch = PAGE_SHIFT * 8;
8ad4b1fb 5263
8d7a8fa9 5264 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5265}
5266
7cd2b0a3
DR
5267static void pageset_set_high_and_batch(struct zone *zone,
5268 struct per_cpu_pageset *pcp)
56cef2b8 5269{
56cef2b8 5270 if (percpu_pagelist_fraction)
3664033c 5271 pageset_set_high(pcp,
56cef2b8
CS
5272 (zone->managed_pages /
5273 percpu_pagelist_fraction));
5274 else
5275 pageset_set_batch(pcp, zone_batchsize(zone));
5276}
5277
169f6c19
CS
5278static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5279{
5280 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5281
5282 pageset_init(pcp);
5283 pageset_set_high_and_batch(zone, pcp);
5284}
5285
4ed7e022 5286static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5287{
5288 int cpu;
319774e2 5289 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5290 for_each_possible_cpu(cpu)
5291 zone_pageset_init(zone, cpu);
75ef7184
MG
5292
5293 if (!zone->zone_pgdat->per_cpu_nodestats) {
5294 zone->zone_pgdat->per_cpu_nodestats =
5295 alloc_percpu(struct per_cpu_nodestat);
5296 }
319774e2
WF
5297}
5298
2caaad41 5299/*
99dcc3e5
CL
5300 * Allocate per cpu pagesets and initialize them.
5301 * Before this call only boot pagesets were available.
e7c8d5c9 5302 */
99dcc3e5 5303void __init setup_per_cpu_pageset(void)
e7c8d5c9 5304{
99dcc3e5 5305 struct zone *zone;
e7c8d5c9 5306
319774e2
WF
5307 for_each_populated_zone(zone)
5308 setup_zone_pageset(zone);
e7c8d5c9
CL
5309}
5310
577a32f6 5311static noinline __init_refok
cca448fe 5312int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5313{
5314 int i;
cca448fe 5315 size_t alloc_size;
ed8ece2e
DH
5316
5317 /*
5318 * The per-page waitqueue mechanism uses hashed waitqueues
5319 * per zone.
5320 */
02b694de
YG
5321 zone->wait_table_hash_nr_entries =
5322 wait_table_hash_nr_entries(zone_size_pages);
5323 zone->wait_table_bits =
5324 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5325 alloc_size = zone->wait_table_hash_nr_entries
5326 * sizeof(wait_queue_head_t);
5327
cd94b9db 5328 if (!slab_is_available()) {
cca448fe 5329 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5330 memblock_virt_alloc_node_nopanic(
5331 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5332 } else {
5333 /*
5334 * This case means that a zone whose size was 0 gets new memory
5335 * via memory hot-add.
5336 * But it may be the case that a new node was hot-added. In
5337 * this case vmalloc() will not be able to use this new node's
5338 * memory - this wait_table must be initialized to use this new
5339 * node itself as well.
5340 * To use this new node's memory, further consideration will be
5341 * necessary.
5342 */
8691f3a7 5343 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5344 }
5345 if (!zone->wait_table)
5346 return -ENOMEM;
ed8ece2e 5347
b8af2941 5348 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5349 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5350
5351 return 0;
ed8ece2e
DH
5352}
5353
c09b4240 5354static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5355{
99dcc3e5
CL
5356 /*
5357 * per cpu subsystem is not up at this point. The following code
5358 * relies on the ability of the linker to provide the
5359 * offset of a (static) per cpu variable into the per cpu area.
5360 */
5361 zone->pageset = &boot_pageset;
ed8ece2e 5362
b38a8725 5363 if (populated_zone(zone))
99dcc3e5
CL
5364 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5365 zone->name, zone->present_pages,
5366 zone_batchsize(zone));
ed8ece2e
DH
5367}
5368
4ed7e022 5369int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5370 unsigned long zone_start_pfn,
b171e409 5371 unsigned long size)
ed8ece2e
DH
5372{
5373 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5374 int ret;
5375 ret = zone_wait_table_init(zone, size);
5376 if (ret)
5377 return ret;
ed8ece2e
DH
5378 pgdat->nr_zones = zone_idx(zone) + 1;
5379
ed8ece2e
DH
5380 zone->zone_start_pfn = zone_start_pfn;
5381
708614e6
MG
5382 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5383 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5384 pgdat->node_id,
5385 (unsigned long)zone_idx(zone),
5386 zone_start_pfn, (zone_start_pfn + size));
5387
1e548deb 5388 zone_init_free_lists(zone);
718127cc
YG
5389
5390 return 0;
ed8ece2e
DH
5391}
5392
0ee332c1 5393#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5394#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5395
c713216d
MG
5396/*
5397 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5398 */
8a942fde
MG
5399int __meminit __early_pfn_to_nid(unsigned long pfn,
5400 struct mminit_pfnnid_cache *state)
c713216d 5401{
c13291a5 5402 unsigned long start_pfn, end_pfn;
e76b63f8 5403 int nid;
7c243c71 5404
8a942fde
MG
5405 if (state->last_start <= pfn && pfn < state->last_end)
5406 return state->last_nid;
c713216d 5407
e76b63f8
YL
5408 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5409 if (nid != -1) {
8a942fde
MG
5410 state->last_start = start_pfn;
5411 state->last_end = end_pfn;
5412 state->last_nid = nid;
e76b63f8
YL
5413 }
5414
5415 return nid;
c713216d
MG
5416}
5417#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5418
c713216d 5419/**
6782832e 5420 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5421 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5422 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5423 *
7d018176
ZZ
5424 * If an architecture guarantees that all ranges registered contain no holes
5425 * and may be freed, this this function may be used instead of calling
5426 * memblock_free_early_nid() manually.
c713216d 5427 */
c13291a5 5428void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5429{
c13291a5
TH
5430 unsigned long start_pfn, end_pfn;
5431 int i, this_nid;
edbe7d23 5432
c13291a5
TH
5433 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5434 start_pfn = min(start_pfn, max_low_pfn);
5435 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5436
c13291a5 5437 if (start_pfn < end_pfn)
6782832e
SS
5438 memblock_free_early_nid(PFN_PHYS(start_pfn),
5439 (end_pfn - start_pfn) << PAGE_SHIFT,
5440 this_nid);
edbe7d23 5441 }
edbe7d23 5442}
edbe7d23 5443
c713216d
MG
5444/**
5445 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5446 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5447 *
7d018176
ZZ
5448 * If an architecture guarantees that all ranges registered contain no holes and may
5449 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5450 */
5451void __init sparse_memory_present_with_active_regions(int nid)
5452{
c13291a5
TH
5453 unsigned long start_pfn, end_pfn;
5454 int i, this_nid;
c713216d 5455
c13291a5
TH
5456 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5457 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5458}
5459
5460/**
5461 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5462 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5463 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5464 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5465 *
5466 * It returns the start and end page frame of a node based on information
7d018176 5467 * provided by memblock_set_node(). If called for a node
c713216d 5468 * with no available memory, a warning is printed and the start and end
88ca3b94 5469 * PFNs will be 0.
c713216d 5470 */
a3142c8e 5471void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5472 unsigned long *start_pfn, unsigned long *end_pfn)
5473{
c13291a5 5474 unsigned long this_start_pfn, this_end_pfn;
c713216d 5475 int i;
c13291a5 5476
c713216d
MG
5477 *start_pfn = -1UL;
5478 *end_pfn = 0;
5479
c13291a5
TH
5480 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5481 *start_pfn = min(*start_pfn, this_start_pfn);
5482 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5483 }
5484
633c0666 5485 if (*start_pfn == -1UL)
c713216d 5486 *start_pfn = 0;
c713216d
MG
5487}
5488
2a1e274a
MG
5489/*
5490 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5491 * assumption is made that zones within a node are ordered in monotonic
5492 * increasing memory addresses so that the "highest" populated zone is used
5493 */
b69a7288 5494static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5495{
5496 int zone_index;
5497 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5498 if (zone_index == ZONE_MOVABLE)
5499 continue;
5500
5501 if (arch_zone_highest_possible_pfn[zone_index] >
5502 arch_zone_lowest_possible_pfn[zone_index])
5503 break;
5504 }
5505
5506 VM_BUG_ON(zone_index == -1);
5507 movable_zone = zone_index;
5508}
5509
5510/*
5511 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5512 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5513 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5514 * in each node depending on the size of each node and how evenly kernelcore
5515 * is distributed. This helper function adjusts the zone ranges
5516 * provided by the architecture for a given node by using the end of the
5517 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5518 * zones within a node are in order of monotonic increases memory addresses
5519 */
b69a7288 5520static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5521 unsigned long zone_type,
5522 unsigned long node_start_pfn,
5523 unsigned long node_end_pfn,
5524 unsigned long *zone_start_pfn,
5525 unsigned long *zone_end_pfn)
5526{
5527 /* Only adjust if ZONE_MOVABLE is on this node */
5528 if (zone_movable_pfn[nid]) {
5529 /* Size ZONE_MOVABLE */
5530 if (zone_type == ZONE_MOVABLE) {
5531 *zone_start_pfn = zone_movable_pfn[nid];
5532 *zone_end_pfn = min(node_end_pfn,
5533 arch_zone_highest_possible_pfn[movable_zone]);
5534
2a1e274a
MG
5535 /* Check if this whole range is within ZONE_MOVABLE */
5536 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5537 *zone_start_pfn = *zone_end_pfn;
5538 }
5539}
5540
c713216d
MG
5541/*
5542 * Return the number of pages a zone spans in a node, including holes
5543 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5544 */
6ea6e688 5545static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5546 unsigned long zone_type,
7960aedd
ZY
5547 unsigned long node_start_pfn,
5548 unsigned long node_end_pfn,
d91749c1
TI
5549 unsigned long *zone_start_pfn,
5550 unsigned long *zone_end_pfn,
c713216d
MG
5551 unsigned long *ignored)
5552{
b5685e92 5553 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5554 if (!node_start_pfn && !node_end_pfn)
5555 return 0;
5556
7960aedd 5557 /* Get the start and end of the zone */
d91749c1
TI
5558 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5559 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5560 adjust_zone_range_for_zone_movable(nid, zone_type,
5561 node_start_pfn, node_end_pfn,
d91749c1 5562 zone_start_pfn, zone_end_pfn);
c713216d
MG
5563
5564 /* Check that this node has pages within the zone's required range */
d91749c1 5565 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5566 return 0;
5567
5568 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5569 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5570 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5571
5572 /* Return the spanned pages */
d91749c1 5573 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5574}
5575
5576/*
5577 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5578 * then all holes in the requested range will be accounted for.
c713216d 5579 */
32996250 5580unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5581 unsigned long range_start_pfn,
5582 unsigned long range_end_pfn)
5583{
96e907d1
TH
5584 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5585 unsigned long start_pfn, end_pfn;
5586 int i;
c713216d 5587
96e907d1
TH
5588 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5589 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5590 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5591 nr_absent -= end_pfn - start_pfn;
c713216d 5592 }
96e907d1 5593 return nr_absent;
c713216d
MG
5594}
5595
5596/**
5597 * absent_pages_in_range - Return number of page frames in holes within a range
5598 * @start_pfn: The start PFN to start searching for holes
5599 * @end_pfn: The end PFN to stop searching for holes
5600 *
88ca3b94 5601 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5602 */
5603unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5604 unsigned long end_pfn)
5605{
5606 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5607}
5608
5609/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5610static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5611 unsigned long zone_type,
7960aedd
ZY
5612 unsigned long node_start_pfn,
5613 unsigned long node_end_pfn,
c713216d
MG
5614 unsigned long *ignored)
5615{
96e907d1
TH
5616 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5617 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5618 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5619 unsigned long nr_absent;
9c7cd687 5620
b5685e92 5621 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5622 if (!node_start_pfn && !node_end_pfn)
5623 return 0;
5624
96e907d1
TH
5625 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5626 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5627
2a1e274a
MG
5628 adjust_zone_range_for_zone_movable(nid, zone_type,
5629 node_start_pfn, node_end_pfn,
5630 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5631 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5632
5633 /*
5634 * ZONE_MOVABLE handling.
5635 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5636 * and vice versa.
5637 */
5638 if (zone_movable_pfn[nid]) {
5639 if (mirrored_kernelcore) {
5640 unsigned long start_pfn, end_pfn;
5641 struct memblock_region *r;
5642
5643 for_each_memblock(memory, r) {
5644 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5645 zone_start_pfn, zone_end_pfn);
5646 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5647 zone_start_pfn, zone_end_pfn);
5648
5649 if (zone_type == ZONE_MOVABLE &&
5650 memblock_is_mirror(r))
5651 nr_absent += end_pfn - start_pfn;
5652
5653 if (zone_type == ZONE_NORMAL &&
5654 !memblock_is_mirror(r))
5655 nr_absent += end_pfn - start_pfn;
5656 }
5657 } else {
5658 if (zone_type == ZONE_NORMAL)
5659 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5660 }
5661 }
5662
5663 return nr_absent;
c713216d 5664}
0e0b864e 5665
0ee332c1 5666#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5667static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5668 unsigned long zone_type,
7960aedd
ZY
5669 unsigned long node_start_pfn,
5670 unsigned long node_end_pfn,
d91749c1
TI
5671 unsigned long *zone_start_pfn,
5672 unsigned long *zone_end_pfn,
c713216d
MG
5673 unsigned long *zones_size)
5674{
d91749c1
TI
5675 unsigned int zone;
5676
5677 *zone_start_pfn = node_start_pfn;
5678 for (zone = 0; zone < zone_type; zone++)
5679 *zone_start_pfn += zones_size[zone];
5680
5681 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5682
c713216d
MG
5683 return zones_size[zone_type];
5684}
5685
6ea6e688 5686static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5687 unsigned long zone_type,
7960aedd
ZY
5688 unsigned long node_start_pfn,
5689 unsigned long node_end_pfn,
c713216d
MG
5690 unsigned long *zholes_size)
5691{
5692 if (!zholes_size)
5693 return 0;
5694
5695 return zholes_size[zone_type];
5696}
20e6926d 5697
0ee332c1 5698#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5699
a3142c8e 5700static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5701 unsigned long node_start_pfn,
5702 unsigned long node_end_pfn,
5703 unsigned long *zones_size,
5704 unsigned long *zholes_size)
c713216d 5705{
febd5949 5706 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5707 enum zone_type i;
5708
febd5949
GZ
5709 for (i = 0; i < MAX_NR_ZONES; i++) {
5710 struct zone *zone = pgdat->node_zones + i;
d91749c1 5711 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5712 unsigned long size, real_size;
c713216d 5713
febd5949
GZ
5714 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5715 node_start_pfn,
5716 node_end_pfn,
d91749c1
TI
5717 &zone_start_pfn,
5718 &zone_end_pfn,
febd5949
GZ
5719 zones_size);
5720 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5721 node_start_pfn, node_end_pfn,
5722 zholes_size);
d91749c1
TI
5723 if (size)
5724 zone->zone_start_pfn = zone_start_pfn;
5725 else
5726 zone->zone_start_pfn = 0;
febd5949
GZ
5727 zone->spanned_pages = size;
5728 zone->present_pages = real_size;
5729
5730 totalpages += size;
5731 realtotalpages += real_size;
5732 }
5733
5734 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5735 pgdat->node_present_pages = realtotalpages;
5736 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5737 realtotalpages);
5738}
5739
835c134e
MG
5740#ifndef CONFIG_SPARSEMEM
5741/*
5742 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5743 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5744 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5745 * round what is now in bits to nearest long in bits, then return it in
5746 * bytes.
5747 */
7c45512d 5748static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5749{
5750 unsigned long usemapsize;
5751
7c45512d 5752 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5753 usemapsize = roundup(zonesize, pageblock_nr_pages);
5754 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5755 usemapsize *= NR_PAGEBLOCK_BITS;
5756 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5757
5758 return usemapsize / 8;
5759}
5760
5761static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5762 struct zone *zone,
5763 unsigned long zone_start_pfn,
5764 unsigned long zonesize)
835c134e 5765{
7c45512d 5766 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5767 zone->pageblock_flags = NULL;
58a01a45 5768 if (usemapsize)
6782832e
SS
5769 zone->pageblock_flags =
5770 memblock_virt_alloc_node_nopanic(usemapsize,
5771 pgdat->node_id);
835c134e
MG
5772}
5773#else
7c45512d
LT
5774static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5775 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5776#endif /* CONFIG_SPARSEMEM */
5777
d9c23400 5778#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5779
d9c23400 5780/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5781void __paginginit set_pageblock_order(void)
d9c23400 5782{
955c1cd7
AM
5783 unsigned int order;
5784
d9c23400
MG
5785 /* Check that pageblock_nr_pages has not already been setup */
5786 if (pageblock_order)
5787 return;
5788
955c1cd7
AM
5789 if (HPAGE_SHIFT > PAGE_SHIFT)
5790 order = HUGETLB_PAGE_ORDER;
5791 else
5792 order = MAX_ORDER - 1;
5793
d9c23400
MG
5794 /*
5795 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5796 * This value may be variable depending on boot parameters on IA64 and
5797 * powerpc.
d9c23400
MG
5798 */
5799 pageblock_order = order;
5800}
5801#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5802
ba72cb8c
MG
5803/*
5804 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5805 * is unused as pageblock_order is set at compile-time. See
5806 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5807 * the kernel config
ba72cb8c 5808 */
15ca220e 5809void __paginginit set_pageblock_order(void)
ba72cb8c 5810{
ba72cb8c 5811}
d9c23400
MG
5812
5813#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5814
01cefaef
JL
5815static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5816 unsigned long present_pages)
5817{
5818 unsigned long pages = spanned_pages;
5819
5820 /*
5821 * Provide a more accurate estimation if there are holes within
5822 * the zone and SPARSEMEM is in use. If there are holes within the
5823 * zone, each populated memory region may cost us one or two extra
5824 * memmap pages due to alignment because memmap pages for each
5825 * populated regions may not naturally algined on page boundary.
5826 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5827 */
5828 if (spanned_pages > present_pages + (present_pages >> 4) &&
5829 IS_ENABLED(CONFIG_SPARSEMEM))
5830 pages = present_pages;
5831
5832 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5833}
5834
1da177e4
LT
5835/*
5836 * Set up the zone data structures:
5837 * - mark all pages reserved
5838 * - mark all memory queues empty
5839 * - clear the memory bitmaps
6527af5d
MK
5840 *
5841 * NOTE: pgdat should get zeroed by caller.
1da177e4 5842 */
7f3eb55b 5843static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5844{
2f1b6248 5845 enum zone_type j;
ed8ece2e 5846 int nid = pgdat->node_id;
718127cc 5847 int ret;
1da177e4 5848
208d54e5 5849 pgdat_resize_init(pgdat);
8177a420
AA
5850#ifdef CONFIG_NUMA_BALANCING
5851 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5852 pgdat->numabalancing_migrate_nr_pages = 0;
5853 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5854#endif
5855#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5856 spin_lock_init(&pgdat->split_queue_lock);
5857 INIT_LIST_HEAD(&pgdat->split_queue);
5858 pgdat->split_queue_len = 0;
8177a420 5859#endif
1da177e4 5860 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5861 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5862#ifdef CONFIG_COMPACTION
5863 init_waitqueue_head(&pgdat->kcompactd_wait);
5864#endif
eefa864b 5865 pgdat_page_ext_init(pgdat);
a52633d8 5866 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5867 lruvec_init(node_lruvec(pgdat));
5f63b720 5868
1da177e4
LT
5869 for (j = 0; j < MAX_NR_ZONES; j++) {
5870 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5871 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5872 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5873
febd5949
GZ
5874 size = zone->spanned_pages;
5875 realsize = freesize = zone->present_pages;
1da177e4 5876
0e0b864e 5877 /*
9feedc9d 5878 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5879 * is used by this zone for memmap. This affects the watermark
5880 * and per-cpu initialisations
5881 */
01cefaef 5882 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5883 if (!is_highmem_idx(j)) {
5884 if (freesize >= memmap_pages) {
5885 freesize -= memmap_pages;
5886 if (memmap_pages)
5887 printk(KERN_DEBUG
5888 " %s zone: %lu pages used for memmap\n",
5889 zone_names[j], memmap_pages);
5890 } else
1170532b 5891 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5892 zone_names[j], memmap_pages, freesize);
5893 }
0e0b864e 5894
6267276f 5895 /* Account for reserved pages */
9feedc9d
JL
5896 if (j == 0 && freesize > dma_reserve) {
5897 freesize -= dma_reserve;
d903ef9f 5898 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5899 zone_names[0], dma_reserve);
0e0b864e
MG
5900 }
5901
98d2b0eb 5902 if (!is_highmem_idx(j))
9feedc9d 5903 nr_kernel_pages += freesize;
01cefaef
JL
5904 /* Charge for highmem memmap if there are enough kernel pages */
5905 else if (nr_kernel_pages > memmap_pages * 2)
5906 nr_kernel_pages -= memmap_pages;
9feedc9d 5907 nr_all_pages += freesize;
1da177e4 5908
9feedc9d
JL
5909 /*
5910 * Set an approximate value for lowmem here, it will be adjusted
5911 * when the bootmem allocator frees pages into the buddy system.
5912 * And all highmem pages will be managed by the buddy system.
5913 */
5914 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5915#ifdef CONFIG_NUMA
d5f541ed 5916 zone->node = nid;
a5f5f91d 5917 pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio)
9614634f 5918 / 100;
a5f5f91d 5919 pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5920#endif
1da177e4 5921 zone->name = zone_names[j];
a52633d8 5922 zone->zone_pgdat = pgdat;
1da177e4 5923 spin_lock_init(&zone->lock);
bdc8cb98 5924 zone_seqlock_init(zone);
ed8ece2e 5925 zone_pcp_init(zone);
81c0a2bb 5926
1da177e4
LT
5927 if (!size)
5928 continue;
5929
955c1cd7 5930 set_pageblock_order();
7c45512d 5931 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5932 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5933 BUG_ON(ret);
76cdd58e 5934 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5935 }
5936}
5937
577a32f6 5938static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5939{
b0aeba74 5940 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5941 unsigned long __maybe_unused offset = 0;
5942
1da177e4
LT
5943 /* Skip empty nodes */
5944 if (!pgdat->node_spanned_pages)
5945 return;
5946
d41dee36 5947#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5948 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5949 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5950 /* ia64 gets its own node_mem_map, before this, without bootmem */
5951 if (!pgdat->node_mem_map) {
b0aeba74 5952 unsigned long size, end;
d41dee36
AW
5953 struct page *map;
5954
e984bb43
BP
5955 /*
5956 * The zone's endpoints aren't required to be MAX_ORDER
5957 * aligned but the node_mem_map endpoints must be in order
5958 * for the buddy allocator to function correctly.
5959 */
108bcc96 5960 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5961 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5962 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5963 map = alloc_remap(pgdat->node_id, size);
5964 if (!map)
6782832e
SS
5965 map = memblock_virt_alloc_node_nopanic(size,
5966 pgdat->node_id);
a1c34a3b 5967 pgdat->node_mem_map = map + offset;
1da177e4 5968 }
12d810c1 5969#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5970 /*
5971 * With no DISCONTIG, the global mem_map is just set as node 0's
5972 */
c713216d 5973 if (pgdat == NODE_DATA(0)) {
1da177e4 5974 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5975#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5976 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5977 mem_map -= offset;
0ee332c1 5978#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5979 }
1da177e4 5980#endif
d41dee36 5981#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5982}
5983
9109fb7b
JW
5984void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5985 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5986{
9109fb7b 5987 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5988 unsigned long start_pfn = 0;
5989 unsigned long end_pfn = 0;
9109fb7b 5990
88fdf75d 5991 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5992 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5993
3a80a7fa 5994 reset_deferred_meminit(pgdat);
1da177e4
LT
5995 pgdat->node_id = nid;
5996 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5997 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5998#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5999 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6000 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6001 (u64)start_pfn << PAGE_SHIFT,
6002 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6003#else
6004 start_pfn = node_start_pfn;
7960aedd
ZY
6005#endif
6006 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6007 zones_size, zholes_size);
1da177e4
LT
6008
6009 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6010#ifdef CONFIG_FLAT_NODE_MEM_MAP
6011 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6012 nid, (unsigned long)pgdat,
6013 (unsigned long)pgdat->node_mem_map);
6014#endif
1da177e4 6015
7f3eb55b 6016 free_area_init_core(pgdat);
1da177e4
LT
6017}
6018
0ee332c1 6019#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6020
6021#if MAX_NUMNODES > 1
6022/*
6023 * Figure out the number of possible node ids.
6024 */
f9872caf 6025void __init setup_nr_node_ids(void)
418508c1 6026{
904a9553 6027 unsigned int highest;
418508c1 6028
904a9553 6029 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6030 nr_node_ids = highest + 1;
6031}
418508c1
MS
6032#endif
6033
1e01979c
TH
6034/**
6035 * node_map_pfn_alignment - determine the maximum internode alignment
6036 *
6037 * This function should be called after node map is populated and sorted.
6038 * It calculates the maximum power of two alignment which can distinguish
6039 * all the nodes.
6040 *
6041 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6042 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6043 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6044 * shifted, 1GiB is enough and this function will indicate so.
6045 *
6046 * This is used to test whether pfn -> nid mapping of the chosen memory
6047 * model has fine enough granularity to avoid incorrect mapping for the
6048 * populated node map.
6049 *
6050 * Returns the determined alignment in pfn's. 0 if there is no alignment
6051 * requirement (single node).
6052 */
6053unsigned long __init node_map_pfn_alignment(void)
6054{
6055 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6056 unsigned long start, end, mask;
1e01979c 6057 int last_nid = -1;
c13291a5 6058 int i, nid;
1e01979c 6059
c13291a5 6060 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6061 if (!start || last_nid < 0 || last_nid == nid) {
6062 last_nid = nid;
6063 last_end = end;
6064 continue;
6065 }
6066
6067 /*
6068 * Start with a mask granular enough to pin-point to the
6069 * start pfn and tick off bits one-by-one until it becomes
6070 * too coarse to separate the current node from the last.
6071 */
6072 mask = ~((1 << __ffs(start)) - 1);
6073 while (mask && last_end <= (start & (mask << 1)))
6074 mask <<= 1;
6075
6076 /* accumulate all internode masks */
6077 accl_mask |= mask;
6078 }
6079
6080 /* convert mask to number of pages */
6081 return ~accl_mask + 1;
6082}
6083
a6af2bc3 6084/* Find the lowest pfn for a node */
b69a7288 6085static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6086{
a6af2bc3 6087 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6088 unsigned long start_pfn;
6089 int i;
1abbfb41 6090
c13291a5
TH
6091 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6092 min_pfn = min(min_pfn, start_pfn);
c713216d 6093
a6af2bc3 6094 if (min_pfn == ULONG_MAX) {
1170532b 6095 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6096 return 0;
6097 }
6098
6099 return min_pfn;
c713216d
MG
6100}
6101
6102/**
6103 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6104 *
6105 * It returns the minimum PFN based on information provided via
7d018176 6106 * memblock_set_node().
c713216d
MG
6107 */
6108unsigned long __init find_min_pfn_with_active_regions(void)
6109{
6110 return find_min_pfn_for_node(MAX_NUMNODES);
6111}
6112
37b07e41
LS
6113/*
6114 * early_calculate_totalpages()
6115 * Sum pages in active regions for movable zone.
4b0ef1fe 6116 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6117 */
484f51f8 6118static unsigned long __init early_calculate_totalpages(void)
7e63efef 6119{
7e63efef 6120 unsigned long totalpages = 0;
c13291a5
TH
6121 unsigned long start_pfn, end_pfn;
6122 int i, nid;
6123
6124 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6125 unsigned long pages = end_pfn - start_pfn;
7e63efef 6126
37b07e41
LS
6127 totalpages += pages;
6128 if (pages)
4b0ef1fe 6129 node_set_state(nid, N_MEMORY);
37b07e41 6130 }
b8af2941 6131 return totalpages;
7e63efef
MG
6132}
6133
2a1e274a
MG
6134/*
6135 * Find the PFN the Movable zone begins in each node. Kernel memory
6136 * is spread evenly between nodes as long as the nodes have enough
6137 * memory. When they don't, some nodes will have more kernelcore than
6138 * others
6139 */
b224ef85 6140static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6141{
6142 int i, nid;
6143 unsigned long usable_startpfn;
6144 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6145 /* save the state before borrow the nodemask */
4b0ef1fe 6146 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6147 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6148 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6149 struct memblock_region *r;
b2f3eebe
TC
6150
6151 /* Need to find movable_zone earlier when movable_node is specified. */
6152 find_usable_zone_for_movable();
6153
6154 /*
6155 * If movable_node is specified, ignore kernelcore and movablecore
6156 * options.
6157 */
6158 if (movable_node_is_enabled()) {
136199f0
EM
6159 for_each_memblock(memory, r) {
6160 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6161 continue;
6162
136199f0 6163 nid = r->nid;
b2f3eebe 6164
136199f0 6165 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6166 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6167 min(usable_startpfn, zone_movable_pfn[nid]) :
6168 usable_startpfn;
6169 }
6170
6171 goto out2;
6172 }
2a1e274a 6173
342332e6
TI
6174 /*
6175 * If kernelcore=mirror is specified, ignore movablecore option
6176 */
6177 if (mirrored_kernelcore) {
6178 bool mem_below_4gb_not_mirrored = false;
6179
6180 for_each_memblock(memory, r) {
6181 if (memblock_is_mirror(r))
6182 continue;
6183
6184 nid = r->nid;
6185
6186 usable_startpfn = memblock_region_memory_base_pfn(r);
6187
6188 if (usable_startpfn < 0x100000) {
6189 mem_below_4gb_not_mirrored = true;
6190 continue;
6191 }
6192
6193 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6194 min(usable_startpfn, zone_movable_pfn[nid]) :
6195 usable_startpfn;
6196 }
6197
6198 if (mem_below_4gb_not_mirrored)
6199 pr_warn("This configuration results in unmirrored kernel memory.");
6200
6201 goto out2;
6202 }
6203
7e63efef 6204 /*
b2f3eebe 6205 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6206 * kernelcore that corresponds so that memory usable for
6207 * any allocation type is evenly spread. If both kernelcore
6208 * and movablecore are specified, then the value of kernelcore
6209 * will be used for required_kernelcore if it's greater than
6210 * what movablecore would have allowed.
6211 */
6212 if (required_movablecore) {
7e63efef
MG
6213 unsigned long corepages;
6214
6215 /*
6216 * Round-up so that ZONE_MOVABLE is at least as large as what
6217 * was requested by the user
6218 */
6219 required_movablecore =
6220 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6221 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6222 corepages = totalpages - required_movablecore;
6223
6224 required_kernelcore = max(required_kernelcore, corepages);
6225 }
6226
bde304bd
XQ
6227 /*
6228 * If kernelcore was not specified or kernelcore size is larger
6229 * than totalpages, there is no ZONE_MOVABLE.
6230 */
6231 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6232 goto out;
2a1e274a
MG
6233
6234 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6235 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6236
6237restart:
6238 /* Spread kernelcore memory as evenly as possible throughout nodes */
6239 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6240 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6241 unsigned long start_pfn, end_pfn;
6242
2a1e274a
MG
6243 /*
6244 * Recalculate kernelcore_node if the division per node
6245 * now exceeds what is necessary to satisfy the requested
6246 * amount of memory for the kernel
6247 */
6248 if (required_kernelcore < kernelcore_node)
6249 kernelcore_node = required_kernelcore / usable_nodes;
6250
6251 /*
6252 * As the map is walked, we track how much memory is usable
6253 * by the kernel using kernelcore_remaining. When it is
6254 * 0, the rest of the node is usable by ZONE_MOVABLE
6255 */
6256 kernelcore_remaining = kernelcore_node;
6257
6258 /* Go through each range of PFNs within this node */
c13291a5 6259 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6260 unsigned long size_pages;
6261
c13291a5 6262 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6263 if (start_pfn >= end_pfn)
6264 continue;
6265
6266 /* Account for what is only usable for kernelcore */
6267 if (start_pfn < usable_startpfn) {
6268 unsigned long kernel_pages;
6269 kernel_pages = min(end_pfn, usable_startpfn)
6270 - start_pfn;
6271
6272 kernelcore_remaining -= min(kernel_pages,
6273 kernelcore_remaining);
6274 required_kernelcore -= min(kernel_pages,
6275 required_kernelcore);
6276
6277 /* Continue if range is now fully accounted */
6278 if (end_pfn <= usable_startpfn) {
6279
6280 /*
6281 * Push zone_movable_pfn to the end so
6282 * that if we have to rebalance
6283 * kernelcore across nodes, we will
6284 * not double account here
6285 */
6286 zone_movable_pfn[nid] = end_pfn;
6287 continue;
6288 }
6289 start_pfn = usable_startpfn;
6290 }
6291
6292 /*
6293 * The usable PFN range for ZONE_MOVABLE is from
6294 * start_pfn->end_pfn. Calculate size_pages as the
6295 * number of pages used as kernelcore
6296 */
6297 size_pages = end_pfn - start_pfn;
6298 if (size_pages > kernelcore_remaining)
6299 size_pages = kernelcore_remaining;
6300 zone_movable_pfn[nid] = start_pfn + size_pages;
6301
6302 /*
6303 * Some kernelcore has been met, update counts and
6304 * break if the kernelcore for this node has been
b8af2941 6305 * satisfied
2a1e274a
MG
6306 */
6307 required_kernelcore -= min(required_kernelcore,
6308 size_pages);
6309 kernelcore_remaining -= size_pages;
6310 if (!kernelcore_remaining)
6311 break;
6312 }
6313 }
6314
6315 /*
6316 * If there is still required_kernelcore, we do another pass with one
6317 * less node in the count. This will push zone_movable_pfn[nid] further
6318 * along on the nodes that still have memory until kernelcore is
b8af2941 6319 * satisfied
2a1e274a
MG
6320 */
6321 usable_nodes--;
6322 if (usable_nodes && required_kernelcore > usable_nodes)
6323 goto restart;
6324
b2f3eebe 6325out2:
2a1e274a
MG
6326 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6327 for (nid = 0; nid < MAX_NUMNODES; nid++)
6328 zone_movable_pfn[nid] =
6329 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6330
20e6926d 6331out:
66918dcd 6332 /* restore the node_state */
4b0ef1fe 6333 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6334}
6335
4b0ef1fe
LJ
6336/* Any regular or high memory on that node ? */
6337static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6338{
37b07e41
LS
6339 enum zone_type zone_type;
6340
4b0ef1fe
LJ
6341 if (N_MEMORY == N_NORMAL_MEMORY)
6342 return;
6343
6344 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6345 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6346 if (populated_zone(zone)) {
4b0ef1fe
LJ
6347 node_set_state(nid, N_HIGH_MEMORY);
6348 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6349 zone_type <= ZONE_NORMAL)
6350 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6351 break;
6352 }
37b07e41 6353 }
37b07e41
LS
6354}
6355
c713216d
MG
6356/**
6357 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6358 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6359 *
6360 * This will call free_area_init_node() for each active node in the system.
7d018176 6361 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6362 * zone in each node and their holes is calculated. If the maximum PFN
6363 * between two adjacent zones match, it is assumed that the zone is empty.
6364 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6365 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6366 * starts where the previous one ended. For example, ZONE_DMA32 starts
6367 * at arch_max_dma_pfn.
6368 */
6369void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6370{
c13291a5
TH
6371 unsigned long start_pfn, end_pfn;
6372 int i, nid;
a6af2bc3 6373
c713216d
MG
6374 /* Record where the zone boundaries are */
6375 memset(arch_zone_lowest_possible_pfn, 0,
6376 sizeof(arch_zone_lowest_possible_pfn));
6377 memset(arch_zone_highest_possible_pfn, 0,
6378 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6379
6380 start_pfn = find_min_pfn_with_active_regions();
6381
6382 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6383 if (i == ZONE_MOVABLE)
6384 continue;
90cae1fe
OH
6385
6386 end_pfn = max(max_zone_pfn[i], start_pfn);
6387 arch_zone_lowest_possible_pfn[i] = start_pfn;
6388 arch_zone_highest_possible_pfn[i] = end_pfn;
6389
6390 start_pfn = end_pfn;
c713216d 6391 }
2a1e274a
MG
6392 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6393 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6394
6395 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6396 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6397 find_zone_movable_pfns_for_nodes();
c713216d 6398
c713216d 6399 /* Print out the zone ranges */
f88dfff5 6400 pr_info("Zone ranges:\n");
2a1e274a
MG
6401 for (i = 0; i < MAX_NR_ZONES; i++) {
6402 if (i == ZONE_MOVABLE)
6403 continue;
f88dfff5 6404 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6405 if (arch_zone_lowest_possible_pfn[i] ==
6406 arch_zone_highest_possible_pfn[i])
f88dfff5 6407 pr_cont("empty\n");
72f0ba02 6408 else
8d29e18a
JG
6409 pr_cont("[mem %#018Lx-%#018Lx]\n",
6410 (u64)arch_zone_lowest_possible_pfn[i]
6411 << PAGE_SHIFT,
6412 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6413 << PAGE_SHIFT) - 1);
2a1e274a
MG
6414 }
6415
6416 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6417 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6418 for (i = 0; i < MAX_NUMNODES; i++) {
6419 if (zone_movable_pfn[i])
8d29e18a
JG
6420 pr_info(" Node %d: %#018Lx\n", i,
6421 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6422 }
c713216d 6423
f2d52fe5 6424 /* Print out the early node map */
f88dfff5 6425 pr_info("Early memory node ranges\n");
c13291a5 6426 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6427 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6428 (u64)start_pfn << PAGE_SHIFT,
6429 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6430
6431 /* Initialise every node */
708614e6 6432 mminit_verify_pageflags_layout();
8ef82866 6433 setup_nr_node_ids();
c713216d
MG
6434 for_each_online_node(nid) {
6435 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6436 free_area_init_node(nid, NULL,
c713216d 6437 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6438
6439 /* Any memory on that node */
6440 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6441 node_set_state(nid, N_MEMORY);
6442 check_for_memory(pgdat, nid);
c713216d
MG
6443 }
6444}
2a1e274a 6445
7e63efef 6446static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6447{
6448 unsigned long long coremem;
6449 if (!p)
6450 return -EINVAL;
6451
6452 coremem = memparse(p, &p);
7e63efef 6453 *core = coremem >> PAGE_SHIFT;
2a1e274a 6454
7e63efef 6455 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6456 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6457
6458 return 0;
6459}
ed7ed365 6460
7e63efef
MG
6461/*
6462 * kernelcore=size sets the amount of memory for use for allocations that
6463 * cannot be reclaimed or migrated.
6464 */
6465static int __init cmdline_parse_kernelcore(char *p)
6466{
342332e6
TI
6467 /* parse kernelcore=mirror */
6468 if (parse_option_str(p, "mirror")) {
6469 mirrored_kernelcore = true;
6470 return 0;
6471 }
6472
7e63efef
MG
6473 return cmdline_parse_core(p, &required_kernelcore);
6474}
6475
6476/*
6477 * movablecore=size sets the amount of memory for use for allocations that
6478 * can be reclaimed or migrated.
6479 */
6480static int __init cmdline_parse_movablecore(char *p)
6481{
6482 return cmdline_parse_core(p, &required_movablecore);
6483}
6484
ed7ed365 6485early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6486early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6487
0ee332c1 6488#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6489
c3d5f5f0
JL
6490void adjust_managed_page_count(struct page *page, long count)
6491{
6492 spin_lock(&managed_page_count_lock);
6493 page_zone(page)->managed_pages += count;
6494 totalram_pages += count;
3dcc0571
JL
6495#ifdef CONFIG_HIGHMEM
6496 if (PageHighMem(page))
6497 totalhigh_pages += count;
6498#endif
c3d5f5f0
JL
6499 spin_unlock(&managed_page_count_lock);
6500}
3dcc0571 6501EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6502
11199692 6503unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6504{
11199692
JL
6505 void *pos;
6506 unsigned long pages = 0;
69afade7 6507
11199692
JL
6508 start = (void *)PAGE_ALIGN((unsigned long)start);
6509 end = (void *)((unsigned long)end & PAGE_MASK);
6510 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6511 if ((unsigned int)poison <= 0xFF)
11199692
JL
6512 memset(pos, poison, PAGE_SIZE);
6513 free_reserved_page(virt_to_page(pos));
69afade7
JL
6514 }
6515
6516 if (pages && s)
11199692 6517 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6518 s, pages << (PAGE_SHIFT - 10), start, end);
6519
6520 return pages;
6521}
11199692 6522EXPORT_SYMBOL(free_reserved_area);
69afade7 6523
cfa11e08
JL
6524#ifdef CONFIG_HIGHMEM
6525void free_highmem_page(struct page *page)
6526{
6527 __free_reserved_page(page);
6528 totalram_pages++;
7b4b2a0d 6529 page_zone(page)->managed_pages++;
cfa11e08
JL
6530 totalhigh_pages++;
6531}
6532#endif
6533
7ee3d4e8
JL
6534
6535void __init mem_init_print_info(const char *str)
6536{
6537 unsigned long physpages, codesize, datasize, rosize, bss_size;
6538 unsigned long init_code_size, init_data_size;
6539
6540 physpages = get_num_physpages();
6541 codesize = _etext - _stext;
6542 datasize = _edata - _sdata;
6543 rosize = __end_rodata - __start_rodata;
6544 bss_size = __bss_stop - __bss_start;
6545 init_data_size = __init_end - __init_begin;
6546 init_code_size = _einittext - _sinittext;
6547
6548 /*
6549 * Detect special cases and adjust section sizes accordingly:
6550 * 1) .init.* may be embedded into .data sections
6551 * 2) .init.text.* may be out of [__init_begin, __init_end],
6552 * please refer to arch/tile/kernel/vmlinux.lds.S.
6553 * 3) .rodata.* may be embedded into .text or .data sections.
6554 */
6555#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6556 do { \
6557 if (start <= pos && pos < end && size > adj) \
6558 size -= adj; \
6559 } while (0)
7ee3d4e8
JL
6560
6561 adj_init_size(__init_begin, __init_end, init_data_size,
6562 _sinittext, init_code_size);
6563 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6564 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6565 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6566 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6567
6568#undef adj_init_size
6569
756a025f 6570 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6571#ifdef CONFIG_HIGHMEM
756a025f 6572 ", %luK highmem"
7ee3d4e8 6573#endif
756a025f
JP
6574 "%s%s)\n",
6575 nr_free_pages() << (PAGE_SHIFT - 10),
6576 physpages << (PAGE_SHIFT - 10),
6577 codesize >> 10, datasize >> 10, rosize >> 10,
6578 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6579 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6580 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6581#ifdef CONFIG_HIGHMEM
756a025f 6582 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6583#endif
756a025f 6584 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6585}
6586
0e0b864e 6587/**
88ca3b94
RD
6588 * set_dma_reserve - set the specified number of pages reserved in the first zone
6589 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6590 *
013110a7 6591 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6592 * In the DMA zone, a significant percentage may be consumed by kernel image
6593 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6594 * function may optionally be used to account for unfreeable pages in the
6595 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6596 * smaller per-cpu batchsize.
0e0b864e
MG
6597 */
6598void __init set_dma_reserve(unsigned long new_dma_reserve)
6599{
6600 dma_reserve = new_dma_reserve;
6601}
6602
1da177e4
LT
6603void __init free_area_init(unsigned long *zones_size)
6604{
9109fb7b 6605 free_area_init_node(0, zones_size,
1da177e4
LT
6606 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6607}
1da177e4 6608
1da177e4
LT
6609static int page_alloc_cpu_notify(struct notifier_block *self,
6610 unsigned long action, void *hcpu)
6611{
6612 int cpu = (unsigned long)hcpu;
1da177e4 6613
8bb78442 6614 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6615 lru_add_drain_cpu(cpu);
9f8f2172
CL
6616 drain_pages(cpu);
6617
6618 /*
6619 * Spill the event counters of the dead processor
6620 * into the current processors event counters.
6621 * This artificially elevates the count of the current
6622 * processor.
6623 */
f8891e5e 6624 vm_events_fold_cpu(cpu);
9f8f2172
CL
6625
6626 /*
6627 * Zero the differential counters of the dead processor
6628 * so that the vm statistics are consistent.
6629 *
6630 * This is only okay since the processor is dead and cannot
6631 * race with what we are doing.
6632 */
2bb921e5 6633 cpu_vm_stats_fold(cpu);
1da177e4
LT
6634 }
6635 return NOTIFY_OK;
6636}
1da177e4
LT
6637
6638void __init page_alloc_init(void)
6639{
6640 hotcpu_notifier(page_alloc_cpu_notify, 0);
6641}
6642
cb45b0e9 6643/*
34b10060 6644 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6645 * or min_free_kbytes changes.
6646 */
6647static void calculate_totalreserve_pages(void)
6648{
6649 struct pglist_data *pgdat;
6650 unsigned long reserve_pages = 0;
2f6726e5 6651 enum zone_type i, j;
cb45b0e9
HA
6652
6653 for_each_online_pgdat(pgdat) {
281e3726
MG
6654
6655 pgdat->totalreserve_pages = 0;
6656
cb45b0e9
HA
6657 for (i = 0; i < MAX_NR_ZONES; i++) {
6658 struct zone *zone = pgdat->node_zones + i;
3484b2de 6659 long max = 0;
cb45b0e9
HA
6660
6661 /* Find valid and maximum lowmem_reserve in the zone */
6662 for (j = i; j < MAX_NR_ZONES; j++) {
6663 if (zone->lowmem_reserve[j] > max)
6664 max = zone->lowmem_reserve[j];
6665 }
6666
41858966
MG
6667 /* we treat the high watermark as reserved pages. */
6668 max += high_wmark_pages(zone);
cb45b0e9 6669
b40da049
JL
6670 if (max > zone->managed_pages)
6671 max = zone->managed_pages;
a8d01437 6672
281e3726 6673 pgdat->totalreserve_pages += max;
a8d01437 6674
cb45b0e9
HA
6675 reserve_pages += max;
6676 }
6677 }
6678 totalreserve_pages = reserve_pages;
6679}
6680
1da177e4
LT
6681/*
6682 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6683 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6684 * has a correct pages reserved value, so an adequate number of
6685 * pages are left in the zone after a successful __alloc_pages().
6686 */
6687static void setup_per_zone_lowmem_reserve(void)
6688{
6689 struct pglist_data *pgdat;
2f6726e5 6690 enum zone_type j, idx;
1da177e4 6691
ec936fc5 6692 for_each_online_pgdat(pgdat) {
1da177e4
LT
6693 for (j = 0; j < MAX_NR_ZONES; j++) {
6694 struct zone *zone = pgdat->node_zones + j;
b40da049 6695 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6696
6697 zone->lowmem_reserve[j] = 0;
6698
2f6726e5
CL
6699 idx = j;
6700 while (idx) {
1da177e4
LT
6701 struct zone *lower_zone;
6702
2f6726e5
CL
6703 idx--;
6704
1da177e4
LT
6705 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6706 sysctl_lowmem_reserve_ratio[idx] = 1;
6707
6708 lower_zone = pgdat->node_zones + idx;
b40da049 6709 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6710 sysctl_lowmem_reserve_ratio[idx];
b40da049 6711 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6712 }
6713 }
6714 }
cb45b0e9
HA
6715
6716 /* update totalreserve_pages */
6717 calculate_totalreserve_pages();
1da177e4
LT
6718}
6719
cfd3da1e 6720static void __setup_per_zone_wmarks(void)
1da177e4
LT
6721{
6722 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6723 unsigned long lowmem_pages = 0;
6724 struct zone *zone;
6725 unsigned long flags;
6726
6727 /* Calculate total number of !ZONE_HIGHMEM pages */
6728 for_each_zone(zone) {
6729 if (!is_highmem(zone))
b40da049 6730 lowmem_pages += zone->managed_pages;
1da177e4
LT
6731 }
6732
6733 for_each_zone(zone) {
ac924c60
AM
6734 u64 tmp;
6735
1125b4e3 6736 spin_lock_irqsave(&zone->lock, flags);
b40da049 6737 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6738 do_div(tmp, lowmem_pages);
1da177e4
LT
6739 if (is_highmem(zone)) {
6740 /*
669ed175
NP
6741 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6742 * need highmem pages, so cap pages_min to a small
6743 * value here.
6744 *
41858966 6745 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6746 * deltas control asynch page reclaim, and so should
669ed175 6747 * not be capped for highmem.
1da177e4 6748 */
90ae8d67 6749 unsigned long min_pages;
1da177e4 6750
b40da049 6751 min_pages = zone->managed_pages / 1024;
90ae8d67 6752 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6753 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6754 } else {
669ed175
NP
6755 /*
6756 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6757 * proportionate to the zone's size.
6758 */
41858966 6759 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6760 }
6761
795ae7a0
JW
6762 /*
6763 * Set the kswapd watermarks distance according to the
6764 * scale factor in proportion to available memory, but
6765 * ensure a minimum size on small systems.
6766 */
6767 tmp = max_t(u64, tmp >> 2,
6768 mult_frac(zone->managed_pages,
6769 watermark_scale_factor, 10000));
6770
6771 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6772 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6773
1125b4e3 6774 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6775 }
cb45b0e9
HA
6776
6777 /* update totalreserve_pages */
6778 calculate_totalreserve_pages();
1da177e4
LT
6779}
6780
cfd3da1e
MG
6781/**
6782 * setup_per_zone_wmarks - called when min_free_kbytes changes
6783 * or when memory is hot-{added|removed}
6784 *
6785 * Ensures that the watermark[min,low,high] values for each zone are set
6786 * correctly with respect to min_free_kbytes.
6787 */
6788void setup_per_zone_wmarks(void)
6789{
6790 mutex_lock(&zonelists_mutex);
6791 __setup_per_zone_wmarks();
6792 mutex_unlock(&zonelists_mutex);
6793}
6794
1da177e4
LT
6795/*
6796 * Initialise min_free_kbytes.
6797 *
6798 * For small machines we want it small (128k min). For large machines
6799 * we want it large (64MB max). But it is not linear, because network
6800 * bandwidth does not increase linearly with machine size. We use
6801 *
b8af2941 6802 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6803 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6804 *
6805 * which yields
6806 *
6807 * 16MB: 512k
6808 * 32MB: 724k
6809 * 64MB: 1024k
6810 * 128MB: 1448k
6811 * 256MB: 2048k
6812 * 512MB: 2896k
6813 * 1024MB: 4096k
6814 * 2048MB: 5792k
6815 * 4096MB: 8192k
6816 * 8192MB: 11584k
6817 * 16384MB: 16384k
6818 */
1b79acc9 6819int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6820{
6821 unsigned long lowmem_kbytes;
5f12733e 6822 int new_min_free_kbytes;
1da177e4
LT
6823
6824 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6825 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6826
6827 if (new_min_free_kbytes > user_min_free_kbytes) {
6828 min_free_kbytes = new_min_free_kbytes;
6829 if (min_free_kbytes < 128)
6830 min_free_kbytes = 128;
6831 if (min_free_kbytes > 65536)
6832 min_free_kbytes = 65536;
6833 } else {
6834 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6835 new_min_free_kbytes, user_min_free_kbytes);
6836 }
bc75d33f 6837 setup_per_zone_wmarks();
a6cccdc3 6838 refresh_zone_stat_thresholds();
1da177e4
LT
6839 setup_per_zone_lowmem_reserve();
6840 return 0;
6841}
bc22af74 6842core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6843
6844/*
b8af2941 6845 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6846 * that we can call two helper functions whenever min_free_kbytes
6847 * changes.
6848 */
cccad5b9 6849int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6850 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6851{
da8c757b
HP
6852 int rc;
6853
6854 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6855 if (rc)
6856 return rc;
6857
5f12733e
MH
6858 if (write) {
6859 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6860 setup_per_zone_wmarks();
5f12733e 6861 }
1da177e4
LT
6862 return 0;
6863}
6864
795ae7a0
JW
6865int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6866 void __user *buffer, size_t *length, loff_t *ppos)
6867{
6868 int rc;
6869
6870 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6871 if (rc)
6872 return rc;
6873
6874 if (write)
6875 setup_per_zone_wmarks();
6876
6877 return 0;
6878}
6879
9614634f 6880#ifdef CONFIG_NUMA
cccad5b9 6881int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6882 void __user *buffer, size_t *length, loff_t *ppos)
9614634f 6883{
a5f5f91d 6884 struct pglist_data *pgdat;
9614634f
CL
6885 struct zone *zone;
6886 int rc;
6887
8d65af78 6888 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6889 if (rc)
6890 return rc;
6891
a5f5f91d
MG
6892 for_each_online_pgdat(pgdat)
6893 pgdat->min_slab_pages = 0;
6894
9614634f 6895 for_each_zone(zone)
a5f5f91d 6896 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f
CL
6897 sysctl_min_unmapped_ratio) / 100;
6898 return 0;
6899}
0ff38490 6900
cccad5b9 6901int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6902 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6903{
a5f5f91d 6904 struct pglist_data *pgdat;
0ff38490
CL
6905 struct zone *zone;
6906 int rc;
6907
8d65af78 6908 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6909 if (rc)
6910 return rc;
6911
a5f5f91d
MG
6912 for_each_online_pgdat(pgdat)
6913 pgdat->min_slab_pages = 0;
6914
0ff38490 6915 for_each_zone(zone)
a5f5f91d 6916 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490
CL
6917 sysctl_min_slab_ratio) / 100;
6918 return 0;
6919}
9614634f
CL
6920#endif
6921
1da177e4
LT
6922/*
6923 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6924 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6925 * whenever sysctl_lowmem_reserve_ratio changes.
6926 *
6927 * The reserve ratio obviously has absolutely no relation with the
41858966 6928 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6929 * if in function of the boot time zone sizes.
6930 */
cccad5b9 6931int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6932 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6933{
8d65af78 6934 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6935 setup_per_zone_lowmem_reserve();
6936 return 0;
6937}
6938
8ad4b1fb
RS
6939/*
6940 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6941 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6942 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6943 */
cccad5b9 6944int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6945 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6946{
6947 struct zone *zone;
7cd2b0a3 6948 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6949 int ret;
6950
7cd2b0a3
DR
6951 mutex_lock(&pcp_batch_high_lock);
6952 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6953
8d65af78 6954 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6955 if (!write || ret < 0)
6956 goto out;
6957
6958 /* Sanity checking to avoid pcp imbalance */
6959 if (percpu_pagelist_fraction &&
6960 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6961 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6962 ret = -EINVAL;
6963 goto out;
6964 }
6965
6966 /* No change? */
6967 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6968 goto out;
c8e251fa 6969
364df0eb 6970 for_each_populated_zone(zone) {
7cd2b0a3
DR
6971 unsigned int cpu;
6972
22a7f12b 6973 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6974 pageset_set_high_and_batch(zone,
6975 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6976 }
7cd2b0a3 6977out:
c8e251fa 6978 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6979 return ret;
8ad4b1fb
RS
6980}
6981
a9919c79 6982#ifdef CONFIG_NUMA
f034b5d4 6983int hashdist = HASHDIST_DEFAULT;
1da177e4 6984
1da177e4
LT
6985static int __init set_hashdist(char *str)
6986{
6987 if (!str)
6988 return 0;
6989 hashdist = simple_strtoul(str, &str, 0);
6990 return 1;
6991}
6992__setup("hashdist=", set_hashdist);
6993#endif
6994
6995/*
6996 * allocate a large system hash table from bootmem
6997 * - it is assumed that the hash table must contain an exact power-of-2
6998 * quantity of entries
6999 * - limit is the number of hash buckets, not the total allocation size
7000 */
7001void *__init alloc_large_system_hash(const char *tablename,
7002 unsigned long bucketsize,
7003 unsigned long numentries,
7004 int scale,
7005 int flags,
7006 unsigned int *_hash_shift,
7007 unsigned int *_hash_mask,
31fe62b9
TB
7008 unsigned long low_limit,
7009 unsigned long high_limit)
1da177e4 7010{
31fe62b9 7011 unsigned long long max = high_limit;
1da177e4
LT
7012 unsigned long log2qty, size;
7013 void *table = NULL;
7014
7015 /* allow the kernel cmdline to have a say */
7016 if (!numentries) {
7017 /* round applicable memory size up to nearest megabyte */
04903664 7018 numentries = nr_kernel_pages;
a7e83318
JZ
7019
7020 /* It isn't necessary when PAGE_SIZE >= 1MB */
7021 if (PAGE_SHIFT < 20)
7022 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7023
7024 /* limit to 1 bucket per 2^scale bytes of low memory */
7025 if (scale > PAGE_SHIFT)
7026 numentries >>= (scale - PAGE_SHIFT);
7027 else
7028 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7029
7030 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7031 if (unlikely(flags & HASH_SMALL)) {
7032 /* Makes no sense without HASH_EARLY */
7033 WARN_ON(!(flags & HASH_EARLY));
7034 if (!(numentries >> *_hash_shift)) {
7035 numentries = 1UL << *_hash_shift;
7036 BUG_ON(!numentries);
7037 }
7038 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7039 numentries = PAGE_SIZE / bucketsize;
1da177e4 7040 }
6e692ed3 7041 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7042
7043 /* limit allocation size to 1/16 total memory by default */
7044 if (max == 0) {
7045 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7046 do_div(max, bucketsize);
7047 }
074b8517 7048 max = min(max, 0x80000000ULL);
1da177e4 7049
31fe62b9
TB
7050 if (numentries < low_limit)
7051 numentries = low_limit;
1da177e4
LT
7052 if (numentries > max)
7053 numentries = max;
7054
f0d1b0b3 7055 log2qty = ilog2(numentries);
1da177e4
LT
7056
7057 do {
7058 size = bucketsize << log2qty;
7059 if (flags & HASH_EARLY)
6782832e 7060 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7061 else if (hashdist)
7062 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7063 else {
1037b83b
ED
7064 /*
7065 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7066 * some pages at the end of hash table which
7067 * alloc_pages_exact() automatically does
1037b83b 7068 */
264ef8a9 7069 if (get_order(size) < MAX_ORDER) {
a1dd268c 7070 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7071 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7072 }
1da177e4
LT
7073 }
7074 } while (!table && size > PAGE_SIZE && --log2qty);
7075
7076 if (!table)
7077 panic("Failed to allocate %s hash table\n", tablename);
7078
1170532b
JP
7079 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7080 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7081
7082 if (_hash_shift)
7083 *_hash_shift = log2qty;
7084 if (_hash_mask)
7085 *_hash_mask = (1 << log2qty) - 1;
7086
7087 return table;
7088}
a117e66e 7089
a5d76b54 7090/*
80934513
MK
7091 * This function checks whether pageblock includes unmovable pages or not.
7092 * If @count is not zero, it is okay to include less @count unmovable pages
7093 *
b8af2941 7094 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7095 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7096 * expect this function should be exact.
a5d76b54 7097 */
b023f468
WC
7098bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7099 bool skip_hwpoisoned_pages)
49ac8255
KH
7100{
7101 unsigned long pfn, iter, found;
47118af0
MN
7102 int mt;
7103
49ac8255
KH
7104 /*
7105 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7106 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7107 */
7108 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7109 return false;
47118af0
MN
7110 mt = get_pageblock_migratetype(page);
7111 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7112 return false;
49ac8255
KH
7113
7114 pfn = page_to_pfn(page);
7115 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7116 unsigned long check = pfn + iter;
7117
29723fcc 7118 if (!pfn_valid_within(check))
49ac8255 7119 continue;
29723fcc 7120
49ac8255 7121 page = pfn_to_page(check);
c8721bbb
NH
7122
7123 /*
7124 * Hugepages are not in LRU lists, but they're movable.
7125 * We need not scan over tail pages bacause we don't
7126 * handle each tail page individually in migration.
7127 */
7128 if (PageHuge(page)) {
7129 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7130 continue;
7131 }
7132
97d255c8
MK
7133 /*
7134 * We can't use page_count without pin a page
7135 * because another CPU can free compound page.
7136 * This check already skips compound tails of THP
0139aa7b 7137 * because their page->_refcount is zero at all time.
97d255c8 7138 */
fe896d18 7139 if (!page_ref_count(page)) {
49ac8255
KH
7140 if (PageBuddy(page))
7141 iter += (1 << page_order(page)) - 1;
7142 continue;
7143 }
97d255c8 7144
b023f468
WC
7145 /*
7146 * The HWPoisoned page may be not in buddy system, and
7147 * page_count() is not 0.
7148 */
7149 if (skip_hwpoisoned_pages && PageHWPoison(page))
7150 continue;
7151
49ac8255
KH
7152 if (!PageLRU(page))
7153 found++;
7154 /*
6b4f7799
JW
7155 * If there are RECLAIMABLE pages, we need to check
7156 * it. But now, memory offline itself doesn't call
7157 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7158 */
7159 /*
7160 * If the page is not RAM, page_count()should be 0.
7161 * we don't need more check. This is an _used_ not-movable page.
7162 *
7163 * The problematic thing here is PG_reserved pages. PG_reserved
7164 * is set to both of a memory hole page and a _used_ kernel
7165 * page at boot.
7166 */
7167 if (found > count)
80934513 7168 return true;
49ac8255 7169 }
80934513 7170 return false;
49ac8255
KH
7171}
7172
7173bool is_pageblock_removable_nolock(struct page *page)
7174{
656a0706
MH
7175 struct zone *zone;
7176 unsigned long pfn;
687875fb
MH
7177
7178 /*
7179 * We have to be careful here because we are iterating over memory
7180 * sections which are not zone aware so we might end up outside of
7181 * the zone but still within the section.
656a0706
MH
7182 * We have to take care about the node as well. If the node is offline
7183 * its NODE_DATA will be NULL - see page_zone.
687875fb 7184 */
656a0706
MH
7185 if (!node_online(page_to_nid(page)))
7186 return false;
7187
7188 zone = page_zone(page);
7189 pfn = page_to_pfn(page);
108bcc96 7190 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7191 return false;
7192
b023f468 7193 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7194}
0c0e6195 7195
080fe206 7196#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7197
7198static unsigned long pfn_max_align_down(unsigned long pfn)
7199{
7200 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7201 pageblock_nr_pages) - 1);
7202}
7203
7204static unsigned long pfn_max_align_up(unsigned long pfn)
7205{
7206 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7207 pageblock_nr_pages));
7208}
7209
041d3a8c 7210/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7211static int __alloc_contig_migrate_range(struct compact_control *cc,
7212 unsigned long start, unsigned long end)
041d3a8c
MN
7213{
7214 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7215 unsigned long nr_reclaimed;
041d3a8c
MN
7216 unsigned long pfn = start;
7217 unsigned int tries = 0;
7218 int ret = 0;
7219
be49a6e1 7220 migrate_prep();
041d3a8c 7221
bb13ffeb 7222 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7223 if (fatal_signal_pending(current)) {
7224 ret = -EINTR;
7225 break;
7226 }
7227
bb13ffeb
MG
7228 if (list_empty(&cc->migratepages)) {
7229 cc->nr_migratepages = 0;
edc2ca61 7230 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7231 if (!pfn) {
7232 ret = -EINTR;
7233 break;
7234 }
7235 tries = 0;
7236 } else if (++tries == 5) {
7237 ret = ret < 0 ? ret : -EBUSY;
7238 break;
7239 }
7240
beb51eaa
MK
7241 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7242 &cc->migratepages);
7243 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7244
9c620e2b 7245 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7246 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7247 }
2a6f5124
SP
7248 if (ret < 0) {
7249 putback_movable_pages(&cc->migratepages);
7250 return ret;
7251 }
7252 return 0;
041d3a8c
MN
7253}
7254
7255/**
7256 * alloc_contig_range() -- tries to allocate given range of pages
7257 * @start: start PFN to allocate
7258 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7259 * @migratetype: migratetype of the underlaying pageblocks (either
7260 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7261 * in range must have the same migratetype and it must
7262 * be either of the two.
041d3a8c
MN
7263 *
7264 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7265 * aligned, however it's the caller's responsibility to guarantee that
7266 * we are the only thread that changes migrate type of pageblocks the
7267 * pages fall in.
7268 *
7269 * The PFN range must belong to a single zone.
7270 *
7271 * Returns zero on success or negative error code. On success all
7272 * pages which PFN is in [start, end) are allocated for the caller and
7273 * need to be freed with free_contig_range().
7274 */
0815f3d8
MN
7275int alloc_contig_range(unsigned long start, unsigned long end,
7276 unsigned migratetype)
041d3a8c 7277{
041d3a8c 7278 unsigned long outer_start, outer_end;
d00181b9
KS
7279 unsigned int order;
7280 int ret = 0;
041d3a8c 7281
bb13ffeb
MG
7282 struct compact_control cc = {
7283 .nr_migratepages = 0,
7284 .order = -1,
7285 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7286 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7287 .ignore_skip_hint = true,
7288 };
7289 INIT_LIST_HEAD(&cc.migratepages);
7290
041d3a8c
MN
7291 /*
7292 * What we do here is we mark all pageblocks in range as
7293 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7294 * have different sizes, and due to the way page allocator
7295 * work, we align the range to biggest of the two pages so
7296 * that page allocator won't try to merge buddies from
7297 * different pageblocks and change MIGRATE_ISOLATE to some
7298 * other migration type.
7299 *
7300 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7301 * migrate the pages from an unaligned range (ie. pages that
7302 * we are interested in). This will put all the pages in
7303 * range back to page allocator as MIGRATE_ISOLATE.
7304 *
7305 * When this is done, we take the pages in range from page
7306 * allocator removing them from the buddy system. This way
7307 * page allocator will never consider using them.
7308 *
7309 * This lets us mark the pageblocks back as
7310 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7311 * aligned range but not in the unaligned, original range are
7312 * put back to page allocator so that buddy can use them.
7313 */
7314
7315 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7316 pfn_max_align_up(end), migratetype,
7317 false);
041d3a8c 7318 if (ret)
86a595f9 7319 return ret;
041d3a8c 7320
8ef5849f
JK
7321 /*
7322 * In case of -EBUSY, we'd like to know which page causes problem.
7323 * So, just fall through. We will check it in test_pages_isolated().
7324 */
bb13ffeb 7325 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7326 if (ret && ret != -EBUSY)
041d3a8c
MN
7327 goto done;
7328
7329 /*
7330 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7331 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7332 * more, all pages in [start, end) are free in page allocator.
7333 * What we are going to do is to allocate all pages from
7334 * [start, end) (that is remove them from page allocator).
7335 *
7336 * The only problem is that pages at the beginning and at the
7337 * end of interesting range may be not aligned with pages that
7338 * page allocator holds, ie. they can be part of higher order
7339 * pages. Because of this, we reserve the bigger range and
7340 * once this is done free the pages we are not interested in.
7341 *
7342 * We don't have to hold zone->lock here because the pages are
7343 * isolated thus they won't get removed from buddy.
7344 */
7345
7346 lru_add_drain_all();
510f5507 7347 drain_all_pages(cc.zone);
041d3a8c
MN
7348
7349 order = 0;
7350 outer_start = start;
7351 while (!PageBuddy(pfn_to_page(outer_start))) {
7352 if (++order >= MAX_ORDER) {
8ef5849f
JK
7353 outer_start = start;
7354 break;
041d3a8c
MN
7355 }
7356 outer_start &= ~0UL << order;
7357 }
7358
8ef5849f
JK
7359 if (outer_start != start) {
7360 order = page_order(pfn_to_page(outer_start));
7361
7362 /*
7363 * outer_start page could be small order buddy page and
7364 * it doesn't include start page. Adjust outer_start
7365 * in this case to report failed page properly
7366 * on tracepoint in test_pages_isolated()
7367 */
7368 if (outer_start + (1UL << order) <= start)
7369 outer_start = start;
7370 }
7371
041d3a8c 7372 /* Make sure the range is really isolated. */
b023f468 7373 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7374 pr_info("%s: [%lx, %lx) PFNs busy\n",
7375 __func__, outer_start, end);
041d3a8c
MN
7376 ret = -EBUSY;
7377 goto done;
7378 }
7379
49f223a9 7380 /* Grab isolated pages from freelists. */
bb13ffeb 7381 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7382 if (!outer_end) {
7383 ret = -EBUSY;
7384 goto done;
7385 }
7386
7387 /* Free head and tail (if any) */
7388 if (start != outer_start)
7389 free_contig_range(outer_start, start - outer_start);
7390 if (end != outer_end)
7391 free_contig_range(end, outer_end - end);
7392
7393done:
7394 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7395 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7396 return ret;
7397}
7398
7399void free_contig_range(unsigned long pfn, unsigned nr_pages)
7400{
bcc2b02f
MS
7401 unsigned int count = 0;
7402
7403 for (; nr_pages--; pfn++) {
7404 struct page *page = pfn_to_page(pfn);
7405
7406 count += page_count(page) != 1;
7407 __free_page(page);
7408 }
7409 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7410}
7411#endif
7412
4ed7e022 7413#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7414/*
7415 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7416 * page high values need to be recalulated.
7417 */
4ed7e022
JL
7418void __meminit zone_pcp_update(struct zone *zone)
7419{
0a647f38 7420 unsigned cpu;
c8e251fa 7421 mutex_lock(&pcp_batch_high_lock);
0a647f38 7422 for_each_possible_cpu(cpu)
169f6c19
CS
7423 pageset_set_high_and_batch(zone,
7424 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7425 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7426}
7427#endif
7428
340175b7
JL
7429void zone_pcp_reset(struct zone *zone)
7430{
7431 unsigned long flags;
5a883813
MK
7432 int cpu;
7433 struct per_cpu_pageset *pset;
340175b7
JL
7434
7435 /* avoid races with drain_pages() */
7436 local_irq_save(flags);
7437 if (zone->pageset != &boot_pageset) {
5a883813
MK
7438 for_each_online_cpu(cpu) {
7439 pset = per_cpu_ptr(zone->pageset, cpu);
7440 drain_zonestat(zone, pset);
7441 }
340175b7
JL
7442 free_percpu(zone->pageset);
7443 zone->pageset = &boot_pageset;
7444 }
7445 local_irq_restore(flags);
7446}
7447
6dcd73d7 7448#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7449/*
b9eb6319
JK
7450 * All pages in the range must be in a single zone and isolated
7451 * before calling this.
0c0e6195
KH
7452 */
7453void
7454__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7455{
7456 struct page *page;
7457 struct zone *zone;
7aeb09f9 7458 unsigned int order, i;
0c0e6195
KH
7459 unsigned long pfn;
7460 unsigned long flags;
7461 /* find the first valid pfn */
7462 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7463 if (pfn_valid(pfn))
7464 break;
7465 if (pfn == end_pfn)
7466 return;
7467 zone = page_zone(pfn_to_page(pfn));
7468 spin_lock_irqsave(&zone->lock, flags);
7469 pfn = start_pfn;
7470 while (pfn < end_pfn) {
7471 if (!pfn_valid(pfn)) {
7472 pfn++;
7473 continue;
7474 }
7475 page = pfn_to_page(pfn);
b023f468
WC
7476 /*
7477 * The HWPoisoned page may be not in buddy system, and
7478 * page_count() is not 0.
7479 */
7480 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7481 pfn++;
7482 SetPageReserved(page);
7483 continue;
7484 }
7485
0c0e6195
KH
7486 BUG_ON(page_count(page));
7487 BUG_ON(!PageBuddy(page));
7488 order = page_order(page);
7489#ifdef CONFIG_DEBUG_VM
1170532b
JP
7490 pr_info("remove from free list %lx %d %lx\n",
7491 pfn, 1 << order, end_pfn);
0c0e6195
KH
7492#endif
7493 list_del(&page->lru);
7494 rmv_page_order(page);
7495 zone->free_area[order].nr_free--;
0c0e6195
KH
7496 for (i = 0; i < (1 << order); i++)
7497 SetPageReserved((page+i));
7498 pfn += (1 << order);
7499 }
7500 spin_unlock_irqrestore(&zone->lock, flags);
7501}
7502#endif
8d22ba1b 7503
8d22ba1b
WF
7504bool is_free_buddy_page(struct page *page)
7505{
7506 struct zone *zone = page_zone(page);
7507 unsigned long pfn = page_to_pfn(page);
7508 unsigned long flags;
7aeb09f9 7509 unsigned int order;
8d22ba1b
WF
7510
7511 spin_lock_irqsave(&zone->lock, flags);
7512 for (order = 0; order < MAX_ORDER; order++) {
7513 struct page *page_head = page - (pfn & ((1 << order) - 1));
7514
7515 if (PageBuddy(page_head) && page_order(page_head) >= order)
7516 break;
7517 }
7518 spin_unlock_irqrestore(&zone->lock, flags);
7519
7520 return order < MAX_ORDER;
7521}