]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: reduce number of alloc_pages* functions' parameters
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
e30825f1 59#include <linux/page_ext.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
48c96a36 62#include <linux/page_owner.h>
1da177e4 63
7ee3d4e8 64#include <asm/sections.h>
1da177e4 65#include <asm/tlbflush.h>
ac924c60 66#include <asm/div64.h>
1da177e4
LT
67#include "internal.h"
68
c8e251fa
CS
69/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 71#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 87int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
88#endif
89
1da177e4 90/*
13808910 91 * Array of node states.
1da177e4 92 */
13808910
CL
93nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96#ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98#ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
100#endif
101#ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
103#endif
104 [N_CPU] = { { [0] = 1UL } },
105#endif /* NUMA */
106};
107EXPORT_SYMBOL(node_states);
108
c3d5f5f0
JL
109/* Protect totalram_pages and zone->managed_pages */
110static DEFINE_SPINLOCK(managed_page_count_lock);
111
6c231b7b 112unsigned long totalram_pages __read_mostly;
cb45b0e9 113unsigned long totalreserve_pages __read_mostly;
e48322ab 114unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
115/*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121unsigned long dirty_balance_reserve __read_mostly;
122
1b76b02f 123int percpu_pagelist_fraction;
dcce284a 124gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 125
452aa699
RW
126#ifdef CONFIG_PM_SLEEP
127/*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
c9e664f1
RW
135
136static gfp_t saved_gfp_mask;
137
138void pm_restore_gfp_mask(void)
452aa699
RW
139{
140 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
452aa699
RW
145}
146
c9e664f1 147void pm_restrict_gfp_mask(void)
452aa699 148{
452aa699 149 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 153}
f90ac398
MG
154
155bool pm_suspended_storage(void)
156{
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160}
452aa699
RW
161#endif /* CONFIG_PM_SLEEP */
162
d9c23400
MG
163#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164int pageblock_order __read_mostly;
165#endif
166
d98c7a09 167static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 168
1da177e4
LT
169/*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
1da177e4 179 */
2f1b6248 180int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 256,
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 256,
fb0e7942 186#endif
e53ef38d 187#ifdef CONFIG_HIGHMEM
2a1e274a 188 32,
e53ef38d 189#endif
2a1e274a 190 32,
2f1b6248 191};
1da177e4
LT
192
193EXPORT_SYMBOL(totalram_pages);
1da177e4 194
15ad7cdc 195static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 "DMA",
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 "DMA32",
fb0e7942 201#endif
2f1b6248 202 "Normal",
e53ef38d 203#ifdef CONFIG_HIGHMEM
2a1e274a 204 "HighMem",
e53ef38d 205#endif
2a1e274a 206 "Movable",
2f1b6248
CL
207};
208
1da177e4 209int min_free_kbytes = 1024;
42aa83cb 210int user_min_free_kbytes = -1;
1da177e4 211
2c85f51d
JB
212static unsigned long __meminitdata nr_kernel_pages;
213static unsigned long __meminitdata nr_all_pages;
a3142c8e 214static unsigned long __meminitdata dma_reserve;
1da177e4 215
0ee332c1
TH
216#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __initdata required_kernelcore;
220static unsigned long __initdata required_movablecore;
221static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224int movable_zone;
225EXPORT_SYMBOL(movable_zone);
226#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 227
418508c1
MS
228#if MAX_NUMNODES > 1
229int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 230int nr_online_nodes __read_mostly = 1;
418508c1 231EXPORT_SYMBOL(nr_node_ids);
62bc62a8 232EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
233#endif
234
a9263751
VB
235/*
236 * Structure for holding the mostly immutable allocation parameters passed
237 * between alloc_pages* family of functions.
238 *
239 * nodemask, migratetype and high_zoneidx are initialized only once in
240 * __alloc_pages_nodemask() and then never change.
241 *
242 * zonelist, preferred_zone and classzone_idx are set first in
243 * __alloc_pages_nodemask() for the fast path, and might be later changed
244 * in __alloc_pages_slowpath(). All other functions pass the whole strucure
245 * by a const pointer.
246 */
247struct alloc_context {
248 struct zonelist *zonelist;
249 nodemask_t *nodemask;
250 struct zone *preferred_zone;
251 int classzone_idx;
252 int migratetype;
253 enum zone_type high_zoneidx;
254};
255
9ef9acb0
MG
256int page_group_by_mobility_disabled __read_mostly;
257
ee6f509c 258void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 259{
5d0f3f72
KM
260 if (unlikely(page_group_by_mobility_disabled &&
261 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
262 migratetype = MIGRATE_UNMOVABLE;
263
b2a0ac88
MG
264 set_pageblock_flags_group(page, (unsigned long)migratetype,
265 PB_migrate, PB_migrate_end);
266}
267
7f33d49a
RW
268bool oom_killer_disabled __read_mostly;
269
13e7444b 270#ifdef CONFIG_DEBUG_VM
c6a57e19 271static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 272{
bdc8cb98
DH
273 int ret = 0;
274 unsigned seq;
275 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 276 unsigned long sp, start_pfn;
c6a57e19 277
bdc8cb98
DH
278 do {
279 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
280 start_pfn = zone->zone_start_pfn;
281 sp = zone->spanned_pages;
108bcc96 282 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
283 ret = 1;
284 } while (zone_span_seqretry(zone, seq));
285
b5e6a5a2 286 if (ret)
613813e8
DH
287 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
288 pfn, zone_to_nid(zone), zone->name,
289 start_pfn, start_pfn + sp);
b5e6a5a2 290
bdc8cb98 291 return ret;
c6a57e19
DH
292}
293
294static int page_is_consistent(struct zone *zone, struct page *page)
295{
14e07298 296 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 297 return 0;
1da177e4 298 if (zone != page_zone(page))
c6a57e19
DH
299 return 0;
300
301 return 1;
302}
303/*
304 * Temporary debugging check for pages not lying within a given zone.
305 */
306static int bad_range(struct zone *zone, struct page *page)
307{
308 if (page_outside_zone_boundaries(zone, page))
1da177e4 309 return 1;
c6a57e19
DH
310 if (!page_is_consistent(zone, page))
311 return 1;
312
1da177e4
LT
313 return 0;
314}
13e7444b
NP
315#else
316static inline int bad_range(struct zone *zone, struct page *page)
317{
318 return 0;
319}
320#endif
321
d230dec1
KS
322static void bad_page(struct page *page, const char *reason,
323 unsigned long bad_flags)
1da177e4 324{
d936cf9b
HD
325 static unsigned long resume;
326 static unsigned long nr_shown;
327 static unsigned long nr_unshown;
328
2a7684a2
WF
329 /* Don't complain about poisoned pages */
330 if (PageHWPoison(page)) {
22b751c3 331 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
332 return;
333 }
334
d936cf9b
HD
335 /*
336 * Allow a burst of 60 reports, then keep quiet for that minute;
337 * or allow a steady drip of one report per second.
338 */
339 if (nr_shown == 60) {
340 if (time_before(jiffies, resume)) {
341 nr_unshown++;
342 goto out;
343 }
344 if (nr_unshown) {
1e9e6365
HD
345 printk(KERN_ALERT
346 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
347 nr_unshown);
348 nr_unshown = 0;
349 }
350 nr_shown = 0;
351 }
352 if (nr_shown++ == 0)
353 resume = jiffies + 60 * HZ;
354
1e9e6365 355 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 356 current->comm, page_to_pfn(page));
f0b791a3 357 dump_page_badflags(page, reason, bad_flags);
3dc14741 358
4f31888c 359 print_modules();
1da177e4 360 dump_stack();
d936cf9b 361out:
8cc3b392 362 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 363 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 364 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
365}
366
1da177e4
LT
367/*
368 * Higher-order pages are called "compound pages". They are structured thusly:
369 *
370 * The first PAGE_SIZE page is called the "head page".
371 *
372 * The remaining PAGE_SIZE pages are called "tail pages".
373 *
6416b9fa
WSH
374 * All pages have PG_compound set. All tail pages have their ->first_page
375 * pointing at the head page.
1da177e4 376 *
41d78ba5
HD
377 * The first tail page's ->lru.next holds the address of the compound page's
378 * put_page() function. Its ->lru.prev holds the order of allocation.
379 * This usage means that zero-order pages may not be compound.
1da177e4 380 */
d98c7a09
HD
381
382static void free_compound_page(struct page *page)
383{
d85f3385 384 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
385}
386
01ad1c08 387void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
388{
389 int i;
390 int nr_pages = 1 << order;
391
392 set_compound_page_dtor(page, free_compound_page);
393 set_compound_order(page, order);
394 __SetPageHead(page);
395 for (i = 1; i < nr_pages; i++) {
396 struct page *p = page + i;
58a84aa9 397 set_page_count(p, 0);
18229df5 398 p->first_page = page;
668f9abb
DR
399 /* Make sure p->first_page is always valid for PageTail() */
400 smp_wmb();
401 __SetPageTail(p);
18229df5
AW
402 }
403}
404
59ff4216 405/* update __split_huge_page_refcount if you change this function */
8cc3b392 406static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
407{
408 int i;
409 int nr_pages = 1 << order;
8cc3b392 410 int bad = 0;
1da177e4 411
0bb2c763 412 if (unlikely(compound_order(page) != order)) {
f0b791a3 413 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
414 bad++;
415 }
1da177e4 416
6d777953 417 __ClearPageHead(page);
8cc3b392 418
18229df5
AW
419 for (i = 1; i < nr_pages; i++) {
420 struct page *p = page + i;
1da177e4 421
f0b791a3
DH
422 if (unlikely(!PageTail(p))) {
423 bad_page(page, "PageTail not set", 0);
424 bad++;
425 } else if (unlikely(p->first_page != page)) {
426 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
427 bad++;
428 }
d85f3385 429 __ClearPageTail(p);
1da177e4 430 }
8cc3b392
HD
431
432 return bad;
1da177e4 433}
1da177e4 434
7aeb09f9
MG
435static inline void prep_zero_page(struct page *page, unsigned int order,
436 gfp_t gfp_flags)
17cf4406
NP
437{
438 int i;
439
6626c5d5
AM
440 /*
441 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
442 * and __GFP_HIGHMEM from hard or soft interrupt context.
443 */
725d704e 444 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
445 for (i = 0; i < (1 << order); i++)
446 clear_highpage(page + i);
447}
448
c0a32fc5
SG
449#ifdef CONFIG_DEBUG_PAGEALLOC
450unsigned int _debug_guardpage_minorder;
031bc574 451bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
452bool _debug_guardpage_enabled __read_mostly;
453
031bc574
JK
454static int __init early_debug_pagealloc(char *buf)
455{
456 if (!buf)
457 return -EINVAL;
458
459 if (strcmp(buf, "on") == 0)
460 _debug_pagealloc_enabled = true;
461
462 return 0;
463}
464early_param("debug_pagealloc", early_debug_pagealloc);
465
e30825f1
JK
466static bool need_debug_guardpage(void)
467{
031bc574
JK
468 /* If we don't use debug_pagealloc, we don't need guard page */
469 if (!debug_pagealloc_enabled())
470 return false;
471
e30825f1
JK
472 return true;
473}
474
475static void init_debug_guardpage(void)
476{
031bc574
JK
477 if (!debug_pagealloc_enabled())
478 return;
479
e30825f1
JK
480 _debug_guardpage_enabled = true;
481}
482
483struct page_ext_operations debug_guardpage_ops = {
484 .need = need_debug_guardpage,
485 .init = init_debug_guardpage,
486};
c0a32fc5
SG
487
488static int __init debug_guardpage_minorder_setup(char *buf)
489{
490 unsigned long res;
491
492 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
493 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
494 return 0;
495 }
496 _debug_guardpage_minorder = res;
497 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
498 return 0;
499}
500__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
501
2847cf95
JK
502static inline void set_page_guard(struct zone *zone, struct page *page,
503 unsigned int order, int migratetype)
c0a32fc5 504{
e30825f1
JK
505 struct page_ext *page_ext;
506
507 if (!debug_guardpage_enabled())
508 return;
509
510 page_ext = lookup_page_ext(page);
511 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
512
2847cf95
JK
513 INIT_LIST_HEAD(&page->lru);
514 set_page_private(page, order);
515 /* Guard pages are not available for any usage */
516 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
517}
518
2847cf95
JK
519static inline void clear_page_guard(struct zone *zone, struct page *page,
520 unsigned int order, int migratetype)
c0a32fc5 521{
e30825f1
JK
522 struct page_ext *page_ext;
523
524 if (!debug_guardpage_enabled())
525 return;
526
527 page_ext = lookup_page_ext(page);
528 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
529
2847cf95
JK
530 set_page_private(page, 0);
531 if (!is_migrate_isolate(migratetype))
532 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
533}
534#else
e30825f1 535struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
536static inline void set_page_guard(struct zone *zone, struct page *page,
537 unsigned int order, int migratetype) {}
538static inline void clear_page_guard(struct zone *zone, struct page *page,
539 unsigned int order, int migratetype) {}
c0a32fc5
SG
540#endif
541
7aeb09f9 542static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 543{
4c21e2f2 544 set_page_private(page, order);
676165a8 545 __SetPageBuddy(page);
1da177e4
LT
546}
547
548static inline void rmv_page_order(struct page *page)
549{
676165a8 550 __ClearPageBuddy(page);
4c21e2f2 551 set_page_private(page, 0);
1da177e4
LT
552}
553
1da177e4
LT
554/*
555 * This function checks whether a page is free && is the buddy
556 * we can do coalesce a page and its buddy if
13e7444b 557 * (a) the buddy is not in a hole &&
676165a8 558 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
559 * (c) a page and its buddy have the same order &&
560 * (d) a page and its buddy are in the same zone.
676165a8 561 *
cf6fe945
WSH
562 * For recording whether a page is in the buddy system, we set ->_mapcount
563 * PAGE_BUDDY_MAPCOUNT_VALUE.
564 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
565 * serialized by zone->lock.
1da177e4 566 *
676165a8 567 * For recording page's order, we use page_private(page).
1da177e4 568 */
cb2b95e1 569static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 570 unsigned int order)
1da177e4 571{
14e07298 572 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 573 return 0;
13e7444b 574
c0a32fc5 575 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
576 if (page_zone_id(page) != page_zone_id(buddy))
577 return 0;
578
4c5018ce
WY
579 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
580
c0a32fc5
SG
581 return 1;
582 }
583
cb2b95e1 584 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
585 /*
586 * zone check is done late to avoid uselessly
587 * calculating zone/node ids for pages that could
588 * never merge.
589 */
590 if (page_zone_id(page) != page_zone_id(buddy))
591 return 0;
592
4c5018ce
WY
593 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
594
6aa3001b 595 return 1;
676165a8 596 }
6aa3001b 597 return 0;
1da177e4
LT
598}
599
600/*
601 * Freeing function for a buddy system allocator.
602 *
603 * The concept of a buddy system is to maintain direct-mapped table
604 * (containing bit values) for memory blocks of various "orders".
605 * The bottom level table contains the map for the smallest allocatable
606 * units of memory (here, pages), and each level above it describes
607 * pairs of units from the levels below, hence, "buddies".
608 * At a high level, all that happens here is marking the table entry
609 * at the bottom level available, and propagating the changes upward
610 * as necessary, plus some accounting needed to play nicely with other
611 * parts of the VM system.
612 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
613 * free pages of length of (1 << order) and marked with _mapcount
614 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
615 * field.
1da177e4 616 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
617 * other. That is, if we allocate a small block, and both were
618 * free, the remainder of the region must be split into blocks.
1da177e4 619 * If a block is freed, and its buddy is also free, then this
5f63b720 620 * triggers coalescing into a block of larger size.
1da177e4 621 *
6d49e352 622 * -- nyc
1da177e4
LT
623 */
624
48db57f8 625static inline void __free_one_page(struct page *page,
dc4b0caf 626 unsigned long pfn,
ed0ae21d
MG
627 struct zone *zone, unsigned int order,
628 int migratetype)
1da177e4
LT
629{
630 unsigned long page_idx;
6dda9d55 631 unsigned long combined_idx;
43506fad 632 unsigned long uninitialized_var(buddy_idx);
6dda9d55 633 struct page *buddy;
3c605096 634 int max_order = MAX_ORDER;
1da177e4 635
d29bb978
CS
636 VM_BUG_ON(!zone_is_initialized(zone));
637
224abf92 638 if (unlikely(PageCompound(page)))
8cc3b392
HD
639 if (unlikely(destroy_compound_page(page, order)))
640 return;
1da177e4 641
ed0ae21d 642 VM_BUG_ON(migratetype == -1);
3c605096
JK
643 if (is_migrate_isolate(migratetype)) {
644 /*
645 * We restrict max order of merging to prevent merge
646 * between freepages on isolate pageblock and normal
647 * pageblock. Without this, pageblock isolation
648 * could cause incorrect freepage accounting.
649 */
650 max_order = min(MAX_ORDER, pageblock_order + 1);
651 } else {
8f82b55d 652 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 653 }
ed0ae21d 654
3c605096 655 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 656
309381fe
SL
657 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
658 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 659
3c605096 660 while (order < max_order - 1) {
43506fad
KC
661 buddy_idx = __find_buddy_index(page_idx, order);
662 buddy = page + (buddy_idx - page_idx);
cb2b95e1 663 if (!page_is_buddy(page, buddy, order))
3c82d0ce 664 break;
c0a32fc5
SG
665 /*
666 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
667 * merge with it and move up one order.
668 */
669 if (page_is_guard(buddy)) {
2847cf95 670 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
671 } else {
672 list_del(&buddy->lru);
673 zone->free_area[order].nr_free--;
674 rmv_page_order(buddy);
675 }
43506fad 676 combined_idx = buddy_idx & page_idx;
1da177e4
LT
677 page = page + (combined_idx - page_idx);
678 page_idx = combined_idx;
679 order++;
680 }
681 set_page_order(page, order);
6dda9d55
CZ
682
683 /*
684 * If this is not the largest possible page, check if the buddy
685 * of the next-highest order is free. If it is, it's possible
686 * that pages are being freed that will coalesce soon. In case,
687 * that is happening, add the free page to the tail of the list
688 * so it's less likely to be used soon and more likely to be merged
689 * as a higher order page
690 */
b7f50cfa 691 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 692 struct page *higher_page, *higher_buddy;
43506fad
KC
693 combined_idx = buddy_idx & page_idx;
694 higher_page = page + (combined_idx - page_idx);
695 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 696 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
697 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
698 list_add_tail(&page->lru,
699 &zone->free_area[order].free_list[migratetype]);
700 goto out;
701 }
702 }
703
704 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
705out:
1da177e4
LT
706 zone->free_area[order].nr_free++;
707}
708
224abf92 709static inline int free_pages_check(struct page *page)
1da177e4 710{
d230dec1 711 const char *bad_reason = NULL;
f0b791a3
DH
712 unsigned long bad_flags = 0;
713
714 if (unlikely(page_mapcount(page)))
715 bad_reason = "nonzero mapcount";
716 if (unlikely(page->mapping != NULL))
717 bad_reason = "non-NULL mapping";
718 if (unlikely(atomic_read(&page->_count) != 0))
719 bad_reason = "nonzero _count";
720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
721 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
722 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
723 }
9edad6ea
JW
724#ifdef CONFIG_MEMCG
725 if (unlikely(page->mem_cgroup))
726 bad_reason = "page still charged to cgroup";
727#endif
f0b791a3
DH
728 if (unlikely(bad_reason)) {
729 bad_page(page, bad_reason, bad_flags);
79f4b7bf 730 return 1;
8cc3b392 731 }
90572890 732 page_cpupid_reset_last(page);
79f4b7bf
HD
733 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
734 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
735 return 0;
1da177e4
LT
736}
737
738/*
5f8dcc21 739 * Frees a number of pages from the PCP lists
1da177e4 740 * Assumes all pages on list are in same zone, and of same order.
207f36ee 741 * count is the number of pages to free.
1da177e4
LT
742 *
743 * If the zone was previously in an "all pages pinned" state then look to
744 * see if this freeing clears that state.
745 *
746 * And clear the zone's pages_scanned counter, to hold off the "all pages are
747 * pinned" detection logic.
748 */
5f8dcc21
MG
749static void free_pcppages_bulk(struct zone *zone, int count,
750 struct per_cpu_pages *pcp)
1da177e4 751{
5f8dcc21 752 int migratetype = 0;
a6f9edd6 753 int batch_free = 0;
72853e29 754 int to_free = count;
0d5d823a 755 unsigned long nr_scanned;
5f8dcc21 756
c54ad30c 757 spin_lock(&zone->lock);
0d5d823a
MG
758 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
759 if (nr_scanned)
760 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 761
72853e29 762 while (to_free) {
48db57f8 763 struct page *page;
5f8dcc21
MG
764 struct list_head *list;
765
766 /*
a6f9edd6
MG
767 * Remove pages from lists in a round-robin fashion. A
768 * batch_free count is maintained that is incremented when an
769 * empty list is encountered. This is so more pages are freed
770 * off fuller lists instead of spinning excessively around empty
771 * lists
5f8dcc21
MG
772 */
773 do {
a6f9edd6 774 batch_free++;
5f8dcc21
MG
775 if (++migratetype == MIGRATE_PCPTYPES)
776 migratetype = 0;
777 list = &pcp->lists[migratetype];
778 } while (list_empty(list));
48db57f8 779
1d16871d
NK
780 /* This is the only non-empty list. Free them all. */
781 if (batch_free == MIGRATE_PCPTYPES)
782 batch_free = to_free;
783
a6f9edd6 784 do {
770c8aaa
BZ
785 int mt; /* migratetype of the to-be-freed page */
786
a6f9edd6
MG
787 page = list_entry(list->prev, struct page, lru);
788 /* must delete as __free_one_page list manipulates */
789 list_del(&page->lru);
b12c4ad1 790 mt = get_freepage_migratetype(page);
8f82b55d 791 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 792 mt = get_pageblock_migratetype(page);
51bb1a40 793
a7016235 794 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 795 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 796 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 797 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 798 }
c54ad30c 799 spin_unlock(&zone->lock);
1da177e4
LT
800}
801
dc4b0caf
MG
802static void free_one_page(struct zone *zone,
803 struct page *page, unsigned long pfn,
7aeb09f9 804 unsigned int order,
ed0ae21d 805 int migratetype)
1da177e4 806{
0d5d823a 807 unsigned long nr_scanned;
006d22d9 808 spin_lock(&zone->lock);
0d5d823a
MG
809 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
810 if (nr_scanned)
811 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 812
ad53f92e
JK
813 if (unlikely(has_isolate_pageblock(zone) ||
814 is_migrate_isolate(migratetype))) {
815 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 816 }
dc4b0caf 817 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 818 spin_unlock(&zone->lock);
48db57f8
NP
819}
820
ec95f53a 821static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 822{
1da177e4 823 int i;
8cc3b392 824 int bad = 0;
1da177e4 825
ab1f306f
YZ
826 VM_BUG_ON_PAGE(PageTail(page), page);
827 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
828
b413d48a 829 trace_mm_page_free(page, order);
b1eeab67
VN
830 kmemcheck_free_shadow(page, order);
831
8dd60a3a
AA
832 if (PageAnon(page))
833 page->mapping = NULL;
834 for (i = 0; i < (1 << order); i++)
835 bad += free_pages_check(page + i);
8cc3b392 836 if (bad)
ec95f53a 837 return false;
689bcebf 838
48c96a36
JK
839 reset_page_owner(page, order);
840
3ac7fe5a 841 if (!PageHighMem(page)) {
b8af2941
PK
842 debug_check_no_locks_freed(page_address(page),
843 PAGE_SIZE << order);
3ac7fe5a
TG
844 debug_check_no_obj_freed(page_address(page),
845 PAGE_SIZE << order);
846 }
dafb1367 847 arch_free_page(page, order);
48db57f8 848 kernel_map_pages(page, 1 << order, 0);
dafb1367 849
ec95f53a
KM
850 return true;
851}
852
853static void __free_pages_ok(struct page *page, unsigned int order)
854{
855 unsigned long flags;
95e34412 856 int migratetype;
dc4b0caf 857 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
858
859 if (!free_pages_prepare(page, order))
860 return;
861
cfc47a28 862 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 863 local_irq_save(flags);
f8891e5e 864 __count_vm_events(PGFREE, 1 << order);
95e34412 865 set_freepage_migratetype(page, migratetype);
dc4b0caf 866 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 867 local_irq_restore(flags);
1da177e4
LT
868}
869
170a5a7e 870void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 871{
c3993076 872 unsigned int nr_pages = 1 << order;
e2d0bd2b 873 struct page *p = page;
c3993076 874 unsigned int loop;
a226f6c8 875
e2d0bd2b
YL
876 prefetchw(p);
877 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
878 prefetchw(p + 1);
c3993076
JW
879 __ClearPageReserved(p);
880 set_page_count(p, 0);
a226f6c8 881 }
e2d0bd2b
YL
882 __ClearPageReserved(p);
883 set_page_count(p, 0);
c3993076 884
e2d0bd2b 885 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
886 set_page_refcounted(page);
887 __free_pages(page, order);
a226f6c8
DH
888}
889
47118af0 890#ifdef CONFIG_CMA
9cf510a5 891/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
892void __init init_cma_reserved_pageblock(struct page *page)
893{
894 unsigned i = pageblock_nr_pages;
895 struct page *p = page;
896
897 do {
898 __ClearPageReserved(p);
899 set_page_count(p, 0);
900 } while (++p, --i);
901
47118af0 902 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
903
904 if (pageblock_order >= MAX_ORDER) {
905 i = pageblock_nr_pages;
906 p = page;
907 do {
908 set_page_refcounted(p);
909 __free_pages(p, MAX_ORDER - 1);
910 p += MAX_ORDER_NR_PAGES;
911 } while (i -= MAX_ORDER_NR_PAGES);
912 } else {
913 set_page_refcounted(page);
914 __free_pages(page, pageblock_order);
915 }
916
3dcc0571 917 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
918}
919#endif
1da177e4
LT
920
921/*
922 * The order of subdivision here is critical for the IO subsystem.
923 * Please do not alter this order without good reasons and regression
924 * testing. Specifically, as large blocks of memory are subdivided,
925 * the order in which smaller blocks are delivered depends on the order
926 * they're subdivided in this function. This is the primary factor
927 * influencing the order in which pages are delivered to the IO
928 * subsystem according to empirical testing, and this is also justified
929 * by considering the behavior of a buddy system containing a single
930 * large block of memory acted on by a series of small allocations.
931 * This behavior is a critical factor in sglist merging's success.
932 *
6d49e352 933 * -- nyc
1da177e4 934 */
085cc7d5 935static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
936 int low, int high, struct free_area *area,
937 int migratetype)
1da177e4
LT
938{
939 unsigned long size = 1 << high;
940
941 while (high > low) {
942 area--;
943 high--;
944 size >>= 1;
309381fe 945 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 946
2847cf95 947 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 948 debug_guardpage_enabled() &&
2847cf95 949 high < debug_guardpage_minorder()) {
c0a32fc5
SG
950 /*
951 * Mark as guard pages (or page), that will allow to
952 * merge back to allocator when buddy will be freed.
953 * Corresponding page table entries will not be touched,
954 * pages will stay not present in virtual address space
955 */
2847cf95 956 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
957 continue;
958 }
b2a0ac88 959 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
960 area->nr_free++;
961 set_page_order(&page[size], high);
962 }
1da177e4
LT
963}
964
1da177e4
LT
965/*
966 * This page is about to be returned from the page allocator
967 */
2a7684a2 968static inline int check_new_page(struct page *page)
1da177e4 969{
d230dec1 970 const char *bad_reason = NULL;
f0b791a3
DH
971 unsigned long bad_flags = 0;
972
973 if (unlikely(page_mapcount(page)))
974 bad_reason = "nonzero mapcount";
975 if (unlikely(page->mapping != NULL))
976 bad_reason = "non-NULL mapping";
977 if (unlikely(atomic_read(&page->_count) != 0))
978 bad_reason = "nonzero _count";
979 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
980 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
981 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
982 }
9edad6ea
JW
983#ifdef CONFIG_MEMCG
984 if (unlikely(page->mem_cgroup))
985 bad_reason = "page still charged to cgroup";
986#endif
f0b791a3
DH
987 if (unlikely(bad_reason)) {
988 bad_page(page, bad_reason, bad_flags);
689bcebf 989 return 1;
8cc3b392 990 }
2a7684a2
WF
991 return 0;
992}
993
75379191
VB
994static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
995 int alloc_flags)
2a7684a2
WF
996{
997 int i;
998
999 for (i = 0; i < (1 << order); i++) {
1000 struct page *p = page + i;
1001 if (unlikely(check_new_page(p)))
1002 return 1;
1003 }
689bcebf 1004
4c21e2f2 1005 set_page_private(page, 0);
7835e98b 1006 set_page_refcounted(page);
cc102509
NP
1007
1008 arch_alloc_page(page, order);
1da177e4 1009 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
1010
1011 if (gfp_flags & __GFP_ZERO)
1012 prep_zero_page(page, order, gfp_flags);
1013
1014 if (order && (gfp_flags & __GFP_COMP))
1015 prep_compound_page(page, order);
1016
48c96a36
JK
1017 set_page_owner(page, order, gfp_flags);
1018
75379191
VB
1019 /*
1020 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1021 * allocate the page. The expectation is that the caller is taking
1022 * steps that will free more memory. The caller should avoid the page
1023 * being used for !PFMEMALLOC purposes.
1024 */
1025 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1026
689bcebf 1027 return 0;
1da177e4
LT
1028}
1029
56fd56b8
MG
1030/*
1031 * Go through the free lists for the given migratetype and remove
1032 * the smallest available page from the freelists
1033 */
728ec980
MG
1034static inline
1035struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1036 int migratetype)
1037{
1038 unsigned int current_order;
b8af2941 1039 struct free_area *area;
56fd56b8
MG
1040 struct page *page;
1041
1042 /* Find a page of the appropriate size in the preferred list */
1043 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1044 area = &(zone->free_area[current_order]);
1045 if (list_empty(&area->free_list[migratetype]))
1046 continue;
1047
1048 page = list_entry(area->free_list[migratetype].next,
1049 struct page, lru);
1050 list_del(&page->lru);
1051 rmv_page_order(page);
1052 area->nr_free--;
56fd56b8 1053 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1054 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1055 return page;
1056 }
1057
1058 return NULL;
1059}
1060
1061
b2a0ac88
MG
1062/*
1063 * This array describes the order lists are fallen back to when
1064 * the free lists for the desirable migrate type are depleted
1065 */
47118af0
MN
1066static int fallbacks[MIGRATE_TYPES][4] = {
1067 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1068 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1069#ifdef CONFIG_CMA
1070 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1071 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1072#else
1073 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1074#endif
6d4a4916 1075 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1076#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1077 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1078#endif
b2a0ac88
MG
1079};
1080
c361be55
MG
1081/*
1082 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1083 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1084 * boundary. If alignment is required, use move_freepages_block()
1085 */
435b405c 1086int move_freepages(struct zone *zone,
b69a7288
AB
1087 struct page *start_page, struct page *end_page,
1088 int migratetype)
c361be55
MG
1089{
1090 struct page *page;
1091 unsigned long order;
d100313f 1092 int pages_moved = 0;
c361be55
MG
1093
1094#ifndef CONFIG_HOLES_IN_ZONE
1095 /*
1096 * page_zone is not safe to call in this context when
1097 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1098 * anyway as we check zone boundaries in move_freepages_block().
1099 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1100 * grouping pages by mobility
c361be55 1101 */
97ee4ba7 1102 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1103#endif
1104
1105 for (page = start_page; page <= end_page;) {
344c790e 1106 /* Make sure we are not inadvertently changing nodes */
309381fe 1107 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1108
c361be55
MG
1109 if (!pfn_valid_within(page_to_pfn(page))) {
1110 page++;
1111 continue;
1112 }
1113
1114 if (!PageBuddy(page)) {
1115 page++;
1116 continue;
1117 }
1118
1119 order = page_order(page);
84be48d8
KS
1120 list_move(&page->lru,
1121 &zone->free_area[order].free_list[migratetype]);
95e34412 1122 set_freepage_migratetype(page, migratetype);
c361be55 1123 page += 1 << order;
d100313f 1124 pages_moved += 1 << order;
c361be55
MG
1125 }
1126
d100313f 1127 return pages_moved;
c361be55
MG
1128}
1129
ee6f509c 1130int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1131 int migratetype)
c361be55
MG
1132{
1133 unsigned long start_pfn, end_pfn;
1134 struct page *start_page, *end_page;
1135
1136 start_pfn = page_to_pfn(page);
d9c23400 1137 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1138 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1139 end_page = start_page + pageblock_nr_pages - 1;
1140 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1141
1142 /* Do not cross zone boundaries */
108bcc96 1143 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1144 start_page = page;
108bcc96 1145 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1146 return 0;
1147
1148 return move_freepages(zone, start_page, end_page, migratetype);
1149}
1150
2f66a68f
MG
1151static void change_pageblock_range(struct page *pageblock_page,
1152 int start_order, int migratetype)
1153{
1154 int nr_pageblocks = 1 << (start_order - pageblock_order);
1155
1156 while (nr_pageblocks--) {
1157 set_pageblock_migratetype(pageblock_page, migratetype);
1158 pageblock_page += pageblock_nr_pages;
1159 }
1160}
1161
fef903ef
SB
1162/*
1163 * If breaking a large block of pages, move all free pages to the preferred
1164 * allocation list. If falling back for a reclaimable kernel allocation, be
1165 * more aggressive about taking ownership of free pages.
1166 *
1167 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1168 * nor move CMA pages to different free lists. We don't want unmovable pages
1169 * to be allocated from MIGRATE_CMA areas.
1170 *
1171 * Returns the new migratetype of the pageblock (or the same old migratetype
1172 * if it was unchanged).
1173 */
1174static int try_to_steal_freepages(struct zone *zone, struct page *page,
1175 int start_type, int fallback_type)
1176{
1177 int current_order = page_order(page);
1178
0cbef29a
KM
1179 /*
1180 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1181 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1182 * is set to CMA so it is returned to the correct freelist in case
1183 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1184 */
fef903ef
SB
1185 if (is_migrate_cma(fallback_type))
1186 return fallback_type;
1187
1188 /* Take ownership for orders >= pageblock_order */
1189 if (current_order >= pageblock_order) {
1190 change_pageblock_range(page, current_order, start_type);
1191 return start_type;
1192 }
1193
1194 if (current_order >= pageblock_order / 2 ||
1195 start_type == MIGRATE_RECLAIMABLE ||
1196 page_group_by_mobility_disabled) {
1197 int pages;
1198
1199 pages = move_freepages_block(zone, page, start_type);
1200
1201 /* Claim the whole block if over half of it is free */
1202 if (pages >= (1 << (pageblock_order-1)) ||
1203 page_group_by_mobility_disabled) {
1204
1205 set_pageblock_migratetype(page, start_type);
1206 return start_type;
1207 }
1208
1209 }
1210
1211 return fallback_type;
1212}
1213
b2a0ac88 1214/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1215static inline struct page *
7aeb09f9 1216__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1217{
b8af2941 1218 struct free_area *area;
7aeb09f9 1219 unsigned int current_order;
b2a0ac88 1220 struct page *page;
fef903ef 1221 int migratetype, new_type, i;
b2a0ac88
MG
1222
1223 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1224 for (current_order = MAX_ORDER-1;
1225 current_order >= order && current_order <= MAX_ORDER-1;
1226 --current_order) {
6d4a4916 1227 for (i = 0;; i++) {
b2a0ac88
MG
1228 migratetype = fallbacks[start_migratetype][i];
1229
56fd56b8
MG
1230 /* MIGRATE_RESERVE handled later if necessary */
1231 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1232 break;
e010487d 1233
b2a0ac88
MG
1234 area = &(zone->free_area[current_order]);
1235 if (list_empty(&area->free_list[migratetype]))
1236 continue;
1237
1238 page = list_entry(area->free_list[migratetype].next,
1239 struct page, lru);
1240 area->nr_free--;
1241
fef903ef
SB
1242 new_type = try_to_steal_freepages(zone, page,
1243 start_migratetype,
1244 migratetype);
b2a0ac88
MG
1245
1246 /* Remove the page from the freelists */
1247 list_del(&page->lru);
1248 rmv_page_order(page);
b2a0ac88 1249
47118af0 1250 expand(zone, page, order, current_order, area,
0cbef29a 1251 new_type);
5bcc9f86
VB
1252 /* The freepage_migratetype may differ from pageblock's
1253 * migratetype depending on the decisions in
1254 * try_to_steal_freepages. This is OK as long as it does
1255 * not differ for MIGRATE_CMA type.
1256 */
1257 set_freepage_migratetype(page, new_type);
e0fff1bd 1258
52c8f6a5
KM
1259 trace_mm_page_alloc_extfrag(page, order, current_order,
1260 start_migratetype, migratetype, new_type);
e0fff1bd 1261
b2a0ac88
MG
1262 return page;
1263 }
1264 }
1265
728ec980 1266 return NULL;
b2a0ac88
MG
1267}
1268
56fd56b8 1269/*
1da177e4
LT
1270 * Do the hard work of removing an element from the buddy allocator.
1271 * Call me with the zone->lock already held.
1272 */
b2a0ac88
MG
1273static struct page *__rmqueue(struct zone *zone, unsigned int order,
1274 int migratetype)
1da177e4 1275{
1da177e4
LT
1276 struct page *page;
1277
728ec980 1278retry_reserve:
56fd56b8 1279 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1280
728ec980 1281 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1282 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1283
728ec980
MG
1284 /*
1285 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1286 * is used because __rmqueue_smallest is an inline function
1287 * and we want just one call site
1288 */
1289 if (!page) {
1290 migratetype = MIGRATE_RESERVE;
1291 goto retry_reserve;
1292 }
1293 }
1294
0d3d062a 1295 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1296 return page;
1da177e4
LT
1297}
1298
5f63b720 1299/*
1da177e4
LT
1300 * Obtain a specified number of elements from the buddy allocator, all under
1301 * a single hold of the lock, for efficiency. Add them to the supplied list.
1302 * Returns the number of new pages which were placed at *list.
1303 */
5f63b720 1304static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1305 unsigned long count, struct list_head *list,
b745bc85 1306 int migratetype, bool cold)
1da177e4 1307{
5bcc9f86 1308 int i;
5f63b720 1309
c54ad30c 1310 spin_lock(&zone->lock);
1da177e4 1311 for (i = 0; i < count; ++i) {
b2a0ac88 1312 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1313 if (unlikely(page == NULL))
1da177e4 1314 break;
81eabcbe
MG
1315
1316 /*
1317 * Split buddy pages returned by expand() are received here
1318 * in physical page order. The page is added to the callers and
1319 * list and the list head then moves forward. From the callers
1320 * perspective, the linked list is ordered by page number in
1321 * some conditions. This is useful for IO devices that can
1322 * merge IO requests if the physical pages are ordered
1323 * properly.
1324 */
b745bc85 1325 if (likely(!cold))
e084b2d9
MG
1326 list_add(&page->lru, list);
1327 else
1328 list_add_tail(&page->lru, list);
81eabcbe 1329 list = &page->lru;
5bcc9f86 1330 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1331 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1332 -(1 << order));
1da177e4 1333 }
f2260e6b 1334 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1335 spin_unlock(&zone->lock);
085cc7d5 1336 return i;
1da177e4
LT
1337}
1338
4ae7c039 1339#ifdef CONFIG_NUMA
8fce4d8e 1340/*
4037d452
CL
1341 * Called from the vmstat counter updater to drain pagesets of this
1342 * currently executing processor on remote nodes after they have
1343 * expired.
1344 *
879336c3
CL
1345 * Note that this function must be called with the thread pinned to
1346 * a single processor.
8fce4d8e 1347 */
4037d452 1348void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1349{
4ae7c039 1350 unsigned long flags;
7be12fc9 1351 int to_drain, batch;
4ae7c039 1352
4037d452 1353 local_irq_save(flags);
998d39cb 1354 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1355 to_drain = min(pcp->count, batch);
2a13515c
KM
1356 if (to_drain > 0) {
1357 free_pcppages_bulk(zone, to_drain, pcp);
1358 pcp->count -= to_drain;
1359 }
4037d452 1360 local_irq_restore(flags);
4ae7c039
CL
1361}
1362#endif
1363
9f8f2172 1364/*
93481ff0 1365 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1366 *
1367 * The processor must either be the current processor and the
1368 * thread pinned to the current processor or a processor that
1369 * is not online.
1370 */
93481ff0 1371static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1372{
c54ad30c 1373 unsigned long flags;
93481ff0
VB
1374 struct per_cpu_pageset *pset;
1375 struct per_cpu_pages *pcp;
1da177e4 1376
93481ff0
VB
1377 local_irq_save(flags);
1378 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1379
93481ff0
VB
1380 pcp = &pset->pcp;
1381 if (pcp->count) {
1382 free_pcppages_bulk(zone, pcp->count, pcp);
1383 pcp->count = 0;
1384 }
1385 local_irq_restore(flags);
1386}
3dfa5721 1387
93481ff0
VB
1388/*
1389 * Drain pcplists of all zones on the indicated processor.
1390 *
1391 * The processor must either be the current processor and the
1392 * thread pinned to the current processor or a processor that
1393 * is not online.
1394 */
1395static void drain_pages(unsigned int cpu)
1396{
1397 struct zone *zone;
1398
1399 for_each_populated_zone(zone) {
1400 drain_pages_zone(cpu, zone);
1da177e4
LT
1401 }
1402}
1da177e4 1403
9f8f2172
CL
1404/*
1405 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1406 *
1407 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1408 * the single zone's pages.
9f8f2172 1409 */
93481ff0 1410void drain_local_pages(struct zone *zone)
9f8f2172 1411{
93481ff0
VB
1412 int cpu = smp_processor_id();
1413
1414 if (zone)
1415 drain_pages_zone(cpu, zone);
1416 else
1417 drain_pages(cpu);
9f8f2172
CL
1418}
1419
1420/*
74046494
GBY
1421 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1422 *
93481ff0
VB
1423 * When zone parameter is non-NULL, spill just the single zone's pages.
1424 *
74046494
GBY
1425 * Note that this code is protected against sending an IPI to an offline
1426 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1427 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1428 * nothing keeps CPUs from showing up after we populated the cpumask and
1429 * before the call to on_each_cpu_mask().
9f8f2172 1430 */
93481ff0 1431void drain_all_pages(struct zone *zone)
9f8f2172 1432{
74046494 1433 int cpu;
74046494
GBY
1434
1435 /*
1436 * Allocate in the BSS so we wont require allocation in
1437 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1438 */
1439 static cpumask_t cpus_with_pcps;
1440
1441 /*
1442 * We don't care about racing with CPU hotplug event
1443 * as offline notification will cause the notified
1444 * cpu to drain that CPU pcps and on_each_cpu_mask
1445 * disables preemption as part of its processing
1446 */
1447 for_each_online_cpu(cpu) {
93481ff0
VB
1448 struct per_cpu_pageset *pcp;
1449 struct zone *z;
74046494 1450 bool has_pcps = false;
93481ff0
VB
1451
1452 if (zone) {
74046494 1453 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1454 if (pcp->pcp.count)
74046494 1455 has_pcps = true;
93481ff0
VB
1456 } else {
1457 for_each_populated_zone(z) {
1458 pcp = per_cpu_ptr(z->pageset, cpu);
1459 if (pcp->pcp.count) {
1460 has_pcps = true;
1461 break;
1462 }
74046494
GBY
1463 }
1464 }
93481ff0 1465
74046494
GBY
1466 if (has_pcps)
1467 cpumask_set_cpu(cpu, &cpus_with_pcps);
1468 else
1469 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1470 }
93481ff0
VB
1471 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1472 zone, 1);
9f8f2172
CL
1473}
1474
296699de 1475#ifdef CONFIG_HIBERNATION
1da177e4
LT
1476
1477void mark_free_pages(struct zone *zone)
1478{
f623f0db
RW
1479 unsigned long pfn, max_zone_pfn;
1480 unsigned long flags;
7aeb09f9 1481 unsigned int order, t;
1da177e4
LT
1482 struct list_head *curr;
1483
8080fc03 1484 if (zone_is_empty(zone))
1da177e4
LT
1485 return;
1486
1487 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1488
108bcc96 1489 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1490 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1491 if (pfn_valid(pfn)) {
1492 struct page *page = pfn_to_page(pfn);
1493
7be98234
RW
1494 if (!swsusp_page_is_forbidden(page))
1495 swsusp_unset_page_free(page);
f623f0db 1496 }
1da177e4 1497
b2a0ac88
MG
1498 for_each_migratetype_order(order, t) {
1499 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1500 unsigned long i;
1da177e4 1501
f623f0db
RW
1502 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1503 for (i = 0; i < (1UL << order); i++)
7be98234 1504 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1505 }
b2a0ac88 1506 }
1da177e4
LT
1507 spin_unlock_irqrestore(&zone->lock, flags);
1508}
e2c55dc8 1509#endif /* CONFIG_PM */
1da177e4 1510
1da177e4
LT
1511/*
1512 * Free a 0-order page
b745bc85 1513 * cold == true ? free a cold page : free a hot page
1da177e4 1514 */
b745bc85 1515void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1516{
1517 struct zone *zone = page_zone(page);
1518 struct per_cpu_pages *pcp;
1519 unsigned long flags;
dc4b0caf 1520 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1521 int migratetype;
1da177e4 1522
ec95f53a 1523 if (!free_pages_prepare(page, 0))
689bcebf
HD
1524 return;
1525
dc4b0caf 1526 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1527 set_freepage_migratetype(page, migratetype);
1da177e4 1528 local_irq_save(flags);
f8891e5e 1529 __count_vm_event(PGFREE);
da456f14 1530
5f8dcc21
MG
1531 /*
1532 * We only track unmovable, reclaimable and movable on pcp lists.
1533 * Free ISOLATE pages back to the allocator because they are being
1534 * offlined but treat RESERVE as movable pages so we can get those
1535 * areas back if necessary. Otherwise, we may have to free
1536 * excessively into the page allocator
1537 */
1538 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1539 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1540 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1541 goto out;
1542 }
1543 migratetype = MIGRATE_MOVABLE;
1544 }
1545
99dcc3e5 1546 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1547 if (!cold)
5f8dcc21 1548 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1549 else
1550 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1551 pcp->count++;
48db57f8 1552 if (pcp->count >= pcp->high) {
998d39cb
CS
1553 unsigned long batch = ACCESS_ONCE(pcp->batch);
1554 free_pcppages_bulk(zone, batch, pcp);
1555 pcp->count -= batch;
48db57f8 1556 }
5f8dcc21
MG
1557
1558out:
1da177e4 1559 local_irq_restore(flags);
1da177e4
LT
1560}
1561
cc59850e
KK
1562/*
1563 * Free a list of 0-order pages
1564 */
b745bc85 1565void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1566{
1567 struct page *page, *next;
1568
1569 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1570 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1571 free_hot_cold_page(page, cold);
1572 }
1573}
1574
8dfcc9ba
NP
1575/*
1576 * split_page takes a non-compound higher-order page, and splits it into
1577 * n (1<<order) sub-pages: page[0..n]
1578 * Each sub-page must be freed individually.
1579 *
1580 * Note: this is probably too low level an operation for use in drivers.
1581 * Please consult with lkml before using this in your driver.
1582 */
1583void split_page(struct page *page, unsigned int order)
1584{
1585 int i;
1586
309381fe
SL
1587 VM_BUG_ON_PAGE(PageCompound(page), page);
1588 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1589
1590#ifdef CONFIG_KMEMCHECK
1591 /*
1592 * Split shadow pages too, because free(page[0]) would
1593 * otherwise free the whole shadow.
1594 */
1595 if (kmemcheck_page_is_tracked(page))
1596 split_page(virt_to_page(page[0].shadow), order);
1597#endif
1598
48c96a36
JK
1599 set_page_owner(page, 0, 0);
1600 for (i = 1; i < (1 << order); i++) {
7835e98b 1601 set_page_refcounted(page + i);
48c96a36
JK
1602 set_page_owner(page + i, 0, 0);
1603 }
8dfcc9ba 1604}
5853ff23 1605EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1606
3c605096 1607int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1608{
748446bb
MG
1609 unsigned long watermark;
1610 struct zone *zone;
2139cbe6 1611 int mt;
748446bb
MG
1612
1613 BUG_ON(!PageBuddy(page));
1614
1615 zone = page_zone(page);
2e30abd1 1616 mt = get_pageblock_migratetype(page);
748446bb 1617
194159fb 1618 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1619 /* Obey watermarks as if the page was being allocated */
1620 watermark = low_wmark_pages(zone) + (1 << order);
1621 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1622 return 0;
1623
8fb74b9f 1624 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1625 }
748446bb
MG
1626
1627 /* Remove page from free list */
1628 list_del(&page->lru);
1629 zone->free_area[order].nr_free--;
1630 rmv_page_order(page);
2139cbe6 1631
8fb74b9f 1632 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1633 if (order >= pageblock_order - 1) {
1634 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1635 for (; page < endpage; page += pageblock_nr_pages) {
1636 int mt = get_pageblock_migratetype(page);
194159fb 1637 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1638 set_pageblock_migratetype(page,
1639 MIGRATE_MOVABLE);
1640 }
748446bb
MG
1641 }
1642
48c96a36 1643 set_page_owner(page, order, 0);
8fb74b9f 1644 return 1UL << order;
1fb3f8ca
MG
1645}
1646
1647/*
1648 * Similar to split_page except the page is already free. As this is only
1649 * being used for migration, the migratetype of the block also changes.
1650 * As this is called with interrupts disabled, the caller is responsible
1651 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1652 * are enabled.
1653 *
1654 * Note: this is probably too low level an operation for use in drivers.
1655 * Please consult with lkml before using this in your driver.
1656 */
1657int split_free_page(struct page *page)
1658{
1659 unsigned int order;
1660 int nr_pages;
1661
1fb3f8ca
MG
1662 order = page_order(page);
1663
8fb74b9f 1664 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1665 if (!nr_pages)
1666 return 0;
1667
1668 /* Split into individual pages */
1669 set_page_refcounted(page);
1670 split_page(page, order);
1671 return nr_pages;
748446bb
MG
1672}
1673
1da177e4 1674/*
75379191 1675 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1676 */
0a15c3e9
MG
1677static inline
1678struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1679 struct zone *zone, unsigned int order,
1680 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1681{
1682 unsigned long flags;
689bcebf 1683 struct page *page;
b745bc85 1684 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1685
48db57f8 1686 if (likely(order == 0)) {
1da177e4 1687 struct per_cpu_pages *pcp;
5f8dcc21 1688 struct list_head *list;
1da177e4 1689
1da177e4 1690 local_irq_save(flags);
99dcc3e5
CL
1691 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1692 list = &pcp->lists[migratetype];
5f8dcc21 1693 if (list_empty(list)) {
535131e6 1694 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1695 pcp->batch, list,
e084b2d9 1696 migratetype, cold);
5f8dcc21 1697 if (unlikely(list_empty(list)))
6fb332fa 1698 goto failed;
535131e6 1699 }
b92a6edd 1700
5f8dcc21
MG
1701 if (cold)
1702 page = list_entry(list->prev, struct page, lru);
1703 else
1704 page = list_entry(list->next, struct page, lru);
1705
b92a6edd
MG
1706 list_del(&page->lru);
1707 pcp->count--;
7fb1d9fc 1708 } else {
dab48dab
AM
1709 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1710 /*
1711 * __GFP_NOFAIL is not to be used in new code.
1712 *
1713 * All __GFP_NOFAIL callers should be fixed so that they
1714 * properly detect and handle allocation failures.
1715 *
1716 * We most definitely don't want callers attempting to
4923abf9 1717 * allocate greater than order-1 page units with
dab48dab
AM
1718 * __GFP_NOFAIL.
1719 */
4923abf9 1720 WARN_ON_ONCE(order > 1);
dab48dab 1721 }
1da177e4 1722 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1723 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1724 spin_unlock(&zone->lock);
1725 if (!page)
1726 goto failed;
d1ce749a 1727 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1728 get_freepage_migratetype(page));
1da177e4
LT
1729 }
1730
3a025760 1731 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1732 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1733 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1734 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1735
f8891e5e 1736 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1737 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1738 local_irq_restore(flags);
1da177e4 1739
309381fe 1740 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1741 return page;
a74609fa
NP
1742
1743failed:
1744 local_irq_restore(flags);
a74609fa 1745 return NULL;
1da177e4
LT
1746}
1747
933e312e
AM
1748#ifdef CONFIG_FAIL_PAGE_ALLOC
1749
b2588c4b 1750static struct {
933e312e
AM
1751 struct fault_attr attr;
1752
1753 u32 ignore_gfp_highmem;
1754 u32 ignore_gfp_wait;
54114994 1755 u32 min_order;
933e312e
AM
1756} fail_page_alloc = {
1757 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1758 .ignore_gfp_wait = 1,
1759 .ignore_gfp_highmem = 1,
54114994 1760 .min_order = 1,
933e312e
AM
1761};
1762
1763static int __init setup_fail_page_alloc(char *str)
1764{
1765 return setup_fault_attr(&fail_page_alloc.attr, str);
1766}
1767__setup("fail_page_alloc=", setup_fail_page_alloc);
1768
deaf386e 1769static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1770{
54114994 1771 if (order < fail_page_alloc.min_order)
deaf386e 1772 return false;
933e312e 1773 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1774 return false;
933e312e 1775 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1776 return false;
933e312e 1777 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1778 return false;
933e312e
AM
1779
1780 return should_fail(&fail_page_alloc.attr, 1 << order);
1781}
1782
1783#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1784
1785static int __init fail_page_alloc_debugfs(void)
1786{
f4ae40a6 1787 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1788 struct dentry *dir;
933e312e 1789
dd48c085
AM
1790 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1791 &fail_page_alloc.attr);
1792 if (IS_ERR(dir))
1793 return PTR_ERR(dir);
933e312e 1794
b2588c4b
AM
1795 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1796 &fail_page_alloc.ignore_gfp_wait))
1797 goto fail;
1798 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1799 &fail_page_alloc.ignore_gfp_highmem))
1800 goto fail;
1801 if (!debugfs_create_u32("min-order", mode, dir,
1802 &fail_page_alloc.min_order))
1803 goto fail;
1804
1805 return 0;
1806fail:
dd48c085 1807 debugfs_remove_recursive(dir);
933e312e 1808
b2588c4b 1809 return -ENOMEM;
933e312e
AM
1810}
1811
1812late_initcall(fail_page_alloc_debugfs);
1813
1814#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1815
1816#else /* CONFIG_FAIL_PAGE_ALLOC */
1817
deaf386e 1818static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1819{
deaf386e 1820 return false;
933e312e
AM
1821}
1822
1823#endif /* CONFIG_FAIL_PAGE_ALLOC */
1824
1da177e4 1825/*
88f5acf8 1826 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1827 * of the allocation.
1828 */
7aeb09f9
MG
1829static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1830 unsigned long mark, int classzone_idx, int alloc_flags,
1831 long free_pages)
1da177e4 1832{
26086de3 1833 /* free_pages may go negative - that's OK */
d23ad423 1834 long min = mark;
1da177e4 1835 int o;
026b0814 1836 long free_cma = 0;
1da177e4 1837
df0a6daa 1838 free_pages -= (1 << order) - 1;
7fb1d9fc 1839 if (alloc_flags & ALLOC_HIGH)
1da177e4 1840 min -= min / 2;
7fb1d9fc 1841 if (alloc_flags & ALLOC_HARDER)
1da177e4 1842 min -= min / 4;
d95ea5d1
BZ
1843#ifdef CONFIG_CMA
1844 /* If allocation can't use CMA areas don't use free CMA pages */
1845 if (!(alloc_flags & ALLOC_CMA))
026b0814 1846 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1847#endif
026b0814 1848
3484b2de 1849 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1850 return false;
1da177e4
LT
1851 for (o = 0; o < order; o++) {
1852 /* At the next order, this order's pages become unavailable */
1853 free_pages -= z->free_area[o].nr_free << o;
1854
1855 /* Require fewer higher order pages to be free */
1856 min >>= 1;
1857
1858 if (free_pages <= min)
88f5acf8 1859 return false;
1da177e4 1860 }
88f5acf8
MG
1861 return true;
1862}
1863
7aeb09f9 1864bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1865 int classzone_idx, int alloc_flags)
1866{
1867 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1868 zone_page_state(z, NR_FREE_PAGES));
1869}
1870
7aeb09f9
MG
1871bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1872 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1873{
1874 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1875
1876 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1877 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1878
1879 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1880 free_pages);
1da177e4
LT
1881}
1882
9276b1bc
PJ
1883#ifdef CONFIG_NUMA
1884/*
1885 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1886 * skip over zones that are not allowed by the cpuset, or that have
1887 * been recently (in last second) found to be nearly full. See further
1888 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1889 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1890 *
a1aeb65a 1891 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1892 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1893 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1894 *
1895 * If the zonelist cache is not available for this zonelist, does
1896 * nothing and returns NULL.
1897 *
1898 * If the fullzones BITMAP in the zonelist cache is stale (more than
1899 * a second since last zap'd) then we zap it out (clear its bits.)
1900 *
1901 * We hold off even calling zlc_setup, until after we've checked the
1902 * first zone in the zonelist, on the theory that most allocations will
1903 * be satisfied from that first zone, so best to examine that zone as
1904 * quickly as we can.
1905 */
1906static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1907{
1908 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1909 nodemask_t *allowednodes; /* zonelist_cache approximation */
1910
1911 zlc = zonelist->zlcache_ptr;
1912 if (!zlc)
1913 return NULL;
1914
f05111f5 1915 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1916 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1917 zlc->last_full_zap = jiffies;
1918 }
1919
1920 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1921 &cpuset_current_mems_allowed :
4b0ef1fe 1922 &node_states[N_MEMORY];
9276b1bc
PJ
1923 return allowednodes;
1924}
1925
1926/*
1927 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1928 * if it is worth looking at further for free memory:
1929 * 1) Check that the zone isn't thought to be full (doesn't have its
1930 * bit set in the zonelist_cache fullzones BITMAP).
1931 * 2) Check that the zones node (obtained from the zonelist_cache
1932 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1933 * Return true (non-zero) if zone is worth looking at further, or
1934 * else return false (zero) if it is not.
1935 *
1936 * This check -ignores- the distinction between various watermarks,
1937 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1938 * found to be full for any variation of these watermarks, it will
1939 * be considered full for up to one second by all requests, unless
1940 * we are so low on memory on all allowed nodes that we are forced
1941 * into the second scan of the zonelist.
1942 *
1943 * In the second scan we ignore this zonelist cache and exactly
1944 * apply the watermarks to all zones, even it is slower to do so.
1945 * We are low on memory in the second scan, and should leave no stone
1946 * unturned looking for a free page.
1947 */
dd1a239f 1948static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1949 nodemask_t *allowednodes)
1950{
1951 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1952 int i; /* index of *z in zonelist zones */
1953 int n; /* node that zone *z is on */
1954
1955 zlc = zonelist->zlcache_ptr;
1956 if (!zlc)
1957 return 1;
1958
dd1a239f 1959 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1960 n = zlc->z_to_n[i];
1961
1962 /* This zone is worth trying if it is allowed but not full */
1963 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1964}
1965
1966/*
1967 * Given 'z' scanning a zonelist, set the corresponding bit in
1968 * zlc->fullzones, so that subsequent attempts to allocate a page
1969 * from that zone don't waste time re-examining it.
1970 */
dd1a239f 1971static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1972{
1973 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1974 int i; /* index of *z in zonelist zones */
1975
1976 zlc = zonelist->zlcache_ptr;
1977 if (!zlc)
1978 return;
1979
dd1a239f 1980 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1981
1982 set_bit(i, zlc->fullzones);
1983}
1984
76d3fbf8
MG
1985/*
1986 * clear all zones full, called after direct reclaim makes progress so that
1987 * a zone that was recently full is not skipped over for up to a second
1988 */
1989static void zlc_clear_zones_full(struct zonelist *zonelist)
1990{
1991 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1992
1993 zlc = zonelist->zlcache_ptr;
1994 if (!zlc)
1995 return;
1996
1997 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1998}
1999
81c0a2bb
JW
2000static bool zone_local(struct zone *local_zone, struct zone *zone)
2001{
fff4068c 2002 return local_zone->node == zone->node;
81c0a2bb
JW
2003}
2004
957f822a
DR
2005static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2006{
5f7a75ac
MG
2007 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2008 RECLAIM_DISTANCE;
957f822a
DR
2009}
2010
9276b1bc
PJ
2011#else /* CONFIG_NUMA */
2012
2013static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2014{
2015 return NULL;
2016}
2017
dd1a239f 2018static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2019 nodemask_t *allowednodes)
2020{
2021 return 1;
2022}
2023
dd1a239f 2024static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2025{
2026}
76d3fbf8
MG
2027
2028static void zlc_clear_zones_full(struct zonelist *zonelist)
2029{
2030}
957f822a 2031
81c0a2bb
JW
2032static bool zone_local(struct zone *local_zone, struct zone *zone)
2033{
2034 return true;
2035}
2036
957f822a
DR
2037static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2038{
2039 return true;
2040}
2041
9276b1bc
PJ
2042#endif /* CONFIG_NUMA */
2043
4ffeaf35
MG
2044static void reset_alloc_batches(struct zone *preferred_zone)
2045{
2046 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2047
2048 do {
2049 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2050 high_wmark_pages(zone) - low_wmark_pages(zone) -
2051 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2052 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2053 } while (zone++ != preferred_zone);
2054}
2055
7fb1d9fc 2056/*
0798e519 2057 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2058 * a page.
2059 */
2060static struct page *
a9263751
VB
2061get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2062 const struct alloc_context *ac)
753ee728 2063{
a9263751 2064 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2065 struct zoneref *z;
7fb1d9fc 2066 struct page *page = NULL;
5117f45d 2067 struct zone *zone;
9276b1bc
PJ
2068 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2069 int zlc_active = 0; /* set if using zonelist_cache */
2070 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2071 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2072 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2073 int nr_fair_skipped = 0;
2074 bool zonelist_rescan;
54a6eb5c 2075
9276b1bc 2076zonelist_scan:
4ffeaf35
MG
2077 zonelist_rescan = false;
2078
7fb1d9fc 2079 /*
9276b1bc 2080 * Scan zonelist, looking for a zone with enough free.
344736f2 2081 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2082 */
a9263751
VB
2083 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2084 ac->nodemask) {
e085dbc5
JW
2085 unsigned long mark;
2086
e5adfffc 2087 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2088 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2089 continue;
664eedde
MG
2090 if (cpusets_enabled() &&
2091 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2092 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2093 continue;
81c0a2bb
JW
2094 /*
2095 * Distribute pages in proportion to the individual
2096 * zone size to ensure fair page aging. The zone a
2097 * page was allocated in should have no effect on the
2098 * time the page has in memory before being reclaimed.
81c0a2bb 2099 */
3a025760 2100 if (alloc_flags & ALLOC_FAIR) {
a9263751 2101 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2102 break;
57054651 2103 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2104 nr_fair_skipped++;
3a025760 2105 continue;
4ffeaf35 2106 }
81c0a2bb 2107 }
a756cf59
JW
2108 /*
2109 * When allocating a page cache page for writing, we
2110 * want to get it from a zone that is within its dirty
2111 * limit, such that no single zone holds more than its
2112 * proportional share of globally allowed dirty pages.
2113 * The dirty limits take into account the zone's
2114 * lowmem reserves and high watermark so that kswapd
2115 * should be able to balance it without having to
2116 * write pages from its LRU list.
2117 *
2118 * This may look like it could increase pressure on
2119 * lower zones by failing allocations in higher zones
2120 * before they are full. But the pages that do spill
2121 * over are limited as the lower zones are protected
2122 * by this very same mechanism. It should not become
2123 * a practical burden to them.
2124 *
2125 * XXX: For now, allow allocations to potentially
2126 * exceed the per-zone dirty limit in the slowpath
2127 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2128 * which is important when on a NUMA setup the allowed
2129 * zones are together not big enough to reach the
2130 * global limit. The proper fix for these situations
2131 * will require awareness of zones in the
2132 * dirty-throttling and the flusher threads.
2133 */
a6e21b14 2134 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2135 continue;
7fb1d9fc 2136
e085dbc5
JW
2137 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2138 if (!zone_watermark_ok(zone, order, mark,
a9263751 2139 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2140 int ret;
2141
5dab2911
MG
2142 /* Checked here to keep the fast path fast */
2143 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2144 if (alloc_flags & ALLOC_NO_WATERMARKS)
2145 goto try_this_zone;
2146
e5adfffc
KS
2147 if (IS_ENABLED(CONFIG_NUMA) &&
2148 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2149 /*
2150 * we do zlc_setup if there are multiple nodes
2151 * and before considering the first zone allowed
2152 * by the cpuset.
2153 */
2154 allowednodes = zlc_setup(zonelist, alloc_flags);
2155 zlc_active = 1;
2156 did_zlc_setup = 1;
2157 }
2158
957f822a 2159 if (zone_reclaim_mode == 0 ||
a9263751 2160 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2161 goto this_zone_full;
2162
cd38b115
MG
2163 /*
2164 * As we may have just activated ZLC, check if the first
2165 * eligible zone has failed zone_reclaim recently.
2166 */
e5adfffc 2167 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2168 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2169 continue;
2170
fa5e084e
MG
2171 ret = zone_reclaim(zone, gfp_mask, order);
2172 switch (ret) {
2173 case ZONE_RECLAIM_NOSCAN:
2174 /* did not scan */
cd38b115 2175 continue;
fa5e084e
MG
2176 case ZONE_RECLAIM_FULL:
2177 /* scanned but unreclaimable */
cd38b115 2178 continue;
fa5e084e
MG
2179 default:
2180 /* did we reclaim enough */
fed2719e 2181 if (zone_watermark_ok(zone, order, mark,
a9263751 2182 ac->classzone_idx, alloc_flags))
fed2719e
MG
2183 goto try_this_zone;
2184
2185 /*
2186 * Failed to reclaim enough to meet watermark.
2187 * Only mark the zone full if checking the min
2188 * watermark or if we failed to reclaim just
2189 * 1<<order pages or else the page allocator
2190 * fastpath will prematurely mark zones full
2191 * when the watermark is between the low and
2192 * min watermarks.
2193 */
2194 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2195 ret == ZONE_RECLAIM_SOME)
9276b1bc 2196 goto this_zone_full;
fed2719e
MG
2197
2198 continue;
0798e519 2199 }
7fb1d9fc
RS
2200 }
2201
fa5e084e 2202try_this_zone:
a9263751
VB
2203 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2204 gfp_mask, ac->migratetype);
75379191
VB
2205 if (page) {
2206 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2207 goto try_this_zone;
2208 return page;
2209 }
9276b1bc 2210this_zone_full:
65bb3719 2211 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2212 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2213 }
9276b1bc 2214
4ffeaf35
MG
2215 /*
2216 * The first pass makes sure allocations are spread fairly within the
2217 * local node. However, the local node might have free pages left
2218 * after the fairness batches are exhausted, and remote zones haven't
2219 * even been considered yet. Try once more without fairness, and
2220 * include remote zones now, before entering the slowpath and waking
2221 * kswapd: prefer spilling to a remote zone over swapping locally.
2222 */
2223 if (alloc_flags & ALLOC_FAIR) {
2224 alloc_flags &= ~ALLOC_FAIR;
2225 if (nr_fair_skipped) {
2226 zonelist_rescan = true;
a9263751 2227 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2228 }
2229 if (nr_online_nodes > 1)
2230 zonelist_rescan = true;
2231 }
2232
2233 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2234 /* Disable zlc cache for second zonelist scan */
2235 zlc_active = 0;
2236 zonelist_rescan = true;
2237 }
2238
2239 if (zonelist_rescan)
2240 goto zonelist_scan;
2241
2242 return NULL;
753ee728
MH
2243}
2244
29423e77
DR
2245/*
2246 * Large machines with many possible nodes should not always dump per-node
2247 * meminfo in irq context.
2248 */
2249static inline bool should_suppress_show_mem(void)
2250{
2251 bool ret = false;
2252
2253#if NODES_SHIFT > 8
2254 ret = in_interrupt();
2255#endif
2256 return ret;
2257}
2258
a238ab5b
DH
2259static DEFINE_RATELIMIT_STATE(nopage_rs,
2260 DEFAULT_RATELIMIT_INTERVAL,
2261 DEFAULT_RATELIMIT_BURST);
2262
2263void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2264{
a238ab5b
DH
2265 unsigned int filter = SHOW_MEM_FILTER_NODES;
2266
c0a32fc5
SG
2267 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2268 debug_guardpage_minorder() > 0)
a238ab5b
DH
2269 return;
2270
2271 /*
2272 * This documents exceptions given to allocations in certain
2273 * contexts that are allowed to allocate outside current's set
2274 * of allowed nodes.
2275 */
2276 if (!(gfp_mask & __GFP_NOMEMALLOC))
2277 if (test_thread_flag(TIF_MEMDIE) ||
2278 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2279 filter &= ~SHOW_MEM_FILTER_NODES;
2280 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2281 filter &= ~SHOW_MEM_FILTER_NODES;
2282
2283 if (fmt) {
3ee9a4f0
JP
2284 struct va_format vaf;
2285 va_list args;
2286
a238ab5b 2287 va_start(args, fmt);
3ee9a4f0
JP
2288
2289 vaf.fmt = fmt;
2290 vaf.va = &args;
2291
2292 pr_warn("%pV", &vaf);
2293
a238ab5b
DH
2294 va_end(args);
2295 }
2296
3ee9a4f0
JP
2297 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2298 current->comm, order, gfp_mask);
a238ab5b
DH
2299
2300 dump_stack();
2301 if (!should_suppress_show_mem())
2302 show_mem(filter);
2303}
2304
11e33f6a
MG
2305static inline int
2306should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2307 unsigned long did_some_progress,
11e33f6a 2308 unsigned long pages_reclaimed)
1da177e4 2309{
11e33f6a
MG
2310 /* Do not loop if specifically requested */
2311 if (gfp_mask & __GFP_NORETRY)
2312 return 0;
1da177e4 2313
f90ac398
MG
2314 /* Always retry if specifically requested */
2315 if (gfp_mask & __GFP_NOFAIL)
2316 return 1;
2317
2318 /*
2319 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2320 * making forward progress without invoking OOM. Suspend also disables
2321 * storage devices so kswapd will not help. Bail if we are suspending.
2322 */
2323 if (!did_some_progress && pm_suspended_storage())
2324 return 0;
2325
11e33f6a
MG
2326 /*
2327 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2328 * means __GFP_NOFAIL, but that may not be true in other
2329 * implementations.
2330 */
2331 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2332 return 1;
2333
2334 /*
2335 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2336 * specified, then we retry until we no longer reclaim any pages
2337 * (above), or we've reclaimed an order of pages at least as
2338 * large as the allocation's order. In both cases, if the
2339 * allocation still fails, we stop retrying.
2340 */
2341 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2342 return 1;
cf40bd16 2343
11e33f6a
MG
2344 return 0;
2345}
933e312e 2346
11e33f6a
MG
2347static inline struct page *
2348__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2349 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2350{
2351 struct page *page;
2352
9879de73
JW
2353 *did_some_progress = 0;
2354
2355 if (oom_killer_disabled)
2356 return NULL;
2357
2358 /*
2359 * Acquire the per-zone oom lock for each zone. If that
2360 * fails, somebody else is making progress for us.
2361 */
a9263751 2362 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
9879de73 2363 *did_some_progress = 1;
11e33f6a 2364 schedule_timeout_uninterruptible(1);
1da177e4
LT
2365 return NULL;
2366 }
6b1de916 2367
5695be14
MH
2368 /*
2369 * PM-freezer should be notified that there might be an OOM killer on
2370 * its way to kill and wake somebody up. This is too early and we might
2371 * end up not killing anything but false positives are acceptable.
2372 * See freeze_processes.
2373 */
2374 note_oom_kill();
2375
11e33f6a
MG
2376 /*
2377 * Go through the zonelist yet one more time, keep very high watermark
2378 * here, this is only to catch a parallel oom killing, we must fail if
2379 * we're still under heavy pressure.
2380 */
a9263751
VB
2381 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2382 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2383 if (page)
11e33f6a
MG
2384 goto out;
2385
4365a567 2386 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2387 /* Coredumps can quickly deplete all memory reserves */
2388 if (current->flags & PF_DUMPCORE)
2389 goto out;
4365a567
KH
2390 /* The OOM killer will not help higher order allocs */
2391 if (order > PAGE_ALLOC_COSTLY_ORDER)
2392 goto out;
03668b3c 2393 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2394 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2395 goto out;
9879de73
JW
2396 /* The OOM killer does not compensate for light reclaim */
2397 if (!(gfp_mask & __GFP_FS))
2398 goto out;
4365a567
KH
2399 /*
2400 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2401 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2402 * The caller should handle page allocation failure by itself if
2403 * it specifies __GFP_THISNODE.
2404 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2405 */
2406 if (gfp_mask & __GFP_THISNODE)
2407 goto out;
2408 }
11e33f6a 2409 /* Exhausted what can be done so it's blamo time */
a9263751 2410 out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false);
9879de73 2411 *did_some_progress = 1;
11e33f6a 2412out:
a9263751 2413 oom_zonelist_unlock(ac->zonelist, gfp_mask);
11e33f6a
MG
2414 return page;
2415}
2416
56de7263
MG
2417#ifdef CONFIG_COMPACTION
2418/* Try memory compaction for high-order allocations before reclaim */
2419static struct page *
2420__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2421 int alloc_flags, const struct alloc_context *ac,
2422 enum migrate_mode mode, int *contended_compaction,
2423 bool *deferred_compaction)
56de7263 2424{
53853e2d 2425 unsigned long compact_result;
98dd3b48 2426 struct page *page;
53853e2d
VB
2427
2428 if (!order)
66199712 2429 return NULL;
66199712 2430
c06b1fca 2431 current->flags |= PF_MEMALLOC;
a9263751
VB
2432 compact_result = try_to_compact_pages(ac->zonelist, order, gfp_mask,
2433 ac->nodemask, mode,
53853e2d 2434 contended_compaction,
a9263751 2435 alloc_flags, ac->classzone_idx);
c06b1fca 2436 current->flags &= ~PF_MEMALLOC;
56de7263 2437
98dd3b48
VB
2438 switch (compact_result) {
2439 case COMPACT_DEFERRED:
53853e2d 2440 *deferred_compaction = true;
98dd3b48
VB
2441 /* fall-through */
2442 case COMPACT_SKIPPED:
2443 return NULL;
2444 default:
2445 break;
2446 }
53853e2d 2447
98dd3b48
VB
2448 /*
2449 * At least in one zone compaction wasn't deferred or skipped, so let's
2450 * count a compaction stall
2451 */
2452 count_vm_event(COMPACTSTALL);
8fb74b9f 2453
a9263751
VB
2454 page = get_page_from_freelist(gfp_mask, order,
2455 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2456
98dd3b48
VB
2457 if (page) {
2458 struct zone *zone = page_zone(page);
53853e2d 2459
98dd3b48
VB
2460 zone->compact_blockskip_flush = false;
2461 compaction_defer_reset(zone, order, true);
2462 count_vm_event(COMPACTSUCCESS);
2463 return page;
2464 }
56de7263 2465
98dd3b48
VB
2466 /*
2467 * It's bad if compaction run occurs and fails. The most likely reason
2468 * is that pages exist, but not enough to satisfy watermarks.
2469 */
2470 count_vm_event(COMPACTFAIL);
66199712 2471
98dd3b48 2472 cond_resched();
56de7263
MG
2473
2474 return NULL;
2475}
2476#else
2477static inline struct page *
2478__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2479 int alloc_flags, const struct alloc_context *ac,
2480 enum migrate_mode mode, int *contended_compaction,
2481 bool *deferred_compaction)
56de7263
MG
2482{
2483 return NULL;
2484}
2485#endif /* CONFIG_COMPACTION */
2486
bba90710
MS
2487/* Perform direct synchronous page reclaim */
2488static int
a9263751
VB
2489__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2490 const struct alloc_context *ac)
11e33f6a 2491{
11e33f6a 2492 struct reclaim_state reclaim_state;
bba90710 2493 int progress;
11e33f6a
MG
2494
2495 cond_resched();
2496
2497 /* We now go into synchronous reclaim */
2498 cpuset_memory_pressure_bump();
c06b1fca 2499 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2500 lockdep_set_current_reclaim_state(gfp_mask);
2501 reclaim_state.reclaimed_slab = 0;
c06b1fca 2502 current->reclaim_state = &reclaim_state;
11e33f6a 2503
a9263751
VB
2504 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2505 ac->nodemask);
11e33f6a 2506
c06b1fca 2507 current->reclaim_state = NULL;
11e33f6a 2508 lockdep_clear_current_reclaim_state();
c06b1fca 2509 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2510
2511 cond_resched();
2512
bba90710
MS
2513 return progress;
2514}
2515
2516/* The really slow allocator path where we enter direct reclaim */
2517static inline struct page *
2518__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2519 int alloc_flags, const struct alloc_context *ac,
2520 unsigned long *did_some_progress)
bba90710
MS
2521{
2522 struct page *page = NULL;
2523 bool drained = false;
2524
a9263751 2525 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2526 if (unlikely(!(*did_some_progress)))
2527 return NULL;
11e33f6a 2528
76d3fbf8 2529 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2530 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2531 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2532
9ee493ce 2533retry:
a9263751
VB
2534 page = get_page_from_freelist(gfp_mask, order,
2535 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2536
2537 /*
2538 * If an allocation failed after direct reclaim, it could be because
2539 * pages are pinned on the per-cpu lists. Drain them and try again
2540 */
2541 if (!page && !drained) {
93481ff0 2542 drain_all_pages(NULL);
9ee493ce
MG
2543 drained = true;
2544 goto retry;
2545 }
2546
11e33f6a
MG
2547 return page;
2548}
2549
1da177e4 2550/*
11e33f6a
MG
2551 * This is called in the allocator slow-path if the allocation request is of
2552 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2553 */
11e33f6a
MG
2554static inline struct page *
2555__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2556 const struct alloc_context *ac)
11e33f6a
MG
2557{
2558 struct page *page;
2559
2560 do {
a9263751
VB
2561 page = get_page_from_freelist(gfp_mask, order,
2562 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2563
2564 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2565 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2566 HZ/50);
11e33f6a
MG
2567 } while (!page && (gfp_mask & __GFP_NOFAIL));
2568
2569 return page;
2570}
2571
a9263751 2572static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2573{
2574 struct zoneref *z;
2575 struct zone *zone;
2576
a9263751
VB
2577 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2578 ac->high_zoneidx, ac->nodemask)
2579 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2580}
2581
341ce06f
PZ
2582static inline int
2583gfp_to_alloc_flags(gfp_t gfp_mask)
2584{
341ce06f 2585 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2586 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2587
a56f57ff 2588 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2589 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2590
341ce06f
PZ
2591 /*
2592 * The caller may dip into page reserves a bit more if the caller
2593 * cannot run direct reclaim, or if the caller has realtime scheduling
2594 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2595 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2596 */
e6223a3b 2597 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2598
b104a35d 2599 if (atomic) {
5c3240d9 2600 /*
b104a35d
DR
2601 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2602 * if it can't schedule.
5c3240d9 2603 */
b104a35d 2604 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2605 alloc_flags |= ALLOC_HARDER;
523b9458 2606 /*
b104a35d 2607 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2608 * comment for __cpuset_node_allowed().
523b9458 2609 */
341ce06f 2610 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2611 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2612 alloc_flags |= ALLOC_HARDER;
2613
b37f1dd0
MG
2614 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2615 if (gfp_mask & __GFP_MEMALLOC)
2616 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2617 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2618 alloc_flags |= ALLOC_NO_WATERMARKS;
2619 else if (!in_interrupt() &&
2620 ((current->flags & PF_MEMALLOC) ||
2621 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2622 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2623 }
d95ea5d1 2624#ifdef CONFIG_CMA
43e7a34d 2625 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2626 alloc_flags |= ALLOC_CMA;
2627#endif
341ce06f
PZ
2628 return alloc_flags;
2629}
2630
072bb0aa
MG
2631bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2632{
b37f1dd0 2633 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2634}
2635
11e33f6a
MG
2636static inline struct page *
2637__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2638 struct alloc_context *ac)
11e33f6a
MG
2639{
2640 const gfp_t wait = gfp_mask & __GFP_WAIT;
2641 struct page *page = NULL;
2642 int alloc_flags;
2643 unsigned long pages_reclaimed = 0;
2644 unsigned long did_some_progress;
e0b9daeb 2645 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2646 bool deferred_compaction = false;
1f9efdef 2647 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2648
72807a74
MG
2649 /*
2650 * In the slowpath, we sanity check order to avoid ever trying to
2651 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2652 * be using allocators in order of preference for an area that is
2653 * too large.
2654 */
1fc28b70
MG
2655 if (order >= MAX_ORDER) {
2656 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2657 return NULL;
1fc28b70 2658 }
1da177e4 2659
952f3b51
CL
2660 /*
2661 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2662 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2663 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2664 * using a larger set of nodes after it has established that the
2665 * allowed per node queues are empty and that nodes are
2666 * over allocated.
2667 */
3a025760
JW
2668 if (IS_ENABLED(CONFIG_NUMA) &&
2669 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2670 goto nopage;
2671
9879de73 2672retry:
3a025760 2673 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2674 wake_all_kswapds(order, ac);
1da177e4 2675
9bf2229f 2676 /*
7fb1d9fc
RS
2677 * OK, we're below the kswapd watermark and have kicked background
2678 * reclaim. Now things get more complex, so set up alloc_flags according
2679 * to how we want to proceed.
9bf2229f 2680 */
341ce06f 2681 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2682
f33261d7
DR
2683 /*
2684 * Find the true preferred zone if the allocation is unconstrained by
2685 * cpusets.
2686 */
a9263751 2687 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2688 struct zoneref *preferred_zoneref;
a9263751
VB
2689 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2690 ac->high_zoneidx, NULL, &ac->preferred_zone);
2691 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2692 }
f33261d7 2693
341ce06f 2694 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2695 page = get_page_from_freelist(gfp_mask, order,
2696 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2697 if (page)
2698 goto got_pg;
1da177e4 2699
11e33f6a 2700 /* Allocate without watermarks if the context allows */
341ce06f 2701 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2702 /*
2703 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2704 * the allocation is high priority and these type of
2705 * allocations are system rather than user orientated
2706 */
a9263751
VB
2707 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2708
2709 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2710
cfd19c5a 2711 if (page) {
341ce06f 2712 goto got_pg;
cfd19c5a 2713 }
1da177e4
LT
2714 }
2715
2716 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2717 if (!wait) {
2718 /*
2719 * All existing users of the deprecated __GFP_NOFAIL are
2720 * blockable, so warn of any new users that actually allow this
2721 * type of allocation to fail.
2722 */
2723 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2724 goto nopage;
aed0a0e3 2725 }
1da177e4 2726
341ce06f 2727 /* Avoid recursion of direct reclaim */
c06b1fca 2728 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2729 goto nopage;
2730
6583bb64
DR
2731 /* Avoid allocations with no watermarks from looping endlessly */
2732 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2733 goto nopage;
2734
77f1fe6b
MG
2735 /*
2736 * Try direct compaction. The first pass is asynchronous. Subsequent
2737 * attempts after direct reclaim are synchronous
2738 */
a9263751
VB
2739 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2740 migration_mode,
2741 &contended_compaction,
53853e2d 2742 &deferred_compaction);
56de7263
MG
2743 if (page)
2744 goto got_pg;
75f30861 2745
1f9efdef
VB
2746 /* Checks for THP-specific high-order allocations */
2747 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2748 /*
2749 * If compaction is deferred for high-order allocations, it is
2750 * because sync compaction recently failed. If this is the case
2751 * and the caller requested a THP allocation, we do not want
2752 * to heavily disrupt the system, so we fail the allocation
2753 * instead of entering direct reclaim.
2754 */
2755 if (deferred_compaction)
2756 goto nopage;
2757
2758 /*
2759 * In all zones where compaction was attempted (and not
2760 * deferred or skipped), lock contention has been detected.
2761 * For THP allocation we do not want to disrupt the others
2762 * so we fallback to base pages instead.
2763 */
2764 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2765 goto nopage;
2766
2767 /*
2768 * If compaction was aborted due to need_resched(), we do not
2769 * want to further increase allocation latency, unless it is
2770 * khugepaged trying to collapse.
2771 */
2772 if (contended_compaction == COMPACT_CONTENDED_SCHED
2773 && !(current->flags & PF_KTHREAD))
2774 goto nopage;
2775 }
66199712 2776
8fe78048
DR
2777 /*
2778 * It can become very expensive to allocate transparent hugepages at
2779 * fault, so use asynchronous memory compaction for THP unless it is
2780 * khugepaged trying to collapse.
2781 */
2782 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2783 (current->flags & PF_KTHREAD))
2784 migration_mode = MIGRATE_SYNC_LIGHT;
2785
11e33f6a 2786 /* Try direct reclaim and then allocating */
a9263751
VB
2787 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2788 &did_some_progress);
11e33f6a
MG
2789 if (page)
2790 goto got_pg;
1da177e4 2791
11e33f6a 2792 /* Check if we should retry the allocation */
a41f24ea 2793 pages_reclaimed += did_some_progress;
f90ac398
MG
2794 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2795 pages_reclaimed)) {
9879de73
JW
2796 /*
2797 * If we fail to make progress by freeing individual
2798 * pages, but the allocation wants us to keep going,
2799 * start OOM killing tasks.
2800 */
2801 if (!did_some_progress) {
a9263751
VB
2802 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2803 &did_some_progress);
9879de73
JW
2804 if (page)
2805 goto got_pg;
2806 if (!did_some_progress)
2807 goto nopage;
2808 }
11e33f6a 2809 /* Wait for some write requests to complete then retry */
a9263751 2810 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2811 goto retry;
3e7d3449
MG
2812 } else {
2813 /*
2814 * High-order allocations do not necessarily loop after
2815 * direct reclaim and reclaim/compaction depends on compaction
2816 * being called after reclaim so call directly if necessary
2817 */
a9263751
VB
2818 page = __alloc_pages_direct_compact(gfp_mask, order,
2819 alloc_flags, ac, migration_mode,
2820 &contended_compaction,
53853e2d 2821 &deferred_compaction);
3e7d3449
MG
2822 if (page)
2823 goto got_pg;
1da177e4
LT
2824 }
2825
2826nopage:
a238ab5b 2827 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2828got_pg:
072bb0aa 2829 return page;
1da177e4 2830}
11e33f6a
MG
2831
2832/*
2833 * This is the 'heart' of the zoned buddy allocator.
2834 */
2835struct page *
2836__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2837 struct zonelist *zonelist, nodemask_t *nodemask)
2838{
d8846374 2839 struct zoneref *preferred_zoneref;
cc9a6c87 2840 struct page *page = NULL;
cc9a6c87 2841 unsigned int cpuset_mems_cookie;
3a025760 2842 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2843 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2844 struct alloc_context ac = {
2845 .high_zoneidx = gfp_zone(gfp_mask),
2846 .nodemask = nodemask,
2847 .migratetype = gfpflags_to_migratetype(gfp_mask),
2848 };
11e33f6a 2849
dcce284a
BH
2850 gfp_mask &= gfp_allowed_mask;
2851
11e33f6a
MG
2852 lockdep_trace_alloc(gfp_mask);
2853
2854 might_sleep_if(gfp_mask & __GFP_WAIT);
2855
2856 if (should_fail_alloc_page(gfp_mask, order))
2857 return NULL;
2858
2859 /*
2860 * Check the zones suitable for the gfp_mask contain at least one
2861 * valid zone. It's possible to have an empty zonelist as a result
2862 * of GFP_THISNODE and a memoryless node
2863 */
2864 if (unlikely(!zonelist->_zonerefs->zone))
2865 return NULL;
2866
a9263751 2867 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2868 alloc_flags |= ALLOC_CMA;
2869
cc9a6c87 2870retry_cpuset:
d26914d1 2871 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2872
a9263751
VB
2873 /* We set it here, as __alloc_pages_slowpath might have changed it */
2874 ac.zonelist = zonelist;
5117f45d 2875 /* The preferred zone is used for statistics later */
a9263751
VB
2876 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2877 ac.nodemask ? : &cpuset_current_mems_allowed,
2878 &ac.preferred_zone);
2879 if (!ac.preferred_zone)
cc9a6c87 2880 goto out;
a9263751 2881 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2882
2883 /* First allocation attempt */
91fbdc0f 2884 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2885 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2886 if (unlikely(!page)) {
2887 /*
2888 * Runtime PM, block IO and its error handling path
2889 * can deadlock because I/O on the device might not
2890 * complete.
2891 */
91fbdc0f
AM
2892 alloc_mask = memalloc_noio_flags(gfp_mask);
2893
a9263751 2894 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2895 }
11e33f6a 2896
23f086f9
XQ
2897 if (kmemcheck_enabled && page)
2898 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2899
a9263751 2900 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2901
2902out:
2903 /*
2904 * When updating a task's mems_allowed, it is possible to race with
2905 * parallel threads in such a way that an allocation can fail while
2906 * the mask is being updated. If a page allocation is about to fail,
2907 * check if the cpuset changed during allocation and if so, retry.
2908 */
d26914d1 2909 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2910 goto retry_cpuset;
2911
11e33f6a 2912 return page;
1da177e4 2913}
d239171e 2914EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2915
2916/*
2917 * Common helper functions.
2918 */
920c7a5d 2919unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2920{
945a1113
AM
2921 struct page *page;
2922
2923 /*
2924 * __get_free_pages() returns a 32-bit address, which cannot represent
2925 * a highmem page
2926 */
2927 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2928
1da177e4
LT
2929 page = alloc_pages(gfp_mask, order);
2930 if (!page)
2931 return 0;
2932 return (unsigned long) page_address(page);
2933}
1da177e4
LT
2934EXPORT_SYMBOL(__get_free_pages);
2935
920c7a5d 2936unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2937{
945a1113 2938 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2939}
1da177e4
LT
2940EXPORT_SYMBOL(get_zeroed_page);
2941
920c7a5d 2942void __free_pages(struct page *page, unsigned int order)
1da177e4 2943{
b5810039 2944 if (put_page_testzero(page)) {
1da177e4 2945 if (order == 0)
b745bc85 2946 free_hot_cold_page(page, false);
1da177e4
LT
2947 else
2948 __free_pages_ok(page, order);
2949 }
2950}
2951
2952EXPORT_SYMBOL(__free_pages);
2953
920c7a5d 2954void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2955{
2956 if (addr != 0) {
725d704e 2957 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2958 __free_pages(virt_to_page((void *)addr), order);
2959 }
2960}
2961
2962EXPORT_SYMBOL(free_pages);
2963
6a1a0d3b 2964/*
52383431
VD
2965 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2966 * of the current memory cgroup.
6a1a0d3b 2967 *
52383431
VD
2968 * It should be used when the caller would like to use kmalloc, but since the
2969 * allocation is large, it has to fall back to the page allocator.
2970 */
2971struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2972{
2973 struct page *page;
2974 struct mem_cgroup *memcg = NULL;
2975
2976 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2977 return NULL;
2978 page = alloc_pages(gfp_mask, order);
2979 memcg_kmem_commit_charge(page, memcg, order);
2980 return page;
2981}
2982
2983struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2984{
2985 struct page *page;
2986 struct mem_cgroup *memcg = NULL;
2987
2988 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2989 return NULL;
2990 page = alloc_pages_node(nid, gfp_mask, order);
2991 memcg_kmem_commit_charge(page, memcg, order);
2992 return page;
2993}
2994
2995/*
2996 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2997 * alloc_kmem_pages.
6a1a0d3b 2998 */
52383431 2999void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3000{
3001 memcg_kmem_uncharge_pages(page, order);
3002 __free_pages(page, order);
3003}
3004
52383431 3005void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3006{
3007 if (addr != 0) {
3008 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3009 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3010 }
3011}
3012
ee85c2e1
AK
3013static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3014{
3015 if (addr) {
3016 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3017 unsigned long used = addr + PAGE_ALIGN(size);
3018
3019 split_page(virt_to_page((void *)addr), order);
3020 while (used < alloc_end) {
3021 free_page(used);
3022 used += PAGE_SIZE;
3023 }
3024 }
3025 return (void *)addr;
3026}
3027
2be0ffe2
TT
3028/**
3029 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3030 * @size: the number of bytes to allocate
3031 * @gfp_mask: GFP flags for the allocation
3032 *
3033 * This function is similar to alloc_pages(), except that it allocates the
3034 * minimum number of pages to satisfy the request. alloc_pages() can only
3035 * allocate memory in power-of-two pages.
3036 *
3037 * This function is also limited by MAX_ORDER.
3038 *
3039 * Memory allocated by this function must be released by free_pages_exact().
3040 */
3041void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3042{
3043 unsigned int order = get_order(size);
3044 unsigned long addr;
3045
3046 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3047 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3048}
3049EXPORT_SYMBOL(alloc_pages_exact);
3050
ee85c2e1
AK
3051/**
3052 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3053 * pages on a node.
b5e6ab58 3054 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3055 * @size: the number of bytes to allocate
3056 * @gfp_mask: GFP flags for the allocation
3057 *
3058 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3059 * back.
3060 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3061 * but is not exact.
3062 */
e1931811 3063void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3064{
3065 unsigned order = get_order(size);
3066 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3067 if (!p)
3068 return NULL;
3069 return make_alloc_exact((unsigned long)page_address(p), order, size);
3070}
ee85c2e1 3071
2be0ffe2
TT
3072/**
3073 * free_pages_exact - release memory allocated via alloc_pages_exact()
3074 * @virt: the value returned by alloc_pages_exact.
3075 * @size: size of allocation, same value as passed to alloc_pages_exact().
3076 *
3077 * Release the memory allocated by a previous call to alloc_pages_exact.
3078 */
3079void free_pages_exact(void *virt, size_t size)
3080{
3081 unsigned long addr = (unsigned long)virt;
3082 unsigned long end = addr + PAGE_ALIGN(size);
3083
3084 while (addr < end) {
3085 free_page(addr);
3086 addr += PAGE_SIZE;
3087 }
3088}
3089EXPORT_SYMBOL(free_pages_exact);
3090
e0fb5815
ZY
3091/**
3092 * nr_free_zone_pages - count number of pages beyond high watermark
3093 * @offset: The zone index of the highest zone
3094 *
3095 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3096 * high watermark within all zones at or below a given zone index. For each
3097 * zone, the number of pages is calculated as:
834405c3 3098 * managed_pages - high_pages
e0fb5815 3099 */
ebec3862 3100static unsigned long nr_free_zone_pages(int offset)
1da177e4 3101{
dd1a239f 3102 struct zoneref *z;
54a6eb5c
MG
3103 struct zone *zone;
3104
e310fd43 3105 /* Just pick one node, since fallback list is circular */
ebec3862 3106 unsigned long sum = 0;
1da177e4 3107
0e88460d 3108 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3109
54a6eb5c 3110 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3111 unsigned long size = zone->managed_pages;
41858966 3112 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3113 if (size > high)
3114 sum += size - high;
1da177e4
LT
3115 }
3116
3117 return sum;
3118}
3119
e0fb5815
ZY
3120/**
3121 * nr_free_buffer_pages - count number of pages beyond high watermark
3122 *
3123 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3124 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3125 */
ebec3862 3126unsigned long nr_free_buffer_pages(void)
1da177e4 3127{
af4ca457 3128 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3129}
c2f1a551 3130EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3131
e0fb5815
ZY
3132/**
3133 * nr_free_pagecache_pages - count number of pages beyond high watermark
3134 *
3135 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3136 * high watermark within all zones.
1da177e4 3137 */
ebec3862 3138unsigned long nr_free_pagecache_pages(void)
1da177e4 3139{
2a1e274a 3140 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3141}
08e0f6a9
CL
3142
3143static inline void show_node(struct zone *zone)
1da177e4 3144{
e5adfffc 3145 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3146 printk("Node %d ", zone_to_nid(zone));
1da177e4 3147}
1da177e4 3148
1da177e4
LT
3149void si_meminfo(struct sysinfo *val)
3150{
3151 val->totalram = totalram_pages;
cc7452b6 3152 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3153 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3154 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3155 val->totalhigh = totalhigh_pages;
3156 val->freehigh = nr_free_highpages();
1da177e4
LT
3157 val->mem_unit = PAGE_SIZE;
3158}
3159
3160EXPORT_SYMBOL(si_meminfo);
3161
3162#ifdef CONFIG_NUMA
3163void si_meminfo_node(struct sysinfo *val, int nid)
3164{
cdd91a77
JL
3165 int zone_type; /* needs to be signed */
3166 unsigned long managed_pages = 0;
1da177e4
LT
3167 pg_data_t *pgdat = NODE_DATA(nid);
3168
cdd91a77
JL
3169 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3170 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3171 val->totalram = managed_pages;
cc7452b6 3172 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3173 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3174#ifdef CONFIG_HIGHMEM
b40da049 3175 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3176 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3177 NR_FREE_PAGES);
98d2b0eb
CL
3178#else
3179 val->totalhigh = 0;
3180 val->freehigh = 0;
3181#endif
1da177e4
LT
3182 val->mem_unit = PAGE_SIZE;
3183}
3184#endif
3185
ddd588b5 3186/*
7bf02ea2
DR
3187 * Determine whether the node should be displayed or not, depending on whether
3188 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3189 */
7bf02ea2 3190bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3191{
3192 bool ret = false;
cc9a6c87 3193 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3194
3195 if (!(flags & SHOW_MEM_FILTER_NODES))
3196 goto out;
3197
cc9a6c87 3198 do {
d26914d1 3199 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3200 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3201 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3202out:
3203 return ret;
3204}
3205
1da177e4
LT
3206#define K(x) ((x) << (PAGE_SHIFT-10))
3207
377e4f16
RV
3208static void show_migration_types(unsigned char type)
3209{
3210 static const char types[MIGRATE_TYPES] = {
3211 [MIGRATE_UNMOVABLE] = 'U',
3212 [MIGRATE_RECLAIMABLE] = 'E',
3213 [MIGRATE_MOVABLE] = 'M',
3214 [MIGRATE_RESERVE] = 'R',
3215#ifdef CONFIG_CMA
3216 [MIGRATE_CMA] = 'C',
3217#endif
194159fb 3218#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3219 [MIGRATE_ISOLATE] = 'I',
194159fb 3220#endif
377e4f16
RV
3221 };
3222 char tmp[MIGRATE_TYPES + 1];
3223 char *p = tmp;
3224 int i;
3225
3226 for (i = 0; i < MIGRATE_TYPES; i++) {
3227 if (type & (1 << i))
3228 *p++ = types[i];
3229 }
3230
3231 *p = '\0';
3232 printk("(%s) ", tmp);
3233}
3234
1da177e4
LT
3235/*
3236 * Show free area list (used inside shift_scroll-lock stuff)
3237 * We also calculate the percentage fragmentation. We do this by counting the
3238 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3239 * Suppresses nodes that are not allowed by current's cpuset if
3240 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3241 */
7bf02ea2 3242void show_free_areas(unsigned int filter)
1da177e4 3243{
c7241913 3244 int cpu;
1da177e4
LT
3245 struct zone *zone;
3246
ee99c71c 3247 for_each_populated_zone(zone) {
7bf02ea2 3248 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3249 continue;
c7241913
JS
3250 show_node(zone);
3251 printk("%s per-cpu:\n", zone->name);
1da177e4 3252
6b482c67 3253 for_each_online_cpu(cpu) {
1da177e4
LT
3254 struct per_cpu_pageset *pageset;
3255
99dcc3e5 3256 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3257
3dfa5721
CL
3258 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3259 cpu, pageset->pcp.high,
3260 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3261 }
3262 }
3263
a731286d
KM
3264 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3265 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3266 " unevictable:%lu"
b76146ed 3267 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3268 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3269 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3270 " free_cma:%lu\n",
4f98a2fe 3271 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3272 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3273 global_page_state(NR_ISOLATED_ANON),
3274 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3275 global_page_state(NR_INACTIVE_FILE),
a731286d 3276 global_page_state(NR_ISOLATED_FILE),
7b854121 3277 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3278 global_page_state(NR_FILE_DIRTY),
ce866b34 3279 global_page_state(NR_WRITEBACK),
fd39fc85 3280 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3281 global_page_state(NR_FREE_PAGES),
3701b033
KM
3282 global_page_state(NR_SLAB_RECLAIMABLE),
3283 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3284 global_page_state(NR_FILE_MAPPED),
4b02108a 3285 global_page_state(NR_SHMEM),
a25700a5 3286 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3287 global_page_state(NR_BOUNCE),
3288 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3289
ee99c71c 3290 for_each_populated_zone(zone) {
1da177e4
LT
3291 int i;
3292
7bf02ea2 3293 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3294 continue;
1da177e4
LT
3295 show_node(zone);
3296 printk("%s"
3297 " free:%lukB"
3298 " min:%lukB"
3299 " low:%lukB"
3300 " high:%lukB"
4f98a2fe
RR
3301 " active_anon:%lukB"
3302 " inactive_anon:%lukB"
3303 " active_file:%lukB"
3304 " inactive_file:%lukB"
7b854121 3305 " unevictable:%lukB"
a731286d
KM
3306 " isolated(anon):%lukB"
3307 " isolated(file):%lukB"
1da177e4 3308 " present:%lukB"
9feedc9d 3309 " managed:%lukB"
4a0aa73f
KM
3310 " mlocked:%lukB"
3311 " dirty:%lukB"
3312 " writeback:%lukB"
3313 " mapped:%lukB"
4b02108a 3314 " shmem:%lukB"
4a0aa73f
KM
3315 " slab_reclaimable:%lukB"
3316 " slab_unreclaimable:%lukB"
c6a7f572 3317 " kernel_stack:%lukB"
4a0aa73f
KM
3318 " pagetables:%lukB"
3319 " unstable:%lukB"
3320 " bounce:%lukB"
d1ce749a 3321 " free_cma:%lukB"
4a0aa73f 3322 " writeback_tmp:%lukB"
1da177e4
LT
3323 " pages_scanned:%lu"
3324 " all_unreclaimable? %s"
3325 "\n",
3326 zone->name,
88f5acf8 3327 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3328 K(min_wmark_pages(zone)),
3329 K(low_wmark_pages(zone)),
3330 K(high_wmark_pages(zone)),
4f98a2fe
RR
3331 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3332 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3333 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3334 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3335 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3336 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3337 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3338 K(zone->present_pages),
9feedc9d 3339 K(zone->managed_pages),
4a0aa73f
KM
3340 K(zone_page_state(zone, NR_MLOCK)),
3341 K(zone_page_state(zone, NR_FILE_DIRTY)),
3342 K(zone_page_state(zone, NR_WRITEBACK)),
3343 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3344 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3345 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3346 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3347 zone_page_state(zone, NR_KERNEL_STACK) *
3348 THREAD_SIZE / 1024,
4a0aa73f
KM
3349 K(zone_page_state(zone, NR_PAGETABLE)),
3350 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3351 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3352 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3353 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3354 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3355 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3356 );
3357 printk("lowmem_reserve[]:");
3358 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3359 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3360 printk("\n");
3361 }
3362
ee99c71c 3363 for_each_populated_zone(zone) {
b8af2941 3364 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3365 unsigned char types[MAX_ORDER];
1da177e4 3366
7bf02ea2 3367 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3368 continue;
1da177e4
LT
3369 show_node(zone);
3370 printk("%s: ", zone->name);
1da177e4
LT
3371
3372 spin_lock_irqsave(&zone->lock, flags);
3373 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3374 struct free_area *area = &zone->free_area[order];
3375 int type;
3376
3377 nr[order] = area->nr_free;
8f9de51a 3378 total += nr[order] << order;
377e4f16
RV
3379
3380 types[order] = 0;
3381 for (type = 0; type < MIGRATE_TYPES; type++) {
3382 if (!list_empty(&area->free_list[type]))
3383 types[order] |= 1 << type;
3384 }
1da177e4
LT
3385 }
3386 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3387 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3388 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3389 if (nr[order])
3390 show_migration_types(types[order]);
3391 }
1da177e4
LT
3392 printk("= %lukB\n", K(total));
3393 }
3394
949f7ec5
DR
3395 hugetlb_show_meminfo();
3396
e6f3602d
LW
3397 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3398
1da177e4
LT
3399 show_swap_cache_info();
3400}
3401
19770b32
MG
3402static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3403{
3404 zoneref->zone = zone;
3405 zoneref->zone_idx = zone_idx(zone);
3406}
3407
1da177e4
LT
3408/*
3409 * Builds allocation fallback zone lists.
1a93205b
CL
3410 *
3411 * Add all populated zones of a node to the zonelist.
1da177e4 3412 */
f0c0b2b8 3413static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3414 int nr_zones)
1da177e4 3415{
1a93205b 3416 struct zone *zone;
bc732f1d 3417 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3418
3419 do {
2f6726e5 3420 zone_type--;
070f8032 3421 zone = pgdat->node_zones + zone_type;
1a93205b 3422 if (populated_zone(zone)) {
dd1a239f
MG
3423 zoneref_set_zone(zone,
3424 &zonelist->_zonerefs[nr_zones++]);
070f8032 3425 check_highest_zone(zone_type);
1da177e4 3426 }
2f6726e5 3427 } while (zone_type);
bc732f1d 3428
070f8032 3429 return nr_zones;
1da177e4
LT
3430}
3431
f0c0b2b8
KH
3432
3433/*
3434 * zonelist_order:
3435 * 0 = automatic detection of better ordering.
3436 * 1 = order by ([node] distance, -zonetype)
3437 * 2 = order by (-zonetype, [node] distance)
3438 *
3439 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3440 * the same zonelist. So only NUMA can configure this param.
3441 */
3442#define ZONELIST_ORDER_DEFAULT 0
3443#define ZONELIST_ORDER_NODE 1
3444#define ZONELIST_ORDER_ZONE 2
3445
3446/* zonelist order in the kernel.
3447 * set_zonelist_order() will set this to NODE or ZONE.
3448 */
3449static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3450static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3451
3452
1da177e4 3453#ifdef CONFIG_NUMA
f0c0b2b8
KH
3454/* The value user specified ....changed by config */
3455static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3456/* string for sysctl */
3457#define NUMA_ZONELIST_ORDER_LEN 16
3458char numa_zonelist_order[16] = "default";
3459
3460/*
3461 * interface for configure zonelist ordering.
3462 * command line option "numa_zonelist_order"
3463 * = "[dD]efault - default, automatic configuration.
3464 * = "[nN]ode - order by node locality, then by zone within node
3465 * = "[zZ]one - order by zone, then by locality within zone
3466 */
3467
3468static int __parse_numa_zonelist_order(char *s)
3469{
3470 if (*s == 'd' || *s == 'D') {
3471 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3472 } else if (*s == 'n' || *s == 'N') {
3473 user_zonelist_order = ZONELIST_ORDER_NODE;
3474 } else if (*s == 'z' || *s == 'Z') {
3475 user_zonelist_order = ZONELIST_ORDER_ZONE;
3476 } else {
3477 printk(KERN_WARNING
3478 "Ignoring invalid numa_zonelist_order value: "
3479 "%s\n", s);
3480 return -EINVAL;
3481 }
3482 return 0;
3483}
3484
3485static __init int setup_numa_zonelist_order(char *s)
3486{
ecb256f8
VL
3487 int ret;
3488
3489 if (!s)
3490 return 0;
3491
3492 ret = __parse_numa_zonelist_order(s);
3493 if (ret == 0)
3494 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3495
3496 return ret;
f0c0b2b8
KH
3497}
3498early_param("numa_zonelist_order", setup_numa_zonelist_order);
3499
3500/*
3501 * sysctl handler for numa_zonelist_order
3502 */
cccad5b9 3503int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3504 void __user *buffer, size_t *length,
f0c0b2b8
KH
3505 loff_t *ppos)
3506{
3507 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3508 int ret;
443c6f14 3509 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3510
443c6f14 3511 mutex_lock(&zl_order_mutex);
dacbde09
CG
3512 if (write) {
3513 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3514 ret = -EINVAL;
3515 goto out;
3516 }
3517 strcpy(saved_string, (char *)table->data);
3518 }
8d65af78 3519 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3520 if (ret)
443c6f14 3521 goto out;
f0c0b2b8
KH
3522 if (write) {
3523 int oldval = user_zonelist_order;
dacbde09
CG
3524
3525 ret = __parse_numa_zonelist_order((char *)table->data);
3526 if (ret) {
f0c0b2b8
KH
3527 /*
3528 * bogus value. restore saved string
3529 */
dacbde09 3530 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3531 NUMA_ZONELIST_ORDER_LEN);
3532 user_zonelist_order = oldval;
4eaf3f64
HL
3533 } else if (oldval != user_zonelist_order) {
3534 mutex_lock(&zonelists_mutex);
9adb62a5 3535 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3536 mutex_unlock(&zonelists_mutex);
3537 }
f0c0b2b8 3538 }
443c6f14
AK
3539out:
3540 mutex_unlock(&zl_order_mutex);
3541 return ret;
f0c0b2b8
KH
3542}
3543
3544
62bc62a8 3545#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3546static int node_load[MAX_NUMNODES];
3547
1da177e4 3548/**
4dc3b16b 3549 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3550 * @node: node whose fallback list we're appending
3551 * @used_node_mask: nodemask_t of already used nodes
3552 *
3553 * We use a number of factors to determine which is the next node that should
3554 * appear on a given node's fallback list. The node should not have appeared
3555 * already in @node's fallback list, and it should be the next closest node
3556 * according to the distance array (which contains arbitrary distance values
3557 * from each node to each node in the system), and should also prefer nodes
3558 * with no CPUs, since presumably they'll have very little allocation pressure
3559 * on them otherwise.
3560 * It returns -1 if no node is found.
3561 */
f0c0b2b8 3562static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3563{
4cf808eb 3564 int n, val;
1da177e4 3565 int min_val = INT_MAX;
00ef2d2f 3566 int best_node = NUMA_NO_NODE;
a70f7302 3567 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3568
4cf808eb
LT
3569 /* Use the local node if we haven't already */
3570 if (!node_isset(node, *used_node_mask)) {
3571 node_set(node, *used_node_mask);
3572 return node;
3573 }
1da177e4 3574
4b0ef1fe 3575 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3576
3577 /* Don't want a node to appear more than once */
3578 if (node_isset(n, *used_node_mask))
3579 continue;
3580
1da177e4
LT
3581 /* Use the distance array to find the distance */
3582 val = node_distance(node, n);
3583
4cf808eb
LT
3584 /* Penalize nodes under us ("prefer the next node") */
3585 val += (n < node);
3586
1da177e4 3587 /* Give preference to headless and unused nodes */
a70f7302
RR
3588 tmp = cpumask_of_node(n);
3589 if (!cpumask_empty(tmp))
1da177e4
LT
3590 val += PENALTY_FOR_NODE_WITH_CPUS;
3591
3592 /* Slight preference for less loaded node */
3593 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3594 val += node_load[n];
3595
3596 if (val < min_val) {
3597 min_val = val;
3598 best_node = n;
3599 }
3600 }
3601
3602 if (best_node >= 0)
3603 node_set(best_node, *used_node_mask);
3604
3605 return best_node;
3606}
3607
f0c0b2b8
KH
3608
3609/*
3610 * Build zonelists ordered by node and zones within node.
3611 * This results in maximum locality--normal zone overflows into local
3612 * DMA zone, if any--but risks exhausting DMA zone.
3613 */
3614static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3615{
f0c0b2b8 3616 int j;
1da177e4 3617 struct zonelist *zonelist;
f0c0b2b8 3618
54a6eb5c 3619 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3620 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3621 ;
bc732f1d 3622 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3623 zonelist->_zonerefs[j].zone = NULL;
3624 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3625}
3626
523b9458
CL
3627/*
3628 * Build gfp_thisnode zonelists
3629 */
3630static void build_thisnode_zonelists(pg_data_t *pgdat)
3631{
523b9458
CL
3632 int j;
3633 struct zonelist *zonelist;
3634
54a6eb5c 3635 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3636 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3637 zonelist->_zonerefs[j].zone = NULL;
3638 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3639}
3640
f0c0b2b8
KH
3641/*
3642 * Build zonelists ordered by zone and nodes within zones.
3643 * This results in conserving DMA zone[s] until all Normal memory is
3644 * exhausted, but results in overflowing to remote node while memory
3645 * may still exist in local DMA zone.
3646 */
3647static int node_order[MAX_NUMNODES];
3648
3649static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3650{
f0c0b2b8
KH
3651 int pos, j, node;
3652 int zone_type; /* needs to be signed */
3653 struct zone *z;
3654 struct zonelist *zonelist;
3655
54a6eb5c
MG
3656 zonelist = &pgdat->node_zonelists[0];
3657 pos = 0;
3658 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3659 for (j = 0; j < nr_nodes; j++) {
3660 node = node_order[j];
3661 z = &NODE_DATA(node)->node_zones[zone_type];
3662 if (populated_zone(z)) {
dd1a239f
MG
3663 zoneref_set_zone(z,
3664 &zonelist->_zonerefs[pos++]);
54a6eb5c 3665 check_highest_zone(zone_type);
f0c0b2b8
KH
3666 }
3667 }
f0c0b2b8 3668 }
dd1a239f
MG
3669 zonelist->_zonerefs[pos].zone = NULL;
3670 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3671}
3672
3193913c
MG
3673#if defined(CONFIG_64BIT)
3674/*
3675 * Devices that require DMA32/DMA are relatively rare and do not justify a
3676 * penalty to every machine in case the specialised case applies. Default
3677 * to Node-ordering on 64-bit NUMA machines
3678 */
3679static int default_zonelist_order(void)
3680{
3681 return ZONELIST_ORDER_NODE;
3682}
3683#else
3684/*
3685 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3686 * by the kernel. If processes running on node 0 deplete the low memory zone
3687 * then reclaim will occur more frequency increasing stalls and potentially
3688 * be easier to OOM if a large percentage of the zone is under writeback or
3689 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3690 * Hence, default to zone ordering on 32-bit.
3691 */
f0c0b2b8
KH
3692static int default_zonelist_order(void)
3693{
f0c0b2b8
KH
3694 return ZONELIST_ORDER_ZONE;
3695}
3193913c 3696#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3697
3698static void set_zonelist_order(void)
3699{
3700 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3701 current_zonelist_order = default_zonelist_order();
3702 else
3703 current_zonelist_order = user_zonelist_order;
3704}
3705
3706static void build_zonelists(pg_data_t *pgdat)
3707{
3708 int j, node, load;
3709 enum zone_type i;
1da177e4 3710 nodemask_t used_mask;
f0c0b2b8
KH
3711 int local_node, prev_node;
3712 struct zonelist *zonelist;
3713 int order = current_zonelist_order;
1da177e4
LT
3714
3715 /* initialize zonelists */
523b9458 3716 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3717 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3718 zonelist->_zonerefs[0].zone = NULL;
3719 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3720 }
3721
3722 /* NUMA-aware ordering of nodes */
3723 local_node = pgdat->node_id;
62bc62a8 3724 load = nr_online_nodes;
1da177e4
LT
3725 prev_node = local_node;
3726 nodes_clear(used_mask);
f0c0b2b8 3727
f0c0b2b8
KH
3728 memset(node_order, 0, sizeof(node_order));
3729 j = 0;
3730
1da177e4
LT
3731 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3732 /*
3733 * We don't want to pressure a particular node.
3734 * So adding penalty to the first node in same
3735 * distance group to make it round-robin.
3736 */
957f822a
DR
3737 if (node_distance(local_node, node) !=
3738 node_distance(local_node, prev_node))
f0c0b2b8
KH
3739 node_load[node] = load;
3740
1da177e4
LT
3741 prev_node = node;
3742 load--;
f0c0b2b8
KH
3743 if (order == ZONELIST_ORDER_NODE)
3744 build_zonelists_in_node_order(pgdat, node);
3745 else
3746 node_order[j++] = node; /* remember order */
3747 }
1da177e4 3748
f0c0b2b8
KH
3749 if (order == ZONELIST_ORDER_ZONE) {
3750 /* calculate node order -- i.e., DMA last! */
3751 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3752 }
523b9458
CL
3753
3754 build_thisnode_zonelists(pgdat);
1da177e4
LT
3755}
3756
9276b1bc 3757/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3758static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3759{
54a6eb5c
MG
3760 struct zonelist *zonelist;
3761 struct zonelist_cache *zlc;
dd1a239f 3762 struct zoneref *z;
9276b1bc 3763
54a6eb5c
MG
3764 zonelist = &pgdat->node_zonelists[0];
3765 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3766 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3767 for (z = zonelist->_zonerefs; z->zone; z++)
3768 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3769}
3770
7aac7898
LS
3771#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3772/*
3773 * Return node id of node used for "local" allocations.
3774 * I.e., first node id of first zone in arg node's generic zonelist.
3775 * Used for initializing percpu 'numa_mem', which is used primarily
3776 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3777 */
3778int local_memory_node(int node)
3779{
3780 struct zone *zone;
3781
3782 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3783 gfp_zone(GFP_KERNEL),
3784 NULL,
3785 &zone);
3786 return zone->node;
3787}
3788#endif
f0c0b2b8 3789
1da177e4
LT
3790#else /* CONFIG_NUMA */
3791
f0c0b2b8
KH
3792static void set_zonelist_order(void)
3793{
3794 current_zonelist_order = ZONELIST_ORDER_ZONE;
3795}
3796
3797static void build_zonelists(pg_data_t *pgdat)
1da177e4 3798{
19655d34 3799 int node, local_node;
54a6eb5c
MG
3800 enum zone_type j;
3801 struct zonelist *zonelist;
1da177e4
LT
3802
3803 local_node = pgdat->node_id;
1da177e4 3804
54a6eb5c 3805 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3806 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3807
54a6eb5c
MG
3808 /*
3809 * Now we build the zonelist so that it contains the zones
3810 * of all the other nodes.
3811 * We don't want to pressure a particular node, so when
3812 * building the zones for node N, we make sure that the
3813 * zones coming right after the local ones are those from
3814 * node N+1 (modulo N)
3815 */
3816 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3817 if (!node_online(node))
3818 continue;
bc732f1d 3819 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3820 }
54a6eb5c
MG
3821 for (node = 0; node < local_node; node++) {
3822 if (!node_online(node))
3823 continue;
bc732f1d 3824 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3825 }
3826
dd1a239f
MG
3827 zonelist->_zonerefs[j].zone = NULL;
3828 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3829}
3830
9276b1bc 3831/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3832static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3833{
54a6eb5c 3834 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3835}
3836
1da177e4
LT
3837#endif /* CONFIG_NUMA */
3838
99dcc3e5
CL
3839/*
3840 * Boot pageset table. One per cpu which is going to be used for all
3841 * zones and all nodes. The parameters will be set in such a way
3842 * that an item put on a list will immediately be handed over to
3843 * the buddy list. This is safe since pageset manipulation is done
3844 * with interrupts disabled.
3845 *
3846 * The boot_pagesets must be kept even after bootup is complete for
3847 * unused processors and/or zones. They do play a role for bootstrapping
3848 * hotplugged processors.
3849 *
3850 * zoneinfo_show() and maybe other functions do
3851 * not check if the processor is online before following the pageset pointer.
3852 * Other parts of the kernel may not check if the zone is available.
3853 */
3854static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3855static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3856static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3857
4eaf3f64
HL
3858/*
3859 * Global mutex to protect against size modification of zonelists
3860 * as well as to serialize pageset setup for the new populated zone.
3861 */
3862DEFINE_MUTEX(zonelists_mutex);
3863
9b1a4d38 3864/* return values int ....just for stop_machine() */
4ed7e022 3865static int __build_all_zonelists(void *data)
1da177e4 3866{
6811378e 3867 int nid;
99dcc3e5 3868 int cpu;
9adb62a5 3869 pg_data_t *self = data;
9276b1bc 3870
7f9cfb31
BL
3871#ifdef CONFIG_NUMA
3872 memset(node_load, 0, sizeof(node_load));
3873#endif
9adb62a5
JL
3874
3875 if (self && !node_online(self->node_id)) {
3876 build_zonelists(self);
3877 build_zonelist_cache(self);
3878 }
3879
9276b1bc 3880 for_each_online_node(nid) {
7ea1530a
CL
3881 pg_data_t *pgdat = NODE_DATA(nid);
3882
3883 build_zonelists(pgdat);
3884 build_zonelist_cache(pgdat);
9276b1bc 3885 }
99dcc3e5
CL
3886
3887 /*
3888 * Initialize the boot_pagesets that are going to be used
3889 * for bootstrapping processors. The real pagesets for
3890 * each zone will be allocated later when the per cpu
3891 * allocator is available.
3892 *
3893 * boot_pagesets are used also for bootstrapping offline
3894 * cpus if the system is already booted because the pagesets
3895 * are needed to initialize allocators on a specific cpu too.
3896 * F.e. the percpu allocator needs the page allocator which
3897 * needs the percpu allocator in order to allocate its pagesets
3898 * (a chicken-egg dilemma).
3899 */
7aac7898 3900 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3901 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3902
7aac7898
LS
3903#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3904 /*
3905 * We now know the "local memory node" for each node--
3906 * i.e., the node of the first zone in the generic zonelist.
3907 * Set up numa_mem percpu variable for on-line cpus. During
3908 * boot, only the boot cpu should be on-line; we'll init the
3909 * secondary cpus' numa_mem as they come on-line. During
3910 * node/memory hotplug, we'll fixup all on-line cpus.
3911 */
3912 if (cpu_online(cpu))
3913 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3914#endif
3915 }
3916
6811378e
YG
3917 return 0;
3918}
3919
4eaf3f64
HL
3920/*
3921 * Called with zonelists_mutex held always
3922 * unless system_state == SYSTEM_BOOTING.
3923 */
9adb62a5 3924void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3925{
f0c0b2b8
KH
3926 set_zonelist_order();
3927
6811378e 3928 if (system_state == SYSTEM_BOOTING) {
423b41d7 3929 __build_all_zonelists(NULL);
68ad8df4 3930 mminit_verify_zonelist();
6811378e
YG
3931 cpuset_init_current_mems_allowed();
3932 } else {
e9959f0f 3933#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3934 if (zone)
3935 setup_zone_pageset(zone);
e9959f0f 3936#endif
dd1895e2
CS
3937 /* we have to stop all cpus to guarantee there is no user
3938 of zonelist */
9adb62a5 3939 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3940 /* cpuset refresh routine should be here */
3941 }
bd1e22b8 3942 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3943 /*
3944 * Disable grouping by mobility if the number of pages in the
3945 * system is too low to allow the mechanism to work. It would be
3946 * more accurate, but expensive to check per-zone. This check is
3947 * made on memory-hotadd so a system can start with mobility
3948 * disabled and enable it later
3949 */
d9c23400 3950 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3951 page_group_by_mobility_disabled = 1;
3952 else
3953 page_group_by_mobility_disabled = 0;
3954
f88dfff5 3955 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3956 "Total pages: %ld\n",
62bc62a8 3957 nr_online_nodes,
f0c0b2b8 3958 zonelist_order_name[current_zonelist_order],
9ef9acb0 3959 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3960 vm_total_pages);
3961#ifdef CONFIG_NUMA
f88dfff5 3962 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3963#endif
1da177e4
LT
3964}
3965
3966/*
3967 * Helper functions to size the waitqueue hash table.
3968 * Essentially these want to choose hash table sizes sufficiently
3969 * large so that collisions trying to wait on pages are rare.
3970 * But in fact, the number of active page waitqueues on typical
3971 * systems is ridiculously low, less than 200. So this is even
3972 * conservative, even though it seems large.
3973 *
3974 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3975 * waitqueues, i.e. the size of the waitq table given the number of pages.
3976 */
3977#define PAGES_PER_WAITQUEUE 256
3978
cca448fe 3979#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3980static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3981{
3982 unsigned long size = 1;
3983
3984 pages /= PAGES_PER_WAITQUEUE;
3985
3986 while (size < pages)
3987 size <<= 1;
3988
3989 /*
3990 * Once we have dozens or even hundreds of threads sleeping
3991 * on IO we've got bigger problems than wait queue collision.
3992 * Limit the size of the wait table to a reasonable size.
3993 */
3994 size = min(size, 4096UL);
3995
3996 return max(size, 4UL);
3997}
cca448fe
YG
3998#else
3999/*
4000 * A zone's size might be changed by hot-add, so it is not possible to determine
4001 * a suitable size for its wait_table. So we use the maximum size now.
4002 *
4003 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4004 *
4005 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4006 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4007 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4008 *
4009 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4010 * or more by the traditional way. (See above). It equals:
4011 *
4012 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4013 * ia64(16K page size) : = ( 8G + 4M)byte.
4014 * powerpc (64K page size) : = (32G +16M)byte.
4015 */
4016static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4017{
4018 return 4096UL;
4019}
4020#endif
1da177e4
LT
4021
4022/*
4023 * This is an integer logarithm so that shifts can be used later
4024 * to extract the more random high bits from the multiplicative
4025 * hash function before the remainder is taken.
4026 */
4027static inline unsigned long wait_table_bits(unsigned long size)
4028{
4029 return ffz(~size);
4030}
4031
6d3163ce
AH
4032/*
4033 * Check if a pageblock contains reserved pages
4034 */
4035static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4036{
4037 unsigned long pfn;
4038
4039 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4040 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4041 return 1;
4042 }
4043 return 0;
4044}
4045
56fd56b8 4046/*
d9c23400 4047 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4048 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4049 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4050 * higher will lead to a bigger reserve which will get freed as contiguous
4051 * blocks as reclaim kicks in
4052 */
4053static void setup_zone_migrate_reserve(struct zone *zone)
4054{
6d3163ce 4055 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4056 struct page *page;
78986a67
MG
4057 unsigned long block_migratetype;
4058 int reserve;
943dca1a 4059 int old_reserve;
56fd56b8 4060
d0215638
MH
4061 /*
4062 * Get the start pfn, end pfn and the number of blocks to reserve
4063 * We have to be careful to be aligned to pageblock_nr_pages to
4064 * make sure that we always check pfn_valid for the first page in
4065 * the block.
4066 */
56fd56b8 4067 start_pfn = zone->zone_start_pfn;
108bcc96 4068 end_pfn = zone_end_pfn(zone);
d0215638 4069 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4070 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4071 pageblock_order;
56fd56b8 4072
78986a67
MG
4073 /*
4074 * Reserve blocks are generally in place to help high-order atomic
4075 * allocations that are short-lived. A min_free_kbytes value that
4076 * would result in more than 2 reserve blocks for atomic allocations
4077 * is assumed to be in place to help anti-fragmentation for the
4078 * future allocation of hugepages at runtime.
4079 */
4080 reserve = min(2, reserve);
943dca1a
YI
4081 old_reserve = zone->nr_migrate_reserve_block;
4082
4083 /* When memory hot-add, we almost always need to do nothing */
4084 if (reserve == old_reserve)
4085 return;
4086 zone->nr_migrate_reserve_block = reserve;
78986a67 4087
d9c23400 4088 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4089 if (!pfn_valid(pfn))
4090 continue;
4091 page = pfn_to_page(pfn);
4092
344c790e
AL
4093 /* Watch out for overlapping nodes */
4094 if (page_to_nid(page) != zone_to_nid(zone))
4095 continue;
4096
56fd56b8
MG
4097 block_migratetype = get_pageblock_migratetype(page);
4098
938929f1
MG
4099 /* Only test what is necessary when the reserves are not met */
4100 if (reserve > 0) {
4101 /*
4102 * Blocks with reserved pages will never free, skip
4103 * them.
4104 */
4105 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4106 if (pageblock_is_reserved(pfn, block_end_pfn))
4107 continue;
56fd56b8 4108
938929f1
MG
4109 /* If this block is reserved, account for it */
4110 if (block_migratetype == MIGRATE_RESERVE) {
4111 reserve--;
4112 continue;
4113 }
4114
4115 /* Suitable for reserving if this block is movable */
4116 if (block_migratetype == MIGRATE_MOVABLE) {
4117 set_pageblock_migratetype(page,
4118 MIGRATE_RESERVE);
4119 move_freepages_block(zone, page,
4120 MIGRATE_RESERVE);
4121 reserve--;
4122 continue;
4123 }
943dca1a
YI
4124 } else if (!old_reserve) {
4125 /*
4126 * At boot time we don't need to scan the whole zone
4127 * for turning off MIGRATE_RESERVE.
4128 */
4129 break;
56fd56b8
MG
4130 }
4131
4132 /*
4133 * If the reserve is met and this is a previous reserved block,
4134 * take it back
4135 */
4136 if (block_migratetype == MIGRATE_RESERVE) {
4137 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4138 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4139 }
4140 }
4141}
ac0e5b7a 4142
1da177e4
LT
4143/*
4144 * Initially all pages are reserved - free ones are freed
4145 * up by free_all_bootmem() once the early boot process is
4146 * done. Non-atomic initialization, single-pass.
4147 */
c09b4240 4148void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4149 unsigned long start_pfn, enum memmap_context context)
1da177e4 4150{
1da177e4 4151 struct page *page;
29751f69
AW
4152 unsigned long end_pfn = start_pfn + size;
4153 unsigned long pfn;
86051ca5 4154 struct zone *z;
1da177e4 4155
22b31eec
HD
4156 if (highest_memmap_pfn < end_pfn - 1)
4157 highest_memmap_pfn = end_pfn - 1;
4158
86051ca5 4159 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4160 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4161 /*
4162 * There can be holes in boot-time mem_map[]s
4163 * handed to this function. They do not
4164 * exist on hotplugged memory.
4165 */
4166 if (context == MEMMAP_EARLY) {
4167 if (!early_pfn_valid(pfn))
4168 continue;
4169 if (!early_pfn_in_nid(pfn, nid))
4170 continue;
4171 }
d41dee36
AW
4172 page = pfn_to_page(pfn);
4173 set_page_links(page, zone, nid, pfn);
708614e6 4174 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4175 init_page_count(page);
22b751c3 4176 page_mapcount_reset(page);
90572890 4177 page_cpupid_reset_last(page);
1da177e4 4178 SetPageReserved(page);
b2a0ac88
MG
4179 /*
4180 * Mark the block movable so that blocks are reserved for
4181 * movable at startup. This will force kernel allocations
4182 * to reserve their blocks rather than leaking throughout
4183 * the address space during boot when many long-lived
56fd56b8
MG
4184 * kernel allocations are made. Later some blocks near
4185 * the start are marked MIGRATE_RESERVE by
4186 * setup_zone_migrate_reserve()
86051ca5
KH
4187 *
4188 * bitmap is created for zone's valid pfn range. but memmap
4189 * can be created for invalid pages (for alignment)
4190 * check here not to call set_pageblock_migratetype() against
4191 * pfn out of zone.
b2a0ac88 4192 */
86051ca5 4193 if ((z->zone_start_pfn <= pfn)
108bcc96 4194 && (pfn < zone_end_pfn(z))
86051ca5 4195 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4196 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4197
1da177e4
LT
4198 INIT_LIST_HEAD(&page->lru);
4199#ifdef WANT_PAGE_VIRTUAL
4200 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4201 if (!is_highmem_idx(zone))
3212c6be 4202 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4203#endif
1da177e4
LT
4204 }
4205}
4206
1e548deb 4207static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4208{
7aeb09f9 4209 unsigned int order, t;
b2a0ac88
MG
4210 for_each_migratetype_order(order, t) {
4211 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4212 zone->free_area[order].nr_free = 0;
4213 }
4214}
4215
4216#ifndef __HAVE_ARCH_MEMMAP_INIT
4217#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4218 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4219#endif
4220
7cd2b0a3 4221static int zone_batchsize(struct zone *zone)
e7c8d5c9 4222{
3a6be87f 4223#ifdef CONFIG_MMU
e7c8d5c9
CL
4224 int batch;
4225
4226 /*
4227 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4228 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4229 *
4230 * OK, so we don't know how big the cache is. So guess.
4231 */
b40da049 4232 batch = zone->managed_pages / 1024;
ba56e91c
SR
4233 if (batch * PAGE_SIZE > 512 * 1024)
4234 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4235 batch /= 4; /* We effectively *= 4 below */
4236 if (batch < 1)
4237 batch = 1;
4238
4239 /*
0ceaacc9
NP
4240 * Clamp the batch to a 2^n - 1 value. Having a power
4241 * of 2 value was found to be more likely to have
4242 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4243 *
0ceaacc9
NP
4244 * For example if 2 tasks are alternately allocating
4245 * batches of pages, one task can end up with a lot
4246 * of pages of one half of the possible page colors
4247 * and the other with pages of the other colors.
e7c8d5c9 4248 */
9155203a 4249 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4250
e7c8d5c9 4251 return batch;
3a6be87f
DH
4252
4253#else
4254 /* The deferral and batching of frees should be suppressed under NOMMU
4255 * conditions.
4256 *
4257 * The problem is that NOMMU needs to be able to allocate large chunks
4258 * of contiguous memory as there's no hardware page translation to
4259 * assemble apparent contiguous memory from discontiguous pages.
4260 *
4261 * Queueing large contiguous runs of pages for batching, however,
4262 * causes the pages to actually be freed in smaller chunks. As there
4263 * can be a significant delay between the individual batches being
4264 * recycled, this leads to the once large chunks of space being
4265 * fragmented and becoming unavailable for high-order allocations.
4266 */
4267 return 0;
4268#endif
e7c8d5c9
CL
4269}
4270
8d7a8fa9
CS
4271/*
4272 * pcp->high and pcp->batch values are related and dependent on one another:
4273 * ->batch must never be higher then ->high.
4274 * The following function updates them in a safe manner without read side
4275 * locking.
4276 *
4277 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4278 * those fields changing asynchronously (acording the the above rule).
4279 *
4280 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4281 * outside of boot time (or some other assurance that no concurrent updaters
4282 * exist).
4283 */
4284static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4285 unsigned long batch)
4286{
4287 /* start with a fail safe value for batch */
4288 pcp->batch = 1;
4289 smp_wmb();
4290
4291 /* Update high, then batch, in order */
4292 pcp->high = high;
4293 smp_wmb();
4294
4295 pcp->batch = batch;
4296}
4297
3664033c 4298/* a companion to pageset_set_high() */
4008bab7
CS
4299static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4300{
8d7a8fa9 4301 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4302}
4303
88c90dbc 4304static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4305{
4306 struct per_cpu_pages *pcp;
5f8dcc21 4307 int migratetype;
2caaad41 4308
1c6fe946
MD
4309 memset(p, 0, sizeof(*p));
4310
3dfa5721 4311 pcp = &p->pcp;
2caaad41 4312 pcp->count = 0;
5f8dcc21
MG
4313 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4314 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4315}
4316
88c90dbc
CS
4317static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4318{
4319 pageset_init(p);
4320 pageset_set_batch(p, batch);
4321}
4322
8ad4b1fb 4323/*
3664033c 4324 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4325 * to the value high for the pageset p.
4326 */
3664033c 4327static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4328 unsigned long high)
4329{
8d7a8fa9
CS
4330 unsigned long batch = max(1UL, high / 4);
4331 if ((high / 4) > (PAGE_SHIFT * 8))
4332 batch = PAGE_SHIFT * 8;
8ad4b1fb 4333
8d7a8fa9 4334 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4335}
4336
7cd2b0a3
DR
4337static void pageset_set_high_and_batch(struct zone *zone,
4338 struct per_cpu_pageset *pcp)
56cef2b8 4339{
56cef2b8 4340 if (percpu_pagelist_fraction)
3664033c 4341 pageset_set_high(pcp,
56cef2b8
CS
4342 (zone->managed_pages /
4343 percpu_pagelist_fraction));
4344 else
4345 pageset_set_batch(pcp, zone_batchsize(zone));
4346}
4347
169f6c19
CS
4348static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4349{
4350 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4351
4352 pageset_init(pcp);
4353 pageset_set_high_and_batch(zone, pcp);
4354}
4355
4ed7e022 4356static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4357{
4358 int cpu;
319774e2 4359 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4360 for_each_possible_cpu(cpu)
4361 zone_pageset_init(zone, cpu);
319774e2
WF
4362}
4363
2caaad41 4364/*
99dcc3e5
CL
4365 * Allocate per cpu pagesets and initialize them.
4366 * Before this call only boot pagesets were available.
e7c8d5c9 4367 */
99dcc3e5 4368void __init setup_per_cpu_pageset(void)
e7c8d5c9 4369{
99dcc3e5 4370 struct zone *zone;
e7c8d5c9 4371
319774e2
WF
4372 for_each_populated_zone(zone)
4373 setup_zone_pageset(zone);
e7c8d5c9
CL
4374}
4375
577a32f6 4376static noinline __init_refok
cca448fe 4377int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4378{
4379 int i;
cca448fe 4380 size_t alloc_size;
ed8ece2e
DH
4381
4382 /*
4383 * The per-page waitqueue mechanism uses hashed waitqueues
4384 * per zone.
4385 */
02b694de
YG
4386 zone->wait_table_hash_nr_entries =
4387 wait_table_hash_nr_entries(zone_size_pages);
4388 zone->wait_table_bits =
4389 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4390 alloc_size = zone->wait_table_hash_nr_entries
4391 * sizeof(wait_queue_head_t);
4392
cd94b9db 4393 if (!slab_is_available()) {
cca448fe 4394 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4395 memblock_virt_alloc_node_nopanic(
4396 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4397 } else {
4398 /*
4399 * This case means that a zone whose size was 0 gets new memory
4400 * via memory hot-add.
4401 * But it may be the case that a new node was hot-added. In
4402 * this case vmalloc() will not be able to use this new node's
4403 * memory - this wait_table must be initialized to use this new
4404 * node itself as well.
4405 * To use this new node's memory, further consideration will be
4406 * necessary.
4407 */
8691f3a7 4408 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4409 }
4410 if (!zone->wait_table)
4411 return -ENOMEM;
ed8ece2e 4412
b8af2941 4413 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4414 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4415
4416 return 0;
ed8ece2e
DH
4417}
4418
c09b4240 4419static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4420{
99dcc3e5
CL
4421 /*
4422 * per cpu subsystem is not up at this point. The following code
4423 * relies on the ability of the linker to provide the
4424 * offset of a (static) per cpu variable into the per cpu area.
4425 */
4426 zone->pageset = &boot_pageset;
ed8ece2e 4427
b38a8725 4428 if (populated_zone(zone))
99dcc3e5
CL
4429 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4430 zone->name, zone->present_pages,
4431 zone_batchsize(zone));
ed8ece2e
DH
4432}
4433
4ed7e022 4434int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4435 unsigned long zone_start_pfn,
a2f3aa02
DH
4436 unsigned long size,
4437 enum memmap_context context)
ed8ece2e
DH
4438{
4439 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4440 int ret;
4441 ret = zone_wait_table_init(zone, size);
4442 if (ret)
4443 return ret;
ed8ece2e
DH
4444 pgdat->nr_zones = zone_idx(zone) + 1;
4445
ed8ece2e
DH
4446 zone->zone_start_pfn = zone_start_pfn;
4447
708614e6
MG
4448 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4449 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4450 pgdat->node_id,
4451 (unsigned long)zone_idx(zone),
4452 zone_start_pfn, (zone_start_pfn + size));
4453
1e548deb 4454 zone_init_free_lists(zone);
718127cc
YG
4455
4456 return 0;
ed8ece2e
DH
4457}
4458
0ee332c1 4459#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4460#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4461/*
4462 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4463 */
f2dbcfa7 4464int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4465{
c13291a5 4466 unsigned long start_pfn, end_pfn;
e76b63f8 4467 int nid;
7c243c71
RA
4468 /*
4469 * NOTE: The following SMP-unsafe globals are only used early in boot
4470 * when the kernel is running single-threaded.
4471 */
4472 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4473 static int __meminitdata last_nid;
4474
4475 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4476 return last_nid;
c713216d 4477
e76b63f8
YL
4478 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4479 if (nid != -1) {
4480 last_start_pfn = start_pfn;
4481 last_end_pfn = end_pfn;
4482 last_nid = nid;
4483 }
4484
4485 return nid;
c713216d
MG
4486}
4487#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4488
f2dbcfa7
KH
4489int __meminit early_pfn_to_nid(unsigned long pfn)
4490{
cc2559bc
KH
4491 int nid;
4492
4493 nid = __early_pfn_to_nid(pfn);
4494 if (nid >= 0)
4495 return nid;
4496 /* just returns 0 */
4497 return 0;
f2dbcfa7
KH
4498}
4499
cc2559bc
KH
4500#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4501bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4502{
4503 int nid;
4504
4505 nid = __early_pfn_to_nid(pfn);
4506 if (nid >= 0 && nid != node)
4507 return false;
4508 return true;
4509}
4510#endif
f2dbcfa7 4511
c713216d 4512/**
6782832e 4513 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4514 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4515 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4516 *
7d018176
ZZ
4517 * If an architecture guarantees that all ranges registered contain no holes
4518 * and may be freed, this this function may be used instead of calling
4519 * memblock_free_early_nid() manually.
c713216d 4520 */
c13291a5 4521void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4522{
c13291a5
TH
4523 unsigned long start_pfn, end_pfn;
4524 int i, this_nid;
edbe7d23 4525
c13291a5
TH
4526 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4527 start_pfn = min(start_pfn, max_low_pfn);
4528 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4529
c13291a5 4530 if (start_pfn < end_pfn)
6782832e
SS
4531 memblock_free_early_nid(PFN_PHYS(start_pfn),
4532 (end_pfn - start_pfn) << PAGE_SHIFT,
4533 this_nid);
edbe7d23 4534 }
edbe7d23 4535}
edbe7d23 4536
c713216d
MG
4537/**
4538 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4539 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4540 *
7d018176
ZZ
4541 * If an architecture guarantees that all ranges registered contain no holes and may
4542 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4543 */
4544void __init sparse_memory_present_with_active_regions(int nid)
4545{
c13291a5
TH
4546 unsigned long start_pfn, end_pfn;
4547 int i, this_nid;
c713216d 4548
c13291a5
TH
4549 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4550 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4551}
4552
4553/**
4554 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4555 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4556 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4557 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4558 *
4559 * It returns the start and end page frame of a node based on information
7d018176 4560 * provided by memblock_set_node(). If called for a node
c713216d 4561 * with no available memory, a warning is printed and the start and end
88ca3b94 4562 * PFNs will be 0.
c713216d 4563 */
a3142c8e 4564void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4565 unsigned long *start_pfn, unsigned long *end_pfn)
4566{
c13291a5 4567 unsigned long this_start_pfn, this_end_pfn;
c713216d 4568 int i;
c13291a5 4569
c713216d
MG
4570 *start_pfn = -1UL;
4571 *end_pfn = 0;
4572
c13291a5
TH
4573 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4574 *start_pfn = min(*start_pfn, this_start_pfn);
4575 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4576 }
4577
633c0666 4578 if (*start_pfn == -1UL)
c713216d 4579 *start_pfn = 0;
c713216d
MG
4580}
4581
2a1e274a
MG
4582/*
4583 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4584 * assumption is made that zones within a node are ordered in monotonic
4585 * increasing memory addresses so that the "highest" populated zone is used
4586 */
b69a7288 4587static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4588{
4589 int zone_index;
4590 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4591 if (zone_index == ZONE_MOVABLE)
4592 continue;
4593
4594 if (arch_zone_highest_possible_pfn[zone_index] >
4595 arch_zone_lowest_possible_pfn[zone_index])
4596 break;
4597 }
4598
4599 VM_BUG_ON(zone_index == -1);
4600 movable_zone = zone_index;
4601}
4602
4603/*
4604 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4605 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4606 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4607 * in each node depending on the size of each node and how evenly kernelcore
4608 * is distributed. This helper function adjusts the zone ranges
4609 * provided by the architecture for a given node by using the end of the
4610 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4611 * zones within a node are in order of monotonic increases memory addresses
4612 */
b69a7288 4613static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4614 unsigned long zone_type,
4615 unsigned long node_start_pfn,
4616 unsigned long node_end_pfn,
4617 unsigned long *zone_start_pfn,
4618 unsigned long *zone_end_pfn)
4619{
4620 /* Only adjust if ZONE_MOVABLE is on this node */
4621 if (zone_movable_pfn[nid]) {
4622 /* Size ZONE_MOVABLE */
4623 if (zone_type == ZONE_MOVABLE) {
4624 *zone_start_pfn = zone_movable_pfn[nid];
4625 *zone_end_pfn = min(node_end_pfn,
4626 arch_zone_highest_possible_pfn[movable_zone]);
4627
4628 /* Adjust for ZONE_MOVABLE starting within this range */
4629 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4630 *zone_end_pfn > zone_movable_pfn[nid]) {
4631 *zone_end_pfn = zone_movable_pfn[nid];
4632
4633 /* Check if this whole range is within ZONE_MOVABLE */
4634 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4635 *zone_start_pfn = *zone_end_pfn;
4636 }
4637}
4638
c713216d
MG
4639/*
4640 * Return the number of pages a zone spans in a node, including holes
4641 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4642 */
6ea6e688 4643static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4644 unsigned long zone_type,
7960aedd
ZY
4645 unsigned long node_start_pfn,
4646 unsigned long node_end_pfn,
c713216d
MG
4647 unsigned long *ignored)
4648{
c713216d
MG
4649 unsigned long zone_start_pfn, zone_end_pfn;
4650
7960aedd 4651 /* Get the start and end of the zone */
c713216d
MG
4652 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4653 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4654 adjust_zone_range_for_zone_movable(nid, zone_type,
4655 node_start_pfn, node_end_pfn,
4656 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4657
4658 /* Check that this node has pages within the zone's required range */
4659 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4660 return 0;
4661
4662 /* Move the zone boundaries inside the node if necessary */
4663 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4664 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4665
4666 /* Return the spanned pages */
4667 return zone_end_pfn - zone_start_pfn;
4668}
4669
4670/*
4671 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4672 * then all holes in the requested range will be accounted for.
c713216d 4673 */
32996250 4674unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4675 unsigned long range_start_pfn,
4676 unsigned long range_end_pfn)
4677{
96e907d1
TH
4678 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4679 unsigned long start_pfn, end_pfn;
4680 int i;
c713216d 4681
96e907d1
TH
4682 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4683 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4684 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4685 nr_absent -= end_pfn - start_pfn;
c713216d 4686 }
96e907d1 4687 return nr_absent;
c713216d
MG
4688}
4689
4690/**
4691 * absent_pages_in_range - Return number of page frames in holes within a range
4692 * @start_pfn: The start PFN to start searching for holes
4693 * @end_pfn: The end PFN to stop searching for holes
4694 *
88ca3b94 4695 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4696 */
4697unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4698 unsigned long end_pfn)
4699{
4700 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4701}
4702
4703/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4704static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4705 unsigned long zone_type,
7960aedd
ZY
4706 unsigned long node_start_pfn,
4707 unsigned long node_end_pfn,
c713216d
MG
4708 unsigned long *ignored)
4709{
96e907d1
TH
4710 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4711 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4712 unsigned long zone_start_pfn, zone_end_pfn;
4713
96e907d1
TH
4714 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4715 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4716
2a1e274a
MG
4717 adjust_zone_range_for_zone_movable(nid, zone_type,
4718 node_start_pfn, node_end_pfn,
4719 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4720 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4721}
0e0b864e 4722
0ee332c1 4723#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4724static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4725 unsigned long zone_type,
7960aedd
ZY
4726 unsigned long node_start_pfn,
4727 unsigned long node_end_pfn,
c713216d
MG
4728 unsigned long *zones_size)
4729{
4730 return zones_size[zone_type];
4731}
4732
6ea6e688 4733static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4734 unsigned long zone_type,
7960aedd
ZY
4735 unsigned long node_start_pfn,
4736 unsigned long node_end_pfn,
c713216d
MG
4737 unsigned long *zholes_size)
4738{
4739 if (!zholes_size)
4740 return 0;
4741
4742 return zholes_size[zone_type];
4743}
20e6926d 4744
0ee332c1 4745#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4746
a3142c8e 4747static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4748 unsigned long node_start_pfn,
4749 unsigned long node_end_pfn,
4750 unsigned long *zones_size,
4751 unsigned long *zholes_size)
c713216d
MG
4752{
4753 unsigned long realtotalpages, totalpages = 0;
4754 enum zone_type i;
4755
4756 for (i = 0; i < MAX_NR_ZONES; i++)
4757 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4758 node_start_pfn,
4759 node_end_pfn,
4760 zones_size);
c713216d
MG
4761 pgdat->node_spanned_pages = totalpages;
4762
4763 realtotalpages = totalpages;
4764 for (i = 0; i < MAX_NR_ZONES; i++)
4765 realtotalpages -=
4766 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4767 node_start_pfn, node_end_pfn,
4768 zholes_size);
c713216d
MG
4769 pgdat->node_present_pages = realtotalpages;
4770 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4771 realtotalpages);
4772}
4773
835c134e
MG
4774#ifndef CONFIG_SPARSEMEM
4775/*
4776 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4777 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4778 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4779 * round what is now in bits to nearest long in bits, then return it in
4780 * bytes.
4781 */
7c45512d 4782static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4783{
4784 unsigned long usemapsize;
4785
7c45512d 4786 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4787 usemapsize = roundup(zonesize, pageblock_nr_pages);
4788 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4789 usemapsize *= NR_PAGEBLOCK_BITS;
4790 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4791
4792 return usemapsize / 8;
4793}
4794
4795static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4796 struct zone *zone,
4797 unsigned long zone_start_pfn,
4798 unsigned long zonesize)
835c134e 4799{
7c45512d 4800 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4801 zone->pageblock_flags = NULL;
58a01a45 4802 if (usemapsize)
6782832e
SS
4803 zone->pageblock_flags =
4804 memblock_virt_alloc_node_nopanic(usemapsize,
4805 pgdat->node_id);
835c134e
MG
4806}
4807#else
7c45512d
LT
4808static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4809 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4810#endif /* CONFIG_SPARSEMEM */
4811
d9c23400 4812#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4813
d9c23400 4814/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4815void __paginginit set_pageblock_order(void)
d9c23400 4816{
955c1cd7
AM
4817 unsigned int order;
4818
d9c23400
MG
4819 /* Check that pageblock_nr_pages has not already been setup */
4820 if (pageblock_order)
4821 return;
4822
955c1cd7
AM
4823 if (HPAGE_SHIFT > PAGE_SHIFT)
4824 order = HUGETLB_PAGE_ORDER;
4825 else
4826 order = MAX_ORDER - 1;
4827
d9c23400
MG
4828 /*
4829 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4830 * This value may be variable depending on boot parameters on IA64 and
4831 * powerpc.
d9c23400
MG
4832 */
4833 pageblock_order = order;
4834}
4835#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4836
ba72cb8c
MG
4837/*
4838 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4839 * is unused as pageblock_order is set at compile-time. See
4840 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4841 * the kernel config
ba72cb8c 4842 */
15ca220e 4843void __paginginit set_pageblock_order(void)
ba72cb8c 4844{
ba72cb8c 4845}
d9c23400
MG
4846
4847#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4848
01cefaef
JL
4849static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4850 unsigned long present_pages)
4851{
4852 unsigned long pages = spanned_pages;
4853
4854 /*
4855 * Provide a more accurate estimation if there are holes within
4856 * the zone and SPARSEMEM is in use. If there are holes within the
4857 * zone, each populated memory region may cost us one or two extra
4858 * memmap pages due to alignment because memmap pages for each
4859 * populated regions may not naturally algined on page boundary.
4860 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4861 */
4862 if (spanned_pages > present_pages + (present_pages >> 4) &&
4863 IS_ENABLED(CONFIG_SPARSEMEM))
4864 pages = present_pages;
4865
4866 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4867}
4868
1da177e4
LT
4869/*
4870 * Set up the zone data structures:
4871 * - mark all pages reserved
4872 * - mark all memory queues empty
4873 * - clear the memory bitmaps
6527af5d
MK
4874 *
4875 * NOTE: pgdat should get zeroed by caller.
1da177e4 4876 */
b5a0e011 4877static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4878 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4879 unsigned long *zones_size, unsigned long *zholes_size)
4880{
2f1b6248 4881 enum zone_type j;
ed8ece2e 4882 int nid = pgdat->node_id;
1da177e4 4883 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4884 int ret;
1da177e4 4885
208d54e5 4886 pgdat_resize_init(pgdat);
8177a420
AA
4887#ifdef CONFIG_NUMA_BALANCING
4888 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4889 pgdat->numabalancing_migrate_nr_pages = 0;
4890 pgdat->numabalancing_migrate_next_window = jiffies;
4891#endif
1da177e4 4892 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4893 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4894 pgdat_page_ext_init(pgdat);
5f63b720 4895
1da177e4
LT
4896 for (j = 0; j < MAX_NR_ZONES; j++) {
4897 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4898 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4899
7960aedd
ZY
4900 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4901 node_end_pfn, zones_size);
9feedc9d 4902 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4903 node_start_pfn,
4904 node_end_pfn,
c713216d 4905 zholes_size);
1da177e4 4906
0e0b864e 4907 /*
9feedc9d 4908 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4909 * is used by this zone for memmap. This affects the watermark
4910 * and per-cpu initialisations
4911 */
01cefaef 4912 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4913 if (!is_highmem_idx(j)) {
4914 if (freesize >= memmap_pages) {
4915 freesize -= memmap_pages;
4916 if (memmap_pages)
4917 printk(KERN_DEBUG
4918 " %s zone: %lu pages used for memmap\n",
4919 zone_names[j], memmap_pages);
4920 } else
4921 printk(KERN_WARNING
4922 " %s zone: %lu pages exceeds freesize %lu\n",
4923 zone_names[j], memmap_pages, freesize);
4924 }
0e0b864e 4925
6267276f 4926 /* Account for reserved pages */
9feedc9d
JL
4927 if (j == 0 && freesize > dma_reserve) {
4928 freesize -= dma_reserve;
d903ef9f 4929 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4930 zone_names[0], dma_reserve);
0e0b864e
MG
4931 }
4932
98d2b0eb 4933 if (!is_highmem_idx(j))
9feedc9d 4934 nr_kernel_pages += freesize;
01cefaef
JL
4935 /* Charge for highmem memmap if there are enough kernel pages */
4936 else if (nr_kernel_pages > memmap_pages * 2)
4937 nr_kernel_pages -= memmap_pages;
9feedc9d 4938 nr_all_pages += freesize;
1da177e4
LT
4939
4940 zone->spanned_pages = size;
306f2e9e 4941 zone->present_pages = realsize;
9feedc9d
JL
4942 /*
4943 * Set an approximate value for lowmem here, it will be adjusted
4944 * when the bootmem allocator frees pages into the buddy system.
4945 * And all highmem pages will be managed by the buddy system.
4946 */
4947 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4948#ifdef CONFIG_NUMA
d5f541ed 4949 zone->node = nid;
9feedc9d 4950 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4951 / 100;
9feedc9d 4952 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4953#endif
1da177e4
LT
4954 zone->name = zone_names[j];
4955 spin_lock_init(&zone->lock);
4956 spin_lock_init(&zone->lru_lock);
bdc8cb98 4957 zone_seqlock_init(zone);
1da177e4 4958 zone->zone_pgdat = pgdat;
ed8ece2e 4959 zone_pcp_init(zone);
81c0a2bb
JW
4960
4961 /* For bootup, initialized properly in watermark setup */
4962 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4963
bea8c150 4964 lruvec_init(&zone->lruvec);
1da177e4
LT
4965 if (!size)
4966 continue;
4967
955c1cd7 4968 set_pageblock_order();
7c45512d 4969 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4970 ret = init_currently_empty_zone(zone, zone_start_pfn,
4971 size, MEMMAP_EARLY);
718127cc 4972 BUG_ON(ret);
76cdd58e 4973 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4974 zone_start_pfn += size;
1da177e4
LT
4975 }
4976}
4977
577a32f6 4978static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4979{
1da177e4
LT
4980 /* Skip empty nodes */
4981 if (!pgdat->node_spanned_pages)
4982 return;
4983
d41dee36 4984#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4985 /* ia64 gets its own node_mem_map, before this, without bootmem */
4986 if (!pgdat->node_mem_map) {
e984bb43 4987 unsigned long size, start, end;
d41dee36
AW
4988 struct page *map;
4989
e984bb43
BP
4990 /*
4991 * The zone's endpoints aren't required to be MAX_ORDER
4992 * aligned but the node_mem_map endpoints must be in order
4993 * for the buddy allocator to function correctly.
4994 */
4995 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4996 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4997 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4998 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4999 map = alloc_remap(pgdat->node_id, size);
5000 if (!map)
6782832e
SS
5001 map = memblock_virt_alloc_node_nopanic(size,
5002 pgdat->node_id);
e984bb43 5003 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5004 }
12d810c1 5005#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5006 /*
5007 * With no DISCONTIG, the global mem_map is just set as node 0's
5008 */
c713216d 5009 if (pgdat == NODE_DATA(0)) {
1da177e4 5010 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5011#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5012 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5013 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5014#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5015 }
1da177e4 5016#endif
d41dee36 5017#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5018}
5019
9109fb7b
JW
5020void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5021 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5022{
9109fb7b 5023 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5024 unsigned long start_pfn = 0;
5025 unsigned long end_pfn = 0;
9109fb7b 5026
88fdf75d 5027 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5028 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5029
1da177e4
LT
5030 pgdat->node_id = nid;
5031 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5032#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5033 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
5034 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5035 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5036#endif
5037 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5038 zones_size, zholes_size);
1da177e4
LT
5039
5040 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5041#ifdef CONFIG_FLAT_NODE_MEM_MAP
5042 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5043 nid, (unsigned long)pgdat,
5044 (unsigned long)pgdat->node_mem_map);
5045#endif
1da177e4 5046
7960aedd
ZY
5047 free_area_init_core(pgdat, start_pfn, end_pfn,
5048 zones_size, zholes_size);
1da177e4
LT
5049}
5050
0ee332c1 5051#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5052
5053#if MAX_NUMNODES > 1
5054/*
5055 * Figure out the number of possible node ids.
5056 */
f9872caf 5057void __init setup_nr_node_ids(void)
418508c1
MS
5058{
5059 unsigned int node;
5060 unsigned int highest = 0;
5061
5062 for_each_node_mask(node, node_possible_map)
5063 highest = node;
5064 nr_node_ids = highest + 1;
5065}
418508c1
MS
5066#endif
5067
1e01979c
TH
5068/**
5069 * node_map_pfn_alignment - determine the maximum internode alignment
5070 *
5071 * This function should be called after node map is populated and sorted.
5072 * It calculates the maximum power of two alignment which can distinguish
5073 * all the nodes.
5074 *
5075 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5076 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5077 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5078 * shifted, 1GiB is enough and this function will indicate so.
5079 *
5080 * This is used to test whether pfn -> nid mapping of the chosen memory
5081 * model has fine enough granularity to avoid incorrect mapping for the
5082 * populated node map.
5083 *
5084 * Returns the determined alignment in pfn's. 0 if there is no alignment
5085 * requirement (single node).
5086 */
5087unsigned long __init node_map_pfn_alignment(void)
5088{
5089 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5090 unsigned long start, end, mask;
1e01979c 5091 int last_nid = -1;
c13291a5 5092 int i, nid;
1e01979c 5093
c13291a5 5094 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5095 if (!start || last_nid < 0 || last_nid == nid) {
5096 last_nid = nid;
5097 last_end = end;
5098 continue;
5099 }
5100
5101 /*
5102 * Start with a mask granular enough to pin-point to the
5103 * start pfn and tick off bits one-by-one until it becomes
5104 * too coarse to separate the current node from the last.
5105 */
5106 mask = ~((1 << __ffs(start)) - 1);
5107 while (mask && last_end <= (start & (mask << 1)))
5108 mask <<= 1;
5109
5110 /* accumulate all internode masks */
5111 accl_mask |= mask;
5112 }
5113
5114 /* convert mask to number of pages */
5115 return ~accl_mask + 1;
5116}
5117
a6af2bc3 5118/* Find the lowest pfn for a node */
b69a7288 5119static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5120{
a6af2bc3 5121 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5122 unsigned long start_pfn;
5123 int i;
1abbfb41 5124
c13291a5
TH
5125 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5126 min_pfn = min(min_pfn, start_pfn);
c713216d 5127
a6af2bc3
MG
5128 if (min_pfn == ULONG_MAX) {
5129 printk(KERN_WARNING
2bc0d261 5130 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5131 return 0;
5132 }
5133
5134 return min_pfn;
c713216d
MG
5135}
5136
5137/**
5138 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5139 *
5140 * It returns the minimum PFN based on information provided via
7d018176 5141 * memblock_set_node().
c713216d
MG
5142 */
5143unsigned long __init find_min_pfn_with_active_regions(void)
5144{
5145 return find_min_pfn_for_node(MAX_NUMNODES);
5146}
5147
37b07e41
LS
5148/*
5149 * early_calculate_totalpages()
5150 * Sum pages in active regions for movable zone.
4b0ef1fe 5151 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5152 */
484f51f8 5153static unsigned long __init early_calculate_totalpages(void)
7e63efef 5154{
7e63efef 5155 unsigned long totalpages = 0;
c13291a5
TH
5156 unsigned long start_pfn, end_pfn;
5157 int i, nid;
5158
5159 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5160 unsigned long pages = end_pfn - start_pfn;
7e63efef 5161
37b07e41
LS
5162 totalpages += pages;
5163 if (pages)
4b0ef1fe 5164 node_set_state(nid, N_MEMORY);
37b07e41 5165 }
b8af2941 5166 return totalpages;
7e63efef
MG
5167}
5168
2a1e274a
MG
5169/*
5170 * Find the PFN the Movable zone begins in each node. Kernel memory
5171 * is spread evenly between nodes as long as the nodes have enough
5172 * memory. When they don't, some nodes will have more kernelcore than
5173 * others
5174 */
b224ef85 5175static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5176{
5177 int i, nid;
5178 unsigned long usable_startpfn;
5179 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5180 /* save the state before borrow the nodemask */
4b0ef1fe 5181 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5182 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5183 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5184 struct memblock_region *r;
b2f3eebe
TC
5185
5186 /* Need to find movable_zone earlier when movable_node is specified. */
5187 find_usable_zone_for_movable();
5188
5189 /*
5190 * If movable_node is specified, ignore kernelcore and movablecore
5191 * options.
5192 */
5193 if (movable_node_is_enabled()) {
136199f0
EM
5194 for_each_memblock(memory, r) {
5195 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5196 continue;
5197
136199f0 5198 nid = r->nid;
b2f3eebe 5199
136199f0 5200 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5201 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5202 min(usable_startpfn, zone_movable_pfn[nid]) :
5203 usable_startpfn;
5204 }
5205
5206 goto out2;
5207 }
2a1e274a 5208
7e63efef 5209 /*
b2f3eebe 5210 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5211 * kernelcore that corresponds so that memory usable for
5212 * any allocation type is evenly spread. If both kernelcore
5213 * and movablecore are specified, then the value of kernelcore
5214 * will be used for required_kernelcore if it's greater than
5215 * what movablecore would have allowed.
5216 */
5217 if (required_movablecore) {
7e63efef
MG
5218 unsigned long corepages;
5219
5220 /*
5221 * Round-up so that ZONE_MOVABLE is at least as large as what
5222 * was requested by the user
5223 */
5224 required_movablecore =
5225 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5226 corepages = totalpages - required_movablecore;
5227
5228 required_kernelcore = max(required_kernelcore, corepages);
5229 }
5230
20e6926d
YL
5231 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5232 if (!required_kernelcore)
66918dcd 5233 goto out;
2a1e274a
MG
5234
5235 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5236 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5237
5238restart:
5239 /* Spread kernelcore memory as evenly as possible throughout nodes */
5240 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5241 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5242 unsigned long start_pfn, end_pfn;
5243
2a1e274a
MG
5244 /*
5245 * Recalculate kernelcore_node if the division per node
5246 * now exceeds what is necessary to satisfy the requested
5247 * amount of memory for the kernel
5248 */
5249 if (required_kernelcore < kernelcore_node)
5250 kernelcore_node = required_kernelcore / usable_nodes;
5251
5252 /*
5253 * As the map is walked, we track how much memory is usable
5254 * by the kernel using kernelcore_remaining. When it is
5255 * 0, the rest of the node is usable by ZONE_MOVABLE
5256 */
5257 kernelcore_remaining = kernelcore_node;
5258
5259 /* Go through each range of PFNs within this node */
c13291a5 5260 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5261 unsigned long size_pages;
5262
c13291a5 5263 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5264 if (start_pfn >= end_pfn)
5265 continue;
5266
5267 /* Account for what is only usable for kernelcore */
5268 if (start_pfn < usable_startpfn) {
5269 unsigned long kernel_pages;
5270 kernel_pages = min(end_pfn, usable_startpfn)
5271 - start_pfn;
5272
5273 kernelcore_remaining -= min(kernel_pages,
5274 kernelcore_remaining);
5275 required_kernelcore -= min(kernel_pages,
5276 required_kernelcore);
5277
5278 /* Continue if range is now fully accounted */
5279 if (end_pfn <= usable_startpfn) {
5280
5281 /*
5282 * Push zone_movable_pfn to the end so
5283 * that if we have to rebalance
5284 * kernelcore across nodes, we will
5285 * not double account here
5286 */
5287 zone_movable_pfn[nid] = end_pfn;
5288 continue;
5289 }
5290 start_pfn = usable_startpfn;
5291 }
5292
5293 /*
5294 * The usable PFN range for ZONE_MOVABLE is from
5295 * start_pfn->end_pfn. Calculate size_pages as the
5296 * number of pages used as kernelcore
5297 */
5298 size_pages = end_pfn - start_pfn;
5299 if (size_pages > kernelcore_remaining)
5300 size_pages = kernelcore_remaining;
5301 zone_movable_pfn[nid] = start_pfn + size_pages;
5302
5303 /*
5304 * Some kernelcore has been met, update counts and
5305 * break if the kernelcore for this node has been
b8af2941 5306 * satisfied
2a1e274a
MG
5307 */
5308 required_kernelcore -= min(required_kernelcore,
5309 size_pages);
5310 kernelcore_remaining -= size_pages;
5311 if (!kernelcore_remaining)
5312 break;
5313 }
5314 }
5315
5316 /*
5317 * If there is still required_kernelcore, we do another pass with one
5318 * less node in the count. This will push zone_movable_pfn[nid] further
5319 * along on the nodes that still have memory until kernelcore is
b8af2941 5320 * satisfied
2a1e274a
MG
5321 */
5322 usable_nodes--;
5323 if (usable_nodes && required_kernelcore > usable_nodes)
5324 goto restart;
5325
b2f3eebe 5326out2:
2a1e274a
MG
5327 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5328 for (nid = 0; nid < MAX_NUMNODES; nid++)
5329 zone_movable_pfn[nid] =
5330 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5331
20e6926d 5332out:
66918dcd 5333 /* restore the node_state */
4b0ef1fe 5334 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5335}
5336
4b0ef1fe
LJ
5337/* Any regular or high memory on that node ? */
5338static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5339{
37b07e41
LS
5340 enum zone_type zone_type;
5341
4b0ef1fe
LJ
5342 if (N_MEMORY == N_NORMAL_MEMORY)
5343 return;
5344
5345 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5346 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5347 if (populated_zone(zone)) {
4b0ef1fe
LJ
5348 node_set_state(nid, N_HIGH_MEMORY);
5349 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5350 zone_type <= ZONE_NORMAL)
5351 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5352 break;
5353 }
37b07e41 5354 }
37b07e41
LS
5355}
5356
c713216d
MG
5357/**
5358 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5359 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5360 *
5361 * This will call free_area_init_node() for each active node in the system.
7d018176 5362 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5363 * zone in each node and their holes is calculated. If the maximum PFN
5364 * between two adjacent zones match, it is assumed that the zone is empty.
5365 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5366 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5367 * starts where the previous one ended. For example, ZONE_DMA32 starts
5368 * at arch_max_dma_pfn.
5369 */
5370void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5371{
c13291a5
TH
5372 unsigned long start_pfn, end_pfn;
5373 int i, nid;
a6af2bc3 5374
c713216d
MG
5375 /* Record where the zone boundaries are */
5376 memset(arch_zone_lowest_possible_pfn, 0,
5377 sizeof(arch_zone_lowest_possible_pfn));
5378 memset(arch_zone_highest_possible_pfn, 0,
5379 sizeof(arch_zone_highest_possible_pfn));
5380 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5381 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5382 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5383 if (i == ZONE_MOVABLE)
5384 continue;
c713216d
MG
5385 arch_zone_lowest_possible_pfn[i] =
5386 arch_zone_highest_possible_pfn[i-1];
5387 arch_zone_highest_possible_pfn[i] =
5388 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5389 }
2a1e274a
MG
5390 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5391 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5392
5393 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5394 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5395 find_zone_movable_pfns_for_nodes();
c713216d 5396
c713216d 5397 /* Print out the zone ranges */
f88dfff5 5398 pr_info("Zone ranges:\n");
2a1e274a
MG
5399 for (i = 0; i < MAX_NR_ZONES; i++) {
5400 if (i == ZONE_MOVABLE)
5401 continue;
f88dfff5 5402 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5403 if (arch_zone_lowest_possible_pfn[i] ==
5404 arch_zone_highest_possible_pfn[i])
f88dfff5 5405 pr_cont("empty\n");
72f0ba02 5406 else
f88dfff5 5407 pr_cont("[mem %0#10lx-%0#10lx]\n",
a62e2f4f
BH
5408 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5409 (arch_zone_highest_possible_pfn[i]
5410 << PAGE_SHIFT) - 1);
2a1e274a
MG
5411 }
5412
5413 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5414 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5415 for (i = 0; i < MAX_NUMNODES; i++) {
5416 if (zone_movable_pfn[i])
f88dfff5 5417 pr_info(" Node %d: %#010lx\n", i,
a62e2f4f 5418 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5419 }
c713216d 5420
f2d52fe5 5421 /* Print out the early node map */
f88dfff5 5422 pr_info("Early memory node ranges\n");
c13291a5 5423 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
f88dfff5 5424 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
a62e2f4f 5425 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5426
5427 /* Initialise every node */
708614e6 5428 mminit_verify_pageflags_layout();
8ef82866 5429 setup_nr_node_ids();
c713216d
MG
5430 for_each_online_node(nid) {
5431 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5432 free_area_init_node(nid, NULL,
c713216d 5433 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5434
5435 /* Any memory on that node */
5436 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5437 node_set_state(nid, N_MEMORY);
5438 check_for_memory(pgdat, nid);
c713216d
MG
5439 }
5440}
2a1e274a 5441
7e63efef 5442static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5443{
5444 unsigned long long coremem;
5445 if (!p)
5446 return -EINVAL;
5447
5448 coremem = memparse(p, &p);
7e63efef 5449 *core = coremem >> PAGE_SHIFT;
2a1e274a 5450
7e63efef 5451 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5452 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5453
5454 return 0;
5455}
ed7ed365 5456
7e63efef
MG
5457/*
5458 * kernelcore=size sets the amount of memory for use for allocations that
5459 * cannot be reclaimed or migrated.
5460 */
5461static int __init cmdline_parse_kernelcore(char *p)
5462{
5463 return cmdline_parse_core(p, &required_kernelcore);
5464}
5465
5466/*
5467 * movablecore=size sets the amount of memory for use for allocations that
5468 * can be reclaimed or migrated.
5469 */
5470static int __init cmdline_parse_movablecore(char *p)
5471{
5472 return cmdline_parse_core(p, &required_movablecore);
5473}
5474
ed7ed365 5475early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5476early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5477
0ee332c1 5478#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5479
c3d5f5f0
JL
5480void adjust_managed_page_count(struct page *page, long count)
5481{
5482 spin_lock(&managed_page_count_lock);
5483 page_zone(page)->managed_pages += count;
5484 totalram_pages += count;
3dcc0571
JL
5485#ifdef CONFIG_HIGHMEM
5486 if (PageHighMem(page))
5487 totalhigh_pages += count;
5488#endif
c3d5f5f0
JL
5489 spin_unlock(&managed_page_count_lock);
5490}
3dcc0571 5491EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5492
11199692 5493unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5494{
11199692
JL
5495 void *pos;
5496 unsigned long pages = 0;
69afade7 5497
11199692
JL
5498 start = (void *)PAGE_ALIGN((unsigned long)start);
5499 end = (void *)((unsigned long)end & PAGE_MASK);
5500 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5501 if ((unsigned int)poison <= 0xFF)
11199692
JL
5502 memset(pos, poison, PAGE_SIZE);
5503 free_reserved_page(virt_to_page(pos));
69afade7
JL
5504 }
5505
5506 if (pages && s)
11199692 5507 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5508 s, pages << (PAGE_SHIFT - 10), start, end);
5509
5510 return pages;
5511}
11199692 5512EXPORT_SYMBOL(free_reserved_area);
69afade7 5513
cfa11e08
JL
5514#ifdef CONFIG_HIGHMEM
5515void free_highmem_page(struct page *page)
5516{
5517 __free_reserved_page(page);
5518 totalram_pages++;
7b4b2a0d 5519 page_zone(page)->managed_pages++;
cfa11e08
JL
5520 totalhigh_pages++;
5521}
5522#endif
5523
7ee3d4e8
JL
5524
5525void __init mem_init_print_info(const char *str)
5526{
5527 unsigned long physpages, codesize, datasize, rosize, bss_size;
5528 unsigned long init_code_size, init_data_size;
5529
5530 physpages = get_num_physpages();
5531 codesize = _etext - _stext;
5532 datasize = _edata - _sdata;
5533 rosize = __end_rodata - __start_rodata;
5534 bss_size = __bss_stop - __bss_start;
5535 init_data_size = __init_end - __init_begin;
5536 init_code_size = _einittext - _sinittext;
5537
5538 /*
5539 * Detect special cases and adjust section sizes accordingly:
5540 * 1) .init.* may be embedded into .data sections
5541 * 2) .init.text.* may be out of [__init_begin, __init_end],
5542 * please refer to arch/tile/kernel/vmlinux.lds.S.
5543 * 3) .rodata.* may be embedded into .text or .data sections.
5544 */
5545#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5546 do { \
5547 if (start <= pos && pos < end && size > adj) \
5548 size -= adj; \
5549 } while (0)
7ee3d4e8
JL
5550
5551 adj_init_size(__init_begin, __init_end, init_data_size,
5552 _sinittext, init_code_size);
5553 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5554 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5555 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5556 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5557
5558#undef adj_init_size
5559
f88dfff5 5560 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5561 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5562 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5563#ifdef CONFIG_HIGHMEM
5564 ", %luK highmem"
5565#endif
5566 "%s%s)\n",
5567 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5568 codesize >> 10, datasize >> 10, rosize >> 10,
5569 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5570 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5571 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5572#ifdef CONFIG_HIGHMEM
5573 totalhigh_pages << (PAGE_SHIFT-10),
5574#endif
5575 str ? ", " : "", str ? str : "");
5576}
5577
0e0b864e 5578/**
88ca3b94
RD
5579 * set_dma_reserve - set the specified number of pages reserved in the first zone
5580 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5581 *
5582 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5583 * In the DMA zone, a significant percentage may be consumed by kernel image
5584 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5585 * function may optionally be used to account for unfreeable pages in the
5586 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5587 * smaller per-cpu batchsize.
0e0b864e
MG
5588 */
5589void __init set_dma_reserve(unsigned long new_dma_reserve)
5590{
5591 dma_reserve = new_dma_reserve;
5592}
5593
1da177e4
LT
5594void __init free_area_init(unsigned long *zones_size)
5595{
9109fb7b 5596 free_area_init_node(0, zones_size,
1da177e4
LT
5597 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5598}
1da177e4 5599
1da177e4
LT
5600static int page_alloc_cpu_notify(struct notifier_block *self,
5601 unsigned long action, void *hcpu)
5602{
5603 int cpu = (unsigned long)hcpu;
1da177e4 5604
8bb78442 5605 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5606 lru_add_drain_cpu(cpu);
9f8f2172
CL
5607 drain_pages(cpu);
5608
5609 /*
5610 * Spill the event counters of the dead processor
5611 * into the current processors event counters.
5612 * This artificially elevates the count of the current
5613 * processor.
5614 */
f8891e5e 5615 vm_events_fold_cpu(cpu);
9f8f2172
CL
5616
5617 /*
5618 * Zero the differential counters of the dead processor
5619 * so that the vm statistics are consistent.
5620 *
5621 * This is only okay since the processor is dead and cannot
5622 * race with what we are doing.
5623 */
2bb921e5 5624 cpu_vm_stats_fold(cpu);
1da177e4
LT
5625 }
5626 return NOTIFY_OK;
5627}
1da177e4
LT
5628
5629void __init page_alloc_init(void)
5630{
5631 hotcpu_notifier(page_alloc_cpu_notify, 0);
5632}
5633
cb45b0e9
HA
5634/*
5635 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5636 * or min_free_kbytes changes.
5637 */
5638static void calculate_totalreserve_pages(void)
5639{
5640 struct pglist_data *pgdat;
5641 unsigned long reserve_pages = 0;
2f6726e5 5642 enum zone_type i, j;
cb45b0e9
HA
5643
5644 for_each_online_pgdat(pgdat) {
5645 for (i = 0; i < MAX_NR_ZONES; i++) {
5646 struct zone *zone = pgdat->node_zones + i;
3484b2de 5647 long max = 0;
cb45b0e9
HA
5648
5649 /* Find valid and maximum lowmem_reserve in the zone */
5650 for (j = i; j < MAX_NR_ZONES; j++) {
5651 if (zone->lowmem_reserve[j] > max)
5652 max = zone->lowmem_reserve[j];
5653 }
5654
41858966
MG
5655 /* we treat the high watermark as reserved pages. */
5656 max += high_wmark_pages(zone);
cb45b0e9 5657
b40da049
JL
5658 if (max > zone->managed_pages)
5659 max = zone->managed_pages;
cb45b0e9 5660 reserve_pages += max;
ab8fabd4
JW
5661 /*
5662 * Lowmem reserves are not available to
5663 * GFP_HIGHUSER page cache allocations and
5664 * kswapd tries to balance zones to their high
5665 * watermark. As a result, neither should be
5666 * regarded as dirtyable memory, to prevent a
5667 * situation where reclaim has to clean pages
5668 * in order to balance the zones.
5669 */
5670 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5671 }
5672 }
ab8fabd4 5673 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5674 totalreserve_pages = reserve_pages;
5675}
5676
1da177e4
LT
5677/*
5678 * setup_per_zone_lowmem_reserve - called whenever
5679 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5680 * has a correct pages reserved value, so an adequate number of
5681 * pages are left in the zone after a successful __alloc_pages().
5682 */
5683static void setup_per_zone_lowmem_reserve(void)
5684{
5685 struct pglist_data *pgdat;
2f6726e5 5686 enum zone_type j, idx;
1da177e4 5687
ec936fc5 5688 for_each_online_pgdat(pgdat) {
1da177e4
LT
5689 for (j = 0; j < MAX_NR_ZONES; j++) {
5690 struct zone *zone = pgdat->node_zones + j;
b40da049 5691 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5692
5693 zone->lowmem_reserve[j] = 0;
5694
2f6726e5
CL
5695 idx = j;
5696 while (idx) {
1da177e4
LT
5697 struct zone *lower_zone;
5698
2f6726e5
CL
5699 idx--;
5700
1da177e4
LT
5701 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5702 sysctl_lowmem_reserve_ratio[idx] = 1;
5703
5704 lower_zone = pgdat->node_zones + idx;
b40da049 5705 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5706 sysctl_lowmem_reserve_ratio[idx];
b40da049 5707 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5708 }
5709 }
5710 }
cb45b0e9
HA
5711
5712 /* update totalreserve_pages */
5713 calculate_totalreserve_pages();
1da177e4
LT
5714}
5715
cfd3da1e 5716static void __setup_per_zone_wmarks(void)
1da177e4
LT
5717{
5718 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5719 unsigned long lowmem_pages = 0;
5720 struct zone *zone;
5721 unsigned long flags;
5722
5723 /* Calculate total number of !ZONE_HIGHMEM pages */
5724 for_each_zone(zone) {
5725 if (!is_highmem(zone))
b40da049 5726 lowmem_pages += zone->managed_pages;
1da177e4
LT
5727 }
5728
5729 for_each_zone(zone) {
ac924c60
AM
5730 u64 tmp;
5731
1125b4e3 5732 spin_lock_irqsave(&zone->lock, flags);
b40da049 5733 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5734 do_div(tmp, lowmem_pages);
1da177e4
LT
5735 if (is_highmem(zone)) {
5736 /*
669ed175
NP
5737 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5738 * need highmem pages, so cap pages_min to a small
5739 * value here.
5740 *
41858966 5741 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5742 * deltas controls asynch page reclaim, and so should
5743 * not be capped for highmem.
1da177e4 5744 */
90ae8d67 5745 unsigned long min_pages;
1da177e4 5746
b40da049 5747 min_pages = zone->managed_pages / 1024;
90ae8d67 5748 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5749 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5750 } else {
669ed175
NP
5751 /*
5752 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5753 * proportionate to the zone's size.
5754 */
41858966 5755 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5756 }
5757
41858966
MG
5758 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5759 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5760
81c0a2bb 5761 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5762 high_wmark_pages(zone) - low_wmark_pages(zone) -
5763 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5764
56fd56b8 5765 setup_zone_migrate_reserve(zone);
1125b4e3 5766 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5767 }
cb45b0e9
HA
5768
5769 /* update totalreserve_pages */
5770 calculate_totalreserve_pages();
1da177e4
LT
5771}
5772
cfd3da1e
MG
5773/**
5774 * setup_per_zone_wmarks - called when min_free_kbytes changes
5775 * or when memory is hot-{added|removed}
5776 *
5777 * Ensures that the watermark[min,low,high] values for each zone are set
5778 * correctly with respect to min_free_kbytes.
5779 */
5780void setup_per_zone_wmarks(void)
5781{
5782 mutex_lock(&zonelists_mutex);
5783 __setup_per_zone_wmarks();
5784 mutex_unlock(&zonelists_mutex);
5785}
5786
55a4462a 5787/*
556adecb
RR
5788 * The inactive anon list should be small enough that the VM never has to
5789 * do too much work, but large enough that each inactive page has a chance
5790 * to be referenced again before it is swapped out.
5791 *
5792 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5793 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5794 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5795 * the anonymous pages are kept on the inactive list.
5796 *
5797 * total target max
5798 * memory ratio inactive anon
5799 * -------------------------------------
5800 * 10MB 1 5MB
5801 * 100MB 1 50MB
5802 * 1GB 3 250MB
5803 * 10GB 10 0.9GB
5804 * 100GB 31 3GB
5805 * 1TB 101 10GB
5806 * 10TB 320 32GB
5807 */
1b79acc9 5808static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5809{
96cb4df5 5810 unsigned int gb, ratio;
556adecb 5811
96cb4df5 5812 /* Zone size in gigabytes */
b40da049 5813 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5814 if (gb)
556adecb 5815 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5816 else
5817 ratio = 1;
556adecb 5818
96cb4df5
MK
5819 zone->inactive_ratio = ratio;
5820}
556adecb 5821
839a4fcc 5822static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5823{
5824 struct zone *zone;
5825
5826 for_each_zone(zone)
5827 calculate_zone_inactive_ratio(zone);
556adecb
RR
5828}
5829
1da177e4
LT
5830/*
5831 * Initialise min_free_kbytes.
5832 *
5833 * For small machines we want it small (128k min). For large machines
5834 * we want it large (64MB max). But it is not linear, because network
5835 * bandwidth does not increase linearly with machine size. We use
5836 *
b8af2941 5837 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5838 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5839 *
5840 * which yields
5841 *
5842 * 16MB: 512k
5843 * 32MB: 724k
5844 * 64MB: 1024k
5845 * 128MB: 1448k
5846 * 256MB: 2048k
5847 * 512MB: 2896k
5848 * 1024MB: 4096k
5849 * 2048MB: 5792k
5850 * 4096MB: 8192k
5851 * 8192MB: 11584k
5852 * 16384MB: 16384k
5853 */
1b79acc9 5854int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5855{
5856 unsigned long lowmem_kbytes;
5f12733e 5857 int new_min_free_kbytes;
1da177e4
LT
5858
5859 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5860 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5861
5862 if (new_min_free_kbytes > user_min_free_kbytes) {
5863 min_free_kbytes = new_min_free_kbytes;
5864 if (min_free_kbytes < 128)
5865 min_free_kbytes = 128;
5866 if (min_free_kbytes > 65536)
5867 min_free_kbytes = 65536;
5868 } else {
5869 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5870 new_min_free_kbytes, user_min_free_kbytes);
5871 }
bc75d33f 5872 setup_per_zone_wmarks();
a6cccdc3 5873 refresh_zone_stat_thresholds();
1da177e4 5874 setup_per_zone_lowmem_reserve();
556adecb 5875 setup_per_zone_inactive_ratio();
1da177e4
LT
5876 return 0;
5877}
bc75d33f 5878module_init(init_per_zone_wmark_min)
1da177e4
LT
5879
5880/*
b8af2941 5881 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5882 * that we can call two helper functions whenever min_free_kbytes
5883 * changes.
5884 */
cccad5b9 5885int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5886 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5887{
da8c757b
HP
5888 int rc;
5889
5890 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5891 if (rc)
5892 return rc;
5893
5f12733e
MH
5894 if (write) {
5895 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5896 setup_per_zone_wmarks();
5f12733e 5897 }
1da177e4
LT
5898 return 0;
5899}
5900
9614634f 5901#ifdef CONFIG_NUMA
cccad5b9 5902int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5903 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5904{
5905 struct zone *zone;
5906 int rc;
5907
8d65af78 5908 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5909 if (rc)
5910 return rc;
5911
5912 for_each_zone(zone)
b40da049 5913 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5914 sysctl_min_unmapped_ratio) / 100;
5915 return 0;
5916}
0ff38490 5917
cccad5b9 5918int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5919 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5920{
5921 struct zone *zone;
5922 int rc;
5923
8d65af78 5924 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5925 if (rc)
5926 return rc;
5927
5928 for_each_zone(zone)
b40da049 5929 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5930 sysctl_min_slab_ratio) / 100;
5931 return 0;
5932}
9614634f
CL
5933#endif
5934
1da177e4
LT
5935/*
5936 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5937 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5938 * whenever sysctl_lowmem_reserve_ratio changes.
5939 *
5940 * The reserve ratio obviously has absolutely no relation with the
41858966 5941 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5942 * if in function of the boot time zone sizes.
5943 */
cccad5b9 5944int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5945 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5946{
8d65af78 5947 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5948 setup_per_zone_lowmem_reserve();
5949 return 0;
5950}
5951
8ad4b1fb
RS
5952/*
5953 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5954 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5955 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5956 */
cccad5b9 5957int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5958 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5959{
5960 struct zone *zone;
7cd2b0a3 5961 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5962 int ret;
5963
7cd2b0a3
DR
5964 mutex_lock(&pcp_batch_high_lock);
5965 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5966
8d65af78 5967 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5968 if (!write || ret < 0)
5969 goto out;
5970
5971 /* Sanity checking to avoid pcp imbalance */
5972 if (percpu_pagelist_fraction &&
5973 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5974 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5975 ret = -EINVAL;
5976 goto out;
5977 }
5978
5979 /* No change? */
5980 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5981 goto out;
c8e251fa 5982
364df0eb 5983 for_each_populated_zone(zone) {
7cd2b0a3
DR
5984 unsigned int cpu;
5985
22a7f12b 5986 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5987 pageset_set_high_and_batch(zone,
5988 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5989 }
7cd2b0a3 5990out:
c8e251fa 5991 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5992 return ret;
8ad4b1fb
RS
5993}
5994
f034b5d4 5995int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5996
5997#ifdef CONFIG_NUMA
5998static int __init set_hashdist(char *str)
5999{
6000 if (!str)
6001 return 0;
6002 hashdist = simple_strtoul(str, &str, 0);
6003 return 1;
6004}
6005__setup("hashdist=", set_hashdist);
6006#endif
6007
6008/*
6009 * allocate a large system hash table from bootmem
6010 * - it is assumed that the hash table must contain an exact power-of-2
6011 * quantity of entries
6012 * - limit is the number of hash buckets, not the total allocation size
6013 */
6014void *__init alloc_large_system_hash(const char *tablename,
6015 unsigned long bucketsize,
6016 unsigned long numentries,
6017 int scale,
6018 int flags,
6019 unsigned int *_hash_shift,
6020 unsigned int *_hash_mask,
31fe62b9
TB
6021 unsigned long low_limit,
6022 unsigned long high_limit)
1da177e4 6023{
31fe62b9 6024 unsigned long long max = high_limit;
1da177e4
LT
6025 unsigned long log2qty, size;
6026 void *table = NULL;
6027
6028 /* allow the kernel cmdline to have a say */
6029 if (!numentries) {
6030 /* round applicable memory size up to nearest megabyte */
04903664 6031 numentries = nr_kernel_pages;
a7e83318
JZ
6032
6033 /* It isn't necessary when PAGE_SIZE >= 1MB */
6034 if (PAGE_SHIFT < 20)
6035 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6036
6037 /* limit to 1 bucket per 2^scale bytes of low memory */
6038 if (scale > PAGE_SHIFT)
6039 numentries >>= (scale - PAGE_SHIFT);
6040 else
6041 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6042
6043 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6044 if (unlikely(flags & HASH_SMALL)) {
6045 /* Makes no sense without HASH_EARLY */
6046 WARN_ON(!(flags & HASH_EARLY));
6047 if (!(numentries >> *_hash_shift)) {
6048 numentries = 1UL << *_hash_shift;
6049 BUG_ON(!numentries);
6050 }
6051 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6052 numentries = PAGE_SIZE / bucketsize;
1da177e4 6053 }
6e692ed3 6054 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6055
6056 /* limit allocation size to 1/16 total memory by default */
6057 if (max == 0) {
6058 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6059 do_div(max, bucketsize);
6060 }
074b8517 6061 max = min(max, 0x80000000ULL);
1da177e4 6062
31fe62b9
TB
6063 if (numentries < low_limit)
6064 numentries = low_limit;
1da177e4
LT
6065 if (numentries > max)
6066 numentries = max;
6067
f0d1b0b3 6068 log2qty = ilog2(numentries);
1da177e4
LT
6069
6070 do {
6071 size = bucketsize << log2qty;
6072 if (flags & HASH_EARLY)
6782832e 6073 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6074 else if (hashdist)
6075 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6076 else {
1037b83b
ED
6077 /*
6078 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6079 * some pages at the end of hash table which
6080 * alloc_pages_exact() automatically does
1037b83b 6081 */
264ef8a9 6082 if (get_order(size) < MAX_ORDER) {
a1dd268c 6083 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6084 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6085 }
1da177e4
LT
6086 }
6087 } while (!table && size > PAGE_SIZE && --log2qty);
6088
6089 if (!table)
6090 panic("Failed to allocate %s hash table\n", tablename);
6091
f241e660 6092 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6093 tablename,
f241e660 6094 (1UL << log2qty),
f0d1b0b3 6095 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6096 size);
6097
6098 if (_hash_shift)
6099 *_hash_shift = log2qty;
6100 if (_hash_mask)
6101 *_hash_mask = (1 << log2qty) - 1;
6102
6103 return table;
6104}
a117e66e 6105
835c134e
MG
6106/* Return a pointer to the bitmap storing bits affecting a block of pages */
6107static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6108 unsigned long pfn)
6109{
6110#ifdef CONFIG_SPARSEMEM
6111 return __pfn_to_section(pfn)->pageblock_flags;
6112#else
6113 return zone->pageblock_flags;
6114#endif /* CONFIG_SPARSEMEM */
6115}
6116
6117static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6118{
6119#ifdef CONFIG_SPARSEMEM
6120 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6121 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6122#else
c060f943 6123 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6124 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6125#endif /* CONFIG_SPARSEMEM */
6126}
6127
6128/**
1aab4d77 6129 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6130 * @page: The page within the block of interest
1aab4d77
RD
6131 * @pfn: The target page frame number
6132 * @end_bitidx: The last bit of interest to retrieve
6133 * @mask: mask of bits that the caller is interested in
6134 *
6135 * Return: pageblock_bits flags
835c134e 6136 */
dc4b0caf 6137unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6138 unsigned long end_bitidx,
6139 unsigned long mask)
835c134e
MG
6140{
6141 struct zone *zone;
6142 unsigned long *bitmap;
dc4b0caf 6143 unsigned long bitidx, word_bitidx;
e58469ba 6144 unsigned long word;
835c134e
MG
6145
6146 zone = page_zone(page);
835c134e
MG
6147 bitmap = get_pageblock_bitmap(zone, pfn);
6148 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6149 word_bitidx = bitidx / BITS_PER_LONG;
6150 bitidx &= (BITS_PER_LONG-1);
835c134e 6151
e58469ba
MG
6152 word = bitmap[word_bitidx];
6153 bitidx += end_bitidx;
6154 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6155}
6156
6157/**
dc4b0caf 6158 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6159 * @page: The page within the block of interest
835c134e 6160 * @flags: The flags to set
1aab4d77
RD
6161 * @pfn: The target page frame number
6162 * @end_bitidx: The last bit of interest
6163 * @mask: mask of bits that the caller is interested in
835c134e 6164 */
dc4b0caf
MG
6165void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6166 unsigned long pfn,
e58469ba
MG
6167 unsigned long end_bitidx,
6168 unsigned long mask)
835c134e
MG
6169{
6170 struct zone *zone;
6171 unsigned long *bitmap;
dc4b0caf 6172 unsigned long bitidx, word_bitidx;
e58469ba
MG
6173 unsigned long old_word, word;
6174
6175 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6176
6177 zone = page_zone(page);
835c134e
MG
6178 bitmap = get_pageblock_bitmap(zone, pfn);
6179 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6180 word_bitidx = bitidx / BITS_PER_LONG;
6181 bitidx &= (BITS_PER_LONG-1);
6182
309381fe 6183 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6184
e58469ba
MG
6185 bitidx += end_bitidx;
6186 mask <<= (BITS_PER_LONG - bitidx - 1);
6187 flags <<= (BITS_PER_LONG - bitidx - 1);
6188
6189 word = ACCESS_ONCE(bitmap[word_bitidx]);
6190 for (;;) {
6191 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6192 if (word == old_word)
6193 break;
6194 word = old_word;
6195 }
835c134e 6196}
a5d76b54
KH
6197
6198/*
80934513
MK
6199 * This function checks whether pageblock includes unmovable pages or not.
6200 * If @count is not zero, it is okay to include less @count unmovable pages
6201 *
b8af2941 6202 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6203 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6204 * expect this function should be exact.
a5d76b54 6205 */
b023f468
WC
6206bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6207 bool skip_hwpoisoned_pages)
49ac8255
KH
6208{
6209 unsigned long pfn, iter, found;
47118af0
MN
6210 int mt;
6211
49ac8255
KH
6212 /*
6213 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6214 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6215 */
6216 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6217 return false;
47118af0
MN
6218 mt = get_pageblock_migratetype(page);
6219 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6220 return false;
49ac8255
KH
6221
6222 pfn = page_to_pfn(page);
6223 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6224 unsigned long check = pfn + iter;
6225
29723fcc 6226 if (!pfn_valid_within(check))
49ac8255 6227 continue;
29723fcc 6228
49ac8255 6229 page = pfn_to_page(check);
c8721bbb
NH
6230
6231 /*
6232 * Hugepages are not in LRU lists, but they're movable.
6233 * We need not scan over tail pages bacause we don't
6234 * handle each tail page individually in migration.
6235 */
6236 if (PageHuge(page)) {
6237 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6238 continue;
6239 }
6240
97d255c8
MK
6241 /*
6242 * We can't use page_count without pin a page
6243 * because another CPU can free compound page.
6244 * This check already skips compound tails of THP
6245 * because their page->_count is zero at all time.
6246 */
6247 if (!atomic_read(&page->_count)) {
49ac8255
KH
6248 if (PageBuddy(page))
6249 iter += (1 << page_order(page)) - 1;
6250 continue;
6251 }
97d255c8 6252
b023f468
WC
6253 /*
6254 * The HWPoisoned page may be not in buddy system, and
6255 * page_count() is not 0.
6256 */
6257 if (skip_hwpoisoned_pages && PageHWPoison(page))
6258 continue;
6259
49ac8255
KH
6260 if (!PageLRU(page))
6261 found++;
6262 /*
6b4f7799
JW
6263 * If there are RECLAIMABLE pages, we need to check
6264 * it. But now, memory offline itself doesn't call
6265 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6266 */
6267 /*
6268 * If the page is not RAM, page_count()should be 0.
6269 * we don't need more check. This is an _used_ not-movable page.
6270 *
6271 * The problematic thing here is PG_reserved pages. PG_reserved
6272 * is set to both of a memory hole page and a _used_ kernel
6273 * page at boot.
6274 */
6275 if (found > count)
80934513 6276 return true;
49ac8255 6277 }
80934513 6278 return false;
49ac8255
KH
6279}
6280
6281bool is_pageblock_removable_nolock(struct page *page)
6282{
656a0706
MH
6283 struct zone *zone;
6284 unsigned long pfn;
687875fb
MH
6285
6286 /*
6287 * We have to be careful here because we are iterating over memory
6288 * sections which are not zone aware so we might end up outside of
6289 * the zone but still within the section.
656a0706
MH
6290 * We have to take care about the node as well. If the node is offline
6291 * its NODE_DATA will be NULL - see page_zone.
687875fb 6292 */
656a0706
MH
6293 if (!node_online(page_to_nid(page)))
6294 return false;
6295
6296 zone = page_zone(page);
6297 pfn = page_to_pfn(page);
108bcc96 6298 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6299 return false;
6300
b023f468 6301 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6302}
0c0e6195 6303
041d3a8c
MN
6304#ifdef CONFIG_CMA
6305
6306static unsigned long pfn_max_align_down(unsigned long pfn)
6307{
6308 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6309 pageblock_nr_pages) - 1);
6310}
6311
6312static unsigned long pfn_max_align_up(unsigned long pfn)
6313{
6314 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6315 pageblock_nr_pages));
6316}
6317
041d3a8c 6318/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6319static int __alloc_contig_migrate_range(struct compact_control *cc,
6320 unsigned long start, unsigned long end)
041d3a8c
MN
6321{
6322 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6323 unsigned long nr_reclaimed;
041d3a8c
MN
6324 unsigned long pfn = start;
6325 unsigned int tries = 0;
6326 int ret = 0;
6327
be49a6e1 6328 migrate_prep();
041d3a8c 6329
bb13ffeb 6330 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6331 if (fatal_signal_pending(current)) {
6332 ret = -EINTR;
6333 break;
6334 }
6335
bb13ffeb
MG
6336 if (list_empty(&cc->migratepages)) {
6337 cc->nr_migratepages = 0;
edc2ca61 6338 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6339 if (!pfn) {
6340 ret = -EINTR;
6341 break;
6342 }
6343 tries = 0;
6344 } else if (++tries == 5) {
6345 ret = ret < 0 ? ret : -EBUSY;
6346 break;
6347 }
6348
beb51eaa
MK
6349 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6350 &cc->migratepages);
6351 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6352
9c620e2b 6353 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6354 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6355 }
2a6f5124
SP
6356 if (ret < 0) {
6357 putback_movable_pages(&cc->migratepages);
6358 return ret;
6359 }
6360 return 0;
041d3a8c
MN
6361}
6362
6363/**
6364 * alloc_contig_range() -- tries to allocate given range of pages
6365 * @start: start PFN to allocate
6366 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6367 * @migratetype: migratetype of the underlaying pageblocks (either
6368 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6369 * in range must have the same migratetype and it must
6370 * be either of the two.
041d3a8c
MN
6371 *
6372 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6373 * aligned, however it's the caller's responsibility to guarantee that
6374 * we are the only thread that changes migrate type of pageblocks the
6375 * pages fall in.
6376 *
6377 * The PFN range must belong to a single zone.
6378 *
6379 * Returns zero on success or negative error code. On success all
6380 * pages which PFN is in [start, end) are allocated for the caller and
6381 * need to be freed with free_contig_range().
6382 */
0815f3d8
MN
6383int alloc_contig_range(unsigned long start, unsigned long end,
6384 unsigned migratetype)
041d3a8c 6385{
041d3a8c
MN
6386 unsigned long outer_start, outer_end;
6387 int ret = 0, order;
6388
bb13ffeb
MG
6389 struct compact_control cc = {
6390 .nr_migratepages = 0,
6391 .order = -1,
6392 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6393 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6394 .ignore_skip_hint = true,
6395 };
6396 INIT_LIST_HEAD(&cc.migratepages);
6397
041d3a8c
MN
6398 /*
6399 * What we do here is we mark all pageblocks in range as
6400 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6401 * have different sizes, and due to the way page allocator
6402 * work, we align the range to biggest of the two pages so
6403 * that page allocator won't try to merge buddies from
6404 * different pageblocks and change MIGRATE_ISOLATE to some
6405 * other migration type.
6406 *
6407 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6408 * migrate the pages from an unaligned range (ie. pages that
6409 * we are interested in). This will put all the pages in
6410 * range back to page allocator as MIGRATE_ISOLATE.
6411 *
6412 * When this is done, we take the pages in range from page
6413 * allocator removing them from the buddy system. This way
6414 * page allocator will never consider using them.
6415 *
6416 * This lets us mark the pageblocks back as
6417 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6418 * aligned range but not in the unaligned, original range are
6419 * put back to page allocator so that buddy can use them.
6420 */
6421
6422 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6423 pfn_max_align_up(end), migratetype,
6424 false);
041d3a8c 6425 if (ret)
86a595f9 6426 return ret;
041d3a8c 6427
bb13ffeb 6428 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6429 if (ret)
6430 goto done;
6431
6432 /*
6433 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6434 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6435 * more, all pages in [start, end) are free in page allocator.
6436 * What we are going to do is to allocate all pages from
6437 * [start, end) (that is remove them from page allocator).
6438 *
6439 * The only problem is that pages at the beginning and at the
6440 * end of interesting range may be not aligned with pages that
6441 * page allocator holds, ie. they can be part of higher order
6442 * pages. Because of this, we reserve the bigger range and
6443 * once this is done free the pages we are not interested in.
6444 *
6445 * We don't have to hold zone->lock here because the pages are
6446 * isolated thus they won't get removed from buddy.
6447 */
6448
6449 lru_add_drain_all();
510f5507 6450 drain_all_pages(cc.zone);
041d3a8c
MN
6451
6452 order = 0;
6453 outer_start = start;
6454 while (!PageBuddy(pfn_to_page(outer_start))) {
6455 if (++order >= MAX_ORDER) {
6456 ret = -EBUSY;
6457 goto done;
6458 }
6459 outer_start &= ~0UL << order;
6460 }
6461
6462 /* Make sure the range is really isolated. */
b023f468 6463 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6464 pr_info("%s: [%lx, %lx) PFNs busy\n",
6465 __func__, outer_start, end);
041d3a8c
MN
6466 ret = -EBUSY;
6467 goto done;
6468 }
6469
49f223a9 6470 /* Grab isolated pages from freelists. */
bb13ffeb 6471 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6472 if (!outer_end) {
6473 ret = -EBUSY;
6474 goto done;
6475 }
6476
6477 /* Free head and tail (if any) */
6478 if (start != outer_start)
6479 free_contig_range(outer_start, start - outer_start);
6480 if (end != outer_end)
6481 free_contig_range(end, outer_end - end);
6482
6483done:
6484 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6485 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6486 return ret;
6487}
6488
6489void free_contig_range(unsigned long pfn, unsigned nr_pages)
6490{
bcc2b02f
MS
6491 unsigned int count = 0;
6492
6493 for (; nr_pages--; pfn++) {
6494 struct page *page = pfn_to_page(pfn);
6495
6496 count += page_count(page) != 1;
6497 __free_page(page);
6498 }
6499 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6500}
6501#endif
6502
4ed7e022 6503#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6504/*
6505 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6506 * page high values need to be recalulated.
6507 */
4ed7e022
JL
6508void __meminit zone_pcp_update(struct zone *zone)
6509{
0a647f38 6510 unsigned cpu;
c8e251fa 6511 mutex_lock(&pcp_batch_high_lock);
0a647f38 6512 for_each_possible_cpu(cpu)
169f6c19
CS
6513 pageset_set_high_and_batch(zone,
6514 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6515 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6516}
6517#endif
6518
340175b7
JL
6519void zone_pcp_reset(struct zone *zone)
6520{
6521 unsigned long flags;
5a883813
MK
6522 int cpu;
6523 struct per_cpu_pageset *pset;
340175b7
JL
6524
6525 /* avoid races with drain_pages() */
6526 local_irq_save(flags);
6527 if (zone->pageset != &boot_pageset) {
5a883813
MK
6528 for_each_online_cpu(cpu) {
6529 pset = per_cpu_ptr(zone->pageset, cpu);
6530 drain_zonestat(zone, pset);
6531 }
340175b7
JL
6532 free_percpu(zone->pageset);
6533 zone->pageset = &boot_pageset;
6534 }
6535 local_irq_restore(flags);
6536}
6537
6dcd73d7 6538#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6539/*
6540 * All pages in the range must be isolated before calling this.
6541 */
6542void
6543__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6544{
6545 struct page *page;
6546 struct zone *zone;
7aeb09f9 6547 unsigned int order, i;
0c0e6195
KH
6548 unsigned long pfn;
6549 unsigned long flags;
6550 /* find the first valid pfn */
6551 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6552 if (pfn_valid(pfn))
6553 break;
6554 if (pfn == end_pfn)
6555 return;
6556 zone = page_zone(pfn_to_page(pfn));
6557 spin_lock_irqsave(&zone->lock, flags);
6558 pfn = start_pfn;
6559 while (pfn < end_pfn) {
6560 if (!pfn_valid(pfn)) {
6561 pfn++;
6562 continue;
6563 }
6564 page = pfn_to_page(pfn);
b023f468
WC
6565 /*
6566 * The HWPoisoned page may be not in buddy system, and
6567 * page_count() is not 0.
6568 */
6569 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6570 pfn++;
6571 SetPageReserved(page);
6572 continue;
6573 }
6574
0c0e6195
KH
6575 BUG_ON(page_count(page));
6576 BUG_ON(!PageBuddy(page));
6577 order = page_order(page);
6578#ifdef CONFIG_DEBUG_VM
6579 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6580 pfn, 1 << order, end_pfn);
6581#endif
6582 list_del(&page->lru);
6583 rmv_page_order(page);
6584 zone->free_area[order].nr_free--;
0c0e6195
KH
6585 for (i = 0; i < (1 << order); i++)
6586 SetPageReserved((page+i));
6587 pfn += (1 << order);
6588 }
6589 spin_unlock_irqrestore(&zone->lock, flags);
6590}
6591#endif
8d22ba1b
WF
6592
6593#ifdef CONFIG_MEMORY_FAILURE
6594bool is_free_buddy_page(struct page *page)
6595{
6596 struct zone *zone = page_zone(page);
6597 unsigned long pfn = page_to_pfn(page);
6598 unsigned long flags;
7aeb09f9 6599 unsigned int order;
8d22ba1b
WF
6600
6601 spin_lock_irqsave(&zone->lock, flags);
6602 for (order = 0; order < MAX_ORDER; order++) {
6603 struct page *page_head = page - (pfn & ((1 << order) - 1));
6604
6605 if (PageBuddy(page_head) && page_order(page_head) >= order)
6606 break;
6607 }
6608 spin_unlock_irqrestore(&zone->lock, flags);
6609
6610 return order < MAX_ORDER;
6611}
6612#endif