]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/page_alloc.c
mm: batch radix tree operations when truncating pages
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
7aac7898
LS
85#ifdef CONFIG_HAVE_MEMORYLESS_NODES
86/*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 94int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
95#endif
96
bd233f53
MG
97/* work_structs for global per-cpu drains */
98DEFINE_MUTEX(pcpu_drain_mutex);
99DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
38addce8 101#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 102volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
103EXPORT_SYMBOL(latent_entropy);
104#endif
105
1da177e4 106/*
13808910 107 * Array of node states.
1da177e4 108 */
13808910
CL
109nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112#ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114#ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 116#endif
20b2f52b 117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa
MG
291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292static inline void reset_deferred_meminit(pg_data_t *pgdat)
293{
864b9a39
MH
294 unsigned long max_initialise;
295 unsigned long reserved_lowmem;
296
297 /*
298 * Initialise at least 2G of a node but also take into account that
299 * two large system hashes that can take up 1GB for 0.25TB/node.
300 */
301 max_initialise = max(2UL << (30 - PAGE_SHIFT),
302 (pgdat->node_spanned_pages >> 8));
303
304 /*
305 * Compensate the all the memblock reservations (e.g. crash kernel)
306 * from the initial estimation to make sure we will initialize enough
307 * memory to boot.
308 */
309 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
310 pgdat->node_start_pfn + max_initialise);
311 max_initialise += reserved_lowmem;
312
313 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
314 pgdat->first_deferred_pfn = ULONG_MAX;
315}
316
317/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 318static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 319{
ef70b6f4
MG
320 int nid = early_pfn_to_nid(pfn);
321
322 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
323 return true;
324
325 return false;
326}
327
328/*
329 * Returns false when the remaining initialisation should be deferred until
330 * later in the boot cycle when it can be parallelised.
331 */
332static inline bool update_defer_init(pg_data_t *pgdat,
333 unsigned long pfn, unsigned long zone_end,
334 unsigned long *nr_initialised)
335{
336 /* Always populate low zones for address-contrained allocations */
337 if (zone_end < pgdat_end_pfn(pgdat))
338 return true;
3a80a7fa 339 (*nr_initialised)++;
864b9a39 340 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
341 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
342 pgdat->first_deferred_pfn = pfn;
343 return false;
344 }
345
346 return true;
347}
348#else
349static inline void reset_deferred_meminit(pg_data_t *pgdat)
350{
351}
352
353static inline bool early_page_uninitialised(unsigned long pfn)
354{
355 return false;
356}
357
358static inline bool update_defer_init(pg_data_t *pgdat,
359 unsigned long pfn, unsigned long zone_end,
360 unsigned long *nr_initialised)
361{
362 return true;
363}
364#endif
365
0b423ca2
MG
366/* Return a pointer to the bitmap storing bits affecting a block of pages */
367static inline unsigned long *get_pageblock_bitmap(struct page *page,
368 unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 return __pfn_to_section(pfn)->pageblock_flags;
372#else
373 return page_zone(page)->pageblock_flags;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
378{
379#ifdef CONFIG_SPARSEMEM
380 pfn &= (PAGES_PER_SECTION-1);
381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
382#else
383 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
385#endif /* CONFIG_SPARSEMEM */
386}
387
388/**
389 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
390 * @page: The page within the block of interest
391 * @pfn: The target page frame number
392 * @end_bitidx: The last bit of interest to retrieve
393 * @mask: mask of bits that the caller is interested in
394 *
395 * Return: pageblock_bits flags
396 */
397static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
398 unsigned long pfn,
399 unsigned long end_bitidx,
400 unsigned long mask)
401{
402 unsigned long *bitmap;
403 unsigned long bitidx, word_bitidx;
404 unsigned long word;
405
406 bitmap = get_pageblock_bitmap(page, pfn);
407 bitidx = pfn_to_bitidx(page, pfn);
408 word_bitidx = bitidx / BITS_PER_LONG;
409 bitidx &= (BITS_PER_LONG-1);
410
411 word = bitmap[word_bitidx];
412 bitidx += end_bitidx;
413 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
414}
415
416unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
421}
422
423static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
424{
425 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
426}
427
428/**
429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
430 * @page: The page within the block of interest
431 * @flags: The flags to set
432 * @pfn: The target page frame number
433 * @end_bitidx: The last bit of interest
434 * @mask: mask of bits that the caller is interested in
435 */
436void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
437 unsigned long pfn,
438 unsigned long end_bitidx,
439 unsigned long mask)
440{
441 unsigned long *bitmap;
442 unsigned long bitidx, word_bitidx;
443 unsigned long old_word, word;
444
445 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
446
447 bitmap = get_pageblock_bitmap(page, pfn);
448 bitidx = pfn_to_bitidx(page, pfn);
449 word_bitidx = bitidx / BITS_PER_LONG;
450 bitidx &= (BITS_PER_LONG-1);
451
452 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
453
454 bitidx += end_bitidx;
455 mask <<= (BITS_PER_LONG - bitidx - 1);
456 flags <<= (BITS_PER_LONG - bitidx - 1);
457
458 word = READ_ONCE(bitmap[word_bitidx]);
459 for (;;) {
460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
461 if (word == old_word)
462 break;
463 word = old_word;
464 }
465}
3a80a7fa 466
ee6f509c 467void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 468{
5d0f3f72
KM
469 if (unlikely(page_group_by_mobility_disabled &&
470 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
471 migratetype = MIGRATE_UNMOVABLE;
472
b2a0ac88
MG
473 set_pageblock_flags_group(page, (unsigned long)migratetype,
474 PB_migrate, PB_migrate_end);
475}
476
13e7444b 477#ifdef CONFIG_DEBUG_VM
c6a57e19 478static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 479{
bdc8cb98
DH
480 int ret = 0;
481 unsigned seq;
482 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 483 unsigned long sp, start_pfn;
c6a57e19 484
bdc8cb98
DH
485 do {
486 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
487 start_pfn = zone->zone_start_pfn;
488 sp = zone->spanned_pages;
108bcc96 489 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
490 ret = 1;
491 } while (zone_span_seqretry(zone, seq));
492
b5e6a5a2 493 if (ret)
613813e8
DH
494 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
495 pfn, zone_to_nid(zone), zone->name,
496 start_pfn, start_pfn + sp);
b5e6a5a2 497
bdc8cb98 498 return ret;
c6a57e19
DH
499}
500
501static int page_is_consistent(struct zone *zone, struct page *page)
502{
14e07298 503 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 504 return 0;
1da177e4 505 if (zone != page_zone(page))
c6a57e19
DH
506 return 0;
507
508 return 1;
509}
510/*
511 * Temporary debugging check for pages not lying within a given zone.
512 */
d73d3c9f 513static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
514{
515 if (page_outside_zone_boundaries(zone, page))
1da177e4 516 return 1;
c6a57e19
DH
517 if (!page_is_consistent(zone, page))
518 return 1;
519
1da177e4
LT
520 return 0;
521}
13e7444b 522#else
d73d3c9f 523static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
524{
525 return 0;
526}
527#endif
528
d230dec1
KS
529static void bad_page(struct page *page, const char *reason,
530 unsigned long bad_flags)
1da177e4 531{
d936cf9b
HD
532 static unsigned long resume;
533 static unsigned long nr_shown;
534 static unsigned long nr_unshown;
535
536 /*
537 * Allow a burst of 60 reports, then keep quiet for that minute;
538 * or allow a steady drip of one report per second.
539 */
540 if (nr_shown == 60) {
541 if (time_before(jiffies, resume)) {
542 nr_unshown++;
543 goto out;
544 }
545 if (nr_unshown) {
ff8e8116 546 pr_alert(
1e9e6365 547 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
548 nr_unshown);
549 nr_unshown = 0;
550 }
551 nr_shown = 0;
552 }
553 if (nr_shown++ == 0)
554 resume = jiffies + 60 * HZ;
555
ff8e8116 556 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 557 current->comm, page_to_pfn(page));
ff8e8116
VB
558 __dump_page(page, reason);
559 bad_flags &= page->flags;
560 if (bad_flags)
561 pr_alert("bad because of flags: %#lx(%pGp)\n",
562 bad_flags, &bad_flags);
4e462112 563 dump_page_owner(page);
3dc14741 564
4f31888c 565 print_modules();
1da177e4 566 dump_stack();
d936cf9b 567out:
8cc3b392 568 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 569 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
571}
572
1da177e4
LT
573/*
574 * Higher-order pages are called "compound pages". They are structured thusly:
575 *
1d798ca3 576 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 577 *
1d798ca3
KS
578 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
579 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 580 *
1d798ca3
KS
581 * The first tail page's ->compound_dtor holds the offset in array of compound
582 * page destructors. See compound_page_dtors.
1da177e4 583 *
1d798ca3 584 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 585 * This usage means that zero-order pages may not be compound.
1da177e4 586 */
d98c7a09 587
9a982250 588void free_compound_page(struct page *page)
d98c7a09 589{
d85f3385 590 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
591}
592
d00181b9 593void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
594{
595 int i;
596 int nr_pages = 1 << order;
597
f1e61557 598 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
599 set_compound_order(page, order);
600 __SetPageHead(page);
601 for (i = 1; i < nr_pages; i++) {
602 struct page *p = page + i;
58a84aa9 603 set_page_count(p, 0);
1c290f64 604 p->mapping = TAIL_MAPPING;
1d798ca3 605 set_compound_head(p, page);
18229df5 606 }
53f9263b 607 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
608}
609
c0a32fc5
SG
610#ifdef CONFIG_DEBUG_PAGEALLOC
611unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
612bool _debug_pagealloc_enabled __read_mostly
613 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 614EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
615bool _debug_guardpage_enabled __read_mostly;
616
031bc574
JK
617static int __init early_debug_pagealloc(char *buf)
618{
619 if (!buf)
620 return -EINVAL;
2a138dc7 621 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
622}
623early_param("debug_pagealloc", early_debug_pagealloc);
624
e30825f1
JK
625static bool need_debug_guardpage(void)
626{
031bc574
JK
627 /* If we don't use debug_pagealloc, we don't need guard page */
628 if (!debug_pagealloc_enabled())
629 return false;
630
f1c1e9f7
JK
631 if (!debug_guardpage_minorder())
632 return false;
633
e30825f1
JK
634 return true;
635}
636
637static void init_debug_guardpage(void)
638{
031bc574
JK
639 if (!debug_pagealloc_enabled())
640 return;
641
f1c1e9f7
JK
642 if (!debug_guardpage_minorder())
643 return;
644
e30825f1
JK
645 _debug_guardpage_enabled = true;
646}
647
648struct page_ext_operations debug_guardpage_ops = {
649 .need = need_debug_guardpage,
650 .init = init_debug_guardpage,
651};
c0a32fc5
SG
652
653static int __init debug_guardpage_minorder_setup(char *buf)
654{
655 unsigned long res;
656
657 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 658 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
659 return 0;
660 }
661 _debug_guardpage_minorder = res;
1170532b 662 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
663 return 0;
664}
f1c1e9f7 665early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 666
acbc15a4 667static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 668 unsigned int order, int migratetype)
c0a32fc5 669{
e30825f1
JK
670 struct page_ext *page_ext;
671
672 if (!debug_guardpage_enabled())
acbc15a4
JK
673 return false;
674
675 if (order >= debug_guardpage_minorder())
676 return false;
e30825f1
JK
677
678 page_ext = lookup_page_ext(page);
f86e4271 679 if (unlikely(!page_ext))
acbc15a4 680 return false;
f86e4271 681
e30825f1
JK
682 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
2847cf95
JK
684 INIT_LIST_HEAD(&page->lru);
685 set_page_private(page, order);
686 /* Guard pages are not available for any usage */
687 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
688
689 return true;
c0a32fc5
SG
690}
691
2847cf95
JK
692static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype)
c0a32fc5 694{
e30825f1
JK
695 struct page_ext *page_ext;
696
697 if (!debug_guardpage_enabled())
698 return;
699
700 page_ext = lookup_page_ext(page);
f86e4271
YS
701 if (unlikely(!page_ext))
702 return;
703
e30825f1
JK
704 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
705
2847cf95
JK
706 set_page_private(page, 0);
707 if (!is_migrate_isolate(migratetype))
708 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
709}
710#else
980ac167 711struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
712static inline bool set_page_guard(struct zone *zone, struct page *page,
713 unsigned int order, int migratetype) { return false; }
2847cf95
JK
714static inline void clear_page_guard(struct zone *zone, struct page *page,
715 unsigned int order, int migratetype) {}
c0a32fc5
SG
716#endif
717
7aeb09f9 718static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 719{
4c21e2f2 720 set_page_private(page, order);
676165a8 721 __SetPageBuddy(page);
1da177e4
LT
722}
723
724static inline void rmv_page_order(struct page *page)
725{
676165a8 726 __ClearPageBuddy(page);
4c21e2f2 727 set_page_private(page, 0);
1da177e4
LT
728}
729
1da177e4
LT
730/*
731 * This function checks whether a page is free && is the buddy
732 * we can do coalesce a page and its buddy if
13ad59df 733 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 734 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
735 * (c) a page and its buddy have the same order &&
736 * (d) a page and its buddy are in the same zone.
676165a8 737 *
cf6fe945
WSH
738 * For recording whether a page is in the buddy system, we set ->_mapcount
739 * PAGE_BUDDY_MAPCOUNT_VALUE.
740 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
741 * serialized by zone->lock.
1da177e4 742 *
676165a8 743 * For recording page's order, we use page_private(page).
1da177e4 744 */
cb2b95e1 745static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 746 unsigned int order)
1da177e4 747{
c0a32fc5 748 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
749 if (page_zone_id(page) != page_zone_id(buddy))
750 return 0;
751
4c5018ce
WY
752 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
753
c0a32fc5
SG
754 return 1;
755 }
756
cb2b95e1 757 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
758 /*
759 * zone check is done late to avoid uselessly
760 * calculating zone/node ids for pages that could
761 * never merge.
762 */
763 if (page_zone_id(page) != page_zone_id(buddy))
764 return 0;
765
4c5018ce
WY
766 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
767
6aa3001b 768 return 1;
676165a8 769 }
6aa3001b 770 return 0;
1da177e4
LT
771}
772
773/*
774 * Freeing function for a buddy system allocator.
775 *
776 * The concept of a buddy system is to maintain direct-mapped table
777 * (containing bit values) for memory blocks of various "orders".
778 * The bottom level table contains the map for the smallest allocatable
779 * units of memory (here, pages), and each level above it describes
780 * pairs of units from the levels below, hence, "buddies".
781 * At a high level, all that happens here is marking the table entry
782 * at the bottom level available, and propagating the changes upward
783 * as necessary, plus some accounting needed to play nicely with other
784 * parts of the VM system.
785 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
786 * free pages of length of (1 << order) and marked with _mapcount
787 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
788 * field.
1da177e4 789 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
790 * other. That is, if we allocate a small block, and both were
791 * free, the remainder of the region must be split into blocks.
1da177e4 792 * If a block is freed, and its buddy is also free, then this
5f63b720 793 * triggers coalescing into a block of larger size.
1da177e4 794 *
6d49e352 795 * -- nyc
1da177e4
LT
796 */
797
48db57f8 798static inline void __free_one_page(struct page *page,
dc4b0caf 799 unsigned long pfn,
ed0ae21d
MG
800 struct zone *zone, unsigned int order,
801 int migratetype)
1da177e4 802{
76741e77
VB
803 unsigned long combined_pfn;
804 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 805 struct page *buddy;
d9dddbf5
VB
806 unsigned int max_order;
807
808 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 809
d29bb978 810 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 811 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 812
ed0ae21d 813 VM_BUG_ON(migratetype == -1);
d9dddbf5 814 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 815 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 816
76741e77 817 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 818 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 819
d9dddbf5 820continue_merging:
3c605096 821 while (order < max_order - 1) {
76741e77
VB
822 buddy_pfn = __find_buddy_pfn(pfn, order);
823 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
824
825 if (!pfn_valid_within(buddy_pfn))
826 goto done_merging;
cb2b95e1 827 if (!page_is_buddy(page, buddy, order))
d9dddbf5 828 goto done_merging;
c0a32fc5
SG
829 /*
830 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
831 * merge with it and move up one order.
832 */
833 if (page_is_guard(buddy)) {
2847cf95 834 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
835 } else {
836 list_del(&buddy->lru);
837 zone->free_area[order].nr_free--;
838 rmv_page_order(buddy);
839 }
76741e77
VB
840 combined_pfn = buddy_pfn & pfn;
841 page = page + (combined_pfn - pfn);
842 pfn = combined_pfn;
1da177e4
LT
843 order++;
844 }
d9dddbf5
VB
845 if (max_order < MAX_ORDER) {
846 /* If we are here, it means order is >= pageblock_order.
847 * We want to prevent merge between freepages on isolate
848 * pageblock and normal pageblock. Without this, pageblock
849 * isolation could cause incorrect freepage or CMA accounting.
850 *
851 * We don't want to hit this code for the more frequent
852 * low-order merging.
853 */
854 if (unlikely(has_isolate_pageblock(zone))) {
855 int buddy_mt;
856
76741e77
VB
857 buddy_pfn = __find_buddy_pfn(pfn, order);
858 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
859 buddy_mt = get_pageblock_migratetype(buddy);
860
861 if (migratetype != buddy_mt
862 && (is_migrate_isolate(migratetype) ||
863 is_migrate_isolate(buddy_mt)))
864 goto done_merging;
865 }
866 max_order++;
867 goto continue_merging;
868 }
869
870done_merging:
1da177e4 871 set_page_order(page, order);
6dda9d55
CZ
872
873 /*
874 * If this is not the largest possible page, check if the buddy
875 * of the next-highest order is free. If it is, it's possible
876 * that pages are being freed that will coalesce soon. In case,
877 * that is happening, add the free page to the tail of the list
878 * so it's less likely to be used soon and more likely to be merged
879 * as a higher order page
880 */
13ad59df 881 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 882 struct page *higher_page, *higher_buddy;
76741e77
VB
883 combined_pfn = buddy_pfn & pfn;
884 higher_page = page + (combined_pfn - pfn);
885 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
886 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
887 if (pfn_valid_within(buddy_pfn) &&
888 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
889 list_add_tail(&page->lru,
890 &zone->free_area[order].free_list[migratetype]);
891 goto out;
892 }
893 }
894
895 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
896out:
1da177e4
LT
897 zone->free_area[order].nr_free++;
898}
899
7bfec6f4
MG
900/*
901 * A bad page could be due to a number of fields. Instead of multiple branches,
902 * try and check multiple fields with one check. The caller must do a detailed
903 * check if necessary.
904 */
905static inline bool page_expected_state(struct page *page,
906 unsigned long check_flags)
907{
908 if (unlikely(atomic_read(&page->_mapcount) != -1))
909 return false;
910
911 if (unlikely((unsigned long)page->mapping |
912 page_ref_count(page) |
913#ifdef CONFIG_MEMCG
914 (unsigned long)page->mem_cgroup |
915#endif
916 (page->flags & check_flags)))
917 return false;
918
919 return true;
920}
921
bb552ac6 922static void free_pages_check_bad(struct page *page)
1da177e4 923{
7bfec6f4
MG
924 const char *bad_reason;
925 unsigned long bad_flags;
926
7bfec6f4
MG
927 bad_reason = NULL;
928 bad_flags = 0;
f0b791a3 929
53f9263b 930 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
931 bad_reason = "nonzero mapcount";
932 if (unlikely(page->mapping != NULL))
933 bad_reason = "non-NULL mapping";
fe896d18 934 if (unlikely(page_ref_count(page) != 0))
0139aa7b 935 bad_reason = "nonzero _refcount";
f0b791a3
DH
936 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
937 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
938 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
939 }
9edad6ea
JW
940#ifdef CONFIG_MEMCG
941 if (unlikely(page->mem_cgroup))
942 bad_reason = "page still charged to cgroup";
943#endif
7bfec6f4 944 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
945}
946
947static inline int free_pages_check(struct page *page)
948{
da838d4f 949 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 950 return 0;
bb552ac6
MG
951
952 /* Something has gone sideways, find it */
953 free_pages_check_bad(page);
7bfec6f4 954 return 1;
1da177e4
LT
955}
956
4db7548c
MG
957static int free_tail_pages_check(struct page *head_page, struct page *page)
958{
959 int ret = 1;
960
961 /*
962 * We rely page->lru.next never has bit 0 set, unless the page
963 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
964 */
965 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
966
967 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
968 ret = 0;
969 goto out;
970 }
971 switch (page - head_page) {
972 case 1:
973 /* the first tail page: ->mapping is compound_mapcount() */
974 if (unlikely(compound_mapcount(page))) {
975 bad_page(page, "nonzero compound_mapcount", 0);
976 goto out;
977 }
978 break;
979 case 2:
980 /*
981 * the second tail page: ->mapping is
982 * page_deferred_list().next -- ignore value.
983 */
984 break;
985 default:
986 if (page->mapping != TAIL_MAPPING) {
987 bad_page(page, "corrupted mapping in tail page", 0);
988 goto out;
989 }
990 break;
991 }
992 if (unlikely(!PageTail(page))) {
993 bad_page(page, "PageTail not set", 0);
994 goto out;
995 }
996 if (unlikely(compound_head(page) != head_page)) {
997 bad_page(page, "compound_head not consistent", 0);
998 goto out;
999 }
1000 ret = 0;
1001out:
1002 page->mapping = NULL;
1003 clear_compound_head(page);
1004 return ret;
1005}
1006
e2769dbd
MG
1007static __always_inline bool free_pages_prepare(struct page *page,
1008 unsigned int order, bool check_free)
4db7548c 1009{
e2769dbd 1010 int bad = 0;
4db7548c 1011
4db7548c
MG
1012 VM_BUG_ON_PAGE(PageTail(page), page);
1013
e2769dbd 1014 trace_mm_page_free(page, order);
e2769dbd
MG
1015
1016 /*
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1019 */
1020 if (unlikely(order)) {
1021 bool compound = PageCompound(page);
1022 int i;
1023
1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1025
9a73f61b
KS
1026 if (compound)
1027 ClearPageDoubleMap(page);
e2769dbd
MG
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 if (unlikely(free_pages_check(page + i))) {
1032 bad++;
1033 continue;
1034 }
1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 }
1037 }
bda807d4 1038 if (PageMappingFlags(page))
4db7548c 1039 page->mapping = NULL;
c4159a75 1040 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1041 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1042 if (check_free)
1043 bad += free_pages_check(page);
1044 if (bad)
1045 return false;
4db7548c 1046
e2769dbd
MG
1047 page_cpupid_reset_last(page);
1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 reset_page_owner(page, order);
4db7548c
MG
1050
1051 if (!PageHighMem(page)) {
1052 debug_check_no_locks_freed(page_address(page),
e2769dbd 1053 PAGE_SIZE << order);
4db7548c 1054 debug_check_no_obj_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 }
e2769dbd
MG
1057 arch_free_page(page, order);
1058 kernel_poison_pages(page, 1 << order, 0);
1059 kernel_map_pages(page, 1 << order, 0);
29b52de1 1060 kasan_free_pages(page, order);
4db7548c 1061
4db7548c
MG
1062 return true;
1063}
1064
e2769dbd
MG
1065#ifdef CONFIG_DEBUG_VM
1066static inline bool free_pcp_prepare(struct page *page)
1067{
1068 return free_pages_prepare(page, 0, true);
1069}
1070
1071static inline bool bulkfree_pcp_prepare(struct page *page)
1072{
1073 return false;
1074}
1075#else
1076static bool free_pcp_prepare(struct page *page)
1077{
1078 return free_pages_prepare(page, 0, false);
1079}
1080
4db7548c
MG
1081static bool bulkfree_pcp_prepare(struct page *page)
1082{
1083 return free_pages_check(page);
1084}
1085#endif /* CONFIG_DEBUG_VM */
1086
1da177e4 1087/*
5f8dcc21 1088 * Frees a number of pages from the PCP lists
1da177e4 1089 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1090 * count is the number of pages to free.
1da177e4
LT
1091 *
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1094 *
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1097 */
5f8dcc21
MG
1098static void free_pcppages_bulk(struct zone *zone, int count,
1099 struct per_cpu_pages *pcp)
1da177e4 1100{
5f8dcc21 1101 int migratetype = 0;
a6f9edd6 1102 int batch_free = 0;
3777999d 1103 bool isolated_pageblocks;
5f8dcc21 1104
d34b0733 1105 spin_lock(&zone->lock);
3777999d 1106 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1107
e5b31ac2 1108 while (count) {
48db57f8 1109 struct page *page;
5f8dcc21
MG
1110 struct list_head *list;
1111
1112 /*
a6f9edd6
MG
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1117 * lists
5f8dcc21
MG
1118 */
1119 do {
a6f9edd6 1120 batch_free++;
5f8dcc21
MG
1121 if (++migratetype == MIGRATE_PCPTYPES)
1122 migratetype = 0;
1123 list = &pcp->lists[migratetype];
1124 } while (list_empty(list));
48db57f8 1125
1d16871d
NK
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1128 batch_free = count;
1d16871d 1129
a6f9edd6 1130 do {
770c8aaa
BZ
1131 int mt; /* migratetype of the to-be-freed page */
1132
a16601c5 1133 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page->lru);
aa016d14 1136
bb14c2c7 1137 mt = get_pcppage_migratetype(page);
aa016d14
VB
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 /* Pageblock could have been isolated meanwhile */
3777999d 1141 if (unlikely(isolated_pageblocks))
51bb1a40 1142 mt = get_pageblock_migratetype(page);
51bb1a40 1143
4db7548c
MG
1144 if (bulkfree_pcp_prepare(page))
1145 continue;
1146
dc4b0caf 1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1148 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1149 } while (--count && --batch_free && !list_empty(list));
1da177e4 1150 }
d34b0733 1151 spin_unlock(&zone->lock);
1da177e4
LT
1152}
1153
dc4b0caf
MG
1154static void free_one_page(struct zone *zone,
1155 struct page *page, unsigned long pfn,
7aeb09f9 1156 unsigned int order,
ed0ae21d 1157 int migratetype)
1da177e4 1158{
d34b0733 1159 spin_lock(&zone->lock);
ad53f92e
JK
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1163 }
dc4b0caf 1164 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1165 spin_unlock(&zone->lock);
48db57f8
NP
1166}
1167
1e8ce83c
RH
1168static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170{
f7f99100 1171 mm_zero_struct_page(page);
1e8ce83c 1172 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1173 init_page_count(page);
1174 page_mapcount_reset(page);
1175 page_cpupid_reset_last(page);
1e8ce83c 1176
1e8ce83c
RH
1177 INIT_LIST_HEAD(&page->lru);
1178#ifdef WANT_PAGE_VIRTUAL
1179 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1180 if (!is_highmem_idx(zone))
1181 set_page_address(page, __va(pfn << PAGE_SHIFT));
1182#endif
1183}
1184
1185static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1186 int nid)
1187{
1188 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1189}
1190
7e18adb4 1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1192static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1193{
1194 pg_data_t *pgdat;
1195 int nid, zid;
1196
1197 if (!early_page_uninitialised(pfn))
1198 return;
1199
1200 nid = early_pfn_to_nid(pfn);
1201 pgdat = NODE_DATA(nid);
1202
1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204 struct zone *zone = &pgdat->node_zones[zid];
1205
1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207 break;
1208 }
1209 __init_single_pfn(pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
92923ca3
NZ
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
4b50bcc7 1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1224{
1225 unsigned long start_pfn = PFN_DOWN(start);
1226 unsigned long end_pfn = PFN_UP(end);
1227
7e18adb4
MG
1228 for (; start_pfn < end_pfn; start_pfn++) {
1229 if (pfn_valid(start_pfn)) {
1230 struct page *page = pfn_to_page(start_pfn);
1231
1232 init_reserved_page(start_pfn);
1d798ca3
KS
1233
1234 /* Avoid false-positive PageTail() */
1235 INIT_LIST_HEAD(&page->lru);
1236
7e18adb4
MG
1237 SetPageReserved(page);
1238 }
1239 }
92923ca3
NZ
1240}
1241
ec95f53a
KM
1242static void __free_pages_ok(struct page *page, unsigned int order)
1243{
d34b0733 1244 unsigned long flags;
95e34412 1245 int migratetype;
dc4b0caf 1246 unsigned long pfn = page_to_pfn(page);
ec95f53a 1247
e2769dbd 1248 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1249 return;
1250
cfc47a28 1251 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1252 local_irq_save(flags);
1253 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1254 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1255 local_irq_restore(flags);
1da177e4
LT
1256}
1257
949698a3 1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1259{
c3993076 1260 unsigned int nr_pages = 1 << order;
e2d0bd2b 1261 struct page *p = page;
c3993076 1262 unsigned int loop;
a226f6c8 1263
e2d0bd2b
YL
1264 prefetchw(p);
1265 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266 prefetchw(p + 1);
c3993076
JW
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
a226f6c8 1269 }
e2d0bd2b
YL
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
c3993076 1272
e2d0bd2b 1273 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1274 set_page_refcounted(page);
1275 __free_pages(page, order);
a226f6c8
DH
1276}
1277
75a592a4
MG
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1280
75a592a4
MG
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
7ace9917 1285 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1286 int nid;
1287
7ace9917 1288 spin_lock(&early_pfn_lock);
75a592a4 1289 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1290 if (nid < 0)
e4568d38 1291 nid = first_online_node;
7ace9917
MG
1292 spin_unlock(&early_pfn_lock);
1293
1294 return nid;
75a592a4
MG
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
75a592a4
MG
1302{
1303 int nid;
1304
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1307 return false;
1308 return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321 return true;
1322}
d73d3c9f
MK
1323static inline bool __meminit __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325 struct mminit_pfnnid_cache *state)
75a592a4
MG
1326{
1327 return true;
1328}
1329#endif
1330
1331
0e1cc95b 1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1333 unsigned int order)
1334{
1335 if (early_page_uninitialised(pfn))
1336 return;
949698a3 1337 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1338}
1339
7cf91a98
JK
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358 unsigned long end_pfn, struct zone *zone)
1359{
1360 struct page *start_page;
1361 struct page *end_page;
1362
1363 /* end_pfn is one past the range we are checking */
1364 end_pfn--;
1365
1366 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367 return NULL;
1368
2d070eab
MH
1369 start_page = pfn_to_online_page(start_pfn);
1370 if (!start_page)
1371 return NULL;
7cf91a98
JK
1372
1373 if (page_zone(start_page) != zone)
1374 return NULL;
1375
1376 end_page = pfn_to_page(end_pfn);
1377
1378 /* This gives a shorter code than deriving page_zone(end_page) */
1379 if (page_zone_id(start_page) != page_zone_id(end_page))
1380 return NULL;
1381
1382 return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387 unsigned long block_start_pfn = zone->zone_start_pfn;
1388 unsigned long block_end_pfn;
1389
1390 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391 for (; block_start_pfn < zone_end_pfn(zone);
1392 block_start_pfn = block_end_pfn,
1393 block_end_pfn += pageblock_nr_pages) {
1394
1395 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397 if (!__pageblock_pfn_to_page(block_start_pfn,
1398 block_end_pfn, zone))
1399 return;
1400 }
1401
1402 /* We confirm that there is no hole */
1403 zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408 zone->contiguous = false;
1409}
1410
7e18adb4 1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1412static void __init deferred_free_range(unsigned long pfn,
1413 unsigned long nr_pages)
a4de83dd 1414{
2f47a91f
PT
1415 struct page *page;
1416 unsigned long i;
a4de83dd 1417
2f47a91f 1418 if (!nr_pages)
a4de83dd
MG
1419 return;
1420
2f47a91f
PT
1421 page = pfn_to_page(pfn);
1422
a4de83dd 1423 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1424 if (nr_pages == pageblock_nr_pages &&
1425 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1427 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1428 return;
1429 }
1430
e780149b
XQ
1431 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1434 __free_pages_boot_core(page, 0);
e780149b 1435 }
a4de83dd
MG
1436}
1437
d3cd131d
NS
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444 if (atomic_dec_and_test(&pgdat_init_n_undone))
1445 complete(&pgdat_init_all_done_comp);
1446}
0e1cc95b 1447
2f47a91f
PT
1448/*
1449 * Helper for deferred_init_range, free the given range, reset the counters, and
1450 * return number of pages freed.
1451 */
1452static inline unsigned long __init __def_free(unsigned long *nr_free,
1453 unsigned long *free_base_pfn,
1454 struct page **page)
1455{
1456 unsigned long nr = *nr_free;
1457
1458 deferred_free_range(*free_base_pfn, nr);
1459 *free_base_pfn = 0;
1460 *nr_free = 0;
1461 *page = NULL;
1462
1463 return nr;
1464}
1465
1466static unsigned long __init deferred_init_range(int nid, int zid,
1467 unsigned long start_pfn,
1468 unsigned long end_pfn)
1469{
1470 struct mminit_pfnnid_cache nid_init_state = { };
1471 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1472 unsigned long free_base_pfn = 0;
1473 unsigned long nr_pages = 0;
1474 unsigned long nr_free = 0;
1475 struct page *page = NULL;
1476 unsigned long pfn;
1477
1478 /*
1479 * First we check if pfn is valid on architectures where it is possible
1480 * to have holes within pageblock_nr_pages. On systems where it is not
1481 * possible, this function is optimized out.
1482 *
1483 * Then, we check if a current large page is valid by only checking the
1484 * validity of the head pfn.
1485 *
1486 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1487 * within a node: a pfn is between start and end of a node, but does not
1488 * belong to this memory node.
1489 *
1490 * Finally, we minimize pfn page lookups and scheduler checks by
1491 * performing it only once every pageblock_nr_pages.
1492 *
1493 * We do it in two loops: first we initialize struct page, than free to
1494 * buddy allocator, becuse while we are freeing pages we can access
1495 * pages that are ahead (computing buddy page in __free_one_page()).
1496 */
1497 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1498 if (!pfn_valid_within(pfn))
1499 continue;
1500 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1501 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1502 if (page && (pfn & nr_pgmask))
1503 page++;
1504 else
1505 page = pfn_to_page(pfn);
1506 __init_single_page(page, pfn, zid, nid);
1507 cond_resched();
1508 }
1509 }
1510 }
1511
1512 page = NULL;
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn)) {
1515 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1516 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1517 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1518 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1519 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1520 } else if (page && (pfn & nr_pgmask)) {
1521 page++;
1522 nr_free++;
1523 } else {
1524 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1525 page = pfn_to_page(pfn);
1526 free_base_pfn = pfn;
1527 nr_free = 1;
1528 cond_resched();
1529 }
1530 }
1531 /* Free the last block of pages to allocator */
1532 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1533
1534 return nr_pages;
1535}
1536
7e18adb4 1537/* Initialise remaining memory on a node */
0e1cc95b 1538static int __init deferred_init_memmap(void *data)
7e18adb4 1539{
0e1cc95b
MG
1540 pg_data_t *pgdat = data;
1541 int nid = pgdat->node_id;
7e18adb4
MG
1542 unsigned long start = jiffies;
1543 unsigned long nr_pages = 0;
2f47a91f
PT
1544 unsigned long spfn, epfn;
1545 phys_addr_t spa, epa;
1546 int zid;
7e18adb4 1547 struct zone *zone;
7e18adb4 1548 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1549 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1550 u64 i;
7e18adb4 1551
0e1cc95b 1552 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1553 pgdat_init_report_one_done();
0e1cc95b
MG
1554 return 0;
1555 }
1556
1557 /* Bind memory initialisation thread to a local node if possible */
1558 if (!cpumask_empty(cpumask))
1559 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1560
1561 /* Sanity check boundaries */
1562 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1563 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1564 pgdat->first_deferred_pfn = ULONG_MAX;
1565
1566 /* Only the highest zone is deferred so find it */
1567 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1568 zone = pgdat->node_zones + zid;
1569 if (first_init_pfn < zone_end_pfn(zone))
1570 break;
1571 }
2f47a91f 1572 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1573
2f47a91f
PT
1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1578 }
1579
1580 /* Sanity check that the next zone really is unpopulated */
1581 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1582
0e1cc95b 1583 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1584 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1585
1586 pgdat_init_report_one_done();
0e1cc95b
MG
1587 return 0;
1588}
7cf91a98 1589#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1590
1591void __init page_alloc_init_late(void)
1592{
7cf91a98
JK
1593 struct zone *zone;
1594
1595#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1596 int nid;
1597
d3cd131d
NS
1598 /* There will be num_node_state(N_MEMORY) threads */
1599 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1600 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1601 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1602 }
1603
1604 /* Block until all are initialised */
d3cd131d 1605 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1606
1607 /* Reinit limits that are based on free pages after the kernel is up */
1608 files_maxfiles_init();
7cf91a98 1609#endif
3010f876
PT
1610#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1611 /* Discard memblock private memory */
1612 memblock_discard();
1613#endif
7cf91a98
JK
1614
1615 for_each_populated_zone(zone)
1616 set_zone_contiguous(zone);
7e18adb4 1617}
7e18adb4 1618
47118af0 1619#ifdef CONFIG_CMA
9cf510a5 1620/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1621void __init init_cma_reserved_pageblock(struct page *page)
1622{
1623 unsigned i = pageblock_nr_pages;
1624 struct page *p = page;
1625
1626 do {
1627 __ClearPageReserved(p);
1628 set_page_count(p, 0);
1629 } while (++p, --i);
1630
47118af0 1631 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1632
1633 if (pageblock_order >= MAX_ORDER) {
1634 i = pageblock_nr_pages;
1635 p = page;
1636 do {
1637 set_page_refcounted(p);
1638 __free_pages(p, MAX_ORDER - 1);
1639 p += MAX_ORDER_NR_PAGES;
1640 } while (i -= MAX_ORDER_NR_PAGES);
1641 } else {
1642 set_page_refcounted(page);
1643 __free_pages(page, pageblock_order);
1644 }
1645
3dcc0571 1646 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1647}
1648#endif
1da177e4
LT
1649
1650/*
1651 * The order of subdivision here is critical for the IO subsystem.
1652 * Please do not alter this order without good reasons and regression
1653 * testing. Specifically, as large blocks of memory are subdivided,
1654 * the order in which smaller blocks are delivered depends on the order
1655 * they're subdivided in this function. This is the primary factor
1656 * influencing the order in which pages are delivered to the IO
1657 * subsystem according to empirical testing, and this is also justified
1658 * by considering the behavior of a buddy system containing a single
1659 * large block of memory acted on by a series of small allocations.
1660 * This behavior is a critical factor in sglist merging's success.
1661 *
6d49e352 1662 * -- nyc
1da177e4 1663 */
085cc7d5 1664static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1665 int low, int high, struct free_area *area,
1666 int migratetype)
1da177e4
LT
1667{
1668 unsigned long size = 1 << high;
1669
1670 while (high > low) {
1671 area--;
1672 high--;
1673 size >>= 1;
309381fe 1674 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1675
acbc15a4
JK
1676 /*
1677 * Mark as guard pages (or page), that will allow to
1678 * merge back to allocator when buddy will be freed.
1679 * Corresponding page table entries will not be touched,
1680 * pages will stay not present in virtual address space
1681 */
1682 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1683 continue;
acbc15a4 1684
b2a0ac88 1685 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1686 area->nr_free++;
1687 set_page_order(&page[size], high);
1688 }
1da177e4
LT
1689}
1690
4e611801 1691static void check_new_page_bad(struct page *page)
1da177e4 1692{
4e611801
VB
1693 const char *bad_reason = NULL;
1694 unsigned long bad_flags = 0;
7bfec6f4 1695
53f9263b 1696 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1697 bad_reason = "nonzero mapcount";
1698 if (unlikely(page->mapping != NULL))
1699 bad_reason = "non-NULL mapping";
fe896d18 1700 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1701 bad_reason = "nonzero _count";
f4c18e6f
NH
1702 if (unlikely(page->flags & __PG_HWPOISON)) {
1703 bad_reason = "HWPoisoned (hardware-corrupted)";
1704 bad_flags = __PG_HWPOISON;
e570f56c
NH
1705 /* Don't complain about hwpoisoned pages */
1706 page_mapcount_reset(page); /* remove PageBuddy */
1707 return;
f4c18e6f 1708 }
f0b791a3
DH
1709 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1710 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1711 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1712 }
9edad6ea
JW
1713#ifdef CONFIG_MEMCG
1714 if (unlikely(page->mem_cgroup))
1715 bad_reason = "page still charged to cgroup";
1716#endif
4e611801
VB
1717 bad_page(page, bad_reason, bad_flags);
1718}
1719
1720/*
1721 * This page is about to be returned from the page allocator
1722 */
1723static inline int check_new_page(struct page *page)
1724{
1725 if (likely(page_expected_state(page,
1726 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1727 return 0;
1728
1729 check_new_page_bad(page);
1730 return 1;
2a7684a2
WF
1731}
1732
bd33ef36 1733static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1734{
1735 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1736 page_poisoning_enabled();
1414c7f4
LA
1737}
1738
479f854a
MG
1739#ifdef CONFIG_DEBUG_VM
1740static bool check_pcp_refill(struct page *page)
1741{
1742 return false;
1743}
1744
1745static bool check_new_pcp(struct page *page)
1746{
1747 return check_new_page(page);
1748}
1749#else
1750static bool check_pcp_refill(struct page *page)
1751{
1752 return check_new_page(page);
1753}
1754static bool check_new_pcp(struct page *page)
1755{
1756 return false;
1757}
1758#endif /* CONFIG_DEBUG_VM */
1759
1760static bool check_new_pages(struct page *page, unsigned int order)
1761{
1762 int i;
1763 for (i = 0; i < (1 << order); i++) {
1764 struct page *p = page + i;
1765
1766 if (unlikely(check_new_page(p)))
1767 return true;
1768 }
1769
1770 return false;
1771}
1772
46f24fd8
JK
1773inline void post_alloc_hook(struct page *page, unsigned int order,
1774 gfp_t gfp_flags)
1775{
1776 set_page_private(page, 0);
1777 set_page_refcounted(page);
1778
1779 arch_alloc_page(page, order);
1780 kernel_map_pages(page, 1 << order, 1);
1781 kernel_poison_pages(page, 1 << order, 1);
1782 kasan_alloc_pages(page, order);
1783 set_page_owner(page, order, gfp_flags);
1784}
1785
479f854a 1786static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1787 unsigned int alloc_flags)
2a7684a2
WF
1788{
1789 int i;
689bcebf 1790
46f24fd8 1791 post_alloc_hook(page, order, gfp_flags);
17cf4406 1792
bd33ef36 1793 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1794 for (i = 0; i < (1 << order); i++)
1795 clear_highpage(page + i);
17cf4406
NP
1796
1797 if (order && (gfp_flags & __GFP_COMP))
1798 prep_compound_page(page, order);
1799
75379191 1800 /*
2f064f34 1801 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1802 * allocate the page. The expectation is that the caller is taking
1803 * steps that will free more memory. The caller should avoid the page
1804 * being used for !PFMEMALLOC purposes.
1805 */
2f064f34
MH
1806 if (alloc_flags & ALLOC_NO_WATERMARKS)
1807 set_page_pfmemalloc(page);
1808 else
1809 clear_page_pfmemalloc(page);
1da177e4
LT
1810}
1811
56fd56b8
MG
1812/*
1813 * Go through the free lists for the given migratetype and remove
1814 * the smallest available page from the freelists
1815 */
85ccc8fa 1816static __always_inline
728ec980 1817struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1818 int migratetype)
1819{
1820 unsigned int current_order;
b8af2941 1821 struct free_area *area;
56fd56b8
MG
1822 struct page *page;
1823
1824 /* Find a page of the appropriate size in the preferred list */
1825 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1826 area = &(zone->free_area[current_order]);
a16601c5 1827 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1828 struct page, lru);
a16601c5
GT
1829 if (!page)
1830 continue;
56fd56b8
MG
1831 list_del(&page->lru);
1832 rmv_page_order(page);
1833 area->nr_free--;
56fd56b8 1834 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1835 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1836 return page;
1837 }
1838
1839 return NULL;
1840}
1841
1842
b2a0ac88
MG
1843/*
1844 * This array describes the order lists are fallen back to when
1845 * the free lists for the desirable migrate type are depleted
1846 */
47118af0 1847static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1848 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1849 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1850 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1851#ifdef CONFIG_CMA
974a786e 1852 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1853#endif
194159fb 1854#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1855 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1856#endif
b2a0ac88
MG
1857};
1858
dc67647b 1859#ifdef CONFIG_CMA
85ccc8fa 1860static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1861 unsigned int order)
1862{
1863 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1864}
1865#else
1866static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1867 unsigned int order) { return NULL; }
1868#endif
1869
c361be55
MG
1870/*
1871 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1872 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1873 * boundary. If alignment is required, use move_freepages_block()
1874 */
02aa0cdd 1875static int move_freepages(struct zone *zone,
b69a7288 1876 struct page *start_page, struct page *end_page,
02aa0cdd 1877 int migratetype, int *num_movable)
c361be55
MG
1878{
1879 struct page *page;
d00181b9 1880 unsigned int order;
d100313f 1881 int pages_moved = 0;
c361be55
MG
1882
1883#ifndef CONFIG_HOLES_IN_ZONE
1884 /*
1885 * page_zone is not safe to call in this context when
1886 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1887 * anyway as we check zone boundaries in move_freepages_block().
1888 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1889 * grouping pages by mobility
c361be55 1890 */
97ee4ba7 1891 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1892#endif
1893
02aa0cdd
VB
1894 if (num_movable)
1895 *num_movable = 0;
1896
c361be55
MG
1897 for (page = start_page; page <= end_page;) {
1898 if (!pfn_valid_within(page_to_pfn(page))) {
1899 page++;
1900 continue;
1901 }
1902
f073bdc5
AB
1903 /* Make sure we are not inadvertently changing nodes */
1904 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1905
c361be55 1906 if (!PageBuddy(page)) {
02aa0cdd
VB
1907 /*
1908 * We assume that pages that could be isolated for
1909 * migration are movable. But we don't actually try
1910 * isolating, as that would be expensive.
1911 */
1912 if (num_movable &&
1913 (PageLRU(page) || __PageMovable(page)))
1914 (*num_movable)++;
1915
c361be55
MG
1916 page++;
1917 continue;
1918 }
1919
1920 order = page_order(page);
84be48d8
KS
1921 list_move(&page->lru,
1922 &zone->free_area[order].free_list[migratetype]);
c361be55 1923 page += 1 << order;
d100313f 1924 pages_moved += 1 << order;
c361be55
MG
1925 }
1926
d100313f 1927 return pages_moved;
c361be55
MG
1928}
1929
ee6f509c 1930int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1931 int migratetype, int *num_movable)
c361be55
MG
1932{
1933 unsigned long start_pfn, end_pfn;
1934 struct page *start_page, *end_page;
1935
1936 start_pfn = page_to_pfn(page);
d9c23400 1937 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1938 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1939 end_page = start_page + pageblock_nr_pages - 1;
1940 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1941
1942 /* Do not cross zone boundaries */
108bcc96 1943 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1944 start_page = page;
108bcc96 1945 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1946 return 0;
1947
02aa0cdd
VB
1948 return move_freepages(zone, start_page, end_page, migratetype,
1949 num_movable);
c361be55
MG
1950}
1951
2f66a68f
MG
1952static void change_pageblock_range(struct page *pageblock_page,
1953 int start_order, int migratetype)
1954{
1955 int nr_pageblocks = 1 << (start_order - pageblock_order);
1956
1957 while (nr_pageblocks--) {
1958 set_pageblock_migratetype(pageblock_page, migratetype);
1959 pageblock_page += pageblock_nr_pages;
1960 }
1961}
1962
fef903ef 1963/*
9c0415eb
VB
1964 * When we are falling back to another migratetype during allocation, try to
1965 * steal extra free pages from the same pageblocks to satisfy further
1966 * allocations, instead of polluting multiple pageblocks.
1967 *
1968 * If we are stealing a relatively large buddy page, it is likely there will
1969 * be more free pages in the pageblock, so try to steal them all. For
1970 * reclaimable and unmovable allocations, we steal regardless of page size,
1971 * as fragmentation caused by those allocations polluting movable pageblocks
1972 * is worse than movable allocations stealing from unmovable and reclaimable
1973 * pageblocks.
fef903ef 1974 */
4eb7dce6
JK
1975static bool can_steal_fallback(unsigned int order, int start_mt)
1976{
1977 /*
1978 * Leaving this order check is intended, although there is
1979 * relaxed order check in next check. The reason is that
1980 * we can actually steal whole pageblock if this condition met,
1981 * but, below check doesn't guarantee it and that is just heuristic
1982 * so could be changed anytime.
1983 */
1984 if (order >= pageblock_order)
1985 return true;
1986
1987 if (order >= pageblock_order / 2 ||
1988 start_mt == MIGRATE_RECLAIMABLE ||
1989 start_mt == MIGRATE_UNMOVABLE ||
1990 page_group_by_mobility_disabled)
1991 return true;
1992
1993 return false;
1994}
1995
1996/*
1997 * This function implements actual steal behaviour. If order is large enough,
1998 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1999 * pageblock to our migratetype and determine how many already-allocated pages
2000 * are there in the pageblock with a compatible migratetype. If at least half
2001 * of pages are free or compatible, we can change migratetype of the pageblock
2002 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2003 */
2004static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2005 int start_type, bool whole_block)
fef903ef 2006{
d00181b9 2007 unsigned int current_order = page_order(page);
3bc48f96 2008 struct free_area *area;
02aa0cdd
VB
2009 int free_pages, movable_pages, alike_pages;
2010 int old_block_type;
2011
2012 old_block_type = get_pageblock_migratetype(page);
fef903ef 2013
3bc48f96
VB
2014 /*
2015 * This can happen due to races and we want to prevent broken
2016 * highatomic accounting.
2017 */
02aa0cdd 2018 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2019 goto single_page;
2020
fef903ef
SB
2021 /* Take ownership for orders >= pageblock_order */
2022 if (current_order >= pageblock_order) {
2023 change_pageblock_range(page, current_order, start_type);
3bc48f96 2024 goto single_page;
fef903ef
SB
2025 }
2026
3bc48f96
VB
2027 /* We are not allowed to try stealing from the whole block */
2028 if (!whole_block)
2029 goto single_page;
2030
02aa0cdd
VB
2031 free_pages = move_freepages_block(zone, page, start_type,
2032 &movable_pages);
2033 /*
2034 * Determine how many pages are compatible with our allocation.
2035 * For movable allocation, it's the number of movable pages which
2036 * we just obtained. For other types it's a bit more tricky.
2037 */
2038 if (start_type == MIGRATE_MOVABLE) {
2039 alike_pages = movable_pages;
2040 } else {
2041 /*
2042 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2043 * to MOVABLE pageblock, consider all non-movable pages as
2044 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2045 * vice versa, be conservative since we can't distinguish the
2046 * exact migratetype of non-movable pages.
2047 */
2048 if (old_block_type == MIGRATE_MOVABLE)
2049 alike_pages = pageblock_nr_pages
2050 - (free_pages + movable_pages);
2051 else
2052 alike_pages = 0;
2053 }
2054
3bc48f96 2055 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2056 if (!free_pages)
3bc48f96 2057 goto single_page;
fef903ef 2058
02aa0cdd
VB
2059 /*
2060 * If a sufficient number of pages in the block are either free or of
2061 * comparable migratability as our allocation, claim the whole block.
2062 */
2063 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2064 page_group_by_mobility_disabled)
2065 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2066
2067 return;
2068
2069single_page:
2070 area = &zone->free_area[current_order];
2071 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2072}
2073
2149cdae
JK
2074/*
2075 * Check whether there is a suitable fallback freepage with requested order.
2076 * If only_stealable is true, this function returns fallback_mt only if
2077 * we can steal other freepages all together. This would help to reduce
2078 * fragmentation due to mixed migratetype pages in one pageblock.
2079 */
2080int find_suitable_fallback(struct free_area *area, unsigned int order,
2081 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2082{
2083 int i;
2084 int fallback_mt;
2085
2086 if (area->nr_free == 0)
2087 return -1;
2088
2089 *can_steal = false;
2090 for (i = 0;; i++) {
2091 fallback_mt = fallbacks[migratetype][i];
974a786e 2092 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2093 break;
2094
2095 if (list_empty(&area->free_list[fallback_mt]))
2096 continue;
fef903ef 2097
4eb7dce6
JK
2098 if (can_steal_fallback(order, migratetype))
2099 *can_steal = true;
2100
2149cdae
JK
2101 if (!only_stealable)
2102 return fallback_mt;
2103
2104 if (*can_steal)
2105 return fallback_mt;
fef903ef 2106 }
4eb7dce6
JK
2107
2108 return -1;
fef903ef
SB
2109}
2110
0aaa29a5
MG
2111/*
2112 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2113 * there are no empty page blocks that contain a page with a suitable order
2114 */
2115static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2116 unsigned int alloc_order)
2117{
2118 int mt;
2119 unsigned long max_managed, flags;
2120
2121 /*
2122 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2123 * Check is race-prone but harmless.
2124 */
2125 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2126 if (zone->nr_reserved_highatomic >= max_managed)
2127 return;
2128
2129 spin_lock_irqsave(&zone->lock, flags);
2130
2131 /* Recheck the nr_reserved_highatomic limit under the lock */
2132 if (zone->nr_reserved_highatomic >= max_managed)
2133 goto out_unlock;
2134
2135 /* Yoink! */
2136 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2137 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2138 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2139 zone->nr_reserved_highatomic += pageblock_nr_pages;
2140 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2141 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2142 }
2143
2144out_unlock:
2145 spin_unlock_irqrestore(&zone->lock, flags);
2146}
2147
2148/*
2149 * Used when an allocation is about to fail under memory pressure. This
2150 * potentially hurts the reliability of high-order allocations when under
2151 * intense memory pressure but failed atomic allocations should be easier
2152 * to recover from than an OOM.
29fac03b
MK
2153 *
2154 * If @force is true, try to unreserve a pageblock even though highatomic
2155 * pageblock is exhausted.
0aaa29a5 2156 */
29fac03b
MK
2157static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2158 bool force)
0aaa29a5
MG
2159{
2160 struct zonelist *zonelist = ac->zonelist;
2161 unsigned long flags;
2162 struct zoneref *z;
2163 struct zone *zone;
2164 struct page *page;
2165 int order;
04c8716f 2166 bool ret;
0aaa29a5
MG
2167
2168 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2169 ac->nodemask) {
29fac03b
MK
2170 /*
2171 * Preserve at least one pageblock unless memory pressure
2172 * is really high.
2173 */
2174 if (!force && zone->nr_reserved_highatomic <=
2175 pageblock_nr_pages)
0aaa29a5
MG
2176 continue;
2177
2178 spin_lock_irqsave(&zone->lock, flags);
2179 for (order = 0; order < MAX_ORDER; order++) {
2180 struct free_area *area = &(zone->free_area[order]);
2181
a16601c5
GT
2182 page = list_first_entry_or_null(
2183 &area->free_list[MIGRATE_HIGHATOMIC],
2184 struct page, lru);
2185 if (!page)
0aaa29a5
MG
2186 continue;
2187
0aaa29a5 2188 /*
4855e4a7
MK
2189 * In page freeing path, migratetype change is racy so
2190 * we can counter several free pages in a pageblock
2191 * in this loop althoug we changed the pageblock type
2192 * from highatomic to ac->migratetype. So we should
2193 * adjust the count once.
0aaa29a5 2194 */
a6ffdc07 2195 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2196 /*
2197 * It should never happen but changes to
2198 * locking could inadvertently allow a per-cpu
2199 * drain to add pages to MIGRATE_HIGHATOMIC
2200 * while unreserving so be safe and watch for
2201 * underflows.
2202 */
2203 zone->nr_reserved_highatomic -= min(
2204 pageblock_nr_pages,
2205 zone->nr_reserved_highatomic);
2206 }
0aaa29a5
MG
2207
2208 /*
2209 * Convert to ac->migratetype and avoid the normal
2210 * pageblock stealing heuristics. Minimally, the caller
2211 * is doing the work and needs the pages. More
2212 * importantly, if the block was always converted to
2213 * MIGRATE_UNMOVABLE or another type then the number
2214 * of pageblocks that cannot be completely freed
2215 * may increase.
2216 */
2217 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2218 ret = move_freepages_block(zone, page, ac->migratetype,
2219 NULL);
29fac03b
MK
2220 if (ret) {
2221 spin_unlock_irqrestore(&zone->lock, flags);
2222 return ret;
2223 }
0aaa29a5
MG
2224 }
2225 spin_unlock_irqrestore(&zone->lock, flags);
2226 }
04c8716f
MK
2227
2228 return false;
0aaa29a5
MG
2229}
2230
3bc48f96
VB
2231/*
2232 * Try finding a free buddy page on the fallback list and put it on the free
2233 * list of requested migratetype, possibly along with other pages from the same
2234 * block, depending on fragmentation avoidance heuristics. Returns true if
2235 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2236 *
2237 * The use of signed ints for order and current_order is a deliberate
2238 * deviation from the rest of this file, to make the for loop
2239 * condition simpler.
3bc48f96 2240 */
85ccc8fa 2241static __always_inline bool
b002529d 2242__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2243{
b8af2941 2244 struct free_area *area;
b002529d 2245 int current_order;
b2a0ac88 2246 struct page *page;
4eb7dce6
JK
2247 int fallback_mt;
2248 bool can_steal;
b2a0ac88 2249
7a8f58f3
VB
2250 /*
2251 * Find the largest available free page in the other list. This roughly
2252 * approximates finding the pageblock with the most free pages, which
2253 * would be too costly to do exactly.
2254 */
b002529d 2255 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2256 --current_order) {
4eb7dce6
JK
2257 area = &(zone->free_area[current_order]);
2258 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2259 start_migratetype, false, &can_steal);
4eb7dce6
JK
2260 if (fallback_mt == -1)
2261 continue;
b2a0ac88 2262
7a8f58f3
VB
2263 /*
2264 * We cannot steal all free pages from the pageblock and the
2265 * requested migratetype is movable. In that case it's better to
2266 * steal and split the smallest available page instead of the
2267 * largest available page, because even if the next movable
2268 * allocation falls back into a different pageblock than this
2269 * one, it won't cause permanent fragmentation.
2270 */
2271 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2272 && current_order > order)
2273 goto find_smallest;
b2a0ac88 2274
7a8f58f3
VB
2275 goto do_steal;
2276 }
e0fff1bd 2277
7a8f58f3 2278 return false;
e0fff1bd 2279
7a8f58f3
VB
2280find_smallest:
2281 for (current_order = order; current_order < MAX_ORDER;
2282 current_order++) {
2283 area = &(zone->free_area[current_order]);
2284 fallback_mt = find_suitable_fallback(area, current_order,
2285 start_migratetype, false, &can_steal);
2286 if (fallback_mt != -1)
2287 break;
b2a0ac88
MG
2288 }
2289
7a8f58f3
VB
2290 /*
2291 * This should not happen - we already found a suitable fallback
2292 * when looking for the largest page.
2293 */
2294 VM_BUG_ON(current_order == MAX_ORDER);
2295
2296do_steal:
2297 page = list_first_entry(&area->free_list[fallback_mt],
2298 struct page, lru);
2299
2300 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2301
2302 trace_mm_page_alloc_extfrag(page, order, current_order,
2303 start_migratetype, fallback_mt);
2304
2305 return true;
2306
b2a0ac88
MG
2307}
2308
56fd56b8 2309/*
1da177e4
LT
2310 * Do the hard work of removing an element from the buddy allocator.
2311 * Call me with the zone->lock already held.
2312 */
85ccc8fa
AL
2313static __always_inline struct page *
2314__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2315{
1da177e4
LT
2316 struct page *page;
2317
3bc48f96 2318retry:
56fd56b8 2319 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2320 if (unlikely(!page)) {
dc67647b
JK
2321 if (migratetype == MIGRATE_MOVABLE)
2322 page = __rmqueue_cma_fallback(zone, order);
2323
3bc48f96
VB
2324 if (!page && __rmqueue_fallback(zone, order, migratetype))
2325 goto retry;
728ec980
MG
2326 }
2327
0d3d062a 2328 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2329 return page;
1da177e4
LT
2330}
2331
5f63b720 2332/*
1da177e4
LT
2333 * Obtain a specified number of elements from the buddy allocator, all under
2334 * a single hold of the lock, for efficiency. Add them to the supplied list.
2335 * Returns the number of new pages which were placed at *list.
2336 */
5f63b720 2337static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2338 unsigned long count, struct list_head *list,
b745bc85 2339 int migratetype, bool cold)
1da177e4 2340{
a6de734b 2341 int i, alloced = 0;
5f63b720 2342
d34b0733 2343 spin_lock(&zone->lock);
1da177e4 2344 for (i = 0; i < count; ++i) {
6ac0206b 2345 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2346 if (unlikely(page == NULL))
1da177e4 2347 break;
81eabcbe 2348
479f854a
MG
2349 if (unlikely(check_pcp_refill(page)))
2350 continue;
2351
81eabcbe
MG
2352 /*
2353 * Split buddy pages returned by expand() are received here
2354 * in physical page order. The page is added to the callers and
2355 * list and the list head then moves forward. From the callers
2356 * perspective, the linked list is ordered by page number in
2357 * some conditions. This is useful for IO devices that can
2358 * merge IO requests if the physical pages are ordered
2359 * properly.
2360 */
b745bc85 2361 if (likely(!cold))
e084b2d9
MG
2362 list_add(&page->lru, list);
2363 else
2364 list_add_tail(&page->lru, list);
81eabcbe 2365 list = &page->lru;
a6de734b 2366 alloced++;
bb14c2c7 2367 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2368 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2369 -(1 << order));
1da177e4 2370 }
a6de734b
MG
2371
2372 /*
2373 * i pages were removed from the buddy list even if some leak due
2374 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2375 * on i. Do not confuse with 'alloced' which is the number of
2376 * pages added to the pcp list.
2377 */
f2260e6b 2378 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2379 spin_unlock(&zone->lock);
a6de734b 2380 return alloced;
1da177e4
LT
2381}
2382
4ae7c039 2383#ifdef CONFIG_NUMA
8fce4d8e 2384/*
4037d452
CL
2385 * Called from the vmstat counter updater to drain pagesets of this
2386 * currently executing processor on remote nodes after they have
2387 * expired.
2388 *
879336c3
CL
2389 * Note that this function must be called with the thread pinned to
2390 * a single processor.
8fce4d8e 2391 */
4037d452 2392void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2393{
4ae7c039 2394 unsigned long flags;
7be12fc9 2395 int to_drain, batch;
4ae7c039 2396
4037d452 2397 local_irq_save(flags);
4db0c3c2 2398 batch = READ_ONCE(pcp->batch);
7be12fc9 2399 to_drain = min(pcp->count, batch);
2a13515c
KM
2400 if (to_drain > 0) {
2401 free_pcppages_bulk(zone, to_drain, pcp);
2402 pcp->count -= to_drain;
2403 }
4037d452 2404 local_irq_restore(flags);
4ae7c039
CL
2405}
2406#endif
2407
9f8f2172 2408/*
93481ff0 2409 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2410 *
2411 * The processor must either be the current processor and the
2412 * thread pinned to the current processor or a processor that
2413 * is not online.
2414 */
93481ff0 2415static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2416{
c54ad30c 2417 unsigned long flags;
93481ff0
VB
2418 struct per_cpu_pageset *pset;
2419 struct per_cpu_pages *pcp;
1da177e4 2420
93481ff0
VB
2421 local_irq_save(flags);
2422 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2423
93481ff0
VB
2424 pcp = &pset->pcp;
2425 if (pcp->count) {
2426 free_pcppages_bulk(zone, pcp->count, pcp);
2427 pcp->count = 0;
2428 }
2429 local_irq_restore(flags);
2430}
3dfa5721 2431
93481ff0
VB
2432/*
2433 * Drain pcplists of all zones on the indicated processor.
2434 *
2435 * The processor must either be the current processor and the
2436 * thread pinned to the current processor or a processor that
2437 * is not online.
2438 */
2439static void drain_pages(unsigned int cpu)
2440{
2441 struct zone *zone;
2442
2443 for_each_populated_zone(zone) {
2444 drain_pages_zone(cpu, zone);
1da177e4
LT
2445 }
2446}
1da177e4 2447
9f8f2172
CL
2448/*
2449 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2450 *
2451 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2452 * the single zone's pages.
9f8f2172 2453 */
93481ff0 2454void drain_local_pages(struct zone *zone)
9f8f2172 2455{
93481ff0
VB
2456 int cpu = smp_processor_id();
2457
2458 if (zone)
2459 drain_pages_zone(cpu, zone);
2460 else
2461 drain_pages(cpu);
9f8f2172
CL
2462}
2463
0ccce3b9
MG
2464static void drain_local_pages_wq(struct work_struct *work)
2465{
a459eeb7
MH
2466 /*
2467 * drain_all_pages doesn't use proper cpu hotplug protection so
2468 * we can race with cpu offline when the WQ can move this from
2469 * a cpu pinned worker to an unbound one. We can operate on a different
2470 * cpu which is allright but we also have to make sure to not move to
2471 * a different one.
2472 */
2473 preempt_disable();
0ccce3b9 2474 drain_local_pages(NULL);
a459eeb7 2475 preempt_enable();
0ccce3b9
MG
2476}
2477
9f8f2172 2478/*
74046494
GBY
2479 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2480 *
93481ff0
VB
2481 * When zone parameter is non-NULL, spill just the single zone's pages.
2482 *
0ccce3b9 2483 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2484 */
93481ff0 2485void drain_all_pages(struct zone *zone)
9f8f2172 2486{
74046494 2487 int cpu;
74046494
GBY
2488
2489 /*
2490 * Allocate in the BSS so we wont require allocation in
2491 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2492 */
2493 static cpumask_t cpus_with_pcps;
2494
ce612879
MH
2495 /*
2496 * Make sure nobody triggers this path before mm_percpu_wq is fully
2497 * initialized.
2498 */
2499 if (WARN_ON_ONCE(!mm_percpu_wq))
2500 return;
2501
0ccce3b9
MG
2502 /* Workqueues cannot recurse */
2503 if (current->flags & PF_WQ_WORKER)
2504 return;
2505
bd233f53
MG
2506 /*
2507 * Do not drain if one is already in progress unless it's specific to
2508 * a zone. Such callers are primarily CMA and memory hotplug and need
2509 * the drain to be complete when the call returns.
2510 */
2511 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2512 if (!zone)
2513 return;
2514 mutex_lock(&pcpu_drain_mutex);
2515 }
0ccce3b9 2516
74046494
GBY
2517 /*
2518 * We don't care about racing with CPU hotplug event
2519 * as offline notification will cause the notified
2520 * cpu to drain that CPU pcps and on_each_cpu_mask
2521 * disables preemption as part of its processing
2522 */
2523 for_each_online_cpu(cpu) {
93481ff0
VB
2524 struct per_cpu_pageset *pcp;
2525 struct zone *z;
74046494 2526 bool has_pcps = false;
93481ff0
VB
2527
2528 if (zone) {
74046494 2529 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2530 if (pcp->pcp.count)
74046494 2531 has_pcps = true;
93481ff0
VB
2532 } else {
2533 for_each_populated_zone(z) {
2534 pcp = per_cpu_ptr(z->pageset, cpu);
2535 if (pcp->pcp.count) {
2536 has_pcps = true;
2537 break;
2538 }
74046494
GBY
2539 }
2540 }
93481ff0 2541
74046494
GBY
2542 if (has_pcps)
2543 cpumask_set_cpu(cpu, &cpus_with_pcps);
2544 else
2545 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2546 }
0ccce3b9 2547
bd233f53
MG
2548 for_each_cpu(cpu, &cpus_with_pcps) {
2549 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2550 INIT_WORK(work, drain_local_pages_wq);
ce612879 2551 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2552 }
bd233f53
MG
2553 for_each_cpu(cpu, &cpus_with_pcps)
2554 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2555
2556 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2557}
2558
296699de 2559#ifdef CONFIG_HIBERNATION
1da177e4 2560
556b969a
CY
2561/*
2562 * Touch the watchdog for every WD_PAGE_COUNT pages.
2563 */
2564#define WD_PAGE_COUNT (128*1024)
2565
1da177e4
LT
2566void mark_free_pages(struct zone *zone)
2567{
556b969a 2568 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2569 unsigned long flags;
7aeb09f9 2570 unsigned int order, t;
86760a2c 2571 struct page *page;
1da177e4 2572
8080fc03 2573 if (zone_is_empty(zone))
1da177e4
LT
2574 return;
2575
2576 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2577
108bcc96 2578 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2579 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2580 if (pfn_valid(pfn)) {
86760a2c 2581 page = pfn_to_page(pfn);
ba6b0979 2582
556b969a
CY
2583 if (!--page_count) {
2584 touch_nmi_watchdog();
2585 page_count = WD_PAGE_COUNT;
2586 }
2587
ba6b0979
JK
2588 if (page_zone(page) != zone)
2589 continue;
2590
7be98234
RW
2591 if (!swsusp_page_is_forbidden(page))
2592 swsusp_unset_page_free(page);
f623f0db 2593 }
1da177e4 2594
b2a0ac88 2595 for_each_migratetype_order(order, t) {
86760a2c
GT
2596 list_for_each_entry(page,
2597 &zone->free_area[order].free_list[t], lru) {
f623f0db 2598 unsigned long i;
1da177e4 2599
86760a2c 2600 pfn = page_to_pfn(page);
556b969a
CY
2601 for (i = 0; i < (1UL << order); i++) {
2602 if (!--page_count) {
2603 touch_nmi_watchdog();
2604 page_count = WD_PAGE_COUNT;
2605 }
7be98234 2606 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2607 }
f623f0db 2608 }
b2a0ac88 2609 }
1da177e4
LT
2610 spin_unlock_irqrestore(&zone->lock, flags);
2611}
e2c55dc8 2612#endif /* CONFIG_PM */
1da177e4 2613
1da177e4
LT
2614/*
2615 * Free a 0-order page
b745bc85 2616 * cold == true ? free a cold page : free a hot page
1da177e4 2617 */
b745bc85 2618void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2619{
2620 struct zone *zone = page_zone(page);
2621 struct per_cpu_pages *pcp;
d34b0733 2622 unsigned long flags;
dc4b0caf 2623 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2624 int migratetype;
1da177e4 2625
4db7548c 2626 if (!free_pcp_prepare(page))
689bcebf
HD
2627 return;
2628
dc4b0caf 2629 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2630 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2631 local_irq_save(flags);
2632 __count_vm_event(PGFREE);
da456f14 2633
5f8dcc21
MG
2634 /*
2635 * We only track unmovable, reclaimable and movable on pcp lists.
2636 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2637 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2638 * areas back if necessary. Otherwise, we may have to free
2639 * excessively into the page allocator
2640 */
2641 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2642 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2643 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2644 goto out;
2645 }
2646 migratetype = MIGRATE_MOVABLE;
2647 }
2648
99dcc3e5 2649 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2650 if (!cold)
5f8dcc21 2651 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2652 else
2653 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2654 pcp->count++;
48db57f8 2655 if (pcp->count >= pcp->high) {
4db0c3c2 2656 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2657 free_pcppages_bulk(zone, batch, pcp);
2658 pcp->count -= batch;
48db57f8 2659 }
5f8dcc21
MG
2660
2661out:
d34b0733 2662 local_irq_restore(flags);
1da177e4
LT
2663}
2664
cc59850e
KK
2665/*
2666 * Free a list of 0-order pages
2667 */
b745bc85 2668void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2669{
2670 struct page *page, *next;
2671
2672 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2673 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2674 free_hot_cold_page(page, cold);
2675 }
2676}
2677
8dfcc9ba
NP
2678/*
2679 * split_page takes a non-compound higher-order page, and splits it into
2680 * n (1<<order) sub-pages: page[0..n]
2681 * Each sub-page must be freed individually.
2682 *
2683 * Note: this is probably too low level an operation for use in drivers.
2684 * Please consult with lkml before using this in your driver.
2685 */
2686void split_page(struct page *page, unsigned int order)
2687{
2688 int i;
2689
309381fe
SL
2690 VM_BUG_ON_PAGE(PageCompound(page), page);
2691 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2692
a9627bc5 2693 for (i = 1; i < (1 << order); i++)
7835e98b 2694 set_page_refcounted(page + i);
a9627bc5 2695 split_page_owner(page, order);
8dfcc9ba 2696}
5853ff23 2697EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2698
3c605096 2699int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2700{
748446bb
MG
2701 unsigned long watermark;
2702 struct zone *zone;
2139cbe6 2703 int mt;
748446bb
MG
2704
2705 BUG_ON(!PageBuddy(page));
2706
2707 zone = page_zone(page);
2e30abd1 2708 mt = get_pageblock_migratetype(page);
748446bb 2709
194159fb 2710 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2711 /*
2712 * Obey watermarks as if the page was being allocated. We can
2713 * emulate a high-order watermark check with a raised order-0
2714 * watermark, because we already know our high-order page
2715 * exists.
2716 */
2717 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2718 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2719 return 0;
2720
8fb74b9f 2721 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2722 }
748446bb
MG
2723
2724 /* Remove page from free list */
2725 list_del(&page->lru);
2726 zone->free_area[order].nr_free--;
2727 rmv_page_order(page);
2139cbe6 2728
400bc7fd 2729 /*
2730 * Set the pageblock if the isolated page is at least half of a
2731 * pageblock
2732 */
748446bb
MG
2733 if (order >= pageblock_order - 1) {
2734 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2735 for (; page < endpage; page += pageblock_nr_pages) {
2736 int mt = get_pageblock_migratetype(page);
88ed365e 2737 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2738 && !is_migrate_highatomic(mt))
47118af0
MN
2739 set_pageblock_migratetype(page,
2740 MIGRATE_MOVABLE);
2741 }
748446bb
MG
2742 }
2743
f3a14ced 2744
8fb74b9f 2745 return 1UL << order;
1fb3f8ca
MG
2746}
2747
060e7417
MG
2748/*
2749 * Update NUMA hit/miss statistics
2750 *
2751 * Must be called with interrupts disabled.
060e7417 2752 */
41b6167e 2753static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2754{
2755#ifdef CONFIG_NUMA
3a321d2a 2756 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2757
2df26639 2758 if (z->node != numa_node_id())
060e7417 2759 local_stat = NUMA_OTHER;
060e7417 2760
2df26639 2761 if (z->node == preferred_zone->node)
3a321d2a 2762 __inc_numa_state(z, NUMA_HIT);
2df26639 2763 else {
3a321d2a
KW
2764 __inc_numa_state(z, NUMA_MISS);
2765 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2766 }
3a321d2a 2767 __inc_numa_state(z, local_stat);
060e7417
MG
2768#endif
2769}
2770
066b2393
MG
2771/* Remove page from the per-cpu list, caller must protect the list */
2772static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2773 bool cold, struct per_cpu_pages *pcp,
2774 struct list_head *list)
2775{
2776 struct page *page;
2777
2778 do {
2779 if (list_empty(list)) {
2780 pcp->count += rmqueue_bulk(zone, 0,
2781 pcp->batch, list,
2782 migratetype, cold);
2783 if (unlikely(list_empty(list)))
2784 return NULL;
2785 }
2786
2787 if (cold)
2788 page = list_last_entry(list, struct page, lru);
2789 else
2790 page = list_first_entry(list, struct page, lru);
2791
2792 list_del(&page->lru);
2793 pcp->count--;
2794 } while (check_new_pcp(page));
2795
2796 return page;
2797}
2798
2799/* Lock and remove page from the per-cpu list */
2800static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2801 struct zone *zone, unsigned int order,
2802 gfp_t gfp_flags, int migratetype)
2803{
2804 struct per_cpu_pages *pcp;
2805 struct list_head *list;
2806 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2807 struct page *page;
d34b0733 2808 unsigned long flags;
066b2393 2809
d34b0733 2810 local_irq_save(flags);
066b2393
MG
2811 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2812 list = &pcp->lists[migratetype];
2813 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2814 if (page) {
2815 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2816 zone_statistics(preferred_zone, zone);
2817 }
d34b0733 2818 local_irq_restore(flags);
066b2393
MG
2819 return page;
2820}
2821
1da177e4 2822/*
75379191 2823 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2824 */
0a15c3e9 2825static inline
066b2393 2826struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2827 struct zone *zone, unsigned int order,
c603844b
MG
2828 gfp_t gfp_flags, unsigned int alloc_flags,
2829 int migratetype)
1da177e4
LT
2830{
2831 unsigned long flags;
689bcebf 2832 struct page *page;
1da177e4 2833
d34b0733 2834 if (likely(order == 0)) {
066b2393
MG
2835 page = rmqueue_pcplist(preferred_zone, zone, order,
2836 gfp_flags, migratetype);
2837 goto out;
2838 }
83b9355b 2839
066b2393
MG
2840 /*
2841 * We most definitely don't want callers attempting to
2842 * allocate greater than order-1 page units with __GFP_NOFAIL.
2843 */
2844 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2845 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2846
066b2393
MG
2847 do {
2848 page = NULL;
2849 if (alloc_flags & ALLOC_HARDER) {
2850 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2851 if (page)
2852 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2853 }
a74609fa 2854 if (!page)
066b2393
MG
2855 page = __rmqueue(zone, order, migratetype);
2856 } while (page && check_new_pages(page, order));
2857 spin_unlock(&zone->lock);
2858 if (!page)
2859 goto failed;
2860 __mod_zone_freepage_state(zone, -(1 << order),
2861 get_pcppage_migratetype(page));
1da177e4 2862
16709d1d 2863 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2864 zone_statistics(preferred_zone, zone);
a74609fa 2865 local_irq_restore(flags);
1da177e4 2866
066b2393
MG
2867out:
2868 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2869 return page;
a74609fa
NP
2870
2871failed:
2872 local_irq_restore(flags);
a74609fa 2873 return NULL;
1da177e4
LT
2874}
2875
933e312e
AM
2876#ifdef CONFIG_FAIL_PAGE_ALLOC
2877
b2588c4b 2878static struct {
933e312e
AM
2879 struct fault_attr attr;
2880
621a5f7a 2881 bool ignore_gfp_highmem;
71baba4b 2882 bool ignore_gfp_reclaim;
54114994 2883 u32 min_order;
933e312e
AM
2884} fail_page_alloc = {
2885 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2886 .ignore_gfp_reclaim = true,
621a5f7a 2887 .ignore_gfp_highmem = true,
54114994 2888 .min_order = 1,
933e312e
AM
2889};
2890
2891static int __init setup_fail_page_alloc(char *str)
2892{
2893 return setup_fault_attr(&fail_page_alloc.attr, str);
2894}
2895__setup("fail_page_alloc=", setup_fail_page_alloc);
2896
deaf386e 2897static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2898{
54114994 2899 if (order < fail_page_alloc.min_order)
deaf386e 2900 return false;
933e312e 2901 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2902 return false;
933e312e 2903 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2904 return false;
71baba4b
MG
2905 if (fail_page_alloc.ignore_gfp_reclaim &&
2906 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2907 return false;
933e312e
AM
2908
2909 return should_fail(&fail_page_alloc.attr, 1 << order);
2910}
2911
2912#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2913
2914static int __init fail_page_alloc_debugfs(void)
2915{
f4ae40a6 2916 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2917 struct dentry *dir;
933e312e 2918
dd48c085
AM
2919 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2920 &fail_page_alloc.attr);
2921 if (IS_ERR(dir))
2922 return PTR_ERR(dir);
933e312e 2923
b2588c4b 2924 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2925 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2926 goto fail;
2927 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2928 &fail_page_alloc.ignore_gfp_highmem))
2929 goto fail;
2930 if (!debugfs_create_u32("min-order", mode, dir,
2931 &fail_page_alloc.min_order))
2932 goto fail;
2933
2934 return 0;
2935fail:
dd48c085 2936 debugfs_remove_recursive(dir);
933e312e 2937
b2588c4b 2938 return -ENOMEM;
933e312e
AM
2939}
2940
2941late_initcall(fail_page_alloc_debugfs);
2942
2943#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2944
2945#else /* CONFIG_FAIL_PAGE_ALLOC */
2946
deaf386e 2947static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2948{
deaf386e 2949 return false;
933e312e
AM
2950}
2951
2952#endif /* CONFIG_FAIL_PAGE_ALLOC */
2953
1da177e4 2954/*
97a16fc8
MG
2955 * Return true if free base pages are above 'mark'. For high-order checks it
2956 * will return true of the order-0 watermark is reached and there is at least
2957 * one free page of a suitable size. Checking now avoids taking the zone lock
2958 * to check in the allocation paths if no pages are free.
1da177e4 2959 */
86a294a8
MH
2960bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2961 int classzone_idx, unsigned int alloc_flags,
2962 long free_pages)
1da177e4 2963{
d23ad423 2964 long min = mark;
1da177e4 2965 int o;
cd04ae1e 2966 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 2967
0aaa29a5 2968 /* free_pages may go negative - that's OK */
df0a6daa 2969 free_pages -= (1 << order) - 1;
0aaa29a5 2970
7fb1d9fc 2971 if (alloc_flags & ALLOC_HIGH)
1da177e4 2972 min -= min / 2;
0aaa29a5
MG
2973
2974 /*
2975 * If the caller does not have rights to ALLOC_HARDER then subtract
2976 * the high-atomic reserves. This will over-estimate the size of the
2977 * atomic reserve but it avoids a search.
2978 */
cd04ae1e 2979 if (likely(!alloc_harder)) {
0aaa29a5 2980 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
2981 } else {
2982 /*
2983 * OOM victims can try even harder than normal ALLOC_HARDER
2984 * users on the grounds that it's definitely going to be in
2985 * the exit path shortly and free memory. Any allocation it
2986 * makes during the free path will be small and short-lived.
2987 */
2988 if (alloc_flags & ALLOC_OOM)
2989 min -= min / 2;
2990 else
2991 min -= min / 4;
2992 }
2993
e2b19197 2994
d95ea5d1
BZ
2995#ifdef CONFIG_CMA
2996 /* If allocation can't use CMA areas don't use free CMA pages */
2997 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2998 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2999#endif
026b0814 3000
97a16fc8
MG
3001 /*
3002 * Check watermarks for an order-0 allocation request. If these
3003 * are not met, then a high-order request also cannot go ahead
3004 * even if a suitable page happened to be free.
3005 */
3006 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3007 return false;
1da177e4 3008
97a16fc8
MG
3009 /* If this is an order-0 request then the watermark is fine */
3010 if (!order)
3011 return true;
3012
3013 /* For a high-order request, check at least one suitable page is free */
3014 for (o = order; o < MAX_ORDER; o++) {
3015 struct free_area *area = &z->free_area[o];
3016 int mt;
3017
3018 if (!area->nr_free)
3019 continue;
3020
3021 if (alloc_harder)
3022 return true;
1da177e4 3023
97a16fc8
MG
3024 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3025 if (!list_empty(&area->free_list[mt]))
3026 return true;
3027 }
3028
3029#ifdef CONFIG_CMA
3030 if ((alloc_flags & ALLOC_CMA) &&
3031 !list_empty(&area->free_list[MIGRATE_CMA])) {
3032 return true;
3033 }
3034#endif
1da177e4 3035 }
97a16fc8 3036 return false;
88f5acf8
MG
3037}
3038
7aeb09f9 3039bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3040 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3041{
3042 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3043 zone_page_state(z, NR_FREE_PAGES));
3044}
3045
48ee5f36
MG
3046static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3047 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3048{
3049 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3050 long cma_pages = 0;
3051
3052#ifdef CONFIG_CMA
3053 /* If allocation can't use CMA areas don't use free CMA pages */
3054 if (!(alloc_flags & ALLOC_CMA))
3055 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3056#endif
3057
3058 /*
3059 * Fast check for order-0 only. If this fails then the reserves
3060 * need to be calculated. There is a corner case where the check
3061 * passes but only the high-order atomic reserve are free. If
3062 * the caller is !atomic then it'll uselessly search the free
3063 * list. That corner case is then slower but it is harmless.
3064 */
3065 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3066 return true;
3067
3068 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3069 free_pages);
3070}
3071
7aeb09f9 3072bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3073 unsigned long mark, int classzone_idx)
88f5acf8
MG
3074{
3075 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3076
3077 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3078 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3079
e2b19197 3080 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3081 free_pages);
1da177e4
LT
3082}
3083
9276b1bc 3084#ifdef CONFIG_NUMA
957f822a
DR
3085static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3086{
e02dc017 3087 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3088 RECLAIM_DISTANCE;
957f822a 3089}
9276b1bc 3090#else /* CONFIG_NUMA */
957f822a
DR
3091static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3092{
3093 return true;
3094}
9276b1bc
PJ
3095#endif /* CONFIG_NUMA */
3096
7fb1d9fc 3097/*
0798e519 3098 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3099 * a page.
3100 */
3101static struct page *
a9263751
VB
3102get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3103 const struct alloc_context *ac)
753ee728 3104{
c33d6c06 3105 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3106 struct zone *zone;
3b8c0be4
MG
3107 struct pglist_data *last_pgdat_dirty_limit = NULL;
3108
7fb1d9fc 3109 /*
9276b1bc 3110 * Scan zonelist, looking for a zone with enough free.
344736f2 3111 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3112 */
c33d6c06 3113 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3114 ac->nodemask) {
be06af00 3115 struct page *page;
e085dbc5
JW
3116 unsigned long mark;
3117
664eedde
MG
3118 if (cpusets_enabled() &&
3119 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3120 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3121 continue;
a756cf59
JW
3122 /*
3123 * When allocating a page cache page for writing, we
281e3726
MG
3124 * want to get it from a node that is within its dirty
3125 * limit, such that no single node holds more than its
a756cf59 3126 * proportional share of globally allowed dirty pages.
281e3726 3127 * The dirty limits take into account the node's
a756cf59
JW
3128 * lowmem reserves and high watermark so that kswapd
3129 * should be able to balance it without having to
3130 * write pages from its LRU list.
3131 *
a756cf59 3132 * XXX: For now, allow allocations to potentially
281e3726 3133 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3134 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3135 * which is important when on a NUMA setup the allowed
281e3726 3136 * nodes are together not big enough to reach the
a756cf59 3137 * global limit. The proper fix for these situations
281e3726 3138 * will require awareness of nodes in the
a756cf59
JW
3139 * dirty-throttling and the flusher threads.
3140 */
3b8c0be4
MG
3141 if (ac->spread_dirty_pages) {
3142 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3143 continue;
3144
3145 if (!node_dirty_ok(zone->zone_pgdat)) {
3146 last_pgdat_dirty_limit = zone->zone_pgdat;
3147 continue;
3148 }
3149 }
7fb1d9fc 3150
e085dbc5 3151 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3152 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3153 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3154 int ret;
3155
5dab2911
MG
3156 /* Checked here to keep the fast path fast */
3157 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3158 if (alloc_flags & ALLOC_NO_WATERMARKS)
3159 goto try_this_zone;
3160
a5f5f91d 3161 if (node_reclaim_mode == 0 ||
c33d6c06 3162 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3163 continue;
3164
a5f5f91d 3165 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3166 switch (ret) {
a5f5f91d 3167 case NODE_RECLAIM_NOSCAN:
fa5e084e 3168 /* did not scan */
cd38b115 3169 continue;
a5f5f91d 3170 case NODE_RECLAIM_FULL:
fa5e084e 3171 /* scanned but unreclaimable */
cd38b115 3172 continue;
fa5e084e
MG
3173 default:
3174 /* did we reclaim enough */
fed2719e 3175 if (zone_watermark_ok(zone, order, mark,
93ea9964 3176 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3177 goto try_this_zone;
3178
fed2719e 3179 continue;
0798e519 3180 }
7fb1d9fc
RS
3181 }
3182
fa5e084e 3183try_this_zone:
066b2393 3184 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3185 gfp_mask, alloc_flags, ac->migratetype);
75379191 3186 if (page) {
479f854a 3187 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3188
3189 /*
3190 * If this is a high-order atomic allocation then check
3191 * if the pageblock should be reserved for the future
3192 */
3193 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3194 reserve_highatomic_pageblock(page, zone, order);
3195
75379191
VB
3196 return page;
3197 }
54a6eb5c 3198 }
9276b1bc 3199
4ffeaf35 3200 return NULL;
753ee728
MH
3201}
3202
29423e77
DR
3203/*
3204 * Large machines with many possible nodes should not always dump per-node
3205 * meminfo in irq context.
3206 */
3207static inline bool should_suppress_show_mem(void)
3208{
3209 bool ret = false;
3210
3211#if NODES_SHIFT > 8
3212 ret = in_interrupt();
3213#endif
3214 return ret;
3215}
3216
9af744d7 3217static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3218{
a238ab5b 3219 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3220 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3221
aa187507 3222 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3223 return;
3224
3225 /*
3226 * This documents exceptions given to allocations in certain
3227 * contexts that are allowed to allocate outside current's set
3228 * of allowed nodes.
3229 */
3230 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3231 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3232 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3233 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3234 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3235 filter &= ~SHOW_MEM_FILTER_NODES;
3236
9af744d7 3237 show_mem(filter, nodemask);
aa187507
MH
3238}
3239
a8e99259 3240void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3241{
3242 struct va_format vaf;
3243 va_list args;
3244 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3245 DEFAULT_RATELIMIT_BURST);
3246
0f7896f1 3247 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3248 return;
3249
7877cdcc 3250 pr_warn("%s: ", current->comm);
3ee9a4f0 3251
7877cdcc
MH
3252 va_start(args, fmt);
3253 vaf.fmt = fmt;
3254 vaf.va = &args;
3255 pr_cont("%pV", &vaf);
3256 va_end(args);
3ee9a4f0 3257
685dbf6f
DR
3258 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3259 if (nodemask)
3260 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3261 else
3262 pr_cont("(null)\n");
3263
a8e99259 3264 cpuset_print_current_mems_allowed();
3ee9a4f0 3265
a238ab5b 3266 dump_stack();
685dbf6f 3267 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3268}
3269
6c18ba7a
MH
3270static inline struct page *
3271__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3272 unsigned int alloc_flags,
3273 const struct alloc_context *ac)
3274{
3275 struct page *page;
3276
3277 page = get_page_from_freelist(gfp_mask, order,
3278 alloc_flags|ALLOC_CPUSET, ac);
3279 /*
3280 * fallback to ignore cpuset restriction if our nodes
3281 * are depleted
3282 */
3283 if (!page)
3284 page = get_page_from_freelist(gfp_mask, order,
3285 alloc_flags, ac);
3286
3287 return page;
3288}
3289
11e33f6a
MG
3290static inline struct page *
3291__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3292 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3293{
6e0fc46d
DR
3294 struct oom_control oc = {
3295 .zonelist = ac->zonelist,
3296 .nodemask = ac->nodemask,
2a966b77 3297 .memcg = NULL,
6e0fc46d
DR
3298 .gfp_mask = gfp_mask,
3299 .order = order,
6e0fc46d 3300 };
11e33f6a
MG
3301 struct page *page;
3302
9879de73
JW
3303 *did_some_progress = 0;
3304
9879de73 3305 /*
dc56401f
JW
3306 * Acquire the oom lock. If that fails, somebody else is
3307 * making progress for us.
9879de73 3308 */
dc56401f 3309 if (!mutex_trylock(&oom_lock)) {
9879de73 3310 *did_some_progress = 1;
11e33f6a 3311 schedule_timeout_uninterruptible(1);
1da177e4
LT
3312 return NULL;
3313 }
6b1de916 3314
11e33f6a
MG
3315 /*
3316 * Go through the zonelist yet one more time, keep very high watermark
3317 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3318 * we're still under heavy pressure. But make sure that this reclaim
3319 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3320 * allocation which will never fail due to oom_lock already held.
11e33f6a 3321 */
e746bf73
TH
3322 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3323 ~__GFP_DIRECT_RECLAIM, order,
3324 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3325 if (page)
11e33f6a
MG
3326 goto out;
3327
06ad276a
MH
3328 /* Coredumps can quickly deplete all memory reserves */
3329 if (current->flags & PF_DUMPCORE)
3330 goto out;
3331 /* The OOM killer will not help higher order allocs */
3332 if (order > PAGE_ALLOC_COSTLY_ORDER)
3333 goto out;
dcda9b04
MH
3334 /*
3335 * We have already exhausted all our reclaim opportunities without any
3336 * success so it is time to admit defeat. We will skip the OOM killer
3337 * because it is very likely that the caller has a more reasonable
3338 * fallback than shooting a random task.
3339 */
3340 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3341 goto out;
06ad276a
MH
3342 /* The OOM killer does not needlessly kill tasks for lowmem */
3343 if (ac->high_zoneidx < ZONE_NORMAL)
3344 goto out;
3345 if (pm_suspended_storage())
3346 goto out;
3347 /*
3348 * XXX: GFP_NOFS allocations should rather fail than rely on
3349 * other request to make a forward progress.
3350 * We are in an unfortunate situation where out_of_memory cannot
3351 * do much for this context but let's try it to at least get
3352 * access to memory reserved if the current task is killed (see
3353 * out_of_memory). Once filesystems are ready to handle allocation
3354 * failures more gracefully we should just bail out here.
3355 */
3356
3357 /* The OOM killer may not free memory on a specific node */
3358 if (gfp_mask & __GFP_THISNODE)
3359 goto out;
3da88fb3 3360
11e33f6a 3361 /* Exhausted what can be done so it's blamo time */
5020e285 3362 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3363 *did_some_progress = 1;
5020e285 3364
6c18ba7a
MH
3365 /*
3366 * Help non-failing allocations by giving them access to memory
3367 * reserves
3368 */
3369 if (gfp_mask & __GFP_NOFAIL)
3370 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3371 ALLOC_NO_WATERMARKS, ac);
5020e285 3372 }
11e33f6a 3373out:
dc56401f 3374 mutex_unlock(&oom_lock);
11e33f6a
MG
3375 return page;
3376}
3377
33c2d214
MH
3378/*
3379 * Maximum number of compaction retries wit a progress before OOM
3380 * killer is consider as the only way to move forward.
3381 */
3382#define MAX_COMPACT_RETRIES 16
3383
56de7263
MG
3384#ifdef CONFIG_COMPACTION
3385/* Try memory compaction for high-order allocations before reclaim */
3386static struct page *
3387__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3388 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3389 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3390{
98dd3b48 3391 struct page *page;
499118e9 3392 unsigned int noreclaim_flag;
53853e2d
VB
3393
3394 if (!order)
66199712 3395 return NULL;
66199712 3396
499118e9 3397 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3398 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3399 prio);
499118e9 3400 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3401
c5d01d0d 3402 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3403 return NULL;
53853e2d 3404
98dd3b48
VB
3405 /*
3406 * At least in one zone compaction wasn't deferred or skipped, so let's
3407 * count a compaction stall
3408 */
3409 count_vm_event(COMPACTSTALL);
8fb74b9f 3410
31a6c190 3411 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3412
98dd3b48
VB
3413 if (page) {
3414 struct zone *zone = page_zone(page);
53853e2d 3415
98dd3b48
VB
3416 zone->compact_blockskip_flush = false;
3417 compaction_defer_reset(zone, order, true);
3418 count_vm_event(COMPACTSUCCESS);
3419 return page;
3420 }
56de7263 3421
98dd3b48
VB
3422 /*
3423 * It's bad if compaction run occurs and fails. The most likely reason
3424 * is that pages exist, but not enough to satisfy watermarks.
3425 */
3426 count_vm_event(COMPACTFAIL);
66199712 3427
98dd3b48 3428 cond_resched();
56de7263
MG
3429
3430 return NULL;
3431}
33c2d214 3432
3250845d
VB
3433static inline bool
3434should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3435 enum compact_result compact_result,
3436 enum compact_priority *compact_priority,
d9436498 3437 int *compaction_retries)
3250845d
VB
3438{
3439 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3440 int min_priority;
65190cff
MH
3441 bool ret = false;
3442 int retries = *compaction_retries;
3443 enum compact_priority priority = *compact_priority;
3250845d
VB
3444
3445 if (!order)
3446 return false;
3447
d9436498
VB
3448 if (compaction_made_progress(compact_result))
3449 (*compaction_retries)++;
3450
3250845d
VB
3451 /*
3452 * compaction considers all the zone as desperately out of memory
3453 * so it doesn't really make much sense to retry except when the
3454 * failure could be caused by insufficient priority
3455 */
d9436498
VB
3456 if (compaction_failed(compact_result))
3457 goto check_priority;
3250845d
VB
3458
3459 /*
3460 * make sure the compaction wasn't deferred or didn't bail out early
3461 * due to locks contention before we declare that we should give up.
3462 * But do not retry if the given zonelist is not suitable for
3463 * compaction.
3464 */
65190cff
MH
3465 if (compaction_withdrawn(compact_result)) {
3466 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3467 goto out;
3468 }
3250845d
VB
3469
3470 /*
dcda9b04 3471 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3472 * costly ones because they are de facto nofail and invoke OOM
3473 * killer to move on while costly can fail and users are ready
3474 * to cope with that. 1/4 retries is rather arbitrary but we
3475 * would need much more detailed feedback from compaction to
3476 * make a better decision.
3477 */
3478 if (order > PAGE_ALLOC_COSTLY_ORDER)
3479 max_retries /= 4;
65190cff
MH
3480 if (*compaction_retries <= max_retries) {
3481 ret = true;
3482 goto out;
3483 }
3250845d 3484
d9436498
VB
3485 /*
3486 * Make sure there are attempts at the highest priority if we exhausted
3487 * all retries or failed at the lower priorities.
3488 */
3489check_priority:
c2033b00
VB
3490 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3491 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3492
c2033b00 3493 if (*compact_priority > min_priority) {
d9436498
VB
3494 (*compact_priority)--;
3495 *compaction_retries = 0;
65190cff 3496 ret = true;
d9436498 3497 }
65190cff
MH
3498out:
3499 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3500 return ret;
3250845d 3501}
56de7263
MG
3502#else
3503static inline struct page *
3504__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3505 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3506 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3507{
33c2d214 3508 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3509 return NULL;
3510}
33c2d214
MH
3511
3512static inline bool
86a294a8
MH
3513should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3514 enum compact_result compact_result,
a5508cd8 3515 enum compact_priority *compact_priority,
d9436498 3516 int *compaction_retries)
33c2d214 3517{
31e49bfd
MH
3518 struct zone *zone;
3519 struct zoneref *z;
3520
3521 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3522 return false;
3523
3524 /*
3525 * There are setups with compaction disabled which would prefer to loop
3526 * inside the allocator rather than hit the oom killer prematurely.
3527 * Let's give them a good hope and keep retrying while the order-0
3528 * watermarks are OK.
3529 */
3530 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3531 ac->nodemask) {
3532 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3533 ac_classzone_idx(ac), alloc_flags))
3534 return true;
3535 }
33c2d214
MH
3536 return false;
3537}
3250845d 3538#endif /* CONFIG_COMPACTION */
56de7263 3539
d92a8cfc
PZ
3540#ifdef CONFIG_LOCKDEP
3541struct lockdep_map __fs_reclaim_map =
3542 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3543
3544static bool __need_fs_reclaim(gfp_t gfp_mask)
3545{
3546 gfp_mask = current_gfp_context(gfp_mask);
3547
3548 /* no reclaim without waiting on it */
3549 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3550 return false;
3551
3552 /* this guy won't enter reclaim */
3553 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3554 return false;
3555
3556 /* We're only interested __GFP_FS allocations for now */
3557 if (!(gfp_mask & __GFP_FS))
3558 return false;
3559
3560 if (gfp_mask & __GFP_NOLOCKDEP)
3561 return false;
3562
3563 return true;
3564}
3565
3566void fs_reclaim_acquire(gfp_t gfp_mask)
3567{
3568 if (__need_fs_reclaim(gfp_mask))
3569 lock_map_acquire(&__fs_reclaim_map);
3570}
3571EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3572
3573void fs_reclaim_release(gfp_t gfp_mask)
3574{
3575 if (__need_fs_reclaim(gfp_mask))
3576 lock_map_release(&__fs_reclaim_map);
3577}
3578EXPORT_SYMBOL_GPL(fs_reclaim_release);
3579#endif
3580
bba90710
MS
3581/* Perform direct synchronous page reclaim */
3582static int
a9263751
VB
3583__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3584 const struct alloc_context *ac)
11e33f6a 3585{
11e33f6a 3586 struct reclaim_state reclaim_state;
bba90710 3587 int progress;
499118e9 3588 unsigned int noreclaim_flag;
11e33f6a
MG
3589
3590 cond_resched();
3591
3592 /* We now go into synchronous reclaim */
3593 cpuset_memory_pressure_bump();
499118e9 3594 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3595 fs_reclaim_acquire(gfp_mask);
11e33f6a 3596 reclaim_state.reclaimed_slab = 0;
c06b1fca 3597 current->reclaim_state = &reclaim_state;
11e33f6a 3598
a9263751
VB
3599 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3600 ac->nodemask);
11e33f6a 3601
c06b1fca 3602 current->reclaim_state = NULL;
d92a8cfc 3603 fs_reclaim_release(gfp_mask);
499118e9 3604 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3605
3606 cond_resched();
3607
bba90710
MS
3608 return progress;
3609}
3610
3611/* The really slow allocator path where we enter direct reclaim */
3612static inline struct page *
3613__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3614 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3615 unsigned long *did_some_progress)
bba90710
MS
3616{
3617 struct page *page = NULL;
3618 bool drained = false;
3619
a9263751 3620 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3621 if (unlikely(!(*did_some_progress)))
3622 return NULL;
11e33f6a 3623
9ee493ce 3624retry:
31a6c190 3625 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3626
3627 /*
3628 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3629 * pages are pinned on the per-cpu lists or in high alloc reserves.
3630 * Shrink them them and try again
9ee493ce
MG
3631 */
3632 if (!page && !drained) {
29fac03b 3633 unreserve_highatomic_pageblock(ac, false);
93481ff0 3634 drain_all_pages(NULL);
9ee493ce
MG
3635 drained = true;
3636 goto retry;
3637 }
3638
11e33f6a
MG
3639 return page;
3640}
3641
a9263751 3642static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3643{
3644 struct zoneref *z;
3645 struct zone *zone;
e1a55637 3646 pg_data_t *last_pgdat = NULL;
3a025760 3647
a9263751 3648 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3649 ac->high_zoneidx, ac->nodemask) {
3650 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3651 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3652 last_pgdat = zone->zone_pgdat;
3653 }
3a025760
JW
3654}
3655
c603844b 3656static inline unsigned int
341ce06f
PZ
3657gfp_to_alloc_flags(gfp_t gfp_mask)
3658{
c603844b 3659 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3660
a56f57ff 3661 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3662 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3663
341ce06f
PZ
3664 /*
3665 * The caller may dip into page reserves a bit more if the caller
3666 * cannot run direct reclaim, or if the caller has realtime scheduling
3667 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3668 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3669 */
e6223a3b 3670 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3671
d0164adc 3672 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3673 /*
b104a35d
DR
3674 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3675 * if it can't schedule.
5c3240d9 3676 */
b104a35d 3677 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3678 alloc_flags |= ALLOC_HARDER;
523b9458 3679 /*
b104a35d 3680 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3681 * comment for __cpuset_node_allowed().
523b9458 3682 */
341ce06f 3683 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3684 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3685 alloc_flags |= ALLOC_HARDER;
3686
d95ea5d1 3687#ifdef CONFIG_CMA
43e7a34d 3688 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3689 alloc_flags |= ALLOC_CMA;
3690#endif
341ce06f
PZ
3691 return alloc_flags;
3692}
3693
cd04ae1e 3694static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3695{
cd04ae1e
MH
3696 if (!tsk_is_oom_victim(tsk))
3697 return false;
3698
3699 /*
3700 * !MMU doesn't have oom reaper so give access to memory reserves
3701 * only to the thread with TIF_MEMDIE set
3702 */
3703 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3704 return false;
3705
cd04ae1e
MH
3706 return true;
3707}
3708
3709/*
3710 * Distinguish requests which really need access to full memory
3711 * reserves from oom victims which can live with a portion of it
3712 */
3713static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3714{
3715 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3716 return 0;
31a6c190 3717 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3718 return ALLOC_NO_WATERMARKS;
31a6c190 3719 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3720 return ALLOC_NO_WATERMARKS;
3721 if (!in_interrupt()) {
3722 if (current->flags & PF_MEMALLOC)
3723 return ALLOC_NO_WATERMARKS;
3724 else if (oom_reserves_allowed(current))
3725 return ALLOC_OOM;
3726 }
31a6c190 3727
cd04ae1e
MH
3728 return 0;
3729}
3730
3731bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3732{
3733 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3734}
3735
0a0337e0
MH
3736/*
3737 * Checks whether it makes sense to retry the reclaim to make a forward progress
3738 * for the given allocation request.
491d79ae
JW
3739 *
3740 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3741 * without success, or when we couldn't even meet the watermark if we
3742 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3743 *
3744 * Returns true if a retry is viable or false to enter the oom path.
3745 */
3746static inline bool
3747should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3748 struct alloc_context *ac, int alloc_flags,
423b452e 3749 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3750{
3751 struct zone *zone;
3752 struct zoneref *z;
3753
423b452e
VB
3754 /*
3755 * Costly allocations might have made a progress but this doesn't mean
3756 * their order will become available due to high fragmentation so
3757 * always increment the no progress counter for them
3758 */
3759 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3760 *no_progress_loops = 0;
3761 else
3762 (*no_progress_loops)++;
3763
0a0337e0
MH
3764 /*
3765 * Make sure we converge to OOM if we cannot make any progress
3766 * several times in the row.
3767 */
04c8716f
MK
3768 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3769 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3770 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3771 }
0a0337e0 3772
bca67592
MG
3773 /*
3774 * Keep reclaiming pages while there is a chance this will lead
3775 * somewhere. If none of the target zones can satisfy our allocation
3776 * request even if all reclaimable pages are considered then we are
3777 * screwed and have to go OOM.
0a0337e0
MH
3778 */
3779 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3780 ac->nodemask) {
3781 unsigned long available;
ede37713 3782 unsigned long reclaimable;
d379f01d
MH
3783 unsigned long min_wmark = min_wmark_pages(zone);
3784 bool wmark;
0a0337e0 3785
5a1c84b4 3786 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3787 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3788
3789 /*
491d79ae
JW
3790 * Would the allocation succeed if we reclaimed all
3791 * reclaimable pages?
0a0337e0 3792 */
d379f01d
MH
3793 wmark = __zone_watermark_ok(zone, order, min_wmark,
3794 ac_classzone_idx(ac), alloc_flags, available);
3795 trace_reclaim_retry_zone(z, order, reclaimable,
3796 available, min_wmark, *no_progress_loops, wmark);
3797 if (wmark) {
ede37713
MH
3798 /*
3799 * If we didn't make any progress and have a lot of
3800 * dirty + writeback pages then we should wait for
3801 * an IO to complete to slow down the reclaim and
3802 * prevent from pre mature OOM
3803 */
3804 if (!did_some_progress) {
11fb9989 3805 unsigned long write_pending;
ede37713 3806
5a1c84b4
MG
3807 write_pending = zone_page_state_snapshot(zone,
3808 NR_ZONE_WRITE_PENDING);
ede37713 3809
11fb9989 3810 if (2 * write_pending > reclaimable) {
ede37713
MH
3811 congestion_wait(BLK_RW_ASYNC, HZ/10);
3812 return true;
3813 }
3814 }
5a1c84b4 3815
ede37713
MH
3816 /*
3817 * Memory allocation/reclaim might be called from a WQ
3818 * context and the current implementation of the WQ
3819 * concurrency control doesn't recognize that
3820 * a particular WQ is congested if the worker thread is
3821 * looping without ever sleeping. Therefore we have to
3822 * do a short sleep here rather than calling
3823 * cond_resched().
3824 */
3825 if (current->flags & PF_WQ_WORKER)
3826 schedule_timeout_uninterruptible(1);
3827 else
3828 cond_resched();
3829
0a0337e0
MH
3830 return true;
3831 }
3832 }
3833
3834 return false;
3835}
3836
902b6281
VB
3837static inline bool
3838check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3839{
3840 /*
3841 * It's possible that cpuset's mems_allowed and the nodemask from
3842 * mempolicy don't intersect. This should be normally dealt with by
3843 * policy_nodemask(), but it's possible to race with cpuset update in
3844 * such a way the check therein was true, and then it became false
3845 * before we got our cpuset_mems_cookie here.
3846 * This assumes that for all allocations, ac->nodemask can come only
3847 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3848 * when it does not intersect with the cpuset restrictions) or the
3849 * caller can deal with a violated nodemask.
3850 */
3851 if (cpusets_enabled() && ac->nodemask &&
3852 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3853 ac->nodemask = NULL;
3854 return true;
3855 }
3856
3857 /*
3858 * When updating a task's mems_allowed or mempolicy nodemask, it is
3859 * possible to race with parallel threads in such a way that our
3860 * allocation can fail while the mask is being updated. If we are about
3861 * to fail, check if the cpuset changed during allocation and if so,
3862 * retry.
3863 */
3864 if (read_mems_allowed_retry(cpuset_mems_cookie))
3865 return true;
3866
3867 return false;
3868}
3869
11e33f6a
MG
3870static inline struct page *
3871__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3872 struct alloc_context *ac)
11e33f6a 3873{
d0164adc 3874 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3875 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3876 struct page *page = NULL;
c603844b 3877 unsigned int alloc_flags;
11e33f6a 3878 unsigned long did_some_progress;
5ce9bfef 3879 enum compact_priority compact_priority;
c5d01d0d 3880 enum compact_result compact_result;
5ce9bfef
VB
3881 int compaction_retries;
3882 int no_progress_loops;
63f53dea
MH
3883 unsigned long alloc_start = jiffies;
3884 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3885 unsigned int cpuset_mems_cookie;
cd04ae1e 3886 int reserve_flags;
1da177e4 3887
72807a74
MG
3888 /*
3889 * In the slowpath, we sanity check order to avoid ever trying to
3890 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3891 * be using allocators in order of preference for an area that is
3892 * too large.
3893 */
1fc28b70
MG
3894 if (order >= MAX_ORDER) {
3895 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3896 return NULL;
1fc28b70 3897 }
1da177e4 3898
d0164adc
MG
3899 /*
3900 * We also sanity check to catch abuse of atomic reserves being used by
3901 * callers that are not in atomic context.
3902 */
3903 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3904 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3905 gfp_mask &= ~__GFP_ATOMIC;
3906
5ce9bfef
VB
3907retry_cpuset:
3908 compaction_retries = 0;
3909 no_progress_loops = 0;
3910 compact_priority = DEF_COMPACT_PRIORITY;
3911 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3912
3913 /*
3914 * The fast path uses conservative alloc_flags to succeed only until
3915 * kswapd needs to be woken up, and to avoid the cost of setting up
3916 * alloc_flags precisely. So we do that now.
3917 */
3918 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3919
e47483bc
VB
3920 /*
3921 * We need to recalculate the starting point for the zonelist iterator
3922 * because we might have used different nodemask in the fast path, or
3923 * there was a cpuset modification and we are retrying - otherwise we
3924 * could end up iterating over non-eligible zones endlessly.
3925 */
3926 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3927 ac->high_zoneidx, ac->nodemask);
3928 if (!ac->preferred_zoneref->zone)
3929 goto nopage;
3930
23771235
VB
3931 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3932 wake_all_kswapds(order, ac);
3933
3934 /*
3935 * The adjusted alloc_flags might result in immediate success, so try
3936 * that first
3937 */
3938 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3939 if (page)
3940 goto got_pg;
3941
a8161d1e
VB
3942 /*
3943 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3944 * that we have enough base pages and don't need to reclaim. For non-
3945 * movable high-order allocations, do that as well, as compaction will
3946 * try prevent permanent fragmentation by migrating from blocks of the
3947 * same migratetype.
3948 * Don't try this for allocations that are allowed to ignore
3949 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3950 */
282722b0
VB
3951 if (can_direct_reclaim &&
3952 (costly_order ||
3953 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3954 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3955 page = __alloc_pages_direct_compact(gfp_mask, order,
3956 alloc_flags, ac,
a5508cd8 3957 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3958 &compact_result);
3959 if (page)
3960 goto got_pg;
3961
3eb2771b
VB
3962 /*
3963 * Checks for costly allocations with __GFP_NORETRY, which
3964 * includes THP page fault allocations
3965 */
282722b0 3966 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3967 /*
3968 * If compaction is deferred for high-order allocations,
3969 * it is because sync compaction recently failed. If
3970 * this is the case and the caller requested a THP
3971 * allocation, we do not want to heavily disrupt the
3972 * system, so we fail the allocation instead of entering
3973 * direct reclaim.
3974 */
3975 if (compact_result == COMPACT_DEFERRED)
3976 goto nopage;
3977
a8161d1e 3978 /*
3eb2771b
VB
3979 * Looks like reclaim/compaction is worth trying, but
3980 * sync compaction could be very expensive, so keep
25160354 3981 * using async compaction.
a8161d1e 3982 */
a5508cd8 3983 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3984 }
3985 }
23771235 3986
31a6c190 3987retry:
23771235 3988 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3989 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3990 wake_all_kswapds(order, ac);
3991
cd04ae1e
MH
3992 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3993 if (reserve_flags)
3994 alloc_flags = reserve_flags;
23771235 3995
e46e7b77
MG
3996 /*
3997 * Reset the zonelist iterators if memory policies can be ignored.
3998 * These allocations are high priority and system rather than user
3999 * orientated.
4000 */
cd04ae1e 4001 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4002 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4003 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4004 ac->high_zoneidx, ac->nodemask);
4005 }
4006
23771235 4007 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4008 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4009 if (page)
4010 goto got_pg;
1da177e4 4011
d0164adc 4012 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4013 if (!can_direct_reclaim)
1da177e4
LT
4014 goto nopage;
4015
9a67f648
MH
4016 /* Make sure we know about allocations which stall for too long */
4017 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 4018 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
4019 "page allocation stalls for %ums, order:%u",
4020 jiffies_to_msecs(jiffies-alloc_start), order);
4021 stall_timeout += 10 * HZ;
33d53103 4022 }
341ce06f 4023
9a67f648
MH
4024 /* Avoid recursion of direct reclaim */
4025 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4026 goto nopage;
4027
a8161d1e
VB
4028 /* Try direct reclaim and then allocating */
4029 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4030 &did_some_progress);
4031 if (page)
4032 goto got_pg;
4033
4034 /* Try direct compaction and then allocating */
a9263751 4035 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4036 compact_priority, &compact_result);
56de7263
MG
4037 if (page)
4038 goto got_pg;
75f30861 4039
9083905a
JW
4040 /* Do not loop if specifically requested */
4041 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4042 goto nopage;
9083905a 4043
0a0337e0
MH
4044 /*
4045 * Do not retry costly high order allocations unless they are
dcda9b04 4046 * __GFP_RETRY_MAYFAIL
0a0337e0 4047 */
dcda9b04 4048 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4049 goto nopage;
0a0337e0 4050
0a0337e0 4051 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4052 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4053 goto retry;
4054
33c2d214
MH
4055 /*
4056 * It doesn't make any sense to retry for the compaction if the order-0
4057 * reclaim is not able to make any progress because the current
4058 * implementation of the compaction depends on the sufficient amount
4059 * of free memory (see __compaction_suitable)
4060 */
4061 if (did_some_progress > 0 &&
86a294a8 4062 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4063 compact_result, &compact_priority,
d9436498 4064 &compaction_retries))
33c2d214
MH
4065 goto retry;
4066
902b6281
VB
4067
4068 /* Deal with possible cpuset update races before we start OOM killing */
4069 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4070 goto retry_cpuset;
4071
9083905a
JW
4072 /* Reclaim has failed us, start killing things */
4073 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4074 if (page)
4075 goto got_pg;
4076
9a67f648 4077 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4078 if (tsk_is_oom_victim(current) &&
4079 (alloc_flags == ALLOC_OOM ||
c288983d 4080 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4081 goto nopage;
4082
9083905a 4083 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4084 if (did_some_progress) {
4085 no_progress_loops = 0;
9083905a 4086 goto retry;
0a0337e0 4087 }
9083905a 4088
1da177e4 4089nopage:
902b6281
VB
4090 /* Deal with possible cpuset update races before we fail */
4091 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4092 goto retry_cpuset;
4093
9a67f648
MH
4094 /*
4095 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4096 * we always retry
4097 */
4098 if (gfp_mask & __GFP_NOFAIL) {
4099 /*
4100 * All existing users of the __GFP_NOFAIL are blockable, so warn
4101 * of any new users that actually require GFP_NOWAIT
4102 */
4103 if (WARN_ON_ONCE(!can_direct_reclaim))
4104 goto fail;
4105
4106 /*
4107 * PF_MEMALLOC request from this context is rather bizarre
4108 * because we cannot reclaim anything and only can loop waiting
4109 * for somebody to do a work for us
4110 */
4111 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4112
4113 /*
4114 * non failing costly orders are a hard requirement which we
4115 * are not prepared for much so let's warn about these users
4116 * so that we can identify them and convert them to something
4117 * else.
4118 */
4119 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4120
6c18ba7a
MH
4121 /*
4122 * Help non-failing allocations by giving them access to memory
4123 * reserves but do not use ALLOC_NO_WATERMARKS because this
4124 * could deplete whole memory reserves which would just make
4125 * the situation worse
4126 */
4127 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4128 if (page)
4129 goto got_pg;
4130
9a67f648
MH
4131 cond_resched();
4132 goto retry;
4133 }
4134fail:
a8e99259 4135 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4136 "page allocation failure: order:%u", order);
1da177e4 4137got_pg:
072bb0aa 4138 return page;
1da177e4 4139}
11e33f6a 4140
9cd75558 4141static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4142 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4143 struct alloc_context *ac, gfp_t *alloc_mask,
4144 unsigned int *alloc_flags)
11e33f6a 4145{
9cd75558 4146 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4147 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4148 ac->nodemask = nodemask;
4149 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4150
682a3385 4151 if (cpusets_enabled()) {
9cd75558 4152 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4153 if (!ac->nodemask)
4154 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4155 else
4156 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4157 }
4158
d92a8cfc
PZ
4159 fs_reclaim_acquire(gfp_mask);
4160 fs_reclaim_release(gfp_mask);
11e33f6a 4161
d0164adc 4162 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4163
4164 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4165 return false;
11e33f6a 4166
9cd75558
MG
4167 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4168 *alloc_flags |= ALLOC_CMA;
4169
4170 return true;
4171}
21bb9bd1 4172
9cd75558
MG
4173/* Determine whether to spread dirty pages and what the first usable zone */
4174static inline void finalise_ac(gfp_t gfp_mask,
4175 unsigned int order, struct alloc_context *ac)
4176{
c9ab0c4f 4177 /* Dirty zone balancing only done in the fast path */
9cd75558 4178 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4179
e46e7b77
MG
4180 /*
4181 * The preferred zone is used for statistics but crucially it is
4182 * also used as the starting point for the zonelist iterator. It
4183 * may get reset for allocations that ignore memory policies.
4184 */
9cd75558
MG
4185 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4186 ac->high_zoneidx, ac->nodemask);
4187}
4188
4189/*
4190 * This is the 'heart' of the zoned buddy allocator.
4191 */
4192struct page *
04ec6264
VB
4193__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4194 nodemask_t *nodemask)
9cd75558
MG
4195{
4196 struct page *page;
4197 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4198 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4199 struct alloc_context ac = { };
4200
4201 gfp_mask &= gfp_allowed_mask;
f19360f0 4202 alloc_mask = gfp_mask;
04ec6264 4203 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4204 return NULL;
4205
4206 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4207
5117f45d 4208 /* First allocation attempt */
a9263751 4209 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4210 if (likely(page))
4211 goto out;
11e33f6a 4212
4fcb0971 4213 /*
7dea19f9
MH
4214 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4215 * resp. GFP_NOIO which has to be inherited for all allocation requests
4216 * from a particular context which has been marked by
4217 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4218 */
7dea19f9 4219 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4220 ac.spread_dirty_pages = false;
23f086f9 4221
4741526b
MG
4222 /*
4223 * Restore the original nodemask if it was potentially replaced with
4224 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4225 */
e47483bc 4226 if (unlikely(ac.nodemask != nodemask))
4741526b 4227 ac.nodemask = nodemask;
16096c25 4228
4fcb0971 4229 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4230
4fcb0971 4231out:
c4159a75
VD
4232 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4233 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4234 __free_pages(page, order);
4235 page = NULL;
4949148a
VD
4236 }
4237
4fcb0971
MG
4238 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4239
11e33f6a 4240 return page;
1da177e4 4241}
d239171e 4242EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4243
4244/*
4245 * Common helper functions.
4246 */
920c7a5d 4247unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4248{
945a1113
AM
4249 struct page *page;
4250
4251 /*
4252 * __get_free_pages() returns a 32-bit address, which cannot represent
4253 * a highmem page
4254 */
4255 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4256
1da177e4
LT
4257 page = alloc_pages(gfp_mask, order);
4258 if (!page)
4259 return 0;
4260 return (unsigned long) page_address(page);
4261}
1da177e4
LT
4262EXPORT_SYMBOL(__get_free_pages);
4263
920c7a5d 4264unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4265{
945a1113 4266 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4267}
1da177e4
LT
4268EXPORT_SYMBOL(get_zeroed_page);
4269
920c7a5d 4270void __free_pages(struct page *page, unsigned int order)
1da177e4 4271{
b5810039 4272 if (put_page_testzero(page)) {
1da177e4 4273 if (order == 0)
b745bc85 4274 free_hot_cold_page(page, false);
1da177e4
LT
4275 else
4276 __free_pages_ok(page, order);
4277 }
4278}
4279
4280EXPORT_SYMBOL(__free_pages);
4281
920c7a5d 4282void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4283{
4284 if (addr != 0) {
725d704e 4285 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4286 __free_pages(virt_to_page((void *)addr), order);
4287 }
4288}
4289
4290EXPORT_SYMBOL(free_pages);
4291
b63ae8ca
AD
4292/*
4293 * Page Fragment:
4294 * An arbitrary-length arbitrary-offset area of memory which resides
4295 * within a 0 or higher order page. Multiple fragments within that page
4296 * are individually refcounted, in the page's reference counter.
4297 *
4298 * The page_frag functions below provide a simple allocation framework for
4299 * page fragments. This is used by the network stack and network device
4300 * drivers to provide a backing region of memory for use as either an
4301 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4302 */
2976db80
AD
4303static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4304 gfp_t gfp_mask)
b63ae8ca
AD
4305{
4306 struct page *page = NULL;
4307 gfp_t gfp = gfp_mask;
4308
4309#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4310 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4311 __GFP_NOMEMALLOC;
4312 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4313 PAGE_FRAG_CACHE_MAX_ORDER);
4314 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4315#endif
4316 if (unlikely(!page))
4317 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4318
4319 nc->va = page ? page_address(page) : NULL;
4320
4321 return page;
4322}
4323
2976db80 4324void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4325{
4326 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4327
4328 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4329 unsigned int order = compound_order(page);
4330
44fdffd7
AD
4331 if (order == 0)
4332 free_hot_cold_page(page, false);
4333 else
4334 __free_pages_ok(page, order);
4335 }
4336}
2976db80 4337EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4338
8c2dd3e4
AD
4339void *page_frag_alloc(struct page_frag_cache *nc,
4340 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4341{
4342 unsigned int size = PAGE_SIZE;
4343 struct page *page;
4344 int offset;
4345
4346 if (unlikely(!nc->va)) {
4347refill:
2976db80 4348 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4349 if (!page)
4350 return NULL;
4351
4352#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4353 /* if size can vary use size else just use PAGE_SIZE */
4354 size = nc->size;
4355#endif
4356 /* Even if we own the page, we do not use atomic_set().
4357 * This would break get_page_unless_zero() users.
4358 */
fe896d18 4359 page_ref_add(page, size - 1);
b63ae8ca
AD
4360
4361 /* reset page count bias and offset to start of new frag */
2f064f34 4362 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4363 nc->pagecnt_bias = size;
4364 nc->offset = size;
4365 }
4366
4367 offset = nc->offset - fragsz;
4368 if (unlikely(offset < 0)) {
4369 page = virt_to_page(nc->va);
4370
fe896d18 4371 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4372 goto refill;
4373
4374#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4375 /* if size can vary use size else just use PAGE_SIZE */
4376 size = nc->size;
4377#endif
4378 /* OK, page count is 0, we can safely set it */
fe896d18 4379 set_page_count(page, size);
b63ae8ca
AD
4380
4381 /* reset page count bias and offset to start of new frag */
4382 nc->pagecnt_bias = size;
4383 offset = size - fragsz;
4384 }
4385
4386 nc->pagecnt_bias--;
4387 nc->offset = offset;
4388
4389 return nc->va + offset;
4390}
8c2dd3e4 4391EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4392
4393/*
4394 * Frees a page fragment allocated out of either a compound or order 0 page.
4395 */
8c2dd3e4 4396void page_frag_free(void *addr)
b63ae8ca
AD
4397{
4398 struct page *page = virt_to_head_page(addr);
4399
4400 if (unlikely(put_page_testzero(page)))
4401 __free_pages_ok(page, compound_order(page));
4402}
8c2dd3e4 4403EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4404
d00181b9
KS
4405static void *make_alloc_exact(unsigned long addr, unsigned int order,
4406 size_t size)
ee85c2e1
AK
4407{
4408 if (addr) {
4409 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4410 unsigned long used = addr + PAGE_ALIGN(size);
4411
4412 split_page(virt_to_page((void *)addr), order);
4413 while (used < alloc_end) {
4414 free_page(used);
4415 used += PAGE_SIZE;
4416 }
4417 }
4418 return (void *)addr;
4419}
4420
2be0ffe2
TT
4421/**
4422 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4423 * @size: the number of bytes to allocate
4424 * @gfp_mask: GFP flags for the allocation
4425 *
4426 * This function is similar to alloc_pages(), except that it allocates the
4427 * minimum number of pages to satisfy the request. alloc_pages() can only
4428 * allocate memory in power-of-two pages.
4429 *
4430 * This function is also limited by MAX_ORDER.
4431 *
4432 * Memory allocated by this function must be released by free_pages_exact().
4433 */
4434void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4435{
4436 unsigned int order = get_order(size);
4437 unsigned long addr;
4438
4439 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4440 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4441}
4442EXPORT_SYMBOL(alloc_pages_exact);
4443
ee85c2e1
AK
4444/**
4445 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4446 * pages on a node.
b5e6ab58 4447 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4448 * @size: the number of bytes to allocate
4449 * @gfp_mask: GFP flags for the allocation
4450 *
4451 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4452 * back.
ee85c2e1 4453 */
e1931811 4454void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4455{
d00181b9 4456 unsigned int order = get_order(size);
ee85c2e1
AK
4457 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4458 if (!p)
4459 return NULL;
4460 return make_alloc_exact((unsigned long)page_address(p), order, size);
4461}
ee85c2e1 4462
2be0ffe2
TT
4463/**
4464 * free_pages_exact - release memory allocated via alloc_pages_exact()
4465 * @virt: the value returned by alloc_pages_exact.
4466 * @size: size of allocation, same value as passed to alloc_pages_exact().
4467 *
4468 * Release the memory allocated by a previous call to alloc_pages_exact.
4469 */
4470void free_pages_exact(void *virt, size_t size)
4471{
4472 unsigned long addr = (unsigned long)virt;
4473 unsigned long end = addr + PAGE_ALIGN(size);
4474
4475 while (addr < end) {
4476 free_page(addr);
4477 addr += PAGE_SIZE;
4478 }
4479}
4480EXPORT_SYMBOL(free_pages_exact);
4481
e0fb5815
ZY
4482/**
4483 * nr_free_zone_pages - count number of pages beyond high watermark
4484 * @offset: The zone index of the highest zone
4485 *
4486 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4487 * high watermark within all zones at or below a given zone index. For each
4488 * zone, the number of pages is calculated as:
0e056eb5
MCC
4489 *
4490 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4491 */
ebec3862 4492static unsigned long nr_free_zone_pages(int offset)
1da177e4 4493{
dd1a239f 4494 struct zoneref *z;
54a6eb5c
MG
4495 struct zone *zone;
4496
e310fd43 4497 /* Just pick one node, since fallback list is circular */
ebec3862 4498 unsigned long sum = 0;
1da177e4 4499
0e88460d 4500 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4501
54a6eb5c 4502 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4503 unsigned long size = zone->managed_pages;
41858966 4504 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4505 if (size > high)
4506 sum += size - high;
1da177e4
LT
4507 }
4508
4509 return sum;
4510}
4511
e0fb5815
ZY
4512/**
4513 * nr_free_buffer_pages - count number of pages beyond high watermark
4514 *
4515 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4516 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4517 */
ebec3862 4518unsigned long nr_free_buffer_pages(void)
1da177e4 4519{
af4ca457 4520 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4521}
c2f1a551 4522EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4523
e0fb5815
ZY
4524/**
4525 * nr_free_pagecache_pages - count number of pages beyond high watermark
4526 *
4527 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4528 * high watermark within all zones.
1da177e4 4529 */
ebec3862 4530unsigned long nr_free_pagecache_pages(void)
1da177e4 4531{
2a1e274a 4532 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4533}
08e0f6a9
CL
4534
4535static inline void show_node(struct zone *zone)
1da177e4 4536{
e5adfffc 4537 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4538 printk("Node %d ", zone_to_nid(zone));
1da177e4 4539}
1da177e4 4540
d02bd27b
IR
4541long si_mem_available(void)
4542{
4543 long available;
4544 unsigned long pagecache;
4545 unsigned long wmark_low = 0;
4546 unsigned long pages[NR_LRU_LISTS];
4547 struct zone *zone;
4548 int lru;
4549
4550 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4551 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4552
4553 for_each_zone(zone)
4554 wmark_low += zone->watermark[WMARK_LOW];
4555
4556 /*
4557 * Estimate the amount of memory available for userspace allocations,
4558 * without causing swapping.
4559 */
c41f012a 4560 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4561
4562 /*
4563 * Not all the page cache can be freed, otherwise the system will
4564 * start swapping. Assume at least half of the page cache, or the
4565 * low watermark worth of cache, needs to stay.
4566 */
4567 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4568 pagecache -= min(pagecache / 2, wmark_low);
4569 available += pagecache;
4570
4571 /*
4572 * Part of the reclaimable slab consists of items that are in use,
4573 * and cannot be freed. Cap this estimate at the low watermark.
4574 */
d507e2eb
JW
4575 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4576 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4577 wmark_low);
d02bd27b
IR
4578
4579 if (available < 0)
4580 available = 0;
4581 return available;
4582}
4583EXPORT_SYMBOL_GPL(si_mem_available);
4584
1da177e4
LT
4585void si_meminfo(struct sysinfo *val)
4586{
4587 val->totalram = totalram_pages;
11fb9989 4588 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4589 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4590 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4591 val->totalhigh = totalhigh_pages;
4592 val->freehigh = nr_free_highpages();
1da177e4
LT
4593 val->mem_unit = PAGE_SIZE;
4594}
4595
4596EXPORT_SYMBOL(si_meminfo);
4597
4598#ifdef CONFIG_NUMA
4599void si_meminfo_node(struct sysinfo *val, int nid)
4600{
cdd91a77
JL
4601 int zone_type; /* needs to be signed */
4602 unsigned long managed_pages = 0;
fc2bd799
JK
4603 unsigned long managed_highpages = 0;
4604 unsigned long free_highpages = 0;
1da177e4
LT
4605 pg_data_t *pgdat = NODE_DATA(nid);
4606
cdd91a77
JL
4607 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4608 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4609 val->totalram = managed_pages;
11fb9989 4610 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4611 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4612#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4613 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4614 struct zone *zone = &pgdat->node_zones[zone_type];
4615
4616 if (is_highmem(zone)) {
4617 managed_highpages += zone->managed_pages;
4618 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4619 }
4620 }
4621 val->totalhigh = managed_highpages;
4622 val->freehigh = free_highpages;
98d2b0eb 4623#else
fc2bd799
JK
4624 val->totalhigh = managed_highpages;
4625 val->freehigh = free_highpages;
98d2b0eb 4626#endif
1da177e4
LT
4627 val->mem_unit = PAGE_SIZE;
4628}
4629#endif
4630
ddd588b5 4631/*
7bf02ea2
DR
4632 * Determine whether the node should be displayed or not, depending on whether
4633 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4634 */
9af744d7 4635static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4636{
ddd588b5 4637 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4638 return false;
ddd588b5 4639
9af744d7
MH
4640 /*
4641 * no node mask - aka implicit memory numa policy. Do not bother with
4642 * the synchronization - read_mems_allowed_begin - because we do not
4643 * have to be precise here.
4644 */
4645 if (!nodemask)
4646 nodemask = &cpuset_current_mems_allowed;
4647
4648 return !node_isset(nid, *nodemask);
ddd588b5
DR
4649}
4650
1da177e4
LT
4651#define K(x) ((x) << (PAGE_SHIFT-10))
4652
377e4f16
RV
4653static void show_migration_types(unsigned char type)
4654{
4655 static const char types[MIGRATE_TYPES] = {
4656 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4657 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4658 [MIGRATE_RECLAIMABLE] = 'E',
4659 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4660#ifdef CONFIG_CMA
4661 [MIGRATE_CMA] = 'C',
4662#endif
194159fb 4663#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4664 [MIGRATE_ISOLATE] = 'I',
194159fb 4665#endif
377e4f16
RV
4666 };
4667 char tmp[MIGRATE_TYPES + 1];
4668 char *p = tmp;
4669 int i;
4670
4671 for (i = 0; i < MIGRATE_TYPES; i++) {
4672 if (type & (1 << i))
4673 *p++ = types[i];
4674 }
4675
4676 *p = '\0';
1f84a18f 4677 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4678}
4679
1da177e4
LT
4680/*
4681 * Show free area list (used inside shift_scroll-lock stuff)
4682 * We also calculate the percentage fragmentation. We do this by counting the
4683 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4684 *
4685 * Bits in @filter:
4686 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4687 * cpuset.
1da177e4 4688 */
9af744d7 4689void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4690{
d1bfcdb8 4691 unsigned long free_pcp = 0;
c7241913 4692 int cpu;
1da177e4 4693 struct zone *zone;
599d0c95 4694 pg_data_t *pgdat;
1da177e4 4695
ee99c71c 4696 for_each_populated_zone(zone) {
9af744d7 4697 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4698 continue;
d1bfcdb8 4699
761b0677
KK
4700 for_each_online_cpu(cpu)
4701 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4702 }
4703
a731286d
KM
4704 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4705 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4706 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4707 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4708 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4709 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4710 global_node_page_state(NR_ACTIVE_ANON),
4711 global_node_page_state(NR_INACTIVE_ANON),
4712 global_node_page_state(NR_ISOLATED_ANON),
4713 global_node_page_state(NR_ACTIVE_FILE),
4714 global_node_page_state(NR_INACTIVE_FILE),
4715 global_node_page_state(NR_ISOLATED_FILE),
4716 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4717 global_node_page_state(NR_FILE_DIRTY),
4718 global_node_page_state(NR_WRITEBACK),
4719 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4720 global_node_page_state(NR_SLAB_RECLAIMABLE),
4721 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4722 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4723 global_node_page_state(NR_SHMEM),
c41f012a
MH
4724 global_zone_page_state(NR_PAGETABLE),
4725 global_zone_page_state(NR_BOUNCE),
4726 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4727 free_pcp,
c41f012a 4728 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4729
599d0c95 4730 for_each_online_pgdat(pgdat) {
9af744d7 4731 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4732 continue;
4733
599d0c95
MG
4734 printk("Node %d"
4735 " active_anon:%lukB"
4736 " inactive_anon:%lukB"
4737 " active_file:%lukB"
4738 " inactive_file:%lukB"
4739 " unevictable:%lukB"
4740 " isolated(anon):%lukB"
4741 " isolated(file):%lukB"
50658e2e 4742 " mapped:%lukB"
11fb9989
MG
4743 " dirty:%lukB"
4744 " writeback:%lukB"
4745 " shmem:%lukB"
4746#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4747 " shmem_thp: %lukB"
4748 " shmem_pmdmapped: %lukB"
4749 " anon_thp: %lukB"
4750#endif
4751 " writeback_tmp:%lukB"
4752 " unstable:%lukB"
599d0c95
MG
4753 " all_unreclaimable? %s"
4754 "\n",
4755 pgdat->node_id,
4756 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4757 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4758 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4759 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4760 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4761 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4762 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4763 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4764 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4765 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4766 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4767#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4768 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4769 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4770 * HPAGE_PMD_NR),
4771 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4772#endif
11fb9989
MG
4773 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4774 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4775 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4776 "yes" : "no");
599d0c95
MG
4777 }
4778
ee99c71c 4779 for_each_populated_zone(zone) {
1da177e4
LT
4780 int i;
4781
9af744d7 4782 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4783 continue;
d1bfcdb8
KK
4784
4785 free_pcp = 0;
4786 for_each_online_cpu(cpu)
4787 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4788
1da177e4 4789 show_node(zone);
1f84a18f
JP
4790 printk(KERN_CONT
4791 "%s"
1da177e4
LT
4792 " free:%lukB"
4793 " min:%lukB"
4794 " low:%lukB"
4795 " high:%lukB"
71c799f4
MK
4796 " active_anon:%lukB"
4797 " inactive_anon:%lukB"
4798 " active_file:%lukB"
4799 " inactive_file:%lukB"
4800 " unevictable:%lukB"
5a1c84b4 4801 " writepending:%lukB"
1da177e4 4802 " present:%lukB"
9feedc9d 4803 " managed:%lukB"
4a0aa73f 4804 " mlocked:%lukB"
c6a7f572 4805 " kernel_stack:%lukB"
4a0aa73f 4806 " pagetables:%lukB"
4a0aa73f 4807 " bounce:%lukB"
d1bfcdb8
KK
4808 " free_pcp:%lukB"
4809 " local_pcp:%ukB"
d1ce749a 4810 " free_cma:%lukB"
1da177e4
LT
4811 "\n",
4812 zone->name,
88f5acf8 4813 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4814 K(min_wmark_pages(zone)),
4815 K(low_wmark_pages(zone)),
4816 K(high_wmark_pages(zone)),
71c799f4
MK
4817 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4818 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4819 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4820 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4821 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4822 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4823 K(zone->present_pages),
9feedc9d 4824 K(zone->managed_pages),
4a0aa73f 4825 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4826 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4827 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4828 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4829 K(free_pcp),
4830 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4831 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4832 printk("lowmem_reserve[]:");
4833 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4834 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4835 printk(KERN_CONT "\n");
1da177e4
LT
4836 }
4837
ee99c71c 4838 for_each_populated_zone(zone) {
d00181b9
KS
4839 unsigned int order;
4840 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4841 unsigned char types[MAX_ORDER];
1da177e4 4842
9af744d7 4843 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4844 continue;
1da177e4 4845 show_node(zone);
1f84a18f 4846 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4847
4848 spin_lock_irqsave(&zone->lock, flags);
4849 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4850 struct free_area *area = &zone->free_area[order];
4851 int type;
4852
4853 nr[order] = area->nr_free;
8f9de51a 4854 total += nr[order] << order;
377e4f16
RV
4855
4856 types[order] = 0;
4857 for (type = 0; type < MIGRATE_TYPES; type++) {
4858 if (!list_empty(&area->free_list[type]))
4859 types[order] |= 1 << type;
4860 }
1da177e4
LT
4861 }
4862 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4863 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4864 printk(KERN_CONT "%lu*%lukB ",
4865 nr[order], K(1UL) << order);
377e4f16
RV
4866 if (nr[order])
4867 show_migration_types(types[order]);
4868 }
1f84a18f 4869 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4870 }
4871
949f7ec5
DR
4872 hugetlb_show_meminfo();
4873
11fb9989 4874 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4875
1da177e4
LT
4876 show_swap_cache_info();
4877}
4878
19770b32
MG
4879static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4880{
4881 zoneref->zone = zone;
4882 zoneref->zone_idx = zone_idx(zone);
4883}
4884
1da177e4
LT
4885/*
4886 * Builds allocation fallback zone lists.
1a93205b
CL
4887 *
4888 * Add all populated zones of a node to the zonelist.
1da177e4 4889 */
9d3be21b 4890static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4891{
1a93205b 4892 struct zone *zone;
bc732f1d 4893 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4894 int nr_zones = 0;
02a68a5e
CL
4895
4896 do {
2f6726e5 4897 zone_type--;
070f8032 4898 zone = pgdat->node_zones + zone_type;
6aa303de 4899 if (managed_zone(zone)) {
9d3be21b 4900 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4901 check_highest_zone(zone_type);
1da177e4 4902 }
2f6726e5 4903 } while (zone_type);
bc732f1d 4904
070f8032 4905 return nr_zones;
1da177e4
LT
4906}
4907
4908#ifdef CONFIG_NUMA
f0c0b2b8
KH
4909
4910static int __parse_numa_zonelist_order(char *s)
4911{
c9bff3ee
MH
4912 /*
4913 * We used to support different zonlists modes but they turned
4914 * out to be just not useful. Let's keep the warning in place
4915 * if somebody still use the cmd line parameter so that we do
4916 * not fail it silently
4917 */
4918 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4919 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4920 return -EINVAL;
4921 }
4922 return 0;
4923}
4924
4925static __init int setup_numa_zonelist_order(char *s)
4926{
ecb256f8
VL
4927 if (!s)
4928 return 0;
4929
c9bff3ee 4930 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4931}
4932early_param("numa_zonelist_order", setup_numa_zonelist_order);
4933
c9bff3ee
MH
4934char numa_zonelist_order[] = "Node";
4935
f0c0b2b8
KH
4936/*
4937 * sysctl handler for numa_zonelist_order
4938 */
cccad5b9 4939int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4940 void __user *buffer, size_t *length,
f0c0b2b8
KH
4941 loff_t *ppos)
4942{
c9bff3ee 4943 char *str;
f0c0b2b8
KH
4944 int ret;
4945
c9bff3ee
MH
4946 if (!write)
4947 return proc_dostring(table, write, buffer, length, ppos);
4948 str = memdup_user_nul(buffer, 16);
4949 if (IS_ERR(str))
4950 return PTR_ERR(str);
dacbde09 4951
c9bff3ee
MH
4952 ret = __parse_numa_zonelist_order(str);
4953 kfree(str);
443c6f14 4954 return ret;
f0c0b2b8
KH
4955}
4956
4957
62bc62a8 4958#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4959static int node_load[MAX_NUMNODES];
4960
1da177e4 4961/**
4dc3b16b 4962 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4963 * @node: node whose fallback list we're appending
4964 * @used_node_mask: nodemask_t of already used nodes
4965 *
4966 * We use a number of factors to determine which is the next node that should
4967 * appear on a given node's fallback list. The node should not have appeared
4968 * already in @node's fallback list, and it should be the next closest node
4969 * according to the distance array (which contains arbitrary distance values
4970 * from each node to each node in the system), and should also prefer nodes
4971 * with no CPUs, since presumably they'll have very little allocation pressure
4972 * on them otherwise.
4973 * It returns -1 if no node is found.
4974 */
f0c0b2b8 4975static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4976{
4cf808eb 4977 int n, val;
1da177e4 4978 int min_val = INT_MAX;
00ef2d2f 4979 int best_node = NUMA_NO_NODE;
a70f7302 4980 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4981
4cf808eb
LT
4982 /* Use the local node if we haven't already */
4983 if (!node_isset(node, *used_node_mask)) {
4984 node_set(node, *used_node_mask);
4985 return node;
4986 }
1da177e4 4987
4b0ef1fe 4988 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4989
4990 /* Don't want a node to appear more than once */
4991 if (node_isset(n, *used_node_mask))
4992 continue;
4993
1da177e4
LT
4994 /* Use the distance array to find the distance */
4995 val = node_distance(node, n);
4996
4cf808eb
LT
4997 /* Penalize nodes under us ("prefer the next node") */
4998 val += (n < node);
4999
1da177e4 5000 /* Give preference to headless and unused nodes */
a70f7302
RR
5001 tmp = cpumask_of_node(n);
5002 if (!cpumask_empty(tmp))
1da177e4
LT
5003 val += PENALTY_FOR_NODE_WITH_CPUS;
5004
5005 /* Slight preference for less loaded node */
5006 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5007 val += node_load[n];
5008
5009 if (val < min_val) {
5010 min_val = val;
5011 best_node = n;
5012 }
5013 }
5014
5015 if (best_node >= 0)
5016 node_set(best_node, *used_node_mask);
5017
5018 return best_node;
5019}
5020
f0c0b2b8
KH
5021
5022/*
5023 * Build zonelists ordered by node and zones within node.
5024 * This results in maximum locality--normal zone overflows into local
5025 * DMA zone, if any--but risks exhausting DMA zone.
5026 */
9d3be21b
MH
5027static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5028 unsigned nr_nodes)
1da177e4 5029{
9d3be21b
MH
5030 struct zoneref *zonerefs;
5031 int i;
5032
5033 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5034
5035 for (i = 0; i < nr_nodes; i++) {
5036 int nr_zones;
5037
5038 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5039
9d3be21b
MH
5040 nr_zones = build_zonerefs_node(node, zonerefs);
5041 zonerefs += nr_zones;
5042 }
5043 zonerefs->zone = NULL;
5044 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5045}
5046
523b9458
CL
5047/*
5048 * Build gfp_thisnode zonelists
5049 */
5050static void build_thisnode_zonelists(pg_data_t *pgdat)
5051{
9d3be21b
MH
5052 struct zoneref *zonerefs;
5053 int nr_zones;
523b9458 5054
9d3be21b
MH
5055 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5056 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5057 zonerefs += nr_zones;
5058 zonerefs->zone = NULL;
5059 zonerefs->zone_idx = 0;
523b9458
CL
5060}
5061
f0c0b2b8
KH
5062/*
5063 * Build zonelists ordered by zone and nodes within zones.
5064 * This results in conserving DMA zone[s] until all Normal memory is
5065 * exhausted, but results in overflowing to remote node while memory
5066 * may still exist in local DMA zone.
5067 */
f0c0b2b8 5068
f0c0b2b8
KH
5069static void build_zonelists(pg_data_t *pgdat)
5070{
9d3be21b
MH
5071 static int node_order[MAX_NUMNODES];
5072 int node, load, nr_nodes = 0;
1da177e4 5073 nodemask_t used_mask;
f0c0b2b8 5074 int local_node, prev_node;
1da177e4
LT
5075
5076 /* NUMA-aware ordering of nodes */
5077 local_node = pgdat->node_id;
62bc62a8 5078 load = nr_online_nodes;
1da177e4
LT
5079 prev_node = local_node;
5080 nodes_clear(used_mask);
f0c0b2b8 5081
f0c0b2b8 5082 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5083 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5084 /*
5085 * We don't want to pressure a particular node.
5086 * So adding penalty to the first node in same
5087 * distance group to make it round-robin.
5088 */
957f822a
DR
5089 if (node_distance(local_node, node) !=
5090 node_distance(local_node, prev_node))
f0c0b2b8
KH
5091 node_load[node] = load;
5092
9d3be21b 5093 node_order[nr_nodes++] = node;
1da177e4
LT
5094 prev_node = node;
5095 load--;
1da177e4 5096 }
523b9458 5097
9d3be21b 5098 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5099 build_thisnode_zonelists(pgdat);
1da177e4
LT
5100}
5101
7aac7898
LS
5102#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5103/*
5104 * Return node id of node used for "local" allocations.
5105 * I.e., first node id of first zone in arg node's generic zonelist.
5106 * Used for initializing percpu 'numa_mem', which is used primarily
5107 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5108 */
5109int local_memory_node(int node)
5110{
c33d6c06 5111 struct zoneref *z;
7aac7898 5112
c33d6c06 5113 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5114 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5115 NULL);
5116 return z->zone->node;
7aac7898
LS
5117}
5118#endif
f0c0b2b8 5119
6423aa81
JK
5120static void setup_min_unmapped_ratio(void);
5121static void setup_min_slab_ratio(void);
1da177e4
LT
5122#else /* CONFIG_NUMA */
5123
f0c0b2b8 5124static void build_zonelists(pg_data_t *pgdat)
1da177e4 5125{
19655d34 5126 int node, local_node;
9d3be21b
MH
5127 struct zoneref *zonerefs;
5128 int nr_zones;
1da177e4
LT
5129
5130 local_node = pgdat->node_id;
1da177e4 5131
9d3be21b
MH
5132 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5133 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5134 zonerefs += nr_zones;
1da177e4 5135
54a6eb5c
MG
5136 /*
5137 * Now we build the zonelist so that it contains the zones
5138 * of all the other nodes.
5139 * We don't want to pressure a particular node, so when
5140 * building the zones for node N, we make sure that the
5141 * zones coming right after the local ones are those from
5142 * node N+1 (modulo N)
5143 */
5144 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5145 if (!node_online(node))
5146 continue;
9d3be21b
MH
5147 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5148 zonerefs += nr_zones;
1da177e4 5149 }
54a6eb5c
MG
5150 for (node = 0; node < local_node; node++) {
5151 if (!node_online(node))
5152 continue;
9d3be21b
MH
5153 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5154 zonerefs += nr_zones;
54a6eb5c
MG
5155 }
5156
9d3be21b
MH
5157 zonerefs->zone = NULL;
5158 zonerefs->zone_idx = 0;
1da177e4
LT
5159}
5160
5161#endif /* CONFIG_NUMA */
5162
99dcc3e5
CL
5163/*
5164 * Boot pageset table. One per cpu which is going to be used for all
5165 * zones and all nodes. The parameters will be set in such a way
5166 * that an item put on a list will immediately be handed over to
5167 * the buddy list. This is safe since pageset manipulation is done
5168 * with interrupts disabled.
5169 *
5170 * The boot_pagesets must be kept even after bootup is complete for
5171 * unused processors and/or zones. They do play a role for bootstrapping
5172 * hotplugged processors.
5173 *
5174 * zoneinfo_show() and maybe other functions do
5175 * not check if the processor is online before following the pageset pointer.
5176 * Other parts of the kernel may not check if the zone is available.
5177 */
5178static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5179static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5180static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5181
11cd8638 5182static void __build_all_zonelists(void *data)
1da177e4 5183{
6811378e 5184 int nid;
afb6ebb3 5185 int __maybe_unused cpu;
9adb62a5 5186 pg_data_t *self = data;
b93e0f32
MH
5187 static DEFINE_SPINLOCK(lock);
5188
5189 spin_lock(&lock);
9276b1bc 5190
7f9cfb31
BL
5191#ifdef CONFIG_NUMA
5192 memset(node_load, 0, sizeof(node_load));
5193#endif
9adb62a5 5194
c1152583
WY
5195 /*
5196 * This node is hotadded and no memory is yet present. So just
5197 * building zonelists is fine - no need to touch other nodes.
5198 */
9adb62a5
JL
5199 if (self && !node_online(self->node_id)) {
5200 build_zonelists(self);
c1152583
WY
5201 } else {
5202 for_each_online_node(nid) {
5203 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5204
c1152583
WY
5205 build_zonelists(pgdat);
5206 }
99dcc3e5 5207
7aac7898
LS
5208#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5209 /*
5210 * We now know the "local memory node" for each node--
5211 * i.e., the node of the first zone in the generic zonelist.
5212 * Set up numa_mem percpu variable for on-line cpus. During
5213 * boot, only the boot cpu should be on-line; we'll init the
5214 * secondary cpus' numa_mem as they come on-line. During
5215 * node/memory hotplug, we'll fixup all on-line cpus.
5216 */
d9c9a0b9 5217 for_each_online_cpu(cpu)
7aac7898 5218 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5219#endif
d9c9a0b9 5220 }
b93e0f32
MH
5221
5222 spin_unlock(&lock);
6811378e
YG
5223}
5224
061f67bc
RV
5225static noinline void __init
5226build_all_zonelists_init(void)
5227{
afb6ebb3
MH
5228 int cpu;
5229
061f67bc 5230 __build_all_zonelists(NULL);
afb6ebb3
MH
5231
5232 /*
5233 * Initialize the boot_pagesets that are going to be used
5234 * for bootstrapping processors. The real pagesets for
5235 * each zone will be allocated later when the per cpu
5236 * allocator is available.
5237 *
5238 * boot_pagesets are used also for bootstrapping offline
5239 * cpus if the system is already booted because the pagesets
5240 * are needed to initialize allocators on a specific cpu too.
5241 * F.e. the percpu allocator needs the page allocator which
5242 * needs the percpu allocator in order to allocate its pagesets
5243 * (a chicken-egg dilemma).
5244 */
5245 for_each_possible_cpu(cpu)
5246 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5247
061f67bc
RV
5248 mminit_verify_zonelist();
5249 cpuset_init_current_mems_allowed();
5250}
5251
4eaf3f64 5252/*
4eaf3f64 5253 * unless system_state == SYSTEM_BOOTING.
061f67bc 5254 *
72675e13 5255 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5256 * [protected by SYSTEM_BOOTING].
4eaf3f64 5257 */
72675e13 5258void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5259{
5260 if (system_state == SYSTEM_BOOTING) {
061f67bc 5261 build_all_zonelists_init();
6811378e 5262 } else {
11cd8638 5263 __build_all_zonelists(pgdat);
6811378e
YG
5264 /* cpuset refresh routine should be here */
5265 }
bd1e22b8 5266 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5267 /*
5268 * Disable grouping by mobility if the number of pages in the
5269 * system is too low to allow the mechanism to work. It would be
5270 * more accurate, but expensive to check per-zone. This check is
5271 * made on memory-hotadd so a system can start with mobility
5272 * disabled and enable it later
5273 */
d9c23400 5274 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5275 page_group_by_mobility_disabled = 1;
5276 else
5277 page_group_by_mobility_disabled = 0;
5278
c9bff3ee 5279 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5280 nr_online_nodes,
756a025f
JP
5281 page_group_by_mobility_disabled ? "off" : "on",
5282 vm_total_pages);
f0c0b2b8 5283#ifdef CONFIG_NUMA
f88dfff5 5284 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5285#endif
1da177e4
LT
5286}
5287
1da177e4
LT
5288/*
5289 * Initially all pages are reserved - free ones are freed
5290 * up by free_all_bootmem() once the early boot process is
5291 * done. Non-atomic initialization, single-pass.
5292 */
c09b4240 5293void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5294 unsigned long start_pfn, enum memmap_context context)
1da177e4 5295{
4b94ffdc 5296 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5297 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5298 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5299 unsigned long pfn;
3a80a7fa 5300 unsigned long nr_initialised = 0;
342332e6
TI
5301#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5302 struct memblock_region *r = NULL, *tmp;
5303#endif
1da177e4 5304
22b31eec
HD
5305 if (highest_memmap_pfn < end_pfn - 1)
5306 highest_memmap_pfn = end_pfn - 1;
5307
4b94ffdc
DW
5308 /*
5309 * Honor reservation requested by the driver for this ZONE_DEVICE
5310 * memory
5311 */
5312 if (altmap && start_pfn == altmap->base_pfn)
5313 start_pfn += altmap->reserve;
5314
cbe8dd4a 5315 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5316 /*
b72d0ffb
AM
5317 * There can be holes in boot-time mem_map[]s handed to this
5318 * function. They do not exist on hotplugged memory.
a2f3aa02 5319 */
b72d0ffb
AM
5320 if (context != MEMMAP_EARLY)
5321 goto not_early;
5322
b92df1de
PB
5323 if (!early_pfn_valid(pfn)) {
5324#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 /*
5326 * Skip to the pfn preceding the next valid one (or
5327 * end_pfn), such that we hit a valid pfn (or end_pfn)
5328 * on our next iteration of the loop.
5329 */
5330 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5331#endif
b72d0ffb 5332 continue;
b92df1de 5333 }
b72d0ffb
AM
5334 if (!early_pfn_in_nid(pfn, nid))
5335 continue;
5336 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5337 break;
342332e6
TI
5338
5339#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5340 /*
5341 * Check given memblock attribute by firmware which can affect
5342 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5343 * mirrored, it's an overlapped memmap init. skip it.
5344 */
5345 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5346 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5347 for_each_memblock(memory, tmp)
5348 if (pfn < memblock_region_memory_end_pfn(tmp))
5349 break;
5350 r = tmp;
5351 }
5352 if (pfn >= memblock_region_memory_base_pfn(r) &&
5353 memblock_is_mirror(r)) {
5354 /* already initialized as NORMAL */
5355 pfn = memblock_region_memory_end_pfn(r);
5356 continue;
342332e6 5357 }
a2f3aa02 5358 }
b72d0ffb 5359#endif
ac5d2539 5360
b72d0ffb 5361not_early:
ac5d2539
MG
5362 /*
5363 * Mark the block movable so that blocks are reserved for
5364 * movable at startup. This will force kernel allocations
5365 * to reserve their blocks rather than leaking throughout
5366 * the address space during boot when many long-lived
974a786e 5367 * kernel allocations are made.
ac5d2539
MG
5368 *
5369 * bitmap is created for zone's valid pfn range. but memmap
5370 * can be created for invalid pages (for alignment)
5371 * check here not to call set_pageblock_migratetype() against
5372 * pfn out of zone.
5373 */
5374 if (!(pfn & (pageblock_nr_pages - 1))) {
5375 struct page *page = pfn_to_page(pfn);
5376
5377 __init_single_page(page, pfn, zone, nid);
5378 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5379 cond_resched();
ac5d2539
MG
5380 } else {
5381 __init_single_pfn(pfn, zone, nid);
5382 }
1da177e4
LT
5383 }
5384}
5385
1e548deb 5386static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5387{
7aeb09f9 5388 unsigned int order, t;
b2a0ac88
MG
5389 for_each_migratetype_order(order, t) {
5390 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5391 zone->free_area[order].nr_free = 0;
5392 }
5393}
5394
5395#ifndef __HAVE_ARCH_MEMMAP_INIT
5396#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5397 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5398#endif
5399
7cd2b0a3 5400static int zone_batchsize(struct zone *zone)
e7c8d5c9 5401{
3a6be87f 5402#ifdef CONFIG_MMU
e7c8d5c9
CL
5403 int batch;
5404
5405 /*
5406 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5407 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5408 *
5409 * OK, so we don't know how big the cache is. So guess.
5410 */
b40da049 5411 batch = zone->managed_pages / 1024;
ba56e91c
SR
5412 if (batch * PAGE_SIZE > 512 * 1024)
5413 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5414 batch /= 4; /* We effectively *= 4 below */
5415 if (batch < 1)
5416 batch = 1;
5417
5418 /*
0ceaacc9
NP
5419 * Clamp the batch to a 2^n - 1 value. Having a power
5420 * of 2 value was found to be more likely to have
5421 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5422 *
0ceaacc9
NP
5423 * For example if 2 tasks are alternately allocating
5424 * batches of pages, one task can end up with a lot
5425 * of pages of one half of the possible page colors
5426 * and the other with pages of the other colors.
e7c8d5c9 5427 */
9155203a 5428 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5429
e7c8d5c9 5430 return batch;
3a6be87f
DH
5431
5432#else
5433 /* The deferral and batching of frees should be suppressed under NOMMU
5434 * conditions.
5435 *
5436 * The problem is that NOMMU needs to be able to allocate large chunks
5437 * of contiguous memory as there's no hardware page translation to
5438 * assemble apparent contiguous memory from discontiguous pages.
5439 *
5440 * Queueing large contiguous runs of pages for batching, however,
5441 * causes the pages to actually be freed in smaller chunks. As there
5442 * can be a significant delay between the individual batches being
5443 * recycled, this leads to the once large chunks of space being
5444 * fragmented and becoming unavailable for high-order allocations.
5445 */
5446 return 0;
5447#endif
e7c8d5c9
CL
5448}
5449
8d7a8fa9
CS
5450/*
5451 * pcp->high and pcp->batch values are related and dependent on one another:
5452 * ->batch must never be higher then ->high.
5453 * The following function updates them in a safe manner without read side
5454 * locking.
5455 *
5456 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5457 * those fields changing asynchronously (acording the the above rule).
5458 *
5459 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5460 * outside of boot time (or some other assurance that no concurrent updaters
5461 * exist).
5462 */
5463static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5464 unsigned long batch)
5465{
5466 /* start with a fail safe value for batch */
5467 pcp->batch = 1;
5468 smp_wmb();
5469
5470 /* Update high, then batch, in order */
5471 pcp->high = high;
5472 smp_wmb();
5473
5474 pcp->batch = batch;
5475}
5476
3664033c 5477/* a companion to pageset_set_high() */
4008bab7
CS
5478static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5479{
8d7a8fa9 5480 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5481}
5482
88c90dbc 5483static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5484{
5485 struct per_cpu_pages *pcp;
5f8dcc21 5486 int migratetype;
2caaad41 5487
1c6fe946
MD
5488 memset(p, 0, sizeof(*p));
5489
3dfa5721 5490 pcp = &p->pcp;
2caaad41 5491 pcp->count = 0;
5f8dcc21
MG
5492 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5493 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5494}
5495
88c90dbc
CS
5496static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5497{
5498 pageset_init(p);
5499 pageset_set_batch(p, batch);
5500}
5501
8ad4b1fb 5502/*
3664033c 5503 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5504 * to the value high for the pageset p.
5505 */
3664033c 5506static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5507 unsigned long high)
5508{
8d7a8fa9
CS
5509 unsigned long batch = max(1UL, high / 4);
5510 if ((high / 4) > (PAGE_SHIFT * 8))
5511 batch = PAGE_SHIFT * 8;
8ad4b1fb 5512
8d7a8fa9 5513 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5514}
5515
7cd2b0a3
DR
5516static void pageset_set_high_and_batch(struct zone *zone,
5517 struct per_cpu_pageset *pcp)
56cef2b8 5518{
56cef2b8 5519 if (percpu_pagelist_fraction)
3664033c 5520 pageset_set_high(pcp,
56cef2b8
CS
5521 (zone->managed_pages /
5522 percpu_pagelist_fraction));
5523 else
5524 pageset_set_batch(pcp, zone_batchsize(zone));
5525}
5526
169f6c19
CS
5527static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5528{
5529 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5530
5531 pageset_init(pcp);
5532 pageset_set_high_and_batch(zone, pcp);
5533}
5534
72675e13 5535void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5536{
5537 int cpu;
319774e2 5538 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5539 for_each_possible_cpu(cpu)
5540 zone_pageset_init(zone, cpu);
319774e2
WF
5541}
5542
2caaad41 5543/*
99dcc3e5
CL
5544 * Allocate per cpu pagesets and initialize them.
5545 * Before this call only boot pagesets were available.
e7c8d5c9 5546 */
99dcc3e5 5547void __init setup_per_cpu_pageset(void)
e7c8d5c9 5548{
b4911ea2 5549 struct pglist_data *pgdat;
99dcc3e5 5550 struct zone *zone;
e7c8d5c9 5551
319774e2
WF
5552 for_each_populated_zone(zone)
5553 setup_zone_pageset(zone);
b4911ea2
MG
5554
5555 for_each_online_pgdat(pgdat)
5556 pgdat->per_cpu_nodestats =
5557 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5558}
5559
c09b4240 5560static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5561{
99dcc3e5
CL
5562 /*
5563 * per cpu subsystem is not up at this point. The following code
5564 * relies on the ability of the linker to provide the
5565 * offset of a (static) per cpu variable into the per cpu area.
5566 */
5567 zone->pageset = &boot_pageset;
ed8ece2e 5568
b38a8725 5569 if (populated_zone(zone))
99dcc3e5
CL
5570 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5571 zone->name, zone->present_pages,
5572 zone_batchsize(zone));
ed8ece2e
DH
5573}
5574
dc0bbf3b 5575void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5576 unsigned long zone_start_pfn,
b171e409 5577 unsigned long size)
ed8ece2e
DH
5578{
5579 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5580
ed8ece2e
DH
5581 pgdat->nr_zones = zone_idx(zone) + 1;
5582
ed8ece2e
DH
5583 zone->zone_start_pfn = zone_start_pfn;
5584
708614e6
MG
5585 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5586 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5587 pgdat->node_id,
5588 (unsigned long)zone_idx(zone),
5589 zone_start_pfn, (zone_start_pfn + size));
5590
1e548deb 5591 zone_init_free_lists(zone);
9dcb8b68 5592 zone->initialized = 1;
ed8ece2e
DH
5593}
5594
0ee332c1 5595#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5596#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5597
c713216d
MG
5598/*
5599 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5600 */
8a942fde
MG
5601int __meminit __early_pfn_to_nid(unsigned long pfn,
5602 struct mminit_pfnnid_cache *state)
c713216d 5603{
c13291a5 5604 unsigned long start_pfn, end_pfn;
e76b63f8 5605 int nid;
7c243c71 5606
8a942fde
MG
5607 if (state->last_start <= pfn && pfn < state->last_end)
5608 return state->last_nid;
c713216d 5609
e76b63f8
YL
5610 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5611 if (nid != -1) {
8a942fde
MG
5612 state->last_start = start_pfn;
5613 state->last_end = end_pfn;
5614 state->last_nid = nid;
e76b63f8
YL
5615 }
5616
5617 return nid;
c713216d
MG
5618}
5619#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5620
c713216d 5621/**
6782832e 5622 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5623 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5624 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5625 *
7d018176
ZZ
5626 * If an architecture guarantees that all ranges registered contain no holes
5627 * and may be freed, this this function may be used instead of calling
5628 * memblock_free_early_nid() manually.
c713216d 5629 */
c13291a5 5630void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5631{
c13291a5
TH
5632 unsigned long start_pfn, end_pfn;
5633 int i, this_nid;
edbe7d23 5634
c13291a5
TH
5635 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5636 start_pfn = min(start_pfn, max_low_pfn);
5637 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5638
c13291a5 5639 if (start_pfn < end_pfn)
6782832e
SS
5640 memblock_free_early_nid(PFN_PHYS(start_pfn),
5641 (end_pfn - start_pfn) << PAGE_SHIFT,
5642 this_nid);
edbe7d23 5643 }
edbe7d23 5644}
edbe7d23 5645
c713216d
MG
5646/**
5647 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5648 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5649 *
7d018176
ZZ
5650 * If an architecture guarantees that all ranges registered contain no holes and may
5651 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5652 */
5653void __init sparse_memory_present_with_active_regions(int nid)
5654{
c13291a5
TH
5655 unsigned long start_pfn, end_pfn;
5656 int i, this_nid;
c713216d 5657
c13291a5
TH
5658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5659 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5660}
5661
5662/**
5663 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5664 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5665 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5666 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5667 *
5668 * It returns the start and end page frame of a node based on information
7d018176 5669 * provided by memblock_set_node(). If called for a node
c713216d 5670 * with no available memory, a warning is printed and the start and end
88ca3b94 5671 * PFNs will be 0.
c713216d 5672 */
a3142c8e 5673void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5674 unsigned long *start_pfn, unsigned long *end_pfn)
5675{
c13291a5 5676 unsigned long this_start_pfn, this_end_pfn;
c713216d 5677 int i;
c13291a5 5678
c713216d
MG
5679 *start_pfn = -1UL;
5680 *end_pfn = 0;
5681
c13291a5
TH
5682 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5683 *start_pfn = min(*start_pfn, this_start_pfn);
5684 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5685 }
5686
633c0666 5687 if (*start_pfn == -1UL)
c713216d 5688 *start_pfn = 0;
c713216d
MG
5689}
5690
2a1e274a
MG
5691/*
5692 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5693 * assumption is made that zones within a node are ordered in monotonic
5694 * increasing memory addresses so that the "highest" populated zone is used
5695 */
b69a7288 5696static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5697{
5698 int zone_index;
5699 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5700 if (zone_index == ZONE_MOVABLE)
5701 continue;
5702
5703 if (arch_zone_highest_possible_pfn[zone_index] >
5704 arch_zone_lowest_possible_pfn[zone_index])
5705 break;
5706 }
5707
5708 VM_BUG_ON(zone_index == -1);
5709 movable_zone = zone_index;
5710}
5711
5712/*
5713 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5714 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5715 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5716 * in each node depending on the size of each node and how evenly kernelcore
5717 * is distributed. This helper function adjusts the zone ranges
5718 * provided by the architecture for a given node by using the end of the
5719 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5720 * zones within a node are in order of monotonic increases memory addresses
5721 */
b69a7288 5722static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5723 unsigned long zone_type,
5724 unsigned long node_start_pfn,
5725 unsigned long node_end_pfn,
5726 unsigned long *zone_start_pfn,
5727 unsigned long *zone_end_pfn)
5728{
5729 /* Only adjust if ZONE_MOVABLE is on this node */
5730 if (zone_movable_pfn[nid]) {
5731 /* Size ZONE_MOVABLE */
5732 if (zone_type == ZONE_MOVABLE) {
5733 *zone_start_pfn = zone_movable_pfn[nid];
5734 *zone_end_pfn = min(node_end_pfn,
5735 arch_zone_highest_possible_pfn[movable_zone]);
5736
e506b996
XQ
5737 /* Adjust for ZONE_MOVABLE starting within this range */
5738 } else if (!mirrored_kernelcore &&
5739 *zone_start_pfn < zone_movable_pfn[nid] &&
5740 *zone_end_pfn > zone_movable_pfn[nid]) {
5741 *zone_end_pfn = zone_movable_pfn[nid];
5742
2a1e274a
MG
5743 /* Check if this whole range is within ZONE_MOVABLE */
5744 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5745 *zone_start_pfn = *zone_end_pfn;
5746 }
5747}
5748
c713216d
MG
5749/*
5750 * Return the number of pages a zone spans in a node, including holes
5751 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5752 */
6ea6e688 5753static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5754 unsigned long zone_type,
7960aedd
ZY
5755 unsigned long node_start_pfn,
5756 unsigned long node_end_pfn,
d91749c1
TI
5757 unsigned long *zone_start_pfn,
5758 unsigned long *zone_end_pfn,
c713216d
MG
5759 unsigned long *ignored)
5760{
b5685e92 5761 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5762 if (!node_start_pfn && !node_end_pfn)
5763 return 0;
5764
7960aedd 5765 /* Get the start and end of the zone */
d91749c1
TI
5766 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5767 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5768 adjust_zone_range_for_zone_movable(nid, zone_type,
5769 node_start_pfn, node_end_pfn,
d91749c1 5770 zone_start_pfn, zone_end_pfn);
c713216d
MG
5771
5772 /* Check that this node has pages within the zone's required range */
d91749c1 5773 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5774 return 0;
5775
5776 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5777 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5778 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5779
5780 /* Return the spanned pages */
d91749c1 5781 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5782}
5783
5784/*
5785 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5786 * then all holes in the requested range will be accounted for.
c713216d 5787 */
32996250 5788unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5789 unsigned long range_start_pfn,
5790 unsigned long range_end_pfn)
5791{
96e907d1
TH
5792 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5793 unsigned long start_pfn, end_pfn;
5794 int i;
c713216d 5795
96e907d1
TH
5796 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5797 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5798 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5799 nr_absent -= end_pfn - start_pfn;
c713216d 5800 }
96e907d1 5801 return nr_absent;
c713216d
MG
5802}
5803
5804/**
5805 * absent_pages_in_range - Return number of page frames in holes within a range
5806 * @start_pfn: The start PFN to start searching for holes
5807 * @end_pfn: The end PFN to stop searching for holes
5808 *
88ca3b94 5809 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5810 */
5811unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5812 unsigned long end_pfn)
5813{
5814 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5815}
5816
5817/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5818static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5819 unsigned long zone_type,
7960aedd
ZY
5820 unsigned long node_start_pfn,
5821 unsigned long node_end_pfn,
c713216d
MG
5822 unsigned long *ignored)
5823{
96e907d1
TH
5824 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5825 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5826 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5827 unsigned long nr_absent;
9c7cd687 5828
b5685e92 5829 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5830 if (!node_start_pfn && !node_end_pfn)
5831 return 0;
5832
96e907d1
TH
5833 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5834 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5835
2a1e274a
MG
5836 adjust_zone_range_for_zone_movable(nid, zone_type,
5837 node_start_pfn, node_end_pfn,
5838 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5839 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5840
5841 /*
5842 * ZONE_MOVABLE handling.
5843 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5844 * and vice versa.
5845 */
e506b996
XQ
5846 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5847 unsigned long start_pfn, end_pfn;
5848 struct memblock_region *r;
5849
5850 for_each_memblock(memory, r) {
5851 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5852 zone_start_pfn, zone_end_pfn);
5853 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5854 zone_start_pfn, zone_end_pfn);
5855
5856 if (zone_type == ZONE_MOVABLE &&
5857 memblock_is_mirror(r))
5858 nr_absent += end_pfn - start_pfn;
5859
5860 if (zone_type == ZONE_NORMAL &&
5861 !memblock_is_mirror(r))
5862 nr_absent += end_pfn - start_pfn;
342332e6
TI
5863 }
5864 }
5865
5866 return nr_absent;
c713216d 5867}
0e0b864e 5868
0ee332c1 5869#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5870static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5871 unsigned long zone_type,
7960aedd
ZY
5872 unsigned long node_start_pfn,
5873 unsigned long node_end_pfn,
d91749c1
TI
5874 unsigned long *zone_start_pfn,
5875 unsigned long *zone_end_pfn,
c713216d
MG
5876 unsigned long *zones_size)
5877{
d91749c1
TI
5878 unsigned int zone;
5879
5880 *zone_start_pfn = node_start_pfn;
5881 for (zone = 0; zone < zone_type; zone++)
5882 *zone_start_pfn += zones_size[zone];
5883
5884 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5885
c713216d
MG
5886 return zones_size[zone_type];
5887}
5888
6ea6e688 5889static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5890 unsigned long zone_type,
7960aedd
ZY
5891 unsigned long node_start_pfn,
5892 unsigned long node_end_pfn,
c713216d
MG
5893 unsigned long *zholes_size)
5894{
5895 if (!zholes_size)
5896 return 0;
5897
5898 return zholes_size[zone_type];
5899}
20e6926d 5900
0ee332c1 5901#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5902
a3142c8e 5903static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5904 unsigned long node_start_pfn,
5905 unsigned long node_end_pfn,
5906 unsigned long *zones_size,
5907 unsigned long *zholes_size)
c713216d 5908{
febd5949 5909 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5910 enum zone_type i;
5911
febd5949
GZ
5912 for (i = 0; i < MAX_NR_ZONES; i++) {
5913 struct zone *zone = pgdat->node_zones + i;
d91749c1 5914 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5915 unsigned long size, real_size;
c713216d 5916
febd5949
GZ
5917 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5918 node_start_pfn,
5919 node_end_pfn,
d91749c1
TI
5920 &zone_start_pfn,
5921 &zone_end_pfn,
febd5949
GZ
5922 zones_size);
5923 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5924 node_start_pfn, node_end_pfn,
5925 zholes_size);
d91749c1
TI
5926 if (size)
5927 zone->zone_start_pfn = zone_start_pfn;
5928 else
5929 zone->zone_start_pfn = 0;
febd5949
GZ
5930 zone->spanned_pages = size;
5931 zone->present_pages = real_size;
5932
5933 totalpages += size;
5934 realtotalpages += real_size;
5935 }
5936
5937 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5938 pgdat->node_present_pages = realtotalpages;
5939 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5940 realtotalpages);
5941}
5942
835c134e
MG
5943#ifndef CONFIG_SPARSEMEM
5944/*
5945 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5946 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5947 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5948 * round what is now in bits to nearest long in bits, then return it in
5949 * bytes.
5950 */
7c45512d 5951static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5952{
5953 unsigned long usemapsize;
5954
7c45512d 5955 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5956 usemapsize = roundup(zonesize, pageblock_nr_pages);
5957 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5958 usemapsize *= NR_PAGEBLOCK_BITS;
5959 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5960
5961 return usemapsize / 8;
5962}
5963
5964static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5965 struct zone *zone,
5966 unsigned long zone_start_pfn,
5967 unsigned long zonesize)
835c134e 5968{
7c45512d 5969 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5970 zone->pageblock_flags = NULL;
58a01a45 5971 if (usemapsize)
6782832e
SS
5972 zone->pageblock_flags =
5973 memblock_virt_alloc_node_nopanic(usemapsize,
5974 pgdat->node_id);
835c134e
MG
5975}
5976#else
7c45512d
LT
5977static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5978 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5979#endif /* CONFIG_SPARSEMEM */
5980
d9c23400 5981#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5982
d9c23400 5983/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5984void __paginginit set_pageblock_order(void)
d9c23400 5985{
955c1cd7
AM
5986 unsigned int order;
5987
d9c23400
MG
5988 /* Check that pageblock_nr_pages has not already been setup */
5989 if (pageblock_order)
5990 return;
5991
955c1cd7
AM
5992 if (HPAGE_SHIFT > PAGE_SHIFT)
5993 order = HUGETLB_PAGE_ORDER;
5994 else
5995 order = MAX_ORDER - 1;
5996
d9c23400
MG
5997 /*
5998 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5999 * This value may be variable depending on boot parameters on IA64 and
6000 * powerpc.
d9c23400
MG
6001 */
6002 pageblock_order = order;
6003}
6004#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6005
ba72cb8c
MG
6006/*
6007 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6008 * is unused as pageblock_order is set at compile-time. See
6009 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6010 * the kernel config
ba72cb8c 6011 */
15ca220e 6012void __paginginit set_pageblock_order(void)
ba72cb8c 6013{
ba72cb8c 6014}
d9c23400
MG
6015
6016#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6017
01cefaef
JL
6018static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6019 unsigned long present_pages)
6020{
6021 unsigned long pages = spanned_pages;
6022
6023 /*
6024 * Provide a more accurate estimation if there are holes within
6025 * the zone and SPARSEMEM is in use. If there are holes within the
6026 * zone, each populated memory region may cost us one or two extra
6027 * memmap pages due to alignment because memmap pages for each
89d790ab 6028 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6029 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6030 */
6031 if (spanned_pages > present_pages + (present_pages >> 4) &&
6032 IS_ENABLED(CONFIG_SPARSEMEM))
6033 pages = present_pages;
6034
6035 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6036}
6037
1da177e4
LT
6038/*
6039 * Set up the zone data structures:
6040 * - mark all pages reserved
6041 * - mark all memory queues empty
6042 * - clear the memory bitmaps
6527af5d
MK
6043 *
6044 * NOTE: pgdat should get zeroed by caller.
1da177e4 6045 */
7f3eb55b 6046static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6047{
2f1b6248 6048 enum zone_type j;
ed8ece2e 6049 int nid = pgdat->node_id;
1da177e4 6050
208d54e5 6051 pgdat_resize_init(pgdat);
8177a420
AA
6052#ifdef CONFIG_NUMA_BALANCING
6053 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6054 pgdat->numabalancing_migrate_nr_pages = 0;
6055 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6056#endif
6057#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6058 spin_lock_init(&pgdat->split_queue_lock);
6059 INIT_LIST_HEAD(&pgdat->split_queue);
6060 pgdat->split_queue_len = 0;
8177a420 6061#endif
1da177e4 6062 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6063 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6064#ifdef CONFIG_COMPACTION
6065 init_waitqueue_head(&pgdat->kcompactd_wait);
6066#endif
eefa864b 6067 pgdat_page_ext_init(pgdat);
a52633d8 6068 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6069 lruvec_init(node_lruvec(pgdat));
5f63b720 6070
385386cf
JW
6071 pgdat->per_cpu_nodestats = &boot_nodestats;
6072
1da177e4
LT
6073 for (j = 0; j < MAX_NR_ZONES; j++) {
6074 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6075 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6076 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6077
febd5949
GZ
6078 size = zone->spanned_pages;
6079 realsize = freesize = zone->present_pages;
1da177e4 6080
0e0b864e 6081 /*
9feedc9d 6082 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6083 * is used by this zone for memmap. This affects the watermark
6084 * and per-cpu initialisations
6085 */
01cefaef 6086 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6087 if (!is_highmem_idx(j)) {
6088 if (freesize >= memmap_pages) {
6089 freesize -= memmap_pages;
6090 if (memmap_pages)
6091 printk(KERN_DEBUG
6092 " %s zone: %lu pages used for memmap\n",
6093 zone_names[j], memmap_pages);
6094 } else
1170532b 6095 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6096 zone_names[j], memmap_pages, freesize);
6097 }
0e0b864e 6098
6267276f 6099 /* Account for reserved pages */
9feedc9d
JL
6100 if (j == 0 && freesize > dma_reserve) {
6101 freesize -= dma_reserve;
d903ef9f 6102 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6103 zone_names[0], dma_reserve);
0e0b864e
MG
6104 }
6105
98d2b0eb 6106 if (!is_highmem_idx(j))
9feedc9d 6107 nr_kernel_pages += freesize;
01cefaef
JL
6108 /* Charge for highmem memmap if there are enough kernel pages */
6109 else if (nr_kernel_pages > memmap_pages * 2)
6110 nr_kernel_pages -= memmap_pages;
9feedc9d 6111 nr_all_pages += freesize;
1da177e4 6112
9feedc9d
JL
6113 /*
6114 * Set an approximate value for lowmem here, it will be adjusted
6115 * when the bootmem allocator frees pages into the buddy system.
6116 * And all highmem pages will be managed by the buddy system.
6117 */
6118 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6119#ifdef CONFIG_NUMA
d5f541ed 6120 zone->node = nid;
9614634f 6121#endif
1da177e4 6122 zone->name = zone_names[j];
a52633d8 6123 zone->zone_pgdat = pgdat;
1da177e4 6124 spin_lock_init(&zone->lock);
bdc8cb98 6125 zone_seqlock_init(zone);
ed8ece2e 6126 zone_pcp_init(zone);
81c0a2bb 6127
1da177e4
LT
6128 if (!size)
6129 continue;
6130
955c1cd7 6131 set_pageblock_order();
7c45512d 6132 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6133 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6134 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6135 }
6136}
6137
bd721ea7 6138static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6139{
b0aeba74 6140 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6141 unsigned long __maybe_unused offset = 0;
6142
1da177e4
LT
6143 /* Skip empty nodes */
6144 if (!pgdat->node_spanned_pages)
6145 return;
6146
d41dee36 6147#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6148 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6149 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6150 /* ia64 gets its own node_mem_map, before this, without bootmem */
6151 if (!pgdat->node_mem_map) {
b0aeba74 6152 unsigned long size, end;
d41dee36
AW
6153 struct page *map;
6154
e984bb43
BP
6155 /*
6156 * The zone's endpoints aren't required to be MAX_ORDER
6157 * aligned but the node_mem_map endpoints must be in order
6158 * for the buddy allocator to function correctly.
6159 */
108bcc96 6160 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6161 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6162 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6163 map = alloc_remap(pgdat->node_id, size);
6164 if (!map)
6782832e
SS
6165 map = memblock_virt_alloc_node_nopanic(size,
6166 pgdat->node_id);
a1c34a3b 6167 pgdat->node_mem_map = map + offset;
1da177e4 6168 }
12d810c1 6169#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6170 /*
6171 * With no DISCONTIG, the global mem_map is just set as node 0's
6172 */
c713216d 6173 if (pgdat == NODE_DATA(0)) {
1da177e4 6174 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6175#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6176 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6177 mem_map -= offset;
0ee332c1 6178#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6179 }
1da177e4 6180#endif
d41dee36 6181#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6182}
6183
9109fb7b
JW
6184void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6185 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6186{
9109fb7b 6187 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6188 unsigned long start_pfn = 0;
6189 unsigned long end_pfn = 0;
9109fb7b 6190
88fdf75d 6191 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6192 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6193
1da177e4
LT
6194 pgdat->node_id = nid;
6195 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6196 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6197#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6198 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6199 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6200 (u64)start_pfn << PAGE_SHIFT,
6201 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6202#else
6203 start_pfn = node_start_pfn;
7960aedd
ZY
6204#endif
6205 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6206 zones_size, zholes_size);
1da177e4
LT
6207
6208 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6209#ifdef CONFIG_FLAT_NODE_MEM_MAP
6210 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6211 nid, (unsigned long)pgdat,
6212 (unsigned long)pgdat->node_mem_map);
6213#endif
1da177e4 6214
864b9a39 6215 reset_deferred_meminit(pgdat);
7f3eb55b 6216 free_area_init_core(pgdat);
1da177e4
LT
6217}
6218
a4a3ede2
PT
6219#ifdef CONFIG_HAVE_MEMBLOCK
6220/*
6221 * Only struct pages that are backed by physical memory are zeroed and
6222 * initialized by going through __init_single_page(). But, there are some
6223 * struct pages which are reserved in memblock allocator and their fields
6224 * may be accessed (for example page_to_pfn() on some configuration accesses
6225 * flags). We must explicitly zero those struct pages.
6226 */
6227void __paginginit zero_resv_unavail(void)
6228{
6229 phys_addr_t start, end;
6230 unsigned long pfn;
6231 u64 i, pgcnt;
6232
6233 /*
6234 * Loop through ranges that are reserved, but do not have reported
6235 * physical memory backing.
6236 */
6237 pgcnt = 0;
6238 for_each_resv_unavail_range(i, &start, &end) {
6239 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6240 mm_zero_struct_page(pfn_to_page(pfn));
6241 pgcnt++;
6242 }
6243 }
6244
6245 /*
6246 * Struct pages that do not have backing memory. This could be because
6247 * firmware is using some of this memory, or for some other reasons.
6248 * Once memblock is changed so such behaviour is not allowed: i.e.
6249 * list of "reserved" memory must be a subset of list of "memory", then
6250 * this code can be removed.
6251 */
6252 if (pgcnt)
6253 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6254}
6255#endif /* CONFIG_HAVE_MEMBLOCK */
6256
0ee332c1 6257#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6258
6259#if MAX_NUMNODES > 1
6260/*
6261 * Figure out the number of possible node ids.
6262 */
f9872caf 6263void __init setup_nr_node_ids(void)
418508c1 6264{
904a9553 6265 unsigned int highest;
418508c1 6266
904a9553 6267 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6268 nr_node_ids = highest + 1;
6269}
418508c1
MS
6270#endif
6271
1e01979c
TH
6272/**
6273 * node_map_pfn_alignment - determine the maximum internode alignment
6274 *
6275 * This function should be called after node map is populated and sorted.
6276 * It calculates the maximum power of two alignment which can distinguish
6277 * all the nodes.
6278 *
6279 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6280 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6281 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6282 * shifted, 1GiB is enough and this function will indicate so.
6283 *
6284 * This is used to test whether pfn -> nid mapping of the chosen memory
6285 * model has fine enough granularity to avoid incorrect mapping for the
6286 * populated node map.
6287 *
6288 * Returns the determined alignment in pfn's. 0 if there is no alignment
6289 * requirement (single node).
6290 */
6291unsigned long __init node_map_pfn_alignment(void)
6292{
6293 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6294 unsigned long start, end, mask;
1e01979c 6295 int last_nid = -1;
c13291a5 6296 int i, nid;
1e01979c 6297
c13291a5 6298 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6299 if (!start || last_nid < 0 || last_nid == nid) {
6300 last_nid = nid;
6301 last_end = end;
6302 continue;
6303 }
6304
6305 /*
6306 * Start with a mask granular enough to pin-point to the
6307 * start pfn and tick off bits one-by-one until it becomes
6308 * too coarse to separate the current node from the last.
6309 */
6310 mask = ~((1 << __ffs(start)) - 1);
6311 while (mask && last_end <= (start & (mask << 1)))
6312 mask <<= 1;
6313
6314 /* accumulate all internode masks */
6315 accl_mask |= mask;
6316 }
6317
6318 /* convert mask to number of pages */
6319 return ~accl_mask + 1;
6320}
6321
a6af2bc3 6322/* Find the lowest pfn for a node */
b69a7288 6323static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6324{
a6af2bc3 6325 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6326 unsigned long start_pfn;
6327 int i;
1abbfb41 6328
c13291a5
TH
6329 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6330 min_pfn = min(min_pfn, start_pfn);
c713216d 6331
a6af2bc3 6332 if (min_pfn == ULONG_MAX) {
1170532b 6333 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6334 return 0;
6335 }
6336
6337 return min_pfn;
c713216d
MG
6338}
6339
6340/**
6341 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6342 *
6343 * It returns the minimum PFN based on information provided via
7d018176 6344 * memblock_set_node().
c713216d
MG
6345 */
6346unsigned long __init find_min_pfn_with_active_regions(void)
6347{
6348 return find_min_pfn_for_node(MAX_NUMNODES);
6349}
6350
37b07e41
LS
6351/*
6352 * early_calculate_totalpages()
6353 * Sum pages in active regions for movable zone.
4b0ef1fe 6354 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6355 */
484f51f8 6356static unsigned long __init early_calculate_totalpages(void)
7e63efef 6357{
7e63efef 6358 unsigned long totalpages = 0;
c13291a5
TH
6359 unsigned long start_pfn, end_pfn;
6360 int i, nid;
6361
6362 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6363 unsigned long pages = end_pfn - start_pfn;
7e63efef 6364
37b07e41
LS
6365 totalpages += pages;
6366 if (pages)
4b0ef1fe 6367 node_set_state(nid, N_MEMORY);
37b07e41 6368 }
b8af2941 6369 return totalpages;
7e63efef
MG
6370}
6371
2a1e274a
MG
6372/*
6373 * Find the PFN the Movable zone begins in each node. Kernel memory
6374 * is spread evenly between nodes as long as the nodes have enough
6375 * memory. When they don't, some nodes will have more kernelcore than
6376 * others
6377 */
b224ef85 6378static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6379{
6380 int i, nid;
6381 unsigned long usable_startpfn;
6382 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6383 /* save the state before borrow the nodemask */
4b0ef1fe 6384 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6385 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6386 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6387 struct memblock_region *r;
b2f3eebe
TC
6388
6389 /* Need to find movable_zone earlier when movable_node is specified. */
6390 find_usable_zone_for_movable();
6391
6392 /*
6393 * If movable_node is specified, ignore kernelcore and movablecore
6394 * options.
6395 */
6396 if (movable_node_is_enabled()) {
136199f0
EM
6397 for_each_memblock(memory, r) {
6398 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6399 continue;
6400
136199f0 6401 nid = r->nid;
b2f3eebe 6402
136199f0 6403 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6404 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6405 min(usable_startpfn, zone_movable_pfn[nid]) :
6406 usable_startpfn;
6407 }
6408
6409 goto out2;
6410 }
2a1e274a 6411
342332e6
TI
6412 /*
6413 * If kernelcore=mirror is specified, ignore movablecore option
6414 */
6415 if (mirrored_kernelcore) {
6416 bool mem_below_4gb_not_mirrored = false;
6417
6418 for_each_memblock(memory, r) {
6419 if (memblock_is_mirror(r))
6420 continue;
6421
6422 nid = r->nid;
6423
6424 usable_startpfn = memblock_region_memory_base_pfn(r);
6425
6426 if (usable_startpfn < 0x100000) {
6427 mem_below_4gb_not_mirrored = true;
6428 continue;
6429 }
6430
6431 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6432 min(usable_startpfn, zone_movable_pfn[nid]) :
6433 usable_startpfn;
6434 }
6435
6436 if (mem_below_4gb_not_mirrored)
6437 pr_warn("This configuration results in unmirrored kernel memory.");
6438
6439 goto out2;
6440 }
6441
7e63efef 6442 /*
b2f3eebe 6443 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6444 * kernelcore that corresponds so that memory usable for
6445 * any allocation type is evenly spread. If both kernelcore
6446 * and movablecore are specified, then the value of kernelcore
6447 * will be used for required_kernelcore if it's greater than
6448 * what movablecore would have allowed.
6449 */
6450 if (required_movablecore) {
7e63efef
MG
6451 unsigned long corepages;
6452
6453 /*
6454 * Round-up so that ZONE_MOVABLE is at least as large as what
6455 * was requested by the user
6456 */
6457 required_movablecore =
6458 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6459 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6460 corepages = totalpages - required_movablecore;
6461
6462 required_kernelcore = max(required_kernelcore, corepages);
6463 }
6464
bde304bd
XQ
6465 /*
6466 * If kernelcore was not specified or kernelcore size is larger
6467 * than totalpages, there is no ZONE_MOVABLE.
6468 */
6469 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6470 goto out;
2a1e274a
MG
6471
6472 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6473 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6474
6475restart:
6476 /* Spread kernelcore memory as evenly as possible throughout nodes */
6477 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6478 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6479 unsigned long start_pfn, end_pfn;
6480
2a1e274a
MG
6481 /*
6482 * Recalculate kernelcore_node if the division per node
6483 * now exceeds what is necessary to satisfy the requested
6484 * amount of memory for the kernel
6485 */
6486 if (required_kernelcore < kernelcore_node)
6487 kernelcore_node = required_kernelcore / usable_nodes;
6488
6489 /*
6490 * As the map is walked, we track how much memory is usable
6491 * by the kernel using kernelcore_remaining. When it is
6492 * 0, the rest of the node is usable by ZONE_MOVABLE
6493 */
6494 kernelcore_remaining = kernelcore_node;
6495
6496 /* Go through each range of PFNs within this node */
c13291a5 6497 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6498 unsigned long size_pages;
6499
c13291a5 6500 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6501 if (start_pfn >= end_pfn)
6502 continue;
6503
6504 /* Account for what is only usable for kernelcore */
6505 if (start_pfn < usable_startpfn) {
6506 unsigned long kernel_pages;
6507 kernel_pages = min(end_pfn, usable_startpfn)
6508 - start_pfn;
6509
6510 kernelcore_remaining -= min(kernel_pages,
6511 kernelcore_remaining);
6512 required_kernelcore -= min(kernel_pages,
6513 required_kernelcore);
6514
6515 /* Continue if range is now fully accounted */
6516 if (end_pfn <= usable_startpfn) {
6517
6518 /*
6519 * Push zone_movable_pfn to the end so
6520 * that if we have to rebalance
6521 * kernelcore across nodes, we will
6522 * not double account here
6523 */
6524 zone_movable_pfn[nid] = end_pfn;
6525 continue;
6526 }
6527 start_pfn = usable_startpfn;
6528 }
6529
6530 /*
6531 * The usable PFN range for ZONE_MOVABLE is from
6532 * start_pfn->end_pfn. Calculate size_pages as the
6533 * number of pages used as kernelcore
6534 */
6535 size_pages = end_pfn - start_pfn;
6536 if (size_pages > kernelcore_remaining)
6537 size_pages = kernelcore_remaining;
6538 zone_movable_pfn[nid] = start_pfn + size_pages;
6539
6540 /*
6541 * Some kernelcore has been met, update counts and
6542 * break if the kernelcore for this node has been
b8af2941 6543 * satisfied
2a1e274a
MG
6544 */
6545 required_kernelcore -= min(required_kernelcore,
6546 size_pages);
6547 kernelcore_remaining -= size_pages;
6548 if (!kernelcore_remaining)
6549 break;
6550 }
6551 }
6552
6553 /*
6554 * If there is still required_kernelcore, we do another pass with one
6555 * less node in the count. This will push zone_movable_pfn[nid] further
6556 * along on the nodes that still have memory until kernelcore is
b8af2941 6557 * satisfied
2a1e274a
MG
6558 */
6559 usable_nodes--;
6560 if (usable_nodes && required_kernelcore > usable_nodes)
6561 goto restart;
6562
b2f3eebe 6563out2:
2a1e274a
MG
6564 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6565 for (nid = 0; nid < MAX_NUMNODES; nid++)
6566 zone_movable_pfn[nid] =
6567 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6568
20e6926d 6569out:
66918dcd 6570 /* restore the node_state */
4b0ef1fe 6571 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6572}
6573
4b0ef1fe
LJ
6574/* Any regular or high memory on that node ? */
6575static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6576{
37b07e41
LS
6577 enum zone_type zone_type;
6578
4b0ef1fe
LJ
6579 if (N_MEMORY == N_NORMAL_MEMORY)
6580 return;
6581
6582 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6583 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6584 if (populated_zone(zone)) {
4b0ef1fe
LJ
6585 node_set_state(nid, N_HIGH_MEMORY);
6586 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6587 zone_type <= ZONE_NORMAL)
6588 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6589 break;
6590 }
37b07e41 6591 }
37b07e41
LS
6592}
6593
c713216d
MG
6594/**
6595 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6596 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6597 *
6598 * This will call free_area_init_node() for each active node in the system.
7d018176 6599 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6600 * zone in each node and their holes is calculated. If the maximum PFN
6601 * between two adjacent zones match, it is assumed that the zone is empty.
6602 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6603 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6604 * starts where the previous one ended. For example, ZONE_DMA32 starts
6605 * at arch_max_dma_pfn.
6606 */
6607void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6608{
c13291a5
TH
6609 unsigned long start_pfn, end_pfn;
6610 int i, nid;
a6af2bc3 6611
c713216d
MG
6612 /* Record where the zone boundaries are */
6613 memset(arch_zone_lowest_possible_pfn, 0,
6614 sizeof(arch_zone_lowest_possible_pfn));
6615 memset(arch_zone_highest_possible_pfn, 0,
6616 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6617
6618 start_pfn = find_min_pfn_with_active_regions();
6619
6620 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6621 if (i == ZONE_MOVABLE)
6622 continue;
90cae1fe
OH
6623
6624 end_pfn = max(max_zone_pfn[i], start_pfn);
6625 arch_zone_lowest_possible_pfn[i] = start_pfn;
6626 arch_zone_highest_possible_pfn[i] = end_pfn;
6627
6628 start_pfn = end_pfn;
c713216d 6629 }
2a1e274a
MG
6630
6631 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6632 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6633 find_zone_movable_pfns_for_nodes();
c713216d 6634
c713216d 6635 /* Print out the zone ranges */
f88dfff5 6636 pr_info("Zone ranges:\n");
2a1e274a
MG
6637 for (i = 0; i < MAX_NR_ZONES; i++) {
6638 if (i == ZONE_MOVABLE)
6639 continue;
f88dfff5 6640 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6641 if (arch_zone_lowest_possible_pfn[i] ==
6642 arch_zone_highest_possible_pfn[i])
f88dfff5 6643 pr_cont("empty\n");
72f0ba02 6644 else
8d29e18a
JG
6645 pr_cont("[mem %#018Lx-%#018Lx]\n",
6646 (u64)arch_zone_lowest_possible_pfn[i]
6647 << PAGE_SHIFT,
6648 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6649 << PAGE_SHIFT) - 1);
2a1e274a
MG
6650 }
6651
6652 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6653 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6654 for (i = 0; i < MAX_NUMNODES; i++) {
6655 if (zone_movable_pfn[i])
8d29e18a
JG
6656 pr_info(" Node %d: %#018Lx\n", i,
6657 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6658 }
c713216d 6659
f2d52fe5 6660 /* Print out the early node map */
f88dfff5 6661 pr_info("Early memory node ranges\n");
c13291a5 6662 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6663 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6664 (u64)start_pfn << PAGE_SHIFT,
6665 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6666
6667 /* Initialise every node */
708614e6 6668 mminit_verify_pageflags_layout();
8ef82866 6669 setup_nr_node_ids();
c713216d
MG
6670 for_each_online_node(nid) {
6671 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6672 free_area_init_node(nid, NULL,
c713216d 6673 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6674
6675 /* Any memory on that node */
6676 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6677 node_set_state(nid, N_MEMORY);
6678 check_for_memory(pgdat, nid);
c713216d 6679 }
a4a3ede2 6680 zero_resv_unavail();
c713216d 6681}
2a1e274a 6682
7e63efef 6683static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6684{
6685 unsigned long long coremem;
6686 if (!p)
6687 return -EINVAL;
6688
6689 coremem = memparse(p, &p);
7e63efef 6690 *core = coremem >> PAGE_SHIFT;
2a1e274a 6691
7e63efef 6692 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6693 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6694
6695 return 0;
6696}
ed7ed365 6697
7e63efef
MG
6698/*
6699 * kernelcore=size sets the amount of memory for use for allocations that
6700 * cannot be reclaimed or migrated.
6701 */
6702static int __init cmdline_parse_kernelcore(char *p)
6703{
342332e6
TI
6704 /* parse kernelcore=mirror */
6705 if (parse_option_str(p, "mirror")) {
6706 mirrored_kernelcore = true;
6707 return 0;
6708 }
6709
7e63efef
MG
6710 return cmdline_parse_core(p, &required_kernelcore);
6711}
6712
6713/*
6714 * movablecore=size sets the amount of memory for use for allocations that
6715 * can be reclaimed or migrated.
6716 */
6717static int __init cmdline_parse_movablecore(char *p)
6718{
6719 return cmdline_parse_core(p, &required_movablecore);
6720}
6721
ed7ed365 6722early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6723early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6724
0ee332c1 6725#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6726
c3d5f5f0
JL
6727void adjust_managed_page_count(struct page *page, long count)
6728{
6729 spin_lock(&managed_page_count_lock);
6730 page_zone(page)->managed_pages += count;
6731 totalram_pages += count;
3dcc0571
JL
6732#ifdef CONFIG_HIGHMEM
6733 if (PageHighMem(page))
6734 totalhigh_pages += count;
6735#endif
c3d5f5f0
JL
6736 spin_unlock(&managed_page_count_lock);
6737}
3dcc0571 6738EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6739
11199692 6740unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6741{
11199692
JL
6742 void *pos;
6743 unsigned long pages = 0;
69afade7 6744
11199692
JL
6745 start = (void *)PAGE_ALIGN((unsigned long)start);
6746 end = (void *)((unsigned long)end & PAGE_MASK);
6747 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6748 if ((unsigned int)poison <= 0xFF)
11199692
JL
6749 memset(pos, poison, PAGE_SIZE);
6750 free_reserved_page(virt_to_page(pos));
69afade7
JL
6751 }
6752
6753 if (pages && s)
adb1fe9a
JP
6754 pr_info("Freeing %s memory: %ldK\n",
6755 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6756
6757 return pages;
6758}
11199692 6759EXPORT_SYMBOL(free_reserved_area);
69afade7 6760
cfa11e08
JL
6761#ifdef CONFIG_HIGHMEM
6762void free_highmem_page(struct page *page)
6763{
6764 __free_reserved_page(page);
6765 totalram_pages++;
7b4b2a0d 6766 page_zone(page)->managed_pages++;
cfa11e08
JL
6767 totalhigh_pages++;
6768}
6769#endif
6770
7ee3d4e8
JL
6771
6772void __init mem_init_print_info(const char *str)
6773{
6774 unsigned long physpages, codesize, datasize, rosize, bss_size;
6775 unsigned long init_code_size, init_data_size;
6776
6777 physpages = get_num_physpages();
6778 codesize = _etext - _stext;
6779 datasize = _edata - _sdata;
6780 rosize = __end_rodata - __start_rodata;
6781 bss_size = __bss_stop - __bss_start;
6782 init_data_size = __init_end - __init_begin;
6783 init_code_size = _einittext - _sinittext;
6784
6785 /*
6786 * Detect special cases and adjust section sizes accordingly:
6787 * 1) .init.* may be embedded into .data sections
6788 * 2) .init.text.* may be out of [__init_begin, __init_end],
6789 * please refer to arch/tile/kernel/vmlinux.lds.S.
6790 * 3) .rodata.* may be embedded into .text or .data sections.
6791 */
6792#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6793 do { \
6794 if (start <= pos && pos < end && size > adj) \
6795 size -= adj; \
6796 } while (0)
7ee3d4e8
JL
6797
6798 adj_init_size(__init_begin, __init_end, init_data_size,
6799 _sinittext, init_code_size);
6800 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6801 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6802 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6803 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6804
6805#undef adj_init_size
6806
756a025f 6807 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6808#ifdef CONFIG_HIGHMEM
756a025f 6809 ", %luK highmem"
7ee3d4e8 6810#endif
756a025f
JP
6811 "%s%s)\n",
6812 nr_free_pages() << (PAGE_SHIFT - 10),
6813 physpages << (PAGE_SHIFT - 10),
6814 codesize >> 10, datasize >> 10, rosize >> 10,
6815 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6816 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6817 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6818#ifdef CONFIG_HIGHMEM
756a025f 6819 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6820#endif
756a025f 6821 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6822}
6823
0e0b864e 6824/**
88ca3b94
RD
6825 * set_dma_reserve - set the specified number of pages reserved in the first zone
6826 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6827 *
013110a7 6828 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6829 * In the DMA zone, a significant percentage may be consumed by kernel image
6830 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6831 * function may optionally be used to account for unfreeable pages in the
6832 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6833 * smaller per-cpu batchsize.
0e0b864e
MG
6834 */
6835void __init set_dma_reserve(unsigned long new_dma_reserve)
6836{
6837 dma_reserve = new_dma_reserve;
6838}
6839
1da177e4
LT
6840void __init free_area_init(unsigned long *zones_size)
6841{
9109fb7b 6842 free_area_init_node(0, zones_size,
1da177e4 6843 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 6844 zero_resv_unavail();
1da177e4 6845}
1da177e4 6846
005fd4bb 6847static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6848{
1da177e4 6849
005fd4bb
SAS
6850 lru_add_drain_cpu(cpu);
6851 drain_pages(cpu);
9f8f2172 6852
005fd4bb
SAS
6853 /*
6854 * Spill the event counters of the dead processor
6855 * into the current processors event counters.
6856 * This artificially elevates the count of the current
6857 * processor.
6858 */
6859 vm_events_fold_cpu(cpu);
9f8f2172 6860
005fd4bb
SAS
6861 /*
6862 * Zero the differential counters of the dead processor
6863 * so that the vm statistics are consistent.
6864 *
6865 * This is only okay since the processor is dead and cannot
6866 * race with what we are doing.
6867 */
6868 cpu_vm_stats_fold(cpu);
6869 return 0;
1da177e4 6870}
1da177e4
LT
6871
6872void __init page_alloc_init(void)
6873{
005fd4bb
SAS
6874 int ret;
6875
6876 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6877 "mm/page_alloc:dead", NULL,
6878 page_alloc_cpu_dead);
6879 WARN_ON(ret < 0);
1da177e4
LT
6880}
6881
cb45b0e9 6882/*
34b10060 6883 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6884 * or min_free_kbytes changes.
6885 */
6886static void calculate_totalreserve_pages(void)
6887{
6888 struct pglist_data *pgdat;
6889 unsigned long reserve_pages = 0;
2f6726e5 6890 enum zone_type i, j;
cb45b0e9
HA
6891
6892 for_each_online_pgdat(pgdat) {
281e3726
MG
6893
6894 pgdat->totalreserve_pages = 0;
6895
cb45b0e9
HA
6896 for (i = 0; i < MAX_NR_ZONES; i++) {
6897 struct zone *zone = pgdat->node_zones + i;
3484b2de 6898 long max = 0;
cb45b0e9
HA
6899
6900 /* Find valid and maximum lowmem_reserve in the zone */
6901 for (j = i; j < MAX_NR_ZONES; j++) {
6902 if (zone->lowmem_reserve[j] > max)
6903 max = zone->lowmem_reserve[j];
6904 }
6905
41858966
MG
6906 /* we treat the high watermark as reserved pages. */
6907 max += high_wmark_pages(zone);
cb45b0e9 6908
b40da049
JL
6909 if (max > zone->managed_pages)
6910 max = zone->managed_pages;
a8d01437 6911
281e3726 6912 pgdat->totalreserve_pages += max;
a8d01437 6913
cb45b0e9
HA
6914 reserve_pages += max;
6915 }
6916 }
6917 totalreserve_pages = reserve_pages;
6918}
6919
1da177e4
LT
6920/*
6921 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6922 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6923 * has a correct pages reserved value, so an adequate number of
6924 * pages are left in the zone after a successful __alloc_pages().
6925 */
6926static void setup_per_zone_lowmem_reserve(void)
6927{
6928 struct pglist_data *pgdat;
2f6726e5 6929 enum zone_type j, idx;
1da177e4 6930
ec936fc5 6931 for_each_online_pgdat(pgdat) {
1da177e4
LT
6932 for (j = 0; j < MAX_NR_ZONES; j++) {
6933 struct zone *zone = pgdat->node_zones + j;
b40da049 6934 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6935
6936 zone->lowmem_reserve[j] = 0;
6937
2f6726e5
CL
6938 idx = j;
6939 while (idx) {
1da177e4
LT
6940 struct zone *lower_zone;
6941
2f6726e5
CL
6942 idx--;
6943
1da177e4
LT
6944 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6945 sysctl_lowmem_reserve_ratio[idx] = 1;
6946
6947 lower_zone = pgdat->node_zones + idx;
b40da049 6948 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6949 sysctl_lowmem_reserve_ratio[idx];
b40da049 6950 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6951 }
6952 }
6953 }
cb45b0e9
HA
6954
6955 /* update totalreserve_pages */
6956 calculate_totalreserve_pages();
1da177e4
LT
6957}
6958
cfd3da1e 6959static void __setup_per_zone_wmarks(void)
1da177e4
LT
6960{
6961 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6962 unsigned long lowmem_pages = 0;
6963 struct zone *zone;
6964 unsigned long flags;
6965
6966 /* Calculate total number of !ZONE_HIGHMEM pages */
6967 for_each_zone(zone) {
6968 if (!is_highmem(zone))
b40da049 6969 lowmem_pages += zone->managed_pages;
1da177e4
LT
6970 }
6971
6972 for_each_zone(zone) {
ac924c60
AM
6973 u64 tmp;
6974
1125b4e3 6975 spin_lock_irqsave(&zone->lock, flags);
b40da049 6976 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6977 do_div(tmp, lowmem_pages);
1da177e4
LT
6978 if (is_highmem(zone)) {
6979 /*
669ed175
NP
6980 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6981 * need highmem pages, so cap pages_min to a small
6982 * value here.
6983 *
41858966 6984 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6985 * deltas control asynch page reclaim, and so should
669ed175 6986 * not be capped for highmem.
1da177e4 6987 */
90ae8d67 6988 unsigned long min_pages;
1da177e4 6989
b40da049 6990 min_pages = zone->managed_pages / 1024;
90ae8d67 6991 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6992 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6993 } else {
669ed175
NP
6994 /*
6995 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6996 * proportionate to the zone's size.
6997 */
41858966 6998 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6999 }
7000
795ae7a0
JW
7001 /*
7002 * Set the kswapd watermarks distance according to the
7003 * scale factor in proportion to available memory, but
7004 * ensure a minimum size on small systems.
7005 */
7006 tmp = max_t(u64, tmp >> 2,
7007 mult_frac(zone->managed_pages,
7008 watermark_scale_factor, 10000));
7009
7010 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7011 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7012
1125b4e3 7013 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7014 }
cb45b0e9
HA
7015
7016 /* update totalreserve_pages */
7017 calculate_totalreserve_pages();
1da177e4
LT
7018}
7019
cfd3da1e
MG
7020/**
7021 * setup_per_zone_wmarks - called when min_free_kbytes changes
7022 * or when memory is hot-{added|removed}
7023 *
7024 * Ensures that the watermark[min,low,high] values for each zone are set
7025 * correctly with respect to min_free_kbytes.
7026 */
7027void setup_per_zone_wmarks(void)
7028{
b93e0f32
MH
7029 static DEFINE_SPINLOCK(lock);
7030
7031 spin_lock(&lock);
cfd3da1e 7032 __setup_per_zone_wmarks();
b93e0f32 7033 spin_unlock(&lock);
cfd3da1e
MG
7034}
7035
1da177e4
LT
7036/*
7037 * Initialise min_free_kbytes.
7038 *
7039 * For small machines we want it small (128k min). For large machines
7040 * we want it large (64MB max). But it is not linear, because network
7041 * bandwidth does not increase linearly with machine size. We use
7042 *
b8af2941 7043 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7044 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7045 *
7046 * which yields
7047 *
7048 * 16MB: 512k
7049 * 32MB: 724k
7050 * 64MB: 1024k
7051 * 128MB: 1448k
7052 * 256MB: 2048k
7053 * 512MB: 2896k
7054 * 1024MB: 4096k
7055 * 2048MB: 5792k
7056 * 4096MB: 8192k
7057 * 8192MB: 11584k
7058 * 16384MB: 16384k
7059 */
1b79acc9 7060int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7061{
7062 unsigned long lowmem_kbytes;
5f12733e 7063 int new_min_free_kbytes;
1da177e4
LT
7064
7065 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7066 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7067
7068 if (new_min_free_kbytes > user_min_free_kbytes) {
7069 min_free_kbytes = new_min_free_kbytes;
7070 if (min_free_kbytes < 128)
7071 min_free_kbytes = 128;
7072 if (min_free_kbytes > 65536)
7073 min_free_kbytes = 65536;
7074 } else {
7075 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7076 new_min_free_kbytes, user_min_free_kbytes);
7077 }
bc75d33f 7078 setup_per_zone_wmarks();
a6cccdc3 7079 refresh_zone_stat_thresholds();
1da177e4 7080 setup_per_zone_lowmem_reserve();
6423aa81
JK
7081
7082#ifdef CONFIG_NUMA
7083 setup_min_unmapped_ratio();
7084 setup_min_slab_ratio();
7085#endif
7086
1da177e4
LT
7087 return 0;
7088}
bc22af74 7089core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7090
7091/*
b8af2941 7092 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7093 * that we can call two helper functions whenever min_free_kbytes
7094 * changes.
7095 */
cccad5b9 7096int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7097 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7098{
da8c757b
HP
7099 int rc;
7100
7101 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7102 if (rc)
7103 return rc;
7104
5f12733e
MH
7105 if (write) {
7106 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7107 setup_per_zone_wmarks();
5f12733e 7108 }
1da177e4
LT
7109 return 0;
7110}
7111
795ae7a0
JW
7112int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7113 void __user *buffer, size_t *length, loff_t *ppos)
7114{
7115 int rc;
7116
7117 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7118 if (rc)
7119 return rc;
7120
7121 if (write)
7122 setup_per_zone_wmarks();
7123
7124 return 0;
7125}
7126
9614634f 7127#ifdef CONFIG_NUMA
6423aa81 7128static void setup_min_unmapped_ratio(void)
9614634f 7129{
6423aa81 7130 pg_data_t *pgdat;
9614634f 7131 struct zone *zone;
9614634f 7132
a5f5f91d 7133 for_each_online_pgdat(pgdat)
81cbcbc2 7134 pgdat->min_unmapped_pages = 0;
a5f5f91d 7135
9614634f 7136 for_each_zone(zone)
a5f5f91d 7137 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7138 sysctl_min_unmapped_ratio) / 100;
9614634f 7139}
0ff38490 7140
6423aa81
JK
7141
7142int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7143 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7144{
0ff38490
CL
7145 int rc;
7146
8d65af78 7147 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7148 if (rc)
7149 return rc;
7150
6423aa81
JK
7151 setup_min_unmapped_ratio();
7152
7153 return 0;
7154}
7155
7156static void setup_min_slab_ratio(void)
7157{
7158 pg_data_t *pgdat;
7159 struct zone *zone;
7160
a5f5f91d
MG
7161 for_each_online_pgdat(pgdat)
7162 pgdat->min_slab_pages = 0;
7163
0ff38490 7164 for_each_zone(zone)
a5f5f91d 7165 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7166 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7167}
7168
7169int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7170 void __user *buffer, size_t *length, loff_t *ppos)
7171{
7172 int rc;
7173
7174 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7175 if (rc)
7176 return rc;
7177
7178 setup_min_slab_ratio();
7179
0ff38490
CL
7180 return 0;
7181}
9614634f
CL
7182#endif
7183
1da177e4
LT
7184/*
7185 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7186 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7187 * whenever sysctl_lowmem_reserve_ratio changes.
7188 *
7189 * The reserve ratio obviously has absolutely no relation with the
41858966 7190 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7191 * if in function of the boot time zone sizes.
7192 */
cccad5b9 7193int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7194 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7195{
8d65af78 7196 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7197 setup_per_zone_lowmem_reserve();
7198 return 0;
7199}
7200
8ad4b1fb
RS
7201/*
7202 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7203 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7204 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7205 */
cccad5b9 7206int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7207 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7208{
7209 struct zone *zone;
7cd2b0a3 7210 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7211 int ret;
7212
7cd2b0a3
DR
7213 mutex_lock(&pcp_batch_high_lock);
7214 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7215
8d65af78 7216 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7217 if (!write || ret < 0)
7218 goto out;
7219
7220 /* Sanity checking to avoid pcp imbalance */
7221 if (percpu_pagelist_fraction &&
7222 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7223 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7224 ret = -EINVAL;
7225 goto out;
7226 }
7227
7228 /* No change? */
7229 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7230 goto out;
c8e251fa 7231
364df0eb 7232 for_each_populated_zone(zone) {
7cd2b0a3
DR
7233 unsigned int cpu;
7234
22a7f12b 7235 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7236 pageset_set_high_and_batch(zone,
7237 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7238 }
7cd2b0a3 7239out:
c8e251fa 7240 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7241 return ret;
8ad4b1fb
RS
7242}
7243
a9919c79 7244#ifdef CONFIG_NUMA
f034b5d4 7245int hashdist = HASHDIST_DEFAULT;
1da177e4 7246
1da177e4
LT
7247static int __init set_hashdist(char *str)
7248{
7249 if (!str)
7250 return 0;
7251 hashdist = simple_strtoul(str, &str, 0);
7252 return 1;
7253}
7254__setup("hashdist=", set_hashdist);
7255#endif
7256
f6f34b43
SD
7257#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7258/*
7259 * Returns the number of pages that arch has reserved but
7260 * is not known to alloc_large_system_hash().
7261 */
7262static unsigned long __init arch_reserved_kernel_pages(void)
7263{
7264 return 0;
7265}
7266#endif
7267
9017217b
PT
7268/*
7269 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7270 * machines. As memory size is increased the scale is also increased but at
7271 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7272 * quadruples the scale is increased by one, which means the size of hash table
7273 * only doubles, instead of quadrupling as well.
7274 * Because 32-bit systems cannot have large physical memory, where this scaling
7275 * makes sense, it is disabled on such platforms.
7276 */
7277#if __BITS_PER_LONG > 32
7278#define ADAPT_SCALE_BASE (64ul << 30)
7279#define ADAPT_SCALE_SHIFT 2
7280#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7281#endif
7282
1da177e4
LT
7283/*
7284 * allocate a large system hash table from bootmem
7285 * - it is assumed that the hash table must contain an exact power-of-2
7286 * quantity of entries
7287 * - limit is the number of hash buckets, not the total allocation size
7288 */
7289void *__init alloc_large_system_hash(const char *tablename,
7290 unsigned long bucketsize,
7291 unsigned long numentries,
7292 int scale,
7293 int flags,
7294 unsigned int *_hash_shift,
7295 unsigned int *_hash_mask,
31fe62b9
TB
7296 unsigned long low_limit,
7297 unsigned long high_limit)
1da177e4 7298{
31fe62b9 7299 unsigned long long max = high_limit;
1da177e4
LT
7300 unsigned long log2qty, size;
7301 void *table = NULL;
3749a8f0 7302 gfp_t gfp_flags;
1da177e4
LT
7303
7304 /* allow the kernel cmdline to have a say */
7305 if (!numentries) {
7306 /* round applicable memory size up to nearest megabyte */
04903664 7307 numentries = nr_kernel_pages;
f6f34b43 7308 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7309
7310 /* It isn't necessary when PAGE_SIZE >= 1MB */
7311 if (PAGE_SHIFT < 20)
7312 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7313
9017217b
PT
7314#if __BITS_PER_LONG > 32
7315 if (!high_limit) {
7316 unsigned long adapt;
7317
7318 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7319 adapt <<= ADAPT_SCALE_SHIFT)
7320 scale++;
7321 }
7322#endif
7323
1da177e4
LT
7324 /* limit to 1 bucket per 2^scale bytes of low memory */
7325 if (scale > PAGE_SHIFT)
7326 numentries >>= (scale - PAGE_SHIFT);
7327 else
7328 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7329
7330 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7331 if (unlikely(flags & HASH_SMALL)) {
7332 /* Makes no sense without HASH_EARLY */
7333 WARN_ON(!(flags & HASH_EARLY));
7334 if (!(numentries >> *_hash_shift)) {
7335 numentries = 1UL << *_hash_shift;
7336 BUG_ON(!numentries);
7337 }
7338 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7339 numentries = PAGE_SIZE / bucketsize;
1da177e4 7340 }
6e692ed3 7341 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7342
7343 /* limit allocation size to 1/16 total memory by default */
7344 if (max == 0) {
7345 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7346 do_div(max, bucketsize);
7347 }
074b8517 7348 max = min(max, 0x80000000ULL);
1da177e4 7349
31fe62b9
TB
7350 if (numentries < low_limit)
7351 numentries = low_limit;
1da177e4
LT
7352 if (numentries > max)
7353 numentries = max;
7354
f0d1b0b3 7355 log2qty = ilog2(numentries);
1da177e4 7356
3749a8f0 7357 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7358 do {
7359 size = bucketsize << log2qty;
ea1f5f37
PT
7360 if (flags & HASH_EARLY) {
7361 if (flags & HASH_ZERO)
7362 table = memblock_virt_alloc_nopanic(size, 0);
7363 else
7364 table = memblock_virt_alloc_raw(size, 0);
7365 } else if (hashdist) {
3749a8f0 7366 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7367 } else {
1037b83b
ED
7368 /*
7369 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7370 * some pages at the end of hash table which
7371 * alloc_pages_exact() automatically does
1037b83b 7372 */
264ef8a9 7373 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7374 table = alloc_pages_exact(size, gfp_flags);
7375 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7376 }
1da177e4
LT
7377 }
7378 } while (!table && size > PAGE_SIZE && --log2qty);
7379
7380 if (!table)
7381 panic("Failed to allocate %s hash table\n", tablename);
7382
1170532b
JP
7383 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7384 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7385
7386 if (_hash_shift)
7387 *_hash_shift = log2qty;
7388 if (_hash_mask)
7389 *_hash_mask = (1 << log2qty) - 1;
7390
7391 return table;
7392}
a117e66e 7393
a5d76b54 7394/*
80934513
MK
7395 * This function checks whether pageblock includes unmovable pages or not.
7396 * If @count is not zero, it is okay to include less @count unmovable pages
7397 *
b8af2941 7398 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7399 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7400 * check without lock_page also may miss some movable non-lru pages at
7401 * race condition. So you can't expect this function should be exact.
a5d76b54 7402 */
b023f468 7403bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7404 int migratetype,
b023f468 7405 bool skip_hwpoisoned_pages)
49ac8255
KH
7406{
7407 unsigned long pfn, iter, found;
47118af0 7408
49ac8255
KH
7409 /*
7410 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7411 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7412 */
7413 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7414 return false;
49ac8255 7415
4da2ce25
MH
7416 /*
7417 * CMA allocations (alloc_contig_range) really need to mark isolate
7418 * CMA pageblocks even when they are not movable in fact so consider
7419 * them movable here.
7420 */
7421 if (is_migrate_cma(migratetype) &&
7422 is_migrate_cma(get_pageblock_migratetype(page)))
7423 return false;
7424
49ac8255
KH
7425 pfn = page_to_pfn(page);
7426 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7427 unsigned long check = pfn + iter;
7428
29723fcc 7429 if (!pfn_valid_within(check))
49ac8255 7430 continue;
29723fcc 7431
49ac8255 7432 page = pfn_to_page(check);
c8721bbb 7433
d7ab3672
MH
7434 if (PageReserved(page))
7435 return true;
7436
c8721bbb
NH
7437 /*
7438 * Hugepages are not in LRU lists, but they're movable.
7439 * We need not scan over tail pages bacause we don't
7440 * handle each tail page individually in migration.
7441 */
7442 if (PageHuge(page)) {
7443 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7444 continue;
7445 }
7446
97d255c8
MK
7447 /*
7448 * We can't use page_count without pin a page
7449 * because another CPU can free compound page.
7450 * This check already skips compound tails of THP
0139aa7b 7451 * because their page->_refcount is zero at all time.
97d255c8 7452 */
fe896d18 7453 if (!page_ref_count(page)) {
49ac8255
KH
7454 if (PageBuddy(page))
7455 iter += (1 << page_order(page)) - 1;
7456 continue;
7457 }
97d255c8 7458
b023f468
WC
7459 /*
7460 * The HWPoisoned page may be not in buddy system, and
7461 * page_count() is not 0.
7462 */
7463 if (skip_hwpoisoned_pages && PageHWPoison(page))
7464 continue;
7465
0efadf48
YX
7466 if (__PageMovable(page))
7467 continue;
7468
49ac8255
KH
7469 if (!PageLRU(page))
7470 found++;
7471 /*
6b4f7799
JW
7472 * If there are RECLAIMABLE pages, we need to check
7473 * it. But now, memory offline itself doesn't call
7474 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7475 */
7476 /*
7477 * If the page is not RAM, page_count()should be 0.
7478 * we don't need more check. This is an _used_ not-movable page.
7479 *
7480 * The problematic thing here is PG_reserved pages. PG_reserved
7481 * is set to both of a memory hole page and a _used_ kernel
7482 * page at boot.
7483 */
7484 if (found > count)
80934513 7485 return true;
49ac8255 7486 }
80934513 7487 return false;
49ac8255
KH
7488}
7489
7490bool is_pageblock_removable_nolock(struct page *page)
7491{
656a0706
MH
7492 struct zone *zone;
7493 unsigned long pfn;
687875fb
MH
7494
7495 /*
7496 * We have to be careful here because we are iterating over memory
7497 * sections which are not zone aware so we might end up outside of
7498 * the zone but still within the section.
656a0706
MH
7499 * We have to take care about the node as well. If the node is offline
7500 * its NODE_DATA will be NULL - see page_zone.
687875fb 7501 */
656a0706
MH
7502 if (!node_online(page_to_nid(page)))
7503 return false;
7504
7505 zone = page_zone(page);
7506 pfn = page_to_pfn(page);
108bcc96 7507 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7508 return false;
7509
4da2ce25 7510 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7511}
0c0e6195 7512
080fe206 7513#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7514
7515static unsigned long pfn_max_align_down(unsigned long pfn)
7516{
7517 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7518 pageblock_nr_pages) - 1);
7519}
7520
7521static unsigned long pfn_max_align_up(unsigned long pfn)
7522{
7523 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7524 pageblock_nr_pages));
7525}
7526
041d3a8c 7527/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7528static int __alloc_contig_migrate_range(struct compact_control *cc,
7529 unsigned long start, unsigned long end)
041d3a8c
MN
7530{
7531 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7532 unsigned long nr_reclaimed;
041d3a8c
MN
7533 unsigned long pfn = start;
7534 unsigned int tries = 0;
7535 int ret = 0;
7536
be49a6e1 7537 migrate_prep();
041d3a8c 7538
bb13ffeb 7539 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7540 if (fatal_signal_pending(current)) {
7541 ret = -EINTR;
7542 break;
7543 }
7544
bb13ffeb
MG
7545 if (list_empty(&cc->migratepages)) {
7546 cc->nr_migratepages = 0;
edc2ca61 7547 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7548 if (!pfn) {
7549 ret = -EINTR;
7550 break;
7551 }
7552 tries = 0;
7553 } else if (++tries == 5) {
7554 ret = ret < 0 ? ret : -EBUSY;
7555 break;
7556 }
7557
beb51eaa
MK
7558 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7559 &cc->migratepages);
7560 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7561
9c620e2b 7562 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7563 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7564 }
2a6f5124
SP
7565 if (ret < 0) {
7566 putback_movable_pages(&cc->migratepages);
7567 return ret;
7568 }
7569 return 0;
041d3a8c
MN
7570}
7571
7572/**
7573 * alloc_contig_range() -- tries to allocate given range of pages
7574 * @start: start PFN to allocate
7575 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7576 * @migratetype: migratetype of the underlaying pageblocks (either
7577 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7578 * in range must have the same migratetype and it must
7579 * be either of the two.
ca96b625 7580 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7581 *
7582 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7583 * aligned, however it's the caller's responsibility to guarantee that
7584 * we are the only thread that changes migrate type of pageblocks the
7585 * pages fall in.
7586 *
7587 * The PFN range must belong to a single zone.
7588 *
7589 * Returns zero on success or negative error code. On success all
7590 * pages which PFN is in [start, end) are allocated for the caller and
7591 * need to be freed with free_contig_range().
7592 */
0815f3d8 7593int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7594 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7595{
041d3a8c 7596 unsigned long outer_start, outer_end;
d00181b9
KS
7597 unsigned int order;
7598 int ret = 0;
041d3a8c 7599
bb13ffeb
MG
7600 struct compact_control cc = {
7601 .nr_migratepages = 0,
7602 .order = -1,
7603 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7604 .mode = MIGRATE_SYNC,
bb13ffeb 7605 .ignore_skip_hint = true,
7dea19f9 7606 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7607 };
7608 INIT_LIST_HEAD(&cc.migratepages);
7609
041d3a8c
MN
7610 /*
7611 * What we do here is we mark all pageblocks in range as
7612 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7613 * have different sizes, and due to the way page allocator
7614 * work, we align the range to biggest of the two pages so
7615 * that page allocator won't try to merge buddies from
7616 * different pageblocks and change MIGRATE_ISOLATE to some
7617 * other migration type.
7618 *
7619 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7620 * migrate the pages from an unaligned range (ie. pages that
7621 * we are interested in). This will put all the pages in
7622 * range back to page allocator as MIGRATE_ISOLATE.
7623 *
7624 * When this is done, we take the pages in range from page
7625 * allocator removing them from the buddy system. This way
7626 * page allocator will never consider using them.
7627 *
7628 * This lets us mark the pageblocks back as
7629 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7630 * aligned range but not in the unaligned, original range are
7631 * put back to page allocator so that buddy can use them.
7632 */
7633
7634 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7635 pfn_max_align_up(end), migratetype,
7636 false);
041d3a8c 7637 if (ret)
86a595f9 7638 return ret;
041d3a8c 7639
8ef5849f
JK
7640 /*
7641 * In case of -EBUSY, we'd like to know which page causes problem.
7642 * So, just fall through. We will check it in test_pages_isolated().
7643 */
bb13ffeb 7644 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7645 if (ret && ret != -EBUSY)
041d3a8c
MN
7646 goto done;
7647
7648 /*
7649 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7650 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7651 * more, all pages in [start, end) are free in page allocator.
7652 * What we are going to do is to allocate all pages from
7653 * [start, end) (that is remove them from page allocator).
7654 *
7655 * The only problem is that pages at the beginning and at the
7656 * end of interesting range may be not aligned with pages that
7657 * page allocator holds, ie. they can be part of higher order
7658 * pages. Because of this, we reserve the bigger range and
7659 * once this is done free the pages we are not interested in.
7660 *
7661 * We don't have to hold zone->lock here because the pages are
7662 * isolated thus they won't get removed from buddy.
7663 */
7664
7665 lru_add_drain_all();
510f5507 7666 drain_all_pages(cc.zone);
041d3a8c
MN
7667
7668 order = 0;
7669 outer_start = start;
7670 while (!PageBuddy(pfn_to_page(outer_start))) {
7671 if (++order >= MAX_ORDER) {
8ef5849f
JK
7672 outer_start = start;
7673 break;
041d3a8c
MN
7674 }
7675 outer_start &= ~0UL << order;
7676 }
7677
8ef5849f
JK
7678 if (outer_start != start) {
7679 order = page_order(pfn_to_page(outer_start));
7680
7681 /*
7682 * outer_start page could be small order buddy page and
7683 * it doesn't include start page. Adjust outer_start
7684 * in this case to report failed page properly
7685 * on tracepoint in test_pages_isolated()
7686 */
7687 if (outer_start + (1UL << order) <= start)
7688 outer_start = start;
7689 }
7690
041d3a8c 7691 /* Make sure the range is really isolated. */
b023f468 7692 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7693 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7694 __func__, outer_start, end);
041d3a8c
MN
7695 ret = -EBUSY;
7696 goto done;
7697 }
7698
49f223a9 7699 /* Grab isolated pages from freelists. */
bb13ffeb 7700 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7701 if (!outer_end) {
7702 ret = -EBUSY;
7703 goto done;
7704 }
7705
7706 /* Free head and tail (if any) */
7707 if (start != outer_start)
7708 free_contig_range(outer_start, start - outer_start);
7709 if (end != outer_end)
7710 free_contig_range(end, outer_end - end);
7711
7712done:
7713 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7714 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7715 return ret;
7716}
7717
7718void free_contig_range(unsigned long pfn, unsigned nr_pages)
7719{
bcc2b02f
MS
7720 unsigned int count = 0;
7721
7722 for (; nr_pages--; pfn++) {
7723 struct page *page = pfn_to_page(pfn);
7724
7725 count += page_count(page) != 1;
7726 __free_page(page);
7727 }
7728 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7729}
7730#endif
7731
4ed7e022 7732#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7733/*
7734 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7735 * page high values need to be recalulated.
7736 */
4ed7e022
JL
7737void __meminit zone_pcp_update(struct zone *zone)
7738{
0a647f38 7739 unsigned cpu;
c8e251fa 7740 mutex_lock(&pcp_batch_high_lock);
0a647f38 7741 for_each_possible_cpu(cpu)
169f6c19
CS
7742 pageset_set_high_and_batch(zone,
7743 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7744 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7745}
7746#endif
7747
340175b7
JL
7748void zone_pcp_reset(struct zone *zone)
7749{
7750 unsigned long flags;
5a883813
MK
7751 int cpu;
7752 struct per_cpu_pageset *pset;
340175b7
JL
7753
7754 /* avoid races with drain_pages() */
7755 local_irq_save(flags);
7756 if (zone->pageset != &boot_pageset) {
5a883813
MK
7757 for_each_online_cpu(cpu) {
7758 pset = per_cpu_ptr(zone->pageset, cpu);
7759 drain_zonestat(zone, pset);
7760 }
340175b7
JL
7761 free_percpu(zone->pageset);
7762 zone->pageset = &boot_pageset;
7763 }
7764 local_irq_restore(flags);
7765}
7766
6dcd73d7 7767#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7768/*
b9eb6319
JK
7769 * All pages in the range must be in a single zone and isolated
7770 * before calling this.
0c0e6195
KH
7771 */
7772void
7773__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7774{
7775 struct page *page;
7776 struct zone *zone;
7aeb09f9 7777 unsigned int order, i;
0c0e6195
KH
7778 unsigned long pfn;
7779 unsigned long flags;
7780 /* find the first valid pfn */
7781 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7782 if (pfn_valid(pfn))
7783 break;
7784 if (pfn == end_pfn)
7785 return;
2d070eab 7786 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7787 zone = page_zone(pfn_to_page(pfn));
7788 spin_lock_irqsave(&zone->lock, flags);
7789 pfn = start_pfn;
7790 while (pfn < end_pfn) {
7791 if (!pfn_valid(pfn)) {
7792 pfn++;
7793 continue;
7794 }
7795 page = pfn_to_page(pfn);
b023f468
WC
7796 /*
7797 * The HWPoisoned page may be not in buddy system, and
7798 * page_count() is not 0.
7799 */
7800 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7801 pfn++;
7802 SetPageReserved(page);
7803 continue;
7804 }
7805
0c0e6195
KH
7806 BUG_ON(page_count(page));
7807 BUG_ON(!PageBuddy(page));
7808 order = page_order(page);
7809#ifdef CONFIG_DEBUG_VM
1170532b
JP
7810 pr_info("remove from free list %lx %d %lx\n",
7811 pfn, 1 << order, end_pfn);
0c0e6195
KH
7812#endif
7813 list_del(&page->lru);
7814 rmv_page_order(page);
7815 zone->free_area[order].nr_free--;
0c0e6195
KH
7816 for (i = 0; i < (1 << order); i++)
7817 SetPageReserved((page+i));
7818 pfn += (1 << order);
7819 }
7820 spin_unlock_irqrestore(&zone->lock, flags);
7821}
7822#endif
8d22ba1b 7823
8d22ba1b
WF
7824bool is_free_buddy_page(struct page *page)
7825{
7826 struct zone *zone = page_zone(page);
7827 unsigned long pfn = page_to_pfn(page);
7828 unsigned long flags;
7aeb09f9 7829 unsigned int order;
8d22ba1b
WF
7830
7831 spin_lock_irqsave(&zone->lock, flags);
7832 for (order = 0; order < MAX_ORDER; order++) {
7833 struct page *page_head = page - (pfn & ((1 << order) - 1));
7834
7835 if (PageBuddy(page_head) && page_order(page_head) >= order)
7836 break;
7837 }
7838 spin_unlock_irqrestore(&zone->lock, flags);
7839
7840 return order < MAX_ORDER;
7841}