]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/page_alloc.c
mm: fix null-ptr-deref in kswapd_is_running()
[mirror_ubuntu-kernels.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
a238ab5b 35#include <linux/ratelimit.h>
5a3135c2 36#include <linux/oom.h>
1da177e4
LT
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
97500a4a 48#include <linux/random.h>
c713216d
MG
49#include <linux/sort.h>
50#include <linux/pfn.h>
3fcfab16 51#include <linux/backing-dev.h>
933e312e 52#include <linux/fault-inject.h>
a5d76b54 53#include <linux/page-isolation.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
f920e413 61#include <linux/mmu_notifier.h>
041d3a8c 62#include <linux/migrate.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
5b3cc15a 65#include <linux/sched/mm.h>
48c96a36 66#include <linux/page_owner.h>
df4e817b 67#include <linux/page_table_check.h>
0e1cc95b 68#include <linux/kthread.h>
4949148a 69#include <linux/memcontrol.h>
42c269c8 70#include <linux/ftrace.h>
d92a8cfc 71#include <linux/lockdep.h>
556b969a 72#include <linux/nmi.h>
eb414681 73#include <linux/psi.h>
e4443149 74#include <linux/padata.h>
4aab2be0 75#include <linux/khugepaged.h>
ba8f3587 76#include <linux/buffer_head.h>
5bf18281 77#include <linux/delayacct.h>
7ee3d4e8 78#include <asm/sections.h>
1da177e4 79#include <asm/tlbflush.h>
ac924c60 80#include <asm/div64.h>
1da177e4 81#include "internal.h"
e900a918 82#include "shuffle.h"
36e66c55 83#include "page_reporting.h"
014bb1de 84#include "swap.h"
1da177e4 85
f04a5d5d
DH
86/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87typedef int __bitwise fpi_t;
88
89/* No special request */
90#define FPI_NONE ((__force fpi_t)0)
91
92/*
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
99 */
100#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
101
47b6a24a
DH
102/*
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
106 *
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
110 * reporting).
111 */
112#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
113
2c335680
AK
114/*
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
122 */
123#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124
c8e251fa
CS
125/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 127#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 128
4b23a68f
MG
129#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
130/*
131 * On SMP, spin_trylock is sufficient protection.
132 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
133 */
134#define pcp_trylock_prepare(flags) do { } while (0)
135#define pcp_trylock_finish(flag) do { } while (0)
136#else
137
138/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139#define pcp_trylock_prepare(flags) local_irq_save(flags)
140#define pcp_trylock_finish(flags) local_irq_restore(flags)
141#endif
142
01b44456
MG
143/*
144 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145 * a migration causing the wrong PCP to be locked and remote memory being
146 * potentially allocated, pin the task to the CPU for the lookup+lock.
147 * preempt_disable is used on !RT because it is faster than migrate_disable.
148 * migrate_disable is used on RT because otherwise RT spinlock usage is
149 * interfered with and a high priority task cannot preempt the allocator.
150 */
151#ifndef CONFIG_PREEMPT_RT
152#define pcpu_task_pin() preempt_disable()
153#define pcpu_task_unpin() preempt_enable()
154#else
155#define pcpu_task_pin() migrate_disable()
156#define pcpu_task_unpin() migrate_enable()
157#endif
c8e251fa 158
01b44456
MG
159/*
160 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161 * Return value should be used with equivalent unlock helper.
162 */
163#define pcpu_spin_lock(type, member, ptr) \
164({ \
165 type *_ret; \
166 pcpu_task_pin(); \
167 _ret = this_cpu_ptr(ptr); \
168 spin_lock(&_ret->member); \
169 _ret; \
170})
171
172#define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
173({ \
174 type *_ret; \
175 pcpu_task_pin(); \
176 _ret = this_cpu_ptr(ptr); \
177 spin_lock_irqsave(&_ret->member, flags); \
178 _ret; \
179})
180
181#define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
182({ \
183 type *_ret; \
184 pcpu_task_pin(); \
185 _ret = this_cpu_ptr(ptr); \
186 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
187 pcpu_task_unpin(); \
188 _ret = NULL; \
189 } \
190 _ret; \
191})
192
193#define pcpu_spin_unlock(member, ptr) \
194({ \
195 spin_unlock(&ptr->member); \
196 pcpu_task_unpin(); \
197})
198
199#define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
200({ \
201 spin_unlock_irqrestore(&ptr->member, flags); \
202 pcpu_task_unpin(); \
203})
204
205/* struct per_cpu_pages specific helpers. */
206#define pcp_spin_lock(ptr) \
207 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
208
209#define pcp_spin_lock_irqsave(ptr, flags) \
210 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
211
212#define pcp_spin_trylock_irqsave(ptr, flags) \
213 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
214
215#define pcp_spin_unlock(ptr) \
216 pcpu_spin_unlock(lock, ptr)
217
218#define pcp_spin_unlock_irqrestore(ptr, flags) \
219 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
72812019
LS
220#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221DEFINE_PER_CPU(int, numa_node);
222EXPORT_PER_CPU_SYMBOL(numa_node);
223#endif
224
4518085e
KW
225DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
226
7aac7898
LS
227#ifdef CONFIG_HAVE_MEMORYLESS_NODES
228/*
229 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232 * defined in <linux/topology.h>.
233 */
234DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
235EXPORT_PER_CPU_SYMBOL(_numa_mem_);
236#endif
237
8b885f53 238static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 239
38addce8 240#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 241volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
242EXPORT_SYMBOL(latent_entropy);
243#endif
244
1da177e4 245/*
13808910 246 * Array of node states.
1da177e4 247 */
13808910
CL
248nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 [N_POSSIBLE] = NODE_MASK_ALL,
250 [N_ONLINE] = { { [0] = 1UL } },
251#ifndef CONFIG_NUMA
252 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
253#ifdef CONFIG_HIGHMEM
254 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 255#endif
20b2f52b 256 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
257 [N_CPU] = { { [0] = 1UL } },
258#endif /* NUMA */
259};
260EXPORT_SYMBOL(node_states);
261
ca79b0c2
AK
262atomic_long_t _totalram_pages __read_mostly;
263EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 264unsigned long totalreserve_pages __read_mostly;
e48322ab 265unsigned long totalcma_pages __read_mostly;
ab8fabd4 266
74f44822 267int percpu_pagelist_high_fraction;
dcce284a 268gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 269DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
270EXPORT_SYMBOL(init_on_alloc);
271
51cba1eb 272DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
273EXPORT_SYMBOL(init_on_free);
274
04013513
VB
275static bool _init_on_alloc_enabled_early __read_mostly
276 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
277static int __init early_init_on_alloc(char *buf)
278{
6471384a 279
04013513 280 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
281}
282early_param("init_on_alloc", early_init_on_alloc);
283
04013513
VB
284static bool _init_on_free_enabled_early __read_mostly
285 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
286static int __init early_init_on_free(char *buf)
287{
04013513 288 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
289}
290early_param("init_on_free", early_init_on_free);
1da177e4 291
bb14c2c7
VB
292/*
293 * A cached value of the page's pageblock's migratetype, used when the page is
294 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296 * Also the migratetype set in the page does not necessarily match the pcplist
297 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298 * other index - this ensures that it will be put on the correct CMA freelist.
299 */
300static inline int get_pcppage_migratetype(struct page *page)
301{
302 return page->index;
303}
304
305static inline void set_pcppage_migratetype(struct page *page, int migratetype)
306{
307 page->index = migratetype;
308}
309
452aa699
RW
310#ifdef CONFIG_PM_SLEEP
311/*
312 * The following functions are used by the suspend/hibernate code to temporarily
313 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
315 * they should always be called with system_transition_mutex held
316 * (gfp_allowed_mask also should only be modified with system_transition_mutex
317 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318 * with that modification).
452aa699 319 */
c9e664f1
RW
320
321static gfp_t saved_gfp_mask;
322
323void pm_restore_gfp_mask(void)
452aa699 324{
55f2503c 325 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
326 if (saved_gfp_mask) {
327 gfp_allowed_mask = saved_gfp_mask;
328 saved_gfp_mask = 0;
329 }
452aa699
RW
330}
331
c9e664f1 332void pm_restrict_gfp_mask(void)
452aa699 333{
55f2503c 334 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
335 WARN_ON(saved_gfp_mask);
336 saved_gfp_mask = gfp_allowed_mask;
d0164adc 337 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 338}
f90ac398
MG
339
340bool pm_suspended_storage(void)
341{
d0164adc 342 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
343 return false;
344 return true;
345}
452aa699
RW
346#endif /* CONFIG_PM_SLEEP */
347
d9c23400 348#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 349unsigned int pageblock_order __read_mostly;
d9c23400
MG
350#endif
351
7fef431b
DH
352static void __free_pages_ok(struct page *page, unsigned int order,
353 fpi_t fpi_flags);
a226f6c8 354
1da177e4
LT
355/*
356 * results with 256, 32 in the lowmem_reserve sysctl:
357 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358 * 1G machine -> (16M dma, 784M normal, 224M high)
359 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 361 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
362 *
363 * TBD: should special case ZONE_DMA32 machines here - in those we normally
364 * don't need any ZONE_NORMAL reservation
1da177e4 365 */
d3cda233 366int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 367#ifdef CONFIG_ZONE_DMA
d3cda233 368 [ZONE_DMA] = 256,
4b51d669 369#endif
fb0e7942 370#ifdef CONFIG_ZONE_DMA32
d3cda233 371 [ZONE_DMA32] = 256,
fb0e7942 372#endif
d3cda233 373 [ZONE_NORMAL] = 32,
e53ef38d 374#ifdef CONFIG_HIGHMEM
d3cda233 375 [ZONE_HIGHMEM] = 0,
e53ef38d 376#endif
d3cda233 377 [ZONE_MOVABLE] = 0,
2f1b6248 378};
1da177e4 379
15ad7cdc 380static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 381#ifdef CONFIG_ZONE_DMA
2f1b6248 382 "DMA",
4b51d669 383#endif
fb0e7942 384#ifdef CONFIG_ZONE_DMA32
2f1b6248 385 "DMA32",
fb0e7942 386#endif
2f1b6248 387 "Normal",
e53ef38d 388#ifdef CONFIG_HIGHMEM
2a1e274a 389 "HighMem",
e53ef38d 390#endif
2a1e274a 391 "Movable",
033fbae9
DW
392#ifdef CONFIG_ZONE_DEVICE
393 "Device",
394#endif
2f1b6248
CL
395};
396
c999fbd3 397const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
398 "Unmovable",
399 "Movable",
400 "Reclaimable",
401 "HighAtomic",
402#ifdef CONFIG_CMA
403 "CMA",
404#endif
405#ifdef CONFIG_MEMORY_ISOLATION
406 "Isolate",
407#endif
408};
409
ae70eddd
AK
410compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 [NULL_COMPOUND_DTOR] = NULL,
412 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 413#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 414 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 415#endif
9a982250 416#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 417 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 418#endif
f1e61557
KS
419};
420
1da177e4 421int min_free_kbytes = 1024;
42aa83cb 422int user_min_free_kbytes = -1;
1c30844d 423int watermark_boost_factor __read_mostly = 15000;
795ae7a0 424int watermark_scale_factor = 10;
1da177e4 425
bbe5d993
OS
426static unsigned long nr_kernel_pages __initdata;
427static unsigned long nr_all_pages __initdata;
428static unsigned long dma_reserve __initdata;
1da177e4 429
bbe5d993
OS
430static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 432static unsigned long required_kernelcore __initdata;
a5c6d650 433static unsigned long required_kernelcore_percent __initdata;
7f16f91f 434static unsigned long required_movablecore __initdata;
a5c6d650 435static unsigned long required_movablecore_percent __initdata;
bbe5d993 436static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
902c2d91 437bool mirrored_kernelcore __initdata_memblock;
0ee332c1
TH
438
439/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
440int movable_zone;
441EXPORT_SYMBOL(movable_zone);
c713216d 442
418508c1 443#if MAX_NUMNODES > 1
b9726c26 444unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 445unsigned int nr_online_nodes __read_mostly = 1;
418508c1 446EXPORT_SYMBOL(nr_node_ids);
62bc62a8 447EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
448#endif
449
9ef9acb0
MG
450int page_group_by_mobility_disabled __read_mostly;
451
3a80a7fa 452#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
453/*
454 * During boot we initialize deferred pages on-demand, as needed, but once
455 * page_alloc_init_late() has finished, the deferred pages are all initialized,
456 * and we can permanently disable that path.
457 */
458static DEFINE_STATIC_KEY_TRUE(deferred_pages);
459
94ae8b83 460static inline bool deferred_pages_enabled(void)
3c0c12cc 461{
94ae8b83 462 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
463}
464
3a80a7fa 465/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 466static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 467{
ef70b6f4
MG
468 int nid = early_pfn_to_nid(pfn);
469
470 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
471 return true;
472
473 return false;
474}
475
476/*
d3035be4 477 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
478 * later in the boot cycle when it can be parallelised.
479 */
d3035be4
PT
480static bool __meminit
481defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 482{
d3035be4
PT
483 static unsigned long prev_end_pfn, nr_initialised;
484
c4f20f14
LZ
485 if (early_page_ext_enabled())
486 return false;
d3035be4
PT
487 /*
488 * prev_end_pfn static that contains the end of previous zone
489 * No need to protect because called very early in boot before smp_init.
490 */
491 if (prev_end_pfn != end_pfn) {
492 prev_end_pfn = end_pfn;
493 nr_initialised = 0;
494 }
495
3c2c6488 496 /* Always populate low zones for address-constrained allocations */
d3035be4 497 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 498 return false;
23b68cfa 499
dc2da7b4
BH
500 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
501 return true;
23b68cfa
WY
502 /*
503 * We start only with one section of pages, more pages are added as
504 * needed until the rest of deferred pages are initialized.
505 */
d3035be4 506 nr_initialised++;
23b68cfa 507 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
508 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
509 NODE_DATA(nid)->first_deferred_pfn = pfn;
510 return true;
3a80a7fa 511 }
d3035be4 512 return false;
3a80a7fa
MG
513}
514#else
94ae8b83 515static inline bool deferred_pages_enabled(void)
2c335680 516{
94ae8b83 517 return false;
2c335680 518}
3c0c12cc 519
3a80a7fa
MG
520static inline bool early_page_uninitialised(unsigned long pfn)
521{
522 return false;
523}
524
d3035be4 525static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 526{
d3035be4 527 return false;
3a80a7fa
MG
528}
529#endif
530
0b423ca2 531/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 532static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
533 unsigned long pfn)
534{
535#ifdef CONFIG_SPARSEMEM
f1eca35a 536 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
537#else
538 return page_zone(page)->pageblock_flags;
539#endif /* CONFIG_SPARSEMEM */
540}
541
ca891f41 542static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
543{
544#ifdef CONFIG_SPARSEMEM
545 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
546#else
547 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 548#endif /* CONFIG_SPARSEMEM */
399b795b 549 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
550}
551
535b81e2 552static __always_inline
ca891f41 553unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 554 unsigned long pfn,
0b423ca2
MG
555 unsigned long mask)
556{
557 unsigned long *bitmap;
558 unsigned long bitidx, word_bitidx;
559 unsigned long word;
560
561 bitmap = get_pageblock_bitmap(page, pfn);
562 bitidx = pfn_to_bitidx(page, pfn);
563 word_bitidx = bitidx / BITS_PER_LONG;
564 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
565 /*
566 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
567 * a consistent read of the memory array, so that results, even though
568 * racy, are not corrupted.
569 */
570 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 571 return (word >> bitidx) & mask;
0b423ca2
MG
572}
573
a00cda3f
MCC
574/**
575 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
576 * @page: The page within the block of interest
577 * @pfn: The target page frame number
578 * @mask: mask of bits that the caller is interested in
579 *
580 * Return: pageblock_bits flags
581 */
ca891f41
MWO
582unsigned long get_pfnblock_flags_mask(const struct page *page,
583 unsigned long pfn, unsigned long mask)
0b423ca2 584{
535b81e2 585 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
586}
587
ca891f41
MWO
588static __always_inline int get_pfnblock_migratetype(const struct page *page,
589 unsigned long pfn)
0b423ca2 590{
535b81e2 591 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
592}
593
594/**
595 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
596 * @page: The page within the block of interest
597 * @flags: The flags to set
598 * @pfn: The target page frame number
0b423ca2
MG
599 * @mask: mask of bits that the caller is interested in
600 */
601void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
602 unsigned long pfn,
0b423ca2
MG
603 unsigned long mask)
604{
605 unsigned long *bitmap;
606 unsigned long bitidx, word_bitidx;
04ec0061 607 unsigned long word;
0b423ca2
MG
608
609 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 610 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
611
612 bitmap = get_pageblock_bitmap(page, pfn);
613 bitidx = pfn_to_bitidx(page, pfn);
614 word_bitidx = bitidx / BITS_PER_LONG;
615 bitidx &= (BITS_PER_LONG-1);
616
617 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
618
d93d5ab9
WY
619 mask <<= bitidx;
620 flags <<= bitidx;
0b423ca2
MG
621
622 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
623 do {
624 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 625}
3a80a7fa 626
ee6f509c 627void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 628{
5d0f3f72
KM
629 if (unlikely(page_group_by_mobility_disabled &&
630 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
631 migratetype = MIGRATE_UNMOVABLE;
632
d93d5ab9 633 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 634 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
635}
636
13e7444b 637#ifdef CONFIG_DEBUG_VM
c6a57e19 638static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 639{
bdc8cb98
DH
640 int ret = 0;
641 unsigned seq;
642 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 643 unsigned long sp, start_pfn;
c6a57e19 644
bdc8cb98
DH
645 do {
646 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
647 start_pfn = zone->zone_start_pfn;
648 sp = zone->spanned_pages;
108bcc96 649 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
650 ret = 1;
651 } while (zone_span_seqretry(zone, seq));
652
b5e6a5a2 653 if (ret)
613813e8
DH
654 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
655 pfn, zone_to_nid(zone), zone->name,
656 start_pfn, start_pfn + sp);
b5e6a5a2 657
bdc8cb98 658 return ret;
c6a57e19
DH
659}
660
661static int page_is_consistent(struct zone *zone, struct page *page)
662{
1da177e4 663 if (zone != page_zone(page))
c6a57e19
DH
664 return 0;
665
666 return 1;
667}
668/*
669 * Temporary debugging check for pages not lying within a given zone.
670 */
d73d3c9f 671static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
672{
673 if (page_outside_zone_boundaries(zone, page))
1da177e4 674 return 1;
c6a57e19
DH
675 if (!page_is_consistent(zone, page))
676 return 1;
677
1da177e4
LT
678 return 0;
679}
13e7444b 680#else
d73d3c9f 681static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
682{
683 return 0;
684}
685#endif
686
82a3241a 687static void bad_page(struct page *page, const char *reason)
1da177e4 688{
d936cf9b
HD
689 static unsigned long resume;
690 static unsigned long nr_shown;
691 static unsigned long nr_unshown;
692
693 /*
694 * Allow a burst of 60 reports, then keep quiet for that minute;
695 * or allow a steady drip of one report per second.
696 */
697 if (nr_shown == 60) {
698 if (time_before(jiffies, resume)) {
699 nr_unshown++;
700 goto out;
701 }
702 if (nr_unshown) {
ff8e8116 703 pr_alert(
1e9e6365 704 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
705 nr_unshown);
706 nr_unshown = 0;
707 }
708 nr_shown = 0;
709 }
710 if (nr_shown++ == 0)
711 resume = jiffies + 60 * HZ;
712
ff8e8116 713 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 714 current->comm, page_to_pfn(page));
d2f07ec0 715 dump_page(page, reason);
3dc14741 716
4f31888c 717 print_modules();
1da177e4 718 dump_stack();
d936cf9b 719out:
8cc3b392 720 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 721 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 722 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
723}
724
44042b44
MG
725static inline unsigned int order_to_pindex(int migratetype, int order)
726{
727 int base = order;
728
729#ifdef CONFIG_TRANSPARENT_HUGEPAGE
730 if (order > PAGE_ALLOC_COSTLY_ORDER) {
731 VM_BUG_ON(order != pageblock_order);
5d0a661d 732 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
733 }
734#else
735 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
736#endif
737
738 return (MIGRATE_PCPTYPES * base) + migratetype;
739}
740
741static inline int pindex_to_order(unsigned int pindex)
742{
743 int order = pindex / MIGRATE_PCPTYPES;
744
745#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 746 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 747 order = pageblock_order;
44042b44
MG
748#else
749 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
750#endif
751
752 return order;
753}
754
755static inline bool pcp_allowed_order(unsigned int order)
756{
757 if (order <= PAGE_ALLOC_COSTLY_ORDER)
758 return true;
759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 if (order == pageblock_order)
761 return true;
762#endif
763 return false;
764}
765
21d02f8f
MG
766static inline void free_the_page(struct page *page, unsigned int order)
767{
44042b44
MG
768 if (pcp_allowed_order(order)) /* Via pcp? */
769 free_unref_page(page, order);
21d02f8f
MG
770 else
771 __free_pages_ok(page, order, FPI_NONE);
772}
773
1da177e4
LT
774/*
775 * Higher-order pages are called "compound pages". They are structured thusly:
776 *
1d798ca3 777 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 778 *
1d798ca3
KS
779 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
780 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 781 *
1d798ca3
KS
782 * The first tail page's ->compound_dtor holds the offset in array of compound
783 * page destructors. See compound_page_dtors.
1da177e4 784 *
1d798ca3 785 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 786 * This usage means that zero-order pages may not be compound.
1da177e4 787 */
d98c7a09 788
9a982250 789void free_compound_page(struct page *page)
d98c7a09 790{
bbc6b703 791 mem_cgroup_uncharge(page_folio(page));
44042b44 792 free_the_page(page, compound_order(page));
d98c7a09
HD
793}
794
5b24eeef
JM
795static void prep_compound_head(struct page *page, unsigned int order)
796{
797 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
798 set_compound_order(page, order);
799 atomic_set(compound_mapcount_ptr(page), -1);
5232c63f 800 atomic_set(compound_pincount_ptr(page), 0);
5b24eeef
JM
801}
802
803static void prep_compound_tail(struct page *head, int tail_idx)
804{
805 struct page *p = head + tail_idx;
806
807 p->mapping = TAIL_MAPPING;
808 set_compound_head(p, head);
809}
810
d00181b9 811void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
812{
813 int i;
814 int nr_pages = 1 << order;
815
18229df5 816 __SetPageHead(page);
5b24eeef
JM
817 for (i = 1; i < nr_pages; i++)
818 prep_compound_tail(page, i);
1378a5ee 819
5b24eeef 820 prep_compound_head(page, order);
18229df5
AW
821}
822
5375336c
MWO
823void destroy_large_folio(struct folio *folio)
824{
825 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
826
827 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
828 compound_page_dtors[dtor](&folio->page);
829}
830
c0a32fc5
SG
831#ifdef CONFIG_DEBUG_PAGEALLOC
832unsigned int _debug_guardpage_minorder;
96a2b03f 833
8e57f8ac
VB
834bool _debug_pagealloc_enabled_early __read_mostly
835 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
836EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 837DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 838EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
839
840DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 841
031bc574
JK
842static int __init early_debug_pagealloc(char *buf)
843{
8e57f8ac 844 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
845}
846early_param("debug_pagealloc", early_debug_pagealloc);
847
c0a32fc5
SG
848static int __init debug_guardpage_minorder_setup(char *buf)
849{
850 unsigned long res;
851
852 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 853 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
854 return 0;
855 }
856 _debug_guardpage_minorder = res;
1170532b 857 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
858 return 0;
859}
f1c1e9f7 860early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 861
acbc15a4 862static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 863 unsigned int order, int migratetype)
c0a32fc5 864{
e30825f1 865 if (!debug_guardpage_enabled())
acbc15a4
JK
866 return false;
867
868 if (order >= debug_guardpage_minorder())
869 return false;
e30825f1 870
3972f6bb 871 __SetPageGuard(page);
bf75f200 872 INIT_LIST_HEAD(&page->buddy_list);
2847cf95
JK
873 set_page_private(page, order);
874 /* Guard pages are not available for any usage */
875 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
876
877 return true;
c0a32fc5
SG
878}
879
2847cf95
JK
880static inline void clear_page_guard(struct zone *zone, struct page *page,
881 unsigned int order, int migratetype)
c0a32fc5 882{
e30825f1
JK
883 if (!debug_guardpage_enabled())
884 return;
885
3972f6bb 886 __ClearPageGuard(page);
e30825f1 887
2847cf95
JK
888 set_page_private(page, 0);
889 if (!is_migrate_isolate(migratetype))
890 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
891}
892#else
acbc15a4
JK
893static inline bool set_page_guard(struct zone *zone, struct page *page,
894 unsigned int order, int migratetype) { return false; }
2847cf95
JK
895static inline void clear_page_guard(struct zone *zone, struct page *page,
896 unsigned int order, int migratetype) {}
c0a32fc5
SG
897#endif
898
04013513
VB
899/*
900 * Enable static keys related to various memory debugging and hardening options.
901 * Some override others, and depend on early params that are evaluated in the
902 * order of appearance. So we need to first gather the full picture of what was
903 * enabled, and then make decisions.
904 */
905void init_mem_debugging_and_hardening(void)
906{
9df65f52
ST
907 bool page_poisoning_requested = false;
908
909#ifdef CONFIG_PAGE_POISONING
910 /*
911 * Page poisoning is debug page alloc for some arches. If
912 * either of those options are enabled, enable poisoning.
913 */
914 if (page_poisoning_enabled() ||
915 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
916 debug_pagealloc_enabled())) {
917 static_branch_enable(&_page_poisoning_enabled);
918 page_poisoning_requested = true;
919 }
920#endif
921
69e5d322
ST
922 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
923 page_poisoning_requested) {
924 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
925 "will take precedence over init_on_alloc and init_on_free\n");
926 _init_on_alloc_enabled_early = false;
927 _init_on_free_enabled_early = false;
04013513
VB
928 }
929
69e5d322
ST
930 if (_init_on_alloc_enabled_early)
931 static_branch_enable(&init_on_alloc);
932 else
933 static_branch_disable(&init_on_alloc);
934
935 if (_init_on_free_enabled_early)
936 static_branch_enable(&init_on_free);
937 else
938 static_branch_disable(&init_on_free);
939
04013513
VB
940#ifdef CONFIG_DEBUG_PAGEALLOC
941 if (!debug_pagealloc_enabled())
942 return;
943
944 static_branch_enable(&_debug_pagealloc_enabled);
945
946 if (!debug_guardpage_minorder())
947 return;
948
949 static_branch_enable(&_debug_guardpage_enabled);
950#endif
951}
952
ab130f91 953static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 954{
4c21e2f2 955 set_page_private(page, order);
676165a8 956 __SetPageBuddy(page);
1da177e4
LT
957}
958
5e1f0f09
MG
959#ifdef CONFIG_COMPACTION
960static inline struct capture_control *task_capc(struct zone *zone)
961{
962 struct capture_control *capc = current->capture_control;
963
deba0487 964 return unlikely(capc) &&
5e1f0f09
MG
965 !(current->flags & PF_KTHREAD) &&
966 !capc->page &&
deba0487 967 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
968}
969
970static inline bool
971compaction_capture(struct capture_control *capc, struct page *page,
972 int order, int migratetype)
973{
974 if (!capc || order != capc->cc->order)
975 return false;
976
977 /* Do not accidentally pollute CMA or isolated regions*/
978 if (is_migrate_cma(migratetype) ||
979 is_migrate_isolate(migratetype))
980 return false;
981
982 /*
f0953a1b 983 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
984 * This might let an unmovable request use a reclaimable pageblock
985 * and vice-versa but no more than normal fallback logic which can
986 * have trouble finding a high-order free page.
987 */
988 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
989 return false;
990
991 capc->page = page;
992 return true;
993}
994
995#else
996static inline struct capture_control *task_capc(struct zone *zone)
997{
998 return NULL;
999}
1000
1001static inline bool
1002compaction_capture(struct capture_control *capc, struct page *page,
1003 int order, int migratetype)
1004{
1005 return false;
1006}
1007#endif /* CONFIG_COMPACTION */
1008
6ab01363
AD
1009/* Used for pages not on another list */
1010static inline void add_to_free_list(struct page *page, struct zone *zone,
1011 unsigned int order, int migratetype)
1012{
1013 struct free_area *area = &zone->free_area[order];
1014
bf75f200 1015 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1016 area->nr_free++;
1017}
1018
1019/* Used for pages not on another list */
1020static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1021 unsigned int order, int migratetype)
1022{
1023 struct free_area *area = &zone->free_area[order];
1024
bf75f200 1025 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1026 area->nr_free++;
1027}
1028
293ffa5e
DH
1029/*
1030 * Used for pages which are on another list. Move the pages to the tail
1031 * of the list - so the moved pages won't immediately be considered for
1032 * allocation again (e.g., optimization for memory onlining).
1033 */
6ab01363
AD
1034static inline void move_to_free_list(struct page *page, struct zone *zone,
1035 unsigned int order, int migratetype)
1036{
1037 struct free_area *area = &zone->free_area[order];
1038
bf75f200 1039 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1040}
1041
1042static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1043 unsigned int order)
1044{
36e66c55
AD
1045 /* clear reported state and update reported page count */
1046 if (page_reported(page))
1047 __ClearPageReported(page);
1048
bf75f200 1049 list_del(&page->buddy_list);
6ab01363
AD
1050 __ClearPageBuddy(page);
1051 set_page_private(page, 0);
1052 zone->free_area[order].nr_free--;
1053}
1054
a2129f24
AD
1055/*
1056 * If this is not the largest possible page, check if the buddy
1057 * of the next-highest order is free. If it is, it's possible
1058 * that pages are being freed that will coalesce soon. In case,
1059 * that is happening, add the free page to the tail of the list
1060 * so it's less likely to be used soon and more likely to be merged
1061 * as a higher order page
1062 */
1063static inline bool
1064buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1065 struct page *page, unsigned int order)
1066{
8170ac47
ZY
1067 unsigned long higher_page_pfn;
1068 struct page *higher_page;
a2129f24
AD
1069
1070 if (order >= MAX_ORDER - 2)
1071 return false;
1072
8170ac47
ZY
1073 higher_page_pfn = buddy_pfn & pfn;
1074 higher_page = page + (higher_page_pfn - pfn);
a2129f24 1075
8170ac47
ZY
1076 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1077 NULL) != NULL;
a2129f24
AD
1078}
1079
1da177e4
LT
1080/*
1081 * Freeing function for a buddy system allocator.
1082 *
1083 * The concept of a buddy system is to maintain direct-mapped table
1084 * (containing bit values) for memory blocks of various "orders".
1085 * The bottom level table contains the map for the smallest allocatable
1086 * units of memory (here, pages), and each level above it describes
1087 * pairs of units from the levels below, hence, "buddies".
1088 * At a high level, all that happens here is marking the table entry
1089 * at the bottom level available, and propagating the changes upward
1090 * as necessary, plus some accounting needed to play nicely with other
1091 * parts of the VM system.
1092 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1093 * free pages of length of (1 << order) and marked with PageBuddy.
1094 * Page's order is recorded in page_private(page) field.
1da177e4 1095 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1096 * other. That is, if we allocate a small block, and both were
1097 * free, the remainder of the region must be split into blocks.
1da177e4 1098 * If a block is freed, and its buddy is also free, then this
5f63b720 1099 * triggers coalescing into a block of larger size.
1da177e4 1100 *
6d49e352 1101 * -- nyc
1da177e4
LT
1102 */
1103
48db57f8 1104static inline void __free_one_page(struct page *page,
dc4b0caf 1105 unsigned long pfn,
ed0ae21d 1106 struct zone *zone, unsigned int order,
f04a5d5d 1107 int migratetype, fpi_t fpi_flags)
1da177e4 1108{
a2129f24 1109 struct capture_control *capc = task_capc(zone);
3f649ab7 1110 unsigned long buddy_pfn;
a2129f24 1111 unsigned long combined_pfn;
a2129f24
AD
1112 struct page *buddy;
1113 bool to_tail;
d9dddbf5 1114
d29bb978 1115 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1116 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1117
ed0ae21d 1118 VM_BUG_ON(migratetype == -1);
d9dddbf5 1119 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1120 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1121
76741e77 1122 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1123 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1124
bb0e28eb 1125 while (order < MAX_ORDER - 1) {
5e1f0f09
MG
1126 if (compaction_capture(capc, page, order, migratetype)) {
1127 __mod_zone_freepage_state(zone, -(1 << order),
1128 migratetype);
1129 return;
1130 }
13ad59df 1131
8170ac47
ZY
1132 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1133 if (!buddy)
d9dddbf5 1134 goto done_merging;
bb0e28eb
ZY
1135
1136 if (unlikely(order >= pageblock_order)) {
1137 /*
1138 * We want to prevent merge between freepages on pageblock
1139 * without fallbacks and normal pageblock. Without this,
1140 * pageblock isolation could cause incorrect freepage or CMA
1141 * accounting or HIGHATOMIC accounting.
1142 */
1143 int buddy_mt = get_pageblock_migratetype(buddy);
1144
1145 if (migratetype != buddy_mt
1146 && (!migratetype_is_mergeable(migratetype) ||
1147 !migratetype_is_mergeable(buddy_mt)))
1148 goto done_merging;
1149 }
1150
c0a32fc5
SG
1151 /*
1152 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1153 * merge with it and move up one order.
1154 */
b03641af 1155 if (page_is_guard(buddy))
2847cf95 1156 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1157 else
6ab01363 1158 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1159 combined_pfn = buddy_pfn & pfn;
1160 page = page + (combined_pfn - pfn);
1161 pfn = combined_pfn;
1da177e4
LT
1162 order++;
1163 }
d9dddbf5
VB
1164
1165done_merging:
ab130f91 1166 set_buddy_order(page, order);
6dda9d55 1167
47b6a24a
DH
1168 if (fpi_flags & FPI_TO_TAIL)
1169 to_tail = true;
1170 else if (is_shuffle_order(order))
a2129f24 1171 to_tail = shuffle_pick_tail();
97500a4a 1172 else
a2129f24 1173 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1174
a2129f24 1175 if (to_tail)
6ab01363 1176 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1177 else
6ab01363 1178 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1179
1180 /* Notify page reporting subsystem of freed page */
f04a5d5d 1181 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1182 page_reporting_notify_free(order);
1da177e4
LT
1183}
1184
b2c9e2fb
ZY
1185/**
1186 * split_free_page() -- split a free page at split_pfn_offset
1187 * @free_page: the original free page
1188 * @order: the order of the page
1189 * @split_pfn_offset: split offset within the page
1190 *
86d28b07
ZY
1191 * Return -ENOENT if the free page is changed, otherwise 0
1192 *
b2c9e2fb
ZY
1193 * It is used when the free page crosses two pageblocks with different migratetypes
1194 * at split_pfn_offset within the page. The split free page will be put into
1195 * separate migratetype lists afterwards. Otherwise, the function achieves
1196 * nothing.
1197 */
86d28b07
ZY
1198int split_free_page(struct page *free_page,
1199 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
1200{
1201 struct zone *zone = page_zone(free_page);
1202 unsigned long free_page_pfn = page_to_pfn(free_page);
1203 unsigned long pfn;
1204 unsigned long flags;
1205 int free_page_order;
86d28b07
ZY
1206 int mt;
1207 int ret = 0;
b2c9e2fb 1208
88ee1343 1209 if (split_pfn_offset == 0)
86d28b07 1210 return ret;
88ee1343 1211
b2c9e2fb 1212 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
1213
1214 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1215 ret = -ENOENT;
1216 goto out;
1217 }
1218
1219 mt = get_pageblock_migratetype(free_page);
1220 if (likely(!is_migrate_isolate(mt)))
1221 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1222
b2c9e2fb
ZY
1223 del_page_from_free_list(free_page, zone, order);
1224 for (pfn = free_page_pfn;
1225 pfn < free_page_pfn + (1UL << order);) {
1226 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1227
86d28b07 1228 free_page_order = min_t(unsigned int,
88ee1343
ZY
1229 pfn ? __ffs(pfn) : order,
1230 __fls(split_pfn_offset));
b2c9e2fb
ZY
1231 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1232 mt, FPI_NONE);
1233 pfn += 1UL << free_page_order;
1234 split_pfn_offset -= (1UL << free_page_order);
1235 /* we have done the first part, now switch to second part */
1236 if (split_pfn_offset == 0)
1237 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1238 }
86d28b07 1239out:
b2c9e2fb 1240 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 1241 return ret;
b2c9e2fb 1242}
7bfec6f4
MG
1243/*
1244 * A bad page could be due to a number of fields. Instead of multiple branches,
1245 * try and check multiple fields with one check. The caller must do a detailed
1246 * check if necessary.
1247 */
1248static inline bool page_expected_state(struct page *page,
1249 unsigned long check_flags)
1250{
1251 if (unlikely(atomic_read(&page->_mapcount) != -1))
1252 return false;
1253
1254 if (unlikely((unsigned long)page->mapping |
1255 page_ref_count(page) |
1256#ifdef CONFIG_MEMCG
48060834 1257 page->memcg_data |
7bfec6f4
MG
1258#endif
1259 (page->flags & check_flags)))
1260 return false;
1261
1262 return true;
1263}
1264
58b7f119 1265static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1266{
82a3241a 1267 const char *bad_reason = NULL;
f0b791a3 1268
53f9263b 1269 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1270 bad_reason = "nonzero mapcount";
1271 if (unlikely(page->mapping != NULL))
1272 bad_reason = "non-NULL mapping";
fe896d18 1273 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1274 bad_reason = "nonzero _refcount";
58b7f119
WY
1275 if (unlikely(page->flags & flags)) {
1276 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1277 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1278 else
1279 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1280 }
9edad6ea 1281#ifdef CONFIG_MEMCG
48060834 1282 if (unlikely(page->memcg_data))
9edad6ea
JW
1283 bad_reason = "page still charged to cgroup";
1284#endif
58b7f119
WY
1285 return bad_reason;
1286}
1287
1288static void check_free_page_bad(struct page *page)
1289{
1290 bad_page(page,
1291 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1292}
1293
534fe5e3 1294static inline int check_free_page(struct page *page)
bb552ac6 1295{
da838d4f 1296 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1297 return 0;
bb552ac6
MG
1298
1299 /* Something has gone sideways, find it */
0d0c48a2 1300 check_free_page_bad(page);
7bfec6f4 1301 return 1;
1da177e4
LT
1302}
1303
4db7548c
MG
1304static int free_tail_pages_check(struct page *head_page, struct page *page)
1305{
1306 int ret = 1;
1307
1308 /*
1309 * We rely page->lru.next never has bit 0 set, unless the page
1310 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1311 */
1312 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1313
1314 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1315 ret = 0;
1316 goto out;
1317 }
1318 switch (page - head_page) {
1319 case 1:
4da1984e 1320 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1321 if (unlikely(compound_mapcount(page))) {
82a3241a 1322 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1323 goto out;
1324 }
1325 break;
1326 case 2:
1327 /*
1328 * the second tail page: ->mapping is
fa3015b7 1329 * deferred_list.next -- ignore value.
4db7548c
MG
1330 */
1331 break;
1332 default:
1333 if (page->mapping != TAIL_MAPPING) {
82a3241a 1334 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1335 goto out;
1336 }
1337 break;
1338 }
1339 if (unlikely(!PageTail(page))) {
82a3241a 1340 bad_page(page, "PageTail not set");
4db7548c
MG
1341 goto out;
1342 }
1343 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1344 bad_page(page, "compound_head not consistent");
4db7548c
MG
1345 goto out;
1346 }
1347 ret = 0;
1348out:
1349 page->mapping = NULL;
1350 clear_compound_head(page);
1351 return ret;
1352}
1353
94ae8b83
AK
1354/*
1355 * Skip KASAN memory poisoning when either:
1356 *
1357 * 1. Deferred memory initialization has not yet completed,
1358 * see the explanation below.
1359 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1360 * see the comment next to it.
1361 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1362 * see the comment next to it.
1363 *
1364 * Poisoning pages during deferred memory init will greatly lengthen the
1365 * process and cause problem in large memory systems as the deferred pages
1366 * initialization is done with interrupt disabled.
1367 *
1368 * Assuming that there will be no reference to those newly initialized
1369 * pages before they are ever allocated, this should have no effect on
1370 * KASAN memory tracking as the poison will be properly inserted at page
1371 * allocation time. The only corner case is when pages are allocated by
1372 * on-demand allocation and then freed again before the deferred pages
1373 * initialization is done, but this is not likely to happen.
1374 */
1375static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1376{
1377 return deferred_pages_enabled() ||
1378 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1379 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1380 PageSkipKASanPoison(page);
1381}
1382
aeaec8e2 1383static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1384{
1385 int i;
1386
9e15afa5
QC
1387 /* s390's use of memset() could override KASAN redzones. */
1388 kasan_disable_current();
d9da8f6c
AK
1389 for (i = 0; i < numpages; i++)
1390 clear_highpage_kasan_tagged(page + i);
9e15afa5 1391 kasan_enable_current();
6471384a
AP
1392}
1393
e2769dbd 1394static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1395 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1396{
e2769dbd 1397 int bad = 0;
c3525330 1398 bool init = want_init_on_free();
4db7548c 1399
4db7548c
MG
1400 VM_BUG_ON_PAGE(PageTail(page), page);
1401
e2769dbd 1402 trace_mm_page_free(page, order);
e2769dbd 1403
79f5f8fa
OS
1404 if (unlikely(PageHWPoison(page)) && !order) {
1405 /*
1406 * Do not let hwpoison pages hit pcplists/buddy
1407 * Untie memcg state and reset page's owner
1408 */
18b2db3b 1409 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1410 __memcg_kmem_uncharge_page(page, order);
1411 reset_page_owner(page, order);
df4e817b 1412 page_table_check_free(page, order);
79f5f8fa
OS
1413 return false;
1414 }
1415
e2769dbd
MG
1416 /*
1417 * Check tail pages before head page information is cleared to
1418 * avoid checking PageCompound for order-0 pages.
1419 */
1420 if (unlikely(order)) {
1421 bool compound = PageCompound(page);
1422 int i;
1423
1424 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1425
eac96c3e 1426 if (compound) {
9a73f61b 1427 ClearPageDoubleMap(page);
eac96c3e
YS
1428 ClearPageHasHWPoisoned(page);
1429 }
e2769dbd
MG
1430 for (i = 1; i < (1 << order); i++) {
1431 if (compound)
1432 bad += free_tail_pages_check(page, page + i);
534fe5e3 1433 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1434 bad++;
1435 continue;
1436 }
1437 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1438 }
1439 }
bda807d4 1440 if (PageMappingFlags(page))
4db7548c 1441 page->mapping = NULL;
18b2db3b 1442 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1443 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1444 if (check_free)
534fe5e3 1445 bad += check_free_page(page);
e2769dbd
MG
1446 if (bad)
1447 return false;
4db7548c 1448
e2769dbd
MG
1449 page_cpupid_reset_last(page);
1450 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1451 reset_page_owner(page, order);
df4e817b 1452 page_table_check_free(page, order);
4db7548c
MG
1453
1454 if (!PageHighMem(page)) {
1455 debug_check_no_locks_freed(page_address(page),
e2769dbd 1456 PAGE_SIZE << order);
4db7548c 1457 debug_check_no_obj_freed(page_address(page),
e2769dbd 1458 PAGE_SIZE << order);
4db7548c 1459 }
6471384a 1460
8db26a3d
VB
1461 kernel_poison_pages(page, 1 << order);
1462
f9d79e8d 1463 /*
1bb5eab3 1464 * As memory initialization might be integrated into KASAN,
7c13c163 1465 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1466 * kept together to avoid discrepancies in behavior.
1467 *
f9d79e8d
AK
1468 * With hardware tag-based KASAN, memory tags must be set before the
1469 * page becomes unavailable via debug_pagealloc or arch_free_page.
1470 */
487a32ec 1471 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1472 kasan_poison_pages(page, order, init);
f9d79e8d 1473
db8a0477
AK
1474 /* Memory is already initialized if KASAN did it internally. */
1475 if (kasan_has_integrated_init())
1476 init = false;
1477 }
1478 if (init)
aeaec8e2 1479 kernel_init_pages(page, 1 << order);
db8a0477 1480
234fdce8
QC
1481 /*
1482 * arch_free_page() can make the page's contents inaccessible. s390
1483 * does this. So nothing which can access the page's contents should
1484 * happen after this.
1485 */
1486 arch_free_page(page, order);
1487
77bc7fd6 1488 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1489
4db7548c
MG
1490 return true;
1491}
1492
e2769dbd 1493#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1494/*
1495 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1496 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1497 * moved from pcp lists to free lists.
1498 */
44042b44 1499static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1500{
44042b44 1501 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1502}
1503
4462b32c 1504static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1505{
8e57f8ac 1506 if (debug_pagealloc_enabled_static())
534fe5e3 1507 return check_free_page(page);
4462b32c
VB
1508 else
1509 return false;
e2769dbd
MG
1510}
1511#else
4462b32c
VB
1512/*
1513 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1514 * moving from pcp lists to free list in order to reduce overhead. With
1515 * debug_pagealloc enabled, they are checked also immediately when being freed
1516 * to the pcp lists.
1517 */
44042b44 1518static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1519{
8e57f8ac 1520 if (debug_pagealloc_enabled_static())
44042b44 1521 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1522 else
44042b44 1523 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1524}
1525
4db7548c
MG
1526static bool bulkfree_pcp_prepare(struct page *page)
1527{
534fe5e3 1528 return check_free_page(page);
4db7548c
MG
1529}
1530#endif /* CONFIG_DEBUG_VM */
1531
1da177e4 1532/*
5f8dcc21 1533 * Frees a number of pages from the PCP lists
7cba630b 1534 * Assumes all pages on list are in same zone.
207f36ee 1535 * count is the number of pages to free.
1da177e4 1536 */
5f8dcc21 1537static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1538 struct per_cpu_pages *pcp,
1539 int pindex)
1da177e4 1540{
35b6d770
MG
1541 int min_pindex = 0;
1542 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1543 unsigned int order;
3777999d 1544 bool isolated_pageblocks;
8b10b465 1545 struct page *page;
f2260e6b 1546
88e8ac11
CTR
1547 /*
1548 * Ensure proper count is passed which otherwise would stuck in the
1549 * below while (list_empty(list)) loop.
1550 */
1551 count = min(pcp->count, count);
d61372bc
MG
1552
1553 /* Ensure requested pindex is drained first. */
1554 pindex = pindex - 1;
1555
01b44456 1556 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
8b10b465
MG
1557 spin_lock(&zone->lock);
1558 isolated_pageblocks = has_isolate_pageblock(zone);
1559
44042b44 1560 while (count > 0) {
5f8dcc21 1561 struct list_head *list;
fd56eef2 1562 int nr_pages;
5f8dcc21 1563
fd56eef2 1564 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1565 do {
35b6d770
MG
1566 if (++pindex > max_pindex)
1567 pindex = min_pindex;
44042b44 1568 list = &pcp->lists[pindex];
35b6d770
MG
1569 if (!list_empty(list))
1570 break;
1571
1572 if (pindex == max_pindex)
1573 max_pindex--;
1574 if (pindex == min_pindex)
1575 min_pindex++;
1576 } while (1);
48db57f8 1577
44042b44 1578 order = pindex_to_order(pindex);
fd56eef2 1579 nr_pages = 1 << order;
44042b44 1580 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1581 do {
8b10b465
MG
1582 int mt;
1583
bf75f200 1584 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1585 mt = get_pcppage_migratetype(page);
1586
0a5f4e5b 1587 /* must delete to avoid corrupting pcp list */
bf75f200 1588 list_del(&page->pcp_list);
fd56eef2
MG
1589 count -= nr_pages;
1590 pcp->count -= nr_pages;
aa016d14 1591
4db7548c
MG
1592 if (bulkfree_pcp_prepare(page))
1593 continue;
1594
8b10b465
MG
1595 /* MIGRATE_ISOLATE page should not go to pcplists */
1596 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1597 /* Pageblock could have been isolated meanwhile */
1598 if (unlikely(isolated_pageblocks))
1599 mt = get_pageblock_migratetype(page);
0a5f4e5b 1600
8b10b465
MG
1601 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1602 trace_mm_page_pcpu_drain(page, order, mt);
1603 } while (count > 0 && !list_empty(list));
0a5f4e5b 1604 }
8b10b465 1605
d34b0733 1606 spin_unlock(&zone->lock);
1da177e4
LT
1607}
1608
dc4b0caf
MG
1609static void free_one_page(struct zone *zone,
1610 struct page *page, unsigned long pfn,
7aeb09f9 1611 unsigned int order,
7fef431b 1612 int migratetype, fpi_t fpi_flags)
1da177e4 1613{
df1acc85
MG
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1617 if (unlikely(has_isolate_pageblock(zone) ||
1618 is_migrate_isolate(migratetype))) {
1619 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1620 }
7fef431b 1621 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1622 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1623}
1624
1e8ce83c 1625static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1626 unsigned long zone, int nid)
1e8ce83c 1627{
d0dc12e8 1628 mm_zero_struct_page(page);
1e8ce83c 1629 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1630 init_page_count(page);
1631 page_mapcount_reset(page);
1632 page_cpupid_reset_last(page);
2813b9c0 1633 page_kasan_tag_reset(page);
1e8ce83c 1634
1e8ce83c
RH
1635 INIT_LIST_HEAD(&page->lru);
1636#ifdef WANT_PAGE_VIRTUAL
1637 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1638 if (!is_highmem_idx(zone))
1639 set_page_address(page, __va(pfn << PAGE_SHIFT));
1640#endif
1641}
1642
7e18adb4 1643#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1644static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1645{
1646 pg_data_t *pgdat;
1647 int nid, zid;
1648
1649 if (!early_page_uninitialised(pfn))
1650 return;
1651
1652 nid = early_pfn_to_nid(pfn);
1653 pgdat = NODE_DATA(nid);
1654
1655 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 struct zone *zone = &pgdat->node_zones[zid];
1657
86fb05b9 1658 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1659 break;
1660 }
d0dc12e8 1661 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1662}
1663#else
1664static inline void init_reserved_page(unsigned long pfn)
1665{
1666}
1667#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1668
92923ca3
NZ
1669/*
1670 * Initialised pages do not have PageReserved set. This function is
1671 * called for each range allocated by the bootmem allocator and
1672 * marks the pages PageReserved. The remaining valid pages are later
1673 * sent to the buddy page allocator.
1674 */
4b50bcc7 1675void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1676{
1677 unsigned long start_pfn = PFN_DOWN(start);
1678 unsigned long end_pfn = PFN_UP(end);
1679
7e18adb4
MG
1680 for (; start_pfn < end_pfn; start_pfn++) {
1681 if (pfn_valid(start_pfn)) {
1682 struct page *page = pfn_to_page(start_pfn);
1683
1684 init_reserved_page(start_pfn);
1d798ca3
KS
1685
1686 /* Avoid false-positive PageTail() */
1687 INIT_LIST_HEAD(&page->lru);
1688
d483da5b
AD
1689 /*
1690 * no need for atomic set_bit because the struct
1691 * page is not visible yet so nobody should
1692 * access it yet.
1693 */
1694 __SetPageReserved(page);
7e18adb4
MG
1695 }
1696 }
92923ca3
NZ
1697}
1698
7fef431b
DH
1699static void __free_pages_ok(struct page *page, unsigned int order,
1700 fpi_t fpi_flags)
ec95f53a 1701{
d34b0733 1702 unsigned long flags;
95e34412 1703 int migratetype;
dc4b0caf 1704 unsigned long pfn = page_to_pfn(page);
56f0e661 1705 struct zone *zone = page_zone(page);
ec95f53a 1706
2c335680 1707 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1708 return;
1709
cfc47a28 1710 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1711
56f0e661 1712 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1713 if (unlikely(has_isolate_pageblock(zone) ||
1714 is_migrate_isolate(migratetype))) {
1715 migratetype = get_pfnblock_migratetype(page, pfn);
1716 }
1717 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1718 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1719
d34b0733 1720 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1721}
1722
a9cd410a 1723void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1724{
c3993076 1725 unsigned int nr_pages = 1 << order;
e2d0bd2b 1726 struct page *p = page;
c3993076 1727 unsigned int loop;
a226f6c8 1728
7fef431b
DH
1729 /*
1730 * When initializing the memmap, __init_single_page() sets the refcount
1731 * of all pages to 1 ("allocated"/"not free"). We have to set the
1732 * refcount of all involved pages to 0.
1733 */
e2d0bd2b
YL
1734 prefetchw(p);
1735 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1736 prefetchw(p + 1);
c3993076
JW
1737 __ClearPageReserved(p);
1738 set_page_count(p, 0);
a226f6c8 1739 }
e2d0bd2b
YL
1740 __ClearPageReserved(p);
1741 set_page_count(p, 0);
c3993076 1742
9705bea5 1743 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1744
1745 /*
1746 * Bypass PCP and place fresh pages right to the tail, primarily
1747 * relevant for memory onlining.
1748 */
2c335680 1749 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1750}
1751
a9ee6cf5 1752#ifdef CONFIG_NUMA
7ace9917 1753
03e92a5e
MR
1754/*
1755 * During memory init memblocks map pfns to nids. The search is expensive and
1756 * this caches recent lookups. The implementation of __early_pfn_to_nid
1757 * treats start/end as pfns.
1758 */
1759struct mminit_pfnnid_cache {
1760 unsigned long last_start;
1761 unsigned long last_end;
1762 int last_nid;
1763};
75a592a4 1764
03e92a5e 1765static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1766
1767/*
1768 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1769 */
03e92a5e 1770static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1771 struct mminit_pfnnid_cache *state)
75a592a4 1772{
6f24fbd3 1773 unsigned long start_pfn, end_pfn;
75a592a4
MG
1774 int nid;
1775
6f24fbd3
MR
1776 if (state->last_start <= pfn && pfn < state->last_end)
1777 return state->last_nid;
1778
1779 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1780 if (nid != NUMA_NO_NODE) {
1781 state->last_start = start_pfn;
1782 state->last_end = end_pfn;
1783 state->last_nid = nid;
1784 }
7ace9917
MG
1785
1786 return nid;
75a592a4 1787}
75a592a4 1788
75a592a4 1789int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1790{
7ace9917 1791 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1792 int nid;
1793
7ace9917 1794 spin_lock(&early_pfn_lock);
56ec43d8 1795 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1796 if (nid < 0)
e4568d38 1797 nid = first_online_node;
7ace9917 1798 spin_unlock(&early_pfn_lock);
75a592a4 1799
7ace9917 1800 return nid;
75a592a4 1801}
a9ee6cf5 1802#endif /* CONFIG_NUMA */
75a592a4 1803
7c2ee349 1804void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1805 unsigned int order)
1806{
1807 if (early_page_uninitialised(pfn))
1808 return;
a9cd410a 1809 __free_pages_core(page, order);
3a80a7fa
MG
1810}
1811
7cf91a98
JK
1812/*
1813 * Check that the whole (or subset of) a pageblock given by the interval of
1814 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1815 * with the migration of free compaction scanner.
7cf91a98
JK
1816 *
1817 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1818 *
1819 * It's possible on some configurations to have a setup like node0 node1 node0
1820 * i.e. it's possible that all pages within a zones range of pages do not
1821 * belong to a single zone. We assume that a border between node0 and node1
1822 * can occur within a single pageblock, but not a node0 node1 node0
1823 * interleaving within a single pageblock. It is therefore sufficient to check
1824 * the first and last page of a pageblock and avoid checking each individual
1825 * page in a pageblock.
1826 */
1827struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1828 unsigned long end_pfn, struct zone *zone)
1829{
1830 struct page *start_page;
1831 struct page *end_page;
1832
1833 /* end_pfn is one past the range we are checking */
1834 end_pfn--;
1835
1836 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1837 return NULL;
1838
2d070eab
MH
1839 start_page = pfn_to_online_page(start_pfn);
1840 if (!start_page)
1841 return NULL;
7cf91a98
JK
1842
1843 if (page_zone(start_page) != zone)
1844 return NULL;
1845
1846 end_page = pfn_to_page(end_pfn);
1847
1848 /* This gives a shorter code than deriving page_zone(end_page) */
1849 if (page_zone_id(start_page) != page_zone_id(end_page))
1850 return NULL;
1851
1852 return start_page;
1853}
1854
1855void set_zone_contiguous(struct zone *zone)
1856{
1857 unsigned long block_start_pfn = zone->zone_start_pfn;
1858 unsigned long block_end_pfn;
1859
1860 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1861 for (; block_start_pfn < zone_end_pfn(zone);
1862 block_start_pfn = block_end_pfn,
1863 block_end_pfn += pageblock_nr_pages) {
1864
1865 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1866
1867 if (!__pageblock_pfn_to_page(block_start_pfn,
1868 block_end_pfn, zone))
1869 return;
e84fe99b 1870 cond_resched();
7cf91a98
JK
1871 }
1872
1873 /* We confirm that there is no hole */
1874 zone->contiguous = true;
1875}
1876
1877void clear_zone_contiguous(struct zone *zone)
1878{
1879 zone->contiguous = false;
1880}
1881
7e18adb4 1882#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1883static void __init deferred_free_range(unsigned long pfn,
1884 unsigned long nr_pages)
a4de83dd 1885{
2f47a91f
PT
1886 struct page *page;
1887 unsigned long i;
a4de83dd 1888
2f47a91f 1889 if (!nr_pages)
a4de83dd
MG
1890 return;
1891
2f47a91f
PT
1892 page = pfn_to_page(pfn);
1893
a4de83dd 1894 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1895 if (nr_pages == pageblock_nr_pages &&
1896 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1897 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1898 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1899 return;
1900 }
1901
e780149b
XQ
1902 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1903 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1904 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1905 __free_pages_core(page, 0);
e780149b 1906 }
a4de83dd
MG
1907}
1908
d3cd131d
NS
1909/* Completion tracking for deferred_init_memmap() threads */
1910static atomic_t pgdat_init_n_undone __initdata;
1911static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1912
1913static inline void __init pgdat_init_report_one_done(void)
1914{
1915 if (atomic_dec_and_test(&pgdat_init_n_undone))
1916 complete(&pgdat_init_all_done_comp);
1917}
0e1cc95b 1918
2f47a91f 1919/*
80b1f41c
PT
1920 * Returns true if page needs to be initialized or freed to buddy allocator.
1921 *
1922 * First we check if pfn is valid on architectures where it is possible to have
1923 * holes within pageblock_nr_pages. On systems where it is not possible, this
1924 * function is optimized out.
1925 *
1926 * Then, we check if a current large page is valid by only checking the validity
1927 * of the head pfn.
2f47a91f 1928 */
56ec43d8 1929static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1930{
80b1f41c
PT
1931 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1932 return false;
80b1f41c
PT
1933 return true;
1934}
2f47a91f 1935
80b1f41c
PT
1936/*
1937 * Free pages to buddy allocator. Try to free aligned pages in
1938 * pageblock_nr_pages sizes.
1939 */
56ec43d8 1940static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1941 unsigned long end_pfn)
1942{
80b1f41c
PT
1943 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1944 unsigned long nr_free = 0;
2f47a91f 1945
80b1f41c 1946 for (; pfn < end_pfn; pfn++) {
56ec43d8 1947 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1948 deferred_free_range(pfn - nr_free, nr_free);
1949 nr_free = 0;
1950 } else if (!(pfn & nr_pgmask)) {
1951 deferred_free_range(pfn - nr_free, nr_free);
1952 nr_free = 1;
80b1f41c
PT
1953 } else {
1954 nr_free++;
1955 }
1956 }
1957 /* Free the last block of pages to allocator */
1958 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1959}
1960
80b1f41c
PT
1961/*
1962 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1963 * by performing it only once every pageblock_nr_pages.
1964 * Return number of pages initialized.
1965 */
56ec43d8 1966static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1967 unsigned long pfn,
1968 unsigned long end_pfn)
2f47a91f 1969{
2f47a91f 1970 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1971 int nid = zone_to_nid(zone);
2f47a91f 1972 unsigned long nr_pages = 0;
56ec43d8 1973 int zid = zone_idx(zone);
2f47a91f 1974 struct page *page = NULL;
2f47a91f 1975
80b1f41c 1976 for (; pfn < end_pfn; pfn++) {
56ec43d8 1977 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1978 page = NULL;
2f47a91f 1979 continue;
80b1f41c 1980 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1981 page = pfn_to_page(pfn);
80b1f41c
PT
1982 } else {
1983 page++;
2f47a91f 1984 }
d0dc12e8 1985 __init_single_page(page, pfn, zid, nid);
80b1f41c 1986 nr_pages++;
2f47a91f 1987 }
80b1f41c 1988 return (nr_pages);
2f47a91f
PT
1989}
1990
0e56acae
AD
1991/*
1992 * This function is meant to pre-load the iterator for the zone init.
1993 * Specifically it walks through the ranges until we are caught up to the
1994 * first_init_pfn value and exits there. If we never encounter the value we
1995 * return false indicating there are no valid ranges left.
1996 */
1997static bool __init
1998deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1999 unsigned long *spfn, unsigned long *epfn,
2000 unsigned long first_init_pfn)
2001{
2002 u64 j;
2003
2004 /*
2005 * Start out by walking through the ranges in this zone that have
2006 * already been initialized. We don't need to do anything with them
2007 * so we just need to flush them out of the system.
2008 */
2009 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2010 if (*epfn <= first_init_pfn)
2011 continue;
2012 if (*spfn < first_init_pfn)
2013 *spfn = first_init_pfn;
2014 *i = j;
2015 return true;
2016 }
2017
2018 return false;
2019}
2020
2021/*
2022 * Initialize and free pages. We do it in two loops: first we initialize
2023 * struct page, then free to buddy allocator, because while we are
2024 * freeing pages we can access pages that are ahead (computing buddy
2025 * page in __free_one_page()).
2026 *
2027 * In order to try and keep some memory in the cache we have the loop
2028 * broken along max page order boundaries. This way we will not cause
2029 * any issues with the buddy page computation.
2030 */
2031static unsigned long __init
2032deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2033 unsigned long *end_pfn)
2034{
2035 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2036 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2037 unsigned long nr_pages = 0;
2038 u64 j = *i;
2039
2040 /* First we loop through and initialize the page values */
2041 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2042 unsigned long t;
2043
2044 if (mo_pfn <= *start_pfn)
2045 break;
2046
2047 t = min(mo_pfn, *end_pfn);
2048 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2049
2050 if (mo_pfn < *end_pfn) {
2051 *start_pfn = mo_pfn;
2052 break;
2053 }
2054 }
2055
2056 /* Reset values and now loop through freeing pages as needed */
2057 swap(j, *i);
2058
2059 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2060 unsigned long t;
2061
2062 if (mo_pfn <= spfn)
2063 break;
2064
2065 t = min(mo_pfn, epfn);
2066 deferred_free_pages(spfn, t);
2067
2068 if (mo_pfn <= epfn)
2069 break;
2070 }
2071
2072 return nr_pages;
2073}
2074
e4443149
DJ
2075static void __init
2076deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2077 void *arg)
2078{
2079 unsigned long spfn, epfn;
2080 struct zone *zone = arg;
2081 u64 i;
2082
2083 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2084
2085 /*
2086 * Initialize and free pages in MAX_ORDER sized increments so that we
2087 * can avoid introducing any issues with the buddy allocator.
2088 */
2089 while (spfn < end_pfn) {
2090 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2091 cond_resched();
2092 }
2093}
2094
ecd09650
DJ
2095/* An arch may override for more concurrency. */
2096__weak int __init
2097deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2098{
2099 return 1;
2100}
2101
7e18adb4 2102/* Initialise remaining memory on a node */
0e1cc95b 2103static int __init deferred_init_memmap(void *data)
7e18adb4 2104{
0e1cc95b 2105 pg_data_t *pgdat = data;
0e56acae 2106 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2107 unsigned long spfn = 0, epfn = 0;
0e56acae 2108 unsigned long first_init_pfn, flags;
7e18adb4 2109 unsigned long start = jiffies;
7e18adb4 2110 struct zone *zone;
e4443149 2111 int zid, max_threads;
2f47a91f 2112 u64 i;
7e18adb4 2113
3a2d7fa8
PT
2114 /* Bind memory initialisation thread to a local node if possible */
2115 if (!cpumask_empty(cpumask))
2116 set_cpus_allowed_ptr(current, cpumask);
2117
2118 pgdat_resize_lock(pgdat, &flags);
2119 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2120 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2121 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2122 pgdat_init_report_one_done();
0e1cc95b
MG
2123 return 0;
2124 }
2125
7e18adb4
MG
2126 /* Sanity check boundaries */
2127 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2128 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2129 pgdat->first_deferred_pfn = ULONG_MAX;
2130
3d060856
PT
2131 /*
2132 * Once we unlock here, the zone cannot be grown anymore, thus if an
2133 * interrupt thread must allocate this early in boot, zone must be
2134 * pre-grown prior to start of deferred page initialization.
2135 */
2136 pgdat_resize_unlock(pgdat, &flags);
2137
7e18adb4
MG
2138 /* Only the highest zone is deferred so find it */
2139 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2140 zone = pgdat->node_zones + zid;
2141 if (first_init_pfn < zone_end_pfn(zone))
2142 break;
2143 }
0e56acae
AD
2144
2145 /* If the zone is empty somebody else may have cleared out the zone */
2146 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2147 first_init_pfn))
2148 goto zone_empty;
7e18adb4 2149
ecd09650 2150 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2151
117003c3 2152 while (spfn < epfn) {
e4443149
DJ
2153 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2154 struct padata_mt_job job = {
2155 .thread_fn = deferred_init_memmap_chunk,
2156 .fn_arg = zone,
2157 .start = spfn,
2158 .size = epfn_align - spfn,
2159 .align = PAGES_PER_SECTION,
2160 .min_chunk = PAGES_PER_SECTION,
2161 .max_threads = max_threads,
2162 };
2163
2164 padata_do_multithreaded(&job);
2165 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2166 epfn_align);
117003c3 2167 }
0e56acae 2168zone_empty:
7e18adb4
MG
2169 /* Sanity check that the next zone really is unpopulated */
2170 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2171
89c7c402
DJ
2172 pr_info("node %d deferred pages initialised in %ums\n",
2173 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2174
2175 pgdat_init_report_one_done();
0e1cc95b
MG
2176 return 0;
2177}
c9e97a19 2178
c9e97a19
PT
2179/*
2180 * If this zone has deferred pages, try to grow it by initializing enough
2181 * deferred pages to satisfy the allocation specified by order, rounded up to
2182 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2183 * of SECTION_SIZE bytes by initializing struct pages in increments of
2184 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2185 *
2186 * Return true when zone was grown, otherwise return false. We return true even
2187 * when we grow less than requested, to let the caller decide if there are
2188 * enough pages to satisfy the allocation.
2189 *
2190 * Note: We use noinline because this function is needed only during boot, and
2191 * it is called from a __ref function _deferred_grow_zone. This way we are
2192 * making sure that it is not inlined into permanent text section.
2193 */
2194static noinline bool __init
2195deferred_grow_zone(struct zone *zone, unsigned int order)
2196{
c9e97a19 2197 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2198 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2199 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2200 unsigned long spfn, epfn, flags;
2201 unsigned long nr_pages = 0;
c9e97a19
PT
2202 u64 i;
2203
2204 /* Only the last zone may have deferred pages */
2205 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2206 return false;
2207
2208 pgdat_resize_lock(pgdat, &flags);
2209
c9e97a19
PT
2210 /*
2211 * If someone grew this zone while we were waiting for spinlock, return
2212 * true, as there might be enough pages already.
2213 */
2214 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2215 pgdat_resize_unlock(pgdat, &flags);
2216 return true;
2217 }
2218
0e56acae
AD
2219 /* If the zone is empty somebody else may have cleared out the zone */
2220 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2221 first_deferred_pfn)) {
2222 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2223 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2224 /* Retry only once. */
2225 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2226 }
2227
0e56acae
AD
2228 /*
2229 * Initialize and free pages in MAX_ORDER sized increments so
2230 * that we can avoid introducing any issues with the buddy
2231 * allocator.
2232 */
2233 while (spfn < epfn) {
2234 /* update our first deferred PFN for this section */
2235 first_deferred_pfn = spfn;
2236
2237 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2238 touch_nmi_watchdog();
c9e97a19 2239
0e56acae
AD
2240 /* We should only stop along section boundaries */
2241 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2242 continue;
c9e97a19 2243
0e56acae 2244 /* If our quota has been met we can stop here */
c9e97a19
PT
2245 if (nr_pages >= nr_pages_needed)
2246 break;
2247 }
2248
0e56acae 2249 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2250 pgdat_resize_unlock(pgdat, &flags);
2251
2252 return nr_pages > 0;
2253}
2254
2255/*
2256 * deferred_grow_zone() is __init, but it is called from
2257 * get_page_from_freelist() during early boot until deferred_pages permanently
2258 * disables this call. This is why we have refdata wrapper to avoid warning,
2259 * and to ensure that the function body gets unloaded.
2260 */
2261static bool __ref
2262_deferred_grow_zone(struct zone *zone, unsigned int order)
2263{
2264 return deferred_grow_zone(zone, order);
2265}
2266
7cf91a98 2267#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2268
2269void __init page_alloc_init_late(void)
2270{
7cf91a98 2271 struct zone *zone;
e900a918 2272 int nid;
7cf91a98
JK
2273
2274#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2275
d3cd131d
NS
2276 /* There will be num_node_state(N_MEMORY) threads */
2277 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2278 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2279 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2280 }
2281
2282 /* Block until all are initialised */
d3cd131d 2283 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2284
c9e97a19
PT
2285 /*
2286 * We initialized the rest of the deferred pages. Permanently disable
2287 * on-demand struct page initialization.
2288 */
2289 static_branch_disable(&deferred_pages);
2290
4248b0da
MG
2291 /* Reinit limits that are based on free pages after the kernel is up */
2292 files_maxfiles_init();
7cf91a98 2293#endif
350e88ba 2294
ba8f3587
LF
2295 buffer_init();
2296
3010f876
PT
2297 /* Discard memblock private memory */
2298 memblock_discard();
7cf91a98 2299
e900a918
DW
2300 for_each_node_state(nid, N_MEMORY)
2301 shuffle_free_memory(NODE_DATA(nid));
2302
7cf91a98
JK
2303 for_each_populated_zone(zone)
2304 set_zone_contiguous(zone);
7e18adb4 2305}
7e18adb4 2306
47118af0 2307#ifdef CONFIG_CMA
9cf510a5 2308/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2309void __init init_cma_reserved_pageblock(struct page *page)
2310{
2311 unsigned i = pageblock_nr_pages;
2312 struct page *p = page;
2313
2314 do {
2315 __ClearPageReserved(p);
2316 set_page_count(p, 0);
d883c6cf 2317 } while (++p, --i);
47118af0 2318
47118af0 2319 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2320 set_page_refcounted(page);
2321 __free_pages(page, pageblock_order);
dc78327c 2322
3dcc0571 2323 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2324 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2325}
2326#endif
1da177e4
LT
2327
2328/*
2329 * The order of subdivision here is critical for the IO subsystem.
2330 * Please do not alter this order without good reasons and regression
2331 * testing. Specifically, as large blocks of memory are subdivided,
2332 * the order in which smaller blocks are delivered depends on the order
2333 * they're subdivided in this function. This is the primary factor
2334 * influencing the order in which pages are delivered to the IO
2335 * subsystem according to empirical testing, and this is also justified
2336 * by considering the behavior of a buddy system containing a single
2337 * large block of memory acted on by a series of small allocations.
2338 * This behavior is a critical factor in sglist merging's success.
2339 *
6d49e352 2340 * -- nyc
1da177e4 2341 */
085cc7d5 2342static inline void expand(struct zone *zone, struct page *page,
6ab01363 2343 int low, int high, int migratetype)
1da177e4
LT
2344{
2345 unsigned long size = 1 << high;
2346
2347 while (high > low) {
1da177e4
LT
2348 high--;
2349 size >>= 1;
309381fe 2350 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2351
acbc15a4
JK
2352 /*
2353 * Mark as guard pages (or page), that will allow to
2354 * merge back to allocator when buddy will be freed.
2355 * Corresponding page table entries will not be touched,
2356 * pages will stay not present in virtual address space
2357 */
2358 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2359 continue;
acbc15a4 2360
6ab01363 2361 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2362 set_buddy_order(&page[size], high);
1da177e4 2363 }
1da177e4
LT
2364}
2365
4e611801 2366static void check_new_page_bad(struct page *page)
1da177e4 2367{
f4c18e6f 2368 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2369 /* Don't complain about hwpoisoned pages */
2370 page_mapcount_reset(page); /* remove PageBuddy */
2371 return;
f4c18e6f 2372 }
58b7f119
WY
2373
2374 bad_page(page,
2375 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2376}
2377
2378/*
2379 * This page is about to be returned from the page allocator
2380 */
2381static inline int check_new_page(struct page *page)
2382{
2383 if (likely(page_expected_state(page,
2384 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2385 return 0;
2386
2387 check_new_page_bad(page);
2388 return 1;
2a7684a2
WF
2389}
2390
77fe7f13
MG
2391static bool check_new_pages(struct page *page, unsigned int order)
2392{
2393 int i;
2394 for (i = 0; i < (1 << order); i++) {
2395 struct page *p = page + i;
2396
2397 if (unlikely(check_new_page(p)))
2398 return true;
2399 }
2400
2401 return false;
2402}
2403
479f854a 2404#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2405/*
2406 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2407 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2408 * also checked when pcp lists are refilled from the free lists.
2409 */
77fe7f13 2410static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2411{
8e57f8ac 2412 if (debug_pagealloc_enabled_static())
77fe7f13 2413 return check_new_pages(page, order);
4462b32c
VB
2414 else
2415 return false;
479f854a
MG
2416}
2417
77fe7f13 2418static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2419{
77fe7f13 2420 return check_new_pages(page, order);
479f854a
MG
2421}
2422#else
4462b32c
VB
2423/*
2424 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2425 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2426 * enabled, they are also checked when being allocated from the pcp lists.
2427 */
77fe7f13 2428static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2429{
77fe7f13 2430 return check_new_pages(page, order);
479f854a 2431}
77fe7f13 2432static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2433{
8e57f8ac 2434 if (debug_pagealloc_enabled_static())
77fe7f13 2435 return check_new_pages(page, order);
4462b32c
VB
2436 else
2437 return false;
479f854a
MG
2438}
2439#endif /* CONFIG_DEBUG_VM */
2440
6d05141a 2441static inline bool should_skip_kasan_unpoison(gfp_t flags)
53ae233c
AK
2442{
2443 /* Don't skip if a software KASAN mode is enabled. */
2444 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2445 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2446 return false;
2447
2448 /* Skip, if hardware tag-based KASAN is not enabled. */
2449 if (!kasan_hw_tags_enabled())
2450 return true;
2451
2452 /*
6d05141a
CM
2453 * With hardware tag-based KASAN enabled, skip if this has been
2454 * requested via __GFP_SKIP_KASAN_UNPOISON.
53ae233c 2455 */
6d05141a 2456 return flags & __GFP_SKIP_KASAN_UNPOISON;
53ae233c
AK
2457}
2458
9353ffa6
AK
2459static inline bool should_skip_init(gfp_t flags)
2460{
2461 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2462 if (!kasan_hw_tags_enabled())
2463 return false;
2464
2465 /* For hardware tag-based KASAN, skip if requested. */
2466 return (flags & __GFP_SKIP_ZERO);
2467}
2468
46f24fd8
JK
2469inline void post_alloc_hook(struct page *page, unsigned int order,
2470 gfp_t gfp_flags)
2471{
9353ffa6
AK
2472 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2473 !should_skip_init(gfp_flags);
b42090ae 2474 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
70c248ac 2475 int i;
b42090ae 2476
46f24fd8
JK
2477 set_page_private(page, 0);
2478 set_page_refcounted(page);
2479
2480 arch_alloc_page(page, order);
77bc7fd6 2481 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2482
2483 /*
2484 * Page unpoisoning must happen before memory initialization.
2485 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2486 * allocations and the page unpoisoning code will complain.
2487 */
8db26a3d 2488 kernel_unpoison_pages(page, 1 << order);
862b6dee 2489
1bb5eab3
AK
2490 /*
2491 * As memory initialization might be integrated into KASAN,
b42090ae 2492 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2493 * kept together to avoid discrepancies in behavior.
2494 */
9294b128
AK
2495
2496 /*
2497 * If memory tags should be zeroed (which happens only when memory
2498 * should be initialized as well).
2499 */
2500 if (init_tags) {
9294b128
AK
2501 /* Initialize both memory and tags. */
2502 for (i = 0; i != 1 << order; ++i)
2503 tag_clear_highpage(page + i);
2504
2505 /* Note that memory is already initialized by the loop above. */
2506 init = false;
2507 }
6d05141a 2508 if (!should_skip_kasan_unpoison(gfp_flags)) {
53ae233c 2509 /* Unpoison shadow memory or set memory tags. */
e9d0ca92 2510 kasan_unpoison_pages(page, order, init);
7e3cbba6 2511
e9d0ca92
AK
2512 /* Note that memory is already initialized by KASAN. */
2513 if (kasan_has_integrated_init())
7e3cbba6 2514 init = false;
70c248ac
CM
2515 } else {
2516 /* Ensure page_address() dereferencing does not fault. */
2517 for (i = 0; i != 1 << order; ++i)
2518 page_kasan_tag_reset(page + i);
7a3b8353 2519 }
7e3cbba6
AK
2520 /* If memory is still not initialized, do it now. */
2521 if (init)
aeaec8e2 2522 kernel_init_pages(page, 1 << order);
89b27116
AK
2523 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2524 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2525 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2526
2527 set_page_owner(page, order, gfp_flags);
df4e817b 2528 page_table_check_alloc(page, order);
46f24fd8
JK
2529}
2530
479f854a 2531static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2532 unsigned int alloc_flags)
2a7684a2 2533{
46f24fd8 2534 post_alloc_hook(page, order, gfp_flags);
17cf4406 2535
17cf4406
NP
2536 if (order && (gfp_flags & __GFP_COMP))
2537 prep_compound_page(page, order);
2538
75379191 2539 /*
2f064f34 2540 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2541 * allocate the page. The expectation is that the caller is taking
2542 * steps that will free more memory. The caller should avoid the page
2543 * being used for !PFMEMALLOC purposes.
2544 */
2f064f34
MH
2545 if (alloc_flags & ALLOC_NO_WATERMARKS)
2546 set_page_pfmemalloc(page);
2547 else
2548 clear_page_pfmemalloc(page);
1da177e4
LT
2549}
2550
56fd56b8
MG
2551/*
2552 * Go through the free lists for the given migratetype and remove
2553 * the smallest available page from the freelists
2554 */
85ccc8fa 2555static __always_inline
728ec980 2556struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2557 int migratetype)
2558{
2559 unsigned int current_order;
b8af2941 2560 struct free_area *area;
56fd56b8
MG
2561 struct page *page;
2562
2563 /* Find a page of the appropriate size in the preferred list */
2564 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2565 area = &(zone->free_area[current_order]);
b03641af 2566 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2567 if (!page)
2568 continue;
6ab01363
AD
2569 del_page_from_free_list(page, zone, current_order);
2570 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2571 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
2572 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2573 pcp_allowed_order(order) &&
2574 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
2575 return page;
2576 }
2577
2578 return NULL;
2579}
2580
2581
b2a0ac88
MG
2582/*
2583 * This array describes the order lists are fallen back to when
2584 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2585 *
2586 * The other migratetypes do not have fallbacks.
b2a0ac88 2587 */
da415663 2588static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2589 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2590 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2591 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2592};
2593
dc67647b 2594#ifdef CONFIG_CMA
85ccc8fa 2595static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2596 unsigned int order)
2597{
2598 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2599}
2600#else
2601static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2602 unsigned int order) { return NULL; }
2603#endif
2604
c361be55 2605/*
293ffa5e 2606 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2607 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2608 * boundary. If alignment is required, use move_freepages_block()
2609 */
02aa0cdd 2610static int move_freepages(struct zone *zone,
39ddb991 2611 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2612 int migratetype, int *num_movable)
c361be55
MG
2613{
2614 struct page *page;
39ddb991 2615 unsigned long pfn;
d00181b9 2616 unsigned int order;
d100313f 2617 int pages_moved = 0;
c361be55 2618
39ddb991 2619 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2620 page = pfn_to_page(pfn);
c361be55 2621 if (!PageBuddy(page)) {
02aa0cdd
VB
2622 /*
2623 * We assume that pages that could be isolated for
2624 * migration are movable. But we don't actually try
2625 * isolating, as that would be expensive.
2626 */
2627 if (num_movable &&
2628 (PageLRU(page) || __PageMovable(page)))
2629 (*num_movable)++;
39ddb991 2630 pfn++;
c361be55
MG
2631 continue;
2632 }
2633
cd961038
DR
2634 /* Make sure we are not inadvertently changing nodes */
2635 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2636 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2637
ab130f91 2638 order = buddy_order(page);
6ab01363 2639 move_to_free_list(page, zone, order, migratetype);
39ddb991 2640 pfn += 1 << order;
d100313f 2641 pages_moved += 1 << order;
c361be55
MG
2642 }
2643
d100313f 2644 return pages_moved;
c361be55
MG
2645}
2646
ee6f509c 2647int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2648 int migratetype, int *num_movable)
c361be55 2649{
39ddb991 2650 unsigned long start_pfn, end_pfn, pfn;
c361be55 2651
4a222127
DR
2652 if (num_movable)
2653 *num_movable = 0;
2654
39ddb991
KW
2655 pfn = page_to_pfn(page);
2656 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2657 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2658
2659 /* Do not cross zone boundaries */
108bcc96 2660 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2661 start_pfn = pfn;
108bcc96 2662 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2663 return 0;
2664
39ddb991 2665 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2666 num_movable);
c361be55
MG
2667}
2668
2f66a68f
MG
2669static void change_pageblock_range(struct page *pageblock_page,
2670 int start_order, int migratetype)
2671{
2672 int nr_pageblocks = 1 << (start_order - pageblock_order);
2673
2674 while (nr_pageblocks--) {
2675 set_pageblock_migratetype(pageblock_page, migratetype);
2676 pageblock_page += pageblock_nr_pages;
2677 }
2678}
2679
fef903ef 2680/*
9c0415eb
VB
2681 * When we are falling back to another migratetype during allocation, try to
2682 * steal extra free pages from the same pageblocks to satisfy further
2683 * allocations, instead of polluting multiple pageblocks.
2684 *
2685 * If we are stealing a relatively large buddy page, it is likely there will
2686 * be more free pages in the pageblock, so try to steal them all. For
2687 * reclaimable and unmovable allocations, we steal regardless of page size,
2688 * as fragmentation caused by those allocations polluting movable pageblocks
2689 * is worse than movable allocations stealing from unmovable and reclaimable
2690 * pageblocks.
fef903ef 2691 */
4eb7dce6
JK
2692static bool can_steal_fallback(unsigned int order, int start_mt)
2693{
2694 /*
2695 * Leaving this order check is intended, although there is
2696 * relaxed order check in next check. The reason is that
2697 * we can actually steal whole pageblock if this condition met,
2698 * but, below check doesn't guarantee it and that is just heuristic
2699 * so could be changed anytime.
2700 */
2701 if (order >= pageblock_order)
2702 return true;
2703
2704 if (order >= pageblock_order / 2 ||
2705 start_mt == MIGRATE_RECLAIMABLE ||
2706 start_mt == MIGRATE_UNMOVABLE ||
2707 page_group_by_mobility_disabled)
2708 return true;
2709
2710 return false;
2711}
2712
597c8920 2713static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2714{
2715 unsigned long max_boost;
2716
2717 if (!watermark_boost_factor)
597c8920 2718 return false;
14f69140
HW
2719 /*
2720 * Don't bother in zones that are unlikely to produce results.
2721 * On small machines, including kdump capture kernels running
2722 * in a small area, boosting the watermark can cause an out of
2723 * memory situation immediately.
2724 */
2725 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2726 return false;
1c30844d
MG
2727
2728 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2729 watermark_boost_factor, 10000);
94b3334c
MG
2730
2731 /*
2732 * high watermark may be uninitialised if fragmentation occurs
2733 * very early in boot so do not boost. We do not fall
2734 * through and boost by pageblock_nr_pages as failing
2735 * allocations that early means that reclaim is not going
2736 * to help and it may even be impossible to reclaim the
2737 * boosted watermark resulting in a hang.
2738 */
2739 if (!max_boost)
597c8920 2740 return false;
94b3334c 2741
1c30844d
MG
2742 max_boost = max(pageblock_nr_pages, max_boost);
2743
2744 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2745 max_boost);
597c8920
JW
2746
2747 return true;
1c30844d
MG
2748}
2749
4eb7dce6
JK
2750/*
2751 * This function implements actual steal behaviour. If order is large enough,
2752 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2753 * pageblock to our migratetype and determine how many already-allocated pages
2754 * are there in the pageblock with a compatible migratetype. If at least half
2755 * of pages are free or compatible, we can change migratetype of the pageblock
2756 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2757 */
2758static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2759 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2760{
ab130f91 2761 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2762 int free_pages, movable_pages, alike_pages;
2763 int old_block_type;
2764
2765 old_block_type = get_pageblock_migratetype(page);
fef903ef 2766
3bc48f96
VB
2767 /*
2768 * This can happen due to races and we want to prevent broken
2769 * highatomic accounting.
2770 */
02aa0cdd 2771 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2772 goto single_page;
2773
fef903ef
SB
2774 /* Take ownership for orders >= pageblock_order */
2775 if (current_order >= pageblock_order) {
2776 change_pageblock_range(page, current_order, start_type);
3bc48f96 2777 goto single_page;
fef903ef
SB
2778 }
2779
1c30844d
MG
2780 /*
2781 * Boost watermarks to increase reclaim pressure to reduce the
2782 * likelihood of future fallbacks. Wake kswapd now as the node
2783 * may be balanced overall and kswapd will not wake naturally.
2784 */
597c8920 2785 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2786 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2787
3bc48f96
VB
2788 /* We are not allowed to try stealing from the whole block */
2789 if (!whole_block)
2790 goto single_page;
2791
02aa0cdd
VB
2792 free_pages = move_freepages_block(zone, page, start_type,
2793 &movable_pages);
2794 /*
2795 * Determine how many pages are compatible with our allocation.
2796 * For movable allocation, it's the number of movable pages which
2797 * we just obtained. For other types it's a bit more tricky.
2798 */
2799 if (start_type == MIGRATE_MOVABLE) {
2800 alike_pages = movable_pages;
2801 } else {
2802 /*
2803 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2804 * to MOVABLE pageblock, consider all non-movable pages as
2805 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2806 * vice versa, be conservative since we can't distinguish the
2807 * exact migratetype of non-movable pages.
2808 */
2809 if (old_block_type == MIGRATE_MOVABLE)
2810 alike_pages = pageblock_nr_pages
2811 - (free_pages + movable_pages);
2812 else
2813 alike_pages = 0;
2814 }
2815
3bc48f96 2816 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2817 if (!free_pages)
3bc48f96 2818 goto single_page;
fef903ef 2819
02aa0cdd
VB
2820 /*
2821 * If a sufficient number of pages in the block are either free or of
2822 * comparable migratability as our allocation, claim the whole block.
2823 */
2824 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2825 page_group_by_mobility_disabled)
2826 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2827
2828 return;
2829
2830single_page:
6ab01363 2831 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2832}
2833
2149cdae
JK
2834/*
2835 * Check whether there is a suitable fallback freepage with requested order.
2836 * If only_stealable is true, this function returns fallback_mt only if
2837 * we can steal other freepages all together. This would help to reduce
2838 * fragmentation due to mixed migratetype pages in one pageblock.
2839 */
2840int find_suitable_fallback(struct free_area *area, unsigned int order,
2841 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2842{
2843 int i;
2844 int fallback_mt;
2845
2846 if (area->nr_free == 0)
2847 return -1;
2848
2849 *can_steal = false;
2850 for (i = 0;; i++) {
2851 fallback_mt = fallbacks[migratetype][i];
974a786e 2852 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2853 break;
2854
b03641af 2855 if (free_area_empty(area, fallback_mt))
4eb7dce6 2856 continue;
fef903ef 2857
4eb7dce6
JK
2858 if (can_steal_fallback(order, migratetype))
2859 *can_steal = true;
2860
2149cdae
JK
2861 if (!only_stealable)
2862 return fallback_mt;
2863
2864 if (*can_steal)
2865 return fallback_mt;
fef903ef 2866 }
4eb7dce6
JK
2867
2868 return -1;
fef903ef
SB
2869}
2870
0aaa29a5
MG
2871/*
2872 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2873 * there are no empty page blocks that contain a page with a suitable order
2874 */
2875static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2876 unsigned int alloc_order)
2877{
2878 int mt;
2879 unsigned long max_managed, flags;
2880
2881 /*
2882 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2883 * Check is race-prone but harmless.
2884 */
9705bea5 2885 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2886 if (zone->nr_reserved_highatomic >= max_managed)
2887 return;
2888
2889 spin_lock_irqsave(&zone->lock, flags);
2890
2891 /* Recheck the nr_reserved_highatomic limit under the lock */
2892 if (zone->nr_reserved_highatomic >= max_managed)
2893 goto out_unlock;
2894
2895 /* Yoink! */
2896 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2897 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2898 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2899 zone->nr_reserved_highatomic += pageblock_nr_pages;
2900 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2901 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2902 }
2903
2904out_unlock:
2905 spin_unlock_irqrestore(&zone->lock, flags);
2906}
2907
2908/*
2909 * Used when an allocation is about to fail under memory pressure. This
2910 * potentially hurts the reliability of high-order allocations when under
2911 * intense memory pressure but failed atomic allocations should be easier
2912 * to recover from than an OOM.
29fac03b
MK
2913 *
2914 * If @force is true, try to unreserve a pageblock even though highatomic
2915 * pageblock is exhausted.
0aaa29a5 2916 */
29fac03b
MK
2917static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2918 bool force)
0aaa29a5
MG
2919{
2920 struct zonelist *zonelist = ac->zonelist;
2921 unsigned long flags;
2922 struct zoneref *z;
2923 struct zone *zone;
2924 struct page *page;
2925 int order;
04c8716f 2926 bool ret;
0aaa29a5 2927
97a225e6 2928 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2929 ac->nodemask) {
29fac03b
MK
2930 /*
2931 * Preserve at least one pageblock unless memory pressure
2932 * is really high.
2933 */
2934 if (!force && zone->nr_reserved_highatomic <=
2935 pageblock_nr_pages)
0aaa29a5
MG
2936 continue;
2937
2938 spin_lock_irqsave(&zone->lock, flags);
2939 for (order = 0; order < MAX_ORDER; order++) {
2940 struct free_area *area = &(zone->free_area[order]);
2941
b03641af 2942 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2943 if (!page)
0aaa29a5
MG
2944 continue;
2945
0aaa29a5 2946 /*
4855e4a7
MK
2947 * In page freeing path, migratetype change is racy so
2948 * we can counter several free pages in a pageblock
f0953a1b 2949 * in this loop although we changed the pageblock type
4855e4a7
MK
2950 * from highatomic to ac->migratetype. So we should
2951 * adjust the count once.
0aaa29a5 2952 */
a6ffdc07 2953 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2954 /*
2955 * It should never happen but changes to
2956 * locking could inadvertently allow a per-cpu
2957 * drain to add pages to MIGRATE_HIGHATOMIC
2958 * while unreserving so be safe and watch for
2959 * underflows.
2960 */
2961 zone->nr_reserved_highatomic -= min(
2962 pageblock_nr_pages,
2963 zone->nr_reserved_highatomic);
2964 }
0aaa29a5
MG
2965
2966 /*
2967 * Convert to ac->migratetype and avoid the normal
2968 * pageblock stealing heuristics. Minimally, the caller
2969 * is doing the work and needs the pages. More
2970 * importantly, if the block was always converted to
2971 * MIGRATE_UNMOVABLE or another type then the number
2972 * of pageblocks that cannot be completely freed
2973 * may increase.
2974 */
2975 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2976 ret = move_freepages_block(zone, page, ac->migratetype,
2977 NULL);
29fac03b
MK
2978 if (ret) {
2979 spin_unlock_irqrestore(&zone->lock, flags);
2980 return ret;
2981 }
0aaa29a5
MG
2982 }
2983 spin_unlock_irqrestore(&zone->lock, flags);
2984 }
04c8716f
MK
2985
2986 return false;
0aaa29a5
MG
2987}
2988
3bc48f96
VB
2989/*
2990 * Try finding a free buddy page on the fallback list and put it on the free
2991 * list of requested migratetype, possibly along with other pages from the same
2992 * block, depending on fragmentation avoidance heuristics. Returns true if
2993 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2994 *
2995 * The use of signed ints for order and current_order is a deliberate
2996 * deviation from the rest of this file, to make the for loop
2997 * condition simpler.
3bc48f96 2998 */
85ccc8fa 2999static __always_inline bool
6bb15450
MG
3000__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3001 unsigned int alloc_flags)
b2a0ac88 3002{
b8af2941 3003 struct free_area *area;
b002529d 3004 int current_order;
6bb15450 3005 int min_order = order;
b2a0ac88 3006 struct page *page;
4eb7dce6
JK
3007 int fallback_mt;
3008 bool can_steal;
b2a0ac88 3009
6bb15450
MG
3010 /*
3011 * Do not steal pages from freelists belonging to other pageblocks
3012 * i.e. orders < pageblock_order. If there are no local zones free,
3013 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3014 */
e933dc4a 3015 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
3016 min_order = pageblock_order;
3017
7a8f58f3
VB
3018 /*
3019 * Find the largest available free page in the other list. This roughly
3020 * approximates finding the pageblock with the most free pages, which
3021 * would be too costly to do exactly.
3022 */
6bb15450 3023 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 3024 --current_order) {
4eb7dce6
JK
3025 area = &(zone->free_area[current_order]);
3026 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 3027 start_migratetype, false, &can_steal);
4eb7dce6
JK
3028 if (fallback_mt == -1)
3029 continue;
b2a0ac88 3030
7a8f58f3
VB
3031 /*
3032 * We cannot steal all free pages from the pageblock and the
3033 * requested migratetype is movable. In that case it's better to
3034 * steal and split the smallest available page instead of the
3035 * largest available page, because even if the next movable
3036 * allocation falls back into a different pageblock than this
3037 * one, it won't cause permanent fragmentation.
3038 */
3039 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3040 && current_order > order)
3041 goto find_smallest;
b2a0ac88 3042
7a8f58f3
VB
3043 goto do_steal;
3044 }
e0fff1bd 3045
7a8f58f3 3046 return false;
e0fff1bd 3047
7a8f58f3
VB
3048find_smallest:
3049 for (current_order = order; current_order < MAX_ORDER;
3050 current_order++) {
3051 area = &(zone->free_area[current_order]);
3052 fallback_mt = find_suitable_fallback(area, current_order,
3053 start_migratetype, false, &can_steal);
3054 if (fallback_mt != -1)
3055 break;
b2a0ac88
MG
3056 }
3057
7a8f58f3
VB
3058 /*
3059 * This should not happen - we already found a suitable fallback
3060 * when looking for the largest page.
3061 */
3062 VM_BUG_ON(current_order == MAX_ORDER);
3063
3064do_steal:
b03641af 3065 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 3066
1c30844d
MG
3067 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3068 can_steal);
7a8f58f3
VB
3069
3070 trace_mm_page_alloc_extfrag(page, order, current_order,
3071 start_migratetype, fallback_mt);
3072
3073 return true;
3074
b2a0ac88
MG
3075}
3076
56fd56b8 3077/*
1da177e4
LT
3078 * Do the hard work of removing an element from the buddy allocator.
3079 * Call me with the zone->lock already held.
3080 */
85ccc8fa 3081static __always_inline struct page *
6bb15450
MG
3082__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3083 unsigned int alloc_flags)
1da177e4 3084{
1da177e4
LT
3085 struct page *page;
3086
ce8f86ee
H
3087 if (IS_ENABLED(CONFIG_CMA)) {
3088 /*
3089 * Balance movable allocations between regular and CMA areas by
3090 * allocating from CMA when over half of the zone's free memory
3091 * is in the CMA area.
3092 */
3093 if (alloc_flags & ALLOC_CMA &&
3094 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3095 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3096 page = __rmqueue_cma_fallback(zone, order);
3097 if (page)
10e0f753 3098 return page;
ce8f86ee 3099 }
16867664 3100 }
3bc48f96 3101retry:
56fd56b8 3102 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 3103 if (unlikely(!page)) {
8510e69c 3104 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
3105 page = __rmqueue_cma_fallback(zone, order);
3106
6bb15450
MG
3107 if (!page && __rmqueue_fallback(zone, order, migratetype,
3108 alloc_flags))
3bc48f96 3109 goto retry;
728ec980 3110 }
b2a0ac88 3111 return page;
1da177e4
LT
3112}
3113
5f63b720 3114/*
1da177e4
LT
3115 * Obtain a specified number of elements from the buddy allocator, all under
3116 * a single hold of the lock, for efficiency. Add them to the supplied list.
3117 * Returns the number of new pages which were placed at *list.
3118 */
5f63b720 3119static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3120 unsigned long count, struct list_head *list,
6bb15450 3121 int migratetype, unsigned int alloc_flags)
1da177e4 3122{
cb66bede 3123 int i, allocated = 0;
5f63b720 3124
01b44456 3125 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
d34b0733 3126 spin_lock(&zone->lock);
1da177e4 3127 for (i = 0; i < count; ++i) {
6bb15450
MG
3128 struct page *page = __rmqueue(zone, order, migratetype,
3129 alloc_flags);
085cc7d5 3130 if (unlikely(page == NULL))
1da177e4 3131 break;
81eabcbe 3132
77fe7f13 3133 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
3134 continue;
3135
81eabcbe 3136 /*
0fac3ba5
VB
3137 * Split buddy pages returned by expand() are received here in
3138 * physical page order. The page is added to the tail of
3139 * caller's list. From the callers perspective, the linked list
3140 * is ordered by page number under some conditions. This is
3141 * useful for IO devices that can forward direction from the
3142 * head, thus also in the physical page order. This is useful
3143 * for IO devices that can merge IO requests if the physical
3144 * pages are ordered properly.
81eabcbe 3145 */
bf75f200 3146 list_add_tail(&page->pcp_list, list);
cb66bede 3147 allocated++;
bb14c2c7 3148 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3150 -(1 << order));
1da177e4 3151 }
a6de734b
MG
3152
3153 /*
3154 * i pages were removed from the buddy list even if some leak due
3155 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3156 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3157 * pages added to the pcp list.
3158 */
f2260e6b 3159 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3160 spin_unlock(&zone->lock);
cb66bede 3161 return allocated;
1da177e4
LT
3162}
3163
4ae7c039 3164#ifdef CONFIG_NUMA
8fce4d8e 3165/*
4037d452
CL
3166 * Called from the vmstat counter updater to drain pagesets of this
3167 * currently executing processor on remote nodes after they have
3168 * expired.
8fce4d8e 3169 */
4037d452 3170void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3171{
7be12fc9 3172 int to_drain, batch;
4ae7c039 3173
4db0c3c2 3174 batch = READ_ONCE(pcp->batch);
7be12fc9 3175 to_drain = min(pcp->count, batch);
4b23a68f
MG
3176 if (to_drain > 0) {
3177 unsigned long flags;
3178
3179 /*
3180 * free_pcppages_bulk expects IRQs disabled for zone->lock
3181 * so even though pcp->lock is not intended to be IRQ-safe,
3182 * it's needed in this context.
3183 */
3184 spin_lock_irqsave(&pcp->lock, flags);
fd56eef2 3185 free_pcppages_bulk(zone, to_drain, pcp, 0);
4b23a68f
MG
3186 spin_unlock_irqrestore(&pcp->lock, flags);
3187 }
4ae7c039
CL
3188}
3189#endif
3190
9f8f2172 3191/*
93481ff0 3192 * Drain pcplists of the indicated processor and zone.
9f8f2172 3193 */
93481ff0 3194static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3195{
93481ff0 3196 struct per_cpu_pages *pcp;
1da177e4 3197
28f836b6 3198 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f
MG
3199 if (pcp->count) {
3200 unsigned long flags;
28f836b6 3201
4b23a68f
MG
3202 /* See drain_zone_pages on why this is disabling IRQs */
3203 spin_lock_irqsave(&pcp->lock, flags);
3204 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3205 spin_unlock_irqrestore(&pcp->lock, flags);
3206 }
93481ff0 3207}
3dfa5721 3208
93481ff0
VB
3209/*
3210 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
3211 */
3212static void drain_pages(unsigned int cpu)
3213{
3214 struct zone *zone;
3215
3216 for_each_populated_zone(zone) {
3217 drain_pages_zone(cpu, zone);
1da177e4
LT
3218 }
3219}
1da177e4 3220
9f8f2172
CL
3221/*
3222 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3223 */
93481ff0 3224void drain_local_pages(struct zone *zone)
9f8f2172 3225{
93481ff0
VB
3226 int cpu = smp_processor_id();
3227
3228 if (zone)
3229 drain_pages_zone(cpu, zone);
3230 else
3231 drain_pages(cpu);
9f8f2172
CL
3232}
3233
3234/*
ec6e8c7e
VB
3235 * The implementation of drain_all_pages(), exposing an extra parameter to
3236 * drain on all cpus.
93481ff0 3237 *
ec6e8c7e
VB
3238 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3239 * not empty. The check for non-emptiness can however race with a free to
3240 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3241 * that need the guarantee that every CPU has drained can disable the
3242 * optimizing racy check.
9f8f2172 3243 */
3b1f3658 3244static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3245{
74046494 3246 int cpu;
74046494
GBY
3247
3248 /*
041711ce 3249 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3250 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3251 */
3252 static cpumask_t cpus_with_pcps;
3253
bd233f53
MG
3254 /*
3255 * Do not drain if one is already in progress unless it's specific to
3256 * a zone. Such callers are primarily CMA and memory hotplug and need
3257 * the drain to be complete when the call returns.
3258 */
3259 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3260 if (!zone)
3261 return;
3262 mutex_lock(&pcpu_drain_mutex);
3263 }
0ccce3b9 3264
74046494
GBY
3265 /*
3266 * We don't care about racing with CPU hotplug event
3267 * as offline notification will cause the notified
3268 * cpu to drain that CPU pcps and on_each_cpu_mask
3269 * disables preemption as part of its processing
3270 */
3271 for_each_online_cpu(cpu) {
28f836b6 3272 struct per_cpu_pages *pcp;
93481ff0 3273 struct zone *z;
74046494 3274 bool has_pcps = false;
93481ff0 3275
ec6e8c7e
VB
3276 if (force_all_cpus) {
3277 /*
3278 * The pcp.count check is racy, some callers need a
3279 * guarantee that no cpu is missed.
3280 */
3281 has_pcps = true;
3282 } else if (zone) {
28f836b6
MG
3283 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3284 if (pcp->count)
74046494 3285 has_pcps = true;
93481ff0
VB
3286 } else {
3287 for_each_populated_zone(z) {
28f836b6
MG
3288 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3289 if (pcp->count) {
93481ff0
VB
3290 has_pcps = true;
3291 break;
3292 }
74046494
GBY
3293 }
3294 }
93481ff0 3295
74046494
GBY
3296 if (has_pcps)
3297 cpumask_set_cpu(cpu, &cpus_with_pcps);
3298 else
3299 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3300 }
0ccce3b9 3301
bd233f53 3302 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
3303 if (zone)
3304 drain_pages_zone(cpu, zone);
3305 else
3306 drain_pages(cpu);
0ccce3b9 3307 }
bd233f53
MG
3308
3309 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3310}
3311
ec6e8c7e
VB
3312/*
3313 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3314 *
3315 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
3316 */
3317void drain_all_pages(struct zone *zone)
3318{
3319 __drain_all_pages(zone, false);
3320}
3321
296699de 3322#ifdef CONFIG_HIBERNATION
1da177e4 3323
556b969a
CY
3324/*
3325 * Touch the watchdog for every WD_PAGE_COUNT pages.
3326 */
3327#define WD_PAGE_COUNT (128*1024)
3328
1da177e4
LT
3329void mark_free_pages(struct zone *zone)
3330{
556b969a 3331 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3332 unsigned long flags;
7aeb09f9 3333 unsigned int order, t;
86760a2c 3334 struct page *page;
1da177e4 3335
8080fc03 3336 if (zone_is_empty(zone))
1da177e4
LT
3337 return;
3338
3339 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3340
108bcc96 3341 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3342 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3343 if (pfn_valid(pfn)) {
86760a2c 3344 page = pfn_to_page(pfn);
ba6b0979 3345
556b969a
CY
3346 if (!--page_count) {
3347 touch_nmi_watchdog();
3348 page_count = WD_PAGE_COUNT;
3349 }
3350
ba6b0979
JK
3351 if (page_zone(page) != zone)
3352 continue;
3353
7be98234
RW
3354 if (!swsusp_page_is_forbidden(page))
3355 swsusp_unset_page_free(page);
f623f0db 3356 }
1da177e4 3357
b2a0ac88 3358 for_each_migratetype_order(order, t) {
86760a2c 3359 list_for_each_entry(page,
bf75f200 3360 &zone->free_area[order].free_list[t], buddy_list) {
f623f0db 3361 unsigned long i;
1da177e4 3362
86760a2c 3363 pfn = page_to_pfn(page);
556b969a
CY
3364 for (i = 0; i < (1UL << order); i++) {
3365 if (!--page_count) {
3366 touch_nmi_watchdog();
3367 page_count = WD_PAGE_COUNT;
3368 }
7be98234 3369 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3370 }
f623f0db 3371 }
b2a0ac88 3372 }
1da177e4
LT
3373 spin_unlock_irqrestore(&zone->lock, flags);
3374}
e2c55dc8 3375#endif /* CONFIG_PM */
1da177e4 3376
44042b44
MG
3377static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3378 unsigned int order)
1da177e4 3379{
5f8dcc21 3380 int migratetype;
1da177e4 3381
44042b44 3382 if (!free_pcp_prepare(page, order))
9cca35d4 3383 return false;
689bcebf 3384
dc4b0caf 3385 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3386 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3387 return true;
3388}
3389
f26b3fa0
MG
3390static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3391 bool free_high)
3b12e7e9
MG
3392{
3393 int min_nr_free, max_nr_free;
3394
f26b3fa0
MG
3395 /* Free everything if batch freeing high-order pages. */
3396 if (unlikely(free_high))
3397 return pcp->count;
3398
3b12e7e9
MG
3399 /* Check for PCP disabled or boot pageset */
3400 if (unlikely(high < batch))
3401 return 1;
3402
3403 /* Leave at least pcp->batch pages on the list */
3404 min_nr_free = batch;
3405 max_nr_free = high - batch;
3406
3407 /*
3408 * Double the number of pages freed each time there is subsequent
3409 * freeing of pages without any allocation.
3410 */
3411 batch <<= pcp->free_factor;
3412 if (batch < max_nr_free)
3413 pcp->free_factor++;
3414 batch = clamp(batch, min_nr_free, max_nr_free);
3415
3416 return batch;
3417}
3418
f26b3fa0
MG
3419static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3420 bool free_high)
c49c2c47
MG
3421{
3422 int high = READ_ONCE(pcp->high);
3423
f26b3fa0 3424 if (unlikely(!high || free_high))
c49c2c47
MG
3425 return 0;
3426
3427 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3428 return high;
3429
3430 /*
3431 * If reclaim is active, limit the number of pages that can be
3432 * stored on pcp lists
3433 */
3434 return min(READ_ONCE(pcp->batch) << 2, high);
3435}
3436
4b23a68f
MG
3437static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3438 struct page *page, int migratetype,
56651377 3439 unsigned int order)
9cca35d4 3440{
3b12e7e9 3441 int high;
44042b44 3442 int pindex;
f26b3fa0 3443 bool free_high;
9cca35d4 3444
d34b0733 3445 __count_vm_event(PGFREE);
44042b44 3446 pindex = order_to_pindex(migratetype, order);
bf75f200 3447 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 3448 pcp->count += 1 << order;
f26b3fa0
MG
3449
3450 /*
3451 * As high-order pages other than THP's stored on PCP can contribute
3452 * to fragmentation, limit the number stored when PCP is heavily
3453 * freeing without allocation. The remainder after bulk freeing
3454 * stops will be drained from vmstat refresh context.
3455 */
3456 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3457
3458 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3459 if (pcp->count >= high) {
3460 int batch = READ_ONCE(pcp->batch);
3461
f26b3fa0 3462 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3463 }
9cca35d4 3464}
5f8dcc21 3465
9cca35d4 3466/*
44042b44 3467 * Free a pcp page
9cca35d4 3468 */
44042b44 3469void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3470{
3471 unsigned long flags;
4b23a68f
MG
3472 unsigned long __maybe_unused UP_flags;
3473 struct per_cpu_pages *pcp;
3474 struct zone *zone;
9cca35d4 3475 unsigned long pfn = page_to_pfn(page);
df1acc85 3476 int migratetype;
9cca35d4 3477
44042b44 3478 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3479 return;
da456f14 3480
5f8dcc21
MG
3481 /*
3482 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3483 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3484 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3485 * areas back if necessary. Otherwise, we may have to free
3486 * excessively into the page allocator
3487 */
df1acc85
MG
3488 migratetype = get_pcppage_migratetype(page);
3489 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3490 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3491 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3492 return;
5f8dcc21
MG
3493 }
3494 migratetype = MIGRATE_MOVABLE;
3495 }
3496
4b23a68f
MG
3497 zone = page_zone(page);
3498 pcp_trylock_prepare(UP_flags);
01b44456
MG
3499 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3500 if (pcp) {
4b23a68f 3501 free_unref_page_commit(zone, pcp, page, migratetype, order);
01b44456 3502 pcp_spin_unlock_irqrestore(pcp, flags);
4b23a68f
MG
3503 } else {
3504 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3505 }
3506 pcp_trylock_finish(UP_flags);
1da177e4
LT
3507}
3508
cc59850e
KK
3509/*
3510 * Free a list of 0-order pages
3511 */
2d4894b5 3512void free_unref_page_list(struct list_head *list)
cc59850e
KK
3513{
3514 struct page *page, *next;
4b23a68f
MG
3515 struct per_cpu_pages *pcp = NULL;
3516 struct zone *locked_zone = NULL;
56651377 3517 unsigned long flags;
c24ad77d 3518 int batch_count = 0;
df1acc85 3519 int migratetype;
9cca35d4
MG
3520
3521 /* Prepare pages for freeing */
3522 list_for_each_entry_safe(page, next, list, lru) {
56651377 3523 unsigned long pfn = page_to_pfn(page);
053cfda1 3524 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3525 list_del(&page->lru);
053cfda1
ML
3526 continue;
3527 }
df1acc85
MG
3528
3529 /*
3530 * Free isolated pages directly to the allocator, see
3531 * comment in free_unref_page.
3532 */
3533 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3534 if (unlikely(is_migrate_isolate(migratetype))) {
3535 list_del(&page->lru);
3536 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3537 continue;
df1acc85 3538 }
9cca35d4 3539 }
cc59850e
KK
3540
3541 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
3542 struct zone *zone = page_zone(page);
3543
3544 /* Different zone, different pcp lock. */
3545 if (zone != locked_zone) {
3546 if (pcp)
01b44456
MG
3547 pcp_spin_unlock_irqrestore(pcp, flags);
3548
4b23a68f 3549 locked_zone = zone;
01b44456 3550 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
4b23a68f
MG
3551 }
3552
47aef601
DB
3553 /*
3554 * Non-isolated types over MIGRATE_PCPTYPES get added
3555 * to the MIGRATE_MOVABLE pcp list.
3556 */
df1acc85 3557 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3558 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3559 migratetype = MIGRATE_MOVABLE;
3560
2d4894b5 3561 trace_mm_page_free_batched(page);
4b23a68f 3562 free_unref_page_commit(zone, pcp, page, migratetype, 0);
c24ad77d
LS
3563
3564 /*
3565 * Guard against excessive IRQ disabled times when we get
3566 * a large list of pages to free.
3567 */
3568 if (++batch_count == SWAP_CLUSTER_MAX) {
01b44456 3569 pcp_spin_unlock_irqrestore(pcp, flags);
c24ad77d 3570 batch_count = 0;
01b44456 3571 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
c24ad77d 3572 }
cc59850e 3573 }
4b23a68f
MG
3574
3575 if (pcp)
01b44456 3576 pcp_spin_unlock_irqrestore(pcp, flags);
cc59850e
KK
3577}
3578
8dfcc9ba
NP
3579/*
3580 * split_page takes a non-compound higher-order page, and splits it into
3581 * n (1<<order) sub-pages: page[0..n]
3582 * Each sub-page must be freed individually.
3583 *
3584 * Note: this is probably too low level an operation for use in drivers.
3585 * Please consult with lkml before using this in your driver.
3586 */
3587void split_page(struct page *page, unsigned int order)
3588{
3589 int i;
3590
309381fe
SL
3591 VM_BUG_ON_PAGE(PageCompound(page), page);
3592 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3593
a9627bc5 3594 for (i = 1; i < (1 << order); i++)
7835e98b 3595 set_page_refcounted(page + i);
8fb156c9 3596 split_page_owner(page, 1 << order);
e1baddf8 3597 split_page_memcg(page, 1 << order);
8dfcc9ba 3598}
5853ff23 3599EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3600
3c605096 3601int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3602{
748446bb
MG
3603 unsigned long watermark;
3604 struct zone *zone;
2139cbe6 3605 int mt;
748446bb
MG
3606
3607 BUG_ON(!PageBuddy(page));
3608
3609 zone = page_zone(page);
2e30abd1 3610 mt = get_pageblock_migratetype(page);
748446bb 3611
194159fb 3612 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3613 /*
3614 * Obey watermarks as if the page was being allocated. We can
3615 * emulate a high-order watermark check with a raised order-0
3616 * watermark, because we already know our high-order page
3617 * exists.
3618 */
fd1444b2 3619 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3620 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3621 return 0;
3622
8fb74b9f 3623 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3624 }
748446bb
MG
3625
3626 /* Remove page from free list */
b03641af 3627
6ab01363 3628 del_page_from_free_list(page, zone, order);
2139cbe6 3629
400bc7fd 3630 /*
3631 * Set the pageblock if the isolated page is at least half of a
3632 * pageblock
3633 */
748446bb
MG
3634 if (order >= pageblock_order - 1) {
3635 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3636 for (; page < endpage; page += pageblock_nr_pages) {
3637 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3638 /*
3639 * Only change normal pageblocks (i.e., they can merge
3640 * with others)
3641 */
3642 if (migratetype_is_mergeable(mt))
47118af0
MN
3643 set_pageblock_migratetype(page,
3644 MIGRATE_MOVABLE);
3645 }
748446bb
MG
3646 }
3647
f3a14ced 3648
8fb74b9f 3649 return 1UL << order;
1fb3f8ca
MG
3650}
3651
624f58d8
AD
3652/**
3653 * __putback_isolated_page - Return a now-isolated page back where we got it
3654 * @page: Page that was isolated
3655 * @order: Order of the isolated page
e6a0a7ad 3656 * @mt: The page's pageblock's migratetype
624f58d8
AD
3657 *
3658 * This function is meant to return a page pulled from the free lists via
3659 * __isolate_free_page back to the free lists they were pulled from.
3660 */
3661void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3662{
3663 struct zone *zone = page_zone(page);
3664
3665 /* zone lock should be held when this function is called */
3666 lockdep_assert_held(&zone->lock);
3667
3668 /* Return isolated page to tail of freelist. */
f04a5d5d 3669 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3670 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3671}
3672
060e7417
MG
3673/*
3674 * Update NUMA hit/miss statistics
3675 *
3676 * Must be called with interrupts disabled.
060e7417 3677 */
3e23060b
MG
3678static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3679 long nr_account)
060e7417
MG
3680{
3681#ifdef CONFIG_NUMA
3a321d2a 3682 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3683
4518085e
KW
3684 /* skip numa counters update if numa stats is disabled */
3685 if (!static_branch_likely(&vm_numa_stat_key))
3686 return;
3687
c1093b74 3688 if (zone_to_nid(z) != numa_node_id())
060e7417 3689 local_stat = NUMA_OTHER;
060e7417 3690
c1093b74 3691 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3692 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3693 else {
3e23060b
MG
3694 __count_numa_events(z, NUMA_MISS, nr_account);
3695 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3696 }
3e23060b 3697 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3698#endif
3699}
3700
589d9973
MG
3701static __always_inline
3702struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3703 unsigned int order, unsigned int alloc_flags,
3704 int migratetype)
3705{
3706 struct page *page;
3707 unsigned long flags;
3708
3709 do {
3710 page = NULL;
3711 spin_lock_irqsave(&zone->lock, flags);
3712 /*
3713 * order-0 request can reach here when the pcplist is skipped
3714 * due to non-CMA allocation context. HIGHATOMIC area is
3715 * reserved for high-order atomic allocation, so order-0
3716 * request should skip it.
3717 */
3718 if (order > 0 && alloc_flags & ALLOC_HARDER)
3719 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3720 if (!page) {
3721 page = __rmqueue(zone, order, migratetype, alloc_flags);
3722 if (!page) {
3723 spin_unlock_irqrestore(&zone->lock, flags);
3724 return NULL;
3725 }
3726 }
3727 __mod_zone_freepage_state(zone, -(1 << order),
3728 get_pcppage_migratetype(page));
3729 spin_unlock_irqrestore(&zone->lock, flags);
3730 } while (check_new_pages(page, order));
3731
3732 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3733 zone_statistics(preferred_zone, zone, 1);
3734
3735 return page;
3736}
3737
066b2393 3738/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3739static inline
44042b44
MG
3740struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3741 int migratetype,
6bb15450 3742 unsigned int alloc_flags,
453f85d4 3743 struct per_cpu_pages *pcp,
066b2393
MG
3744 struct list_head *list)
3745{
3746 struct page *page;
3747
3748 do {
3749 if (list_empty(list)) {
44042b44
MG
3750 int batch = READ_ONCE(pcp->batch);
3751 int alloced;
3752
3753 /*
3754 * Scale batch relative to order if batch implies
3755 * free pages can be stored on the PCP. Batch can
3756 * be 1 for small zones or for boot pagesets which
3757 * should never store free pages as the pages may
3758 * belong to arbitrary zones.
3759 */
3760 if (batch > 1)
3761 batch = max(batch >> order, 2);
3762 alloced = rmqueue_bulk(zone, order,
3763 batch, list,
6bb15450 3764 migratetype, alloc_flags);
44042b44
MG
3765
3766 pcp->count += alloced << order;
066b2393
MG
3767 if (unlikely(list_empty(list)))
3768 return NULL;
3769 }
3770
bf75f200
MG
3771 page = list_first_entry(list, struct page, pcp_list);
3772 list_del(&page->pcp_list);
44042b44 3773 pcp->count -= 1 << order;
77fe7f13 3774 } while (check_new_pcp(page, order));
066b2393
MG
3775
3776 return page;
3777}
3778
3779/* Lock and remove page from the per-cpu list */
3780static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3781 struct zone *zone, unsigned int order,
3782 gfp_t gfp_flags, int migratetype,
3783 unsigned int alloc_flags)
066b2393
MG
3784{
3785 struct per_cpu_pages *pcp;
3786 struct list_head *list;
066b2393 3787 struct page *page;
d34b0733 3788 unsigned long flags;
4b23a68f 3789 unsigned long __maybe_unused UP_flags;
066b2393 3790
4b23a68f
MG
3791 /*
3792 * spin_trylock may fail due to a parallel drain. In the future, the
3793 * trylock will also protect against IRQ reentrancy.
3794 */
4b23a68f 3795 pcp_trylock_prepare(UP_flags);
01b44456
MG
3796 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3797 if (!pcp) {
4b23a68f 3798 pcp_trylock_finish(UP_flags);
4b23a68f
MG
3799 return NULL;
3800 }
3b12e7e9
MG
3801
3802 /*
3803 * On allocation, reduce the number of pages that are batch freed.
3804 * See nr_pcp_free() where free_factor is increased for subsequent
3805 * frees.
3806 */
3b12e7e9 3807 pcp->free_factor >>= 1;
44042b44
MG
3808 list = &pcp->lists[order_to_pindex(migratetype, order)];
3809 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
01b44456 3810 pcp_spin_unlock_irqrestore(pcp, flags);
4b23a68f 3811 pcp_trylock_finish(UP_flags);
066b2393 3812 if (page) {
1c52e6d0 3813 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3814 zone_statistics(preferred_zone, zone, 1);
066b2393 3815 }
066b2393
MG
3816 return page;
3817}
3818
1da177e4 3819/*
75379191 3820 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3821 */
0a15c3e9 3822static inline
066b2393 3823struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3824 struct zone *zone, unsigned int order,
c603844b
MG
3825 gfp_t gfp_flags, unsigned int alloc_flags,
3826 int migratetype)
1da177e4 3827{
689bcebf 3828 struct page *page;
1da177e4 3829
589d9973
MG
3830 /*
3831 * We most definitely don't want callers attempting to
3832 * allocate greater than order-1 page units with __GFP_NOFAIL.
3833 */
3834 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3835
44042b44 3836 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3837 /*
3838 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3839 * we need to skip it when CMA area isn't allowed.
3840 */
3841 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3842 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3843 page = rmqueue_pcplist(preferred_zone, zone, order,
3844 gfp_flags, migratetype, alloc_flags);
4b23a68f
MG
3845 if (likely(page))
3846 goto out;
1d91df85 3847 }
066b2393 3848 }
83b9355b 3849
589d9973
MG
3850 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3851 migratetype);
1da177e4 3852
066b2393 3853out:
73444bc4 3854 /* Separate test+clear to avoid unnecessary atomics */
e2a66c21 3855 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
3856 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3857 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3858 }
3859
066b2393 3860 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
3861 return page;
3862}
3863
933e312e
AM
3864#ifdef CONFIG_FAIL_PAGE_ALLOC
3865
b2588c4b 3866static struct {
933e312e
AM
3867 struct fault_attr attr;
3868
621a5f7a 3869 bool ignore_gfp_highmem;
71baba4b 3870 bool ignore_gfp_reclaim;
54114994 3871 u32 min_order;
933e312e
AM
3872} fail_page_alloc = {
3873 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3874 .ignore_gfp_reclaim = true,
621a5f7a 3875 .ignore_gfp_highmem = true,
54114994 3876 .min_order = 1,
933e312e
AM
3877};
3878
3879static int __init setup_fail_page_alloc(char *str)
3880{
3881 return setup_fault_attr(&fail_page_alloc.attr, str);
3882}
3883__setup("fail_page_alloc=", setup_fail_page_alloc);
3884
af3b8544 3885static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3886{
54114994 3887 if (order < fail_page_alloc.min_order)
deaf386e 3888 return false;
933e312e 3889 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3890 return false;
933e312e 3891 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3892 return false;
71baba4b
MG
3893 if (fail_page_alloc.ignore_gfp_reclaim &&
3894 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3895 return false;
933e312e 3896
3f913fc5
QZ
3897 if (gfp_mask & __GFP_NOWARN)
3898 fail_page_alloc.attr.no_warn = true;
3899
933e312e
AM
3900 return should_fail(&fail_page_alloc.attr, 1 << order);
3901}
3902
3903#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3904
3905static int __init fail_page_alloc_debugfs(void)
3906{
0825a6f9 3907 umode_t mode = S_IFREG | 0600;
933e312e 3908 struct dentry *dir;
933e312e 3909
dd48c085
AM
3910 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3911 &fail_page_alloc.attr);
b2588c4b 3912
d9f7979c
GKH
3913 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3914 &fail_page_alloc.ignore_gfp_reclaim);
3915 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3916 &fail_page_alloc.ignore_gfp_highmem);
3917 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3918
d9f7979c 3919 return 0;
933e312e
AM
3920}
3921
3922late_initcall(fail_page_alloc_debugfs);
3923
3924#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3925
3926#else /* CONFIG_FAIL_PAGE_ALLOC */
3927
af3b8544 3928static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3929{
deaf386e 3930 return false;
933e312e
AM
3931}
3932
3933#endif /* CONFIG_FAIL_PAGE_ALLOC */
3934
54aa3866 3935noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3936{
3937 return __should_fail_alloc_page(gfp_mask, order);
3938}
3939ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3940
f27ce0e1
JK
3941static inline long __zone_watermark_unusable_free(struct zone *z,
3942 unsigned int order, unsigned int alloc_flags)
3943{
3944 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3945 long unusable_free = (1 << order) - 1;
3946
3947 /*
3948 * If the caller does not have rights to ALLOC_HARDER then subtract
3949 * the high-atomic reserves. This will over-estimate the size of the
3950 * atomic reserve but it avoids a search.
3951 */
3952 if (likely(!alloc_harder))
3953 unusable_free += z->nr_reserved_highatomic;
3954
3955#ifdef CONFIG_CMA
3956 /* If allocation can't use CMA areas don't use free CMA pages */
3957 if (!(alloc_flags & ALLOC_CMA))
3958 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3959#endif
3960
3961 return unusable_free;
3962}
3963
1da177e4 3964/*
97a16fc8
MG
3965 * Return true if free base pages are above 'mark'. For high-order checks it
3966 * will return true of the order-0 watermark is reached and there is at least
3967 * one free page of a suitable size. Checking now avoids taking the zone lock
3968 * to check in the allocation paths if no pages are free.
1da177e4 3969 */
86a294a8 3970bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3971 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3972 long free_pages)
1da177e4 3973{
d23ad423 3974 long min = mark;
1da177e4 3975 int o;
cd04ae1e 3976 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3977
0aaa29a5 3978 /* free_pages may go negative - that's OK */
f27ce0e1 3979 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3980
7fb1d9fc 3981 if (alloc_flags & ALLOC_HIGH)
1da177e4 3982 min -= min / 2;
0aaa29a5 3983
f27ce0e1 3984 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3985 /*
3986 * OOM victims can try even harder than normal ALLOC_HARDER
3987 * users on the grounds that it's definitely going to be in
3988 * the exit path shortly and free memory. Any allocation it
3989 * makes during the free path will be small and short-lived.
3990 */
3991 if (alloc_flags & ALLOC_OOM)
3992 min -= min / 2;
3993 else
3994 min -= min / 4;
3995 }
3996
97a16fc8
MG
3997 /*
3998 * Check watermarks for an order-0 allocation request. If these
3999 * are not met, then a high-order request also cannot go ahead
4000 * even if a suitable page happened to be free.
4001 */
97a225e6 4002 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 4003 return false;
1da177e4 4004
97a16fc8
MG
4005 /* If this is an order-0 request then the watermark is fine */
4006 if (!order)
4007 return true;
4008
4009 /* For a high-order request, check at least one suitable page is free */
4010 for (o = order; o < MAX_ORDER; o++) {
4011 struct free_area *area = &z->free_area[o];
4012 int mt;
4013
4014 if (!area->nr_free)
4015 continue;
4016
97a16fc8 4017 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 4018 if (!free_area_empty(area, mt))
97a16fc8
MG
4019 return true;
4020 }
4021
4022#ifdef CONFIG_CMA
d883c6cf 4023 if ((alloc_flags & ALLOC_CMA) &&
b03641af 4024 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 4025 return true;
d883c6cf 4026 }
97a16fc8 4027#endif
76089d00 4028 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 4029 return true;
1da177e4 4030 }
97a16fc8 4031 return false;
88f5acf8
MG
4032}
4033
7aeb09f9 4034bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 4035 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 4036{
97a225e6 4037 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
4038 zone_page_state(z, NR_FREE_PAGES));
4039}
4040
48ee5f36 4041static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 4042 unsigned long mark, int highest_zoneidx,
f80b08fc 4043 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 4044{
f27ce0e1 4045 long free_pages;
d883c6cf 4046
f27ce0e1 4047 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
4048
4049 /*
4050 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 4051 * need to be calculated.
48ee5f36 4052 */
f27ce0e1 4053 if (!order) {
9282012f
JK
4054 long usable_free;
4055 long reserved;
f27ce0e1 4056
9282012f
JK
4057 usable_free = free_pages;
4058 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4059
4060 /* reserved may over estimate high-atomic reserves. */
4061 usable_free -= min(usable_free, reserved);
4062 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
4063 return true;
4064 }
48ee5f36 4065
f80b08fc
CTR
4066 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4067 free_pages))
4068 return true;
4069 /*
4070 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4071 * when checking the min watermark. The min watermark is the
4072 * point where boosting is ignored so that kswapd is woken up
4073 * when below the low watermark.
4074 */
4075 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4076 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4077 mark = z->_watermark[WMARK_MIN];
4078 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4079 alloc_flags, free_pages);
4080 }
4081
4082 return false;
48ee5f36
MG
4083}
4084
7aeb09f9 4085bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 4086 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
4087{
4088 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4089
4090 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4091 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4092
97a225e6 4093 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 4094 free_pages);
1da177e4
LT
4095}
4096
9276b1bc 4097#ifdef CONFIG_NUMA
61bb6cd2
GU
4098int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4099
957f822a
DR
4100static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4101{
e02dc017 4102 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 4103 node_reclaim_distance;
957f822a 4104}
9276b1bc 4105#else /* CONFIG_NUMA */
957f822a
DR
4106static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4107{
4108 return true;
4109}
9276b1bc
PJ
4110#endif /* CONFIG_NUMA */
4111
6bb15450
MG
4112/*
4113 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4114 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4115 * premature use of a lower zone may cause lowmem pressure problems that
4116 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4117 * probably too small. It only makes sense to spread allocations to avoid
4118 * fragmentation between the Normal and DMA32 zones.
4119 */
4120static inline unsigned int
0a79cdad 4121alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 4122{
736838e9 4123 unsigned int alloc_flags;
0a79cdad 4124
736838e9
MN
4125 /*
4126 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4127 * to save a branch.
4128 */
4129 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4130
4131#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4132 if (!zone)
4133 return alloc_flags;
4134
6bb15450 4135 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4136 return alloc_flags;
6bb15450
MG
4137
4138 /*
4139 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4140 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4141 * on UMA that if Normal is populated then so is DMA32.
4142 */
4143 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4144 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4145 return alloc_flags;
6bb15450 4146
8118b82e 4147 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4148#endif /* CONFIG_ZONE_DMA32 */
4149 return alloc_flags;
6bb15450 4150}
6bb15450 4151
8e3560d9
PT
4152/* Must be called after current_gfp_context() which can change gfp_mask */
4153static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4154 unsigned int alloc_flags)
8510e69c
JK
4155{
4156#ifdef CONFIG_CMA
8e3560d9 4157 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4158 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4159#endif
4160 return alloc_flags;
4161}
4162
7fb1d9fc 4163/*
0798e519 4164 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4165 * a page.
4166 */
4167static struct page *
a9263751
VB
4168get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4169 const struct alloc_context *ac)
753ee728 4170{
6bb15450 4171 struct zoneref *z;
5117f45d 4172 struct zone *zone;
8a87d695
WY
4173 struct pglist_data *last_pgdat = NULL;
4174 bool last_pgdat_dirty_ok = false;
6bb15450 4175 bool no_fallback;
3b8c0be4 4176
6bb15450 4177retry:
7fb1d9fc 4178 /*
9276b1bc 4179 * Scan zonelist, looking for a zone with enough free.
189cdcfe 4180 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 4181 */
6bb15450
MG
4182 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4183 z = ac->preferred_zoneref;
30d8ec73
MN
4184 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4185 ac->nodemask) {
be06af00 4186 struct page *page;
e085dbc5
JW
4187 unsigned long mark;
4188
664eedde
MG
4189 if (cpusets_enabled() &&
4190 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4191 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4192 continue;
a756cf59
JW
4193 /*
4194 * When allocating a page cache page for writing, we
281e3726
MG
4195 * want to get it from a node that is within its dirty
4196 * limit, such that no single node holds more than its
a756cf59 4197 * proportional share of globally allowed dirty pages.
281e3726 4198 * The dirty limits take into account the node's
a756cf59
JW
4199 * lowmem reserves and high watermark so that kswapd
4200 * should be able to balance it without having to
4201 * write pages from its LRU list.
4202 *
a756cf59 4203 * XXX: For now, allow allocations to potentially
281e3726 4204 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4205 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4206 * which is important when on a NUMA setup the allowed
281e3726 4207 * nodes are together not big enough to reach the
a756cf59 4208 * global limit. The proper fix for these situations
281e3726 4209 * will require awareness of nodes in the
a756cf59
JW
4210 * dirty-throttling and the flusher threads.
4211 */
3b8c0be4 4212 if (ac->spread_dirty_pages) {
8a87d695
WY
4213 if (last_pgdat != zone->zone_pgdat) {
4214 last_pgdat = zone->zone_pgdat;
4215 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4216 }
3b8c0be4 4217
8a87d695 4218 if (!last_pgdat_dirty_ok)
3b8c0be4 4219 continue;
3b8c0be4 4220 }
7fb1d9fc 4221
6bb15450
MG
4222 if (no_fallback && nr_online_nodes > 1 &&
4223 zone != ac->preferred_zoneref->zone) {
4224 int local_nid;
4225
4226 /*
4227 * If moving to a remote node, retry but allow
4228 * fragmenting fallbacks. Locality is more important
4229 * than fragmentation avoidance.
4230 */
4231 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4232 if (zone_to_nid(zone) != local_nid) {
4233 alloc_flags &= ~ALLOC_NOFRAGMENT;
4234 goto retry;
4235 }
4236 }
4237
a9214443 4238 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4239 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4240 ac->highest_zoneidx, alloc_flags,
4241 gfp_mask)) {
fa5e084e
MG
4242 int ret;
4243
c9e97a19
PT
4244#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4245 /*
4246 * Watermark failed for this zone, but see if we can
4247 * grow this zone if it contains deferred pages.
4248 */
4249 if (static_branch_unlikely(&deferred_pages)) {
4250 if (_deferred_grow_zone(zone, order))
4251 goto try_this_zone;
4252 }
4253#endif
5dab2911
MG
4254 /* Checked here to keep the fast path fast */
4255 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4256 if (alloc_flags & ALLOC_NO_WATERMARKS)
4257 goto try_this_zone;
4258
202e35db 4259 if (!node_reclaim_enabled() ||
c33d6c06 4260 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4261 continue;
4262
a5f5f91d 4263 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4264 switch (ret) {
a5f5f91d 4265 case NODE_RECLAIM_NOSCAN:
fa5e084e 4266 /* did not scan */
cd38b115 4267 continue;
a5f5f91d 4268 case NODE_RECLAIM_FULL:
fa5e084e 4269 /* scanned but unreclaimable */
cd38b115 4270 continue;
fa5e084e
MG
4271 default:
4272 /* did we reclaim enough */
fed2719e 4273 if (zone_watermark_ok(zone, order, mark,
97a225e6 4274 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4275 goto try_this_zone;
4276
fed2719e 4277 continue;
0798e519 4278 }
7fb1d9fc
RS
4279 }
4280
fa5e084e 4281try_this_zone:
066b2393 4282 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4283 gfp_mask, alloc_flags, ac->migratetype);
75379191 4284 if (page) {
479f854a 4285 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4286
4287 /*
4288 * If this is a high-order atomic allocation then check
4289 * if the pageblock should be reserved for the future
4290 */
4291 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4292 reserve_highatomic_pageblock(page, zone, order);
4293
75379191 4294 return page;
c9e97a19
PT
4295 } else {
4296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4297 /* Try again if zone has deferred pages */
4298 if (static_branch_unlikely(&deferred_pages)) {
4299 if (_deferred_grow_zone(zone, order))
4300 goto try_this_zone;
4301 }
4302#endif
75379191 4303 }
54a6eb5c 4304 }
9276b1bc 4305
6bb15450
MG
4306 /*
4307 * It's possible on a UMA machine to get through all zones that are
4308 * fragmented. If avoiding fragmentation, reset and try again.
4309 */
4310 if (no_fallback) {
4311 alloc_flags &= ~ALLOC_NOFRAGMENT;
4312 goto retry;
4313 }
4314
4ffeaf35 4315 return NULL;
753ee728
MH
4316}
4317
9af744d7 4318static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4319{
a238ab5b 4320 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4321
4322 /*
4323 * This documents exceptions given to allocations in certain
4324 * contexts that are allowed to allocate outside current's set
4325 * of allowed nodes.
4326 */
4327 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4328 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4329 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4330 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4331 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4332 filter &= ~SHOW_MEM_FILTER_NODES;
4333
9af744d7 4334 show_mem(filter, nodemask);
aa187507
MH
4335}
4336
a8e99259 4337void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4338{
4339 struct va_format vaf;
4340 va_list args;
1be334e5 4341 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4342
c4dc63f0
BH
4343 if ((gfp_mask & __GFP_NOWARN) ||
4344 !__ratelimit(&nopage_rs) ||
4345 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4346 return;
4347
7877cdcc
MH
4348 va_start(args, fmt);
4349 vaf.fmt = fmt;
4350 vaf.va = &args;
ef8444ea 4351 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4352 current->comm, &vaf, gfp_mask, &gfp_mask,
4353 nodemask_pr_args(nodemask));
7877cdcc 4354 va_end(args);
3ee9a4f0 4355
a8e99259 4356 cpuset_print_current_mems_allowed();
ef8444ea 4357 pr_cont("\n");
a238ab5b 4358 dump_stack();
685dbf6f 4359 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4360}
4361
6c18ba7a
MH
4362static inline struct page *
4363__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4364 unsigned int alloc_flags,
4365 const struct alloc_context *ac)
4366{
4367 struct page *page;
4368
4369 page = get_page_from_freelist(gfp_mask, order,
4370 alloc_flags|ALLOC_CPUSET, ac);
4371 /*
4372 * fallback to ignore cpuset restriction if our nodes
4373 * are depleted
4374 */
4375 if (!page)
4376 page = get_page_from_freelist(gfp_mask, order,
4377 alloc_flags, ac);
4378
4379 return page;
4380}
4381
11e33f6a
MG
4382static inline struct page *
4383__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4384 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4385{
6e0fc46d
DR
4386 struct oom_control oc = {
4387 .zonelist = ac->zonelist,
4388 .nodemask = ac->nodemask,
2a966b77 4389 .memcg = NULL,
6e0fc46d
DR
4390 .gfp_mask = gfp_mask,
4391 .order = order,
6e0fc46d 4392 };
11e33f6a
MG
4393 struct page *page;
4394
9879de73
JW
4395 *did_some_progress = 0;
4396
9879de73 4397 /*
dc56401f
JW
4398 * Acquire the oom lock. If that fails, somebody else is
4399 * making progress for us.
9879de73 4400 */
dc56401f 4401 if (!mutex_trylock(&oom_lock)) {
9879de73 4402 *did_some_progress = 1;
11e33f6a 4403 schedule_timeout_uninterruptible(1);
1da177e4
LT
4404 return NULL;
4405 }
6b1de916 4406
11e33f6a
MG
4407 /*
4408 * Go through the zonelist yet one more time, keep very high watermark
4409 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4410 * we're still under heavy pressure. But make sure that this reclaim
4411 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4412 * allocation which will never fail due to oom_lock already held.
11e33f6a 4413 */
e746bf73
TH
4414 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4415 ~__GFP_DIRECT_RECLAIM, order,
4416 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4417 if (page)
11e33f6a
MG
4418 goto out;
4419
06ad276a
MH
4420 /* Coredumps can quickly deplete all memory reserves */
4421 if (current->flags & PF_DUMPCORE)
4422 goto out;
4423 /* The OOM killer will not help higher order allocs */
4424 if (order > PAGE_ALLOC_COSTLY_ORDER)
4425 goto out;
dcda9b04
MH
4426 /*
4427 * We have already exhausted all our reclaim opportunities without any
4428 * success so it is time to admit defeat. We will skip the OOM killer
4429 * because it is very likely that the caller has a more reasonable
4430 * fallback than shooting a random task.
cfb4a541
MN
4431 *
4432 * The OOM killer may not free memory on a specific node.
dcda9b04 4433 */
cfb4a541 4434 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4435 goto out;
06ad276a 4436 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4437 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4438 goto out;
4439 if (pm_suspended_storage())
4440 goto out;
4441 /*
4442 * XXX: GFP_NOFS allocations should rather fail than rely on
4443 * other request to make a forward progress.
4444 * We are in an unfortunate situation where out_of_memory cannot
4445 * do much for this context but let's try it to at least get
4446 * access to memory reserved if the current task is killed (see
4447 * out_of_memory). Once filesystems are ready to handle allocation
4448 * failures more gracefully we should just bail out here.
4449 */
4450
3c2c6488 4451 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
4452 if (out_of_memory(&oc) ||
4453 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 4454 *did_some_progress = 1;
5020e285 4455
6c18ba7a
MH
4456 /*
4457 * Help non-failing allocations by giving them access to memory
4458 * reserves
4459 */
4460 if (gfp_mask & __GFP_NOFAIL)
4461 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4462 ALLOC_NO_WATERMARKS, ac);
5020e285 4463 }
11e33f6a 4464out:
dc56401f 4465 mutex_unlock(&oom_lock);
11e33f6a
MG
4466 return page;
4467}
4468
33c2d214 4469/*
baf2f90b 4470 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4471 * killer is consider as the only way to move forward.
4472 */
4473#define MAX_COMPACT_RETRIES 16
4474
56de7263
MG
4475#ifdef CONFIG_COMPACTION
4476/* Try memory compaction for high-order allocations before reclaim */
4477static struct page *
4478__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4479 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4480 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4481{
5e1f0f09 4482 struct page *page = NULL;
eb414681 4483 unsigned long pflags;
499118e9 4484 unsigned int noreclaim_flag;
53853e2d
VB
4485
4486 if (!order)
66199712 4487 return NULL;
66199712 4488
eb414681 4489 psi_memstall_enter(&pflags);
5bf18281 4490 delayacct_compact_start();
499118e9 4491 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4492
c5d01d0d 4493 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4494 prio, &page);
eb414681 4495
499118e9 4496 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4497 psi_memstall_leave(&pflags);
5bf18281 4498 delayacct_compact_end();
56de7263 4499
06dac2f4
CTR
4500 if (*compact_result == COMPACT_SKIPPED)
4501 return NULL;
98dd3b48
VB
4502 /*
4503 * At least in one zone compaction wasn't deferred or skipped, so let's
4504 * count a compaction stall
4505 */
4506 count_vm_event(COMPACTSTALL);
8fb74b9f 4507
5e1f0f09
MG
4508 /* Prep a captured page if available */
4509 if (page)
4510 prep_new_page(page, order, gfp_mask, alloc_flags);
4511
4512 /* Try get a page from the freelist if available */
4513 if (!page)
4514 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4515
98dd3b48
VB
4516 if (page) {
4517 struct zone *zone = page_zone(page);
53853e2d 4518
98dd3b48
VB
4519 zone->compact_blockskip_flush = false;
4520 compaction_defer_reset(zone, order, true);
4521 count_vm_event(COMPACTSUCCESS);
4522 return page;
4523 }
56de7263 4524
98dd3b48
VB
4525 /*
4526 * It's bad if compaction run occurs and fails. The most likely reason
4527 * is that pages exist, but not enough to satisfy watermarks.
4528 */
4529 count_vm_event(COMPACTFAIL);
66199712 4530
98dd3b48 4531 cond_resched();
56de7263
MG
4532
4533 return NULL;
4534}
33c2d214 4535
3250845d
VB
4536static inline bool
4537should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4538 enum compact_result compact_result,
4539 enum compact_priority *compact_priority,
d9436498 4540 int *compaction_retries)
3250845d
VB
4541{
4542 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4543 int min_priority;
65190cff
MH
4544 bool ret = false;
4545 int retries = *compaction_retries;
4546 enum compact_priority priority = *compact_priority;
3250845d
VB
4547
4548 if (!order)
4549 return false;
4550
691d9497
AT
4551 if (fatal_signal_pending(current))
4552 return false;
4553
d9436498
VB
4554 if (compaction_made_progress(compact_result))
4555 (*compaction_retries)++;
4556
3250845d
VB
4557 /*
4558 * compaction considers all the zone as desperately out of memory
4559 * so it doesn't really make much sense to retry except when the
4560 * failure could be caused by insufficient priority
4561 */
d9436498
VB
4562 if (compaction_failed(compact_result))
4563 goto check_priority;
3250845d 4564
49433085
VB
4565 /*
4566 * compaction was skipped because there are not enough order-0 pages
4567 * to work with, so we retry only if it looks like reclaim can help.
4568 */
4569 if (compaction_needs_reclaim(compact_result)) {
4570 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4571 goto out;
4572 }
4573
3250845d
VB
4574 /*
4575 * make sure the compaction wasn't deferred or didn't bail out early
4576 * due to locks contention before we declare that we should give up.
49433085
VB
4577 * But the next retry should use a higher priority if allowed, so
4578 * we don't just keep bailing out endlessly.
3250845d 4579 */
65190cff 4580 if (compaction_withdrawn(compact_result)) {
49433085 4581 goto check_priority;
65190cff 4582 }
3250845d
VB
4583
4584 /*
dcda9b04 4585 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4586 * costly ones because they are de facto nofail and invoke OOM
4587 * killer to move on while costly can fail and users are ready
4588 * to cope with that. 1/4 retries is rather arbitrary but we
4589 * would need much more detailed feedback from compaction to
4590 * make a better decision.
4591 */
4592 if (order > PAGE_ALLOC_COSTLY_ORDER)
4593 max_retries /= 4;
65190cff
MH
4594 if (*compaction_retries <= max_retries) {
4595 ret = true;
4596 goto out;
4597 }
3250845d 4598
d9436498
VB
4599 /*
4600 * Make sure there are attempts at the highest priority if we exhausted
4601 * all retries or failed at the lower priorities.
4602 */
4603check_priority:
c2033b00
VB
4604 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4605 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4606
c2033b00 4607 if (*compact_priority > min_priority) {
d9436498
VB
4608 (*compact_priority)--;
4609 *compaction_retries = 0;
65190cff 4610 ret = true;
d9436498 4611 }
65190cff
MH
4612out:
4613 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4614 return ret;
3250845d 4615}
56de7263
MG
4616#else
4617static inline struct page *
4618__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4619 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4620 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4621{
33c2d214 4622 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4623 return NULL;
4624}
33c2d214
MH
4625
4626static inline bool
86a294a8
MH
4627should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4628 enum compact_result compact_result,
a5508cd8 4629 enum compact_priority *compact_priority,
d9436498 4630 int *compaction_retries)
33c2d214 4631{
31e49bfd
MH
4632 struct zone *zone;
4633 struct zoneref *z;
4634
4635 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4636 return false;
4637
4638 /*
4639 * There are setups with compaction disabled which would prefer to loop
4640 * inside the allocator rather than hit the oom killer prematurely.
4641 * Let's give them a good hope and keep retrying while the order-0
4642 * watermarks are OK.
4643 */
97a225e6
JK
4644 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4645 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4646 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4647 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4648 return true;
4649 }
33c2d214
MH
4650 return false;
4651}
3250845d 4652#endif /* CONFIG_COMPACTION */
56de7263 4653
d92a8cfc 4654#ifdef CONFIG_LOCKDEP
93781325 4655static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4656 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4657
f920e413 4658static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4659{
d92a8cfc
PZ
4660 /* no reclaim without waiting on it */
4661 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4662 return false;
4663
4664 /* this guy won't enter reclaim */
2e517d68 4665 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4666 return false;
4667
d92a8cfc
PZ
4668 if (gfp_mask & __GFP_NOLOCKDEP)
4669 return false;
4670
4671 return true;
4672}
4673
4f3eaf45 4674void __fs_reclaim_acquire(unsigned long ip)
93781325 4675{
4f3eaf45 4676 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4677}
4678
4f3eaf45 4679void __fs_reclaim_release(unsigned long ip)
93781325 4680{
4f3eaf45 4681 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4682}
4683
d92a8cfc
PZ
4684void fs_reclaim_acquire(gfp_t gfp_mask)
4685{
f920e413
DV
4686 gfp_mask = current_gfp_context(gfp_mask);
4687
4688 if (__need_reclaim(gfp_mask)) {
4689 if (gfp_mask & __GFP_FS)
4f3eaf45 4690 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4691
4692#ifdef CONFIG_MMU_NOTIFIER
4693 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4694 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4695#endif
4696
4697 }
d92a8cfc
PZ
4698}
4699EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4700
4701void fs_reclaim_release(gfp_t gfp_mask)
4702{
f920e413
DV
4703 gfp_mask = current_gfp_context(gfp_mask);
4704
4705 if (__need_reclaim(gfp_mask)) {
4706 if (gfp_mask & __GFP_FS)
4f3eaf45 4707 __fs_reclaim_release(_RET_IP_);
f920e413 4708 }
d92a8cfc
PZ
4709}
4710EXPORT_SYMBOL_GPL(fs_reclaim_release);
4711#endif
4712
bba90710 4713/* Perform direct synchronous page reclaim */
2187e17b 4714static unsigned long
a9263751
VB
4715__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4716 const struct alloc_context *ac)
11e33f6a 4717{
499118e9 4718 unsigned int noreclaim_flag;
fa7fc75f 4719 unsigned long progress;
11e33f6a
MG
4720
4721 cond_resched();
4722
4723 /* We now go into synchronous reclaim */
4724 cpuset_memory_pressure_bump();
d92a8cfc 4725 fs_reclaim_acquire(gfp_mask);
93781325 4726 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4727
a9263751
VB
4728 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4729 ac->nodemask);
11e33f6a 4730
499118e9 4731 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4732 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4733
4734 cond_resched();
4735
bba90710
MS
4736 return progress;
4737}
4738
4739/* The really slow allocator path where we enter direct reclaim */
4740static inline struct page *
4741__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4742 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4743 unsigned long *did_some_progress)
bba90710
MS
4744{
4745 struct page *page = NULL;
fa7fc75f 4746 unsigned long pflags;
bba90710
MS
4747 bool drained = false;
4748
fa7fc75f 4749 psi_memstall_enter(&pflags);
a9263751 4750 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4751 if (unlikely(!(*did_some_progress)))
fa7fc75f 4752 goto out;
11e33f6a 4753
9ee493ce 4754retry:
31a6c190 4755 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4756
4757 /*
4758 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4759 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4760 * Shrink them and try again
9ee493ce
MG
4761 */
4762 if (!page && !drained) {
29fac03b 4763 unreserve_highatomic_pageblock(ac, false);
93481ff0 4764 drain_all_pages(NULL);
9ee493ce
MG
4765 drained = true;
4766 goto retry;
4767 }
fa7fc75f
SB
4768out:
4769 psi_memstall_leave(&pflags);
9ee493ce 4770
11e33f6a
MG
4771 return page;
4772}
4773
5ecd9d40
DR
4774static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4775 const struct alloc_context *ac)
3a025760
JW
4776{
4777 struct zoneref *z;
4778 struct zone *zone;
e1a55637 4779 pg_data_t *last_pgdat = NULL;
97a225e6 4780 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4781
97a225e6 4782 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4783 ac->nodemask) {
bc53008e
WY
4784 if (!managed_zone(zone))
4785 continue;
d137a7cb 4786 if (last_pgdat != zone->zone_pgdat) {
97a225e6 4787 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
4788 last_pgdat = zone->zone_pgdat;
4789 }
e1a55637 4790 }
3a025760
JW
4791}
4792
c603844b 4793static inline unsigned int
341ce06f
PZ
4794gfp_to_alloc_flags(gfp_t gfp_mask)
4795{
c603844b 4796 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4797
736838e9
MN
4798 /*
4799 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4800 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4801 * to save two branches.
4802 */
e6223a3b 4803 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4804 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4805
341ce06f
PZ
4806 /*
4807 * The caller may dip into page reserves a bit more if the caller
4808 * cannot run direct reclaim, or if the caller has realtime scheduling
4809 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4810 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4811 */
736838e9
MN
4812 alloc_flags |= (__force int)
4813 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4814
d0164adc 4815 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4816 /*
b104a35d
DR
4817 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4818 * if it can't schedule.
5c3240d9 4819 */
b104a35d 4820 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4821 alloc_flags |= ALLOC_HARDER;
523b9458 4822 /*
b104a35d 4823 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4824 * comment for __cpuset_node_allowed().
523b9458 4825 */
341ce06f 4826 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4827 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4828 alloc_flags |= ALLOC_HARDER;
4829
8e3560d9 4830 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4831
341ce06f
PZ
4832 return alloc_flags;
4833}
4834
cd04ae1e 4835static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4836{
cd04ae1e
MH
4837 if (!tsk_is_oom_victim(tsk))
4838 return false;
4839
4840 /*
4841 * !MMU doesn't have oom reaper so give access to memory reserves
4842 * only to the thread with TIF_MEMDIE set
4843 */
4844 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4845 return false;
4846
cd04ae1e
MH
4847 return true;
4848}
4849
4850/*
4851 * Distinguish requests which really need access to full memory
4852 * reserves from oom victims which can live with a portion of it
4853 */
4854static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4855{
4856 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4857 return 0;
31a6c190 4858 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4859 return ALLOC_NO_WATERMARKS;
31a6c190 4860 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4861 return ALLOC_NO_WATERMARKS;
4862 if (!in_interrupt()) {
4863 if (current->flags & PF_MEMALLOC)
4864 return ALLOC_NO_WATERMARKS;
4865 else if (oom_reserves_allowed(current))
4866 return ALLOC_OOM;
4867 }
31a6c190 4868
cd04ae1e
MH
4869 return 0;
4870}
4871
4872bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4873{
4874 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4875}
4876
0a0337e0
MH
4877/*
4878 * Checks whether it makes sense to retry the reclaim to make a forward progress
4879 * for the given allocation request.
491d79ae
JW
4880 *
4881 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4882 * without success, or when we couldn't even meet the watermark if we
4883 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4884 *
4885 * Returns true if a retry is viable or false to enter the oom path.
4886 */
4887static inline bool
4888should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4889 struct alloc_context *ac, int alloc_flags,
423b452e 4890 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4891{
4892 struct zone *zone;
4893 struct zoneref *z;
15f570bf 4894 bool ret = false;
0a0337e0 4895
423b452e
VB
4896 /*
4897 * Costly allocations might have made a progress but this doesn't mean
4898 * their order will become available due to high fragmentation so
4899 * always increment the no progress counter for them
4900 */
4901 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4902 *no_progress_loops = 0;
4903 else
4904 (*no_progress_loops)++;
4905
0a0337e0
MH
4906 /*
4907 * Make sure we converge to OOM if we cannot make any progress
4908 * several times in the row.
4909 */
04c8716f
MK
4910 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4911 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4912 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4913 }
0a0337e0 4914
bca67592
MG
4915 /*
4916 * Keep reclaiming pages while there is a chance this will lead
4917 * somewhere. If none of the target zones can satisfy our allocation
4918 * request even if all reclaimable pages are considered then we are
4919 * screwed and have to go OOM.
0a0337e0 4920 */
97a225e6
JK
4921 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4922 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4923 unsigned long available;
ede37713 4924 unsigned long reclaimable;
d379f01d
MH
4925 unsigned long min_wmark = min_wmark_pages(zone);
4926 bool wmark;
0a0337e0 4927
5a1c84b4 4928 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4929 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4930
4931 /*
491d79ae
JW
4932 * Would the allocation succeed if we reclaimed all
4933 * reclaimable pages?
0a0337e0 4934 */
d379f01d 4935 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4936 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4937 trace_reclaim_retry_zone(z, order, reclaimable,
4938 available, min_wmark, *no_progress_loops, wmark);
4939 if (wmark) {
15f570bf 4940 ret = true;
132b0d21 4941 break;
0a0337e0
MH
4942 }
4943 }
4944
15f570bf
MH
4945 /*
4946 * Memory allocation/reclaim might be called from a WQ context and the
4947 * current implementation of the WQ concurrency control doesn't
4948 * recognize that a particular WQ is congested if the worker thread is
4949 * looping without ever sleeping. Therefore we have to do a short sleep
4950 * here rather than calling cond_resched().
4951 */
4952 if (current->flags & PF_WQ_WORKER)
4953 schedule_timeout_uninterruptible(1);
4954 else
4955 cond_resched();
4956 return ret;
0a0337e0
MH
4957}
4958
902b6281
VB
4959static inline bool
4960check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4961{
4962 /*
4963 * It's possible that cpuset's mems_allowed and the nodemask from
4964 * mempolicy don't intersect. This should be normally dealt with by
4965 * policy_nodemask(), but it's possible to race with cpuset update in
4966 * such a way the check therein was true, and then it became false
4967 * before we got our cpuset_mems_cookie here.
4968 * This assumes that for all allocations, ac->nodemask can come only
4969 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4970 * when it does not intersect with the cpuset restrictions) or the
4971 * caller can deal with a violated nodemask.
4972 */
4973 if (cpusets_enabled() && ac->nodemask &&
4974 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4975 ac->nodemask = NULL;
4976 return true;
4977 }
4978
4979 /*
4980 * When updating a task's mems_allowed or mempolicy nodemask, it is
4981 * possible to race with parallel threads in such a way that our
4982 * allocation can fail while the mask is being updated. If we are about
4983 * to fail, check if the cpuset changed during allocation and if so,
4984 * retry.
4985 */
4986 if (read_mems_allowed_retry(cpuset_mems_cookie))
4987 return true;
4988
4989 return false;
4990}
4991
11e33f6a
MG
4992static inline struct page *
4993__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4994 struct alloc_context *ac)
11e33f6a 4995{
d0164adc 4996 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4997 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4998 struct page *page = NULL;
c603844b 4999 unsigned int alloc_flags;
11e33f6a 5000 unsigned long did_some_progress;
5ce9bfef 5001 enum compact_priority compact_priority;
c5d01d0d 5002 enum compact_result compact_result;
5ce9bfef
VB
5003 int compaction_retries;
5004 int no_progress_loops;
5ce9bfef 5005 unsigned int cpuset_mems_cookie;
cd04ae1e 5006 int reserve_flags;
1da177e4 5007
d0164adc
MG
5008 /*
5009 * We also sanity check to catch abuse of atomic reserves being used by
5010 * callers that are not in atomic context.
5011 */
5012 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5013 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5014 gfp_mask &= ~__GFP_ATOMIC;
5015
5ce9bfef
VB
5016retry_cpuset:
5017 compaction_retries = 0;
5018 no_progress_loops = 0;
5019 compact_priority = DEF_COMPACT_PRIORITY;
5020 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
5021
5022 /*
5023 * The fast path uses conservative alloc_flags to succeed only until
5024 * kswapd needs to be woken up, and to avoid the cost of setting up
5025 * alloc_flags precisely. So we do that now.
5026 */
5027 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5028
e47483bc
VB
5029 /*
5030 * We need to recalculate the starting point for the zonelist iterator
5031 * because we might have used different nodemask in the fast path, or
5032 * there was a cpuset modification and we are retrying - otherwise we
5033 * could end up iterating over non-eligible zones endlessly.
5034 */
5035 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5036 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
5037 if (!ac->preferred_zoneref->zone)
5038 goto nopage;
5039
8ca1b5a4
FT
5040 /*
5041 * Check for insane configurations where the cpuset doesn't contain
5042 * any suitable zone to satisfy the request - e.g. non-movable
5043 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5044 */
5045 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5046 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5047 ac->highest_zoneidx,
5048 &cpuset_current_mems_allowed);
5049 if (!z->zone)
5050 goto nopage;
5051 }
5052
0a79cdad 5053 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5054 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
5055
5056 /*
5057 * The adjusted alloc_flags might result in immediate success, so try
5058 * that first
5059 */
5060 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5061 if (page)
5062 goto got_pg;
5063
a8161d1e
VB
5064 /*
5065 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
5066 * that we have enough base pages and don't need to reclaim. For non-
5067 * movable high-order allocations, do that as well, as compaction will
5068 * try prevent permanent fragmentation by migrating from blocks of the
5069 * same migratetype.
5070 * Don't try this for allocations that are allowed to ignore
5071 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 5072 */
282722b0
VB
5073 if (can_direct_reclaim &&
5074 (costly_order ||
5075 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5076 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
5077 page = __alloc_pages_direct_compact(gfp_mask, order,
5078 alloc_flags, ac,
a5508cd8 5079 INIT_COMPACT_PRIORITY,
a8161d1e
VB
5080 &compact_result);
5081 if (page)
5082 goto got_pg;
5083
cc638f32
VB
5084 /*
5085 * Checks for costly allocations with __GFP_NORETRY, which
5086 * includes some THP page fault allocations
5087 */
5088 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
5089 /*
5090 * If allocating entire pageblock(s) and compaction
5091 * failed because all zones are below low watermarks
5092 * or is prohibited because it recently failed at this
3f36d866
DR
5093 * order, fail immediately unless the allocator has
5094 * requested compaction and reclaim retry.
b39d0ee2
DR
5095 *
5096 * Reclaim is
5097 * - potentially very expensive because zones are far
5098 * below their low watermarks or this is part of very
5099 * bursty high order allocations,
5100 * - not guaranteed to help because isolate_freepages()
5101 * may not iterate over freed pages as part of its
5102 * linear scan, and
5103 * - unlikely to make entire pageblocks free on its
5104 * own.
5105 */
5106 if (compact_result == COMPACT_SKIPPED ||
5107 compact_result == COMPACT_DEFERRED)
5108 goto nopage;
a8161d1e 5109
a8161d1e 5110 /*
3eb2771b
VB
5111 * Looks like reclaim/compaction is worth trying, but
5112 * sync compaction could be very expensive, so keep
25160354 5113 * using async compaction.
a8161d1e 5114 */
a5508cd8 5115 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
5116 }
5117 }
23771235 5118
31a6c190 5119retry:
23771235 5120 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 5121 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5122 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 5123
cd04ae1e
MH
5124 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5125 if (reserve_flags)
8e3560d9 5126 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 5127
e46e7b77 5128 /*
d6a24df0
VB
5129 * Reset the nodemask and zonelist iterators if memory policies can be
5130 * ignored. These allocations are high priority and system rather than
5131 * user oriented.
e46e7b77 5132 */
cd04ae1e 5133 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5134 ac->nodemask = NULL;
e46e7b77 5135 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5136 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5137 }
5138
23771235 5139 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5140 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5141 if (page)
5142 goto got_pg;
1da177e4 5143
d0164adc 5144 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5145 if (!can_direct_reclaim)
1da177e4
LT
5146 goto nopage;
5147
9a67f648
MH
5148 /* Avoid recursion of direct reclaim */
5149 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5150 goto nopage;
5151
a8161d1e
VB
5152 /* Try direct reclaim and then allocating */
5153 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5154 &did_some_progress);
5155 if (page)
5156 goto got_pg;
5157
5158 /* Try direct compaction and then allocating */
a9263751 5159 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5160 compact_priority, &compact_result);
56de7263
MG
5161 if (page)
5162 goto got_pg;
75f30861 5163
9083905a
JW
5164 /* Do not loop if specifically requested */
5165 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5166 goto nopage;
9083905a 5167
0a0337e0
MH
5168 /*
5169 * Do not retry costly high order allocations unless they are
dcda9b04 5170 * __GFP_RETRY_MAYFAIL
0a0337e0 5171 */
dcda9b04 5172 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5173 goto nopage;
0a0337e0 5174
0a0337e0 5175 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5176 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5177 goto retry;
5178
33c2d214
MH
5179 /*
5180 * It doesn't make any sense to retry for the compaction if the order-0
5181 * reclaim is not able to make any progress because the current
5182 * implementation of the compaction depends on the sufficient amount
5183 * of free memory (see __compaction_suitable)
5184 */
5185 if (did_some_progress > 0 &&
86a294a8 5186 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5187 compact_result, &compact_priority,
d9436498 5188 &compaction_retries))
33c2d214
MH
5189 goto retry;
5190
902b6281
VB
5191
5192 /* Deal with possible cpuset update races before we start OOM killing */
5193 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5194 goto retry_cpuset;
5195
9083905a
JW
5196 /* Reclaim has failed us, start killing things */
5197 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5198 if (page)
5199 goto got_pg;
5200
9a67f648 5201 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5202 if (tsk_is_oom_victim(current) &&
8510e69c 5203 (alloc_flags & ALLOC_OOM ||
c288983d 5204 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5205 goto nopage;
5206
9083905a 5207 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5208 if (did_some_progress) {
5209 no_progress_loops = 0;
9083905a 5210 goto retry;
0a0337e0 5211 }
9083905a 5212
1da177e4 5213nopage:
902b6281
VB
5214 /* Deal with possible cpuset update races before we fail */
5215 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5216 goto retry_cpuset;
5217
9a67f648
MH
5218 /*
5219 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5220 * we always retry
5221 */
5222 if (gfp_mask & __GFP_NOFAIL) {
5223 /*
5224 * All existing users of the __GFP_NOFAIL are blockable, so warn
5225 * of any new users that actually require GFP_NOWAIT
5226 */
3f913fc5 5227 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
5228 goto fail;
5229
5230 /*
5231 * PF_MEMALLOC request from this context is rather bizarre
5232 * because we cannot reclaim anything and only can loop waiting
5233 * for somebody to do a work for us
5234 */
3f913fc5 5235 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
5236
5237 /*
5238 * non failing costly orders are a hard requirement which we
5239 * are not prepared for much so let's warn about these users
5240 * so that we can identify them and convert them to something
5241 * else.
5242 */
3f913fc5 5243 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
9a67f648 5244
6c18ba7a
MH
5245 /*
5246 * Help non-failing allocations by giving them access to memory
5247 * reserves but do not use ALLOC_NO_WATERMARKS because this
5248 * could deplete whole memory reserves which would just make
5249 * the situation worse
5250 */
5251 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5252 if (page)
5253 goto got_pg;
5254
9a67f648
MH
5255 cond_resched();
5256 goto retry;
5257 }
5258fail:
a8e99259 5259 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5260 "page allocation failure: order:%u", order);
1da177e4 5261got_pg:
072bb0aa 5262 return page;
1da177e4 5263}
11e33f6a 5264
9cd75558 5265static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5266 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5267 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5268 unsigned int *alloc_flags)
11e33f6a 5269{
97a225e6 5270 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5271 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5272 ac->nodemask = nodemask;
01c0bfe0 5273 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5274
682a3385 5275 if (cpusets_enabled()) {
8e6a930b 5276 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5277 /*
5278 * When we are in the interrupt context, it is irrelevant
5279 * to the current task context. It means that any node ok.
5280 */
88dc6f20 5281 if (in_task() && !ac->nodemask)
9cd75558 5282 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5283 else
5284 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5285 }
5286
446ec838 5287 might_alloc(gfp_mask);
11e33f6a
MG
5288
5289 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5290 return false;
11e33f6a 5291
8e3560d9 5292 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5293
c9ab0c4f 5294 /* Dirty zone balancing only done in the fast path */
9cd75558 5295 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5296
e46e7b77
MG
5297 /*
5298 * The preferred zone is used for statistics but crucially it is
5299 * also used as the starting point for the zonelist iterator. It
5300 * may get reset for allocations that ignore memory policies.
5301 */
9cd75558 5302 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5303 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5304
5305 return true;
9cd75558
MG
5306}
5307
387ba26f 5308/*
0f87d9d3 5309 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5310 * @gfp: GFP flags for the allocation
5311 * @preferred_nid: The preferred NUMA node ID to allocate from
5312 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5313 * @nr_pages: The number of pages desired on the list or array
5314 * @page_list: Optional list to store the allocated pages
5315 * @page_array: Optional array to store the pages
387ba26f
MG
5316 *
5317 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5318 * allocate nr_pages quickly. Pages are added to page_list if page_list
5319 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5320 *
0f87d9d3
MG
5321 * For lists, nr_pages is the number of pages that should be allocated.
5322 *
5323 * For arrays, only NULL elements are populated with pages and nr_pages
5324 * is the maximum number of pages that will be stored in the array.
5325 *
5326 * Returns the number of pages on the list or array.
387ba26f
MG
5327 */
5328unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5329 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5330 struct list_head *page_list,
5331 struct page **page_array)
387ba26f
MG
5332{
5333 struct page *page;
5334 unsigned long flags;
4b23a68f 5335 unsigned long __maybe_unused UP_flags;
387ba26f
MG
5336 struct zone *zone;
5337 struct zoneref *z;
5338 struct per_cpu_pages *pcp;
5339 struct list_head *pcp_list;
5340 struct alloc_context ac;
5341 gfp_t alloc_gfp;
5342 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5343 int nr_populated = 0, nr_account = 0;
387ba26f 5344
0f87d9d3
MG
5345 /*
5346 * Skip populated array elements to determine if any pages need
5347 * to be allocated before disabling IRQs.
5348 */
b08e50dd 5349 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5350 nr_populated++;
5351
06147843
CL
5352 /* No pages requested? */
5353 if (unlikely(nr_pages <= 0))
5354 goto out;
5355
b3b64ebd
MG
5356 /* Already populated array? */
5357 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5358 goto out;
b3b64ebd 5359
8dcb3060
SB
5360 /* Bulk allocator does not support memcg accounting. */
5361 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5362 goto failed;
5363
387ba26f 5364 /* Use the single page allocator for one page. */
0f87d9d3 5365 if (nr_pages - nr_populated == 1)
387ba26f
MG
5366 goto failed;
5367
187ad460
MG
5368#ifdef CONFIG_PAGE_OWNER
5369 /*
5370 * PAGE_OWNER may recurse into the allocator to allocate space to
5371 * save the stack with pagesets.lock held. Releasing/reacquiring
5372 * removes much of the performance benefit of bulk allocation so
5373 * force the caller to allocate one page at a time as it'll have
5374 * similar performance to added complexity to the bulk allocator.
5375 */
5376 if (static_branch_unlikely(&page_owner_inited))
5377 goto failed;
5378#endif
5379
387ba26f
MG
5380 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5381 gfp &= gfp_allowed_mask;
5382 alloc_gfp = gfp;
5383 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5384 goto out;
387ba26f
MG
5385 gfp = alloc_gfp;
5386
5387 /* Find an allowed local zone that meets the low watermark. */
5388 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5389 unsigned long mark;
5390
5391 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5392 !__cpuset_zone_allowed(zone, gfp)) {
5393 continue;
5394 }
5395
5396 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5397 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5398 goto failed;
5399 }
5400
5401 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5402 if (zone_watermark_fast(zone, 0, mark,
5403 zonelist_zone_idx(ac.preferred_zoneref),
5404 alloc_flags, gfp)) {
5405 break;
5406 }
5407 }
5408
5409 /*
5410 * If there are no allowed local zones that meets the watermarks then
5411 * try to allocate a single page and reclaim if necessary.
5412 */
ce76f9a1 5413 if (unlikely(!zone))
387ba26f
MG
5414 goto failed;
5415
4b23a68f 5416 /* Is a parallel drain in progress? */
4b23a68f 5417 pcp_trylock_prepare(UP_flags);
01b44456
MG
5418 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5419 if (!pcp)
4b23a68f 5420 goto failed_irq;
387ba26f 5421
387ba26f 5422 /* Attempt the batch allocation */
44042b44 5423 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
5424 while (nr_populated < nr_pages) {
5425
5426 /* Skip existing pages */
5427 if (page_array && page_array[nr_populated]) {
5428 nr_populated++;
5429 continue;
5430 }
5431
44042b44 5432 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5433 pcp, pcp_list);
ce76f9a1 5434 if (unlikely(!page)) {
c572e488 5435 /* Try and allocate at least one page */
4b23a68f 5436 if (!nr_account) {
01b44456 5437 pcp_spin_unlock_irqrestore(pcp, flags);
387ba26f 5438 goto failed_irq;
4b23a68f 5439 }
387ba26f
MG
5440 break;
5441 }
3e23060b 5442 nr_account++;
387ba26f
MG
5443
5444 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5445 if (page_list)
5446 list_add(&page->lru, page_list);
5447 else
5448 page_array[nr_populated] = page;
5449 nr_populated++;
387ba26f
MG
5450 }
5451
01b44456 5452 pcp_spin_unlock_irqrestore(pcp, flags);
4b23a68f 5453 pcp_trylock_finish(UP_flags);
43c95bcc 5454
3e23060b
MG
5455 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5456 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5457
06147843 5458out:
0f87d9d3 5459 return nr_populated;
387ba26f
MG
5460
5461failed_irq:
4b23a68f 5462 pcp_trylock_finish(UP_flags);
387ba26f
MG
5463
5464failed:
5465 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5466 if (page) {
0f87d9d3
MG
5467 if (page_list)
5468 list_add(&page->lru, page_list);
5469 else
5470 page_array[nr_populated] = page;
5471 nr_populated++;
387ba26f
MG
5472 }
5473
06147843 5474 goto out;
387ba26f
MG
5475}
5476EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5477
9cd75558
MG
5478/*
5479 * This is the 'heart' of the zoned buddy allocator.
5480 */
84172f4b 5481struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5482 nodemask_t *nodemask)
9cd75558
MG
5483{
5484 struct page *page;
5485 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5486 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5487 struct alloc_context ac = { };
5488
c63ae43b
MH
5489 /*
5490 * There are several places where we assume that the order value is sane
5491 * so bail out early if the request is out of bound.
5492 */
3f913fc5 5493 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
c63ae43b 5494 return NULL;
c63ae43b 5495
6e5e0f28 5496 gfp &= gfp_allowed_mask;
da6df1b0
PT
5497 /*
5498 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5499 * resp. GFP_NOIO which has to be inherited for all allocation requests
5500 * from a particular context which has been marked by
8e3560d9
PT
5501 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5502 * movable zones are not used during allocation.
da6df1b0
PT
5503 */
5504 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5505 alloc_gfp = gfp;
5506 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5507 &alloc_gfp, &alloc_flags))
9cd75558
MG
5508 return NULL;
5509
6bb15450
MG
5510 /*
5511 * Forbid the first pass from falling back to types that fragment
5512 * memory until all local zones are considered.
5513 */
6e5e0f28 5514 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5515
5117f45d 5516 /* First allocation attempt */
8e6a930b 5517 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5518 if (likely(page))
5519 goto out;
11e33f6a 5520
da6df1b0 5521 alloc_gfp = gfp;
4fcb0971 5522 ac.spread_dirty_pages = false;
23f086f9 5523
4741526b
MG
5524 /*
5525 * Restore the original nodemask if it was potentially replaced with
5526 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5527 */
97ce86f9 5528 ac.nodemask = nodemask;
16096c25 5529
8e6a930b 5530 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5531
4fcb0971 5532out:
6e5e0f28
MWO
5533 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5534 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5535 __free_pages(page, order);
5536 page = NULL;
4949148a
VD
5537 }
5538
8e6a930b 5539 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5540
11e33f6a 5541 return page;
1da177e4 5542}
84172f4b 5543EXPORT_SYMBOL(__alloc_pages);
1da177e4 5544
cc09cb13
MWO
5545struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5546 nodemask_t *nodemask)
5547{
5548 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5549 preferred_nid, nodemask);
5550
5551 if (page && order > 1)
5552 prep_transhuge_page(page);
5553 return (struct folio *)page;
5554}
5555EXPORT_SYMBOL(__folio_alloc);
5556
1da177e4 5557/*
9ea9a680
MH
5558 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5559 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5560 * you need to access high mem.
1da177e4 5561 */
920c7a5d 5562unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5563{
945a1113
AM
5564 struct page *page;
5565
9ea9a680 5566 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5567 if (!page)
5568 return 0;
5569 return (unsigned long) page_address(page);
5570}
1da177e4
LT
5571EXPORT_SYMBOL(__get_free_pages);
5572
920c7a5d 5573unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5574{
945a1113 5575 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5576}
1da177e4
LT
5577EXPORT_SYMBOL(get_zeroed_page);
5578
7f194fbb
MWO
5579/**
5580 * __free_pages - Free pages allocated with alloc_pages().
5581 * @page: The page pointer returned from alloc_pages().
5582 * @order: The order of the allocation.
5583 *
5584 * This function can free multi-page allocations that are not compound
5585 * pages. It does not check that the @order passed in matches that of
5586 * the allocation, so it is easy to leak memory. Freeing more memory
5587 * than was allocated will probably emit a warning.
5588 *
5589 * If the last reference to this page is speculative, it will be released
5590 * by put_page() which only frees the first page of a non-compound
5591 * allocation. To prevent the remaining pages from being leaked, we free
5592 * the subsequent pages here. If you want to use the page's reference
5593 * count to decide when to free the allocation, you should allocate a
5594 * compound page, and use put_page() instead of __free_pages().
5595 *
5596 * Context: May be called in interrupt context or while holding a normal
5597 * spinlock, but not in NMI context or while holding a raw spinlock.
5598 */
742aa7fb
AL
5599void __free_pages(struct page *page, unsigned int order)
5600{
5601 if (put_page_testzero(page))
5602 free_the_page(page, order);
e320d301
MWO
5603 else if (!PageHead(page))
5604 while (order-- > 0)
5605 free_the_page(page + (1 << order), order);
742aa7fb 5606}
1da177e4
LT
5607EXPORT_SYMBOL(__free_pages);
5608
920c7a5d 5609void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5610{
5611 if (addr != 0) {
725d704e 5612 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5613 __free_pages(virt_to_page((void *)addr), order);
5614 }
5615}
5616
5617EXPORT_SYMBOL(free_pages);
5618
b63ae8ca
AD
5619/*
5620 * Page Fragment:
5621 * An arbitrary-length arbitrary-offset area of memory which resides
5622 * within a 0 or higher order page. Multiple fragments within that page
5623 * are individually refcounted, in the page's reference counter.
5624 *
5625 * The page_frag functions below provide a simple allocation framework for
5626 * page fragments. This is used by the network stack and network device
5627 * drivers to provide a backing region of memory for use as either an
5628 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5629 */
2976db80
AD
5630static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5631 gfp_t gfp_mask)
b63ae8ca
AD
5632{
5633 struct page *page = NULL;
5634 gfp_t gfp = gfp_mask;
5635
5636#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5637 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5638 __GFP_NOMEMALLOC;
5639 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5640 PAGE_FRAG_CACHE_MAX_ORDER);
5641 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5642#endif
5643 if (unlikely(!page))
5644 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5645
5646 nc->va = page ? page_address(page) : NULL;
5647
5648 return page;
5649}
5650
2976db80 5651void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5652{
5653 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5654
742aa7fb
AL
5655 if (page_ref_sub_and_test(page, count))
5656 free_the_page(page, compound_order(page));
44fdffd7 5657}
2976db80 5658EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5659
b358e212
KH
5660void *page_frag_alloc_align(struct page_frag_cache *nc,
5661 unsigned int fragsz, gfp_t gfp_mask,
5662 unsigned int align_mask)
b63ae8ca
AD
5663{
5664 unsigned int size = PAGE_SIZE;
5665 struct page *page;
5666 int offset;
5667
5668 if (unlikely(!nc->va)) {
5669refill:
2976db80 5670 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5671 if (!page)
5672 return NULL;
5673
5674#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5675 /* if size can vary use size else just use PAGE_SIZE */
5676 size = nc->size;
5677#endif
5678 /* Even if we own the page, we do not use atomic_set().
5679 * This would break get_page_unless_zero() users.
5680 */
86447726 5681 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5682
5683 /* reset page count bias and offset to start of new frag */
2f064f34 5684 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5685 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5686 nc->offset = size;
5687 }
5688
5689 offset = nc->offset - fragsz;
5690 if (unlikely(offset < 0)) {
5691 page = virt_to_page(nc->va);
5692
fe896d18 5693 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5694 goto refill;
5695
d8c19014
DZ
5696 if (unlikely(nc->pfmemalloc)) {
5697 free_the_page(page, compound_order(page));
5698 goto refill;
5699 }
5700
b63ae8ca
AD
5701#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5702 /* if size can vary use size else just use PAGE_SIZE */
5703 size = nc->size;
5704#endif
5705 /* OK, page count is 0, we can safely set it */
86447726 5706 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5707
5708 /* reset page count bias and offset to start of new frag */
86447726 5709 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5710 offset = size - fragsz;
5711 }
5712
5713 nc->pagecnt_bias--;
b358e212 5714 offset &= align_mask;
b63ae8ca
AD
5715 nc->offset = offset;
5716
5717 return nc->va + offset;
5718}
b358e212 5719EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5720
5721/*
5722 * Frees a page fragment allocated out of either a compound or order 0 page.
5723 */
8c2dd3e4 5724void page_frag_free(void *addr)
b63ae8ca
AD
5725{
5726 struct page *page = virt_to_head_page(addr);
5727
742aa7fb
AL
5728 if (unlikely(put_page_testzero(page)))
5729 free_the_page(page, compound_order(page));
b63ae8ca 5730}
8c2dd3e4 5731EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5732
d00181b9
KS
5733static void *make_alloc_exact(unsigned long addr, unsigned int order,
5734 size_t size)
ee85c2e1
AK
5735{
5736 if (addr) {
5737 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5738 unsigned long used = addr + PAGE_ALIGN(size);
5739
5740 split_page(virt_to_page((void *)addr), order);
5741 while (used < alloc_end) {
5742 free_page(used);
5743 used += PAGE_SIZE;
5744 }
5745 }
5746 return (void *)addr;
5747}
5748
2be0ffe2
TT
5749/**
5750 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5751 * @size: the number of bytes to allocate
63931eb9 5752 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5753 *
5754 * This function is similar to alloc_pages(), except that it allocates the
5755 * minimum number of pages to satisfy the request. alloc_pages() can only
5756 * allocate memory in power-of-two pages.
5757 *
5758 * This function is also limited by MAX_ORDER.
5759 *
5760 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5761 *
5762 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5763 */
5764void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5765{
5766 unsigned int order = get_order(size);
5767 unsigned long addr;
5768
ba7f1b9e
ML
5769 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5770 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5771
2be0ffe2 5772 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5773 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5774}
5775EXPORT_SYMBOL(alloc_pages_exact);
5776
ee85c2e1
AK
5777/**
5778 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5779 * pages on a node.
b5e6ab58 5780 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5781 * @size: the number of bytes to allocate
63931eb9 5782 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5783 *
5784 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5785 * back.
a862f68a
MR
5786 *
5787 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5788 */
e1931811 5789void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5790{
d00181b9 5791 unsigned int order = get_order(size);
63931eb9
VB
5792 struct page *p;
5793
ba7f1b9e
ML
5794 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5795 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5796
5797 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5798 if (!p)
5799 return NULL;
5800 return make_alloc_exact((unsigned long)page_address(p), order, size);
5801}
ee85c2e1 5802
2be0ffe2
TT
5803/**
5804 * free_pages_exact - release memory allocated via alloc_pages_exact()
5805 * @virt: the value returned by alloc_pages_exact.
5806 * @size: size of allocation, same value as passed to alloc_pages_exact().
5807 *
5808 * Release the memory allocated by a previous call to alloc_pages_exact.
5809 */
5810void free_pages_exact(void *virt, size_t size)
5811{
5812 unsigned long addr = (unsigned long)virt;
5813 unsigned long end = addr + PAGE_ALIGN(size);
5814
5815 while (addr < end) {
5816 free_page(addr);
5817 addr += PAGE_SIZE;
5818 }
5819}
5820EXPORT_SYMBOL(free_pages_exact);
5821
e0fb5815
ZY
5822/**
5823 * nr_free_zone_pages - count number of pages beyond high watermark
5824 * @offset: The zone index of the highest zone
5825 *
a862f68a 5826 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5827 * high watermark within all zones at or below a given zone index. For each
5828 * zone, the number of pages is calculated as:
0e056eb5 5829 *
5830 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5831 *
5832 * Return: number of pages beyond high watermark.
e0fb5815 5833 */
ebec3862 5834static unsigned long nr_free_zone_pages(int offset)
1da177e4 5835{
dd1a239f 5836 struct zoneref *z;
54a6eb5c
MG
5837 struct zone *zone;
5838
e310fd43 5839 /* Just pick one node, since fallback list is circular */
ebec3862 5840 unsigned long sum = 0;
1da177e4 5841
0e88460d 5842 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5843
54a6eb5c 5844 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5845 unsigned long size = zone_managed_pages(zone);
41858966 5846 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5847 if (size > high)
5848 sum += size - high;
1da177e4
LT
5849 }
5850
5851 return sum;
5852}
5853
e0fb5815
ZY
5854/**
5855 * nr_free_buffer_pages - count number of pages beyond high watermark
5856 *
5857 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5858 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5859 *
5860 * Return: number of pages beyond high watermark within ZONE_DMA and
5861 * ZONE_NORMAL.
1da177e4 5862 */
ebec3862 5863unsigned long nr_free_buffer_pages(void)
1da177e4 5864{
af4ca457 5865 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5866}
c2f1a551 5867EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5868
08e0f6a9 5869static inline void show_node(struct zone *zone)
1da177e4 5870{
e5adfffc 5871 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5872 printk("Node %d ", zone_to_nid(zone));
1da177e4 5873}
1da177e4 5874
d02bd27b
IR
5875long si_mem_available(void)
5876{
5877 long available;
5878 unsigned long pagecache;
5879 unsigned long wmark_low = 0;
5880 unsigned long pages[NR_LRU_LISTS];
b29940c1 5881 unsigned long reclaimable;
d02bd27b
IR
5882 struct zone *zone;
5883 int lru;
5884
5885 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5886 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5887
5888 for_each_zone(zone)
a9214443 5889 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5890
5891 /*
5892 * Estimate the amount of memory available for userspace allocations,
ade63b41 5893 * without causing swapping or OOM.
d02bd27b 5894 */
c41f012a 5895 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5896
5897 /*
5898 * Not all the page cache can be freed, otherwise the system will
ade63b41
YY
5899 * start swapping or thrashing. Assume at least half of the page
5900 * cache, or the low watermark worth of cache, needs to stay.
d02bd27b
IR
5901 */
5902 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5903 pagecache -= min(pagecache / 2, wmark_low);
5904 available += pagecache;
5905
5906 /*
b29940c1
VB
5907 * Part of the reclaimable slab and other kernel memory consists of
5908 * items that are in use, and cannot be freed. Cap this estimate at the
5909 * low watermark.
d02bd27b 5910 */
d42f3245
RG
5911 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5912 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5913 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5914
d02bd27b
IR
5915 if (available < 0)
5916 available = 0;
5917 return available;
5918}
5919EXPORT_SYMBOL_GPL(si_mem_available);
5920
1da177e4
LT
5921void si_meminfo(struct sysinfo *val)
5922{
ca79b0c2 5923 val->totalram = totalram_pages();
11fb9989 5924 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5925 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5926 val->bufferram = nr_blockdev_pages();
ca79b0c2 5927 val->totalhigh = totalhigh_pages();
1da177e4 5928 val->freehigh = nr_free_highpages();
1da177e4
LT
5929 val->mem_unit = PAGE_SIZE;
5930}
5931
5932EXPORT_SYMBOL(si_meminfo);
5933
5934#ifdef CONFIG_NUMA
5935void si_meminfo_node(struct sysinfo *val, int nid)
5936{
cdd91a77
JL
5937 int zone_type; /* needs to be signed */
5938 unsigned long managed_pages = 0;
fc2bd799
JK
5939 unsigned long managed_highpages = 0;
5940 unsigned long free_highpages = 0;
1da177e4
LT
5941 pg_data_t *pgdat = NODE_DATA(nid);
5942
cdd91a77 5943 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5944 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5945 val->totalram = managed_pages;
11fb9989 5946 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5947 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5948#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5949 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5950 struct zone *zone = &pgdat->node_zones[zone_type];
5951
5952 if (is_highmem(zone)) {
9705bea5 5953 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5954 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5955 }
5956 }
5957 val->totalhigh = managed_highpages;
5958 val->freehigh = free_highpages;
98d2b0eb 5959#else
fc2bd799
JK
5960 val->totalhigh = managed_highpages;
5961 val->freehigh = free_highpages;
98d2b0eb 5962#endif
1da177e4
LT
5963 val->mem_unit = PAGE_SIZE;
5964}
5965#endif
5966
ddd588b5 5967/*
7bf02ea2
DR
5968 * Determine whether the node should be displayed or not, depending on whether
5969 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5970 */
9af744d7 5971static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5972{
ddd588b5 5973 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5974 return false;
ddd588b5 5975
9af744d7
MH
5976 /*
5977 * no node mask - aka implicit memory numa policy. Do not bother with
5978 * the synchronization - read_mems_allowed_begin - because we do not
5979 * have to be precise here.
5980 */
5981 if (!nodemask)
5982 nodemask = &cpuset_current_mems_allowed;
5983
5984 return !node_isset(nid, *nodemask);
ddd588b5
DR
5985}
5986
1da177e4
LT
5987#define K(x) ((x) << (PAGE_SHIFT-10))
5988
377e4f16
RV
5989static void show_migration_types(unsigned char type)
5990{
5991 static const char types[MIGRATE_TYPES] = {
5992 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5993 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5994 [MIGRATE_RECLAIMABLE] = 'E',
5995 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5996#ifdef CONFIG_CMA
5997 [MIGRATE_CMA] = 'C',
5998#endif
194159fb 5999#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 6000 [MIGRATE_ISOLATE] = 'I',
194159fb 6001#endif
377e4f16
RV
6002 };
6003 char tmp[MIGRATE_TYPES + 1];
6004 char *p = tmp;
6005 int i;
6006
6007 for (i = 0; i < MIGRATE_TYPES; i++) {
6008 if (type & (1 << i))
6009 *p++ = types[i];
6010 }
6011
6012 *p = '\0';
1f84a18f 6013 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
6014}
6015
1da177e4
LT
6016/*
6017 * Show free area list (used inside shift_scroll-lock stuff)
6018 * We also calculate the percentage fragmentation. We do this by counting the
6019 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
6020 *
6021 * Bits in @filter:
6022 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6023 * cpuset.
1da177e4 6024 */
9af744d7 6025void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 6026{
d1bfcdb8 6027 unsigned long free_pcp = 0;
dcadcf1c 6028 int cpu, nid;
1da177e4 6029 struct zone *zone;
599d0c95 6030 pg_data_t *pgdat;
1da177e4 6031
ee99c71c 6032 for_each_populated_zone(zone) {
9af744d7 6033 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6034 continue;
d1bfcdb8 6035
761b0677 6036 for_each_online_cpu(cpu)
28f836b6 6037 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
6038 }
6039
a731286d
KM
6040 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6041 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 6042 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 6043 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 6044 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 6045 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 6046 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
6047 global_node_page_state(NR_ACTIVE_ANON),
6048 global_node_page_state(NR_INACTIVE_ANON),
6049 global_node_page_state(NR_ISOLATED_ANON),
6050 global_node_page_state(NR_ACTIVE_FILE),
6051 global_node_page_state(NR_INACTIVE_FILE),
6052 global_node_page_state(NR_ISOLATED_FILE),
6053 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
6054 global_node_page_state(NR_FILE_DIRTY),
6055 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
6056 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6057 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 6058 global_node_page_state(NR_FILE_MAPPED),
11fb9989 6059 global_node_page_state(NR_SHMEM),
f0c0c115 6060 global_node_page_state(NR_PAGETABLE),
c41f012a 6061 global_zone_page_state(NR_BOUNCE),
eb2169ce 6062 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 6063 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 6064 free_pcp,
c41f012a 6065 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 6066
599d0c95 6067 for_each_online_pgdat(pgdat) {
9af744d7 6068 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
6069 continue;
6070
599d0c95
MG
6071 printk("Node %d"
6072 " active_anon:%lukB"
6073 " inactive_anon:%lukB"
6074 " active_file:%lukB"
6075 " inactive_file:%lukB"
6076 " unevictable:%lukB"
6077 " isolated(anon):%lukB"
6078 " isolated(file):%lukB"
50658e2e 6079 " mapped:%lukB"
11fb9989
MG
6080 " dirty:%lukB"
6081 " writeback:%lukB"
6082 " shmem:%lukB"
6083#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6084 " shmem_thp: %lukB"
6085 " shmem_pmdmapped: %lukB"
6086 " anon_thp: %lukB"
6087#endif
6088 " writeback_tmp:%lukB"
991e7673
SB
6089 " kernel_stack:%lukB"
6090#ifdef CONFIG_SHADOW_CALL_STACK
6091 " shadow_call_stack:%lukB"
6092#endif
f0c0c115 6093 " pagetables:%lukB"
599d0c95
MG
6094 " all_unreclaimable? %s"
6095 "\n",
6096 pgdat->node_id,
6097 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6098 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6099 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6100 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6101 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6102 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6103 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 6104 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
6105 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6106 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 6107 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 6108#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 6109 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 6110 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 6111 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 6112#endif
11fb9989 6113 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
6114 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6115#ifdef CONFIG_SHADOW_CALL_STACK
6116 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6117#endif
f0c0c115 6118 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
6119 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6120 "yes" : "no");
599d0c95
MG
6121 }
6122
ee99c71c 6123 for_each_populated_zone(zone) {
1da177e4
LT
6124 int i;
6125
9af744d7 6126 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6127 continue;
d1bfcdb8
KK
6128
6129 free_pcp = 0;
6130 for_each_online_cpu(cpu)
28f836b6 6131 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 6132
1da177e4 6133 show_node(zone);
1f84a18f
JP
6134 printk(KERN_CONT
6135 "%s"
1da177e4 6136 " free:%lukB"
a6ea8b5b 6137 " boost:%lukB"
1da177e4
LT
6138 " min:%lukB"
6139 " low:%lukB"
6140 " high:%lukB"
e47b346a 6141 " reserved_highatomic:%luKB"
71c799f4
MK
6142 " active_anon:%lukB"
6143 " inactive_anon:%lukB"
6144 " active_file:%lukB"
6145 " inactive_file:%lukB"
6146 " unevictable:%lukB"
5a1c84b4 6147 " writepending:%lukB"
1da177e4 6148 " present:%lukB"
9feedc9d 6149 " managed:%lukB"
4a0aa73f 6150 " mlocked:%lukB"
4a0aa73f 6151 " bounce:%lukB"
d1bfcdb8
KK
6152 " free_pcp:%lukB"
6153 " local_pcp:%ukB"
d1ce749a 6154 " free_cma:%lukB"
1da177e4
LT
6155 "\n",
6156 zone->name,
88f5acf8 6157 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6158 K(zone->watermark_boost),
41858966
MG
6159 K(min_wmark_pages(zone)),
6160 K(low_wmark_pages(zone)),
6161 K(high_wmark_pages(zone)),
e47b346a 6162 K(zone->nr_reserved_highatomic),
71c799f4
MK
6163 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6164 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6165 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6166 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6167 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6168 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6169 K(zone->present_pages),
9705bea5 6170 K(zone_managed_pages(zone)),
4a0aa73f 6171 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6172 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6173 K(free_pcp),
28f836b6 6174 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6175 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6176 printk("lowmem_reserve[]:");
6177 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6178 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6179 printk(KERN_CONT "\n");
1da177e4
LT
6180 }
6181
ee99c71c 6182 for_each_populated_zone(zone) {
d00181b9
KS
6183 unsigned int order;
6184 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6185 unsigned char types[MAX_ORDER];
1da177e4 6186
9af744d7 6187 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6188 continue;
1da177e4 6189 show_node(zone);
1f84a18f 6190 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6191
6192 spin_lock_irqsave(&zone->lock, flags);
6193 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6194 struct free_area *area = &zone->free_area[order];
6195 int type;
6196
6197 nr[order] = area->nr_free;
8f9de51a 6198 total += nr[order] << order;
377e4f16
RV
6199
6200 types[order] = 0;
6201 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6202 if (!free_area_empty(area, type))
377e4f16
RV
6203 types[order] |= 1 << type;
6204 }
1da177e4
LT
6205 }
6206 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6207 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6208 printk(KERN_CONT "%lu*%lukB ",
6209 nr[order], K(1UL) << order);
377e4f16
RV
6210 if (nr[order])
6211 show_migration_types(types[order]);
6212 }
1f84a18f 6213 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6214 }
6215
dcadcf1c
GL
6216 for_each_online_node(nid) {
6217 if (show_mem_node_skip(filter, nid, nodemask))
6218 continue;
6219 hugetlb_show_meminfo_node(nid);
6220 }
949f7ec5 6221
11fb9989 6222 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6223
1da177e4
LT
6224 show_swap_cache_info();
6225}
6226
19770b32
MG
6227static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6228{
6229 zoneref->zone = zone;
6230 zoneref->zone_idx = zone_idx(zone);
6231}
6232
1da177e4
LT
6233/*
6234 * Builds allocation fallback zone lists.
1a93205b
CL
6235 *
6236 * Add all populated zones of a node to the zonelist.
1da177e4 6237 */
9d3be21b 6238static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6239{
1a93205b 6240 struct zone *zone;
bc732f1d 6241 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6242 int nr_zones = 0;
02a68a5e
CL
6243
6244 do {
2f6726e5 6245 zone_type--;
070f8032 6246 zone = pgdat->node_zones + zone_type;
e553f62f 6247 if (populated_zone(zone)) {
9d3be21b 6248 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6249 check_highest_zone(zone_type);
1da177e4 6250 }
2f6726e5 6251 } while (zone_type);
bc732f1d 6252
070f8032 6253 return nr_zones;
1da177e4
LT
6254}
6255
6256#ifdef CONFIG_NUMA
f0c0b2b8
KH
6257
6258static int __parse_numa_zonelist_order(char *s)
6259{
c9bff3ee 6260 /*
f0953a1b 6261 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6262 * out to be just not useful. Let's keep the warning in place
6263 * if somebody still use the cmd line parameter so that we do
6264 * not fail it silently
6265 */
6266 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6267 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6268 return -EINVAL;
6269 }
6270 return 0;
6271}
6272
c9bff3ee
MH
6273char numa_zonelist_order[] = "Node";
6274
f0c0b2b8
KH
6275/*
6276 * sysctl handler for numa_zonelist_order
6277 */
cccad5b9 6278int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6279 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6280{
32927393
CH
6281 if (write)
6282 return __parse_numa_zonelist_order(buffer);
6283 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6284}
6285
6286
f0c0b2b8
KH
6287static int node_load[MAX_NUMNODES];
6288
1da177e4 6289/**
4dc3b16b 6290 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6291 * @node: node whose fallback list we're appending
6292 * @used_node_mask: nodemask_t of already used nodes
6293 *
6294 * We use a number of factors to determine which is the next node that should
6295 * appear on a given node's fallback list. The node should not have appeared
6296 * already in @node's fallback list, and it should be the next closest node
6297 * according to the distance array (which contains arbitrary distance values
6298 * from each node to each node in the system), and should also prefer nodes
6299 * with no CPUs, since presumably they'll have very little allocation pressure
6300 * on them otherwise.
a862f68a
MR
6301 *
6302 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6303 */
79c28a41 6304int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6305{
4cf808eb 6306 int n, val;
1da177e4 6307 int min_val = INT_MAX;
00ef2d2f 6308 int best_node = NUMA_NO_NODE;
1da177e4 6309
4cf808eb
LT
6310 /* Use the local node if we haven't already */
6311 if (!node_isset(node, *used_node_mask)) {
6312 node_set(node, *used_node_mask);
6313 return node;
6314 }
1da177e4 6315
4b0ef1fe 6316 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6317
6318 /* Don't want a node to appear more than once */
6319 if (node_isset(n, *used_node_mask))
6320 continue;
6321
1da177e4
LT
6322 /* Use the distance array to find the distance */
6323 val = node_distance(node, n);
6324
4cf808eb
LT
6325 /* Penalize nodes under us ("prefer the next node") */
6326 val += (n < node);
6327
1da177e4 6328 /* Give preference to headless and unused nodes */
b630749f 6329 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6330 val += PENALTY_FOR_NODE_WITH_CPUS;
6331
6332 /* Slight preference for less loaded node */
37931324 6333 val *= MAX_NUMNODES;
1da177e4
LT
6334 val += node_load[n];
6335
6336 if (val < min_val) {
6337 min_val = val;
6338 best_node = n;
6339 }
6340 }
6341
6342 if (best_node >= 0)
6343 node_set(best_node, *used_node_mask);
6344
6345 return best_node;
6346}
6347
f0c0b2b8
KH
6348
6349/*
6350 * Build zonelists ordered by node and zones within node.
6351 * This results in maximum locality--normal zone overflows into local
6352 * DMA zone, if any--but risks exhausting DMA zone.
6353 */
9d3be21b
MH
6354static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6355 unsigned nr_nodes)
1da177e4 6356{
9d3be21b
MH
6357 struct zoneref *zonerefs;
6358 int i;
6359
6360 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6361
6362 for (i = 0; i < nr_nodes; i++) {
6363 int nr_zones;
6364
6365 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6366
9d3be21b
MH
6367 nr_zones = build_zonerefs_node(node, zonerefs);
6368 zonerefs += nr_zones;
6369 }
6370 zonerefs->zone = NULL;
6371 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6372}
6373
523b9458
CL
6374/*
6375 * Build gfp_thisnode zonelists
6376 */
6377static void build_thisnode_zonelists(pg_data_t *pgdat)
6378{
9d3be21b
MH
6379 struct zoneref *zonerefs;
6380 int nr_zones;
523b9458 6381
9d3be21b
MH
6382 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6383 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6384 zonerefs += nr_zones;
6385 zonerefs->zone = NULL;
6386 zonerefs->zone_idx = 0;
523b9458
CL
6387}
6388
f0c0b2b8
KH
6389/*
6390 * Build zonelists ordered by zone and nodes within zones.
6391 * This results in conserving DMA zone[s] until all Normal memory is
6392 * exhausted, but results in overflowing to remote node while memory
6393 * may still exist in local DMA zone.
6394 */
f0c0b2b8 6395
f0c0b2b8
KH
6396static void build_zonelists(pg_data_t *pgdat)
6397{
9d3be21b 6398 static int node_order[MAX_NUMNODES];
37931324 6399 int node, nr_nodes = 0;
d0ddf49b 6400 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6401 int local_node, prev_node;
1da177e4
LT
6402
6403 /* NUMA-aware ordering of nodes */
6404 local_node = pgdat->node_id;
1da177e4 6405 prev_node = local_node;
f0c0b2b8 6406
f0c0b2b8 6407 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6408 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6409 /*
6410 * We don't want to pressure a particular node.
6411 * So adding penalty to the first node in same
6412 * distance group to make it round-robin.
6413 */
957f822a
DR
6414 if (node_distance(local_node, node) !=
6415 node_distance(local_node, prev_node))
37931324 6416 node_load[node] += 1;
f0c0b2b8 6417
9d3be21b 6418 node_order[nr_nodes++] = node;
1da177e4 6419 prev_node = node;
1da177e4 6420 }
523b9458 6421
9d3be21b 6422 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6423 build_thisnode_zonelists(pgdat);
6cf25392
BR
6424 pr_info("Fallback order for Node %d: ", local_node);
6425 for (node = 0; node < nr_nodes; node++)
6426 pr_cont("%d ", node_order[node]);
6427 pr_cont("\n");
1da177e4
LT
6428}
6429
7aac7898
LS
6430#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6431/*
6432 * Return node id of node used for "local" allocations.
6433 * I.e., first node id of first zone in arg node's generic zonelist.
6434 * Used for initializing percpu 'numa_mem', which is used primarily
6435 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6436 */
6437int local_memory_node(int node)
6438{
c33d6c06 6439 struct zoneref *z;
7aac7898 6440
c33d6c06 6441 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6442 gfp_zone(GFP_KERNEL),
c33d6c06 6443 NULL);
c1093b74 6444 return zone_to_nid(z->zone);
7aac7898
LS
6445}
6446#endif
f0c0b2b8 6447
6423aa81
JK
6448static void setup_min_unmapped_ratio(void);
6449static void setup_min_slab_ratio(void);
1da177e4
LT
6450#else /* CONFIG_NUMA */
6451
f0c0b2b8 6452static void build_zonelists(pg_data_t *pgdat)
1da177e4 6453{
19655d34 6454 int node, local_node;
9d3be21b
MH
6455 struct zoneref *zonerefs;
6456 int nr_zones;
1da177e4
LT
6457
6458 local_node = pgdat->node_id;
1da177e4 6459
9d3be21b
MH
6460 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6461 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6462 zonerefs += nr_zones;
1da177e4 6463
54a6eb5c
MG
6464 /*
6465 * Now we build the zonelist so that it contains the zones
6466 * of all the other nodes.
6467 * We don't want to pressure a particular node, so when
6468 * building the zones for node N, we make sure that the
6469 * zones coming right after the local ones are those from
6470 * node N+1 (modulo N)
6471 */
6472 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6473 if (!node_online(node))
6474 continue;
9d3be21b
MH
6475 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6476 zonerefs += nr_zones;
1da177e4 6477 }
54a6eb5c
MG
6478 for (node = 0; node < local_node; node++) {
6479 if (!node_online(node))
6480 continue;
9d3be21b
MH
6481 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6482 zonerefs += nr_zones;
54a6eb5c
MG
6483 }
6484
9d3be21b
MH
6485 zonerefs->zone = NULL;
6486 zonerefs->zone_idx = 0;
1da177e4
LT
6487}
6488
6489#endif /* CONFIG_NUMA */
6490
99dcc3e5
CL
6491/*
6492 * Boot pageset table. One per cpu which is going to be used for all
6493 * zones and all nodes. The parameters will be set in such a way
6494 * that an item put on a list will immediately be handed over to
6495 * the buddy list. This is safe since pageset manipulation is done
6496 * with interrupts disabled.
6497 *
6498 * The boot_pagesets must be kept even after bootup is complete for
6499 * unused processors and/or zones. They do play a role for bootstrapping
6500 * hotplugged processors.
6501 *
6502 * zoneinfo_show() and maybe other functions do
6503 * not check if the processor is online before following the pageset pointer.
6504 * Other parts of the kernel may not check if the zone is available.
6505 */
28f836b6 6506static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6507/* These effectively disable the pcplists in the boot pageset completely */
6508#define BOOT_PAGESET_HIGH 0
6509#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6510static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6511static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
09f49dca 6512DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6513
11cd8638 6514static void __build_all_zonelists(void *data)
1da177e4 6515{
6811378e 6516 int nid;
afb6ebb3 6517 int __maybe_unused cpu;
9adb62a5 6518 pg_data_t *self = data;
b93e0f32
MH
6519 static DEFINE_SPINLOCK(lock);
6520
6521 spin_lock(&lock);
9276b1bc 6522
7f9cfb31
BL
6523#ifdef CONFIG_NUMA
6524 memset(node_load, 0, sizeof(node_load));
6525#endif
9adb62a5 6526
c1152583
WY
6527 /*
6528 * This node is hotadded and no memory is yet present. So just
6529 * building zonelists is fine - no need to touch other nodes.
6530 */
9adb62a5
JL
6531 if (self && !node_online(self->node_id)) {
6532 build_zonelists(self);
c1152583 6533 } else {
09f49dca
MH
6534 /*
6535 * All possible nodes have pgdat preallocated
6536 * in free_area_init
6537 */
6538 for_each_node(nid) {
c1152583 6539 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6540
c1152583
WY
6541 build_zonelists(pgdat);
6542 }
99dcc3e5 6543
7aac7898
LS
6544#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6545 /*
6546 * We now know the "local memory node" for each node--
6547 * i.e., the node of the first zone in the generic zonelist.
6548 * Set up numa_mem percpu variable for on-line cpus. During
6549 * boot, only the boot cpu should be on-line; we'll init the
6550 * secondary cpus' numa_mem as they come on-line. During
6551 * node/memory hotplug, we'll fixup all on-line cpus.
6552 */
d9c9a0b9 6553 for_each_online_cpu(cpu)
7aac7898 6554 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6555#endif
d9c9a0b9 6556 }
b93e0f32
MH
6557
6558 spin_unlock(&lock);
6811378e
YG
6559}
6560
061f67bc
RV
6561static noinline void __init
6562build_all_zonelists_init(void)
6563{
afb6ebb3
MH
6564 int cpu;
6565
061f67bc 6566 __build_all_zonelists(NULL);
afb6ebb3
MH
6567
6568 /*
6569 * Initialize the boot_pagesets that are going to be used
6570 * for bootstrapping processors. The real pagesets for
6571 * each zone will be allocated later when the per cpu
6572 * allocator is available.
6573 *
6574 * boot_pagesets are used also for bootstrapping offline
6575 * cpus if the system is already booted because the pagesets
6576 * are needed to initialize allocators on a specific cpu too.
6577 * F.e. the percpu allocator needs the page allocator which
6578 * needs the percpu allocator in order to allocate its pagesets
6579 * (a chicken-egg dilemma).
6580 */
6581 for_each_possible_cpu(cpu)
28f836b6 6582 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6583
061f67bc
RV
6584 mminit_verify_zonelist();
6585 cpuset_init_current_mems_allowed();
6586}
6587
4eaf3f64 6588/*
4eaf3f64 6589 * unless system_state == SYSTEM_BOOTING.
061f67bc 6590 *
72675e13 6591 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6592 * [protected by SYSTEM_BOOTING].
4eaf3f64 6593 */
72675e13 6594void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6595{
0a18e607
DH
6596 unsigned long vm_total_pages;
6597
6811378e 6598 if (system_state == SYSTEM_BOOTING) {
061f67bc 6599 build_all_zonelists_init();
6811378e 6600 } else {
11cd8638 6601 __build_all_zonelists(pgdat);
6811378e
YG
6602 /* cpuset refresh routine should be here */
6603 }
56b9413b
DH
6604 /* Get the number of free pages beyond high watermark in all zones. */
6605 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6606 /*
6607 * Disable grouping by mobility if the number of pages in the
6608 * system is too low to allow the mechanism to work. It would be
6609 * more accurate, but expensive to check per-zone. This check is
6610 * made on memory-hotadd so a system can start with mobility
6611 * disabled and enable it later
6612 */
d9c23400 6613 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6614 page_group_by_mobility_disabled = 1;
6615 else
6616 page_group_by_mobility_disabled = 0;
6617
ce0725f7 6618 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6619 nr_online_nodes,
756a025f
JP
6620 page_group_by_mobility_disabled ? "off" : "on",
6621 vm_total_pages);
f0c0b2b8 6622#ifdef CONFIG_NUMA
f88dfff5 6623 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6624#endif
1da177e4
LT
6625}
6626
a9a9e77f
PT
6627/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6628static bool __meminit
6629overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6630{
a9a9e77f
PT
6631 static struct memblock_region *r;
6632
6633 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6634 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6635 for_each_mem_region(r) {
a9a9e77f
PT
6636 if (*pfn < memblock_region_memory_end_pfn(r))
6637 break;
6638 }
6639 }
6640 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6641 memblock_is_mirror(r)) {
6642 *pfn = memblock_region_memory_end_pfn(r);
6643 return true;
6644 }
6645 }
a9a9e77f
PT
6646 return false;
6647}
6648
1da177e4
LT
6649/*
6650 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6651 * up by memblock_free_all() once the early boot process is
1da177e4 6652 * done. Non-atomic initialization, single-pass.
d882c006
DH
6653 *
6654 * All aligned pageblocks are initialized to the specified migratetype
6655 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6656 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6657 */
ab28cb6e 6658void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6659 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6660 enum meminit_context context,
6661 struct vmem_altmap *altmap, int migratetype)
1da177e4 6662{
a9a9e77f 6663 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6664 struct page *page;
1da177e4 6665
22b31eec
HD
6666 if (highest_memmap_pfn < end_pfn - 1)
6667 highest_memmap_pfn = end_pfn - 1;
6668
966cf44f 6669#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6670 /*
6671 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6672 * memory. We limit the total number of pages to initialize to just
6673 * those that might contain the memory mapping. We will defer the
6674 * ZONE_DEVICE page initialization until after we have released
6675 * the hotplug lock.
4b94ffdc 6676 */
966cf44f
AD
6677 if (zone == ZONE_DEVICE) {
6678 if (!altmap)
6679 return;
6680
6681 if (start_pfn == altmap->base_pfn)
6682 start_pfn += altmap->reserve;
6683 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6684 }
6685#endif
4b94ffdc 6686
948c436e 6687 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6688 /*
b72d0ffb
AM
6689 * There can be holes in boot-time mem_map[]s handed to this
6690 * function. They do not exist on hotplugged memory.
a2f3aa02 6691 */
c1d0da83 6692 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6693 if (overlap_memmap_init(zone, &pfn))
6694 continue;
dc2da7b4 6695 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6696 break;
a2f3aa02 6697 }
ac5d2539 6698
d0dc12e8
PT
6699 page = pfn_to_page(pfn);
6700 __init_single_page(page, pfn, zone, nid);
c1d0da83 6701 if (context == MEMINIT_HOTPLUG)
d483da5b 6702 __SetPageReserved(page);
d0dc12e8 6703
ac5d2539 6704 /*
d882c006
DH
6705 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6706 * such that unmovable allocations won't be scattered all
6707 * over the place during system boot.
ac5d2539 6708 */
4eb29bd9 6709 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6710 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6711 cond_resched();
ac5d2539 6712 }
948c436e 6713 pfn++;
1da177e4
LT
6714 }
6715}
6716
966cf44f 6717#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6718static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6719 unsigned long zone_idx, int nid,
6720 struct dev_pagemap *pgmap)
6721{
6722
6723 __init_single_page(page, pfn, zone_idx, nid);
6724
6725 /*
6726 * Mark page reserved as it will need to wait for onlining
6727 * phase for it to be fully associated with a zone.
6728 *
6729 * We can use the non-atomic __set_bit operation for setting
6730 * the flag as we are still initializing the pages.
6731 */
6732 __SetPageReserved(page);
6733
6734 /*
6735 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6736 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6737 * ever freed or placed on a driver-private list.
6738 */
6739 page->pgmap = pgmap;
6740 page->zone_device_data = NULL;
6741
6742 /*
6743 * Mark the block movable so that blocks are reserved for
6744 * movable at startup. This will force kernel allocations
6745 * to reserve their blocks rather than leaking throughout
6746 * the address space during boot when many long-lived
6747 * kernel allocations are made.
6748 *
6749 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6750 * because this is done early in section_activate()
6751 */
6752 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6753 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6754 cond_resched();
6755 }
6756}
6757
6fd3620b
JM
6758/*
6759 * With compound page geometry and when struct pages are stored in ram most
6760 * tail pages are reused. Consequently, the amount of unique struct pages to
6761 * initialize is a lot smaller that the total amount of struct pages being
6762 * mapped. This is a paired / mild layering violation with explicit knowledge
6763 * of how the sparse_vmemmap internals handle compound pages in the lack
6764 * of an altmap. See vmemmap_populate_compound_pages().
6765 */
6766static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6767 unsigned long nr_pages)
6768{
6769 return is_power_of_2(sizeof(struct page)) &&
6770 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6771}
6772
c4386bd8
JM
6773static void __ref memmap_init_compound(struct page *head,
6774 unsigned long head_pfn,
6775 unsigned long zone_idx, int nid,
6776 struct dev_pagemap *pgmap,
6777 unsigned long nr_pages)
6778{
6779 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6780 unsigned int order = pgmap->vmemmap_shift;
6781
6782 __SetPageHead(head);
6783 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6784 struct page *page = pfn_to_page(pfn);
6785
6786 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6787 prep_compound_tail(head, pfn - head_pfn);
6788 set_page_count(page, 0);
6789
6790 /*
6791 * The first tail page stores compound_mapcount_ptr() and
6792 * compound_order() and the second tail page stores
6793 * compound_pincount_ptr(). Call prep_compound_head() after
6794 * the first and second tail pages have been initialized to
6795 * not have the data overwritten.
6796 */
6797 if (pfn == head_pfn + 2)
6798 prep_compound_head(head, order);
6799 }
6800}
6801
966cf44f
AD
6802void __ref memmap_init_zone_device(struct zone *zone,
6803 unsigned long start_pfn,
1f8d75c1 6804 unsigned long nr_pages,
966cf44f
AD
6805 struct dev_pagemap *pgmap)
6806{
1f8d75c1 6807 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6808 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6809 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6810 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6811 unsigned long zone_idx = zone_idx(zone);
6812 unsigned long start = jiffies;
6813 int nid = pgdat->node_id;
6814
46d945ae 6815 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6816 return;
6817
6818 /*
122e093c 6819 * The call to memmap_init should have already taken care
966cf44f
AD
6820 * of the pages reserved for the memmap, so we can just jump to
6821 * the end of that region and start processing the device pages.
6822 */
514caf23 6823 if (altmap) {
966cf44f 6824 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6825 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6826 }
6827
c4386bd8 6828 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6829 struct page *page = pfn_to_page(pfn);
6830
46487e00 6831 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6832
6833 if (pfns_per_compound == 1)
6834 continue;
6835
6836 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6fd3620b 6837 compound_nr_pages(altmap, pfns_per_compound));
966cf44f
AD
6838 }
6839
fdc029b1 6840 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6841 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6842}
6843
6844#endif
1e548deb 6845static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6846{
7aeb09f9 6847 unsigned int order, t;
b2a0ac88
MG
6848 for_each_migratetype_order(order, t) {
6849 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6850 zone->free_area[order].nr_free = 0;
6851 }
6852}
6853
0740a50b
MR
6854/*
6855 * Only struct pages that correspond to ranges defined by memblock.memory
6856 * are zeroed and initialized by going through __init_single_page() during
122e093c 6857 * memmap_init_zone_range().
0740a50b
MR
6858 *
6859 * But, there could be struct pages that correspond to holes in
6860 * memblock.memory. This can happen because of the following reasons:
6861 * - physical memory bank size is not necessarily the exact multiple of the
6862 * arbitrary section size
6863 * - early reserved memory may not be listed in memblock.memory
6864 * - memory layouts defined with memmap= kernel parameter may not align
6865 * nicely with memmap sections
6866 *
6867 * Explicitly initialize those struct pages so that:
6868 * - PG_Reserved is set
6869 * - zone and node links point to zone and node that span the page if the
6870 * hole is in the middle of a zone
6871 * - zone and node links point to adjacent zone/node if the hole falls on
6872 * the zone boundary; the pages in such holes will be prepended to the
6873 * zone/node above the hole except for the trailing pages in the last
6874 * section that will be appended to the zone/node below.
6875 */
122e093c
MR
6876static void __init init_unavailable_range(unsigned long spfn,
6877 unsigned long epfn,
6878 int zone, int node)
0740a50b
MR
6879{
6880 unsigned long pfn;
6881 u64 pgcnt = 0;
6882
6883 for (pfn = spfn; pfn < epfn; pfn++) {
6884 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6885 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6886 + pageblock_nr_pages - 1;
6887 continue;
6888 }
6889 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6890 __SetPageReserved(pfn_to_page(pfn));
6891 pgcnt++;
6892 }
6893
122e093c
MR
6894 if (pgcnt)
6895 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6896 node, zone_names[zone], pgcnt);
0740a50b 6897}
0740a50b 6898
122e093c
MR
6899static void __init memmap_init_zone_range(struct zone *zone,
6900 unsigned long start_pfn,
6901 unsigned long end_pfn,
6902 unsigned long *hole_pfn)
dfb3ccd0 6903{
3256ff83
BH
6904 unsigned long zone_start_pfn = zone->zone_start_pfn;
6905 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6906 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6907
6908 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6909 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6910
6911 if (start_pfn >= end_pfn)
6912 return;
6913
6914 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6915 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6916
6917 if (*hole_pfn < start_pfn)
6918 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6919
6920 *hole_pfn = end_pfn;
6921}
6922
6923static void __init memmap_init(void)
6924{
73a6e474 6925 unsigned long start_pfn, end_pfn;
122e093c 6926 unsigned long hole_pfn = 0;
b346075f 6927 int i, j, zone_id = 0, nid;
73a6e474 6928
122e093c
MR
6929 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6930 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6931
122e093c
MR
6932 for (j = 0; j < MAX_NR_ZONES; j++) {
6933 struct zone *zone = node->node_zones + j;
0740a50b 6934
122e093c
MR
6935 if (!populated_zone(zone))
6936 continue;
0740a50b 6937
122e093c
MR
6938 memmap_init_zone_range(zone, start_pfn, end_pfn,
6939 &hole_pfn);
6940 zone_id = j;
6941 }
73a6e474 6942 }
0740a50b
MR
6943
6944#ifdef CONFIG_SPARSEMEM
6945 /*
122e093c
MR
6946 * Initialize the memory map for hole in the range [memory_end,
6947 * section_end].
6948 * Append the pages in this hole to the highest zone in the last
6949 * node.
6950 * The call to init_unavailable_range() is outside the ifdef to
6951 * silence the compiler warining about zone_id set but not used;
6952 * for FLATMEM it is a nop anyway
0740a50b 6953 */
122e093c 6954 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6955 if (hole_pfn < end_pfn)
0740a50b 6956#endif
122e093c 6957 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6958}
1da177e4 6959
c803b3c8
MR
6960void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6961 phys_addr_t min_addr, int nid, bool exact_nid)
6962{
6963 void *ptr;
6964
6965 if (exact_nid)
6966 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6967 MEMBLOCK_ALLOC_ACCESSIBLE,
6968 nid);
6969 else
6970 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6971 MEMBLOCK_ALLOC_ACCESSIBLE,
6972 nid);
6973
6974 if (ptr && size > 0)
6975 page_init_poison(ptr, size);
6976
6977 return ptr;
6978}
6979
7cd2b0a3 6980static int zone_batchsize(struct zone *zone)
e7c8d5c9 6981{
3a6be87f 6982#ifdef CONFIG_MMU
e7c8d5c9
CL
6983 int batch;
6984
6985 /*
b92ca18e
MG
6986 * The number of pages to batch allocate is either ~0.1%
6987 * of the zone or 1MB, whichever is smaller. The batch
6988 * size is striking a balance between allocation latency
6989 * and zone lock contention.
e7c8d5c9 6990 */
b92ca18e 6991 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6992 batch /= 4; /* We effectively *= 4 below */
6993 if (batch < 1)
6994 batch = 1;
6995
6996 /*
0ceaacc9
NP
6997 * Clamp the batch to a 2^n - 1 value. Having a power
6998 * of 2 value was found to be more likely to have
6999 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 7000 *
0ceaacc9
NP
7001 * For example if 2 tasks are alternately allocating
7002 * batches of pages, one task can end up with a lot
7003 * of pages of one half of the possible page colors
7004 * and the other with pages of the other colors.
e7c8d5c9 7005 */
9155203a 7006 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 7007
e7c8d5c9 7008 return batch;
3a6be87f
DH
7009
7010#else
7011 /* The deferral and batching of frees should be suppressed under NOMMU
7012 * conditions.
7013 *
7014 * The problem is that NOMMU needs to be able to allocate large chunks
7015 * of contiguous memory as there's no hardware page translation to
7016 * assemble apparent contiguous memory from discontiguous pages.
7017 *
7018 * Queueing large contiguous runs of pages for batching, however,
7019 * causes the pages to actually be freed in smaller chunks. As there
7020 * can be a significant delay between the individual batches being
7021 * recycled, this leads to the once large chunks of space being
7022 * fragmented and becoming unavailable for high-order allocations.
7023 */
7024 return 0;
7025#endif
e7c8d5c9
CL
7026}
7027
04f8cfea 7028static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
7029{
7030#ifdef CONFIG_MMU
7031 int high;
203c06ee 7032 int nr_split_cpus;
74f44822
MG
7033 unsigned long total_pages;
7034
7035 if (!percpu_pagelist_high_fraction) {
7036 /*
7037 * By default, the high value of the pcp is based on the zone
7038 * low watermark so that if they are full then background
7039 * reclaim will not be started prematurely.
7040 */
7041 total_pages = low_wmark_pages(zone);
7042 } else {
7043 /*
7044 * If percpu_pagelist_high_fraction is configured, the high
7045 * value is based on a fraction of the managed pages in the
7046 * zone.
7047 */
7048 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7049 }
b92ca18e
MG
7050
7051 /*
74f44822
MG
7052 * Split the high value across all online CPUs local to the zone. Note
7053 * that early in boot that CPUs may not be online yet and that during
7054 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
7055 * onlined. For memory nodes that have no CPUs, split pcp->high across
7056 * all online CPUs to mitigate the risk that reclaim is triggered
7057 * prematurely due to pages stored on pcp lists.
b92ca18e 7058 */
203c06ee
MG
7059 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7060 if (!nr_split_cpus)
7061 nr_split_cpus = num_online_cpus();
7062 high = total_pages / nr_split_cpus;
b92ca18e
MG
7063
7064 /*
7065 * Ensure high is at least batch*4. The multiple is based on the
7066 * historical relationship between high and batch.
7067 */
7068 high = max(high, batch << 2);
7069
7070 return high;
7071#else
7072 return 0;
7073#endif
7074}
7075
8d7a8fa9 7076/*
5c3ad2eb
VB
7077 * pcp->high and pcp->batch values are related and generally batch is lower
7078 * than high. They are also related to pcp->count such that count is lower
7079 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 7080 *
5c3ad2eb
VB
7081 * However, guaranteeing these relations at all times would require e.g. write
7082 * barriers here but also careful usage of read barriers at the read side, and
7083 * thus be prone to error and bad for performance. Thus the update only prevents
7084 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7085 * can cope with those fields changing asynchronously, and fully trust only the
7086 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
7087 *
7088 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7089 * outside of boot time (or some other assurance that no concurrent updaters
7090 * exist).
7091 */
7092static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7093 unsigned long batch)
7094{
5c3ad2eb
VB
7095 WRITE_ONCE(pcp->batch, batch);
7096 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
7097}
7098
28f836b6 7099static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 7100{
44042b44 7101 int pindex;
2caaad41 7102
28f836b6
MG
7103 memset(pcp, 0, sizeof(*pcp));
7104 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 7105
4b23a68f 7106 spin_lock_init(&pcp->lock);
44042b44
MG
7107 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7108 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 7109
69a8396a
VB
7110 /*
7111 * Set batch and high values safe for a boot pageset. A true percpu
7112 * pageset's initialization will update them subsequently. Here we don't
7113 * need to be as careful as pageset_update() as nobody can access the
7114 * pageset yet.
7115 */
952eaf81
VB
7116 pcp->high = BOOT_PAGESET_HIGH;
7117 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 7118 pcp->free_factor = 0;
88c90dbc
CS
7119}
7120
3b1f3658 7121static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
7122 unsigned long batch)
7123{
28f836b6 7124 struct per_cpu_pages *pcp;
ec6e8c7e
VB
7125 int cpu;
7126
7127 for_each_possible_cpu(cpu) {
28f836b6
MG
7128 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7129 pageset_update(pcp, high, batch);
ec6e8c7e
VB
7130 }
7131}
7132
8ad4b1fb 7133/*
0a8b4f1d 7134 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 7135 * zone based on the zone's size.
8ad4b1fb 7136 */
04f8cfea 7137static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 7138{
b92ca18e 7139 int new_high, new_batch;
7115ac6e 7140
b92ca18e 7141 new_batch = max(1, zone_batchsize(zone));
04f8cfea 7142 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 7143
952eaf81
VB
7144 if (zone->pageset_high == new_high &&
7145 zone->pageset_batch == new_batch)
7146 return;
7147
7148 zone->pageset_high = new_high;
7149 zone->pageset_batch = new_batch;
7150
ec6e8c7e 7151 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
7152}
7153
72675e13 7154void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
7155{
7156 int cpu;
0a8b4f1d 7157
28f836b6
MG
7158 /* Size may be 0 on !SMP && !NUMA */
7159 if (sizeof(struct per_cpu_zonestat) > 0)
7160 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7161
7162 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7163 for_each_possible_cpu(cpu) {
28f836b6
MG
7164 struct per_cpu_pages *pcp;
7165 struct per_cpu_zonestat *pzstats;
7166
7167 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7168 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7169 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7170 }
7171
04f8cfea 7172 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7173}
7174
2caaad41 7175/*
99dcc3e5
CL
7176 * Allocate per cpu pagesets and initialize them.
7177 * Before this call only boot pagesets were available.
e7c8d5c9 7178 */
99dcc3e5 7179void __init setup_per_cpu_pageset(void)
e7c8d5c9 7180{
b4911ea2 7181 struct pglist_data *pgdat;
99dcc3e5 7182 struct zone *zone;
b418a0f9 7183 int __maybe_unused cpu;
e7c8d5c9 7184
319774e2
WF
7185 for_each_populated_zone(zone)
7186 setup_zone_pageset(zone);
b4911ea2 7187
b418a0f9
SD
7188#ifdef CONFIG_NUMA
7189 /*
7190 * Unpopulated zones continue using the boot pagesets.
7191 * The numa stats for these pagesets need to be reset.
7192 * Otherwise, they will end up skewing the stats of
7193 * the nodes these zones are associated with.
7194 */
7195 for_each_possible_cpu(cpu) {
28f836b6 7196 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7197 memset(pzstats->vm_numa_event, 0,
7198 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7199 }
7200#endif
7201
b4911ea2
MG
7202 for_each_online_pgdat(pgdat)
7203 pgdat->per_cpu_nodestats =
7204 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7205}
7206
c09b4240 7207static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7208{
99dcc3e5
CL
7209 /*
7210 * per cpu subsystem is not up at this point. The following code
7211 * relies on the ability of the linker to provide the
7212 * offset of a (static) per cpu variable into the per cpu area.
7213 */
28f836b6
MG
7214 zone->per_cpu_pageset = &boot_pageset;
7215 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7216 zone->pageset_high = BOOT_PAGESET_HIGH;
7217 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7218
b38a8725 7219 if (populated_zone(zone))
9660ecaa
HK
7220 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7221 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7222}
7223
dc0bbf3b 7224void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7225 unsigned long zone_start_pfn,
b171e409 7226 unsigned long size)
ed8ece2e
DH
7227{
7228 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7229 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7230
8f416836
WY
7231 if (zone_idx > pgdat->nr_zones)
7232 pgdat->nr_zones = zone_idx;
ed8ece2e 7233
ed8ece2e
DH
7234 zone->zone_start_pfn = zone_start_pfn;
7235
708614e6
MG
7236 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7237 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7238 pgdat->node_id,
7239 (unsigned long)zone_idx(zone),
7240 zone_start_pfn, (zone_start_pfn + size));
7241
1e548deb 7242 zone_init_free_lists(zone);
9dcb8b68 7243 zone->initialized = 1;
ed8ece2e
DH
7244}
7245
c713216d
MG
7246/**
7247 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7248 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7249 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7250 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7251 *
7252 * It returns the start and end page frame of a node based on information
7d018176 7253 * provided by memblock_set_node(). If called for a node
c713216d 7254 * with no available memory, a warning is printed and the start and end
88ca3b94 7255 * PFNs will be 0.
c713216d 7256 */
bbe5d993 7257void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7258 unsigned long *start_pfn, unsigned long *end_pfn)
7259{
c13291a5 7260 unsigned long this_start_pfn, this_end_pfn;
c713216d 7261 int i;
c13291a5 7262
c713216d
MG
7263 *start_pfn = -1UL;
7264 *end_pfn = 0;
7265
c13291a5
TH
7266 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7267 *start_pfn = min(*start_pfn, this_start_pfn);
7268 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7269 }
7270
633c0666 7271 if (*start_pfn == -1UL)
c713216d 7272 *start_pfn = 0;
c713216d
MG
7273}
7274
2a1e274a
MG
7275/*
7276 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7277 * assumption is made that zones within a node are ordered in monotonic
7278 * increasing memory addresses so that the "highest" populated zone is used
7279 */
b69a7288 7280static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7281{
7282 int zone_index;
7283 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7284 if (zone_index == ZONE_MOVABLE)
7285 continue;
7286
7287 if (arch_zone_highest_possible_pfn[zone_index] >
7288 arch_zone_lowest_possible_pfn[zone_index])
7289 break;
7290 }
7291
7292 VM_BUG_ON(zone_index == -1);
7293 movable_zone = zone_index;
7294}
7295
7296/*
7297 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7298 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7299 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7300 * in each node depending on the size of each node and how evenly kernelcore
7301 * is distributed. This helper function adjusts the zone ranges
7302 * provided by the architecture for a given node by using the end of the
7303 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7304 * zones within a node are in order of monotonic increases memory addresses
7305 */
bbe5d993 7306static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7307 unsigned long zone_type,
7308 unsigned long node_start_pfn,
7309 unsigned long node_end_pfn,
7310 unsigned long *zone_start_pfn,
7311 unsigned long *zone_end_pfn)
7312{
7313 /* Only adjust if ZONE_MOVABLE is on this node */
7314 if (zone_movable_pfn[nid]) {
7315 /* Size ZONE_MOVABLE */
7316 if (zone_type == ZONE_MOVABLE) {
7317 *zone_start_pfn = zone_movable_pfn[nid];
7318 *zone_end_pfn = min(node_end_pfn,
7319 arch_zone_highest_possible_pfn[movable_zone]);
7320
e506b996
XQ
7321 /* Adjust for ZONE_MOVABLE starting within this range */
7322 } else if (!mirrored_kernelcore &&
7323 *zone_start_pfn < zone_movable_pfn[nid] &&
7324 *zone_end_pfn > zone_movable_pfn[nid]) {
7325 *zone_end_pfn = zone_movable_pfn[nid];
7326
2a1e274a
MG
7327 /* Check if this whole range is within ZONE_MOVABLE */
7328 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7329 *zone_start_pfn = *zone_end_pfn;
7330 }
7331}
7332
c713216d
MG
7333/*
7334 * Return the number of pages a zone spans in a node, including holes
7335 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7336 */
bbe5d993 7337static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7338 unsigned long zone_type,
7960aedd
ZY
7339 unsigned long node_start_pfn,
7340 unsigned long node_end_pfn,
d91749c1 7341 unsigned long *zone_start_pfn,
854e8848 7342 unsigned long *zone_end_pfn)
c713216d 7343{
299c83dc
LF
7344 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7345 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7346 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7347 if (!node_start_pfn && !node_end_pfn)
7348 return 0;
7349
7960aedd 7350 /* Get the start and end of the zone */
299c83dc
LF
7351 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7352 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7353 adjust_zone_range_for_zone_movable(nid, zone_type,
7354 node_start_pfn, node_end_pfn,
d91749c1 7355 zone_start_pfn, zone_end_pfn);
c713216d
MG
7356
7357 /* Check that this node has pages within the zone's required range */
d91749c1 7358 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7359 return 0;
7360
7361 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7362 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7363 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7364
7365 /* Return the spanned pages */
d91749c1 7366 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7367}
7368
7369/*
7370 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7371 * then all holes in the requested range will be accounted for.
c713216d 7372 */
bbe5d993 7373unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7374 unsigned long range_start_pfn,
7375 unsigned long range_end_pfn)
7376{
96e907d1
TH
7377 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7378 unsigned long start_pfn, end_pfn;
7379 int i;
c713216d 7380
96e907d1
TH
7381 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7382 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7383 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7384 nr_absent -= end_pfn - start_pfn;
c713216d 7385 }
96e907d1 7386 return nr_absent;
c713216d
MG
7387}
7388
7389/**
7390 * absent_pages_in_range - Return number of page frames in holes within a range
7391 * @start_pfn: The start PFN to start searching for holes
7392 * @end_pfn: The end PFN to stop searching for holes
7393 *
a862f68a 7394 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7395 */
7396unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7397 unsigned long end_pfn)
7398{
7399 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7400}
7401
7402/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7403static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7404 unsigned long zone_type,
7960aedd 7405 unsigned long node_start_pfn,
854e8848 7406 unsigned long node_end_pfn)
c713216d 7407{
96e907d1
TH
7408 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7409 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7410 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7411 unsigned long nr_absent;
9c7cd687 7412
b5685e92 7413 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7414 if (!node_start_pfn && !node_end_pfn)
7415 return 0;
7416
96e907d1
TH
7417 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7418 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7419
2a1e274a
MG
7420 adjust_zone_range_for_zone_movable(nid, zone_type,
7421 node_start_pfn, node_end_pfn,
7422 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7423 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7424
7425 /*
7426 * ZONE_MOVABLE handling.
7427 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7428 * and vice versa.
7429 */
e506b996
XQ
7430 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7431 unsigned long start_pfn, end_pfn;
7432 struct memblock_region *r;
7433
cc6de168 7434 for_each_mem_region(r) {
e506b996
XQ
7435 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7436 zone_start_pfn, zone_end_pfn);
7437 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7438 zone_start_pfn, zone_end_pfn);
7439
7440 if (zone_type == ZONE_MOVABLE &&
7441 memblock_is_mirror(r))
7442 nr_absent += end_pfn - start_pfn;
7443
7444 if (zone_type == ZONE_NORMAL &&
7445 !memblock_is_mirror(r))
7446 nr_absent += end_pfn - start_pfn;
342332e6
TI
7447 }
7448 }
7449
7450 return nr_absent;
c713216d 7451}
0e0b864e 7452
bbe5d993 7453static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7454 unsigned long node_start_pfn,
854e8848 7455 unsigned long node_end_pfn)
c713216d 7456{
febd5949 7457 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7458 enum zone_type i;
7459
febd5949
GZ
7460 for (i = 0; i < MAX_NR_ZONES; i++) {
7461 struct zone *zone = pgdat->node_zones + i;
d91749c1 7462 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7463 unsigned long spanned, absent;
febd5949 7464 unsigned long size, real_size;
c713216d 7465
854e8848
MR
7466 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7467 node_start_pfn,
7468 node_end_pfn,
7469 &zone_start_pfn,
7470 &zone_end_pfn);
7471 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7472 node_start_pfn,
7473 node_end_pfn);
3f08a302
MR
7474
7475 size = spanned;
7476 real_size = size - absent;
7477
d91749c1
TI
7478 if (size)
7479 zone->zone_start_pfn = zone_start_pfn;
7480 else
7481 zone->zone_start_pfn = 0;
febd5949
GZ
7482 zone->spanned_pages = size;
7483 zone->present_pages = real_size;
4b097002
DH
7484#if defined(CONFIG_MEMORY_HOTPLUG)
7485 zone->present_early_pages = real_size;
7486#endif
febd5949
GZ
7487
7488 totalpages += size;
7489 realtotalpages += real_size;
7490 }
7491
7492 pgdat->node_spanned_pages = totalpages;
c713216d 7493 pgdat->node_present_pages = realtotalpages;
9660ecaa 7494 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7495}
7496
835c134e
MG
7497#ifndef CONFIG_SPARSEMEM
7498/*
7499 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7500 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7501 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7502 * round what is now in bits to nearest long in bits, then return it in
7503 * bytes.
7504 */
7c45512d 7505static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7506{
7507 unsigned long usemapsize;
7508
7c45512d 7509 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7510 usemapsize = roundup(zonesize, pageblock_nr_pages);
7511 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7512 usemapsize *= NR_PAGEBLOCK_BITS;
7513 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7514
7515 return usemapsize / 8;
7516}
7517
7010a6ec 7518static void __ref setup_usemap(struct zone *zone)
835c134e 7519{
7010a6ec
BH
7520 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7521 zone->spanned_pages);
835c134e 7522 zone->pageblock_flags = NULL;
23a7052a 7523 if (usemapsize) {
6782832e 7524 zone->pageblock_flags =
26fb3dae 7525 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7526 zone_to_nid(zone));
23a7052a
MR
7527 if (!zone->pageblock_flags)
7528 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7529 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7530 }
835c134e
MG
7531}
7532#else
7010a6ec 7533static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7534#endif /* CONFIG_SPARSEMEM */
7535
d9c23400 7536#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7537
d9c23400 7538/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7539void __init set_pageblock_order(void)
d9c23400 7540{
b3d40a2b 7541 unsigned int order = MAX_ORDER - 1;
955c1cd7 7542
d9c23400
MG
7543 /* Check that pageblock_nr_pages has not already been setup */
7544 if (pageblock_order)
7545 return;
7546
b3d40a2b
DH
7547 /* Don't let pageblocks exceed the maximum allocation granularity. */
7548 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7549 order = HUGETLB_PAGE_ORDER;
955c1cd7 7550
d9c23400
MG
7551 /*
7552 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7553 * This value may be variable depending on boot parameters on IA64 and
7554 * powerpc.
d9c23400
MG
7555 */
7556 pageblock_order = order;
7557}
7558#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7559
ba72cb8c
MG
7560/*
7561 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7562 * is unused as pageblock_order is set at compile-time. See
7563 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7564 * the kernel config
ba72cb8c 7565 */
03e85f9d 7566void __init set_pageblock_order(void)
ba72cb8c 7567{
ba72cb8c 7568}
d9c23400
MG
7569
7570#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7571
03e85f9d 7572static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7573 unsigned long present_pages)
01cefaef
JL
7574{
7575 unsigned long pages = spanned_pages;
7576
7577 /*
7578 * Provide a more accurate estimation if there are holes within
7579 * the zone and SPARSEMEM is in use. If there are holes within the
7580 * zone, each populated memory region may cost us one or two extra
7581 * memmap pages due to alignment because memmap pages for each
89d790ab 7582 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7583 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7584 */
7585 if (spanned_pages > present_pages + (present_pages >> 4) &&
7586 IS_ENABLED(CONFIG_SPARSEMEM))
7587 pages = present_pages;
7588
7589 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7590}
7591
ace1db39
OS
7592#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7593static void pgdat_init_split_queue(struct pglist_data *pgdat)
7594{
364c1eeb
YS
7595 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7596
7597 spin_lock_init(&ds_queue->split_queue_lock);
7598 INIT_LIST_HEAD(&ds_queue->split_queue);
7599 ds_queue->split_queue_len = 0;
ace1db39
OS
7600}
7601#else
7602static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7603#endif
7604
7605#ifdef CONFIG_COMPACTION
7606static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7607{
7608 init_waitqueue_head(&pgdat->kcompactd_wait);
7609}
7610#else
7611static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7612#endif
7613
03e85f9d 7614static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7615{
8cd7c588
MG
7616 int i;
7617
208d54e5 7618 pgdat_resize_init(pgdat);
b4a0215e 7619 pgdat_kswapd_lock_init(pgdat);
ace1db39 7620
ace1db39
OS
7621 pgdat_init_split_queue(pgdat);
7622 pgdat_init_kcompactd(pgdat);
7623
1da177e4 7624 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7625 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7626
8cd7c588
MG
7627 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7628 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7629
eefa864b 7630 pgdat_page_ext_init(pgdat);
867e5e1d 7631 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7632}
7633
7634static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7635 unsigned long remaining_pages)
7636{
9705bea5 7637 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7638 zone_set_nid(zone, nid);
7639 zone->name = zone_names[idx];
7640 zone->zone_pgdat = NODE_DATA(nid);
7641 spin_lock_init(&zone->lock);
7642 zone_seqlock_init(zone);
7643 zone_pcp_init(zone);
7644}
7645
7646/*
7647 * Set up the zone data structures
7648 * - init pgdat internals
7649 * - init all zones belonging to this node
7650 *
7651 * NOTE: this function is only called during memory hotplug
7652 */
7653#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7654void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7655{
70b5b46a 7656 int nid = pgdat->node_id;
03e85f9d 7657 enum zone_type z;
70b5b46a 7658 int cpu;
03e85f9d
OS
7659
7660 pgdat_init_internals(pgdat);
70b5b46a
MH
7661
7662 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7663 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7664
7665 /*
7666 * Reset the nr_zones, order and highest_zoneidx before reuse.
7667 * Note that kswapd will init kswapd_highest_zoneidx properly
7668 * when it starts in the near future.
7669 */
7670 pgdat->nr_zones = 0;
7671 pgdat->kswapd_order = 0;
7672 pgdat->kswapd_highest_zoneidx = 0;
7673 pgdat->node_start_pfn = 0;
7674 for_each_online_cpu(cpu) {
7675 struct per_cpu_nodestat *p;
7676
7677 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7678 memset(p, 0, sizeof(*p));
7679 }
7680
03e85f9d
OS
7681 for (z = 0; z < MAX_NR_ZONES; z++)
7682 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7683}
7684#endif
7685
7686/*
7687 * Set up the zone data structures:
7688 * - mark all pages reserved
7689 * - mark all memory queues empty
7690 * - clear the memory bitmaps
7691 *
7692 * NOTE: pgdat should get zeroed by caller.
7693 * NOTE: this function is only called during early init.
7694 */
7695static void __init free_area_init_core(struct pglist_data *pgdat)
7696{
7697 enum zone_type j;
7698 int nid = pgdat->node_id;
5f63b720 7699
03e85f9d 7700 pgdat_init_internals(pgdat);
385386cf
JW
7701 pgdat->per_cpu_nodestats = &boot_nodestats;
7702
1da177e4
LT
7703 for (j = 0; j < MAX_NR_ZONES; j++) {
7704 struct zone *zone = pgdat->node_zones + j;
e6943859 7705 unsigned long size, freesize, memmap_pages;
1da177e4 7706
febd5949 7707 size = zone->spanned_pages;
e6943859 7708 freesize = zone->present_pages;
1da177e4 7709
0e0b864e 7710 /*
9feedc9d 7711 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7712 * is used by this zone for memmap. This affects the watermark
7713 * and per-cpu initialisations
7714 */
e6943859 7715 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7716 if (!is_highmem_idx(j)) {
7717 if (freesize >= memmap_pages) {
7718 freesize -= memmap_pages;
7719 if (memmap_pages)
9660ecaa
HK
7720 pr_debug(" %s zone: %lu pages used for memmap\n",
7721 zone_names[j], memmap_pages);
ba914f48 7722 } else
e47aa905 7723 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7724 zone_names[j], memmap_pages, freesize);
7725 }
0e0b864e 7726
6267276f 7727 /* Account for reserved pages */
9feedc9d
JL
7728 if (j == 0 && freesize > dma_reserve) {
7729 freesize -= dma_reserve;
9660ecaa 7730 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7731 }
7732
98d2b0eb 7733 if (!is_highmem_idx(j))
9feedc9d 7734 nr_kernel_pages += freesize;
01cefaef
JL
7735 /* Charge for highmem memmap if there are enough kernel pages */
7736 else if (nr_kernel_pages > memmap_pages * 2)
7737 nr_kernel_pages -= memmap_pages;
9feedc9d 7738 nr_all_pages += freesize;
1da177e4 7739
9feedc9d
JL
7740 /*
7741 * Set an approximate value for lowmem here, it will be adjusted
7742 * when the bootmem allocator frees pages into the buddy system.
7743 * And all highmem pages will be managed by the buddy system.
7744 */
03e85f9d 7745 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7746
d883c6cf 7747 if (!size)
1da177e4
LT
7748 continue;
7749
955c1cd7 7750 set_pageblock_order();
7010a6ec 7751 setup_usemap(zone);
9699ee7b 7752 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7753 }
7754}
7755
43b02ba9 7756#ifdef CONFIG_FLATMEM
3b446da6 7757static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7758{
b0aeba74 7759 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7760 unsigned long __maybe_unused offset = 0;
7761
1da177e4
LT
7762 /* Skip empty nodes */
7763 if (!pgdat->node_spanned_pages)
7764 return;
7765
b0aeba74
TL
7766 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7767 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7768 /* ia64 gets its own node_mem_map, before this, without bootmem */
7769 if (!pgdat->node_mem_map) {
b0aeba74 7770 unsigned long size, end;
d41dee36
AW
7771 struct page *map;
7772
e984bb43
BP
7773 /*
7774 * The zone's endpoints aren't required to be MAX_ORDER
7775 * aligned but the node_mem_map endpoints must be in order
7776 * for the buddy allocator to function correctly.
7777 */
108bcc96 7778 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7779 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7780 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7781 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7782 pgdat->node_id, false);
23a7052a
MR
7783 if (!map)
7784 panic("Failed to allocate %ld bytes for node %d memory map\n",
7785 size, pgdat->node_id);
a1c34a3b 7786 pgdat->node_mem_map = map + offset;
1da177e4 7787 }
0cd842f9
OS
7788 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7789 __func__, pgdat->node_id, (unsigned long)pgdat,
7790 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7791#ifndef CONFIG_NUMA
1da177e4
LT
7792 /*
7793 * With no DISCONTIG, the global mem_map is just set as node 0's
7794 */
c713216d 7795 if (pgdat == NODE_DATA(0)) {
1da177e4 7796 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7797 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7798 mem_map -= offset;
c713216d 7799 }
1da177e4
LT
7800#endif
7801}
0cd842f9 7802#else
3b446da6 7803static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7804#endif /* CONFIG_FLATMEM */
1da177e4 7805
0188dc98
OS
7806#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7807static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7808{
0188dc98
OS
7809 pgdat->first_deferred_pfn = ULONG_MAX;
7810}
7811#else
7812static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7813#endif
7814
854e8848 7815static void __init free_area_init_node(int nid)
1da177e4 7816{
9109fb7b 7817 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7818 unsigned long start_pfn = 0;
7819 unsigned long end_pfn = 0;
9109fb7b 7820
88fdf75d 7821 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7822 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7823
854e8848 7824 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7825
1da177e4 7826 pgdat->node_id = nid;
854e8848 7827 pgdat->node_start_pfn = start_pfn;
75ef7184 7828 pgdat->per_cpu_nodestats = NULL;
854e8848 7829
7c30daac
MH
7830 if (start_pfn != end_pfn) {
7831 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7832 (u64)start_pfn << PAGE_SHIFT,
7833 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7834 } else {
7835 pr_info("Initmem setup node %d as memoryless\n", nid);
7836 }
7837
854e8848 7838 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7839
7840 alloc_node_mem_map(pgdat);
0188dc98 7841 pgdat_set_deferred_range(pgdat);
1da177e4 7842
7f3eb55b 7843 free_area_init_core(pgdat);
1da177e4
LT
7844}
7845
1ca75fa7 7846static void __init free_area_init_memoryless_node(int nid)
3f08a302 7847{
854e8848 7848 free_area_init_node(nid);
3f08a302
MR
7849}
7850
418508c1
MS
7851#if MAX_NUMNODES > 1
7852/*
7853 * Figure out the number of possible node ids.
7854 */
f9872caf 7855void __init setup_nr_node_ids(void)
418508c1 7856{
904a9553 7857 unsigned int highest;
418508c1 7858
904a9553 7859 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7860 nr_node_ids = highest + 1;
7861}
418508c1
MS
7862#endif
7863
1e01979c
TH
7864/**
7865 * node_map_pfn_alignment - determine the maximum internode alignment
7866 *
7867 * This function should be called after node map is populated and sorted.
7868 * It calculates the maximum power of two alignment which can distinguish
7869 * all the nodes.
7870 *
7871 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7872 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7873 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7874 * shifted, 1GiB is enough and this function will indicate so.
7875 *
7876 * This is used to test whether pfn -> nid mapping of the chosen memory
7877 * model has fine enough granularity to avoid incorrect mapping for the
7878 * populated node map.
7879 *
a862f68a 7880 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7881 * requirement (single node).
7882 */
7883unsigned long __init node_map_pfn_alignment(void)
7884{
7885 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7886 unsigned long start, end, mask;
98fa15f3 7887 int last_nid = NUMA_NO_NODE;
c13291a5 7888 int i, nid;
1e01979c 7889
c13291a5 7890 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7891 if (!start || last_nid < 0 || last_nid == nid) {
7892 last_nid = nid;
7893 last_end = end;
7894 continue;
7895 }
7896
7897 /*
7898 * Start with a mask granular enough to pin-point to the
7899 * start pfn and tick off bits one-by-one until it becomes
7900 * too coarse to separate the current node from the last.
7901 */
7902 mask = ~((1 << __ffs(start)) - 1);
7903 while (mask && last_end <= (start & (mask << 1)))
7904 mask <<= 1;
7905
7906 /* accumulate all internode masks */
7907 accl_mask |= mask;
7908 }
7909
7910 /* convert mask to number of pages */
7911 return ~accl_mask + 1;
7912}
7913
37b07e41
LS
7914/*
7915 * early_calculate_totalpages()
7916 * Sum pages in active regions for movable zone.
4b0ef1fe 7917 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7918 */
484f51f8 7919static unsigned long __init early_calculate_totalpages(void)
7e63efef 7920{
7e63efef 7921 unsigned long totalpages = 0;
c13291a5
TH
7922 unsigned long start_pfn, end_pfn;
7923 int i, nid;
7924
7925 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7926 unsigned long pages = end_pfn - start_pfn;
7e63efef 7927
37b07e41
LS
7928 totalpages += pages;
7929 if (pages)
4b0ef1fe 7930 node_set_state(nid, N_MEMORY);
37b07e41 7931 }
b8af2941 7932 return totalpages;
7e63efef
MG
7933}
7934
2a1e274a
MG
7935/*
7936 * Find the PFN the Movable zone begins in each node. Kernel memory
7937 * is spread evenly between nodes as long as the nodes have enough
7938 * memory. When they don't, some nodes will have more kernelcore than
7939 * others
7940 */
b224ef85 7941static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7942{
7943 int i, nid;
7944 unsigned long usable_startpfn;
7945 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7946 /* save the state before borrow the nodemask */
4b0ef1fe 7947 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7948 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7949 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7950 struct memblock_region *r;
b2f3eebe
TC
7951
7952 /* Need to find movable_zone earlier when movable_node is specified. */
7953 find_usable_zone_for_movable();
7954
7955 /*
7956 * If movable_node is specified, ignore kernelcore and movablecore
7957 * options.
7958 */
7959 if (movable_node_is_enabled()) {
cc6de168 7960 for_each_mem_region(r) {
136199f0 7961 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7962 continue;
7963
d622abf7 7964 nid = memblock_get_region_node(r);
b2f3eebe 7965
136199f0 7966 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7967 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7968 min(usable_startpfn, zone_movable_pfn[nid]) :
7969 usable_startpfn;
7970 }
7971
7972 goto out2;
7973 }
2a1e274a 7974
342332e6
TI
7975 /*
7976 * If kernelcore=mirror is specified, ignore movablecore option
7977 */
7978 if (mirrored_kernelcore) {
7979 bool mem_below_4gb_not_mirrored = false;
7980
cc6de168 7981 for_each_mem_region(r) {
342332e6
TI
7982 if (memblock_is_mirror(r))
7983 continue;
7984
d622abf7 7985 nid = memblock_get_region_node(r);
342332e6
TI
7986
7987 usable_startpfn = memblock_region_memory_base_pfn(r);
7988
aa282a15 7989 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
342332e6
TI
7990 mem_below_4gb_not_mirrored = true;
7991 continue;
7992 }
7993
7994 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7995 min(usable_startpfn, zone_movable_pfn[nid]) :
7996 usable_startpfn;
7997 }
7998
7999 if (mem_below_4gb_not_mirrored)
633bf2fe 8000 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
8001
8002 goto out2;
8003 }
8004
7e63efef 8005 /*
a5c6d650
DR
8006 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8007 * amount of necessary memory.
8008 */
8009 if (required_kernelcore_percent)
8010 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8011 10000UL;
8012 if (required_movablecore_percent)
8013 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8014 10000UL;
8015
8016 /*
8017 * If movablecore= was specified, calculate what size of
7e63efef
MG
8018 * kernelcore that corresponds so that memory usable for
8019 * any allocation type is evenly spread. If both kernelcore
8020 * and movablecore are specified, then the value of kernelcore
8021 * will be used for required_kernelcore if it's greater than
8022 * what movablecore would have allowed.
8023 */
8024 if (required_movablecore) {
7e63efef
MG
8025 unsigned long corepages;
8026
8027 /*
8028 * Round-up so that ZONE_MOVABLE is at least as large as what
8029 * was requested by the user
8030 */
8031 required_movablecore =
8032 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 8033 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
8034 corepages = totalpages - required_movablecore;
8035
8036 required_kernelcore = max(required_kernelcore, corepages);
8037 }
8038
bde304bd
XQ
8039 /*
8040 * If kernelcore was not specified or kernelcore size is larger
8041 * than totalpages, there is no ZONE_MOVABLE.
8042 */
8043 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 8044 goto out;
2a1e274a
MG
8045
8046 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
8047 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8048
8049restart:
8050 /* Spread kernelcore memory as evenly as possible throughout nodes */
8051 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 8052 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
8053 unsigned long start_pfn, end_pfn;
8054
2a1e274a
MG
8055 /*
8056 * Recalculate kernelcore_node if the division per node
8057 * now exceeds what is necessary to satisfy the requested
8058 * amount of memory for the kernel
8059 */
8060 if (required_kernelcore < kernelcore_node)
8061 kernelcore_node = required_kernelcore / usable_nodes;
8062
8063 /*
8064 * As the map is walked, we track how much memory is usable
8065 * by the kernel using kernelcore_remaining. When it is
8066 * 0, the rest of the node is usable by ZONE_MOVABLE
8067 */
8068 kernelcore_remaining = kernelcore_node;
8069
8070 /* Go through each range of PFNs within this node */
c13291a5 8071 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
8072 unsigned long size_pages;
8073
c13291a5 8074 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
8075 if (start_pfn >= end_pfn)
8076 continue;
8077
8078 /* Account for what is only usable for kernelcore */
8079 if (start_pfn < usable_startpfn) {
8080 unsigned long kernel_pages;
8081 kernel_pages = min(end_pfn, usable_startpfn)
8082 - start_pfn;
8083
8084 kernelcore_remaining -= min(kernel_pages,
8085 kernelcore_remaining);
8086 required_kernelcore -= min(kernel_pages,
8087 required_kernelcore);
8088
8089 /* Continue if range is now fully accounted */
8090 if (end_pfn <= usable_startpfn) {
8091
8092 /*
8093 * Push zone_movable_pfn to the end so
8094 * that if we have to rebalance
8095 * kernelcore across nodes, we will
8096 * not double account here
8097 */
8098 zone_movable_pfn[nid] = end_pfn;
8099 continue;
8100 }
8101 start_pfn = usable_startpfn;
8102 }
8103
8104 /*
8105 * The usable PFN range for ZONE_MOVABLE is from
8106 * start_pfn->end_pfn. Calculate size_pages as the
8107 * number of pages used as kernelcore
8108 */
8109 size_pages = end_pfn - start_pfn;
8110 if (size_pages > kernelcore_remaining)
8111 size_pages = kernelcore_remaining;
8112 zone_movable_pfn[nid] = start_pfn + size_pages;
8113
8114 /*
8115 * Some kernelcore has been met, update counts and
8116 * break if the kernelcore for this node has been
b8af2941 8117 * satisfied
2a1e274a
MG
8118 */
8119 required_kernelcore -= min(required_kernelcore,
8120 size_pages);
8121 kernelcore_remaining -= size_pages;
8122 if (!kernelcore_remaining)
8123 break;
8124 }
8125 }
8126
8127 /*
8128 * If there is still required_kernelcore, we do another pass with one
8129 * less node in the count. This will push zone_movable_pfn[nid] further
8130 * along on the nodes that still have memory until kernelcore is
b8af2941 8131 * satisfied
2a1e274a
MG
8132 */
8133 usable_nodes--;
8134 if (usable_nodes && required_kernelcore > usable_nodes)
8135 goto restart;
8136
b2f3eebe 8137out2:
2a1e274a 8138 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
8139 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8140 unsigned long start_pfn, end_pfn;
8141
2a1e274a
MG
8142 zone_movable_pfn[nid] =
8143 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 8144
ddbc84f3
AP
8145 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8146 if (zone_movable_pfn[nid] >= end_pfn)
8147 zone_movable_pfn[nid] = 0;
8148 }
8149
20e6926d 8150out:
66918dcd 8151 /* restore the node_state */
4b0ef1fe 8152 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8153}
8154
4b0ef1fe
LJ
8155/* Any regular or high memory on that node ? */
8156static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8157{
37b07e41
LS
8158 enum zone_type zone_type;
8159
4b0ef1fe 8160 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8161 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8162 if (populated_zone(zone)) {
7b0e0c0e
OS
8163 if (IS_ENABLED(CONFIG_HIGHMEM))
8164 node_set_state(nid, N_HIGH_MEMORY);
8165 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8166 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8167 break;
8168 }
37b07e41 8169 }
37b07e41
LS
8170}
8171
51930df5 8172/*
f0953a1b 8173 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8174 * such cases we allow max_zone_pfn sorted in the descending order
8175 */
8176bool __weak arch_has_descending_max_zone_pfns(void)
8177{
8178 return false;
8179}
8180
c713216d 8181/**
9691a071 8182 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8183 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8184 *
8185 * This will call free_area_init_node() for each active node in the system.
7d018176 8186 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8187 * zone in each node and their holes is calculated. If the maximum PFN
8188 * between two adjacent zones match, it is assumed that the zone is empty.
8189 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8190 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8191 * starts where the previous one ended. For example, ZONE_DMA32 starts
8192 * at arch_max_dma_pfn.
8193 */
9691a071 8194void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8195{
c13291a5 8196 unsigned long start_pfn, end_pfn;
51930df5
MR
8197 int i, nid, zone;
8198 bool descending;
a6af2bc3 8199
c713216d
MG
8200 /* Record where the zone boundaries are */
8201 memset(arch_zone_lowest_possible_pfn, 0,
8202 sizeof(arch_zone_lowest_possible_pfn));
8203 memset(arch_zone_highest_possible_pfn, 0,
8204 sizeof(arch_zone_highest_possible_pfn));
90cae1fe 8205
fb70c487 8206 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
51930df5 8207 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8208
8209 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8210 if (descending)
8211 zone = MAX_NR_ZONES - i - 1;
8212 else
8213 zone = i;
8214
8215 if (zone == ZONE_MOVABLE)
2a1e274a 8216 continue;
90cae1fe 8217
51930df5
MR
8218 end_pfn = max(max_zone_pfn[zone], start_pfn);
8219 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8220 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8221
8222 start_pfn = end_pfn;
c713216d 8223 }
2a1e274a
MG
8224
8225 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8226 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8227 find_zone_movable_pfns_for_nodes();
c713216d 8228
c713216d 8229 /* Print out the zone ranges */
f88dfff5 8230 pr_info("Zone ranges:\n");
2a1e274a
MG
8231 for (i = 0; i < MAX_NR_ZONES; i++) {
8232 if (i == ZONE_MOVABLE)
8233 continue;
f88dfff5 8234 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8235 if (arch_zone_lowest_possible_pfn[i] ==
8236 arch_zone_highest_possible_pfn[i])
f88dfff5 8237 pr_cont("empty\n");
72f0ba02 8238 else
8d29e18a
JG
8239 pr_cont("[mem %#018Lx-%#018Lx]\n",
8240 (u64)arch_zone_lowest_possible_pfn[i]
8241 << PAGE_SHIFT,
8242 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8243 << PAGE_SHIFT) - 1);
2a1e274a
MG
8244 }
8245
8246 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8247 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8248 for (i = 0; i < MAX_NUMNODES; i++) {
8249 if (zone_movable_pfn[i])
8d29e18a
JG
8250 pr_info(" Node %d: %#018Lx\n", i,
8251 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8252 }
c713216d 8253
f46edbd1
DW
8254 /*
8255 * Print out the early node map, and initialize the
8256 * subsection-map relative to active online memory ranges to
8257 * enable future "sub-section" extensions of the memory map.
8258 */
f88dfff5 8259 pr_info("Early memory node ranges\n");
f46edbd1 8260 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8261 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8262 (u64)start_pfn << PAGE_SHIFT,
8263 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8264 subsection_map_init(start_pfn, end_pfn - start_pfn);
8265 }
c713216d
MG
8266
8267 /* Initialise every node */
708614e6 8268 mminit_verify_pageflags_layout();
8ef82866 8269 setup_nr_node_ids();
09f49dca
MH
8270 for_each_node(nid) {
8271 pg_data_t *pgdat;
8272
8273 if (!node_online(nid)) {
8274 pr_info("Initializing node %d as memoryless\n", nid);
8275
8276 /* Allocator not initialized yet */
8277 pgdat = arch_alloc_nodedata(nid);
8278 if (!pgdat) {
8279 pr_err("Cannot allocate %zuB for node %d.\n",
8280 sizeof(*pgdat), nid);
8281 continue;
8282 }
8283 arch_refresh_nodedata(nid, pgdat);
8284 free_area_init_memoryless_node(nid);
8285
8286 /*
8287 * We do not want to confuse userspace by sysfs
8288 * files/directories for node without any memory
8289 * attached to it, so this node is not marked as
8290 * N_MEMORY and not marked online so that no sysfs
8291 * hierarchy will be created via register_one_node for
8292 * it. The pgdat will get fully initialized by
8293 * hotadd_init_pgdat() when memory is hotplugged into
8294 * this node.
8295 */
8296 continue;
8297 }
8298
8299 pgdat = NODE_DATA(nid);
854e8848 8300 free_area_init_node(nid);
37b07e41
LS
8301
8302 /* Any memory on that node */
8303 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8304 node_set_state(nid, N_MEMORY);
8305 check_for_memory(pgdat, nid);
c713216d 8306 }
122e093c
MR
8307
8308 memmap_init();
c713216d 8309}
2a1e274a 8310
a5c6d650
DR
8311static int __init cmdline_parse_core(char *p, unsigned long *core,
8312 unsigned long *percent)
2a1e274a
MG
8313{
8314 unsigned long long coremem;
a5c6d650
DR
8315 char *endptr;
8316
2a1e274a
MG
8317 if (!p)
8318 return -EINVAL;
8319
a5c6d650
DR
8320 /* Value may be a percentage of total memory, otherwise bytes */
8321 coremem = simple_strtoull(p, &endptr, 0);
8322 if (*endptr == '%') {
8323 /* Paranoid check for percent values greater than 100 */
8324 WARN_ON(coremem > 100);
2a1e274a 8325
a5c6d650
DR
8326 *percent = coremem;
8327 } else {
8328 coremem = memparse(p, &p);
8329 /* Paranoid check that UL is enough for the coremem value */
8330 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8331
a5c6d650
DR
8332 *core = coremem >> PAGE_SHIFT;
8333 *percent = 0UL;
8334 }
2a1e274a
MG
8335 return 0;
8336}
ed7ed365 8337
7e63efef
MG
8338/*
8339 * kernelcore=size sets the amount of memory for use for allocations that
8340 * cannot be reclaimed or migrated.
8341 */
8342static int __init cmdline_parse_kernelcore(char *p)
8343{
342332e6
TI
8344 /* parse kernelcore=mirror */
8345 if (parse_option_str(p, "mirror")) {
8346 mirrored_kernelcore = true;
8347 return 0;
8348 }
8349
a5c6d650
DR
8350 return cmdline_parse_core(p, &required_kernelcore,
8351 &required_kernelcore_percent);
7e63efef
MG
8352}
8353
8354/*
8355 * movablecore=size sets the amount of memory for use for allocations that
8356 * can be reclaimed or migrated.
8357 */
8358static int __init cmdline_parse_movablecore(char *p)
8359{
a5c6d650
DR
8360 return cmdline_parse_core(p, &required_movablecore,
8361 &required_movablecore_percent);
7e63efef
MG
8362}
8363
ed7ed365 8364early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8365early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8366
c3d5f5f0
JL
8367void adjust_managed_page_count(struct page *page, long count)
8368{
9705bea5 8369 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8370 totalram_pages_add(count);
3dcc0571
JL
8371#ifdef CONFIG_HIGHMEM
8372 if (PageHighMem(page))
ca79b0c2 8373 totalhigh_pages_add(count);
3dcc0571 8374#endif
c3d5f5f0 8375}
3dcc0571 8376EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8377
e5cb113f 8378unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8379{
11199692
JL
8380 void *pos;
8381 unsigned long pages = 0;
69afade7 8382
11199692
JL
8383 start = (void *)PAGE_ALIGN((unsigned long)start);
8384 end = (void *)((unsigned long)end & PAGE_MASK);
8385 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8386 struct page *page = virt_to_page(pos);
8387 void *direct_map_addr;
8388
8389 /*
8390 * 'direct_map_addr' might be different from 'pos'
8391 * because some architectures' virt_to_page()
8392 * work with aliases. Getting the direct map
8393 * address ensures that we get a _writeable_
8394 * alias for the memset().
8395 */
8396 direct_map_addr = page_address(page);
c746170d
VF
8397 /*
8398 * Perform a kasan-unchecked memset() since this memory
8399 * has not been initialized.
8400 */
8401 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8402 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8403 memset(direct_map_addr, poison, PAGE_SIZE);
8404
8405 free_reserved_page(page);
69afade7
JL
8406 }
8407
8408 if (pages && s)
ff7ed9e4 8409 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8410
8411 return pages;
8412}
8413
1f9d03c5 8414void __init mem_init_print_info(void)
7ee3d4e8
JL
8415{
8416 unsigned long physpages, codesize, datasize, rosize, bss_size;
8417 unsigned long init_code_size, init_data_size;
8418
8419 physpages = get_num_physpages();
8420 codesize = _etext - _stext;
8421 datasize = _edata - _sdata;
8422 rosize = __end_rodata - __start_rodata;
8423 bss_size = __bss_stop - __bss_start;
8424 init_data_size = __init_end - __init_begin;
8425 init_code_size = _einittext - _sinittext;
8426
8427 /*
8428 * Detect special cases and adjust section sizes accordingly:
8429 * 1) .init.* may be embedded into .data sections
8430 * 2) .init.text.* may be out of [__init_begin, __init_end],
8431 * please refer to arch/tile/kernel/vmlinux.lds.S.
8432 * 3) .rodata.* may be embedded into .text or .data sections.
8433 */
8434#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8435 do { \
ca831f29 8436 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8437 size -= adj; \
8438 } while (0)
7ee3d4e8
JL
8439
8440 adj_init_size(__init_begin, __init_end, init_data_size,
8441 _sinittext, init_code_size);
8442 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8443 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8444 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8445 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8446
8447#undef adj_init_size
8448
756a025f 8449 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8450#ifdef CONFIG_HIGHMEM
756a025f 8451 ", %luK highmem"
7ee3d4e8 8452#endif
1f9d03c5 8453 ")\n",
ff7ed9e4 8454 K(nr_free_pages()), K(physpages),
756a025f
JP
8455 codesize >> 10, datasize >> 10, rosize >> 10,
8456 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8457 K(physpages - totalram_pages() - totalcma_pages),
8458 K(totalcma_pages)
7ee3d4e8 8459#ifdef CONFIG_HIGHMEM
ff7ed9e4 8460 , K(totalhigh_pages())
7ee3d4e8 8461#endif
1f9d03c5 8462 );
7ee3d4e8
JL
8463}
8464
0e0b864e 8465/**
88ca3b94
RD
8466 * set_dma_reserve - set the specified number of pages reserved in the first zone
8467 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8468 *
013110a7 8469 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8470 * In the DMA zone, a significant percentage may be consumed by kernel image
8471 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8472 * function may optionally be used to account for unfreeable pages in the
8473 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8474 * smaller per-cpu batchsize.
0e0b864e
MG
8475 */
8476void __init set_dma_reserve(unsigned long new_dma_reserve)
8477{
8478 dma_reserve = new_dma_reserve;
8479}
8480
005fd4bb 8481static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8482{
04f8cfea 8483 struct zone *zone;
1da177e4 8484
005fd4bb 8485 lru_add_drain_cpu(cpu);
adb11e78 8486 mlock_page_drain_remote(cpu);
005fd4bb 8487 drain_pages(cpu);
9f8f2172 8488
005fd4bb
SAS
8489 /*
8490 * Spill the event counters of the dead processor
8491 * into the current processors event counters.
8492 * This artificially elevates the count of the current
8493 * processor.
8494 */
8495 vm_events_fold_cpu(cpu);
9f8f2172 8496
005fd4bb
SAS
8497 /*
8498 * Zero the differential counters of the dead processor
8499 * so that the vm statistics are consistent.
8500 *
8501 * This is only okay since the processor is dead and cannot
8502 * race with what we are doing.
8503 */
8504 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8505
8506 for_each_populated_zone(zone)
8507 zone_pcp_update(zone, 0);
8508
8509 return 0;
8510}
8511
8512static int page_alloc_cpu_online(unsigned int cpu)
8513{
8514 struct zone *zone;
8515
8516 for_each_populated_zone(zone)
8517 zone_pcp_update(zone, 1);
005fd4bb 8518 return 0;
1da177e4 8519}
1da177e4 8520
e03a5125
NP
8521#ifdef CONFIG_NUMA
8522int hashdist = HASHDIST_DEFAULT;
8523
8524static int __init set_hashdist(char *str)
8525{
8526 if (!str)
8527 return 0;
8528 hashdist = simple_strtoul(str, &str, 0);
8529 return 1;
8530}
8531__setup("hashdist=", set_hashdist);
8532#endif
8533
1da177e4
LT
8534void __init page_alloc_init(void)
8535{
005fd4bb
SAS
8536 int ret;
8537
e03a5125
NP
8538#ifdef CONFIG_NUMA
8539 if (num_node_state(N_MEMORY) == 1)
8540 hashdist = 0;
8541#endif
8542
04f8cfea
MG
8543 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8544 "mm/page_alloc:pcp",
8545 page_alloc_cpu_online,
005fd4bb
SAS
8546 page_alloc_cpu_dead);
8547 WARN_ON(ret < 0);
1da177e4
LT
8548}
8549
cb45b0e9 8550/*
34b10060 8551 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8552 * or min_free_kbytes changes.
8553 */
8554static void calculate_totalreserve_pages(void)
8555{
8556 struct pglist_data *pgdat;
8557 unsigned long reserve_pages = 0;
2f6726e5 8558 enum zone_type i, j;
cb45b0e9
HA
8559
8560 for_each_online_pgdat(pgdat) {
281e3726
MG
8561
8562 pgdat->totalreserve_pages = 0;
8563
cb45b0e9
HA
8564 for (i = 0; i < MAX_NR_ZONES; i++) {
8565 struct zone *zone = pgdat->node_zones + i;
3484b2de 8566 long max = 0;
9705bea5 8567 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8568
8569 /* Find valid and maximum lowmem_reserve in the zone */
8570 for (j = i; j < MAX_NR_ZONES; j++) {
8571 if (zone->lowmem_reserve[j] > max)
8572 max = zone->lowmem_reserve[j];
8573 }
8574
41858966
MG
8575 /* we treat the high watermark as reserved pages. */
8576 max += high_wmark_pages(zone);
cb45b0e9 8577
3d6357de
AK
8578 if (max > managed_pages)
8579 max = managed_pages;
a8d01437 8580
281e3726 8581 pgdat->totalreserve_pages += max;
a8d01437 8582
cb45b0e9
HA
8583 reserve_pages += max;
8584 }
8585 }
8586 totalreserve_pages = reserve_pages;
8587}
8588
1da177e4
LT
8589/*
8590 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8591 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8592 * has a correct pages reserved value, so an adequate number of
8593 * pages are left in the zone after a successful __alloc_pages().
8594 */
8595static void setup_per_zone_lowmem_reserve(void)
8596{
8597 struct pglist_data *pgdat;
470c61d7 8598 enum zone_type i, j;
1da177e4 8599
ec936fc5 8600 for_each_online_pgdat(pgdat) {
470c61d7
LS
8601 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8602 struct zone *zone = &pgdat->node_zones[i];
8603 int ratio = sysctl_lowmem_reserve_ratio[i];
8604 bool clear = !ratio || !zone_managed_pages(zone);
8605 unsigned long managed_pages = 0;
8606
8607 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8608 struct zone *upper_zone = &pgdat->node_zones[j];
8609
8610 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8611
f7ec1044
LS
8612 if (clear)
8613 zone->lowmem_reserve[j] = 0;
8614 else
470c61d7 8615 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8616 }
8617 }
8618 }
cb45b0e9
HA
8619
8620 /* update totalreserve_pages */
8621 calculate_totalreserve_pages();
1da177e4
LT
8622}
8623
cfd3da1e 8624static void __setup_per_zone_wmarks(void)
1da177e4
LT
8625{
8626 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8627 unsigned long lowmem_pages = 0;
8628 struct zone *zone;
8629 unsigned long flags;
8630
8631 /* Calculate total number of !ZONE_HIGHMEM pages */
8632 for_each_zone(zone) {
8633 if (!is_highmem(zone))
9705bea5 8634 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8635 }
8636
8637 for_each_zone(zone) {
ac924c60
AM
8638 u64 tmp;
8639
1125b4e3 8640 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8641 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8642 do_div(tmp, lowmem_pages);
1da177e4
LT
8643 if (is_highmem(zone)) {
8644 /*
669ed175
NP
8645 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8646 * need highmem pages, so cap pages_min to a small
8647 * value here.
8648 *
41858966 8649 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8650 * deltas control async page reclaim, and so should
669ed175 8651 * not be capped for highmem.
1da177e4 8652 */
90ae8d67 8653 unsigned long min_pages;
1da177e4 8654
9705bea5 8655 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8656 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8657 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8658 } else {
669ed175
NP
8659 /*
8660 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8661 * proportionate to the zone's size.
8662 */
a9214443 8663 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8664 }
8665
795ae7a0
JW
8666 /*
8667 * Set the kswapd watermarks distance according to the
8668 * scale factor in proportion to available memory, but
8669 * ensure a minimum size on small systems.
8670 */
8671 tmp = max_t(u64, tmp >> 2,
9705bea5 8672 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8673 watermark_scale_factor, 10000));
8674
aa092591 8675 zone->watermark_boost = 0;
a9214443 8676 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8677 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8678 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8679
1125b4e3 8680 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8681 }
cb45b0e9
HA
8682
8683 /* update totalreserve_pages */
8684 calculate_totalreserve_pages();
1da177e4
LT
8685}
8686
cfd3da1e
MG
8687/**
8688 * setup_per_zone_wmarks - called when min_free_kbytes changes
8689 * or when memory is hot-{added|removed}
8690 *
8691 * Ensures that the watermark[min,low,high] values for each zone are set
8692 * correctly with respect to min_free_kbytes.
8693 */
8694void setup_per_zone_wmarks(void)
8695{
b92ca18e 8696 struct zone *zone;
b93e0f32
MH
8697 static DEFINE_SPINLOCK(lock);
8698
8699 spin_lock(&lock);
cfd3da1e 8700 __setup_per_zone_wmarks();
b93e0f32 8701 spin_unlock(&lock);
b92ca18e
MG
8702
8703 /*
8704 * The watermark size have changed so update the pcpu batch
8705 * and high limits or the limits may be inappropriate.
8706 */
8707 for_each_zone(zone)
04f8cfea 8708 zone_pcp_update(zone, 0);
cfd3da1e
MG
8709}
8710
1da177e4
LT
8711/*
8712 * Initialise min_free_kbytes.
8713 *
8714 * For small machines we want it small (128k min). For large machines
8beeae86 8715 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8716 * bandwidth does not increase linearly with machine size. We use
8717 *
b8af2941 8718 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8719 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8720 *
8721 * which yields
8722 *
8723 * 16MB: 512k
8724 * 32MB: 724k
8725 * 64MB: 1024k
8726 * 128MB: 1448k
8727 * 256MB: 2048k
8728 * 512MB: 2896k
8729 * 1024MB: 4096k
8730 * 2048MB: 5792k
8731 * 4096MB: 8192k
8732 * 8192MB: 11584k
8733 * 16384MB: 16384k
8734 */
bd3400ea 8735void calculate_min_free_kbytes(void)
1da177e4
LT
8736{
8737 unsigned long lowmem_kbytes;
5f12733e 8738 int new_min_free_kbytes;
1da177e4
LT
8739
8740 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8741 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8742
59d336bd
WS
8743 if (new_min_free_kbytes > user_min_free_kbytes)
8744 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8745 else
5f12733e
MH
8746 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8747 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8748
bd3400ea
LF
8749}
8750
8751int __meminit init_per_zone_wmark_min(void)
8752{
8753 calculate_min_free_kbytes();
bc75d33f 8754 setup_per_zone_wmarks();
a6cccdc3 8755 refresh_zone_stat_thresholds();
1da177e4 8756 setup_per_zone_lowmem_reserve();
6423aa81
JK
8757
8758#ifdef CONFIG_NUMA
8759 setup_min_unmapped_ratio();
8760 setup_min_slab_ratio();
8761#endif
8762
4aab2be0
VB
8763 khugepaged_min_free_kbytes_update();
8764
1da177e4
LT
8765 return 0;
8766}
e08d3fdf 8767postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8768
8769/*
b8af2941 8770 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8771 * that we can call two helper functions whenever min_free_kbytes
8772 * changes.
8773 */
cccad5b9 8774int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8775 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8776{
da8c757b
HP
8777 int rc;
8778
8779 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8780 if (rc)
8781 return rc;
8782
5f12733e
MH
8783 if (write) {
8784 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8785 setup_per_zone_wmarks();
5f12733e 8786 }
1da177e4
LT
8787 return 0;
8788}
8789
795ae7a0 8790int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8791 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8792{
8793 int rc;
8794
8795 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8796 if (rc)
8797 return rc;
8798
8799 if (write)
8800 setup_per_zone_wmarks();
8801
8802 return 0;
8803}
8804
9614634f 8805#ifdef CONFIG_NUMA
6423aa81 8806static void setup_min_unmapped_ratio(void)
9614634f 8807{
6423aa81 8808 pg_data_t *pgdat;
9614634f 8809 struct zone *zone;
9614634f 8810
a5f5f91d 8811 for_each_online_pgdat(pgdat)
81cbcbc2 8812 pgdat->min_unmapped_pages = 0;
a5f5f91d 8813
9614634f 8814 for_each_zone(zone)
9705bea5
AK
8815 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8816 sysctl_min_unmapped_ratio) / 100;
9614634f 8817}
0ff38490 8818
6423aa81
JK
8819
8820int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8821 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8822{
0ff38490
CL
8823 int rc;
8824
8d65af78 8825 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8826 if (rc)
8827 return rc;
8828
6423aa81
JK
8829 setup_min_unmapped_ratio();
8830
8831 return 0;
8832}
8833
8834static void setup_min_slab_ratio(void)
8835{
8836 pg_data_t *pgdat;
8837 struct zone *zone;
8838
a5f5f91d
MG
8839 for_each_online_pgdat(pgdat)
8840 pgdat->min_slab_pages = 0;
8841
0ff38490 8842 for_each_zone(zone)
9705bea5
AK
8843 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8844 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8845}
8846
8847int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8848 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8849{
8850 int rc;
8851
8852 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8853 if (rc)
8854 return rc;
8855
8856 setup_min_slab_ratio();
8857
0ff38490
CL
8858 return 0;
8859}
9614634f
CL
8860#endif
8861
1da177e4
LT
8862/*
8863 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8864 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8865 * whenever sysctl_lowmem_reserve_ratio changes.
8866 *
8867 * The reserve ratio obviously has absolutely no relation with the
41858966 8868 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8869 * if in function of the boot time zone sizes.
8870 */
cccad5b9 8871int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8872 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8873{
86aaf255
BH
8874 int i;
8875
8d65af78 8876 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8877
8878 for (i = 0; i < MAX_NR_ZONES; i++) {
8879 if (sysctl_lowmem_reserve_ratio[i] < 1)
8880 sysctl_lowmem_reserve_ratio[i] = 0;
8881 }
8882
1da177e4
LT
8883 setup_per_zone_lowmem_reserve();
8884 return 0;
8885}
8886
8ad4b1fb 8887/*
74f44822
MG
8888 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8889 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8890 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8891 */
74f44822
MG
8892int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8893 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8894{
8895 struct zone *zone;
74f44822 8896 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8897 int ret;
8898
7cd2b0a3 8899 mutex_lock(&pcp_batch_high_lock);
74f44822 8900 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8901
8d65af78 8902 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8903 if (!write || ret < 0)
8904 goto out;
8905
8906 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8907 if (percpu_pagelist_high_fraction &&
8908 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8909 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8910 ret = -EINVAL;
8911 goto out;
8912 }
8913
8914 /* No change? */
74f44822 8915 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8916 goto out;
c8e251fa 8917
cb1ef534 8918 for_each_populated_zone(zone)
74f44822 8919 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8920out:
c8e251fa 8921 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8922 return ret;
8ad4b1fb
RS
8923}
8924
f6f34b43
SD
8925#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8926/*
8927 * Returns the number of pages that arch has reserved but
8928 * is not known to alloc_large_system_hash().
8929 */
8930static unsigned long __init arch_reserved_kernel_pages(void)
8931{
8932 return 0;
8933}
8934#endif
8935
9017217b
PT
8936/*
8937 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8938 * machines. As memory size is increased the scale is also increased but at
8939 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8940 * quadruples the scale is increased by one, which means the size of hash table
8941 * only doubles, instead of quadrupling as well.
8942 * Because 32-bit systems cannot have large physical memory, where this scaling
8943 * makes sense, it is disabled on such platforms.
8944 */
8945#if __BITS_PER_LONG > 32
8946#define ADAPT_SCALE_BASE (64ul << 30)
8947#define ADAPT_SCALE_SHIFT 2
8948#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8949#endif
8950
1da177e4
LT
8951/*
8952 * allocate a large system hash table from bootmem
8953 * - it is assumed that the hash table must contain an exact power-of-2
8954 * quantity of entries
8955 * - limit is the number of hash buckets, not the total allocation size
8956 */
8957void *__init alloc_large_system_hash(const char *tablename,
8958 unsigned long bucketsize,
8959 unsigned long numentries,
8960 int scale,
8961 int flags,
8962 unsigned int *_hash_shift,
8963 unsigned int *_hash_mask,
31fe62b9
TB
8964 unsigned long low_limit,
8965 unsigned long high_limit)
1da177e4 8966{
31fe62b9 8967 unsigned long long max = high_limit;
1da177e4 8968 unsigned long log2qty, size;
97bab178 8969 void *table;
3749a8f0 8970 gfp_t gfp_flags;
ec11408a 8971 bool virt;
121e6f32 8972 bool huge;
1da177e4
LT
8973
8974 /* allow the kernel cmdline to have a say */
8975 if (!numentries) {
8976 /* round applicable memory size up to nearest megabyte */
04903664 8977 numentries = nr_kernel_pages;
f6f34b43 8978 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8979
8980 /* It isn't necessary when PAGE_SIZE >= 1MB */
8981 if (PAGE_SHIFT < 20)
8982 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8983
9017217b
PT
8984#if __BITS_PER_LONG > 32
8985 if (!high_limit) {
8986 unsigned long adapt;
8987
8988 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8989 adapt <<= ADAPT_SCALE_SHIFT)
8990 scale++;
8991 }
8992#endif
8993
1da177e4
LT
8994 /* limit to 1 bucket per 2^scale bytes of low memory */
8995 if (scale > PAGE_SHIFT)
8996 numentries >>= (scale - PAGE_SHIFT);
8997 else
8998 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8999
9000 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
9001 if (unlikely(flags & HASH_SMALL)) {
9002 /* Makes no sense without HASH_EARLY */
9003 WARN_ON(!(flags & HASH_EARLY));
9004 if (!(numentries >> *_hash_shift)) {
9005 numentries = 1UL << *_hash_shift;
9006 BUG_ON(!numentries);
9007 }
9008 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 9009 numentries = PAGE_SIZE / bucketsize;
1da177e4 9010 }
6e692ed3 9011 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
9012
9013 /* limit allocation size to 1/16 total memory by default */
9014 if (max == 0) {
9015 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9016 do_div(max, bucketsize);
9017 }
074b8517 9018 max = min(max, 0x80000000ULL);
1da177e4 9019
31fe62b9
TB
9020 if (numentries < low_limit)
9021 numentries = low_limit;
1da177e4
LT
9022 if (numentries > max)
9023 numentries = max;
9024
f0d1b0b3 9025 log2qty = ilog2(numentries);
1da177e4 9026
3749a8f0 9027 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 9028 do {
ec11408a 9029 virt = false;
1da177e4 9030 size = bucketsize << log2qty;
ea1f5f37
PT
9031 if (flags & HASH_EARLY) {
9032 if (flags & HASH_ZERO)
26fb3dae 9033 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 9034 else
7e1c4e27
MR
9035 table = memblock_alloc_raw(size,
9036 SMP_CACHE_BYTES);
ec11408a 9037 } else if (get_order(size) >= MAX_ORDER || hashdist) {
f2edd118 9038 table = vmalloc_huge(size, gfp_flags);
ec11408a 9039 virt = true;
084f7e23
ED
9040 if (table)
9041 huge = is_vm_area_hugepages(table);
ea1f5f37 9042 } else {
1037b83b
ED
9043 /*
9044 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
9045 * some pages at the end of hash table which
9046 * alloc_pages_exact() automatically does
1037b83b 9047 */
ec11408a
NP
9048 table = alloc_pages_exact(size, gfp_flags);
9049 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
9050 }
9051 } while (!table && size > PAGE_SIZE && --log2qty);
9052
9053 if (!table)
9054 panic("Failed to allocate %s hash table\n", tablename);
9055
ec11408a
NP
9056 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9057 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 9058 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
9059
9060 if (_hash_shift)
9061 *_hash_shift = log2qty;
9062 if (_hash_mask)
9063 *_hash_mask = (1 << log2qty) - 1;
9064
9065 return table;
9066}
a117e66e 9067
8df995f6 9068#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
9069#if defined(CONFIG_DYNAMIC_DEBUG) || \
9070 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9071/* Usage: See admin-guide/dynamic-debug-howto.rst */
9072static void alloc_contig_dump_pages(struct list_head *page_list)
9073{
9074 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9075
9076 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9077 struct page *page;
9078
9079 dump_stack();
9080 list_for_each_entry(page, page_list, lru)
9081 dump_page(page, "migration failure");
9082 }
9083}
9084#else
9085static inline void alloc_contig_dump_pages(struct list_head *page_list)
9086{
9087}
9088#endif
9089
041d3a8c 9090/* [start, end) must belong to a single zone. */
b2c9e2fb 9091int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 9092 unsigned long start, unsigned long end)
041d3a8c
MN
9093{
9094 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 9095 unsigned int nr_reclaimed;
041d3a8c
MN
9096 unsigned long pfn = start;
9097 unsigned int tries = 0;
9098 int ret = 0;
8b94e0b8
JK
9099 struct migration_target_control mtc = {
9100 .nid = zone_to_nid(cc->zone),
9101 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9102 };
041d3a8c 9103
361a2a22 9104 lru_cache_disable();
041d3a8c 9105
bb13ffeb 9106 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9107 if (fatal_signal_pending(current)) {
9108 ret = -EINTR;
9109 break;
9110 }
9111
bb13ffeb
MG
9112 if (list_empty(&cc->migratepages)) {
9113 cc->nr_migratepages = 0;
c2ad7a1f
OS
9114 ret = isolate_migratepages_range(cc, pfn, end);
9115 if (ret && ret != -EAGAIN)
041d3a8c 9116 break;
c2ad7a1f 9117 pfn = cc->migrate_pfn;
041d3a8c
MN
9118 tries = 0;
9119 } else if (++tries == 5) {
c8e28b47 9120 ret = -EBUSY;
041d3a8c
MN
9121 break;
9122 }
9123
beb51eaa
MK
9124 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9125 &cc->migratepages);
9126 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9127
8b94e0b8 9128 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9129 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9130
9131 /*
9132 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9133 * to retry again over this error, so do the same here.
9134 */
9135 if (ret == -ENOMEM)
9136 break;
041d3a8c 9137 }
d479960e 9138
361a2a22 9139 lru_cache_enable();
2a6f5124 9140 if (ret < 0) {
3f913fc5 9141 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 9142 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9143 putback_movable_pages(&cc->migratepages);
9144 return ret;
9145 }
9146 return 0;
041d3a8c
MN
9147}
9148
9149/**
9150 * alloc_contig_range() -- tries to allocate given range of pages
9151 * @start: start PFN to allocate
9152 * @end: one-past-the-last PFN to allocate
f0953a1b 9153 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9154 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9155 * in range must have the same migratetype and it must
9156 * be either of the two.
ca96b625 9157 * @gfp_mask: GFP mask to use during compaction
041d3a8c 9158 *
11ac3e87
ZY
9159 * The PFN range does not have to be pageblock aligned. The PFN range must
9160 * belong to a single zone.
041d3a8c 9161 *
2c7452a0
MK
9162 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9163 * pageblocks in the range. Once isolated, the pageblocks should not
9164 * be modified by others.
041d3a8c 9165 *
a862f68a 9166 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9167 * pages which PFN is in [start, end) are allocated for the caller and
9168 * need to be freed with free_contig_range().
9169 */
0815f3d8 9170int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9171 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9172{
041d3a8c 9173 unsigned long outer_start, outer_end;
b2c9e2fb 9174 int order;
d00181b9 9175 int ret = 0;
041d3a8c 9176
bb13ffeb
MG
9177 struct compact_control cc = {
9178 .nr_migratepages = 0,
9179 .order = -1,
9180 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9181 .mode = MIGRATE_SYNC,
bb13ffeb 9182 .ignore_skip_hint = true,
2583d671 9183 .no_set_skip_hint = true,
7dea19f9 9184 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9185 .alloc_contig = true,
bb13ffeb
MG
9186 };
9187 INIT_LIST_HEAD(&cc.migratepages);
9188
041d3a8c
MN
9189 /*
9190 * What we do here is we mark all pageblocks in range as
9191 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9192 * have different sizes, and due to the way page allocator
b2c9e2fb 9193 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
9194 *
9195 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9196 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 9197 * we are interested in). This will put all the pages in
041d3a8c
MN
9198 * range back to page allocator as MIGRATE_ISOLATE.
9199 *
9200 * When this is done, we take the pages in range from page
9201 * allocator removing them from the buddy system. This way
9202 * page allocator will never consider using them.
9203 *
9204 * This lets us mark the pageblocks back as
9205 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9206 * aligned range but not in the unaligned, original range are
9207 * put back to page allocator so that buddy can use them.
9208 */
9209
6e263fff 9210 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 9211 if (ret)
b2c9e2fb 9212 goto done;
041d3a8c 9213
7612921f
VB
9214 drain_all_pages(cc.zone);
9215
8ef5849f
JK
9216 /*
9217 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9218 * So, just fall through. test_pages_isolated() has a tracepoint
9219 * which will report the busy page.
9220 *
9221 * It is possible that busy pages could become available before
9222 * the call to test_pages_isolated, and the range will actually be
9223 * allocated. So, if we fall through be sure to clear ret so that
9224 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9225 */
bb13ffeb 9226 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9227 if (ret && ret != -EBUSY)
041d3a8c 9228 goto done;
68d68ff6 9229 ret = 0;
041d3a8c
MN
9230
9231 /*
b2c9e2fb 9232 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
9233 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9234 * more, all pages in [start, end) are free in page allocator.
9235 * What we are going to do is to allocate all pages from
9236 * [start, end) (that is remove them from page allocator).
9237 *
9238 * The only problem is that pages at the beginning and at the
9239 * end of interesting range may be not aligned with pages that
9240 * page allocator holds, ie. they can be part of higher order
9241 * pages. Because of this, we reserve the bigger range and
9242 * once this is done free the pages we are not interested in.
9243 *
9244 * We don't have to hold zone->lock here because the pages are
9245 * isolated thus they won't get removed from buddy.
9246 */
9247
041d3a8c
MN
9248 order = 0;
9249 outer_start = start;
9250 while (!PageBuddy(pfn_to_page(outer_start))) {
9251 if (++order >= MAX_ORDER) {
8ef5849f
JK
9252 outer_start = start;
9253 break;
041d3a8c
MN
9254 }
9255 outer_start &= ~0UL << order;
9256 }
9257
8ef5849f 9258 if (outer_start != start) {
ab130f91 9259 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9260
9261 /*
9262 * outer_start page could be small order buddy page and
9263 * it doesn't include start page. Adjust outer_start
9264 * in this case to report failed page properly
9265 * on tracepoint in test_pages_isolated()
9266 */
9267 if (outer_start + (1UL << order) <= start)
9268 outer_start = start;
9269 }
9270
041d3a8c 9271 /* Make sure the range is really isolated. */
756d25be 9272 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9273 ret = -EBUSY;
9274 goto done;
9275 }
9276
49f223a9 9277 /* Grab isolated pages from freelists. */
bb13ffeb 9278 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9279 if (!outer_end) {
9280 ret = -EBUSY;
9281 goto done;
9282 }
9283
9284 /* Free head and tail (if any) */
9285 if (start != outer_start)
9286 free_contig_range(outer_start, start - outer_start);
9287 if (end != outer_end)
9288 free_contig_range(end, outer_end - end);
9289
9290done:
6e263fff 9291 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
9292 return ret;
9293}
255f5985 9294EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9295
9296static int __alloc_contig_pages(unsigned long start_pfn,
9297 unsigned long nr_pages, gfp_t gfp_mask)
9298{
9299 unsigned long end_pfn = start_pfn + nr_pages;
9300
9301 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9302 gfp_mask);
9303}
9304
9305static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9306 unsigned long nr_pages)
9307{
9308 unsigned long i, end_pfn = start_pfn + nr_pages;
9309 struct page *page;
9310
9311 for (i = start_pfn; i < end_pfn; i++) {
9312 page = pfn_to_online_page(i);
9313 if (!page)
9314 return false;
9315
9316 if (page_zone(page) != z)
9317 return false;
9318
9319 if (PageReserved(page))
9320 return false;
5e27a2df
AK
9321 }
9322 return true;
9323}
9324
9325static bool zone_spans_last_pfn(const struct zone *zone,
9326 unsigned long start_pfn, unsigned long nr_pages)
9327{
9328 unsigned long last_pfn = start_pfn + nr_pages - 1;
9329
9330 return zone_spans_pfn(zone, last_pfn);
9331}
9332
9333/**
9334 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9335 * @nr_pages: Number of contiguous pages to allocate
9336 * @gfp_mask: GFP mask to limit search and used during compaction
9337 * @nid: Target node
9338 * @nodemask: Mask for other possible nodes
9339 *
9340 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9341 * on an applicable zonelist to find a contiguous pfn range which can then be
9342 * tried for allocation with alloc_contig_range(). This routine is intended
9343 * for allocation requests which can not be fulfilled with the buddy allocator.
9344 *
9345 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9346 * power of two, then allocated range is also guaranteed to be aligned to same
9347 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9348 *
9349 * Allocated pages can be freed with free_contig_range() or by manually calling
9350 * __free_page() on each allocated page.
9351 *
9352 * Return: pointer to contiguous pages on success, or NULL if not successful.
9353 */
9354struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9355 int nid, nodemask_t *nodemask)
9356{
9357 unsigned long ret, pfn, flags;
9358 struct zonelist *zonelist;
9359 struct zone *zone;
9360 struct zoneref *z;
9361
9362 zonelist = node_zonelist(nid, gfp_mask);
9363 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9364 gfp_zone(gfp_mask), nodemask) {
9365 spin_lock_irqsave(&zone->lock, flags);
9366
9367 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9368 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9369 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9370 /*
9371 * We release the zone lock here because
9372 * alloc_contig_range() will also lock the zone
9373 * at some point. If there's an allocation
9374 * spinning on this lock, it may win the race
9375 * and cause alloc_contig_range() to fail...
9376 */
9377 spin_unlock_irqrestore(&zone->lock, flags);
9378 ret = __alloc_contig_pages(pfn, nr_pages,
9379 gfp_mask);
9380 if (!ret)
9381 return pfn_to_page(pfn);
9382 spin_lock_irqsave(&zone->lock, flags);
9383 }
9384 pfn += nr_pages;
9385 }
9386 spin_unlock_irqrestore(&zone->lock, flags);
9387 }
9388 return NULL;
9389}
4eb0716e 9390#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9391
78fa5150 9392void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9393{
78fa5150 9394 unsigned long count = 0;
bcc2b02f
MS
9395
9396 for (; nr_pages--; pfn++) {
9397 struct page *page = pfn_to_page(pfn);
9398
9399 count += page_count(page) != 1;
9400 __free_page(page);
9401 }
78fa5150 9402 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9403}
255f5985 9404EXPORT_SYMBOL(free_contig_range);
041d3a8c 9405
0a647f38
CS
9406/*
9407 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9408 * page high values need to be recalculated.
0a647f38 9409 */
04f8cfea 9410void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9411{
c8e251fa 9412 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9413 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9414 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9415}
4ed7e022 9416
ec6e8c7e
VB
9417/*
9418 * Effectively disable pcplists for the zone by setting the high limit to 0
9419 * and draining all cpus. A concurrent page freeing on another CPU that's about
9420 * to put the page on pcplist will either finish before the drain and the page
9421 * will be drained, or observe the new high limit and skip the pcplist.
9422 *
9423 * Must be paired with a call to zone_pcp_enable().
9424 */
9425void zone_pcp_disable(struct zone *zone)
9426{
9427 mutex_lock(&pcp_batch_high_lock);
9428 __zone_set_pageset_high_and_batch(zone, 0, 1);
9429 __drain_all_pages(zone, true);
9430}
9431
9432void zone_pcp_enable(struct zone *zone)
9433{
9434 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9435 mutex_unlock(&pcp_batch_high_lock);
9436}
9437
340175b7
JL
9438void zone_pcp_reset(struct zone *zone)
9439{
5a883813 9440 int cpu;
28f836b6 9441 struct per_cpu_zonestat *pzstats;
340175b7 9442
28f836b6 9443 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9444 for_each_online_cpu(cpu) {
28f836b6
MG
9445 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9446 drain_zonestat(zone, pzstats);
5a883813 9447 }
28f836b6
MG
9448 free_percpu(zone->per_cpu_pageset);
9449 free_percpu(zone->per_cpu_zonestats);
9450 zone->per_cpu_pageset = &boot_pageset;
9451 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9452 }
340175b7
JL
9453}
9454
6dcd73d7 9455#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9456/*
257bea71
DH
9457 * All pages in the range must be in a single zone, must not contain holes,
9458 * must span full sections, and must be isolated before calling this function.
0c0e6195 9459 */
257bea71 9460void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9461{
257bea71 9462 unsigned long pfn = start_pfn;
0c0e6195
KH
9463 struct page *page;
9464 struct zone *zone;
0ee5f4f3 9465 unsigned int order;
0c0e6195 9466 unsigned long flags;
5557c766 9467
2d070eab 9468 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9469 zone = page_zone(pfn_to_page(pfn));
9470 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9471 while (pfn < end_pfn) {
0c0e6195 9472 page = pfn_to_page(pfn);
b023f468
WC
9473 /*
9474 * The HWPoisoned page may be not in buddy system, and
9475 * page_count() is not 0.
9476 */
9477 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9478 pfn++;
b023f468
WC
9479 continue;
9480 }
aa218795
DH
9481 /*
9482 * At this point all remaining PageOffline() pages have a
9483 * reference count of 0 and can simply be skipped.
9484 */
9485 if (PageOffline(page)) {
9486 BUG_ON(page_count(page));
9487 BUG_ON(PageBuddy(page));
9488 pfn++;
aa218795
DH
9489 continue;
9490 }
b023f468 9491
0c0e6195
KH
9492 BUG_ON(page_count(page));
9493 BUG_ON(!PageBuddy(page));
ab130f91 9494 order = buddy_order(page);
6ab01363 9495 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9496 pfn += (1 << order);
9497 }
9498 spin_unlock_irqrestore(&zone->lock, flags);
9499}
9500#endif
8d22ba1b 9501
8446b59b
ED
9502/*
9503 * This function returns a stable result only if called under zone lock.
9504 */
8d22ba1b
WF
9505bool is_free_buddy_page(struct page *page)
9506{
8d22ba1b 9507 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9508 unsigned int order;
8d22ba1b 9509
8d22ba1b
WF
9510 for (order = 0; order < MAX_ORDER; order++) {
9511 struct page *page_head = page - (pfn & ((1 << order) - 1));
9512
8446b59b
ED
9513 if (PageBuddy(page_head) &&
9514 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9515 break;
9516 }
8d22ba1b
WF
9517
9518 return order < MAX_ORDER;
9519}
a581865e 9520EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9521
9522#ifdef CONFIG_MEMORY_FAILURE
9523/*
06be6ff3
OS
9524 * Break down a higher-order page in sub-pages, and keep our target out of
9525 * buddy allocator.
d4ae9916 9526 */
06be6ff3
OS
9527static void break_down_buddy_pages(struct zone *zone, struct page *page,
9528 struct page *target, int low, int high,
9529 int migratetype)
9530{
9531 unsigned long size = 1 << high;
9532 struct page *current_buddy, *next_page;
9533
9534 while (high > low) {
9535 high--;
9536 size >>= 1;
9537
9538 if (target >= &page[size]) {
9539 next_page = page + size;
9540 current_buddy = page;
9541 } else {
9542 next_page = page;
9543 current_buddy = page + size;
9544 }
9545
9546 if (set_page_guard(zone, current_buddy, high, migratetype))
9547 continue;
9548
9549 if (current_buddy != target) {
9550 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9551 set_buddy_order(current_buddy, high);
06be6ff3
OS
9552 page = next_page;
9553 }
9554 }
9555}
9556
9557/*
9558 * Take a page that will be marked as poisoned off the buddy allocator.
9559 */
9560bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9561{
9562 struct zone *zone = page_zone(page);
9563 unsigned long pfn = page_to_pfn(page);
9564 unsigned long flags;
9565 unsigned int order;
06be6ff3 9566 bool ret = false;
d4ae9916
NH
9567
9568 spin_lock_irqsave(&zone->lock, flags);
9569 for (order = 0; order < MAX_ORDER; order++) {
9570 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9571 int page_order = buddy_order(page_head);
d4ae9916 9572
ab130f91 9573 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9574 unsigned long pfn_head = page_to_pfn(page_head);
9575 int migratetype = get_pfnblock_migratetype(page_head,
9576 pfn_head);
9577
ab130f91 9578 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9579 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9580 page_order, migratetype);
bf181c58 9581 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9582 if (!is_migrate_isolate(migratetype))
9583 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9584 ret = true;
d4ae9916
NH
9585 break;
9586 }
06be6ff3
OS
9587 if (page_count(page_head) > 0)
9588 break;
d4ae9916
NH
9589 }
9590 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9591 return ret;
d4ae9916 9592}
bf181c58
NH
9593
9594/*
9595 * Cancel takeoff done by take_page_off_buddy().
9596 */
9597bool put_page_back_buddy(struct page *page)
9598{
9599 struct zone *zone = page_zone(page);
9600 unsigned long pfn = page_to_pfn(page);
9601 unsigned long flags;
9602 int migratetype = get_pfnblock_migratetype(page, pfn);
9603 bool ret = false;
9604
9605 spin_lock_irqsave(&zone->lock, flags);
9606 if (put_page_testzero(page)) {
9607 ClearPageHWPoisonTakenOff(page);
9608 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9609 if (TestClearPageHWPoison(page)) {
bf181c58
NH
9610 ret = true;
9611 }
9612 }
9613 spin_unlock_irqrestore(&zone->lock, flags);
9614
9615 return ret;
9616}
d4ae9916 9617#endif
62b31070
BH
9618
9619#ifdef CONFIG_ZONE_DMA
9620bool has_managed_dma(void)
9621{
9622 struct pglist_data *pgdat;
9623
9624 for_each_online_pgdat(pgdat) {
9625 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9626
9627 if (managed_zone(zone))
9628 return true;
9629 }
9630 return false;
9631}
9632#endif /* CONFIG_ZONE_DMA */