]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm/page_alloc.c: fix coding style and spelling
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
1da177e4 63
7ee3d4e8 64#include <asm/sections.h>
1da177e4 65#include <asm/tlbflush.h>
ac924c60 66#include <asm/div64.h>
1da177e4
LT
67#include "internal.h"
68
c8e251fa
CS
69/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70static DEFINE_MUTEX(pcp_batch_high_lock);
71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86#endif
87
1da177e4 88/*
13808910 89 * Array of node states.
1da177e4 90 */
13808910
CL
91nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94#ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96#ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
98#endif
99#ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
101#endif
102 [N_CPU] = { { [0] = 1UL } },
103#endif /* NUMA */
104};
105EXPORT_SYMBOL(node_states);
106
c3d5f5f0
JL
107/* Protect totalram_pages and zone->managed_pages */
108static DEFINE_SPINLOCK(managed_page_count_lock);
109
6c231b7b 110unsigned long totalram_pages __read_mostly;
cb45b0e9 111unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
112/*
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
117 */
118unsigned long dirty_balance_reserve __read_mostly;
119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
452aa699
RW
123#ifdef CONFIG_PM_SLEEP
124/*
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
131 */
c9e664f1
RW
132
133static gfp_t saved_gfp_mask;
134
135void pm_restore_gfp_mask(void)
452aa699
RW
136{
137 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
141 }
452aa699
RW
142}
143
c9e664f1 144void pm_restrict_gfp_mask(void)
452aa699 145{
452aa699 146 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 150}
f90ac398
MG
151
152bool pm_suspended_storage(void)
153{
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
157}
452aa699
RW
158#endif /* CONFIG_PM_SLEEP */
159
d9c23400
MG
160#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161int pageblock_order __read_mostly;
162#endif
163
d98c7a09 164static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 165
1da177e4
LT
166/*
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
173 *
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
1da177e4 176 */
2f1b6248 177int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 178#ifdef CONFIG_ZONE_DMA
2f1b6248 179 256,
4b51d669 180#endif
fb0e7942 181#ifdef CONFIG_ZONE_DMA32
2f1b6248 182 256,
fb0e7942 183#endif
e53ef38d 184#ifdef CONFIG_HIGHMEM
2a1e274a 185 32,
e53ef38d 186#endif
2a1e274a 187 32,
2f1b6248 188};
1da177e4
LT
189
190EXPORT_SYMBOL(totalram_pages);
1da177e4 191
15ad7cdc 192static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 193#ifdef CONFIG_ZONE_DMA
2f1b6248 194 "DMA",
4b51d669 195#endif
fb0e7942 196#ifdef CONFIG_ZONE_DMA32
2f1b6248 197 "DMA32",
fb0e7942 198#endif
2f1b6248 199 "Normal",
e53ef38d 200#ifdef CONFIG_HIGHMEM
2a1e274a 201 "HighMem",
e53ef38d 202#endif
2a1e274a 203 "Movable",
2f1b6248
CL
204};
205
1da177e4 206int min_free_kbytes = 1024;
5f12733e 207int user_min_free_kbytes;
1da177e4 208
2c85f51d
JB
209static unsigned long __meminitdata nr_kernel_pages;
210static unsigned long __meminitdata nr_all_pages;
a3142c8e 211static unsigned long __meminitdata dma_reserve;
1da177e4 212
0ee332c1
TH
213#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __initdata required_kernelcore;
217static unsigned long __initdata required_movablecore;
218static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
219
220/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221int movable_zone;
222EXPORT_SYMBOL(movable_zone);
223#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 224
418508c1
MS
225#if MAX_NUMNODES > 1
226int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 227int nr_online_nodes __read_mostly = 1;
418508c1 228EXPORT_SYMBOL(nr_node_ids);
62bc62a8 229EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
230#endif
231
9ef9acb0
MG
232int page_group_by_mobility_disabled __read_mostly;
233
ee6f509c 234void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 235{
49255c61
MG
236
237 if (unlikely(page_group_by_mobility_disabled))
238 migratetype = MIGRATE_UNMOVABLE;
239
b2a0ac88
MG
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
242}
243
7f33d49a
RW
244bool oom_killer_disabled __read_mostly;
245
13e7444b 246#ifdef CONFIG_DEBUG_VM
c6a57e19 247static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 248{
bdc8cb98
DH
249 int ret = 0;
250 unsigned seq;
251 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 252 unsigned long sp, start_pfn;
c6a57e19 253
bdc8cb98
DH
254 do {
255 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
108bcc96 258 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
259 ret = 1;
260 } while (zone_span_seqretry(zone, seq));
261
b5e6a5a2
CS
262 if (ret)
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn, start_pfn, start_pfn + sp);
265
bdc8cb98 266 return ret;
c6a57e19
DH
267}
268
269static int page_is_consistent(struct zone *zone, struct page *page)
270{
14e07298 271 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 272 return 0;
1da177e4 273 if (zone != page_zone(page))
c6a57e19
DH
274 return 0;
275
276 return 1;
277}
278/*
279 * Temporary debugging check for pages not lying within a given zone.
280 */
281static int bad_range(struct zone *zone, struct page *page)
282{
283 if (page_outside_zone_boundaries(zone, page))
1da177e4 284 return 1;
c6a57e19
DH
285 if (!page_is_consistent(zone, page))
286 return 1;
287
1da177e4
LT
288 return 0;
289}
13e7444b
NP
290#else
291static inline int bad_range(struct zone *zone, struct page *page)
292{
293 return 0;
294}
295#endif
296
224abf92 297static void bad_page(struct page *page)
1da177e4 298{
d936cf9b
HD
299 static unsigned long resume;
300 static unsigned long nr_shown;
301 static unsigned long nr_unshown;
302
2a7684a2
WF
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page)) {
22b751c3 305 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
306 return;
307 }
308
d936cf9b
HD
309 /*
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
312 */
313 if (nr_shown == 60) {
314 if (time_before(jiffies, resume)) {
315 nr_unshown++;
316 goto out;
317 }
318 if (nr_unshown) {
1e9e6365
HD
319 printk(KERN_ALERT
320 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
321 nr_unshown);
322 nr_unshown = 0;
323 }
324 nr_shown = 0;
325 }
326 if (nr_shown++ == 0)
327 resume = jiffies + 60 * HZ;
328
1e9e6365 329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 330 current->comm, page_to_pfn(page));
718a3821 331 dump_page(page);
3dc14741 332
4f31888c 333 print_modules();
1da177e4 334 dump_stack();
d936cf9b 335out:
8cc3b392 336 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 337 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
339}
340
1da177e4
LT
341/*
342 * Higher-order pages are called "compound pages". They are structured thusly:
343 *
344 * The first PAGE_SIZE page is called the "head page".
345 *
346 * The remaining PAGE_SIZE pages are called "tail pages".
347 *
6416b9fa
WSH
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
1da177e4 350 *
41d78ba5
HD
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
1da177e4 354 */
d98c7a09
HD
355
356static void free_compound_page(struct page *page)
357{
d85f3385 358 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
359}
360
01ad1c08 361void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
362{
363 int i;
364 int nr_pages = 1 << order;
365
366 set_compound_page_dtor(page, free_compound_page);
367 set_compound_order(page, order);
368 __SetPageHead(page);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
18229df5 371 __SetPageTail(p);
58a84aa9 372 set_page_count(p, 0);
18229df5
AW
373 p->first_page = page;
374 }
375}
376
59ff4216 377/* update __split_huge_page_refcount if you change this function */
8cc3b392 378static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
379{
380 int i;
381 int nr_pages = 1 << order;
8cc3b392 382 int bad = 0;
1da177e4 383
0bb2c763 384 if (unlikely(compound_order(page) != order)) {
224abf92 385 bad_page(page);
8cc3b392
HD
386 bad++;
387 }
1da177e4 388
6d777953 389 __ClearPageHead(page);
8cc3b392 390
18229df5
AW
391 for (i = 1; i < nr_pages; i++) {
392 struct page *p = page + i;
1da177e4 393
e713a21d 394 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 395 bad_page(page);
8cc3b392
HD
396 bad++;
397 }
d85f3385 398 __ClearPageTail(p);
1da177e4 399 }
8cc3b392
HD
400
401 return bad;
1da177e4 402}
1da177e4 403
17cf4406
NP
404static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
405{
406 int i;
407
6626c5d5
AM
408 /*
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
411 */
725d704e 412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
413 for (i = 0; i < (1 << order); i++)
414 clear_highpage(page + i);
415}
416
c0a32fc5
SG
417#ifdef CONFIG_DEBUG_PAGEALLOC
418unsigned int _debug_guardpage_minorder;
419
420static int __init debug_guardpage_minorder_setup(char *buf)
421{
422 unsigned long res;
423
424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
426 return 0;
427 }
428 _debug_guardpage_minorder = res;
429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
430 return 0;
431}
432__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
433
434static inline void set_page_guard_flag(struct page *page)
435{
436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437}
438
439static inline void clear_page_guard_flag(struct page *page)
440{
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
442}
443#else
444static inline void set_page_guard_flag(struct page *page) { }
445static inline void clear_page_guard_flag(struct page *page) { }
446#endif
447
6aa3001b
AM
448static inline void set_page_order(struct page *page, int order)
449{
4c21e2f2 450 set_page_private(page, order);
676165a8 451 __SetPageBuddy(page);
1da177e4
LT
452}
453
454static inline void rmv_page_order(struct page *page)
455{
676165a8 456 __ClearPageBuddy(page);
4c21e2f2 457 set_page_private(page, 0);
1da177e4
LT
458}
459
460/*
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
463 *
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
466 * B2 = B1 ^ (1 << O)
467 * For example, if the starting buddy (buddy2) is #8 its order
468 * 1 buddy is #10:
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
470 *
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
473 * P = B & ~(1 << O)
474 *
d6e05edc 475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 476 */
1da177e4 477static inline unsigned long
43506fad 478__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 479{
43506fad 480 return page_idx ^ (1 << order);
1da177e4
LT
481}
482
483/*
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
13e7444b 486 * (a) the buddy is not in a hole &&
676165a8 487 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
676165a8 490 *
5f24ce5f
AA
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 493 *
676165a8 494 * For recording page's order, we use page_private(page).
1da177e4 495 */
cb2b95e1
AW
496static inline int page_is_buddy(struct page *page, struct page *buddy,
497 int order)
1da177e4 498{
14e07298 499 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 500 return 0;
13e7444b 501
cb2b95e1
AW
502 if (page_zone_id(page) != page_zone_id(buddy))
503 return 0;
504
c0a32fc5
SG
505 if (page_is_guard(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
508 }
509
cb2b95e1 510 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 511 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 512 return 1;
676165a8 513 }
6aa3001b 514 return 0;
1da177e4
LT
515}
516
517/*
518 * Freeing function for a buddy system allocator.
519 *
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 531 * order is recorded in page_private(page) field.
1da177e4 532 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
1da177e4 535 * If a block is freed, and its buddy is also free, then this
5f63b720 536 * triggers coalescing into a block of larger size.
1da177e4 537 *
6d49e352 538 * -- nyc
1da177e4
LT
539 */
540
48db57f8 541static inline void __free_one_page(struct page *page,
ed0ae21d
MG
542 struct zone *zone, unsigned int order,
543 int migratetype)
1da177e4
LT
544{
545 unsigned long page_idx;
6dda9d55 546 unsigned long combined_idx;
43506fad 547 unsigned long uninitialized_var(buddy_idx);
6dda9d55 548 struct page *buddy;
1da177e4 549
d29bb978
CS
550 VM_BUG_ON(!zone_is_initialized(zone));
551
224abf92 552 if (unlikely(PageCompound(page)))
8cc3b392
HD
553 if (unlikely(destroy_compound_page(page, order)))
554 return;
1da177e4 555
ed0ae21d
MG
556 VM_BUG_ON(migratetype == -1);
557
1da177e4
LT
558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
559
f2260e6b 560 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 561 VM_BUG_ON(bad_range(zone, page));
1da177e4 562
1da177e4 563 while (order < MAX_ORDER-1) {
43506fad
KC
564 buddy_idx = __find_buddy_index(page_idx, order);
565 buddy = page + (buddy_idx - page_idx);
cb2b95e1 566 if (!page_is_buddy(page, buddy, order))
3c82d0ce 567 break;
c0a32fc5
SG
568 /*
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
571 */
572 if (page_is_guard(buddy)) {
573 clear_page_guard_flag(buddy);
574 set_page_private(page, 0);
d1ce749a
BZ
575 __mod_zone_freepage_state(zone, 1 << order,
576 migratetype);
c0a32fc5
SG
577 } else {
578 list_del(&buddy->lru);
579 zone->free_area[order].nr_free--;
580 rmv_page_order(buddy);
581 }
43506fad 582 combined_idx = buddy_idx & page_idx;
1da177e4
LT
583 page = page + (combined_idx - page_idx);
584 page_idx = combined_idx;
585 order++;
586 }
587 set_page_order(page, order);
6dda9d55
CZ
588
589 /*
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
596 */
b7f50cfa 597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 598 struct page *higher_page, *higher_buddy;
43506fad
KC
599 combined_idx = buddy_idx & page_idx;
600 higher_page = page + (combined_idx - page_idx);
601 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 602 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
604 list_add_tail(&page->lru,
605 &zone->free_area[order].free_list[migratetype]);
606 goto out;
607 }
608 }
609
610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
611out:
1da177e4
LT
612 zone->free_area[order].nr_free++;
613}
614
224abf92 615static inline int free_pages_check(struct page *page)
1da177e4 616{
92be2e33
NP
617 if (unlikely(page_mapcount(page) |
618 (page->mapping != NULL) |
a3af9c38 619 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
621 (mem_cgroup_bad_page_check(page)))) {
224abf92 622 bad_page(page);
79f4b7bf 623 return 1;
8cc3b392 624 }
22b751c3 625 page_nid_reset_last(page);
79f4b7bf
HD
626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
628 return 0;
1da177e4
LT
629}
630
631/*
5f8dcc21 632 * Frees a number of pages from the PCP lists
1da177e4 633 * Assumes all pages on list are in same zone, and of same order.
207f36ee 634 * count is the number of pages to free.
1da177e4
LT
635 *
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
638 *
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
641 */
5f8dcc21
MG
642static void free_pcppages_bulk(struct zone *zone, int count,
643 struct per_cpu_pages *pcp)
1da177e4 644{
5f8dcc21 645 int migratetype = 0;
a6f9edd6 646 int batch_free = 0;
72853e29 647 int to_free = count;
5f8dcc21 648
c54ad30c 649 spin_lock(&zone->lock);
93e4a89a 650 zone->all_unreclaimable = 0;
1da177e4 651 zone->pages_scanned = 0;
f2260e6b 652
72853e29 653 while (to_free) {
48db57f8 654 struct page *page;
5f8dcc21
MG
655 struct list_head *list;
656
657 /*
a6f9edd6
MG
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
5f8dcc21
MG
663 */
664 do {
a6f9edd6 665 batch_free++;
5f8dcc21
MG
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
48db57f8 670
1d16871d
NK
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
674
a6f9edd6 675 do {
770c8aaa
BZ
676 int mt; /* migratetype of the to-be-freed page */
677
a6f9edd6
MG
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
b12c4ad1 681 mt = get_freepage_migratetype(page);
a7016235 682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 685 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
689 }
72853e29 690 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 691 }
c54ad30c 692 spin_unlock(&zone->lock);
1da177e4
LT
693}
694
ed0ae21d
MG
695static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
1da177e4 697{
006d22d9 698 spin_lock(&zone->lock);
93e4a89a 699 zone->all_unreclaimable = 0;
006d22d9 700 zone->pages_scanned = 0;
f2260e6b 701
ed0ae21d 702 __free_one_page(page, zone, order, migratetype);
194159fb 703 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 705 spin_unlock(&zone->lock);
48db57f8
NP
706}
707
ec95f53a 708static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 709{
1da177e4 710 int i;
8cc3b392 711 int bad = 0;
1da177e4 712
b413d48a 713 trace_mm_page_free(page, order);
b1eeab67
VN
714 kmemcheck_free_shadow(page, order);
715
8dd60a3a
AA
716 if (PageAnon(page))
717 page->mapping = NULL;
718 for (i = 0; i < (1 << order); i++)
719 bad += free_pages_check(page + i);
8cc3b392 720 if (bad)
ec95f53a 721 return false;
689bcebf 722
3ac7fe5a 723 if (!PageHighMem(page)) {
b8af2941
PK
724 debug_check_no_locks_freed(page_address(page),
725 PAGE_SIZE << order);
3ac7fe5a
TG
726 debug_check_no_obj_freed(page_address(page),
727 PAGE_SIZE << order);
728 }
dafb1367 729 arch_free_page(page, order);
48db57f8 730 kernel_map_pages(page, 1 << order, 0);
dafb1367 731
ec95f53a
KM
732 return true;
733}
734
735static void __free_pages_ok(struct page *page, unsigned int order)
736{
737 unsigned long flags;
95e34412 738 int migratetype;
ec95f53a
KM
739
740 if (!free_pages_prepare(page, order))
741 return;
742
c54ad30c 743 local_irq_save(flags);
f8891e5e 744 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
745 migratetype = get_pageblock_migratetype(page);
746 set_freepage_migratetype(page, migratetype);
747 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 748 local_irq_restore(flags);
1da177e4
LT
749}
750
170a5a7e 751void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 752{
c3993076
JW
753 unsigned int nr_pages = 1 << order;
754 unsigned int loop;
a226f6c8 755
c3993076
JW
756 prefetchw(page);
757 for (loop = 0; loop < nr_pages; loop++) {
758 struct page *p = &page[loop];
759
760 if (loop + 1 < nr_pages)
761 prefetchw(p + 1);
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
a226f6c8 764 }
c3993076 765
9feedc9d 766 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
767 set_page_refcounted(page);
768 __free_pages(page, order);
a226f6c8
DH
769}
770
47118af0 771#ifdef CONFIG_CMA
9cf510a5 772/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
773void __init init_cma_reserved_pageblock(struct page *page)
774{
775 unsigned i = pageblock_nr_pages;
776 struct page *p = page;
777
778 do {
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
781 } while (++p, --i);
782
783 set_page_refcounted(page);
784 set_pageblock_migratetype(page, MIGRATE_CMA);
785 __free_pages(page, pageblock_order);
3dcc0571 786 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
787}
788#endif
1da177e4
LT
789
790/*
791 * The order of subdivision here is critical for the IO subsystem.
792 * Please do not alter this order without good reasons and regression
793 * testing. Specifically, as large blocks of memory are subdivided,
794 * the order in which smaller blocks are delivered depends on the order
795 * they're subdivided in this function. This is the primary factor
796 * influencing the order in which pages are delivered to the IO
797 * subsystem according to empirical testing, and this is also justified
798 * by considering the behavior of a buddy system containing a single
799 * large block of memory acted on by a series of small allocations.
800 * This behavior is a critical factor in sglist merging's success.
801 *
6d49e352 802 * -- nyc
1da177e4 803 */
085cc7d5 804static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
805 int low, int high, struct free_area *area,
806 int migratetype)
1da177e4
LT
807{
808 unsigned long size = 1 << high;
809
810 while (high > low) {
811 area--;
812 high--;
813 size >>= 1;
725d704e 814 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
815
816#ifdef CONFIG_DEBUG_PAGEALLOC
817 if (high < debug_guardpage_minorder()) {
818 /*
819 * Mark as guard pages (or page), that will allow to
820 * merge back to allocator when buddy will be freed.
821 * Corresponding page table entries will not be touched,
822 * pages will stay not present in virtual address space
823 */
824 INIT_LIST_HEAD(&page[size].lru);
825 set_page_guard_flag(&page[size]);
826 set_page_private(&page[size], high);
827 /* Guard pages are not available for any usage */
d1ce749a
BZ
828 __mod_zone_freepage_state(zone, -(1 << high),
829 migratetype);
c0a32fc5
SG
830 continue;
831 }
832#endif
b2a0ac88 833 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
834 area->nr_free++;
835 set_page_order(&page[size], high);
836 }
1da177e4
LT
837}
838
1da177e4
LT
839/*
840 * This page is about to be returned from the page allocator
841 */
2a7684a2 842static inline int check_new_page(struct page *page)
1da177e4 843{
92be2e33
NP
844 if (unlikely(page_mapcount(page) |
845 (page->mapping != NULL) |
a3af9c38 846 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
847 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
848 (mem_cgroup_bad_page_check(page)))) {
224abf92 849 bad_page(page);
689bcebf 850 return 1;
8cc3b392 851 }
2a7684a2
WF
852 return 0;
853}
854
855static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
856{
857 int i;
858
859 for (i = 0; i < (1 << order); i++) {
860 struct page *p = page + i;
861 if (unlikely(check_new_page(p)))
862 return 1;
863 }
689bcebf 864
4c21e2f2 865 set_page_private(page, 0);
7835e98b 866 set_page_refcounted(page);
cc102509
NP
867
868 arch_alloc_page(page, order);
1da177e4 869 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
870
871 if (gfp_flags & __GFP_ZERO)
872 prep_zero_page(page, order, gfp_flags);
873
874 if (order && (gfp_flags & __GFP_COMP))
875 prep_compound_page(page, order);
876
689bcebf 877 return 0;
1da177e4
LT
878}
879
56fd56b8
MG
880/*
881 * Go through the free lists for the given migratetype and remove
882 * the smallest available page from the freelists
883 */
728ec980
MG
884static inline
885struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
886 int migratetype)
887{
888 unsigned int current_order;
b8af2941 889 struct free_area *area;
56fd56b8
MG
890 struct page *page;
891
892 /* Find a page of the appropriate size in the preferred list */
893 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
894 area = &(zone->free_area[current_order]);
895 if (list_empty(&area->free_list[migratetype]))
896 continue;
897
898 page = list_entry(area->free_list[migratetype].next,
899 struct page, lru);
900 list_del(&page->lru);
901 rmv_page_order(page);
902 area->nr_free--;
56fd56b8
MG
903 expand(zone, page, order, current_order, area, migratetype);
904 return page;
905 }
906
907 return NULL;
908}
909
910
b2a0ac88
MG
911/*
912 * This array describes the order lists are fallen back to when
913 * the free lists for the desirable migrate type are depleted
914 */
47118af0
MN
915static int fallbacks[MIGRATE_TYPES][4] = {
916 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918#ifdef CONFIG_CMA
919 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
920 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
921#else
922 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
923#endif
6d4a4916 924 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 925#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 926 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 927#endif
b2a0ac88
MG
928};
929
c361be55
MG
930/*
931 * Move the free pages in a range to the free lists of the requested type.
d9c23400 932 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
933 * boundary. If alignment is required, use move_freepages_block()
934 */
435b405c 935int move_freepages(struct zone *zone,
b69a7288
AB
936 struct page *start_page, struct page *end_page,
937 int migratetype)
c361be55
MG
938{
939 struct page *page;
940 unsigned long order;
d100313f 941 int pages_moved = 0;
c361be55
MG
942
943#ifndef CONFIG_HOLES_IN_ZONE
944 /*
945 * page_zone is not safe to call in this context when
946 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
947 * anyway as we check zone boundaries in move_freepages_block().
948 * Remove at a later date when no bug reports exist related to
ac0e5b7a 949 * grouping pages by mobility
c361be55
MG
950 */
951 BUG_ON(page_zone(start_page) != page_zone(end_page));
952#endif
953
954 for (page = start_page; page <= end_page;) {
344c790e
AL
955 /* Make sure we are not inadvertently changing nodes */
956 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
957
c361be55
MG
958 if (!pfn_valid_within(page_to_pfn(page))) {
959 page++;
960 continue;
961 }
962
963 if (!PageBuddy(page)) {
964 page++;
965 continue;
966 }
967
968 order = page_order(page);
84be48d8
KS
969 list_move(&page->lru,
970 &zone->free_area[order].free_list[migratetype]);
95e34412 971 set_freepage_migratetype(page, migratetype);
c361be55 972 page += 1 << order;
d100313f 973 pages_moved += 1 << order;
c361be55
MG
974 }
975
d100313f 976 return pages_moved;
c361be55
MG
977}
978
ee6f509c 979int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 980 int migratetype)
c361be55
MG
981{
982 unsigned long start_pfn, end_pfn;
983 struct page *start_page, *end_page;
984
985 start_pfn = page_to_pfn(page);
d9c23400 986 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 987 start_page = pfn_to_page(start_pfn);
d9c23400
MG
988 end_page = start_page + pageblock_nr_pages - 1;
989 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
990
991 /* Do not cross zone boundaries */
108bcc96 992 if (!zone_spans_pfn(zone, start_pfn))
c361be55 993 start_page = page;
108bcc96 994 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
995 return 0;
996
997 return move_freepages(zone, start_page, end_page, migratetype);
998}
999
2f66a68f
MG
1000static void change_pageblock_range(struct page *pageblock_page,
1001 int start_order, int migratetype)
1002{
1003 int nr_pageblocks = 1 << (start_order - pageblock_order);
1004
1005 while (nr_pageblocks--) {
1006 set_pageblock_migratetype(pageblock_page, migratetype);
1007 pageblock_page += pageblock_nr_pages;
1008 }
1009}
1010
b2a0ac88 1011/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1012static inline struct page *
1013__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1014{
b8af2941 1015 struct free_area *area;
b2a0ac88
MG
1016 int current_order;
1017 struct page *page;
1018 int migratetype, i;
1019
1020 /* Find the largest possible block of pages in the other list */
1021 for (current_order = MAX_ORDER-1; current_order >= order;
1022 --current_order) {
6d4a4916 1023 for (i = 0;; i++) {
b2a0ac88
MG
1024 migratetype = fallbacks[start_migratetype][i];
1025
56fd56b8
MG
1026 /* MIGRATE_RESERVE handled later if necessary */
1027 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1028 break;
e010487d 1029
b2a0ac88
MG
1030 area = &(zone->free_area[current_order]);
1031 if (list_empty(&area->free_list[migratetype]))
1032 continue;
1033
1034 page = list_entry(area->free_list[migratetype].next,
1035 struct page, lru);
1036 area->nr_free--;
1037
1038 /*
c361be55 1039 * If breaking a large block of pages, move all free
46dafbca
MG
1040 * pages to the preferred allocation list. If falling
1041 * back for a reclaimable kernel allocation, be more
25985edc 1042 * aggressive about taking ownership of free pages
47118af0
MN
1043 *
1044 * On the other hand, never change migration
1045 * type of MIGRATE_CMA pageblocks nor move CMA
1046 * pages on different free lists. We don't
1047 * want unmovable pages to be allocated from
1048 * MIGRATE_CMA areas.
b2a0ac88 1049 */
47118af0 1050 if (!is_migrate_cma(migratetype) &&
345606d4 1051 (current_order >= pageblock_order / 2 ||
47118af0
MN
1052 start_migratetype == MIGRATE_RECLAIMABLE ||
1053 page_group_by_mobility_disabled)) {
1054 int pages;
46dafbca
MG
1055 pages = move_freepages_block(zone, page,
1056 start_migratetype);
1057
1058 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1059 if (pages >= (1 << (pageblock_order-1)) ||
1060 page_group_by_mobility_disabled)
46dafbca
MG
1061 set_pageblock_migratetype(page,
1062 start_migratetype);
1063
b2a0ac88 1064 migratetype = start_migratetype;
c361be55 1065 }
b2a0ac88
MG
1066
1067 /* Remove the page from the freelists */
1068 list_del(&page->lru);
1069 rmv_page_order(page);
b2a0ac88 1070
2f66a68f 1071 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1072 if (current_order >= pageblock_order &&
1073 !is_migrate_cma(migratetype))
2f66a68f 1074 change_pageblock_range(page, current_order,
b2a0ac88
MG
1075 start_migratetype);
1076
47118af0
MN
1077 expand(zone, page, order, current_order, area,
1078 is_migrate_cma(migratetype)
1079 ? migratetype : start_migratetype);
e0fff1bd
MG
1080
1081 trace_mm_page_alloc_extfrag(page, order, current_order,
1082 start_migratetype, migratetype);
1083
b2a0ac88
MG
1084 return page;
1085 }
1086 }
1087
728ec980 1088 return NULL;
b2a0ac88
MG
1089}
1090
56fd56b8 1091/*
1da177e4
LT
1092 * Do the hard work of removing an element from the buddy allocator.
1093 * Call me with the zone->lock already held.
1094 */
b2a0ac88
MG
1095static struct page *__rmqueue(struct zone *zone, unsigned int order,
1096 int migratetype)
1da177e4 1097{
1da177e4
LT
1098 struct page *page;
1099
728ec980 1100retry_reserve:
56fd56b8 1101 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1102
728ec980 1103 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1104 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1105
728ec980
MG
1106 /*
1107 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1108 * is used because __rmqueue_smallest is an inline function
1109 * and we want just one call site
1110 */
1111 if (!page) {
1112 migratetype = MIGRATE_RESERVE;
1113 goto retry_reserve;
1114 }
1115 }
1116
0d3d062a 1117 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1118 return page;
1da177e4
LT
1119}
1120
5f63b720 1121/*
1da177e4
LT
1122 * Obtain a specified number of elements from the buddy allocator, all under
1123 * a single hold of the lock, for efficiency. Add them to the supplied list.
1124 * Returns the number of new pages which were placed at *list.
1125 */
5f63b720 1126static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1127 unsigned long count, struct list_head *list,
e084b2d9 1128 int migratetype, int cold)
1da177e4 1129{
47118af0 1130 int mt = migratetype, i;
5f63b720 1131
c54ad30c 1132 spin_lock(&zone->lock);
1da177e4 1133 for (i = 0; i < count; ++i) {
b2a0ac88 1134 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1135 if (unlikely(page == NULL))
1da177e4 1136 break;
81eabcbe
MG
1137
1138 /*
1139 * Split buddy pages returned by expand() are received here
1140 * in physical page order. The page is added to the callers and
1141 * list and the list head then moves forward. From the callers
1142 * perspective, the linked list is ordered by page number in
1143 * some conditions. This is useful for IO devices that can
1144 * merge IO requests if the physical pages are ordered
1145 * properly.
1146 */
e084b2d9
MG
1147 if (likely(cold == 0))
1148 list_add(&page->lru, list);
1149 else
1150 list_add_tail(&page->lru, list);
47118af0
MN
1151 if (IS_ENABLED(CONFIG_CMA)) {
1152 mt = get_pageblock_migratetype(page);
194159fb 1153 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1154 mt = migratetype;
1155 }
b12c4ad1 1156 set_freepage_migratetype(page, mt);
81eabcbe 1157 list = &page->lru;
d1ce749a
BZ
1158 if (is_migrate_cma(mt))
1159 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1160 -(1 << order));
1da177e4 1161 }
f2260e6b 1162 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1163 spin_unlock(&zone->lock);
085cc7d5 1164 return i;
1da177e4
LT
1165}
1166
4ae7c039 1167#ifdef CONFIG_NUMA
8fce4d8e 1168/*
4037d452
CL
1169 * Called from the vmstat counter updater to drain pagesets of this
1170 * currently executing processor on remote nodes after they have
1171 * expired.
1172 *
879336c3
CL
1173 * Note that this function must be called with the thread pinned to
1174 * a single processor.
8fce4d8e 1175 */
4037d452 1176void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1177{
4ae7c039 1178 unsigned long flags;
4037d452 1179 int to_drain;
998d39cb 1180 unsigned long batch;
4ae7c039 1181
4037d452 1182 local_irq_save(flags);
998d39cb
CS
1183 batch = ACCESS_ONCE(pcp->batch);
1184 if (pcp->count >= batch)
1185 to_drain = batch;
4037d452
CL
1186 else
1187 to_drain = pcp->count;
2a13515c
KM
1188 if (to_drain > 0) {
1189 free_pcppages_bulk(zone, to_drain, pcp);
1190 pcp->count -= to_drain;
1191 }
4037d452 1192 local_irq_restore(flags);
4ae7c039
CL
1193}
1194#endif
1195
9f8f2172
CL
1196/*
1197 * Drain pages of the indicated processor.
1198 *
1199 * The processor must either be the current processor and the
1200 * thread pinned to the current processor or a processor that
1201 * is not online.
1202 */
1203static void drain_pages(unsigned int cpu)
1da177e4 1204{
c54ad30c 1205 unsigned long flags;
1da177e4 1206 struct zone *zone;
1da177e4 1207
ee99c71c 1208 for_each_populated_zone(zone) {
1da177e4 1209 struct per_cpu_pageset *pset;
3dfa5721 1210 struct per_cpu_pages *pcp;
1da177e4 1211
99dcc3e5
CL
1212 local_irq_save(flags);
1213 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1214
1215 pcp = &pset->pcp;
2ff754fa
DR
1216 if (pcp->count) {
1217 free_pcppages_bulk(zone, pcp->count, pcp);
1218 pcp->count = 0;
1219 }
3dfa5721 1220 local_irq_restore(flags);
1da177e4
LT
1221 }
1222}
1da177e4 1223
9f8f2172
CL
1224/*
1225 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1226 */
1227void drain_local_pages(void *arg)
1228{
1229 drain_pages(smp_processor_id());
1230}
1231
1232/*
74046494
GBY
1233 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1234 *
1235 * Note that this code is protected against sending an IPI to an offline
1236 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1237 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1238 * nothing keeps CPUs from showing up after we populated the cpumask and
1239 * before the call to on_each_cpu_mask().
9f8f2172
CL
1240 */
1241void drain_all_pages(void)
1242{
74046494
GBY
1243 int cpu;
1244 struct per_cpu_pageset *pcp;
1245 struct zone *zone;
1246
1247 /*
1248 * Allocate in the BSS so we wont require allocation in
1249 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1250 */
1251 static cpumask_t cpus_with_pcps;
1252
1253 /*
1254 * We don't care about racing with CPU hotplug event
1255 * as offline notification will cause the notified
1256 * cpu to drain that CPU pcps and on_each_cpu_mask
1257 * disables preemption as part of its processing
1258 */
1259 for_each_online_cpu(cpu) {
1260 bool has_pcps = false;
1261 for_each_populated_zone(zone) {
1262 pcp = per_cpu_ptr(zone->pageset, cpu);
1263 if (pcp->pcp.count) {
1264 has_pcps = true;
1265 break;
1266 }
1267 }
1268 if (has_pcps)
1269 cpumask_set_cpu(cpu, &cpus_with_pcps);
1270 else
1271 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1272 }
1273 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1274}
1275
296699de 1276#ifdef CONFIG_HIBERNATION
1da177e4
LT
1277
1278void mark_free_pages(struct zone *zone)
1279{
f623f0db
RW
1280 unsigned long pfn, max_zone_pfn;
1281 unsigned long flags;
b2a0ac88 1282 int order, t;
1da177e4
LT
1283 struct list_head *curr;
1284
1285 if (!zone->spanned_pages)
1286 return;
1287
1288 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1289
108bcc96 1290 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1291 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1292 if (pfn_valid(pfn)) {
1293 struct page *page = pfn_to_page(pfn);
1294
7be98234
RW
1295 if (!swsusp_page_is_forbidden(page))
1296 swsusp_unset_page_free(page);
f623f0db 1297 }
1da177e4 1298
b2a0ac88
MG
1299 for_each_migratetype_order(order, t) {
1300 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1301 unsigned long i;
1da177e4 1302
f623f0db
RW
1303 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1304 for (i = 0; i < (1UL << order); i++)
7be98234 1305 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1306 }
b2a0ac88 1307 }
1da177e4
LT
1308 spin_unlock_irqrestore(&zone->lock, flags);
1309}
e2c55dc8 1310#endif /* CONFIG_PM */
1da177e4 1311
1da177e4
LT
1312/*
1313 * Free a 0-order page
fc91668e 1314 * cold == 1 ? free a cold page : free a hot page
1da177e4 1315 */
fc91668e 1316void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1317{
1318 struct zone *zone = page_zone(page);
1319 struct per_cpu_pages *pcp;
1320 unsigned long flags;
5f8dcc21 1321 int migratetype;
1da177e4 1322
ec95f53a 1323 if (!free_pages_prepare(page, 0))
689bcebf
HD
1324 return;
1325
5f8dcc21 1326 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1327 set_freepage_migratetype(page, migratetype);
1da177e4 1328 local_irq_save(flags);
f8891e5e 1329 __count_vm_event(PGFREE);
da456f14 1330
5f8dcc21
MG
1331 /*
1332 * We only track unmovable, reclaimable and movable on pcp lists.
1333 * Free ISOLATE pages back to the allocator because they are being
1334 * offlined but treat RESERVE as movable pages so we can get those
1335 * areas back if necessary. Otherwise, we may have to free
1336 * excessively into the page allocator
1337 */
1338 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1339 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1340 free_one_page(zone, page, 0, migratetype);
1341 goto out;
1342 }
1343 migratetype = MIGRATE_MOVABLE;
1344 }
1345
99dcc3e5 1346 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1347 if (cold)
5f8dcc21 1348 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1349 else
5f8dcc21 1350 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1351 pcp->count++;
48db57f8 1352 if (pcp->count >= pcp->high) {
998d39cb
CS
1353 unsigned long batch = ACCESS_ONCE(pcp->batch);
1354 free_pcppages_bulk(zone, batch, pcp);
1355 pcp->count -= batch;
48db57f8 1356 }
5f8dcc21
MG
1357
1358out:
1da177e4 1359 local_irq_restore(flags);
1da177e4
LT
1360}
1361
cc59850e
KK
1362/*
1363 * Free a list of 0-order pages
1364 */
1365void free_hot_cold_page_list(struct list_head *list, int cold)
1366{
1367 struct page *page, *next;
1368
1369 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1370 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1371 free_hot_cold_page(page, cold);
1372 }
1373}
1374
8dfcc9ba
NP
1375/*
1376 * split_page takes a non-compound higher-order page, and splits it into
1377 * n (1<<order) sub-pages: page[0..n]
1378 * Each sub-page must be freed individually.
1379 *
1380 * Note: this is probably too low level an operation for use in drivers.
1381 * Please consult with lkml before using this in your driver.
1382 */
1383void split_page(struct page *page, unsigned int order)
1384{
1385 int i;
1386
725d704e
NP
1387 VM_BUG_ON(PageCompound(page));
1388 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1389
1390#ifdef CONFIG_KMEMCHECK
1391 /*
1392 * Split shadow pages too, because free(page[0]) would
1393 * otherwise free the whole shadow.
1394 */
1395 if (kmemcheck_page_is_tracked(page))
1396 split_page(virt_to_page(page[0].shadow), order);
1397#endif
1398
7835e98b
NP
1399 for (i = 1; i < (1 << order); i++)
1400 set_page_refcounted(page + i);
8dfcc9ba 1401}
5853ff23 1402EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1403
8fb74b9f 1404static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1405{
748446bb
MG
1406 unsigned long watermark;
1407 struct zone *zone;
2139cbe6 1408 int mt;
748446bb
MG
1409
1410 BUG_ON(!PageBuddy(page));
1411
1412 zone = page_zone(page);
2e30abd1 1413 mt = get_pageblock_migratetype(page);
748446bb 1414
194159fb 1415 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1416 /* Obey watermarks as if the page was being allocated */
1417 watermark = low_wmark_pages(zone) + (1 << order);
1418 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1419 return 0;
1420
8fb74b9f 1421 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1422 }
748446bb
MG
1423
1424 /* Remove page from free list */
1425 list_del(&page->lru);
1426 zone->free_area[order].nr_free--;
1427 rmv_page_order(page);
2139cbe6 1428
8fb74b9f 1429 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1430 if (order >= pageblock_order - 1) {
1431 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1432 for (; page < endpage; page += pageblock_nr_pages) {
1433 int mt = get_pageblock_migratetype(page);
194159fb 1434 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1435 set_pageblock_migratetype(page,
1436 MIGRATE_MOVABLE);
1437 }
748446bb
MG
1438 }
1439
8fb74b9f 1440 return 1UL << order;
1fb3f8ca
MG
1441}
1442
1443/*
1444 * Similar to split_page except the page is already free. As this is only
1445 * being used for migration, the migratetype of the block also changes.
1446 * As this is called with interrupts disabled, the caller is responsible
1447 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1448 * are enabled.
1449 *
1450 * Note: this is probably too low level an operation for use in drivers.
1451 * Please consult with lkml before using this in your driver.
1452 */
1453int split_free_page(struct page *page)
1454{
1455 unsigned int order;
1456 int nr_pages;
1457
1fb3f8ca
MG
1458 order = page_order(page);
1459
8fb74b9f 1460 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1461 if (!nr_pages)
1462 return 0;
1463
1464 /* Split into individual pages */
1465 set_page_refcounted(page);
1466 split_page(page, order);
1467 return nr_pages;
748446bb
MG
1468}
1469
1da177e4
LT
1470/*
1471 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1472 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1473 * or two.
1474 */
0a15c3e9
MG
1475static inline
1476struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1477 struct zone *zone, int order, gfp_t gfp_flags,
1478 int migratetype)
1da177e4
LT
1479{
1480 unsigned long flags;
689bcebf 1481 struct page *page;
1da177e4
LT
1482 int cold = !!(gfp_flags & __GFP_COLD);
1483
689bcebf 1484again:
48db57f8 1485 if (likely(order == 0)) {
1da177e4 1486 struct per_cpu_pages *pcp;
5f8dcc21 1487 struct list_head *list;
1da177e4 1488
1da177e4 1489 local_irq_save(flags);
99dcc3e5
CL
1490 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 list = &pcp->lists[migratetype];
5f8dcc21 1492 if (list_empty(list)) {
535131e6 1493 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1494 pcp->batch, list,
e084b2d9 1495 migratetype, cold);
5f8dcc21 1496 if (unlikely(list_empty(list)))
6fb332fa 1497 goto failed;
535131e6 1498 }
b92a6edd 1499
5f8dcc21
MG
1500 if (cold)
1501 page = list_entry(list->prev, struct page, lru);
1502 else
1503 page = list_entry(list->next, struct page, lru);
1504
b92a6edd
MG
1505 list_del(&page->lru);
1506 pcp->count--;
7fb1d9fc 1507 } else {
dab48dab
AM
1508 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 /*
1510 * __GFP_NOFAIL is not to be used in new code.
1511 *
1512 * All __GFP_NOFAIL callers should be fixed so that they
1513 * properly detect and handle allocation failures.
1514 *
1515 * We most definitely don't want callers attempting to
4923abf9 1516 * allocate greater than order-1 page units with
dab48dab
AM
1517 * __GFP_NOFAIL.
1518 */
4923abf9 1519 WARN_ON_ONCE(order > 1);
dab48dab 1520 }
1da177e4 1521 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1522 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1523 spin_unlock(&zone->lock);
1524 if (!page)
1525 goto failed;
d1ce749a
BZ
1526 __mod_zone_freepage_state(zone, -(1 << order),
1527 get_pageblock_migratetype(page));
1da177e4
LT
1528 }
1529
f8891e5e 1530 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1531 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1532 local_irq_restore(flags);
1da177e4 1533
725d704e 1534 VM_BUG_ON(bad_range(zone, page));
17cf4406 1535 if (prep_new_page(page, order, gfp_flags))
a74609fa 1536 goto again;
1da177e4 1537 return page;
a74609fa
NP
1538
1539failed:
1540 local_irq_restore(flags);
a74609fa 1541 return NULL;
1da177e4
LT
1542}
1543
933e312e
AM
1544#ifdef CONFIG_FAIL_PAGE_ALLOC
1545
b2588c4b 1546static struct {
933e312e
AM
1547 struct fault_attr attr;
1548
1549 u32 ignore_gfp_highmem;
1550 u32 ignore_gfp_wait;
54114994 1551 u32 min_order;
933e312e
AM
1552} fail_page_alloc = {
1553 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1554 .ignore_gfp_wait = 1,
1555 .ignore_gfp_highmem = 1,
54114994 1556 .min_order = 1,
933e312e
AM
1557};
1558
1559static int __init setup_fail_page_alloc(char *str)
1560{
1561 return setup_fault_attr(&fail_page_alloc.attr, str);
1562}
1563__setup("fail_page_alloc=", setup_fail_page_alloc);
1564
deaf386e 1565static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1566{
54114994 1567 if (order < fail_page_alloc.min_order)
deaf386e 1568 return false;
933e312e 1569 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1570 return false;
933e312e 1571 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1572 return false;
933e312e 1573 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1574 return false;
933e312e
AM
1575
1576 return should_fail(&fail_page_alloc.attr, 1 << order);
1577}
1578
1579#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580
1581static int __init fail_page_alloc_debugfs(void)
1582{
f4ae40a6 1583 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1584 struct dentry *dir;
933e312e 1585
dd48c085
AM
1586 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1587 &fail_page_alloc.attr);
1588 if (IS_ERR(dir))
1589 return PTR_ERR(dir);
933e312e 1590
b2588c4b
AM
1591 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1592 &fail_page_alloc.ignore_gfp_wait))
1593 goto fail;
1594 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1595 &fail_page_alloc.ignore_gfp_highmem))
1596 goto fail;
1597 if (!debugfs_create_u32("min-order", mode, dir,
1598 &fail_page_alloc.min_order))
1599 goto fail;
1600
1601 return 0;
1602fail:
dd48c085 1603 debugfs_remove_recursive(dir);
933e312e 1604
b2588c4b 1605 return -ENOMEM;
933e312e
AM
1606}
1607
1608late_initcall(fail_page_alloc_debugfs);
1609
1610#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611
1612#else /* CONFIG_FAIL_PAGE_ALLOC */
1613
deaf386e 1614static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1615{
deaf386e 1616 return false;
933e312e
AM
1617}
1618
1619#endif /* CONFIG_FAIL_PAGE_ALLOC */
1620
1da177e4 1621/*
88f5acf8 1622 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1623 * of the allocation.
1624 */
88f5acf8
MG
1625static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1626 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1627{
1628 /* free_pages my go negative - that's OK */
d23ad423 1629 long min = mark;
2cfed075 1630 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1631 int o;
026b0814 1632 long free_cma = 0;
1da177e4 1633
df0a6daa 1634 free_pages -= (1 << order) - 1;
7fb1d9fc 1635 if (alloc_flags & ALLOC_HIGH)
1da177e4 1636 min -= min / 2;
7fb1d9fc 1637 if (alloc_flags & ALLOC_HARDER)
1da177e4 1638 min -= min / 4;
d95ea5d1
BZ
1639#ifdef CONFIG_CMA
1640 /* If allocation can't use CMA areas don't use free CMA pages */
1641 if (!(alloc_flags & ALLOC_CMA))
026b0814 1642 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1643#endif
026b0814
TS
1644
1645 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1646 return false;
1da177e4
LT
1647 for (o = 0; o < order; o++) {
1648 /* At the next order, this order's pages become unavailable */
1649 free_pages -= z->free_area[o].nr_free << o;
1650
1651 /* Require fewer higher order pages to be free */
1652 min >>= 1;
1653
1654 if (free_pages <= min)
88f5acf8 1655 return false;
1da177e4 1656 }
88f5acf8
MG
1657 return true;
1658}
1659
1660bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1661 int classzone_idx, int alloc_flags)
1662{
1663 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1664 zone_page_state(z, NR_FREE_PAGES));
1665}
1666
1667bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1668 int classzone_idx, int alloc_flags)
1669{
1670 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1671
1672 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1673 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1674
1675 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1676 free_pages);
1da177e4
LT
1677}
1678
9276b1bc
PJ
1679#ifdef CONFIG_NUMA
1680/*
1681 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1682 * skip over zones that are not allowed by the cpuset, or that have
1683 * been recently (in last second) found to be nearly full. See further
1684 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1685 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1686 *
1687 * If the zonelist cache is present in the passed in zonelist, then
1688 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1689 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1690 *
1691 * If the zonelist cache is not available for this zonelist, does
1692 * nothing and returns NULL.
1693 *
1694 * If the fullzones BITMAP in the zonelist cache is stale (more than
1695 * a second since last zap'd) then we zap it out (clear its bits.)
1696 *
1697 * We hold off even calling zlc_setup, until after we've checked the
1698 * first zone in the zonelist, on the theory that most allocations will
1699 * be satisfied from that first zone, so best to examine that zone as
1700 * quickly as we can.
1701 */
1702static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1703{
1704 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1705 nodemask_t *allowednodes; /* zonelist_cache approximation */
1706
1707 zlc = zonelist->zlcache_ptr;
1708 if (!zlc)
1709 return NULL;
1710
f05111f5 1711 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1712 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1713 zlc->last_full_zap = jiffies;
1714 }
1715
1716 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1717 &cpuset_current_mems_allowed :
4b0ef1fe 1718 &node_states[N_MEMORY];
9276b1bc
PJ
1719 return allowednodes;
1720}
1721
1722/*
1723 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1724 * if it is worth looking at further for free memory:
1725 * 1) Check that the zone isn't thought to be full (doesn't have its
1726 * bit set in the zonelist_cache fullzones BITMAP).
1727 * 2) Check that the zones node (obtained from the zonelist_cache
1728 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1729 * Return true (non-zero) if zone is worth looking at further, or
1730 * else return false (zero) if it is not.
1731 *
1732 * This check -ignores- the distinction between various watermarks,
1733 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1734 * found to be full for any variation of these watermarks, it will
1735 * be considered full for up to one second by all requests, unless
1736 * we are so low on memory on all allowed nodes that we are forced
1737 * into the second scan of the zonelist.
1738 *
1739 * In the second scan we ignore this zonelist cache and exactly
1740 * apply the watermarks to all zones, even it is slower to do so.
1741 * We are low on memory in the second scan, and should leave no stone
1742 * unturned looking for a free page.
1743 */
dd1a239f 1744static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1745 nodemask_t *allowednodes)
1746{
1747 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1748 int i; /* index of *z in zonelist zones */
1749 int n; /* node that zone *z is on */
1750
1751 zlc = zonelist->zlcache_ptr;
1752 if (!zlc)
1753 return 1;
1754
dd1a239f 1755 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1756 n = zlc->z_to_n[i];
1757
1758 /* This zone is worth trying if it is allowed but not full */
1759 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1760}
1761
1762/*
1763 * Given 'z' scanning a zonelist, set the corresponding bit in
1764 * zlc->fullzones, so that subsequent attempts to allocate a page
1765 * from that zone don't waste time re-examining it.
1766 */
dd1a239f 1767static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1768{
1769 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1770 int i; /* index of *z in zonelist zones */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return;
1775
dd1a239f 1776 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1777
1778 set_bit(i, zlc->fullzones);
1779}
1780
76d3fbf8
MG
1781/*
1782 * clear all zones full, called after direct reclaim makes progress so that
1783 * a zone that was recently full is not skipped over for up to a second
1784 */
1785static void zlc_clear_zones_full(struct zonelist *zonelist)
1786{
1787 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1788
1789 zlc = zonelist->zlcache_ptr;
1790 if (!zlc)
1791 return;
1792
1793 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1794}
1795
957f822a
DR
1796static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1797{
1798 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1799}
1800
1801static void __paginginit init_zone_allows_reclaim(int nid)
1802{
1803 int i;
1804
1805 for_each_online_node(i)
6b187d02 1806 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1807 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1808 else
957f822a 1809 zone_reclaim_mode = 1;
957f822a
DR
1810}
1811
9276b1bc
PJ
1812#else /* CONFIG_NUMA */
1813
1814static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1815{
1816 return NULL;
1817}
1818
dd1a239f 1819static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1820 nodemask_t *allowednodes)
1821{
1822 return 1;
1823}
1824
dd1a239f 1825static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1826{
1827}
76d3fbf8
MG
1828
1829static void zlc_clear_zones_full(struct zonelist *zonelist)
1830{
1831}
957f822a
DR
1832
1833static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1834{
1835 return true;
1836}
1837
1838static inline void init_zone_allows_reclaim(int nid)
1839{
1840}
9276b1bc
PJ
1841#endif /* CONFIG_NUMA */
1842
7fb1d9fc 1843/*
0798e519 1844 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1845 * a page.
1846 */
1847static struct page *
19770b32 1848get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1849 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1850 struct zone *preferred_zone, int migratetype)
753ee728 1851{
dd1a239f 1852 struct zoneref *z;
7fb1d9fc 1853 struct page *page = NULL;
54a6eb5c 1854 int classzone_idx;
5117f45d 1855 struct zone *zone;
9276b1bc
PJ
1856 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1857 int zlc_active = 0; /* set if using zonelist_cache */
1858 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1859
19770b32 1860 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1861zonelist_scan:
7fb1d9fc 1862 /*
9276b1bc 1863 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1864 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1865 */
19770b32
MG
1866 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1867 high_zoneidx, nodemask) {
e5adfffc 1868 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1869 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1870 continue;
7fb1d9fc 1871 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1872 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1873 continue;
a756cf59
JW
1874 /*
1875 * When allocating a page cache page for writing, we
1876 * want to get it from a zone that is within its dirty
1877 * limit, such that no single zone holds more than its
1878 * proportional share of globally allowed dirty pages.
1879 * The dirty limits take into account the zone's
1880 * lowmem reserves and high watermark so that kswapd
1881 * should be able to balance it without having to
1882 * write pages from its LRU list.
1883 *
1884 * This may look like it could increase pressure on
1885 * lower zones by failing allocations in higher zones
1886 * before they are full. But the pages that do spill
1887 * over are limited as the lower zones are protected
1888 * by this very same mechanism. It should not become
1889 * a practical burden to them.
1890 *
1891 * XXX: For now, allow allocations to potentially
1892 * exceed the per-zone dirty limit in the slowpath
1893 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1894 * which is important when on a NUMA setup the allowed
1895 * zones are together not big enough to reach the
1896 * global limit. The proper fix for these situations
1897 * will require awareness of zones in the
1898 * dirty-throttling and the flusher threads.
1899 */
1900 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1901 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1902 goto this_zone_full;
7fb1d9fc 1903
41858966 1904 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1905 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1906 unsigned long mark;
fa5e084e
MG
1907 int ret;
1908
41858966 1909 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1910 if (zone_watermark_ok(zone, order, mark,
1911 classzone_idx, alloc_flags))
1912 goto try_this_zone;
1913
e5adfffc
KS
1914 if (IS_ENABLED(CONFIG_NUMA) &&
1915 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1916 /*
1917 * we do zlc_setup if there are multiple nodes
1918 * and before considering the first zone allowed
1919 * by the cpuset.
1920 */
1921 allowednodes = zlc_setup(zonelist, alloc_flags);
1922 zlc_active = 1;
1923 did_zlc_setup = 1;
1924 }
1925
957f822a
DR
1926 if (zone_reclaim_mode == 0 ||
1927 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1928 goto this_zone_full;
1929
cd38b115
MG
1930 /*
1931 * As we may have just activated ZLC, check if the first
1932 * eligible zone has failed zone_reclaim recently.
1933 */
e5adfffc 1934 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1935 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1936 continue;
1937
fa5e084e
MG
1938 ret = zone_reclaim(zone, gfp_mask, order);
1939 switch (ret) {
1940 case ZONE_RECLAIM_NOSCAN:
1941 /* did not scan */
cd38b115 1942 continue;
fa5e084e
MG
1943 case ZONE_RECLAIM_FULL:
1944 /* scanned but unreclaimable */
cd38b115 1945 continue;
fa5e084e
MG
1946 default:
1947 /* did we reclaim enough */
fed2719e 1948 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1949 classzone_idx, alloc_flags))
fed2719e
MG
1950 goto try_this_zone;
1951
1952 /*
1953 * Failed to reclaim enough to meet watermark.
1954 * Only mark the zone full if checking the min
1955 * watermark or if we failed to reclaim just
1956 * 1<<order pages or else the page allocator
1957 * fastpath will prematurely mark zones full
1958 * when the watermark is between the low and
1959 * min watermarks.
1960 */
1961 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1962 ret == ZONE_RECLAIM_SOME)
9276b1bc 1963 goto this_zone_full;
fed2719e
MG
1964
1965 continue;
0798e519 1966 }
7fb1d9fc
RS
1967 }
1968
fa5e084e 1969try_this_zone:
3dd28266
MG
1970 page = buffered_rmqueue(preferred_zone, zone, order,
1971 gfp_mask, migratetype);
0798e519 1972 if (page)
7fb1d9fc 1973 break;
9276b1bc 1974this_zone_full:
e5adfffc 1975 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1976 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1977 }
9276b1bc 1978
e5adfffc 1979 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1980 /* Disable zlc cache for second zonelist scan */
1981 zlc_active = 0;
1982 goto zonelist_scan;
1983 }
b121186a
AS
1984
1985 if (page)
1986 /*
1987 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1988 * necessary to allocate the page. The expectation is
1989 * that the caller is taking steps that will free more
1990 * memory. The caller should avoid the page being used
1991 * for !PFMEMALLOC purposes.
1992 */
1993 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1994
7fb1d9fc 1995 return page;
753ee728
MH
1996}
1997
29423e77
DR
1998/*
1999 * Large machines with many possible nodes should not always dump per-node
2000 * meminfo in irq context.
2001 */
2002static inline bool should_suppress_show_mem(void)
2003{
2004 bool ret = false;
2005
2006#if NODES_SHIFT > 8
2007 ret = in_interrupt();
2008#endif
2009 return ret;
2010}
2011
a238ab5b
DH
2012static DEFINE_RATELIMIT_STATE(nopage_rs,
2013 DEFAULT_RATELIMIT_INTERVAL,
2014 DEFAULT_RATELIMIT_BURST);
2015
2016void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2017{
a238ab5b
DH
2018 unsigned int filter = SHOW_MEM_FILTER_NODES;
2019
c0a32fc5
SG
2020 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2021 debug_guardpage_minorder() > 0)
a238ab5b
DH
2022 return;
2023
4b59e6c4
DR
2024 /*
2025 * Walking all memory to count page types is very expensive and should
2026 * be inhibited in non-blockable contexts.
2027 */
2028 if (!(gfp_mask & __GFP_WAIT))
2029 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2030
a238ab5b
DH
2031 /*
2032 * This documents exceptions given to allocations in certain
2033 * contexts that are allowed to allocate outside current's set
2034 * of allowed nodes.
2035 */
2036 if (!(gfp_mask & __GFP_NOMEMALLOC))
2037 if (test_thread_flag(TIF_MEMDIE) ||
2038 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2039 filter &= ~SHOW_MEM_FILTER_NODES;
2040 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2041 filter &= ~SHOW_MEM_FILTER_NODES;
2042
2043 if (fmt) {
3ee9a4f0
JP
2044 struct va_format vaf;
2045 va_list args;
2046
a238ab5b 2047 va_start(args, fmt);
3ee9a4f0
JP
2048
2049 vaf.fmt = fmt;
2050 vaf.va = &args;
2051
2052 pr_warn("%pV", &vaf);
2053
a238ab5b
DH
2054 va_end(args);
2055 }
2056
3ee9a4f0
JP
2057 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2058 current->comm, order, gfp_mask);
a238ab5b
DH
2059
2060 dump_stack();
2061 if (!should_suppress_show_mem())
2062 show_mem(filter);
2063}
2064
11e33f6a
MG
2065static inline int
2066should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2067 unsigned long did_some_progress,
11e33f6a 2068 unsigned long pages_reclaimed)
1da177e4 2069{
11e33f6a
MG
2070 /* Do not loop if specifically requested */
2071 if (gfp_mask & __GFP_NORETRY)
2072 return 0;
1da177e4 2073
f90ac398
MG
2074 /* Always retry if specifically requested */
2075 if (gfp_mask & __GFP_NOFAIL)
2076 return 1;
2077
2078 /*
2079 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2080 * making forward progress without invoking OOM. Suspend also disables
2081 * storage devices so kswapd will not help. Bail if we are suspending.
2082 */
2083 if (!did_some_progress && pm_suspended_storage())
2084 return 0;
2085
11e33f6a
MG
2086 /*
2087 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2088 * means __GFP_NOFAIL, but that may not be true in other
2089 * implementations.
2090 */
2091 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2092 return 1;
2093
2094 /*
2095 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2096 * specified, then we retry until we no longer reclaim any pages
2097 * (above), or we've reclaimed an order of pages at least as
2098 * large as the allocation's order. In both cases, if the
2099 * allocation still fails, we stop retrying.
2100 */
2101 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2102 return 1;
cf40bd16 2103
11e33f6a
MG
2104 return 0;
2105}
933e312e 2106
11e33f6a
MG
2107static inline struct page *
2108__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2109 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2110 nodemask_t *nodemask, struct zone *preferred_zone,
2111 int migratetype)
11e33f6a
MG
2112{
2113 struct page *page;
2114
2115 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2116 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2117 schedule_timeout_uninterruptible(1);
1da177e4
LT
2118 return NULL;
2119 }
6b1de916 2120
11e33f6a
MG
2121 /*
2122 * Go through the zonelist yet one more time, keep very high watermark
2123 * here, this is only to catch a parallel oom killing, we must fail if
2124 * we're still under heavy pressure.
2125 */
2126 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2127 order, zonelist, high_zoneidx,
5117f45d 2128 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2129 preferred_zone, migratetype);
7fb1d9fc 2130 if (page)
11e33f6a
MG
2131 goto out;
2132
4365a567
KH
2133 if (!(gfp_mask & __GFP_NOFAIL)) {
2134 /* The OOM killer will not help higher order allocs */
2135 if (order > PAGE_ALLOC_COSTLY_ORDER)
2136 goto out;
03668b3c
DR
2137 /* The OOM killer does not needlessly kill tasks for lowmem */
2138 if (high_zoneidx < ZONE_NORMAL)
2139 goto out;
4365a567
KH
2140 /*
2141 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2142 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2143 * The caller should handle page allocation failure by itself if
2144 * it specifies __GFP_THISNODE.
2145 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2146 */
2147 if (gfp_mask & __GFP_THISNODE)
2148 goto out;
2149 }
11e33f6a 2150 /* Exhausted what can be done so it's blamo time */
08ab9b10 2151 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2152
2153out:
2154 clear_zonelist_oom(zonelist, gfp_mask);
2155 return page;
2156}
2157
56de7263
MG
2158#ifdef CONFIG_COMPACTION
2159/* Try memory compaction for high-order allocations before reclaim */
2160static struct page *
2161__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2162 struct zonelist *zonelist, enum zone_type high_zoneidx,
2163 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2164 int migratetype, bool sync_migration,
c67fe375 2165 bool *contended_compaction, bool *deferred_compaction,
66199712 2166 unsigned long *did_some_progress)
56de7263 2167{
66199712 2168 if (!order)
56de7263
MG
2169 return NULL;
2170
aff62249 2171 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2172 *deferred_compaction = true;
2173 return NULL;
2174 }
2175
c06b1fca 2176 current->flags |= PF_MEMALLOC;
56de7263 2177 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2178 nodemask, sync_migration,
8fb74b9f 2179 contended_compaction);
c06b1fca 2180 current->flags &= ~PF_MEMALLOC;
56de7263 2181
1fb3f8ca 2182 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2183 struct page *page;
2184
56de7263
MG
2185 /* Page migration frees to the PCP lists but we want merging */
2186 drain_pages(get_cpu());
2187 put_cpu();
2188
2189 page = get_page_from_freelist(gfp_mask, nodemask,
2190 order, zonelist, high_zoneidx,
cfd19c5a
MG
2191 alloc_flags & ~ALLOC_NO_WATERMARKS,
2192 preferred_zone, migratetype);
56de7263 2193 if (page) {
62997027 2194 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2195 preferred_zone->compact_considered = 0;
2196 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2197 if (order >= preferred_zone->compact_order_failed)
2198 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2199 count_vm_event(COMPACTSUCCESS);
2200 return page;
2201 }
2202
2203 /*
2204 * It's bad if compaction run occurs and fails.
2205 * The most likely reason is that pages exist,
2206 * but not enough to satisfy watermarks.
2207 */
2208 count_vm_event(COMPACTFAIL);
66199712
MG
2209
2210 /*
2211 * As async compaction considers a subset of pageblocks, only
2212 * defer if the failure was a sync compaction failure.
2213 */
2214 if (sync_migration)
aff62249 2215 defer_compaction(preferred_zone, order);
56de7263
MG
2216
2217 cond_resched();
2218 }
2219
2220 return NULL;
2221}
2222#else
2223static inline struct page *
2224__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2225 struct zonelist *zonelist, enum zone_type high_zoneidx,
2226 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2227 int migratetype, bool sync_migration,
c67fe375 2228 bool *contended_compaction, bool *deferred_compaction,
66199712 2229 unsigned long *did_some_progress)
56de7263
MG
2230{
2231 return NULL;
2232}
2233#endif /* CONFIG_COMPACTION */
2234
bba90710
MS
2235/* Perform direct synchronous page reclaim */
2236static int
2237__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2238 nodemask_t *nodemask)
11e33f6a 2239{
11e33f6a 2240 struct reclaim_state reclaim_state;
bba90710 2241 int progress;
11e33f6a
MG
2242
2243 cond_resched();
2244
2245 /* We now go into synchronous reclaim */
2246 cpuset_memory_pressure_bump();
c06b1fca 2247 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2248 lockdep_set_current_reclaim_state(gfp_mask);
2249 reclaim_state.reclaimed_slab = 0;
c06b1fca 2250 current->reclaim_state = &reclaim_state;
11e33f6a 2251
bba90710 2252 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2253
c06b1fca 2254 current->reclaim_state = NULL;
11e33f6a 2255 lockdep_clear_current_reclaim_state();
c06b1fca 2256 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2257
2258 cond_resched();
2259
bba90710
MS
2260 return progress;
2261}
2262
2263/* The really slow allocator path where we enter direct reclaim */
2264static inline struct page *
2265__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2266 struct zonelist *zonelist, enum zone_type high_zoneidx,
2267 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2268 int migratetype, unsigned long *did_some_progress)
2269{
2270 struct page *page = NULL;
2271 bool drained = false;
2272
2273 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2274 nodemask);
9ee493ce
MG
2275 if (unlikely(!(*did_some_progress)))
2276 return NULL;
11e33f6a 2277
76d3fbf8 2278 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2279 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2280 zlc_clear_zones_full(zonelist);
2281
9ee493ce
MG
2282retry:
2283 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2284 zonelist, high_zoneidx,
cfd19c5a
MG
2285 alloc_flags & ~ALLOC_NO_WATERMARKS,
2286 preferred_zone, migratetype);
9ee493ce
MG
2287
2288 /*
2289 * If an allocation failed after direct reclaim, it could be because
2290 * pages are pinned on the per-cpu lists. Drain them and try again
2291 */
2292 if (!page && !drained) {
2293 drain_all_pages();
2294 drained = true;
2295 goto retry;
2296 }
2297
11e33f6a
MG
2298 return page;
2299}
2300
1da177e4 2301/*
11e33f6a
MG
2302 * This is called in the allocator slow-path if the allocation request is of
2303 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2304 */
11e33f6a
MG
2305static inline struct page *
2306__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2307 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2308 nodemask_t *nodemask, struct zone *preferred_zone,
2309 int migratetype)
11e33f6a
MG
2310{
2311 struct page *page;
2312
2313 do {
2314 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2315 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2316 preferred_zone, migratetype);
11e33f6a
MG
2317
2318 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2319 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2320 } while (!page && (gfp_mask & __GFP_NOFAIL));
2321
2322 return page;
2323}
2324
2325static inline
2326void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2327 enum zone_type high_zoneidx,
2328 enum zone_type classzone_idx)
1da177e4 2329{
dd1a239f
MG
2330 struct zoneref *z;
2331 struct zone *zone;
1da177e4 2332
11e33f6a 2333 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2334 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2335}
cf40bd16 2336
341ce06f
PZ
2337static inline int
2338gfp_to_alloc_flags(gfp_t gfp_mask)
2339{
341ce06f
PZ
2340 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2341 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2342
a56f57ff 2343 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2344 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2345
341ce06f
PZ
2346 /*
2347 * The caller may dip into page reserves a bit more if the caller
2348 * cannot run direct reclaim, or if the caller has realtime scheduling
2349 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2350 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2351 */
e6223a3b 2352 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2353
341ce06f 2354 if (!wait) {
5c3240d9
AA
2355 /*
2356 * Not worth trying to allocate harder for
2357 * __GFP_NOMEMALLOC even if it can't schedule.
2358 */
2359 if (!(gfp_mask & __GFP_NOMEMALLOC))
2360 alloc_flags |= ALLOC_HARDER;
523b9458 2361 /*
341ce06f
PZ
2362 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2363 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2364 */
341ce06f 2365 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2366 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2367 alloc_flags |= ALLOC_HARDER;
2368
b37f1dd0
MG
2369 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2370 if (gfp_mask & __GFP_MEMALLOC)
2371 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2372 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2373 alloc_flags |= ALLOC_NO_WATERMARKS;
2374 else if (!in_interrupt() &&
2375 ((current->flags & PF_MEMALLOC) ||
2376 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2377 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2378 }
d95ea5d1
BZ
2379#ifdef CONFIG_CMA
2380 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2381 alloc_flags |= ALLOC_CMA;
2382#endif
341ce06f
PZ
2383 return alloc_flags;
2384}
2385
072bb0aa
MG
2386bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2387{
b37f1dd0 2388 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2389}
2390
11e33f6a
MG
2391static inline struct page *
2392__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2393 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2394 nodemask_t *nodemask, struct zone *preferred_zone,
2395 int migratetype)
11e33f6a
MG
2396{
2397 const gfp_t wait = gfp_mask & __GFP_WAIT;
2398 struct page *page = NULL;
2399 int alloc_flags;
2400 unsigned long pages_reclaimed = 0;
2401 unsigned long did_some_progress;
77f1fe6b 2402 bool sync_migration = false;
66199712 2403 bool deferred_compaction = false;
c67fe375 2404 bool contended_compaction = false;
1da177e4 2405
72807a74
MG
2406 /*
2407 * In the slowpath, we sanity check order to avoid ever trying to
2408 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2409 * be using allocators in order of preference for an area that is
2410 * too large.
2411 */
1fc28b70
MG
2412 if (order >= MAX_ORDER) {
2413 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2414 return NULL;
1fc28b70 2415 }
1da177e4 2416
952f3b51
CL
2417 /*
2418 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2419 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2420 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2421 * using a larger set of nodes after it has established that the
2422 * allowed per node queues are empty and that nodes are
2423 * over allocated.
2424 */
e5adfffc
KS
2425 if (IS_ENABLED(CONFIG_NUMA) &&
2426 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2427 goto nopage;
2428
cc4a6851 2429restart:
caf49191
LT
2430 if (!(gfp_mask & __GFP_NO_KSWAPD))
2431 wake_all_kswapd(order, zonelist, high_zoneidx,
2432 zone_idx(preferred_zone));
1da177e4 2433
9bf2229f 2434 /*
7fb1d9fc
RS
2435 * OK, we're below the kswapd watermark and have kicked background
2436 * reclaim. Now things get more complex, so set up alloc_flags according
2437 * to how we want to proceed.
9bf2229f 2438 */
341ce06f 2439 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2440
f33261d7
DR
2441 /*
2442 * Find the true preferred zone if the allocation is unconstrained by
2443 * cpusets.
2444 */
2445 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2446 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2447 &preferred_zone);
2448
cfa54a0f 2449rebalance:
341ce06f 2450 /* This is the last chance, in general, before the goto nopage. */
19770b32 2451 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2452 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2453 preferred_zone, migratetype);
7fb1d9fc
RS
2454 if (page)
2455 goto got_pg;
1da177e4 2456
11e33f6a 2457 /* Allocate without watermarks if the context allows */
341ce06f 2458 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2459 /*
2460 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2461 * the allocation is high priority and these type of
2462 * allocations are system rather than user orientated
2463 */
2464 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2465
341ce06f
PZ
2466 page = __alloc_pages_high_priority(gfp_mask, order,
2467 zonelist, high_zoneidx, nodemask,
2468 preferred_zone, migratetype);
cfd19c5a 2469 if (page) {
341ce06f 2470 goto got_pg;
cfd19c5a 2471 }
1da177e4
LT
2472 }
2473
2474 /* Atomic allocations - we can't balance anything */
2475 if (!wait)
2476 goto nopage;
2477
341ce06f 2478 /* Avoid recursion of direct reclaim */
c06b1fca 2479 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2480 goto nopage;
2481
6583bb64
DR
2482 /* Avoid allocations with no watermarks from looping endlessly */
2483 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2484 goto nopage;
2485
77f1fe6b
MG
2486 /*
2487 * Try direct compaction. The first pass is asynchronous. Subsequent
2488 * attempts after direct reclaim are synchronous
2489 */
56de7263
MG
2490 page = __alloc_pages_direct_compact(gfp_mask, order,
2491 zonelist, high_zoneidx,
2492 nodemask,
2493 alloc_flags, preferred_zone,
66199712 2494 migratetype, sync_migration,
c67fe375 2495 &contended_compaction,
66199712
MG
2496 &deferred_compaction,
2497 &did_some_progress);
56de7263
MG
2498 if (page)
2499 goto got_pg;
c6a140bf 2500 sync_migration = true;
56de7263 2501
31f8d42d
LT
2502 /*
2503 * If compaction is deferred for high-order allocations, it is because
2504 * sync compaction recently failed. In this is the case and the caller
2505 * requested a movable allocation that does not heavily disrupt the
2506 * system then fail the allocation instead of entering direct reclaim.
2507 */
2508 if ((deferred_compaction || contended_compaction) &&
caf49191 2509 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2510 goto nopage;
66199712 2511
11e33f6a
MG
2512 /* Try direct reclaim and then allocating */
2513 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2514 zonelist, high_zoneidx,
2515 nodemask,
5117f45d 2516 alloc_flags, preferred_zone,
3dd28266 2517 migratetype, &did_some_progress);
11e33f6a
MG
2518 if (page)
2519 goto got_pg;
1da177e4 2520
e33c3b5e 2521 /*
11e33f6a
MG
2522 * If we failed to make any progress reclaiming, then we are
2523 * running out of options and have to consider going OOM
e33c3b5e 2524 */
11e33f6a
MG
2525 if (!did_some_progress) {
2526 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2527 if (oom_killer_disabled)
2528 goto nopage;
29fd66d2
DR
2529 /* Coredumps can quickly deplete all memory reserves */
2530 if ((current->flags & PF_DUMPCORE) &&
2531 !(gfp_mask & __GFP_NOFAIL))
2532 goto nopage;
11e33f6a
MG
2533 page = __alloc_pages_may_oom(gfp_mask, order,
2534 zonelist, high_zoneidx,
3dd28266
MG
2535 nodemask, preferred_zone,
2536 migratetype);
11e33f6a
MG
2537 if (page)
2538 goto got_pg;
1da177e4 2539
03668b3c
DR
2540 if (!(gfp_mask & __GFP_NOFAIL)) {
2541 /*
2542 * The oom killer is not called for high-order
2543 * allocations that may fail, so if no progress
2544 * is being made, there are no other options and
2545 * retrying is unlikely to help.
2546 */
2547 if (order > PAGE_ALLOC_COSTLY_ORDER)
2548 goto nopage;
2549 /*
2550 * The oom killer is not called for lowmem
2551 * allocations to prevent needlessly killing
2552 * innocent tasks.
2553 */
2554 if (high_zoneidx < ZONE_NORMAL)
2555 goto nopage;
2556 }
e2c55dc8 2557
ff0ceb9d
DR
2558 goto restart;
2559 }
1da177e4
LT
2560 }
2561
11e33f6a 2562 /* Check if we should retry the allocation */
a41f24ea 2563 pages_reclaimed += did_some_progress;
f90ac398
MG
2564 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2565 pages_reclaimed)) {
11e33f6a 2566 /* Wait for some write requests to complete then retry */
0e093d99 2567 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2568 goto rebalance;
3e7d3449
MG
2569 } else {
2570 /*
2571 * High-order allocations do not necessarily loop after
2572 * direct reclaim and reclaim/compaction depends on compaction
2573 * being called after reclaim so call directly if necessary
2574 */
2575 page = __alloc_pages_direct_compact(gfp_mask, order,
2576 zonelist, high_zoneidx,
2577 nodemask,
2578 alloc_flags, preferred_zone,
66199712 2579 migratetype, sync_migration,
c67fe375 2580 &contended_compaction,
66199712
MG
2581 &deferred_compaction,
2582 &did_some_progress);
3e7d3449
MG
2583 if (page)
2584 goto got_pg;
1da177e4
LT
2585 }
2586
2587nopage:
a238ab5b 2588 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2589 return page;
1da177e4 2590got_pg:
b1eeab67
VN
2591 if (kmemcheck_enabled)
2592 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2593
072bb0aa 2594 return page;
1da177e4 2595}
11e33f6a
MG
2596
2597/*
2598 * This is the 'heart' of the zoned buddy allocator.
2599 */
2600struct page *
2601__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2602 struct zonelist *zonelist, nodemask_t *nodemask)
2603{
2604 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2605 struct zone *preferred_zone;
cc9a6c87 2606 struct page *page = NULL;
3dd28266 2607 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2608 unsigned int cpuset_mems_cookie;
d95ea5d1 2609 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2610 struct mem_cgroup *memcg = NULL;
11e33f6a 2611
dcce284a
BH
2612 gfp_mask &= gfp_allowed_mask;
2613
11e33f6a
MG
2614 lockdep_trace_alloc(gfp_mask);
2615
2616 might_sleep_if(gfp_mask & __GFP_WAIT);
2617
2618 if (should_fail_alloc_page(gfp_mask, order))
2619 return NULL;
2620
2621 /*
2622 * Check the zones suitable for the gfp_mask contain at least one
2623 * valid zone. It's possible to have an empty zonelist as a result
2624 * of GFP_THISNODE and a memoryless node
2625 */
2626 if (unlikely(!zonelist->_zonerefs->zone))
2627 return NULL;
2628
6a1a0d3b
GC
2629 /*
2630 * Will only have any effect when __GFP_KMEMCG is set. This is
2631 * verified in the (always inline) callee
2632 */
2633 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2634 return NULL;
2635
cc9a6c87
MG
2636retry_cpuset:
2637 cpuset_mems_cookie = get_mems_allowed();
2638
5117f45d 2639 /* The preferred zone is used for statistics later */
f33261d7
DR
2640 first_zones_zonelist(zonelist, high_zoneidx,
2641 nodemask ? : &cpuset_current_mems_allowed,
2642 &preferred_zone);
cc9a6c87
MG
2643 if (!preferred_zone)
2644 goto out;
5117f45d 2645
d95ea5d1
BZ
2646#ifdef CONFIG_CMA
2647 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2648 alloc_flags |= ALLOC_CMA;
2649#endif
5117f45d 2650 /* First allocation attempt */
11e33f6a 2651 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2652 zonelist, high_zoneidx, alloc_flags,
3dd28266 2653 preferred_zone, migratetype);
21caf2fc
ML
2654 if (unlikely(!page)) {
2655 /*
2656 * Runtime PM, block IO and its error handling path
2657 * can deadlock because I/O on the device might not
2658 * complete.
2659 */
2660 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2661 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2662 zonelist, high_zoneidx, nodemask,
3dd28266 2663 preferred_zone, migratetype);
21caf2fc 2664 }
11e33f6a 2665
4b4f278c 2666 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2667
2668out:
2669 /*
2670 * When updating a task's mems_allowed, it is possible to race with
2671 * parallel threads in such a way that an allocation can fail while
2672 * the mask is being updated. If a page allocation is about to fail,
2673 * check if the cpuset changed during allocation and if so, retry.
2674 */
2675 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2676 goto retry_cpuset;
2677
6a1a0d3b
GC
2678 memcg_kmem_commit_charge(page, memcg, order);
2679
11e33f6a 2680 return page;
1da177e4 2681}
d239171e 2682EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2683
2684/*
2685 * Common helper functions.
2686 */
920c7a5d 2687unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2688{
945a1113
AM
2689 struct page *page;
2690
2691 /*
2692 * __get_free_pages() returns a 32-bit address, which cannot represent
2693 * a highmem page
2694 */
2695 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2696
1da177e4
LT
2697 page = alloc_pages(gfp_mask, order);
2698 if (!page)
2699 return 0;
2700 return (unsigned long) page_address(page);
2701}
1da177e4
LT
2702EXPORT_SYMBOL(__get_free_pages);
2703
920c7a5d 2704unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2705{
945a1113 2706 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2707}
1da177e4
LT
2708EXPORT_SYMBOL(get_zeroed_page);
2709
920c7a5d 2710void __free_pages(struct page *page, unsigned int order)
1da177e4 2711{
b5810039 2712 if (put_page_testzero(page)) {
1da177e4 2713 if (order == 0)
fc91668e 2714 free_hot_cold_page(page, 0);
1da177e4
LT
2715 else
2716 __free_pages_ok(page, order);
2717 }
2718}
2719
2720EXPORT_SYMBOL(__free_pages);
2721
920c7a5d 2722void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2723{
2724 if (addr != 0) {
725d704e 2725 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2726 __free_pages(virt_to_page((void *)addr), order);
2727 }
2728}
2729
2730EXPORT_SYMBOL(free_pages);
2731
6a1a0d3b
GC
2732/*
2733 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2734 * pages allocated with __GFP_KMEMCG.
2735 *
2736 * Those pages are accounted to a particular memcg, embedded in the
2737 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2738 * for that information only to find out that it is NULL for users who have no
2739 * interest in that whatsoever, we provide these functions.
2740 *
2741 * The caller knows better which flags it relies on.
2742 */
2743void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2744{
2745 memcg_kmem_uncharge_pages(page, order);
2746 __free_pages(page, order);
2747}
2748
2749void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2750{
2751 if (addr != 0) {
2752 VM_BUG_ON(!virt_addr_valid((void *)addr));
2753 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2754 }
2755}
2756
ee85c2e1
AK
2757static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2758{
2759 if (addr) {
2760 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2761 unsigned long used = addr + PAGE_ALIGN(size);
2762
2763 split_page(virt_to_page((void *)addr), order);
2764 while (used < alloc_end) {
2765 free_page(used);
2766 used += PAGE_SIZE;
2767 }
2768 }
2769 return (void *)addr;
2770}
2771
2be0ffe2
TT
2772/**
2773 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2774 * @size: the number of bytes to allocate
2775 * @gfp_mask: GFP flags for the allocation
2776 *
2777 * This function is similar to alloc_pages(), except that it allocates the
2778 * minimum number of pages to satisfy the request. alloc_pages() can only
2779 * allocate memory in power-of-two pages.
2780 *
2781 * This function is also limited by MAX_ORDER.
2782 *
2783 * Memory allocated by this function must be released by free_pages_exact().
2784 */
2785void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2786{
2787 unsigned int order = get_order(size);
2788 unsigned long addr;
2789
2790 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2791 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2792}
2793EXPORT_SYMBOL(alloc_pages_exact);
2794
ee85c2e1
AK
2795/**
2796 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2797 * pages on a node.
b5e6ab58 2798 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2799 * @size: the number of bytes to allocate
2800 * @gfp_mask: GFP flags for the allocation
2801 *
2802 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2803 * back.
2804 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2805 * but is not exact.
2806 */
2807void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2808{
2809 unsigned order = get_order(size);
2810 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2811 if (!p)
2812 return NULL;
2813 return make_alloc_exact((unsigned long)page_address(p), order, size);
2814}
2815EXPORT_SYMBOL(alloc_pages_exact_nid);
2816
2be0ffe2
TT
2817/**
2818 * free_pages_exact - release memory allocated via alloc_pages_exact()
2819 * @virt: the value returned by alloc_pages_exact.
2820 * @size: size of allocation, same value as passed to alloc_pages_exact().
2821 *
2822 * Release the memory allocated by a previous call to alloc_pages_exact.
2823 */
2824void free_pages_exact(void *virt, size_t size)
2825{
2826 unsigned long addr = (unsigned long)virt;
2827 unsigned long end = addr + PAGE_ALIGN(size);
2828
2829 while (addr < end) {
2830 free_page(addr);
2831 addr += PAGE_SIZE;
2832 }
2833}
2834EXPORT_SYMBOL(free_pages_exact);
2835
e0fb5815
ZY
2836/**
2837 * nr_free_zone_pages - count number of pages beyond high watermark
2838 * @offset: The zone index of the highest zone
2839 *
2840 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2841 * high watermark within all zones at or below a given zone index. For each
2842 * zone, the number of pages is calculated as:
834405c3 2843 * managed_pages - high_pages
e0fb5815 2844 */
ebec3862 2845static unsigned long nr_free_zone_pages(int offset)
1da177e4 2846{
dd1a239f 2847 struct zoneref *z;
54a6eb5c
MG
2848 struct zone *zone;
2849
e310fd43 2850 /* Just pick one node, since fallback list is circular */
ebec3862 2851 unsigned long sum = 0;
1da177e4 2852
0e88460d 2853 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2854
54a6eb5c 2855 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2856 unsigned long size = zone->managed_pages;
41858966 2857 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2858 if (size > high)
2859 sum += size - high;
1da177e4
LT
2860 }
2861
2862 return sum;
2863}
2864
e0fb5815
ZY
2865/**
2866 * nr_free_buffer_pages - count number of pages beyond high watermark
2867 *
2868 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2869 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2870 */
ebec3862 2871unsigned long nr_free_buffer_pages(void)
1da177e4 2872{
af4ca457 2873 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2874}
c2f1a551 2875EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2876
e0fb5815
ZY
2877/**
2878 * nr_free_pagecache_pages - count number of pages beyond high watermark
2879 *
2880 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2881 * high watermark within all zones.
1da177e4 2882 */
ebec3862 2883unsigned long nr_free_pagecache_pages(void)
1da177e4 2884{
2a1e274a 2885 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2886}
08e0f6a9
CL
2887
2888static inline void show_node(struct zone *zone)
1da177e4 2889{
e5adfffc 2890 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2891 printk("Node %d ", zone_to_nid(zone));
1da177e4 2892}
1da177e4 2893
1da177e4
LT
2894void si_meminfo(struct sysinfo *val)
2895{
2896 val->totalram = totalram_pages;
2897 val->sharedram = 0;
d23ad423 2898 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2899 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2900 val->totalhigh = totalhigh_pages;
2901 val->freehigh = nr_free_highpages();
1da177e4
LT
2902 val->mem_unit = PAGE_SIZE;
2903}
2904
2905EXPORT_SYMBOL(si_meminfo);
2906
2907#ifdef CONFIG_NUMA
2908void si_meminfo_node(struct sysinfo *val, int nid)
2909{
cdd91a77
JL
2910 int zone_type; /* needs to be signed */
2911 unsigned long managed_pages = 0;
1da177e4
LT
2912 pg_data_t *pgdat = NODE_DATA(nid);
2913
cdd91a77
JL
2914 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2915 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2916 val->totalram = managed_pages;
d23ad423 2917 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2918#ifdef CONFIG_HIGHMEM
b40da049 2919 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2920 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2921 NR_FREE_PAGES);
98d2b0eb
CL
2922#else
2923 val->totalhigh = 0;
2924 val->freehigh = 0;
2925#endif
1da177e4
LT
2926 val->mem_unit = PAGE_SIZE;
2927}
2928#endif
2929
ddd588b5 2930/*
7bf02ea2
DR
2931 * Determine whether the node should be displayed or not, depending on whether
2932 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2933 */
7bf02ea2 2934bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2935{
2936 bool ret = false;
cc9a6c87 2937 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2938
2939 if (!(flags & SHOW_MEM_FILTER_NODES))
2940 goto out;
2941
cc9a6c87
MG
2942 do {
2943 cpuset_mems_cookie = get_mems_allowed();
2944 ret = !node_isset(nid, cpuset_current_mems_allowed);
2945 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2946out:
2947 return ret;
2948}
2949
1da177e4
LT
2950#define K(x) ((x) << (PAGE_SHIFT-10))
2951
377e4f16
RV
2952static void show_migration_types(unsigned char type)
2953{
2954 static const char types[MIGRATE_TYPES] = {
2955 [MIGRATE_UNMOVABLE] = 'U',
2956 [MIGRATE_RECLAIMABLE] = 'E',
2957 [MIGRATE_MOVABLE] = 'M',
2958 [MIGRATE_RESERVE] = 'R',
2959#ifdef CONFIG_CMA
2960 [MIGRATE_CMA] = 'C',
2961#endif
194159fb 2962#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 2963 [MIGRATE_ISOLATE] = 'I',
194159fb 2964#endif
377e4f16
RV
2965 };
2966 char tmp[MIGRATE_TYPES + 1];
2967 char *p = tmp;
2968 int i;
2969
2970 for (i = 0; i < MIGRATE_TYPES; i++) {
2971 if (type & (1 << i))
2972 *p++ = types[i];
2973 }
2974
2975 *p = '\0';
2976 printk("(%s) ", tmp);
2977}
2978
1da177e4
LT
2979/*
2980 * Show free area list (used inside shift_scroll-lock stuff)
2981 * We also calculate the percentage fragmentation. We do this by counting the
2982 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2983 * Suppresses nodes that are not allowed by current's cpuset if
2984 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2985 */
7bf02ea2 2986void show_free_areas(unsigned int filter)
1da177e4 2987{
c7241913 2988 int cpu;
1da177e4
LT
2989 struct zone *zone;
2990
ee99c71c 2991 for_each_populated_zone(zone) {
7bf02ea2 2992 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2993 continue;
c7241913
JS
2994 show_node(zone);
2995 printk("%s per-cpu:\n", zone->name);
1da177e4 2996
6b482c67 2997 for_each_online_cpu(cpu) {
1da177e4
LT
2998 struct per_cpu_pageset *pageset;
2999
99dcc3e5 3000 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3001
3dfa5721
CL
3002 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3003 cpu, pageset->pcp.high,
3004 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3005 }
3006 }
3007
a731286d
KM
3008 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3009 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3010 " unevictable:%lu"
b76146ed 3011 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3012 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3013 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3014 " free_cma:%lu\n",
4f98a2fe 3015 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3016 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3017 global_page_state(NR_ISOLATED_ANON),
3018 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3019 global_page_state(NR_INACTIVE_FILE),
a731286d 3020 global_page_state(NR_ISOLATED_FILE),
7b854121 3021 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3022 global_page_state(NR_FILE_DIRTY),
ce866b34 3023 global_page_state(NR_WRITEBACK),
fd39fc85 3024 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3025 global_page_state(NR_FREE_PAGES),
3701b033
KM
3026 global_page_state(NR_SLAB_RECLAIMABLE),
3027 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3028 global_page_state(NR_FILE_MAPPED),
4b02108a 3029 global_page_state(NR_SHMEM),
a25700a5 3030 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3031 global_page_state(NR_BOUNCE),
3032 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3033
ee99c71c 3034 for_each_populated_zone(zone) {
1da177e4
LT
3035 int i;
3036
7bf02ea2 3037 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3038 continue;
1da177e4
LT
3039 show_node(zone);
3040 printk("%s"
3041 " free:%lukB"
3042 " min:%lukB"
3043 " low:%lukB"
3044 " high:%lukB"
4f98a2fe
RR
3045 " active_anon:%lukB"
3046 " inactive_anon:%lukB"
3047 " active_file:%lukB"
3048 " inactive_file:%lukB"
7b854121 3049 " unevictable:%lukB"
a731286d
KM
3050 " isolated(anon):%lukB"
3051 " isolated(file):%lukB"
1da177e4 3052 " present:%lukB"
9feedc9d 3053 " managed:%lukB"
4a0aa73f
KM
3054 " mlocked:%lukB"
3055 " dirty:%lukB"
3056 " writeback:%lukB"
3057 " mapped:%lukB"
4b02108a 3058 " shmem:%lukB"
4a0aa73f
KM
3059 " slab_reclaimable:%lukB"
3060 " slab_unreclaimable:%lukB"
c6a7f572 3061 " kernel_stack:%lukB"
4a0aa73f
KM
3062 " pagetables:%lukB"
3063 " unstable:%lukB"
3064 " bounce:%lukB"
d1ce749a 3065 " free_cma:%lukB"
4a0aa73f 3066 " writeback_tmp:%lukB"
1da177e4
LT
3067 " pages_scanned:%lu"
3068 " all_unreclaimable? %s"
3069 "\n",
3070 zone->name,
88f5acf8 3071 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3072 K(min_wmark_pages(zone)),
3073 K(low_wmark_pages(zone)),
3074 K(high_wmark_pages(zone)),
4f98a2fe
RR
3075 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3076 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3077 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3078 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3079 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3080 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3081 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3082 K(zone->present_pages),
9feedc9d 3083 K(zone->managed_pages),
4a0aa73f
KM
3084 K(zone_page_state(zone, NR_MLOCK)),
3085 K(zone_page_state(zone, NR_FILE_DIRTY)),
3086 K(zone_page_state(zone, NR_WRITEBACK)),
3087 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3088 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3089 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3090 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3091 zone_page_state(zone, NR_KERNEL_STACK) *
3092 THREAD_SIZE / 1024,
4a0aa73f
KM
3093 K(zone_page_state(zone, NR_PAGETABLE)),
3094 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3095 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3096 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3097 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3098 zone->pages_scanned,
93e4a89a 3099 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3100 );
3101 printk("lowmem_reserve[]:");
3102 for (i = 0; i < MAX_NR_ZONES; i++)
3103 printk(" %lu", zone->lowmem_reserve[i]);
3104 printk("\n");
3105 }
3106
ee99c71c 3107 for_each_populated_zone(zone) {
b8af2941 3108 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3109 unsigned char types[MAX_ORDER];
1da177e4 3110
7bf02ea2 3111 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3112 continue;
1da177e4
LT
3113 show_node(zone);
3114 printk("%s: ", zone->name);
1da177e4
LT
3115
3116 spin_lock_irqsave(&zone->lock, flags);
3117 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3118 struct free_area *area = &zone->free_area[order];
3119 int type;
3120
3121 nr[order] = area->nr_free;
8f9de51a 3122 total += nr[order] << order;
377e4f16
RV
3123
3124 types[order] = 0;
3125 for (type = 0; type < MIGRATE_TYPES; type++) {
3126 if (!list_empty(&area->free_list[type]))
3127 types[order] |= 1 << type;
3128 }
1da177e4
LT
3129 }
3130 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3131 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3132 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3133 if (nr[order])
3134 show_migration_types(types[order]);
3135 }
1da177e4
LT
3136 printk("= %lukB\n", K(total));
3137 }
3138
949f7ec5
DR
3139 hugetlb_show_meminfo();
3140
e6f3602d
LW
3141 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3142
1da177e4
LT
3143 show_swap_cache_info();
3144}
3145
19770b32
MG
3146static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3147{
3148 zoneref->zone = zone;
3149 zoneref->zone_idx = zone_idx(zone);
3150}
3151
1da177e4
LT
3152/*
3153 * Builds allocation fallback zone lists.
1a93205b
CL
3154 *
3155 * Add all populated zones of a node to the zonelist.
1da177e4 3156 */
f0c0b2b8 3157static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3158 int nr_zones)
1da177e4 3159{
1a93205b 3160 struct zone *zone;
bc732f1d 3161 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3162
3163 do {
2f6726e5 3164 zone_type--;
070f8032 3165 zone = pgdat->node_zones + zone_type;
1a93205b 3166 if (populated_zone(zone)) {
dd1a239f
MG
3167 zoneref_set_zone(zone,
3168 &zonelist->_zonerefs[nr_zones++]);
070f8032 3169 check_highest_zone(zone_type);
1da177e4 3170 }
2f6726e5 3171 } while (zone_type);
bc732f1d 3172
070f8032 3173 return nr_zones;
1da177e4
LT
3174}
3175
f0c0b2b8
KH
3176
3177/*
3178 * zonelist_order:
3179 * 0 = automatic detection of better ordering.
3180 * 1 = order by ([node] distance, -zonetype)
3181 * 2 = order by (-zonetype, [node] distance)
3182 *
3183 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3184 * the same zonelist. So only NUMA can configure this param.
3185 */
3186#define ZONELIST_ORDER_DEFAULT 0
3187#define ZONELIST_ORDER_NODE 1
3188#define ZONELIST_ORDER_ZONE 2
3189
3190/* zonelist order in the kernel.
3191 * set_zonelist_order() will set this to NODE or ZONE.
3192 */
3193static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3194static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3195
3196
1da177e4 3197#ifdef CONFIG_NUMA
f0c0b2b8
KH
3198/* The value user specified ....changed by config */
3199static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3200/* string for sysctl */
3201#define NUMA_ZONELIST_ORDER_LEN 16
3202char numa_zonelist_order[16] = "default";
3203
3204/*
3205 * interface for configure zonelist ordering.
3206 * command line option "numa_zonelist_order"
3207 * = "[dD]efault - default, automatic configuration.
3208 * = "[nN]ode - order by node locality, then by zone within node
3209 * = "[zZ]one - order by zone, then by locality within zone
3210 */
3211
3212static int __parse_numa_zonelist_order(char *s)
3213{
3214 if (*s == 'd' || *s == 'D') {
3215 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3216 } else if (*s == 'n' || *s == 'N') {
3217 user_zonelist_order = ZONELIST_ORDER_NODE;
3218 } else if (*s == 'z' || *s == 'Z') {
3219 user_zonelist_order = ZONELIST_ORDER_ZONE;
3220 } else {
3221 printk(KERN_WARNING
3222 "Ignoring invalid numa_zonelist_order value: "
3223 "%s\n", s);
3224 return -EINVAL;
3225 }
3226 return 0;
3227}
3228
3229static __init int setup_numa_zonelist_order(char *s)
3230{
ecb256f8
VL
3231 int ret;
3232
3233 if (!s)
3234 return 0;
3235
3236 ret = __parse_numa_zonelist_order(s);
3237 if (ret == 0)
3238 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3239
3240 return ret;
f0c0b2b8
KH
3241}
3242early_param("numa_zonelist_order", setup_numa_zonelist_order);
3243
3244/*
3245 * sysctl handler for numa_zonelist_order
3246 */
3247int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3248 void __user *buffer, size_t *length,
f0c0b2b8
KH
3249 loff_t *ppos)
3250{
3251 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3252 int ret;
443c6f14 3253 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3254
443c6f14 3255 mutex_lock(&zl_order_mutex);
dacbde09
CG
3256 if (write) {
3257 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3258 ret = -EINVAL;
3259 goto out;
3260 }
3261 strcpy(saved_string, (char *)table->data);
3262 }
8d65af78 3263 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3264 if (ret)
443c6f14 3265 goto out;
f0c0b2b8
KH
3266 if (write) {
3267 int oldval = user_zonelist_order;
dacbde09
CG
3268
3269 ret = __parse_numa_zonelist_order((char *)table->data);
3270 if (ret) {
f0c0b2b8
KH
3271 /*
3272 * bogus value. restore saved string
3273 */
dacbde09 3274 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3275 NUMA_ZONELIST_ORDER_LEN);
3276 user_zonelist_order = oldval;
4eaf3f64
HL
3277 } else if (oldval != user_zonelist_order) {
3278 mutex_lock(&zonelists_mutex);
9adb62a5 3279 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3280 mutex_unlock(&zonelists_mutex);
3281 }
f0c0b2b8 3282 }
443c6f14
AK
3283out:
3284 mutex_unlock(&zl_order_mutex);
3285 return ret;
f0c0b2b8
KH
3286}
3287
3288
62bc62a8 3289#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3290static int node_load[MAX_NUMNODES];
3291
1da177e4 3292/**
4dc3b16b 3293 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3294 * @node: node whose fallback list we're appending
3295 * @used_node_mask: nodemask_t of already used nodes
3296 *
3297 * We use a number of factors to determine which is the next node that should
3298 * appear on a given node's fallback list. The node should not have appeared
3299 * already in @node's fallback list, and it should be the next closest node
3300 * according to the distance array (which contains arbitrary distance values
3301 * from each node to each node in the system), and should also prefer nodes
3302 * with no CPUs, since presumably they'll have very little allocation pressure
3303 * on them otherwise.
3304 * It returns -1 if no node is found.
3305 */
f0c0b2b8 3306static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3307{
4cf808eb 3308 int n, val;
1da177e4 3309 int min_val = INT_MAX;
00ef2d2f 3310 int best_node = NUMA_NO_NODE;
a70f7302 3311 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3312
4cf808eb
LT
3313 /* Use the local node if we haven't already */
3314 if (!node_isset(node, *used_node_mask)) {
3315 node_set(node, *used_node_mask);
3316 return node;
3317 }
1da177e4 3318
4b0ef1fe 3319 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3320
3321 /* Don't want a node to appear more than once */
3322 if (node_isset(n, *used_node_mask))
3323 continue;
3324
1da177e4
LT
3325 /* Use the distance array to find the distance */
3326 val = node_distance(node, n);
3327
4cf808eb
LT
3328 /* Penalize nodes under us ("prefer the next node") */
3329 val += (n < node);
3330
1da177e4 3331 /* Give preference to headless and unused nodes */
a70f7302
RR
3332 tmp = cpumask_of_node(n);
3333 if (!cpumask_empty(tmp))
1da177e4
LT
3334 val += PENALTY_FOR_NODE_WITH_CPUS;
3335
3336 /* Slight preference for less loaded node */
3337 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3338 val += node_load[n];
3339
3340 if (val < min_val) {
3341 min_val = val;
3342 best_node = n;
3343 }
3344 }
3345
3346 if (best_node >= 0)
3347 node_set(best_node, *used_node_mask);
3348
3349 return best_node;
3350}
3351
f0c0b2b8
KH
3352
3353/*
3354 * Build zonelists ordered by node and zones within node.
3355 * This results in maximum locality--normal zone overflows into local
3356 * DMA zone, if any--but risks exhausting DMA zone.
3357 */
3358static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3359{
f0c0b2b8 3360 int j;
1da177e4 3361 struct zonelist *zonelist;
f0c0b2b8 3362
54a6eb5c 3363 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3364 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3365 ;
bc732f1d 3366 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3367 zonelist->_zonerefs[j].zone = NULL;
3368 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3369}
3370
523b9458
CL
3371/*
3372 * Build gfp_thisnode zonelists
3373 */
3374static void build_thisnode_zonelists(pg_data_t *pgdat)
3375{
523b9458
CL
3376 int j;
3377 struct zonelist *zonelist;
3378
54a6eb5c 3379 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3380 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3381 zonelist->_zonerefs[j].zone = NULL;
3382 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3383}
3384
f0c0b2b8
KH
3385/*
3386 * Build zonelists ordered by zone and nodes within zones.
3387 * This results in conserving DMA zone[s] until all Normal memory is
3388 * exhausted, but results in overflowing to remote node while memory
3389 * may still exist in local DMA zone.
3390 */
3391static int node_order[MAX_NUMNODES];
3392
3393static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3394{
f0c0b2b8
KH
3395 int pos, j, node;
3396 int zone_type; /* needs to be signed */
3397 struct zone *z;
3398 struct zonelist *zonelist;
3399
54a6eb5c
MG
3400 zonelist = &pgdat->node_zonelists[0];
3401 pos = 0;
3402 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3403 for (j = 0; j < nr_nodes; j++) {
3404 node = node_order[j];
3405 z = &NODE_DATA(node)->node_zones[zone_type];
3406 if (populated_zone(z)) {
dd1a239f
MG
3407 zoneref_set_zone(z,
3408 &zonelist->_zonerefs[pos++]);
54a6eb5c 3409 check_highest_zone(zone_type);
f0c0b2b8
KH
3410 }
3411 }
f0c0b2b8 3412 }
dd1a239f
MG
3413 zonelist->_zonerefs[pos].zone = NULL;
3414 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3415}
3416
3417static int default_zonelist_order(void)
3418{
3419 int nid, zone_type;
b8af2941 3420 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3421 struct zone *z;
3422 int average_size;
3423 /*
b8af2941 3424 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3425 * If they are really small and used heavily, the system can fall
3426 * into OOM very easily.
e325c90f 3427 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3428 */
3429 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3430 low_kmem_size = 0;
3431 total_size = 0;
3432 for_each_online_node(nid) {
3433 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3434 z = &NODE_DATA(nid)->node_zones[zone_type];
3435 if (populated_zone(z)) {
3436 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3437 low_kmem_size += z->managed_pages;
3438 total_size += z->managed_pages;
e325c90f
DR
3439 } else if (zone_type == ZONE_NORMAL) {
3440 /*
3441 * If any node has only lowmem, then node order
3442 * is preferred to allow kernel allocations
3443 * locally; otherwise, they can easily infringe
3444 * on other nodes when there is an abundance of
3445 * lowmem available to allocate from.
3446 */
3447 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3448 }
3449 }
3450 }
3451 if (!low_kmem_size || /* there are no DMA area. */
3452 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3453 return ZONELIST_ORDER_NODE;
3454 /*
3455 * look into each node's config.
b8af2941
PK
3456 * If there is a node whose DMA/DMA32 memory is very big area on
3457 * local memory, NODE_ORDER may be suitable.
3458 */
37b07e41 3459 average_size = total_size /
4b0ef1fe 3460 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3461 for_each_online_node(nid) {
3462 low_kmem_size = 0;
3463 total_size = 0;
3464 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3465 z = &NODE_DATA(nid)->node_zones[zone_type];
3466 if (populated_zone(z)) {
3467 if (zone_type < ZONE_NORMAL)
3468 low_kmem_size += z->present_pages;
3469 total_size += z->present_pages;
3470 }
3471 }
3472 if (low_kmem_size &&
3473 total_size > average_size && /* ignore small node */
3474 low_kmem_size > total_size * 70/100)
3475 return ZONELIST_ORDER_NODE;
3476 }
3477 return ZONELIST_ORDER_ZONE;
3478}
3479
3480static void set_zonelist_order(void)
3481{
3482 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3483 current_zonelist_order = default_zonelist_order();
3484 else
3485 current_zonelist_order = user_zonelist_order;
3486}
3487
3488static void build_zonelists(pg_data_t *pgdat)
3489{
3490 int j, node, load;
3491 enum zone_type i;
1da177e4 3492 nodemask_t used_mask;
f0c0b2b8
KH
3493 int local_node, prev_node;
3494 struct zonelist *zonelist;
3495 int order = current_zonelist_order;
1da177e4
LT
3496
3497 /* initialize zonelists */
523b9458 3498 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3499 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3500 zonelist->_zonerefs[0].zone = NULL;
3501 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3502 }
3503
3504 /* NUMA-aware ordering of nodes */
3505 local_node = pgdat->node_id;
62bc62a8 3506 load = nr_online_nodes;
1da177e4
LT
3507 prev_node = local_node;
3508 nodes_clear(used_mask);
f0c0b2b8 3509
f0c0b2b8
KH
3510 memset(node_order, 0, sizeof(node_order));
3511 j = 0;
3512
1da177e4
LT
3513 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3514 /*
3515 * We don't want to pressure a particular node.
3516 * So adding penalty to the first node in same
3517 * distance group to make it round-robin.
3518 */
957f822a
DR
3519 if (node_distance(local_node, node) !=
3520 node_distance(local_node, prev_node))
f0c0b2b8
KH
3521 node_load[node] = load;
3522
1da177e4
LT
3523 prev_node = node;
3524 load--;
f0c0b2b8
KH
3525 if (order == ZONELIST_ORDER_NODE)
3526 build_zonelists_in_node_order(pgdat, node);
3527 else
3528 node_order[j++] = node; /* remember order */
3529 }
1da177e4 3530
f0c0b2b8
KH
3531 if (order == ZONELIST_ORDER_ZONE) {
3532 /* calculate node order -- i.e., DMA last! */
3533 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3534 }
523b9458
CL
3535
3536 build_thisnode_zonelists(pgdat);
1da177e4
LT
3537}
3538
9276b1bc 3539/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3540static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3541{
54a6eb5c
MG
3542 struct zonelist *zonelist;
3543 struct zonelist_cache *zlc;
dd1a239f 3544 struct zoneref *z;
9276b1bc 3545
54a6eb5c
MG
3546 zonelist = &pgdat->node_zonelists[0];
3547 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3548 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3549 for (z = zonelist->_zonerefs; z->zone; z++)
3550 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3551}
3552
7aac7898
LS
3553#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3554/*
3555 * Return node id of node used for "local" allocations.
3556 * I.e., first node id of first zone in arg node's generic zonelist.
3557 * Used for initializing percpu 'numa_mem', which is used primarily
3558 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3559 */
3560int local_memory_node(int node)
3561{
3562 struct zone *zone;
3563
3564 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3565 gfp_zone(GFP_KERNEL),
3566 NULL,
3567 &zone);
3568 return zone->node;
3569}
3570#endif
f0c0b2b8 3571
1da177e4
LT
3572#else /* CONFIG_NUMA */
3573
f0c0b2b8
KH
3574static void set_zonelist_order(void)
3575{
3576 current_zonelist_order = ZONELIST_ORDER_ZONE;
3577}
3578
3579static void build_zonelists(pg_data_t *pgdat)
1da177e4 3580{
19655d34 3581 int node, local_node;
54a6eb5c
MG
3582 enum zone_type j;
3583 struct zonelist *zonelist;
1da177e4
LT
3584
3585 local_node = pgdat->node_id;
1da177e4 3586
54a6eb5c 3587 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3588 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3589
54a6eb5c
MG
3590 /*
3591 * Now we build the zonelist so that it contains the zones
3592 * of all the other nodes.
3593 * We don't want to pressure a particular node, so when
3594 * building the zones for node N, we make sure that the
3595 * zones coming right after the local ones are those from
3596 * node N+1 (modulo N)
3597 */
3598 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3599 if (!node_online(node))
3600 continue;
bc732f1d 3601 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3602 }
54a6eb5c
MG
3603 for (node = 0; node < local_node; node++) {
3604 if (!node_online(node))
3605 continue;
bc732f1d 3606 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3607 }
3608
dd1a239f
MG
3609 zonelist->_zonerefs[j].zone = NULL;
3610 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3611}
3612
9276b1bc 3613/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3614static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3615{
54a6eb5c 3616 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3617}
3618
1da177e4
LT
3619#endif /* CONFIG_NUMA */
3620
99dcc3e5
CL
3621/*
3622 * Boot pageset table. One per cpu which is going to be used for all
3623 * zones and all nodes. The parameters will be set in such a way
3624 * that an item put on a list will immediately be handed over to
3625 * the buddy list. This is safe since pageset manipulation is done
3626 * with interrupts disabled.
3627 *
3628 * The boot_pagesets must be kept even after bootup is complete for
3629 * unused processors and/or zones. They do play a role for bootstrapping
3630 * hotplugged processors.
3631 *
3632 * zoneinfo_show() and maybe other functions do
3633 * not check if the processor is online before following the pageset pointer.
3634 * Other parts of the kernel may not check if the zone is available.
3635 */
3636static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3637static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3638static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3639
4eaf3f64
HL
3640/*
3641 * Global mutex to protect against size modification of zonelists
3642 * as well as to serialize pageset setup for the new populated zone.
3643 */
3644DEFINE_MUTEX(zonelists_mutex);
3645
9b1a4d38 3646/* return values int ....just for stop_machine() */
4ed7e022 3647static int __build_all_zonelists(void *data)
1da177e4 3648{
6811378e 3649 int nid;
99dcc3e5 3650 int cpu;
9adb62a5 3651 pg_data_t *self = data;
9276b1bc 3652
7f9cfb31
BL
3653#ifdef CONFIG_NUMA
3654 memset(node_load, 0, sizeof(node_load));
3655#endif
9adb62a5
JL
3656
3657 if (self && !node_online(self->node_id)) {
3658 build_zonelists(self);
3659 build_zonelist_cache(self);
3660 }
3661
9276b1bc 3662 for_each_online_node(nid) {
7ea1530a
CL
3663 pg_data_t *pgdat = NODE_DATA(nid);
3664
3665 build_zonelists(pgdat);
3666 build_zonelist_cache(pgdat);
9276b1bc 3667 }
99dcc3e5
CL
3668
3669 /*
3670 * Initialize the boot_pagesets that are going to be used
3671 * for bootstrapping processors. The real pagesets for
3672 * each zone will be allocated later when the per cpu
3673 * allocator is available.
3674 *
3675 * boot_pagesets are used also for bootstrapping offline
3676 * cpus if the system is already booted because the pagesets
3677 * are needed to initialize allocators on a specific cpu too.
3678 * F.e. the percpu allocator needs the page allocator which
3679 * needs the percpu allocator in order to allocate its pagesets
3680 * (a chicken-egg dilemma).
3681 */
7aac7898 3682 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3683 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3684
7aac7898
LS
3685#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3686 /*
3687 * We now know the "local memory node" for each node--
3688 * i.e., the node of the first zone in the generic zonelist.
3689 * Set up numa_mem percpu variable for on-line cpus. During
3690 * boot, only the boot cpu should be on-line; we'll init the
3691 * secondary cpus' numa_mem as they come on-line. During
3692 * node/memory hotplug, we'll fixup all on-line cpus.
3693 */
3694 if (cpu_online(cpu))
3695 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3696#endif
3697 }
3698
6811378e
YG
3699 return 0;
3700}
3701
4eaf3f64
HL
3702/*
3703 * Called with zonelists_mutex held always
3704 * unless system_state == SYSTEM_BOOTING.
3705 */
9adb62a5 3706void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3707{
f0c0b2b8
KH
3708 set_zonelist_order();
3709
6811378e 3710 if (system_state == SYSTEM_BOOTING) {
423b41d7 3711 __build_all_zonelists(NULL);
68ad8df4 3712 mminit_verify_zonelist();
6811378e
YG
3713 cpuset_init_current_mems_allowed();
3714 } else {
e9959f0f 3715#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3716 if (zone)
3717 setup_zone_pageset(zone);
e9959f0f 3718#endif
dd1895e2
CS
3719 /* we have to stop all cpus to guarantee there is no user
3720 of zonelist */
9adb62a5 3721 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3722 /* cpuset refresh routine should be here */
3723 }
bd1e22b8 3724 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3725 /*
3726 * Disable grouping by mobility if the number of pages in the
3727 * system is too low to allow the mechanism to work. It would be
3728 * more accurate, but expensive to check per-zone. This check is
3729 * made on memory-hotadd so a system can start with mobility
3730 * disabled and enable it later
3731 */
d9c23400 3732 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3733 page_group_by_mobility_disabled = 1;
3734 else
3735 page_group_by_mobility_disabled = 0;
3736
3737 printk("Built %i zonelists in %s order, mobility grouping %s. "
3738 "Total pages: %ld\n",
62bc62a8 3739 nr_online_nodes,
f0c0b2b8 3740 zonelist_order_name[current_zonelist_order],
9ef9acb0 3741 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3742 vm_total_pages);
3743#ifdef CONFIG_NUMA
3744 printk("Policy zone: %s\n", zone_names[policy_zone]);
3745#endif
1da177e4
LT
3746}
3747
3748/*
3749 * Helper functions to size the waitqueue hash table.
3750 * Essentially these want to choose hash table sizes sufficiently
3751 * large so that collisions trying to wait on pages are rare.
3752 * But in fact, the number of active page waitqueues on typical
3753 * systems is ridiculously low, less than 200. So this is even
3754 * conservative, even though it seems large.
3755 *
3756 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3757 * waitqueues, i.e. the size of the waitq table given the number of pages.
3758 */
3759#define PAGES_PER_WAITQUEUE 256
3760
cca448fe 3761#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3762static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3763{
3764 unsigned long size = 1;
3765
3766 pages /= PAGES_PER_WAITQUEUE;
3767
3768 while (size < pages)
3769 size <<= 1;
3770
3771 /*
3772 * Once we have dozens or even hundreds of threads sleeping
3773 * on IO we've got bigger problems than wait queue collision.
3774 * Limit the size of the wait table to a reasonable size.
3775 */
3776 size = min(size, 4096UL);
3777
3778 return max(size, 4UL);
3779}
cca448fe
YG
3780#else
3781/*
3782 * A zone's size might be changed by hot-add, so it is not possible to determine
3783 * a suitable size for its wait_table. So we use the maximum size now.
3784 *
3785 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3786 *
3787 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3788 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3789 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3790 *
3791 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3792 * or more by the traditional way. (See above). It equals:
3793 *
3794 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3795 * ia64(16K page size) : = ( 8G + 4M)byte.
3796 * powerpc (64K page size) : = (32G +16M)byte.
3797 */
3798static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3799{
3800 return 4096UL;
3801}
3802#endif
1da177e4
LT
3803
3804/*
3805 * This is an integer logarithm so that shifts can be used later
3806 * to extract the more random high bits from the multiplicative
3807 * hash function before the remainder is taken.
3808 */
3809static inline unsigned long wait_table_bits(unsigned long size)
3810{
3811 return ffz(~size);
3812}
3813
3814#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3815
6d3163ce
AH
3816/*
3817 * Check if a pageblock contains reserved pages
3818 */
3819static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3820{
3821 unsigned long pfn;
3822
3823 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3824 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3825 return 1;
3826 }
3827 return 0;
3828}
3829
56fd56b8 3830/*
d9c23400 3831 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3832 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3833 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3834 * higher will lead to a bigger reserve which will get freed as contiguous
3835 * blocks as reclaim kicks in
3836 */
3837static void setup_zone_migrate_reserve(struct zone *zone)
3838{
6d3163ce 3839 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3840 struct page *page;
78986a67
MG
3841 unsigned long block_migratetype;
3842 int reserve;
56fd56b8 3843
d0215638
MH
3844 /*
3845 * Get the start pfn, end pfn and the number of blocks to reserve
3846 * We have to be careful to be aligned to pageblock_nr_pages to
3847 * make sure that we always check pfn_valid for the first page in
3848 * the block.
3849 */
56fd56b8 3850 start_pfn = zone->zone_start_pfn;
108bcc96 3851 end_pfn = zone_end_pfn(zone);
d0215638 3852 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3853 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3854 pageblock_order;
56fd56b8 3855
78986a67
MG
3856 /*
3857 * Reserve blocks are generally in place to help high-order atomic
3858 * allocations that are short-lived. A min_free_kbytes value that
3859 * would result in more than 2 reserve blocks for atomic allocations
3860 * is assumed to be in place to help anti-fragmentation for the
3861 * future allocation of hugepages at runtime.
3862 */
3863 reserve = min(2, reserve);
3864
d9c23400 3865 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3866 if (!pfn_valid(pfn))
3867 continue;
3868 page = pfn_to_page(pfn);
3869
344c790e
AL
3870 /* Watch out for overlapping nodes */
3871 if (page_to_nid(page) != zone_to_nid(zone))
3872 continue;
3873
56fd56b8
MG
3874 block_migratetype = get_pageblock_migratetype(page);
3875
938929f1
MG
3876 /* Only test what is necessary when the reserves are not met */
3877 if (reserve > 0) {
3878 /*
3879 * Blocks with reserved pages will never free, skip
3880 * them.
3881 */
3882 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3883 if (pageblock_is_reserved(pfn, block_end_pfn))
3884 continue;
56fd56b8 3885
938929f1
MG
3886 /* If this block is reserved, account for it */
3887 if (block_migratetype == MIGRATE_RESERVE) {
3888 reserve--;
3889 continue;
3890 }
3891
3892 /* Suitable for reserving if this block is movable */
3893 if (block_migratetype == MIGRATE_MOVABLE) {
3894 set_pageblock_migratetype(page,
3895 MIGRATE_RESERVE);
3896 move_freepages_block(zone, page,
3897 MIGRATE_RESERVE);
3898 reserve--;
3899 continue;
3900 }
56fd56b8
MG
3901 }
3902
3903 /*
3904 * If the reserve is met and this is a previous reserved block,
3905 * take it back
3906 */
3907 if (block_migratetype == MIGRATE_RESERVE) {
3908 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3909 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3910 }
3911 }
3912}
ac0e5b7a 3913
1da177e4
LT
3914/*
3915 * Initially all pages are reserved - free ones are freed
3916 * up by free_all_bootmem() once the early boot process is
3917 * done. Non-atomic initialization, single-pass.
3918 */
c09b4240 3919void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3920 unsigned long start_pfn, enum memmap_context context)
1da177e4 3921{
1da177e4 3922 struct page *page;
29751f69
AW
3923 unsigned long end_pfn = start_pfn + size;
3924 unsigned long pfn;
86051ca5 3925 struct zone *z;
1da177e4 3926
22b31eec
HD
3927 if (highest_memmap_pfn < end_pfn - 1)
3928 highest_memmap_pfn = end_pfn - 1;
3929
86051ca5 3930 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3931 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3932 /*
3933 * There can be holes in boot-time mem_map[]s
3934 * handed to this function. They do not
3935 * exist on hotplugged memory.
3936 */
3937 if (context == MEMMAP_EARLY) {
3938 if (!early_pfn_valid(pfn))
3939 continue;
3940 if (!early_pfn_in_nid(pfn, nid))
3941 continue;
3942 }
d41dee36
AW
3943 page = pfn_to_page(pfn);
3944 set_page_links(page, zone, nid, pfn);
708614e6 3945 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3946 init_page_count(page);
22b751c3
MG
3947 page_mapcount_reset(page);
3948 page_nid_reset_last(page);
1da177e4 3949 SetPageReserved(page);
b2a0ac88
MG
3950 /*
3951 * Mark the block movable so that blocks are reserved for
3952 * movable at startup. This will force kernel allocations
3953 * to reserve their blocks rather than leaking throughout
3954 * the address space during boot when many long-lived
56fd56b8
MG
3955 * kernel allocations are made. Later some blocks near
3956 * the start are marked MIGRATE_RESERVE by
3957 * setup_zone_migrate_reserve()
86051ca5
KH
3958 *
3959 * bitmap is created for zone's valid pfn range. but memmap
3960 * can be created for invalid pages (for alignment)
3961 * check here not to call set_pageblock_migratetype() against
3962 * pfn out of zone.
b2a0ac88 3963 */
86051ca5 3964 if ((z->zone_start_pfn <= pfn)
108bcc96 3965 && (pfn < zone_end_pfn(z))
86051ca5 3966 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3967 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3968
1da177e4
LT
3969 INIT_LIST_HEAD(&page->lru);
3970#ifdef WANT_PAGE_VIRTUAL
3971 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3972 if (!is_highmem_idx(zone))
3212c6be 3973 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3974#endif
1da177e4
LT
3975 }
3976}
3977
1e548deb 3978static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3979{
b2a0ac88
MG
3980 int order, t;
3981 for_each_migratetype_order(order, t) {
3982 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3983 zone->free_area[order].nr_free = 0;
3984 }
3985}
3986
3987#ifndef __HAVE_ARCH_MEMMAP_INIT
3988#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3989 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3990#endif
3991
4ed7e022 3992static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3993{
3a6be87f 3994#ifdef CONFIG_MMU
e7c8d5c9
CL
3995 int batch;
3996
3997 /*
3998 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3999 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4000 *
4001 * OK, so we don't know how big the cache is. So guess.
4002 */
b40da049 4003 batch = zone->managed_pages / 1024;
ba56e91c
SR
4004 if (batch * PAGE_SIZE > 512 * 1024)
4005 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4006 batch /= 4; /* We effectively *= 4 below */
4007 if (batch < 1)
4008 batch = 1;
4009
4010 /*
0ceaacc9
NP
4011 * Clamp the batch to a 2^n - 1 value. Having a power
4012 * of 2 value was found to be more likely to have
4013 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4014 *
0ceaacc9
NP
4015 * For example if 2 tasks are alternately allocating
4016 * batches of pages, one task can end up with a lot
4017 * of pages of one half of the possible page colors
4018 * and the other with pages of the other colors.
e7c8d5c9 4019 */
9155203a 4020 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4021
e7c8d5c9 4022 return batch;
3a6be87f
DH
4023
4024#else
4025 /* The deferral and batching of frees should be suppressed under NOMMU
4026 * conditions.
4027 *
4028 * The problem is that NOMMU needs to be able to allocate large chunks
4029 * of contiguous memory as there's no hardware page translation to
4030 * assemble apparent contiguous memory from discontiguous pages.
4031 *
4032 * Queueing large contiguous runs of pages for batching, however,
4033 * causes the pages to actually be freed in smaller chunks. As there
4034 * can be a significant delay between the individual batches being
4035 * recycled, this leads to the once large chunks of space being
4036 * fragmented and becoming unavailable for high-order allocations.
4037 */
4038 return 0;
4039#endif
e7c8d5c9
CL
4040}
4041
8d7a8fa9
CS
4042/*
4043 * pcp->high and pcp->batch values are related and dependent on one another:
4044 * ->batch must never be higher then ->high.
4045 * The following function updates them in a safe manner without read side
4046 * locking.
4047 *
4048 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4049 * those fields changing asynchronously (acording the the above rule).
4050 *
4051 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4052 * outside of boot time (or some other assurance that no concurrent updaters
4053 * exist).
4054 */
4055static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4056 unsigned long batch)
4057{
4058 /* start with a fail safe value for batch */
4059 pcp->batch = 1;
4060 smp_wmb();
4061
4062 /* Update high, then batch, in order */
4063 pcp->high = high;
4064 smp_wmb();
4065
4066 pcp->batch = batch;
4067}
4068
3664033c 4069/* a companion to pageset_set_high() */
4008bab7
CS
4070static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4071{
8d7a8fa9 4072 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4073}
4074
88c90dbc 4075static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4076{
4077 struct per_cpu_pages *pcp;
5f8dcc21 4078 int migratetype;
2caaad41 4079
1c6fe946
MD
4080 memset(p, 0, sizeof(*p));
4081
3dfa5721 4082 pcp = &p->pcp;
2caaad41 4083 pcp->count = 0;
5f8dcc21
MG
4084 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4085 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4086}
4087
88c90dbc
CS
4088static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4089{
4090 pageset_init(p);
4091 pageset_set_batch(p, batch);
4092}
4093
8ad4b1fb 4094/*
3664033c 4095 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4096 * to the value high for the pageset p.
4097 */
3664033c 4098static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4099 unsigned long high)
4100{
8d7a8fa9
CS
4101 unsigned long batch = max(1UL, high / 4);
4102 if ((high / 4) > (PAGE_SHIFT * 8))
4103 batch = PAGE_SHIFT * 8;
8ad4b1fb 4104
8d7a8fa9 4105 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4106}
4107
169f6c19
CS
4108static void __meminit pageset_set_high_and_batch(struct zone *zone,
4109 struct per_cpu_pageset *pcp)
56cef2b8 4110{
56cef2b8 4111 if (percpu_pagelist_fraction)
3664033c 4112 pageset_set_high(pcp,
56cef2b8
CS
4113 (zone->managed_pages /
4114 percpu_pagelist_fraction));
4115 else
4116 pageset_set_batch(pcp, zone_batchsize(zone));
4117}
4118
169f6c19
CS
4119static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4120{
4121 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4122
4123 pageset_init(pcp);
4124 pageset_set_high_and_batch(zone, pcp);
4125}
4126
4ed7e022 4127static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4128{
4129 int cpu;
319774e2 4130 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4131 for_each_possible_cpu(cpu)
4132 zone_pageset_init(zone, cpu);
319774e2
WF
4133}
4134
2caaad41 4135/*
99dcc3e5
CL
4136 * Allocate per cpu pagesets and initialize them.
4137 * Before this call only boot pagesets were available.
e7c8d5c9 4138 */
99dcc3e5 4139void __init setup_per_cpu_pageset(void)
e7c8d5c9 4140{
99dcc3e5 4141 struct zone *zone;
e7c8d5c9 4142
319774e2
WF
4143 for_each_populated_zone(zone)
4144 setup_zone_pageset(zone);
e7c8d5c9
CL
4145}
4146
577a32f6 4147static noinline __init_refok
cca448fe 4148int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4149{
4150 int i;
4151 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4152 size_t alloc_size;
ed8ece2e
DH
4153
4154 /*
4155 * The per-page waitqueue mechanism uses hashed waitqueues
4156 * per zone.
4157 */
02b694de
YG
4158 zone->wait_table_hash_nr_entries =
4159 wait_table_hash_nr_entries(zone_size_pages);
4160 zone->wait_table_bits =
4161 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4162 alloc_size = zone->wait_table_hash_nr_entries
4163 * sizeof(wait_queue_head_t);
4164
cd94b9db 4165 if (!slab_is_available()) {
cca448fe 4166 zone->wait_table = (wait_queue_head_t *)
8f389a99 4167 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4168 } else {
4169 /*
4170 * This case means that a zone whose size was 0 gets new memory
4171 * via memory hot-add.
4172 * But it may be the case that a new node was hot-added. In
4173 * this case vmalloc() will not be able to use this new node's
4174 * memory - this wait_table must be initialized to use this new
4175 * node itself as well.
4176 * To use this new node's memory, further consideration will be
4177 * necessary.
4178 */
8691f3a7 4179 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4180 }
4181 if (!zone->wait_table)
4182 return -ENOMEM;
ed8ece2e 4183
b8af2941 4184 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4185 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4186
4187 return 0;
ed8ece2e
DH
4188}
4189
c09b4240 4190static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4191{
99dcc3e5
CL
4192 /*
4193 * per cpu subsystem is not up at this point. The following code
4194 * relies on the ability of the linker to provide the
4195 * offset of a (static) per cpu variable into the per cpu area.
4196 */
4197 zone->pageset = &boot_pageset;
ed8ece2e 4198
f5335c0f 4199 if (zone->present_pages)
99dcc3e5
CL
4200 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4201 zone->name, zone->present_pages,
4202 zone_batchsize(zone));
ed8ece2e
DH
4203}
4204
4ed7e022 4205int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4206 unsigned long zone_start_pfn,
a2f3aa02
DH
4207 unsigned long size,
4208 enum memmap_context context)
ed8ece2e
DH
4209{
4210 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4211 int ret;
4212 ret = zone_wait_table_init(zone, size);
4213 if (ret)
4214 return ret;
ed8ece2e
DH
4215 pgdat->nr_zones = zone_idx(zone) + 1;
4216
ed8ece2e
DH
4217 zone->zone_start_pfn = zone_start_pfn;
4218
708614e6
MG
4219 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4220 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4221 pgdat->node_id,
4222 (unsigned long)zone_idx(zone),
4223 zone_start_pfn, (zone_start_pfn + size));
4224
1e548deb 4225 zone_init_free_lists(zone);
718127cc
YG
4226
4227 return 0;
ed8ece2e
DH
4228}
4229
0ee332c1 4230#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4231#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4232/*
4233 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4234 * Architectures may implement their own version but if add_active_range()
4235 * was used and there are no special requirements, this is a convenient
4236 * alternative
4237 */
f2dbcfa7 4238int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4239{
c13291a5
TH
4240 unsigned long start_pfn, end_pfn;
4241 int i, nid;
7c243c71
RA
4242 /*
4243 * NOTE: The following SMP-unsafe globals are only used early in boot
4244 * when the kernel is running single-threaded.
4245 */
4246 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4247 static int __meminitdata last_nid;
4248
4249 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4250 return last_nid;
c713216d 4251
c13291a5 4252 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7c243c71
RA
4253 if (start_pfn <= pfn && pfn < end_pfn) {
4254 last_start_pfn = start_pfn;
4255 last_end_pfn = end_pfn;
4256 last_nid = nid;
c13291a5 4257 return nid;
7c243c71 4258 }
cc2559bc
KH
4259 /* This is a memory hole */
4260 return -1;
c713216d
MG
4261}
4262#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4263
f2dbcfa7
KH
4264int __meminit early_pfn_to_nid(unsigned long pfn)
4265{
cc2559bc
KH
4266 int nid;
4267
4268 nid = __early_pfn_to_nid(pfn);
4269 if (nid >= 0)
4270 return nid;
4271 /* just returns 0 */
4272 return 0;
f2dbcfa7
KH
4273}
4274
cc2559bc
KH
4275#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4276bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4277{
4278 int nid;
4279
4280 nid = __early_pfn_to_nid(pfn);
4281 if (nid >= 0 && nid != node)
4282 return false;
4283 return true;
4284}
4285#endif
f2dbcfa7 4286
c713216d
MG
4287/**
4288 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4289 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4290 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4291 *
4292 * If an architecture guarantees that all ranges registered with
4293 * add_active_ranges() contain no holes and may be freed, this
4294 * this function may be used instead of calling free_bootmem() manually.
4295 */
c13291a5 4296void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4297{
c13291a5
TH
4298 unsigned long start_pfn, end_pfn;
4299 int i, this_nid;
edbe7d23 4300
c13291a5
TH
4301 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4302 start_pfn = min(start_pfn, max_low_pfn);
4303 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4304
c13291a5
TH
4305 if (start_pfn < end_pfn)
4306 free_bootmem_node(NODE_DATA(this_nid),
4307 PFN_PHYS(start_pfn),
4308 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4309 }
edbe7d23 4310}
edbe7d23 4311
c713216d
MG
4312/**
4313 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4314 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4315 *
4316 * If an architecture guarantees that all ranges registered with
4317 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4318 * function may be used instead of calling memory_present() manually.
c713216d
MG
4319 */
4320void __init sparse_memory_present_with_active_regions(int nid)
4321{
c13291a5
TH
4322 unsigned long start_pfn, end_pfn;
4323 int i, this_nid;
c713216d 4324
c13291a5
TH
4325 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4326 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4327}
4328
4329/**
4330 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4331 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4332 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4333 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4334 *
4335 * It returns the start and end page frame of a node based on information
4336 * provided by an arch calling add_active_range(). If called for a node
4337 * with no available memory, a warning is printed and the start and end
88ca3b94 4338 * PFNs will be 0.
c713216d 4339 */
a3142c8e 4340void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4341 unsigned long *start_pfn, unsigned long *end_pfn)
4342{
c13291a5 4343 unsigned long this_start_pfn, this_end_pfn;
c713216d 4344 int i;
c13291a5 4345
c713216d
MG
4346 *start_pfn = -1UL;
4347 *end_pfn = 0;
4348
c13291a5
TH
4349 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4350 *start_pfn = min(*start_pfn, this_start_pfn);
4351 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4352 }
4353
633c0666 4354 if (*start_pfn == -1UL)
c713216d 4355 *start_pfn = 0;
c713216d
MG
4356}
4357
2a1e274a
MG
4358/*
4359 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4360 * assumption is made that zones within a node are ordered in monotonic
4361 * increasing memory addresses so that the "highest" populated zone is used
4362 */
b69a7288 4363static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4364{
4365 int zone_index;
4366 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4367 if (zone_index == ZONE_MOVABLE)
4368 continue;
4369
4370 if (arch_zone_highest_possible_pfn[zone_index] >
4371 arch_zone_lowest_possible_pfn[zone_index])
4372 break;
4373 }
4374
4375 VM_BUG_ON(zone_index == -1);
4376 movable_zone = zone_index;
4377}
4378
4379/*
4380 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4381 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4382 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4383 * in each node depending on the size of each node and how evenly kernelcore
4384 * is distributed. This helper function adjusts the zone ranges
4385 * provided by the architecture for a given node by using the end of the
4386 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4387 * zones within a node are in order of monotonic increases memory addresses
4388 */
b69a7288 4389static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4390 unsigned long zone_type,
4391 unsigned long node_start_pfn,
4392 unsigned long node_end_pfn,
4393 unsigned long *zone_start_pfn,
4394 unsigned long *zone_end_pfn)
4395{
4396 /* Only adjust if ZONE_MOVABLE is on this node */
4397 if (zone_movable_pfn[nid]) {
4398 /* Size ZONE_MOVABLE */
4399 if (zone_type == ZONE_MOVABLE) {
4400 *zone_start_pfn = zone_movable_pfn[nid];
4401 *zone_end_pfn = min(node_end_pfn,
4402 arch_zone_highest_possible_pfn[movable_zone]);
4403
4404 /* Adjust for ZONE_MOVABLE starting within this range */
4405 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4406 *zone_end_pfn > zone_movable_pfn[nid]) {
4407 *zone_end_pfn = zone_movable_pfn[nid];
4408
4409 /* Check if this whole range is within ZONE_MOVABLE */
4410 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4411 *zone_start_pfn = *zone_end_pfn;
4412 }
4413}
4414
c713216d
MG
4415/*
4416 * Return the number of pages a zone spans in a node, including holes
4417 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4418 */
6ea6e688 4419static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4420 unsigned long zone_type,
7960aedd
ZY
4421 unsigned long node_start_pfn,
4422 unsigned long node_end_pfn,
c713216d
MG
4423 unsigned long *ignored)
4424{
c713216d
MG
4425 unsigned long zone_start_pfn, zone_end_pfn;
4426
7960aedd 4427 /* Get the start and end of the zone */
c713216d
MG
4428 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4429 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4430 adjust_zone_range_for_zone_movable(nid, zone_type,
4431 node_start_pfn, node_end_pfn,
4432 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4433
4434 /* Check that this node has pages within the zone's required range */
4435 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4436 return 0;
4437
4438 /* Move the zone boundaries inside the node if necessary */
4439 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4440 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4441
4442 /* Return the spanned pages */
4443 return zone_end_pfn - zone_start_pfn;
4444}
4445
4446/*
4447 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4448 * then all holes in the requested range will be accounted for.
c713216d 4449 */
32996250 4450unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4451 unsigned long range_start_pfn,
4452 unsigned long range_end_pfn)
4453{
96e907d1
TH
4454 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4455 unsigned long start_pfn, end_pfn;
4456 int i;
c713216d 4457
96e907d1
TH
4458 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4459 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4460 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4461 nr_absent -= end_pfn - start_pfn;
c713216d 4462 }
96e907d1 4463 return nr_absent;
c713216d
MG
4464}
4465
4466/**
4467 * absent_pages_in_range - Return number of page frames in holes within a range
4468 * @start_pfn: The start PFN to start searching for holes
4469 * @end_pfn: The end PFN to stop searching for holes
4470 *
88ca3b94 4471 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4472 */
4473unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4474 unsigned long end_pfn)
4475{
4476 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4477}
4478
4479/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4480static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4481 unsigned long zone_type,
7960aedd
ZY
4482 unsigned long node_start_pfn,
4483 unsigned long node_end_pfn,
c713216d
MG
4484 unsigned long *ignored)
4485{
96e907d1
TH
4486 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4487 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4488 unsigned long zone_start_pfn, zone_end_pfn;
4489
96e907d1
TH
4490 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4491 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4492
2a1e274a
MG
4493 adjust_zone_range_for_zone_movable(nid, zone_type,
4494 node_start_pfn, node_end_pfn,
4495 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4496 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4497}
0e0b864e 4498
0ee332c1 4499#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4500static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4501 unsigned long zone_type,
7960aedd
ZY
4502 unsigned long node_start_pfn,
4503 unsigned long node_end_pfn,
c713216d
MG
4504 unsigned long *zones_size)
4505{
4506 return zones_size[zone_type];
4507}
4508
6ea6e688 4509static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4510 unsigned long zone_type,
7960aedd
ZY
4511 unsigned long node_start_pfn,
4512 unsigned long node_end_pfn,
c713216d
MG
4513 unsigned long *zholes_size)
4514{
4515 if (!zholes_size)
4516 return 0;
4517
4518 return zholes_size[zone_type];
4519}
20e6926d 4520
0ee332c1 4521#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4522
a3142c8e 4523static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4524 unsigned long node_start_pfn,
4525 unsigned long node_end_pfn,
4526 unsigned long *zones_size,
4527 unsigned long *zholes_size)
c713216d
MG
4528{
4529 unsigned long realtotalpages, totalpages = 0;
4530 enum zone_type i;
4531
4532 for (i = 0; i < MAX_NR_ZONES; i++)
4533 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4534 node_start_pfn,
4535 node_end_pfn,
4536 zones_size);
c713216d
MG
4537 pgdat->node_spanned_pages = totalpages;
4538
4539 realtotalpages = totalpages;
4540 for (i = 0; i < MAX_NR_ZONES; i++)
4541 realtotalpages -=
4542 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4543 node_start_pfn, node_end_pfn,
4544 zholes_size);
c713216d
MG
4545 pgdat->node_present_pages = realtotalpages;
4546 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4547 realtotalpages);
4548}
4549
835c134e
MG
4550#ifndef CONFIG_SPARSEMEM
4551/*
4552 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4553 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4554 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4555 * round what is now in bits to nearest long in bits, then return it in
4556 * bytes.
4557 */
7c45512d 4558static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4559{
4560 unsigned long usemapsize;
4561
7c45512d 4562 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4563 usemapsize = roundup(zonesize, pageblock_nr_pages);
4564 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4565 usemapsize *= NR_PAGEBLOCK_BITS;
4566 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4567
4568 return usemapsize / 8;
4569}
4570
4571static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4572 struct zone *zone,
4573 unsigned long zone_start_pfn,
4574 unsigned long zonesize)
835c134e 4575{
7c45512d 4576 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4577 zone->pageblock_flags = NULL;
58a01a45 4578 if (usemapsize)
8f389a99
YL
4579 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4580 usemapsize);
835c134e
MG
4581}
4582#else
7c45512d
LT
4583static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4584 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4585#endif /* CONFIG_SPARSEMEM */
4586
d9c23400 4587#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4588
d9c23400 4589/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4590void __paginginit set_pageblock_order(void)
d9c23400 4591{
955c1cd7
AM
4592 unsigned int order;
4593
d9c23400
MG
4594 /* Check that pageblock_nr_pages has not already been setup */
4595 if (pageblock_order)
4596 return;
4597
955c1cd7
AM
4598 if (HPAGE_SHIFT > PAGE_SHIFT)
4599 order = HUGETLB_PAGE_ORDER;
4600 else
4601 order = MAX_ORDER - 1;
4602
d9c23400
MG
4603 /*
4604 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4605 * This value may be variable depending on boot parameters on IA64 and
4606 * powerpc.
d9c23400
MG
4607 */
4608 pageblock_order = order;
4609}
4610#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4611
ba72cb8c
MG
4612/*
4613 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4614 * is unused as pageblock_order is set at compile-time. See
4615 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4616 * the kernel config
ba72cb8c 4617 */
15ca220e 4618void __paginginit set_pageblock_order(void)
ba72cb8c 4619{
ba72cb8c 4620}
d9c23400
MG
4621
4622#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4623
01cefaef
JL
4624static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4625 unsigned long present_pages)
4626{
4627 unsigned long pages = spanned_pages;
4628
4629 /*
4630 * Provide a more accurate estimation if there are holes within
4631 * the zone and SPARSEMEM is in use. If there are holes within the
4632 * zone, each populated memory region may cost us one or two extra
4633 * memmap pages due to alignment because memmap pages for each
4634 * populated regions may not naturally algined on page boundary.
4635 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4636 */
4637 if (spanned_pages > present_pages + (present_pages >> 4) &&
4638 IS_ENABLED(CONFIG_SPARSEMEM))
4639 pages = present_pages;
4640
4641 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4642}
4643
1da177e4
LT
4644/*
4645 * Set up the zone data structures:
4646 * - mark all pages reserved
4647 * - mark all memory queues empty
4648 * - clear the memory bitmaps
6527af5d
MK
4649 *
4650 * NOTE: pgdat should get zeroed by caller.
1da177e4 4651 */
b5a0e011 4652static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4653 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4654 unsigned long *zones_size, unsigned long *zholes_size)
4655{
2f1b6248 4656 enum zone_type j;
ed8ece2e 4657 int nid = pgdat->node_id;
1da177e4 4658 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4659 int ret;
1da177e4 4660
208d54e5 4661 pgdat_resize_init(pgdat);
8177a420
AA
4662#ifdef CONFIG_NUMA_BALANCING
4663 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4664 pgdat->numabalancing_migrate_nr_pages = 0;
4665 pgdat->numabalancing_migrate_next_window = jiffies;
4666#endif
1da177e4 4667 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4668 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4669 pgdat_page_cgroup_init(pgdat);
5f63b720 4670
1da177e4
LT
4671 for (j = 0; j < MAX_NR_ZONES; j++) {
4672 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4673 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4674
7960aedd
ZY
4675 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4676 node_end_pfn, zones_size);
9feedc9d 4677 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4678 node_start_pfn,
4679 node_end_pfn,
c713216d 4680 zholes_size);
1da177e4 4681
0e0b864e 4682 /*
9feedc9d 4683 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4684 * is used by this zone for memmap. This affects the watermark
4685 * and per-cpu initialisations
4686 */
01cefaef 4687 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4688 if (freesize >= memmap_pages) {
4689 freesize -= memmap_pages;
5594c8c8
YL
4690 if (memmap_pages)
4691 printk(KERN_DEBUG
4692 " %s zone: %lu pages used for memmap\n",
4693 zone_names[j], memmap_pages);
0e0b864e
MG
4694 } else
4695 printk(KERN_WARNING
9feedc9d
JL
4696 " %s zone: %lu pages exceeds freesize %lu\n",
4697 zone_names[j], memmap_pages, freesize);
0e0b864e 4698
6267276f 4699 /* Account for reserved pages */
9feedc9d
JL
4700 if (j == 0 && freesize > dma_reserve) {
4701 freesize -= dma_reserve;
d903ef9f 4702 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4703 zone_names[0], dma_reserve);
0e0b864e
MG
4704 }
4705
98d2b0eb 4706 if (!is_highmem_idx(j))
9feedc9d 4707 nr_kernel_pages += freesize;
01cefaef
JL
4708 /* Charge for highmem memmap if there are enough kernel pages */
4709 else if (nr_kernel_pages > memmap_pages * 2)
4710 nr_kernel_pages -= memmap_pages;
9feedc9d 4711 nr_all_pages += freesize;
1da177e4
LT
4712
4713 zone->spanned_pages = size;
306f2e9e 4714 zone->present_pages = realsize;
9feedc9d
JL
4715 /*
4716 * Set an approximate value for lowmem here, it will be adjusted
4717 * when the bootmem allocator frees pages into the buddy system.
4718 * And all highmem pages will be managed by the buddy system.
4719 */
4720 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4721#ifdef CONFIG_NUMA
d5f541ed 4722 zone->node = nid;
9feedc9d 4723 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4724 / 100;
9feedc9d 4725 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4726#endif
1da177e4
LT
4727 zone->name = zone_names[j];
4728 spin_lock_init(&zone->lock);
4729 spin_lock_init(&zone->lru_lock);
bdc8cb98 4730 zone_seqlock_init(zone);
1da177e4 4731 zone->zone_pgdat = pgdat;
1da177e4 4732
ed8ece2e 4733 zone_pcp_init(zone);
bea8c150 4734 lruvec_init(&zone->lruvec);
1da177e4
LT
4735 if (!size)
4736 continue;
4737
955c1cd7 4738 set_pageblock_order();
7c45512d 4739 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4740 ret = init_currently_empty_zone(zone, zone_start_pfn,
4741 size, MEMMAP_EARLY);
718127cc 4742 BUG_ON(ret);
76cdd58e 4743 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4744 zone_start_pfn += size;
1da177e4
LT
4745 }
4746}
4747
577a32f6 4748static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4749{
1da177e4
LT
4750 /* Skip empty nodes */
4751 if (!pgdat->node_spanned_pages)
4752 return;
4753
d41dee36 4754#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4755 /* ia64 gets its own node_mem_map, before this, without bootmem */
4756 if (!pgdat->node_mem_map) {
e984bb43 4757 unsigned long size, start, end;
d41dee36
AW
4758 struct page *map;
4759
e984bb43
BP
4760 /*
4761 * The zone's endpoints aren't required to be MAX_ORDER
4762 * aligned but the node_mem_map endpoints must be in order
4763 * for the buddy allocator to function correctly.
4764 */
4765 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4766 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4767 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4768 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4769 map = alloc_remap(pgdat->node_id, size);
4770 if (!map)
8f389a99 4771 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4772 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4773 }
12d810c1 4774#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4775 /*
4776 * With no DISCONTIG, the global mem_map is just set as node 0's
4777 */
c713216d 4778 if (pgdat == NODE_DATA(0)) {
1da177e4 4779 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4780#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4781 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4782 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4783#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4784 }
1da177e4 4785#endif
d41dee36 4786#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4787}
4788
9109fb7b
JW
4789void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4790 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4791{
9109fb7b 4792 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4793 unsigned long start_pfn = 0;
4794 unsigned long end_pfn = 0;
9109fb7b 4795
88fdf75d 4796 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4797 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4798
1da177e4
LT
4799 pgdat->node_id = nid;
4800 pgdat->node_start_pfn = node_start_pfn;
957f822a 4801 init_zone_allows_reclaim(nid);
7960aedd
ZY
4802#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4803 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4804#endif
4805 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4806 zones_size, zholes_size);
1da177e4
LT
4807
4808 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4809#ifdef CONFIG_FLAT_NODE_MEM_MAP
4810 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4811 nid, (unsigned long)pgdat,
4812 (unsigned long)pgdat->node_mem_map);
4813#endif
1da177e4 4814
7960aedd
ZY
4815 free_area_init_core(pgdat, start_pfn, end_pfn,
4816 zones_size, zholes_size);
1da177e4
LT
4817}
4818
0ee332c1 4819#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4820
4821#if MAX_NUMNODES > 1
4822/*
4823 * Figure out the number of possible node ids.
4824 */
f9872caf 4825void __init setup_nr_node_ids(void)
418508c1
MS
4826{
4827 unsigned int node;
4828 unsigned int highest = 0;
4829
4830 for_each_node_mask(node, node_possible_map)
4831 highest = node;
4832 nr_node_ids = highest + 1;
4833}
418508c1
MS
4834#endif
4835
1e01979c
TH
4836/**
4837 * node_map_pfn_alignment - determine the maximum internode alignment
4838 *
4839 * This function should be called after node map is populated and sorted.
4840 * It calculates the maximum power of two alignment which can distinguish
4841 * all the nodes.
4842 *
4843 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4844 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4845 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4846 * shifted, 1GiB is enough and this function will indicate so.
4847 *
4848 * This is used to test whether pfn -> nid mapping of the chosen memory
4849 * model has fine enough granularity to avoid incorrect mapping for the
4850 * populated node map.
4851 *
4852 * Returns the determined alignment in pfn's. 0 if there is no alignment
4853 * requirement (single node).
4854 */
4855unsigned long __init node_map_pfn_alignment(void)
4856{
4857 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4858 unsigned long start, end, mask;
1e01979c 4859 int last_nid = -1;
c13291a5 4860 int i, nid;
1e01979c 4861
c13291a5 4862 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4863 if (!start || last_nid < 0 || last_nid == nid) {
4864 last_nid = nid;
4865 last_end = end;
4866 continue;
4867 }
4868
4869 /*
4870 * Start with a mask granular enough to pin-point to the
4871 * start pfn and tick off bits one-by-one until it becomes
4872 * too coarse to separate the current node from the last.
4873 */
4874 mask = ~((1 << __ffs(start)) - 1);
4875 while (mask && last_end <= (start & (mask << 1)))
4876 mask <<= 1;
4877
4878 /* accumulate all internode masks */
4879 accl_mask |= mask;
4880 }
4881
4882 /* convert mask to number of pages */
4883 return ~accl_mask + 1;
4884}
4885
a6af2bc3 4886/* Find the lowest pfn for a node */
b69a7288 4887static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4888{
a6af2bc3 4889 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4890 unsigned long start_pfn;
4891 int i;
1abbfb41 4892
c13291a5
TH
4893 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4894 min_pfn = min(min_pfn, start_pfn);
c713216d 4895
a6af2bc3
MG
4896 if (min_pfn == ULONG_MAX) {
4897 printk(KERN_WARNING
2bc0d261 4898 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4899 return 0;
4900 }
4901
4902 return min_pfn;
c713216d
MG
4903}
4904
4905/**
4906 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4907 *
4908 * It returns the minimum PFN based on information provided via
88ca3b94 4909 * add_active_range().
c713216d
MG
4910 */
4911unsigned long __init find_min_pfn_with_active_regions(void)
4912{
4913 return find_min_pfn_for_node(MAX_NUMNODES);
4914}
4915
37b07e41
LS
4916/*
4917 * early_calculate_totalpages()
4918 * Sum pages in active regions for movable zone.
4b0ef1fe 4919 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4920 */
484f51f8 4921static unsigned long __init early_calculate_totalpages(void)
7e63efef 4922{
7e63efef 4923 unsigned long totalpages = 0;
c13291a5
TH
4924 unsigned long start_pfn, end_pfn;
4925 int i, nid;
4926
4927 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4928 unsigned long pages = end_pfn - start_pfn;
7e63efef 4929
37b07e41
LS
4930 totalpages += pages;
4931 if (pages)
4b0ef1fe 4932 node_set_state(nid, N_MEMORY);
37b07e41 4933 }
b8af2941 4934 return totalpages;
7e63efef
MG
4935}
4936
2a1e274a
MG
4937/*
4938 * Find the PFN the Movable zone begins in each node. Kernel memory
4939 * is spread evenly between nodes as long as the nodes have enough
4940 * memory. When they don't, some nodes will have more kernelcore than
4941 * others
4942 */
b224ef85 4943static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4944{
4945 int i, nid;
4946 unsigned long usable_startpfn;
4947 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4948 /* save the state before borrow the nodemask */
4b0ef1fe 4949 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4950 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4951 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4952
7e63efef
MG
4953 /*
4954 * If movablecore was specified, calculate what size of
4955 * kernelcore that corresponds so that memory usable for
4956 * any allocation type is evenly spread. If both kernelcore
4957 * and movablecore are specified, then the value of kernelcore
4958 * will be used for required_kernelcore if it's greater than
4959 * what movablecore would have allowed.
4960 */
4961 if (required_movablecore) {
7e63efef
MG
4962 unsigned long corepages;
4963
4964 /*
4965 * Round-up so that ZONE_MOVABLE is at least as large as what
4966 * was requested by the user
4967 */
4968 required_movablecore =
4969 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4970 corepages = totalpages - required_movablecore;
4971
4972 required_kernelcore = max(required_kernelcore, corepages);
4973 }
4974
20e6926d
YL
4975 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4976 if (!required_kernelcore)
66918dcd 4977 goto out;
2a1e274a
MG
4978
4979 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
20e6926d 4980 find_usable_zone_for_movable();
2a1e274a
MG
4981 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4982
4983restart:
4984 /* Spread kernelcore memory as evenly as possible throughout nodes */
4985 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4986 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4987 unsigned long start_pfn, end_pfn;
4988
2a1e274a
MG
4989 /*
4990 * Recalculate kernelcore_node if the division per node
4991 * now exceeds what is necessary to satisfy the requested
4992 * amount of memory for the kernel
4993 */
4994 if (required_kernelcore < kernelcore_node)
4995 kernelcore_node = required_kernelcore / usable_nodes;
4996
4997 /*
4998 * As the map is walked, we track how much memory is usable
4999 * by the kernel using kernelcore_remaining. When it is
5000 * 0, the rest of the node is usable by ZONE_MOVABLE
5001 */
5002 kernelcore_remaining = kernelcore_node;
5003
5004 /* Go through each range of PFNs within this node */
c13291a5 5005 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5006 unsigned long size_pages;
5007
c13291a5 5008 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5009 if (start_pfn >= end_pfn)
5010 continue;
5011
5012 /* Account for what is only usable for kernelcore */
5013 if (start_pfn < usable_startpfn) {
5014 unsigned long kernel_pages;
5015 kernel_pages = min(end_pfn, usable_startpfn)
5016 - start_pfn;
5017
5018 kernelcore_remaining -= min(kernel_pages,
5019 kernelcore_remaining);
5020 required_kernelcore -= min(kernel_pages,
5021 required_kernelcore);
5022
5023 /* Continue if range is now fully accounted */
5024 if (end_pfn <= usable_startpfn) {
5025
5026 /*
5027 * Push zone_movable_pfn to the end so
5028 * that if we have to rebalance
5029 * kernelcore across nodes, we will
5030 * not double account here
5031 */
5032 zone_movable_pfn[nid] = end_pfn;
5033 continue;
5034 }
5035 start_pfn = usable_startpfn;
5036 }
5037
5038 /*
5039 * The usable PFN range for ZONE_MOVABLE is from
5040 * start_pfn->end_pfn. Calculate size_pages as the
5041 * number of pages used as kernelcore
5042 */
5043 size_pages = end_pfn - start_pfn;
5044 if (size_pages > kernelcore_remaining)
5045 size_pages = kernelcore_remaining;
5046 zone_movable_pfn[nid] = start_pfn + size_pages;
5047
5048 /*
5049 * Some kernelcore has been met, update counts and
5050 * break if the kernelcore for this node has been
b8af2941 5051 * satisfied
2a1e274a
MG
5052 */
5053 required_kernelcore -= min(required_kernelcore,
5054 size_pages);
5055 kernelcore_remaining -= size_pages;
5056 if (!kernelcore_remaining)
5057 break;
5058 }
5059 }
5060
5061 /*
5062 * If there is still required_kernelcore, we do another pass with one
5063 * less node in the count. This will push zone_movable_pfn[nid] further
5064 * along on the nodes that still have memory until kernelcore is
b8af2941 5065 * satisfied
2a1e274a
MG
5066 */
5067 usable_nodes--;
5068 if (usable_nodes && required_kernelcore > usable_nodes)
5069 goto restart;
5070
5071 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5072 for (nid = 0; nid < MAX_NUMNODES; nid++)
5073 zone_movable_pfn[nid] =
5074 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5075
20e6926d 5076out:
66918dcd 5077 /* restore the node_state */
4b0ef1fe 5078 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5079}
5080
4b0ef1fe
LJ
5081/* Any regular or high memory on that node ? */
5082static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5083{
37b07e41
LS
5084 enum zone_type zone_type;
5085
4b0ef1fe
LJ
5086 if (N_MEMORY == N_NORMAL_MEMORY)
5087 return;
5088
5089 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5090 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5091 if (zone->present_pages) {
4b0ef1fe
LJ
5092 node_set_state(nid, N_HIGH_MEMORY);
5093 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5094 zone_type <= ZONE_NORMAL)
5095 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5096 break;
5097 }
37b07e41 5098 }
37b07e41
LS
5099}
5100
c713216d
MG
5101/**
5102 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5103 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5104 *
5105 * This will call free_area_init_node() for each active node in the system.
5106 * Using the page ranges provided by add_active_range(), the size of each
5107 * zone in each node and their holes is calculated. If the maximum PFN
5108 * between two adjacent zones match, it is assumed that the zone is empty.
5109 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5110 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5111 * starts where the previous one ended. For example, ZONE_DMA32 starts
5112 * at arch_max_dma_pfn.
5113 */
5114void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5115{
c13291a5
TH
5116 unsigned long start_pfn, end_pfn;
5117 int i, nid;
a6af2bc3 5118
c713216d
MG
5119 /* Record where the zone boundaries are */
5120 memset(arch_zone_lowest_possible_pfn, 0,
5121 sizeof(arch_zone_lowest_possible_pfn));
5122 memset(arch_zone_highest_possible_pfn, 0,
5123 sizeof(arch_zone_highest_possible_pfn));
5124 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5125 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5126 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5127 if (i == ZONE_MOVABLE)
5128 continue;
c713216d
MG
5129 arch_zone_lowest_possible_pfn[i] =
5130 arch_zone_highest_possible_pfn[i-1];
5131 arch_zone_highest_possible_pfn[i] =
5132 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5133 }
2a1e274a
MG
5134 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5135 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5136
5137 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5138 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5139 find_zone_movable_pfns_for_nodes();
c713216d 5140
c713216d 5141 /* Print out the zone ranges */
a62e2f4f 5142 printk("Zone ranges:\n");
2a1e274a
MG
5143 for (i = 0; i < MAX_NR_ZONES; i++) {
5144 if (i == ZONE_MOVABLE)
5145 continue;
155cbfc8 5146 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5147 if (arch_zone_lowest_possible_pfn[i] ==
5148 arch_zone_highest_possible_pfn[i])
155cbfc8 5149 printk(KERN_CONT "empty\n");
72f0ba02 5150 else
a62e2f4f
BH
5151 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5152 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5153 (arch_zone_highest_possible_pfn[i]
5154 << PAGE_SHIFT) - 1);
2a1e274a
MG
5155 }
5156
5157 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5158 printk("Movable zone start for each node\n");
2a1e274a
MG
5159 for (i = 0; i < MAX_NUMNODES; i++) {
5160 if (zone_movable_pfn[i])
a62e2f4f
BH
5161 printk(" Node %d: %#010lx\n", i,
5162 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5163 }
c713216d 5164
f2d52fe5 5165 /* Print out the early node map */
a62e2f4f 5166 printk("Early memory node ranges\n");
c13291a5 5167 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5168 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5169 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5170
5171 /* Initialise every node */
708614e6 5172 mminit_verify_pageflags_layout();
8ef82866 5173 setup_nr_node_ids();
c713216d
MG
5174 for_each_online_node(nid) {
5175 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5176 free_area_init_node(nid, NULL,
c713216d 5177 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5178
5179 /* Any memory on that node */
5180 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5181 node_set_state(nid, N_MEMORY);
5182 check_for_memory(pgdat, nid);
c713216d
MG
5183 }
5184}
2a1e274a 5185
7e63efef 5186static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5187{
5188 unsigned long long coremem;
5189 if (!p)
5190 return -EINVAL;
5191
5192 coremem = memparse(p, &p);
7e63efef 5193 *core = coremem >> PAGE_SHIFT;
2a1e274a 5194
7e63efef 5195 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5196 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5197
5198 return 0;
5199}
ed7ed365 5200
7e63efef
MG
5201/*
5202 * kernelcore=size sets the amount of memory for use for allocations that
5203 * cannot be reclaimed or migrated.
5204 */
5205static int __init cmdline_parse_kernelcore(char *p)
5206{
5207 return cmdline_parse_core(p, &required_kernelcore);
5208}
5209
5210/*
5211 * movablecore=size sets the amount of memory for use for allocations that
5212 * can be reclaimed or migrated.
5213 */
5214static int __init cmdline_parse_movablecore(char *p)
5215{
5216 return cmdline_parse_core(p, &required_movablecore);
5217}
5218
ed7ed365 5219early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5220early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5221
0ee332c1 5222#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5223
c3d5f5f0
JL
5224void adjust_managed_page_count(struct page *page, long count)
5225{
5226 spin_lock(&managed_page_count_lock);
5227 page_zone(page)->managed_pages += count;
5228 totalram_pages += count;
3dcc0571
JL
5229#ifdef CONFIG_HIGHMEM
5230 if (PageHighMem(page))
5231 totalhigh_pages += count;
5232#endif
c3d5f5f0
JL
5233 spin_unlock(&managed_page_count_lock);
5234}
3dcc0571 5235EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5236
11199692 5237unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5238{
11199692
JL
5239 void *pos;
5240 unsigned long pages = 0;
69afade7 5241
11199692
JL
5242 start = (void *)PAGE_ALIGN((unsigned long)start);
5243 end = (void *)((unsigned long)end & PAGE_MASK);
5244 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5245 if ((unsigned int)poison <= 0xFF)
11199692
JL
5246 memset(pos, poison, PAGE_SIZE);
5247 free_reserved_page(virt_to_page(pos));
69afade7
JL
5248 }
5249
5250 if (pages && s)
11199692 5251 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5252 s, pages << (PAGE_SHIFT - 10), start, end);
5253
5254 return pages;
5255}
11199692 5256EXPORT_SYMBOL(free_reserved_area);
69afade7 5257
cfa11e08
JL
5258#ifdef CONFIG_HIGHMEM
5259void free_highmem_page(struct page *page)
5260{
5261 __free_reserved_page(page);
5262 totalram_pages++;
7b4b2a0d 5263 page_zone(page)->managed_pages++;
cfa11e08
JL
5264 totalhigh_pages++;
5265}
5266#endif
5267
7ee3d4e8
JL
5268
5269void __init mem_init_print_info(const char *str)
5270{
5271 unsigned long physpages, codesize, datasize, rosize, bss_size;
5272 unsigned long init_code_size, init_data_size;
5273
5274 physpages = get_num_physpages();
5275 codesize = _etext - _stext;
5276 datasize = _edata - _sdata;
5277 rosize = __end_rodata - __start_rodata;
5278 bss_size = __bss_stop - __bss_start;
5279 init_data_size = __init_end - __init_begin;
5280 init_code_size = _einittext - _sinittext;
5281
5282 /*
5283 * Detect special cases and adjust section sizes accordingly:
5284 * 1) .init.* may be embedded into .data sections
5285 * 2) .init.text.* may be out of [__init_begin, __init_end],
5286 * please refer to arch/tile/kernel/vmlinux.lds.S.
5287 * 3) .rodata.* may be embedded into .text or .data sections.
5288 */
5289#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5290 do { \
5291 if (start <= pos && pos < end && size > adj) \
5292 size -= adj; \
5293 } while (0)
7ee3d4e8
JL
5294
5295 adj_init_size(__init_begin, __init_end, init_data_size,
5296 _sinittext, init_code_size);
5297 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5298 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5299 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5300 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5301
5302#undef adj_init_size
5303
5304 printk("Memory: %luK/%luK available "
5305 "(%luK kernel code, %luK rwdata, %luK rodata, "
5306 "%luK init, %luK bss, %luK reserved"
5307#ifdef CONFIG_HIGHMEM
5308 ", %luK highmem"
5309#endif
5310 "%s%s)\n",
5311 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5312 codesize >> 10, datasize >> 10, rosize >> 10,
5313 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5314 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5315#ifdef CONFIG_HIGHMEM
5316 totalhigh_pages << (PAGE_SHIFT-10),
5317#endif
5318 str ? ", " : "", str ? str : "");
5319}
5320
0e0b864e 5321/**
88ca3b94
RD
5322 * set_dma_reserve - set the specified number of pages reserved in the first zone
5323 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5324 *
5325 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5326 * In the DMA zone, a significant percentage may be consumed by kernel image
5327 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5328 * function may optionally be used to account for unfreeable pages in the
5329 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5330 * smaller per-cpu batchsize.
0e0b864e
MG
5331 */
5332void __init set_dma_reserve(unsigned long new_dma_reserve)
5333{
5334 dma_reserve = new_dma_reserve;
5335}
5336
1da177e4
LT
5337void __init free_area_init(unsigned long *zones_size)
5338{
9109fb7b 5339 free_area_init_node(0, zones_size,
1da177e4
LT
5340 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5341}
1da177e4 5342
1da177e4
LT
5343static int page_alloc_cpu_notify(struct notifier_block *self,
5344 unsigned long action, void *hcpu)
5345{
5346 int cpu = (unsigned long)hcpu;
1da177e4 5347
8bb78442 5348 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5349 lru_add_drain_cpu(cpu);
9f8f2172
CL
5350 drain_pages(cpu);
5351
5352 /*
5353 * Spill the event counters of the dead processor
5354 * into the current processors event counters.
5355 * This artificially elevates the count of the current
5356 * processor.
5357 */
f8891e5e 5358 vm_events_fold_cpu(cpu);
9f8f2172
CL
5359
5360 /*
5361 * Zero the differential counters of the dead processor
5362 * so that the vm statistics are consistent.
5363 *
5364 * This is only okay since the processor is dead and cannot
5365 * race with what we are doing.
5366 */
2244b95a 5367 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5368 }
5369 return NOTIFY_OK;
5370}
1da177e4
LT
5371
5372void __init page_alloc_init(void)
5373{
5374 hotcpu_notifier(page_alloc_cpu_notify, 0);
5375}
5376
cb45b0e9
HA
5377/*
5378 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5379 * or min_free_kbytes changes.
5380 */
5381static void calculate_totalreserve_pages(void)
5382{
5383 struct pglist_data *pgdat;
5384 unsigned long reserve_pages = 0;
2f6726e5 5385 enum zone_type i, j;
cb45b0e9
HA
5386
5387 for_each_online_pgdat(pgdat) {
5388 for (i = 0; i < MAX_NR_ZONES; i++) {
5389 struct zone *zone = pgdat->node_zones + i;
5390 unsigned long max = 0;
5391
5392 /* Find valid and maximum lowmem_reserve in the zone */
5393 for (j = i; j < MAX_NR_ZONES; j++) {
5394 if (zone->lowmem_reserve[j] > max)
5395 max = zone->lowmem_reserve[j];
5396 }
5397
41858966
MG
5398 /* we treat the high watermark as reserved pages. */
5399 max += high_wmark_pages(zone);
cb45b0e9 5400
b40da049
JL
5401 if (max > zone->managed_pages)
5402 max = zone->managed_pages;
cb45b0e9 5403 reserve_pages += max;
ab8fabd4
JW
5404 /*
5405 * Lowmem reserves are not available to
5406 * GFP_HIGHUSER page cache allocations and
5407 * kswapd tries to balance zones to their high
5408 * watermark. As a result, neither should be
5409 * regarded as dirtyable memory, to prevent a
5410 * situation where reclaim has to clean pages
5411 * in order to balance the zones.
5412 */
5413 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5414 }
5415 }
ab8fabd4 5416 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5417 totalreserve_pages = reserve_pages;
5418}
5419
1da177e4
LT
5420/*
5421 * setup_per_zone_lowmem_reserve - called whenever
5422 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5423 * has a correct pages reserved value, so an adequate number of
5424 * pages are left in the zone after a successful __alloc_pages().
5425 */
5426static void setup_per_zone_lowmem_reserve(void)
5427{
5428 struct pglist_data *pgdat;
2f6726e5 5429 enum zone_type j, idx;
1da177e4 5430
ec936fc5 5431 for_each_online_pgdat(pgdat) {
1da177e4
LT
5432 for (j = 0; j < MAX_NR_ZONES; j++) {
5433 struct zone *zone = pgdat->node_zones + j;
b40da049 5434 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5435
5436 zone->lowmem_reserve[j] = 0;
5437
2f6726e5
CL
5438 idx = j;
5439 while (idx) {
1da177e4
LT
5440 struct zone *lower_zone;
5441
2f6726e5
CL
5442 idx--;
5443
1da177e4
LT
5444 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5445 sysctl_lowmem_reserve_ratio[idx] = 1;
5446
5447 lower_zone = pgdat->node_zones + idx;
b40da049 5448 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5449 sysctl_lowmem_reserve_ratio[idx];
b40da049 5450 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5451 }
5452 }
5453 }
cb45b0e9
HA
5454
5455 /* update totalreserve_pages */
5456 calculate_totalreserve_pages();
1da177e4
LT
5457}
5458
cfd3da1e 5459static void __setup_per_zone_wmarks(void)
1da177e4
LT
5460{
5461 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5462 unsigned long lowmem_pages = 0;
5463 struct zone *zone;
5464 unsigned long flags;
5465
5466 /* Calculate total number of !ZONE_HIGHMEM pages */
5467 for_each_zone(zone) {
5468 if (!is_highmem(zone))
b40da049 5469 lowmem_pages += zone->managed_pages;
1da177e4
LT
5470 }
5471
5472 for_each_zone(zone) {
ac924c60
AM
5473 u64 tmp;
5474
1125b4e3 5475 spin_lock_irqsave(&zone->lock, flags);
b40da049 5476 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5477 do_div(tmp, lowmem_pages);
1da177e4
LT
5478 if (is_highmem(zone)) {
5479 /*
669ed175
NP
5480 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5481 * need highmem pages, so cap pages_min to a small
5482 * value here.
5483 *
41858966 5484 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5485 * deltas controls asynch page reclaim, and so should
5486 * not be capped for highmem.
1da177e4 5487 */
90ae8d67 5488 unsigned long min_pages;
1da177e4 5489
b40da049 5490 min_pages = zone->managed_pages / 1024;
90ae8d67 5491 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5492 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5493 } else {
669ed175
NP
5494 /*
5495 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5496 * proportionate to the zone's size.
5497 */
41858966 5498 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5499 }
5500
41858966
MG
5501 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5502 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5503
56fd56b8 5504 setup_zone_migrate_reserve(zone);
1125b4e3 5505 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5506 }
cb45b0e9
HA
5507
5508 /* update totalreserve_pages */
5509 calculate_totalreserve_pages();
1da177e4
LT
5510}
5511
cfd3da1e
MG
5512/**
5513 * setup_per_zone_wmarks - called when min_free_kbytes changes
5514 * or when memory is hot-{added|removed}
5515 *
5516 * Ensures that the watermark[min,low,high] values for each zone are set
5517 * correctly with respect to min_free_kbytes.
5518 */
5519void setup_per_zone_wmarks(void)
5520{
5521 mutex_lock(&zonelists_mutex);
5522 __setup_per_zone_wmarks();
5523 mutex_unlock(&zonelists_mutex);
5524}
5525
55a4462a 5526/*
556adecb
RR
5527 * The inactive anon list should be small enough that the VM never has to
5528 * do too much work, but large enough that each inactive page has a chance
5529 * to be referenced again before it is swapped out.
5530 *
5531 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5532 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5533 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5534 * the anonymous pages are kept on the inactive list.
5535 *
5536 * total target max
5537 * memory ratio inactive anon
5538 * -------------------------------------
5539 * 10MB 1 5MB
5540 * 100MB 1 50MB
5541 * 1GB 3 250MB
5542 * 10GB 10 0.9GB
5543 * 100GB 31 3GB
5544 * 1TB 101 10GB
5545 * 10TB 320 32GB
5546 */
1b79acc9 5547static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5548{
96cb4df5 5549 unsigned int gb, ratio;
556adecb 5550
96cb4df5 5551 /* Zone size in gigabytes */
b40da049 5552 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5553 if (gb)
556adecb 5554 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5555 else
5556 ratio = 1;
556adecb 5557
96cb4df5
MK
5558 zone->inactive_ratio = ratio;
5559}
556adecb 5560
839a4fcc 5561static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5562{
5563 struct zone *zone;
5564
5565 for_each_zone(zone)
5566 calculate_zone_inactive_ratio(zone);
556adecb
RR
5567}
5568
1da177e4
LT
5569/*
5570 * Initialise min_free_kbytes.
5571 *
5572 * For small machines we want it small (128k min). For large machines
5573 * we want it large (64MB max). But it is not linear, because network
5574 * bandwidth does not increase linearly with machine size. We use
5575 *
b8af2941 5576 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5577 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5578 *
5579 * which yields
5580 *
5581 * 16MB: 512k
5582 * 32MB: 724k
5583 * 64MB: 1024k
5584 * 128MB: 1448k
5585 * 256MB: 2048k
5586 * 512MB: 2896k
5587 * 1024MB: 4096k
5588 * 2048MB: 5792k
5589 * 4096MB: 8192k
5590 * 8192MB: 11584k
5591 * 16384MB: 16384k
5592 */
1b79acc9 5593int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5594{
5595 unsigned long lowmem_kbytes;
5f12733e 5596 int new_min_free_kbytes;
1da177e4
LT
5597
5598 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5599 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5600
5601 if (new_min_free_kbytes > user_min_free_kbytes) {
5602 min_free_kbytes = new_min_free_kbytes;
5603 if (min_free_kbytes < 128)
5604 min_free_kbytes = 128;
5605 if (min_free_kbytes > 65536)
5606 min_free_kbytes = 65536;
5607 } else {
5608 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5609 new_min_free_kbytes, user_min_free_kbytes);
5610 }
bc75d33f 5611 setup_per_zone_wmarks();
a6cccdc3 5612 refresh_zone_stat_thresholds();
1da177e4 5613 setup_per_zone_lowmem_reserve();
556adecb 5614 setup_per_zone_inactive_ratio();
1da177e4
LT
5615 return 0;
5616}
bc75d33f 5617module_init(init_per_zone_wmark_min)
1da177e4
LT
5618
5619/*
b8af2941 5620 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5621 * that we can call two helper functions whenever min_free_kbytes
5622 * changes.
5623 */
b8af2941 5624int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5625 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5626{
8d65af78 5627 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5628 if (write) {
5629 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5630 setup_per_zone_wmarks();
5f12733e 5631 }
1da177e4
LT
5632 return 0;
5633}
5634
9614634f
CL
5635#ifdef CONFIG_NUMA
5636int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5637 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5638{
5639 struct zone *zone;
5640 int rc;
5641
8d65af78 5642 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5643 if (rc)
5644 return rc;
5645
5646 for_each_zone(zone)
b40da049 5647 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5648 sysctl_min_unmapped_ratio) / 100;
5649 return 0;
5650}
0ff38490
CL
5651
5652int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5653 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5654{
5655 struct zone *zone;
5656 int rc;
5657
8d65af78 5658 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5659 if (rc)
5660 return rc;
5661
5662 for_each_zone(zone)
b40da049 5663 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5664 sysctl_min_slab_ratio) / 100;
5665 return 0;
5666}
9614634f
CL
5667#endif
5668
1da177e4
LT
5669/*
5670 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5671 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5672 * whenever sysctl_lowmem_reserve_ratio changes.
5673 *
5674 * The reserve ratio obviously has absolutely no relation with the
41858966 5675 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5676 * if in function of the boot time zone sizes.
5677 */
5678int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5679 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5680{
8d65af78 5681 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5682 setup_per_zone_lowmem_reserve();
5683 return 0;
5684}
5685
8ad4b1fb
RS
5686/*
5687 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5688 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5689 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5690 */
8ad4b1fb 5691int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5692 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5693{
5694 struct zone *zone;
5695 unsigned int cpu;
5696 int ret;
5697
8d65af78 5698 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5699 if (!write || (ret < 0))
8ad4b1fb 5700 return ret;
c8e251fa
CS
5701
5702 mutex_lock(&pcp_batch_high_lock);
364df0eb 5703 for_each_populated_zone(zone) {
22a7f12b
CS
5704 unsigned long high;
5705 high = zone->managed_pages / percpu_pagelist_fraction;
5706 for_each_possible_cpu(cpu)
3664033c
CS
5707 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5708 high);
8ad4b1fb 5709 }
c8e251fa 5710 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5711 return 0;
5712}
5713
f034b5d4 5714int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5715
5716#ifdef CONFIG_NUMA
5717static int __init set_hashdist(char *str)
5718{
5719 if (!str)
5720 return 0;
5721 hashdist = simple_strtoul(str, &str, 0);
5722 return 1;
5723}
5724__setup("hashdist=", set_hashdist);
5725#endif
5726
5727/*
5728 * allocate a large system hash table from bootmem
5729 * - it is assumed that the hash table must contain an exact power-of-2
5730 * quantity of entries
5731 * - limit is the number of hash buckets, not the total allocation size
5732 */
5733void *__init alloc_large_system_hash(const char *tablename,
5734 unsigned long bucketsize,
5735 unsigned long numentries,
5736 int scale,
5737 int flags,
5738 unsigned int *_hash_shift,
5739 unsigned int *_hash_mask,
31fe62b9
TB
5740 unsigned long low_limit,
5741 unsigned long high_limit)
1da177e4 5742{
31fe62b9 5743 unsigned long long max = high_limit;
1da177e4
LT
5744 unsigned long log2qty, size;
5745 void *table = NULL;
5746
5747 /* allow the kernel cmdline to have a say */
5748 if (!numentries) {
5749 /* round applicable memory size up to nearest megabyte */
04903664 5750 numentries = nr_kernel_pages;
a7e83318
JZ
5751
5752 /* It isn't necessary when PAGE_SIZE >= 1MB */
5753 if (PAGE_SHIFT < 20)
5754 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5755
5756 /* limit to 1 bucket per 2^scale bytes of low memory */
5757 if (scale > PAGE_SHIFT)
5758 numentries >>= (scale - PAGE_SHIFT);
5759 else
5760 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5761
5762 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5763 if (unlikely(flags & HASH_SMALL)) {
5764 /* Makes no sense without HASH_EARLY */
5765 WARN_ON(!(flags & HASH_EARLY));
5766 if (!(numentries >> *_hash_shift)) {
5767 numentries = 1UL << *_hash_shift;
5768 BUG_ON(!numentries);
5769 }
5770 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5771 numentries = PAGE_SIZE / bucketsize;
1da177e4 5772 }
6e692ed3 5773 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5774
5775 /* limit allocation size to 1/16 total memory by default */
5776 if (max == 0) {
5777 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5778 do_div(max, bucketsize);
5779 }
074b8517 5780 max = min(max, 0x80000000ULL);
1da177e4 5781
31fe62b9
TB
5782 if (numentries < low_limit)
5783 numentries = low_limit;
1da177e4
LT
5784 if (numentries > max)
5785 numentries = max;
5786
f0d1b0b3 5787 log2qty = ilog2(numentries);
1da177e4
LT
5788
5789 do {
5790 size = bucketsize << log2qty;
5791 if (flags & HASH_EARLY)
74768ed8 5792 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5793 else if (hashdist)
5794 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5795 else {
1037b83b
ED
5796 /*
5797 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5798 * some pages at the end of hash table which
5799 * alloc_pages_exact() automatically does
1037b83b 5800 */
264ef8a9 5801 if (get_order(size) < MAX_ORDER) {
a1dd268c 5802 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5803 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5804 }
1da177e4
LT
5805 }
5806 } while (!table && size > PAGE_SIZE && --log2qty);
5807
5808 if (!table)
5809 panic("Failed to allocate %s hash table\n", tablename);
5810
f241e660 5811 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5812 tablename,
f241e660 5813 (1UL << log2qty),
f0d1b0b3 5814 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5815 size);
5816
5817 if (_hash_shift)
5818 *_hash_shift = log2qty;
5819 if (_hash_mask)
5820 *_hash_mask = (1 << log2qty) - 1;
5821
5822 return table;
5823}
a117e66e 5824
835c134e
MG
5825/* Return a pointer to the bitmap storing bits affecting a block of pages */
5826static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5827 unsigned long pfn)
5828{
5829#ifdef CONFIG_SPARSEMEM
5830 return __pfn_to_section(pfn)->pageblock_flags;
5831#else
5832 return zone->pageblock_flags;
5833#endif /* CONFIG_SPARSEMEM */
5834}
5835
5836static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5837{
5838#ifdef CONFIG_SPARSEMEM
5839 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5840 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5841#else
c060f943 5842 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5843 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5844#endif /* CONFIG_SPARSEMEM */
5845}
5846
5847/**
d9c23400 5848 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5849 * @page: The page within the block of interest
5850 * @start_bitidx: The first bit of interest to retrieve
5851 * @end_bitidx: The last bit of interest
5852 * returns pageblock_bits flags
5853 */
5854unsigned long get_pageblock_flags_group(struct page *page,
5855 int start_bitidx, int end_bitidx)
5856{
5857 struct zone *zone;
5858 unsigned long *bitmap;
5859 unsigned long pfn, bitidx;
5860 unsigned long flags = 0;
5861 unsigned long value = 1;
5862
5863 zone = page_zone(page);
5864 pfn = page_to_pfn(page);
5865 bitmap = get_pageblock_bitmap(zone, pfn);
5866 bitidx = pfn_to_bitidx(zone, pfn);
5867
5868 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5869 if (test_bit(bitidx + start_bitidx, bitmap))
5870 flags |= value;
6220ec78 5871
835c134e
MG
5872 return flags;
5873}
5874
5875/**
d9c23400 5876 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5877 * @page: The page within the block of interest
5878 * @start_bitidx: The first bit of interest
5879 * @end_bitidx: The last bit of interest
5880 * @flags: The flags to set
5881 */
5882void set_pageblock_flags_group(struct page *page, unsigned long flags,
5883 int start_bitidx, int end_bitidx)
5884{
5885 struct zone *zone;
5886 unsigned long *bitmap;
5887 unsigned long pfn, bitidx;
5888 unsigned long value = 1;
5889
5890 zone = page_zone(page);
5891 pfn = page_to_pfn(page);
5892 bitmap = get_pageblock_bitmap(zone, pfn);
5893 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5894 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5895
5896 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5897 if (flags & value)
5898 __set_bit(bitidx + start_bitidx, bitmap);
5899 else
5900 __clear_bit(bitidx + start_bitidx, bitmap);
5901}
a5d76b54
KH
5902
5903/*
80934513
MK
5904 * This function checks whether pageblock includes unmovable pages or not.
5905 * If @count is not zero, it is okay to include less @count unmovable pages
5906 *
b8af2941 5907 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
5908 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5909 * expect this function should be exact.
a5d76b54 5910 */
b023f468
WC
5911bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5912 bool skip_hwpoisoned_pages)
49ac8255
KH
5913{
5914 unsigned long pfn, iter, found;
47118af0
MN
5915 int mt;
5916
49ac8255
KH
5917 /*
5918 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5919 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5920 */
5921 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5922 return false;
47118af0
MN
5923 mt = get_pageblock_migratetype(page);
5924 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5925 return false;
49ac8255
KH
5926
5927 pfn = page_to_pfn(page);
5928 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5929 unsigned long check = pfn + iter;
5930
29723fcc 5931 if (!pfn_valid_within(check))
49ac8255 5932 continue;
29723fcc 5933
49ac8255 5934 page = pfn_to_page(check);
97d255c8
MK
5935 /*
5936 * We can't use page_count without pin a page
5937 * because another CPU can free compound page.
5938 * This check already skips compound tails of THP
5939 * because their page->_count is zero at all time.
5940 */
5941 if (!atomic_read(&page->_count)) {
49ac8255
KH
5942 if (PageBuddy(page))
5943 iter += (1 << page_order(page)) - 1;
5944 continue;
5945 }
97d255c8 5946
b023f468
WC
5947 /*
5948 * The HWPoisoned page may be not in buddy system, and
5949 * page_count() is not 0.
5950 */
5951 if (skip_hwpoisoned_pages && PageHWPoison(page))
5952 continue;
5953
49ac8255
KH
5954 if (!PageLRU(page))
5955 found++;
5956 /*
5957 * If there are RECLAIMABLE pages, we need to check it.
5958 * But now, memory offline itself doesn't call shrink_slab()
5959 * and it still to be fixed.
5960 */
5961 /*
5962 * If the page is not RAM, page_count()should be 0.
5963 * we don't need more check. This is an _used_ not-movable page.
5964 *
5965 * The problematic thing here is PG_reserved pages. PG_reserved
5966 * is set to both of a memory hole page and a _used_ kernel
5967 * page at boot.
5968 */
5969 if (found > count)
80934513 5970 return true;
49ac8255 5971 }
80934513 5972 return false;
49ac8255
KH
5973}
5974
5975bool is_pageblock_removable_nolock(struct page *page)
5976{
656a0706
MH
5977 struct zone *zone;
5978 unsigned long pfn;
687875fb
MH
5979
5980 /*
5981 * We have to be careful here because we are iterating over memory
5982 * sections which are not zone aware so we might end up outside of
5983 * the zone but still within the section.
656a0706
MH
5984 * We have to take care about the node as well. If the node is offline
5985 * its NODE_DATA will be NULL - see page_zone.
687875fb 5986 */
656a0706
MH
5987 if (!node_online(page_to_nid(page)))
5988 return false;
5989
5990 zone = page_zone(page);
5991 pfn = page_to_pfn(page);
108bcc96 5992 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
5993 return false;
5994
b023f468 5995 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5996}
0c0e6195 5997
041d3a8c
MN
5998#ifdef CONFIG_CMA
5999
6000static unsigned long pfn_max_align_down(unsigned long pfn)
6001{
6002 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6003 pageblock_nr_pages) - 1);
6004}
6005
6006static unsigned long pfn_max_align_up(unsigned long pfn)
6007{
6008 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6009 pageblock_nr_pages));
6010}
6011
041d3a8c 6012/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6013static int __alloc_contig_migrate_range(struct compact_control *cc,
6014 unsigned long start, unsigned long end)
041d3a8c
MN
6015{
6016 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6017 unsigned long nr_reclaimed;
041d3a8c
MN
6018 unsigned long pfn = start;
6019 unsigned int tries = 0;
6020 int ret = 0;
6021
be49a6e1 6022 migrate_prep();
041d3a8c 6023
bb13ffeb 6024 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6025 if (fatal_signal_pending(current)) {
6026 ret = -EINTR;
6027 break;
6028 }
6029
bb13ffeb
MG
6030 if (list_empty(&cc->migratepages)) {
6031 cc->nr_migratepages = 0;
6032 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6033 pfn, end, true);
041d3a8c
MN
6034 if (!pfn) {
6035 ret = -EINTR;
6036 break;
6037 }
6038 tries = 0;
6039 } else if (++tries == 5) {
6040 ret = ret < 0 ? ret : -EBUSY;
6041 break;
6042 }
6043
beb51eaa
MK
6044 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6045 &cc->migratepages);
6046 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6047
9c620e2b
HD
6048 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6049 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6050 }
2a6f5124
SP
6051 if (ret < 0) {
6052 putback_movable_pages(&cc->migratepages);
6053 return ret;
6054 }
6055 return 0;
041d3a8c
MN
6056}
6057
6058/**
6059 * alloc_contig_range() -- tries to allocate given range of pages
6060 * @start: start PFN to allocate
6061 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6062 * @migratetype: migratetype of the underlaying pageblocks (either
6063 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6064 * in range must have the same migratetype and it must
6065 * be either of the two.
041d3a8c
MN
6066 *
6067 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6068 * aligned, however it's the caller's responsibility to guarantee that
6069 * we are the only thread that changes migrate type of pageblocks the
6070 * pages fall in.
6071 *
6072 * The PFN range must belong to a single zone.
6073 *
6074 * Returns zero on success or negative error code. On success all
6075 * pages which PFN is in [start, end) are allocated for the caller and
6076 * need to be freed with free_contig_range().
6077 */
0815f3d8
MN
6078int alloc_contig_range(unsigned long start, unsigned long end,
6079 unsigned migratetype)
041d3a8c 6080{
041d3a8c
MN
6081 unsigned long outer_start, outer_end;
6082 int ret = 0, order;
6083
bb13ffeb
MG
6084 struct compact_control cc = {
6085 .nr_migratepages = 0,
6086 .order = -1,
6087 .zone = page_zone(pfn_to_page(start)),
6088 .sync = true,
6089 .ignore_skip_hint = true,
6090 };
6091 INIT_LIST_HEAD(&cc.migratepages);
6092
041d3a8c
MN
6093 /*
6094 * What we do here is we mark all pageblocks in range as
6095 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6096 * have different sizes, and due to the way page allocator
6097 * work, we align the range to biggest of the two pages so
6098 * that page allocator won't try to merge buddies from
6099 * different pageblocks and change MIGRATE_ISOLATE to some
6100 * other migration type.
6101 *
6102 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6103 * migrate the pages from an unaligned range (ie. pages that
6104 * we are interested in). This will put all the pages in
6105 * range back to page allocator as MIGRATE_ISOLATE.
6106 *
6107 * When this is done, we take the pages in range from page
6108 * allocator removing them from the buddy system. This way
6109 * page allocator will never consider using them.
6110 *
6111 * This lets us mark the pageblocks back as
6112 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6113 * aligned range but not in the unaligned, original range are
6114 * put back to page allocator so that buddy can use them.
6115 */
6116
6117 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6118 pfn_max_align_up(end), migratetype,
6119 false);
041d3a8c 6120 if (ret)
86a595f9 6121 return ret;
041d3a8c 6122
bb13ffeb 6123 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6124 if (ret)
6125 goto done;
6126
6127 /*
6128 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6129 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6130 * more, all pages in [start, end) are free in page allocator.
6131 * What we are going to do is to allocate all pages from
6132 * [start, end) (that is remove them from page allocator).
6133 *
6134 * The only problem is that pages at the beginning and at the
6135 * end of interesting range may be not aligned with pages that
6136 * page allocator holds, ie. they can be part of higher order
6137 * pages. Because of this, we reserve the bigger range and
6138 * once this is done free the pages we are not interested in.
6139 *
6140 * We don't have to hold zone->lock here because the pages are
6141 * isolated thus they won't get removed from buddy.
6142 */
6143
6144 lru_add_drain_all();
6145 drain_all_pages();
6146
6147 order = 0;
6148 outer_start = start;
6149 while (!PageBuddy(pfn_to_page(outer_start))) {
6150 if (++order >= MAX_ORDER) {
6151 ret = -EBUSY;
6152 goto done;
6153 }
6154 outer_start &= ~0UL << order;
6155 }
6156
6157 /* Make sure the range is really isolated. */
b023f468 6158 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6159 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6160 outer_start, end);
6161 ret = -EBUSY;
6162 goto done;
6163 }
6164
49f223a9
MS
6165
6166 /* Grab isolated pages from freelists. */
bb13ffeb 6167 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6168 if (!outer_end) {
6169 ret = -EBUSY;
6170 goto done;
6171 }
6172
6173 /* Free head and tail (if any) */
6174 if (start != outer_start)
6175 free_contig_range(outer_start, start - outer_start);
6176 if (end != outer_end)
6177 free_contig_range(end, outer_end - end);
6178
6179done:
6180 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6181 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6182 return ret;
6183}
6184
6185void free_contig_range(unsigned long pfn, unsigned nr_pages)
6186{
bcc2b02f
MS
6187 unsigned int count = 0;
6188
6189 for (; nr_pages--; pfn++) {
6190 struct page *page = pfn_to_page(pfn);
6191
6192 count += page_count(page) != 1;
6193 __free_page(page);
6194 }
6195 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6196}
6197#endif
6198
4ed7e022 6199#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6200/*
6201 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6202 * page high values need to be recalulated.
6203 */
4ed7e022
JL
6204void __meminit zone_pcp_update(struct zone *zone)
6205{
0a647f38 6206 unsigned cpu;
c8e251fa 6207 mutex_lock(&pcp_batch_high_lock);
0a647f38 6208 for_each_possible_cpu(cpu)
169f6c19
CS
6209 pageset_set_high_and_batch(zone,
6210 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6211 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6212}
6213#endif
6214
340175b7
JL
6215void zone_pcp_reset(struct zone *zone)
6216{
6217 unsigned long flags;
5a883813
MK
6218 int cpu;
6219 struct per_cpu_pageset *pset;
340175b7
JL
6220
6221 /* avoid races with drain_pages() */
6222 local_irq_save(flags);
6223 if (zone->pageset != &boot_pageset) {
5a883813
MK
6224 for_each_online_cpu(cpu) {
6225 pset = per_cpu_ptr(zone->pageset, cpu);
6226 drain_zonestat(zone, pset);
6227 }
340175b7
JL
6228 free_percpu(zone->pageset);
6229 zone->pageset = &boot_pageset;
6230 }
6231 local_irq_restore(flags);
6232}
6233
6dcd73d7 6234#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6235/*
6236 * All pages in the range must be isolated before calling this.
6237 */
6238void
6239__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6240{
6241 struct page *page;
6242 struct zone *zone;
6243 int order, i;
6244 unsigned long pfn;
6245 unsigned long flags;
6246 /* find the first valid pfn */
6247 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6248 if (pfn_valid(pfn))
6249 break;
6250 if (pfn == end_pfn)
6251 return;
6252 zone = page_zone(pfn_to_page(pfn));
6253 spin_lock_irqsave(&zone->lock, flags);
6254 pfn = start_pfn;
6255 while (pfn < end_pfn) {
6256 if (!pfn_valid(pfn)) {
6257 pfn++;
6258 continue;
6259 }
6260 page = pfn_to_page(pfn);
b023f468
WC
6261 /*
6262 * The HWPoisoned page may be not in buddy system, and
6263 * page_count() is not 0.
6264 */
6265 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6266 pfn++;
6267 SetPageReserved(page);
6268 continue;
6269 }
6270
0c0e6195
KH
6271 BUG_ON(page_count(page));
6272 BUG_ON(!PageBuddy(page));
6273 order = page_order(page);
6274#ifdef CONFIG_DEBUG_VM
6275 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6276 pfn, 1 << order, end_pfn);
6277#endif
6278 list_del(&page->lru);
6279 rmv_page_order(page);
6280 zone->free_area[order].nr_free--;
cea27eb2
WL
6281#ifdef CONFIG_HIGHMEM
6282 if (PageHighMem(page))
6283 totalhigh_pages -= 1 << order;
6284#endif
0c0e6195
KH
6285 for (i = 0; i < (1 << order); i++)
6286 SetPageReserved((page+i));
6287 pfn += (1 << order);
6288 }
6289 spin_unlock_irqrestore(&zone->lock, flags);
6290}
6291#endif
8d22ba1b
WF
6292
6293#ifdef CONFIG_MEMORY_FAILURE
6294bool is_free_buddy_page(struct page *page)
6295{
6296 struct zone *zone = page_zone(page);
6297 unsigned long pfn = page_to_pfn(page);
6298 unsigned long flags;
6299 int order;
6300
6301 spin_lock_irqsave(&zone->lock, flags);
6302 for (order = 0; order < MAX_ORDER; order++) {
6303 struct page *page_head = page - (pfn & ((1 << order) - 1));
6304
6305 if (PageBuddy(page_head) && page_order(page_head) >= order)
6306 break;
6307 }
6308 spin_unlock_irqrestore(&zone->lock, flags);
6309
6310 return order < MAX_ORDER;
6311}
6312#endif
718a3821 6313
51300cef 6314static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6315 {1UL << PG_locked, "locked" },
6316 {1UL << PG_error, "error" },
6317 {1UL << PG_referenced, "referenced" },
6318 {1UL << PG_uptodate, "uptodate" },
6319 {1UL << PG_dirty, "dirty" },
6320 {1UL << PG_lru, "lru" },
6321 {1UL << PG_active, "active" },
6322 {1UL << PG_slab, "slab" },
6323 {1UL << PG_owner_priv_1, "owner_priv_1" },
6324 {1UL << PG_arch_1, "arch_1" },
6325 {1UL << PG_reserved, "reserved" },
6326 {1UL << PG_private, "private" },
6327 {1UL << PG_private_2, "private_2" },
6328 {1UL << PG_writeback, "writeback" },
6329#ifdef CONFIG_PAGEFLAGS_EXTENDED
6330 {1UL << PG_head, "head" },
6331 {1UL << PG_tail, "tail" },
6332#else
6333 {1UL << PG_compound, "compound" },
6334#endif
6335 {1UL << PG_swapcache, "swapcache" },
6336 {1UL << PG_mappedtodisk, "mappedtodisk" },
6337 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6338 {1UL << PG_swapbacked, "swapbacked" },
6339 {1UL << PG_unevictable, "unevictable" },
6340#ifdef CONFIG_MMU
6341 {1UL << PG_mlocked, "mlocked" },
6342#endif
6343#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6344 {1UL << PG_uncached, "uncached" },
6345#endif
6346#ifdef CONFIG_MEMORY_FAILURE
6347 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6348#endif
6349#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6350 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6351#endif
718a3821
WF
6352};
6353
6354static void dump_page_flags(unsigned long flags)
6355{
6356 const char *delim = "";
6357 unsigned long mask;
6358 int i;
6359
51300cef 6360 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6361
718a3821
WF
6362 printk(KERN_ALERT "page flags: %#lx(", flags);
6363
6364 /* remove zone id */
6365 flags &= (1UL << NR_PAGEFLAGS) - 1;
6366
51300cef 6367 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6368
6369 mask = pageflag_names[i].mask;
6370 if ((flags & mask) != mask)
6371 continue;
6372
6373 flags &= ~mask;
6374 printk("%s%s", delim, pageflag_names[i].name);
6375 delim = "|";
6376 }
6377
6378 /* check for left over flags */
6379 if (flags)
6380 printk("%s%#lx", delim, flags);
6381
6382 printk(")\n");
6383}
6384
6385void dump_page(struct page *page)
6386{
6387 printk(KERN_ALERT
6388 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6389 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6390 page->mapping, page->index);
6391 dump_page_flags(page->flags);
f212ad7c 6392 mem_cgroup_print_bad_page(page);
718a3821 6393}