]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: un-inline the bad part of free_pages_check
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
7bfec6f4
MG
787/*
788 * A bad page could be due to a number of fields. Instead of multiple branches,
789 * try and check multiple fields with one check. The caller must do a detailed
790 * check if necessary.
791 */
792static inline bool page_expected_state(struct page *page,
793 unsigned long check_flags)
794{
795 if (unlikely(atomic_read(&page->_mapcount) != -1))
796 return false;
797
798 if (unlikely((unsigned long)page->mapping |
799 page_ref_count(page) |
800#ifdef CONFIG_MEMCG
801 (unsigned long)page->mem_cgroup |
802#endif
803 (page->flags & check_flags)))
804 return false;
805
806 return true;
807}
808
bb552ac6 809static void free_pages_check_bad(struct page *page)
1da177e4 810{
7bfec6f4
MG
811 const char *bad_reason;
812 unsigned long bad_flags;
813
7bfec6f4
MG
814 bad_reason = NULL;
815 bad_flags = 0;
f0b791a3 816
53f9263b 817 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
818 bad_reason = "nonzero mapcount";
819 if (unlikely(page->mapping != NULL))
820 bad_reason = "non-NULL mapping";
fe896d18 821 if (unlikely(page_ref_count(page) != 0))
0139aa7b 822 bad_reason = "nonzero _refcount";
f0b791a3
DH
823 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
824 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
825 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
826 }
9edad6ea
JW
827#ifdef CONFIG_MEMCG
828 if (unlikely(page->mem_cgroup))
829 bad_reason = "page still charged to cgroup";
830#endif
7bfec6f4 831 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
832}
833
834static inline int free_pages_check(struct page *page)
835{
836 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) {
837 page_cpupid_reset_last(page);
838 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
839 return 0;
840 }
841
842 /* Something has gone sideways, find it */
843 free_pages_check_bad(page);
7bfec6f4 844 return 1;
1da177e4
LT
845}
846
847/*
5f8dcc21 848 * Frees a number of pages from the PCP lists
1da177e4 849 * Assumes all pages on list are in same zone, and of same order.
207f36ee 850 * count is the number of pages to free.
1da177e4
LT
851 *
852 * If the zone was previously in an "all pages pinned" state then look to
853 * see if this freeing clears that state.
854 *
855 * And clear the zone's pages_scanned counter, to hold off the "all pages are
856 * pinned" detection logic.
857 */
5f8dcc21
MG
858static void free_pcppages_bulk(struct zone *zone, int count,
859 struct per_cpu_pages *pcp)
1da177e4 860{
5f8dcc21 861 int migratetype = 0;
a6f9edd6 862 int batch_free = 0;
72853e29 863 int to_free = count;
0d5d823a 864 unsigned long nr_scanned;
3777999d 865 bool isolated_pageblocks;
5f8dcc21 866
c54ad30c 867 spin_lock(&zone->lock);
3777999d 868 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
869 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
870 if (nr_scanned)
871 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 872
72853e29 873 while (to_free) {
48db57f8 874 struct page *page;
5f8dcc21
MG
875 struct list_head *list;
876
877 /*
a6f9edd6
MG
878 * Remove pages from lists in a round-robin fashion. A
879 * batch_free count is maintained that is incremented when an
880 * empty list is encountered. This is so more pages are freed
881 * off fuller lists instead of spinning excessively around empty
882 * lists
5f8dcc21
MG
883 */
884 do {
a6f9edd6 885 batch_free++;
5f8dcc21
MG
886 if (++migratetype == MIGRATE_PCPTYPES)
887 migratetype = 0;
888 list = &pcp->lists[migratetype];
889 } while (list_empty(list));
48db57f8 890
1d16871d
NK
891 /* This is the only non-empty list. Free them all. */
892 if (batch_free == MIGRATE_PCPTYPES)
893 batch_free = to_free;
894
a6f9edd6 895 do {
770c8aaa
BZ
896 int mt; /* migratetype of the to-be-freed page */
897
a16601c5 898 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
899 /* must delete as __free_one_page list manipulates */
900 list_del(&page->lru);
aa016d14 901
bb14c2c7 902 mt = get_pcppage_migratetype(page);
aa016d14
VB
903 /* MIGRATE_ISOLATE page should not go to pcplists */
904 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
905 /* Pageblock could have been isolated meanwhile */
3777999d 906 if (unlikely(isolated_pageblocks))
51bb1a40 907 mt = get_pageblock_migratetype(page);
51bb1a40 908
dc4b0caf 909 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 910 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 911 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 912 }
c54ad30c 913 spin_unlock(&zone->lock);
1da177e4
LT
914}
915
dc4b0caf
MG
916static void free_one_page(struct zone *zone,
917 struct page *page, unsigned long pfn,
7aeb09f9 918 unsigned int order,
ed0ae21d 919 int migratetype)
1da177e4 920{
0d5d823a 921 unsigned long nr_scanned;
006d22d9 922 spin_lock(&zone->lock);
0d5d823a
MG
923 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
924 if (nr_scanned)
925 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 926
ad53f92e
JK
927 if (unlikely(has_isolate_pageblock(zone) ||
928 is_migrate_isolate(migratetype))) {
929 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 930 }
dc4b0caf 931 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 932 spin_unlock(&zone->lock);
48db57f8
NP
933}
934
81422f29
KS
935static int free_tail_pages_check(struct page *head_page, struct page *page)
936{
1d798ca3
KS
937 int ret = 1;
938
939 /*
940 * We rely page->lru.next never has bit 0 set, unless the page
941 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
942 */
943 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
944
945 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
946 ret = 0;
947 goto out;
948 }
9a982250
KS
949 switch (page - head_page) {
950 case 1:
951 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
952 if (unlikely(compound_mapcount(page))) {
953 bad_page(page, "nonzero compound_mapcount", 0);
954 goto out;
955 }
9a982250
KS
956 break;
957 case 2:
958 /*
959 * the second tail page: ->mapping is
960 * page_deferred_list().next -- ignore value.
961 */
962 break;
963 default:
964 if (page->mapping != TAIL_MAPPING) {
965 bad_page(page, "corrupted mapping in tail page", 0);
966 goto out;
967 }
968 break;
1c290f64 969 }
81422f29
KS
970 if (unlikely(!PageTail(page))) {
971 bad_page(page, "PageTail not set", 0);
1d798ca3 972 goto out;
81422f29 973 }
1d798ca3
KS
974 if (unlikely(compound_head(page) != head_page)) {
975 bad_page(page, "compound_head not consistent", 0);
976 goto out;
81422f29 977 }
1d798ca3
KS
978 ret = 0;
979out:
1c290f64 980 page->mapping = NULL;
1d798ca3
KS
981 clear_compound_head(page);
982 return ret;
81422f29
KS
983}
984
1e8ce83c
RH
985static void __meminit __init_single_page(struct page *page, unsigned long pfn,
986 unsigned long zone, int nid)
987{
1e8ce83c 988 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
989 init_page_count(page);
990 page_mapcount_reset(page);
991 page_cpupid_reset_last(page);
1e8ce83c 992
1e8ce83c
RH
993 INIT_LIST_HEAD(&page->lru);
994#ifdef WANT_PAGE_VIRTUAL
995 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
996 if (!is_highmem_idx(zone))
997 set_page_address(page, __va(pfn << PAGE_SHIFT));
998#endif
999}
1000
1001static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1002 int nid)
1003{
1004 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1005}
1006
7e18adb4
MG
1007#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1008static void init_reserved_page(unsigned long pfn)
1009{
1010 pg_data_t *pgdat;
1011 int nid, zid;
1012
1013 if (!early_page_uninitialised(pfn))
1014 return;
1015
1016 nid = early_pfn_to_nid(pfn);
1017 pgdat = NODE_DATA(nid);
1018
1019 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1020 struct zone *zone = &pgdat->node_zones[zid];
1021
1022 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1023 break;
1024 }
1025 __init_single_pfn(pfn, zid, nid);
1026}
1027#else
1028static inline void init_reserved_page(unsigned long pfn)
1029{
1030}
1031#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1032
92923ca3
NZ
1033/*
1034 * Initialised pages do not have PageReserved set. This function is
1035 * called for each range allocated by the bootmem allocator and
1036 * marks the pages PageReserved. The remaining valid pages are later
1037 * sent to the buddy page allocator.
1038 */
7e18adb4 1039void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1040{
1041 unsigned long start_pfn = PFN_DOWN(start);
1042 unsigned long end_pfn = PFN_UP(end);
1043
7e18adb4
MG
1044 for (; start_pfn < end_pfn; start_pfn++) {
1045 if (pfn_valid(start_pfn)) {
1046 struct page *page = pfn_to_page(start_pfn);
1047
1048 init_reserved_page(start_pfn);
1d798ca3
KS
1049
1050 /* Avoid false-positive PageTail() */
1051 INIT_LIST_HEAD(&page->lru);
1052
7e18adb4
MG
1053 SetPageReserved(page);
1054 }
1055 }
92923ca3
NZ
1056}
1057
ec95f53a 1058static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1059{
d61f8590 1060 int bad = 0;
1da177e4 1061
ab1f306f 1062 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1063
b413d48a 1064 trace_mm_page_free(page, order);
b1eeab67 1065 kmemcheck_free_shadow(page, order);
b8c73fc2 1066 kasan_free_pages(page, order);
b1eeab67 1067
d61f8590
MG
1068 /*
1069 * Check tail pages before head page information is cleared to
1070 * avoid checking PageCompound for order-0 pages.
1071 */
1072 if (unlikely(order)) {
1073 bool compound = PageCompound(page);
1074 int i;
1075
1076 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1077
1078 for (i = 1; i < (1 << order); i++) {
1079 if (compound)
1080 bad += free_tail_pages_check(page, page + i);
1081 bad += free_pages_check(page + i);
1082 }
1083 }
17514574 1084 if (PageAnonHead(page))
8dd60a3a 1085 page->mapping = NULL;
81422f29 1086 bad += free_pages_check(page);
8cc3b392 1087 if (bad)
ec95f53a 1088 return false;
689bcebf 1089
48c96a36
JK
1090 reset_page_owner(page, order);
1091
3ac7fe5a 1092 if (!PageHighMem(page)) {
b8af2941
PK
1093 debug_check_no_locks_freed(page_address(page),
1094 PAGE_SIZE << order);
3ac7fe5a
TG
1095 debug_check_no_obj_freed(page_address(page),
1096 PAGE_SIZE << order);
1097 }
dafb1367 1098 arch_free_page(page, order);
8823b1db 1099 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1100 kernel_map_pages(page, 1 << order, 0);
dafb1367 1101
ec95f53a
KM
1102 return true;
1103}
1104
1105static void __free_pages_ok(struct page *page, unsigned int order)
1106{
1107 unsigned long flags;
95e34412 1108 int migratetype;
dc4b0caf 1109 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1110
1111 if (!free_pages_prepare(page, order))
1112 return;
1113
cfc47a28 1114 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1115 local_irq_save(flags);
f8891e5e 1116 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1117 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1118 local_irq_restore(flags);
1da177e4
LT
1119}
1120
949698a3 1121static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1122{
c3993076 1123 unsigned int nr_pages = 1 << order;
e2d0bd2b 1124 struct page *p = page;
c3993076 1125 unsigned int loop;
a226f6c8 1126
e2d0bd2b
YL
1127 prefetchw(p);
1128 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1129 prefetchw(p + 1);
c3993076
JW
1130 __ClearPageReserved(p);
1131 set_page_count(p, 0);
a226f6c8 1132 }
e2d0bd2b
YL
1133 __ClearPageReserved(p);
1134 set_page_count(p, 0);
c3993076 1135
e2d0bd2b 1136 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1137 set_page_refcounted(page);
1138 __free_pages(page, order);
a226f6c8
DH
1139}
1140
75a592a4
MG
1141#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1142 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1143
75a592a4
MG
1144static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1145
1146int __meminit early_pfn_to_nid(unsigned long pfn)
1147{
7ace9917 1148 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1149 int nid;
1150
7ace9917 1151 spin_lock(&early_pfn_lock);
75a592a4 1152 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1153 if (nid < 0)
1154 nid = 0;
1155 spin_unlock(&early_pfn_lock);
1156
1157 return nid;
75a592a4
MG
1158}
1159#endif
1160
1161#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1162static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1163 struct mminit_pfnnid_cache *state)
1164{
1165 int nid;
1166
1167 nid = __early_pfn_to_nid(pfn, state);
1168 if (nid >= 0 && nid != node)
1169 return false;
1170 return true;
1171}
1172
1173/* Only safe to use early in boot when initialisation is single-threaded */
1174static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1175{
1176 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1177}
1178
1179#else
1180
1181static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1182{
1183 return true;
1184}
1185static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1186 struct mminit_pfnnid_cache *state)
1187{
1188 return true;
1189}
1190#endif
1191
1192
0e1cc95b 1193void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1194 unsigned int order)
1195{
1196 if (early_page_uninitialised(pfn))
1197 return;
949698a3 1198 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1199}
1200
7cf91a98
JK
1201/*
1202 * Check that the whole (or subset of) a pageblock given by the interval of
1203 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1204 * with the migration of free compaction scanner. The scanners then need to
1205 * use only pfn_valid_within() check for arches that allow holes within
1206 * pageblocks.
1207 *
1208 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1209 *
1210 * It's possible on some configurations to have a setup like node0 node1 node0
1211 * i.e. it's possible that all pages within a zones range of pages do not
1212 * belong to a single zone. We assume that a border between node0 and node1
1213 * can occur within a single pageblock, but not a node0 node1 node0
1214 * interleaving within a single pageblock. It is therefore sufficient to check
1215 * the first and last page of a pageblock and avoid checking each individual
1216 * page in a pageblock.
1217 */
1218struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1219 unsigned long end_pfn, struct zone *zone)
1220{
1221 struct page *start_page;
1222 struct page *end_page;
1223
1224 /* end_pfn is one past the range we are checking */
1225 end_pfn--;
1226
1227 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1228 return NULL;
1229
1230 start_page = pfn_to_page(start_pfn);
1231
1232 if (page_zone(start_page) != zone)
1233 return NULL;
1234
1235 end_page = pfn_to_page(end_pfn);
1236
1237 /* This gives a shorter code than deriving page_zone(end_page) */
1238 if (page_zone_id(start_page) != page_zone_id(end_page))
1239 return NULL;
1240
1241 return start_page;
1242}
1243
1244void set_zone_contiguous(struct zone *zone)
1245{
1246 unsigned long block_start_pfn = zone->zone_start_pfn;
1247 unsigned long block_end_pfn;
1248
1249 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1250 for (; block_start_pfn < zone_end_pfn(zone);
1251 block_start_pfn = block_end_pfn,
1252 block_end_pfn += pageblock_nr_pages) {
1253
1254 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1255
1256 if (!__pageblock_pfn_to_page(block_start_pfn,
1257 block_end_pfn, zone))
1258 return;
1259 }
1260
1261 /* We confirm that there is no hole */
1262 zone->contiguous = true;
1263}
1264
1265void clear_zone_contiguous(struct zone *zone)
1266{
1267 zone->contiguous = false;
1268}
1269
7e18adb4 1270#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1271static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1272 unsigned long pfn, int nr_pages)
1273{
1274 int i;
1275
1276 if (!page)
1277 return;
1278
1279 /* Free a large naturally-aligned chunk if possible */
1280 if (nr_pages == MAX_ORDER_NR_PAGES &&
1281 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1282 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1283 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1284 return;
1285 }
1286
949698a3
LZ
1287 for (i = 0; i < nr_pages; i++, page++)
1288 __free_pages_boot_core(page, 0);
a4de83dd
MG
1289}
1290
d3cd131d
NS
1291/* Completion tracking for deferred_init_memmap() threads */
1292static atomic_t pgdat_init_n_undone __initdata;
1293static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1294
1295static inline void __init pgdat_init_report_one_done(void)
1296{
1297 if (atomic_dec_and_test(&pgdat_init_n_undone))
1298 complete(&pgdat_init_all_done_comp);
1299}
0e1cc95b 1300
7e18adb4 1301/* Initialise remaining memory on a node */
0e1cc95b 1302static int __init deferred_init_memmap(void *data)
7e18adb4 1303{
0e1cc95b
MG
1304 pg_data_t *pgdat = data;
1305 int nid = pgdat->node_id;
7e18adb4
MG
1306 struct mminit_pfnnid_cache nid_init_state = { };
1307 unsigned long start = jiffies;
1308 unsigned long nr_pages = 0;
1309 unsigned long walk_start, walk_end;
1310 int i, zid;
1311 struct zone *zone;
7e18adb4 1312 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1313 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1314
0e1cc95b 1315 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1316 pgdat_init_report_one_done();
0e1cc95b
MG
1317 return 0;
1318 }
1319
1320 /* Bind memory initialisation thread to a local node if possible */
1321 if (!cpumask_empty(cpumask))
1322 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1323
1324 /* Sanity check boundaries */
1325 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1326 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1327 pgdat->first_deferred_pfn = ULONG_MAX;
1328
1329 /* Only the highest zone is deferred so find it */
1330 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1331 zone = pgdat->node_zones + zid;
1332 if (first_init_pfn < zone_end_pfn(zone))
1333 break;
1334 }
1335
1336 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1337 unsigned long pfn, end_pfn;
54608c3f 1338 struct page *page = NULL;
a4de83dd
MG
1339 struct page *free_base_page = NULL;
1340 unsigned long free_base_pfn = 0;
1341 int nr_to_free = 0;
7e18adb4
MG
1342
1343 end_pfn = min(walk_end, zone_end_pfn(zone));
1344 pfn = first_init_pfn;
1345 if (pfn < walk_start)
1346 pfn = walk_start;
1347 if (pfn < zone->zone_start_pfn)
1348 pfn = zone->zone_start_pfn;
1349
1350 for (; pfn < end_pfn; pfn++) {
54608c3f 1351 if (!pfn_valid_within(pfn))
a4de83dd 1352 goto free_range;
7e18adb4 1353
54608c3f
MG
1354 /*
1355 * Ensure pfn_valid is checked every
1356 * MAX_ORDER_NR_PAGES for memory holes
1357 */
1358 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1359 if (!pfn_valid(pfn)) {
1360 page = NULL;
a4de83dd 1361 goto free_range;
54608c3f
MG
1362 }
1363 }
1364
1365 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1366 page = NULL;
a4de83dd 1367 goto free_range;
54608c3f
MG
1368 }
1369
1370 /* Minimise pfn page lookups and scheduler checks */
1371 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1372 page++;
1373 } else {
a4de83dd
MG
1374 nr_pages += nr_to_free;
1375 deferred_free_range(free_base_page,
1376 free_base_pfn, nr_to_free);
1377 free_base_page = NULL;
1378 free_base_pfn = nr_to_free = 0;
1379
54608c3f
MG
1380 page = pfn_to_page(pfn);
1381 cond_resched();
1382 }
7e18adb4
MG
1383
1384 if (page->flags) {
1385 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1386 goto free_range;
7e18adb4
MG
1387 }
1388
1389 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1390 if (!free_base_page) {
1391 free_base_page = page;
1392 free_base_pfn = pfn;
1393 nr_to_free = 0;
1394 }
1395 nr_to_free++;
1396
1397 /* Where possible, batch up pages for a single free */
1398 continue;
1399free_range:
1400 /* Free the current block of pages to allocator */
1401 nr_pages += nr_to_free;
1402 deferred_free_range(free_base_page, free_base_pfn,
1403 nr_to_free);
1404 free_base_page = NULL;
1405 free_base_pfn = nr_to_free = 0;
7e18adb4 1406 }
a4de83dd 1407
7e18adb4
MG
1408 first_init_pfn = max(end_pfn, first_init_pfn);
1409 }
1410
1411 /* Sanity check that the next zone really is unpopulated */
1412 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1413
0e1cc95b 1414 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1415 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1416
1417 pgdat_init_report_one_done();
0e1cc95b
MG
1418 return 0;
1419}
7cf91a98 1420#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1421
1422void __init page_alloc_init_late(void)
1423{
7cf91a98
JK
1424 struct zone *zone;
1425
1426#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1427 int nid;
1428
d3cd131d
NS
1429 /* There will be num_node_state(N_MEMORY) threads */
1430 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1431 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1432 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1433 }
1434
1435 /* Block until all are initialised */
d3cd131d 1436 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1437
1438 /* Reinit limits that are based on free pages after the kernel is up */
1439 files_maxfiles_init();
7cf91a98
JK
1440#endif
1441
1442 for_each_populated_zone(zone)
1443 set_zone_contiguous(zone);
7e18adb4 1444}
7e18adb4 1445
47118af0 1446#ifdef CONFIG_CMA
9cf510a5 1447/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1448void __init init_cma_reserved_pageblock(struct page *page)
1449{
1450 unsigned i = pageblock_nr_pages;
1451 struct page *p = page;
1452
1453 do {
1454 __ClearPageReserved(p);
1455 set_page_count(p, 0);
1456 } while (++p, --i);
1457
47118af0 1458 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1459
1460 if (pageblock_order >= MAX_ORDER) {
1461 i = pageblock_nr_pages;
1462 p = page;
1463 do {
1464 set_page_refcounted(p);
1465 __free_pages(p, MAX_ORDER - 1);
1466 p += MAX_ORDER_NR_PAGES;
1467 } while (i -= MAX_ORDER_NR_PAGES);
1468 } else {
1469 set_page_refcounted(page);
1470 __free_pages(page, pageblock_order);
1471 }
1472
3dcc0571 1473 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1474}
1475#endif
1da177e4
LT
1476
1477/*
1478 * The order of subdivision here is critical for the IO subsystem.
1479 * Please do not alter this order without good reasons and regression
1480 * testing. Specifically, as large blocks of memory are subdivided,
1481 * the order in which smaller blocks are delivered depends on the order
1482 * they're subdivided in this function. This is the primary factor
1483 * influencing the order in which pages are delivered to the IO
1484 * subsystem according to empirical testing, and this is also justified
1485 * by considering the behavior of a buddy system containing a single
1486 * large block of memory acted on by a series of small allocations.
1487 * This behavior is a critical factor in sglist merging's success.
1488 *
6d49e352 1489 * -- nyc
1da177e4 1490 */
085cc7d5 1491static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1492 int low, int high, struct free_area *area,
1493 int migratetype)
1da177e4
LT
1494{
1495 unsigned long size = 1 << high;
1496
1497 while (high > low) {
1498 area--;
1499 high--;
1500 size >>= 1;
309381fe 1501 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1502
2847cf95 1503 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1504 debug_guardpage_enabled() &&
2847cf95 1505 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1506 /*
1507 * Mark as guard pages (or page), that will allow to
1508 * merge back to allocator when buddy will be freed.
1509 * Corresponding page table entries will not be touched,
1510 * pages will stay not present in virtual address space
1511 */
2847cf95 1512 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1513 continue;
1514 }
b2a0ac88 1515 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1516 area->nr_free++;
1517 set_page_order(&page[size], high);
1518 }
1da177e4
LT
1519}
1520
1da177e4
LT
1521/*
1522 * This page is about to be returned from the page allocator
1523 */
2a7684a2 1524static inline int check_new_page(struct page *page)
1da177e4 1525{
7bfec6f4
MG
1526 const char *bad_reason;
1527 unsigned long bad_flags;
1528
1529 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1530 return 0;
f0b791a3 1531
7bfec6f4
MG
1532 bad_reason = NULL;
1533 bad_flags = 0;
53f9263b 1534 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1535 bad_reason = "nonzero mapcount";
1536 if (unlikely(page->mapping != NULL))
1537 bad_reason = "non-NULL mapping";
fe896d18 1538 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1539 bad_reason = "nonzero _count";
f4c18e6f
NH
1540 if (unlikely(page->flags & __PG_HWPOISON)) {
1541 bad_reason = "HWPoisoned (hardware-corrupted)";
1542 bad_flags = __PG_HWPOISON;
1543 }
f0b791a3
DH
1544 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1545 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1546 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1547 }
9edad6ea
JW
1548#ifdef CONFIG_MEMCG
1549 if (unlikely(page->mem_cgroup))
1550 bad_reason = "page still charged to cgroup";
1551#endif
f0b791a3
DH
1552 if (unlikely(bad_reason)) {
1553 bad_page(page, bad_reason, bad_flags);
689bcebf 1554 return 1;
8cc3b392 1555 }
2a7684a2
WF
1556 return 0;
1557}
1558
1414c7f4
LA
1559static inline bool free_pages_prezeroed(bool poisoned)
1560{
1561 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1562 page_poisoning_enabled() && poisoned;
1563}
1564
75379191 1565static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1566 unsigned int alloc_flags)
2a7684a2
WF
1567{
1568 int i;
1414c7f4 1569 bool poisoned = true;
2a7684a2
WF
1570
1571 for (i = 0; i < (1 << order); i++) {
1572 struct page *p = page + i;
1573 if (unlikely(check_new_page(p)))
1574 return 1;
1414c7f4
LA
1575 if (poisoned)
1576 poisoned &= page_is_poisoned(p);
2a7684a2 1577 }
689bcebf 1578
4c21e2f2 1579 set_page_private(page, 0);
7835e98b 1580 set_page_refcounted(page);
cc102509
NP
1581
1582 arch_alloc_page(page, order);
1da177e4 1583 kernel_map_pages(page, 1 << order, 1);
8823b1db 1584 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1585 kasan_alloc_pages(page, order);
17cf4406 1586
1414c7f4 1587 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1588 for (i = 0; i < (1 << order); i++)
1589 clear_highpage(page + i);
17cf4406
NP
1590
1591 if (order && (gfp_flags & __GFP_COMP))
1592 prep_compound_page(page, order);
1593
48c96a36
JK
1594 set_page_owner(page, order, gfp_flags);
1595
75379191 1596 /*
2f064f34 1597 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1598 * allocate the page. The expectation is that the caller is taking
1599 * steps that will free more memory. The caller should avoid the page
1600 * being used for !PFMEMALLOC purposes.
1601 */
2f064f34
MH
1602 if (alloc_flags & ALLOC_NO_WATERMARKS)
1603 set_page_pfmemalloc(page);
1604 else
1605 clear_page_pfmemalloc(page);
75379191 1606
689bcebf 1607 return 0;
1da177e4
LT
1608}
1609
56fd56b8
MG
1610/*
1611 * Go through the free lists for the given migratetype and remove
1612 * the smallest available page from the freelists
1613 */
728ec980
MG
1614static inline
1615struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1616 int migratetype)
1617{
1618 unsigned int current_order;
b8af2941 1619 struct free_area *area;
56fd56b8
MG
1620 struct page *page;
1621
1622 /* Find a page of the appropriate size in the preferred list */
1623 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1624 area = &(zone->free_area[current_order]);
a16601c5 1625 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1626 struct page, lru);
a16601c5
GT
1627 if (!page)
1628 continue;
56fd56b8
MG
1629 list_del(&page->lru);
1630 rmv_page_order(page);
1631 area->nr_free--;
56fd56b8 1632 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1633 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1634 return page;
1635 }
1636
1637 return NULL;
1638}
1639
1640
b2a0ac88
MG
1641/*
1642 * This array describes the order lists are fallen back to when
1643 * the free lists for the desirable migrate type are depleted
1644 */
47118af0 1645static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1646 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1647 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1648 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1649#ifdef CONFIG_CMA
974a786e 1650 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1651#endif
194159fb 1652#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1653 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1654#endif
b2a0ac88
MG
1655};
1656
dc67647b
JK
1657#ifdef CONFIG_CMA
1658static struct page *__rmqueue_cma_fallback(struct zone *zone,
1659 unsigned int order)
1660{
1661 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1662}
1663#else
1664static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1665 unsigned int order) { return NULL; }
1666#endif
1667
c361be55
MG
1668/*
1669 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1670 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1671 * boundary. If alignment is required, use move_freepages_block()
1672 */
435b405c 1673int move_freepages(struct zone *zone,
b69a7288
AB
1674 struct page *start_page, struct page *end_page,
1675 int migratetype)
c361be55
MG
1676{
1677 struct page *page;
d00181b9 1678 unsigned int order;
d100313f 1679 int pages_moved = 0;
c361be55
MG
1680
1681#ifndef CONFIG_HOLES_IN_ZONE
1682 /*
1683 * page_zone is not safe to call in this context when
1684 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1685 * anyway as we check zone boundaries in move_freepages_block().
1686 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1687 * grouping pages by mobility
c361be55 1688 */
97ee4ba7 1689 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1690#endif
1691
1692 for (page = start_page; page <= end_page;) {
344c790e 1693 /* Make sure we are not inadvertently changing nodes */
309381fe 1694 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1695
c361be55
MG
1696 if (!pfn_valid_within(page_to_pfn(page))) {
1697 page++;
1698 continue;
1699 }
1700
1701 if (!PageBuddy(page)) {
1702 page++;
1703 continue;
1704 }
1705
1706 order = page_order(page);
84be48d8
KS
1707 list_move(&page->lru,
1708 &zone->free_area[order].free_list[migratetype]);
c361be55 1709 page += 1 << order;
d100313f 1710 pages_moved += 1 << order;
c361be55
MG
1711 }
1712
d100313f 1713 return pages_moved;
c361be55
MG
1714}
1715
ee6f509c 1716int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1717 int migratetype)
c361be55
MG
1718{
1719 unsigned long start_pfn, end_pfn;
1720 struct page *start_page, *end_page;
1721
1722 start_pfn = page_to_pfn(page);
d9c23400 1723 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1724 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1725 end_page = start_page + pageblock_nr_pages - 1;
1726 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1727
1728 /* Do not cross zone boundaries */
108bcc96 1729 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1730 start_page = page;
108bcc96 1731 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1732 return 0;
1733
1734 return move_freepages(zone, start_page, end_page, migratetype);
1735}
1736
2f66a68f
MG
1737static void change_pageblock_range(struct page *pageblock_page,
1738 int start_order, int migratetype)
1739{
1740 int nr_pageblocks = 1 << (start_order - pageblock_order);
1741
1742 while (nr_pageblocks--) {
1743 set_pageblock_migratetype(pageblock_page, migratetype);
1744 pageblock_page += pageblock_nr_pages;
1745 }
1746}
1747
fef903ef 1748/*
9c0415eb
VB
1749 * When we are falling back to another migratetype during allocation, try to
1750 * steal extra free pages from the same pageblocks to satisfy further
1751 * allocations, instead of polluting multiple pageblocks.
1752 *
1753 * If we are stealing a relatively large buddy page, it is likely there will
1754 * be more free pages in the pageblock, so try to steal them all. For
1755 * reclaimable and unmovable allocations, we steal regardless of page size,
1756 * as fragmentation caused by those allocations polluting movable pageblocks
1757 * is worse than movable allocations stealing from unmovable and reclaimable
1758 * pageblocks.
fef903ef 1759 */
4eb7dce6
JK
1760static bool can_steal_fallback(unsigned int order, int start_mt)
1761{
1762 /*
1763 * Leaving this order check is intended, although there is
1764 * relaxed order check in next check. The reason is that
1765 * we can actually steal whole pageblock if this condition met,
1766 * but, below check doesn't guarantee it and that is just heuristic
1767 * so could be changed anytime.
1768 */
1769 if (order >= pageblock_order)
1770 return true;
1771
1772 if (order >= pageblock_order / 2 ||
1773 start_mt == MIGRATE_RECLAIMABLE ||
1774 start_mt == MIGRATE_UNMOVABLE ||
1775 page_group_by_mobility_disabled)
1776 return true;
1777
1778 return false;
1779}
1780
1781/*
1782 * This function implements actual steal behaviour. If order is large enough,
1783 * we can steal whole pageblock. If not, we first move freepages in this
1784 * pageblock and check whether half of pages are moved or not. If half of
1785 * pages are moved, we can change migratetype of pageblock and permanently
1786 * use it's pages as requested migratetype in the future.
1787 */
1788static void steal_suitable_fallback(struct zone *zone, struct page *page,
1789 int start_type)
fef903ef 1790{
d00181b9 1791 unsigned int current_order = page_order(page);
4eb7dce6 1792 int pages;
fef903ef 1793
fef903ef
SB
1794 /* Take ownership for orders >= pageblock_order */
1795 if (current_order >= pageblock_order) {
1796 change_pageblock_range(page, current_order, start_type);
3a1086fb 1797 return;
fef903ef
SB
1798 }
1799
4eb7dce6 1800 pages = move_freepages_block(zone, page, start_type);
fef903ef 1801
4eb7dce6
JK
1802 /* Claim the whole block if over half of it is free */
1803 if (pages >= (1 << (pageblock_order-1)) ||
1804 page_group_by_mobility_disabled)
1805 set_pageblock_migratetype(page, start_type);
1806}
1807
2149cdae
JK
1808/*
1809 * Check whether there is a suitable fallback freepage with requested order.
1810 * If only_stealable is true, this function returns fallback_mt only if
1811 * we can steal other freepages all together. This would help to reduce
1812 * fragmentation due to mixed migratetype pages in one pageblock.
1813 */
1814int find_suitable_fallback(struct free_area *area, unsigned int order,
1815 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1816{
1817 int i;
1818 int fallback_mt;
1819
1820 if (area->nr_free == 0)
1821 return -1;
1822
1823 *can_steal = false;
1824 for (i = 0;; i++) {
1825 fallback_mt = fallbacks[migratetype][i];
974a786e 1826 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1827 break;
1828
1829 if (list_empty(&area->free_list[fallback_mt]))
1830 continue;
fef903ef 1831
4eb7dce6
JK
1832 if (can_steal_fallback(order, migratetype))
1833 *can_steal = true;
1834
2149cdae
JK
1835 if (!only_stealable)
1836 return fallback_mt;
1837
1838 if (*can_steal)
1839 return fallback_mt;
fef903ef 1840 }
4eb7dce6
JK
1841
1842 return -1;
fef903ef
SB
1843}
1844
0aaa29a5
MG
1845/*
1846 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1847 * there are no empty page blocks that contain a page with a suitable order
1848 */
1849static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1850 unsigned int alloc_order)
1851{
1852 int mt;
1853 unsigned long max_managed, flags;
1854
1855 /*
1856 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1857 * Check is race-prone but harmless.
1858 */
1859 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1860 if (zone->nr_reserved_highatomic >= max_managed)
1861 return;
1862
1863 spin_lock_irqsave(&zone->lock, flags);
1864
1865 /* Recheck the nr_reserved_highatomic limit under the lock */
1866 if (zone->nr_reserved_highatomic >= max_managed)
1867 goto out_unlock;
1868
1869 /* Yoink! */
1870 mt = get_pageblock_migratetype(page);
1871 if (mt != MIGRATE_HIGHATOMIC &&
1872 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1873 zone->nr_reserved_highatomic += pageblock_nr_pages;
1874 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1875 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1876 }
1877
1878out_unlock:
1879 spin_unlock_irqrestore(&zone->lock, flags);
1880}
1881
1882/*
1883 * Used when an allocation is about to fail under memory pressure. This
1884 * potentially hurts the reliability of high-order allocations when under
1885 * intense memory pressure but failed atomic allocations should be easier
1886 * to recover from than an OOM.
1887 */
1888static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1889{
1890 struct zonelist *zonelist = ac->zonelist;
1891 unsigned long flags;
1892 struct zoneref *z;
1893 struct zone *zone;
1894 struct page *page;
1895 int order;
1896
1897 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1898 ac->nodemask) {
1899 /* Preserve at least one pageblock */
1900 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1901 continue;
1902
1903 spin_lock_irqsave(&zone->lock, flags);
1904 for (order = 0; order < MAX_ORDER; order++) {
1905 struct free_area *area = &(zone->free_area[order]);
1906
a16601c5
GT
1907 page = list_first_entry_or_null(
1908 &area->free_list[MIGRATE_HIGHATOMIC],
1909 struct page, lru);
1910 if (!page)
0aaa29a5
MG
1911 continue;
1912
0aaa29a5
MG
1913 /*
1914 * It should never happen but changes to locking could
1915 * inadvertently allow a per-cpu drain to add pages
1916 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1917 * and watch for underflows.
1918 */
1919 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1920 zone->nr_reserved_highatomic);
1921
1922 /*
1923 * Convert to ac->migratetype and avoid the normal
1924 * pageblock stealing heuristics. Minimally, the caller
1925 * is doing the work and needs the pages. More
1926 * importantly, if the block was always converted to
1927 * MIGRATE_UNMOVABLE or another type then the number
1928 * of pageblocks that cannot be completely freed
1929 * may increase.
1930 */
1931 set_pageblock_migratetype(page, ac->migratetype);
1932 move_freepages_block(zone, page, ac->migratetype);
1933 spin_unlock_irqrestore(&zone->lock, flags);
1934 return;
1935 }
1936 spin_unlock_irqrestore(&zone->lock, flags);
1937 }
1938}
1939
b2a0ac88 1940/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1941static inline struct page *
7aeb09f9 1942__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1943{
b8af2941 1944 struct free_area *area;
7aeb09f9 1945 unsigned int current_order;
b2a0ac88 1946 struct page *page;
4eb7dce6
JK
1947 int fallback_mt;
1948 bool can_steal;
b2a0ac88
MG
1949
1950 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1951 for (current_order = MAX_ORDER-1;
1952 current_order >= order && current_order <= MAX_ORDER-1;
1953 --current_order) {
4eb7dce6
JK
1954 area = &(zone->free_area[current_order]);
1955 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1956 start_migratetype, false, &can_steal);
4eb7dce6
JK
1957 if (fallback_mt == -1)
1958 continue;
b2a0ac88 1959
a16601c5 1960 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1961 struct page, lru);
1962 if (can_steal)
1963 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1964
4eb7dce6
JK
1965 /* Remove the page from the freelists */
1966 area->nr_free--;
1967 list_del(&page->lru);
1968 rmv_page_order(page);
3a1086fb 1969
4eb7dce6
JK
1970 expand(zone, page, order, current_order, area,
1971 start_migratetype);
1972 /*
bb14c2c7 1973 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1974 * migratetype depending on the decisions in
bb14c2c7
VB
1975 * find_suitable_fallback(). This is OK as long as it does not
1976 * differ for MIGRATE_CMA pageblocks. Those can be used as
1977 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1978 */
bb14c2c7 1979 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1980
4eb7dce6
JK
1981 trace_mm_page_alloc_extfrag(page, order, current_order,
1982 start_migratetype, fallback_mt);
e0fff1bd 1983
4eb7dce6 1984 return page;
b2a0ac88
MG
1985 }
1986
728ec980 1987 return NULL;
b2a0ac88
MG
1988}
1989
56fd56b8 1990/*
1da177e4
LT
1991 * Do the hard work of removing an element from the buddy allocator.
1992 * Call me with the zone->lock already held.
1993 */
b2a0ac88 1994static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1995 int migratetype)
1da177e4 1996{
1da177e4
LT
1997 struct page *page;
1998
56fd56b8 1999 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2000 if (unlikely(!page)) {
dc67647b
JK
2001 if (migratetype == MIGRATE_MOVABLE)
2002 page = __rmqueue_cma_fallback(zone, order);
2003
2004 if (!page)
2005 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2006 }
2007
0d3d062a 2008 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2009 return page;
1da177e4
LT
2010}
2011
5f63b720 2012/*
1da177e4
LT
2013 * Obtain a specified number of elements from the buddy allocator, all under
2014 * a single hold of the lock, for efficiency. Add them to the supplied list.
2015 * Returns the number of new pages which were placed at *list.
2016 */
5f63b720 2017static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2018 unsigned long count, struct list_head *list,
b745bc85 2019 int migratetype, bool cold)
1da177e4 2020{
5bcc9f86 2021 int i;
5f63b720 2022
c54ad30c 2023 spin_lock(&zone->lock);
1da177e4 2024 for (i = 0; i < count; ++i) {
6ac0206b 2025 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2026 if (unlikely(page == NULL))
1da177e4 2027 break;
81eabcbe
MG
2028
2029 /*
2030 * Split buddy pages returned by expand() are received here
2031 * in physical page order. The page is added to the callers and
2032 * list and the list head then moves forward. From the callers
2033 * perspective, the linked list is ordered by page number in
2034 * some conditions. This is useful for IO devices that can
2035 * merge IO requests if the physical pages are ordered
2036 * properly.
2037 */
b745bc85 2038 if (likely(!cold))
e084b2d9
MG
2039 list_add(&page->lru, list);
2040 else
2041 list_add_tail(&page->lru, list);
81eabcbe 2042 list = &page->lru;
bb14c2c7 2043 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2044 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2045 -(1 << order));
1da177e4 2046 }
f2260e6b 2047 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2048 spin_unlock(&zone->lock);
085cc7d5 2049 return i;
1da177e4
LT
2050}
2051
4ae7c039 2052#ifdef CONFIG_NUMA
8fce4d8e 2053/*
4037d452
CL
2054 * Called from the vmstat counter updater to drain pagesets of this
2055 * currently executing processor on remote nodes after they have
2056 * expired.
2057 *
879336c3
CL
2058 * Note that this function must be called with the thread pinned to
2059 * a single processor.
8fce4d8e 2060 */
4037d452 2061void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2062{
4ae7c039 2063 unsigned long flags;
7be12fc9 2064 int to_drain, batch;
4ae7c039 2065
4037d452 2066 local_irq_save(flags);
4db0c3c2 2067 batch = READ_ONCE(pcp->batch);
7be12fc9 2068 to_drain = min(pcp->count, batch);
2a13515c
KM
2069 if (to_drain > 0) {
2070 free_pcppages_bulk(zone, to_drain, pcp);
2071 pcp->count -= to_drain;
2072 }
4037d452 2073 local_irq_restore(flags);
4ae7c039
CL
2074}
2075#endif
2076
9f8f2172 2077/*
93481ff0 2078 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2079 *
2080 * The processor must either be the current processor and the
2081 * thread pinned to the current processor or a processor that
2082 * is not online.
2083 */
93481ff0 2084static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2085{
c54ad30c 2086 unsigned long flags;
93481ff0
VB
2087 struct per_cpu_pageset *pset;
2088 struct per_cpu_pages *pcp;
1da177e4 2089
93481ff0
VB
2090 local_irq_save(flags);
2091 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2092
93481ff0
VB
2093 pcp = &pset->pcp;
2094 if (pcp->count) {
2095 free_pcppages_bulk(zone, pcp->count, pcp);
2096 pcp->count = 0;
2097 }
2098 local_irq_restore(flags);
2099}
3dfa5721 2100
93481ff0
VB
2101/*
2102 * Drain pcplists of all zones on the indicated processor.
2103 *
2104 * The processor must either be the current processor and the
2105 * thread pinned to the current processor or a processor that
2106 * is not online.
2107 */
2108static void drain_pages(unsigned int cpu)
2109{
2110 struct zone *zone;
2111
2112 for_each_populated_zone(zone) {
2113 drain_pages_zone(cpu, zone);
1da177e4
LT
2114 }
2115}
1da177e4 2116
9f8f2172
CL
2117/*
2118 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2119 *
2120 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2121 * the single zone's pages.
9f8f2172 2122 */
93481ff0 2123void drain_local_pages(struct zone *zone)
9f8f2172 2124{
93481ff0
VB
2125 int cpu = smp_processor_id();
2126
2127 if (zone)
2128 drain_pages_zone(cpu, zone);
2129 else
2130 drain_pages(cpu);
9f8f2172
CL
2131}
2132
2133/*
74046494
GBY
2134 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2135 *
93481ff0
VB
2136 * When zone parameter is non-NULL, spill just the single zone's pages.
2137 *
74046494
GBY
2138 * Note that this code is protected against sending an IPI to an offline
2139 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2140 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2141 * nothing keeps CPUs from showing up after we populated the cpumask and
2142 * before the call to on_each_cpu_mask().
9f8f2172 2143 */
93481ff0 2144void drain_all_pages(struct zone *zone)
9f8f2172 2145{
74046494 2146 int cpu;
74046494
GBY
2147
2148 /*
2149 * Allocate in the BSS so we wont require allocation in
2150 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2151 */
2152 static cpumask_t cpus_with_pcps;
2153
2154 /*
2155 * We don't care about racing with CPU hotplug event
2156 * as offline notification will cause the notified
2157 * cpu to drain that CPU pcps and on_each_cpu_mask
2158 * disables preemption as part of its processing
2159 */
2160 for_each_online_cpu(cpu) {
93481ff0
VB
2161 struct per_cpu_pageset *pcp;
2162 struct zone *z;
74046494 2163 bool has_pcps = false;
93481ff0
VB
2164
2165 if (zone) {
74046494 2166 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2167 if (pcp->pcp.count)
74046494 2168 has_pcps = true;
93481ff0
VB
2169 } else {
2170 for_each_populated_zone(z) {
2171 pcp = per_cpu_ptr(z->pageset, cpu);
2172 if (pcp->pcp.count) {
2173 has_pcps = true;
2174 break;
2175 }
74046494
GBY
2176 }
2177 }
93481ff0 2178
74046494
GBY
2179 if (has_pcps)
2180 cpumask_set_cpu(cpu, &cpus_with_pcps);
2181 else
2182 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2183 }
93481ff0
VB
2184 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2185 zone, 1);
9f8f2172
CL
2186}
2187
296699de 2188#ifdef CONFIG_HIBERNATION
1da177e4
LT
2189
2190void mark_free_pages(struct zone *zone)
2191{
f623f0db
RW
2192 unsigned long pfn, max_zone_pfn;
2193 unsigned long flags;
7aeb09f9 2194 unsigned int order, t;
86760a2c 2195 struct page *page;
1da177e4 2196
8080fc03 2197 if (zone_is_empty(zone))
1da177e4
LT
2198 return;
2199
2200 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2201
108bcc96 2202 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2203 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2204 if (pfn_valid(pfn)) {
86760a2c 2205 page = pfn_to_page(pfn);
ba6b0979
JK
2206
2207 if (page_zone(page) != zone)
2208 continue;
2209
7be98234
RW
2210 if (!swsusp_page_is_forbidden(page))
2211 swsusp_unset_page_free(page);
f623f0db 2212 }
1da177e4 2213
b2a0ac88 2214 for_each_migratetype_order(order, t) {
86760a2c
GT
2215 list_for_each_entry(page,
2216 &zone->free_area[order].free_list[t], lru) {
f623f0db 2217 unsigned long i;
1da177e4 2218
86760a2c 2219 pfn = page_to_pfn(page);
f623f0db 2220 for (i = 0; i < (1UL << order); i++)
7be98234 2221 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2222 }
b2a0ac88 2223 }
1da177e4
LT
2224 spin_unlock_irqrestore(&zone->lock, flags);
2225}
e2c55dc8 2226#endif /* CONFIG_PM */
1da177e4 2227
1da177e4
LT
2228/*
2229 * Free a 0-order page
b745bc85 2230 * cold == true ? free a cold page : free a hot page
1da177e4 2231 */
b745bc85 2232void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2233{
2234 struct zone *zone = page_zone(page);
2235 struct per_cpu_pages *pcp;
2236 unsigned long flags;
dc4b0caf 2237 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2238 int migratetype;
1da177e4 2239
ec95f53a 2240 if (!free_pages_prepare(page, 0))
689bcebf
HD
2241 return;
2242
dc4b0caf 2243 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2244 set_pcppage_migratetype(page, migratetype);
1da177e4 2245 local_irq_save(flags);
f8891e5e 2246 __count_vm_event(PGFREE);
da456f14 2247
5f8dcc21
MG
2248 /*
2249 * We only track unmovable, reclaimable and movable on pcp lists.
2250 * Free ISOLATE pages back to the allocator because they are being
2251 * offlined but treat RESERVE as movable pages so we can get those
2252 * areas back if necessary. Otherwise, we may have to free
2253 * excessively into the page allocator
2254 */
2255 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2256 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2257 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2258 goto out;
2259 }
2260 migratetype = MIGRATE_MOVABLE;
2261 }
2262
99dcc3e5 2263 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2264 if (!cold)
5f8dcc21 2265 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2266 else
2267 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2268 pcp->count++;
48db57f8 2269 if (pcp->count >= pcp->high) {
4db0c3c2 2270 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2271 free_pcppages_bulk(zone, batch, pcp);
2272 pcp->count -= batch;
48db57f8 2273 }
5f8dcc21
MG
2274
2275out:
1da177e4 2276 local_irq_restore(flags);
1da177e4
LT
2277}
2278
cc59850e
KK
2279/*
2280 * Free a list of 0-order pages
2281 */
b745bc85 2282void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2283{
2284 struct page *page, *next;
2285
2286 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2287 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2288 free_hot_cold_page(page, cold);
2289 }
2290}
2291
8dfcc9ba
NP
2292/*
2293 * split_page takes a non-compound higher-order page, and splits it into
2294 * n (1<<order) sub-pages: page[0..n]
2295 * Each sub-page must be freed individually.
2296 *
2297 * Note: this is probably too low level an operation for use in drivers.
2298 * Please consult with lkml before using this in your driver.
2299 */
2300void split_page(struct page *page, unsigned int order)
2301{
2302 int i;
e2cfc911 2303 gfp_t gfp_mask;
8dfcc9ba 2304
309381fe
SL
2305 VM_BUG_ON_PAGE(PageCompound(page), page);
2306 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2307
2308#ifdef CONFIG_KMEMCHECK
2309 /*
2310 * Split shadow pages too, because free(page[0]) would
2311 * otherwise free the whole shadow.
2312 */
2313 if (kmemcheck_page_is_tracked(page))
2314 split_page(virt_to_page(page[0].shadow), order);
2315#endif
2316
e2cfc911
JK
2317 gfp_mask = get_page_owner_gfp(page);
2318 set_page_owner(page, 0, gfp_mask);
48c96a36 2319 for (i = 1; i < (1 << order); i++) {
7835e98b 2320 set_page_refcounted(page + i);
e2cfc911 2321 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2322 }
8dfcc9ba 2323}
5853ff23 2324EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2325
3c605096 2326int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2327{
748446bb
MG
2328 unsigned long watermark;
2329 struct zone *zone;
2139cbe6 2330 int mt;
748446bb
MG
2331
2332 BUG_ON(!PageBuddy(page));
2333
2334 zone = page_zone(page);
2e30abd1 2335 mt = get_pageblock_migratetype(page);
748446bb 2336
194159fb 2337 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2338 /* Obey watermarks as if the page was being allocated */
2339 watermark = low_wmark_pages(zone) + (1 << order);
2340 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2341 return 0;
2342
8fb74b9f 2343 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2344 }
748446bb
MG
2345
2346 /* Remove page from free list */
2347 list_del(&page->lru);
2348 zone->free_area[order].nr_free--;
2349 rmv_page_order(page);
2139cbe6 2350
e2cfc911 2351 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2352
8fb74b9f 2353 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2354 if (order >= pageblock_order - 1) {
2355 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2356 for (; page < endpage; page += pageblock_nr_pages) {
2357 int mt = get_pageblock_migratetype(page);
194159fb 2358 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2359 set_pageblock_migratetype(page,
2360 MIGRATE_MOVABLE);
2361 }
748446bb
MG
2362 }
2363
f3a14ced 2364
8fb74b9f 2365 return 1UL << order;
1fb3f8ca
MG
2366}
2367
2368/*
2369 * Similar to split_page except the page is already free. As this is only
2370 * being used for migration, the migratetype of the block also changes.
2371 * As this is called with interrupts disabled, the caller is responsible
2372 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2373 * are enabled.
2374 *
2375 * Note: this is probably too low level an operation for use in drivers.
2376 * Please consult with lkml before using this in your driver.
2377 */
2378int split_free_page(struct page *page)
2379{
2380 unsigned int order;
2381 int nr_pages;
2382
1fb3f8ca
MG
2383 order = page_order(page);
2384
8fb74b9f 2385 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2386 if (!nr_pages)
2387 return 0;
2388
2389 /* Split into individual pages */
2390 set_page_refcounted(page);
2391 split_page(page, order);
2392 return nr_pages;
748446bb
MG
2393}
2394
060e7417
MG
2395/*
2396 * Update NUMA hit/miss statistics
2397 *
2398 * Must be called with interrupts disabled.
2399 *
2400 * When __GFP_OTHER_NODE is set assume the node of the preferred
2401 * zone is the local node. This is useful for daemons who allocate
2402 * memory on behalf of other processes.
2403 */
2404static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2405 gfp_t flags)
2406{
2407#ifdef CONFIG_NUMA
2408 int local_nid = numa_node_id();
2409 enum zone_stat_item local_stat = NUMA_LOCAL;
2410
2411 if (unlikely(flags & __GFP_OTHER_NODE)) {
2412 local_stat = NUMA_OTHER;
2413 local_nid = preferred_zone->node;
2414 }
2415
2416 if (z->node == local_nid) {
2417 __inc_zone_state(z, NUMA_HIT);
2418 __inc_zone_state(z, local_stat);
2419 } else {
2420 __inc_zone_state(z, NUMA_MISS);
2421 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2422 }
2423#endif
2424}
2425
1da177e4 2426/*
75379191 2427 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2428 */
0a15c3e9
MG
2429static inline
2430struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2431 struct zone *zone, unsigned int order,
c603844b
MG
2432 gfp_t gfp_flags, unsigned int alloc_flags,
2433 int migratetype)
1da177e4
LT
2434{
2435 unsigned long flags;
689bcebf 2436 struct page *page;
b745bc85 2437 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2438
48db57f8 2439 if (likely(order == 0)) {
1da177e4 2440 struct per_cpu_pages *pcp;
5f8dcc21 2441 struct list_head *list;
1da177e4 2442
1da177e4 2443 local_irq_save(flags);
99dcc3e5
CL
2444 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2445 list = &pcp->lists[migratetype];
5f8dcc21 2446 if (list_empty(list)) {
535131e6 2447 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2448 pcp->batch, list,
e084b2d9 2449 migratetype, cold);
5f8dcc21 2450 if (unlikely(list_empty(list)))
6fb332fa 2451 goto failed;
535131e6 2452 }
b92a6edd 2453
5f8dcc21 2454 if (cold)
a16601c5 2455 page = list_last_entry(list, struct page, lru);
5f8dcc21 2456 else
a16601c5 2457 page = list_first_entry(list, struct page, lru);
5f8dcc21 2458
754078eb 2459 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2460 list_del(&page->lru);
2461 pcp->count--;
7fb1d9fc 2462 } else {
0f352e53
MH
2463 /*
2464 * We most definitely don't want callers attempting to
2465 * allocate greater than order-1 page units with __GFP_NOFAIL.
2466 */
2467 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2468 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2469
2470 page = NULL;
2471 if (alloc_flags & ALLOC_HARDER) {
2472 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2473 if (page)
2474 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2475 }
2476 if (!page)
6ac0206b 2477 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2478 spin_unlock(&zone->lock);
2479 if (!page)
2480 goto failed;
754078eb 2481 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2482 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2483 get_pcppage_migratetype(page));
1da177e4
LT
2484 }
2485
abe5f972 2486 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2487 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2488 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2489
f8891e5e 2490 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2491 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2492 local_irq_restore(flags);
1da177e4 2493
309381fe 2494 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2495 return page;
a74609fa
NP
2496
2497failed:
2498 local_irq_restore(flags);
a74609fa 2499 return NULL;
1da177e4
LT
2500}
2501
933e312e
AM
2502#ifdef CONFIG_FAIL_PAGE_ALLOC
2503
b2588c4b 2504static struct {
933e312e
AM
2505 struct fault_attr attr;
2506
621a5f7a 2507 bool ignore_gfp_highmem;
71baba4b 2508 bool ignore_gfp_reclaim;
54114994 2509 u32 min_order;
933e312e
AM
2510} fail_page_alloc = {
2511 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2512 .ignore_gfp_reclaim = true,
621a5f7a 2513 .ignore_gfp_highmem = true,
54114994 2514 .min_order = 1,
933e312e
AM
2515};
2516
2517static int __init setup_fail_page_alloc(char *str)
2518{
2519 return setup_fault_attr(&fail_page_alloc.attr, str);
2520}
2521__setup("fail_page_alloc=", setup_fail_page_alloc);
2522
deaf386e 2523static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2524{
54114994 2525 if (order < fail_page_alloc.min_order)
deaf386e 2526 return false;
933e312e 2527 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2528 return false;
933e312e 2529 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2530 return false;
71baba4b
MG
2531 if (fail_page_alloc.ignore_gfp_reclaim &&
2532 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2533 return false;
933e312e
AM
2534
2535 return should_fail(&fail_page_alloc.attr, 1 << order);
2536}
2537
2538#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2539
2540static int __init fail_page_alloc_debugfs(void)
2541{
f4ae40a6 2542 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2543 struct dentry *dir;
933e312e 2544
dd48c085
AM
2545 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2546 &fail_page_alloc.attr);
2547 if (IS_ERR(dir))
2548 return PTR_ERR(dir);
933e312e 2549
b2588c4b 2550 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2551 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2552 goto fail;
2553 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2554 &fail_page_alloc.ignore_gfp_highmem))
2555 goto fail;
2556 if (!debugfs_create_u32("min-order", mode, dir,
2557 &fail_page_alloc.min_order))
2558 goto fail;
2559
2560 return 0;
2561fail:
dd48c085 2562 debugfs_remove_recursive(dir);
933e312e 2563
b2588c4b 2564 return -ENOMEM;
933e312e
AM
2565}
2566
2567late_initcall(fail_page_alloc_debugfs);
2568
2569#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2570
2571#else /* CONFIG_FAIL_PAGE_ALLOC */
2572
deaf386e 2573static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2574{
deaf386e 2575 return false;
933e312e
AM
2576}
2577
2578#endif /* CONFIG_FAIL_PAGE_ALLOC */
2579
1da177e4 2580/*
97a16fc8
MG
2581 * Return true if free base pages are above 'mark'. For high-order checks it
2582 * will return true of the order-0 watermark is reached and there is at least
2583 * one free page of a suitable size. Checking now avoids taking the zone lock
2584 * to check in the allocation paths if no pages are free.
1da177e4 2585 */
7aeb09f9 2586static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2587 unsigned long mark, int classzone_idx,
2588 unsigned int alloc_flags,
7aeb09f9 2589 long free_pages)
1da177e4 2590{
d23ad423 2591 long min = mark;
1da177e4 2592 int o;
c603844b 2593 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2594
0aaa29a5 2595 /* free_pages may go negative - that's OK */
df0a6daa 2596 free_pages -= (1 << order) - 1;
0aaa29a5 2597
7fb1d9fc 2598 if (alloc_flags & ALLOC_HIGH)
1da177e4 2599 min -= min / 2;
0aaa29a5
MG
2600
2601 /*
2602 * If the caller does not have rights to ALLOC_HARDER then subtract
2603 * the high-atomic reserves. This will over-estimate the size of the
2604 * atomic reserve but it avoids a search.
2605 */
97a16fc8 2606 if (likely(!alloc_harder))
0aaa29a5
MG
2607 free_pages -= z->nr_reserved_highatomic;
2608 else
1da177e4 2609 min -= min / 4;
e2b19197 2610
d95ea5d1
BZ
2611#ifdef CONFIG_CMA
2612 /* If allocation can't use CMA areas don't use free CMA pages */
2613 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2614 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2615#endif
026b0814 2616
97a16fc8
MG
2617 /*
2618 * Check watermarks for an order-0 allocation request. If these
2619 * are not met, then a high-order request also cannot go ahead
2620 * even if a suitable page happened to be free.
2621 */
2622 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2623 return false;
1da177e4 2624
97a16fc8
MG
2625 /* If this is an order-0 request then the watermark is fine */
2626 if (!order)
2627 return true;
2628
2629 /* For a high-order request, check at least one suitable page is free */
2630 for (o = order; o < MAX_ORDER; o++) {
2631 struct free_area *area = &z->free_area[o];
2632 int mt;
2633
2634 if (!area->nr_free)
2635 continue;
2636
2637 if (alloc_harder)
2638 return true;
1da177e4 2639
97a16fc8
MG
2640 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2641 if (!list_empty(&area->free_list[mt]))
2642 return true;
2643 }
2644
2645#ifdef CONFIG_CMA
2646 if ((alloc_flags & ALLOC_CMA) &&
2647 !list_empty(&area->free_list[MIGRATE_CMA])) {
2648 return true;
2649 }
2650#endif
1da177e4 2651 }
97a16fc8 2652 return false;
88f5acf8
MG
2653}
2654
7aeb09f9 2655bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2656 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2657{
2658 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2659 zone_page_state(z, NR_FREE_PAGES));
2660}
2661
48ee5f36
MG
2662static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2663 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2664{
2665 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2666 long cma_pages = 0;
2667
2668#ifdef CONFIG_CMA
2669 /* If allocation can't use CMA areas don't use free CMA pages */
2670 if (!(alloc_flags & ALLOC_CMA))
2671 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2672#endif
2673
2674 /*
2675 * Fast check for order-0 only. If this fails then the reserves
2676 * need to be calculated. There is a corner case where the check
2677 * passes but only the high-order atomic reserve are free. If
2678 * the caller is !atomic then it'll uselessly search the free
2679 * list. That corner case is then slower but it is harmless.
2680 */
2681 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2682 return true;
2683
2684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2685 free_pages);
2686}
2687
7aeb09f9 2688bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2689 unsigned long mark, int classzone_idx)
88f5acf8
MG
2690{
2691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2692
2693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2695
e2b19197 2696 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2697 free_pages);
1da177e4
LT
2698}
2699
9276b1bc 2700#ifdef CONFIG_NUMA
81c0a2bb
JW
2701static bool zone_local(struct zone *local_zone, struct zone *zone)
2702{
fff4068c 2703 return local_zone->node == zone->node;
81c0a2bb
JW
2704}
2705
957f822a
DR
2706static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2707{
5f7a75ac
MG
2708 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2709 RECLAIM_DISTANCE;
957f822a 2710}
9276b1bc 2711#else /* CONFIG_NUMA */
81c0a2bb
JW
2712static bool zone_local(struct zone *local_zone, struct zone *zone)
2713{
2714 return true;
2715}
2716
957f822a
DR
2717static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2718{
2719 return true;
2720}
9276b1bc
PJ
2721#endif /* CONFIG_NUMA */
2722
4ffeaf35
MG
2723static void reset_alloc_batches(struct zone *preferred_zone)
2724{
2725 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2726
2727 do {
2728 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2729 high_wmark_pages(zone) - low_wmark_pages(zone) -
2730 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2731 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2732 } while (zone++ != preferred_zone);
2733}
2734
7fb1d9fc 2735/*
0798e519 2736 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2737 * a page.
2738 */
2739static struct page *
a9263751
VB
2740get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2741 const struct alloc_context *ac)
753ee728 2742{
c33d6c06 2743 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2744 struct zone *zone;
30534755
MG
2745 bool fair_skipped = false;
2746 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2747
9276b1bc 2748zonelist_scan:
7fb1d9fc 2749 /*
9276b1bc 2750 * Scan zonelist, looking for a zone with enough free.
344736f2 2751 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2752 */
c33d6c06 2753 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2754 ac->nodemask) {
be06af00 2755 struct page *page;
e085dbc5
JW
2756 unsigned long mark;
2757
664eedde
MG
2758 if (cpusets_enabled() &&
2759 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2760 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2761 continue;
81c0a2bb
JW
2762 /*
2763 * Distribute pages in proportion to the individual
2764 * zone size to ensure fair page aging. The zone a
2765 * page was allocated in should have no effect on the
2766 * time the page has in memory before being reclaimed.
81c0a2bb 2767 */
30534755 2768 if (apply_fair) {
57054651 2769 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2770 fair_skipped = true;
3a025760 2771 continue;
4ffeaf35 2772 }
c33d6c06 2773 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2774 if (fair_skipped)
2775 goto reset_fair;
2776 apply_fair = false;
2777 }
81c0a2bb 2778 }
a756cf59
JW
2779 /*
2780 * When allocating a page cache page for writing, we
2781 * want to get it from a zone that is within its dirty
2782 * limit, such that no single zone holds more than its
2783 * proportional share of globally allowed dirty pages.
2784 * The dirty limits take into account the zone's
2785 * lowmem reserves and high watermark so that kswapd
2786 * should be able to balance it without having to
2787 * write pages from its LRU list.
2788 *
2789 * This may look like it could increase pressure on
2790 * lower zones by failing allocations in higher zones
2791 * before they are full. But the pages that do spill
2792 * over are limited as the lower zones are protected
2793 * by this very same mechanism. It should not become
2794 * a practical burden to them.
2795 *
2796 * XXX: For now, allow allocations to potentially
2797 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2798 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2799 * which is important when on a NUMA setup the allowed
2800 * zones are together not big enough to reach the
2801 * global limit. The proper fix for these situations
2802 * will require awareness of zones in the
2803 * dirty-throttling and the flusher threads.
2804 */
c9ab0c4f 2805 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2806 continue;
7fb1d9fc 2807
e085dbc5 2808 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2809 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2810 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2811 int ret;
2812
5dab2911
MG
2813 /* Checked here to keep the fast path fast */
2814 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2815 if (alloc_flags & ALLOC_NO_WATERMARKS)
2816 goto try_this_zone;
2817
957f822a 2818 if (zone_reclaim_mode == 0 ||
c33d6c06 2819 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2820 continue;
2821
fa5e084e
MG
2822 ret = zone_reclaim(zone, gfp_mask, order);
2823 switch (ret) {
2824 case ZONE_RECLAIM_NOSCAN:
2825 /* did not scan */
cd38b115 2826 continue;
fa5e084e
MG
2827 case ZONE_RECLAIM_FULL:
2828 /* scanned but unreclaimable */
cd38b115 2829 continue;
fa5e084e
MG
2830 default:
2831 /* did we reclaim enough */
fed2719e 2832 if (zone_watermark_ok(zone, order, mark,
93ea9964 2833 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2834 goto try_this_zone;
2835
fed2719e 2836 continue;
0798e519 2837 }
7fb1d9fc
RS
2838 }
2839
fa5e084e 2840try_this_zone:
c33d6c06 2841 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2842 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2843 if (page) {
2844 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2845 goto try_this_zone;
0aaa29a5
MG
2846
2847 /*
2848 * If this is a high-order atomic allocation then check
2849 * if the pageblock should be reserved for the future
2850 */
2851 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2852 reserve_highatomic_pageblock(page, zone, order);
2853
75379191
VB
2854 return page;
2855 }
54a6eb5c 2856 }
9276b1bc 2857
4ffeaf35
MG
2858 /*
2859 * The first pass makes sure allocations are spread fairly within the
2860 * local node. However, the local node might have free pages left
2861 * after the fairness batches are exhausted, and remote zones haven't
2862 * even been considered yet. Try once more without fairness, and
2863 * include remote zones now, before entering the slowpath and waking
2864 * kswapd: prefer spilling to a remote zone over swapping locally.
2865 */
30534755
MG
2866 if (fair_skipped) {
2867reset_fair:
2868 apply_fair = false;
2869 fair_skipped = false;
c33d6c06 2870 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 2871 goto zonelist_scan;
30534755 2872 }
4ffeaf35
MG
2873
2874 return NULL;
753ee728
MH
2875}
2876
29423e77
DR
2877/*
2878 * Large machines with many possible nodes should not always dump per-node
2879 * meminfo in irq context.
2880 */
2881static inline bool should_suppress_show_mem(void)
2882{
2883 bool ret = false;
2884
2885#if NODES_SHIFT > 8
2886 ret = in_interrupt();
2887#endif
2888 return ret;
2889}
2890
a238ab5b
DH
2891static DEFINE_RATELIMIT_STATE(nopage_rs,
2892 DEFAULT_RATELIMIT_INTERVAL,
2893 DEFAULT_RATELIMIT_BURST);
2894
d00181b9 2895void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2896{
a238ab5b
DH
2897 unsigned int filter = SHOW_MEM_FILTER_NODES;
2898
c0a32fc5
SG
2899 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2900 debug_guardpage_minorder() > 0)
a238ab5b
DH
2901 return;
2902
2903 /*
2904 * This documents exceptions given to allocations in certain
2905 * contexts that are allowed to allocate outside current's set
2906 * of allowed nodes.
2907 */
2908 if (!(gfp_mask & __GFP_NOMEMALLOC))
2909 if (test_thread_flag(TIF_MEMDIE) ||
2910 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2911 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2912 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2913 filter &= ~SHOW_MEM_FILTER_NODES;
2914
2915 if (fmt) {
3ee9a4f0
JP
2916 struct va_format vaf;
2917 va_list args;
2918
a238ab5b 2919 va_start(args, fmt);
3ee9a4f0
JP
2920
2921 vaf.fmt = fmt;
2922 vaf.va = &args;
2923
2924 pr_warn("%pV", &vaf);
2925
a238ab5b
DH
2926 va_end(args);
2927 }
2928
c5c990e8
VB
2929 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2930 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2931 dump_stack();
2932 if (!should_suppress_show_mem())
2933 show_mem(filter);
2934}
2935
11e33f6a
MG
2936static inline struct page *
2937__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2938 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2939{
6e0fc46d
DR
2940 struct oom_control oc = {
2941 .zonelist = ac->zonelist,
2942 .nodemask = ac->nodemask,
2943 .gfp_mask = gfp_mask,
2944 .order = order,
6e0fc46d 2945 };
11e33f6a
MG
2946 struct page *page;
2947
9879de73
JW
2948 *did_some_progress = 0;
2949
9879de73 2950 /*
dc56401f
JW
2951 * Acquire the oom lock. If that fails, somebody else is
2952 * making progress for us.
9879de73 2953 */
dc56401f 2954 if (!mutex_trylock(&oom_lock)) {
9879de73 2955 *did_some_progress = 1;
11e33f6a 2956 schedule_timeout_uninterruptible(1);
1da177e4
LT
2957 return NULL;
2958 }
6b1de916 2959
11e33f6a
MG
2960 /*
2961 * Go through the zonelist yet one more time, keep very high watermark
2962 * here, this is only to catch a parallel oom killing, we must fail if
2963 * we're still under heavy pressure.
2964 */
a9263751
VB
2965 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2966 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2967 if (page)
11e33f6a
MG
2968 goto out;
2969
4365a567 2970 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2971 /* Coredumps can quickly deplete all memory reserves */
2972 if (current->flags & PF_DUMPCORE)
2973 goto out;
4365a567
KH
2974 /* The OOM killer will not help higher order allocs */
2975 if (order > PAGE_ALLOC_COSTLY_ORDER)
2976 goto out;
03668b3c 2977 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2978 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2979 goto out;
9083905a
JW
2980 if (pm_suspended_storage())
2981 goto out;
3da88fb3
MH
2982 /*
2983 * XXX: GFP_NOFS allocations should rather fail than rely on
2984 * other request to make a forward progress.
2985 * We are in an unfortunate situation where out_of_memory cannot
2986 * do much for this context but let's try it to at least get
2987 * access to memory reserved if the current task is killed (see
2988 * out_of_memory). Once filesystems are ready to handle allocation
2989 * failures more gracefully we should just bail out here.
2990 */
2991
4167e9b2 2992 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2993 if (gfp_mask & __GFP_THISNODE)
2994 goto out;
2995 }
11e33f6a 2996 /* Exhausted what can be done so it's blamo time */
5020e285 2997 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2998 *did_some_progress = 1;
5020e285
MH
2999
3000 if (gfp_mask & __GFP_NOFAIL) {
3001 page = get_page_from_freelist(gfp_mask, order,
3002 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3003 /*
3004 * fallback to ignore cpuset restriction if our nodes
3005 * are depleted
3006 */
3007 if (!page)
3008 page = get_page_from_freelist(gfp_mask, order,
3009 ALLOC_NO_WATERMARKS, ac);
3010 }
3011 }
11e33f6a 3012out:
dc56401f 3013 mutex_unlock(&oom_lock);
11e33f6a
MG
3014 return page;
3015}
3016
56de7263
MG
3017#ifdef CONFIG_COMPACTION
3018/* Try memory compaction for high-order allocations before reclaim */
3019static struct page *
3020__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3021 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3022 enum migrate_mode mode, int *contended_compaction,
3023 bool *deferred_compaction)
56de7263 3024{
53853e2d 3025 unsigned long compact_result;
98dd3b48 3026 struct page *page;
53853e2d
VB
3027
3028 if (!order)
66199712 3029 return NULL;
66199712 3030
c06b1fca 3031 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
3032 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3033 mode, contended_compaction);
c06b1fca 3034 current->flags &= ~PF_MEMALLOC;
56de7263 3035
98dd3b48
VB
3036 switch (compact_result) {
3037 case COMPACT_DEFERRED:
53853e2d 3038 *deferred_compaction = true;
98dd3b48
VB
3039 /* fall-through */
3040 case COMPACT_SKIPPED:
3041 return NULL;
3042 default:
3043 break;
3044 }
53853e2d 3045
98dd3b48
VB
3046 /*
3047 * At least in one zone compaction wasn't deferred or skipped, so let's
3048 * count a compaction stall
3049 */
3050 count_vm_event(COMPACTSTALL);
8fb74b9f 3051
a9263751
VB
3052 page = get_page_from_freelist(gfp_mask, order,
3053 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3054
98dd3b48
VB
3055 if (page) {
3056 struct zone *zone = page_zone(page);
53853e2d 3057
98dd3b48
VB
3058 zone->compact_blockskip_flush = false;
3059 compaction_defer_reset(zone, order, true);
3060 count_vm_event(COMPACTSUCCESS);
3061 return page;
3062 }
56de7263 3063
98dd3b48
VB
3064 /*
3065 * It's bad if compaction run occurs and fails. The most likely reason
3066 * is that pages exist, but not enough to satisfy watermarks.
3067 */
3068 count_vm_event(COMPACTFAIL);
66199712 3069
98dd3b48 3070 cond_resched();
56de7263
MG
3071
3072 return NULL;
3073}
3074#else
3075static inline struct page *
3076__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3077 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3078 enum migrate_mode mode, int *contended_compaction,
3079 bool *deferred_compaction)
56de7263
MG
3080{
3081 return NULL;
3082}
3083#endif /* CONFIG_COMPACTION */
3084
bba90710
MS
3085/* Perform direct synchronous page reclaim */
3086static int
a9263751
VB
3087__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3088 const struct alloc_context *ac)
11e33f6a 3089{
11e33f6a 3090 struct reclaim_state reclaim_state;
bba90710 3091 int progress;
11e33f6a
MG
3092
3093 cond_resched();
3094
3095 /* We now go into synchronous reclaim */
3096 cpuset_memory_pressure_bump();
c06b1fca 3097 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3098 lockdep_set_current_reclaim_state(gfp_mask);
3099 reclaim_state.reclaimed_slab = 0;
c06b1fca 3100 current->reclaim_state = &reclaim_state;
11e33f6a 3101
a9263751
VB
3102 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3103 ac->nodemask);
11e33f6a 3104
c06b1fca 3105 current->reclaim_state = NULL;
11e33f6a 3106 lockdep_clear_current_reclaim_state();
c06b1fca 3107 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3108
3109 cond_resched();
3110
bba90710
MS
3111 return progress;
3112}
3113
3114/* The really slow allocator path where we enter direct reclaim */
3115static inline struct page *
3116__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3117 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3118 unsigned long *did_some_progress)
bba90710
MS
3119{
3120 struct page *page = NULL;
3121 bool drained = false;
3122
a9263751 3123 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3124 if (unlikely(!(*did_some_progress)))
3125 return NULL;
11e33f6a 3126
9ee493ce 3127retry:
a9263751
VB
3128 page = get_page_from_freelist(gfp_mask, order,
3129 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3130
3131 /*
3132 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3133 * pages are pinned on the per-cpu lists or in high alloc reserves.
3134 * Shrink them them and try again
9ee493ce
MG
3135 */
3136 if (!page && !drained) {
0aaa29a5 3137 unreserve_highatomic_pageblock(ac);
93481ff0 3138 drain_all_pages(NULL);
9ee493ce
MG
3139 drained = true;
3140 goto retry;
3141 }
3142
11e33f6a
MG
3143 return page;
3144}
3145
a9263751 3146static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3147{
3148 struct zoneref *z;
3149 struct zone *zone;
3150
a9263751
VB
3151 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3152 ac->high_zoneidx, ac->nodemask)
93ea9964 3153 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3154}
3155
c603844b 3156static inline unsigned int
341ce06f
PZ
3157gfp_to_alloc_flags(gfp_t gfp_mask)
3158{
c603844b 3159 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3160
a56f57ff 3161 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3162 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3163
341ce06f
PZ
3164 /*
3165 * The caller may dip into page reserves a bit more if the caller
3166 * cannot run direct reclaim, or if the caller has realtime scheduling
3167 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3168 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3169 */
e6223a3b 3170 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3171
d0164adc 3172 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3173 /*
b104a35d
DR
3174 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3175 * if it can't schedule.
5c3240d9 3176 */
b104a35d 3177 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3178 alloc_flags |= ALLOC_HARDER;
523b9458 3179 /*
b104a35d 3180 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3181 * comment for __cpuset_node_allowed().
523b9458 3182 */
341ce06f 3183 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3184 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3185 alloc_flags |= ALLOC_HARDER;
3186
b37f1dd0
MG
3187 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3188 if (gfp_mask & __GFP_MEMALLOC)
3189 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3190 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3191 alloc_flags |= ALLOC_NO_WATERMARKS;
3192 else if (!in_interrupt() &&
3193 ((current->flags & PF_MEMALLOC) ||
3194 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3195 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3196 }
d95ea5d1 3197#ifdef CONFIG_CMA
43e7a34d 3198 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3199 alloc_flags |= ALLOC_CMA;
3200#endif
341ce06f
PZ
3201 return alloc_flags;
3202}
3203
072bb0aa
MG
3204bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3205{
b37f1dd0 3206 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3207}
3208
d0164adc
MG
3209static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3210{
3211 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3212}
3213
11e33f6a
MG
3214static inline struct page *
3215__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3216 struct alloc_context *ac)
11e33f6a 3217{
d0164adc 3218 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3219 struct page *page = NULL;
c603844b 3220 unsigned int alloc_flags;
11e33f6a
MG
3221 unsigned long pages_reclaimed = 0;
3222 unsigned long did_some_progress;
e0b9daeb 3223 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3224 bool deferred_compaction = false;
1f9efdef 3225 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3226
72807a74
MG
3227 /*
3228 * In the slowpath, we sanity check order to avoid ever trying to
3229 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3230 * be using allocators in order of preference for an area that is
3231 * too large.
3232 */
1fc28b70
MG
3233 if (order >= MAX_ORDER) {
3234 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3235 return NULL;
1fc28b70 3236 }
1da177e4 3237
d0164adc
MG
3238 /*
3239 * We also sanity check to catch abuse of atomic reserves being used by
3240 * callers that are not in atomic context.
3241 */
3242 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3243 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3244 gfp_mask &= ~__GFP_ATOMIC;
3245
9879de73 3246retry:
d0164adc 3247 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3248 wake_all_kswapds(order, ac);
1da177e4 3249
9bf2229f 3250 /*
7fb1d9fc
RS
3251 * OK, we're below the kswapd watermark and have kicked background
3252 * reclaim. Now things get more complex, so set up alloc_flags according
3253 * to how we want to proceed.
9bf2229f 3254 */
341ce06f 3255 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3256
341ce06f 3257 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3258 page = get_page_from_freelist(gfp_mask, order,
3259 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3260 if (page)
3261 goto got_pg;
1da177e4 3262
11e33f6a 3263 /* Allocate without watermarks if the context allows */
341ce06f 3264 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3265 /*
3266 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3267 * the allocation is high priority and these type of
3268 * allocations are system rather than user orientated
3269 */
a9263751 3270 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3271 page = get_page_from_freelist(gfp_mask, order,
3272 ALLOC_NO_WATERMARKS, ac);
3273 if (page)
3274 goto got_pg;
1da177e4
LT
3275 }
3276
d0164adc
MG
3277 /* Caller is not willing to reclaim, we can't balance anything */
3278 if (!can_direct_reclaim) {
aed0a0e3 3279 /*
33d53103
MH
3280 * All existing users of the __GFP_NOFAIL are blockable, so warn
3281 * of any new users that actually allow this type of allocation
3282 * to fail.
aed0a0e3
DR
3283 */
3284 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3285 goto nopage;
aed0a0e3 3286 }
1da177e4 3287
341ce06f 3288 /* Avoid recursion of direct reclaim */
33d53103
MH
3289 if (current->flags & PF_MEMALLOC) {
3290 /*
3291 * __GFP_NOFAIL request from this context is rather bizarre
3292 * because we cannot reclaim anything and only can loop waiting
3293 * for somebody to do a work for us.
3294 */
3295 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3296 cond_resched();
3297 goto retry;
3298 }
341ce06f 3299 goto nopage;
33d53103 3300 }
341ce06f 3301
6583bb64
DR
3302 /* Avoid allocations with no watermarks from looping endlessly */
3303 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3304 goto nopage;
3305
77f1fe6b
MG
3306 /*
3307 * Try direct compaction. The first pass is asynchronous. Subsequent
3308 * attempts after direct reclaim are synchronous
3309 */
a9263751
VB
3310 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3311 migration_mode,
3312 &contended_compaction,
53853e2d 3313 &deferred_compaction);
56de7263
MG
3314 if (page)
3315 goto got_pg;
75f30861 3316
1f9efdef 3317 /* Checks for THP-specific high-order allocations */
d0164adc 3318 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3319 /*
3320 * If compaction is deferred for high-order allocations, it is
3321 * because sync compaction recently failed. If this is the case
3322 * and the caller requested a THP allocation, we do not want
3323 * to heavily disrupt the system, so we fail the allocation
3324 * instead of entering direct reclaim.
3325 */
3326 if (deferred_compaction)
3327 goto nopage;
3328
3329 /*
3330 * In all zones where compaction was attempted (and not
3331 * deferred or skipped), lock contention has been detected.
3332 * For THP allocation we do not want to disrupt the others
3333 * so we fallback to base pages instead.
3334 */
3335 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3336 goto nopage;
3337
3338 /*
3339 * If compaction was aborted due to need_resched(), we do not
3340 * want to further increase allocation latency, unless it is
3341 * khugepaged trying to collapse.
3342 */
3343 if (contended_compaction == COMPACT_CONTENDED_SCHED
3344 && !(current->flags & PF_KTHREAD))
3345 goto nopage;
3346 }
66199712 3347
8fe78048
DR
3348 /*
3349 * It can become very expensive to allocate transparent hugepages at
3350 * fault, so use asynchronous memory compaction for THP unless it is
3351 * khugepaged trying to collapse.
3352 */
d0164adc 3353 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3354 migration_mode = MIGRATE_SYNC_LIGHT;
3355
11e33f6a 3356 /* Try direct reclaim and then allocating */
a9263751
VB
3357 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3358 &did_some_progress);
11e33f6a
MG
3359 if (page)
3360 goto got_pg;
1da177e4 3361
9083905a
JW
3362 /* Do not loop if specifically requested */
3363 if (gfp_mask & __GFP_NORETRY)
3364 goto noretry;
3365
3366 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3367 pages_reclaimed += did_some_progress;
9083905a
JW
3368 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3369 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3370 /* Wait for some write requests to complete then retry */
c33d6c06 3371 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3372 goto retry;
1da177e4
LT
3373 }
3374
9083905a
JW
3375 /* Reclaim has failed us, start killing things */
3376 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3377 if (page)
3378 goto got_pg;
3379
3380 /* Retry as long as the OOM killer is making progress */
3381 if (did_some_progress)
3382 goto retry;
3383
3384noretry:
3385 /*
3386 * High-order allocations do not necessarily loop after
3387 * direct reclaim and reclaim/compaction depends on compaction
3388 * being called after reclaim so call directly if necessary
3389 */
3390 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3391 ac, migration_mode,
3392 &contended_compaction,
3393 &deferred_compaction);
3394 if (page)
3395 goto got_pg;
1da177e4 3396nopage:
a238ab5b 3397 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3398got_pg:
072bb0aa 3399 return page;
1da177e4 3400}
11e33f6a
MG
3401
3402/*
3403 * This is the 'heart' of the zoned buddy allocator.
3404 */
3405struct page *
3406__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3407 struct zonelist *zonelist, nodemask_t *nodemask)
3408{
5bb1b169 3409 struct page *page;
cc9a6c87 3410 unsigned int cpuset_mems_cookie;
c603844b 3411 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3412 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3413 struct alloc_context ac = {
3414 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3415 .zonelist = zonelist,
a9263751
VB
3416 .nodemask = nodemask,
3417 .migratetype = gfpflags_to_migratetype(gfp_mask),
3418 };
11e33f6a 3419
682a3385 3420 if (cpusets_enabled()) {
83d4ca81 3421 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3422 alloc_flags |= ALLOC_CPUSET;
3423 if (!ac.nodemask)
3424 ac.nodemask = &cpuset_current_mems_allowed;
3425 }
3426
dcce284a
BH
3427 gfp_mask &= gfp_allowed_mask;
3428
11e33f6a
MG
3429 lockdep_trace_alloc(gfp_mask);
3430
d0164adc 3431 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3432
3433 if (should_fail_alloc_page(gfp_mask, order))
3434 return NULL;
3435
3436 /*
3437 * Check the zones suitable for the gfp_mask contain at least one
3438 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3439 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3440 */
3441 if (unlikely(!zonelist->_zonerefs->zone))
3442 return NULL;
3443
a9263751 3444 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3445 alloc_flags |= ALLOC_CMA;
3446
cc9a6c87 3447retry_cpuset:
d26914d1 3448 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3449
c9ab0c4f
MG
3450 /* Dirty zone balancing only done in the fast path */
3451 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3452
5117f45d 3453 /* The preferred zone is used for statistics later */
c33d6c06
MG
3454 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3455 ac.high_zoneidx, ac.nodemask);
3456 if (!ac.preferred_zoneref) {
5bb1b169 3457 page = NULL;
4fcb0971 3458 goto no_zone;
5bb1b169
MG
3459 }
3460
5117f45d 3461 /* First allocation attempt */
a9263751 3462 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3463 if (likely(page))
3464 goto out;
11e33f6a 3465
4fcb0971
MG
3466 /*
3467 * Runtime PM, block IO and its error handling path can deadlock
3468 * because I/O on the device might not complete.
3469 */
3470 alloc_mask = memalloc_noio_flags(gfp_mask);
3471 ac.spread_dirty_pages = false;
23f086f9 3472
4fcb0971 3473 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3474
4fcb0971 3475no_zone:
cc9a6c87
MG
3476 /*
3477 * When updating a task's mems_allowed, it is possible to race with
3478 * parallel threads in such a way that an allocation can fail while
3479 * the mask is being updated. If a page allocation is about to fail,
3480 * check if the cpuset changed during allocation and if so, retry.
3481 */
83d4ca81
MG
3482 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3483 alloc_mask = gfp_mask;
cc9a6c87 3484 goto retry_cpuset;
83d4ca81 3485 }
cc9a6c87 3486
4fcb0971
MG
3487out:
3488 if (kmemcheck_enabled && page)
3489 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3490
3491 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3492
11e33f6a 3493 return page;
1da177e4 3494}
d239171e 3495EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3496
3497/*
3498 * Common helper functions.
3499 */
920c7a5d 3500unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3501{
945a1113
AM
3502 struct page *page;
3503
3504 /*
3505 * __get_free_pages() returns a 32-bit address, which cannot represent
3506 * a highmem page
3507 */
3508 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3509
1da177e4
LT
3510 page = alloc_pages(gfp_mask, order);
3511 if (!page)
3512 return 0;
3513 return (unsigned long) page_address(page);
3514}
1da177e4
LT
3515EXPORT_SYMBOL(__get_free_pages);
3516
920c7a5d 3517unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3518{
945a1113 3519 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3520}
1da177e4
LT
3521EXPORT_SYMBOL(get_zeroed_page);
3522
920c7a5d 3523void __free_pages(struct page *page, unsigned int order)
1da177e4 3524{
b5810039 3525 if (put_page_testzero(page)) {
1da177e4 3526 if (order == 0)
b745bc85 3527 free_hot_cold_page(page, false);
1da177e4
LT
3528 else
3529 __free_pages_ok(page, order);
3530 }
3531}
3532
3533EXPORT_SYMBOL(__free_pages);
3534
920c7a5d 3535void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3536{
3537 if (addr != 0) {
725d704e 3538 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3539 __free_pages(virt_to_page((void *)addr), order);
3540 }
3541}
3542
3543EXPORT_SYMBOL(free_pages);
3544
b63ae8ca
AD
3545/*
3546 * Page Fragment:
3547 * An arbitrary-length arbitrary-offset area of memory which resides
3548 * within a 0 or higher order page. Multiple fragments within that page
3549 * are individually refcounted, in the page's reference counter.
3550 *
3551 * The page_frag functions below provide a simple allocation framework for
3552 * page fragments. This is used by the network stack and network device
3553 * drivers to provide a backing region of memory for use as either an
3554 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3555 */
3556static struct page *__page_frag_refill(struct page_frag_cache *nc,
3557 gfp_t gfp_mask)
3558{
3559 struct page *page = NULL;
3560 gfp_t gfp = gfp_mask;
3561
3562#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3563 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3564 __GFP_NOMEMALLOC;
3565 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3566 PAGE_FRAG_CACHE_MAX_ORDER);
3567 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3568#endif
3569 if (unlikely(!page))
3570 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3571
3572 nc->va = page ? page_address(page) : NULL;
3573
3574 return page;
3575}
3576
3577void *__alloc_page_frag(struct page_frag_cache *nc,
3578 unsigned int fragsz, gfp_t gfp_mask)
3579{
3580 unsigned int size = PAGE_SIZE;
3581 struct page *page;
3582 int offset;
3583
3584 if (unlikely(!nc->va)) {
3585refill:
3586 page = __page_frag_refill(nc, gfp_mask);
3587 if (!page)
3588 return NULL;
3589
3590#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3591 /* if size can vary use size else just use PAGE_SIZE */
3592 size = nc->size;
3593#endif
3594 /* Even if we own the page, we do not use atomic_set().
3595 * This would break get_page_unless_zero() users.
3596 */
fe896d18 3597 page_ref_add(page, size - 1);
b63ae8ca
AD
3598
3599 /* reset page count bias and offset to start of new frag */
2f064f34 3600 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3601 nc->pagecnt_bias = size;
3602 nc->offset = size;
3603 }
3604
3605 offset = nc->offset - fragsz;
3606 if (unlikely(offset < 0)) {
3607 page = virt_to_page(nc->va);
3608
fe896d18 3609 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3610 goto refill;
3611
3612#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3613 /* if size can vary use size else just use PAGE_SIZE */
3614 size = nc->size;
3615#endif
3616 /* OK, page count is 0, we can safely set it */
fe896d18 3617 set_page_count(page, size);
b63ae8ca
AD
3618
3619 /* reset page count bias and offset to start of new frag */
3620 nc->pagecnt_bias = size;
3621 offset = size - fragsz;
3622 }
3623
3624 nc->pagecnt_bias--;
3625 nc->offset = offset;
3626
3627 return nc->va + offset;
3628}
3629EXPORT_SYMBOL(__alloc_page_frag);
3630
3631/*
3632 * Frees a page fragment allocated out of either a compound or order 0 page.
3633 */
3634void __free_page_frag(void *addr)
3635{
3636 struct page *page = virt_to_head_page(addr);
3637
3638 if (unlikely(put_page_testzero(page)))
3639 __free_pages_ok(page, compound_order(page));
3640}
3641EXPORT_SYMBOL(__free_page_frag);
3642
6a1a0d3b 3643/*
52383431 3644 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3645 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3646 * equivalent to alloc_pages.
6a1a0d3b 3647 *
52383431
VD
3648 * It should be used when the caller would like to use kmalloc, but since the
3649 * allocation is large, it has to fall back to the page allocator.
3650 */
3651struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3652{
3653 struct page *page;
52383431 3654
52383431 3655 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3656 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3657 __free_pages(page, order);
3658 page = NULL;
3659 }
52383431
VD
3660 return page;
3661}
3662
3663struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3664{
3665 struct page *page;
52383431 3666
52383431 3667 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3668 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3669 __free_pages(page, order);
3670 page = NULL;
3671 }
52383431
VD
3672 return page;
3673}
3674
3675/*
3676 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3677 * alloc_kmem_pages.
6a1a0d3b 3678 */
52383431 3679void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3680{
d05e83a6 3681 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3682 __free_pages(page, order);
3683}
3684
52383431 3685void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3686{
3687 if (addr != 0) {
3688 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3689 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3690 }
3691}
3692
d00181b9
KS
3693static void *make_alloc_exact(unsigned long addr, unsigned int order,
3694 size_t size)
ee85c2e1
AK
3695{
3696 if (addr) {
3697 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3698 unsigned long used = addr + PAGE_ALIGN(size);
3699
3700 split_page(virt_to_page((void *)addr), order);
3701 while (used < alloc_end) {
3702 free_page(used);
3703 used += PAGE_SIZE;
3704 }
3705 }
3706 return (void *)addr;
3707}
3708
2be0ffe2
TT
3709/**
3710 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3711 * @size: the number of bytes to allocate
3712 * @gfp_mask: GFP flags for the allocation
3713 *
3714 * This function is similar to alloc_pages(), except that it allocates the
3715 * minimum number of pages to satisfy the request. alloc_pages() can only
3716 * allocate memory in power-of-two pages.
3717 *
3718 * This function is also limited by MAX_ORDER.
3719 *
3720 * Memory allocated by this function must be released by free_pages_exact().
3721 */
3722void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3723{
3724 unsigned int order = get_order(size);
3725 unsigned long addr;
3726
3727 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3728 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3729}
3730EXPORT_SYMBOL(alloc_pages_exact);
3731
ee85c2e1
AK
3732/**
3733 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3734 * pages on a node.
b5e6ab58 3735 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3736 * @size: the number of bytes to allocate
3737 * @gfp_mask: GFP flags for the allocation
3738 *
3739 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3740 * back.
ee85c2e1 3741 */
e1931811 3742void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3743{
d00181b9 3744 unsigned int order = get_order(size);
ee85c2e1
AK
3745 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3746 if (!p)
3747 return NULL;
3748 return make_alloc_exact((unsigned long)page_address(p), order, size);
3749}
ee85c2e1 3750
2be0ffe2
TT
3751/**
3752 * free_pages_exact - release memory allocated via alloc_pages_exact()
3753 * @virt: the value returned by alloc_pages_exact.
3754 * @size: size of allocation, same value as passed to alloc_pages_exact().
3755 *
3756 * Release the memory allocated by a previous call to alloc_pages_exact.
3757 */
3758void free_pages_exact(void *virt, size_t size)
3759{
3760 unsigned long addr = (unsigned long)virt;
3761 unsigned long end = addr + PAGE_ALIGN(size);
3762
3763 while (addr < end) {
3764 free_page(addr);
3765 addr += PAGE_SIZE;
3766 }
3767}
3768EXPORT_SYMBOL(free_pages_exact);
3769
e0fb5815
ZY
3770/**
3771 * nr_free_zone_pages - count number of pages beyond high watermark
3772 * @offset: The zone index of the highest zone
3773 *
3774 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3775 * high watermark within all zones at or below a given zone index. For each
3776 * zone, the number of pages is calculated as:
834405c3 3777 * managed_pages - high_pages
e0fb5815 3778 */
ebec3862 3779static unsigned long nr_free_zone_pages(int offset)
1da177e4 3780{
dd1a239f 3781 struct zoneref *z;
54a6eb5c
MG
3782 struct zone *zone;
3783
e310fd43 3784 /* Just pick one node, since fallback list is circular */
ebec3862 3785 unsigned long sum = 0;
1da177e4 3786
0e88460d 3787 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3788
54a6eb5c 3789 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3790 unsigned long size = zone->managed_pages;
41858966 3791 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3792 if (size > high)
3793 sum += size - high;
1da177e4
LT
3794 }
3795
3796 return sum;
3797}
3798
e0fb5815
ZY
3799/**
3800 * nr_free_buffer_pages - count number of pages beyond high watermark
3801 *
3802 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3803 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3804 */
ebec3862 3805unsigned long nr_free_buffer_pages(void)
1da177e4 3806{
af4ca457 3807 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3808}
c2f1a551 3809EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3810
e0fb5815
ZY
3811/**
3812 * nr_free_pagecache_pages - count number of pages beyond high watermark
3813 *
3814 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3815 * high watermark within all zones.
1da177e4 3816 */
ebec3862 3817unsigned long nr_free_pagecache_pages(void)
1da177e4 3818{
2a1e274a 3819 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3820}
08e0f6a9
CL
3821
3822static inline void show_node(struct zone *zone)
1da177e4 3823{
e5adfffc 3824 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3825 printk("Node %d ", zone_to_nid(zone));
1da177e4 3826}
1da177e4 3827
d02bd27b
IR
3828long si_mem_available(void)
3829{
3830 long available;
3831 unsigned long pagecache;
3832 unsigned long wmark_low = 0;
3833 unsigned long pages[NR_LRU_LISTS];
3834 struct zone *zone;
3835 int lru;
3836
3837 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3838 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3839
3840 for_each_zone(zone)
3841 wmark_low += zone->watermark[WMARK_LOW];
3842
3843 /*
3844 * Estimate the amount of memory available for userspace allocations,
3845 * without causing swapping.
3846 */
3847 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3848
3849 /*
3850 * Not all the page cache can be freed, otherwise the system will
3851 * start swapping. Assume at least half of the page cache, or the
3852 * low watermark worth of cache, needs to stay.
3853 */
3854 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3855 pagecache -= min(pagecache / 2, wmark_low);
3856 available += pagecache;
3857
3858 /*
3859 * Part of the reclaimable slab consists of items that are in use,
3860 * and cannot be freed. Cap this estimate at the low watermark.
3861 */
3862 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3863 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3864
3865 if (available < 0)
3866 available = 0;
3867 return available;
3868}
3869EXPORT_SYMBOL_GPL(si_mem_available);
3870
1da177e4
LT
3871void si_meminfo(struct sysinfo *val)
3872{
3873 val->totalram = totalram_pages;
cc7452b6 3874 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3875 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3876 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3877 val->totalhigh = totalhigh_pages;
3878 val->freehigh = nr_free_highpages();
1da177e4
LT
3879 val->mem_unit = PAGE_SIZE;
3880}
3881
3882EXPORT_SYMBOL(si_meminfo);
3883
3884#ifdef CONFIG_NUMA
3885void si_meminfo_node(struct sysinfo *val, int nid)
3886{
cdd91a77
JL
3887 int zone_type; /* needs to be signed */
3888 unsigned long managed_pages = 0;
fc2bd799
JK
3889 unsigned long managed_highpages = 0;
3890 unsigned long free_highpages = 0;
1da177e4
LT
3891 pg_data_t *pgdat = NODE_DATA(nid);
3892
cdd91a77
JL
3893 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3894 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3895 val->totalram = managed_pages;
cc7452b6 3896 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3897 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3898#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3899 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3900 struct zone *zone = &pgdat->node_zones[zone_type];
3901
3902 if (is_highmem(zone)) {
3903 managed_highpages += zone->managed_pages;
3904 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3905 }
3906 }
3907 val->totalhigh = managed_highpages;
3908 val->freehigh = free_highpages;
98d2b0eb 3909#else
fc2bd799
JK
3910 val->totalhigh = managed_highpages;
3911 val->freehigh = free_highpages;
98d2b0eb 3912#endif
1da177e4
LT
3913 val->mem_unit = PAGE_SIZE;
3914}
3915#endif
3916
ddd588b5 3917/*
7bf02ea2
DR
3918 * Determine whether the node should be displayed or not, depending on whether
3919 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3920 */
7bf02ea2 3921bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3922{
3923 bool ret = false;
cc9a6c87 3924 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3925
3926 if (!(flags & SHOW_MEM_FILTER_NODES))
3927 goto out;
3928
cc9a6c87 3929 do {
d26914d1 3930 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3931 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3932 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3933out:
3934 return ret;
3935}
3936
1da177e4
LT
3937#define K(x) ((x) << (PAGE_SHIFT-10))
3938
377e4f16
RV
3939static void show_migration_types(unsigned char type)
3940{
3941 static const char types[MIGRATE_TYPES] = {
3942 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3943 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3944 [MIGRATE_RECLAIMABLE] = 'E',
3945 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3946#ifdef CONFIG_CMA
3947 [MIGRATE_CMA] = 'C',
3948#endif
194159fb 3949#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3950 [MIGRATE_ISOLATE] = 'I',
194159fb 3951#endif
377e4f16
RV
3952 };
3953 char tmp[MIGRATE_TYPES + 1];
3954 char *p = tmp;
3955 int i;
3956
3957 for (i = 0; i < MIGRATE_TYPES; i++) {
3958 if (type & (1 << i))
3959 *p++ = types[i];
3960 }
3961
3962 *p = '\0';
3963 printk("(%s) ", tmp);
3964}
3965
1da177e4
LT
3966/*
3967 * Show free area list (used inside shift_scroll-lock stuff)
3968 * We also calculate the percentage fragmentation. We do this by counting the
3969 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3970 *
3971 * Bits in @filter:
3972 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3973 * cpuset.
1da177e4 3974 */
7bf02ea2 3975void show_free_areas(unsigned int filter)
1da177e4 3976{
d1bfcdb8 3977 unsigned long free_pcp = 0;
c7241913 3978 int cpu;
1da177e4
LT
3979 struct zone *zone;
3980
ee99c71c 3981 for_each_populated_zone(zone) {
7bf02ea2 3982 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3983 continue;
d1bfcdb8 3984
761b0677
KK
3985 for_each_online_cpu(cpu)
3986 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3987 }
3988
a731286d
KM
3989 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3990 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3991 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3992 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3993 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3994 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3995 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3996 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3997 global_page_state(NR_ISOLATED_ANON),
3998 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3999 global_page_state(NR_INACTIVE_FILE),
a731286d 4000 global_page_state(NR_ISOLATED_FILE),
7b854121 4001 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4002 global_page_state(NR_FILE_DIRTY),
ce866b34 4003 global_page_state(NR_WRITEBACK),
fd39fc85 4004 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4005 global_page_state(NR_SLAB_RECLAIMABLE),
4006 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4007 global_page_state(NR_FILE_MAPPED),
4b02108a 4008 global_page_state(NR_SHMEM),
a25700a5 4009 global_page_state(NR_PAGETABLE),
d1ce749a 4010 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4011 global_page_state(NR_FREE_PAGES),
4012 free_pcp,
d1ce749a 4013 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4014
ee99c71c 4015 for_each_populated_zone(zone) {
1da177e4
LT
4016 int i;
4017
7bf02ea2 4018 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4019 continue;
d1bfcdb8
KK
4020
4021 free_pcp = 0;
4022 for_each_online_cpu(cpu)
4023 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4024
1da177e4
LT
4025 show_node(zone);
4026 printk("%s"
4027 " free:%lukB"
4028 " min:%lukB"
4029 " low:%lukB"
4030 " high:%lukB"
4f98a2fe
RR
4031 " active_anon:%lukB"
4032 " inactive_anon:%lukB"
4033 " active_file:%lukB"
4034 " inactive_file:%lukB"
7b854121 4035 " unevictable:%lukB"
a731286d
KM
4036 " isolated(anon):%lukB"
4037 " isolated(file):%lukB"
1da177e4 4038 " present:%lukB"
9feedc9d 4039 " managed:%lukB"
4a0aa73f
KM
4040 " mlocked:%lukB"
4041 " dirty:%lukB"
4042 " writeback:%lukB"
4043 " mapped:%lukB"
4b02108a 4044 " shmem:%lukB"
4a0aa73f
KM
4045 " slab_reclaimable:%lukB"
4046 " slab_unreclaimable:%lukB"
c6a7f572 4047 " kernel_stack:%lukB"
4a0aa73f
KM
4048 " pagetables:%lukB"
4049 " unstable:%lukB"
4050 " bounce:%lukB"
d1bfcdb8
KK
4051 " free_pcp:%lukB"
4052 " local_pcp:%ukB"
d1ce749a 4053 " free_cma:%lukB"
4a0aa73f 4054 " writeback_tmp:%lukB"
1da177e4
LT
4055 " pages_scanned:%lu"
4056 " all_unreclaimable? %s"
4057 "\n",
4058 zone->name,
88f5acf8 4059 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4060 K(min_wmark_pages(zone)),
4061 K(low_wmark_pages(zone)),
4062 K(high_wmark_pages(zone)),
4f98a2fe
RR
4063 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4064 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4065 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4066 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4067 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4068 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4069 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4070 K(zone->present_pages),
9feedc9d 4071 K(zone->managed_pages),
4a0aa73f
KM
4072 K(zone_page_state(zone, NR_MLOCK)),
4073 K(zone_page_state(zone, NR_FILE_DIRTY)),
4074 K(zone_page_state(zone, NR_WRITEBACK)),
4075 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4076 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4077 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4078 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4079 zone_page_state(zone, NR_KERNEL_STACK) *
4080 THREAD_SIZE / 1024,
4a0aa73f
KM
4081 K(zone_page_state(zone, NR_PAGETABLE)),
4082 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4083 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4084 K(free_pcp),
4085 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4086 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4087 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4088 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4089 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4090 );
4091 printk("lowmem_reserve[]:");
4092 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4093 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4094 printk("\n");
4095 }
4096
ee99c71c 4097 for_each_populated_zone(zone) {
d00181b9
KS
4098 unsigned int order;
4099 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4100 unsigned char types[MAX_ORDER];
1da177e4 4101
7bf02ea2 4102 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4103 continue;
1da177e4
LT
4104 show_node(zone);
4105 printk("%s: ", zone->name);
1da177e4
LT
4106
4107 spin_lock_irqsave(&zone->lock, flags);
4108 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4109 struct free_area *area = &zone->free_area[order];
4110 int type;
4111
4112 nr[order] = area->nr_free;
8f9de51a 4113 total += nr[order] << order;
377e4f16
RV
4114
4115 types[order] = 0;
4116 for (type = 0; type < MIGRATE_TYPES; type++) {
4117 if (!list_empty(&area->free_list[type]))
4118 types[order] |= 1 << type;
4119 }
1da177e4
LT
4120 }
4121 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4122 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4123 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4124 if (nr[order])
4125 show_migration_types(types[order]);
4126 }
1da177e4
LT
4127 printk("= %lukB\n", K(total));
4128 }
4129
949f7ec5
DR
4130 hugetlb_show_meminfo();
4131
e6f3602d
LW
4132 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4133
1da177e4
LT
4134 show_swap_cache_info();
4135}
4136
19770b32
MG
4137static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4138{
4139 zoneref->zone = zone;
4140 zoneref->zone_idx = zone_idx(zone);
4141}
4142
1da177e4
LT
4143/*
4144 * Builds allocation fallback zone lists.
1a93205b
CL
4145 *
4146 * Add all populated zones of a node to the zonelist.
1da177e4 4147 */
f0c0b2b8 4148static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4149 int nr_zones)
1da177e4 4150{
1a93205b 4151 struct zone *zone;
bc732f1d 4152 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4153
4154 do {
2f6726e5 4155 zone_type--;
070f8032 4156 zone = pgdat->node_zones + zone_type;
1a93205b 4157 if (populated_zone(zone)) {
dd1a239f
MG
4158 zoneref_set_zone(zone,
4159 &zonelist->_zonerefs[nr_zones++]);
070f8032 4160 check_highest_zone(zone_type);
1da177e4 4161 }
2f6726e5 4162 } while (zone_type);
bc732f1d 4163
070f8032 4164 return nr_zones;
1da177e4
LT
4165}
4166
f0c0b2b8
KH
4167
4168/*
4169 * zonelist_order:
4170 * 0 = automatic detection of better ordering.
4171 * 1 = order by ([node] distance, -zonetype)
4172 * 2 = order by (-zonetype, [node] distance)
4173 *
4174 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4175 * the same zonelist. So only NUMA can configure this param.
4176 */
4177#define ZONELIST_ORDER_DEFAULT 0
4178#define ZONELIST_ORDER_NODE 1
4179#define ZONELIST_ORDER_ZONE 2
4180
4181/* zonelist order in the kernel.
4182 * set_zonelist_order() will set this to NODE or ZONE.
4183 */
4184static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4185static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4186
4187
1da177e4 4188#ifdef CONFIG_NUMA
f0c0b2b8
KH
4189/* The value user specified ....changed by config */
4190static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4191/* string for sysctl */
4192#define NUMA_ZONELIST_ORDER_LEN 16
4193char numa_zonelist_order[16] = "default";
4194
4195/*
4196 * interface for configure zonelist ordering.
4197 * command line option "numa_zonelist_order"
4198 * = "[dD]efault - default, automatic configuration.
4199 * = "[nN]ode - order by node locality, then by zone within node
4200 * = "[zZ]one - order by zone, then by locality within zone
4201 */
4202
4203static int __parse_numa_zonelist_order(char *s)
4204{
4205 if (*s == 'd' || *s == 'D') {
4206 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4207 } else if (*s == 'n' || *s == 'N') {
4208 user_zonelist_order = ZONELIST_ORDER_NODE;
4209 } else if (*s == 'z' || *s == 'Z') {
4210 user_zonelist_order = ZONELIST_ORDER_ZONE;
4211 } else {
1170532b 4212 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4213 return -EINVAL;
4214 }
4215 return 0;
4216}
4217
4218static __init int setup_numa_zonelist_order(char *s)
4219{
ecb256f8
VL
4220 int ret;
4221
4222 if (!s)
4223 return 0;
4224
4225 ret = __parse_numa_zonelist_order(s);
4226 if (ret == 0)
4227 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4228
4229 return ret;
f0c0b2b8
KH
4230}
4231early_param("numa_zonelist_order", setup_numa_zonelist_order);
4232
4233/*
4234 * sysctl handler for numa_zonelist_order
4235 */
cccad5b9 4236int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4237 void __user *buffer, size_t *length,
f0c0b2b8
KH
4238 loff_t *ppos)
4239{
4240 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4241 int ret;
443c6f14 4242 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4243
443c6f14 4244 mutex_lock(&zl_order_mutex);
dacbde09
CG
4245 if (write) {
4246 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4247 ret = -EINVAL;
4248 goto out;
4249 }
4250 strcpy(saved_string, (char *)table->data);
4251 }
8d65af78 4252 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4253 if (ret)
443c6f14 4254 goto out;
f0c0b2b8
KH
4255 if (write) {
4256 int oldval = user_zonelist_order;
dacbde09
CG
4257
4258 ret = __parse_numa_zonelist_order((char *)table->data);
4259 if (ret) {
f0c0b2b8
KH
4260 /*
4261 * bogus value. restore saved string
4262 */
dacbde09 4263 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4264 NUMA_ZONELIST_ORDER_LEN);
4265 user_zonelist_order = oldval;
4eaf3f64
HL
4266 } else if (oldval != user_zonelist_order) {
4267 mutex_lock(&zonelists_mutex);
9adb62a5 4268 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4269 mutex_unlock(&zonelists_mutex);
4270 }
f0c0b2b8 4271 }
443c6f14
AK
4272out:
4273 mutex_unlock(&zl_order_mutex);
4274 return ret;
f0c0b2b8
KH
4275}
4276
4277
62bc62a8 4278#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4279static int node_load[MAX_NUMNODES];
4280
1da177e4 4281/**
4dc3b16b 4282 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4283 * @node: node whose fallback list we're appending
4284 * @used_node_mask: nodemask_t of already used nodes
4285 *
4286 * We use a number of factors to determine which is the next node that should
4287 * appear on a given node's fallback list. The node should not have appeared
4288 * already in @node's fallback list, and it should be the next closest node
4289 * according to the distance array (which contains arbitrary distance values
4290 * from each node to each node in the system), and should also prefer nodes
4291 * with no CPUs, since presumably they'll have very little allocation pressure
4292 * on them otherwise.
4293 * It returns -1 if no node is found.
4294 */
f0c0b2b8 4295static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4296{
4cf808eb 4297 int n, val;
1da177e4 4298 int min_val = INT_MAX;
00ef2d2f 4299 int best_node = NUMA_NO_NODE;
a70f7302 4300 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4301
4cf808eb
LT
4302 /* Use the local node if we haven't already */
4303 if (!node_isset(node, *used_node_mask)) {
4304 node_set(node, *used_node_mask);
4305 return node;
4306 }
1da177e4 4307
4b0ef1fe 4308 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4309
4310 /* Don't want a node to appear more than once */
4311 if (node_isset(n, *used_node_mask))
4312 continue;
4313
1da177e4
LT
4314 /* Use the distance array to find the distance */
4315 val = node_distance(node, n);
4316
4cf808eb
LT
4317 /* Penalize nodes under us ("prefer the next node") */
4318 val += (n < node);
4319
1da177e4 4320 /* Give preference to headless and unused nodes */
a70f7302
RR
4321 tmp = cpumask_of_node(n);
4322 if (!cpumask_empty(tmp))
1da177e4
LT
4323 val += PENALTY_FOR_NODE_WITH_CPUS;
4324
4325 /* Slight preference for less loaded node */
4326 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4327 val += node_load[n];
4328
4329 if (val < min_val) {
4330 min_val = val;
4331 best_node = n;
4332 }
4333 }
4334
4335 if (best_node >= 0)
4336 node_set(best_node, *used_node_mask);
4337
4338 return best_node;
4339}
4340
f0c0b2b8
KH
4341
4342/*
4343 * Build zonelists ordered by node and zones within node.
4344 * This results in maximum locality--normal zone overflows into local
4345 * DMA zone, if any--but risks exhausting DMA zone.
4346 */
4347static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4348{
f0c0b2b8 4349 int j;
1da177e4 4350 struct zonelist *zonelist;
f0c0b2b8 4351
54a6eb5c 4352 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4353 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4354 ;
bc732f1d 4355 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4356 zonelist->_zonerefs[j].zone = NULL;
4357 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4358}
4359
523b9458
CL
4360/*
4361 * Build gfp_thisnode zonelists
4362 */
4363static void build_thisnode_zonelists(pg_data_t *pgdat)
4364{
523b9458
CL
4365 int j;
4366 struct zonelist *zonelist;
4367
54a6eb5c 4368 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4369 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4370 zonelist->_zonerefs[j].zone = NULL;
4371 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4372}
4373
f0c0b2b8
KH
4374/*
4375 * Build zonelists ordered by zone and nodes within zones.
4376 * This results in conserving DMA zone[s] until all Normal memory is
4377 * exhausted, but results in overflowing to remote node while memory
4378 * may still exist in local DMA zone.
4379 */
4380static int node_order[MAX_NUMNODES];
4381
4382static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4383{
f0c0b2b8
KH
4384 int pos, j, node;
4385 int zone_type; /* needs to be signed */
4386 struct zone *z;
4387 struct zonelist *zonelist;
4388
54a6eb5c
MG
4389 zonelist = &pgdat->node_zonelists[0];
4390 pos = 0;
4391 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4392 for (j = 0; j < nr_nodes; j++) {
4393 node = node_order[j];
4394 z = &NODE_DATA(node)->node_zones[zone_type];
4395 if (populated_zone(z)) {
dd1a239f
MG
4396 zoneref_set_zone(z,
4397 &zonelist->_zonerefs[pos++]);
54a6eb5c 4398 check_highest_zone(zone_type);
f0c0b2b8
KH
4399 }
4400 }
f0c0b2b8 4401 }
dd1a239f
MG
4402 zonelist->_zonerefs[pos].zone = NULL;
4403 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4404}
4405
3193913c
MG
4406#if defined(CONFIG_64BIT)
4407/*
4408 * Devices that require DMA32/DMA are relatively rare and do not justify a
4409 * penalty to every machine in case the specialised case applies. Default
4410 * to Node-ordering on 64-bit NUMA machines
4411 */
4412static int default_zonelist_order(void)
4413{
4414 return ZONELIST_ORDER_NODE;
4415}
4416#else
4417/*
4418 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4419 * by the kernel. If processes running on node 0 deplete the low memory zone
4420 * then reclaim will occur more frequency increasing stalls and potentially
4421 * be easier to OOM if a large percentage of the zone is under writeback or
4422 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4423 * Hence, default to zone ordering on 32-bit.
4424 */
f0c0b2b8
KH
4425static int default_zonelist_order(void)
4426{
f0c0b2b8
KH
4427 return ZONELIST_ORDER_ZONE;
4428}
3193913c 4429#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4430
4431static void set_zonelist_order(void)
4432{
4433 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4434 current_zonelist_order = default_zonelist_order();
4435 else
4436 current_zonelist_order = user_zonelist_order;
4437}
4438
4439static void build_zonelists(pg_data_t *pgdat)
4440{
c00eb15a 4441 int i, node, load;
1da177e4 4442 nodemask_t used_mask;
f0c0b2b8
KH
4443 int local_node, prev_node;
4444 struct zonelist *zonelist;
d00181b9 4445 unsigned int order = current_zonelist_order;
1da177e4
LT
4446
4447 /* initialize zonelists */
523b9458 4448 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4449 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4450 zonelist->_zonerefs[0].zone = NULL;
4451 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4452 }
4453
4454 /* NUMA-aware ordering of nodes */
4455 local_node = pgdat->node_id;
62bc62a8 4456 load = nr_online_nodes;
1da177e4
LT
4457 prev_node = local_node;
4458 nodes_clear(used_mask);
f0c0b2b8 4459
f0c0b2b8 4460 memset(node_order, 0, sizeof(node_order));
c00eb15a 4461 i = 0;
f0c0b2b8 4462
1da177e4
LT
4463 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4464 /*
4465 * We don't want to pressure a particular node.
4466 * So adding penalty to the first node in same
4467 * distance group to make it round-robin.
4468 */
957f822a
DR
4469 if (node_distance(local_node, node) !=
4470 node_distance(local_node, prev_node))
f0c0b2b8
KH
4471 node_load[node] = load;
4472
1da177e4
LT
4473 prev_node = node;
4474 load--;
f0c0b2b8
KH
4475 if (order == ZONELIST_ORDER_NODE)
4476 build_zonelists_in_node_order(pgdat, node);
4477 else
c00eb15a 4478 node_order[i++] = node; /* remember order */
f0c0b2b8 4479 }
1da177e4 4480
f0c0b2b8
KH
4481 if (order == ZONELIST_ORDER_ZONE) {
4482 /* calculate node order -- i.e., DMA last! */
c00eb15a 4483 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4484 }
523b9458
CL
4485
4486 build_thisnode_zonelists(pgdat);
1da177e4
LT
4487}
4488
7aac7898
LS
4489#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4490/*
4491 * Return node id of node used for "local" allocations.
4492 * I.e., first node id of first zone in arg node's generic zonelist.
4493 * Used for initializing percpu 'numa_mem', which is used primarily
4494 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4495 */
4496int local_memory_node(int node)
4497{
c33d6c06 4498 struct zoneref *z;
7aac7898 4499
c33d6c06 4500 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4501 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4502 NULL);
4503 return z->zone->node;
7aac7898
LS
4504}
4505#endif
f0c0b2b8 4506
1da177e4
LT
4507#else /* CONFIG_NUMA */
4508
f0c0b2b8
KH
4509static void set_zonelist_order(void)
4510{
4511 current_zonelist_order = ZONELIST_ORDER_ZONE;
4512}
4513
4514static void build_zonelists(pg_data_t *pgdat)
1da177e4 4515{
19655d34 4516 int node, local_node;
54a6eb5c
MG
4517 enum zone_type j;
4518 struct zonelist *zonelist;
1da177e4
LT
4519
4520 local_node = pgdat->node_id;
1da177e4 4521
54a6eb5c 4522 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4523 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4524
54a6eb5c
MG
4525 /*
4526 * Now we build the zonelist so that it contains the zones
4527 * of all the other nodes.
4528 * We don't want to pressure a particular node, so when
4529 * building the zones for node N, we make sure that the
4530 * zones coming right after the local ones are those from
4531 * node N+1 (modulo N)
4532 */
4533 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4534 if (!node_online(node))
4535 continue;
bc732f1d 4536 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4537 }
54a6eb5c
MG
4538 for (node = 0; node < local_node; node++) {
4539 if (!node_online(node))
4540 continue;
bc732f1d 4541 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4542 }
4543
dd1a239f
MG
4544 zonelist->_zonerefs[j].zone = NULL;
4545 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4546}
4547
4548#endif /* CONFIG_NUMA */
4549
99dcc3e5
CL
4550/*
4551 * Boot pageset table. One per cpu which is going to be used for all
4552 * zones and all nodes. The parameters will be set in such a way
4553 * that an item put on a list will immediately be handed over to
4554 * the buddy list. This is safe since pageset manipulation is done
4555 * with interrupts disabled.
4556 *
4557 * The boot_pagesets must be kept even after bootup is complete for
4558 * unused processors and/or zones. They do play a role for bootstrapping
4559 * hotplugged processors.
4560 *
4561 * zoneinfo_show() and maybe other functions do
4562 * not check if the processor is online before following the pageset pointer.
4563 * Other parts of the kernel may not check if the zone is available.
4564 */
4565static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4566static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4567static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4568
4eaf3f64
HL
4569/*
4570 * Global mutex to protect against size modification of zonelists
4571 * as well as to serialize pageset setup for the new populated zone.
4572 */
4573DEFINE_MUTEX(zonelists_mutex);
4574
9b1a4d38 4575/* return values int ....just for stop_machine() */
4ed7e022 4576static int __build_all_zonelists(void *data)
1da177e4 4577{
6811378e 4578 int nid;
99dcc3e5 4579 int cpu;
9adb62a5 4580 pg_data_t *self = data;
9276b1bc 4581
7f9cfb31
BL
4582#ifdef CONFIG_NUMA
4583 memset(node_load, 0, sizeof(node_load));
4584#endif
9adb62a5
JL
4585
4586 if (self && !node_online(self->node_id)) {
4587 build_zonelists(self);
9adb62a5
JL
4588 }
4589
9276b1bc 4590 for_each_online_node(nid) {
7ea1530a
CL
4591 pg_data_t *pgdat = NODE_DATA(nid);
4592
4593 build_zonelists(pgdat);
9276b1bc 4594 }
99dcc3e5
CL
4595
4596 /*
4597 * Initialize the boot_pagesets that are going to be used
4598 * for bootstrapping processors. The real pagesets for
4599 * each zone will be allocated later when the per cpu
4600 * allocator is available.
4601 *
4602 * boot_pagesets are used also for bootstrapping offline
4603 * cpus if the system is already booted because the pagesets
4604 * are needed to initialize allocators on a specific cpu too.
4605 * F.e. the percpu allocator needs the page allocator which
4606 * needs the percpu allocator in order to allocate its pagesets
4607 * (a chicken-egg dilemma).
4608 */
7aac7898 4609 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4610 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4611
7aac7898
LS
4612#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4613 /*
4614 * We now know the "local memory node" for each node--
4615 * i.e., the node of the first zone in the generic zonelist.
4616 * Set up numa_mem percpu variable for on-line cpus. During
4617 * boot, only the boot cpu should be on-line; we'll init the
4618 * secondary cpus' numa_mem as they come on-line. During
4619 * node/memory hotplug, we'll fixup all on-line cpus.
4620 */
4621 if (cpu_online(cpu))
4622 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4623#endif
4624 }
4625
6811378e
YG
4626 return 0;
4627}
4628
061f67bc
RV
4629static noinline void __init
4630build_all_zonelists_init(void)
4631{
4632 __build_all_zonelists(NULL);
4633 mminit_verify_zonelist();
4634 cpuset_init_current_mems_allowed();
4635}
4636
4eaf3f64
HL
4637/*
4638 * Called with zonelists_mutex held always
4639 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4640 *
4641 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4642 * [we're only called with non-NULL zone through __meminit paths] and
4643 * (2) call of __init annotated helper build_all_zonelists_init
4644 * [protected by SYSTEM_BOOTING].
4eaf3f64 4645 */
9adb62a5 4646void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4647{
f0c0b2b8
KH
4648 set_zonelist_order();
4649
6811378e 4650 if (system_state == SYSTEM_BOOTING) {
061f67bc 4651 build_all_zonelists_init();
6811378e 4652 } else {
e9959f0f 4653#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4654 if (zone)
4655 setup_zone_pageset(zone);
e9959f0f 4656#endif
dd1895e2
CS
4657 /* we have to stop all cpus to guarantee there is no user
4658 of zonelist */
9adb62a5 4659 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4660 /* cpuset refresh routine should be here */
4661 }
bd1e22b8 4662 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4663 /*
4664 * Disable grouping by mobility if the number of pages in the
4665 * system is too low to allow the mechanism to work. It would be
4666 * more accurate, but expensive to check per-zone. This check is
4667 * made on memory-hotadd so a system can start with mobility
4668 * disabled and enable it later
4669 */
d9c23400 4670 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4671 page_group_by_mobility_disabled = 1;
4672 else
4673 page_group_by_mobility_disabled = 0;
4674
756a025f
JP
4675 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4676 nr_online_nodes,
4677 zonelist_order_name[current_zonelist_order],
4678 page_group_by_mobility_disabled ? "off" : "on",
4679 vm_total_pages);
f0c0b2b8 4680#ifdef CONFIG_NUMA
f88dfff5 4681 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4682#endif
1da177e4
LT
4683}
4684
4685/*
4686 * Helper functions to size the waitqueue hash table.
4687 * Essentially these want to choose hash table sizes sufficiently
4688 * large so that collisions trying to wait on pages are rare.
4689 * But in fact, the number of active page waitqueues on typical
4690 * systems is ridiculously low, less than 200. So this is even
4691 * conservative, even though it seems large.
4692 *
4693 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4694 * waitqueues, i.e. the size of the waitq table given the number of pages.
4695 */
4696#define PAGES_PER_WAITQUEUE 256
4697
cca448fe 4698#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4699static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4700{
4701 unsigned long size = 1;
4702
4703 pages /= PAGES_PER_WAITQUEUE;
4704
4705 while (size < pages)
4706 size <<= 1;
4707
4708 /*
4709 * Once we have dozens or even hundreds of threads sleeping
4710 * on IO we've got bigger problems than wait queue collision.
4711 * Limit the size of the wait table to a reasonable size.
4712 */
4713 size = min(size, 4096UL);
4714
4715 return max(size, 4UL);
4716}
cca448fe
YG
4717#else
4718/*
4719 * A zone's size might be changed by hot-add, so it is not possible to determine
4720 * a suitable size for its wait_table. So we use the maximum size now.
4721 *
4722 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4723 *
4724 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4725 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4726 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4727 *
4728 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4729 * or more by the traditional way. (See above). It equals:
4730 *
4731 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4732 * ia64(16K page size) : = ( 8G + 4M)byte.
4733 * powerpc (64K page size) : = (32G +16M)byte.
4734 */
4735static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4736{
4737 return 4096UL;
4738}
4739#endif
1da177e4
LT
4740
4741/*
4742 * This is an integer logarithm so that shifts can be used later
4743 * to extract the more random high bits from the multiplicative
4744 * hash function before the remainder is taken.
4745 */
4746static inline unsigned long wait_table_bits(unsigned long size)
4747{
4748 return ffz(~size);
4749}
4750
1da177e4
LT
4751/*
4752 * Initially all pages are reserved - free ones are freed
4753 * up by free_all_bootmem() once the early boot process is
4754 * done. Non-atomic initialization, single-pass.
4755 */
c09b4240 4756void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4757 unsigned long start_pfn, enum memmap_context context)
1da177e4 4758{
4b94ffdc 4759 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4760 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4761 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4762 unsigned long pfn;
3a80a7fa 4763 unsigned long nr_initialised = 0;
342332e6
TI
4764#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4765 struct memblock_region *r = NULL, *tmp;
4766#endif
1da177e4 4767
22b31eec
HD
4768 if (highest_memmap_pfn < end_pfn - 1)
4769 highest_memmap_pfn = end_pfn - 1;
4770
4b94ffdc
DW
4771 /*
4772 * Honor reservation requested by the driver for this ZONE_DEVICE
4773 * memory
4774 */
4775 if (altmap && start_pfn == altmap->base_pfn)
4776 start_pfn += altmap->reserve;
4777
cbe8dd4a 4778 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4779 /*
b72d0ffb
AM
4780 * There can be holes in boot-time mem_map[]s handed to this
4781 * function. They do not exist on hotplugged memory.
a2f3aa02 4782 */
b72d0ffb
AM
4783 if (context != MEMMAP_EARLY)
4784 goto not_early;
4785
4786 if (!early_pfn_valid(pfn))
4787 continue;
4788 if (!early_pfn_in_nid(pfn, nid))
4789 continue;
4790 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4791 break;
342332e6
TI
4792
4793#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4794 /*
4795 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4796 * from zone_movable_pfn[nid] to end of each node should be
4797 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4798 */
4799 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4800 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4801 continue;
342332e6 4802
b72d0ffb
AM
4803 /*
4804 * Check given memblock attribute by firmware which can affect
4805 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4806 * mirrored, it's an overlapped memmap init. skip it.
4807 */
4808 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4809 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4810 for_each_memblock(memory, tmp)
4811 if (pfn < memblock_region_memory_end_pfn(tmp))
4812 break;
4813 r = tmp;
4814 }
4815 if (pfn >= memblock_region_memory_base_pfn(r) &&
4816 memblock_is_mirror(r)) {
4817 /* already initialized as NORMAL */
4818 pfn = memblock_region_memory_end_pfn(r);
4819 continue;
342332e6 4820 }
a2f3aa02 4821 }
b72d0ffb 4822#endif
ac5d2539 4823
b72d0ffb 4824not_early:
ac5d2539
MG
4825 /*
4826 * Mark the block movable so that blocks are reserved for
4827 * movable at startup. This will force kernel allocations
4828 * to reserve their blocks rather than leaking throughout
4829 * the address space during boot when many long-lived
974a786e 4830 * kernel allocations are made.
ac5d2539
MG
4831 *
4832 * bitmap is created for zone's valid pfn range. but memmap
4833 * can be created for invalid pages (for alignment)
4834 * check here not to call set_pageblock_migratetype() against
4835 * pfn out of zone.
4836 */
4837 if (!(pfn & (pageblock_nr_pages - 1))) {
4838 struct page *page = pfn_to_page(pfn);
4839
4840 __init_single_page(page, pfn, zone, nid);
4841 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4842 } else {
4843 __init_single_pfn(pfn, zone, nid);
4844 }
1da177e4
LT
4845 }
4846}
4847
1e548deb 4848static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4849{
7aeb09f9 4850 unsigned int order, t;
b2a0ac88
MG
4851 for_each_migratetype_order(order, t) {
4852 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4853 zone->free_area[order].nr_free = 0;
4854 }
4855}
4856
4857#ifndef __HAVE_ARCH_MEMMAP_INIT
4858#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4859 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4860#endif
4861
7cd2b0a3 4862static int zone_batchsize(struct zone *zone)
e7c8d5c9 4863{
3a6be87f 4864#ifdef CONFIG_MMU
e7c8d5c9
CL
4865 int batch;
4866
4867 /*
4868 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4869 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4870 *
4871 * OK, so we don't know how big the cache is. So guess.
4872 */
b40da049 4873 batch = zone->managed_pages / 1024;
ba56e91c
SR
4874 if (batch * PAGE_SIZE > 512 * 1024)
4875 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4876 batch /= 4; /* We effectively *= 4 below */
4877 if (batch < 1)
4878 batch = 1;
4879
4880 /*
0ceaacc9
NP
4881 * Clamp the batch to a 2^n - 1 value. Having a power
4882 * of 2 value was found to be more likely to have
4883 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4884 *
0ceaacc9
NP
4885 * For example if 2 tasks are alternately allocating
4886 * batches of pages, one task can end up with a lot
4887 * of pages of one half of the possible page colors
4888 * and the other with pages of the other colors.
e7c8d5c9 4889 */
9155203a 4890 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4891
e7c8d5c9 4892 return batch;
3a6be87f
DH
4893
4894#else
4895 /* The deferral and batching of frees should be suppressed under NOMMU
4896 * conditions.
4897 *
4898 * The problem is that NOMMU needs to be able to allocate large chunks
4899 * of contiguous memory as there's no hardware page translation to
4900 * assemble apparent contiguous memory from discontiguous pages.
4901 *
4902 * Queueing large contiguous runs of pages for batching, however,
4903 * causes the pages to actually be freed in smaller chunks. As there
4904 * can be a significant delay between the individual batches being
4905 * recycled, this leads to the once large chunks of space being
4906 * fragmented and becoming unavailable for high-order allocations.
4907 */
4908 return 0;
4909#endif
e7c8d5c9
CL
4910}
4911
8d7a8fa9
CS
4912/*
4913 * pcp->high and pcp->batch values are related and dependent on one another:
4914 * ->batch must never be higher then ->high.
4915 * The following function updates them in a safe manner without read side
4916 * locking.
4917 *
4918 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4919 * those fields changing asynchronously (acording the the above rule).
4920 *
4921 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4922 * outside of boot time (or some other assurance that no concurrent updaters
4923 * exist).
4924 */
4925static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4926 unsigned long batch)
4927{
4928 /* start with a fail safe value for batch */
4929 pcp->batch = 1;
4930 smp_wmb();
4931
4932 /* Update high, then batch, in order */
4933 pcp->high = high;
4934 smp_wmb();
4935
4936 pcp->batch = batch;
4937}
4938
3664033c 4939/* a companion to pageset_set_high() */
4008bab7
CS
4940static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4941{
8d7a8fa9 4942 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4943}
4944
88c90dbc 4945static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4946{
4947 struct per_cpu_pages *pcp;
5f8dcc21 4948 int migratetype;
2caaad41 4949
1c6fe946
MD
4950 memset(p, 0, sizeof(*p));
4951
3dfa5721 4952 pcp = &p->pcp;
2caaad41 4953 pcp->count = 0;
5f8dcc21
MG
4954 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4955 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4956}
4957
88c90dbc
CS
4958static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4959{
4960 pageset_init(p);
4961 pageset_set_batch(p, batch);
4962}
4963
8ad4b1fb 4964/*
3664033c 4965 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4966 * to the value high for the pageset p.
4967 */
3664033c 4968static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4969 unsigned long high)
4970{
8d7a8fa9
CS
4971 unsigned long batch = max(1UL, high / 4);
4972 if ((high / 4) > (PAGE_SHIFT * 8))
4973 batch = PAGE_SHIFT * 8;
8ad4b1fb 4974
8d7a8fa9 4975 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4976}
4977
7cd2b0a3
DR
4978static void pageset_set_high_and_batch(struct zone *zone,
4979 struct per_cpu_pageset *pcp)
56cef2b8 4980{
56cef2b8 4981 if (percpu_pagelist_fraction)
3664033c 4982 pageset_set_high(pcp,
56cef2b8
CS
4983 (zone->managed_pages /
4984 percpu_pagelist_fraction));
4985 else
4986 pageset_set_batch(pcp, zone_batchsize(zone));
4987}
4988
169f6c19
CS
4989static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4990{
4991 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4992
4993 pageset_init(pcp);
4994 pageset_set_high_and_batch(zone, pcp);
4995}
4996
4ed7e022 4997static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4998{
4999 int cpu;
319774e2 5000 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5001 for_each_possible_cpu(cpu)
5002 zone_pageset_init(zone, cpu);
319774e2
WF
5003}
5004
2caaad41 5005/*
99dcc3e5
CL
5006 * Allocate per cpu pagesets and initialize them.
5007 * Before this call only boot pagesets were available.
e7c8d5c9 5008 */
99dcc3e5 5009void __init setup_per_cpu_pageset(void)
e7c8d5c9 5010{
99dcc3e5 5011 struct zone *zone;
e7c8d5c9 5012
319774e2
WF
5013 for_each_populated_zone(zone)
5014 setup_zone_pageset(zone);
e7c8d5c9
CL
5015}
5016
577a32f6 5017static noinline __init_refok
cca448fe 5018int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5019{
5020 int i;
cca448fe 5021 size_t alloc_size;
ed8ece2e
DH
5022
5023 /*
5024 * The per-page waitqueue mechanism uses hashed waitqueues
5025 * per zone.
5026 */
02b694de
YG
5027 zone->wait_table_hash_nr_entries =
5028 wait_table_hash_nr_entries(zone_size_pages);
5029 zone->wait_table_bits =
5030 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5031 alloc_size = zone->wait_table_hash_nr_entries
5032 * sizeof(wait_queue_head_t);
5033
cd94b9db 5034 if (!slab_is_available()) {
cca448fe 5035 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5036 memblock_virt_alloc_node_nopanic(
5037 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5038 } else {
5039 /*
5040 * This case means that a zone whose size was 0 gets new memory
5041 * via memory hot-add.
5042 * But it may be the case that a new node was hot-added. In
5043 * this case vmalloc() will not be able to use this new node's
5044 * memory - this wait_table must be initialized to use this new
5045 * node itself as well.
5046 * To use this new node's memory, further consideration will be
5047 * necessary.
5048 */
8691f3a7 5049 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5050 }
5051 if (!zone->wait_table)
5052 return -ENOMEM;
ed8ece2e 5053
b8af2941 5054 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5055 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5056
5057 return 0;
ed8ece2e
DH
5058}
5059
c09b4240 5060static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5061{
99dcc3e5
CL
5062 /*
5063 * per cpu subsystem is not up at this point. The following code
5064 * relies on the ability of the linker to provide the
5065 * offset of a (static) per cpu variable into the per cpu area.
5066 */
5067 zone->pageset = &boot_pageset;
ed8ece2e 5068
b38a8725 5069 if (populated_zone(zone))
99dcc3e5
CL
5070 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5071 zone->name, zone->present_pages,
5072 zone_batchsize(zone));
ed8ece2e
DH
5073}
5074
4ed7e022 5075int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5076 unsigned long zone_start_pfn,
b171e409 5077 unsigned long size)
ed8ece2e
DH
5078{
5079 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5080 int ret;
5081 ret = zone_wait_table_init(zone, size);
5082 if (ret)
5083 return ret;
ed8ece2e
DH
5084 pgdat->nr_zones = zone_idx(zone) + 1;
5085
ed8ece2e
DH
5086 zone->zone_start_pfn = zone_start_pfn;
5087
708614e6
MG
5088 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5089 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5090 pgdat->node_id,
5091 (unsigned long)zone_idx(zone),
5092 zone_start_pfn, (zone_start_pfn + size));
5093
1e548deb 5094 zone_init_free_lists(zone);
718127cc
YG
5095
5096 return 0;
ed8ece2e
DH
5097}
5098
0ee332c1 5099#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5100#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5101
c713216d
MG
5102/*
5103 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5104 */
8a942fde
MG
5105int __meminit __early_pfn_to_nid(unsigned long pfn,
5106 struct mminit_pfnnid_cache *state)
c713216d 5107{
c13291a5 5108 unsigned long start_pfn, end_pfn;
e76b63f8 5109 int nid;
7c243c71 5110
8a942fde
MG
5111 if (state->last_start <= pfn && pfn < state->last_end)
5112 return state->last_nid;
c713216d 5113
e76b63f8
YL
5114 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5115 if (nid != -1) {
8a942fde
MG
5116 state->last_start = start_pfn;
5117 state->last_end = end_pfn;
5118 state->last_nid = nid;
e76b63f8
YL
5119 }
5120
5121 return nid;
c713216d
MG
5122}
5123#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5124
c713216d 5125/**
6782832e 5126 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5127 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5128 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5129 *
7d018176
ZZ
5130 * If an architecture guarantees that all ranges registered contain no holes
5131 * and may be freed, this this function may be used instead of calling
5132 * memblock_free_early_nid() manually.
c713216d 5133 */
c13291a5 5134void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5135{
c13291a5
TH
5136 unsigned long start_pfn, end_pfn;
5137 int i, this_nid;
edbe7d23 5138
c13291a5
TH
5139 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5140 start_pfn = min(start_pfn, max_low_pfn);
5141 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5142
c13291a5 5143 if (start_pfn < end_pfn)
6782832e
SS
5144 memblock_free_early_nid(PFN_PHYS(start_pfn),
5145 (end_pfn - start_pfn) << PAGE_SHIFT,
5146 this_nid);
edbe7d23 5147 }
edbe7d23 5148}
edbe7d23 5149
c713216d
MG
5150/**
5151 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5152 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5153 *
7d018176
ZZ
5154 * If an architecture guarantees that all ranges registered contain no holes and may
5155 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5156 */
5157void __init sparse_memory_present_with_active_regions(int nid)
5158{
c13291a5
TH
5159 unsigned long start_pfn, end_pfn;
5160 int i, this_nid;
c713216d 5161
c13291a5
TH
5162 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5163 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5164}
5165
5166/**
5167 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5168 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5169 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5170 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5171 *
5172 * It returns the start and end page frame of a node based on information
7d018176 5173 * provided by memblock_set_node(). If called for a node
c713216d 5174 * with no available memory, a warning is printed and the start and end
88ca3b94 5175 * PFNs will be 0.
c713216d 5176 */
a3142c8e 5177void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5178 unsigned long *start_pfn, unsigned long *end_pfn)
5179{
c13291a5 5180 unsigned long this_start_pfn, this_end_pfn;
c713216d 5181 int i;
c13291a5 5182
c713216d
MG
5183 *start_pfn = -1UL;
5184 *end_pfn = 0;
5185
c13291a5
TH
5186 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5187 *start_pfn = min(*start_pfn, this_start_pfn);
5188 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5189 }
5190
633c0666 5191 if (*start_pfn == -1UL)
c713216d 5192 *start_pfn = 0;
c713216d
MG
5193}
5194
2a1e274a
MG
5195/*
5196 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5197 * assumption is made that zones within a node are ordered in monotonic
5198 * increasing memory addresses so that the "highest" populated zone is used
5199 */
b69a7288 5200static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5201{
5202 int zone_index;
5203 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5204 if (zone_index == ZONE_MOVABLE)
5205 continue;
5206
5207 if (arch_zone_highest_possible_pfn[zone_index] >
5208 arch_zone_lowest_possible_pfn[zone_index])
5209 break;
5210 }
5211
5212 VM_BUG_ON(zone_index == -1);
5213 movable_zone = zone_index;
5214}
5215
5216/*
5217 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5218 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5219 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5220 * in each node depending on the size of each node and how evenly kernelcore
5221 * is distributed. This helper function adjusts the zone ranges
5222 * provided by the architecture for a given node by using the end of the
5223 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5224 * zones within a node are in order of monotonic increases memory addresses
5225 */
b69a7288 5226static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5227 unsigned long zone_type,
5228 unsigned long node_start_pfn,
5229 unsigned long node_end_pfn,
5230 unsigned long *zone_start_pfn,
5231 unsigned long *zone_end_pfn)
5232{
5233 /* Only adjust if ZONE_MOVABLE is on this node */
5234 if (zone_movable_pfn[nid]) {
5235 /* Size ZONE_MOVABLE */
5236 if (zone_type == ZONE_MOVABLE) {
5237 *zone_start_pfn = zone_movable_pfn[nid];
5238 *zone_end_pfn = min(node_end_pfn,
5239 arch_zone_highest_possible_pfn[movable_zone]);
5240
2a1e274a
MG
5241 /* Check if this whole range is within ZONE_MOVABLE */
5242 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5243 *zone_start_pfn = *zone_end_pfn;
5244 }
5245}
5246
c713216d
MG
5247/*
5248 * Return the number of pages a zone spans in a node, including holes
5249 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5250 */
6ea6e688 5251static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5252 unsigned long zone_type,
7960aedd
ZY
5253 unsigned long node_start_pfn,
5254 unsigned long node_end_pfn,
d91749c1
TI
5255 unsigned long *zone_start_pfn,
5256 unsigned long *zone_end_pfn,
c713216d
MG
5257 unsigned long *ignored)
5258{
b5685e92 5259 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5260 if (!node_start_pfn && !node_end_pfn)
5261 return 0;
5262
7960aedd 5263 /* Get the start and end of the zone */
d91749c1
TI
5264 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5265 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5266 adjust_zone_range_for_zone_movable(nid, zone_type,
5267 node_start_pfn, node_end_pfn,
d91749c1 5268 zone_start_pfn, zone_end_pfn);
c713216d
MG
5269
5270 /* Check that this node has pages within the zone's required range */
d91749c1 5271 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5272 return 0;
5273
5274 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5275 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5276 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5277
5278 /* Return the spanned pages */
d91749c1 5279 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5280}
5281
5282/*
5283 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5284 * then all holes in the requested range will be accounted for.
c713216d 5285 */
32996250 5286unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5287 unsigned long range_start_pfn,
5288 unsigned long range_end_pfn)
5289{
96e907d1
TH
5290 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5291 unsigned long start_pfn, end_pfn;
5292 int i;
c713216d 5293
96e907d1
TH
5294 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5295 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5296 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5297 nr_absent -= end_pfn - start_pfn;
c713216d 5298 }
96e907d1 5299 return nr_absent;
c713216d
MG
5300}
5301
5302/**
5303 * absent_pages_in_range - Return number of page frames in holes within a range
5304 * @start_pfn: The start PFN to start searching for holes
5305 * @end_pfn: The end PFN to stop searching for holes
5306 *
88ca3b94 5307 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5308 */
5309unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5310 unsigned long end_pfn)
5311{
5312 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5313}
5314
5315/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5316static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5317 unsigned long zone_type,
7960aedd
ZY
5318 unsigned long node_start_pfn,
5319 unsigned long node_end_pfn,
c713216d
MG
5320 unsigned long *ignored)
5321{
96e907d1
TH
5322 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5323 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5324 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5325 unsigned long nr_absent;
9c7cd687 5326
b5685e92 5327 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5328 if (!node_start_pfn && !node_end_pfn)
5329 return 0;
5330
96e907d1
TH
5331 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5332 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5333
2a1e274a
MG
5334 adjust_zone_range_for_zone_movable(nid, zone_type,
5335 node_start_pfn, node_end_pfn,
5336 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5337 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5338
5339 /*
5340 * ZONE_MOVABLE handling.
5341 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5342 * and vice versa.
5343 */
5344 if (zone_movable_pfn[nid]) {
5345 if (mirrored_kernelcore) {
5346 unsigned long start_pfn, end_pfn;
5347 struct memblock_region *r;
5348
5349 for_each_memblock(memory, r) {
5350 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5351 zone_start_pfn, zone_end_pfn);
5352 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5353 zone_start_pfn, zone_end_pfn);
5354
5355 if (zone_type == ZONE_MOVABLE &&
5356 memblock_is_mirror(r))
5357 nr_absent += end_pfn - start_pfn;
5358
5359 if (zone_type == ZONE_NORMAL &&
5360 !memblock_is_mirror(r))
5361 nr_absent += end_pfn - start_pfn;
5362 }
5363 } else {
5364 if (zone_type == ZONE_NORMAL)
5365 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5366 }
5367 }
5368
5369 return nr_absent;
c713216d 5370}
0e0b864e 5371
0ee332c1 5372#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5373static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5374 unsigned long zone_type,
7960aedd
ZY
5375 unsigned long node_start_pfn,
5376 unsigned long node_end_pfn,
d91749c1
TI
5377 unsigned long *zone_start_pfn,
5378 unsigned long *zone_end_pfn,
c713216d
MG
5379 unsigned long *zones_size)
5380{
d91749c1
TI
5381 unsigned int zone;
5382
5383 *zone_start_pfn = node_start_pfn;
5384 for (zone = 0; zone < zone_type; zone++)
5385 *zone_start_pfn += zones_size[zone];
5386
5387 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5388
c713216d
MG
5389 return zones_size[zone_type];
5390}
5391
6ea6e688 5392static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5393 unsigned long zone_type,
7960aedd
ZY
5394 unsigned long node_start_pfn,
5395 unsigned long node_end_pfn,
c713216d
MG
5396 unsigned long *zholes_size)
5397{
5398 if (!zholes_size)
5399 return 0;
5400
5401 return zholes_size[zone_type];
5402}
20e6926d 5403
0ee332c1 5404#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5405
a3142c8e 5406static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5407 unsigned long node_start_pfn,
5408 unsigned long node_end_pfn,
5409 unsigned long *zones_size,
5410 unsigned long *zholes_size)
c713216d 5411{
febd5949 5412 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5413 enum zone_type i;
5414
febd5949
GZ
5415 for (i = 0; i < MAX_NR_ZONES; i++) {
5416 struct zone *zone = pgdat->node_zones + i;
d91749c1 5417 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5418 unsigned long size, real_size;
c713216d 5419
febd5949
GZ
5420 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5421 node_start_pfn,
5422 node_end_pfn,
d91749c1
TI
5423 &zone_start_pfn,
5424 &zone_end_pfn,
febd5949
GZ
5425 zones_size);
5426 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5427 node_start_pfn, node_end_pfn,
5428 zholes_size);
d91749c1
TI
5429 if (size)
5430 zone->zone_start_pfn = zone_start_pfn;
5431 else
5432 zone->zone_start_pfn = 0;
febd5949
GZ
5433 zone->spanned_pages = size;
5434 zone->present_pages = real_size;
5435
5436 totalpages += size;
5437 realtotalpages += real_size;
5438 }
5439
5440 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5441 pgdat->node_present_pages = realtotalpages;
5442 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5443 realtotalpages);
5444}
5445
835c134e
MG
5446#ifndef CONFIG_SPARSEMEM
5447/*
5448 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5449 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5450 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5451 * round what is now in bits to nearest long in bits, then return it in
5452 * bytes.
5453 */
7c45512d 5454static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5455{
5456 unsigned long usemapsize;
5457
7c45512d 5458 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5459 usemapsize = roundup(zonesize, pageblock_nr_pages);
5460 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5461 usemapsize *= NR_PAGEBLOCK_BITS;
5462 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5463
5464 return usemapsize / 8;
5465}
5466
5467static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5468 struct zone *zone,
5469 unsigned long zone_start_pfn,
5470 unsigned long zonesize)
835c134e 5471{
7c45512d 5472 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5473 zone->pageblock_flags = NULL;
58a01a45 5474 if (usemapsize)
6782832e
SS
5475 zone->pageblock_flags =
5476 memblock_virt_alloc_node_nopanic(usemapsize,
5477 pgdat->node_id);
835c134e
MG
5478}
5479#else
7c45512d
LT
5480static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5481 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5482#endif /* CONFIG_SPARSEMEM */
5483
d9c23400 5484#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5485
d9c23400 5486/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5487void __paginginit set_pageblock_order(void)
d9c23400 5488{
955c1cd7
AM
5489 unsigned int order;
5490
d9c23400
MG
5491 /* Check that pageblock_nr_pages has not already been setup */
5492 if (pageblock_order)
5493 return;
5494
955c1cd7
AM
5495 if (HPAGE_SHIFT > PAGE_SHIFT)
5496 order = HUGETLB_PAGE_ORDER;
5497 else
5498 order = MAX_ORDER - 1;
5499
d9c23400
MG
5500 /*
5501 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5502 * This value may be variable depending on boot parameters on IA64 and
5503 * powerpc.
d9c23400
MG
5504 */
5505 pageblock_order = order;
5506}
5507#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5508
ba72cb8c
MG
5509/*
5510 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5511 * is unused as pageblock_order is set at compile-time. See
5512 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5513 * the kernel config
ba72cb8c 5514 */
15ca220e 5515void __paginginit set_pageblock_order(void)
ba72cb8c 5516{
ba72cb8c 5517}
d9c23400
MG
5518
5519#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5520
01cefaef
JL
5521static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5522 unsigned long present_pages)
5523{
5524 unsigned long pages = spanned_pages;
5525
5526 /*
5527 * Provide a more accurate estimation if there are holes within
5528 * the zone and SPARSEMEM is in use. If there are holes within the
5529 * zone, each populated memory region may cost us one or two extra
5530 * memmap pages due to alignment because memmap pages for each
5531 * populated regions may not naturally algined on page boundary.
5532 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5533 */
5534 if (spanned_pages > present_pages + (present_pages >> 4) &&
5535 IS_ENABLED(CONFIG_SPARSEMEM))
5536 pages = present_pages;
5537
5538 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5539}
5540
1da177e4
LT
5541/*
5542 * Set up the zone data structures:
5543 * - mark all pages reserved
5544 * - mark all memory queues empty
5545 * - clear the memory bitmaps
6527af5d
MK
5546 *
5547 * NOTE: pgdat should get zeroed by caller.
1da177e4 5548 */
7f3eb55b 5549static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5550{
2f1b6248 5551 enum zone_type j;
ed8ece2e 5552 int nid = pgdat->node_id;
718127cc 5553 int ret;
1da177e4 5554
208d54e5 5555 pgdat_resize_init(pgdat);
8177a420
AA
5556#ifdef CONFIG_NUMA_BALANCING
5557 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5558 pgdat->numabalancing_migrate_nr_pages = 0;
5559 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5560#endif
5561#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5562 spin_lock_init(&pgdat->split_queue_lock);
5563 INIT_LIST_HEAD(&pgdat->split_queue);
5564 pgdat->split_queue_len = 0;
8177a420 5565#endif
1da177e4 5566 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5567 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5568#ifdef CONFIG_COMPACTION
5569 init_waitqueue_head(&pgdat->kcompactd_wait);
5570#endif
eefa864b 5571 pgdat_page_ext_init(pgdat);
5f63b720 5572
1da177e4
LT
5573 for (j = 0; j < MAX_NR_ZONES; j++) {
5574 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5575 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5576 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5577
febd5949
GZ
5578 size = zone->spanned_pages;
5579 realsize = freesize = zone->present_pages;
1da177e4 5580
0e0b864e 5581 /*
9feedc9d 5582 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5583 * is used by this zone for memmap. This affects the watermark
5584 * and per-cpu initialisations
5585 */
01cefaef 5586 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5587 if (!is_highmem_idx(j)) {
5588 if (freesize >= memmap_pages) {
5589 freesize -= memmap_pages;
5590 if (memmap_pages)
5591 printk(KERN_DEBUG
5592 " %s zone: %lu pages used for memmap\n",
5593 zone_names[j], memmap_pages);
5594 } else
1170532b 5595 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5596 zone_names[j], memmap_pages, freesize);
5597 }
0e0b864e 5598
6267276f 5599 /* Account for reserved pages */
9feedc9d
JL
5600 if (j == 0 && freesize > dma_reserve) {
5601 freesize -= dma_reserve;
d903ef9f 5602 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5603 zone_names[0], dma_reserve);
0e0b864e
MG
5604 }
5605
98d2b0eb 5606 if (!is_highmem_idx(j))
9feedc9d 5607 nr_kernel_pages += freesize;
01cefaef
JL
5608 /* Charge for highmem memmap if there are enough kernel pages */
5609 else if (nr_kernel_pages > memmap_pages * 2)
5610 nr_kernel_pages -= memmap_pages;
9feedc9d 5611 nr_all_pages += freesize;
1da177e4 5612
9feedc9d
JL
5613 /*
5614 * Set an approximate value for lowmem here, it will be adjusted
5615 * when the bootmem allocator frees pages into the buddy system.
5616 * And all highmem pages will be managed by the buddy system.
5617 */
5618 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5619#ifdef CONFIG_NUMA
d5f541ed 5620 zone->node = nid;
9feedc9d 5621 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5622 / 100;
9feedc9d 5623 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5624#endif
1da177e4
LT
5625 zone->name = zone_names[j];
5626 spin_lock_init(&zone->lock);
5627 spin_lock_init(&zone->lru_lock);
bdc8cb98 5628 zone_seqlock_init(zone);
1da177e4 5629 zone->zone_pgdat = pgdat;
ed8ece2e 5630 zone_pcp_init(zone);
81c0a2bb
JW
5631
5632 /* For bootup, initialized properly in watermark setup */
5633 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5634
bea8c150 5635 lruvec_init(&zone->lruvec);
1da177e4
LT
5636 if (!size)
5637 continue;
5638
955c1cd7 5639 set_pageblock_order();
7c45512d 5640 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5641 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5642 BUG_ON(ret);
76cdd58e 5643 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5644 }
5645}
5646
577a32f6 5647static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5648{
b0aeba74 5649 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5650 unsigned long __maybe_unused offset = 0;
5651
1da177e4
LT
5652 /* Skip empty nodes */
5653 if (!pgdat->node_spanned_pages)
5654 return;
5655
d41dee36 5656#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5657 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5658 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5659 /* ia64 gets its own node_mem_map, before this, without bootmem */
5660 if (!pgdat->node_mem_map) {
b0aeba74 5661 unsigned long size, end;
d41dee36
AW
5662 struct page *map;
5663
e984bb43
BP
5664 /*
5665 * The zone's endpoints aren't required to be MAX_ORDER
5666 * aligned but the node_mem_map endpoints must be in order
5667 * for the buddy allocator to function correctly.
5668 */
108bcc96 5669 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5670 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5671 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5672 map = alloc_remap(pgdat->node_id, size);
5673 if (!map)
6782832e
SS
5674 map = memblock_virt_alloc_node_nopanic(size,
5675 pgdat->node_id);
a1c34a3b 5676 pgdat->node_mem_map = map + offset;
1da177e4 5677 }
12d810c1 5678#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5679 /*
5680 * With no DISCONTIG, the global mem_map is just set as node 0's
5681 */
c713216d 5682 if (pgdat == NODE_DATA(0)) {
1da177e4 5683 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5684#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5685 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5686 mem_map -= offset;
0ee332c1 5687#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5688 }
1da177e4 5689#endif
d41dee36 5690#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5691}
5692
9109fb7b
JW
5693void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5694 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5695{
9109fb7b 5696 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5697 unsigned long start_pfn = 0;
5698 unsigned long end_pfn = 0;
9109fb7b 5699
88fdf75d 5700 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5701 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5702
3a80a7fa 5703 reset_deferred_meminit(pgdat);
1da177e4
LT
5704 pgdat->node_id = nid;
5705 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5706#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5707 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5708 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5709 (u64)start_pfn << PAGE_SHIFT,
5710 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5711#else
5712 start_pfn = node_start_pfn;
7960aedd
ZY
5713#endif
5714 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5715 zones_size, zholes_size);
1da177e4
LT
5716
5717 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5718#ifdef CONFIG_FLAT_NODE_MEM_MAP
5719 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5720 nid, (unsigned long)pgdat,
5721 (unsigned long)pgdat->node_mem_map);
5722#endif
1da177e4 5723
7f3eb55b 5724 free_area_init_core(pgdat);
1da177e4
LT
5725}
5726
0ee332c1 5727#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5728
5729#if MAX_NUMNODES > 1
5730/*
5731 * Figure out the number of possible node ids.
5732 */
f9872caf 5733void __init setup_nr_node_ids(void)
418508c1 5734{
904a9553 5735 unsigned int highest;
418508c1 5736
904a9553 5737 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5738 nr_node_ids = highest + 1;
5739}
418508c1
MS
5740#endif
5741
1e01979c
TH
5742/**
5743 * node_map_pfn_alignment - determine the maximum internode alignment
5744 *
5745 * This function should be called after node map is populated and sorted.
5746 * It calculates the maximum power of two alignment which can distinguish
5747 * all the nodes.
5748 *
5749 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5750 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5751 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5752 * shifted, 1GiB is enough and this function will indicate so.
5753 *
5754 * This is used to test whether pfn -> nid mapping of the chosen memory
5755 * model has fine enough granularity to avoid incorrect mapping for the
5756 * populated node map.
5757 *
5758 * Returns the determined alignment in pfn's. 0 if there is no alignment
5759 * requirement (single node).
5760 */
5761unsigned long __init node_map_pfn_alignment(void)
5762{
5763 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5764 unsigned long start, end, mask;
1e01979c 5765 int last_nid = -1;
c13291a5 5766 int i, nid;
1e01979c 5767
c13291a5 5768 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5769 if (!start || last_nid < 0 || last_nid == nid) {
5770 last_nid = nid;
5771 last_end = end;
5772 continue;
5773 }
5774
5775 /*
5776 * Start with a mask granular enough to pin-point to the
5777 * start pfn and tick off bits one-by-one until it becomes
5778 * too coarse to separate the current node from the last.
5779 */
5780 mask = ~((1 << __ffs(start)) - 1);
5781 while (mask && last_end <= (start & (mask << 1)))
5782 mask <<= 1;
5783
5784 /* accumulate all internode masks */
5785 accl_mask |= mask;
5786 }
5787
5788 /* convert mask to number of pages */
5789 return ~accl_mask + 1;
5790}
5791
a6af2bc3 5792/* Find the lowest pfn for a node */
b69a7288 5793static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5794{
a6af2bc3 5795 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5796 unsigned long start_pfn;
5797 int i;
1abbfb41 5798
c13291a5
TH
5799 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5800 min_pfn = min(min_pfn, start_pfn);
c713216d 5801
a6af2bc3 5802 if (min_pfn == ULONG_MAX) {
1170532b 5803 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5804 return 0;
5805 }
5806
5807 return min_pfn;
c713216d
MG
5808}
5809
5810/**
5811 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5812 *
5813 * It returns the minimum PFN based on information provided via
7d018176 5814 * memblock_set_node().
c713216d
MG
5815 */
5816unsigned long __init find_min_pfn_with_active_regions(void)
5817{
5818 return find_min_pfn_for_node(MAX_NUMNODES);
5819}
5820
37b07e41
LS
5821/*
5822 * early_calculate_totalpages()
5823 * Sum pages in active regions for movable zone.
4b0ef1fe 5824 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5825 */
484f51f8 5826static unsigned long __init early_calculate_totalpages(void)
7e63efef 5827{
7e63efef 5828 unsigned long totalpages = 0;
c13291a5
TH
5829 unsigned long start_pfn, end_pfn;
5830 int i, nid;
5831
5832 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5833 unsigned long pages = end_pfn - start_pfn;
7e63efef 5834
37b07e41
LS
5835 totalpages += pages;
5836 if (pages)
4b0ef1fe 5837 node_set_state(nid, N_MEMORY);
37b07e41 5838 }
b8af2941 5839 return totalpages;
7e63efef
MG
5840}
5841
2a1e274a
MG
5842/*
5843 * Find the PFN the Movable zone begins in each node. Kernel memory
5844 * is spread evenly between nodes as long as the nodes have enough
5845 * memory. When they don't, some nodes will have more kernelcore than
5846 * others
5847 */
b224ef85 5848static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5849{
5850 int i, nid;
5851 unsigned long usable_startpfn;
5852 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5853 /* save the state before borrow the nodemask */
4b0ef1fe 5854 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5855 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5856 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5857 struct memblock_region *r;
b2f3eebe
TC
5858
5859 /* Need to find movable_zone earlier when movable_node is specified. */
5860 find_usable_zone_for_movable();
5861
5862 /*
5863 * If movable_node is specified, ignore kernelcore and movablecore
5864 * options.
5865 */
5866 if (movable_node_is_enabled()) {
136199f0
EM
5867 for_each_memblock(memory, r) {
5868 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5869 continue;
5870
136199f0 5871 nid = r->nid;
b2f3eebe 5872
136199f0 5873 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5874 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5875 min(usable_startpfn, zone_movable_pfn[nid]) :
5876 usable_startpfn;
5877 }
5878
5879 goto out2;
5880 }
2a1e274a 5881
342332e6
TI
5882 /*
5883 * If kernelcore=mirror is specified, ignore movablecore option
5884 */
5885 if (mirrored_kernelcore) {
5886 bool mem_below_4gb_not_mirrored = false;
5887
5888 for_each_memblock(memory, r) {
5889 if (memblock_is_mirror(r))
5890 continue;
5891
5892 nid = r->nid;
5893
5894 usable_startpfn = memblock_region_memory_base_pfn(r);
5895
5896 if (usable_startpfn < 0x100000) {
5897 mem_below_4gb_not_mirrored = true;
5898 continue;
5899 }
5900
5901 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5902 min(usable_startpfn, zone_movable_pfn[nid]) :
5903 usable_startpfn;
5904 }
5905
5906 if (mem_below_4gb_not_mirrored)
5907 pr_warn("This configuration results in unmirrored kernel memory.");
5908
5909 goto out2;
5910 }
5911
7e63efef 5912 /*
b2f3eebe 5913 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5914 * kernelcore that corresponds so that memory usable for
5915 * any allocation type is evenly spread. If both kernelcore
5916 * and movablecore are specified, then the value of kernelcore
5917 * will be used for required_kernelcore if it's greater than
5918 * what movablecore would have allowed.
5919 */
5920 if (required_movablecore) {
7e63efef
MG
5921 unsigned long corepages;
5922
5923 /*
5924 * Round-up so that ZONE_MOVABLE is at least as large as what
5925 * was requested by the user
5926 */
5927 required_movablecore =
5928 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5929 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5930 corepages = totalpages - required_movablecore;
5931
5932 required_kernelcore = max(required_kernelcore, corepages);
5933 }
5934
bde304bd
XQ
5935 /*
5936 * If kernelcore was not specified or kernelcore size is larger
5937 * than totalpages, there is no ZONE_MOVABLE.
5938 */
5939 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5940 goto out;
2a1e274a
MG
5941
5942 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5943 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5944
5945restart:
5946 /* Spread kernelcore memory as evenly as possible throughout nodes */
5947 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5948 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5949 unsigned long start_pfn, end_pfn;
5950
2a1e274a
MG
5951 /*
5952 * Recalculate kernelcore_node if the division per node
5953 * now exceeds what is necessary to satisfy the requested
5954 * amount of memory for the kernel
5955 */
5956 if (required_kernelcore < kernelcore_node)
5957 kernelcore_node = required_kernelcore / usable_nodes;
5958
5959 /*
5960 * As the map is walked, we track how much memory is usable
5961 * by the kernel using kernelcore_remaining. When it is
5962 * 0, the rest of the node is usable by ZONE_MOVABLE
5963 */
5964 kernelcore_remaining = kernelcore_node;
5965
5966 /* Go through each range of PFNs within this node */
c13291a5 5967 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5968 unsigned long size_pages;
5969
c13291a5 5970 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5971 if (start_pfn >= end_pfn)
5972 continue;
5973
5974 /* Account for what is only usable for kernelcore */
5975 if (start_pfn < usable_startpfn) {
5976 unsigned long kernel_pages;
5977 kernel_pages = min(end_pfn, usable_startpfn)
5978 - start_pfn;
5979
5980 kernelcore_remaining -= min(kernel_pages,
5981 kernelcore_remaining);
5982 required_kernelcore -= min(kernel_pages,
5983 required_kernelcore);
5984
5985 /* Continue if range is now fully accounted */
5986 if (end_pfn <= usable_startpfn) {
5987
5988 /*
5989 * Push zone_movable_pfn to the end so
5990 * that if we have to rebalance
5991 * kernelcore across nodes, we will
5992 * not double account here
5993 */
5994 zone_movable_pfn[nid] = end_pfn;
5995 continue;
5996 }
5997 start_pfn = usable_startpfn;
5998 }
5999
6000 /*
6001 * The usable PFN range for ZONE_MOVABLE is from
6002 * start_pfn->end_pfn. Calculate size_pages as the
6003 * number of pages used as kernelcore
6004 */
6005 size_pages = end_pfn - start_pfn;
6006 if (size_pages > kernelcore_remaining)
6007 size_pages = kernelcore_remaining;
6008 zone_movable_pfn[nid] = start_pfn + size_pages;
6009
6010 /*
6011 * Some kernelcore has been met, update counts and
6012 * break if the kernelcore for this node has been
b8af2941 6013 * satisfied
2a1e274a
MG
6014 */
6015 required_kernelcore -= min(required_kernelcore,
6016 size_pages);
6017 kernelcore_remaining -= size_pages;
6018 if (!kernelcore_remaining)
6019 break;
6020 }
6021 }
6022
6023 /*
6024 * If there is still required_kernelcore, we do another pass with one
6025 * less node in the count. This will push zone_movable_pfn[nid] further
6026 * along on the nodes that still have memory until kernelcore is
b8af2941 6027 * satisfied
2a1e274a
MG
6028 */
6029 usable_nodes--;
6030 if (usable_nodes && required_kernelcore > usable_nodes)
6031 goto restart;
6032
b2f3eebe 6033out2:
2a1e274a
MG
6034 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6035 for (nid = 0; nid < MAX_NUMNODES; nid++)
6036 zone_movable_pfn[nid] =
6037 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6038
20e6926d 6039out:
66918dcd 6040 /* restore the node_state */
4b0ef1fe 6041 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6042}
6043
4b0ef1fe
LJ
6044/* Any regular or high memory on that node ? */
6045static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6046{
37b07e41
LS
6047 enum zone_type zone_type;
6048
4b0ef1fe
LJ
6049 if (N_MEMORY == N_NORMAL_MEMORY)
6050 return;
6051
6052 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6053 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6054 if (populated_zone(zone)) {
4b0ef1fe
LJ
6055 node_set_state(nid, N_HIGH_MEMORY);
6056 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6057 zone_type <= ZONE_NORMAL)
6058 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6059 break;
6060 }
37b07e41 6061 }
37b07e41
LS
6062}
6063
c713216d
MG
6064/**
6065 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6066 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6067 *
6068 * This will call free_area_init_node() for each active node in the system.
7d018176 6069 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6070 * zone in each node and their holes is calculated. If the maximum PFN
6071 * between two adjacent zones match, it is assumed that the zone is empty.
6072 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6073 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6074 * starts where the previous one ended. For example, ZONE_DMA32 starts
6075 * at arch_max_dma_pfn.
6076 */
6077void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6078{
c13291a5
TH
6079 unsigned long start_pfn, end_pfn;
6080 int i, nid;
a6af2bc3 6081
c713216d
MG
6082 /* Record where the zone boundaries are */
6083 memset(arch_zone_lowest_possible_pfn, 0,
6084 sizeof(arch_zone_lowest_possible_pfn));
6085 memset(arch_zone_highest_possible_pfn, 0,
6086 sizeof(arch_zone_highest_possible_pfn));
6087 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6088 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6089 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6090 if (i == ZONE_MOVABLE)
6091 continue;
c713216d
MG
6092 arch_zone_lowest_possible_pfn[i] =
6093 arch_zone_highest_possible_pfn[i-1];
6094 arch_zone_highest_possible_pfn[i] =
6095 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6096 }
2a1e274a
MG
6097 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6098 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6099
6100 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6101 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6102 find_zone_movable_pfns_for_nodes();
c713216d 6103
c713216d 6104 /* Print out the zone ranges */
f88dfff5 6105 pr_info("Zone ranges:\n");
2a1e274a
MG
6106 for (i = 0; i < MAX_NR_ZONES; i++) {
6107 if (i == ZONE_MOVABLE)
6108 continue;
f88dfff5 6109 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6110 if (arch_zone_lowest_possible_pfn[i] ==
6111 arch_zone_highest_possible_pfn[i])
f88dfff5 6112 pr_cont("empty\n");
72f0ba02 6113 else
8d29e18a
JG
6114 pr_cont("[mem %#018Lx-%#018Lx]\n",
6115 (u64)arch_zone_lowest_possible_pfn[i]
6116 << PAGE_SHIFT,
6117 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6118 << PAGE_SHIFT) - 1);
2a1e274a
MG
6119 }
6120
6121 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6122 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6123 for (i = 0; i < MAX_NUMNODES; i++) {
6124 if (zone_movable_pfn[i])
8d29e18a
JG
6125 pr_info(" Node %d: %#018Lx\n", i,
6126 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6127 }
c713216d 6128
f2d52fe5 6129 /* Print out the early node map */
f88dfff5 6130 pr_info("Early memory node ranges\n");
c13291a5 6131 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6132 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6133 (u64)start_pfn << PAGE_SHIFT,
6134 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6135
6136 /* Initialise every node */
708614e6 6137 mminit_verify_pageflags_layout();
8ef82866 6138 setup_nr_node_ids();
c713216d
MG
6139 for_each_online_node(nid) {
6140 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6141 free_area_init_node(nid, NULL,
c713216d 6142 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6143
6144 /* Any memory on that node */
6145 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6146 node_set_state(nid, N_MEMORY);
6147 check_for_memory(pgdat, nid);
c713216d
MG
6148 }
6149}
2a1e274a 6150
7e63efef 6151static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6152{
6153 unsigned long long coremem;
6154 if (!p)
6155 return -EINVAL;
6156
6157 coremem = memparse(p, &p);
7e63efef 6158 *core = coremem >> PAGE_SHIFT;
2a1e274a 6159
7e63efef 6160 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6161 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6162
6163 return 0;
6164}
ed7ed365 6165
7e63efef
MG
6166/*
6167 * kernelcore=size sets the amount of memory for use for allocations that
6168 * cannot be reclaimed or migrated.
6169 */
6170static int __init cmdline_parse_kernelcore(char *p)
6171{
342332e6
TI
6172 /* parse kernelcore=mirror */
6173 if (parse_option_str(p, "mirror")) {
6174 mirrored_kernelcore = true;
6175 return 0;
6176 }
6177
7e63efef
MG
6178 return cmdline_parse_core(p, &required_kernelcore);
6179}
6180
6181/*
6182 * movablecore=size sets the amount of memory for use for allocations that
6183 * can be reclaimed or migrated.
6184 */
6185static int __init cmdline_parse_movablecore(char *p)
6186{
6187 return cmdline_parse_core(p, &required_movablecore);
6188}
6189
ed7ed365 6190early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6191early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6192
0ee332c1 6193#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6194
c3d5f5f0
JL
6195void adjust_managed_page_count(struct page *page, long count)
6196{
6197 spin_lock(&managed_page_count_lock);
6198 page_zone(page)->managed_pages += count;
6199 totalram_pages += count;
3dcc0571
JL
6200#ifdef CONFIG_HIGHMEM
6201 if (PageHighMem(page))
6202 totalhigh_pages += count;
6203#endif
c3d5f5f0
JL
6204 spin_unlock(&managed_page_count_lock);
6205}
3dcc0571 6206EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6207
11199692 6208unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6209{
11199692
JL
6210 void *pos;
6211 unsigned long pages = 0;
69afade7 6212
11199692
JL
6213 start = (void *)PAGE_ALIGN((unsigned long)start);
6214 end = (void *)((unsigned long)end & PAGE_MASK);
6215 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6216 if ((unsigned int)poison <= 0xFF)
11199692
JL
6217 memset(pos, poison, PAGE_SIZE);
6218 free_reserved_page(virt_to_page(pos));
69afade7
JL
6219 }
6220
6221 if (pages && s)
11199692 6222 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6223 s, pages << (PAGE_SHIFT - 10), start, end);
6224
6225 return pages;
6226}
11199692 6227EXPORT_SYMBOL(free_reserved_area);
69afade7 6228
cfa11e08
JL
6229#ifdef CONFIG_HIGHMEM
6230void free_highmem_page(struct page *page)
6231{
6232 __free_reserved_page(page);
6233 totalram_pages++;
7b4b2a0d 6234 page_zone(page)->managed_pages++;
cfa11e08
JL
6235 totalhigh_pages++;
6236}
6237#endif
6238
7ee3d4e8
JL
6239
6240void __init mem_init_print_info(const char *str)
6241{
6242 unsigned long physpages, codesize, datasize, rosize, bss_size;
6243 unsigned long init_code_size, init_data_size;
6244
6245 physpages = get_num_physpages();
6246 codesize = _etext - _stext;
6247 datasize = _edata - _sdata;
6248 rosize = __end_rodata - __start_rodata;
6249 bss_size = __bss_stop - __bss_start;
6250 init_data_size = __init_end - __init_begin;
6251 init_code_size = _einittext - _sinittext;
6252
6253 /*
6254 * Detect special cases and adjust section sizes accordingly:
6255 * 1) .init.* may be embedded into .data sections
6256 * 2) .init.text.* may be out of [__init_begin, __init_end],
6257 * please refer to arch/tile/kernel/vmlinux.lds.S.
6258 * 3) .rodata.* may be embedded into .text or .data sections.
6259 */
6260#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6261 do { \
6262 if (start <= pos && pos < end && size > adj) \
6263 size -= adj; \
6264 } while (0)
7ee3d4e8
JL
6265
6266 adj_init_size(__init_begin, __init_end, init_data_size,
6267 _sinittext, init_code_size);
6268 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6269 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6270 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6271 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6272
6273#undef adj_init_size
6274
756a025f 6275 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6276#ifdef CONFIG_HIGHMEM
756a025f 6277 ", %luK highmem"
7ee3d4e8 6278#endif
756a025f
JP
6279 "%s%s)\n",
6280 nr_free_pages() << (PAGE_SHIFT - 10),
6281 physpages << (PAGE_SHIFT - 10),
6282 codesize >> 10, datasize >> 10, rosize >> 10,
6283 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6284 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6285 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6286#ifdef CONFIG_HIGHMEM
756a025f 6287 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6288#endif
756a025f 6289 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6290}
6291
0e0b864e 6292/**
88ca3b94
RD
6293 * set_dma_reserve - set the specified number of pages reserved in the first zone
6294 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6295 *
013110a7 6296 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6297 * In the DMA zone, a significant percentage may be consumed by kernel image
6298 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6299 * function may optionally be used to account for unfreeable pages in the
6300 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6301 * smaller per-cpu batchsize.
0e0b864e
MG
6302 */
6303void __init set_dma_reserve(unsigned long new_dma_reserve)
6304{
6305 dma_reserve = new_dma_reserve;
6306}
6307
1da177e4
LT
6308void __init free_area_init(unsigned long *zones_size)
6309{
9109fb7b 6310 free_area_init_node(0, zones_size,
1da177e4
LT
6311 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6312}
1da177e4 6313
1da177e4
LT
6314static int page_alloc_cpu_notify(struct notifier_block *self,
6315 unsigned long action, void *hcpu)
6316{
6317 int cpu = (unsigned long)hcpu;
1da177e4 6318
8bb78442 6319 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6320 lru_add_drain_cpu(cpu);
9f8f2172
CL
6321 drain_pages(cpu);
6322
6323 /*
6324 * Spill the event counters of the dead processor
6325 * into the current processors event counters.
6326 * This artificially elevates the count of the current
6327 * processor.
6328 */
f8891e5e 6329 vm_events_fold_cpu(cpu);
9f8f2172
CL
6330
6331 /*
6332 * Zero the differential counters of the dead processor
6333 * so that the vm statistics are consistent.
6334 *
6335 * This is only okay since the processor is dead and cannot
6336 * race with what we are doing.
6337 */
2bb921e5 6338 cpu_vm_stats_fold(cpu);
1da177e4
LT
6339 }
6340 return NOTIFY_OK;
6341}
1da177e4
LT
6342
6343void __init page_alloc_init(void)
6344{
6345 hotcpu_notifier(page_alloc_cpu_notify, 0);
6346}
6347
cb45b0e9 6348/*
34b10060 6349 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6350 * or min_free_kbytes changes.
6351 */
6352static void calculate_totalreserve_pages(void)
6353{
6354 struct pglist_data *pgdat;
6355 unsigned long reserve_pages = 0;
2f6726e5 6356 enum zone_type i, j;
cb45b0e9
HA
6357
6358 for_each_online_pgdat(pgdat) {
6359 for (i = 0; i < MAX_NR_ZONES; i++) {
6360 struct zone *zone = pgdat->node_zones + i;
3484b2de 6361 long max = 0;
cb45b0e9
HA
6362
6363 /* Find valid and maximum lowmem_reserve in the zone */
6364 for (j = i; j < MAX_NR_ZONES; j++) {
6365 if (zone->lowmem_reserve[j] > max)
6366 max = zone->lowmem_reserve[j];
6367 }
6368
41858966
MG
6369 /* we treat the high watermark as reserved pages. */
6370 max += high_wmark_pages(zone);
cb45b0e9 6371
b40da049
JL
6372 if (max > zone->managed_pages)
6373 max = zone->managed_pages;
a8d01437
JW
6374
6375 zone->totalreserve_pages = max;
6376
cb45b0e9
HA
6377 reserve_pages += max;
6378 }
6379 }
6380 totalreserve_pages = reserve_pages;
6381}
6382
1da177e4
LT
6383/*
6384 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6385 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6386 * has a correct pages reserved value, so an adequate number of
6387 * pages are left in the zone after a successful __alloc_pages().
6388 */
6389static void setup_per_zone_lowmem_reserve(void)
6390{
6391 struct pglist_data *pgdat;
2f6726e5 6392 enum zone_type j, idx;
1da177e4 6393
ec936fc5 6394 for_each_online_pgdat(pgdat) {
1da177e4
LT
6395 for (j = 0; j < MAX_NR_ZONES; j++) {
6396 struct zone *zone = pgdat->node_zones + j;
b40da049 6397 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6398
6399 zone->lowmem_reserve[j] = 0;
6400
2f6726e5
CL
6401 idx = j;
6402 while (idx) {
1da177e4
LT
6403 struct zone *lower_zone;
6404
2f6726e5
CL
6405 idx--;
6406
1da177e4
LT
6407 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6408 sysctl_lowmem_reserve_ratio[idx] = 1;
6409
6410 lower_zone = pgdat->node_zones + idx;
b40da049 6411 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6412 sysctl_lowmem_reserve_ratio[idx];
b40da049 6413 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6414 }
6415 }
6416 }
cb45b0e9
HA
6417
6418 /* update totalreserve_pages */
6419 calculate_totalreserve_pages();
1da177e4
LT
6420}
6421
cfd3da1e 6422static void __setup_per_zone_wmarks(void)
1da177e4
LT
6423{
6424 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6425 unsigned long lowmem_pages = 0;
6426 struct zone *zone;
6427 unsigned long flags;
6428
6429 /* Calculate total number of !ZONE_HIGHMEM pages */
6430 for_each_zone(zone) {
6431 if (!is_highmem(zone))
b40da049 6432 lowmem_pages += zone->managed_pages;
1da177e4
LT
6433 }
6434
6435 for_each_zone(zone) {
ac924c60
AM
6436 u64 tmp;
6437
1125b4e3 6438 spin_lock_irqsave(&zone->lock, flags);
b40da049 6439 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6440 do_div(tmp, lowmem_pages);
1da177e4
LT
6441 if (is_highmem(zone)) {
6442 /*
669ed175
NP
6443 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6444 * need highmem pages, so cap pages_min to a small
6445 * value here.
6446 *
41858966 6447 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6448 * deltas control asynch page reclaim, and so should
669ed175 6449 * not be capped for highmem.
1da177e4 6450 */
90ae8d67 6451 unsigned long min_pages;
1da177e4 6452
b40da049 6453 min_pages = zone->managed_pages / 1024;
90ae8d67 6454 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6455 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6456 } else {
669ed175
NP
6457 /*
6458 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6459 * proportionate to the zone's size.
6460 */
41858966 6461 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6462 }
6463
795ae7a0
JW
6464 /*
6465 * Set the kswapd watermarks distance according to the
6466 * scale factor in proportion to available memory, but
6467 * ensure a minimum size on small systems.
6468 */
6469 tmp = max_t(u64, tmp >> 2,
6470 mult_frac(zone->managed_pages,
6471 watermark_scale_factor, 10000));
6472
6473 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6474 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6475
81c0a2bb 6476 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6477 high_wmark_pages(zone) - low_wmark_pages(zone) -
6478 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6479
1125b4e3 6480 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6481 }
cb45b0e9
HA
6482
6483 /* update totalreserve_pages */
6484 calculate_totalreserve_pages();
1da177e4
LT
6485}
6486
cfd3da1e
MG
6487/**
6488 * setup_per_zone_wmarks - called when min_free_kbytes changes
6489 * or when memory is hot-{added|removed}
6490 *
6491 * Ensures that the watermark[min,low,high] values for each zone are set
6492 * correctly with respect to min_free_kbytes.
6493 */
6494void setup_per_zone_wmarks(void)
6495{
6496 mutex_lock(&zonelists_mutex);
6497 __setup_per_zone_wmarks();
6498 mutex_unlock(&zonelists_mutex);
6499}
6500
55a4462a 6501/*
556adecb
RR
6502 * The inactive anon list should be small enough that the VM never has to
6503 * do too much work, but large enough that each inactive page has a chance
6504 * to be referenced again before it is swapped out.
6505 *
6506 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6507 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6508 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6509 * the anonymous pages are kept on the inactive list.
6510 *
6511 * total target max
6512 * memory ratio inactive anon
6513 * -------------------------------------
6514 * 10MB 1 5MB
6515 * 100MB 1 50MB
6516 * 1GB 3 250MB
6517 * 10GB 10 0.9GB
6518 * 100GB 31 3GB
6519 * 1TB 101 10GB
6520 * 10TB 320 32GB
6521 */
1b79acc9 6522static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6523{
96cb4df5 6524 unsigned int gb, ratio;
556adecb 6525
96cb4df5 6526 /* Zone size in gigabytes */
b40da049 6527 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6528 if (gb)
556adecb 6529 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6530 else
6531 ratio = 1;
556adecb 6532
96cb4df5
MK
6533 zone->inactive_ratio = ratio;
6534}
556adecb 6535
839a4fcc 6536static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6537{
6538 struct zone *zone;
6539
6540 for_each_zone(zone)
6541 calculate_zone_inactive_ratio(zone);
556adecb
RR
6542}
6543
1da177e4
LT
6544/*
6545 * Initialise min_free_kbytes.
6546 *
6547 * For small machines we want it small (128k min). For large machines
6548 * we want it large (64MB max). But it is not linear, because network
6549 * bandwidth does not increase linearly with machine size. We use
6550 *
b8af2941 6551 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6552 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6553 *
6554 * which yields
6555 *
6556 * 16MB: 512k
6557 * 32MB: 724k
6558 * 64MB: 1024k
6559 * 128MB: 1448k
6560 * 256MB: 2048k
6561 * 512MB: 2896k
6562 * 1024MB: 4096k
6563 * 2048MB: 5792k
6564 * 4096MB: 8192k
6565 * 8192MB: 11584k
6566 * 16384MB: 16384k
6567 */
1b79acc9 6568int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6569{
6570 unsigned long lowmem_kbytes;
5f12733e 6571 int new_min_free_kbytes;
1da177e4
LT
6572
6573 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6574 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6575
6576 if (new_min_free_kbytes > user_min_free_kbytes) {
6577 min_free_kbytes = new_min_free_kbytes;
6578 if (min_free_kbytes < 128)
6579 min_free_kbytes = 128;
6580 if (min_free_kbytes > 65536)
6581 min_free_kbytes = 65536;
6582 } else {
6583 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6584 new_min_free_kbytes, user_min_free_kbytes);
6585 }
bc75d33f 6586 setup_per_zone_wmarks();
a6cccdc3 6587 refresh_zone_stat_thresholds();
1da177e4 6588 setup_per_zone_lowmem_reserve();
556adecb 6589 setup_per_zone_inactive_ratio();
1da177e4
LT
6590 return 0;
6591}
bc22af74 6592core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6593
6594/*
b8af2941 6595 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6596 * that we can call two helper functions whenever min_free_kbytes
6597 * changes.
6598 */
cccad5b9 6599int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6600 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6601{
da8c757b
HP
6602 int rc;
6603
6604 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6605 if (rc)
6606 return rc;
6607
5f12733e
MH
6608 if (write) {
6609 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6610 setup_per_zone_wmarks();
5f12733e 6611 }
1da177e4
LT
6612 return 0;
6613}
6614
795ae7a0
JW
6615int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6616 void __user *buffer, size_t *length, loff_t *ppos)
6617{
6618 int rc;
6619
6620 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6621 if (rc)
6622 return rc;
6623
6624 if (write)
6625 setup_per_zone_wmarks();
6626
6627 return 0;
6628}
6629
9614634f 6630#ifdef CONFIG_NUMA
cccad5b9 6631int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6632 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6633{
6634 struct zone *zone;
6635 int rc;
6636
8d65af78 6637 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6638 if (rc)
6639 return rc;
6640
6641 for_each_zone(zone)
b40da049 6642 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6643 sysctl_min_unmapped_ratio) / 100;
6644 return 0;
6645}
0ff38490 6646
cccad5b9 6647int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6648 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6649{
6650 struct zone *zone;
6651 int rc;
6652
8d65af78 6653 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6654 if (rc)
6655 return rc;
6656
6657 for_each_zone(zone)
b40da049 6658 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6659 sysctl_min_slab_ratio) / 100;
6660 return 0;
6661}
9614634f
CL
6662#endif
6663
1da177e4
LT
6664/*
6665 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6666 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6667 * whenever sysctl_lowmem_reserve_ratio changes.
6668 *
6669 * The reserve ratio obviously has absolutely no relation with the
41858966 6670 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6671 * if in function of the boot time zone sizes.
6672 */
cccad5b9 6673int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6674 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6675{
8d65af78 6676 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6677 setup_per_zone_lowmem_reserve();
6678 return 0;
6679}
6680
8ad4b1fb
RS
6681/*
6682 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6683 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6684 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6685 */
cccad5b9 6686int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6687 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6688{
6689 struct zone *zone;
7cd2b0a3 6690 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6691 int ret;
6692
7cd2b0a3
DR
6693 mutex_lock(&pcp_batch_high_lock);
6694 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6695
8d65af78 6696 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6697 if (!write || ret < 0)
6698 goto out;
6699
6700 /* Sanity checking to avoid pcp imbalance */
6701 if (percpu_pagelist_fraction &&
6702 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6703 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6704 ret = -EINVAL;
6705 goto out;
6706 }
6707
6708 /* No change? */
6709 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6710 goto out;
c8e251fa 6711
364df0eb 6712 for_each_populated_zone(zone) {
7cd2b0a3
DR
6713 unsigned int cpu;
6714
22a7f12b 6715 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6716 pageset_set_high_and_batch(zone,
6717 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6718 }
7cd2b0a3 6719out:
c8e251fa 6720 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6721 return ret;
8ad4b1fb
RS
6722}
6723
a9919c79 6724#ifdef CONFIG_NUMA
f034b5d4 6725int hashdist = HASHDIST_DEFAULT;
1da177e4 6726
1da177e4
LT
6727static int __init set_hashdist(char *str)
6728{
6729 if (!str)
6730 return 0;
6731 hashdist = simple_strtoul(str, &str, 0);
6732 return 1;
6733}
6734__setup("hashdist=", set_hashdist);
6735#endif
6736
6737/*
6738 * allocate a large system hash table from bootmem
6739 * - it is assumed that the hash table must contain an exact power-of-2
6740 * quantity of entries
6741 * - limit is the number of hash buckets, not the total allocation size
6742 */
6743void *__init alloc_large_system_hash(const char *tablename,
6744 unsigned long bucketsize,
6745 unsigned long numentries,
6746 int scale,
6747 int flags,
6748 unsigned int *_hash_shift,
6749 unsigned int *_hash_mask,
31fe62b9
TB
6750 unsigned long low_limit,
6751 unsigned long high_limit)
1da177e4 6752{
31fe62b9 6753 unsigned long long max = high_limit;
1da177e4
LT
6754 unsigned long log2qty, size;
6755 void *table = NULL;
6756
6757 /* allow the kernel cmdline to have a say */
6758 if (!numentries) {
6759 /* round applicable memory size up to nearest megabyte */
04903664 6760 numentries = nr_kernel_pages;
a7e83318
JZ
6761
6762 /* It isn't necessary when PAGE_SIZE >= 1MB */
6763 if (PAGE_SHIFT < 20)
6764 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6765
6766 /* limit to 1 bucket per 2^scale bytes of low memory */
6767 if (scale > PAGE_SHIFT)
6768 numentries >>= (scale - PAGE_SHIFT);
6769 else
6770 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6771
6772 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6773 if (unlikely(flags & HASH_SMALL)) {
6774 /* Makes no sense without HASH_EARLY */
6775 WARN_ON(!(flags & HASH_EARLY));
6776 if (!(numentries >> *_hash_shift)) {
6777 numentries = 1UL << *_hash_shift;
6778 BUG_ON(!numentries);
6779 }
6780 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6781 numentries = PAGE_SIZE / bucketsize;
1da177e4 6782 }
6e692ed3 6783 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6784
6785 /* limit allocation size to 1/16 total memory by default */
6786 if (max == 0) {
6787 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6788 do_div(max, bucketsize);
6789 }
074b8517 6790 max = min(max, 0x80000000ULL);
1da177e4 6791
31fe62b9
TB
6792 if (numentries < low_limit)
6793 numentries = low_limit;
1da177e4
LT
6794 if (numentries > max)
6795 numentries = max;
6796
f0d1b0b3 6797 log2qty = ilog2(numentries);
1da177e4
LT
6798
6799 do {
6800 size = bucketsize << log2qty;
6801 if (flags & HASH_EARLY)
6782832e 6802 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6803 else if (hashdist)
6804 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6805 else {
1037b83b
ED
6806 /*
6807 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6808 * some pages at the end of hash table which
6809 * alloc_pages_exact() automatically does
1037b83b 6810 */
264ef8a9 6811 if (get_order(size) < MAX_ORDER) {
a1dd268c 6812 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6813 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6814 }
1da177e4
LT
6815 }
6816 } while (!table && size > PAGE_SIZE && --log2qty);
6817
6818 if (!table)
6819 panic("Failed to allocate %s hash table\n", tablename);
6820
1170532b
JP
6821 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6822 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6823
6824 if (_hash_shift)
6825 *_hash_shift = log2qty;
6826 if (_hash_mask)
6827 *_hash_mask = (1 << log2qty) - 1;
6828
6829 return table;
6830}
a117e66e 6831
835c134e 6832/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6833static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6834 unsigned long pfn)
6835{
6836#ifdef CONFIG_SPARSEMEM
6837 return __pfn_to_section(pfn)->pageblock_flags;
6838#else
f75fb889 6839 return page_zone(page)->pageblock_flags;
835c134e
MG
6840#endif /* CONFIG_SPARSEMEM */
6841}
6842
f75fb889 6843static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6844{
6845#ifdef CONFIG_SPARSEMEM
6846 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6847 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6848#else
f75fb889 6849 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6850 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6851#endif /* CONFIG_SPARSEMEM */
6852}
6853
6854/**
1aab4d77 6855 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6856 * @page: The page within the block of interest
1aab4d77
RD
6857 * @pfn: The target page frame number
6858 * @end_bitidx: The last bit of interest to retrieve
6859 * @mask: mask of bits that the caller is interested in
6860 *
6861 * Return: pageblock_bits flags
835c134e 6862 */
dc4b0caf 6863unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6864 unsigned long end_bitidx,
6865 unsigned long mask)
835c134e 6866{
835c134e 6867 unsigned long *bitmap;
dc4b0caf 6868 unsigned long bitidx, word_bitidx;
e58469ba 6869 unsigned long word;
835c134e 6870
f75fb889
MG
6871 bitmap = get_pageblock_bitmap(page, pfn);
6872 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6873 word_bitidx = bitidx / BITS_PER_LONG;
6874 bitidx &= (BITS_PER_LONG-1);
835c134e 6875
e58469ba
MG
6876 word = bitmap[word_bitidx];
6877 bitidx += end_bitidx;
6878 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6879}
6880
6881/**
dc4b0caf 6882 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6883 * @page: The page within the block of interest
835c134e 6884 * @flags: The flags to set
1aab4d77
RD
6885 * @pfn: The target page frame number
6886 * @end_bitidx: The last bit of interest
6887 * @mask: mask of bits that the caller is interested in
835c134e 6888 */
dc4b0caf
MG
6889void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6890 unsigned long pfn,
e58469ba
MG
6891 unsigned long end_bitidx,
6892 unsigned long mask)
835c134e 6893{
835c134e 6894 unsigned long *bitmap;
dc4b0caf 6895 unsigned long bitidx, word_bitidx;
e58469ba
MG
6896 unsigned long old_word, word;
6897
6898 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6899
f75fb889
MG
6900 bitmap = get_pageblock_bitmap(page, pfn);
6901 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6902 word_bitidx = bitidx / BITS_PER_LONG;
6903 bitidx &= (BITS_PER_LONG-1);
6904
f75fb889 6905 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6906
e58469ba
MG
6907 bitidx += end_bitidx;
6908 mask <<= (BITS_PER_LONG - bitidx - 1);
6909 flags <<= (BITS_PER_LONG - bitidx - 1);
6910
4db0c3c2 6911 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6912 for (;;) {
6913 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6914 if (word == old_word)
6915 break;
6916 word = old_word;
6917 }
835c134e 6918}
a5d76b54
KH
6919
6920/*
80934513
MK
6921 * This function checks whether pageblock includes unmovable pages or not.
6922 * If @count is not zero, it is okay to include less @count unmovable pages
6923 *
b8af2941 6924 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6925 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6926 * expect this function should be exact.
a5d76b54 6927 */
b023f468
WC
6928bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6929 bool skip_hwpoisoned_pages)
49ac8255
KH
6930{
6931 unsigned long pfn, iter, found;
47118af0
MN
6932 int mt;
6933
49ac8255
KH
6934 /*
6935 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6936 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6937 */
6938 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6939 return false;
47118af0
MN
6940 mt = get_pageblock_migratetype(page);
6941 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6942 return false;
49ac8255
KH
6943
6944 pfn = page_to_pfn(page);
6945 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6946 unsigned long check = pfn + iter;
6947
29723fcc 6948 if (!pfn_valid_within(check))
49ac8255 6949 continue;
29723fcc 6950
49ac8255 6951 page = pfn_to_page(check);
c8721bbb
NH
6952
6953 /*
6954 * Hugepages are not in LRU lists, but they're movable.
6955 * We need not scan over tail pages bacause we don't
6956 * handle each tail page individually in migration.
6957 */
6958 if (PageHuge(page)) {
6959 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6960 continue;
6961 }
6962
97d255c8
MK
6963 /*
6964 * We can't use page_count without pin a page
6965 * because another CPU can free compound page.
6966 * This check already skips compound tails of THP
0139aa7b 6967 * because their page->_refcount is zero at all time.
97d255c8 6968 */
fe896d18 6969 if (!page_ref_count(page)) {
49ac8255
KH
6970 if (PageBuddy(page))
6971 iter += (1 << page_order(page)) - 1;
6972 continue;
6973 }
97d255c8 6974
b023f468
WC
6975 /*
6976 * The HWPoisoned page may be not in buddy system, and
6977 * page_count() is not 0.
6978 */
6979 if (skip_hwpoisoned_pages && PageHWPoison(page))
6980 continue;
6981
49ac8255
KH
6982 if (!PageLRU(page))
6983 found++;
6984 /*
6b4f7799
JW
6985 * If there are RECLAIMABLE pages, we need to check
6986 * it. But now, memory offline itself doesn't call
6987 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6988 */
6989 /*
6990 * If the page is not RAM, page_count()should be 0.
6991 * we don't need more check. This is an _used_ not-movable page.
6992 *
6993 * The problematic thing here is PG_reserved pages. PG_reserved
6994 * is set to both of a memory hole page and a _used_ kernel
6995 * page at boot.
6996 */
6997 if (found > count)
80934513 6998 return true;
49ac8255 6999 }
80934513 7000 return false;
49ac8255
KH
7001}
7002
7003bool is_pageblock_removable_nolock(struct page *page)
7004{
656a0706
MH
7005 struct zone *zone;
7006 unsigned long pfn;
687875fb
MH
7007
7008 /*
7009 * We have to be careful here because we are iterating over memory
7010 * sections which are not zone aware so we might end up outside of
7011 * the zone but still within the section.
656a0706
MH
7012 * We have to take care about the node as well. If the node is offline
7013 * its NODE_DATA will be NULL - see page_zone.
687875fb 7014 */
656a0706
MH
7015 if (!node_online(page_to_nid(page)))
7016 return false;
7017
7018 zone = page_zone(page);
7019 pfn = page_to_pfn(page);
108bcc96 7020 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7021 return false;
7022
b023f468 7023 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7024}
0c0e6195 7025
080fe206 7026#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7027
7028static unsigned long pfn_max_align_down(unsigned long pfn)
7029{
7030 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7031 pageblock_nr_pages) - 1);
7032}
7033
7034static unsigned long pfn_max_align_up(unsigned long pfn)
7035{
7036 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7037 pageblock_nr_pages));
7038}
7039
041d3a8c 7040/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7041static int __alloc_contig_migrate_range(struct compact_control *cc,
7042 unsigned long start, unsigned long end)
041d3a8c
MN
7043{
7044 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7045 unsigned long nr_reclaimed;
041d3a8c
MN
7046 unsigned long pfn = start;
7047 unsigned int tries = 0;
7048 int ret = 0;
7049
be49a6e1 7050 migrate_prep();
041d3a8c 7051
bb13ffeb 7052 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7053 if (fatal_signal_pending(current)) {
7054 ret = -EINTR;
7055 break;
7056 }
7057
bb13ffeb
MG
7058 if (list_empty(&cc->migratepages)) {
7059 cc->nr_migratepages = 0;
edc2ca61 7060 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7061 if (!pfn) {
7062 ret = -EINTR;
7063 break;
7064 }
7065 tries = 0;
7066 } else if (++tries == 5) {
7067 ret = ret < 0 ? ret : -EBUSY;
7068 break;
7069 }
7070
beb51eaa
MK
7071 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7072 &cc->migratepages);
7073 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7074
9c620e2b 7075 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7076 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7077 }
2a6f5124
SP
7078 if (ret < 0) {
7079 putback_movable_pages(&cc->migratepages);
7080 return ret;
7081 }
7082 return 0;
041d3a8c
MN
7083}
7084
7085/**
7086 * alloc_contig_range() -- tries to allocate given range of pages
7087 * @start: start PFN to allocate
7088 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7089 * @migratetype: migratetype of the underlaying pageblocks (either
7090 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7091 * in range must have the same migratetype and it must
7092 * be either of the two.
041d3a8c
MN
7093 *
7094 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7095 * aligned, however it's the caller's responsibility to guarantee that
7096 * we are the only thread that changes migrate type of pageblocks the
7097 * pages fall in.
7098 *
7099 * The PFN range must belong to a single zone.
7100 *
7101 * Returns zero on success or negative error code. On success all
7102 * pages which PFN is in [start, end) are allocated for the caller and
7103 * need to be freed with free_contig_range().
7104 */
0815f3d8
MN
7105int alloc_contig_range(unsigned long start, unsigned long end,
7106 unsigned migratetype)
041d3a8c 7107{
041d3a8c 7108 unsigned long outer_start, outer_end;
d00181b9
KS
7109 unsigned int order;
7110 int ret = 0;
041d3a8c 7111
bb13ffeb
MG
7112 struct compact_control cc = {
7113 .nr_migratepages = 0,
7114 .order = -1,
7115 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7116 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7117 .ignore_skip_hint = true,
7118 };
7119 INIT_LIST_HEAD(&cc.migratepages);
7120
041d3a8c
MN
7121 /*
7122 * What we do here is we mark all pageblocks in range as
7123 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7124 * have different sizes, and due to the way page allocator
7125 * work, we align the range to biggest of the two pages so
7126 * that page allocator won't try to merge buddies from
7127 * different pageblocks and change MIGRATE_ISOLATE to some
7128 * other migration type.
7129 *
7130 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7131 * migrate the pages from an unaligned range (ie. pages that
7132 * we are interested in). This will put all the pages in
7133 * range back to page allocator as MIGRATE_ISOLATE.
7134 *
7135 * When this is done, we take the pages in range from page
7136 * allocator removing them from the buddy system. This way
7137 * page allocator will never consider using them.
7138 *
7139 * This lets us mark the pageblocks back as
7140 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7141 * aligned range but not in the unaligned, original range are
7142 * put back to page allocator so that buddy can use them.
7143 */
7144
7145 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7146 pfn_max_align_up(end), migratetype,
7147 false);
041d3a8c 7148 if (ret)
86a595f9 7149 return ret;
041d3a8c 7150
8ef5849f
JK
7151 /*
7152 * In case of -EBUSY, we'd like to know which page causes problem.
7153 * So, just fall through. We will check it in test_pages_isolated().
7154 */
bb13ffeb 7155 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7156 if (ret && ret != -EBUSY)
041d3a8c
MN
7157 goto done;
7158
7159 /*
7160 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7161 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7162 * more, all pages in [start, end) are free in page allocator.
7163 * What we are going to do is to allocate all pages from
7164 * [start, end) (that is remove them from page allocator).
7165 *
7166 * The only problem is that pages at the beginning and at the
7167 * end of interesting range may be not aligned with pages that
7168 * page allocator holds, ie. they can be part of higher order
7169 * pages. Because of this, we reserve the bigger range and
7170 * once this is done free the pages we are not interested in.
7171 *
7172 * We don't have to hold zone->lock here because the pages are
7173 * isolated thus they won't get removed from buddy.
7174 */
7175
7176 lru_add_drain_all();
510f5507 7177 drain_all_pages(cc.zone);
041d3a8c
MN
7178
7179 order = 0;
7180 outer_start = start;
7181 while (!PageBuddy(pfn_to_page(outer_start))) {
7182 if (++order >= MAX_ORDER) {
8ef5849f
JK
7183 outer_start = start;
7184 break;
041d3a8c
MN
7185 }
7186 outer_start &= ~0UL << order;
7187 }
7188
8ef5849f
JK
7189 if (outer_start != start) {
7190 order = page_order(pfn_to_page(outer_start));
7191
7192 /*
7193 * outer_start page could be small order buddy page and
7194 * it doesn't include start page. Adjust outer_start
7195 * in this case to report failed page properly
7196 * on tracepoint in test_pages_isolated()
7197 */
7198 if (outer_start + (1UL << order) <= start)
7199 outer_start = start;
7200 }
7201
041d3a8c 7202 /* Make sure the range is really isolated. */
b023f468 7203 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7204 pr_info("%s: [%lx, %lx) PFNs busy\n",
7205 __func__, outer_start, end);
041d3a8c
MN
7206 ret = -EBUSY;
7207 goto done;
7208 }
7209
49f223a9 7210 /* Grab isolated pages from freelists. */
bb13ffeb 7211 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7212 if (!outer_end) {
7213 ret = -EBUSY;
7214 goto done;
7215 }
7216
7217 /* Free head and tail (if any) */
7218 if (start != outer_start)
7219 free_contig_range(outer_start, start - outer_start);
7220 if (end != outer_end)
7221 free_contig_range(end, outer_end - end);
7222
7223done:
7224 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7225 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7226 return ret;
7227}
7228
7229void free_contig_range(unsigned long pfn, unsigned nr_pages)
7230{
bcc2b02f
MS
7231 unsigned int count = 0;
7232
7233 for (; nr_pages--; pfn++) {
7234 struct page *page = pfn_to_page(pfn);
7235
7236 count += page_count(page) != 1;
7237 __free_page(page);
7238 }
7239 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7240}
7241#endif
7242
4ed7e022 7243#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7244/*
7245 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7246 * page high values need to be recalulated.
7247 */
4ed7e022
JL
7248void __meminit zone_pcp_update(struct zone *zone)
7249{
0a647f38 7250 unsigned cpu;
c8e251fa 7251 mutex_lock(&pcp_batch_high_lock);
0a647f38 7252 for_each_possible_cpu(cpu)
169f6c19
CS
7253 pageset_set_high_and_batch(zone,
7254 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7255 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7256}
7257#endif
7258
340175b7
JL
7259void zone_pcp_reset(struct zone *zone)
7260{
7261 unsigned long flags;
5a883813
MK
7262 int cpu;
7263 struct per_cpu_pageset *pset;
340175b7
JL
7264
7265 /* avoid races with drain_pages() */
7266 local_irq_save(flags);
7267 if (zone->pageset != &boot_pageset) {
5a883813
MK
7268 for_each_online_cpu(cpu) {
7269 pset = per_cpu_ptr(zone->pageset, cpu);
7270 drain_zonestat(zone, pset);
7271 }
340175b7
JL
7272 free_percpu(zone->pageset);
7273 zone->pageset = &boot_pageset;
7274 }
7275 local_irq_restore(flags);
7276}
7277
6dcd73d7 7278#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7279/*
b9eb6319
JK
7280 * All pages in the range must be in a single zone and isolated
7281 * before calling this.
0c0e6195
KH
7282 */
7283void
7284__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7285{
7286 struct page *page;
7287 struct zone *zone;
7aeb09f9 7288 unsigned int order, i;
0c0e6195
KH
7289 unsigned long pfn;
7290 unsigned long flags;
7291 /* find the first valid pfn */
7292 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7293 if (pfn_valid(pfn))
7294 break;
7295 if (pfn == end_pfn)
7296 return;
7297 zone = page_zone(pfn_to_page(pfn));
7298 spin_lock_irqsave(&zone->lock, flags);
7299 pfn = start_pfn;
7300 while (pfn < end_pfn) {
7301 if (!pfn_valid(pfn)) {
7302 pfn++;
7303 continue;
7304 }
7305 page = pfn_to_page(pfn);
b023f468
WC
7306 /*
7307 * The HWPoisoned page may be not in buddy system, and
7308 * page_count() is not 0.
7309 */
7310 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7311 pfn++;
7312 SetPageReserved(page);
7313 continue;
7314 }
7315
0c0e6195
KH
7316 BUG_ON(page_count(page));
7317 BUG_ON(!PageBuddy(page));
7318 order = page_order(page);
7319#ifdef CONFIG_DEBUG_VM
1170532b
JP
7320 pr_info("remove from free list %lx %d %lx\n",
7321 pfn, 1 << order, end_pfn);
0c0e6195
KH
7322#endif
7323 list_del(&page->lru);
7324 rmv_page_order(page);
7325 zone->free_area[order].nr_free--;
0c0e6195
KH
7326 for (i = 0; i < (1 << order); i++)
7327 SetPageReserved((page+i));
7328 pfn += (1 << order);
7329 }
7330 spin_unlock_irqrestore(&zone->lock, flags);
7331}
7332#endif
8d22ba1b 7333
8d22ba1b
WF
7334bool is_free_buddy_page(struct page *page)
7335{
7336 struct zone *zone = page_zone(page);
7337 unsigned long pfn = page_to_pfn(page);
7338 unsigned long flags;
7aeb09f9 7339 unsigned int order;
8d22ba1b
WF
7340
7341 spin_lock_irqsave(&zone->lock, flags);
7342 for (order = 0; order < MAX_ORDER; order++) {
7343 struct page *page_head = page - (pfn & ((1 << order) - 1));
7344
7345 if (PageBuddy(page_head) && page_order(page_head) >= order)
7346 break;
7347 }
7348 spin_unlock_irqrestore(&zone->lock, flags);
7349
7350 return order < MAX_ORDER;
7351}