]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm: new_vma_page() cannot see NULL vma for hugetlb pages
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
5f12733e 208int user_min_free_kbytes;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
f0b791a3 298static void bad_page(struct page *page, char *reason, unsigned long bad_flags)
1da177e4 299{
d936cf9b
HD
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
2a7684a2
WF
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
22b751c3 306 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
307 return;
308 }
309
d936cf9b
HD
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
1e9e6365
HD
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
1e9e6365 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 331 current->comm, page_to_pfn(page));
f0b791a3 332 dump_page_badflags(page, reason, bad_flags);
3dc14741 333
4f31888c 334 print_modules();
1da177e4 335 dump_stack();
d936cf9b 336out:
8cc3b392 337 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 338 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
340}
341
1da177e4
LT
342/*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
6416b9fa
WSH
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
1da177e4 351 *
41d78ba5
HD
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
1da177e4 355 */
d98c7a09
HD
356
357static void free_compound_page(struct page *page)
358{
d85f3385 359 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
360}
361
01ad1c08 362void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
363{
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
18229df5 372 __SetPageTail(p);
58a84aa9 373 set_page_count(p, 0);
18229df5
AW
374 p->first_page = page;
375 }
376}
377
59ff4216 378/* update __split_huge_page_refcount if you change this function */
8cc3b392 379static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
380{
381 int i;
382 int nr_pages = 1 << order;
8cc3b392 383 int bad = 0;
1da177e4 384
0bb2c763 385 if (unlikely(compound_order(page) != order)) {
f0b791a3 386 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
387 bad++;
388 }
1da177e4 389
6d777953 390 __ClearPageHead(page);
8cc3b392 391
18229df5
AW
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
1da177e4 394
f0b791a3
DH
395 if (unlikely(!PageTail(p))) {
396 bad_page(page, "PageTail not set", 0);
397 bad++;
398 } else if (unlikely(p->first_page != page)) {
399 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
400 bad++;
401 }
d85f3385 402 __ClearPageTail(p);
1da177e4 403 }
8cc3b392
HD
404
405 return bad;
1da177e4 406}
1da177e4 407
17cf4406
NP
408static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
409{
410 int i;
411
6626c5d5
AM
412 /*
413 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
414 * and __GFP_HIGHMEM from hard or soft interrupt context.
415 */
725d704e 416 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
417 for (i = 0; i < (1 << order); i++)
418 clear_highpage(page + i);
419}
420
c0a32fc5
SG
421#ifdef CONFIG_DEBUG_PAGEALLOC
422unsigned int _debug_guardpage_minorder;
423
424static int __init debug_guardpage_minorder_setup(char *buf)
425{
426 unsigned long res;
427
428 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
429 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
430 return 0;
431 }
432 _debug_guardpage_minorder = res;
433 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
434 return 0;
435}
436__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
437
438static inline void set_page_guard_flag(struct page *page)
439{
440 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
441}
442
443static inline void clear_page_guard_flag(struct page *page)
444{
445 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446}
447#else
448static inline void set_page_guard_flag(struct page *page) { }
449static inline void clear_page_guard_flag(struct page *page) { }
450#endif
451
6aa3001b
AM
452static inline void set_page_order(struct page *page, int order)
453{
4c21e2f2 454 set_page_private(page, order);
676165a8 455 __SetPageBuddy(page);
1da177e4
LT
456}
457
458static inline void rmv_page_order(struct page *page)
459{
676165a8 460 __ClearPageBuddy(page);
4c21e2f2 461 set_page_private(page, 0);
1da177e4
LT
462}
463
464/*
465 * Locate the struct page for both the matching buddy in our
466 * pair (buddy1) and the combined O(n+1) page they form (page).
467 *
468 * 1) Any buddy B1 will have an order O twin B2 which satisfies
469 * the following equation:
470 * B2 = B1 ^ (1 << O)
471 * For example, if the starting buddy (buddy2) is #8 its order
472 * 1 buddy is #10:
473 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
474 *
475 * 2) Any buddy B will have an order O+1 parent P which
476 * satisfies the following equation:
477 * P = B & ~(1 << O)
478 *
d6e05edc 479 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 480 */
1da177e4 481static inline unsigned long
43506fad 482__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 483{
43506fad 484 return page_idx ^ (1 << order);
1da177e4
LT
485}
486
487/*
488 * This function checks whether a page is free && is the buddy
489 * we can do coalesce a page and its buddy if
13e7444b 490 * (a) the buddy is not in a hole &&
676165a8 491 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
492 * (c) a page and its buddy have the same order &&
493 * (d) a page and its buddy are in the same zone.
676165a8 494 *
cf6fe945
WSH
495 * For recording whether a page is in the buddy system, we set ->_mapcount
496 * PAGE_BUDDY_MAPCOUNT_VALUE.
497 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
498 * serialized by zone->lock.
1da177e4 499 *
676165a8 500 * For recording page's order, we use page_private(page).
1da177e4 501 */
cb2b95e1
AW
502static inline int page_is_buddy(struct page *page, struct page *buddy,
503 int order)
1da177e4 504{
14e07298 505 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 506 return 0;
13e7444b 507
cb2b95e1
AW
508 if (page_zone_id(page) != page_zone_id(buddy))
509 return 0;
510
c0a32fc5 511 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 512 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
c0a32fc5
SG
513 return 1;
514 }
515
cb2b95e1 516 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 517 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
6aa3001b 518 return 1;
676165a8 519 }
6aa3001b 520 return 0;
1da177e4
LT
521}
522
523/*
524 * Freeing function for a buddy system allocator.
525 *
526 * The concept of a buddy system is to maintain direct-mapped table
527 * (containing bit values) for memory blocks of various "orders".
528 * The bottom level table contains the map for the smallest allocatable
529 * units of memory (here, pages), and each level above it describes
530 * pairs of units from the levels below, hence, "buddies".
531 * At a high level, all that happens here is marking the table entry
532 * at the bottom level available, and propagating the changes upward
533 * as necessary, plus some accounting needed to play nicely with other
534 * parts of the VM system.
535 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
536 * free pages of length of (1 << order) and marked with _mapcount
537 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
538 * field.
1da177e4 539 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
540 * other. That is, if we allocate a small block, and both were
541 * free, the remainder of the region must be split into blocks.
1da177e4 542 * If a block is freed, and its buddy is also free, then this
5f63b720 543 * triggers coalescing into a block of larger size.
1da177e4 544 *
6d49e352 545 * -- nyc
1da177e4
LT
546 */
547
48db57f8 548static inline void __free_one_page(struct page *page,
ed0ae21d
MG
549 struct zone *zone, unsigned int order,
550 int migratetype)
1da177e4
LT
551{
552 unsigned long page_idx;
6dda9d55 553 unsigned long combined_idx;
43506fad 554 unsigned long uninitialized_var(buddy_idx);
6dda9d55 555 struct page *buddy;
1da177e4 556
d29bb978
CS
557 VM_BUG_ON(!zone_is_initialized(zone));
558
224abf92 559 if (unlikely(PageCompound(page)))
8cc3b392
HD
560 if (unlikely(destroy_compound_page(page, order)))
561 return;
1da177e4 562
ed0ae21d
MG
563 VM_BUG_ON(migratetype == -1);
564
1da177e4
LT
565 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
566
309381fe
SL
567 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
568 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 569
1da177e4 570 while (order < MAX_ORDER-1) {
43506fad
KC
571 buddy_idx = __find_buddy_index(page_idx, order);
572 buddy = page + (buddy_idx - page_idx);
cb2b95e1 573 if (!page_is_buddy(page, buddy, order))
3c82d0ce 574 break;
c0a32fc5
SG
575 /*
576 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
577 * merge with it and move up one order.
578 */
579 if (page_is_guard(buddy)) {
580 clear_page_guard_flag(buddy);
581 set_page_private(page, 0);
d1ce749a
BZ
582 __mod_zone_freepage_state(zone, 1 << order,
583 migratetype);
c0a32fc5
SG
584 } else {
585 list_del(&buddy->lru);
586 zone->free_area[order].nr_free--;
587 rmv_page_order(buddy);
588 }
43506fad 589 combined_idx = buddy_idx & page_idx;
1da177e4
LT
590 page = page + (combined_idx - page_idx);
591 page_idx = combined_idx;
592 order++;
593 }
594 set_page_order(page, order);
6dda9d55
CZ
595
596 /*
597 * If this is not the largest possible page, check if the buddy
598 * of the next-highest order is free. If it is, it's possible
599 * that pages are being freed that will coalesce soon. In case,
600 * that is happening, add the free page to the tail of the list
601 * so it's less likely to be used soon and more likely to be merged
602 * as a higher order page
603 */
b7f50cfa 604 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 605 struct page *higher_page, *higher_buddy;
43506fad
KC
606 combined_idx = buddy_idx & page_idx;
607 higher_page = page + (combined_idx - page_idx);
608 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 609 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
610 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
611 list_add_tail(&page->lru,
612 &zone->free_area[order].free_list[migratetype]);
613 goto out;
614 }
615 }
616
617 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
618out:
1da177e4
LT
619 zone->free_area[order].nr_free++;
620}
621
224abf92 622static inline int free_pages_check(struct page *page)
1da177e4 623{
f0b791a3
DH
624 char *bad_reason = NULL;
625 unsigned long bad_flags = 0;
626
627 if (unlikely(page_mapcount(page)))
628 bad_reason = "nonzero mapcount";
629 if (unlikely(page->mapping != NULL))
630 bad_reason = "non-NULL mapping";
631 if (unlikely(atomic_read(&page->_count) != 0))
632 bad_reason = "nonzero _count";
633 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
634 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
635 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
636 }
637 if (unlikely(mem_cgroup_bad_page_check(page)))
638 bad_reason = "cgroup check failed";
639 if (unlikely(bad_reason)) {
640 bad_page(page, bad_reason, bad_flags);
79f4b7bf 641 return 1;
8cc3b392 642 }
90572890 643 page_cpupid_reset_last(page);
79f4b7bf
HD
644 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
645 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
646 return 0;
1da177e4
LT
647}
648
649/*
5f8dcc21 650 * Frees a number of pages from the PCP lists
1da177e4 651 * Assumes all pages on list are in same zone, and of same order.
207f36ee 652 * count is the number of pages to free.
1da177e4
LT
653 *
654 * If the zone was previously in an "all pages pinned" state then look to
655 * see if this freeing clears that state.
656 *
657 * And clear the zone's pages_scanned counter, to hold off the "all pages are
658 * pinned" detection logic.
659 */
5f8dcc21
MG
660static void free_pcppages_bulk(struct zone *zone, int count,
661 struct per_cpu_pages *pcp)
1da177e4 662{
5f8dcc21 663 int migratetype = 0;
a6f9edd6 664 int batch_free = 0;
72853e29 665 int to_free = count;
5f8dcc21 666
c54ad30c 667 spin_lock(&zone->lock);
1da177e4 668 zone->pages_scanned = 0;
f2260e6b 669
72853e29 670 while (to_free) {
48db57f8 671 struct page *page;
5f8dcc21
MG
672 struct list_head *list;
673
674 /*
a6f9edd6
MG
675 * Remove pages from lists in a round-robin fashion. A
676 * batch_free count is maintained that is incremented when an
677 * empty list is encountered. This is so more pages are freed
678 * off fuller lists instead of spinning excessively around empty
679 * lists
5f8dcc21
MG
680 */
681 do {
a6f9edd6 682 batch_free++;
5f8dcc21
MG
683 if (++migratetype == MIGRATE_PCPTYPES)
684 migratetype = 0;
685 list = &pcp->lists[migratetype];
686 } while (list_empty(list));
48db57f8 687
1d16871d
NK
688 /* This is the only non-empty list. Free them all. */
689 if (batch_free == MIGRATE_PCPTYPES)
690 batch_free = to_free;
691
a6f9edd6 692 do {
770c8aaa
BZ
693 int mt; /* migratetype of the to-be-freed page */
694
a6f9edd6
MG
695 page = list_entry(list->prev, struct page, lru);
696 /* must delete as __free_one_page list manipulates */
697 list_del(&page->lru);
b12c4ad1 698 mt = get_freepage_migratetype(page);
a7016235 699 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
700 __free_one_page(page, zone, 0, mt);
701 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 702 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
703 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
704 if (is_migrate_cma(mt))
705 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
706 }
72853e29 707 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 708 }
c54ad30c 709 spin_unlock(&zone->lock);
1da177e4
LT
710}
711
ed0ae21d
MG
712static void free_one_page(struct zone *zone, struct page *page, int order,
713 int migratetype)
1da177e4 714{
006d22d9 715 spin_lock(&zone->lock);
006d22d9 716 zone->pages_scanned = 0;
f2260e6b 717
ed0ae21d 718 __free_one_page(page, zone, order, migratetype);
194159fb 719 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 720 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 721 spin_unlock(&zone->lock);
48db57f8
NP
722}
723
ec95f53a 724static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 725{
1da177e4 726 int i;
8cc3b392 727 int bad = 0;
1da177e4 728
b413d48a 729 trace_mm_page_free(page, order);
b1eeab67
VN
730 kmemcheck_free_shadow(page, order);
731
8dd60a3a
AA
732 if (PageAnon(page))
733 page->mapping = NULL;
734 for (i = 0; i < (1 << order); i++)
735 bad += free_pages_check(page + i);
8cc3b392 736 if (bad)
ec95f53a 737 return false;
689bcebf 738
3ac7fe5a 739 if (!PageHighMem(page)) {
b8af2941
PK
740 debug_check_no_locks_freed(page_address(page),
741 PAGE_SIZE << order);
3ac7fe5a
TG
742 debug_check_no_obj_freed(page_address(page),
743 PAGE_SIZE << order);
744 }
dafb1367 745 arch_free_page(page, order);
48db57f8 746 kernel_map_pages(page, 1 << order, 0);
dafb1367 747
ec95f53a
KM
748 return true;
749}
750
751static void __free_pages_ok(struct page *page, unsigned int order)
752{
753 unsigned long flags;
95e34412 754 int migratetype;
ec95f53a
KM
755
756 if (!free_pages_prepare(page, order))
757 return;
758
c54ad30c 759 local_irq_save(flags);
f8891e5e 760 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
761 migratetype = get_pageblock_migratetype(page);
762 set_freepage_migratetype(page, migratetype);
763 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 764 local_irq_restore(flags);
1da177e4
LT
765}
766
170a5a7e 767void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 768{
c3993076 769 unsigned int nr_pages = 1 << order;
e2d0bd2b 770 struct page *p = page;
c3993076 771 unsigned int loop;
a226f6c8 772
e2d0bd2b
YL
773 prefetchw(p);
774 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
775 prefetchw(p + 1);
c3993076
JW
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
a226f6c8 778 }
e2d0bd2b
YL
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
c3993076 781
e2d0bd2b 782 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
783 set_page_refcounted(page);
784 __free_pages(page, order);
a226f6c8
DH
785}
786
47118af0 787#ifdef CONFIG_CMA
9cf510a5 788/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
789void __init init_cma_reserved_pageblock(struct page *page)
790{
791 unsigned i = pageblock_nr_pages;
792 struct page *p = page;
793
794 do {
795 __ClearPageReserved(p);
796 set_page_count(p, 0);
797 } while (++p, --i);
798
799 set_page_refcounted(page);
800 set_pageblock_migratetype(page, MIGRATE_CMA);
801 __free_pages(page, pageblock_order);
3dcc0571 802 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
803}
804#endif
1da177e4
LT
805
806/*
807 * The order of subdivision here is critical for the IO subsystem.
808 * Please do not alter this order without good reasons and regression
809 * testing. Specifically, as large blocks of memory are subdivided,
810 * the order in which smaller blocks are delivered depends on the order
811 * they're subdivided in this function. This is the primary factor
812 * influencing the order in which pages are delivered to the IO
813 * subsystem according to empirical testing, and this is also justified
814 * by considering the behavior of a buddy system containing a single
815 * large block of memory acted on by a series of small allocations.
816 * This behavior is a critical factor in sglist merging's success.
817 *
6d49e352 818 * -- nyc
1da177e4 819 */
085cc7d5 820static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
821 int low, int high, struct free_area *area,
822 int migratetype)
1da177e4
LT
823{
824 unsigned long size = 1 << high;
825
826 while (high > low) {
827 area--;
828 high--;
829 size >>= 1;
309381fe 830 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
831
832#ifdef CONFIG_DEBUG_PAGEALLOC
833 if (high < debug_guardpage_minorder()) {
834 /*
835 * Mark as guard pages (or page), that will allow to
836 * merge back to allocator when buddy will be freed.
837 * Corresponding page table entries will not be touched,
838 * pages will stay not present in virtual address space
839 */
840 INIT_LIST_HEAD(&page[size].lru);
841 set_page_guard_flag(&page[size]);
842 set_page_private(&page[size], high);
843 /* Guard pages are not available for any usage */
d1ce749a
BZ
844 __mod_zone_freepage_state(zone, -(1 << high),
845 migratetype);
c0a32fc5
SG
846 continue;
847 }
848#endif
b2a0ac88 849 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
850 area->nr_free++;
851 set_page_order(&page[size], high);
852 }
1da177e4
LT
853}
854
1da177e4
LT
855/*
856 * This page is about to be returned from the page allocator
857 */
2a7684a2 858static inline int check_new_page(struct page *page)
1da177e4 859{
f0b791a3
DH
860 char *bad_reason = NULL;
861 unsigned long bad_flags = 0;
862
863 if (unlikely(page_mapcount(page)))
864 bad_reason = "nonzero mapcount";
865 if (unlikely(page->mapping != NULL))
866 bad_reason = "non-NULL mapping";
867 if (unlikely(atomic_read(&page->_count) != 0))
868 bad_reason = "nonzero _count";
869 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
870 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
871 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
872 }
873 if (unlikely(mem_cgroup_bad_page_check(page)))
874 bad_reason = "cgroup check failed";
875 if (unlikely(bad_reason)) {
876 bad_page(page, bad_reason, bad_flags);
689bcebf 877 return 1;
8cc3b392 878 }
2a7684a2
WF
879 return 0;
880}
881
882static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
883{
884 int i;
885
886 for (i = 0; i < (1 << order); i++) {
887 struct page *p = page + i;
888 if (unlikely(check_new_page(p)))
889 return 1;
890 }
689bcebf 891
4c21e2f2 892 set_page_private(page, 0);
7835e98b 893 set_page_refcounted(page);
cc102509
NP
894
895 arch_alloc_page(page, order);
1da177e4 896 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
897
898 if (gfp_flags & __GFP_ZERO)
899 prep_zero_page(page, order, gfp_flags);
900
901 if (order && (gfp_flags & __GFP_COMP))
902 prep_compound_page(page, order);
903
689bcebf 904 return 0;
1da177e4
LT
905}
906
56fd56b8
MG
907/*
908 * Go through the free lists for the given migratetype and remove
909 * the smallest available page from the freelists
910 */
728ec980
MG
911static inline
912struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
913 int migratetype)
914{
915 unsigned int current_order;
b8af2941 916 struct free_area *area;
56fd56b8
MG
917 struct page *page;
918
919 /* Find a page of the appropriate size in the preferred list */
920 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
921 area = &(zone->free_area[current_order]);
922 if (list_empty(&area->free_list[migratetype]))
923 continue;
924
925 page = list_entry(area->free_list[migratetype].next,
926 struct page, lru);
927 list_del(&page->lru);
928 rmv_page_order(page);
929 area->nr_free--;
56fd56b8
MG
930 expand(zone, page, order, current_order, area, migratetype);
931 return page;
932 }
933
934 return NULL;
935}
936
937
b2a0ac88
MG
938/*
939 * This array describes the order lists are fallen back to when
940 * the free lists for the desirable migrate type are depleted
941 */
47118af0
MN
942static int fallbacks[MIGRATE_TYPES][4] = {
943 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
944 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
945#ifdef CONFIG_CMA
946 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
947 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
948#else
949 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
950#endif
6d4a4916 951 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 952#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 953 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 954#endif
b2a0ac88
MG
955};
956
c361be55
MG
957/*
958 * Move the free pages in a range to the free lists of the requested type.
d9c23400 959 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
960 * boundary. If alignment is required, use move_freepages_block()
961 */
435b405c 962int move_freepages(struct zone *zone,
b69a7288
AB
963 struct page *start_page, struct page *end_page,
964 int migratetype)
c361be55
MG
965{
966 struct page *page;
967 unsigned long order;
d100313f 968 int pages_moved = 0;
c361be55
MG
969
970#ifndef CONFIG_HOLES_IN_ZONE
971 /*
972 * page_zone is not safe to call in this context when
973 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
974 * anyway as we check zone boundaries in move_freepages_block().
975 * Remove at a later date when no bug reports exist related to
ac0e5b7a 976 * grouping pages by mobility
c361be55
MG
977 */
978 BUG_ON(page_zone(start_page) != page_zone(end_page));
979#endif
980
981 for (page = start_page; page <= end_page;) {
344c790e 982 /* Make sure we are not inadvertently changing nodes */
309381fe 983 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 984
c361be55
MG
985 if (!pfn_valid_within(page_to_pfn(page))) {
986 page++;
987 continue;
988 }
989
990 if (!PageBuddy(page)) {
991 page++;
992 continue;
993 }
994
995 order = page_order(page);
84be48d8
KS
996 list_move(&page->lru,
997 &zone->free_area[order].free_list[migratetype]);
95e34412 998 set_freepage_migratetype(page, migratetype);
c361be55 999 page += 1 << order;
d100313f 1000 pages_moved += 1 << order;
c361be55
MG
1001 }
1002
d100313f 1003 return pages_moved;
c361be55
MG
1004}
1005
ee6f509c 1006int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1007 int migratetype)
c361be55
MG
1008{
1009 unsigned long start_pfn, end_pfn;
1010 struct page *start_page, *end_page;
1011
1012 start_pfn = page_to_pfn(page);
d9c23400 1013 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1014 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1015 end_page = start_page + pageblock_nr_pages - 1;
1016 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1017
1018 /* Do not cross zone boundaries */
108bcc96 1019 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1020 start_page = page;
108bcc96 1021 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1022 return 0;
1023
1024 return move_freepages(zone, start_page, end_page, migratetype);
1025}
1026
2f66a68f
MG
1027static void change_pageblock_range(struct page *pageblock_page,
1028 int start_order, int migratetype)
1029{
1030 int nr_pageblocks = 1 << (start_order - pageblock_order);
1031
1032 while (nr_pageblocks--) {
1033 set_pageblock_migratetype(pageblock_page, migratetype);
1034 pageblock_page += pageblock_nr_pages;
1035 }
1036}
1037
fef903ef
SB
1038/*
1039 * If breaking a large block of pages, move all free pages to the preferred
1040 * allocation list. If falling back for a reclaimable kernel allocation, be
1041 * more aggressive about taking ownership of free pages.
1042 *
1043 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1044 * nor move CMA pages to different free lists. We don't want unmovable pages
1045 * to be allocated from MIGRATE_CMA areas.
1046 *
1047 * Returns the new migratetype of the pageblock (or the same old migratetype
1048 * if it was unchanged).
1049 */
1050static int try_to_steal_freepages(struct zone *zone, struct page *page,
1051 int start_type, int fallback_type)
1052{
1053 int current_order = page_order(page);
1054
0cbef29a
KM
1055 /*
1056 * When borrowing from MIGRATE_CMA, we need to release the excess
1057 * buddy pages to CMA itself.
1058 */
fef903ef
SB
1059 if (is_migrate_cma(fallback_type))
1060 return fallback_type;
1061
1062 /* Take ownership for orders >= pageblock_order */
1063 if (current_order >= pageblock_order) {
1064 change_pageblock_range(page, current_order, start_type);
1065 return start_type;
1066 }
1067
1068 if (current_order >= pageblock_order / 2 ||
1069 start_type == MIGRATE_RECLAIMABLE ||
1070 page_group_by_mobility_disabled) {
1071 int pages;
1072
1073 pages = move_freepages_block(zone, page, start_type);
1074
1075 /* Claim the whole block if over half of it is free */
1076 if (pages >= (1 << (pageblock_order-1)) ||
1077 page_group_by_mobility_disabled) {
1078
1079 set_pageblock_migratetype(page, start_type);
1080 return start_type;
1081 }
1082
1083 }
1084
1085 return fallback_type;
1086}
1087
b2a0ac88 1088/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1089static inline struct page *
1090__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1091{
b8af2941 1092 struct free_area *area;
b2a0ac88
MG
1093 int current_order;
1094 struct page *page;
fef903ef 1095 int migratetype, new_type, i;
b2a0ac88
MG
1096
1097 /* Find the largest possible block of pages in the other list */
1098 for (current_order = MAX_ORDER-1; current_order >= order;
1099 --current_order) {
6d4a4916 1100 for (i = 0;; i++) {
b2a0ac88
MG
1101 migratetype = fallbacks[start_migratetype][i];
1102
56fd56b8
MG
1103 /* MIGRATE_RESERVE handled later if necessary */
1104 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1105 break;
e010487d 1106
b2a0ac88
MG
1107 area = &(zone->free_area[current_order]);
1108 if (list_empty(&area->free_list[migratetype]))
1109 continue;
1110
1111 page = list_entry(area->free_list[migratetype].next,
1112 struct page, lru);
1113 area->nr_free--;
1114
fef903ef
SB
1115 new_type = try_to_steal_freepages(zone, page,
1116 start_migratetype,
1117 migratetype);
b2a0ac88
MG
1118
1119 /* Remove the page from the freelists */
1120 list_del(&page->lru);
1121 rmv_page_order(page);
b2a0ac88 1122
47118af0 1123 expand(zone, page, order, current_order, area,
0cbef29a 1124 new_type);
e0fff1bd 1125
52c8f6a5
KM
1126 trace_mm_page_alloc_extfrag(page, order, current_order,
1127 start_migratetype, migratetype, new_type);
e0fff1bd 1128
b2a0ac88
MG
1129 return page;
1130 }
1131 }
1132
728ec980 1133 return NULL;
b2a0ac88
MG
1134}
1135
56fd56b8 1136/*
1da177e4
LT
1137 * Do the hard work of removing an element from the buddy allocator.
1138 * Call me with the zone->lock already held.
1139 */
b2a0ac88
MG
1140static struct page *__rmqueue(struct zone *zone, unsigned int order,
1141 int migratetype)
1da177e4 1142{
1da177e4
LT
1143 struct page *page;
1144
728ec980 1145retry_reserve:
56fd56b8 1146 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1147
728ec980 1148 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1149 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1150
728ec980
MG
1151 /*
1152 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1153 * is used because __rmqueue_smallest is an inline function
1154 * and we want just one call site
1155 */
1156 if (!page) {
1157 migratetype = MIGRATE_RESERVE;
1158 goto retry_reserve;
1159 }
1160 }
1161
0d3d062a 1162 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1163 return page;
1da177e4
LT
1164}
1165
5f63b720 1166/*
1da177e4
LT
1167 * Obtain a specified number of elements from the buddy allocator, all under
1168 * a single hold of the lock, for efficiency. Add them to the supplied list.
1169 * Returns the number of new pages which were placed at *list.
1170 */
5f63b720 1171static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1172 unsigned long count, struct list_head *list,
e084b2d9 1173 int migratetype, int cold)
1da177e4 1174{
47118af0 1175 int mt = migratetype, i;
5f63b720 1176
c54ad30c 1177 spin_lock(&zone->lock);
1da177e4 1178 for (i = 0; i < count; ++i) {
b2a0ac88 1179 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1180 if (unlikely(page == NULL))
1da177e4 1181 break;
81eabcbe
MG
1182
1183 /*
1184 * Split buddy pages returned by expand() are received here
1185 * in physical page order. The page is added to the callers and
1186 * list and the list head then moves forward. From the callers
1187 * perspective, the linked list is ordered by page number in
1188 * some conditions. This is useful for IO devices that can
1189 * merge IO requests if the physical pages are ordered
1190 * properly.
1191 */
e084b2d9
MG
1192 if (likely(cold == 0))
1193 list_add(&page->lru, list);
1194 else
1195 list_add_tail(&page->lru, list);
47118af0
MN
1196 if (IS_ENABLED(CONFIG_CMA)) {
1197 mt = get_pageblock_migratetype(page);
194159fb 1198 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1199 mt = migratetype;
1200 }
b12c4ad1 1201 set_freepage_migratetype(page, mt);
81eabcbe 1202 list = &page->lru;
d1ce749a
BZ
1203 if (is_migrate_cma(mt))
1204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1205 -(1 << order));
1da177e4 1206 }
f2260e6b 1207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1208 spin_unlock(&zone->lock);
085cc7d5 1209 return i;
1da177e4
LT
1210}
1211
4ae7c039 1212#ifdef CONFIG_NUMA
8fce4d8e 1213/*
4037d452
CL
1214 * Called from the vmstat counter updater to drain pagesets of this
1215 * currently executing processor on remote nodes after they have
1216 * expired.
1217 *
879336c3
CL
1218 * Note that this function must be called with the thread pinned to
1219 * a single processor.
8fce4d8e 1220 */
4037d452 1221void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1222{
4ae7c039 1223 unsigned long flags;
4037d452 1224 int to_drain;
998d39cb 1225 unsigned long batch;
4ae7c039 1226
4037d452 1227 local_irq_save(flags);
998d39cb
CS
1228 batch = ACCESS_ONCE(pcp->batch);
1229 if (pcp->count >= batch)
1230 to_drain = batch;
4037d452
CL
1231 else
1232 to_drain = pcp->count;
2a13515c
KM
1233 if (to_drain > 0) {
1234 free_pcppages_bulk(zone, to_drain, pcp);
1235 pcp->count -= to_drain;
1236 }
4037d452 1237 local_irq_restore(flags);
4ae7c039
CL
1238}
1239#endif
1240
9f8f2172
CL
1241/*
1242 * Drain pages of the indicated processor.
1243 *
1244 * The processor must either be the current processor and the
1245 * thread pinned to the current processor or a processor that
1246 * is not online.
1247 */
1248static void drain_pages(unsigned int cpu)
1da177e4 1249{
c54ad30c 1250 unsigned long flags;
1da177e4 1251 struct zone *zone;
1da177e4 1252
ee99c71c 1253 for_each_populated_zone(zone) {
1da177e4 1254 struct per_cpu_pageset *pset;
3dfa5721 1255 struct per_cpu_pages *pcp;
1da177e4 1256
99dcc3e5
CL
1257 local_irq_save(flags);
1258 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1259
1260 pcp = &pset->pcp;
2ff754fa
DR
1261 if (pcp->count) {
1262 free_pcppages_bulk(zone, pcp->count, pcp);
1263 pcp->count = 0;
1264 }
3dfa5721 1265 local_irq_restore(flags);
1da177e4
LT
1266 }
1267}
1da177e4 1268
9f8f2172
CL
1269/*
1270 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1271 */
1272void drain_local_pages(void *arg)
1273{
1274 drain_pages(smp_processor_id());
1275}
1276
1277/*
74046494
GBY
1278 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1279 *
1280 * Note that this code is protected against sending an IPI to an offline
1281 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1282 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1283 * nothing keeps CPUs from showing up after we populated the cpumask and
1284 * before the call to on_each_cpu_mask().
9f8f2172
CL
1285 */
1286void drain_all_pages(void)
1287{
74046494
GBY
1288 int cpu;
1289 struct per_cpu_pageset *pcp;
1290 struct zone *zone;
1291
1292 /*
1293 * Allocate in the BSS so we wont require allocation in
1294 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1295 */
1296 static cpumask_t cpus_with_pcps;
1297
1298 /*
1299 * We don't care about racing with CPU hotplug event
1300 * as offline notification will cause the notified
1301 * cpu to drain that CPU pcps and on_each_cpu_mask
1302 * disables preemption as part of its processing
1303 */
1304 for_each_online_cpu(cpu) {
1305 bool has_pcps = false;
1306 for_each_populated_zone(zone) {
1307 pcp = per_cpu_ptr(zone->pageset, cpu);
1308 if (pcp->pcp.count) {
1309 has_pcps = true;
1310 break;
1311 }
1312 }
1313 if (has_pcps)
1314 cpumask_set_cpu(cpu, &cpus_with_pcps);
1315 else
1316 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1317 }
1318 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1319}
1320
296699de 1321#ifdef CONFIG_HIBERNATION
1da177e4
LT
1322
1323void mark_free_pages(struct zone *zone)
1324{
f623f0db
RW
1325 unsigned long pfn, max_zone_pfn;
1326 unsigned long flags;
b2a0ac88 1327 int order, t;
1da177e4
LT
1328 struct list_head *curr;
1329
8080fc03 1330 if (zone_is_empty(zone))
1da177e4
LT
1331 return;
1332
1333 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1334
108bcc96 1335 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1336 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1337 if (pfn_valid(pfn)) {
1338 struct page *page = pfn_to_page(pfn);
1339
7be98234
RW
1340 if (!swsusp_page_is_forbidden(page))
1341 swsusp_unset_page_free(page);
f623f0db 1342 }
1da177e4 1343
b2a0ac88
MG
1344 for_each_migratetype_order(order, t) {
1345 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1346 unsigned long i;
1da177e4 1347
f623f0db
RW
1348 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1349 for (i = 0; i < (1UL << order); i++)
7be98234 1350 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1351 }
b2a0ac88 1352 }
1da177e4
LT
1353 spin_unlock_irqrestore(&zone->lock, flags);
1354}
e2c55dc8 1355#endif /* CONFIG_PM */
1da177e4 1356
1da177e4
LT
1357/*
1358 * Free a 0-order page
fc91668e 1359 * cold == 1 ? free a cold page : free a hot page
1da177e4 1360 */
fc91668e 1361void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1362{
1363 struct zone *zone = page_zone(page);
1364 struct per_cpu_pages *pcp;
1365 unsigned long flags;
5f8dcc21 1366 int migratetype;
1da177e4 1367
ec95f53a 1368 if (!free_pages_prepare(page, 0))
689bcebf
HD
1369 return;
1370
5f8dcc21 1371 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1372 set_freepage_migratetype(page, migratetype);
1da177e4 1373 local_irq_save(flags);
f8891e5e 1374 __count_vm_event(PGFREE);
da456f14 1375
5f8dcc21
MG
1376 /*
1377 * We only track unmovable, reclaimable and movable on pcp lists.
1378 * Free ISOLATE pages back to the allocator because they are being
1379 * offlined but treat RESERVE as movable pages so we can get those
1380 * areas back if necessary. Otherwise, we may have to free
1381 * excessively into the page allocator
1382 */
1383 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1384 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1385 free_one_page(zone, page, 0, migratetype);
1386 goto out;
1387 }
1388 migratetype = MIGRATE_MOVABLE;
1389 }
1390
99dcc3e5 1391 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1392 if (cold)
5f8dcc21 1393 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1394 else
5f8dcc21 1395 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1396 pcp->count++;
48db57f8 1397 if (pcp->count >= pcp->high) {
998d39cb
CS
1398 unsigned long batch = ACCESS_ONCE(pcp->batch);
1399 free_pcppages_bulk(zone, batch, pcp);
1400 pcp->count -= batch;
48db57f8 1401 }
5f8dcc21
MG
1402
1403out:
1da177e4 1404 local_irq_restore(flags);
1da177e4
LT
1405}
1406
cc59850e
KK
1407/*
1408 * Free a list of 0-order pages
1409 */
1410void free_hot_cold_page_list(struct list_head *list, int cold)
1411{
1412 struct page *page, *next;
1413
1414 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1415 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1416 free_hot_cold_page(page, cold);
1417 }
1418}
1419
8dfcc9ba
NP
1420/*
1421 * split_page takes a non-compound higher-order page, and splits it into
1422 * n (1<<order) sub-pages: page[0..n]
1423 * Each sub-page must be freed individually.
1424 *
1425 * Note: this is probably too low level an operation for use in drivers.
1426 * Please consult with lkml before using this in your driver.
1427 */
1428void split_page(struct page *page, unsigned int order)
1429{
1430 int i;
1431
309381fe
SL
1432 VM_BUG_ON_PAGE(PageCompound(page), page);
1433 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1434
1435#ifdef CONFIG_KMEMCHECK
1436 /*
1437 * Split shadow pages too, because free(page[0]) would
1438 * otherwise free the whole shadow.
1439 */
1440 if (kmemcheck_page_is_tracked(page))
1441 split_page(virt_to_page(page[0].shadow), order);
1442#endif
1443
7835e98b
NP
1444 for (i = 1; i < (1 << order); i++)
1445 set_page_refcounted(page + i);
8dfcc9ba 1446}
5853ff23 1447EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1448
8fb74b9f 1449static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1450{
748446bb
MG
1451 unsigned long watermark;
1452 struct zone *zone;
2139cbe6 1453 int mt;
748446bb
MG
1454
1455 BUG_ON(!PageBuddy(page));
1456
1457 zone = page_zone(page);
2e30abd1 1458 mt = get_pageblock_migratetype(page);
748446bb 1459
194159fb 1460 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1461 /* Obey watermarks as if the page was being allocated */
1462 watermark = low_wmark_pages(zone) + (1 << order);
1463 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1464 return 0;
1465
8fb74b9f 1466 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1467 }
748446bb
MG
1468
1469 /* Remove page from free list */
1470 list_del(&page->lru);
1471 zone->free_area[order].nr_free--;
1472 rmv_page_order(page);
2139cbe6 1473
8fb74b9f 1474 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1475 if (order >= pageblock_order - 1) {
1476 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1477 for (; page < endpage; page += pageblock_nr_pages) {
1478 int mt = get_pageblock_migratetype(page);
194159fb 1479 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1480 set_pageblock_migratetype(page,
1481 MIGRATE_MOVABLE);
1482 }
748446bb
MG
1483 }
1484
8fb74b9f 1485 return 1UL << order;
1fb3f8ca
MG
1486}
1487
1488/*
1489 * Similar to split_page except the page is already free. As this is only
1490 * being used for migration, the migratetype of the block also changes.
1491 * As this is called with interrupts disabled, the caller is responsible
1492 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1493 * are enabled.
1494 *
1495 * Note: this is probably too low level an operation for use in drivers.
1496 * Please consult with lkml before using this in your driver.
1497 */
1498int split_free_page(struct page *page)
1499{
1500 unsigned int order;
1501 int nr_pages;
1502
1fb3f8ca
MG
1503 order = page_order(page);
1504
8fb74b9f 1505 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1506 if (!nr_pages)
1507 return 0;
1508
1509 /* Split into individual pages */
1510 set_page_refcounted(page);
1511 split_page(page, order);
1512 return nr_pages;
748446bb
MG
1513}
1514
1da177e4
LT
1515/*
1516 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1517 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1518 * or two.
1519 */
0a15c3e9
MG
1520static inline
1521struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1522 struct zone *zone, int order, gfp_t gfp_flags,
1523 int migratetype)
1da177e4
LT
1524{
1525 unsigned long flags;
689bcebf 1526 struct page *page;
1da177e4
LT
1527 int cold = !!(gfp_flags & __GFP_COLD);
1528
689bcebf 1529again:
48db57f8 1530 if (likely(order == 0)) {
1da177e4 1531 struct per_cpu_pages *pcp;
5f8dcc21 1532 struct list_head *list;
1da177e4 1533
1da177e4 1534 local_irq_save(flags);
99dcc3e5
CL
1535 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1536 list = &pcp->lists[migratetype];
5f8dcc21 1537 if (list_empty(list)) {
535131e6 1538 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1539 pcp->batch, list,
e084b2d9 1540 migratetype, cold);
5f8dcc21 1541 if (unlikely(list_empty(list)))
6fb332fa 1542 goto failed;
535131e6 1543 }
b92a6edd 1544
5f8dcc21
MG
1545 if (cold)
1546 page = list_entry(list->prev, struct page, lru);
1547 else
1548 page = list_entry(list->next, struct page, lru);
1549
b92a6edd
MG
1550 list_del(&page->lru);
1551 pcp->count--;
7fb1d9fc 1552 } else {
dab48dab
AM
1553 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1554 /*
1555 * __GFP_NOFAIL is not to be used in new code.
1556 *
1557 * All __GFP_NOFAIL callers should be fixed so that they
1558 * properly detect and handle allocation failures.
1559 *
1560 * We most definitely don't want callers attempting to
4923abf9 1561 * allocate greater than order-1 page units with
dab48dab
AM
1562 * __GFP_NOFAIL.
1563 */
4923abf9 1564 WARN_ON_ONCE(order > 1);
dab48dab 1565 }
1da177e4 1566 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1567 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1568 spin_unlock(&zone->lock);
1569 if (!page)
1570 goto failed;
d1ce749a
BZ
1571 __mod_zone_freepage_state(zone, -(1 << order),
1572 get_pageblock_migratetype(page));
1da177e4
LT
1573 }
1574
81c0a2bb 1575 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
f8891e5e 1576 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1577 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1578 local_irq_restore(flags);
1da177e4 1579
309381fe 1580 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1581 if (prep_new_page(page, order, gfp_flags))
a74609fa 1582 goto again;
1da177e4 1583 return page;
a74609fa
NP
1584
1585failed:
1586 local_irq_restore(flags);
a74609fa 1587 return NULL;
1da177e4
LT
1588}
1589
933e312e
AM
1590#ifdef CONFIG_FAIL_PAGE_ALLOC
1591
b2588c4b 1592static struct {
933e312e
AM
1593 struct fault_attr attr;
1594
1595 u32 ignore_gfp_highmem;
1596 u32 ignore_gfp_wait;
54114994 1597 u32 min_order;
933e312e
AM
1598} fail_page_alloc = {
1599 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1600 .ignore_gfp_wait = 1,
1601 .ignore_gfp_highmem = 1,
54114994 1602 .min_order = 1,
933e312e
AM
1603};
1604
1605static int __init setup_fail_page_alloc(char *str)
1606{
1607 return setup_fault_attr(&fail_page_alloc.attr, str);
1608}
1609__setup("fail_page_alloc=", setup_fail_page_alloc);
1610
deaf386e 1611static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1612{
54114994 1613 if (order < fail_page_alloc.min_order)
deaf386e 1614 return false;
933e312e 1615 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1616 return false;
933e312e 1617 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1618 return false;
933e312e 1619 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1620 return false;
933e312e
AM
1621
1622 return should_fail(&fail_page_alloc.attr, 1 << order);
1623}
1624
1625#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1626
1627static int __init fail_page_alloc_debugfs(void)
1628{
f4ae40a6 1629 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1630 struct dentry *dir;
933e312e 1631
dd48c085
AM
1632 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1633 &fail_page_alloc.attr);
1634 if (IS_ERR(dir))
1635 return PTR_ERR(dir);
933e312e 1636
b2588c4b
AM
1637 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1638 &fail_page_alloc.ignore_gfp_wait))
1639 goto fail;
1640 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1641 &fail_page_alloc.ignore_gfp_highmem))
1642 goto fail;
1643 if (!debugfs_create_u32("min-order", mode, dir,
1644 &fail_page_alloc.min_order))
1645 goto fail;
1646
1647 return 0;
1648fail:
dd48c085 1649 debugfs_remove_recursive(dir);
933e312e 1650
b2588c4b 1651 return -ENOMEM;
933e312e
AM
1652}
1653
1654late_initcall(fail_page_alloc_debugfs);
1655
1656#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1657
1658#else /* CONFIG_FAIL_PAGE_ALLOC */
1659
deaf386e 1660static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1661{
deaf386e 1662 return false;
933e312e
AM
1663}
1664
1665#endif /* CONFIG_FAIL_PAGE_ALLOC */
1666
1da177e4 1667/*
88f5acf8 1668 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1669 * of the allocation.
1670 */
88f5acf8
MG
1671static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1672 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1673{
1674 /* free_pages my go negative - that's OK */
d23ad423 1675 long min = mark;
2cfed075 1676 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1677 int o;
026b0814 1678 long free_cma = 0;
1da177e4 1679
df0a6daa 1680 free_pages -= (1 << order) - 1;
7fb1d9fc 1681 if (alloc_flags & ALLOC_HIGH)
1da177e4 1682 min -= min / 2;
7fb1d9fc 1683 if (alloc_flags & ALLOC_HARDER)
1da177e4 1684 min -= min / 4;
d95ea5d1
BZ
1685#ifdef CONFIG_CMA
1686 /* If allocation can't use CMA areas don't use free CMA pages */
1687 if (!(alloc_flags & ALLOC_CMA))
026b0814 1688 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1689#endif
026b0814
TS
1690
1691 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1692 return false;
1da177e4
LT
1693 for (o = 0; o < order; o++) {
1694 /* At the next order, this order's pages become unavailable */
1695 free_pages -= z->free_area[o].nr_free << o;
1696
1697 /* Require fewer higher order pages to be free */
1698 min >>= 1;
1699
1700 if (free_pages <= min)
88f5acf8 1701 return false;
1da177e4 1702 }
88f5acf8
MG
1703 return true;
1704}
1705
1706bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1707 int classzone_idx, int alloc_flags)
1708{
1709 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1710 zone_page_state(z, NR_FREE_PAGES));
1711}
1712
1713bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1714 int classzone_idx, int alloc_flags)
1715{
1716 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1717
1718 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1719 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1720
1721 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1722 free_pages);
1da177e4
LT
1723}
1724
9276b1bc
PJ
1725#ifdef CONFIG_NUMA
1726/*
1727 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1728 * skip over zones that are not allowed by the cpuset, or that have
1729 * been recently (in last second) found to be nearly full. See further
1730 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1731 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1732 *
a1aeb65a 1733 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1734 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1735 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1736 *
1737 * If the zonelist cache is not available for this zonelist, does
1738 * nothing and returns NULL.
1739 *
1740 * If the fullzones BITMAP in the zonelist cache is stale (more than
1741 * a second since last zap'd) then we zap it out (clear its bits.)
1742 *
1743 * We hold off even calling zlc_setup, until after we've checked the
1744 * first zone in the zonelist, on the theory that most allocations will
1745 * be satisfied from that first zone, so best to examine that zone as
1746 * quickly as we can.
1747 */
1748static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1749{
1750 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1751 nodemask_t *allowednodes; /* zonelist_cache approximation */
1752
1753 zlc = zonelist->zlcache_ptr;
1754 if (!zlc)
1755 return NULL;
1756
f05111f5 1757 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1758 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1759 zlc->last_full_zap = jiffies;
1760 }
1761
1762 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1763 &cpuset_current_mems_allowed :
4b0ef1fe 1764 &node_states[N_MEMORY];
9276b1bc
PJ
1765 return allowednodes;
1766}
1767
1768/*
1769 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1770 * if it is worth looking at further for free memory:
1771 * 1) Check that the zone isn't thought to be full (doesn't have its
1772 * bit set in the zonelist_cache fullzones BITMAP).
1773 * 2) Check that the zones node (obtained from the zonelist_cache
1774 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1775 * Return true (non-zero) if zone is worth looking at further, or
1776 * else return false (zero) if it is not.
1777 *
1778 * This check -ignores- the distinction between various watermarks,
1779 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1780 * found to be full for any variation of these watermarks, it will
1781 * be considered full for up to one second by all requests, unless
1782 * we are so low on memory on all allowed nodes that we are forced
1783 * into the second scan of the zonelist.
1784 *
1785 * In the second scan we ignore this zonelist cache and exactly
1786 * apply the watermarks to all zones, even it is slower to do so.
1787 * We are low on memory in the second scan, and should leave no stone
1788 * unturned looking for a free page.
1789 */
dd1a239f 1790static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1791 nodemask_t *allowednodes)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794 int i; /* index of *z in zonelist zones */
1795 int n; /* node that zone *z is on */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return 1;
1800
dd1a239f 1801 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1802 n = zlc->z_to_n[i];
1803
1804 /* This zone is worth trying if it is allowed but not full */
1805 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1806}
1807
1808/*
1809 * Given 'z' scanning a zonelist, set the corresponding bit in
1810 * zlc->fullzones, so that subsequent attempts to allocate a page
1811 * from that zone don't waste time re-examining it.
1812 */
dd1a239f 1813static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1814{
1815 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1816 int i; /* index of *z in zonelist zones */
1817
1818 zlc = zonelist->zlcache_ptr;
1819 if (!zlc)
1820 return;
1821
dd1a239f 1822 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1823
1824 set_bit(i, zlc->fullzones);
1825}
1826
76d3fbf8
MG
1827/*
1828 * clear all zones full, called after direct reclaim makes progress so that
1829 * a zone that was recently full is not skipped over for up to a second
1830 */
1831static void zlc_clear_zones_full(struct zonelist *zonelist)
1832{
1833 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1834
1835 zlc = zonelist->zlcache_ptr;
1836 if (!zlc)
1837 return;
1838
1839 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1840}
1841
81c0a2bb
JW
1842static bool zone_local(struct zone *local_zone, struct zone *zone)
1843{
fff4068c 1844 return local_zone->node == zone->node;
81c0a2bb
JW
1845}
1846
957f822a
DR
1847static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1848{
1849 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1850}
1851
1852static void __paginginit init_zone_allows_reclaim(int nid)
1853{
1854 int i;
1855
1856 for_each_online_node(i)
6b187d02 1857 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1858 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1859 else
957f822a 1860 zone_reclaim_mode = 1;
957f822a
DR
1861}
1862
9276b1bc
PJ
1863#else /* CONFIG_NUMA */
1864
1865static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1866{
1867 return NULL;
1868}
1869
dd1a239f 1870static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1871 nodemask_t *allowednodes)
1872{
1873 return 1;
1874}
1875
dd1a239f 1876static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1877{
1878}
76d3fbf8
MG
1879
1880static void zlc_clear_zones_full(struct zonelist *zonelist)
1881{
1882}
957f822a 1883
81c0a2bb
JW
1884static bool zone_local(struct zone *local_zone, struct zone *zone)
1885{
1886 return true;
1887}
1888
957f822a
DR
1889static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1890{
1891 return true;
1892}
1893
1894static inline void init_zone_allows_reclaim(int nid)
1895{
1896}
9276b1bc
PJ
1897#endif /* CONFIG_NUMA */
1898
7fb1d9fc 1899/*
0798e519 1900 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1901 * a page.
1902 */
1903static struct page *
19770b32 1904get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1905 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1906 struct zone *preferred_zone, int migratetype)
753ee728 1907{
dd1a239f 1908 struct zoneref *z;
7fb1d9fc 1909 struct page *page = NULL;
54a6eb5c 1910 int classzone_idx;
5117f45d 1911 struct zone *zone;
9276b1bc
PJ
1912 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1913 int zlc_active = 0; /* set if using zonelist_cache */
1914 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1915
19770b32 1916 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1917zonelist_scan:
7fb1d9fc 1918 /*
9276b1bc 1919 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1920 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1921 */
19770b32
MG
1922 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1923 high_zoneidx, nodemask) {
e085dbc5
JW
1924 unsigned long mark;
1925
e5adfffc 1926 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1927 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1928 continue;
7fb1d9fc 1929 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1930 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1931 continue;
e085dbc5 1932 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1933 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1934 goto try_this_zone;
81c0a2bb
JW
1935 /*
1936 * Distribute pages in proportion to the individual
1937 * zone size to ensure fair page aging. The zone a
1938 * page was allocated in should have no effect on the
1939 * time the page has in memory before being reclaimed.
1940 *
fff4068c
JW
1941 * Try to stay in local zones in the fastpath. If
1942 * that fails, the slowpath is entered, which will do
1943 * another pass starting with the local zones, but
1944 * ultimately fall back to remote zones that do not
1945 * partake in the fairness round-robin cycle of this
1946 * zonelist.
81c0a2bb 1947 */
8798cee2 1948 if (alloc_flags & ALLOC_WMARK_LOW) {
81c0a2bb
JW
1949 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1950 continue;
fff4068c 1951 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
1952 continue;
1953 }
a756cf59
JW
1954 /*
1955 * When allocating a page cache page for writing, we
1956 * want to get it from a zone that is within its dirty
1957 * limit, such that no single zone holds more than its
1958 * proportional share of globally allowed dirty pages.
1959 * The dirty limits take into account the zone's
1960 * lowmem reserves and high watermark so that kswapd
1961 * should be able to balance it without having to
1962 * write pages from its LRU list.
1963 *
1964 * This may look like it could increase pressure on
1965 * lower zones by failing allocations in higher zones
1966 * before they are full. But the pages that do spill
1967 * over are limited as the lower zones are protected
1968 * by this very same mechanism. It should not become
1969 * a practical burden to them.
1970 *
1971 * XXX: For now, allow allocations to potentially
1972 * exceed the per-zone dirty limit in the slowpath
1973 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1974 * which is important when on a NUMA setup the allowed
1975 * zones are together not big enough to reach the
1976 * global limit. The proper fix for these situations
1977 * will require awareness of zones in the
1978 * dirty-throttling and the flusher threads.
1979 */
1980 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1981 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1982 goto this_zone_full;
7fb1d9fc 1983
e085dbc5
JW
1984 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1985 if (!zone_watermark_ok(zone, order, mark,
1986 classzone_idx, alloc_flags)) {
fa5e084e
MG
1987 int ret;
1988
e5adfffc
KS
1989 if (IS_ENABLED(CONFIG_NUMA) &&
1990 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1991 /*
1992 * we do zlc_setup if there are multiple nodes
1993 * and before considering the first zone allowed
1994 * by the cpuset.
1995 */
1996 allowednodes = zlc_setup(zonelist, alloc_flags);
1997 zlc_active = 1;
1998 did_zlc_setup = 1;
1999 }
2000
957f822a
DR
2001 if (zone_reclaim_mode == 0 ||
2002 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2003 goto this_zone_full;
2004
cd38b115
MG
2005 /*
2006 * As we may have just activated ZLC, check if the first
2007 * eligible zone has failed zone_reclaim recently.
2008 */
e5adfffc 2009 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2010 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2011 continue;
2012
fa5e084e
MG
2013 ret = zone_reclaim(zone, gfp_mask, order);
2014 switch (ret) {
2015 case ZONE_RECLAIM_NOSCAN:
2016 /* did not scan */
cd38b115 2017 continue;
fa5e084e
MG
2018 case ZONE_RECLAIM_FULL:
2019 /* scanned but unreclaimable */
cd38b115 2020 continue;
fa5e084e
MG
2021 default:
2022 /* did we reclaim enough */
fed2719e 2023 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2024 classzone_idx, alloc_flags))
fed2719e
MG
2025 goto try_this_zone;
2026
2027 /*
2028 * Failed to reclaim enough to meet watermark.
2029 * Only mark the zone full if checking the min
2030 * watermark or if we failed to reclaim just
2031 * 1<<order pages or else the page allocator
2032 * fastpath will prematurely mark zones full
2033 * when the watermark is between the low and
2034 * min watermarks.
2035 */
2036 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2037 ret == ZONE_RECLAIM_SOME)
9276b1bc 2038 goto this_zone_full;
fed2719e
MG
2039
2040 continue;
0798e519 2041 }
7fb1d9fc
RS
2042 }
2043
fa5e084e 2044try_this_zone:
3dd28266
MG
2045 page = buffered_rmqueue(preferred_zone, zone, order,
2046 gfp_mask, migratetype);
0798e519 2047 if (page)
7fb1d9fc 2048 break;
9276b1bc 2049this_zone_full:
e5adfffc 2050 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2051 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2052 }
9276b1bc 2053
e5adfffc 2054 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2055 /* Disable zlc cache for second zonelist scan */
2056 zlc_active = 0;
2057 goto zonelist_scan;
2058 }
b121186a
AS
2059
2060 if (page)
2061 /*
2062 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2063 * necessary to allocate the page. The expectation is
2064 * that the caller is taking steps that will free more
2065 * memory. The caller should avoid the page being used
2066 * for !PFMEMALLOC purposes.
2067 */
2068 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2069
7fb1d9fc 2070 return page;
753ee728
MH
2071}
2072
29423e77
DR
2073/*
2074 * Large machines with many possible nodes should not always dump per-node
2075 * meminfo in irq context.
2076 */
2077static inline bool should_suppress_show_mem(void)
2078{
2079 bool ret = false;
2080
2081#if NODES_SHIFT > 8
2082 ret = in_interrupt();
2083#endif
2084 return ret;
2085}
2086
a238ab5b
DH
2087static DEFINE_RATELIMIT_STATE(nopage_rs,
2088 DEFAULT_RATELIMIT_INTERVAL,
2089 DEFAULT_RATELIMIT_BURST);
2090
2091void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2092{
a238ab5b
DH
2093 unsigned int filter = SHOW_MEM_FILTER_NODES;
2094
c0a32fc5
SG
2095 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2096 debug_guardpage_minorder() > 0)
a238ab5b
DH
2097 return;
2098
2099 /*
2100 * This documents exceptions given to allocations in certain
2101 * contexts that are allowed to allocate outside current's set
2102 * of allowed nodes.
2103 */
2104 if (!(gfp_mask & __GFP_NOMEMALLOC))
2105 if (test_thread_flag(TIF_MEMDIE) ||
2106 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2107 filter &= ~SHOW_MEM_FILTER_NODES;
2108 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2109 filter &= ~SHOW_MEM_FILTER_NODES;
2110
2111 if (fmt) {
3ee9a4f0
JP
2112 struct va_format vaf;
2113 va_list args;
2114
a238ab5b 2115 va_start(args, fmt);
3ee9a4f0
JP
2116
2117 vaf.fmt = fmt;
2118 vaf.va = &args;
2119
2120 pr_warn("%pV", &vaf);
2121
a238ab5b
DH
2122 va_end(args);
2123 }
2124
3ee9a4f0
JP
2125 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2126 current->comm, order, gfp_mask);
a238ab5b
DH
2127
2128 dump_stack();
2129 if (!should_suppress_show_mem())
2130 show_mem(filter);
2131}
2132
11e33f6a
MG
2133static inline int
2134should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2135 unsigned long did_some_progress,
11e33f6a 2136 unsigned long pages_reclaimed)
1da177e4 2137{
11e33f6a
MG
2138 /* Do not loop if specifically requested */
2139 if (gfp_mask & __GFP_NORETRY)
2140 return 0;
1da177e4 2141
f90ac398
MG
2142 /* Always retry if specifically requested */
2143 if (gfp_mask & __GFP_NOFAIL)
2144 return 1;
2145
2146 /*
2147 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2148 * making forward progress without invoking OOM. Suspend also disables
2149 * storage devices so kswapd will not help. Bail if we are suspending.
2150 */
2151 if (!did_some_progress && pm_suspended_storage())
2152 return 0;
2153
11e33f6a
MG
2154 /*
2155 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2156 * means __GFP_NOFAIL, but that may not be true in other
2157 * implementations.
2158 */
2159 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2160 return 1;
2161
2162 /*
2163 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2164 * specified, then we retry until we no longer reclaim any pages
2165 * (above), or we've reclaimed an order of pages at least as
2166 * large as the allocation's order. In both cases, if the
2167 * allocation still fails, we stop retrying.
2168 */
2169 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2170 return 1;
cf40bd16 2171
11e33f6a
MG
2172 return 0;
2173}
933e312e 2174
11e33f6a
MG
2175static inline struct page *
2176__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2177 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2178 nodemask_t *nodemask, struct zone *preferred_zone,
2179 int migratetype)
11e33f6a
MG
2180{
2181 struct page *page;
2182
2183 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2184 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2185 schedule_timeout_uninterruptible(1);
1da177e4
LT
2186 return NULL;
2187 }
6b1de916 2188
11e33f6a
MG
2189 /*
2190 * Go through the zonelist yet one more time, keep very high watermark
2191 * here, this is only to catch a parallel oom killing, we must fail if
2192 * we're still under heavy pressure.
2193 */
2194 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2195 order, zonelist, high_zoneidx,
5117f45d 2196 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2197 preferred_zone, migratetype);
7fb1d9fc 2198 if (page)
11e33f6a
MG
2199 goto out;
2200
4365a567
KH
2201 if (!(gfp_mask & __GFP_NOFAIL)) {
2202 /* The OOM killer will not help higher order allocs */
2203 if (order > PAGE_ALLOC_COSTLY_ORDER)
2204 goto out;
03668b3c
DR
2205 /* The OOM killer does not needlessly kill tasks for lowmem */
2206 if (high_zoneidx < ZONE_NORMAL)
2207 goto out;
4365a567
KH
2208 /*
2209 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2210 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2211 * The caller should handle page allocation failure by itself if
2212 * it specifies __GFP_THISNODE.
2213 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2214 */
2215 if (gfp_mask & __GFP_THISNODE)
2216 goto out;
2217 }
11e33f6a 2218 /* Exhausted what can be done so it's blamo time */
08ab9b10 2219 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2220
2221out:
2222 clear_zonelist_oom(zonelist, gfp_mask);
2223 return page;
2224}
2225
56de7263
MG
2226#ifdef CONFIG_COMPACTION
2227/* Try memory compaction for high-order allocations before reclaim */
2228static struct page *
2229__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2232 int migratetype, bool sync_migration,
c67fe375 2233 bool *contended_compaction, bool *deferred_compaction,
66199712 2234 unsigned long *did_some_progress)
56de7263 2235{
66199712 2236 if (!order)
56de7263
MG
2237 return NULL;
2238
aff62249 2239 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2240 *deferred_compaction = true;
2241 return NULL;
2242 }
2243
c06b1fca 2244 current->flags |= PF_MEMALLOC;
56de7263 2245 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2246 nodemask, sync_migration,
8fb74b9f 2247 contended_compaction);
c06b1fca 2248 current->flags &= ~PF_MEMALLOC;
56de7263 2249
1fb3f8ca 2250 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2251 struct page *page;
2252
56de7263
MG
2253 /* Page migration frees to the PCP lists but we want merging */
2254 drain_pages(get_cpu());
2255 put_cpu();
2256
2257 page = get_page_from_freelist(gfp_mask, nodemask,
2258 order, zonelist, high_zoneidx,
cfd19c5a
MG
2259 alloc_flags & ~ALLOC_NO_WATERMARKS,
2260 preferred_zone, migratetype);
56de7263 2261 if (page) {
62997027 2262 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2263 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2264 count_vm_event(COMPACTSUCCESS);
2265 return page;
2266 }
2267
2268 /*
2269 * It's bad if compaction run occurs and fails.
2270 * The most likely reason is that pages exist,
2271 * but not enough to satisfy watermarks.
2272 */
2273 count_vm_event(COMPACTFAIL);
66199712
MG
2274
2275 /*
2276 * As async compaction considers a subset of pageblocks, only
2277 * defer if the failure was a sync compaction failure.
2278 */
2279 if (sync_migration)
aff62249 2280 defer_compaction(preferred_zone, order);
56de7263
MG
2281
2282 cond_resched();
2283 }
2284
2285 return NULL;
2286}
2287#else
2288static inline struct page *
2289__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2290 struct zonelist *zonelist, enum zone_type high_zoneidx,
2291 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2292 int migratetype, bool sync_migration,
c67fe375 2293 bool *contended_compaction, bool *deferred_compaction,
66199712 2294 unsigned long *did_some_progress)
56de7263
MG
2295{
2296 return NULL;
2297}
2298#endif /* CONFIG_COMPACTION */
2299
bba90710
MS
2300/* Perform direct synchronous page reclaim */
2301static int
2302__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2303 nodemask_t *nodemask)
11e33f6a 2304{
11e33f6a 2305 struct reclaim_state reclaim_state;
bba90710 2306 int progress;
11e33f6a
MG
2307
2308 cond_resched();
2309
2310 /* We now go into synchronous reclaim */
2311 cpuset_memory_pressure_bump();
c06b1fca 2312 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2313 lockdep_set_current_reclaim_state(gfp_mask);
2314 reclaim_state.reclaimed_slab = 0;
c06b1fca 2315 current->reclaim_state = &reclaim_state;
11e33f6a 2316
bba90710 2317 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2318
c06b1fca 2319 current->reclaim_state = NULL;
11e33f6a 2320 lockdep_clear_current_reclaim_state();
c06b1fca 2321 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2322
2323 cond_resched();
2324
bba90710
MS
2325 return progress;
2326}
2327
2328/* The really slow allocator path where we enter direct reclaim */
2329static inline struct page *
2330__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2331 struct zonelist *zonelist, enum zone_type high_zoneidx,
2332 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2333 int migratetype, unsigned long *did_some_progress)
2334{
2335 struct page *page = NULL;
2336 bool drained = false;
2337
2338 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2339 nodemask);
9ee493ce
MG
2340 if (unlikely(!(*did_some_progress)))
2341 return NULL;
11e33f6a 2342
76d3fbf8 2343 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2344 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2345 zlc_clear_zones_full(zonelist);
2346
9ee493ce
MG
2347retry:
2348 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2349 zonelist, high_zoneidx,
cfd19c5a
MG
2350 alloc_flags & ~ALLOC_NO_WATERMARKS,
2351 preferred_zone, migratetype);
9ee493ce
MG
2352
2353 /*
2354 * If an allocation failed after direct reclaim, it could be because
2355 * pages are pinned on the per-cpu lists. Drain them and try again
2356 */
2357 if (!page && !drained) {
2358 drain_all_pages();
2359 drained = true;
2360 goto retry;
2361 }
2362
11e33f6a
MG
2363 return page;
2364}
2365
1da177e4 2366/*
11e33f6a
MG
2367 * This is called in the allocator slow-path if the allocation request is of
2368 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2369 */
11e33f6a
MG
2370static inline struct page *
2371__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2372 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2373 nodemask_t *nodemask, struct zone *preferred_zone,
2374 int migratetype)
11e33f6a
MG
2375{
2376 struct page *page;
2377
2378 do {
2379 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2380 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2381 preferred_zone, migratetype);
11e33f6a
MG
2382
2383 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2384 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2385 } while (!page && (gfp_mask & __GFP_NOFAIL));
2386
2387 return page;
2388}
2389
81c0a2bb
JW
2390static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2391 struct zonelist *zonelist,
2392 enum zone_type high_zoneidx,
2393 struct zone *preferred_zone)
1da177e4 2394{
dd1a239f
MG
2395 struct zoneref *z;
2396 struct zone *zone;
1da177e4 2397
81c0a2bb
JW
2398 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2399 if (!(gfp_mask & __GFP_NO_KSWAPD))
2400 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2401 /*
2402 * Only reset the batches of zones that were actually
2403 * considered in the fast path, we don't want to
2404 * thrash fairness information for zones that are not
2405 * actually part of this zonelist's round-robin cycle.
2406 */
fff4068c 2407 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2408 continue;
2409 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2410 high_wmark_pages(zone) -
2411 low_wmark_pages(zone) -
2412 zone_page_state(zone, NR_ALLOC_BATCH));
2413 }
11e33f6a 2414}
cf40bd16 2415
341ce06f
PZ
2416static inline int
2417gfp_to_alloc_flags(gfp_t gfp_mask)
2418{
341ce06f
PZ
2419 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2420 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2421
a56f57ff 2422 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2423 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2424
341ce06f
PZ
2425 /*
2426 * The caller may dip into page reserves a bit more if the caller
2427 * cannot run direct reclaim, or if the caller has realtime scheduling
2428 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2429 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2430 */
e6223a3b 2431 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2432
341ce06f 2433 if (!wait) {
5c3240d9
AA
2434 /*
2435 * Not worth trying to allocate harder for
2436 * __GFP_NOMEMALLOC even if it can't schedule.
2437 */
2438 if (!(gfp_mask & __GFP_NOMEMALLOC))
2439 alloc_flags |= ALLOC_HARDER;
523b9458 2440 /*
341ce06f
PZ
2441 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2442 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2443 */
341ce06f 2444 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2445 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2446 alloc_flags |= ALLOC_HARDER;
2447
b37f1dd0
MG
2448 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2449 if (gfp_mask & __GFP_MEMALLOC)
2450 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2451 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2452 alloc_flags |= ALLOC_NO_WATERMARKS;
2453 else if (!in_interrupt() &&
2454 ((current->flags & PF_MEMALLOC) ||
2455 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2456 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2457 }
d95ea5d1
BZ
2458#ifdef CONFIG_CMA
2459 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2460 alloc_flags |= ALLOC_CMA;
2461#endif
341ce06f
PZ
2462 return alloc_flags;
2463}
2464
072bb0aa
MG
2465bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2466{
b37f1dd0 2467 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2468}
2469
11e33f6a
MG
2470static inline struct page *
2471__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2472 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2473 nodemask_t *nodemask, struct zone *preferred_zone,
2474 int migratetype)
11e33f6a
MG
2475{
2476 const gfp_t wait = gfp_mask & __GFP_WAIT;
2477 struct page *page = NULL;
2478 int alloc_flags;
2479 unsigned long pages_reclaimed = 0;
2480 unsigned long did_some_progress;
77f1fe6b 2481 bool sync_migration = false;
66199712 2482 bool deferred_compaction = false;
c67fe375 2483 bool contended_compaction = false;
1da177e4 2484
72807a74
MG
2485 /*
2486 * In the slowpath, we sanity check order to avoid ever trying to
2487 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2488 * be using allocators in order of preference for an area that is
2489 * too large.
2490 */
1fc28b70
MG
2491 if (order >= MAX_ORDER) {
2492 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2493 return NULL;
1fc28b70 2494 }
1da177e4 2495
952f3b51
CL
2496 /*
2497 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2498 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2499 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2500 * using a larger set of nodes after it has established that the
2501 * allowed per node queues are empty and that nodes are
2502 * over allocated.
2503 */
e5adfffc
KS
2504 if (IS_ENABLED(CONFIG_NUMA) &&
2505 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2506 goto nopage;
2507
cc4a6851 2508restart:
81c0a2bb
JW
2509 prepare_slowpath(gfp_mask, order, zonelist,
2510 high_zoneidx, preferred_zone);
1da177e4 2511
9bf2229f 2512 /*
7fb1d9fc
RS
2513 * OK, we're below the kswapd watermark and have kicked background
2514 * reclaim. Now things get more complex, so set up alloc_flags according
2515 * to how we want to proceed.
9bf2229f 2516 */
341ce06f 2517 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2518
f33261d7
DR
2519 /*
2520 * Find the true preferred zone if the allocation is unconstrained by
2521 * cpusets.
2522 */
2523 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2524 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2525 &preferred_zone);
2526
cfa54a0f 2527rebalance:
341ce06f 2528 /* This is the last chance, in general, before the goto nopage. */
19770b32 2529 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2530 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2531 preferred_zone, migratetype);
7fb1d9fc
RS
2532 if (page)
2533 goto got_pg;
1da177e4 2534
11e33f6a 2535 /* Allocate without watermarks if the context allows */
341ce06f 2536 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2537 /*
2538 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2539 * the allocation is high priority and these type of
2540 * allocations are system rather than user orientated
2541 */
2542 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2543
341ce06f
PZ
2544 page = __alloc_pages_high_priority(gfp_mask, order,
2545 zonelist, high_zoneidx, nodemask,
2546 preferred_zone, migratetype);
cfd19c5a 2547 if (page) {
341ce06f 2548 goto got_pg;
cfd19c5a 2549 }
1da177e4
LT
2550 }
2551
2552 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2553 if (!wait) {
2554 /*
2555 * All existing users of the deprecated __GFP_NOFAIL are
2556 * blockable, so warn of any new users that actually allow this
2557 * type of allocation to fail.
2558 */
2559 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2560 goto nopage;
aed0a0e3 2561 }
1da177e4 2562
341ce06f 2563 /* Avoid recursion of direct reclaim */
c06b1fca 2564 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2565 goto nopage;
2566
6583bb64
DR
2567 /* Avoid allocations with no watermarks from looping endlessly */
2568 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2569 goto nopage;
2570
77f1fe6b
MG
2571 /*
2572 * Try direct compaction. The first pass is asynchronous. Subsequent
2573 * attempts after direct reclaim are synchronous
2574 */
56de7263
MG
2575 page = __alloc_pages_direct_compact(gfp_mask, order,
2576 zonelist, high_zoneidx,
2577 nodemask,
2578 alloc_flags, preferred_zone,
66199712 2579 migratetype, sync_migration,
c67fe375 2580 &contended_compaction,
66199712
MG
2581 &deferred_compaction,
2582 &did_some_progress);
56de7263
MG
2583 if (page)
2584 goto got_pg;
c6a140bf 2585 sync_migration = true;
56de7263 2586
31f8d42d
LT
2587 /*
2588 * If compaction is deferred for high-order allocations, it is because
2589 * sync compaction recently failed. In this is the case and the caller
2590 * requested a movable allocation that does not heavily disrupt the
2591 * system then fail the allocation instead of entering direct reclaim.
2592 */
2593 if ((deferred_compaction || contended_compaction) &&
caf49191 2594 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2595 goto nopage;
66199712 2596
11e33f6a
MG
2597 /* Try direct reclaim and then allocating */
2598 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2599 zonelist, high_zoneidx,
2600 nodemask,
5117f45d 2601 alloc_flags, preferred_zone,
3dd28266 2602 migratetype, &did_some_progress);
11e33f6a
MG
2603 if (page)
2604 goto got_pg;
1da177e4 2605
e33c3b5e 2606 /*
11e33f6a
MG
2607 * If we failed to make any progress reclaiming, then we are
2608 * running out of options and have to consider going OOM
e33c3b5e 2609 */
11e33f6a 2610 if (!did_some_progress) {
b9921ecd 2611 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2612 if (oom_killer_disabled)
2613 goto nopage;
29fd66d2
DR
2614 /* Coredumps can quickly deplete all memory reserves */
2615 if ((current->flags & PF_DUMPCORE) &&
2616 !(gfp_mask & __GFP_NOFAIL))
2617 goto nopage;
11e33f6a
MG
2618 page = __alloc_pages_may_oom(gfp_mask, order,
2619 zonelist, high_zoneidx,
3dd28266
MG
2620 nodemask, preferred_zone,
2621 migratetype);
11e33f6a
MG
2622 if (page)
2623 goto got_pg;
1da177e4 2624
03668b3c
DR
2625 if (!(gfp_mask & __GFP_NOFAIL)) {
2626 /*
2627 * The oom killer is not called for high-order
2628 * allocations that may fail, so if no progress
2629 * is being made, there are no other options and
2630 * retrying is unlikely to help.
2631 */
2632 if (order > PAGE_ALLOC_COSTLY_ORDER)
2633 goto nopage;
2634 /*
2635 * The oom killer is not called for lowmem
2636 * allocations to prevent needlessly killing
2637 * innocent tasks.
2638 */
2639 if (high_zoneidx < ZONE_NORMAL)
2640 goto nopage;
2641 }
e2c55dc8 2642
ff0ceb9d
DR
2643 goto restart;
2644 }
1da177e4
LT
2645 }
2646
11e33f6a 2647 /* Check if we should retry the allocation */
a41f24ea 2648 pages_reclaimed += did_some_progress;
f90ac398
MG
2649 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2650 pages_reclaimed)) {
11e33f6a 2651 /* Wait for some write requests to complete then retry */
0e093d99 2652 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2653 goto rebalance;
3e7d3449
MG
2654 } else {
2655 /*
2656 * High-order allocations do not necessarily loop after
2657 * direct reclaim and reclaim/compaction depends on compaction
2658 * being called after reclaim so call directly if necessary
2659 */
2660 page = __alloc_pages_direct_compact(gfp_mask, order,
2661 zonelist, high_zoneidx,
2662 nodemask,
2663 alloc_flags, preferred_zone,
66199712 2664 migratetype, sync_migration,
c67fe375 2665 &contended_compaction,
66199712
MG
2666 &deferred_compaction,
2667 &did_some_progress);
3e7d3449
MG
2668 if (page)
2669 goto got_pg;
1da177e4
LT
2670 }
2671
2672nopage:
a238ab5b 2673 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2674 return page;
1da177e4 2675got_pg:
b1eeab67
VN
2676 if (kmemcheck_enabled)
2677 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2678
072bb0aa 2679 return page;
1da177e4 2680}
11e33f6a
MG
2681
2682/*
2683 * This is the 'heart' of the zoned buddy allocator.
2684 */
2685struct page *
2686__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2687 struct zonelist *zonelist, nodemask_t *nodemask)
2688{
2689 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2690 struct zone *preferred_zone;
cc9a6c87 2691 struct page *page = NULL;
3dd28266 2692 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2693 unsigned int cpuset_mems_cookie;
d95ea5d1 2694 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2695 struct mem_cgroup *memcg = NULL;
11e33f6a 2696
dcce284a
BH
2697 gfp_mask &= gfp_allowed_mask;
2698
11e33f6a
MG
2699 lockdep_trace_alloc(gfp_mask);
2700
2701 might_sleep_if(gfp_mask & __GFP_WAIT);
2702
2703 if (should_fail_alloc_page(gfp_mask, order))
2704 return NULL;
2705
2706 /*
2707 * Check the zones suitable for the gfp_mask contain at least one
2708 * valid zone. It's possible to have an empty zonelist as a result
2709 * of GFP_THISNODE and a memoryless node
2710 */
2711 if (unlikely(!zonelist->_zonerefs->zone))
2712 return NULL;
2713
6a1a0d3b
GC
2714 /*
2715 * Will only have any effect when __GFP_KMEMCG is set. This is
2716 * verified in the (always inline) callee
2717 */
2718 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2719 return NULL;
2720
cc9a6c87
MG
2721retry_cpuset:
2722 cpuset_mems_cookie = get_mems_allowed();
2723
5117f45d 2724 /* The preferred zone is used for statistics later */
f33261d7
DR
2725 first_zones_zonelist(zonelist, high_zoneidx,
2726 nodemask ? : &cpuset_current_mems_allowed,
2727 &preferred_zone);
cc9a6c87
MG
2728 if (!preferred_zone)
2729 goto out;
5117f45d 2730
d95ea5d1
BZ
2731#ifdef CONFIG_CMA
2732 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2733 alloc_flags |= ALLOC_CMA;
2734#endif
5117f45d 2735 /* First allocation attempt */
11e33f6a 2736 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2737 zonelist, high_zoneidx, alloc_flags,
3dd28266 2738 preferred_zone, migratetype);
21caf2fc
ML
2739 if (unlikely(!page)) {
2740 /*
2741 * Runtime PM, block IO and its error handling path
2742 * can deadlock because I/O on the device might not
2743 * complete.
2744 */
2745 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2746 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2747 zonelist, high_zoneidx, nodemask,
3dd28266 2748 preferred_zone, migratetype);
21caf2fc 2749 }
11e33f6a 2750
4b4f278c 2751 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2752
2753out:
2754 /*
2755 * When updating a task's mems_allowed, it is possible to race with
2756 * parallel threads in such a way that an allocation can fail while
2757 * the mask is being updated. If a page allocation is about to fail,
2758 * check if the cpuset changed during allocation and if so, retry.
2759 */
2760 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2761 goto retry_cpuset;
2762
6a1a0d3b
GC
2763 memcg_kmem_commit_charge(page, memcg, order);
2764
11e33f6a 2765 return page;
1da177e4 2766}
d239171e 2767EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2768
2769/*
2770 * Common helper functions.
2771 */
920c7a5d 2772unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2773{
945a1113
AM
2774 struct page *page;
2775
2776 /*
2777 * __get_free_pages() returns a 32-bit address, which cannot represent
2778 * a highmem page
2779 */
2780 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2781
1da177e4
LT
2782 page = alloc_pages(gfp_mask, order);
2783 if (!page)
2784 return 0;
2785 return (unsigned long) page_address(page);
2786}
1da177e4
LT
2787EXPORT_SYMBOL(__get_free_pages);
2788
920c7a5d 2789unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2790{
945a1113 2791 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2792}
1da177e4
LT
2793EXPORT_SYMBOL(get_zeroed_page);
2794
920c7a5d 2795void __free_pages(struct page *page, unsigned int order)
1da177e4 2796{
b5810039 2797 if (put_page_testzero(page)) {
1da177e4 2798 if (order == 0)
fc91668e 2799 free_hot_cold_page(page, 0);
1da177e4
LT
2800 else
2801 __free_pages_ok(page, order);
2802 }
2803}
2804
2805EXPORT_SYMBOL(__free_pages);
2806
920c7a5d 2807void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2808{
2809 if (addr != 0) {
725d704e 2810 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2811 __free_pages(virt_to_page((void *)addr), order);
2812 }
2813}
2814
2815EXPORT_SYMBOL(free_pages);
2816
6a1a0d3b
GC
2817/*
2818 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2819 * pages allocated with __GFP_KMEMCG.
2820 *
2821 * Those pages are accounted to a particular memcg, embedded in the
2822 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2823 * for that information only to find out that it is NULL for users who have no
2824 * interest in that whatsoever, we provide these functions.
2825 *
2826 * The caller knows better which flags it relies on.
2827 */
2828void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2829{
2830 memcg_kmem_uncharge_pages(page, order);
2831 __free_pages(page, order);
2832}
2833
2834void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2835{
2836 if (addr != 0) {
2837 VM_BUG_ON(!virt_addr_valid((void *)addr));
2838 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2839 }
2840}
2841
ee85c2e1
AK
2842static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2843{
2844 if (addr) {
2845 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2846 unsigned long used = addr + PAGE_ALIGN(size);
2847
2848 split_page(virt_to_page((void *)addr), order);
2849 while (used < alloc_end) {
2850 free_page(used);
2851 used += PAGE_SIZE;
2852 }
2853 }
2854 return (void *)addr;
2855}
2856
2be0ffe2
TT
2857/**
2858 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2859 * @size: the number of bytes to allocate
2860 * @gfp_mask: GFP flags for the allocation
2861 *
2862 * This function is similar to alloc_pages(), except that it allocates the
2863 * minimum number of pages to satisfy the request. alloc_pages() can only
2864 * allocate memory in power-of-two pages.
2865 *
2866 * This function is also limited by MAX_ORDER.
2867 *
2868 * Memory allocated by this function must be released by free_pages_exact().
2869 */
2870void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2871{
2872 unsigned int order = get_order(size);
2873 unsigned long addr;
2874
2875 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2876 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2877}
2878EXPORT_SYMBOL(alloc_pages_exact);
2879
ee85c2e1
AK
2880/**
2881 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2882 * pages on a node.
b5e6ab58 2883 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2884 * @size: the number of bytes to allocate
2885 * @gfp_mask: GFP flags for the allocation
2886 *
2887 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2888 * back.
2889 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2890 * but is not exact.
2891 */
2892void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2893{
2894 unsigned order = get_order(size);
2895 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2896 if (!p)
2897 return NULL;
2898 return make_alloc_exact((unsigned long)page_address(p), order, size);
2899}
2900EXPORT_SYMBOL(alloc_pages_exact_nid);
2901
2be0ffe2
TT
2902/**
2903 * free_pages_exact - release memory allocated via alloc_pages_exact()
2904 * @virt: the value returned by alloc_pages_exact.
2905 * @size: size of allocation, same value as passed to alloc_pages_exact().
2906 *
2907 * Release the memory allocated by a previous call to alloc_pages_exact.
2908 */
2909void free_pages_exact(void *virt, size_t size)
2910{
2911 unsigned long addr = (unsigned long)virt;
2912 unsigned long end = addr + PAGE_ALIGN(size);
2913
2914 while (addr < end) {
2915 free_page(addr);
2916 addr += PAGE_SIZE;
2917 }
2918}
2919EXPORT_SYMBOL(free_pages_exact);
2920
e0fb5815
ZY
2921/**
2922 * nr_free_zone_pages - count number of pages beyond high watermark
2923 * @offset: The zone index of the highest zone
2924 *
2925 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2926 * high watermark within all zones at or below a given zone index. For each
2927 * zone, the number of pages is calculated as:
834405c3 2928 * managed_pages - high_pages
e0fb5815 2929 */
ebec3862 2930static unsigned long nr_free_zone_pages(int offset)
1da177e4 2931{
dd1a239f 2932 struct zoneref *z;
54a6eb5c
MG
2933 struct zone *zone;
2934
e310fd43 2935 /* Just pick one node, since fallback list is circular */
ebec3862 2936 unsigned long sum = 0;
1da177e4 2937
0e88460d 2938 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2939
54a6eb5c 2940 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2941 unsigned long size = zone->managed_pages;
41858966 2942 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2943 if (size > high)
2944 sum += size - high;
1da177e4
LT
2945 }
2946
2947 return sum;
2948}
2949
e0fb5815
ZY
2950/**
2951 * nr_free_buffer_pages - count number of pages beyond high watermark
2952 *
2953 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2954 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2955 */
ebec3862 2956unsigned long nr_free_buffer_pages(void)
1da177e4 2957{
af4ca457 2958 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2959}
c2f1a551 2960EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2961
e0fb5815
ZY
2962/**
2963 * nr_free_pagecache_pages - count number of pages beyond high watermark
2964 *
2965 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2966 * high watermark within all zones.
1da177e4 2967 */
ebec3862 2968unsigned long nr_free_pagecache_pages(void)
1da177e4 2969{
2a1e274a 2970 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2971}
08e0f6a9
CL
2972
2973static inline void show_node(struct zone *zone)
1da177e4 2974{
e5adfffc 2975 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2976 printk("Node %d ", zone_to_nid(zone));
1da177e4 2977}
1da177e4 2978
1da177e4
LT
2979void si_meminfo(struct sysinfo *val)
2980{
2981 val->totalram = totalram_pages;
2982 val->sharedram = 0;
d23ad423 2983 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2984 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2985 val->totalhigh = totalhigh_pages;
2986 val->freehigh = nr_free_highpages();
1da177e4
LT
2987 val->mem_unit = PAGE_SIZE;
2988}
2989
2990EXPORT_SYMBOL(si_meminfo);
2991
2992#ifdef CONFIG_NUMA
2993void si_meminfo_node(struct sysinfo *val, int nid)
2994{
cdd91a77
JL
2995 int zone_type; /* needs to be signed */
2996 unsigned long managed_pages = 0;
1da177e4
LT
2997 pg_data_t *pgdat = NODE_DATA(nid);
2998
cdd91a77
JL
2999 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3000 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3001 val->totalram = managed_pages;
d23ad423 3002 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3003#ifdef CONFIG_HIGHMEM
b40da049 3004 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3005 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3006 NR_FREE_PAGES);
98d2b0eb
CL
3007#else
3008 val->totalhigh = 0;
3009 val->freehigh = 0;
3010#endif
1da177e4
LT
3011 val->mem_unit = PAGE_SIZE;
3012}
3013#endif
3014
ddd588b5 3015/*
7bf02ea2
DR
3016 * Determine whether the node should be displayed or not, depending on whether
3017 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3018 */
7bf02ea2 3019bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3020{
3021 bool ret = false;
cc9a6c87 3022 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3023
3024 if (!(flags & SHOW_MEM_FILTER_NODES))
3025 goto out;
3026
cc9a6c87
MG
3027 do {
3028 cpuset_mems_cookie = get_mems_allowed();
3029 ret = !node_isset(nid, cpuset_current_mems_allowed);
3030 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
3031out:
3032 return ret;
3033}
3034
1da177e4
LT
3035#define K(x) ((x) << (PAGE_SHIFT-10))
3036
377e4f16
RV
3037static void show_migration_types(unsigned char type)
3038{
3039 static const char types[MIGRATE_TYPES] = {
3040 [MIGRATE_UNMOVABLE] = 'U',
3041 [MIGRATE_RECLAIMABLE] = 'E',
3042 [MIGRATE_MOVABLE] = 'M',
3043 [MIGRATE_RESERVE] = 'R',
3044#ifdef CONFIG_CMA
3045 [MIGRATE_CMA] = 'C',
3046#endif
194159fb 3047#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3048 [MIGRATE_ISOLATE] = 'I',
194159fb 3049#endif
377e4f16
RV
3050 };
3051 char tmp[MIGRATE_TYPES + 1];
3052 char *p = tmp;
3053 int i;
3054
3055 for (i = 0; i < MIGRATE_TYPES; i++) {
3056 if (type & (1 << i))
3057 *p++ = types[i];
3058 }
3059
3060 *p = '\0';
3061 printk("(%s) ", tmp);
3062}
3063
1da177e4
LT
3064/*
3065 * Show free area list (used inside shift_scroll-lock stuff)
3066 * We also calculate the percentage fragmentation. We do this by counting the
3067 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3068 * Suppresses nodes that are not allowed by current's cpuset if
3069 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3070 */
7bf02ea2 3071void show_free_areas(unsigned int filter)
1da177e4 3072{
c7241913 3073 int cpu;
1da177e4
LT
3074 struct zone *zone;
3075
ee99c71c 3076 for_each_populated_zone(zone) {
7bf02ea2 3077 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3078 continue;
c7241913
JS
3079 show_node(zone);
3080 printk("%s per-cpu:\n", zone->name);
1da177e4 3081
6b482c67 3082 for_each_online_cpu(cpu) {
1da177e4
LT
3083 struct per_cpu_pageset *pageset;
3084
99dcc3e5 3085 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3086
3dfa5721
CL
3087 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3088 cpu, pageset->pcp.high,
3089 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3090 }
3091 }
3092
a731286d
KM
3093 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3094 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3095 " unevictable:%lu"
b76146ed 3096 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3097 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3098 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3099 " free_cma:%lu\n",
4f98a2fe 3100 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3101 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3102 global_page_state(NR_ISOLATED_ANON),
3103 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3104 global_page_state(NR_INACTIVE_FILE),
a731286d 3105 global_page_state(NR_ISOLATED_FILE),
7b854121 3106 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3107 global_page_state(NR_FILE_DIRTY),
ce866b34 3108 global_page_state(NR_WRITEBACK),
fd39fc85 3109 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3110 global_page_state(NR_FREE_PAGES),
3701b033
KM
3111 global_page_state(NR_SLAB_RECLAIMABLE),
3112 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3113 global_page_state(NR_FILE_MAPPED),
4b02108a 3114 global_page_state(NR_SHMEM),
a25700a5 3115 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3116 global_page_state(NR_BOUNCE),
3117 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3118
ee99c71c 3119 for_each_populated_zone(zone) {
1da177e4
LT
3120 int i;
3121
7bf02ea2 3122 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3123 continue;
1da177e4
LT
3124 show_node(zone);
3125 printk("%s"
3126 " free:%lukB"
3127 " min:%lukB"
3128 " low:%lukB"
3129 " high:%lukB"
4f98a2fe
RR
3130 " active_anon:%lukB"
3131 " inactive_anon:%lukB"
3132 " active_file:%lukB"
3133 " inactive_file:%lukB"
7b854121 3134 " unevictable:%lukB"
a731286d
KM
3135 " isolated(anon):%lukB"
3136 " isolated(file):%lukB"
1da177e4 3137 " present:%lukB"
9feedc9d 3138 " managed:%lukB"
4a0aa73f
KM
3139 " mlocked:%lukB"
3140 " dirty:%lukB"
3141 " writeback:%lukB"
3142 " mapped:%lukB"
4b02108a 3143 " shmem:%lukB"
4a0aa73f
KM
3144 " slab_reclaimable:%lukB"
3145 " slab_unreclaimable:%lukB"
c6a7f572 3146 " kernel_stack:%lukB"
4a0aa73f
KM
3147 " pagetables:%lukB"
3148 " unstable:%lukB"
3149 " bounce:%lukB"
d1ce749a 3150 " free_cma:%lukB"
4a0aa73f 3151 " writeback_tmp:%lukB"
1da177e4
LT
3152 " pages_scanned:%lu"
3153 " all_unreclaimable? %s"
3154 "\n",
3155 zone->name,
88f5acf8 3156 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3157 K(min_wmark_pages(zone)),
3158 K(low_wmark_pages(zone)),
3159 K(high_wmark_pages(zone)),
4f98a2fe
RR
3160 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3161 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3162 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3163 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3164 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3165 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3166 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3167 K(zone->present_pages),
9feedc9d 3168 K(zone->managed_pages),
4a0aa73f
KM
3169 K(zone_page_state(zone, NR_MLOCK)),
3170 K(zone_page_state(zone, NR_FILE_DIRTY)),
3171 K(zone_page_state(zone, NR_WRITEBACK)),
3172 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3173 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3174 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3175 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3176 zone_page_state(zone, NR_KERNEL_STACK) *
3177 THREAD_SIZE / 1024,
4a0aa73f
KM
3178 K(zone_page_state(zone, NR_PAGETABLE)),
3179 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3180 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3181 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3182 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3183 zone->pages_scanned,
6e543d57 3184 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3185 );
3186 printk("lowmem_reserve[]:");
3187 for (i = 0; i < MAX_NR_ZONES; i++)
3188 printk(" %lu", zone->lowmem_reserve[i]);
3189 printk("\n");
3190 }
3191
ee99c71c 3192 for_each_populated_zone(zone) {
b8af2941 3193 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3194 unsigned char types[MAX_ORDER];
1da177e4 3195
7bf02ea2 3196 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3197 continue;
1da177e4
LT
3198 show_node(zone);
3199 printk("%s: ", zone->name);
1da177e4
LT
3200
3201 spin_lock_irqsave(&zone->lock, flags);
3202 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3203 struct free_area *area = &zone->free_area[order];
3204 int type;
3205
3206 nr[order] = area->nr_free;
8f9de51a 3207 total += nr[order] << order;
377e4f16
RV
3208
3209 types[order] = 0;
3210 for (type = 0; type < MIGRATE_TYPES; type++) {
3211 if (!list_empty(&area->free_list[type]))
3212 types[order] |= 1 << type;
3213 }
1da177e4
LT
3214 }
3215 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3216 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3217 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3218 if (nr[order])
3219 show_migration_types(types[order]);
3220 }
1da177e4
LT
3221 printk("= %lukB\n", K(total));
3222 }
3223
949f7ec5
DR
3224 hugetlb_show_meminfo();
3225
e6f3602d
LW
3226 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3227
1da177e4
LT
3228 show_swap_cache_info();
3229}
3230
19770b32
MG
3231static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3232{
3233 zoneref->zone = zone;
3234 zoneref->zone_idx = zone_idx(zone);
3235}
3236
1da177e4
LT
3237/*
3238 * Builds allocation fallback zone lists.
1a93205b
CL
3239 *
3240 * Add all populated zones of a node to the zonelist.
1da177e4 3241 */
f0c0b2b8 3242static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3243 int nr_zones)
1da177e4 3244{
1a93205b 3245 struct zone *zone;
bc732f1d 3246 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3247
3248 do {
2f6726e5 3249 zone_type--;
070f8032 3250 zone = pgdat->node_zones + zone_type;
1a93205b 3251 if (populated_zone(zone)) {
dd1a239f
MG
3252 zoneref_set_zone(zone,
3253 &zonelist->_zonerefs[nr_zones++]);
070f8032 3254 check_highest_zone(zone_type);
1da177e4 3255 }
2f6726e5 3256 } while (zone_type);
bc732f1d 3257
070f8032 3258 return nr_zones;
1da177e4
LT
3259}
3260
f0c0b2b8
KH
3261
3262/*
3263 * zonelist_order:
3264 * 0 = automatic detection of better ordering.
3265 * 1 = order by ([node] distance, -zonetype)
3266 * 2 = order by (-zonetype, [node] distance)
3267 *
3268 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3269 * the same zonelist. So only NUMA can configure this param.
3270 */
3271#define ZONELIST_ORDER_DEFAULT 0
3272#define ZONELIST_ORDER_NODE 1
3273#define ZONELIST_ORDER_ZONE 2
3274
3275/* zonelist order in the kernel.
3276 * set_zonelist_order() will set this to NODE or ZONE.
3277 */
3278static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3279static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3280
3281
1da177e4 3282#ifdef CONFIG_NUMA
f0c0b2b8
KH
3283/* The value user specified ....changed by config */
3284static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3285/* string for sysctl */
3286#define NUMA_ZONELIST_ORDER_LEN 16
3287char numa_zonelist_order[16] = "default";
3288
3289/*
3290 * interface for configure zonelist ordering.
3291 * command line option "numa_zonelist_order"
3292 * = "[dD]efault - default, automatic configuration.
3293 * = "[nN]ode - order by node locality, then by zone within node
3294 * = "[zZ]one - order by zone, then by locality within zone
3295 */
3296
3297static int __parse_numa_zonelist_order(char *s)
3298{
3299 if (*s == 'd' || *s == 'D') {
3300 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3301 } else if (*s == 'n' || *s == 'N') {
3302 user_zonelist_order = ZONELIST_ORDER_NODE;
3303 } else if (*s == 'z' || *s == 'Z') {
3304 user_zonelist_order = ZONELIST_ORDER_ZONE;
3305 } else {
3306 printk(KERN_WARNING
3307 "Ignoring invalid numa_zonelist_order value: "
3308 "%s\n", s);
3309 return -EINVAL;
3310 }
3311 return 0;
3312}
3313
3314static __init int setup_numa_zonelist_order(char *s)
3315{
ecb256f8
VL
3316 int ret;
3317
3318 if (!s)
3319 return 0;
3320
3321 ret = __parse_numa_zonelist_order(s);
3322 if (ret == 0)
3323 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3324
3325 return ret;
f0c0b2b8
KH
3326}
3327early_param("numa_zonelist_order", setup_numa_zonelist_order);
3328
3329/*
3330 * sysctl handler for numa_zonelist_order
3331 */
3332int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3333 void __user *buffer, size_t *length,
f0c0b2b8
KH
3334 loff_t *ppos)
3335{
3336 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3337 int ret;
443c6f14 3338 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3339
443c6f14 3340 mutex_lock(&zl_order_mutex);
dacbde09
CG
3341 if (write) {
3342 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3343 ret = -EINVAL;
3344 goto out;
3345 }
3346 strcpy(saved_string, (char *)table->data);
3347 }
8d65af78 3348 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3349 if (ret)
443c6f14 3350 goto out;
f0c0b2b8
KH
3351 if (write) {
3352 int oldval = user_zonelist_order;
dacbde09
CG
3353
3354 ret = __parse_numa_zonelist_order((char *)table->data);
3355 if (ret) {
f0c0b2b8
KH
3356 /*
3357 * bogus value. restore saved string
3358 */
dacbde09 3359 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3360 NUMA_ZONELIST_ORDER_LEN);
3361 user_zonelist_order = oldval;
4eaf3f64
HL
3362 } else if (oldval != user_zonelist_order) {
3363 mutex_lock(&zonelists_mutex);
9adb62a5 3364 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3365 mutex_unlock(&zonelists_mutex);
3366 }
f0c0b2b8 3367 }
443c6f14
AK
3368out:
3369 mutex_unlock(&zl_order_mutex);
3370 return ret;
f0c0b2b8
KH
3371}
3372
3373
62bc62a8 3374#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3375static int node_load[MAX_NUMNODES];
3376
1da177e4 3377/**
4dc3b16b 3378 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3379 * @node: node whose fallback list we're appending
3380 * @used_node_mask: nodemask_t of already used nodes
3381 *
3382 * We use a number of factors to determine which is the next node that should
3383 * appear on a given node's fallback list. The node should not have appeared
3384 * already in @node's fallback list, and it should be the next closest node
3385 * according to the distance array (which contains arbitrary distance values
3386 * from each node to each node in the system), and should also prefer nodes
3387 * with no CPUs, since presumably they'll have very little allocation pressure
3388 * on them otherwise.
3389 * It returns -1 if no node is found.
3390 */
f0c0b2b8 3391static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3392{
4cf808eb 3393 int n, val;
1da177e4 3394 int min_val = INT_MAX;
00ef2d2f 3395 int best_node = NUMA_NO_NODE;
a70f7302 3396 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3397
4cf808eb
LT
3398 /* Use the local node if we haven't already */
3399 if (!node_isset(node, *used_node_mask)) {
3400 node_set(node, *used_node_mask);
3401 return node;
3402 }
1da177e4 3403
4b0ef1fe 3404 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3405
3406 /* Don't want a node to appear more than once */
3407 if (node_isset(n, *used_node_mask))
3408 continue;
3409
1da177e4
LT
3410 /* Use the distance array to find the distance */
3411 val = node_distance(node, n);
3412
4cf808eb
LT
3413 /* Penalize nodes under us ("prefer the next node") */
3414 val += (n < node);
3415
1da177e4 3416 /* Give preference to headless and unused nodes */
a70f7302
RR
3417 tmp = cpumask_of_node(n);
3418 if (!cpumask_empty(tmp))
1da177e4
LT
3419 val += PENALTY_FOR_NODE_WITH_CPUS;
3420
3421 /* Slight preference for less loaded node */
3422 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3423 val += node_load[n];
3424
3425 if (val < min_val) {
3426 min_val = val;
3427 best_node = n;
3428 }
3429 }
3430
3431 if (best_node >= 0)
3432 node_set(best_node, *used_node_mask);
3433
3434 return best_node;
3435}
3436
f0c0b2b8
KH
3437
3438/*
3439 * Build zonelists ordered by node and zones within node.
3440 * This results in maximum locality--normal zone overflows into local
3441 * DMA zone, if any--but risks exhausting DMA zone.
3442 */
3443static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3444{
f0c0b2b8 3445 int j;
1da177e4 3446 struct zonelist *zonelist;
f0c0b2b8 3447
54a6eb5c 3448 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3449 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3450 ;
bc732f1d 3451 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3452 zonelist->_zonerefs[j].zone = NULL;
3453 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3454}
3455
523b9458
CL
3456/*
3457 * Build gfp_thisnode zonelists
3458 */
3459static void build_thisnode_zonelists(pg_data_t *pgdat)
3460{
523b9458
CL
3461 int j;
3462 struct zonelist *zonelist;
3463
54a6eb5c 3464 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3465 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3466 zonelist->_zonerefs[j].zone = NULL;
3467 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3468}
3469
f0c0b2b8
KH
3470/*
3471 * Build zonelists ordered by zone and nodes within zones.
3472 * This results in conserving DMA zone[s] until all Normal memory is
3473 * exhausted, but results in overflowing to remote node while memory
3474 * may still exist in local DMA zone.
3475 */
3476static int node_order[MAX_NUMNODES];
3477
3478static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3479{
f0c0b2b8
KH
3480 int pos, j, node;
3481 int zone_type; /* needs to be signed */
3482 struct zone *z;
3483 struct zonelist *zonelist;
3484
54a6eb5c
MG
3485 zonelist = &pgdat->node_zonelists[0];
3486 pos = 0;
3487 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3488 for (j = 0; j < nr_nodes; j++) {
3489 node = node_order[j];
3490 z = &NODE_DATA(node)->node_zones[zone_type];
3491 if (populated_zone(z)) {
dd1a239f
MG
3492 zoneref_set_zone(z,
3493 &zonelist->_zonerefs[pos++]);
54a6eb5c 3494 check_highest_zone(zone_type);
f0c0b2b8
KH
3495 }
3496 }
f0c0b2b8 3497 }
dd1a239f
MG
3498 zonelist->_zonerefs[pos].zone = NULL;
3499 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3500}
3501
3502static int default_zonelist_order(void)
3503{
3504 int nid, zone_type;
b8af2941 3505 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3506 struct zone *z;
3507 int average_size;
3508 /*
b8af2941 3509 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3510 * If they are really small and used heavily, the system can fall
3511 * into OOM very easily.
e325c90f 3512 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3513 */
3514 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3515 low_kmem_size = 0;
3516 total_size = 0;
3517 for_each_online_node(nid) {
3518 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3519 z = &NODE_DATA(nid)->node_zones[zone_type];
3520 if (populated_zone(z)) {
3521 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3522 low_kmem_size += z->managed_pages;
3523 total_size += z->managed_pages;
e325c90f
DR
3524 } else if (zone_type == ZONE_NORMAL) {
3525 /*
3526 * If any node has only lowmem, then node order
3527 * is preferred to allow kernel allocations
3528 * locally; otherwise, they can easily infringe
3529 * on other nodes when there is an abundance of
3530 * lowmem available to allocate from.
3531 */
3532 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3533 }
3534 }
3535 }
3536 if (!low_kmem_size || /* there are no DMA area. */
3537 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3538 return ZONELIST_ORDER_NODE;
3539 /*
3540 * look into each node's config.
b8af2941
PK
3541 * If there is a node whose DMA/DMA32 memory is very big area on
3542 * local memory, NODE_ORDER may be suitable.
3543 */
37b07e41 3544 average_size = total_size /
4b0ef1fe 3545 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3546 for_each_online_node(nid) {
3547 low_kmem_size = 0;
3548 total_size = 0;
3549 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3550 z = &NODE_DATA(nid)->node_zones[zone_type];
3551 if (populated_zone(z)) {
3552 if (zone_type < ZONE_NORMAL)
3553 low_kmem_size += z->present_pages;
3554 total_size += z->present_pages;
3555 }
3556 }
3557 if (low_kmem_size &&
3558 total_size > average_size && /* ignore small node */
3559 low_kmem_size > total_size * 70/100)
3560 return ZONELIST_ORDER_NODE;
3561 }
3562 return ZONELIST_ORDER_ZONE;
3563}
3564
3565static void set_zonelist_order(void)
3566{
3567 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3568 current_zonelist_order = default_zonelist_order();
3569 else
3570 current_zonelist_order = user_zonelist_order;
3571}
3572
3573static void build_zonelists(pg_data_t *pgdat)
3574{
3575 int j, node, load;
3576 enum zone_type i;
1da177e4 3577 nodemask_t used_mask;
f0c0b2b8
KH
3578 int local_node, prev_node;
3579 struct zonelist *zonelist;
3580 int order = current_zonelist_order;
1da177e4
LT
3581
3582 /* initialize zonelists */
523b9458 3583 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3584 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3585 zonelist->_zonerefs[0].zone = NULL;
3586 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3587 }
3588
3589 /* NUMA-aware ordering of nodes */
3590 local_node = pgdat->node_id;
62bc62a8 3591 load = nr_online_nodes;
1da177e4
LT
3592 prev_node = local_node;
3593 nodes_clear(used_mask);
f0c0b2b8 3594
f0c0b2b8
KH
3595 memset(node_order, 0, sizeof(node_order));
3596 j = 0;
3597
1da177e4
LT
3598 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3599 /*
3600 * We don't want to pressure a particular node.
3601 * So adding penalty to the first node in same
3602 * distance group to make it round-robin.
3603 */
957f822a
DR
3604 if (node_distance(local_node, node) !=
3605 node_distance(local_node, prev_node))
f0c0b2b8
KH
3606 node_load[node] = load;
3607
1da177e4
LT
3608 prev_node = node;
3609 load--;
f0c0b2b8
KH
3610 if (order == ZONELIST_ORDER_NODE)
3611 build_zonelists_in_node_order(pgdat, node);
3612 else
3613 node_order[j++] = node; /* remember order */
3614 }
1da177e4 3615
f0c0b2b8
KH
3616 if (order == ZONELIST_ORDER_ZONE) {
3617 /* calculate node order -- i.e., DMA last! */
3618 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3619 }
523b9458
CL
3620
3621 build_thisnode_zonelists(pgdat);
1da177e4
LT
3622}
3623
9276b1bc 3624/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3625static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3626{
54a6eb5c
MG
3627 struct zonelist *zonelist;
3628 struct zonelist_cache *zlc;
dd1a239f 3629 struct zoneref *z;
9276b1bc 3630
54a6eb5c
MG
3631 zonelist = &pgdat->node_zonelists[0];
3632 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3633 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3634 for (z = zonelist->_zonerefs; z->zone; z++)
3635 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3636}
3637
7aac7898
LS
3638#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3639/*
3640 * Return node id of node used for "local" allocations.
3641 * I.e., first node id of first zone in arg node's generic zonelist.
3642 * Used for initializing percpu 'numa_mem', which is used primarily
3643 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3644 */
3645int local_memory_node(int node)
3646{
3647 struct zone *zone;
3648
3649 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3650 gfp_zone(GFP_KERNEL),
3651 NULL,
3652 &zone);
3653 return zone->node;
3654}
3655#endif
f0c0b2b8 3656
1da177e4
LT
3657#else /* CONFIG_NUMA */
3658
f0c0b2b8
KH
3659static void set_zonelist_order(void)
3660{
3661 current_zonelist_order = ZONELIST_ORDER_ZONE;
3662}
3663
3664static void build_zonelists(pg_data_t *pgdat)
1da177e4 3665{
19655d34 3666 int node, local_node;
54a6eb5c
MG
3667 enum zone_type j;
3668 struct zonelist *zonelist;
1da177e4
LT
3669
3670 local_node = pgdat->node_id;
1da177e4 3671
54a6eb5c 3672 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3673 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3674
54a6eb5c
MG
3675 /*
3676 * Now we build the zonelist so that it contains the zones
3677 * of all the other nodes.
3678 * We don't want to pressure a particular node, so when
3679 * building the zones for node N, we make sure that the
3680 * zones coming right after the local ones are those from
3681 * node N+1 (modulo N)
3682 */
3683 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3684 if (!node_online(node))
3685 continue;
bc732f1d 3686 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3687 }
54a6eb5c
MG
3688 for (node = 0; node < local_node; node++) {
3689 if (!node_online(node))
3690 continue;
bc732f1d 3691 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3692 }
3693
dd1a239f
MG
3694 zonelist->_zonerefs[j].zone = NULL;
3695 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3696}
3697
9276b1bc 3698/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3699static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3700{
54a6eb5c 3701 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3702}
3703
1da177e4
LT
3704#endif /* CONFIG_NUMA */
3705
99dcc3e5
CL
3706/*
3707 * Boot pageset table. One per cpu which is going to be used for all
3708 * zones and all nodes. The parameters will be set in such a way
3709 * that an item put on a list will immediately be handed over to
3710 * the buddy list. This is safe since pageset manipulation is done
3711 * with interrupts disabled.
3712 *
3713 * The boot_pagesets must be kept even after bootup is complete for
3714 * unused processors and/or zones. They do play a role for bootstrapping
3715 * hotplugged processors.
3716 *
3717 * zoneinfo_show() and maybe other functions do
3718 * not check if the processor is online before following the pageset pointer.
3719 * Other parts of the kernel may not check if the zone is available.
3720 */
3721static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3722static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3723static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3724
4eaf3f64
HL
3725/*
3726 * Global mutex to protect against size modification of zonelists
3727 * as well as to serialize pageset setup for the new populated zone.
3728 */
3729DEFINE_MUTEX(zonelists_mutex);
3730
9b1a4d38 3731/* return values int ....just for stop_machine() */
4ed7e022 3732static int __build_all_zonelists(void *data)
1da177e4 3733{
6811378e 3734 int nid;
99dcc3e5 3735 int cpu;
9adb62a5 3736 pg_data_t *self = data;
9276b1bc 3737
7f9cfb31
BL
3738#ifdef CONFIG_NUMA
3739 memset(node_load, 0, sizeof(node_load));
3740#endif
9adb62a5
JL
3741
3742 if (self && !node_online(self->node_id)) {
3743 build_zonelists(self);
3744 build_zonelist_cache(self);
3745 }
3746
9276b1bc 3747 for_each_online_node(nid) {
7ea1530a
CL
3748 pg_data_t *pgdat = NODE_DATA(nid);
3749
3750 build_zonelists(pgdat);
3751 build_zonelist_cache(pgdat);
9276b1bc 3752 }
99dcc3e5
CL
3753
3754 /*
3755 * Initialize the boot_pagesets that are going to be used
3756 * for bootstrapping processors. The real pagesets for
3757 * each zone will be allocated later when the per cpu
3758 * allocator is available.
3759 *
3760 * boot_pagesets are used also for bootstrapping offline
3761 * cpus if the system is already booted because the pagesets
3762 * are needed to initialize allocators on a specific cpu too.
3763 * F.e. the percpu allocator needs the page allocator which
3764 * needs the percpu allocator in order to allocate its pagesets
3765 * (a chicken-egg dilemma).
3766 */
7aac7898 3767 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3768 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3769
7aac7898
LS
3770#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3771 /*
3772 * We now know the "local memory node" for each node--
3773 * i.e., the node of the first zone in the generic zonelist.
3774 * Set up numa_mem percpu variable for on-line cpus. During
3775 * boot, only the boot cpu should be on-line; we'll init the
3776 * secondary cpus' numa_mem as they come on-line. During
3777 * node/memory hotplug, we'll fixup all on-line cpus.
3778 */
3779 if (cpu_online(cpu))
3780 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3781#endif
3782 }
3783
6811378e
YG
3784 return 0;
3785}
3786
4eaf3f64
HL
3787/*
3788 * Called with zonelists_mutex held always
3789 * unless system_state == SYSTEM_BOOTING.
3790 */
9adb62a5 3791void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3792{
f0c0b2b8
KH
3793 set_zonelist_order();
3794
6811378e 3795 if (system_state == SYSTEM_BOOTING) {
423b41d7 3796 __build_all_zonelists(NULL);
68ad8df4 3797 mminit_verify_zonelist();
6811378e
YG
3798 cpuset_init_current_mems_allowed();
3799 } else {
e9959f0f 3800#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3801 if (zone)
3802 setup_zone_pageset(zone);
e9959f0f 3803#endif
dd1895e2
CS
3804 /* we have to stop all cpus to guarantee there is no user
3805 of zonelist */
9adb62a5 3806 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3807 /* cpuset refresh routine should be here */
3808 }
bd1e22b8 3809 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3810 /*
3811 * Disable grouping by mobility if the number of pages in the
3812 * system is too low to allow the mechanism to work. It would be
3813 * more accurate, but expensive to check per-zone. This check is
3814 * made on memory-hotadd so a system can start with mobility
3815 * disabled and enable it later
3816 */
d9c23400 3817 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3818 page_group_by_mobility_disabled = 1;
3819 else
3820 page_group_by_mobility_disabled = 0;
3821
3822 printk("Built %i zonelists in %s order, mobility grouping %s. "
3823 "Total pages: %ld\n",
62bc62a8 3824 nr_online_nodes,
f0c0b2b8 3825 zonelist_order_name[current_zonelist_order],
9ef9acb0 3826 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3827 vm_total_pages);
3828#ifdef CONFIG_NUMA
3829 printk("Policy zone: %s\n", zone_names[policy_zone]);
3830#endif
1da177e4
LT
3831}
3832
3833/*
3834 * Helper functions to size the waitqueue hash table.
3835 * Essentially these want to choose hash table sizes sufficiently
3836 * large so that collisions trying to wait on pages are rare.
3837 * But in fact, the number of active page waitqueues on typical
3838 * systems is ridiculously low, less than 200. So this is even
3839 * conservative, even though it seems large.
3840 *
3841 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3842 * waitqueues, i.e. the size of the waitq table given the number of pages.
3843 */
3844#define PAGES_PER_WAITQUEUE 256
3845
cca448fe 3846#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3847static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3848{
3849 unsigned long size = 1;
3850
3851 pages /= PAGES_PER_WAITQUEUE;
3852
3853 while (size < pages)
3854 size <<= 1;
3855
3856 /*
3857 * Once we have dozens or even hundreds of threads sleeping
3858 * on IO we've got bigger problems than wait queue collision.
3859 * Limit the size of the wait table to a reasonable size.
3860 */
3861 size = min(size, 4096UL);
3862
3863 return max(size, 4UL);
3864}
cca448fe
YG
3865#else
3866/*
3867 * A zone's size might be changed by hot-add, so it is not possible to determine
3868 * a suitable size for its wait_table. So we use the maximum size now.
3869 *
3870 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3871 *
3872 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3873 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3874 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3875 *
3876 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3877 * or more by the traditional way. (See above). It equals:
3878 *
3879 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3880 * ia64(16K page size) : = ( 8G + 4M)byte.
3881 * powerpc (64K page size) : = (32G +16M)byte.
3882 */
3883static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3884{
3885 return 4096UL;
3886}
3887#endif
1da177e4
LT
3888
3889/*
3890 * This is an integer logarithm so that shifts can be used later
3891 * to extract the more random high bits from the multiplicative
3892 * hash function before the remainder is taken.
3893 */
3894static inline unsigned long wait_table_bits(unsigned long size)
3895{
3896 return ffz(~size);
3897}
3898
6d3163ce
AH
3899/*
3900 * Check if a pageblock contains reserved pages
3901 */
3902static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3903{
3904 unsigned long pfn;
3905
3906 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3907 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3908 return 1;
3909 }
3910 return 0;
3911}
3912
56fd56b8 3913/*
d9c23400 3914 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3915 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3916 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3917 * higher will lead to a bigger reserve which will get freed as contiguous
3918 * blocks as reclaim kicks in
3919 */
3920static void setup_zone_migrate_reserve(struct zone *zone)
3921{
6d3163ce 3922 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3923 struct page *page;
78986a67
MG
3924 unsigned long block_migratetype;
3925 int reserve;
943dca1a 3926 int old_reserve;
56fd56b8 3927
d0215638
MH
3928 /*
3929 * Get the start pfn, end pfn and the number of blocks to reserve
3930 * We have to be careful to be aligned to pageblock_nr_pages to
3931 * make sure that we always check pfn_valid for the first page in
3932 * the block.
3933 */
56fd56b8 3934 start_pfn = zone->zone_start_pfn;
108bcc96 3935 end_pfn = zone_end_pfn(zone);
d0215638 3936 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3937 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3938 pageblock_order;
56fd56b8 3939
78986a67
MG
3940 /*
3941 * Reserve blocks are generally in place to help high-order atomic
3942 * allocations that are short-lived. A min_free_kbytes value that
3943 * would result in more than 2 reserve blocks for atomic allocations
3944 * is assumed to be in place to help anti-fragmentation for the
3945 * future allocation of hugepages at runtime.
3946 */
3947 reserve = min(2, reserve);
943dca1a
YI
3948 old_reserve = zone->nr_migrate_reserve_block;
3949
3950 /* When memory hot-add, we almost always need to do nothing */
3951 if (reserve == old_reserve)
3952 return;
3953 zone->nr_migrate_reserve_block = reserve;
78986a67 3954
d9c23400 3955 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3956 if (!pfn_valid(pfn))
3957 continue;
3958 page = pfn_to_page(pfn);
3959
344c790e
AL
3960 /* Watch out for overlapping nodes */
3961 if (page_to_nid(page) != zone_to_nid(zone))
3962 continue;
3963
56fd56b8
MG
3964 block_migratetype = get_pageblock_migratetype(page);
3965
938929f1
MG
3966 /* Only test what is necessary when the reserves are not met */
3967 if (reserve > 0) {
3968 /*
3969 * Blocks with reserved pages will never free, skip
3970 * them.
3971 */
3972 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3973 if (pageblock_is_reserved(pfn, block_end_pfn))
3974 continue;
56fd56b8 3975
938929f1
MG
3976 /* If this block is reserved, account for it */
3977 if (block_migratetype == MIGRATE_RESERVE) {
3978 reserve--;
3979 continue;
3980 }
3981
3982 /* Suitable for reserving if this block is movable */
3983 if (block_migratetype == MIGRATE_MOVABLE) {
3984 set_pageblock_migratetype(page,
3985 MIGRATE_RESERVE);
3986 move_freepages_block(zone, page,
3987 MIGRATE_RESERVE);
3988 reserve--;
3989 continue;
3990 }
943dca1a
YI
3991 } else if (!old_reserve) {
3992 /*
3993 * At boot time we don't need to scan the whole zone
3994 * for turning off MIGRATE_RESERVE.
3995 */
3996 break;
56fd56b8
MG
3997 }
3998
3999 /*
4000 * If the reserve is met and this is a previous reserved block,
4001 * take it back
4002 */
4003 if (block_migratetype == MIGRATE_RESERVE) {
4004 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4005 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4006 }
4007 }
4008}
ac0e5b7a 4009
1da177e4
LT
4010/*
4011 * Initially all pages are reserved - free ones are freed
4012 * up by free_all_bootmem() once the early boot process is
4013 * done. Non-atomic initialization, single-pass.
4014 */
c09b4240 4015void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4016 unsigned long start_pfn, enum memmap_context context)
1da177e4 4017{
1da177e4 4018 struct page *page;
29751f69
AW
4019 unsigned long end_pfn = start_pfn + size;
4020 unsigned long pfn;
86051ca5 4021 struct zone *z;
1da177e4 4022
22b31eec
HD
4023 if (highest_memmap_pfn < end_pfn - 1)
4024 highest_memmap_pfn = end_pfn - 1;
4025
86051ca5 4026 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4027 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4028 /*
4029 * There can be holes in boot-time mem_map[]s
4030 * handed to this function. They do not
4031 * exist on hotplugged memory.
4032 */
4033 if (context == MEMMAP_EARLY) {
4034 if (!early_pfn_valid(pfn))
4035 continue;
4036 if (!early_pfn_in_nid(pfn, nid))
4037 continue;
4038 }
d41dee36
AW
4039 page = pfn_to_page(pfn);
4040 set_page_links(page, zone, nid, pfn);
708614e6 4041 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4042 init_page_count(page);
22b751c3 4043 page_mapcount_reset(page);
90572890 4044 page_cpupid_reset_last(page);
1da177e4 4045 SetPageReserved(page);
b2a0ac88
MG
4046 /*
4047 * Mark the block movable so that blocks are reserved for
4048 * movable at startup. This will force kernel allocations
4049 * to reserve their blocks rather than leaking throughout
4050 * the address space during boot when many long-lived
56fd56b8
MG
4051 * kernel allocations are made. Later some blocks near
4052 * the start are marked MIGRATE_RESERVE by
4053 * setup_zone_migrate_reserve()
86051ca5
KH
4054 *
4055 * bitmap is created for zone's valid pfn range. but memmap
4056 * can be created for invalid pages (for alignment)
4057 * check here not to call set_pageblock_migratetype() against
4058 * pfn out of zone.
b2a0ac88 4059 */
86051ca5 4060 if ((z->zone_start_pfn <= pfn)
108bcc96 4061 && (pfn < zone_end_pfn(z))
86051ca5 4062 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4063 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4064
1da177e4
LT
4065 INIT_LIST_HEAD(&page->lru);
4066#ifdef WANT_PAGE_VIRTUAL
4067 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4068 if (!is_highmem_idx(zone))
3212c6be 4069 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4070#endif
1da177e4
LT
4071 }
4072}
4073
1e548deb 4074static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4075{
b2a0ac88
MG
4076 int order, t;
4077 for_each_migratetype_order(order, t) {
4078 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4079 zone->free_area[order].nr_free = 0;
4080 }
4081}
4082
4083#ifndef __HAVE_ARCH_MEMMAP_INIT
4084#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4085 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4086#endif
4087
4ed7e022 4088static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4089{
3a6be87f 4090#ifdef CONFIG_MMU
e7c8d5c9
CL
4091 int batch;
4092
4093 /*
4094 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4095 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4096 *
4097 * OK, so we don't know how big the cache is. So guess.
4098 */
b40da049 4099 batch = zone->managed_pages / 1024;
ba56e91c
SR
4100 if (batch * PAGE_SIZE > 512 * 1024)
4101 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4102 batch /= 4; /* We effectively *= 4 below */
4103 if (batch < 1)
4104 batch = 1;
4105
4106 /*
0ceaacc9
NP
4107 * Clamp the batch to a 2^n - 1 value. Having a power
4108 * of 2 value was found to be more likely to have
4109 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4110 *
0ceaacc9
NP
4111 * For example if 2 tasks are alternately allocating
4112 * batches of pages, one task can end up with a lot
4113 * of pages of one half of the possible page colors
4114 * and the other with pages of the other colors.
e7c8d5c9 4115 */
9155203a 4116 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4117
e7c8d5c9 4118 return batch;
3a6be87f
DH
4119
4120#else
4121 /* The deferral and batching of frees should be suppressed under NOMMU
4122 * conditions.
4123 *
4124 * The problem is that NOMMU needs to be able to allocate large chunks
4125 * of contiguous memory as there's no hardware page translation to
4126 * assemble apparent contiguous memory from discontiguous pages.
4127 *
4128 * Queueing large contiguous runs of pages for batching, however,
4129 * causes the pages to actually be freed in smaller chunks. As there
4130 * can be a significant delay between the individual batches being
4131 * recycled, this leads to the once large chunks of space being
4132 * fragmented and becoming unavailable for high-order allocations.
4133 */
4134 return 0;
4135#endif
e7c8d5c9
CL
4136}
4137
8d7a8fa9
CS
4138/*
4139 * pcp->high and pcp->batch values are related and dependent on one another:
4140 * ->batch must never be higher then ->high.
4141 * The following function updates them in a safe manner without read side
4142 * locking.
4143 *
4144 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4145 * those fields changing asynchronously (acording the the above rule).
4146 *
4147 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4148 * outside of boot time (or some other assurance that no concurrent updaters
4149 * exist).
4150 */
4151static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4152 unsigned long batch)
4153{
4154 /* start with a fail safe value for batch */
4155 pcp->batch = 1;
4156 smp_wmb();
4157
4158 /* Update high, then batch, in order */
4159 pcp->high = high;
4160 smp_wmb();
4161
4162 pcp->batch = batch;
4163}
4164
3664033c 4165/* a companion to pageset_set_high() */
4008bab7
CS
4166static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4167{
8d7a8fa9 4168 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4169}
4170
88c90dbc 4171static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4172{
4173 struct per_cpu_pages *pcp;
5f8dcc21 4174 int migratetype;
2caaad41 4175
1c6fe946
MD
4176 memset(p, 0, sizeof(*p));
4177
3dfa5721 4178 pcp = &p->pcp;
2caaad41 4179 pcp->count = 0;
5f8dcc21
MG
4180 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4181 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4182}
4183
88c90dbc
CS
4184static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4185{
4186 pageset_init(p);
4187 pageset_set_batch(p, batch);
4188}
4189
8ad4b1fb 4190/*
3664033c 4191 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4192 * to the value high for the pageset p.
4193 */
3664033c 4194static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4195 unsigned long high)
4196{
8d7a8fa9
CS
4197 unsigned long batch = max(1UL, high / 4);
4198 if ((high / 4) > (PAGE_SHIFT * 8))
4199 batch = PAGE_SHIFT * 8;
8ad4b1fb 4200
8d7a8fa9 4201 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4202}
4203
169f6c19
CS
4204static void __meminit pageset_set_high_and_batch(struct zone *zone,
4205 struct per_cpu_pageset *pcp)
56cef2b8 4206{
56cef2b8 4207 if (percpu_pagelist_fraction)
3664033c 4208 pageset_set_high(pcp,
56cef2b8
CS
4209 (zone->managed_pages /
4210 percpu_pagelist_fraction));
4211 else
4212 pageset_set_batch(pcp, zone_batchsize(zone));
4213}
4214
169f6c19
CS
4215static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4216{
4217 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4218
4219 pageset_init(pcp);
4220 pageset_set_high_and_batch(zone, pcp);
4221}
4222
4ed7e022 4223static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4224{
4225 int cpu;
319774e2 4226 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4227 for_each_possible_cpu(cpu)
4228 zone_pageset_init(zone, cpu);
319774e2
WF
4229}
4230
2caaad41 4231/*
99dcc3e5
CL
4232 * Allocate per cpu pagesets and initialize them.
4233 * Before this call only boot pagesets were available.
e7c8d5c9 4234 */
99dcc3e5 4235void __init setup_per_cpu_pageset(void)
e7c8d5c9 4236{
99dcc3e5 4237 struct zone *zone;
e7c8d5c9 4238
319774e2
WF
4239 for_each_populated_zone(zone)
4240 setup_zone_pageset(zone);
e7c8d5c9
CL
4241}
4242
577a32f6 4243static noinline __init_refok
cca448fe 4244int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4245{
4246 int i;
cca448fe 4247 size_t alloc_size;
ed8ece2e
DH
4248
4249 /*
4250 * The per-page waitqueue mechanism uses hashed waitqueues
4251 * per zone.
4252 */
02b694de
YG
4253 zone->wait_table_hash_nr_entries =
4254 wait_table_hash_nr_entries(zone_size_pages);
4255 zone->wait_table_bits =
4256 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4257 alloc_size = zone->wait_table_hash_nr_entries
4258 * sizeof(wait_queue_head_t);
4259
cd94b9db 4260 if (!slab_is_available()) {
cca448fe 4261 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4262 memblock_virt_alloc_node_nopanic(
4263 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4264 } else {
4265 /*
4266 * This case means that a zone whose size was 0 gets new memory
4267 * via memory hot-add.
4268 * But it may be the case that a new node was hot-added. In
4269 * this case vmalloc() will not be able to use this new node's
4270 * memory - this wait_table must be initialized to use this new
4271 * node itself as well.
4272 * To use this new node's memory, further consideration will be
4273 * necessary.
4274 */
8691f3a7 4275 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4276 }
4277 if (!zone->wait_table)
4278 return -ENOMEM;
ed8ece2e 4279
b8af2941 4280 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4281 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4282
4283 return 0;
ed8ece2e
DH
4284}
4285
c09b4240 4286static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4287{
99dcc3e5
CL
4288 /*
4289 * per cpu subsystem is not up at this point. The following code
4290 * relies on the ability of the linker to provide the
4291 * offset of a (static) per cpu variable into the per cpu area.
4292 */
4293 zone->pageset = &boot_pageset;
ed8ece2e 4294
b38a8725 4295 if (populated_zone(zone))
99dcc3e5
CL
4296 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4297 zone->name, zone->present_pages,
4298 zone_batchsize(zone));
ed8ece2e
DH
4299}
4300
4ed7e022 4301int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4302 unsigned long zone_start_pfn,
a2f3aa02
DH
4303 unsigned long size,
4304 enum memmap_context context)
ed8ece2e
DH
4305{
4306 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4307 int ret;
4308 ret = zone_wait_table_init(zone, size);
4309 if (ret)
4310 return ret;
ed8ece2e
DH
4311 pgdat->nr_zones = zone_idx(zone) + 1;
4312
ed8ece2e
DH
4313 zone->zone_start_pfn = zone_start_pfn;
4314
708614e6
MG
4315 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4316 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4317 pgdat->node_id,
4318 (unsigned long)zone_idx(zone),
4319 zone_start_pfn, (zone_start_pfn + size));
4320
1e548deb 4321 zone_init_free_lists(zone);
718127cc
YG
4322
4323 return 0;
ed8ece2e
DH
4324}
4325
0ee332c1 4326#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4327#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4328/*
4329 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4330 * Architectures may implement their own version but if add_active_range()
4331 * was used and there are no special requirements, this is a convenient
4332 * alternative
4333 */
f2dbcfa7 4334int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4335{
c13291a5 4336 unsigned long start_pfn, end_pfn;
e76b63f8 4337 int nid;
7c243c71
RA
4338 /*
4339 * NOTE: The following SMP-unsafe globals are only used early in boot
4340 * when the kernel is running single-threaded.
4341 */
4342 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4343 static int __meminitdata last_nid;
4344
4345 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4346 return last_nid;
c713216d 4347
e76b63f8
YL
4348 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4349 if (nid != -1) {
4350 last_start_pfn = start_pfn;
4351 last_end_pfn = end_pfn;
4352 last_nid = nid;
4353 }
4354
4355 return nid;
c713216d
MG
4356}
4357#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4358
f2dbcfa7
KH
4359int __meminit early_pfn_to_nid(unsigned long pfn)
4360{
cc2559bc
KH
4361 int nid;
4362
4363 nid = __early_pfn_to_nid(pfn);
4364 if (nid >= 0)
4365 return nid;
4366 /* just returns 0 */
4367 return 0;
f2dbcfa7
KH
4368}
4369
cc2559bc
KH
4370#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4371bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4372{
4373 int nid;
4374
4375 nid = __early_pfn_to_nid(pfn);
4376 if (nid >= 0 && nid != node)
4377 return false;
4378 return true;
4379}
4380#endif
f2dbcfa7 4381
c713216d 4382/**
6782832e 4383 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4384 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4385 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4386 *
4387 * If an architecture guarantees that all ranges registered with
4388 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4389 * this function may be used instead of calling memblock_free_early_nid()
4390 * manually.
c713216d 4391 */
c13291a5 4392void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4393{
c13291a5
TH
4394 unsigned long start_pfn, end_pfn;
4395 int i, this_nid;
edbe7d23 4396
c13291a5
TH
4397 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4398 start_pfn = min(start_pfn, max_low_pfn);
4399 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4400
c13291a5 4401 if (start_pfn < end_pfn)
6782832e
SS
4402 memblock_free_early_nid(PFN_PHYS(start_pfn),
4403 (end_pfn - start_pfn) << PAGE_SHIFT,
4404 this_nid);
edbe7d23 4405 }
edbe7d23 4406}
edbe7d23 4407
c713216d
MG
4408/**
4409 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4410 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4411 *
4412 * If an architecture guarantees that all ranges registered with
4413 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4414 * function may be used instead of calling memory_present() manually.
c713216d
MG
4415 */
4416void __init sparse_memory_present_with_active_regions(int nid)
4417{
c13291a5
TH
4418 unsigned long start_pfn, end_pfn;
4419 int i, this_nid;
c713216d 4420
c13291a5
TH
4421 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4422 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4423}
4424
4425/**
4426 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4427 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4428 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4429 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4430 *
4431 * It returns the start and end page frame of a node based on information
4432 * provided by an arch calling add_active_range(). If called for a node
4433 * with no available memory, a warning is printed and the start and end
88ca3b94 4434 * PFNs will be 0.
c713216d 4435 */
a3142c8e 4436void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4437 unsigned long *start_pfn, unsigned long *end_pfn)
4438{
c13291a5 4439 unsigned long this_start_pfn, this_end_pfn;
c713216d 4440 int i;
c13291a5 4441
c713216d
MG
4442 *start_pfn = -1UL;
4443 *end_pfn = 0;
4444
c13291a5
TH
4445 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4446 *start_pfn = min(*start_pfn, this_start_pfn);
4447 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4448 }
4449
633c0666 4450 if (*start_pfn == -1UL)
c713216d 4451 *start_pfn = 0;
c713216d
MG
4452}
4453
2a1e274a
MG
4454/*
4455 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4456 * assumption is made that zones within a node are ordered in monotonic
4457 * increasing memory addresses so that the "highest" populated zone is used
4458 */
b69a7288 4459static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4460{
4461 int zone_index;
4462 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4463 if (zone_index == ZONE_MOVABLE)
4464 continue;
4465
4466 if (arch_zone_highest_possible_pfn[zone_index] >
4467 arch_zone_lowest_possible_pfn[zone_index])
4468 break;
4469 }
4470
4471 VM_BUG_ON(zone_index == -1);
4472 movable_zone = zone_index;
4473}
4474
4475/*
4476 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4477 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4478 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4479 * in each node depending on the size of each node and how evenly kernelcore
4480 * is distributed. This helper function adjusts the zone ranges
4481 * provided by the architecture for a given node by using the end of the
4482 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4483 * zones within a node are in order of monotonic increases memory addresses
4484 */
b69a7288 4485static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4486 unsigned long zone_type,
4487 unsigned long node_start_pfn,
4488 unsigned long node_end_pfn,
4489 unsigned long *zone_start_pfn,
4490 unsigned long *zone_end_pfn)
4491{
4492 /* Only adjust if ZONE_MOVABLE is on this node */
4493 if (zone_movable_pfn[nid]) {
4494 /* Size ZONE_MOVABLE */
4495 if (zone_type == ZONE_MOVABLE) {
4496 *zone_start_pfn = zone_movable_pfn[nid];
4497 *zone_end_pfn = min(node_end_pfn,
4498 arch_zone_highest_possible_pfn[movable_zone]);
4499
4500 /* Adjust for ZONE_MOVABLE starting within this range */
4501 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4502 *zone_end_pfn > zone_movable_pfn[nid]) {
4503 *zone_end_pfn = zone_movable_pfn[nid];
4504
4505 /* Check if this whole range is within ZONE_MOVABLE */
4506 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4507 *zone_start_pfn = *zone_end_pfn;
4508 }
4509}
4510
c713216d
MG
4511/*
4512 * Return the number of pages a zone spans in a node, including holes
4513 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4514 */
6ea6e688 4515static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4516 unsigned long zone_type,
7960aedd
ZY
4517 unsigned long node_start_pfn,
4518 unsigned long node_end_pfn,
c713216d
MG
4519 unsigned long *ignored)
4520{
c713216d
MG
4521 unsigned long zone_start_pfn, zone_end_pfn;
4522
7960aedd 4523 /* Get the start and end of the zone */
c713216d
MG
4524 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4525 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4526 adjust_zone_range_for_zone_movable(nid, zone_type,
4527 node_start_pfn, node_end_pfn,
4528 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4529
4530 /* Check that this node has pages within the zone's required range */
4531 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4532 return 0;
4533
4534 /* Move the zone boundaries inside the node if necessary */
4535 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4536 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4537
4538 /* Return the spanned pages */
4539 return zone_end_pfn - zone_start_pfn;
4540}
4541
4542/*
4543 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4544 * then all holes in the requested range will be accounted for.
c713216d 4545 */
32996250 4546unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4547 unsigned long range_start_pfn,
4548 unsigned long range_end_pfn)
4549{
96e907d1
TH
4550 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4551 unsigned long start_pfn, end_pfn;
4552 int i;
c713216d 4553
96e907d1
TH
4554 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4555 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4556 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4557 nr_absent -= end_pfn - start_pfn;
c713216d 4558 }
96e907d1 4559 return nr_absent;
c713216d
MG
4560}
4561
4562/**
4563 * absent_pages_in_range - Return number of page frames in holes within a range
4564 * @start_pfn: The start PFN to start searching for holes
4565 * @end_pfn: The end PFN to stop searching for holes
4566 *
88ca3b94 4567 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4568 */
4569unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4570 unsigned long end_pfn)
4571{
4572 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4573}
4574
4575/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4576static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4577 unsigned long zone_type,
7960aedd
ZY
4578 unsigned long node_start_pfn,
4579 unsigned long node_end_pfn,
c713216d
MG
4580 unsigned long *ignored)
4581{
96e907d1
TH
4582 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4583 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4584 unsigned long zone_start_pfn, zone_end_pfn;
4585
96e907d1
TH
4586 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4587 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4588
2a1e274a
MG
4589 adjust_zone_range_for_zone_movable(nid, zone_type,
4590 node_start_pfn, node_end_pfn,
4591 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4592 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4593}
0e0b864e 4594
0ee332c1 4595#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4596static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4597 unsigned long zone_type,
7960aedd
ZY
4598 unsigned long node_start_pfn,
4599 unsigned long node_end_pfn,
c713216d
MG
4600 unsigned long *zones_size)
4601{
4602 return zones_size[zone_type];
4603}
4604
6ea6e688 4605static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4606 unsigned long zone_type,
7960aedd
ZY
4607 unsigned long node_start_pfn,
4608 unsigned long node_end_pfn,
c713216d
MG
4609 unsigned long *zholes_size)
4610{
4611 if (!zholes_size)
4612 return 0;
4613
4614 return zholes_size[zone_type];
4615}
20e6926d 4616
0ee332c1 4617#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4618
a3142c8e 4619static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4620 unsigned long node_start_pfn,
4621 unsigned long node_end_pfn,
4622 unsigned long *zones_size,
4623 unsigned long *zholes_size)
c713216d
MG
4624{
4625 unsigned long realtotalpages, totalpages = 0;
4626 enum zone_type i;
4627
4628 for (i = 0; i < MAX_NR_ZONES; i++)
4629 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4630 node_start_pfn,
4631 node_end_pfn,
4632 zones_size);
c713216d
MG
4633 pgdat->node_spanned_pages = totalpages;
4634
4635 realtotalpages = totalpages;
4636 for (i = 0; i < MAX_NR_ZONES; i++)
4637 realtotalpages -=
4638 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4639 node_start_pfn, node_end_pfn,
4640 zholes_size);
c713216d
MG
4641 pgdat->node_present_pages = realtotalpages;
4642 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4643 realtotalpages);
4644}
4645
835c134e
MG
4646#ifndef CONFIG_SPARSEMEM
4647/*
4648 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4649 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4650 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4651 * round what is now in bits to nearest long in bits, then return it in
4652 * bytes.
4653 */
7c45512d 4654static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4655{
4656 unsigned long usemapsize;
4657
7c45512d 4658 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4659 usemapsize = roundup(zonesize, pageblock_nr_pages);
4660 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4661 usemapsize *= NR_PAGEBLOCK_BITS;
4662 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4663
4664 return usemapsize / 8;
4665}
4666
4667static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4668 struct zone *zone,
4669 unsigned long zone_start_pfn,
4670 unsigned long zonesize)
835c134e 4671{
7c45512d 4672 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4673 zone->pageblock_flags = NULL;
58a01a45 4674 if (usemapsize)
6782832e
SS
4675 zone->pageblock_flags =
4676 memblock_virt_alloc_node_nopanic(usemapsize,
4677 pgdat->node_id);
835c134e
MG
4678}
4679#else
7c45512d
LT
4680static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4681 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4682#endif /* CONFIG_SPARSEMEM */
4683
d9c23400 4684#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4685
d9c23400 4686/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4687void __paginginit set_pageblock_order(void)
d9c23400 4688{
955c1cd7
AM
4689 unsigned int order;
4690
d9c23400
MG
4691 /* Check that pageblock_nr_pages has not already been setup */
4692 if (pageblock_order)
4693 return;
4694
955c1cd7
AM
4695 if (HPAGE_SHIFT > PAGE_SHIFT)
4696 order = HUGETLB_PAGE_ORDER;
4697 else
4698 order = MAX_ORDER - 1;
4699
d9c23400
MG
4700 /*
4701 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4702 * This value may be variable depending on boot parameters on IA64 and
4703 * powerpc.
d9c23400
MG
4704 */
4705 pageblock_order = order;
4706}
4707#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4708
ba72cb8c
MG
4709/*
4710 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4711 * is unused as pageblock_order is set at compile-time. See
4712 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4713 * the kernel config
ba72cb8c 4714 */
15ca220e 4715void __paginginit set_pageblock_order(void)
ba72cb8c 4716{
ba72cb8c 4717}
d9c23400
MG
4718
4719#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4720
01cefaef
JL
4721static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4722 unsigned long present_pages)
4723{
4724 unsigned long pages = spanned_pages;
4725
4726 /*
4727 * Provide a more accurate estimation if there are holes within
4728 * the zone and SPARSEMEM is in use. If there are holes within the
4729 * zone, each populated memory region may cost us one or two extra
4730 * memmap pages due to alignment because memmap pages for each
4731 * populated regions may not naturally algined on page boundary.
4732 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4733 */
4734 if (spanned_pages > present_pages + (present_pages >> 4) &&
4735 IS_ENABLED(CONFIG_SPARSEMEM))
4736 pages = present_pages;
4737
4738 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4739}
4740
1da177e4
LT
4741/*
4742 * Set up the zone data structures:
4743 * - mark all pages reserved
4744 * - mark all memory queues empty
4745 * - clear the memory bitmaps
6527af5d
MK
4746 *
4747 * NOTE: pgdat should get zeroed by caller.
1da177e4 4748 */
b5a0e011 4749static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4750 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4751 unsigned long *zones_size, unsigned long *zholes_size)
4752{
2f1b6248 4753 enum zone_type j;
ed8ece2e 4754 int nid = pgdat->node_id;
1da177e4 4755 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4756 int ret;
1da177e4 4757
208d54e5 4758 pgdat_resize_init(pgdat);
8177a420
AA
4759#ifdef CONFIG_NUMA_BALANCING
4760 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4761 pgdat->numabalancing_migrate_nr_pages = 0;
4762 pgdat->numabalancing_migrate_next_window = jiffies;
4763#endif
1da177e4 4764 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4765 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4766 pgdat_page_cgroup_init(pgdat);
5f63b720 4767
1da177e4
LT
4768 for (j = 0; j < MAX_NR_ZONES; j++) {
4769 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4770 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4771
7960aedd
ZY
4772 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4773 node_end_pfn, zones_size);
9feedc9d 4774 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4775 node_start_pfn,
4776 node_end_pfn,
c713216d 4777 zholes_size);
1da177e4 4778
0e0b864e 4779 /*
9feedc9d 4780 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4781 * is used by this zone for memmap. This affects the watermark
4782 * and per-cpu initialisations
4783 */
01cefaef 4784 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4785 if (freesize >= memmap_pages) {
4786 freesize -= memmap_pages;
5594c8c8
YL
4787 if (memmap_pages)
4788 printk(KERN_DEBUG
4789 " %s zone: %lu pages used for memmap\n",
4790 zone_names[j], memmap_pages);
0e0b864e
MG
4791 } else
4792 printk(KERN_WARNING
9feedc9d
JL
4793 " %s zone: %lu pages exceeds freesize %lu\n",
4794 zone_names[j], memmap_pages, freesize);
0e0b864e 4795
6267276f 4796 /* Account for reserved pages */
9feedc9d
JL
4797 if (j == 0 && freesize > dma_reserve) {
4798 freesize -= dma_reserve;
d903ef9f 4799 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4800 zone_names[0], dma_reserve);
0e0b864e
MG
4801 }
4802
98d2b0eb 4803 if (!is_highmem_idx(j))
9feedc9d 4804 nr_kernel_pages += freesize;
01cefaef
JL
4805 /* Charge for highmem memmap if there are enough kernel pages */
4806 else if (nr_kernel_pages > memmap_pages * 2)
4807 nr_kernel_pages -= memmap_pages;
9feedc9d 4808 nr_all_pages += freesize;
1da177e4
LT
4809
4810 zone->spanned_pages = size;
306f2e9e 4811 zone->present_pages = realsize;
9feedc9d
JL
4812 /*
4813 * Set an approximate value for lowmem here, it will be adjusted
4814 * when the bootmem allocator frees pages into the buddy system.
4815 * And all highmem pages will be managed by the buddy system.
4816 */
4817 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4818#ifdef CONFIG_NUMA
d5f541ed 4819 zone->node = nid;
9feedc9d 4820 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4821 / 100;
9feedc9d 4822 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4823#endif
1da177e4
LT
4824 zone->name = zone_names[j];
4825 spin_lock_init(&zone->lock);
4826 spin_lock_init(&zone->lru_lock);
bdc8cb98 4827 zone_seqlock_init(zone);
1da177e4 4828 zone->zone_pgdat = pgdat;
ed8ece2e 4829 zone_pcp_init(zone);
81c0a2bb
JW
4830
4831 /* For bootup, initialized properly in watermark setup */
4832 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4833
bea8c150 4834 lruvec_init(&zone->lruvec);
1da177e4
LT
4835 if (!size)
4836 continue;
4837
955c1cd7 4838 set_pageblock_order();
7c45512d 4839 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4840 ret = init_currently_empty_zone(zone, zone_start_pfn,
4841 size, MEMMAP_EARLY);
718127cc 4842 BUG_ON(ret);
76cdd58e 4843 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4844 zone_start_pfn += size;
1da177e4
LT
4845 }
4846}
4847
577a32f6 4848static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4849{
1da177e4
LT
4850 /* Skip empty nodes */
4851 if (!pgdat->node_spanned_pages)
4852 return;
4853
d41dee36 4854#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4855 /* ia64 gets its own node_mem_map, before this, without bootmem */
4856 if (!pgdat->node_mem_map) {
e984bb43 4857 unsigned long size, start, end;
d41dee36
AW
4858 struct page *map;
4859
e984bb43
BP
4860 /*
4861 * The zone's endpoints aren't required to be MAX_ORDER
4862 * aligned but the node_mem_map endpoints must be in order
4863 * for the buddy allocator to function correctly.
4864 */
4865 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4866 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4867 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4868 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4869 map = alloc_remap(pgdat->node_id, size);
4870 if (!map)
6782832e
SS
4871 map = memblock_virt_alloc_node_nopanic(size,
4872 pgdat->node_id);
e984bb43 4873 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4874 }
12d810c1 4875#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4876 /*
4877 * With no DISCONTIG, the global mem_map is just set as node 0's
4878 */
c713216d 4879 if (pgdat == NODE_DATA(0)) {
1da177e4 4880 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4881#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4882 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4883 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4884#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4885 }
1da177e4 4886#endif
d41dee36 4887#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4888}
4889
9109fb7b
JW
4890void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4891 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4892{
9109fb7b 4893 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4894 unsigned long start_pfn = 0;
4895 unsigned long end_pfn = 0;
9109fb7b 4896
88fdf75d 4897 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4898 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4899
1da177e4
LT
4900 pgdat->node_id = nid;
4901 pgdat->node_start_pfn = node_start_pfn;
957f822a 4902 init_zone_allows_reclaim(nid);
7960aedd
ZY
4903#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4905#endif
4906 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4907 zones_size, zholes_size);
1da177e4
LT
4908
4909 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4910#ifdef CONFIG_FLAT_NODE_MEM_MAP
4911 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4912 nid, (unsigned long)pgdat,
4913 (unsigned long)pgdat->node_mem_map);
4914#endif
1da177e4 4915
7960aedd
ZY
4916 free_area_init_core(pgdat, start_pfn, end_pfn,
4917 zones_size, zholes_size);
1da177e4
LT
4918}
4919
0ee332c1 4920#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4921
4922#if MAX_NUMNODES > 1
4923/*
4924 * Figure out the number of possible node ids.
4925 */
f9872caf 4926void __init setup_nr_node_ids(void)
418508c1
MS
4927{
4928 unsigned int node;
4929 unsigned int highest = 0;
4930
4931 for_each_node_mask(node, node_possible_map)
4932 highest = node;
4933 nr_node_ids = highest + 1;
4934}
418508c1
MS
4935#endif
4936
1e01979c
TH
4937/**
4938 * node_map_pfn_alignment - determine the maximum internode alignment
4939 *
4940 * This function should be called after node map is populated and sorted.
4941 * It calculates the maximum power of two alignment which can distinguish
4942 * all the nodes.
4943 *
4944 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4945 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4946 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4947 * shifted, 1GiB is enough and this function will indicate so.
4948 *
4949 * This is used to test whether pfn -> nid mapping of the chosen memory
4950 * model has fine enough granularity to avoid incorrect mapping for the
4951 * populated node map.
4952 *
4953 * Returns the determined alignment in pfn's. 0 if there is no alignment
4954 * requirement (single node).
4955 */
4956unsigned long __init node_map_pfn_alignment(void)
4957{
4958 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4959 unsigned long start, end, mask;
1e01979c 4960 int last_nid = -1;
c13291a5 4961 int i, nid;
1e01979c 4962
c13291a5 4963 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4964 if (!start || last_nid < 0 || last_nid == nid) {
4965 last_nid = nid;
4966 last_end = end;
4967 continue;
4968 }
4969
4970 /*
4971 * Start with a mask granular enough to pin-point to the
4972 * start pfn and tick off bits one-by-one until it becomes
4973 * too coarse to separate the current node from the last.
4974 */
4975 mask = ~((1 << __ffs(start)) - 1);
4976 while (mask && last_end <= (start & (mask << 1)))
4977 mask <<= 1;
4978
4979 /* accumulate all internode masks */
4980 accl_mask |= mask;
4981 }
4982
4983 /* convert mask to number of pages */
4984 return ~accl_mask + 1;
4985}
4986
a6af2bc3 4987/* Find the lowest pfn for a node */
b69a7288 4988static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4989{
a6af2bc3 4990 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4991 unsigned long start_pfn;
4992 int i;
1abbfb41 4993
c13291a5
TH
4994 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4995 min_pfn = min(min_pfn, start_pfn);
c713216d 4996
a6af2bc3
MG
4997 if (min_pfn == ULONG_MAX) {
4998 printk(KERN_WARNING
2bc0d261 4999 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5000 return 0;
5001 }
5002
5003 return min_pfn;
c713216d
MG
5004}
5005
5006/**
5007 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5008 *
5009 * It returns the minimum PFN based on information provided via
88ca3b94 5010 * add_active_range().
c713216d
MG
5011 */
5012unsigned long __init find_min_pfn_with_active_regions(void)
5013{
5014 return find_min_pfn_for_node(MAX_NUMNODES);
5015}
5016
37b07e41
LS
5017/*
5018 * early_calculate_totalpages()
5019 * Sum pages in active regions for movable zone.
4b0ef1fe 5020 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5021 */
484f51f8 5022static unsigned long __init early_calculate_totalpages(void)
7e63efef 5023{
7e63efef 5024 unsigned long totalpages = 0;
c13291a5
TH
5025 unsigned long start_pfn, end_pfn;
5026 int i, nid;
5027
5028 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5029 unsigned long pages = end_pfn - start_pfn;
7e63efef 5030
37b07e41
LS
5031 totalpages += pages;
5032 if (pages)
4b0ef1fe 5033 node_set_state(nid, N_MEMORY);
37b07e41 5034 }
b8af2941 5035 return totalpages;
7e63efef
MG
5036}
5037
2a1e274a
MG
5038/*
5039 * Find the PFN the Movable zone begins in each node. Kernel memory
5040 * is spread evenly between nodes as long as the nodes have enough
5041 * memory. When they don't, some nodes will have more kernelcore than
5042 * others
5043 */
b224ef85 5044static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5045{
5046 int i, nid;
5047 unsigned long usable_startpfn;
5048 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5049 /* save the state before borrow the nodemask */
4b0ef1fe 5050 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5051 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5052 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
b2f3eebe
TC
5053 struct memblock_type *type = &memblock.memory;
5054
5055 /* Need to find movable_zone earlier when movable_node is specified. */
5056 find_usable_zone_for_movable();
5057
5058 /*
5059 * If movable_node is specified, ignore kernelcore and movablecore
5060 * options.
5061 */
5062 if (movable_node_is_enabled()) {
5063 for (i = 0; i < type->cnt; i++) {
5064 if (!memblock_is_hotpluggable(&type->regions[i]))
5065 continue;
5066
5067 nid = type->regions[i].nid;
5068
5069 usable_startpfn = PFN_DOWN(type->regions[i].base);
5070 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5071 min(usable_startpfn, zone_movable_pfn[nid]) :
5072 usable_startpfn;
5073 }
5074
5075 goto out2;
5076 }
2a1e274a 5077
7e63efef 5078 /*
b2f3eebe 5079 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5080 * kernelcore that corresponds so that memory usable for
5081 * any allocation type is evenly spread. If both kernelcore
5082 * and movablecore are specified, then the value of kernelcore
5083 * will be used for required_kernelcore if it's greater than
5084 * what movablecore would have allowed.
5085 */
5086 if (required_movablecore) {
7e63efef
MG
5087 unsigned long corepages;
5088
5089 /*
5090 * Round-up so that ZONE_MOVABLE is at least as large as what
5091 * was requested by the user
5092 */
5093 required_movablecore =
5094 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5095 corepages = totalpages - required_movablecore;
5096
5097 required_kernelcore = max(required_kernelcore, corepages);
5098 }
5099
20e6926d
YL
5100 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5101 if (!required_kernelcore)
66918dcd 5102 goto out;
2a1e274a
MG
5103
5104 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5105 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5106
5107restart:
5108 /* Spread kernelcore memory as evenly as possible throughout nodes */
5109 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5110 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5111 unsigned long start_pfn, end_pfn;
5112
2a1e274a
MG
5113 /*
5114 * Recalculate kernelcore_node if the division per node
5115 * now exceeds what is necessary to satisfy the requested
5116 * amount of memory for the kernel
5117 */
5118 if (required_kernelcore < kernelcore_node)
5119 kernelcore_node = required_kernelcore / usable_nodes;
5120
5121 /*
5122 * As the map is walked, we track how much memory is usable
5123 * by the kernel using kernelcore_remaining. When it is
5124 * 0, the rest of the node is usable by ZONE_MOVABLE
5125 */
5126 kernelcore_remaining = kernelcore_node;
5127
5128 /* Go through each range of PFNs within this node */
c13291a5 5129 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5130 unsigned long size_pages;
5131
c13291a5 5132 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5133 if (start_pfn >= end_pfn)
5134 continue;
5135
5136 /* Account for what is only usable for kernelcore */
5137 if (start_pfn < usable_startpfn) {
5138 unsigned long kernel_pages;
5139 kernel_pages = min(end_pfn, usable_startpfn)
5140 - start_pfn;
5141
5142 kernelcore_remaining -= min(kernel_pages,
5143 kernelcore_remaining);
5144 required_kernelcore -= min(kernel_pages,
5145 required_kernelcore);
5146
5147 /* Continue if range is now fully accounted */
5148 if (end_pfn <= usable_startpfn) {
5149
5150 /*
5151 * Push zone_movable_pfn to the end so
5152 * that if we have to rebalance
5153 * kernelcore across nodes, we will
5154 * not double account here
5155 */
5156 zone_movable_pfn[nid] = end_pfn;
5157 continue;
5158 }
5159 start_pfn = usable_startpfn;
5160 }
5161
5162 /*
5163 * The usable PFN range for ZONE_MOVABLE is from
5164 * start_pfn->end_pfn. Calculate size_pages as the
5165 * number of pages used as kernelcore
5166 */
5167 size_pages = end_pfn - start_pfn;
5168 if (size_pages > kernelcore_remaining)
5169 size_pages = kernelcore_remaining;
5170 zone_movable_pfn[nid] = start_pfn + size_pages;
5171
5172 /*
5173 * Some kernelcore has been met, update counts and
5174 * break if the kernelcore for this node has been
b8af2941 5175 * satisfied
2a1e274a
MG
5176 */
5177 required_kernelcore -= min(required_kernelcore,
5178 size_pages);
5179 kernelcore_remaining -= size_pages;
5180 if (!kernelcore_remaining)
5181 break;
5182 }
5183 }
5184
5185 /*
5186 * If there is still required_kernelcore, we do another pass with one
5187 * less node in the count. This will push zone_movable_pfn[nid] further
5188 * along on the nodes that still have memory until kernelcore is
b8af2941 5189 * satisfied
2a1e274a
MG
5190 */
5191 usable_nodes--;
5192 if (usable_nodes && required_kernelcore > usable_nodes)
5193 goto restart;
5194
b2f3eebe 5195out2:
2a1e274a
MG
5196 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5197 for (nid = 0; nid < MAX_NUMNODES; nid++)
5198 zone_movable_pfn[nid] =
5199 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5200
20e6926d 5201out:
66918dcd 5202 /* restore the node_state */
4b0ef1fe 5203 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5204}
5205
4b0ef1fe
LJ
5206/* Any regular or high memory on that node ? */
5207static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5208{
37b07e41
LS
5209 enum zone_type zone_type;
5210
4b0ef1fe
LJ
5211 if (N_MEMORY == N_NORMAL_MEMORY)
5212 return;
5213
5214 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5215 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5216 if (populated_zone(zone)) {
4b0ef1fe
LJ
5217 node_set_state(nid, N_HIGH_MEMORY);
5218 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5219 zone_type <= ZONE_NORMAL)
5220 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5221 break;
5222 }
37b07e41 5223 }
37b07e41
LS
5224}
5225
c713216d
MG
5226/**
5227 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5228 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5229 *
5230 * This will call free_area_init_node() for each active node in the system.
5231 * Using the page ranges provided by add_active_range(), the size of each
5232 * zone in each node and their holes is calculated. If the maximum PFN
5233 * between two adjacent zones match, it is assumed that the zone is empty.
5234 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5235 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5236 * starts where the previous one ended. For example, ZONE_DMA32 starts
5237 * at arch_max_dma_pfn.
5238 */
5239void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5240{
c13291a5
TH
5241 unsigned long start_pfn, end_pfn;
5242 int i, nid;
a6af2bc3 5243
c713216d
MG
5244 /* Record where the zone boundaries are */
5245 memset(arch_zone_lowest_possible_pfn, 0,
5246 sizeof(arch_zone_lowest_possible_pfn));
5247 memset(arch_zone_highest_possible_pfn, 0,
5248 sizeof(arch_zone_highest_possible_pfn));
5249 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5250 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5251 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5252 if (i == ZONE_MOVABLE)
5253 continue;
c713216d
MG
5254 arch_zone_lowest_possible_pfn[i] =
5255 arch_zone_highest_possible_pfn[i-1];
5256 arch_zone_highest_possible_pfn[i] =
5257 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5258 }
2a1e274a
MG
5259 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5260 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5261
5262 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5263 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5264 find_zone_movable_pfns_for_nodes();
c713216d 5265
c713216d 5266 /* Print out the zone ranges */
a62e2f4f 5267 printk("Zone ranges:\n");
2a1e274a
MG
5268 for (i = 0; i < MAX_NR_ZONES; i++) {
5269 if (i == ZONE_MOVABLE)
5270 continue;
155cbfc8 5271 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5272 if (arch_zone_lowest_possible_pfn[i] ==
5273 arch_zone_highest_possible_pfn[i])
155cbfc8 5274 printk(KERN_CONT "empty\n");
72f0ba02 5275 else
a62e2f4f
BH
5276 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5277 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5278 (arch_zone_highest_possible_pfn[i]
5279 << PAGE_SHIFT) - 1);
2a1e274a
MG
5280 }
5281
5282 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5283 printk("Movable zone start for each node\n");
2a1e274a
MG
5284 for (i = 0; i < MAX_NUMNODES; i++) {
5285 if (zone_movable_pfn[i])
a62e2f4f
BH
5286 printk(" Node %d: %#010lx\n", i,
5287 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5288 }
c713216d 5289
f2d52fe5 5290 /* Print out the early node map */
a62e2f4f 5291 printk("Early memory node ranges\n");
c13291a5 5292 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5293 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5294 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5295
5296 /* Initialise every node */
708614e6 5297 mminit_verify_pageflags_layout();
8ef82866 5298 setup_nr_node_ids();
c713216d
MG
5299 for_each_online_node(nid) {
5300 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5301 free_area_init_node(nid, NULL,
c713216d 5302 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5303
5304 /* Any memory on that node */
5305 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5306 node_set_state(nid, N_MEMORY);
5307 check_for_memory(pgdat, nid);
c713216d
MG
5308 }
5309}
2a1e274a 5310
7e63efef 5311static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5312{
5313 unsigned long long coremem;
5314 if (!p)
5315 return -EINVAL;
5316
5317 coremem = memparse(p, &p);
7e63efef 5318 *core = coremem >> PAGE_SHIFT;
2a1e274a 5319
7e63efef 5320 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5321 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5322
5323 return 0;
5324}
ed7ed365 5325
7e63efef
MG
5326/*
5327 * kernelcore=size sets the amount of memory for use for allocations that
5328 * cannot be reclaimed or migrated.
5329 */
5330static int __init cmdline_parse_kernelcore(char *p)
5331{
5332 return cmdline_parse_core(p, &required_kernelcore);
5333}
5334
5335/*
5336 * movablecore=size sets the amount of memory for use for allocations that
5337 * can be reclaimed or migrated.
5338 */
5339static int __init cmdline_parse_movablecore(char *p)
5340{
5341 return cmdline_parse_core(p, &required_movablecore);
5342}
5343
ed7ed365 5344early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5345early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5346
0ee332c1 5347#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5348
c3d5f5f0
JL
5349void adjust_managed_page_count(struct page *page, long count)
5350{
5351 spin_lock(&managed_page_count_lock);
5352 page_zone(page)->managed_pages += count;
5353 totalram_pages += count;
3dcc0571
JL
5354#ifdef CONFIG_HIGHMEM
5355 if (PageHighMem(page))
5356 totalhigh_pages += count;
5357#endif
c3d5f5f0
JL
5358 spin_unlock(&managed_page_count_lock);
5359}
3dcc0571 5360EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5361
11199692 5362unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5363{
11199692
JL
5364 void *pos;
5365 unsigned long pages = 0;
69afade7 5366
11199692
JL
5367 start = (void *)PAGE_ALIGN((unsigned long)start);
5368 end = (void *)((unsigned long)end & PAGE_MASK);
5369 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5370 if ((unsigned int)poison <= 0xFF)
11199692
JL
5371 memset(pos, poison, PAGE_SIZE);
5372 free_reserved_page(virt_to_page(pos));
69afade7
JL
5373 }
5374
5375 if (pages && s)
11199692 5376 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5377 s, pages << (PAGE_SHIFT - 10), start, end);
5378
5379 return pages;
5380}
11199692 5381EXPORT_SYMBOL(free_reserved_area);
69afade7 5382
cfa11e08
JL
5383#ifdef CONFIG_HIGHMEM
5384void free_highmem_page(struct page *page)
5385{
5386 __free_reserved_page(page);
5387 totalram_pages++;
7b4b2a0d 5388 page_zone(page)->managed_pages++;
cfa11e08
JL
5389 totalhigh_pages++;
5390}
5391#endif
5392
7ee3d4e8
JL
5393
5394void __init mem_init_print_info(const char *str)
5395{
5396 unsigned long physpages, codesize, datasize, rosize, bss_size;
5397 unsigned long init_code_size, init_data_size;
5398
5399 physpages = get_num_physpages();
5400 codesize = _etext - _stext;
5401 datasize = _edata - _sdata;
5402 rosize = __end_rodata - __start_rodata;
5403 bss_size = __bss_stop - __bss_start;
5404 init_data_size = __init_end - __init_begin;
5405 init_code_size = _einittext - _sinittext;
5406
5407 /*
5408 * Detect special cases and adjust section sizes accordingly:
5409 * 1) .init.* may be embedded into .data sections
5410 * 2) .init.text.* may be out of [__init_begin, __init_end],
5411 * please refer to arch/tile/kernel/vmlinux.lds.S.
5412 * 3) .rodata.* may be embedded into .text or .data sections.
5413 */
5414#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5415 do { \
5416 if (start <= pos && pos < end && size > adj) \
5417 size -= adj; \
5418 } while (0)
7ee3d4e8
JL
5419
5420 adj_init_size(__init_begin, __init_end, init_data_size,
5421 _sinittext, init_code_size);
5422 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5423 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5424 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5425 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5426
5427#undef adj_init_size
5428
5429 printk("Memory: %luK/%luK available "
5430 "(%luK kernel code, %luK rwdata, %luK rodata, "
5431 "%luK init, %luK bss, %luK reserved"
5432#ifdef CONFIG_HIGHMEM
5433 ", %luK highmem"
5434#endif
5435 "%s%s)\n",
5436 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5437 codesize >> 10, datasize >> 10, rosize >> 10,
5438 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5439 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5440#ifdef CONFIG_HIGHMEM
5441 totalhigh_pages << (PAGE_SHIFT-10),
5442#endif
5443 str ? ", " : "", str ? str : "");
5444}
5445
0e0b864e 5446/**
88ca3b94
RD
5447 * set_dma_reserve - set the specified number of pages reserved in the first zone
5448 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5449 *
5450 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5451 * In the DMA zone, a significant percentage may be consumed by kernel image
5452 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5453 * function may optionally be used to account for unfreeable pages in the
5454 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5455 * smaller per-cpu batchsize.
0e0b864e
MG
5456 */
5457void __init set_dma_reserve(unsigned long new_dma_reserve)
5458{
5459 dma_reserve = new_dma_reserve;
5460}
5461
1da177e4
LT
5462void __init free_area_init(unsigned long *zones_size)
5463{
9109fb7b 5464 free_area_init_node(0, zones_size,
1da177e4
LT
5465 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5466}
1da177e4 5467
1da177e4
LT
5468static int page_alloc_cpu_notify(struct notifier_block *self,
5469 unsigned long action, void *hcpu)
5470{
5471 int cpu = (unsigned long)hcpu;
1da177e4 5472
8bb78442 5473 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5474 lru_add_drain_cpu(cpu);
9f8f2172
CL
5475 drain_pages(cpu);
5476
5477 /*
5478 * Spill the event counters of the dead processor
5479 * into the current processors event counters.
5480 * This artificially elevates the count of the current
5481 * processor.
5482 */
f8891e5e 5483 vm_events_fold_cpu(cpu);
9f8f2172
CL
5484
5485 /*
5486 * Zero the differential counters of the dead processor
5487 * so that the vm statistics are consistent.
5488 *
5489 * This is only okay since the processor is dead and cannot
5490 * race with what we are doing.
5491 */
2bb921e5 5492 cpu_vm_stats_fold(cpu);
1da177e4
LT
5493 }
5494 return NOTIFY_OK;
5495}
1da177e4
LT
5496
5497void __init page_alloc_init(void)
5498{
5499 hotcpu_notifier(page_alloc_cpu_notify, 0);
5500}
5501
cb45b0e9
HA
5502/*
5503 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5504 * or min_free_kbytes changes.
5505 */
5506static void calculate_totalreserve_pages(void)
5507{
5508 struct pglist_data *pgdat;
5509 unsigned long reserve_pages = 0;
2f6726e5 5510 enum zone_type i, j;
cb45b0e9
HA
5511
5512 for_each_online_pgdat(pgdat) {
5513 for (i = 0; i < MAX_NR_ZONES; i++) {
5514 struct zone *zone = pgdat->node_zones + i;
5515 unsigned long max = 0;
5516
5517 /* Find valid and maximum lowmem_reserve in the zone */
5518 for (j = i; j < MAX_NR_ZONES; j++) {
5519 if (zone->lowmem_reserve[j] > max)
5520 max = zone->lowmem_reserve[j];
5521 }
5522
41858966
MG
5523 /* we treat the high watermark as reserved pages. */
5524 max += high_wmark_pages(zone);
cb45b0e9 5525
b40da049
JL
5526 if (max > zone->managed_pages)
5527 max = zone->managed_pages;
cb45b0e9 5528 reserve_pages += max;
ab8fabd4
JW
5529 /*
5530 * Lowmem reserves are not available to
5531 * GFP_HIGHUSER page cache allocations and
5532 * kswapd tries to balance zones to their high
5533 * watermark. As a result, neither should be
5534 * regarded as dirtyable memory, to prevent a
5535 * situation where reclaim has to clean pages
5536 * in order to balance the zones.
5537 */
5538 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5539 }
5540 }
ab8fabd4 5541 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5542 totalreserve_pages = reserve_pages;
5543}
5544
1da177e4
LT
5545/*
5546 * setup_per_zone_lowmem_reserve - called whenever
5547 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5548 * has a correct pages reserved value, so an adequate number of
5549 * pages are left in the zone after a successful __alloc_pages().
5550 */
5551static void setup_per_zone_lowmem_reserve(void)
5552{
5553 struct pglist_data *pgdat;
2f6726e5 5554 enum zone_type j, idx;
1da177e4 5555
ec936fc5 5556 for_each_online_pgdat(pgdat) {
1da177e4
LT
5557 for (j = 0; j < MAX_NR_ZONES; j++) {
5558 struct zone *zone = pgdat->node_zones + j;
b40da049 5559 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5560
5561 zone->lowmem_reserve[j] = 0;
5562
2f6726e5
CL
5563 idx = j;
5564 while (idx) {
1da177e4
LT
5565 struct zone *lower_zone;
5566
2f6726e5
CL
5567 idx--;
5568
1da177e4
LT
5569 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5570 sysctl_lowmem_reserve_ratio[idx] = 1;
5571
5572 lower_zone = pgdat->node_zones + idx;
b40da049 5573 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5574 sysctl_lowmem_reserve_ratio[idx];
b40da049 5575 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5576 }
5577 }
5578 }
cb45b0e9
HA
5579
5580 /* update totalreserve_pages */
5581 calculate_totalreserve_pages();
1da177e4
LT
5582}
5583
cfd3da1e 5584static void __setup_per_zone_wmarks(void)
1da177e4
LT
5585{
5586 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5587 unsigned long lowmem_pages = 0;
5588 struct zone *zone;
5589 unsigned long flags;
5590
5591 /* Calculate total number of !ZONE_HIGHMEM pages */
5592 for_each_zone(zone) {
5593 if (!is_highmem(zone))
b40da049 5594 lowmem_pages += zone->managed_pages;
1da177e4
LT
5595 }
5596
5597 for_each_zone(zone) {
ac924c60
AM
5598 u64 tmp;
5599
1125b4e3 5600 spin_lock_irqsave(&zone->lock, flags);
b40da049 5601 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5602 do_div(tmp, lowmem_pages);
1da177e4
LT
5603 if (is_highmem(zone)) {
5604 /*
669ed175
NP
5605 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5606 * need highmem pages, so cap pages_min to a small
5607 * value here.
5608 *
41858966 5609 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5610 * deltas controls asynch page reclaim, and so should
5611 * not be capped for highmem.
1da177e4 5612 */
90ae8d67 5613 unsigned long min_pages;
1da177e4 5614
b40da049 5615 min_pages = zone->managed_pages / 1024;
90ae8d67 5616 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5617 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5618 } else {
669ed175
NP
5619 /*
5620 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5621 * proportionate to the zone's size.
5622 */
41858966 5623 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5624 }
5625
41858966
MG
5626 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5627 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5628
81c0a2bb
JW
5629 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5630 high_wmark_pages(zone) -
5631 low_wmark_pages(zone) -
5632 zone_page_state(zone, NR_ALLOC_BATCH));
5633
56fd56b8 5634 setup_zone_migrate_reserve(zone);
1125b4e3 5635 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5636 }
cb45b0e9
HA
5637
5638 /* update totalreserve_pages */
5639 calculate_totalreserve_pages();
1da177e4
LT
5640}
5641
cfd3da1e
MG
5642/**
5643 * setup_per_zone_wmarks - called when min_free_kbytes changes
5644 * or when memory is hot-{added|removed}
5645 *
5646 * Ensures that the watermark[min,low,high] values for each zone are set
5647 * correctly with respect to min_free_kbytes.
5648 */
5649void setup_per_zone_wmarks(void)
5650{
5651 mutex_lock(&zonelists_mutex);
5652 __setup_per_zone_wmarks();
5653 mutex_unlock(&zonelists_mutex);
5654}
5655
55a4462a 5656/*
556adecb
RR
5657 * The inactive anon list should be small enough that the VM never has to
5658 * do too much work, but large enough that each inactive page has a chance
5659 * to be referenced again before it is swapped out.
5660 *
5661 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5662 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5663 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5664 * the anonymous pages are kept on the inactive list.
5665 *
5666 * total target max
5667 * memory ratio inactive anon
5668 * -------------------------------------
5669 * 10MB 1 5MB
5670 * 100MB 1 50MB
5671 * 1GB 3 250MB
5672 * 10GB 10 0.9GB
5673 * 100GB 31 3GB
5674 * 1TB 101 10GB
5675 * 10TB 320 32GB
5676 */
1b79acc9 5677static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5678{
96cb4df5 5679 unsigned int gb, ratio;
556adecb 5680
96cb4df5 5681 /* Zone size in gigabytes */
b40da049 5682 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5683 if (gb)
556adecb 5684 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5685 else
5686 ratio = 1;
556adecb 5687
96cb4df5
MK
5688 zone->inactive_ratio = ratio;
5689}
556adecb 5690
839a4fcc 5691static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5692{
5693 struct zone *zone;
5694
5695 for_each_zone(zone)
5696 calculate_zone_inactive_ratio(zone);
556adecb
RR
5697}
5698
1da177e4
LT
5699/*
5700 * Initialise min_free_kbytes.
5701 *
5702 * For small machines we want it small (128k min). For large machines
5703 * we want it large (64MB max). But it is not linear, because network
5704 * bandwidth does not increase linearly with machine size. We use
5705 *
b8af2941 5706 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5707 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5708 *
5709 * which yields
5710 *
5711 * 16MB: 512k
5712 * 32MB: 724k
5713 * 64MB: 1024k
5714 * 128MB: 1448k
5715 * 256MB: 2048k
5716 * 512MB: 2896k
5717 * 1024MB: 4096k
5718 * 2048MB: 5792k
5719 * 4096MB: 8192k
5720 * 8192MB: 11584k
5721 * 16384MB: 16384k
5722 */
1b79acc9 5723int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5724{
5725 unsigned long lowmem_kbytes;
5f12733e 5726 int new_min_free_kbytes;
1da177e4
LT
5727
5728 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5729 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5730
5731 if (new_min_free_kbytes > user_min_free_kbytes) {
5732 min_free_kbytes = new_min_free_kbytes;
5733 if (min_free_kbytes < 128)
5734 min_free_kbytes = 128;
5735 if (min_free_kbytes > 65536)
5736 min_free_kbytes = 65536;
5737 } else {
5738 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5739 new_min_free_kbytes, user_min_free_kbytes);
5740 }
bc75d33f 5741 setup_per_zone_wmarks();
a6cccdc3 5742 refresh_zone_stat_thresholds();
1da177e4 5743 setup_per_zone_lowmem_reserve();
556adecb 5744 setup_per_zone_inactive_ratio();
1da177e4
LT
5745 return 0;
5746}
bc75d33f 5747module_init(init_per_zone_wmark_min)
1da177e4
LT
5748
5749/*
b8af2941 5750 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5751 * that we can call two helper functions whenever min_free_kbytes
5752 * changes.
5753 */
b8af2941 5754int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5755 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5756{
8d65af78 5757 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5758 if (write) {
5759 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5760 setup_per_zone_wmarks();
5f12733e 5761 }
1da177e4
LT
5762 return 0;
5763}
5764
9614634f
CL
5765#ifdef CONFIG_NUMA
5766int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5767 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5768{
5769 struct zone *zone;
5770 int rc;
5771
8d65af78 5772 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5773 if (rc)
5774 return rc;
5775
5776 for_each_zone(zone)
b40da049 5777 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5778 sysctl_min_unmapped_ratio) / 100;
5779 return 0;
5780}
0ff38490
CL
5781
5782int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5783 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5784{
5785 struct zone *zone;
5786 int rc;
5787
8d65af78 5788 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5789 if (rc)
5790 return rc;
5791
5792 for_each_zone(zone)
b40da049 5793 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5794 sysctl_min_slab_ratio) / 100;
5795 return 0;
5796}
9614634f
CL
5797#endif
5798
1da177e4
LT
5799/*
5800 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5801 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5802 * whenever sysctl_lowmem_reserve_ratio changes.
5803 *
5804 * The reserve ratio obviously has absolutely no relation with the
41858966 5805 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5806 * if in function of the boot time zone sizes.
5807 */
5808int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5809 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5810{
8d65af78 5811 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5812 setup_per_zone_lowmem_reserve();
5813 return 0;
5814}
5815
8ad4b1fb
RS
5816/*
5817 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5818 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5819 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5820 */
8ad4b1fb 5821int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5822 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5823{
5824 struct zone *zone;
5825 unsigned int cpu;
5826 int ret;
5827
8d65af78 5828 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5829 if (!write || (ret < 0))
8ad4b1fb 5830 return ret;
c8e251fa
CS
5831
5832 mutex_lock(&pcp_batch_high_lock);
364df0eb 5833 for_each_populated_zone(zone) {
22a7f12b
CS
5834 unsigned long high;
5835 high = zone->managed_pages / percpu_pagelist_fraction;
5836 for_each_possible_cpu(cpu)
3664033c
CS
5837 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5838 high);
8ad4b1fb 5839 }
c8e251fa 5840 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5841 return 0;
5842}
5843
f034b5d4 5844int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5845
5846#ifdef CONFIG_NUMA
5847static int __init set_hashdist(char *str)
5848{
5849 if (!str)
5850 return 0;
5851 hashdist = simple_strtoul(str, &str, 0);
5852 return 1;
5853}
5854__setup("hashdist=", set_hashdist);
5855#endif
5856
5857/*
5858 * allocate a large system hash table from bootmem
5859 * - it is assumed that the hash table must contain an exact power-of-2
5860 * quantity of entries
5861 * - limit is the number of hash buckets, not the total allocation size
5862 */
5863void *__init alloc_large_system_hash(const char *tablename,
5864 unsigned long bucketsize,
5865 unsigned long numentries,
5866 int scale,
5867 int flags,
5868 unsigned int *_hash_shift,
5869 unsigned int *_hash_mask,
31fe62b9
TB
5870 unsigned long low_limit,
5871 unsigned long high_limit)
1da177e4 5872{
31fe62b9 5873 unsigned long long max = high_limit;
1da177e4
LT
5874 unsigned long log2qty, size;
5875 void *table = NULL;
5876
5877 /* allow the kernel cmdline to have a say */
5878 if (!numentries) {
5879 /* round applicable memory size up to nearest megabyte */
04903664 5880 numentries = nr_kernel_pages;
a7e83318
JZ
5881
5882 /* It isn't necessary when PAGE_SIZE >= 1MB */
5883 if (PAGE_SHIFT < 20)
5884 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5885
5886 /* limit to 1 bucket per 2^scale bytes of low memory */
5887 if (scale > PAGE_SHIFT)
5888 numentries >>= (scale - PAGE_SHIFT);
5889 else
5890 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5891
5892 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5893 if (unlikely(flags & HASH_SMALL)) {
5894 /* Makes no sense without HASH_EARLY */
5895 WARN_ON(!(flags & HASH_EARLY));
5896 if (!(numentries >> *_hash_shift)) {
5897 numentries = 1UL << *_hash_shift;
5898 BUG_ON(!numentries);
5899 }
5900 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5901 numentries = PAGE_SIZE / bucketsize;
1da177e4 5902 }
6e692ed3 5903 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5904
5905 /* limit allocation size to 1/16 total memory by default */
5906 if (max == 0) {
5907 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5908 do_div(max, bucketsize);
5909 }
074b8517 5910 max = min(max, 0x80000000ULL);
1da177e4 5911
31fe62b9
TB
5912 if (numentries < low_limit)
5913 numentries = low_limit;
1da177e4
LT
5914 if (numentries > max)
5915 numentries = max;
5916
f0d1b0b3 5917 log2qty = ilog2(numentries);
1da177e4
LT
5918
5919 do {
5920 size = bucketsize << log2qty;
5921 if (flags & HASH_EARLY)
6782832e 5922 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5923 else if (hashdist)
5924 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5925 else {
1037b83b
ED
5926 /*
5927 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5928 * some pages at the end of hash table which
5929 * alloc_pages_exact() automatically does
1037b83b 5930 */
264ef8a9 5931 if (get_order(size) < MAX_ORDER) {
a1dd268c 5932 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5933 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5934 }
1da177e4
LT
5935 }
5936 } while (!table && size > PAGE_SIZE && --log2qty);
5937
5938 if (!table)
5939 panic("Failed to allocate %s hash table\n", tablename);
5940
f241e660 5941 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5942 tablename,
f241e660 5943 (1UL << log2qty),
f0d1b0b3 5944 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5945 size);
5946
5947 if (_hash_shift)
5948 *_hash_shift = log2qty;
5949 if (_hash_mask)
5950 *_hash_mask = (1 << log2qty) - 1;
5951
5952 return table;
5953}
a117e66e 5954
835c134e
MG
5955/* Return a pointer to the bitmap storing bits affecting a block of pages */
5956static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5957 unsigned long pfn)
5958{
5959#ifdef CONFIG_SPARSEMEM
5960 return __pfn_to_section(pfn)->pageblock_flags;
5961#else
5962 return zone->pageblock_flags;
5963#endif /* CONFIG_SPARSEMEM */
5964}
5965
5966static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5967{
5968#ifdef CONFIG_SPARSEMEM
5969 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5970 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5971#else
c060f943 5972 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5973 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5974#endif /* CONFIG_SPARSEMEM */
5975}
5976
5977/**
d9c23400 5978 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5979 * @page: The page within the block of interest
5980 * @start_bitidx: The first bit of interest to retrieve
5981 * @end_bitidx: The last bit of interest
5982 * returns pageblock_bits flags
5983 */
5984unsigned long get_pageblock_flags_group(struct page *page,
5985 int start_bitidx, int end_bitidx)
5986{
5987 struct zone *zone;
5988 unsigned long *bitmap;
5989 unsigned long pfn, bitidx;
5990 unsigned long flags = 0;
5991 unsigned long value = 1;
5992
5993 zone = page_zone(page);
5994 pfn = page_to_pfn(page);
5995 bitmap = get_pageblock_bitmap(zone, pfn);
5996 bitidx = pfn_to_bitidx(zone, pfn);
5997
5998 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5999 if (test_bit(bitidx + start_bitidx, bitmap))
6000 flags |= value;
6220ec78 6001
835c134e
MG
6002 return flags;
6003}
6004
6005/**
d9c23400 6006 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6007 * @page: The page within the block of interest
6008 * @start_bitidx: The first bit of interest
6009 * @end_bitidx: The last bit of interest
6010 * @flags: The flags to set
6011 */
6012void set_pageblock_flags_group(struct page *page, unsigned long flags,
6013 int start_bitidx, int end_bitidx)
6014{
6015 struct zone *zone;
6016 unsigned long *bitmap;
6017 unsigned long pfn, bitidx;
6018 unsigned long value = 1;
6019
6020 zone = page_zone(page);
6021 pfn = page_to_pfn(page);
6022 bitmap = get_pageblock_bitmap(zone, pfn);
6023 bitidx = pfn_to_bitidx(zone, pfn);
309381fe 6024 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e
MG
6025
6026 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6027 if (flags & value)
6028 __set_bit(bitidx + start_bitidx, bitmap);
6029 else
6030 __clear_bit(bitidx + start_bitidx, bitmap);
6031}
a5d76b54
KH
6032
6033/*
80934513
MK
6034 * This function checks whether pageblock includes unmovable pages or not.
6035 * If @count is not zero, it is okay to include less @count unmovable pages
6036 *
b8af2941 6037 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6038 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6039 * expect this function should be exact.
a5d76b54 6040 */
b023f468
WC
6041bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6042 bool skip_hwpoisoned_pages)
49ac8255
KH
6043{
6044 unsigned long pfn, iter, found;
47118af0
MN
6045 int mt;
6046
49ac8255
KH
6047 /*
6048 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6049 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6050 */
6051 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6052 return false;
47118af0
MN
6053 mt = get_pageblock_migratetype(page);
6054 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6055 return false;
49ac8255
KH
6056
6057 pfn = page_to_pfn(page);
6058 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6059 unsigned long check = pfn + iter;
6060
29723fcc 6061 if (!pfn_valid_within(check))
49ac8255 6062 continue;
29723fcc 6063
49ac8255 6064 page = pfn_to_page(check);
c8721bbb
NH
6065
6066 /*
6067 * Hugepages are not in LRU lists, but they're movable.
6068 * We need not scan over tail pages bacause we don't
6069 * handle each tail page individually in migration.
6070 */
6071 if (PageHuge(page)) {
6072 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6073 continue;
6074 }
6075
97d255c8
MK
6076 /*
6077 * We can't use page_count without pin a page
6078 * because another CPU can free compound page.
6079 * This check already skips compound tails of THP
6080 * because their page->_count is zero at all time.
6081 */
6082 if (!atomic_read(&page->_count)) {
49ac8255
KH
6083 if (PageBuddy(page))
6084 iter += (1 << page_order(page)) - 1;
6085 continue;
6086 }
97d255c8 6087
b023f468
WC
6088 /*
6089 * The HWPoisoned page may be not in buddy system, and
6090 * page_count() is not 0.
6091 */
6092 if (skip_hwpoisoned_pages && PageHWPoison(page))
6093 continue;
6094
49ac8255
KH
6095 if (!PageLRU(page))
6096 found++;
6097 /*
6098 * If there are RECLAIMABLE pages, we need to check it.
6099 * But now, memory offline itself doesn't call shrink_slab()
6100 * and it still to be fixed.
6101 */
6102 /*
6103 * If the page is not RAM, page_count()should be 0.
6104 * we don't need more check. This is an _used_ not-movable page.
6105 *
6106 * The problematic thing here is PG_reserved pages. PG_reserved
6107 * is set to both of a memory hole page and a _used_ kernel
6108 * page at boot.
6109 */
6110 if (found > count)
80934513 6111 return true;
49ac8255 6112 }
80934513 6113 return false;
49ac8255
KH
6114}
6115
6116bool is_pageblock_removable_nolock(struct page *page)
6117{
656a0706
MH
6118 struct zone *zone;
6119 unsigned long pfn;
687875fb
MH
6120
6121 /*
6122 * We have to be careful here because we are iterating over memory
6123 * sections which are not zone aware so we might end up outside of
6124 * the zone but still within the section.
656a0706
MH
6125 * We have to take care about the node as well. If the node is offline
6126 * its NODE_DATA will be NULL - see page_zone.
687875fb 6127 */
656a0706
MH
6128 if (!node_online(page_to_nid(page)))
6129 return false;
6130
6131 zone = page_zone(page);
6132 pfn = page_to_pfn(page);
108bcc96 6133 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6134 return false;
6135
b023f468 6136 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6137}
0c0e6195 6138
041d3a8c
MN
6139#ifdef CONFIG_CMA
6140
6141static unsigned long pfn_max_align_down(unsigned long pfn)
6142{
6143 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6144 pageblock_nr_pages) - 1);
6145}
6146
6147static unsigned long pfn_max_align_up(unsigned long pfn)
6148{
6149 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6150 pageblock_nr_pages));
6151}
6152
041d3a8c 6153/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6154static int __alloc_contig_migrate_range(struct compact_control *cc,
6155 unsigned long start, unsigned long end)
041d3a8c
MN
6156{
6157 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6158 unsigned long nr_reclaimed;
041d3a8c
MN
6159 unsigned long pfn = start;
6160 unsigned int tries = 0;
6161 int ret = 0;
6162
be49a6e1 6163 migrate_prep();
041d3a8c 6164
bb13ffeb 6165 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6166 if (fatal_signal_pending(current)) {
6167 ret = -EINTR;
6168 break;
6169 }
6170
bb13ffeb
MG
6171 if (list_empty(&cc->migratepages)) {
6172 cc->nr_migratepages = 0;
6173 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6174 pfn, end, true);
041d3a8c
MN
6175 if (!pfn) {
6176 ret = -EINTR;
6177 break;
6178 }
6179 tries = 0;
6180 } else if (++tries == 5) {
6181 ret = ret < 0 ? ret : -EBUSY;
6182 break;
6183 }
6184
beb51eaa
MK
6185 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6186 &cc->migratepages);
6187 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6188
9c620e2b
HD
6189 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6190 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6191 }
2a6f5124
SP
6192 if (ret < 0) {
6193 putback_movable_pages(&cc->migratepages);
6194 return ret;
6195 }
6196 return 0;
041d3a8c
MN
6197}
6198
6199/**
6200 * alloc_contig_range() -- tries to allocate given range of pages
6201 * @start: start PFN to allocate
6202 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6203 * @migratetype: migratetype of the underlaying pageblocks (either
6204 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6205 * in range must have the same migratetype and it must
6206 * be either of the two.
041d3a8c
MN
6207 *
6208 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6209 * aligned, however it's the caller's responsibility to guarantee that
6210 * we are the only thread that changes migrate type of pageblocks the
6211 * pages fall in.
6212 *
6213 * The PFN range must belong to a single zone.
6214 *
6215 * Returns zero on success or negative error code. On success all
6216 * pages which PFN is in [start, end) are allocated for the caller and
6217 * need to be freed with free_contig_range().
6218 */
0815f3d8
MN
6219int alloc_contig_range(unsigned long start, unsigned long end,
6220 unsigned migratetype)
041d3a8c 6221{
041d3a8c
MN
6222 unsigned long outer_start, outer_end;
6223 int ret = 0, order;
6224
bb13ffeb
MG
6225 struct compact_control cc = {
6226 .nr_migratepages = 0,
6227 .order = -1,
6228 .zone = page_zone(pfn_to_page(start)),
6229 .sync = true,
6230 .ignore_skip_hint = true,
6231 };
6232 INIT_LIST_HEAD(&cc.migratepages);
6233
041d3a8c
MN
6234 /*
6235 * What we do here is we mark all pageblocks in range as
6236 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6237 * have different sizes, and due to the way page allocator
6238 * work, we align the range to biggest of the two pages so
6239 * that page allocator won't try to merge buddies from
6240 * different pageblocks and change MIGRATE_ISOLATE to some
6241 * other migration type.
6242 *
6243 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6244 * migrate the pages from an unaligned range (ie. pages that
6245 * we are interested in). This will put all the pages in
6246 * range back to page allocator as MIGRATE_ISOLATE.
6247 *
6248 * When this is done, we take the pages in range from page
6249 * allocator removing them from the buddy system. This way
6250 * page allocator will never consider using them.
6251 *
6252 * This lets us mark the pageblocks back as
6253 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6254 * aligned range but not in the unaligned, original range are
6255 * put back to page allocator so that buddy can use them.
6256 */
6257
6258 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6259 pfn_max_align_up(end), migratetype,
6260 false);
041d3a8c 6261 if (ret)
86a595f9 6262 return ret;
041d3a8c 6263
bb13ffeb 6264 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6265 if (ret)
6266 goto done;
6267
6268 /*
6269 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6270 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6271 * more, all pages in [start, end) are free in page allocator.
6272 * What we are going to do is to allocate all pages from
6273 * [start, end) (that is remove them from page allocator).
6274 *
6275 * The only problem is that pages at the beginning and at the
6276 * end of interesting range may be not aligned with pages that
6277 * page allocator holds, ie. they can be part of higher order
6278 * pages. Because of this, we reserve the bigger range and
6279 * once this is done free the pages we are not interested in.
6280 *
6281 * We don't have to hold zone->lock here because the pages are
6282 * isolated thus they won't get removed from buddy.
6283 */
6284
6285 lru_add_drain_all();
6286 drain_all_pages();
6287
6288 order = 0;
6289 outer_start = start;
6290 while (!PageBuddy(pfn_to_page(outer_start))) {
6291 if (++order >= MAX_ORDER) {
6292 ret = -EBUSY;
6293 goto done;
6294 }
6295 outer_start &= ~0UL << order;
6296 }
6297
6298 /* Make sure the range is really isolated. */
b023f468 6299 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6300 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6301 outer_start, end);
6302 ret = -EBUSY;
6303 goto done;
6304 }
6305
49f223a9
MS
6306
6307 /* Grab isolated pages from freelists. */
bb13ffeb 6308 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6309 if (!outer_end) {
6310 ret = -EBUSY;
6311 goto done;
6312 }
6313
6314 /* Free head and tail (if any) */
6315 if (start != outer_start)
6316 free_contig_range(outer_start, start - outer_start);
6317 if (end != outer_end)
6318 free_contig_range(end, outer_end - end);
6319
6320done:
6321 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6322 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6323 return ret;
6324}
6325
6326void free_contig_range(unsigned long pfn, unsigned nr_pages)
6327{
bcc2b02f
MS
6328 unsigned int count = 0;
6329
6330 for (; nr_pages--; pfn++) {
6331 struct page *page = pfn_to_page(pfn);
6332
6333 count += page_count(page) != 1;
6334 __free_page(page);
6335 }
6336 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6337}
6338#endif
6339
4ed7e022 6340#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6341/*
6342 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6343 * page high values need to be recalulated.
6344 */
4ed7e022
JL
6345void __meminit zone_pcp_update(struct zone *zone)
6346{
0a647f38 6347 unsigned cpu;
c8e251fa 6348 mutex_lock(&pcp_batch_high_lock);
0a647f38 6349 for_each_possible_cpu(cpu)
169f6c19
CS
6350 pageset_set_high_and_batch(zone,
6351 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6352 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6353}
6354#endif
6355
340175b7
JL
6356void zone_pcp_reset(struct zone *zone)
6357{
6358 unsigned long flags;
5a883813
MK
6359 int cpu;
6360 struct per_cpu_pageset *pset;
340175b7
JL
6361
6362 /* avoid races with drain_pages() */
6363 local_irq_save(flags);
6364 if (zone->pageset != &boot_pageset) {
5a883813
MK
6365 for_each_online_cpu(cpu) {
6366 pset = per_cpu_ptr(zone->pageset, cpu);
6367 drain_zonestat(zone, pset);
6368 }
340175b7
JL
6369 free_percpu(zone->pageset);
6370 zone->pageset = &boot_pageset;
6371 }
6372 local_irq_restore(flags);
6373}
6374
6dcd73d7 6375#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6376/*
6377 * All pages in the range must be isolated before calling this.
6378 */
6379void
6380__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6381{
6382 struct page *page;
6383 struct zone *zone;
6384 int order, i;
6385 unsigned long pfn;
6386 unsigned long flags;
6387 /* find the first valid pfn */
6388 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6389 if (pfn_valid(pfn))
6390 break;
6391 if (pfn == end_pfn)
6392 return;
6393 zone = page_zone(pfn_to_page(pfn));
6394 spin_lock_irqsave(&zone->lock, flags);
6395 pfn = start_pfn;
6396 while (pfn < end_pfn) {
6397 if (!pfn_valid(pfn)) {
6398 pfn++;
6399 continue;
6400 }
6401 page = pfn_to_page(pfn);
b023f468
WC
6402 /*
6403 * The HWPoisoned page may be not in buddy system, and
6404 * page_count() is not 0.
6405 */
6406 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6407 pfn++;
6408 SetPageReserved(page);
6409 continue;
6410 }
6411
0c0e6195
KH
6412 BUG_ON(page_count(page));
6413 BUG_ON(!PageBuddy(page));
6414 order = page_order(page);
6415#ifdef CONFIG_DEBUG_VM
6416 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6417 pfn, 1 << order, end_pfn);
6418#endif
6419 list_del(&page->lru);
6420 rmv_page_order(page);
6421 zone->free_area[order].nr_free--;
0c0e6195
KH
6422 for (i = 0; i < (1 << order); i++)
6423 SetPageReserved((page+i));
6424 pfn += (1 << order);
6425 }
6426 spin_unlock_irqrestore(&zone->lock, flags);
6427}
6428#endif
8d22ba1b
WF
6429
6430#ifdef CONFIG_MEMORY_FAILURE
6431bool is_free_buddy_page(struct page *page)
6432{
6433 struct zone *zone = page_zone(page);
6434 unsigned long pfn = page_to_pfn(page);
6435 unsigned long flags;
6436 int order;
6437
6438 spin_lock_irqsave(&zone->lock, flags);
6439 for (order = 0; order < MAX_ORDER; order++) {
6440 struct page *page_head = page - (pfn & ((1 << order) - 1));
6441
6442 if (PageBuddy(page_head) && page_order(page_head) >= order)
6443 break;
6444 }
6445 spin_unlock_irqrestore(&zone->lock, flags);
6446
6447 return order < MAX_ORDER;
6448}
6449#endif
718a3821 6450
51300cef 6451static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6452 {1UL << PG_locked, "locked" },
6453 {1UL << PG_error, "error" },
6454 {1UL << PG_referenced, "referenced" },
6455 {1UL << PG_uptodate, "uptodate" },
6456 {1UL << PG_dirty, "dirty" },
6457 {1UL << PG_lru, "lru" },
6458 {1UL << PG_active, "active" },
6459 {1UL << PG_slab, "slab" },
6460 {1UL << PG_owner_priv_1, "owner_priv_1" },
6461 {1UL << PG_arch_1, "arch_1" },
6462 {1UL << PG_reserved, "reserved" },
6463 {1UL << PG_private, "private" },
6464 {1UL << PG_private_2, "private_2" },
6465 {1UL << PG_writeback, "writeback" },
6466#ifdef CONFIG_PAGEFLAGS_EXTENDED
6467 {1UL << PG_head, "head" },
6468 {1UL << PG_tail, "tail" },
6469#else
6470 {1UL << PG_compound, "compound" },
6471#endif
6472 {1UL << PG_swapcache, "swapcache" },
6473 {1UL << PG_mappedtodisk, "mappedtodisk" },
6474 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6475 {1UL << PG_swapbacked, "swapbacked" },
6476 {1UL << PG_unevictable, "unevictable" },
6477#ifdef CONFIG_MMU
6478 {1UL << PG_mlocked, "mlocked" },
6479#endif
6480#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6481 {1UL << PG_uncached, "uncached" },
6482#endif
6483#ifdef CONFIG_MEMORY_FAILURE
6484 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6485#endif
6486#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6487 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6488#endif
718a3821
WF
6489};
6490
6491static void dump_page_flags(unsigned long flags)
6492{
6493 const char *delim = "";
6494 unsigned long mask;
6495 int i;
6496
51300cef 6497 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6498
718a3821
WF
6499 printk(KERN_ALERT "page flags: %#lx(", flags);
6500
6501 /* remove zone id */
6502 flags &= (1UL << NR_PAGEFLAGS) - 1;
6503
51300cef 6504 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6505
6506 mask = pageflag_names[i].mask;
6507 if ((flags & mask) != mask)
6508 continue;
6509
6510 flags &= ~mask;
6511 printk("%s%s", delim, pageflag_names[i].name);
6512 delim = "|";
6513 }
6514
6515 /* check for left over flags */
6516 if (flags)
6517 printk("%s%#lx", delim, flags);
6518
6519 printk(")\n");
6520}
6521
f0b791a3 6522void dump_page_badflags(struct page *page, char *reason, unsigned long badflags)
718a3821
WF
6523{
6524 printk(KERN_ALERT
6525 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6526 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6527 page->mapping, page->index);
6528 dump_page_flags(page->flags);
f0b791a3
DH
6529 if (reason)
6530 pr_alert("page dumped because: %s\n", reason);
6531 if (page->flags & badflags) {
6532 pr_alert("bad because of flags:\n");
6533 dump_page_flags(page->flags & badflags);
6534 }
f212ad7c 6535 mem_cgroup_print_bad_page(page);
718a3821 6536}
f0b791a3
DH
6537
6538void dump_page(struct page *page, char *reason)
6539{
6540 dump_page_badflags(page, reason, 0);
6541}
309381fe 6542EXPORT_SYMBOL_GPL(dump_page);