]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
writeback: remove nr_pages_dirtied arg from balance_dirty_pages_ratelimited_nr()
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
224abf92 601static inline int free_pages_check(struct page *page)
1da177e4 602{
92be2e33
NP
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
a3af9c38 605 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
224abf92 608 bad_page(page);
79f4b7bf 609 return 1;
8cc3b392 610 }
79f4b7bf
HD
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
1da177e4
LT
614}
615
616/*
5f8dcc21 617 * Frees a number of pages from the PCP lists
1da177e4 618 * Assumes all pages on list are in same zone, and of same order.
207f36ee 619 * count is the number of pages to free.
1da177e4
LT
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
5f8dcc21
MG
627static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
1da177e4 629{
5f8dcc21 630 int migratetype = 0;
a6f9edd6 631 int batch_free = 0;
72853e29 632 int to_free = count;
5f8dcc21 633
c54ad30c 634 spin_lock(&zone->lock);
93e4a89a 635 zone->all_unreclaimable = 0;
1da177e4 636 zone->pages_scanned = 0;
f2260e6b 637
72853e29 638 while (to_free) {
48db57f8 639 struct page *page;
5f8dcc21
MG
640 struct list_head *list;
641
642 /*
a6f9edd6
MG
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
5f8dcc21
MG
648 */
649 do {
a6f9edd6 650 batch_free++;
5f8dcc21
MG
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
48db57f8 655
1d16871d
NK
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
a6f9edd6 660 do {
770c8aaa
BZ
661 int mt; /* migratetype of the to-be-freed page */
662
a6f9edd6
MG
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
b12c4ad1 666 mt = get_freepage_migratetype(page);
a7016235 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
2139cbe6 686 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
95e34412 720 int migratetype;
ec95f53a
KM
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
f8891e5e 726 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
af370fb8 733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 734{
c3993076
JW
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
a226f6c8 737
c3993076
JW
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
a226f6c8 746 }
c3993076
JW
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
a226f6c8
DH
750}
751
47118af0
MN
752#ifdef CONFIG_CMA
753/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754void __init init_cma_reserved_pageblock(struct page *page)
755{
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768}
769#endif
1da177e4
LT
770
771/*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
085cc7d5 785static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
786 int low, int high, struct free_area *area,
787 int migratetype)
1da177e4
LT
788{
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
725d704e 795 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
796
797#ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
d1ce749a
BZ
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
c0a32fc5
SG
811 continue;
812 }
813#endif
b2a0ac88 814 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
1da177e4
LT
818}
819
1da177e4
LT
820/*
821 * This page is about to be returned from the page allocator
822 */
2a7684a2 823static inline int check_new_page(struct page *page)
1da177e4 824{
92be2e33
NP
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
a3af9c38 827 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
224abf92 830 bad_page(page);
689bcebf 831 return 1;
8cc3b392 832 }
2a7684a2
WF
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
689bcebf 845
4c21e2f2 846 set_page_private(page, 0);
7835e98b 847 set_page_refcounted(page);
cc102509
NP
848
849 arch_alloc_page(page, order);
1da177e4 850 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
689bcebf 858 return 0;
1da177e4
LT
859}
860
56fd56b8
MG
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
728ec980
MG
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
56fd56b8
MG
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
b2a0ac88
MG
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
47118af0
MN
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
6d4a4916
MN
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
907};
908
c361be55
MG
909/*
910 * Move the free pages in a range to the free lists of the requested type.
d9c23400 911 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
912 * boundary. If alignment is required, use move_freepages_block()
913 */
435b405c 914int move_freepages(struct zone *zone,
b69a7288
AB
915 struct page *start_page, struct page *end_page,
916 int migratetype)
c361be55
MG
917{
918 struct page *page;
919 unsigned long order;
d100313f 920 int pages_moved = 0;
c361be55
MG
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
ac0e5b7a 928 * grouping pages by mobility
c361be55
MG
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
344c790e
AL
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
c361be55
MG
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
84be48d8
KS
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
95e34412 950 set_freepage_migratetype(page, migratetype);
c361be55 951 page += 1 << order;
d100313f 952 pages_moved += 1 << order;
c361be55
MG
953 }
954
d100313f 955 return pages_moved;
c361be55
MG
956}
957
ee6f509c 958int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 959 int migratetype)
c361be55
MG
960{
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
963
964 start_pfn = page_to_pfn(page);
d9c23400 965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 966 start_page = pfn_to_page(start_pfn);
d9c23400
MG
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
969
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
975
976 return move_freepages(zone, start_page, end_page, migratetype);
977}
978
2f66a68f
MG
979static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
981{
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
983
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
987 }
988}
989
b2a0ac88 990/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
991static inline struct page *
992__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
993{
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
998
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
6d4a4916 1002 for (i = 0;; i++) {
b2a0ac88
MG
1003 migratetype = fallbacks[start_migratetype][i];
1004
56fd56b8
MG
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1007 break;
e010487d 1008
b2a0ac88
MG
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1012
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1016
1017 /*
c361be55 1018 * If breaking a large block of pages, move all free
46dafbca
MG
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
25985edc 1021 * aggressive about taking ownership of free pages
47118af0
MN
1022 *
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
b2a0ac88 1028 */
47118af0
MN
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
46dafbca
MG
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1036
1037 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
46dafbca
MG
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1042
b2a0ac88 1043 migratetype = start_migratetype;
c361be55 1044 }
b2a0ac88
MG
1045
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
b2a0ac88 1049
2f66a68f 1050 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
2f66a68f 1053 change_pageblock_range(page, current_order,
b2a0ac88
MG
1054 start_migratetype);
1055
47118af0
MN
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
e0fff1bd
MG
1059
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1062
b2a0ac88
MG
1063 return page;
1064 }
1065 }
1066
728ec980 1067 return NULL;
b2a0ac88
MG
1068}
1069
56fd56b8 1070/*
1da177e4
LT
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1073 */
b2a0ac88
MG
1074static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1da177e4 1076{
1da177e4
LT
1077 struct page *page;
1078
728ec980 1079retry_reserve:
56fd56b8 1080 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1081
728ec980 1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1083 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1084
728ec980
MG
1085 /*
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1089 */
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1093 }
1094 }
1095
0d3d062a 1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1097 return page;
1da177e4
LT
1098}
1099
5f63b720 1100/*
1da177e4
LT
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1104 */
5f63b720 1105static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1106 unsigned long count, struct list_head *list,
e084b2d9 1107 int migratetype, int cold)
1da177e4 1108{
47118af0 1109 int mt = migratetype, i;
5f63b720 1110
c54ad30c 1111 spin_lock(&zone->lock);
1da177e4 1112 for (i = 0; i < count; ++i) {
b2a0ac88 1113 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1114 if (unlikely(page == NULL))
1da177e4 1115 break;
81eabcbe
MG
1116
1117 /*
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1125 */
e084b2d9
MG
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
47118af0
MN
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1134 }
b12c4ad1 1135 set_freepage_migratetype(page, mt);
81eabcbe 1136 list = &page->lru;
d1ce749a
BZ
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
1da177e4 1299
ec95f53a 1300 if (!free_pages_prepare(page, 0))
689bcebf
HD
1301 return;
1302
5f8dcc21 1303 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1304 set_freepage_migratetype(page, migratetype);
1da177e4 1305 local_irq_save(flags);
f8891e5e 1306 __count_vm_event(PGFREE);
da456f14 1307
5f8dcc21
MG
1308 /*
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1314 */
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1319 }
1320 migratetype = MIGRATE_MOVABLE;
1321 }
1322
99dcc3e5 1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1324 if (cold)
5f8dcc21 1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1326 else
5f8dcc21 1327 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1328 pcp->count++;
48db57f8 1329 if (pcp->count >= pcp->high) {
5f8dcc21 1330 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1331 pcp->count -= pcp->batch;
1332 }
5f8dcc21
MG
1333
1334out:
1da177e4 1335 local_irq_restore(flags);
1da177e4
LT
1336}
1337
cc59850e
KK
1338/*
1339 * Free a list of 0-order pages
1340 */
1341void free_hot_cold_page_list(struct list_head *list, int cold)
1342{
1343 struct page *page, *next;
1344
1345 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1346 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1347 free_hot_cold_page(page, cold);
1348 }
1349}
1350
8dfcc9ba
NP
1351/*
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1355 *
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1358 */
1359void split_page(struct page *page, unsigned int order)
1360{
1361 int i;
1362
725d704e
NP
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1365
1366#ifdef CONFIG_KMEMCHECK
1367 /*
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1370 */
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373#endif
1374
7835e98b
NP
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
8dfcc9ba 1377}
8dfcc9ba 1378
748446bb 1379/*
1fb3f8ca
MG
1380 * Similar to the split_page family of functions except that the page
1381 * required at the given order and being isolated now to prevent races
1382 * with parallel allocators
748446bb 1383 */
1fb3f8ca 1384int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1385{
1386 unsigned int order;
1387 unsigned long watermark;
1388 struct zone *zone;
2139cbe6 1389 int mt;
748446bb
MG
1390
1391 BUG_ON(!PageBuddy(page));
1392
1393 zone = page_zone(page);
1394 order = page_order(page);
1395
1396 /* Obey watermarks as if the page was being allocated */
1397 watermark = low_wmark_pages(zone) + (1 << order);
1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 return 0;
1400
1401 /* Remove page from free list */
1402 list_del(&page->lru);
1403 zone->free_area[order].nr_free--;
1404 rmv_page_order(page);
2139cbe6
BZ
1405
1406 mt = get_pageblock_migratetype(page);
1407 if (unlikely(mt != MIGRATE_ISOLATE))
ef6c5be6 1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
748446bb 1409
1fb3f8ca
MG
1410 if (alloc_order != order)
1411 expand(zone, page, alloc_order, order,
1412 &zone->free_area[order], migratetype);
748446bb 1413
1fb3f8ca 1414 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1415 if (order >= pageblock_order - 1) {
1416 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1417 for (; page < endpage; page += pageblock_nr_pages) {
1418 int mt = get_pageblock_migratetype(page);
1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 set_pageblock_migratetype(page,
1421 MIGRATE_MOVABLE);
1422 }
748446bb
MG
1423 }
1424
58d00209 1425 return 1UL << alloc_order;
1fb3f8ca
MG
1426}
1427
1428/*
1429 * Similar to split_page except the page is already free. As this is only
1430 * being used for migration, the migratetype of the block also changes.
1431 * As this is called with interrupts disabled, the caller is responsible
1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * are enabled.
1434 *
1435 * Note: this is probably too low level an operation for use in drivers.
1436 * Please consult with lkml before using this in your driver.
1437 */
1438int split_free_page(struct page *page)
1439{
1440 unsigned int order;
1441 int nr_pages;
1442
1443 BUG_ON(!PageBuddy(page));
1444 order = page_order(page);
1445
1446 nr_pages = capture_free_page(page, order, 0);
1447 if (!nr_pages)
1448 return 0;
1449
1450 /* Split into individual pages */
1451 set_page_refcounted(page);
1452 split_page(page, order);
1453 return nr_pages;
748446bb
MG
1454}
1455
1da177e4
LT
1456/*
1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 * or two.
1460 */
0a15c3e9
MG
1461static inline
1462struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1463 struct zone *zone, int order, gfp_t gfp_flags,
1464 int migratetype)
1da177e4
LT
1465{
1466 unsigned long flags;
689bcebf 1467 struct page *page;
1da177e4
LT
1468 int cold = !!(gfp_flags & __GFP_COLD);
1469
689bcebf 1470again:
48db57f8 1471 if (likely(order == 0)) {
1da177e4 1472 struct per_cpu_pages *pcp;
5f8dcc21 1473 struct list_head *list;
1da177e4 1474
1da177e4 1475 local_irq_save(flags);
99dcc3e5
CL
1476 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 list = &pcp->lists[migratetype];
5f8dcc21 1478 if (list_empty(list)) {
535131e6 1479 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1480 pcp->batch, list,
e084b2d9 1481 migratetype, cold);
5f8dcc21 1482 if (unlikely(list_empty(list)))
6fb332fa 1483 goto failed;
535131e6 1484 }
b92a6edd 1485
5f8dcc21
MG
1486 if (cold)
1487 page = list_entry(list->prev, struct page, lru);
1488 else
1489 page = list_entry(list->next, struct page, lru);
1490
b92a6edd
MG
1491 list_del(&page->lru);
1492 pcp->count--;
7fb1d9fc 1493 } else {
dab48dab
AM
1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 /*
1496 * __GFP_NOFAIL is not to be used in new code.
1497 *
1498 * All __GFP_NOFAIL callers should be fixed so that they
1499 * properly detect and handle allocation failures.
1500 *
1501 * We most definitely don't want callers attempting to
4923abf9 1502 * allocate greater than order-1 page units with
dab48dab
AM
1503 * __GFP_NOFAIL.
1504 */
4923abf9 1505 WARN_ON_ONCE(order > 1);
dab48dab 1506 }
1da177e4 1507 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1508 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1509 spin_unlock(&zone->lock);
1510 if (!page)
1511 goto failed;
d1ce749a
BZ
1512 __mod_zone_freepage_state(zone, -(1 << order),
1513 get_pageblock_migratetype(page));
1da177e4
LT
1514 }
1515
f8891e5e 1516 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1517 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1518 local_irq_restore(flags);
1da177e4 1519
725d704e 1520 VM_BUG_ON(bad_range(zone, page));
17cf4406 1521 if (prep_new_page(page, order, gfp_flags))
a74609fa 1522 goto again;
1da177e4 1523 return page;
a74609fa
NP
1524
1525failed:
1526 local_irq_restore(flags);
a74609fa 1527 return NULL;
1da177e4
LT
1528}
1529
933e312e
AM
1530#ifdef CONFIG_FAIL_PAGE_ALLOC
1531
b2588c4b 1532static struct {
933e312e
AM
1533 struct fault_attr attr;
1534
1535 u32 ignore_gfp_highmem;
1536 u32 ignore_gfp_wait;
54114994 1537 u32 min_order;
933e312e
AM
1538} fail_page_alloc = {
1539 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1540 .ignore_gfp_wait = 1,
1541 .ignore_gfp_highmem = 1,
54114994 1542 .min_order = 1,
933e312e
AM
1543};
1544
1545static int __init setup_fail_page_alloc(char *str)
1546{
1547 return setup_fault_attr(&fail_page_alloc.attr, str);
1548}
1549__setup("fail_page_alloc=", setup_fail_page_alloc);
1550
deaf386e 1551static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1552{
54114994 1553 if (order < fail_page_alloc.min_order)
deaf386e 1554 return false;
933e312e 1555 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1556 return false;
933e312e 1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1558 return false;
933e312e 1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1560 return false;
933e312e
AM
1561
1562 return should_fail(&fail_page_alloc.attr, 1 << order);
1563}
1564
1565#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566
1567static int __init fail_page_alloc_debugfs(void)
1568{
f4ae40a6 1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1570 struct dentry *dir;
933e312e 1571
dd48c085
AM
1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 &fail_page_alloc.attr);
1574 if (IS_ERR(dir))
1575 return PTR_ERR(dir);
933e312e 1576
b2588c4b
AM
1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 &fail_page_alloc.ignore_gfp_wait))
1579 goto fail;
1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 &fail_page_alloc.ignore_gfp_highmem))
1582 goto fail;
1583 if (!debugfs_create_u32("min-order", mode, dir,
1584 &fail_page_alloc.min_order))
1585 goto fail;
1586
1587 return 0;
1588fail:
dd48c085 1589 debugfs_remove_recursive(dir);
933e312e 1590
b2588c4b 1591 return -ENOMEM;
933e312e
AM
1592}
1593
1594late_initcall(fail_page_alloc_debugfs);
1595
1596#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597
1598#else /* CONFIG_FAIL_PAGE_ALLOC */
1599
deaf386e 1600static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1601{
deaf386e 1602 return false;
933e312e
AM
1603}
1604
1605#endif /* CONFIG_FAIL_PAGE_ALLOC */
1606
1da177e4 1607/*
88f5acf8 1608 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1609 * of the allocation.
1610 */
88f5acf8
MG
1611static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1613{
1614 /* free_pages my go negative - that's OK */
d23ad423 1615 long min = mark;
2cfed075 1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1617 int o;
1618
df0a6daa 1619 free_pages -= (1 << order) - 1;
7fb1d9fc 1620 if (alloc_flags & ALLOC_HIGH)
1da177e4 1621 min -= min / 2;
7fb1d9fc 1622 if (alloc_flags & ALLOC_HARDER)
1da177e4 1623 min -= min / 4;
d95ea5d1
BZ
1624#ifdef CONFIG_CMA
1625 /* If allocation can't use CMA areas don't use free CMA pages */
1626 if (!(alloc_flags & ALLOC_CMA))
1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628#endif
2cfed075 1629 if (free_pages <= min + lowmem_reserve)
88f5acf8 1630 return false;
1da177e4
LT
1631 for (o = 0; o < order; o++) {
1632 /* At the next order, this order's pages become unavailable */
1633 free_pages -= z->free_area[o].nr_free << o;
1634
1635 /* Require fewer higher order pages to be free */
1636 min >>= 1;
1637
1638 if (free_pages <= min)
88f5acf8 1639 return false;
1da177e4 1640 }
88f5acf8
MG
1641 return true;
1642}
1643
702d1a6e
MK
1644#ifdef CONFIG_MEMORY_ISOLATION
1645static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646{
1647 if (unlikely(zone->nr_pageblock_isolate))
1648 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 return 0;
1650}
1651#else
1652static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653{
1654 return 0;
1655}
1656#endif
1657
88f5acf8
MG
1658bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660{
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663}
1664
1665bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667{
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
702d1a6e
MK
1673 /*
1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1676 * sleep although it could do so. But this is more desirable for memory
1677 * hotplug than sleeping which can cause a livelock in the direct
1678 * reclaim path.
1679 */
1680 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 free_pages);
1da177e4
LT
1683}
1684
9276b1bc
PJ
1685#ifdef CONFIG_NUMA
1686/*
1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1688 * skip over zones that are not allowed by the cpuset, or that have
1689 * been recently (in last second) found to be nearly full. See further
1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1691 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1692 *
1693 * If the zonelist cache is present in the passed in zonelist, then
1694 * returns a pointer to the allowed node mask (either the current
37b07e41 1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1696 *
1697 * If the zonelist cache is not available for this zonelist, does
1698 * nothing and returns NULL.
1699 *
1700 * If the fullzones BITMAP in the zonelist cache is stale (more than
1701 * a second since last zap'd) then we zap it out (clear its bits.)
1702 *
1703 * We hold off even calling zlc_setup, until after we've checked the
1704 * first zone in the zonelist, on the theory that most allocations will
1705 * be satisfied from that first zone, so best to examine that zone as
1706 * quickly as we can.
1707 */
1708static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709{
1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1711 nodemask_t *allowednodes; /* zonelist_cache approximation */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return NULL;
1716
f05111f5 1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 zlc->last_full_zap = jiffies;
1720 }
1721
1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 &cpuset_current_mems_allowed :
37b07e41 1724 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1725 return allowednodes;
1726}
1727
1728/*
1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730 * if it is worth looking at further for free memory:
1731 * 1) Check that the zone isn't thought to be full (doesn't have its
1732 * bit set in the zonelist_cache fullzones BITMAP).
1733 * 2) Check that the zones node (obtained from the zonelist_cache
1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735 * Return true (non-zero) if zone is worth looking at further, or
1736 * else return false (zero) if it is not.
1737 *
1738 * This check -ignores- the distinction between various watermarks,
1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1740 * found to be full for any variation of these watermarks, it will
1741 * be considered full for up to one second by all requests, unless
1742 * we are so low on memory on all allowed nodes that we are forced
1743 * into the second scan of the zonelist.
1744 *
1745 * In the second scan we ignore this zonelist cache and exactly
1746 * apply the watermarks to all zones, even it is slower to do so.
1747 * We are low on memory in the second scan, and should leave no stone
1748 * unturned looking for a free page.
1749 */
dd1a239f 1750static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1751 nodemask_t *allowednodes)
1752{
1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1754 int i; /* index of *z in zonelist zones */
1755 int n; /* node that zone *z is on */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return 1;
1760
dd1a239f 1761 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1762 n = zlc->z_to_n[i];
1763
1764 /* This zone is worth trying if it is allowed but not full */
1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766}
1767
1768/*
1769 * Given 'z' scanning a zonelist, set the corresponding bit in
1770 * zlc->fullzones, so that subsequent attempts to allocate a page
1771 * from that zone don't waste time re-examining it.
1772 */
dd1a239f 1773static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1774{
1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1776 int i; /* index of *z in zonelist zones */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
dd1a239f 1782 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1783
1784 set_bit(i, zlc->fullzones);
1785}
1786
76d3fbf8
MG
1787/*
1788 * clear all zones full, called after direct reclaim makes progress so that
1789 * a zone that was recently full is not skipped over for up to a second
1790 */
1791static void zlc_clear_zones_full(struct zonelist *zonelist)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800}
1801
957f822a
DR
1802static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1803{
1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1805}
1806
1807static void __paginginit init_zone_allows_reclaim(int nid)
1808{
1809 int i;
1810
1811 for_each_online_node(i)
6b187d02 1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1813 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1814 else
957f822a 1815 zone_reclaim_mode = 1;
957f822a
DR
1816}
1817
9276b1bc
PJ
1818#else /* CONFIG_NUMA */
1819
1820static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821{
1822 return NULL;
1823}
1824
dd1a239f 1825static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1826 nodemask_t *allowednodes)
1827{
1828 return 1;
1829}
1830
dd1a239f 1831static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1832{
1833}
76d3fbf8
MG
1834
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837}
957f822a
DR
1838
1839static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1840{
1841 return true;
1842}
1843
1844static inline void init_zone_allows_reclaim(int nid)
1845{
1846}
9276b1bc
PJ
1847#endif /* CONFIG_NUMA */
1848
7fb1d9fc 1849/*
0798e519 1850 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1851 * a page.
1852 */
1853static struct page *
19770b32 1854get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1856 struct zone *preferred_zone, int migratetype)
753ee728 1857{
dd1a239f 1858 struct zoneref *z;
7fb1d9fc 1859 struct page *page = NULL;
54a6eb5c 1860 int classzone_idx;
5117f45d 1861 struct zone *zone;
9276b1bc
PJ
1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1863 int zlc_active = 0; /* set if using zonelist_cache */
1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1865
19770b32 1866 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1867zonelist_scan:
7fb1d9fc 1868 /*
9276b1bc 1869 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1871 */
19770b32
MG
1872 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 high_zoneidx, nodemask) {
9276b1bc
PJ
1874 if (NUMA_BUILD && zlc_active &&
1875 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1876 continue;
7fb1d9fc 1877 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1878 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1879 continue;
a756cf59
JW
1880 /*
1881 * When allocating a page cache page for writing, we
1882 * want to get it from a zone that is within its dirty
1883 * limit, such that no single zone holds more than its
1884 * proportional share of globally allowed dirty pages.
1885 * The dirty limits take into account the zone's
1886 * lowmem reserves and high watermark so that kswapd
1887 * should be able to balance it without having to
1888 * write pages from its LRU list.
1889 *
1890 * This may look like it could increase pressure on
1891 * lower zones by failing allocations in higher zones
1892 * before they are full. But the pages that do spill
1893 * over are limited as the lower zones are protected
1894 * by this very same mechanism. It should not become
1895 * a practical burden to them.
1896 *
1897 * XXX: For now, allow allocations to potentially
1898 * exceed the per-zone dirty limit in the slowpath
1899 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1900 * which is important when on a NUMA setup the allowed
1901 * zones are together not big enough to reach the
1902 * global limit. The proper fix for these situations
1903 * will require awareness of zones in the
1904 * dirty-throttling and the flusher threads.
1905 */
1906 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1908 goto this_zone_full;
7fb1d9fc 1909
41858966 1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1912 unsigned long mark;
fa5e084e
MG
1913 int ret;
1914
41858966 1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1916 if (zone_watermark_ok(zone, order, mark,
1917 classzone_idx, alloc_flags))
1918 goto try_this_zone;
1919
cd38b115
MG
1920 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1921 /*
1922 * we do zlc_setup if there are multiple nodes
1923 * and before considering the first zone allowed
1924 * by the cpuset.
1925 */
1926 allowednodes = zlc_setup(zonelist, alloc_flags);
1927 zlc_active = 1;
1928 did_zlc_setup = 1;
1929 }
1930
957f822a
DR
1931 if (zone_reclaim_mode == 0 ||
1932 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1933 goto this_zone_full;
1934
cd38b115
MG
1935 /*
1936 * As we may have just activated ZLC, check if the first
1937 * eligible zone has failed zone_reclaim recently.
1938 */
1939 if (NUMA_BUILD && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942
fa5e084e
MG
1943 ret = zone_reclaim(zone, gfp_mask, order);
1944 switch (ret) {
1945 case ZONE_RECLAIM_NOSCAN:
1946 /* did not scan */
cd38b115 1947 continue;
fa5e084e
MG
1948 case ZONE_RECLAIM_FULL:
1949 /* scanned but unreclaimable */
cd38b115 1950 continue;
fa5e084e
MG
1951 default:
1952 /* did we reclaim enough */
1953 if (!zone_watermark_ok(zone, order, mark,
1954 classzone_idx, alloc_flags))
9276b1bc 1955 goto this_zone_full;
0798e519 1956 }
7fb1d9fc
RS
1957 }
1958
fa5e084e 1959try_this_zone:
3dd28266
MG
1960 page = buffered_rmqueue(preferred_zone, zone, order,
1961 gfp_mask, migratetype);
0798e519 1962 if (page)
7fb1d9fc 1963 break;
9276b1bc
PJ
1964this_zone_full:
1965 if (NUMA_BUILD)
1966 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1967 }
9276b1bc
PJ
1968
1969 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1970 /* Disable zlc cache for second zonelist scan */
1971 zlc_active = 0;
1972 goto zonelist_scan;
1973 }
b121186a
AS
1974
1975 if (page)
1976 /*
1977 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1978 * necessary to allocate the page. The expectation is
1979 * that the caller is taking steps that will free more
1980 * memory. The caller should avoid the page being used
1981 * for !PFMEMALLOC purposes.
1982 */
1983 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1984
7fb1d9fc 1985 return page;
753ee728
MH
1986}
1987
29423e77
DR
1988/*
1989 * Large machines with many possible nodes should not always dump per-node
1990 * meminfo in irq context.
1991 */
1992static inline bool should_suppress_show_mem(void)
1993{
1994 bool ret = false;
1995
1996#if NODES_SHIFT > 8
1997 ret = in_interrupt();
1998#endif
1999 return ret;
2000}
2001
a238ab5b
DH
2002static DEFINE_RATELIMIT_STATE(nopage_rs,
2003 DEFAULT_RATELIMIT_INTERVAL,
2004 DEFAULT_RATELIMIT_BURST);
2005
2006void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2007{
a238ab5b
DH
2008 unsigned int filter = SHOW_MEM_FILTER_NODES;
2009
c0a32fc5
SG
2010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2011 debug_guardpage_minorder() > 0)
a238ab5b
DH
2012 return;
2013
2014 /*
2015 * This documents exceptions given to allocations in certain
2016 * contexts that are allowed to allocate outside current's set
2017 * of allowed nodes.
2018 */
2019 if (!(gfp_mask & __GFP_NOMEMALLOC))
2020 if (test_thread_flag(TIF_MEMDIE) ||
2021 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2022 filter &= ~SHOW_MEM_FILTER_NODES;
2023 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2024 filter &= ~SHOW_MEM_FILTER_NODES;
2025
2026 if (fmt) {
3ee9a4f0
JP
2027 struct va_format vaf;
2028 va_list args;
2029
a238ab5b 2030 va_start(args, fmt);
3ee9a4f0
JP
2031
2032 vaf.fmt = fmt;
2033 vaf.va = &args;
2034
2035 pr_warn("%pV", &vaf);
2036
a238ab5b
DH
2037 va_end(args);
2038 }
2039
3ee9a4f0
JP
2040 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2041 current->comm, order, gfp_mask);
a238ab5b
DH
2042
2043 dump_stack();
2044 if (!should_suppress_show_mem())
2045 show_mem(filter);
2046}
2047
11e33f6a
MG
2048static inline int
2049should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2050 unsigned long did_some_progress,
11e33f6a 2051 unsigned long pages_reclaimed)
1da177e4 2052{
11e33f6a
MG
2053 /* Do not loop if specifically requested */
2054 if (gfp_mask & __GFP_NORETRY)
2055 return 0;
1da177e4 2056
f90ac398
MG
2057 /* Always retry if specifically requested */
2058 if (gfp_mask & __GFP_NOFAIL)
2059 return 1;
2060
2061 /*
2062 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2063 * making forward progress without invoking OOM. Suspend also disables
2064 * storage devices so kswapd will not help. Bail if we are suspending.
2065 */
2066 if (!did_some_progress && pm_suspended_storage())
2067 return 0;
2068
11e33f6a
MG
2069 /*
2070 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2071 * means __GFP_NOFAIL, but that may not be true in other
2072 * implementations.
2073 */
2074 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2075 return 1;
2076
2077 /*
2078 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2079 * specified, then we retry until we no longer reclaim any pages
2080 * (above), or we've reclaimed an order of pages at least as
2081 * large as the allocation's order. In both cases, if the
2082 * allocation still fails, we stop retrying.
2083 */
2084 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2085 return 1;
cf40bd16 2086
11e33f6a
MG
2087 return 0;
2088}
933e312e 2089
11e33f6a
MG
2090static inline struct page *
2091__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2092 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2093 nodemask_t *nodemask, struct zone *preferred_zone,
2094 int migratetype)
11e33f6a
MG
2095{
2096 struct page *page;
2097
2098 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2099 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2100 schedule_timeout_uninterruptible(1);
1da177e4
LT
2101 return NULL;
2102 }
6b1de916 2103
11e33f6a
MG
2104 /*
2105 * Go through the zonelist yet one more time, keep very high watermark
2106 * here, this is only to catch a parallel oom killing, we must fail if
2107 * we're still under heavy pressure.
2108 */
2109 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2110 order, zonelist, high_zoneidx,
5117f45d 2111 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2112 preferred_zone, migratetype);
7fb1d9fc 2113 if (page)
11e33f6a
MG
2114 goto out;
2115
4365a567
KH
2116 if (!(gfp_mask & __GFP_NOFAIL)) {
2117 /* The OOM killer will not help higher order allocs */
2118 if (order > PAGE_ALLOC_COSTLY_ORDER)
2119 goto out;
03668b3c
DR
2120 /* The OOM killer does not needlessly kill tasks for lowmem */
2121 if (high_zoneidx < ZONE_NORMAL)
2122 goto out;
4365a567
KH
2123 /*
2124 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2125 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2126 * The caller should handle page allocation failure by itself if
2127 * it specifies __GFP_THISNODE.
2128 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2129 */
2130 if (gfp_mask & __GFP_THISNODE)
2131 goto out;
2132 }
11e33f6a 2133 /* Exhausted what can be done so it's blamo time */
08ab9b10 2134 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2135
2136out:
2137 clear_zonelist_oom(zonelist, gfp_mask);
2138 return page;
2139}
2140
56de7263
MG
2141#ifdef CONFIG_COMPACTION
2142/* Try memory compaction for high-order allocations before reclaim */
2143static struct page *
2144__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2145 struct zonelist *zonelist, enum zone_type high_zoneidx,
2146 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2147 int migratetype, bool sync_migration,
c67fe375 2148 bool *contended_compaction, bool *deferred_compaction,
66199712 2149 unsigned long *did_some_progress)
56de7263 2150{
1fb3f8ca 2151 struct page *page = NULL;
56de7263 2152
66199712 2153 if (!order)
56de7263
MG
2154 return NULL;
2155
aff62249 2156 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2157 *deferred_compaction = true;
2158 return NULL;
2159 }
2160
c06b1fca 2161 current->flags |= PF_MEMALLOC;
56de7263 2162 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2163 nodemask, sync_migration,
1fb3f8ca 2164 contended_compaction, &page);
c06b1fca 2165 current->flags &= ~PF_MEMALLOC;
56de7263 2166
1fb3f8ca
MG
2167 /* If compaction captured a page, prep and use it */
2168 if (page) {
2169 prep_new_page(page, order, gfp_mask);
2170 goto got_page;
2171 }
2172
2173 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2174 /* Page migration frees to the PCP lists but we want merging */
2175 drain_pages(get_cpu());
2176 put_cpu();
2177
2178 page = get_page_from_freelist(gfp_mask, nodemask,
2179 order, zonelist, high_zoneidx,
cfd19c5a
MG
2180 alloc_flags & ~ALLOC_NO_WATERMARKS,
2181 preferred_zone, migratetype);
56de7263 2182 if (page) {
1fb3f8ca 2183got_page:
62997027 2184 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2185 preferred_zone->compact_considered = 0;
2186 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2187 if (order >= preferred_zone->compact_order_failed)
2188 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2189 count_vm_event(COMPACTSUCCESS);
2190 return page;
2191 }
2192
2193 /*
2194 * It's bad if compaction run occurs and fails.
2195 * The most likely reason is that pages exist,
2196 * but not enough to satisfy watermarks.
2197 */
2198 count_vm_event(COMPACTFAIL);
66199712
MG
2199
2200 /*
2201 * As async compaction considers a subset of pageblocks, only
2202 * defer if the failure was a sync compaction failure.
2203 */
2204 if (sync_migration)
aff62249 2205 defer_compaction(preferred_zone, order);
56de7263
MG
2206
2207 cond_resched();
2208 }
2209
2210 return NULL;
2211}
2212#else
2213static inline struct page *
2214__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2215 struct zonelist *zonelist, enum zone_type high_zoneidx,
2216 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2217 int migratetype, bool sync_migration,
c67fe375 2218 bool *contended_compaction, bool *deferred_compaction,
66199712 2219 unsigned long *did_some_progress)
56de7263
MG
2220{
2221 return NULL;
2222}
2223#endif /* CONFIG_COMPACTION */
2224
bba90710
MS
2225/* Perform direct synchronous page reclaim */
2226static int
2227__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2228 nodemask_t *nodemask)
11e33f6a 2229{
11e33f6a 2230 struct reclaim_state reclaim_state;
bba90710 2231 int progress;
11e33f6a
MG
2232
2233 cond_resched();
2234
2235 /* We now go into synchronous reclaim */
2236 cpuset_memory_pressure_bump();
c06b1fca 2237 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2238 lockdep_set_current_reclaim_state(gfp_mask);
2239 reclaim_state.reclaimed_slab = 0;
c06b1fca 2240 current->reclaim_state = &reclaim_state;
11e33f6a 2241
bba90710 2242 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2243
c06b1fca 2244 current->reclaim_state = NULL;
11e33f6a 2245 lockdep_clear_current_reclaim_state();
c06b1fca 2246 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2247
2248 cond_resched();
2249
bba90710
MS
2250 return progress;
2251}
2252
2253/* The really slow allocator path where we enter direct reclaim */
2254static inline struct page *
2255__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2256 struct zonelist *zonelist, enum zone_type high_zoneidx,
2257 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2258 int migratetype, unsigned long *did_some_progress)
2259{
2260 struct page *page = NULL;
2261 bool drained = false;
2262
2263 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2264 nodemask);
9ee493ce
MG
2265 if (unlikely(!(*did_some_progress)))
2266 return NULL;
11e33f6a 2267
76d3fbf8
MG
2268 /* After successful reclaim, reconsider all zones for allocation */
2269 if (NUMA_BUILD)
2270 zlc_clear_zones_full(zonelist);
2271
9ee493ce
MG
2272retry:
2273 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2274 zonelist, high_zoneidx,
cfd19c5a
MG
2275 alloc_flags & ~ALLOC_NO_WATERMARKS,
2276 preferred_zone, migratetype);
9ee493ce
MG
2277
2278 /*
2279 * If an allocation failed after direct reclaim, it could be because
2280 * pages are pinned on the per-cpu lists. Drain them and try again
2281 */
2282 if (!page && !drained) {
2283 drain_all_pages();
2284 drained = true;
2285 goto retry;
2286 }
2287
11e33f6a
MG
2288 return page;
2289}
2290
1da177e4 2291/*
11e33f6a
MG
2292 * This is called in the allocator slow-path if the allocation request is of
2293 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2294 */
11e33f6a
MG
2295static inline struct page *
2296__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2298 nodemask_t *nodemask, struct zone *preferred_zone,
2299 int migratetype)
11e33f6a
MG
2300{
2301 struct page *page;
2302
2303 do {
2304 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2305 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2306 preferred_zone, migratetype);
11e33f6a
MG
2307
2308 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2309 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2310 } while (!page && (gfp_mask & __GFP_NOFAIL));
2311
2312 return page;
2313}
2314
2315static inline
2316void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2317 enum zone_type high_zoneidx,
2318 enum zone_type classzone_idx)
1da177e4 2319{
dd1a239f
MG
2320 struct zoneref *z;
2321 struct zone *zone;
1da177e4 2322
11e33f6a 2323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2324 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2325}
cf40bd16 2326
341ce06f
PZ
2327static inline int
2328gfp_to_alloc_flags(gfp_t gfp_mask)
2329{
341ce06f
PZ
2330 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2331 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2332
a56f57ff 2333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2335
341ce06f
PZ
2336 /*
2337 * The caller may dip into page reserves a bit more if the caller
2338 * cannot run direct reclaim, or if the caller has realtime scheduling
2339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2340 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2341 */
e6223a3b 2342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2343
341ce06f 2344 if (!wait) {
5c3240d9
AA
2345 /*
2346 * Not worth trying to allocate harder for
2347 * __GFP_NOMEMALLOC even if it can't schedule.
2348 */
2349 if (!(gfp_mask & __GFP_NOMEMALLOC))
2350 alloc_flags |= ALLOC_HARDER;
523b9458 2351 /*
341ce06f
PZ
2352 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2353 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2354 */
341ce06f 2355 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2356 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2357 alloc_flags |= ALLOC_HARDER;
2358
b37f1dd0
MG
2359 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2360 if (gfp_mask & __GFP_MEMALLOC)
2361 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2362 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2363 alloc_flags |= ALLOC_NO_WATERMARKS;
2364 else if (!in_interrupt() &&
2365 ((current->flags & PF_MEMALLOC) ||
2366 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2367 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2368 }
d95ea5d1
BZ
2369#ifdef CONFIG_CMA
2370 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2371 alloc_flags |= ALLOC_CMA;
2372#endif
341ce06f
PZ
2373 return alloc_flags;
2374}
2375
072bb0aa
MG
2376bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2377{
b37f1dd0 2378 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2379}
2380
11e33f6a
MG
2381static inline struct page *
2382__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2383 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2384 nodemask_t *nodemask, struct zone *preferred_zone,
2385 int migratetype)
11e33f6a
MG
2386{
2387 const gfp_t wait = gfp_mask & __GFP_WAIT;
2388 struct page *page = NULL;
2389 int alloc_flags;
2390 unsigned long pages_reclaimed = 0;
2391 unsigned long did_some_progress;
77f1fe6b 2392 bool sync_migration = false;
66199712 2393 bool deferred_compaction = false;
c67fe375 2394 bool contended_compaction = false;
1da177e4 2395
72807a74
MG
2396 /*
2397 * In the slowpath, we sanity check order to avoid ever trying to
2398 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2399 * be using allocators in order of preference for an area that is
2400 * too large.
2401 */
1fc28b70
MG
2402 if (order >= MAX_ORDER) {
2403 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2404 return NULL;
1fc28b70 2405 }
1da177e4 2406
952f3b51
CL
2407 /*
2408 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2409 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2410 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2411 * using a larger set of nodes after it has established that the
2412 * allowed per node queues are empty and that nodes are
2413 * over allocated.
2414 */
2415 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2416 goto nopage;
2417
cc4a6851 2418restart:
caf49191
LT
2419 if (!(gfp_mask & __GFP_NO_KSWAPD))
2420 wake_all_kswapd(order, zonelist, high_zoneidx,
2421 zone_idx(preferred_zone));
1da177e4 2422
9bf2229f 2423 /*
7fb1d9fc
RS
2424 * OK, we're below the kswapd watermark and have kicked background
2425 * reclaim. Now things get more complex, so set up alloc_flags according
2426 * to how we want to proceed.
9bf2229f 2427 */
341ce06f 2428 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2429
f33261d7
DR
2430 /*
2431 * Find the true preferred zone if the allocation is unconstrained by
2432 * cpusets.
2433 */
2434 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2435 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2436 &preferred_zone);
2437
cfa54a0f 2438rebalance:
341ce06f 2439 /* This is the last chance, in general, before the goto nopage. */
19770b32 2440 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2441 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2442 preferred_zone, migratetype);
7fb1d9fc
RS
2443 if (page)
2444 goto got_pg;
1da177e4 2445
11e33f6a 2446 /* Allocate without watermarks if the context allows */
341ce06f 2447 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2448 /*
2449 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2450 * the allocation is high priority and these type of
2451 * allocations are system rather than user orientated
2452 */
2453 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2454
341ce06f
PZ
2455 page = __alloc_pages_high_priority(gfp_mask, order,
2456 zonelist, high_zoneidx, nodemask,
2457 preferred_zone, migratetype);
cfd19c5a 2458 if (page) {
341ce06f 2459 goto got_pg;
cfd19c5a 2460 }
1da177e4
LT
2461 }
2462
2463 /* Atomic allocations - we can't balance anything */
2464 if (!wait)
2465 goto nopage;
2466
341ce06f 2467 /* Avoid recursion of direct reclaim */
c06b1fca 2468 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2469 goto nopage;
2470
6583bb64
DR
2471 /* Avoid allocations with no watermarks from looping endlessly */
2472 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2473 goto nopage;
2474
77f1fe6b
MG
2475 /*
2476 * Try direct compaction. The first pass is asynchronous. Subsequent
2477 * attempts after direct reclaim are synchronous
2478 */
56de7263
MG
2479 page = __alloc_pages_direct_compact(gfp_mask, order,
2480 zonelist, high_zoneidx,
2481 nodemask,
2482 alloc_flags, preferred_zone,
66199712 2483 migratetype, sync_migration,
c67fe375 2484 &contended_compaction,
66199712
MG
2485 &deferred_compaction,
2486 &did_some_progress);
56de7263
MG
2487 if (page)
2488 goto got_pg;
c6a140bf 2489 sync_migration = true;
56de7263 2490
31f8d42d
LT
2491 /*
2492 * If compaction is deferred for high-order allocations, it is because
2493 * sync compaction recently failed. In this is the case and the caller
2494 * requested a movable allocation that does not heavily disrupt the
2495 * system then fail the allocation instead of entering direct reclaim.
2496 */
2497 if ((deferred_compaction || contended_compaction) &&
caf49191 2498 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2499 goto nopage;
66199712 2500
11e33f6a
MG
2501 /* Try direct reclaim and then allocating */
2502 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2503 zonelist, high_zoneidx,
2504 nodemask,
5117f45d 2505 alloc_flags, preferred_zone,
3dd28266 2506 migratetype, &did_some_progress);
11e33f6a
MG
2507 if (page)
2508 goto got_pg;
1da177e4 2509
e33c3b5e 2510 /*
11e33f6a
MG
2511 * If we failed to make any progress reclaiming, then we are
2512 * running out of options and have to consider going OOM
e33c3b5e 2513 */
11e33f6a
MG
2514 if (!did_some_progress) {
2515 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2516 if (oom_killer_disabled)
2517 goto nopage;
29fd66d2
DR
2518 /* Coredumps can quickly deplete all memory reserves */
2519 if ((current->flags & PF_DUMPCORE) &&
2520 !(gfp_mask & __GFP_NOFAIL))
2521 goto nopage;
11e33f6a
MG
2522 page = __alloc_pages_may_oom(gfp_mask, order,
2523 zonelist, high_zoneidx,
3dd28266
MG
2524 nodemask, preferred_zone,
2525 migratetype);
11e33f6a
MG
2526 if (page)
2527 goto got_pg;
1da177e4 2528
03668b3c
DR
2529 if (!(gfp_mask & __GFP_NOFAIL)) {
2530 /*
2531 * The oom killer is not called for high-order
2532 * allocations that may fail, so if no progress
2533 * is being made, there are no other options and
2534 * retrying is unlikely to help.
2535 */
2536 if (order > PAGE_ALLOC_COSTLY_ORDER)
2537 goto nopage;
2538 /*
2539 * The oom killer is not called for lowmem
2540 * allocations to prevent needlessly killing
2541 * innocent tasks.
2542 */
2543 if (high_zoneidx < ZONE_NORMAL)
2544 goto nopage;
2545 }
e2c55dc8 2546
ff0ceb9d
DR
2547 goto restart;
2548 }
1da177e4
LT
2549 }
2550
11e33f6a 2551 /* Check if we should retry the allocation */
a41f24ea 2552 pages_reclaimed += did_some_progress;
f90ac398
MG
2553 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2554 pages_reclaimed)) {
11e33f6a 2555 /* Wait for some write requests to complete then retry */
0e093d99 2556 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2557 goto rebalance;
3e7d3449
MG
2558 } else {
2559 /*
2560 * High-order allocations do not necessarily loop after
2561 * direct reclaim and reclaim/compaction depends on compaction
2562 * being called after reclaim so call directly if necessary
2563 */
2564 page = __alloc_pages_direct_compact(gfp_mask, order,
2565 zonelist, high_zoneidx,
2566 nodemask,
2567 alloc_flags, preferred_zone,
66199712 2568 migratetype, sync_migration,
c67fe375 2569 &contended_compaction,
66199712
MG
2570 &deferred_compaction,
2571 &did_some_progress);
3e7d3449
MG
2572 if (page)
2573 goto got_pg;
1da177e4
LT
2574 }
2575
2576nopage:
a238ab5b 2577 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2578 return page;
1da177e4 2579got_pg:
b1eeab67
VN
2580 if (kmemcheck_enabled)
2581 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2582
072bb0aa 2583 return page;
1da177e4 2584}
11e33f6a
MG
2585
2586/*
2587 * This is the 'heart' of the zoned buddy allocator.
2588 */
2589struct page *
2590__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2591 struct zonelist *zonelist, nodemask_t *nodemask)
2592{
2593 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2594 struct zone *preferred_zone;
cc9a6c87 2595 struct page *page = NULL;
3dd28266 2596 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2597 unsigned int cpuset_mems_cookie;
d95ea5d1 2598 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2599
dcce284a
BH
2600 gfp_mask &= gfp_allowed_mask;
2601
11e33f6a
MG
2602 lockdep_trace_alloc(gfp_mask);
2603
2604 might_sleep_if(gfp_mask & __GFP_WAIT);
2605
2606 if (should_fail_alloc_page(gfp_mask, order))
2607 return NULL;
2608
2609 /*
2610 * Check the zones suitable for the gfp_mask contain at least one
2611 * valid zone. It's possible to have an empty zonelist as a result
2612 * of GFP_THISNODE and a memoryless node
2613 */
2614 if (unlikely(!zonelist->_zonerefs->zone))
2615 return NULL;
2616
cc9a6c87
MG
2617retry_cpuset:
2618 cpuset_mems_cookie = get_mems_allowed();
2619
5117f45d 2620 /* The preferred zone is used for statistics later */
f33261d7
DR
2621 first_zones_zonelist(zonelist, high_zoneidx,
2622 nodemask ? : &cpuset_current_mems_allowed,
2623 &preferred_zone);
cc9a6c87
MG
2624 if (!preferred_zone)
2625 goto out;
5117f45d 2626
d95ea5d1
BZ
2627#ifdef CONFIG_CMA
2628 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2629 alloc_flags |= ALLOC_CMA;
2630#endif
5117f45d 2631 /* First allocation attempt */
11e33f6a 2632 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2633 zonelist, high_zoneidx, alloc_flags,
3dd28266 2634 preferred_zone, migratetype);
11e33f6a
MG
2635 if (unlikely(!page))
2636 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2637 zonelist, high_zoneidx, nodemask,
3dd28266 2638 preferred_zone, migratetype);
11e33f6a 2639
4b4f278c 2640 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2641
2642out:
2643 /*
2644 * When updating a task's mems_allowed, it is possible to race with
2645 * parallel threads in such a way that an allocation can fail while
2646 * the mask is being updated. If a page allocation is about to fail,
2647 * check if the cpuset changed during allocation and if so, retry.
2648 */
2649 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2650 goto retry_cpuset;
2651
11e33f6a 2652 return page;
1da177e4 2653}
d239171e 2654EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2655
2656/*
2657 * Common helper functions.
2658 */
920c7a5d 2659unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2660{
945a1113
AM
2661 struct page *page;
2662
2663 /*
2664 * __get_free_pages() returns a 32-bit address, which cannot represent
2665 * a highmem page
2666 */
2667 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2668
1da177e4
LT
2669 page = alloc_pages(gfp_mask, order);
2670 if (!page)
2671 return 0;
2672 return (unsigned long) page_address(page);
2673}
1da177e4
LT
2674EXPORT_SYMBOL(__get_free_pages);
2675
920c7a5d 2676unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2677{
945a1113 2678 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2679}
1da177e4
LT
2680EXPORT_SYMBOL(get_zeroed_page);
2681
920c7a5d 2682void __free_pages(struct page *page, unsigned int order)
1da177e4 2683{
b5810039 2684 if (put_page_testzero(page)) {
1da177e4 2685 if (order == 0)
fc91668e 2686 free_hot_cold_page(page, 0);
1da177e4
LT
2687 else
2688 __free_pages_ok(page, order);
2689 }
2690}
2691
2692EXPORT_SYMBOL(__free_pages);
2693
920c7a5d 2694void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2695{
2696 if (addr != 0) {
725d704e 2697 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2698 __free_pages(virt_to_page((void *)addr), order);
2699 }
2700}
2701
2702EXPORT_SYMBOL(free_pages);
2703
ee85c2e1
AK
2704static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2705{
2706 if (addr) {
2707 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2708 unsigned long used = addr + PAGE_ALIGN(size);
2709
2710 split_page(virt_to_page((void *)addr), order);
2711 while (used < alloc_end) {
2712 free_page(used);
2713 used += PAGE_SIZE;
2714 }
2715 }
2716 return (void *)addr;
2717}
2718
2be0ffe2
TT
2719/**
2720 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2721 * @size: the number of bytes to allocate
2722 * @gfp_mask: GFP flags for the allocation
2723 *
2724 * This function is similar to alloc_pages(), except that it allocates the
2725 * minimum number of pages to satisfy the request. alloc_pages() can only
2726 * allocate memory in power-of-two pages.
2727 *
2728 * This function is also limited by MAX_ORDER.
2729 *
2730 * Memory allocated by this function must be released by free_pages_exact().
2731 */
2732void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2733{
2734 unsigned int order = get_order(size);
2735 unsigned long addr;
2736
2737 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2738 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2739}
2740EXPORT_SYMBOL(alloc_pages_exact);
2741
ee85c2e1
AK
2742/**
2743 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2744 * pages on a node.
b5e6ab58 2745 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2746 * @size: the number of bytes to allocate
2747 * @gfp_mask: GFP flags for the allocation
2748 *
2749 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2750 * back.
2751 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2752 * but is not exact.
2753 */
2754void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2755{
2756 unsigned order = get_order(size);
2757 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2758 if (!p)
2759 return NULL;
2760 return make_alloc_exact((unsigned long)page_address(p), order, size);
2761}
2762EXPORT_SYMBOL(alloc_pages_exact_nid);
2763
2be0ffe2
TT
2764/**
2765 * free_pages_exact - release memory allocated via alloc_pages_exact()
2766 * @virt: the value returned by alloc_pages_exact.
2767 * @size: size of allocation, same value as passed to alloc_pages_exact().
2768 *
2769 * Release the memory allocated by a previous call to alloc_pages_exact.
2770 */
2771void free_pages_exact(void *virt, size_t size)
2772{
2773 unsigned long addr = (unsigned long)virt;
2774 unsigned long end = addr + PAGE_ALIGN(size);
2775
2776 while (addr < end) {
2777 free_page(addr);
2778 addr += PAGE_SIZE;
2779 }
2780}
2781EXPORT_SYMBOL(free_pages_exact);
2782
1da177e4
LT
2783static unsigned int nr_free_zone_pages(int offset)
2784{
dd1a239f 2785 struct zoneref *z;
54a6eb5c
MG
2786 struct zone *zone;
2787
e310fd43 2788 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2789 unsigned int sum = 0;
2790
0e88460d 2791 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2792
54a6eb5c 2793 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2794 unsigned long size = zone->present_pages;
41858966 2795 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2796 if (size > high)
2797 sum += size - high;
1da177e4
LT
2798 }
2799
2800 return sum;
2801}
2802
2803/*
2804 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2805 */
2806unsigned int nr_free_buffer_pages(void)
2807{
af4ca457 2808 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2809}
c2f1a551 2810EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2811
2812/*
2813 * Amount of free RAM allocatable within all zones
2814 */
2815unsigned int nr_free_pagecache_pages(void)
2816{
2a1e274a 2817 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2818}
08e0f6a9
CL
2819
2820static inline void show_node(struct zone *zone)
1da177e4 2821{
08e0f6a9 2822 if (NUMA_BUILD)
25ba77c1 2823 printk("Node %d ", zone_to_nid(zone));
1da177e4 2824}
1da177e4 2825
1da177e4
LT
2826void si_meminfo(struct sysinfo *val)
2827{
2828 val->totalram = totalram_pages;
2829 val->sharedram = 0;
d23ad423 2830 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2831 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2832 val->totalhigh = totalhigh_pages;
2833 val->freehigh = nr_free_highpages();
1da177e4
LT
2834 val->mem_unit = PAGE_SIZE;
2835}
2836
2837EXPORT_SYMBOL(si_meminfo);
2838
2839#ifdef CONFIG_NUMA
2840void si_meminfo_node(struct sysinfo *val, int nid)
2841{
2842 pg_data_t *pgdat = NODE_DATA(nid);
2843
2844 val->totalram = pgdat->node_present_pages;
d23ad423 2845 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2846#ifdef CONFIG_HIGHMEM
1da177e4 2847 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2848 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2849 NR_FREE_PAGES);
98d2b0eb
CL
2850#else
2851 val->totalhigh = 0;
2852 val->freehigh = 0;
2853#endif
1da177e4
LT
2854 val->mem_unit = PAGE_SIZE;
2855}
2856#endif
2857
ddd588b5 2858/*
7bf02ea2
DR
2859 * Determine whether the node should be displayed or not, depending on whether
2860 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2861 */
7bf02ea2 2862bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2863{
2864 bool ret = false;
cc9a6c87 2865 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2866
2867 if (!(flags & SHOW_MEM_FILTER_NODES))
2868 goto out;
2869
cc9a6c87
MG
2870 do {
2871 cpuset_mems_cookie = get_mems_allowed();
2872 ret = !node_isset(nid, cpuset_current_mems_allowed);
2873 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2874out:
2875 return ret;
2876}
2877
1da177e4
LT
2878#define K(x) ((x) << (PAGE_SHIFT-10))
2879
2880/*
2881 * Show free area list (used inside shift_scroll-lock stuff)
2882 * We also calculate the percentage fragmentation. We do this by counting the
2883 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2884 * Suppresses nodes that are not allowed by current's cpuset if
2885 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2886 */
7bf02ea2 2887void show_free_areas(unsigned int filter)
1da177e4 2888{
c7241913 2889 int cpu;
1da177e4
LT
2890 struct zone *zone;
2891
ee99c71c 2892 for_each_populated_zone(zone) {
7bf02ea2 2893 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2894 continue;
c7241913
JS
2895 show_node(zone);
2896 printk("%s per-cpu:\n", zone->name);
1da177e4 2897
6b482c67 2898 for_each_online_cpu(cpu) {
1da177e4
LT
2899 struct per_cpu_pageset *pageset;
2900
99dcc3e5 2901 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2902
3dfa5721
CL
2903 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2904 cpu, pageset->pcp.high,
2905 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2906 }
2907 }
2908
a731286d
KM
2909 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2910 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2911 " unevictable:%lu"
b76146ed 2912 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2913 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2914 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2915 " free_cma:%lu\n",
4f98a2fe 2916 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2917 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2918 global_page_state(NR_ISOLATED_ANON),
2919 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2920 global_page_state(NR_INACTIVE_FILE),
a731286d 2921 global_page_state(NR_ISOLATED_FILE),
7b854121 2922 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2923 global_page_state(NR_FILE_DIRTY),
ce866b34 2924 global_page_state(NR_WRITEBACK),
fd39fc85 2925 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2926 global_page_state(NR_FREE_PAGES),
3701b033
KM
2927 global_page_state(NR_SLAB_RECLAIMABLE),
2928 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2929 global_page_state(NR_FILE_MAPPED),
4b02108a 2930 global_page_state(NR_SHMEM),
a25700a5 2931 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2932 global_page_state(NR_BOUNCE),
2933 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2934
ee99c71c 2935 for_each_populated_zone(zone) {
1da177e4
LT
2936 int i;
2937
7bf02ea2 2938 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2939 continue;
1da177e4
LT
2940 show_node(zone);
2941 printk("%s"
2942 " free:%lukB"
2943 " min:%lukB"
2944 " low:%lukB"
2945 " high:%lukB"
4f98a2fe
RR
2946 " active_anon:%lukB"
2947 " inactive_anon:%lukB"
2948 " active_file:%lukB"
2949 " inactive_file:%lukB"
7b854121 2950 " unevictable:%lukB"
a731286d
KM
2951 " isolated(anon):%lukB"
2952 " isolated(file):%lukB"
1da177e4 2953 " present:%lukB"
4a0aa73f
KM
2954 " mlocked:%lukB"
2955 " dirty:%lukB"
2956 " writeback:%lukB"
2957 " mapped:%lukB"
4b02108a 2958 " shmem:%lukB"
4a0aa73f
KM
2959 " slab_reclaimable:%lukB"
2960 " slab_unreclaimable:%lukB"
c6a7f572 2961 " kernel_stack:%lukB"
4a0aa73f
KM
2962 " pagetables:%lukB"
2963 " unstable:%lukB"
2964 " bounce:%lukB"
d1ce749a 2965 " free_cma:%lukB"
4a0aa73f 2966 " writeback_tmp:%lukB"
1da177e4
LT
2967 " pages_scanned:%lu"
2968 " all_unreclaimable? %s"
2969 "\n",
2970 zone->name,
88f5acf8 2971 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2972 K(min_wmark_pages(zone)),
2973 K(low_wmark_pages(zone)),
2974 K(high_wmark_pages(zone)),
4f98a2fe
RR
2975 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2976 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2977 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2978 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2979 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2980 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2981 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2982 K(zone->present_pages),
4a0aa73f
KM
2983 K(zone_page_state(zone, NR_MLOCK)),
2984 K(zone_page_state(zone, NR_FILE_DIRTY)),
2985 K(zone_page_state(zone, NR_WRITEBACK)),
2986 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2987 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2988 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2989 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2990 zone_page_state(zone, NR_KERNEL_STACK) *
2991 THREAD_SIZE / 1024,
4a0aa73f
KM
2992 K(zone_page_state(zone, NR_PAGETABLE)),
2993 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2994 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 2995 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 2996 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2997 zone->pages_scanned,
93e4a89a 2998 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2999 );
3000 printk("lowmem_reserve[]:");
3001 for (i = 0; i < MAX_NR_ZONES; i++)
3002 printk(" %lu", zone->lowmem_reserve[i]);
3003 printk("\n");
3004 }
3005
ee99c71c 3006 for_each_populated_zone(zone) {
8f9de51a 3007 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 3008
7bf02ea2 3009 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3010 continue;
1da177e4
LT
3011 show_node(zone);
3012 printk("%s: ", zone->name);
1da177e4
LT
3013
3014 spin_lock_irqsave(&zone->lock, flags);
3015 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
3016 nr[order] = zone->free_area[order].nr_free;
3017 total += nr[order] << order;
1da177e4
LT
3018 }
3019 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
3020 for (order = 0; order < MAX_ORDER; order++)
3021 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
3022 printk("= %lukB\n", K(total));
3023 }
3024
e6f3602d
LW
3025 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3026
1da177e4
LT
3027 show_swap_cache_info();
3028}
3029
19770b32
MG
3030static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3031{
3032 zoneref->zone = zone;
3033 zoneref->zone_idx = zone_idx(zone);
3034}
3035
1da177e4
LT
3036/*
3037 * Builds allocation fallback zone lists.
1a93205b
CL
3038 *
3039 * Add all populated zones of a node to the zonelist.
1da177e4 3040 */
f0c0b2b8
KH
3041static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3042 int nr_zones, enum zone_type zone_type)
1da177e4 3043{
1a93205b
CL
3044 struct zone *zone;
3045
98d2b0eb 3046 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3047 zone_type++;
02a68a5e
CL
3048
3049 do {
2f6726e5 3050 zone_type--;
070f8032 3051 zone = pgdat->node_zones + zone_type;
1a93205b 3052 if (populated_zone(zone)) {
dd1a239f
MG
3053 zoneref_set_zone(zone,
3054 &zonelist->_zonerefs[nr_zones++]);
070f8032 3055 check_highest_zone(zone_type);
1da177e4 3056 }
02a68a5e 3057
2f6726e5 3058 } while (zone_type);
070f8032 3059 return nr_zones;
1da177e4
LT
3060}
3061
f0c0b2b8
KH
3062
3063/*
3064 * zonelist_order:
3065 * 0 = automatic detection of better ordering.
3066 * 1 = order by ([node] distance, -zonetype)
3067 * 2 = order by (-zonetype, [node] distance)
3068 *
3069 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3070 * the same zonelist. So only NUMA can configure this param.
3071 */
3072#define ZONELIST_ORDER_DEFAULT 0
3073#define ZONELIST_ORDER_NODE 1
3074#define ZONELIST_ORDER_ZONE 2
3075
3076/* zonelist order in the kernel.
3077 * set_zonelist_order() will set this to NODE or ZONE.
3078 */
3079static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3080static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3081
3082
1da177e4 3083#ifdef CONFIG_NUMA
f0c0b2b8
KH
3084/* The value user specified ....changed by config */
3085static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3086/* string for sysctl */
3087#define NUMA_ZONELIST_ORDER_LEN 16
3088char numa_zonelist_order[16] = "default";
3089
3090/*
3091 * interface for configure zonelist ordering.
3092 * command line option "numa_zonelist_order"
3093 * = "[dD]efault - default, automatic configuration.
3094 * = "[nN]ode - order by node locality, then by zone within node
3095 * = "[zZ]one - order by zone, then by locality within zone
3096 */
3097
3098static int __parse_numa_zonelist_order(char *s)
3099{
3100 if (*s == 'd' || *s == 'D') {
3101 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3102 } else if (*s == 'n' || *s == 'N') {
3103 user_zonelist_order = ZONELIST_ORDER_NODE;
3104 } else if (*s == 'z' || *s == 'Z') {
3105 user_zonelist_order = ZONELIST_ORDER_ZONE;
3106 } else {
3107 printk(KERN_WARNING
3108 "Ignoring invalid numa_zonelist_order value: "
3109 "%s\n", s);
3110 return -EINVAL;
3111 }
3112 return 0;
3113}
3114
3115static __init int setup_numa_zonelist_order(char *s)
3116{
ecb256f8
VL
3117 int ret;
3118
3119 if (!s)
3120 return 0;
3121
3122 ret = __parse_numa_zonelist_order(s);
3123 if (ret == 0)
3124 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3125
3126 return ret;
f0c0b2b8
KH
3127}
3128early_param("numa_zonelist_order", setup_numa_zonelist_order);
3129
3130/*
3131 * sysctl handler for numa_zonelist_order
3132 */
3133int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3134 void __user *buffer, size_t *length,
f0c0b2b8
KH
3135 loff_t *ppos)
3136{
3137 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3138 int ret;
443c6f14 3139 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3140
443c6f14 3141 mutex_lock(&zl_order_mutex);
f0c0b2b8 3142 if (write)
443c6f14 3143 strcpy(saved_string, (char*)table->data);
8d65af78 3144 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3145 if (ret)
443c6f14 3146 goto out;
f0c0b2b8
KH
3147 if (write) {
3148 int oldval = user_zonelist_order;
3149 if (__parse_numa_zonelist_order((char*)table->data)) {
3150 /*
3151 * bogus value. restore saved string
3152 */
3153 strncpy((char*)table->data, saved_string,
3154 NUMA_ZONELIST_ORDER_LEN);
3155 user_zonelist_order = oldval;
4eaf3f64
HL
3156 } else if (oldval != user_zonelist_order) {
3157 mutex_lock(&zonelists_mutex);
9adb62a5 3158 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3159 mutex_unlock(&zonelists_mutex);
3160 }
f0c0b2b8 3161 }
443c6f14
AK
3162out:
3163 mutex_unlock(&zl_order_mutex);
3164 return ret;
f0c0b2b8
KH
3165}
3166
3167
62bc62a8 3168#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3169static int node_load[MAX_NUMNODES];
3170
1da177e4 3171/**
4dc3b16b 3172 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3173 * @node: node whose fallback list we're appending
3174 * @used_node_mask: nodemask_t of already used nodes
3175 *
3176 * We use a number of factors to determine which is the next node that should
3177 * appear on a given node's fallback list. The node should not have appeared
3178 * already in @node's fallback list, and it should be the next closest node
3179 * according to the distance array (which contains arbitrary distance values
3180 * from each node to each node in the system), and should also prefer nodes
3181 * with no CPUs, since presumably they'll have very little allocation pressure
3182 * on them otherwise.
3183 * It returns -1 if no node is found.
3184 */
f0c0b2b8 3185static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3186{
4cf808eb 3187 int n, val;
1da177e4
LT
3188 int min_val = INT_MAX;
3189 int best_node = -1;
a70f7302 3190 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3191
4cf808eb
LT
3192 /* Use the local node if we haven't already */
3193 if (!node_isset(node, *used_node_mask)) {
3194 node_set(node, *used_node_mask);
3195 return node;
3196 }
1da177e4 3197
37b07e41 3198 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3199
3200 /* Don't want a node to appear more than once */
3201 if (node_isset(n, *used_node_mask))
3202 continue;
3203
1da177e4
LT
3204 /* Use the distance array to find the distance */
3205 val = node_distance(node, n);
3206
4cf808eb
LT
3207 /* Penalize nodes under us ("prefer the next node") */
3208 val += (n < node);
3209
1da177e4 3210 /* Give preference to headless and unused nodes */
a70f7302
RR
3211 tmp = cpumask_of_node(n);
3212 if (!cpumask_empty(tmp))
1da177e4
LT
3213 val += PENALTY_FOR_NODE_WITH_CPUS;
3214
3215 /* Slight preference for less loaded node */
3216 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3217 val += node_load[n];
3218
3219 if (val < min_val) {
3220 min_val = val;
3221 best_node = n;
3222 }
3223 }
3224
3225 if (best_node >= 0)
3226 node_set(best_node, *used_node_mask);
3227
3228 return best_node;
3229}
3230
f0c0b2b8
KH
3231
3232/*
3233 * Build zonelists ordered by node and zones within node.
3234 * This results in maximum locality--normal zone overflows into local
3235 * DMA zone, if any--but risks exhausting DMA zone.
3236 */
3237static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3238{
f0c0b2b8 3239 int j;
1da177e4 3240 struct zonelist *zonelist;
f0c0b2b8 3241
54a6eb5c 3242 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3243 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3244 ;
3245 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3246 MAX_NR_ZONES - 1);
dd1a239f
MG
3247 zonelist->_zonerefs[j].zone = NULL;
3248 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3249}
3250
523b9458
CL
3251/*
3252 * Build gfp_thisnode zonelists
3253 */
3254static void build_thisnode_zonelists(pg_data_t *pgdat)
3255{
523b9458
CL
3256 int j;
3257 struct zonelist *zonelist;
3258
54a6eb5c
MG
3259 zonelist = &pgdat->node_zonelists[1];
3260 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3261 zonelist->_zonerefs[j].zone = NULL;
3262 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3263}
3264
f0c0b2b8
KH
3265/*
3266 * Build zonelists ordered by zone and nodes within zones.
3267 * This results in conserving DMA zone[s] until all Normal memory is
3268 * exhausted, but results in overflowing to remote node while memory
3269 * may still exist in local DMA zone.
3270 */
3271static int node_order[MAX_NUMNODES];
3272
3273static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3274{
f0c0b2b8
KH
3275 int pos, j, node;
3276 int zone_type; /* needs to be signed */
3277 struct zone *z;
3278 struct zonelist *zonelist;
3279
54a6eb5c
MG
3280 zonelist = &pgdat->node_zonelists[0];
3281 pos = 0;
3282 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3283 for (j = 0; j < nr_nodes; j++) {
3284 node = node_order[j];
3285 z = &NODE_DATA(node)->node_zones[zone_type];
3286 if (populated_zone(z)) {
dd1a239f
MG
3287 zoneref_set_zone(z,
3288 &zonelist->_zonerefs[pos++]);
54a6eb5c 3289 check_highest_zone(zone_type);
f0c0b2b8
KH
3290 }
3291 }
f0c0b2b8 3292 }
dd1a239f
MG
3293 zonelist->_zonerefs[pos].zone = NULL;
3294 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3295}
3296
3297static int default_zonelist_order(void)
3298{
3299 int nid, zone_type;
3300 unsigned long low_kmem_size,total_size;
3301 struct zone *z;
3302 int average_size;
3303 /*
88393161 3304 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3305 * If they are really small and used heavily, the system can fall
3306 * into OOM very easily.
e325c90f 3307 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3308 */
3309 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3310 low_kmem_size = 0;
3311 total_size = 0;
3312 for_each_online_node(nid) {
3313 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3314 z = &NODE_DATA(nid)->node_zones[zone_type];
3315 if (populated_zone(z)) {
3316 if (zone_type < ZONE_NORMAL)
3317 low_kmem_size += z->present_pages;
3318 total_size += z->present_pages;
e325c90f
DR
3319 } else if (zone_type == ZONE_NORMAL) {
3320 /*
3321 * If any node has only lowmem, then node order
3322 * is preferred to allow kernel allocations
3323 * locally; otherwise, they can easily infringe
3324 * on other nodes when there is an abundance of
3325 * lowmem available to allocate from.
3326 */
3327 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3328 }
3329 }
3330 }
3331 if (!low_kmem_size || /* there are no DMA area. */
3332 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3333 return ZONELIST_ORDER_NODE;
3334 /*
3335 * look into each node's config.
3336 * If there is a node whose DMA/DMA32 memory is very big area on
3337 * local memory, NODE_ORDER may be suitable.
3338 */
37b07e41
LS
3339 average_size = total_size /
3340 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3341 for_each_online_node(nid) {
3342 low_kmem_size = 0;
3343 total_size = 0;
3344 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3345 z = &NODE_DATA(nid)->node_zones[zone_type];
3346 if (populated_zone(z)) {
3347 if (zone_type < ZONE_NORMAL)
3348 low_kmem_size += z->present_pages;
3349 total_size += z->present_pages;
3350 }
3351 }
3352 if (low_kmem_size &&
3353 total_size > average_size && /* ignore small node */
3354 low_kmem_size > total_size * 70/100)
3355 return ZONELIST_ORDER_NODE;
3356 }
3357 return ZONELIST_ORDER_ZONE;
3358}
3359
3360static void set_zonelist_order(void)
3361{
3362 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3363 current_zonelist_order = default_zonelist_order();
3364 else
3365 current_zonelist_order = user_zonelist_order;
3366}
3367
3368static void build_zonelists(pg_data_t *pgdat)
3369{
3370 int j, node, load;
3371 enum zone_type i;
1da177e4 3372 nodemask_t used_mask;
f0c0b2b8
KH
3373 int local_node, prev_node;
3374 struct zonelist *zonelist;
3375 int order = current_zonelist_order;
1da177e4
LT
3376
3377 /* initialize zonelists */
523b9458 3378 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3379 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3380 zonelist->_zonerefs[0].zone = NULL;
3381 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3382 }
3383
3384 /* NUMA-aware ordering of nodes */
3385 local_node = pgdat->node_id;
62bc62a8 3386 load = nr_online_nodes;
1da177e4
LT
3387 prev_node = local_node;
3388 nodes_clear(used_mask);
f0c0b2b8 3389
f0c0b2b8
KH
3390 memset(node_order, 0, sizeof(node_order));
3391 j = 0;
3392
1da177e4
LT
3393 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3394 /*
3395 * We don't want to pressure a particular node.
3396 * So adding penalty to the first node in same
3397 * distance group to make it round-robin.
3398 */
957f822a
DR
3399 if (node_distance(local_node, node) !=
3400 node_distance(local_node, prev_node))
f0c0b2b8
KH
3401 node_load[node] = load;
3402
1da177e4
LT
3403 prev_node = node;
3404 load--;
f0c0b2b8
KH
3405 if (order == ZONELIST_ORDER_NODE)
3406 build_zonelists_in_node_order(pgdat, node);
3407 else
3408 node_order[j++] = node; /* remember order */
3409 }
1da177e4 3410
f0c0b2b8
KH
3411 if (order == ZONELIST_ORDER_ZONE) {
3412 /* calculate node order -- i.e., DMA last! */
3413 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3414 }
523b9458
CL
3415
3416 build_thisnode_zonelists(pgdat);
1da177e4
LT
3417}
3418
9276b1bc 3419/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3420static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3421{
54a6eb5c
MG
3422 struct zonelist *zonelist;
3423 struct zonelist_cache *zlc;
dd1a239f 3424 struct zoneref *z;
9276b1bc 3425
54a6eb5c
MG
3426 zonelist = &pgdat->node_zonelists[0];
3427 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3428 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3429 for (z = zonelist->_zonerefs; z->zone; z++)
3430 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3431}
3432
7aac7898
LS
3433#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3434/*
3435 * Return node id of node used for "local" allocations.
3436 * I.e., first node id of first zone in arg node's generic zonelist.
3437 * Used for initializing percpu 'numa_mem', which is used primarily
3438 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3439 */
3440int local_memory_node(int node)
3441{
3442 struct zone *zone;
3443
3444 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3445 gfp_zone(GFP_KERNEL),
3446 NULL,
3447 &zone);
3448 return zone->node;
3449}
3450#endif
f0c0b2b8 3451
1da177e4
LT
3452#else /* CONFIG_NUMA */
3453
f0c0b2b8
KH
3454static void set_zonelist_order(void)
3455{
3456 current_zonelist_order = ZONELIST_ORDER_ZONE;
3457}
3458
3459static void build_zonelists(pg_data_t *pgdat)
1da177e4 3460{
19655d34 3461 int node, local_node;
54a6eb5c
MG
3462 enum zone_type j;
3463 struct zonelist *zonelist;
1da177e4
LT
3464
3465 local_node = pgdat->node_id;
1da177e4 3466
54a6eb5c
MG
3467 zonelist = &pgdat->node_zonelists[0];
3468 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3469
54a6eb5c
MG
3470 /*
3471 * Now we build the zonelist so that it contains the zones
3472 * of all the other nodes.
3473 * We don't want to pressure a particular node, so when
3474 * building the zones for node N, we make sure that the
3475 * zones coming right after the local ones are those from
3476 * node N+1 (modulo N)
3477 */
3478 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3479 if (!node_online(node))
3480 continue;
3481 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3482 MAX_NR_ZONES - 1);
1da177e4 3483 }
54a6eb5c
MG
3484 for (node = 0; node < local_node; node++) {
3485 if (!node_online(node))
3486 continue;
3487 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3488 MAX_NR_ZONES - 1);
3489 }
3490
dd1a239f
MG
3491 zonelist->_zonerefs[j].zone = NULL;
3492 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3493}
3494
9276b1bc 3495/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3496static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3497{
54a6eb5c 3498 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3499}
3500
1da177e4
LT
3501#endif /* CONFIG_NUMA */
3502
99dcc3e5
CL
3503/*
3504 * Boot pageset table. One per cpu which is going to be used for all
3505 * zones and all nodes. The parameters will be set in such a way
3506 * that an item put on a list will immediately be handed over to
3507 * the buddy list. This is safe since pageset manipulation is done
3508 * with interrupts disabled.
3509 *
3510 * The boot_pagesets must be kept even after bootup is complete for
3511 * unused processors and/or zones. They do play a role for bootstrapping
3512 * hotplugged processors.
3513 *
3514 * zoneinfo_show() and maybe other functions do
3515 * not check if the processor is online before following the pageset pointer.
3516 * Other parts of the kernel may not check if the zone is available.
3517 */
3518static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3519static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3520static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3521
4eaf3f64
HL
3522/*
3523 * Global mutex to protect against size modification of zonelists
3524 * as well as to serialize pageset setup for the new populated zone.
3525 */
3526DEFINE_MUTEX(zonelists_mutex);
3527
9b1a4d38 3528/* return values int ....just for stop_machine() */
4ed7e022 3529static int __build_all_zonelists(void *data)
1da177e4 3530{
6811378e 3531 int nid;
99dcc3e5 3532 int cpu;
9adb62a5 3533 pg_data_t *self = data;
9276b1bc 3534
7f9cfb31
BL
3535#ifdef CONFIG_NUMA
3536 memset(node_load, 0, sizeof(node_load));
3537#endif
9adb62a5
JL
3538
3539 if (self && !node_online(self->node_id)) {
3540 build_zonelists(self);
3541 build_zonelist_cache(self);
3542 }
3543
9276b1bc 3544 for_each_online_node(nid) {
7ea1530a
CL
3545 pg_data_t *pgdat = NODE_DATA(nid);
3546
3547 build_zonelists(pgdat);
3548 build_zonelist_cache(pgdat);
9276b1bc 3549 }
99dcc3e5
CL
3550
3551 /*
3552 * Initialize the boot_pagesets that are going to be used
3553 * for bootstrapping processors. The real pagesets for
3554 * each zone will be allocated later when the per cpu
3555 * allocator is available.
3556 *
3557 * boot_pagesets are used also for bootstrapping offline
3558 * cpus if the system is already booted because the pagesets
3559 * are needed to initialize allocators on a specific cpu too.
3560 * F.e. the percpu allocator needs the page allocator which
3561 * needs the percpu allocator in order to allocate its pagesets
3562 * (a chicken-egg dilemma).
3563 */
7aac7898 3564 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3565 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3566
7aac7898
LS
3567#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3568 /*
3569 * We now know the "local memory node" for each node--
3570 * i.e., the node of the first zone in the generic zonelist.
3571 * Set up numa_mem percpu variable for on-line cpus. During
3572 * boot, only the boot cpu should be on-line; we'll init the
3573 * secondary cpus' numa_mem as they come on-line. During
3574 * node/memory hotplug, we'll fixup all on-line cpus.
3575 */
3576 if (cpu_online(cpu))
3577 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3578#endif
3579 }
3580
6811378e
YG
3581 return 0;
3582}
3583
4eaf3f64
HL
3584/*
3585 * Called with zonelists_mutex held always
3586 * unless system_state == SYSTEM_BOOTING.
3587 */
9adb62a5 3588void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3589{
f0c0b2b8
KH
3590 set_zonelist_order();
3591
6811378e 3592 if (system_state == SYSTEM_BOOTING) {
423b41d7 3593 __build_all_zonelists(NULL);
68ad8df4 3594 mminit_verify_zonelist();
6811378e
YG
3595 cpuset_init_current_mems_allowed();
3596 } else {
183ff22b 3597 /* we have to stop all cpus to guarantee there is no user
6811378e 3598 of zonelist */
e9959f0f 3599#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3600 if (zone)
3601 setup_zone_pageset(zone);
e9959f0f 3602#endif
9adb62a5 3603 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3604 /* cpuset refresh routine should be here */
3605 }
bd1e22b8 3606 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3607 /*
3608 * Disable grouping by mobility if the number of pages in the
3609 * system is too low to allow the mechanism to work. It would be
3610 * more accurate, but expensive to check per-zone. This check is
3611 * made on memory-hotadd so a system can start with mobility
3612 * disabled and enable it later
3613 */
d9c23400 3614 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3615 page_group_by_mobility_disabled = 1;
3616 else
3617 page_group_by_mobility_disabled = 0;
3618
3619 printk("Built %i zonelists in %s order, mobility grouping %s. "
3620 "Total pages: %ld\n",
62bc62a8 3621 nr_online_nodes,
f0c0b2b8 3622 zonelist_order_name[current_zonelist_order],
9ef9acb0 3623 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3624 vm_total_pages);
3625#ifdef CONFIG_NUMA
3626 printk("Policy zone: %s\n", zone_names[policy_zone]);
3627#endif
1da177e4
LT
3628}
3629
3630/*
3631 * Helper functions to size the waitqueue hash table.
3632 * Essentially these want to choose hash table sizes sufficiently
3633 * large so that collisions trying to wait on pages are rare.
3634 * But in fact, the number of active page waitqueues on typical
3635 * systems is ridiculously low, less than 200. So this is even
3636 * conservative, even though it seems large.
3637 *
3638 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3639 * waitqueues, i.e. the size of the waitq table given the number of pages.
3640 */
3641#define PAGES_PER_WAITQUEUE 256
3642
cca448fe 3643#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3644static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3645{
3646 unsigned long size = 1;
3647
3648 pages /= PAGES_PER_WAITQUEUE;
3649
3650 while (size < pages)
3651 size <<= 1;
3652
3653 /*
3654 * Once we have dozens or even hundreds of threads sleeping
3655 * on IO we've got bigger problems than wait queue collision.
3656 * Limit the size of the wait table to a reasonable size.
3657 */
3658 size = min(size, 4096UL);
3659
3660 return max(size, 4UL);
3661}
cca448fe
YG
3662#else
3663/*
3664 * A zone's size might be changed by hot-add, so it is not possible to determine
3665 * a suitable size for its wait_table. So we use the maximum size now.
3666 *
3667 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3668 *
3669 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3670 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3671 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3672 *
3673 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3674 * or more by the traditional way. (See above). It equals:
3675 *
3676 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3677 * ia64(16K page size) : = ( 8G + 4M)byte.
3678 * powerpc (64K page size) : = (32G +16M)byte.
3679 */
3680static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3681{
3682 return 4096UL;
3683}
3684#endif
1da177e4
LT
3685
3686/*
3687 * This is an integer logarithm so that shifts can be used later
3688 * to extract the more random high bits from the multiplicative
3689 * hash function before the remainder is taken.
3690 */
3691static inline unsigned long wait_table_bits(unsigned long size)
3692{
3693 return ffz(~size);
3694}
3695
3696#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3697
6d3163ce
AH
3698/*
3699 * Check if a pageblock contains reserved pages
3700 */
3701static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3702{
3703 unsigned long pfn;
3704
3705 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3706 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3707 return 1;
3708 }
3709 return 0;
3710}
3711
56fd56b8 3712/*
d9c23400 3713 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3714 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3715 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3716 * higher will lead to a bigger reserve which will get freed as contiguous
3717 * blocks as reclaim kicks in
3718 */
3719static void setup_zone_migrate_reserve(struct zone *zone)
3720{
6d3163ce 3721 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3722 struct page *page;
78986a67
MG
3723 unsigned long block_migratetype;
3724 int reserve;
56fd56b8 3725
d0215638
MH
3726 /*
3727 * Get the start pfn, end pfn and the number of blocks to reserve
3728 * We have to be careful to be aligned to pageblock_nr_pages to
3729 * make sure that we always check pfn_valid for the first page in
3730 * the block.
3731 */
56fd56b8
MG
3732 start_pfn = zone->zone_start_pfn;
3733 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3734 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3735 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3736 pageblock_order;
56fd56b8 3737
78986a67
MG
3738 /*
3739 * Reserve blocks are generally in place to help high-order atomic
3740 * allocations that are short-lived. A min_free_kbytes value that
3741 * would result in more than 2 reserve blocks for atomic allocations
3742 * is assumed to be in place to help anti-fragmentation for the
3743 * future allocation of hugepages at runtime.
3744 */
3745 reserve = min(2, reserve);
3746
d9c23400 3747 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3748 if (!pfn_valid(pfn))
3749 continue;
3750 page = pfn_to_page(pfn);
3751
344c790e
AL
3752 /* Watch out for overlapping nodes */
3753 if (page_to_nid(page) != zone_to_nid(zone))
3754 continue;
3755
56fd56b8
MG
3756 block_migratetype = get_pageblock_migratetype(page);
3757
938929f1
MG
3758 /* Only test what is necessary when the reserves are not met */
3759 if (reserve > 0) {
3760 /*
3761 * Blocks with reserved pages will never free, skip
3762 * them.
3763 */
3764 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3765 if (pageblock_is_reserved(pfn, block_end_pfn))
3766 continue;
56fd56b8 3767
938929f1
MG
3768 /* If this block is reserved, account for it */
3769 if (block_migratetype == MIGRATE_RESERVE) {
3770 reserve--;
3771 continue;
3772 }
3773
3774 /* Suitable for reserving if this block is movable */
3775 if (block_migratetype == MIGRATE_MOVABLE) {
3776 set_pageblock_migratetype(page,
3777 MIGRATE_RESERVE);
3778 move_freepages_block(zone, page,
3779 MIGRATE_RESERVE);
3780 reserve--;
3781 continue;
3782 }
56fd56b8
MG
3783 }
3784
3785 /*
3786 * If the reserve is met and this is a previous reserved block,
3787 * take it back
3788 */
3789 if (block_migratetype == MIGRATE_RESERVE) {
3790 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3791 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3792 }
3793 }
3794}
ac0e5b7a 3795
1da177e4
LT
3796/*
3797 * Initially all pages are reserved - free ones are freed
3798 * up by free_all_bootmem() once the early boot process is
3799 * done. Non-atomic initialization, single-pass.
3800 */
c09b4240 3801void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3802 unsigned long start_pfn, enum memmap_context context)
1da177e4 3803{
1da177e4 3804 struct page *page;
29751f69
AW
3805 unsigned long end_pfn = start_pfn + size;
3806 unsigned long pfn;
86051ca5 3807 struct zone *z;
1da177e4 3808
22b31eec
HD
3809 if (highest_memmap_pfn < end_pfn - 1)
3810 highest_memmap_pfn = end_pfn - 1;
3811
86051ca5 3812 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3813 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3814 /*
3815 * There can be holes in boot-time mem_map[]s
3816 * handed to this function. They do not
3817 * exist on hotplugged memory.
3818 */
3819 if (context == MEMMAP_EARLY) {
3820 if (!early_pfn_valid(pfn))
3821 continue;
3822 if (!early_pfn_in_nid(pfn, nid))
3823 continue;
3824 }
d41dee36
AW
3825 page = pfn_to_page(pfn);
3826 set_page_links(page, zone, nid, pfn);
708614e6 3827 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3828 init_page_count(page);
1da177e4
LT
3829 reset_page_mapcount(page);
3830 SetPageReserved(page);
b2a0ac88
MG
3831 /*
3832 * Mark the block movable so that blocks are reserved for
3833 * movable at startup. This will force kernel allocations
3834 * to reserve their blocks rather than leaking throughout
3835 * the address space during boot when many long-lived
56fd56b8
MG
3836 * kernel allocations are made. Later some blocks near
3837 * the start are marked MIGRATE_RESERVE by
3838 * setup_zone_migrate_reserve()
86051ca5
KH
3839 *
3840 * bitmap is created for zone's valid pfn range. but memmap
3841 * can be created for invalid pages (for alignment)
3842 * check here not to call set_pageblock_migratetype() against
3843 * pfn out of zone.
b2a0ac88 3844 */
86051ca5
KH
3845 if ((z->zone_start_pfn <= pfn)
3846 && (pfn < z->zone_start_pfn + z->spanned_pages)
3847 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3848 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3849
1da177e4
LT
3850 INIT_LIST_HEAD(&page->lru);
3851#ifdef WANT_PAGE_VIRTUAL
3852 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3853 if (!is_highmem_idx(zone))
3212c6be 3854 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3855#endif
1da177e4
LT
3856 }
3857}
3858
1e548deb 3859static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3860{
b2a0ac88
MG
3861 int order, t;
3862 for_each_migratetype_order(order, t) {
3863 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3864 zone->free_area[order].nr_free = 0;
3865 }
3866}
3867
3868#ifndef __HAVE_ARCH_MEMMAP_INIT
3869#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3870 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3871#endif
3872
4ed7e022 3873static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3874{
3a6be87f 3875#ifdef CONFIG_MMU
e7c8d5c9
CL
3876 int batch;
3877
3878 /*
3879 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3880 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3881 *
3882 * OK, so we don't know how big the cache is. So guess.
3883 */
3884 batch = zone->present_pages / 1024;
ba56e91c
SR
3885 if (batch * PAGE_SIZE > 512 * 1024)
3886 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3887 batch /= 4; /* We effectively *= 4 below */
3888 if (batch < 1)
3889 batch = 1;
3890
3891 /*
0ceaacc9
NP
3892 * Clamp the batch to a 2^n - 1 value. Having a power
3893 * of 2 value was found to be more likely to have
3894 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3895 *
0ceaacc9
NP
3896 * For example if 2 tasks are alternately allocating
3897 * batches of pages, one task can end up with a lot
3898 * of pages of one half of the possible page colors
3899 * and the other with pages of the other colors.
e7c8d5c9 3900 */
9155203a 3901 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3902
e7c8d5c9 3903 return batch;
3a6be87f
DH
3904
3905#else
3906 /* The deferral and batching of frees should be suppressed under NOMMU
3907 * conditions.
3908 *
3909 * The problem is that NOMMU needs to be able to allocate large chunks
3910 * of contiguous memory as there's no hardware page translation to
3911 * assemble apparent contiguous memory from discontiguous pages.
3912 *
3913 * Queueing large contiguous runs of pages for batching, however,
3914 * causes the pages to actually be freed in smaller chunks. As there
3915 * can be a significant delay between the individual batches being
3916 * recycled, this leads to the once large chunks of space being
3917 * fragmented and becoming unavailable for high-order allocations.
3918 */
3919 return 0;
3920#endif
e7c8d5c9
CL
3921}
3922
b69a7288 3923static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3924{
3925 struct per_cpu_pages *pcp;
5f8dcc21 3926 int migratetype;
2caaad41 3927
1c6fe946
MD
3928 memset(p, 0, sizeof(*p));
3929
3dfa5721 3930 pcp = &p->pcp;
2caaad41 3931 pcp->count = 0;
2caaad41
CL
3932 pcp->high = 6 * batch;
3933 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3934 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3935 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3936}
3937
8ad4b1fb
RS
3938/*
3939 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3940 * to the value high for the pageset p.
3941 */
3942
3943static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3944 unsigned long high)
3945{
3946 struct per_cpu_pages *pcp;
3947
3dfa5721 3948 pcp = &p->pcp;
8ad4b1fb
RS
3949 pcp->high = high;
3950 pcp->batch = max(1UL, high/4);
3951 if ((high/4) > (PAGE_SHIFT * 8))
3952 pcp->batch = PAGE_SHIFT * 8;
3953}
3954
4ed7e022 3955static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3956{
3957 int cpu;
3958
3959 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3960
3961 for_each_possible_cpu(cpu) {
3962 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3963
3964 setup_pageset(pcp, zone_batchsize(zone));
3965
3966 if (percpu_pagelist_fraction)
3967 setup_pagelist_highmark(pcp,
3968 (zone->present_pages /
3969 percpu_pagelist_fraction));
3970 }
3971}
3972
2caaad41 3973/*
99dcc3e5
CL
3974 * Allocate per cpu pagesets and initialize them.
3975 * Before this call only boot pagesets were available.
e7c8d5c9 3976 */
99dcc3e5 3977void __init setup_per_cpu_pageset(void)
e7c8d5c9 3978{
99dcc3e5 3979 struct zone *zone;
e7c8d5c9 3980
319774e2
WF
3981 for_each_populated_zone(zone)
3982 setup_zone_pageset(zone);
e7c8d5c9
CL
3983}
3984
577a32f6 3985static noinline __init_refok
cca448fe 3986int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3987{
3988 int i;
3989 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3990 size_t alloc_size;
ed8ece2e
DH
3991
3992 /*
3993 * The per-page waitqueue mechanism uses hashed waitqueues
3994 * per zone.
3995 */
02b694de
YG
3996 zone->wait_table_hash_nr_entries =
3997 wait_table_hash_nr_entries(zone_size_pages);
3998 zone->wait_table_bits =
3999 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4000 alloc_size = zone->wait_table_hash_nr_entries
4001 * sizeof(wait_queue_head_t);
4002
cd94b9db 4003 if (!slab_is_available()) {
cca448fe 4004 zone->wait_table = (wait_queue_head_t *)
8f389a99 4005 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4006 } else {
4007 /*
4008 * This case means that a zone whose size was 0 gets new memory
4009 * via memory hot-add.
4010 * But it may be the case that a new node was hot-added. In
4011 * this case vmalloc() will not be able to use this new node's
4012 * memory - this wait_table must be initialized to use this new
4013 * node itself as well.
4014 * To use this new node's memory, further consideration will be
4015 * necessary.
4016 */
8691f3a7 4017 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4018 }
4019 if (!zone->wait_table)
4020 return -ENOMEM;
ed8ece2e 4021
02b694de 4022 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4023 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4024
4025 return 0;
ed8ece2e
DH
4026}
4027
c09b4240 4028static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4029{
99dcc3e5
CL
4030 /*
4031 * per cpu subsystem is not up at this point. The following code
4032 * relies on the ability of the linker to provide the
4033 * offset of a (static) per cpu variable into the per cpu area.
4034 */
4035 zone->pageset = &boot_pageset;
ed8ece2e 4036
f5335c0f 4037 if (zone->present_pages)
99dcc3e5
CL
4038 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4039 zone->name, zone->present_pages,
4040 zone_batchsize(zone));
ed8ece2e
DH
4041}
4042
4ed7e022 4043int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4044 unsigned long zone_start_pfn,
a2f3aa02
DH
4045 unsigned long size,
4046 enum memmap_context context)
ed8ece2e
DH
4047{
4048 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4049 int ret;
4050 ret = zone_wait_table_init(zone, size);
4051 if (ret)
4052 return ret;
ed8ece2e
DH
4053 pgdat->nr_zones = zone_idx(zone) + 1;
4054
ed8ece2e
DH
4055 zone->zone_start_pfn = zone_start_pfn;
4056
708614e6
MG
4057 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4058 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4059 pgdat->node_id,
4060 (unsigned long)zone_idx(zone),
4061 zone_start_pfn, (zone_start_pfn + size));
4062
1e548deb 4063 zone_init_free_lists(zone);
718127cc
YG
4064
4065 return 0;
ed8ece2e
DH
4066}
4067
0ee332c1 4068#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4069#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4070/*
4071 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4072 * Architectures may implement their own version but if add_active_range()
4073 * was used and there are no special requirements, this is a convenient
4074 * alternative
4075 */
f2dbcfa7 4076int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4077{
c13291a5
TH
4078 unsigned long start_pfn, end_pfn;
4079 int i, nid;
c713216d 4080
c13291a5 4081 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4082 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4083 return nid;
cc2559bc
KH
4084 /* This is a memory hole */
4085 return -1;
c713216d
MG
4086}
4087#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4088
f2dbcfa7
KH
4089int __meminit early_pfn_to_nid(unsigned long pfn)
4090{
cc2559bc
KH
4091 int nid;
4092
4093 nid = __early_pfn_to_nid(pfn);
4094 if (nid >= 0)
4095 return nid;
4096 /* just returns 0 */
4097 return 0;
f2dbcfa7
KH
4098}
4099
cc2559bc
KH
4100#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4101bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4102{
4103 int nid;
4104
4105 nid = __early_pfn_to_nid(pfn);
4106 if (nid >= 0 && nid != node)
4107 return false;
4108 return true;
4109}
4110#endif
f2dbcfa7 4111
c713216d
MG
4112/**
4113 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4114 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4115 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4116 *
4117 * If an architecture guarantees that all ranges registered with
4118 * add_active_ranges() contain no holes and may be freed, this
4119 * this function may be used instead of calling free_bootmem() manually.
4120 */
c13291a5 4121void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4122{
c13291a5
TH
4123 unsigned long start_pfn, end_pfn;
4124 int i, this_nid;
edbe7d23 4125
c13291a5
TH
4126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4127 start_pfn = min(start_pfn, max_low_pfn);
4128 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4129
c13291a5
TH
4130 if (start_pfn < end_pfn)
4131 free_bootmem_node(NODE_DATA(this_nid),
4132 PFN_PHYS(start_pfn),
4133 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4134 }
edbe7d23 4135}
edbe7d23 4136
c713216d
MG
4137/**
4138 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4139 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4140 *
4141 * If an architecture guarantees that all ranges registered with
4142 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4143 * function may be used instead of calling memory_present() manually.
c713216d
MG
4144 */
4145void __init sparse_memory_present_with_active_regions(int nid)
4146{
c13291a5
TH
4147 unsigned long start_pfn, end_pfn;
4148 int i, this_nid;
c713216d 4149
c13291a5
TH
4150 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4151 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4152}
4153
4154/**
4155 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4156 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4157 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4158 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4159 *
4160 * It returns the start and end page frame of a node based on information
4161 * provided by an arch calling add_active_range(). If called for a node
4162 * with no available memory, a warning is printed and the start and end
88ca3b94 4163 * PFNs will be 0.
c713216d 4164 */
a3142c8e 4165void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4166 unsigned long *start_pfn, unsigned long *end_pfn)
4167{
c13291a5 4168 unsigned long this_start_pfn, this_end_pfn;
c713216d 4169 int i;
c13291a5 4170
c713216d
MG
4171 *start_pfn = -1UL;
4172 *end_pfn = 0;
4173
c13291a5
TH
4174 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4175 *start_pfn = min(*start_pfn, this_start_pfn);
4176 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4177 }
4178
633c0666 4179 if (*start_pfn == -1UL)
c713216d 4180 *start_pfn = 0;
c713216d
MG
4181}
4182
2a1e274a
MG
4183/*
4184 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4185 * assumption is made that zones within a node are ordered in monotonic
4186 * increasing memory addresses so that the "highest" populated zone is used
4187 */
b69a7288 4188static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4189{
4190 int zone_index;
4191 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4192 if (zone_index == ZONE_MOVABLE)
4193 continue;
4194
4195 if (arch_zone_highest_possible_pfn[zone_index] >
4196 arch_zone_lowest_possible_pfn[zone_index])
4197 break;
4198 }
4199
4200 VM_BUG_ON(zone_index == -1);
4201 movable_zone = zone_index;
4202}
4203
4204/*
4205 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4206 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4207 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4208 * in each node depending on the size of each node and how evenly kernelcore
4209 * is distributed. This helper function adjusts the zone ranges
4210 * provided by the architecture for a given node by using the end of the
4211 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4212 * zones within a node are in order of monotonic increases memory addresses
4213 */
b69a7288 4214static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4215 unsigned long zone_type,
4216 unsigned long node_start_pfn,
4217 unsigned long node_end_pfn,
4218 unsigned long *zone_start_pfn,
4219 unsigned long *zone_end_pfn)
4220{
4221 /* Only adjust if ZONE_MOVABLE is on this node */
4222 if (zone_movable_pfn[nid]) {
4223 /* Size ZONE_MOVABLE */
4224 if (zone_type == ZONE_MOVABLE) {
4225 *zone_start_pfn = zone_movable_pfn[nid];
4226 *zone_end_pfn = min(node_end_pfn,
4227 arch_zone_highest_possible_pfn[movable_zone]);
4228
4229 /* Adjust for ZONE_MOVABLE starting within this range */
4230 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4231 *zone_end_pfn > zone_movable_pfn[nid]) {
4232 *zone_end_pfn = zone_movable_pfn[nid];
4233
4234 /* Check if this whole range is within ZONE_MOVABLE */
4235 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4236 *zone_start_pfn = *zone_end_pfn;
4237 }
4238}
4239
c713216d
MG
4240/*
4241 * Return the number of pages a zone spans in a node, including holes
4242 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4243 */
6ea6e688 4244static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4245 unsigned long zone_type,
4246 unsigned long *ignored)
4247{
4248 unsigned long node_start_pfn, node_end_pfn;
4249 unsigned long zone_start_pfn, zone_end_pfn;
4250
4251 /* Get the start and end of the node and zone */
4252 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4253 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4254 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4255 adjust_zone_range_for_zone_movable(nid, zone_type,
4256 node_start_pfn, node_end_pfn,
4257 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4258
4259 /* Check that this node has pages within the zone's required range */
4260 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4261 return 0;
4262
4263 /* Move the zone boundaries inside the node if necessary */
4264 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4265 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4266
4267 /* Return the spanned pages */
4268 return zone_end_pfn - zone_start_pfn;
4269}
4270
4271/*
4272 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4273 * then all holes in the requested range will be accounted for.
c713216d 4274 */
32996250 4275unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4276 unsigned long range_start_pfn,
4277 unsigned long range_end_pfn)
4278{
96e907d1
TH
4279 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4280 unsigned long start_pfn, end_pfn;
4281 int i;
c713216d 4282
96e907d1
TH
4283 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4284 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4285 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4286 nr_absent -= end_pfn - start_pfn;
c713216d 4287 }
96e907d1 4288 return nr_absent;
c713216d
MG
4289}
4290
4291/**
4292 * absent_pages_in_range - Return number of page frames in holes within a range
4293 * @start_pfn: The start PFN to start searching for holes
4294 * @end_pfn: The end PFN to stop searching for holes
4295 *
88ca3b94 4296 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4297 */
4298unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4299 unsigned long end_pfn)
4300{
4301 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4302}
4303
4304/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4305static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4306 unsigned long zone_type,
4307 unsigned long *ignored)
4308{
96e907d1
TH
4309 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4310 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4311 unsigned long node_start_pfn, node_end_pfn;
4312 unsigned long zone_start_pfn, zone_end_pfn;
4313
4314 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4315 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4316 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4317
2a1e274a
MG
4318 adjust_zone_range_for_zone_movable(nid, zone_type,
4319 node_start_pfn, node_end_pfn,
4320 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4321 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4322}
0e0b864e 4323
0ee332c1 4324#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4325static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4326 unsigned long zone_type,
4327 unsigned long *zones_size)
4328{
4329 return zones_size[zone_type];
4330}
4331
6ea6e688 4332static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4333 unsigned long zone_type,
4334 unsigned long *zholes_size)
4335{
4336 if (!zholes_size)
4337 return 0;
4338
4339 return zholes_size[zone_type];
4340}
0e0b864e 4341
0ee332c1 4342#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4343
a3142c8e 4344static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4345 unsigned long *zones_size, unsigned long *zholes_size)
4346{
4347 unsigned long realtotalpages, totalpages = 0;
4348 enum zone_type i;
4349
4350 for (i = 0; i < MAX_NR_ZONES; i++)
4351 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4352 zones_size);
4353 pgdat->node_spanned_pages = totalpages;
4354
4355 realtotalpages = totalpages;
4356 for (i = 0; i < MAX_NR_ZONES; i++)
4357 realtotalpages -=
4358 zone_absent_pages_in_node(pgdat->node_id, i,
4359 zholes_size);
4360 pgdat->node_present_pages = realtotalpages;
4361 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4362 realtotalpages);
4363}
4364
835c134e
MG
4365#ifndef CONFIG_SPARSEMEM
4366/*
4367 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4368 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4369 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4370 * round what is now in bits to nearest long in bits, then return it in
4371 * bytes.
4372 */
4373static unsigned long __init usemap_size(unsigned long zonesize)
4374{
4375 unsigned long usemapsize;
4376
d9c23400
MG
4377 usemapsize = roundup(zonesize, pageblock_nr_pages);
4378 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4379 usemapsize *= NR_PAGEBLOCK_BITS;
4380 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4381
4382 return usemapsize / 8;
4383}
4384
4385static void __init setup_usemap(struct pglist_data *pgdat,
4386 struct zone *zone, unsigned long zonesize)
4387{
4388 unsigned long usemapsize = usemap_size(zonesize);
4389 zone->pageblock_flags = NULL;
58a01a45 4390 if (usemapsize)
8f389a99
YL
4391 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4392 usemapsize);
835c134e
MG
4393}
4394#else
fa9f90be 4395static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4396 struct zone *zone, unsigned long zonesize) {}
4397#endif /* CONFIG_SPARSEMEM */
4398
d9c23400 4399#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4400
d9c23400 4401/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4402void __init set_pageblock_order(void)
d9c23400 4403{
955c1cd7
AM
4404 unsigned int order;
4405
d9c23400
MG
4406 /* Check that pageblock_nr_pages has not already been setup */
4407 if (pageblock_order)
4408 return;
4409
955c1cd7
AM
4410 if (HPAGE_SHIFT > PAGE_SHIFT)
4411 order = HUGETLB_PAGE_ORDER;
4412 else
4413 order = MAX_ORDER - 1;
4414
d9c23400
MG
4415 /*
4416 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4417 * This value may be variable depending on boot parameters on IA64 and
4418 * powerpc.
d9c23400
MG
4419 */
4420 pageblock_order = order;
4421}
4422#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4423
ba72cb8c
MG
4424/*
4425 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4426 * is unused as pageblock_order is set at compile-time. See
4427 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4428 * the kernel config
ba72cb8c 4429 */
ca57df79 4430void __init set_pageblock_order(void)
ba72cb8c 4431{
ba72cb8c 4432}
d9c23400
MG
4433
4434#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4435
1da177e4
LT
4436/*
4437 * Set up the zone data structures:
4438 * - mark all pages reserved
4439 * - mark all memory queues empty
4440 * - clear the memory bitmaps
6527af5d
MK
4441 *
4442 * NOTE: pgdat should get zeroed by caller.
1da177e4 4443 */
b5a0e011 4444static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4445 unsigned long *zones_size, unsigned long *zholes_size)
4446{
2f1b6248 4447 enum zone_type j;
ed8ece2e 4448 int nid = pgdat->node_id;
1da177e4 4449 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4450 int ret;
1da177e4 4451
208d54e5 4452 pgdat_resize_init(pgdat);
1da177e4 4453 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4454 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4455 pgdat_page_cgroup_init(pgdat);
5f63b720 4456
1da177e4
LT
4457 for (j = 0; j < MAX_NR_ZONES; j++) {
4458 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4459 unsigned long size, realsize, memmap_pages;
1da177e4 4460
c713216d
MG
4461 size = zone_spanned_pages_in_node(nid, j, zones_size);
4462 realsize = size - zone_absent_pages_in_node(nid, j,
4463 zholes_size);
1da177e4 4464
0e0b864e
MG
4465 /*
4466 * Adjust realsize so that it accounts for how much memory
4467 * is used by this zone for memmap. This affects the watermark
4468 * and per-cpu initialisations
4469 */
f7232154
JW
4470 memmap_pages =
4471 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4472 if (realsize >= memmap_pages) {
4473 realsize -= memmap_pages;
5594c8c8
YL
4474 if (memmap_pages)
4475 printk(KERN_DEBUG
4476 " %s zone: %lu pages used for memmap\n",
4477 zone_names[j], memmap_pages);
0e0b864e
MG
4478 } else
4479 printk(KERN_WARNING
4480 " %s zone: %lu pages exceeds realsize %lu\n",
4481 zone_names[j], memmap_pages, realsize);
4482
6267276f
CL
4483 /* Account for reserved pages */
4484 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4485 realsize -= dma_reserve;
d903ef9f 4486 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4487 zone_names[0], dma_reserve);
0e0b864e
MG
4488 }
4489
98d2b0eb 4490 if (!is_highmem_idx(j))
1da177e4
LT
4491 nr_kernel_pages += realsize;
4492 nr_all_pages += realsize;
4493
4494 zone->spanned_pages = size;
4495 zone->present_pages = realsize;
9614634f 4496#ifdef CONFIG_NUMA
d5f541ed 4497 zone->node = nid;
8417bba4 4498 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4499 / 100;
0ff38490 4500 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4501#endif
1da177e4
LT
4502 zone->name = zone_names[j];
4503 spin_lock_init(&zone->lock);
4504 spin_lock_init(&zone->lru_lock);
bdc8cb98 4505 zone_seqlock_init(zone);
1da177e4 4506 zone->zone_pgdat = pgdat;
1da177e4 4507
ed8ece2e 4508 zone_pcp_init(zone);
bea8c150 4509 lruvec_init(&zone->lruvec);
1da177e4
LT
4510 if (!size)
4511 continue;
4512
955c1cd7 4513 set_pageblock_order();
835c134e 4514 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4515 ret = init_currently_empty_zone(zone, zone_start_pfn,
4516 size, MEMMAP_EARLY);
718127cc 4517 BUG_ON(ret);
76cdd58e 4518 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4519 zone_start_pfn += size;
1da177e4
LT
4520 }
4521}
4522
577a32f6 4523static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4524{
1da177e4
LT
4525 /* Skip empty nodes */
4526 if (!pgdat->node_spanned_pages)
4527 return;
4528
d41dee36 4529#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4530 /* ia64 gets its own node_mem_map, before this, without bootmem */
4531 if (!pgdat->node_mem_map) {
e984bb43 4532 unsigned long size, start, end;
d41dee36
AW
4533 struct page *map;
4534
e984bb43
BP
4535 /*
4536 * The zone's endpoints aren't required to be MAX_ORDER
4537 * aligned but the node_mem_map endpoints must be in order
4538 * for the buddy allocator to function correctly.
4539 */
4540 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4541 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4542 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4543 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4544 map = alloc_remap(pgdat->node_id, size);
4545 if (!map)
8f389a99 4546 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4547 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4548 }
12d810c1 4549#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4550 /*
4551 * With no DISCONTIG, the global mem_map is just set as node 0's
4552 */
c713216d 4553 if (pgdat == NODE_DATA(0)) {
1da177e4 4554 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4555#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4556 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4557 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4558#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4559 }
1da177e4 4560#endif
d41dee36 4561#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4562}
4563
9109fb7b
JW
4564void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4565 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4566{
9109fb7b
JW
4567 pg_data_t *pgdat = NODE_DATA(nid);
4568
88fdf75d 4569 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4570 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4571
1da177e4
LT
4572 pgdat->node_id = nid;
4573 pgdat->node_start_pfn = node_start_pfn;
957f822a 4574 init_zone_allows_reclaim(nid);
c713216d 4575 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4576
4577 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4578#ifdef CONFIG_FLAT_NODE_MEM_MAP
4579 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4580 nid, (unsigned long)pgdat,
4581 (unsigned long)pgdat->node_mem_map);
4582#endif
1da177e4
LT
4583
4584 free_area_init_core(pgdat, zones_size, zholes_size);
4585}
4586
0ee332c1 4587#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4588
4589#if MAX_NUMNODES > 1
4590/*
4591 * Figure out the number of possible node ids.
4592 */
4593static void __init setup_nr_node_ids(void)
4594{
4595 unsigned int node;
4596 unsigned int highest = 0;
4597
4598 for_each_node_mask(node, node_possible_map)
4599 highest = node;
4600 nr_node_ids = highest + 1;
4601}
4602#else
4603static inline void setup_nr_node_ids(void)
4604{
4605}
4606#endif
4607
1e01979c
TH
4608/**
4609 * node_map_pfn_alignment - determine the maximum internode alignment
4610 *
4611 * This function should be called after node map is populated and sorted.
4612 * It calculates the maximum power of two alignment which can distinguish
4613 * all the nodes.
4614 *
4615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4617 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4618 * shifted, 1GiB is enough and this function will indicate so.
4619 *
4620 * This is used to test whether pfn -> nid mapping of the chosen memory
4621 * model has fine enough granularity to avoid incorrect mapping for the
4622 * populated node map.
4623 *
4624 * Returns the determined alignment in pfn's. 0 if there is no alignment
4625 * requirement (single node).
4626 */
4627unsigned long __init node_map_pfn_alignment(void)
4628{
4629 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4630 unsigned long start, end, mask;
1e01979c 4631 int last_nid = -1;
c13291a5 4632 int i, nid;
1e01979c 4633
c13291a5 4634 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4635 if (!start || last_nid < 0 || last_nid == nid) {
4636 last_nid = nid;
4637 last_end = end;
4638 continue;
4639 }
4640
4641 /*
4642 * Start with a mask granular enough to pin-point to the
4643 * start pfn and tick off bits one-by-one until it becomes
4644 * too coarse to separate the current node from the last.
4645 */
4646 mask = ~((1 << __ffs(start)) - 1);
4647 while (mask && last_end <= (start & (mask << 1)))
4648 mask <<= 1;
4649
4650 /* accumulate all internode masks */
4651 accl_mask |= mask;
4652 }
4653
4654 /* convert mask to number of pages */
4655 return ~accl_mask + 1;
4656}
4657
a6af2bc3 4658/* Find the lowest pfn for a node */
b69a7288 4659static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4660{
a6af2bc3 4661 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4662 unsigned long start_pfn;
4663 int i;
1abbfb41 4664
c13291a5
TH
4665 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4666 min_pfn = min(min_pfn, start_pfn);
c713216d 4667
a6af2bc3
MG
4668 if (min_pfn == ULONG_MAX) {
4669 printk(KERN_WARNING
2bc0d261 4670 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4671 return 0;
4672 }
4673
4674 return min_pfn;
c713216d
MG
4675}
4676
4677/**
4678 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4679 *
4680 * It returns the minimum PFN based on information provided via
88ca3b94 4681 * add_active_range().
c713216d
MG
4682 */
4683unsigned long __init find_min_pfn_with_active_regions(void)
4684{
4685 return find_min_pfn_for_node(MAX_NUMNODES);
4686}
4687
37b07e41
LS
4688/*
4689 * early_calculate_totalpages()
4690 * Sum pages in active regions for movable zone.
4691 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4692 */
484f51f8 4693static unsigned long __init early_calculate_totalpages(void)
7e63efef 4694{
7e63efef 4695 unsigned long totalpages = 0;
c13291a5
TH
4696 unsigned long start_pfn, end_pfn;
4697 int i, nid;
4698
4699 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4700 unsigned long pages = end_pfn - start_pfn;
7e63efef 4701
37b07e41
LS
4702 totalpages += pages;
4703 if (pages)
c13291a5 4704 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4705 }
4706 return totalpages;
7e63efef
MG
4707}
4708
2a1e274a
MG
4709/*
4710 * Find the PFN the Movable zone begins in each node. Kernel memory
4711 * is spread evenly between nodes as long as the nodes have enough
4712 * memory. When they don't, some nodes will have more kernelcore than
4713 * others
4714 */
b224ef85 4715static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4716{
4717 int i, nid;
4718 unsigned long usable_startpfn;
4719 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4720 /* save the state before borrow the nodemask */
4721 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4722 unsigned long totalpages = early_calculate_totalpages();
4723 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4724
7e63efef
MG
4725 /*
4726 * If movablecore was specified, calculate what size of
4727 * kernelcore that corresponds so that memory usable for
4728 * any allocation type is evenly spread. If both kernelcore
4729 * and movablecore are specified, then the value of kernelcore
4730 * will be used for required_kernelcore if it's greater than
4731 * what movablecore would have allowed.
4732 */
4733 if (required_movablecore) {
7e63efef
MG
4734 unsigned long corepages;
4735
4736 /*
4737 * Round-up so that ZONE_MOVABLE is at least as large as what
4738 * was requested by the user
4739 */
4740 required_movablecore =
4741 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4742 corepages = totalpages - required_movablecore;
4743
4744 required_kernelcore = max(required_kernelcore, corepages);
4745 }
4746
2a1e274a
MG
4747 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4748 if (!required_kernelcore)
66918dcd 4749 goto out;
2a1e274a
MG
4750
4751 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4752 find_usable_zone_for_movable();
4753 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4754
4755restart:
4756 /* Spread kernelcore memory as evenly as possible throughout nodes */
4757 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4758 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4759 unsigned long start_pfn, end_pfn;
4760
2a1e274a
MG
4761 /*
4762 * Recalculate kernelcore_node if the division per node
4763 * now exceeds what is necessary to satisfy the requested
4764 * amount of memory for the kernel
4765 */
4766 if (required_kernelcore < kernelcore_node)
4767 kernelcore_node = required_kernelcore / usable_nodes;
4768
4769 /*
4770 * As the map is walked, we track how much memory is usable
4771 * by the kernel using kernelcore_remaining. When it is
4772 * 0, the rest of the node is usable by ZONE_MOVABLE
4773 */
4774 kernelcore_remaining = kernelcore_node;
4775
4776 /* Go through each range of PFNs within this node */
c13291a5 4777 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4778 unsigned long size_pages;
4779
c13291a5 4780 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4781 if (start_pfn >= end_pfn)
4782 continue;
4783
4784 /* Account for what is only usable for kernelcore */
4785 if (start_pfn < usable_startpfn) {
4786 unsigned long kernel_pages;
4787 kernel_pages = min(end_pfn, usable_startpfn)
4788 - start_pfn;
4789
4790 kernelcore_remaining -= min(kernel_pages,
4791 kernelcore_remaining);
4792 required_kernelcore -= min(kernel_pages,
4793 required_kernelcore);
4794
4795 /* Continue if range is now fully accounted */
4796 if (end_pfn <= usable_startpfn) {
4797
4798 /*
4799 * Push zone_movable_pfn to the end so
4800 * that if we have to rebalance
4801 * kernelcore across nodes, we will
4802 * not double account here
4803 */
4804 zone_movable_pfn[nid] = end_pfn;
4805 continue;
4806 }
4807 start_pfn = usable_startpfn;
4808 }
4809
4810 /*
4811 * The usable PFN range for ZONE_MOVABLE is from
4812 * start_pfn->end_pfn. Calculate size_pages as the
4813 * number of pages used as kernelcore
4814 */
4815 size_pages = end_pfn - start_pfn;
4816 if (size_pages > kernelcore_remaining)
4817 size_pages = kernelcore_remaining;
4818 zone_movable_pfn[nid] = start_pfn + size_pages;
4819
4820 /*
4821 * Some kernelcore has been met, update counts and
4822 * break if the kernelcore for this node has been
4823 * satisified
4824 */
4825 required_kernelcore -= min(required_kernelcore,
4826 size_pages);
4827 kernelcore_remaining -= size_pages;
4828 if (!kernelcore_remaining)
4829 break;
4830 }
4831 }
4832
4833 /*
4834 * If there is still required_kernelcore, we do another pass with one
4835 * less node in the count. This will push zone_movable_pfn[nid] further
4836 * along on the nodes that still have memory until kernelcore is
4837 * satisified
4838 */
4839 usable_nodes--;
4840 if (usable_nodes && required_kernelcore > usable_nodes)
4841 goto restart;
4842
4843 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4844 for (nid = 0; nid < MAX_NUMNODES; nid++)
4845 zone_movable_pfn[nid] =
4846 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4847
4848out:
4849 /* restore the node_state */
4850 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4851}
4852
37b07e41 4853/* Any regular memory on that node ? */
4ed7e022 4854static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4855{
4856#ifdef CONFIG_HIGHMEM
4857 enum zone_type zone_type;
4858
4859 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4860 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4861 if (zone->present_pages) {
37b07e41 4862 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4863 break;
4864 }
37b07e41
LS
4865 }
4866#endif
4867}
4868
c713216d
MG
4869/**
4870 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4871 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4872 *
4873 * This will call free_area_init_node() for each active node in the system.
4874 * Using the page ranges provided by add_active_range(), the size of each
4875 * zone in each node and their holes is calculated. If the maximum PFN
4876 * between two adjacent zones match, it is assumed that the zone is empty.
4877 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4878 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4879 * starts where the previous one ended. For example, ZONE_DMA32 starts
4880 * at arch_max_dma_pfn.
4881 */
4882void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4883{
c13291a5
TH
4884 unsigned long start_pfn, end_pfn;
4885 int i, nid;
a6af2bc3 4886
c713216d
MG
4887 /* Record where the zone boundaries are */
4888 memset(arch_zone_lowest_possible_pfn, 0,
4889 sizeof(arch_zone_lowest_possible_pfn));
4890 memset(arch_zone_highest_possible_pfn, 0,
4891 sizeof(arch_zone_highest_possible_pfn));
4892 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4893 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4894 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4895 if (i == ZONE_MOVABLE)
4896 continue;
c713216d
MG
4897 arch_zone_lowest_possible_pfn[i] =
4898 arch_zone_highest_possible_pfn[i-1];
4899 arch_zone_highest_possible_pfn[i] =
4900 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4901 }
2a1e274a
MG
4902 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4903 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4904
4905 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4906 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4907 find_zone_movable_pfns_for_nodes();
c713216d 4908
c713216d 4909 /* Print out the zone ranges */
a62e2f4f 4910 printk("Zone ranges:\n");
2a1e274a
MG
4911 for (i = 0; i < MAX_NR_ZONES; i++) {
4912 if (i == ZONE_MOVABLE)
4913 continue;
155cbfc8 4914 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4915 if (arch_zone_lowest_possible_pfn[i] ==
4916 arch_zone_highest_possible_pfn[i])
155cbfc8 4917 printk(KERN_CONT "empty\n");
72f0ba02 4918 else
a62e2f4f
BH
4919 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4920 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4921 (arch_zone_highest_possible_pfn[i]
4922 << PAGE_SHIFT) - 1);
2a1e274a
MG
4923 }
4924
4925 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4926 printk("Movable zone start for each node\n");
2a1e274a
MG
4927 for (i = 0; i < MAX_NUMNODES; i++) {
4928 if (zone_movable_pfn[i])
a62e2f4f
BH
4929 printk(" Node %d: %#010lx\n", i,
4930 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4931 }
c713216d 4932
f2d52fe5 4933 /* Print out the early node map */
a62e2f4f 4934 printk("Early memory node ranges\n");
c13291a5 4935 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4936 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4937 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4938
4939 /* Initialise every node */
708614e6 4940 mminit_verify_pageflags_layout();
8ef82866 4941 setup_nr_node_ids();
c713216d
MG
4942 for_each_online_node(nid) {
4943 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4944 free_area_init_node(nid, NULL,
c713216d 4945 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4946
4947 /* Any memory on that node */
4948 if (pgdat->node_present_pages)
4949 node_set_state(nid, N_HIGH_MEMORY);
4950 check_for_regular_memory(pgdat);
c713216d
MG
4951 }
4952}
2a1e274a 4953
7e63efef 4954static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4955{
4956 unsigned long long coremem;
4957 if (!p)
4958 return -EINVAL;
4959
4960 coremem = memparse(p, &p);
7e63efef 4961 *core = coremem >> PAGE_SHIFT;
2a1e274a 4962
7e63efef 4963 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4964 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4965
4966 return 0;
4967}
ed7ed365 4968
7e63efef
MG
4969/*
4970 * kernelcore=size sets the amount of memory for use for allocations that
4971 * cannot be reclaimed or migrated.
4972 */
4973static int __init cmdline_parse_kernelcore(char *p)
4974{
4975 return cmdline_parse_core(p, &required_kernelcore);
4976}
4977
4978/*
4979 * movablecore=size sets the amount of memory for use for allocations that
4980 * can be reclaimed or migrated.
4981 */
4982static int __init cmdline_parse_movablecore(char *p)
4983{
4984 return cmdline_parse_core(p, &required_movablecore);
4985}
4986
ed7ed365 4987early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4988early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4989
0ee332c1 4990#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4991
0e0b864e 4992/**
88ca3b94
RD
4993 * set_dma_reserve - set the specified number of pages reserved in the first zone
4994 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4995 *
4996 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4997 * In the DMA zone, a significant percentage may be consumed by kernel image
4998 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4999 * function may optionally be used to account for unfreeable pages in the
5000 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5001 * smaller per-cpu batchsize.
0e0b864e
MG
5002 */
5003void __init set_dma_reserve(unsigned long new_dma_reserve)
5004{
5005 dma_reserve = new_dma_reserve;
5006}
5007
1da177e4
LT
5008void __init free_area_init(unsigned long *zones_size)
5009{
9109fb7b 5010 free_area_init_node(0, zones_size,
1da177e4
LT
5011 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5012}
1da177e4 5013
1da177e4
LT
5014static int page_alloc_cpu_notify(struct notifier_block *self,
5015 unsigned long action, void *hcpu)
5016{
5017 int cpu = (unsigned long)hcpu;
1da177e4 5018
8bb78442 5019 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5020 lru_add_drain_cpu(cpu);
9f8f2172
CL
5021 drain_pages(cpu);
5022
5023 /*
5024 * Spill the event counters of the dead processor
5025 * into the current processors event counters.
5026 * This artificially elevates the count of the current
5027 * processor.
5028 */
f8891e5e 5029 vm_events_fold_cpu(cpu);
9f8f2172
CL
5030
5031 /*
5032 * Zero the differential counters of the dead processor
5033 * so that the vm statistics are consistent.
5034 *
5035 * This is only okay since the processor is dead and cannot
5036 * race with what we are doing.
5037 */
2244b95a 5038 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5039 }
5040 return NOTIFY_OK;
5041}
1da177e4
LT
5042
5043void __init page_alloc_init(void)
5044{
5045 hotcpu_notifier(page_alloc_cpu_notify, 0);
5046}
5047
cb45b0e9
HA
5048/*
5049 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5050 * or min_free_kbytes changes.
5051 */
5052static void calculate_totalreserve_pages(void)
5053{
5054 struct pglist_data *pgdat;
5055 unsigned long reserve_pages = 0;
2f6726e5 5056 enum zone_type i, j;
cb45b0e9
HA
5057
5058 for_each_online_pgdat(pgdat) {
5059 for (i = 0; i < MAX_NR_ZONES; i++) {
5060 struct zone *zone = pgdat->node_zones + i;
5061 unsigned long max = 0;
5062
5063 /* Find valid and maximum lowmem_reserve in the zone */
5064 for (j = i; j < MAX_NR_ZONES; j++) {
5065 if (zone->lowmem_reserve[j] > max)
5066 max = zone->lowmem_reserve[j];
5067 }
5068
41858966
MG
5069 /* we treat the high watermark as reserved pages. */
5070 max += high_wmark_pages(zone);
cb45b0e9
HA
5071
5072 if (max > zone->present_pages)
5073 max = zone->present_pages;
5074 reserve_pages += max;
ab8fabd4
JW
5075 /*
5076 * Lowmem reserves are not available to
5077 * GFP_HIGHUSER page cache allocations and
5078 * kswapd tries to balance zones to their high
5079 * watermark. As a result, neither should be
5080 * regarded as dirtyable memory, to prevent a
5081 * situation where reclaim has to clean pages
5082 * in order to balance the zones.
5083 */
5084 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5085 }
5086 }
ab8fabd4 5087 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5088 totalreserve_pages = reserve_pages;
5089}
5090
1da177e4
LT
5091/*
5092 * setup_per_zone_lowmem_reserve - called whenever
5093 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5094 * has a correct pages reserved value, so an adequate number of
5095 * pages are left in the zone after a successful __alloc_pages().
5096 */
5097static void setup_per_zone_lowmem_reserve(void)
5098{
5099 struct pglist_data *pgdat;
2f6726e5 5100 enum zone_type j, idx;
1da177e4 5101
ec936fc5 5102 for_each_online_pgdat(pgdat) {
1da177e4
LT
5103 for (j = 0; j < MAX_NR_ZONES; j++) {
5104 struct zone *zone = pgdat->node_zones + j;
5105 unsigned long present_pages = zone->present_pages;
5106
5107 zone->lowmem_reserve[j] = 0;
5108
2f6726e5
CL
5109 idx = j;
5110 while (idx) {
1da177e4
LT
5111 struct zone *lower_zone;
5112
2f6726e5
CL
5113 idx--;
5114
1da177e4
LT
5115 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5116 sysctl_lowmem_reserve_ratio[idx] = 1;
5117
5118 lower_zone = pgdat->node_zones + idx;
5119 lower_zone->lowmem_reserve[j] = present_pages /
5120 sysctl_lowmem_reserve_ratio[idx];
5121 present_pages += lower_zone->present_pages;
5122 }
5123 }
5124 }
cb45b0e9
HA
5125
5126 /* update totalreserve_pages */
5127 calculate_totalreserve_pages();
1da177e4
LT
5128}
5129
cfd3da1e 5130static void __setup_per_zone_wmarks(void)
1da177e4
LT
5131{
5132 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5133 unsigned long lowmem_pages = 0;
5134 struct zone *zone;
5135 unsigned long flags;
5136
5137 /* Calculate total number of !ZONE_HIGHMEM pages */
5138 for_each_zone(zone) {
5139 if (!is_highmem(zone))
5140 lowmem_pages += zone->present_pages;
5141 }
5142
5143 for_each_zone(zone) {
ac924c60
AM
5144 u64 tmp;
5145
1125b4e3 5146 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5147 tmp = (u64)pages_min * zone->present_pages;
5148 do_div(tmp, lowmem_pages);
1da177e4
LT
5149 if (is_highmem(zone)) {
5150 /*
669ed175
NP
5151 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5152 * need highmem pages, so cap pages_min to a small
5153 * value here.
5154 *
41858966 5155 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5156 * deltas controls asynch page reclaim, and so should
5157 * not be capped for highmem.
1da177e4
LT
5158 */
5159 int min_pages;
5160
5161 min_pages = zone->present_pages / 1024;
5162 if (min_pages < SWAP_CLUSTER_MAX)
5163 min_pages = SWAP_CLUSTER_MAX;
5164 if (min_pages > 128)
5165 min_pages = 128;
41858966 5166 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5167 } else {
669ed175
NP
5168 /*
5169 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5170 * proportionate to the zone's size.
5171 */
41858966 5172 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5173 }
5174
41858966
MG
5175 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5176 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5177
5178 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5179 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5180 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5181
56fd56b8 5182 setup_zone_migrate_reserve(zone);
1125b4e3 5183 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5184 }
cb45b0e9
HA
5185
5186 /* update totalreserve_pages */
5187 calculate_totalreserve_pages();
1da177e4
LT
5188}
5189
cfd3da1e
MG
5190/**
5191 * setup_per_zone_wmarks - called when min_free_kbytes changes
5192 * or when memory is hot-{added|removed}
5193 *
5194 * Ensures that the watermark[min,low,high] values for each zone are set
5195 * correctly with respect to min_free_kbytes.
5196 */
5197void setup_per_zone_wmarks(void)
5198{
5199 mutex_lock(&zonelists_mutex);
5200 __setup_per_zone_wmarks();
5201 mutex_unlock(&zonelists_mutex);
5202}
5203
55a4462a 5204/*
556adecb
RR
5205 * The inactive anon list should be small enough that the VM never has to
5206 * do too much work, but large enough that each inactive page has a chance
5207 * to be referenced again before it is swapped out.
5208 *
5209 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5210 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5211 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5212 * the anonymous pages are kept on the inactive list.
5213 *
5214 * total target max
5215 * memory ratio inactive anon
5216 * -------------------------------------
5217 * 10MB 1 5MB
5218 * 100MB 1 50MB
5219 * 1GB 3 250MB
5220 * 10GB 10 0.9GB
5221 * 100GB 31 3GB
5222 * 1TB 101 10GB
5223 * 10TB 320 32GB
5224 */
1b79acc9 5225static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5226{
96cb4df5 5227 unsigned int gb, ratio;
556adecb 5228
96cb4df5
MK
5229 /* Zone size in gigabytes */
5230 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5231 if (gb)
556adecb 5232 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5233 else
5234 ratio = 1;
556adecb 5235
96cb4df5
MK
5236 zone->inactive_ratio = ratio;
5237}
556adecb 5238
839a4fcc 5239static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5240{
5241 struct zone *zone;
5242
5243 for_each_zone(zone)
5244 calculate_zone_inactive_ratio(zone);
556adecb
RR
5245}
5246
1da177e4
LT
5247/*
5248 * Initialise min_free_kbytes.
5249 *
5250 * For small machines we want it small (128k min). For large machines
5251 * we want it large (64MB max). But it is not linear, because network
5252 * bandwidth does not increase linearly with machine size. We use
5253 *
5254 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5255 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5256 *
5257 * which yields
5258 *
5259 * 16MB: 512k
5260 * 32MB: 724k
5261 * 64MB: 1024k
5262 * 128MB: 1448k
5263 * 256MB: 2048k
5264 * 512MB: 2896k
5265 * 1024MB: 4096k
5266 * 2048MB: 5792k
5267 * 4096MB: 8192k
5268 * 8192MB: 11584k
5269 * 16384MB: 16384k
5270 */
1b79acc9 5271int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5272{
5273 unsigned long lowmem_kbytes;
5274
5275 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5276
5277 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5278 if (min_free_kbytes < 128)
5279 min_free_kbytes = 128;
5280 if (min_free_kbytes > 65536)
5281 min_free_kbytes = 65536;
bc75d33f 5282 setup_per_zone_wmarks();
a6cccdc3 5283 refresh_zone_stat_thresholds();
1da177e4 5284 setup_per_zone_lowmem_reserve();
556adecb 5285 setup_per_zone_inactive_ratio();
1da177e4
LT
5286 return 0;
5287}
bc75d33f 5288module_init(init_per_zone_wmark_min)
1da177e4
LT
5289
5290/*
5291 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5292 * that we can call two helper functions whenever min_free_kbytes
5293 * changes.
5294 */
5295int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5296 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5297{
8d65af78 5298 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5299 if (write)
bc75d33f 5300 setup_per_zone_wmarks();
1da177e4
LT
5301 return 0;
5302}
5303
9614634f
CL
5304#ifdef CONFIG_NUMA
5305int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5306 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5307{
5308 struct zone *zone;
5309 int rc;
5310
8d65af78 5311 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5312 if (rc)
5313 return rc;
5314
5315 for_each_zone(zone)
8417bba4 5316 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5317 sysctl_min_unmapped_ratio) / 100;
5318 return 0;
5319}
0ff38490
CL
5320
5321int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5322 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5323{
5324 struct zone *zone;
5325 int rc;
5326
8d65af78 5327 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5328 if (rc)
5329 return rc;
5330
5331 for_each_zone(zone)
5332 zone->min_slab_pages = (zone->present_pages *
5333 sysctl_min_slab_ratio) / 100;
5334 return 0;
5335}
9614634f
CL
5336#endif
5337
1da177e4
LT
5338/*
5339 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5340 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5341 * whenever sysctl_lowmem_reserve_ratio changes.
5342 *
5343 * The reserve ratio obviously has absolutely no relation with the
41858966 5344 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5345 * if in function of the boot time zone sizes.
5346 */
5347int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5348 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5349{
8d65af78 5350 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5351 setup_per_zone_lowmem_reserve();
5352 return 0;
5353}
5354
8ad4b1fb
RS
5355/*
5356 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5357 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5358 * can have before it gets flushed back to buddy allocator.
5359 */
5360
5361int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5362 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5363{
5364 struct zone *zone;
5365 unsigned int cpu;
5366 int ret;
5367
8d65af78 5368 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5369 if (!write || (ret < 0))
8ad4b1fb 5370 return ret;
364df0eb 5371 for_each_populated_zone(zone) {
99dcc3e5 5372 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5373 unsigned long high;
5374 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5375 setup_pagelist_highmark(
5376 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5377 }
5378 }
5379 return 0;
5380}
5381
f034b5d4 5382int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5383
5384#ifdef CONFIG_NUMA
5385static int __init set_hashdist(char *str)
5386{
5387 if (!str)
5388 return 0;
5389 hashdist = simple_strtoul(str, &str, 0);
5390 return 1;
5391}
5392__setup("hashdist=", set_hashdist);
5393#endif
5394
5395/*
5396 * allocate a large system hash table from bootmem
5397 * - it is assumed that the hash table must contain an exact power-of-2
5398 * quantity of entries
5399 * - limit is the number of hash buckets, not the total allocation size
5400 */
5401void *__init alloc_large_system_hash(const char *tablename,
5402 unsigned long bucketsize,
5403 unsigned long numentries,
5404 int scale,
5405 int flags,
5406 unsigned int *_hash_shift,
5407 unsigned int *_hash_mask,
31fe62b9
TB
5408 unsigned long low_limit,
5409 unsigned long high_limit)
1da177e4 5410{
31fe62b9 5411 unsigned long long max = high_limit;
1da177e4
LT
5412 unsigned long log2qty, size;
5413 void *table = NULL;
5414
5415 /* allow the kernel cmdline to have a say */
5416 if (!numentries) {
5417 /* round applicable memory size up to nearest megabyte */
04903664 5418 numentries = nr_kernel_pages;
1da177e4
LT
5419 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5420 numentries >>= 20 - PAGE_SHIFT;
5421 numentries <<= 20 - PAGE_SHIFT;
5422
5423 /* limit to 1 bucket per 2^scale bytes of low memory */
5424 if (scale > PAGE_SHIFT)
5425 numentries >>= (scale - PAGE_SHIFT);
5426 else
5427 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5428
5429 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5430 if (unlikely(flags & HASH_SMALL)) {
5431 /* Makes no sense without HASH_EARLY */
5432 WARN_ON(!(flags & HASH_EARLY));
5433 if (!(numentries >> *_hash_shift)) {
5434 numentries = 1UL << *_hash_shift;
5435 BUG_ON(!numentries);
5436 }
5437 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5438 numentries = PAGE_SIZE / bucketsize;
1da177e4 5439 }
6e692ed3 5440 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5441
5442 /* limit allocation size to 1/16 total memory by default */
5443 if (max == 0) {
5444 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5445 do_div(max, bucketsize);
5446 }
074b8517 5447 max = min(max, 0x80000000ULL);
1da177e4 5448
31fe62b9
TB
5449 if (numentries < low_limit)
5450 numentries = low_limit;
1da177e4
LT
5451 if (numentries > max)
5452 numentries = max;
5453
f0d1b0b3 5454 log2qty = ilog2(numentries);
1da177e4
LT
5455
5456 do {
5457 size = bucketsize << log2qty;
5458 if (flags & HASH_EARLY)
74768ed8 5459 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5460 else if (hashdist)
5461 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5462 else {
1037b83b
ED
5463 /*
5464 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5465 * some pages at the end of hash table which
5466 * alloc_pages_exact() automatically does
1037b83b 5467 */
264ef8a9 5468 if (get_order(size) < MAX_ORDER) {
a1dd268c 5469 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5470 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5471 }
1da177e4
LT
5472 }
5473 } while (!table && size > PAGE_SIZE && --log2qty);
5474
5475 if (!table)
5476 panic("Failed to allocate %s hash table\n", tablename);
5477
f241e660 5478 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5479 tablename,
f241e660 5480 (1UL << log2qty),
f0d1b0b3 5481 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5482 size);
5483
5484 if (_hash_shift)
5485 *_hash_shift = log2qty;
5486 if (_hash_mask)
5487 *_hash_mask = (1 << log2qty) - 1;
5488
5489 return table;
5490}
a117e66e 5491
835c134e
MG
5492/* Return a pointer to the bitmap storing bits affecting a block of pages */
5493static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5494 unsigned long pfn)
5495{
5496#ifdef CONFIG_SPARSEMEM
5497 return __pfn_to_section(pfn)->pageblock_flags;
5498#else
5499 return zone->pageblock_flags;
5500#endif /* CONFIG_SPARSEMEM */
5501}
5502
5503static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5504{
5505#ifdef CONFIG_SPARSEMEM
5506 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5507 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5508#else
5509 pfn = pfn - zone->zone_start_pfn;
d9c23400 5510 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5511#endif /* CONFIG_SPARSEMEM */
5512}
5513
5514/**
d9c23400 5515 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5516 * @page: The page within the block of interest
5517 * @start_bitidx: The first bit of interest to retrieve
5518 * @end_bitidx: The last bit of interest
5519 * returns pageblock_bits flags
5520 */
5521unsigned long get_pageblock_flags_group(struct page *page,
5522 int start_bitidx, int end_bitidx)
5523{
5524 struct zone *zone;
5525 unsigned long *bitmap;
5526 unsigned long pfn, bitidx;
5527 unsigned long flags = 0;
5528 unsigned long value = 1;
5529
5530 zone = page_zone(page);
5531 pfn = page_to_pfn(page);
5532 bitmap = get_pageblock_bitmap(zone, pfn);
5533 bitidx = pfn_to_bitidx(zone, pfn);
5534
5535 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5536 if (test_bit(bitidx + start_bitidx, bitmap))
5537 flags |= value;
6220ec78 5538
835c134e
MG
5539 return flags;
5540}
5541
5542/**
d9c23400 5543 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5544 * @page: The page within the block of interest
5545 * @start_bitidx: The first bit of interest
5546 * @end_bitidx: The last bit of interest
5547 * @flags: The flags to set
5548 */
5549void set_pageblock_flags_group(struct page *page, unsigned long flags,
5550 int start_bitidx, int end_bitidx)
5551{
5552 struct zone *zone;
5553 unsigned long *bitmap;
5554 unsigned long pfn, bitidx;
5555 unsigned long value = 1;
5556
5557 zone = page_zone(page);
5558 pfn = page_to_pfn(page);
5559 bitmap = get_pageblock_bitmap(zone, pfn);
5560 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5561 VM_BUG_ON(pfn < zone->zone_start_pfn);
5562 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5563
5564 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5565 if (flags & value)
5566 __set_bit(bitidx + start_bitidx, bitmap);
5567 else
5568 __clear_bit(bitidx + start_bitidx, bitmap);
5569}
a5d76b54
KH
5570
5571/*
80934513
MK
5572 * This function checks whether pageblock includes unmovable pages or not.
5573 * If @count is not zero, it is okay to include less @count unmovable pages
5574 *
5575 * PageLRU check wihtout isolation or lru_lock could race so that
5576 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5577 * expect this function should be exact.
a5d76b54 5578 */
ee6f509c 5579bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5580{
5581 unsigned long pfn, iter, found;
47118af0
MN
5582 int mt;
5583
49ac8255
KH
5584 /*
5585 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5586 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5587 */
5588 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5589 return false;
47118af0
MN
5590 mt = get_pageblock_migratetype(page);
5591 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5592 return false;
49ac8255
KH
5593
5594 pfn = page_to_pfn(page);
5595 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5596 unsigned long check = pfn + iter;
5597
29723fcc 5598 if (!pfn_valid_within(check))
49ac8255 5599 continue;
29723fcc 5600
49ac8255 5601 page = pfn_to_page(check);
97d255c8
MK
5602 /*
5603 * We can't use page_count without pin a page
5604 * because another CPU can free compound page.
5605 * This check already skips compound tails of THP
5606 * because their page->_count is zero at all time.
5607 */
5608 if (!atomic_read(&page->_count)) {
49ac8255
KH
5609 if (PageBuddy(page))
5610 iter += (1 << page_order(page)) - 1;
5611 continue;
5612 }
97d255c8 5613
49ac8255
KH
5614 if (!PageLRU(page))
5615 found++;
5616 /*
5617 * If there are RECLAIMABLE pages, we need to check it.
5618 * But now, memory offline itself doesn't call shrink_slab()
5619 * and it still to be fixed.
5620 */
5621 /*
5622 * If the page is not RAM, page_count()should be 0.
5623 * we don't need more check. This is an _used_ not-movable page.
5624 *
5625 * The problematic thing here is PG_reserved pages. PG_reserved
5626 * is set to both of a memory hole page and a _used_ kernel
5627 * page at boot.
5628 */
5629 if (found > count)
80934513 5630 return true;
49ac8255 5631 }
80934513 5632 return false;
49ac8255
KH
5633}
5634
5635bool is_pageblock_removable_nolock(struct page *page)
5636{
656a0706
MH
5637 struct zone *zone;
5638 unsigned long pfn;
687875fb
MH
5639
5640 /*
5641 * We have to be careful here because we are iterating over memory
5642 * sections which are not zone aware so we might end up outside of
5643 * the zone but still within the section.
656a0706
MH
5644 * We have to take care about the node as well. If the node is offline
5645 * its NODE_DATA will be NULL - see page_zone.
687875fb 5646 */
656a0706
MH
5647 if (!node_online(page_to_nid(page)))
5648 return false;
5649
5650 zone = page_zone(page);
5651 pfn = page_to_pfn(page);
5652 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5653 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5654 return false;
5655
ee6f509c 5656 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5657}
0c0e6195 5658
041d3a8c
MN
5659#ifdef CONFIG_CMA
5660
5661static unsigned long pfn_max_align_down(unsigned long pfn)
5662{
5663 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5664 pageblock_nr_pages) - 1);
5665}
5666
5667static unsigned long pfn_max_align_up(unsigned long pfn)
5668{
5669 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5670 pageblock_nr_pages));
5671}
5672
041d3a8c 5673/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5674static int __alloc_contig_migrate_range(struct compact_control *cc,
5675 unsigned long start, unsigned long end)
041d3a8c
MN
5676{
5677 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5678 unsigned long nr_reclaimed;
041d3a8c
MN
5679 unsigned long pfn = start;
5680 unsigned int tries = 0;
5681 int ret = 0;
5682
041d3a8c
MN
5683 migrate_prep_local();
5684
bb13ffeb 5685 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5686 if (fatal_signal_pending(current)) {
5687 ret = -EINTR;
5688 break;
5689 }
5690
bb13ffeb
MG
5691 if (list_empty(&cc->migratepages)) {
5692 cc->nr_migratepages = 0;
5693 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5694 pfn, end, true);
041d3a8c
MN
5695 if (!pfn) {
5696 ret = -EINTR;
5697 break;
5698 }
5699 tries = 0;
5700 } else if (++tries == 5) {
5701 ret = ret < 0 ? ret : -EBUSY;
5702 break;
5703 }
5704
beb51eaa
MK
5705 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5706 &cc->migratepages);
5707 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5708
bb13ffeb 5709 ret = migrate_pages(&cc->migratepages,
723a0644 5710 alloc_migrate_target,
58f42fd5 5711 0, false, MIGRATE_SYNC);
041d3a8c
MN
5712 }
5713
bb13ffeb 5714 putback_lru_pages(&cc->migratepages);
041d3a8c
MN
5715 return ret > 0 ? 0 : ret;
5716}
5717
49f223a9
MS
5718/*
5719 * Update zone's cma pages counter used for watermark level calculation.
5720 */
5721static inline void __update_cma_watermarks(struct zone *zone, int count)
5722{
5723 unsigned long flags;
5724 spin_lock_irqsave(&zone->lock, flags);
5725 zone->min_cma_pages += count;
5726 spin_unlock_irqrestore(&zone->lock, flags);
5727 setup_per_zone_wmarks();
5728}
5729
5730/*
5731 * Trigger memory pressure bump to reclaim some pages in order to be able to
5732 * allocate 'count' pages in single page units. Does similar work as
5733 *__alloc_pages_slowpath() function.
5734 */
5735static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5736{
5737 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5738 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5739 int did_some_progress = 0;
5740 int order = 1;
5741
5742 /*
5743 * Increase level of watermarks to force kswapd do his job
5744 * to stabilise at new watermark level.
5745 */
5746 __update_cma_watermarks(zone, count);
5747
5748 /* Obey watermarks as if the page was being allocated */
5749 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5750 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5751
5752 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5753 NULL);
5754 if (!did_some_progress) {
5755 /* Exhausted what can be done so it's blamo time */
5756 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5757 }
5758 }
5759
5760 /* Restore original watermark levels. */
5761 __update_cma_watermarks(zone, -count);
5762
5763 return count;
5764}
5765
041d3a8c
MN
5766/**
5767 * alloc_contig_range() -- tries to allocate given range of pages
5768 * @start: start PFN to allocate
5769 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5770 * @migratetype: migratetype of the underlaying pageblocks (either
5771 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5772 * in range must have the same migratetype and it must
5773 * be either of the two.
041d3a8c
MN
5774 *
5775 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5776 * aligned, however it's the caller's responsibility to guarantee that
5777 * we are the only thread that changes migrate type of pageblocks the
5778 * pages fall in.
5779 *
5780 * The PFN range must belong to a single zone.
5781 *
5782 * Returns zero on success or negative error code. On success all
5783 * pages which PFN is in [start, end) are allocated for the caller and
5784 * need to be freed with free_contig_range().
5785 */
0815f3d8
MN
5786int alloc_contig_range(unsigned long start, unsigned long end,
5787 unsigned migratetype)
041d3a8c
MN
5788{
5789 struct zone *zone = page_zone(pfn_to_page(start));
5790 unsigned long outer_start, outer_end;
5791 int ret = 0, order;
5792
bb13ffeb
MG
5793 struct compact_control cc = {
5794 .nr_migratepages = 0,
5795 .order = -1,
5796 .zone = page_zone(pfn_to_page(start)),
5797 .sync = true,
5798 .ignore_skip_hint = true,
5799 };
5800 INIT_LIST_HEAD(&cc.migratepages);
5801
041d3a8c
MN
5802 /*
5803 * What we do here is we mark all pageblocks in range as
5804 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5805 * have different sizes, and due to the way page allocator
5806 * work, we align the range to biggest of the two pages so
5807 * that page allocator won't try to merge buddies from
5808 * different pageblocks and change MIGRATE_ISOLATE to some
5809 * other migration type.
5810 *
5811 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5812 * migrate the pages from an unaligned range (ie. pages that
5813 * we are interested in). This will put all the pages in
5814 * range back to page allocator as MIGRATE_ISOLATE.
5815 *
5816 * When this is done, we take the pages in range from page
5817 * allocator removing them from the buddy system. This way
5818 * page allocator will never consider using them.
5819 *
5820 * This lets us mark the pageblocks back as
5821 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5822 * aligned range but not in the unaligned, original range are
5823 * put back to page allocator so that buddy can use them.
5824 */
5825
5826 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5827 pfn_max_align_up(end), migratetype);
041d3a8c 5828 if (ret)
86a595f9 5829 return ret;
041d3a8c 5830
bb13ffeb 5831 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5832 if (ret)
5833 goto done;
5834
5835 /*
5836 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5837 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5838 * more, all pages in [start, end) are free in page allocator.
5839 * What we are going to do is to allocate all pages from
5840 * [start, end) (that is remove them from page allocator).
5841 *
5842 * The only problem is that pages at the beginning and at the
5843 * end of interesting range may be not aligned with pages that
5844 * page allocator holds, ie. they can be part of higher order
5845 * pages. Because of this, we reserve the bigger range and
5846 * once this is done free the pages we are not interested in.
5847 *
5848 * We don't have to hold zone->lock here because the pages are
5849 * isolated thus they won't get removed from buddy.
5850 */
5851
5852 lru_add_drain_all();
5853 drain_all_pages();
5854
5855 order = 0;
5856 outer_start = start;
5857 while (!PageBuddy(pfn_to_page(outer_start))) {
5858 if (++order >= MAX_ORDER) {
5859 ret = -EBUSY;
5860 goto done;
5861 }
5862 outer_start &= ~0UL << order;
5863 }
5864
5865 /* Make sure the range is really isolated. */
5866 if (test_pages_isolated(outer_start, end)) {
5867 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5868 outer_start, end);
5869 ret = -EBUSY;
5870 goto done;
5871 }
5872
49f223a9
MS
5873 /*
5874 * Reclaim enough pages to make sure that contiguous allocation
5875 * will not starve the system.
5876 */
5877 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5878
5879 /* Grab isolated pages from freelists. */
bb13ffeb 5880 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5881 if (!outer_end) {
5882 ret = -EBUSY;
5883 goto done;
5884 }
5885
5886 /* Free head and tail (if any) */
5887 if (start != outer_start)
5888 free_contig_range(outer_start, start - outer_start);
5889 if (end != outer_end)
5890 free_contig_range(end, outer_end - end);
5891
5892done:
5893 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5894 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5895 return ret;
5896}
5897
5898void free_contig_range(unsigned long pfn, unsigned nr_pages)
5899{
5900 for (; nr_pages--; ++pfn)
5901 __free_page(pfn_to_page(pfn));
5902}
5903#endif
5904
4ed7e022
JL
5905#ifdef CONFIG_MEMORY_HOTPLUG
5906static int __meminit __zone_pcp_update(void *data)
5907{
5908 struct zone *zone = data;
5909 int cpu;
5910 unsigned long batch = zone_batchsize(zone), flags;
5911
5912 for_each_possible_cpu(cpu) {
5913 struct per_cpu_pageset *pset;
5914 struct per_cpu_pages *pcp;
5915
5916 pset = per_cpu_ptr(zone->pageset, cpu);
5917 pcp = &pset->pcp;
5918
5919 local_irq_save(flags);
5920 if (pcp->count > 0)
5921 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5922 drain_zonestat(zone, pset);
4ed7e022
JL
5923 setup_pageset(pset, batch);
5924 local_irq_restore(flags);
5925 }
5926 return 0;
5927}
5928
5929void __meminit zone_pcp_update(struct zone *zone)
5930{
5931 stop_machine(__zone_pcp_update, zone, NULL);
5932}
5933#endif
5934
0c0e6195 5935#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5936void zone_pcp_reset(struct zone *zone)
5937{
5938 unsigned long flags;
5a883813
MK
5939 int cpu;
5940 struct per_cpu_pageset *pset;
340175b7
JL
5941
5942 /* avoid races with drain_pages() */
5943 local_irq_save(flags);
5944 if (zone->pageset != &boot_pageset) {
5a883813
MK
5945 for_each_online_cpu(cpu) {
5946 pset = per_cpu_ptr(zone->pageset, cpu);
5947 drain_zonestat(zone, pset);
5948 }
340175b7
JL
5949 free_percpu(zone->pageset);
5950 zone->pageset = &boot_pageset;
5951 }
5952 local_irq_restore(flags);
5953}
5954
0c0e6195
KH
5955/*
5956 * All pages in the range must be isolated before calling this.
5957 */
5958void
5959__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5960{
5961 struct page *page;
5962 struct zone *zone;
5963 int order, i;
5964 unsigned long pfn;
5965 unsigned long flags;
5966 /* find the first valid pfn */
5967 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5968 if (pfn_valid(pfn))
5969 break;
5970 if (pfn == end_pfn)
5971 return;
5972 zone = page_zone(pfn_to_page(pfn));
5973 spin_lock_irqsave(&zone->lock, flags);
5974 pfn = start_pfn;
5975 while (pfn < end_pfn) {
5976 if (!pfn_valid(pfn)) {
5977 pfn++;
5978 continue;
5979 }
5980 page = pfn_to_page(pfn);
5981 BUG_ON(page_count(page));
5982 BUG_ON(!PageBuddy(page));
5983 order = page_order(page);
5984#ifdef CONFIG_DEBUG_VM
5985 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5986 pfn, 1 << order, end_pfn);
5987#endif
5988 list_del(&page->lru);
5989 rmv_page_order(page);
5990 zone->free_area[order].nr_free--;
5991 __mod_zone_page_state(zone, NR_FREE_PAGES,
5992 - (1UL << order));
5993 for (i = 0; i < (1 << order); i++)
5994 SetPageReserved((page+i));
5995 pfn += (1 << order);
5996 }
5997 spin_unlock_irqrestore(&zone->lock, flags);
5998}
5999#endif
8d22ba1b
WF
6000
6001#ifdef CONFIG_MEMORY_FAILURE
6002bool is_free_buddy_page(struct page *page)
6003{
6004 struct zone *zone = page_zone(page);
6005 unsigned long pfn = page_to_pfn(page);
6006 unsigned long flags;
6007 int order;
6008
6009 spin_lock_irqsave(&zone->lock, flags);
6010 for (order = 0; order < MAX_ORDER; order++) {
6011 struct page *page_head = page - (pfn & ((1 << order) - 1));
6012
6013 if (PageBuddy(page_head) && page_order(page_head) >= order)
6014 break;
6015 }
6016 spin_unlock_irqrestore(&zone->lock, flags);
6017
6018 return order < MAX_ORDER;
6019}
6020#endif
718a3821 6021
51300cef 6022static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6023 {1UL << PG_locked, "locked" },
6024 {1UL << PG_error, "error" },
6025 {1UL << PG_referenced, "referenced" },
6026 {1UL << PG_uptodate, "uptodate" },
6027 {1UL << PG_dirty, "dirty" },
6028 {1UL << PG_lru, "lru" },
6029 {1UL << PG_active, "active" },
6030 {1UL << PG_slab, "slab" },
6031 {1UL << PG_owner_priv_1, "owner_priv_1" },
6032 {1UL << PG_arch_1, "arch_1" },
6033 {1UL << PG_reserved, "reserved" },
6034 {1UL << PG_private, "private" },
6035 {1UL << PG_private_2, "private_2" },
6036 {1UL << PG_writeback, "writeback" },
6037#ifdef CONFIG_PAGEFLAGS_EXTENDED
6038 {1UL << PG_head, "head" },
6039 {1UL << PG_tail, "tail" },
6040#else
6041 {1UL << PG_compound, "compound" },
6042#endif
6043 {1UL << PG_swapcache, "swapcache" },
6044 {1UL << PG_mappedtodisk, "mappedtodisk" },
6045 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6046 {1UL << PG_swapbacked, "swapbacked" },
6047 {1UL << PG_unevictable, "unevictable" },
6048#ifdef CONFIG_MMU
6049 {1UL << PG_mlocked, "mlocked" },
6050#endif
6051#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6052 {1UL << PG_uncached, "uncached" },
6053#endif
6054#ifdef CONFIG_MEMORY_FAILURE
6055 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6056#endif
6057#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6058 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6059#endif
718a3821
WF
6060};
6061
6062static void dump_page_flags(unsigned long flags)
6063{
6064 const char *delim = "";
6065 unsigned long mask;
6066 int i;
6067
51300cef 6068 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6069
718a3821
WF
6070 printk(KERN_ALERT "page flags: %#lx(", flags);
6071
6072 /* remove zone id */
6073 flags &= (1UL << NR_PAGEFLAGS) - 1;
6074
51300cef 6075 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6076
6077 mask = pageflag_names[i].mask;
6078 if ((flags & mask) != mask)
6079 continue;
6080
6081 flags &= ~mask;
6082 printk("%s%s", delim, pageflag_names[i].name);
6083 delim = "|";
6084 }
6085
6086 /* check for left over flags */
6087 if (flags)
6088 printk("%s%#lx", delim, flags);
6089
6090 printk(")\n");
6091}
6092
6093void dump_page(struct page *page)
6094{
6095 printk(KERN_ALERT
6096 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6097 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6098 page->mapping, page->index);
6099 dump_page_flags(page->flags);
f212ad7c 6100 mem_cgroup_print_bad_page(page);
718a3821 6101}