]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
1da177e4 69
7ee3d4e8 70#include <asm/sections.h>
1da177e4 71#include <asm/tlbflush.h>
ac924c60 72#include <asm/div64.h>
1da177e4
LT
73#include "internal.h"
74
c8e251fa
CS
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 77#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 78
72812019
LS
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
7aac7898
LS
84#ifdef CONFIG_HAVE_MEMORYLESS_NODES
85/*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 93int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
94#endif
95
bd233f53
MG
96/* work_structs for global per-cpu drains */
97DEFINE_MUTEX(pcpu_drain_mutex);
98DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
38addce8 100#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 101volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
102EXPORT_SYMBOL(latent_entropy);
103#endif
104
1da177e4 105/*
13808910 106 * Array of node states.
1da177e4 107 */
13808910
CL
108nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111#ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113#ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 115#endif
20b2f52b 116 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
117 [N_CPU] = { { [0] = 1UL } },
118#endif /* NUMA */
119};
120EXPORT_SYMBOL(node_states);
121
c3d5f5f0
JL
122/* Protect totalram_pages and zone->managed_pages */
123static DEFINE_SPINLOCK(managed_page_count_lock);
124
6c231b7b 125unsigned long totalram_pages __read_mostly;
cb45b0e9 126unsigned long totalreserve_pages __read_mostly;
e48322ab 127unsigned long totalcma_pages __read_mostly;
ab8fabd4 128
1b76b02f 129int percpu_pagelist_fraction;
dcce284a 130gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 131
bb14c2c7
VB
132/*
133 * A cached value of the page's pageblock's migratetype, used when the page is
134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136 * Also the migratetype set in the page does not necessarily match the pcplist
137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138 * other index - this ensures that it will be put on the correct CMA freelist.
139 */
140static inline int get_pcppage_migratetype(struct page *page)
141{
142 return page->index;
143}
144
145static inline void set_pcppage_migratetype(struct page *page, int migratetype)
146{
147 page->index = migratetype;
148}
149
452aa699
RW
150#ifdef CONFIG_PM_SLEEP
151/*
152 * The following functions are used by the suspend/hibernate code to temporarily
153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154 * while devices are suspended. To avoid races with the suspend/hibernate code,
155 * they should always be called with pm_mutex held (gfp_allowed_mask also should
156 * only be modified with pm_mutex held, unless the suspend/hibernate code is
157 * guaranteed not to run in parallel with that modification).
158 */
c9e664f1
RW
159
160static gfp_t saved_gfp_mask;
161
162void pm_restore_gfp_mask(void)
452aa699
RW
163{
164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 if (saved_gfp_mask) {
166 gfp_allowed_mask = saved_gfp_mask;
167 saved_gfp_mask = 0;
168 }
452aa699
RW
169}
170
c9e664f1 171void pm_restrict_gfp_mask(void)
452aa699 172{
452aa699 173 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
174 WARN_ON(saved_gfp_mask);
175 saved_gfp_mask = gfp_allowed_mask;
d0164adc 176 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 177}
f90ac398
MG
178
179bool pm_suspended_storage(void)
180{
d0164adc 181 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
182 return false;
183 return true;
184}
452aa699
RW
185#endif /* CONFIG_PM_SLEEP */
186
d9c23400 187#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 188unsigned int pageblock_order __read_mostly;
d9c23400
MG
189#endif
190
d98c7a09 191static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 192
1da177e4
LT
193/*
194 * results with 256, 32 in the lowmem_reserve sysctl:
195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196 * 1G machine -> (16M dma, 784M normal, 224M high)
197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
200 *
201 * TBD: should special case ZONE_DMA32 machines here - in those we normally
202 * don't need any ZONE_NORMAL reservation
1da177e4 203 */
2f1b6248 204int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 205#ifdef CONFIG_ZONE_DMA
2f1b6248 206 256,
4b51d669 207#endif
fb0e7942 208#ifdef CONFIG_ZONE_DMA32
2f1b6248 209 256,
fb0e7942 210#endif
e53ef38d 211#ifdef CONFIG_HIGHMEM
2a1e274a 212 32,
e53ef38d 213#endif
2a1e274a 214 32,
2f1b6248 215};
1da177e4
LT
216
217EXPORT_SYMBOL(totalram_pages);
1da177e4 218
15ad7cdc 219static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 220#ifdef CONFIG_ZONE_DMA
2f1b6248 221 "DMA",
4b51d669 222#endif
fb0e7942 223#ifdef CONFIG_ZONE_DMA32
2f1b6248 224 "DMA32",
fb0e7942 225#endif
2f1b6248 226 "Normal",
e53ef38d 227#ifdef CONFIG_HIGHMEM
2a1e274a 228 "HighMem",
e53ef38d 229#endif
2a1e274a 230 "Movable",
033fbae9
DW
231#ifdef CONFIG_ZONE_DEVICE
232 "Device",
233#endif
2f1b6248
CL
234};
235
60f30350
VB
236char * const migratetype_names[MIGRATE_TYPES] = {
237 "Unmovable",
238 "Movable",
239 "Reclaimable",
240 "HighAtomic",
241#ifdef CONFIG_CMA
242 "CMA",
243#endif
244#ifdef CONFIG_MEMORY_ISOLATION
245 "Isolate",
246#endif
247};
248
f1e61557
KS
249compound_page_dtor * const compound_page_dtors[] = {
250 NULL,
251 free_compound_page,
252#ifdef CONFIG_HUGETLB_PAGE
253 free_huge_page,
254#endif
9a982250
KS
255#ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 free_transhuge_page,
257#endif
f1e61557
KS
258};
259
1da177e4 260int min_free_kbytes = 1024;
42aa83cb 261int user_min_free_kbytes = -1;
795ae7a0 262int watermark_scale_factor = 10;
1da177e4 263
2c85f51d
JB
264static unsigned long __meminitdata nr_kernel_pages;
265static unsigned long __meminitdata nr_all_pages;
a3142c8e 266static unsigned long __meminitdata dma_reserve;
1da177e4 267
0ee332c1
TH
268#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
270static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __initdata required_kernelcore;
272static unsigned long __initdata required_movablecore;
273static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 274static bool mirrored_kernelcore;
0ee332c1
TH
275
276/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
277int movable_zone;
278EXPORT_SYMBOL(movable_zone);
279#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 280
418508c1
MS
281#if MAX_NUMNODES > 1
282int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 283int nr_online_nodes __read_mostly = 1;
418508c1 284EXPORT_SYMBOL(nr_node_ids);
62bc62a8 285EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
286#endif
287
9ef9acb0
MG
288int page_group_by_mobility_disabled __read_mostly;
289
3a80a7fa
MG
290#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291static inline void reset_deferred_meminit(pg_data_t *pgdat)
292{
864b9a39
MH
293 unsigned long max_initialise;
294 unsigned long reserved_lowmem;
295
296 /*
297 * Initialise at least 2G of a node but also take into account that
298 * two large system hashes that can take up 1GB for 0.25TB/node.
299 */
300 max_initialise = max(2UL << (30 - PAGE_SHIFT),
301 (pgdat->node_spanned_pages >> 8));
302
303 /*
304 * Compensate the all the memblock reservations (e.g. crash kernel)
305 * from the initial estimation to make sure we will initialize enough
306 * memory to boot.
307 */
308 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
309 pgdat->node_start_pfn + max_initialise);
310 max_initialise += reserved_lowmem;
311
312 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
313 pgdat->first_deferred_pfn = ULONG_MAX;
314}
315
316/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 317static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 318{
ef70b6f4
MG
319 int nid = early_pfn_to_nid(pfn);
320
321 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
322 return true;
323
324 return false;
325}
326
327/*
328 * Returns false when the remaining initialisation should be deferred until
329 * later in the boot cycle when it can be parallelised.
330 */
331static inline bool update_defer_init(pg_data_t *pgdat,
332 unsigned long pfn, unsigned long zone_end,
333 unsigned long *nr_initialised)
334{
335 /* Always populate low zones for address-contrained allocations */
336 if (zone_end < pgdat_end_pfn(pgdat))
337 return true;
3a80a7fa 338 (*nr_initialised)++;
864b9a39 339 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
340 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
341 pgdat->first_deferred_pfn = pfn;
342 return false;
343 }
344
345 return true;
346}
347#else
348static inline void reset_deferred_meminit(pg_data_t *pgdat)
349{
350}
351
352static inline bool early_page_uninitialised(unsigned long pfn)
353{
354 return false;
355}
356
357static inline bool update_defer_init(pg_data_t *pgdat,
358 unsigned long pfn, unsigned long zone_end,
359 unsigned long *nr_initialised)
360{
361 return true;
362}
363#endif
364
0b423ca2
MG
365/* Return a pointer to the bitmap storing bits affecting a block of pages */
366static inline unsigned long *get_pageblock_bitmap(struct page *page,
367 unsigned long pfn)
368{
369#ifdef CONFIG_SPARSEMEM
370 return __pfn_to_section(pfn)->pageblock_flags;
371#else
372 return page_zone(page)->pageblock_flags;
373#endif /* CONFIG_SPARSEMEM */
374}
375
376static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
377{
378#ifdef CONFIG_SPARSEMEM
379 pfn &= (PAGES_PER_SECTION-1);
380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
381#else
382 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
383 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
384#endif /* CONFIG_SPARSEMEM */
385}
386
387/**
388 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
389 * @page: The page within the block of interest
390 * @pfn: The target page frame number
391 * @end_bitidx: The last bit of interest to retrieve
392 * @mask: mask of bits that the caller is interested in
393 *
394 * Return: pageblock_bits flags
395 */
396static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
397 unsigned long pfn,
398 unsigned long end_bitidx,
399 unsigned long mask)
400{
401 unsigned long *bitmap;
402 unsigned long bitidx, word_bitidx;
403 unsigned long word;
404
405 bitmap = get_pageblock_bitmap(page, pfn);
406 bitidx = pfn_to_bitidx(page, pfn);
407 word_bitidx = bitidx / BITS_PER_LONG;
408 bitidx &= (BITS_PER_LONG-1);
409
410 word = bitmap[word_bitidx];
411 bitidx += end_bitidx;
412 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
413}
414
415unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
416 unsigned long end_bitidx,
417 unsigned long mask)
418{
419 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
420}
421
422static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
423{
424 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
425}
426
427/**
428 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
429 * @page: The page within the block of interest
430 * @flags: The flags to set
431 * @pfn: The target page frame number
432 * @end_bitidx: The last bit of interest
433 * @mask: mask of bits that the caller is interested in
434 */
435void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
436 unsigned long pfn,
437 unsigned long end_bitidx,
438 unsigned long mask)
439{
440 unsigned long *bitmap;
441 unsigned long bitidx, word_bitidx;
442 unsigned long old_word, word;
443
444 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
445
446 bitmap = get_pageblock_bitmap(page, pfn);
447 bitidx = pfn_to_bitidx(page, pfn);
448 word_bitidx = bitidx / BITS_PER_LONG;
449 bitidx &= (BITS_PER_LONG-1);
450
451 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
452
453 bitidx += end_bitidx;
454 mask <<= (BITS_PER_LONG - bitidx - 1);
455 flags <<= (BITS_PER_LONG - bitidx - 1);
456
457 word = READ_ONCE(bitmap[word_bitidx]);
458 for (;;) {
459 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
460 if (word == old_word)
461 break;
462 word = old_word;
463 }
464}
3a80a7fa 465
ee6f509c 466void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 467{
5d0f3f72
KM
468 if (unlikely(page_group_by_mobility_disabled &&
469 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
470 migratetype = MIGRATE_UNMOVABLE;
471
b2a0ac88
MG
472 set_pageblock_flags_group(page, (unsigned long)migratetype,
473 PB_migrate, PB_migrate_end);
474}
475
13e7444b 476#ifdef CONFIG_DEBUG_VM
c6a57e19 477static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 478{
bdc8cb98
DH
479 int ret = 0;
480 unsigned seq;
481 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 482 unsigned long sp, start_pfn;
c6a57e19 483
bdc8cb98
DH
484 do {
485 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
486 start_pfn = zone->zone_start_pfn;
487 sp = zone->spanned_pages;
108bcc96 488 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
489 ret = 1;
490 } while (zone_span_seqretry(zone, seq));
491
b5e6a5a2 492 if (ret)
613813e8
DH
493 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
494 pfn, zone_to_nid(zone), zone->name,
495 start_pfn, start_pfn + sp);
b5e6a5a2 496
bdc8cb98 497 return ret;
c6a57e19
DH
498}
499
500static int page_is_consistent(struct zone *zone, struct page *page)
501{
14e07298 502 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 503 return 0;
1da177e4 504 if (zone != page_zone(page))
c6a57e19
DH
505 return 0;
506
507 return 1;
508}
509/*
510 * Temporary debugging check for pages not lying within a given zone.
511 */
d73d3c9f 512static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
513{
514 if (page_outside_zone_boundaries(zone, page))
1da177e4 515 return 1;
c6a57e19
DH
516 if (!page_is_consistent(zone, page))
517 return 1;
518
1da177e4
LT
519 return 0;
520}
13e7444b 521#else
d73d3c9f 522static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
523{
524 return 0;
525}
526#endif
527
d230dec1
KS
528static void bad_page(struct page *page, const char *reason,
529 unsigned long bad_flags)
1da177e4 530{
d936cf9b
HD
531 static unsigned long resume;
532 static unsigned long nr_shown;
533 static unsigned long nr_unshown;
534
535 /*
536 * Allow a burst of 60 reports, then keep quiet for that minute;
537 * or allow a steady drip of one report per second.
538 */
539 if (nr_shown == 60) {
540 if (time_before(jiffies, resume)) {
541 nr_unshown++;
542 goto out;
543 }
544 if (nr_unshown) {
ff8e8116 545 pr_alert(
1e9e6365 546 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
547 nr_unshown);
548 nr_unshown = 0;
549 }
550 nr_shown = 0;
551 }
552 if (nr_shown++ == 0)
553 resume = jiffies + 60 * HZ;
554
ff8e8116 555 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 556 current->comm, page_to_pfn(page));
ff8e8116
VB
557 __dump_page(page, reason);
558 bad_flags &= page->flags;
559 if (bad_flags)
560 pr_alert("bad because of flags: %#lx(%pGp)\n",
561 bad_flags, &bad_flags);
4e462112 562 dump_page_owner(page);
3dc14741 563
4f31888c 564 print_modules();
1da177e4 565 dump_stack();
d936cf9b 566out:
8cc3b392 567 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 568 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 569 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
570}
571
1da177e4
LT
572/*
573 * Higher-order pages are called "compound pages". They are structured thusly:
574 *
1d798ca3 575 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 576 *
1d798ca3
KS
577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 579 *
1d798ca3
KS
580 * The first tail page's ->compound_dtor holds the offset in array of compound
581 * page destructors. See compound_page_dtors.
1da177e4 582 *
1d798ca3 583 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 584 * This usage means that zero-order pages may not be compound.
1da177e4 585 */
d98c7a09 586
9a982250 587void free_compound_page(struct page *page)
d98c7a09 588{
d85f3385 589 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
590}
591
d00181b9 592void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
593{
594 int i;
595 int nr_pages = 1 << order;
596
f1e61557 597 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
598 set_compound_order(page, order);
599 __SetPageHead(page);
600 for (i = 1; i < nr_pages; i++) {
601 struct page *p = page + i;
58a84aa9 602 set_page_count(p, 0);
1c290f64 603 p->mapping = TAIL_MAPPING;
1d798ca3 604 set_compound_head(p, page);
18229df5 605 }
53f9263b 606 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
607}
608
c0a32fc5
SG
609#ifdef CONFIG_DEBUG_PAGEALLOC
610unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
611bool _debug_pagealloc_enabled __read_mostly
612 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 613EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
614bool _debug_guardpage_enabled __read_mostly;
615
031bc574
JK
616static int __init early_debug_pagealloc(char *buf)
617{
618 if (!buf)
619 return -EINVAL;
2a138dc7 620 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
621}
622early_param("debug_pagealloc", early_debug_pagealloc);
623
e30825f1
JK
624static bool need_debug_guardpage(void)
625{
031bc574
JK
626 /* If we don't use debug_pagealloc, we don't need guard page */
627 if (!debug_pagealloc_enabled())
628 return false;
629
f1c1e9f7
JK
630 if (!debug_guardpage_minorder())
631 return false;
632
e30825f1
JK
633 return true;
634}
635
636static void init_debug_guardpage(void)
637{
031bc574
JK
638 if (!debug_pagealloc_enabled())
639 return;
640
f1c1e9f7
JK
641 if (!debug_guardpage_minorder())
642 return;
643
e30825f1
JK
644 _debug_guardpage_enabled = true;
645}
646
647struct page_ext_operations debug_guardpage_ops = {
648 .need = need_debug_guardpage,
649 .init = init_debug_guardpage,
650};
c0a32fc5
SG
651
652static int __init debug_guardpage_minorder_setup(char *buf)
653{
654 unsigned long res;
655
656 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 657 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
658 return 0;
659 }
660 _debug_guardpage_minorder = res;
1170532b 661 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
662 return 0;
663}
f1c1e9f7 664early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 665
acbc15a4 666static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 667 unsigned int order, int migratetype)
c0a32fc5 668{
e30825f1
JK
669 struct page_ext *page_ext;
670
671 if (!debug_guardpage_enabled())
acbc15a4
JK
672 return false;
673
674 if (order >= debug_guardpage_minorder())
675 return false;
e30825f1
JK
676
677 page_ext = lookup_page_ext(page);
f86e4271 678 if (unlikely(!page_ext))
acbc15a4 679 return false;
f86e4271 680
e30825f1
JK
681 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682
2847cf95
JK
683 INIT_LIST_HEAD(&page->lru);
684 set_page_private(page, order);
685 /* Guard pages are not available for any usage */
686 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
687
688 return true;
c0a32fc5
SG
689}
690
2847cf95
JK
691static inline void clear_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype)
c0a32fc5 693{
e30825f1
JK
694 struct page_ext *page_ext;
695
696 if (!debug_guardpage_enabled())
697 return;
698
699 page_ext = lookup_page_ext(page);
f86e4271
YS
700 if (unlikely(!page_ext))
701 return;
702
e30825f1
JK
703 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
2847cf95
JK
705 set_page_private(page, 0);
706 if (!is_migrate_isolate(migratetype))
707 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
708}
709#else
980ac167 710struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
711static inline bool set_page_guard(struct zone *zone, struct page *page,
712 unsigned int order, int migratetype) { return false; }
2847cf95
JK
713static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) {}
c0a32fc5
SG
715#endif
716
7aeb09f9 717static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 718{
4c21e2f2 719 set_page_private(page, order);
676165a8 720 __SetPageBuddy(page);
1da177e4
LT
721}
722
723static inline void rmv_page_order(struct page *page)
724{
676165a8 725 __ClearPageBuddy(page);
4c21e2f2 726 set_page_private(page, 0);
1da177e4
LT
727}
728
1da177e4
LT
729/*
730 * This function checks whether a page is free && is the buddy
731 * we can do coalesce a page and its buddy if
13ad59df 732 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 733 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
734 * (c) a page and its buddy have the same order &&
735 * (d) a page and its buddy are in the same zone.
676165a8 736 *
cf6fe945
WSH
737 * For recording whether a page is in the buddy system, we set ->_mapcount
738 * PAGE_BUDDY_MAPCOUNT_VALUE.
739 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
740 * serialized by zone->lock.
1da177e4 741 *
676165a8 742 * For recording page's order, we use page_private(page).
1da177e4 743 */
cb2b95e1 744static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 745 unsigned int order)
1da177e4 746{
c0a32fc5 747 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
748 if (page_zone_id(page) != page_zone_id(buddy))
749 return 0;
750
4c5018ce
WY
751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752
c0a32fc5
SG
753 return 1;
754 }
755
cb2b95e1 756 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
757 /*
758 * zone check is done late to avoid uselessly
759 * calculating zone/node ids for pages that could
760 * never merge.
761 */
762 if (page_zone_id(page) != page_zone_id(buddy))
763 return 0;
764
4c5018ce
WY
765 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
766
6aa3001b 767 return 1;
676165a8 768 }
6aa3001b 769 return 0;
1da177e4
LT
770}
771
772/*
773 * Freeing function for a buddy system allocator.
774 *
775 * The concept of a buddy system is to maintain direct-mapped table
776 * (containing bit values) for memory blocks of various "orders".
777 * The bottom level table contains the map for the smallest allocatable
778 * units of memory (here, pages), and each level above it describes
779 * pairs of units from the levels below, hence, "buddies".
780 * At a high level, all that happens here is marking the table entry
781 * at the bottom level available, and propagating the changes upward
782 * as necessary, plus some accounting needed to play nicely with other
783 * parts of the VM system.
784 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
785 * free pages of length of (1 << order) and marked with _mapcount
786 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
787 * field.
1da177e4 788 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
789 * other. That is, if we allocate a small block, and both were
790 * free, the remainder of the region must be split into blocks.
1da177e4 791 * If a block is freed, and its buddy is also free, then this
5f63b720 792 * triggers coalescing into a block of larger size.
1da177e4 793 *
6d49e352 794 * -- nyc
1da177e4
LT
795 */
796
48db57f8 797static inline void __free_one_page(struct page *page,
dc4b0caf 798 unsigned long pfn,
ed0ae21d
MG
799 struct zone *zone, unsigned int order,
800 int migratetype)
1da177e4 801{
76741e77
VB
802 unsigned long combined_pfn;
803 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 804 struct page *buddy;
d9dddbf5
VB
805 unsigned int max_order;
806
807 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 808
d29bb978 809 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 810 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 811
ed0ae21d 812 VM_BUG_ON(migratetype == -1);
d9dddbf5 813 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 814 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 815
76741e77 816 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 817 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 818
d9dddbf5 819continue_merging:
3c605096 820 while (order < max_order - 1) {
76741e77
VB
821 buddy_pfn = __find_buddy_pfn(pfn, order);
822 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
823
824 if (!pfn_valid_within(buddy_pfn))
825 goto done_merging;
cb2b95e1 826 if (!page_is_buddy(page, buddy, order))
d9dddbf5 827 goto done_merging;
c0a32fc5
SG
828 /*
829 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
830 * merge with it and move up one order.
831 */
832 if (page_is_guard(buddy)) {
2847cf95 833 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
834 } else {
835 list_del(&buddy->lru);
836 zone->free_area[order].nr_free--;
837 rmv_page_order(buddy);
838 }
76741e77
VB
839 combined_pfn = buddy_pfn & pfn;
840 page = page + (combined_pfn - pfn);
841 pfn = combined_pfn;
1da177e4
LT
842 order++;
843 }
d9dddbf5
VB
844 if (max_order < MAX_ORDER) {
845 /* If we are here, it means order is >= pageblock_order.
846 * We want to prevent merge between freepages on isolate
847 * pageblock and normal pageblock. Without this, pageblock
848 * isolation could cause incorrect freepage or CMA accounting.
849 *
850 * We don't want to hit this code for the more frequent
851 * low-order merging.
852 */
853 if (unlikely(has_isolate_pageblock(zone))) {
854 int buddy_mt;
855
76741e77
VB
856 buddy_pfn = __find_buddy_pfn(pfn, order);
857 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
858 buddy_mt = get_pageblock_migratetype(buddy);
859
860 if (migratetype != buddy_mt
861 && (is_migrate_isolate(migratetype) ||
862 is_migrate_isolate(buddy_mt)))
863 goto done_merging;
864 }
865 max_order++;
866 goto continue_merging;
867 }
868
869done_merging:
1da177e4 870 set_page_order(page, order);
6dda9d55
CZ
871
872 /*
873 * If this is not the largest possible page, check if the buddy
874 * of the next-highest order is free. If it is, it's possible
875 * that pages are being freed that will coalesce soon. In case,
876 * that is happening, add the free page to the tail of the list
877 * so it's less likely to be used soon and more likely to be merged
878 * as a higher order page
879 */
13ad59df 880 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 881 struct page *higher_page, *higher_buddy;
76741e77
VB
882 combined_pfn = buddy_pfn & pfn;
883 higher_page = page + (combined_pfn - pfn);
884 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
885 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
886 if (pfn_valid_within(buddy_pfn) &&
887 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
888 list_add_tail(&page->lru,
889 &zone->free_area[order].free_list[migratetype]);
890 goto out;
891 }
892 }
893
894 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
895out:
1da177e4
LT
896 zone->free_area[order].nr_free++;
897}
898
7bfec6f4
MG
899/*
900 * A bad page could be due to a number of fields. Instead of multiple branches,
901 * try and check multiple fields with one check. The caller must do a detailed
902 * check if necessary.
903 */
904static inline bool page_expected_state(struct page *page,
905 unsigned long check_flags)
906{
907 if (unlikely(atomic_read(&page->_mapcount) != -1))
908 return false;
909
910 if (unlikely((unsigned long)page->mapping |
911 page_ref_count(page) |
912#ifdef CONFIG_MEMCG
913 (unsigned long)page->mem_cgroup |
914#endif
915 (page->flags & check_flags)))
916 return false;
917
918 return true;
919}
920
bb552ac6 921static void free_pages_check_bad(struct page *page)
1da177e4 922{
7bfec6f4
MG
923 const char *bad_reason;
924 unsigned long bad_flags;
925
7bfec6f4
MG
926 bad_reason = NULL;
927 bad_flags = 0;
f0b791a3 928
53f9263b 929 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
930 bad_reason = "nonzero mapcount";
931 if (unlikely(page->mapping != NULL))
932 bad_reason = "non-NULL mapping";
fe896d18 933 if (unlikely(page_ref_count(page) != 0))
0139aa7b 934 bad_reason = "nonzero _refcount";
f0b791a3
DH
935 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
936 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
937 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
938 }
9edad6ea
JW
939#ifdef CONFIG_MEMCG
940 if (unlikely(page->mem_cgroup))
941 bad_reason = "page still charged to cgroup";
942#endif
7bfec6f4 943 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
944}
945
946static inline int free_pages_check(struct page *page)
947{
da838d4f 948 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 949 return 0;
bb552ac6
MG
950
951 /* Something has gone sideways, find it */
952 free_pages_check_bad(page);
7bfec6f4 953 return 1;
1da177e4
LT
954}
955
4db7548c
MG
956static int free_tail_pages_check(struct page *head_page, struct page *page)
957{
958 int ret = 1;
959
960 /*
961 * We rely page->lru.next never has bit 0 set, unless the page
962 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
963 */
964 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
965
966 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
967 ret = 0;
968 goto out;
969 }
970 switch (page - head_page) {
971 case 1:
972 /* the first tail page: ->mapping is compound_mapcount() */
973 if (unlikely(compound_mapcount(page))) {
974 bad_page(page, "nonzero compound_mapcount", 0);
975 goto out;
976 }
977 break;
978 case 2:
979 /*
980 * the second tail page: ->mapping is
981 * page_deferred_list().next -- ignore value.
982 */
983 break;
984 default:
985 if (page->mapping != TAIL_MAPPING) {
986 bad_page(page, "corrupted mapping in tail page", 0);
987 goto out;
988 }
989 break;
990 }
991 if (unlikely(!PageTail(page))) {
992 bad_page(page, "PageTail not set", 0);
993 goto out;
994 }
995 if (unlikely(compound_head(page) != head_page)) {
996 bad_page(page, "compound_head not consistent", 0);
997 goto out;
998 }
999 ret = 0;
1000out:
1001 page->mapping = NULL;
1002 clear_compound_head(page);
1003 return ret;
1004}
1005
e2769dbd
MG
1006static __always_inline bool free_pages_prepare(struct page *page,
1007 unsigned int order, bool check_free)
4db7548c 1008{
e2769dbd 1009 int bad = 0;
4db7548c 1010
4db7548c
MG
1011 VM_BUG_ON_PAGE(PageTail(page), page);
1012
e2769dbd
MG
1013 trace_mm_page_free(page, order);
1014 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1015
1016 /*
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1019 */
1020 if (unlikely(order)) {
1021 bool compound = PageCompound(page);
1022 int i;
1023
1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1025
9a73f61b
KS
1026 if (compound)
1027 ClearPageDoubleMap(page);
e2769dbd
MG
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 if (unlikely(free_pages_check(page + i))) {
1032 bad++;
1033 continue;
1034 }
1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 }
1037 }
bda807d4 1038 if (PageMappingFlags(page))
4db7548c 1039 page->mapping = NULL;
c4159a75 1040 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1041 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1042 if (check_free)
1043 bad += free_pages_check(page);
1044 if (bad)
1045 return false;
4db7548c 1046
e2769dbd
MG
1047 page_cpupid_reset_last(page);
1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 reset_page_owner(page, order);
4db7548c
MG
1050
1051 if (!PageHighMem(page)) {
1052 debug_check_no_locks_freed(page_address(page),
e2769dbd 1053 PAGE_SIZE << order);
4db7548c 1054 debug_check_no_obj_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 }
e2769dbd
MG
1057 arch_free_page(page, order);
1058 kernel_poison_pages(page, 1 << order, 0);
1059 kernel_map_pages(page, 1 << order, 0);
29b52de1 1060 kasan_free_pages(page, order);
4db7548c 1061
4db7548c
MG
1062 return true;
1063}
1064
e2769dbd
MG
1065#ifdef CONFIG_DEBUG_VM
1066static inline bool free_pcp_prepare(struct page *page)
1067{
1068 return free_pages_prepare(page, 0, true);
1069}
1070
1071static inline bool bulkfree_pcp_prepare(struct page *page)
1072{
1073 return false;
1074}
1075#else
1076static bool free_pcp_prepare(struct page *page)
1077{
1078 return free_pages_prepare(page, 0, false);
1079}
1080
4db7548c
MG
1081static bool bulkfree_pcp_prepare(struct page *page)
1082{
1083 return free_pages_check(page);
1084}
1085#endif /* CONFIG_DEBUG_VM */
1086
1da177e4 1087/*
5f8dcc21 1088 * Frees a number of pages from the PCP lists
1da177e4 1089 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1090 * count is the number of pages to free.
1da177e4
LT
1091 *
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1094 *
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1097 */
5f8dcc21
MG
1098static void free_pcppages_bulk(struct zone *zone, int count,
1099 struct per_cpu_pages *pcp)
1da177e4 1100{
5f8dcc21 1101 int migratetype = 0;
a6f9edd6 1102 int batch_free = 0;
3777999d 1103 bool isolated_pageblocks;
5f8dcc21 1104
d34b0733 1105 spin_lock(&zone->lock);
3777999d 1106 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1107
e5b31ac2 1108 while (count) {
48db57f8 1109 struct page *page;
5f8dcc21
MG
1110 struct list_head *list;
1111
1112 /*
a6f9edd6
MG
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1117 * lists
5f8dcc21
MG
1118 */
1119 do {
a6f9edd6 1120 batch_free++;
5f8dcc21
MG
1121 if (++migratetype == MIGRATE_PCPTYPES)
1122 migratetype = 0;
1123 list = &pcp->lists[migratetype];
1124 } while (list_empty(list));
48db57f8 1125
1d16871d
NK
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1128 batch_free = count;
1d16871d 1129
a6f9edd6 1130 do {
770c8aaa
BZ
1131 int mt; /* migratetype of the to-be-freed page */
1132
a16601c5 1133 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page->lru);
aa016d14 1136
bb14c2c7 1137 mt = get_pcppage_migratetype(page);
aa016d14
VB
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 /* Pageblock could have been isolated meanwhile */
3777999d 1141 if (unlikely(isolated_pageblocks))
51bb1a40 1142 mt = get_pageblock_migratetype(page);
51bb1a40 1143
4db7548c
MG
1144 if (bulkfree_pcp_prepare(page))
1145 continue;
1146
dc4b0caf 1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1148 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1149 } while (--count && --batch_free && !list_empty(list));
1da177e4 1150 }
d34b0733 1151 spin_unlock(&zone->lock);
1da177e4
LT
1152}
1153
dc4b0caf
MG
1154static void free_one_page(struct zone *zone,
1155 struct page *page, unsigned long pfn,
7aeb09f9 1156 unsigned int order,
ed0ae21d 1157 int migratetype)
1da177e4 1158{
d34b0733 1159 spin_lock(&zone->lock);
ad53f92e
JK
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1163 }
dc4b0caf 1164 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1165 spin_unlock(&zone->lock);
48db57f8
NP
1166}
1167
1e8ce83c
RH
1168static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170{
1e8ce83c 1171 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1172 init_page_count(page);
1173 page_mapcount_reset(page);
1174 page_cpupid_reset_last(page);
1e8ce83c 1175
1e8ce83c
RH
1176 INIT_LIST_HEAD(&page->lru);
1177#ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone))
1180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1181#endif
1182}
1183
1184static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 int nid)
1186{
1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188}
1189
7e18adb4
MG
1190#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191static void init_reserved_page(unsigned long pfn)
1192{
1193 pg_data_t *pgdat;
1194 int nid, zid;
1195
1196 if (!early_page_uninitialised(pfn))
1197 return;
1198
1199 nid = early_pfn_to_nid(pfn);
1200 pgdat = NODE_DATA(nid);
1201
1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 struct zone *zone = &pgdat->node_zones[zid];
1204
1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 break;
1207 }
1208 __init_single_pfn(pfn, zid, nid);
1209}
1210#else
1211static inline void init_reserved_page(unsigned long pfn)
1212{
1213}
1214#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215
92923ca3
NZ
1216/*
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1221 */
4b50bcc7 1222void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1223{
1224 unsigned long start_pfn = PFN_DOWN(start);
1225 unsigned long end_pfn = PFN_UP(end);
1226
7e18adb4
MG
1227 for (; start_pfn < end_pfn; start_pfn++) {
1228 if (pfn_valid(start_pfn)) {
1229 struct page *page = pfn_to_page(start_pfn);
1230
1231 init_reserved_page(start_pfn);
1d798ca3
KS
1232
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page->lru);
1235
7e18adb4
MG
1236 SetPageReserved(page);
1237 }
1238 }
92923ca3
NZ
1239}
1240
ec95f53a
KM
1241static void __free_pages_ok(struct page *page, unsigned int order)
1242{
d34b0733 1243 unsigned long flags;
95e34412 1244 int migratetype;
dc4b0caf 1245 unsigned long pfn = page_to_pfn(page);
ec95f53a 1246
e2769dbd 1247 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1248 return;
1249
cfc47a28 1250 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1251 local_irq_save(flags);
1252 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1253 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1254 local_irq_restore(flags);
1da177e4
LT
1255}
1256
949698a3 1257static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1258{
c3993076 1259 unsigned int nr_pages = 1 << order;
e2d0bd2b 1260 struct page *p = page;
c3993076 1261 unsigned int loop;
a226f6c8 1262
e2d0bd2b
YL
1263 prefetchw(p);
1264 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1265 prefetchw(p + 1);
c3993076
JW
1266 __ClearPageReserved(p);
1267 set_page_count(p, 0);
a226f6c8 1268 }
e2d0bd2b
YL
1269 __ClearPageReserved(p);
1270 set_page_count(p, 0);
c3993076 1271
e2d0bd2b 1272 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1273 set_page_refcounted(page);
1274 __free_pages(page, order);
a226f6c8
DH
1275}
1276
75a592a4
MG
1277#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1278 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1279
75a592a4
MG
1280static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1281
1282int __meminit early_pfn_to_nid(unsigned long pfn)
1283{
7ace9917 1284 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1285 int nid;
1286
7ace9917 1287 spin_lock(&early_pfn_lock);
75a592a4 1288 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1289 if (nid < 0)
e4568d38 1290 nid = first_online_node;
7ace9917
MG
1291 spin_unlock(&early_pfn_lock);
1292
1293 return nid;
75a592a4
MG
1294}
1295#endif
1296
1297#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1298static inline bool __meminit __maybe_unused
1299meminit_pfn_in_nid(unsigned long pfn, int node,
1300 struct mminit_pfnnid_cache *state)
75a592a4
MG
1301{
1302 int nid;
1303
1304 nid = __early_pfn_to_nid(pfn, state);
1305 if (nid >= 0 && nid != node)
1306 return false;
1307 return true;
1308}
1309
1310/* Only safe to use early in boot when initialisation is single-threaded */
1311static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312{
1313 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314}
1315
1316#else
1317
1318static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319{
1320 return true;
1321}
d73d3c9f
MK
1322static inline bool __meminit __maybe_unused
1323meminit_pfn_in_nid(unsigned long pfn, int node,
1324 struct mminit_pfnnid_cache *state)
75a592a4
MG
1325{
1326 return true;
1327}
1328#endif
1329
1330
0e1cc95b 1331void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1332 unsigned int order)
1333{
1334 if (early_page_uninitialised(pfn))
1335 return;
949698a3 1336 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1337}
1338
7cf91a98
JK
1339/*
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1344 * pageblocks.
1345 *
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347 *
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1355 */
1356struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 unsigned long end_pfn, struct zone *zone)
1358{
1359 struct page *start_page;
1360 struct page *end_page;
1361
1362 /* end_pfn is one past the range we are checking */
1363 end_pfn--;
1364
1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 return NULL;
1367
2d070eab
MH
1368 start_page = pfn_to_online_page(start_pfn);
1369 if (!start_page)
1370 return NULL;
7cf91a98
JK
1371
1372 if (page_zone(start_page) != zone)
1373 return NULL;
1374
1375 end_page = pfn_to_page(end_pfn);
1376
1377 /* This gives a shorter code than deriving page_zone(end_page) */
1378 if (page_zone_id(start_page) != page_zone_id(end_page))
1379 return NULL;
1380
1381 return start_page;
1382}
1383
1384void set_zone_contiguous(struct zone *zone)
1385{
1386 unsigned long block_start_pfn = zone->zone_start_pfn;
1387 unsigned long block_end_pfn;
1388
1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 for (; block_start_pfn < zone_end_pfn(zone);
1391 block_start_pfn = block_end_pfn,
1392 block_end_pfn += pageblock_nr_pages) {
1393
1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1395
1396 if (!__pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, zone))
1398 return;
1399 }
1400
1401 /* We confirm that there is no hole */
1402 zone->contiguous = true;
1403}
1404
1405void clear_zone_contiguous(struct zone *zone)
1406{
1407 zone->contiguous = false;
1408}
1409
7e18adb4 1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1411static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1412 unsigned long pfn, int nr_pages)
1413{
1414 int i;
1415
1416 if (!page)
1417 return;
1418
1419 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1420 if (nr_pages == pageblock_nr_pages &&
1421 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1423 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1424 return;
1425 }
1426
e780149b
XQ
1427 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1428 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1430 __free_pages_boot_core(page, 0);
e780149b 1431 }
a4de83dd
MG
1432}
1433
d3cd131d
NS
1434/* Completion tracking for deferred_init_memmap() threads */
1435static atomic_t pgdat_init_n_undone __initdata;
1436static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1437
1438static inline void __init pgdat_init_report_one_done(void)
1439{
1440 if (atomic_dec_and_test(&pgdat_init_n_undone))
1441 complete(&pgdat_init_all_done_comp);
1442}
0e1cc95b 1443
7e18adb4 1444/* Initialise remaining memory on a node */
0e1cc95b 1445static int __init deferred_init_memmap(void *data)
7e18adb4 1446{
0e1cc95b
MG
1447 pg_data_t *pgdat = data;
1448 int nid = pgdat->node_id;
7e18adb4
MG
1449 struct mminit_pfnnid_cache nid_init_state = { };
1450 unsigned long start = jiffies;
1451 unsigned long nr_pages = 0;
1452 unsigned long walk_start, walk_end;
1453 int i, zid;
1454 struct zone *zone;
7e18adb4 1455 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1456 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1457
0e1cc95b 1458 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1459 pgdat_init_report_one_done();
0e1cc95b
MG
1460 return 0;
1461 }
1462
1463 /* Bind memory initialisation thread to a local node if possible */
1464 if (!cpumask_empty(cpumask))
1465 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1466
1467 /* Sanity check boundaries */
1468 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1469 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1470 pgdat->first_deferred_pfn = ULONG_MAX;
1471
1472 /* Only the highest zone is deferred so find it */
1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 zone = pgdat->node_zones + zid;
1475 if (first_init_pfn < zone_end_pfn(zone))
1476 break;
1477 }
1478
1479 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1480 unsigned long pfn, end_pfn;
54608c3f 1481 struct page *page = NULL;
a4de83dd
MG
1482 struct page *free_base_page = NULL;
1483 unsigned long free_base_pfn = 0;
1484 int nr_to_free = 0;
7e18adb4
MG
1485
1486 end_pfn = min(walk_end, zone_end_pfn(zone));
1487 pfn = first_init_pfn;
1488 if (pfn < walk_start)
1489 pfn = walk_start;
1490 if (pfn < zone->zone_start_pfn)
1491 pfn = zone->zone_start_pfn;
1492
1493 for (; pfn < end_pfn; pfn++) {
54608c3f 1494 if (!pfn_valid_within(pfn))
a4de83dd 1495 goto free_range;
7e18adb4 1496
54608c3f
MG
1497 /*
1498 * Ensure pfn_valid is checked every
e780149b 1499 * pageblock_nr_pages for memory holes
54608c3f 1500 */
e780149b 1501 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1502 if (!pfn_valid(pfn)) {
1503 page = NULL;
a4de83dd 1504 goto free_range;
54608c3f
MG
1505 }
1506 }
1507
1508 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1509 page = NULL;
a4de83dd 1510 goto free_range;
54608c3f
MG
1511 }
1512
1513 /* Minimise pfn page lookups and scheduler checks */
e780149b 1514 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1515 page++;
1516 } else {
a4de83dd
MG
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page,
1519 free_base_pfn, nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
1522
54608c3f
MG
1523 page = pfn_to_page(pfn);
1524 cond_resched();
1525 }
7e18adb4
MG
1526
1527 if (page->flags) {
1528 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1529 goto free_range;
7e18adb4
MG
1530 }
1531
1532 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1533 if (!free_base_page) {
1534 free_base_page = page;
1535 free_base_pfn = pfn;
1536 nr_to_free = 0;
1537 }
1538 nr_to_free++;
1539
1540 /* Where possible, batch up pages for a single free */
1541 continue;
1542free_range:
1543 /* Free the current block of pages to allocator */
1544 nr_pages += nr_to_free;
1545 deferred_free_range(free_base_page, free_base_pfn,
1546 nr_to_free);
1547 free_base_page = NULL;
1548 free_base_pfn = nr_to_free = 0;
7e18adb4 1549 }
e780149b
XQ
1550 /* Free the last block of pages to allocator */
1551 nr_pages += nr_to_free;
1552 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1553
7e18adb4
MG
1554 first_init_pfn = max(end_pfn, first_init_pfn);
1555 }
1556
1557 /* Sanity check that the next zone really is unpopulated */
1558 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1559
0e1cc95b 1560 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1561 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1562
1563 pgdat_init_report_one_done();
0e1cc95b
MG
1564 return 0;
1565}
7cf91a98 1566#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1567
1568void __init page_alloc_init_late(void)
1569{
7cf91a98
JK
1570 struct zone *zone;
1571
1572#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1573 int nid;
1574
d3cd131d
NS
1575 /* There will be num_node_state(N_MEMORY) threads */
1576 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1577 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1578 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1579 }
1580
1581 /* Block until all are initialised */
d3cd131d 1582 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1583
1584 /* Reinit limits that are based on free pages after the kernel is up */
1585 files_maxfiles_init();
7cf91a98 1586#endif
3010f876
PT
1587#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1588 /* Discard memblock private memory */
1589 memblock_discard();
1590#endif
7cf91a98
JK
1591
1592 for_each_populated_zone(zone)
1593 set_zone_contiguous(zone);
7e18adb4 1594}
7e18adb4 1595
47118af0 1596#ifdef CONFIG_CMA
9cf510a5 1597/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1598void __init init_cma_reserved_pageblock(struct page *page)
1599{
1600 unsigned i = pageblock_nr_pages;
1601 struct page *p = page;
1602
1603 do {
1604 __ClearPageReserved(p);
1605 set_page_count(p, 0);
1606 } while (++p, --i);
1607
47118af0 1608 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1609
1610 if (pageblock_order >= MAX_ORDER) {
1611 i = pageblock_nr_pages;
1612 p = page;
1613 do {
1614 set_page_refcounted(p);
1615 __free_pages(p, MAX_ORDER - 1);
1616 p += MAX_ORDER_NR_PAGES;
1617 } while (i -= MAX_ORDER_NR_PAGES);
1618 } else {
1619 set_page_refcounted(page);
1620 __free_pages(page, pageblock_order);
1621 }
1622
3dcc0571 1623 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1624}
1625#endif
1da177e4
LT
1626
1627/*
1628 * The order of subdivision here is critical for the IO subsystem.
1629 * Please do not alter this order without good reasons and regression
1630 * testing. Specifically, as large blocks of memory are subdivided,
1631 * the order in which smaller blocks are delivered depends on the order
1632 * they're subdivided in this function. This is the primary factor
1633 * influencing the order in which pages are delivered to the IO
1634 * subsystem according to empirical testing, and this is also justified
1635 * by considering the behavior of a buddy system containing a single
1636 * large block of memory acted on by a series of small allocations.
1637 * This behavior is a critical factor in sglist merging's success.
1638 *
6d49e352 1639 * -- nyc
1da177e4 1640 */
085cc7d5 1641static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1642 int low, int high, struct free_area *area,
1643 int migratetype)
1da177e4
LT
1644{
1645 unsigned long size = 1 << high;
1646
1647 while (high > low) {
1648 area--;
1649 high--;
1650 size >>= 1;
309381fe 1651 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1652
acbc15a4
JK
1653 /*
1654 * Mark as guard pages (or page), that will allow to
1655 * merge back to allocator when buddy will be freed.
1656 * Corresponding page table entries will not be touched,
1657 * pages will stay not present in virtual address space
1658 */
1659 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1660 continue;
acbc15a4 1661
b2a0ac88 1662 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1663 area->nr_free++;
1664 set_page_order(&page[size], high);
1665 }
1da177e4
LT
1666}
1667
4e611801 1668static void check_new_page_bad(struct page *page)
1da177e4 1669{
4e611801
VB
1670 const char *bad_reason = NULL;
1671 unsigned long bad_flags = 0;
7bfec6f4 1672
53f9263b 1673 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1674 bad_reason = "nonzero mapcount";
1675 if (unlikely(page->mapping != NULL))
1676 bad_reason = "non-NULL mapping";
fe896d18 1677 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1678 bad_reason = "nonzero _count";
f4c18e6f
NH
1679 if (unlikely(page->flags & __PG_HWPOISON)) {
1680 bad_reason = "HWPoisoned (hardware-corrupted)";
1681 bad_flags = __PG_HWPOISON;
e570f56c
NH
1682 /* Don't complain about hwpoisoned pages */
1683 page_mapcount_reset(page); /* remove PageBuddy */
1684 return;
f4c18e6f 1685 }
f0b791a3
DH
1686 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1687 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1688 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1689 }
9edad6ea
JW
1690#ifdef CONFIG_MEMCG
1691 if (unlikely(page->mem_cgroup))
1692 bad_reason = "page still charged to cgroup";
1693#endif
4e611801
VB
1694 bad_page(page, bad_reason, bad_flags);
1695}
1696
1697/*
1698 * This page is about to be returned from the page allocator
1699 */
1700static inline int check_new_page(struct page *page)
1701{
1702 if (likely(page_expected_state(page,
1703 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1704 return 0;
1705
1706 check_new_page_bad(page);
1707 return 1;
2a7684a2
WF
1708}
1709
bd33ef36 1710static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1711{
1712 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1713 page_poisoning_enabled();
1414c7f4
LA
1714}
1715
479f854a
MG
1716#ifdef CONFIG_DEBUG_VM
1717static bool check_pcp_refill(struct page *page)
1718{
1719 return false;
1720}
1721
1722static bool check_new_pcp(struct page *page)
1723{
1724 return check_new_page(page);
1725}
1726#else
1727static bool check_pcp_refill(struct page *page)
1728{
1729 return check_new_page(page);
1730}
1731static bool check_new_pcp(struct page *page)
1732{
1733 return false;
1734}
1735#endif /* CONFIG_DEBUG_VM */
1736
1737static bool check_new_pages(struct page *page, unsigned int order)
1738{
1739 int i;
1740 for (i = 0; i < (1 << order); i++) {
1741 struct page *p = page + i;
1742
1743 if (unlikely(check_new_page(p)))
1744 return true;
1745 }
1746
1747 return false;
1748}
1749
46f24fd8
JK
1750inline void post_alloc_hook(struct page *page, unsigned int order,
1751 gfp_t gfp_flags)
1752{
1753 set_page_private(page, 0);
1754 set_page_refcounted(page);
1755
1756 arch_alloc_page(page, order);
1757 kernel_map_pages(page, 1 << order, 1);
1758 kernel_poison_pages(page, 1 << order, 1);
1759 kasan_alloc_pages(page, order);
1760 set_page_owner(page, order, gfp_flags);
1761}
1762
479f854a 1763static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1764 unsigned int alloc_flags)
2a7684a2
WF
1765{
1766 int i;
689bcebf 1767
46f24fd8 1768 post_alloc_hook(page, order, gfp_flags);
17cf4406 1769
bd33ef36 1770 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1771 for (i = 0; i < (1 << order); i++)
1772 clear_highpage(page + i);
17cf4406
NP
1773
1774 if (order && (gfp_flags & __GFP_COMP))
1775 prep_compound_page(page, order);
1776
75379191 1777 /*
2f064f34 1778 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1779 * allocate the page. The expectation is that the caller is taking
1780 * steps that will free more memory. The caller should avoid the page
1781 * being used for !PFMEMALLOC purposes.
1782 */
2f064f34
MH
1783 if (alloc_flags & ALLOC_NO_WATERMARKS)
1784 set_page_pfmemalloc(page);
1785 else
1786 clear_page_pfmemalloc(page);
1da177e4
LT
1787}
1788
56fd56b8
MG
1789/*
1790 * Go through the free lists for the given migratetype and remove
1791 * the smallest available page from the freelists
1792 */
728ec980
MG
1793static inline
1794struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1795 int migratetype)
1796{
1797 unsigned int current_order;
b8af2941 1798 struct free_area *area;
56fd56b8
MG
1799 struct page *page;
1800
1801 /* Find a page of the appropriate size in the preferred list */
1802 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1803 area = &(zone->free_area[current_order]);
a16601c5 1804 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1805 struct page, lru);
a16601c5
GT
1806 if (!page)
1807 continue;
56fd56b8
MG
1808 list_del(&page->lru);
1809 rmv_page_order(page);
1810 area->nr_free--;
56fd56b8 1811 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1812 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1813 return page;
1814 }
1815
1816 return NULL;
1817}
1818
1819
b2a0ac88
MG
1820/*
1821 * This array describes the order lists are fallen back to when
1822 * the free lists for the desirable migrate type are depleted
1823 */
47118af0 1824static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1825 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1826 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1827 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1828#ifdef CONFIG_CMA
974a786e 1829 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1830#endif
194159fb 1831#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1832 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1833#endif
b2a0ac88
MG
1834};
1835
dc67647b
JK
1836#ifdef CONFIG_CMA
1837static struct page *__rmqueue_cma_fallback(struct zone *zone,
1838 unsigned int order)
1839{
1840 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1841}
1842#else
1843static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1844 unsigned int order) { return NULL; }
1845#endif
1846
c361be55
MG
1847/*
1848 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1849 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1850 * boundary. If alignment is required, use move_freepages_block()
1851 */
02aa0cdd 1852static int move_freepages(struct zone *zone,
b69a7288 1853 struct page *start_page, struct page *end_page,
02aa0cdd 1854 int migratetype, int *num_movable)
c361be55
MG
1855{
1856 struct page *page;
d00181b9 1857 unsigned int order;
d100313f 1858 int pages_moved = 0;
c361be55
MG
1859
1860#ifndef CONFIG_HOLES_IN_ZONE
1861 /*
1862 * page_zone is not safe to call in this context when
1863 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1864 * anyway as we check zone boundaries in move_freepages_block().
1865 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1866 * grouping pages by mobility
c361be55 1867 */
97ee4ba7 1868 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1869#endif
1870
02aa0cdd
VB
1871 if (num_movable)
1872 *num_movable = 0;
1873
c361be55
MG
1874 for (page = start_page; page <= end_page;) {
1875 if (!pfn_valid_within(page_to_pfn(page))) {
1876 page++;
1877 continue;
1878 }
1879
f073bdc5
AB
1880 /* Make sure we are not inadvertently changing nodes */
1881 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1882
c361be55 1883 if (!PageBuddy(page)) {
02aa0cdd
VB
1884 /*
1885 * We assume that pages that could be isolated for
1886 * migration are movable. But we don't actually try
1887 * isolating, as that would be expensive.
1888 */
1889 if (num_movable &&
1890 (PageLRU(page) || __PageMovable(page)))
1891 (*num_movable)++;
1892
c361be55
MG
1893 page++;
1894 continue;
1895 }
1896
1897 order = page_order(page);
84be48d8
KS
1898 list_move(&page->lru,
1899 &zone->free_area[order].free_list[migratetype]);
c361be55 1900 page += 1 << order;
d100313f 1901 pages_moved += 1 << order;
c361be55
MG
1902 }
1903
d100313f 1904 return pages_moved;
c361be55
MG
1905}
1906
ee6f509c 1907int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1908 int migratetype, int *num_movable)
c361be55
MG
1909{
1910 unsigned long start_pfn, end_pfn;
1911 struct page *start_page, *end_page;
1912
1913 start_pfn = page_to_pfn(page);
d9c23400 1914 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1915 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1916 end_page = start_page + pageblock_nr_pages - 1;
1917 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1918
1919 /* Do not cross zone boundaries */
108bcc96 1920 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1921 start_page = page;
108bcc96 1922 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1923 return 0;
1924
02aa0cdd
VB
1925 return move_freepages(zone, start_page, end_page, migratetype,
1926 num_movable);
c361be55
MG
1927}
1928
2f66a68f
MG
1929static void change_pageblock_range(struct page *pageblock_page,
1930 int start_order, int migratetype)
1931{
1932 int nr_pageblocks = 1 << (start_order - pageblock_order);
1933
1934 while (nr_pageblocks--) {
1935 set_pageblock_migratetype(pageblock_page, migratetype);
1936 pageblock_page += pageblock_nr_pages;
1937 }
1938}
1939
fef903ef 1940/*
9c0415eb
VB
1941 * When we are falling back to another migratetype during allocation, try to
1942 * steal extra free pages from the same pageblocks to satisfy further
1943 * allocations, instead of polluting multiple pageblocks.
1944 *
1945 * If we are stealing a relatively large buddy page, it is likely there will
1946 * be more free pages in the pageblock, so try to steal them all. For
1947 * reclaimable and unmovable allocations, we steal regardless of page size,
1948 * as fragmentation caused by those allocations polluting movable pageblocks
1949 * is worse than movable allocations stealing from unmovable and reclaimable
1950 * pageblocks.
fef903ef 1951 */
4eb7dce6
JK
1952static bool can_steal_fallback(unsigned int order, int start_mt)
1953{
1954 /*
1955 * Leaving this order check is intended, although there is
1956 * relaxed order check in next check. The reason is that
1957 * we can actually steal whole pageblock if this condition met,
1958 * but, below check doesn't guarantee it and that is just heuristic
1959 * so could be changed anytime.
1960 */
1961 if (order >= pageblock_order)
1962 return true;
1963
1964 if (order >= pageblock_order / 2 ||
1965 start_mt == MIGRATE_RECLAIMABLE ||
1966 start_mt == MIGRATE_UNMOVABLE ||
1967 page_group_by_mobility_disabled)
1968 return true;
1969
1970 return false;
1971}
1972
1973/*
1974 * This function implements actual steal behaviour. If order is large enough,
1975 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1976 * pageblock to our migratetype and determine how many already-allocated pages
1977 * are there in the pageblock with a compatible migratetype. If at least half
1978 * of pages are free or compatible, we can change migratetype of the pageblock
1979 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1980 */
1981static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 1982 int start_type, bool whole_block)
fef903ef 1983{
d00181b9 1984 unsigned int current_order = page_order(page);
3bc48f96 1985 struct free_area *area;
02aa0cdd
VB
1986 int free_pages, movable_pages, alike_pages;
1987 int old_block_type;
1988
1989 old_block_type = get_pageblock_migratetype(page);
fef903ef 1990
3bc48f96
VB
1991 /*
1992 * This can happen due to races and we want to prevent broken
1993 * highatomic accounting.
1994 */
02aa0cdd 1995 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1996 goto single_page;
1997
fef903ef
SB
1998 /* Take ownership for orders >= pageblock_order */
1999 if (current_order >= pageblock_order) {
2000 change_pageblock_range(page, current_order, start_type);
3bc48f96 2001 goto single_page;
fef903ef
SB
2002 }
2003
3bc48f96
VB
2004 /* We are not allowed to try stealing from the whole block */
2005 if (!whole_block)
2006 goto single_page;
2007
02aa0cdd
VB
2008 free_pages = move_freepages_block(zone, page, start_type,
2009 &movable_pages);
2010 /*
2011 * Determine how many pages are compatible with our allocation.
2012 * For movable allocation, it's the number of movable pages which
2013 * we just obtained. For other types it's a bit more tricky.
2014 */
2015 if (start_type == MIGRATE_MOVABLE) {
2016 alike_pages = movable_pages;
2017 } else {
2018 /*
2019 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2020 * to MOVABLE pageblock, consider all non-movable pages as
2021 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2022 * vice versa, be conservative since we can't distinguish the
2023 * exact migratetype of non-movable pages.
2024 */
2025 if (old_block_type == MIGRATE_MOVABLE)
2026 alike_pages = pageblock_nr_pages
2027 - (free_pages + movable_pages);
2028 else
2029 alike_pages = 0;
2030 }
2031
3bc48f96 2032 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2033 if (!free_pages)
3bc48f96 2034 goto single_page;
fef903ef 2035
02aa0cdd
VB
2036 /*
2037 * If a sufficient number of pages in the block are either free or of
2038 * comparable migratability as our allocation, claim the whole block.
2039 */
2040 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2041 page_group_by_mobility_disabled)
2042 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2043
2044 return;
2045
2046single_page:
2047 area = &zone->free_area[current_order];
2048 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2049}
2050
2149cdae
JK
2051/*
2052 * Check whether there is a suitable fallback freepage with requested order.
2053 * If only_stealable is true, this function returns fallback_mt only if
2054 * we can steal other freepages all together. This would help to reduce
2055 * fragmentation due to mixed migratetype pages in one pageblock.
2056 */
2057int find_suitable_fallback(struct free_area *area, unsigned int order,
2058 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2059{
2060 int i;
2061 int fallback_mt;
2062
2063 if (area->nr_free == 0)
2064 return -1;
2065
2066 *can_steal = false;
2067 for (i = 0;; i++) {
2068 fallback_mt = fallbacks[migratetype][i];
974a786e 2069 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2070 break;
2071
2072 if (list_empty(&area->free_list[fallback_mt]))
2073 continue;
fef903ef 2074
4eb7dce6
JK
2075 if (can_steal_fallback(order, migratetype))
2076 *can_steal = true;
2077
2149cdae
JK
2078 if (!only_stealable)
2079 return fallback_mt;
2080
2081 if (*can_steal)
2082 return fallback_mt;
fef903ef 2083 }
4eb7dce6
JK
2084
2085 return -1;
fef903ef
SB
2086}
2087
0aaa29a5
MG
2088/*
2089 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2090 * there are no empty page blocks that contain a page with a suitable order
2091 */
2092static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2093 unsigned int alloc_order)
2094{
2095 int mt;
2096 unsigned long max_managed, flags;
2097
2098 /*
2099 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2100 * Check is race-prone but harmless.
2101 */
2102 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2103 if (zone->nr_reserved_highatomic >= max_managed)
2104 return;
2105
2106 spin_lock_irqsave(&zone->lock, flags);
2107
2108 /* Recheck the nr_reserved_highatomic limit under the lock */
2109 if (zone->nr_reserved_highatomic >= max_managed)
2110 goto out_unlock;
2111
2112 /* Yoink! */
2113 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2114 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2115 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2116 zone->nr_reserved_highatomic += pageblock_nr_pages;
2117 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2118 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2119 }
2120
2121out_unlock:
2122 spin_unlock_irqrestore(&zone->lock, flags);
2123}
2124
2125/*
2126 * Used when an allocation is about to fail under memory pressure. This
2127 * potentially hurts the reliability of high-order allocations when under
2128 * intense memory pressure but failed atomic allocations should be easier
2129 * to recover from than an OOM.
29fac03b
MK
2130 *
2131 * If @force is true, try to unreserve a pageblock even though highatomic
2132 * pageblock is exhausted.
0aaa29a5 2133 */
29fac03b
MK
2134static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2135 bool force)
0aaa29a5
MG
2136{
2137 struct zonelist *zonelist = ac->zonelist;
2138 unsigned long flags;
2139 struct zoneref *z;
2140 struct zone *zone;
2141 struct page *page;
2142 int order;
04c8716f 2143 bool ret;
0aaa29a5
MG
2144
2145 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2146 ac->nodemask) {
29fac03b
MK
2147 /*
2148 * Preserve at least one pageblock unless memory pressure
2149 * is really high.
2150 */
2151 if (!force && zone->nr_reserved_highatomic <=
2152 pageblock_nr_pages)
0aaa29a5
MG
2153 continue;
2154
2155 spin_lock_irqsave(&zone->lock, flags);
2156 for (order = 0; order < MAX_ORDER; order++) {
2157 struct free_area *area = &(zone->free_area[order]);
2158
a16601c5
GT
2159 page = list_first_entry_or_null(
2160 &area->free_list[MIGRATE_HIGHATOMIC],
2161 struct page, lru);
2162 if (!page)
0aaa29a5
MG
2163 continue;
2164
0aaa29a5 2165 /*
4855e4a7
MK
2166 * In page freeing path, migratetype change is racy so
2167 * we can counter several free pages in a pageblock
2168 * in this loop althoug we changed the pageblock type
2169 * from highatomic to ac->migratetype. So we should
2170 * adjust the count once.
0aaa29a5 2171 */
a6ffdc07 2172 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2173 /*
2174 * It should never happen but changes to
2175 * locking could inadvertently allow a per-cpu
2176 * drain to add pages to MIGRATE_HIGHATOMIC
2177 * while unreserving so be safe and watch for
2178 * underflows.
2179 */
2180 zone->nr_reserved_highatomic -= min(
2181 pageblock_nr_pages,
2182 zone->nr_reserved_highatomic);
2183 }
0aaa29a5
MG
2184
2185 /*
2186 * Convert to ac->migratetype and avoid the normal
2187 * pageblock stealing heuristics. Minimally, the caller
2188 * is doing the work and needs the pages. More
2189 * importantly, if the block was always converted to
2190 * MIGRATE_UNMOVABLE or another type then the number
2191 * of pageblocks that cannot be completely freed
2192 * may increase.
2193 */
2194 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2195 ret = move_freepages_block(zone, page, ac->migratetype,
2196 NULL);
29fac03b
MK
2197 if (ret) {
2198 spin_unlock_irqrestore(&zone->lock, flags);
2199 return ret;
2200 }
0aaa29a5
MG
2201 }
2202 spin_unlock_irqrestore(&zone->lock, flags);
2203 }
04c8716f
MK
2204
2205 return false;
0aaa29a5
MG
2206}
2207
3bc48f96
VB
2208/*
2209 * Try finding a free buddy page on the fallback list and put it on the free
2210 * list of requested migratetype, possibly along with other pages from the same
2211 * block, depending on fragmentation avoidance heuristics. Returns true if
2212 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2213 *
2214 * The use of signed ints for order and current_order is a deliberate
2215 * deviation from the rest of this file, to make the for loop
2216 * condition simpler.
3bc48f96
VB
2217 */
2218static inline bool
b002529d 2219__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2220{
b8af2941 2221 struct free_area *area;
b002529d 2222 int current_order;
b2a0ac88 2223 struct page *page;
4eb7dce6
JK
2224 int fallback_mt;
2225 bool can_steal;
b2a0ac88 2226
7a8f58f3
VB
2227 /*
2228 * Find the largest available free page in the other list. This roughly
2229 * approximates finding the pageblock with the most free pages, which
2230 * would be too costly to do exactly.
2231 */
b002529d 2232 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2233 --current_order) {
4eb7dce6
JK
2234 area = &(zone->free_area[current_order]);
2235 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2236 start_migratetype, false, &can_steal);
4eb7dce6
JK
2237 if (fallback_mt == -1)
2238 continue;
b2a0ac88 2239
7a8f58f3
VB
2240 /*
2241 * We cannot steal all free pages from the pageblock and the
2242 * requested migratetype is movable. In that case it's better to
2243 * steal and split the smallest available page instead of the
2244 * largest available page, because even if the next movable
2245 * allocation falls back into a different pageblock than this
2246 * one, it won't cause permanent fragmentation.
2247 */
2248 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2249 && current_order > order)
2250 goto find_smallest;
b2a0ac88 2251
7a8f58f3
VB
2252 goto do_steal;
2253 }
e0fff1bd 2254
7a8f58f3 2255 return false;
e0fff1bd 2256
7a8f58f3
VB
2257find_smallest:
2258 for (current_order = order; current_order < MAX_ORDER;
2259 current_order++) {
2260 area = &(zone->free_area[current_order]);
2261 fallback_mt = find_suitable_fallback(area, current_order,
2262 start_migratetype, false, &can_steal);
2263 if (fallback_mt != -1)
2264 break;
b2a0ac88
MG
2265 }
2266
7a8f58f3
VB
2267 /*
2268 * This should not happen - we already found a suitable fallback
2269 * when looking for the largest page.
2270 */
2271 VM_BUG_ON(current_order == MAX_ORDER);
2272
2273do_steal:
2274 page = list_first_entry(&area->free_list[fallback_mt],
2275 struct page, lru);
2276
2277 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2278
2279 trace_mm_page_alloc_extfrag(page, order, current_order,
2280 start_migratetype, fallback_mt);
2281
2282 return true;
2283
b2a0ac88
MG
2284}
2285
56fd56b8 2286/*
1da177e4
LT
2287 * Do the hard work of removing an element from the buddy allocator.
2288 * Call me with the zone->lock already held.
2289 */
b2a0ac88 2290static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2291 int migratetype)
1da177e4 2292{
1da177e4
LT
2293 struct page *page;
2294
3bc48f96 2295retry:
56fd56b8 2296 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2297 if (unlikely(!page)) {
dc67647b
JK
2298 if (migratetype == MIGRATE_MOVABLE)
2299 page = __rmqueue_cma_fallback(zone, order);
2300
3bc48f96
VB
2301 if (!page && __rmqueue_fallback(zone, order, migratetype))
2302 goto retry;
728ec980
MG
2303 }
2304
0d3d062a 2305 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2306 return page;
1da177e4
LT
2307}
2308
5f63b720 2309/*
1da177e4
LT
2310 * Obtain a specified number of elements from the buddy allocator, all under
2311 * a single hold of the lock, for efficiency. Add them to the supplied list.
2312 * Returns the number of new pages which were placed at *list.
2313 */
5f63b720 2314static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2315 unsigned long count, struct list_head *list,
b745bc85 2316 int migratetype, bool cold)
1da177e4 2317{
a6de734b 2318 int i, alloced = 0;
5f63b720 2319
d34b0733 2320 spin_lock(&zone->lock);
1da177e4 2321 for (i = 0; i < count; ++i) {
6ac0206b 2322 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2323 if (unlikely(page == NULL))
1da177e4 2324 break;
81eabcbe 2325
479f854a
MG
2326 if (unlikely(check_pcp_refill(page)))
2327 continue;
2328
81eabcbe
MG
2329 /*
2330 * Split buddy pages returned by expand() are received here
2331 * in physical page order. The page is added to the callers and
2332 * list and the list head then moves forward. From the callers
2333 * perspective, the linked list is ordered by page number in
2334 * some conditions. This is useful for IO devices that can
2335 * merge IO requests if the physical pages are ordered
2336 * properly.
2337 */
b745bc85 2338 if (likely(!cold))
e084b2d9
MG
2339 list_add(&page->lru, list);
2340 else
2341 list_add_tail(&page->lru, list);
81eabcbe 2342 list = &page->lru;
a6de734b 2343 alloced++;
bb14c2c7 2344 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2345 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2346 -(1 << order));
1da177e4 2347 }
a6de734b
MG
2348
2349 /*
2350 * i pages were removed from the buddy list even if some leak due
2351 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2352 * on i. Do not confuse with 'alloced' which is the number of
2353 * pages added to the pcp list.
2354 */
f2260e6b 2355 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2356 spin_unlock(&zone->lock);
a6de734b 2357 return alloced;
1da177e4
LT
2358}
2359
4ae7c039 2360#ifdef CONFIG_NUMA
8fce4d8e 2361/*
4037d452
CL
2362 * Called from the vmstat counter updater to drain pagesets of this
2363 * currently executing processor on remote nodes after they have
2364 * expired.
2365 *
879336c3
CL
2366 * Note that this function must be called with the thread pinned to
2367 * a single processor.
8fce4d8e 2368 */
4037d452 2369void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2370{
4ae7c039 2371 unsigned long flags;
7be12fc9 2372 int to_drain, batch;
4ae7c039 2373
4037d452 2374 local_irq_save(flags);
4db0c3c2 2375 batch = READ_ONCE(pcp->batch);
7be12fc9 2376 to_drain = min(pcp->count, batch);
2a13515c
KM
2377 if (to_drain > 0) {
2378 free_pcppages_bulk(zone, to_drain, pcp);
2379 pcp->count -= to_drain;
2380 }
4037d452 2381 local_irq_restore(flags);
4ae7c039
CL
2382}
2383#endif
2384
9f8f2172 2385/*
93481ff0 2386 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2387 *
2388 * The processor must either be the current processor and the
2389 * thread pinned to the current processor or a processor that
2390 * is not online.
2391 */
93481ff0 2392static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2393{
c54ad30c 2394 unsigned long flags;
93481ff0
VB
2395 struct per_cpu_pageset *pset;
2396 struct per_cpu_pages *pcp;
1da177e4 2397
93481ff0
VB
2398 local_irq_save(flags);
2399 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2400
93481ff0
VB
2401 pcp = &pset->pcp;
2402 if (pcp->count) {
2403 free_pcppages_bulk(zone, pcp->count, pcp);
2404 pcp->count = 0;
2405 }
2406 local_irq_restore(flags);
2407}
3dfa5721 2408
93481ff0
VB
2409/*
2410 * Drain pcplists of all zones on the indicated processor.
2411 *
2412 * The processor must either be the current processor and the
2413 * thread pinned to the current processor or a processor that
2414 * is not online.
2415 */
2416static void drain_pages(unsigned int cpu)
2417{
2418 struct zone *zone;
2419
2420 for_each_populated_zone(zone) {
2421 drain_pages_zone(cpu, zone);
1da177e4
LT
2422 }
2423}
1da177e4 2424
9f8f2172
CL
2425/*
2426 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2427 *
2428 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2429 * the single zone's pages.
9f8f2172 2430 */
93481ff0 2431void drain_local_pages(struct zone *zone)
9f8f2172 2432{
93481ff0
VB
2433 int cpu = smp_processor_id();
2434
2435 if (zone)
2436 drain_pages_zone(cpu, zone);
2437 else
2438 drain_pages(cpu);
9f8f2172
CL
2439}
2440
0ccce3b9
MG
2441static void drain_local_pages_wq(struct work_struct *work)
2442{
a459eeb7
MH
2443 /*
2444 * drain_all_pages doesn't use proper cpu hotplug protection so
2445 * we can race with cpu offline when the WQ can move this from
2446 * a cpu pinned worker to an unbound one. We can operate on a different
2447 * cpu which is allright but we also have to make sure to not move to
2448 * a different one.
2449 */
2450 preempt_disable();
0ccce3b9 2451 drain_local_pages(NULL);
a459eeb7 2452 preempt_enable();
0ccce3b9
MG
2453}
2454
9f8f2172 2455/*
74046494
GBY
2456 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2457 *
93481ff0
VB
2458 * When zone parameter is non-NULL, spill just the single zone's pages.
2459 *
0ccce3b9 2460 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2461 */
93481ff0 2462void drain_all_pages(struct zone *zone)
9f8f2172 2463{
74046494 2464 int cpu;
74046494
GBY
2465
2466 /*
2467 * Allocate in the BSS so we wont require allocation in
2468 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2469 */
2470 static cpumask_t cpus_with_pcps;
2471
ce612879
MH
2472 /*
2473 * Make sure nobody triggers this path before mm_percpu_wq is fully
2474 * initialized.
2475 */
2476 if (WARN_ON_ONCE(!mm_percpu_wq))
2477 return;
2478
0ccce3b9
MG
2479 /* Workqueues cannot recurse */
2480 if (current->flags & PF_WQ_WORKER)
2481 return;
2482
bd233f53
MG
2483 /*
2484 * Do not drain if one is already in progress unless it's specific to
2485 * a zone. Such callers are primarily CMA and memory hotplug and need
2486 * the drain to be complete when the call returns.
2487 */
2488 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2489 if (!zone)
2490 return;
2491 mutex_lock(&pcpu_drain_mutex);
2492 }
0ccce3b9 2493
74046494
GBY
2494 /*
2495 * We don't care about racing with CPU hotplug event
2496 * as offline notification will cause the notified
2497 * cpu to drain that CPU pcps and on_each_cpu_mask
2498 * disables preemption as part of its processing
2499 */
2500 for_each_online_cpu(cpu) {
93481ff0
VB
2501 struct per_cpu_pageset *pcp;
2502 struct zone *z;
74046494 2503 bool has_pcps = false;
93481ff0
VB
2504
2505 if (zone) {
74046494 2506 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2507 if (pcp->pcp.count)
74046494 2508 has_pcps = true;
93481ff0
VB
2509 } else {
2510 for_each_populated_zone(z) {
2511 pcp = per_cpu_ptr(z->pageset, cpu);
2512 if (pcp->pcp.count) {
2513 has_pcps = true;
2514 break;
2515 }
74046494
GBY
2516 }
2517 }
93481ff0 2518
74046494
GBY
2519 if (has_pcps)
2520 cpumask_set_cpu(cpu, &cpus_with_pcps);
2521 else
2522 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2523 }
0ccce3b9 2524
bd233f53
MG
2525 for_each_cpu(cpu, &cpus_with_pcps) {
2526 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2527 INIT_WORK(work, drain_local_pages_wq);
ce612879 2528 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2529 }
bd233f53
MG
2530 for_each_cpu(cpu, &cpus_with_pcps)
2531 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2532
2533 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2534}
2535
296699de 2536#ifdef CONFIG_HIBERNATION
1da177e4
LT
2537
2538void mark_free_pages(struct zone *zone)
2539{
f623f0db
RW
2540 unsigned long pfn, max_zone_pfn;
2541 unsigned long flags;
7aeb09f9 2542 unsigned int order, t;
86760a2c 2543 struct page *page;
1da177e4 2544
8080fc03 2545 if (zone_is_empty(zone))
1da177e4
LT
2546 return;
2547
2548 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2549
108bcc96 2550 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2551 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2552 if (pfn_valid(pfn)) {
86760a2c 2553 page = pfn_to_page(pfn);
ba6b0979
JK
2554
2555 if (page_zone(page) != zone)
2556 continue;
2557
7be98234
RW
2558 if (!swsusp_page_is_forbidden(page))
2559 swsusp_unset_page_free(page);
f623f0db 2560 }
1da177e4 2561
b2a0ac88 2562 for_each_migratetype_order(order, t) {
86760a2c
GT
2563 list_for_each_entry(page,
2564 &zone->free_area[order].free_list[t], lru) {
f623f0db 2565 unsigned long i;
1da177e4 2566
86760a2c 2567 pfn = page_to_pfn(page);
f623f0db 2568 for (i = 0; i < (1UL << order); i++)
7be98234 2569 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2570 }
b2a0ac88 2571 }
1da177e4
LT
2572 spin_unlock_irqrestore(&zone->lock, flags);
2573}
e2c55dc8 2574#endif /* CONFIG_PM */
1da177e4 2575
1da177e4
LT
2576/*
2577 * Free a 0-order page
b745bc85 2578 * cold == true ? free a cold page : free a hot page
1da177e4 2579 */
b745bc85 2580void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2581{
2582 struct zone *zone = page_zone(page);
2583 struct per_cpu_pages *pcp;
d34b0733 2584 unsigned long flags;
dc4b0caf 2585 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2586 int migratetype;
1da177e4 2587
4db7548c 2588 if (!free_pcp_prepare(page))
689bcebf
HD
2589 return;
2590
dc4b0caf 2591 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2592 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2593 local_irq_save(flags);
2594 __count_vm_event(PGFREE);
da456f14 2595
5f8dcc21
MG
2596 /*
2597 * We only track unmovable, reclaimable and movable on pcp lists.
2598 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2599 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2600 * areas back if necessary. Otherwise, we may have to free
2601 * excessively into the page allocator
2602 */
2603 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2604 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2605 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2606 goto out;
2607 }
2608 migratetype = MIGRATE_MOVABLE;
2609 }
2610
99dcc3e5 2611 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2612 if (!cold)
5f8dcc21 2613 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2614 else
2615 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2616 pcp->count++;
48db57f8 2617 if (pcp->count >= pcp->high) {
4db0c3c2 2618 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2619 free_pcppages_bulk(zone, batch, pcp);
2620 pcp->count -= batch;
48db57f8 2621 }
5f8dcc21
MG
2622
2623out:
d34b0733 2624 local_irq_restore(flags);
1da177e4
LT
2625}
2626
cc59850e
KK
2627/*
2628 * Free a list of 0-order pages
2629 */
b745bc85 2630void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2631{
2632 struct page *page, *next;
2633
2634 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2635 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2636 free_hot_cold_page(page, cold);
2637 }
2638}
2639
8dfcc9ba
NP
2640/*
2641 * split_page takes a non-compound higher-order page, and splits it into
2642 * n (1<<order) sub-pages: page[0..n]
2643 * Each sub-page must be freed individually.
2644 *
2645 * Note: this is probably too low level an operation for use in drivers.
2646 * Please consult with lkml before using this in your driver.
2647 */
2648void split_page(struct page *page, unsigned int order)
2649{
2650 int i;
2651
309381fe
SL
2652 VM_BUG_ON_PAGE(PageCompound(page), page);
2653 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2654
2655#ifdef CONFIG_KMEMCHECK
2656 /*
2657 * Split shadow pages too, because free(page[0]) would
2658 * otherwise free the whole shadow.
2659 */
2660 if (kmemcheck_page_is_tracked(page))
2661 split_page(virt_to_page(page[0].shadow), order);
2662#endif
2663
a9627bc5 2664 for (i = 1; i < (1 << order); i++)
7835e98b 2665 set_page_refcounted(page + i);
a9627bc5 2666 split_page_owner(page, order);
8dfcc9ba 2667}
5853ff23 2668EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2669
3c605096 2670int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2671{
748446bb
MG
2672 unsigned long watermark;
2673 struct zone *zone;
2139cbe6 2674 int mt;
748446bb
MG
2675
2676 BUG_ON(!PageBuddy(page));
2677
2678 zone = page_zone(page);
2e30abd1 2679 mt = get_pageblock_migratetype(page);
748446bb 2680
194159fb 2681 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2682 /*
2683 * Obey watermarks as if the page was being allocated. We can
2684 * emulate a high-order watermark check with a raised order-0
2685 * watermark, because we already know our high-order page
2686 * exists.
2687 */
2688 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2689 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2690 return 0;
2691
8fb74b9f 2692 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2693 }
748446bb
MG
2694
2695 /* Remove page from free list */
2696 list_del(&page->lru);
2697 zone->free_area[order].nr_free--;
2698 rmv_page_order(page);
2139cbe6 2699
400bc7fd 2700 /*
2701 * Set the pageblock if the isolated page is at least half of a
2702 * pageblock
2703 */
748446bb
MG
2704 if (order >= pageblock_order - 1) {
2705 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2706 for (; page < endpage; page += pageblock_nr_pages) {
2707 int mt = get_pageblock_migratetype(page);
88ed365e 2708 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2709 && !is_migrate_highatomic(mt))
47118af0
MN
2710 set_pageblock_migratetype(page,
2711 MIGRATE_MOVABLE);
2712 }
748446bb
MG
2713 }
2714
f3a14ced 2715
8fb74b9f 2716 return 1UL << order;
1fb3f8ca
MG
2717}
2718
060e7417
MG
2719/*
2720 * Update NUMA hit/miss statistics
2721 *
2722 * Must be called with interrupts disabled.
060e7417 2723 */
41b6167e 2724static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2725{
2726#ifdef CONFIG_NUMA
060e7417
MG
2727 enum zone_stat_item local_stat = NUMA_LOCAL;
2728
2df26639 2729 if (z->node != numa_node_id())
060e7417 2730 local_stat = NUMA_OTHER;
060e7417 2731
2df26639 2732 if (z->node == preferred_zone->node)
060e7417 2733 __inc_zone_state(z, NUMA_HIT);
2df26639 2734 else {
060e7417
MG
2735 __inc_zone_state(z, NUMA_MISS);
2736 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2737 }
2df26639 2738 __inc_zone_state(z, local_stat);
060e7417
MG
2739#endif
2740}
2741
066b2393
MG
2742/* Remove page from the per-cpu list, caller must protect the list */
2743static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2744 bool cold, struct per_cpu_pages *pcp,
2745 struct list_head *list)
2746{
2747 struct page *page;
2748
2749 do {
2750 if (list_empty(list)) {
2751 pcp->count += rmqueue_bulk(zone, 0,
2752 pcp->batch, list,
2753 migratetype, cold);
2754 if (unlikely(list_empty(list)))
2755 return NULL;
2756 }
2757
2758 if (cold)
2759 page = list_last_entry(list, struct page, lru);
2760 else
2761 page = list_first_entry(list, struct page, lru);
2762
2763 list_del(&page->lru);
2764 pcp->count--;
2765 } while (check_new_pcp(page));
2766
2767 return page;
2768}
2769
2770/* Lock and remove page from the per-cpu list */
2771static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2772 struct zone *zone, unsigned int order,
2773 gfp_t gfp_flags, int migratetype)
2774{
2775 struct per_cpu_pages *pcp;
2776 struct list_head *list;
2777 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2778 struct page *page;
d34b0733 2779 unsigned long flags;
066b2393 2780
d34b0733 2781 local_irq_save(flags);
066b2393
MG
2782 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2783 list = &pcp->lists[migratetype];
2784 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2785 if (page) {
2786 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2787 zone_statistics(preferred_zone, zone);
2788 }
d34b0733 2789 local_irq_restore(flags);
066b2393
MG
2790 return page;
2791}
2792
1da177e4 2793/*
75379191 2794 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2795 */
0a15c3e9 2796static inline
066b2393 2797struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2798 struct zone *zone, unsigned int order,
c603844b
MG
2799 gfp_t gfp_flags, unsigned int alloc_flags,
2800 int migratetype)
1da177e4
LT
2801{
2802 unsigned long flags;
689bcebf 2803 struct page *page;
1da177e4 2804
d34b0733 2805 if (likely(order == 0)) {
066b2393
MG
2806 page = rmqueue_pcplist(preferred_zone, zone, order,
2807 gfp_flags, migratetype);
2808 goto out;
2809 }
83b9355b 2810
066b2393
MG
2811 /*
2812 * We most definitely don't want callers attempting to
2813 * allocate greater than order-1 page units with __GFP_NOFAIL.
2814 */
2815 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2816 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2817
066b2393
MG
2818 do {
2819 page = NULL;
2820 if (alloc_flags & ALLOC_HARDER) {
2821 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2822 if (page)
2823 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2824 }
a74609fa 2825 if (!page)
066b2393
MG
2826 page = __rmqueue(zone, order, migratetype);
2827 } while (page && check_new_pages(page, order));
2828 spin_unlock(&zone->lock);
2829 if (!page)
2830 goto failed;
2831 __mod_zone_freepage_state(zone, -(1 << order),
2832 get_pcppage_migratetype(page));
1da177e4 2833
16709d1d 2834 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2835 zone_statistics(preferred_zone, zone);
a74609fa 2836 local_irq_restore(flags);
1da177e4 2837
066b2393
MG
2838out:
2839 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2840 return page;
a74609fa
NP
2841
2842failed:
2843 local_irq_restore(flags);
a74609fa 2844 return NULL;
1da177e4
LT
2845}
2846
933e312e
AM
2847#ifdef CONFIG_FAIL_PAGE_ALLOC
2848
b2588c4b 2849static struct {
933e312e
AM
2850 struct fault_attr attr;
2851
621a5f7a 2852 bool ignore_gfp_highmem;
71baba4b 2853 bool ignore_gfp_reclaim;
54114994 2854 u32 min_order;
933e312e
AM
2855} fail_page_alloc = {
2856 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2857 .ignore_gfp_reclaim = true,
621a5f7a 2858 .ignore_gfp_highmem = true,
54114994 2859 .min_order = 1,
933e312e
AM
2860};
2861
2862static int __init setup_fail_page_alloc(char *str)
2863{
2864 return setup_fault_attr(&fail_page_alloc.attr, str);
2865}
2866__setup("fail_page_alloc=", setup_fail_page_alloc);
2867
deaf386e 2868static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2869{
54114994 2870 if (order < fail_page_alloc.min_order)
deaf386e 2871 return false;
933e312e 2872 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2873 return false;
933e312e 2874 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2875 return false;
71baba4b
MG
2876 if (fail_page_alloc.ignore_gfp_reclaim &&
2877 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2878 return false;
933e312e
AM
2879
2880 return should_fail(&fail_page_alloc.attr, 1 << order);
2881}
2882
2883#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2884
2885static int __init fail_page_alloc_debugfs(void)
2886{
f4ae40a6 2887 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2888 struct dentry *dir;
933e312e 2889
dd48c085
AM
2890 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2891 &fail_page_alloc.attr);
2892 if (IS_ERR(dir))
2893 return PTR_ERR(dir);
933e312e 2894
b2588c4b 2895 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2896 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2897 goto fail;
2898 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2899 &fail_page_alloc.ignore_gfp_highmem))
2900 goto fail;
2901 if (!debugfs_create_u32("min-order", mode, dir,
2902 &fail_page_alloc.min_order))
2903 goto fail;
2904
2905 return 0;
2906fail:
dd48c085 2907 debugfs_remove_recursive(dir);
933e312e 2908
b2588c4b 2909 return -ENOMEM;
933e312e
AM
2910}
2911
2912late_initcall(fail_page_alloc_debugfs);
2913
2914#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2915
2916#else /* CONFIG_FAIL_PAGE_ALLOC */
2917
deaf386e 2918static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2919{
deaf386e 2920 return false;
933e312e
AM
2921}
2922
2923#endif /* CONFIG_FAIL_PAGE_ALLOC */
2924
1da177e4 2925/*
97a16fc8
MG
2926 * Return true if free base pages are above 'mark'. For high-order checks it
2927 * will return true of the order-0 watermark is reached and there is at least
2928 * one free page of a suitable size. Checking now avoids taking the zone lock
2929 * to check in the allocation paths if no pages are free.
1da177e4 2930 */
86a294a8
MH
2931bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2932 int classzone_idx, unsigned int alloc_flags,
2933 long free_pages)
1da177e4 2934{
d23ad423 2935 long min = mark;
1da177e4 2936 int o;
c603844b 2937 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2938
0aaa29a5 2939 /* free_pages may go negative - that's OK */
df0a6daa 2940 free_pages -= (1 << order) - 1;
0aaa29a5 2941
7fb1d9fc 2942 if (alloc_flags & ALLOC_HIGH)
1da177e4 2943 min -= min / 2;
0aaa29a5
MG
2944
2945 /*
2946 * If the caller does not have rights to ALLOC_HARDER then subtract
2947 * the high-atomic reserves. This will over-estimate the size of the
2948 * atomic reserve but it avoids a search.
2949 */
97a16fc8 2950 if (likely(!alloc_harder))
0aaa29a5
MG
2951 free_pages -= z->nr_reserved_highatomic;
2952 else
1da177e4 2953 min -= min / 4;
e2b19197 2954
d95ea5d1
BZ
2955#ifdef CONFIG_CMA
2956 /* If allocation can't use CMA areas don't use free CMA pages */
2957 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2958 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2959#endif
026b0814 2960
97a16fc8
MG
2961 /*
2962 * Check watermarks for an order-0 allocation request. If these
2963 * are not met, then a high-order request also cannot go ahead
2964 * even if a suitable page happened to be free.
2965 */
2966 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2967 return false;
1da177e4 2968
97a16fc8
MG
2969 /* If this is an order-0 request then the watermark is fine */
2970 if (!order)
2971 return true;
2972
2973 /* For a high-order request, check at least one suitable page is free */
2974 for (o = order; o < MAX_ORDER; o++) {
2975 struct free_area *area = &z->free_area[o];
2976 int mt;
2977
2978 if (!area->nr_free)
2979 continue;
2980
2981 if (alloc_harder)
2982 return true;
1da177e4 2983
97a16fc8
MG
2984 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2985 if (!list_empty(&area->free_list[mt]))
2986 return true;
2987 }
2988
2989#ifdef CONFIG_CMA
2990 if ((alloc_flags & ALLOC_CMA) &&
2991 !list_empty(&area->free_list[MIGRATE_CMA])) {
2992 return true;
2993 }
2994#endif
1da177e4 2995 }
97a16fc8 2996 return false;
88f5acf8
MG
2997}
2998
7aeb09f9 2999bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3000 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3001{
3002 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3003 zone_page_state(z, NR_FREE_PAGES));
3004}
3005
48ee5f36
MG
3006static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3007 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3008{
3009 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3010 long cma_pages = 0;
3011
3012#ifdef CONFIG_CMA
3013 /* If allocation can't use CMA areas don't use free CMA pages */
3014 if (!(alloc_flags & ALLOC_CMA))
3015 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3016#endif
3017
3018 /*
3019 * Fast check for order-0 only. If this fails then the reserves
3020 * need to be calculated. There is a corner case where the check
3021 * passes but only the high-order atomic reserve are free. If
3022 * the caller is !atomic then it'll uselessly search the free
3023 * list. That corner case is then slower but it is harmless.
3024 */
3025 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3026 return true;
3027
3028 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3029 free_pages);
3030}
3031
7aeb09f9 3032bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3033 unsigned long mark, int classzone_idx)
88f5acf8
MG
3034{
3035 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3036
3037 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3038 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3039
e2b19197 3040 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3041 free_pages);
1da177e4
LT
3042}
3043
9276b1bc 3044#ifdef CONFIG_NUMA
957f822a
DR
3045static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3046{
e02dc017 3047 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3048 RECLAIM_DISTANCE;
957f822a 3049}
9276b1bc 3050#else /* CONFIG_NUMA */
957f822a
DR
3051static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3052{
3053 return true;
3054}
9276b1bc
PJ
3055#endif /* CONFIG_NUMA */
3056
7fb1d9fc 3057/*
0798e519 3058 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3059 * a page.
3060 */
3061static struct page *
a9263751
VB
3062get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3063 const struct alloc_context *ac)
753ee728 3064{
c33d6c06 3065 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3066 struct zone *zone;
3b8c0be4
MG
3067 struct pglist_data *last_pgdat_dirty_limit = NULL;
3068
7fb1d9fc 3069 /*
9276b1bc 3070 * Scan zonelist, looking for a zone with enough free.
344736f2 3071 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3072 */
c33d6c06 3073 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3074 ac->nodemask) {
be06af00 3075 struct page *page;
e085dbc5
JW
3076 unsigned long mark;
3077
664eedde
MG
3078 if (cpusets_enabled() &&
3079 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3080 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3081 continue;
a756cf59
JW
3082 /*
3083 * When allocating a page cache page for writing, we
281e3726
MG
3084 * want to get it from a node that is within its dirty
3085 * limit, such that no single node holds more than its
a756cf59 3086 * proportional share of globally allowed dirty pages.
281e3726 3087 * The dirty limits take into account the node's
a756cf59
JW
3088 * lowmem reserves and high watermark so that kswapd
3089 * should be able to balance it without having to
3090 * write pages from its LRU list.
3091 *
a756cf59 3092 * XXX: For now, allow allocations to potentially
281e3726 3093 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3094 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3095 * which is important when on a NUMA setup the allowed
281e3726 3096 * nodes are together not big enough to reach the
a756cf59 3097 * global limit. The proper fix for these situations
281e3726 3098 * will require awareness of nodes in the
a756cf59
JW
3099 * dirty-throttling and the flusher threads.
3100 */
3b8c0be4
MG
3101 if (ac->spread_dirty_pages) {
3102 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3103 continue;
3104
3105 if (!node_dirty_ok(zone->zone_pgdat)) {
3106 last_pgdat_dirty_limit = zone->zone_pgdat;
3107 continue;
3108 }
3109 }
7fb1d9fc 3110
e085dbc5 3111 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3112 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3113 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3114 int ret;
3115
5dab2911
MG
3116 /* Checked here to keep the fast path fast */
3117 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3118 if (alloc_flags & ALLOC_NO_WATERMARKS)
3119 goto try_this_zone;
3120
a5f5f91d 3121 if (node_reclaim_mode == 0 ||
c33d6c06 3122 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3123 continue;
3124
a5f5f91d 3125 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3126 switch (ret) {
a5f5f91d 3127 case NODE_RECLAIM_NOSCAN:
fa5e084e 3128 /* did not scan */
cd38b115 3129 continue;
a5f5f91d 3130 case NODE_RECLAIM_FULL:
fa5e084e 3131 /* scanned but unreclaimable */
cd38b115 3132 continue;
fa5e084e
MG
3133 default:
3134 /* did we reclaim enough */
fed2719e 3135 if (zone_watermark_ok(zone, order, mark,
93ea9964 3136 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3137 goto try_this_zone;
3138
fed2719e 3139 continue;
0798e519 3140 }
7fb1d9fc
RS
3141 }
3142
fa5e084e 3143try_this_zone:
066b2393 3144 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3145 gfp_mask, alloc_flags, ac->migratetype);
75379191 3146 if (page) {
479f854a 3147 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3148
3149 /*
3150 * If this is a high-order atomic allocation then check
3151 * if the pageblock should be reserved for the future
3152 */
3153 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3154 reserve_highatomic_pageblock(page, zone, order);
3155
75379191
VB
3156 return page;
3157 }
54a6eb5c 3158 }
9276b1bc 3159
4ffeaf35 3160 return NULL;
753ee728
MH
3161}
3162
29423e77
DR
3163/*
3164 * Large machines with many possible nodes should not always dump per-node
3165 * meminfo in irq context.
3166 */
3167static inline bool should_suppress_show_mem(void)
3168{
3169 bool ret = false;
3170
3171#if NODES_SHIFT > 8
3172 ret = in_interrupt();
3173#endif
3174 return ret;
3175}
3176
9af744d7 3177static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3178{
a238ab5b 3179 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3180 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3181
aa187507 3182 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3183 return;
3184
3185 /*
3186 * This documents exceptions given to allocations in certain
3187 * contexts that are allowed to allocate outside current's set
3188 * of allowed nodes.
3189 */
3190 if (!(gfp_mask & __GFP_NOMEMALLOC))
3191 if (test_thread_flag(TIF_MEMDIE) ||
3192 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3193 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3194 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3195 filter &= ~SHOW_MEM_FILTER_NODES;
3196
9af744d7 3197 show_mem(filter, nodemask);
aa187507
MH
3198}
3199
a8e99259 3200void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3201{
3202 struct va_format vaf;
3203 va_list args;
3204 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3205 DEFAULT_RATELIMIT_BURST);
3206
0f7896f1 3207 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3208 return;
3209
7877cdcc 3210 pr_warn("%s: ", current->comm);
3ee9a4f0 3211
7877cdcc
MH
3212 va_start(args, fmt);
3213 vaf.fmt = fmt;
3214 vaf.va = &args;
3215 pr_cont("%pV", &vaf);
3216 va_end(args);
3ee9a4f0 3217
685dbf6f
DR
3218 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3219 if (nodemask)
3220 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3221 else
3222 pr_cont("(null)\n");
3223
a8e99259 3224 cpuset_print_current_mems_allowed();
3ee9a4f0 3225
a238ab5b 3226 dump_stack();
685dbf6f 3227 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3228}
3229
6c18ba7a
MH
3230static inline struct page *
3231__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3232 unsigned int alloc_flags,
3233 const struct alloc_context *ac)
3234{
3235 struct page *page;
3236
3237 page = get_page_from_freelist(gfp_mask, order,
3238 alloc_flags|ALLOC_CPUSET, ac);
3239 /*
3240 * fallback to ignore cpuset restriction if our nodes
3241 * are depleted
3242 */
3243 if (!page)
3244 page = get_page_from_freelist(gfp_mask, order,
3245 alloc_flags, ac);
3246
3247 return page;
3248}
3249
11e33f6a
MG
3250static inline struct page *
3251__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3252 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3253{
6e0fc46d
DR
3254 struct oom_control oc = {
3255 .zonelist = ac->zonelist,
3256 .nodemask = ac->nodemask,
2a966b77 3257 .memcg = NULL,
6e0fc46d
DR
3258 .gfp_mask = gfp_mask,
3259 .order = order,
6e0fc46d 3260 };
11e33f6a
MG
3261 struct page *page;
3262
9879de73
JW
3263 *did_some_progress = 0;
3264
9879de73 3265 /*
dc56401f
JW
3266 * Acquire the oom lock. If that fails, somebody else is
3267 * making progress for us.
9879de73 3268 */
dc56401f 3269 if (!mutex_trylock(&oom_lock)) {
9879de73 3270 *did_some_progress = 1;
11e33f6a 3271 schedule_timeout_uninterruptible(1);
1da177e4
LT
3272 return NULL;
3273 }
6b1de916 3274
11e33f6a
MG
3275 /*
3276 * Go through the zonelist yet one more time, keep very high watermark
3277 * here, this is only to catch a parallel oom killing, we must fail if
3278 * we're still under heavy pressure.
3279 */
a9263751
VB
3280 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3281 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3282 if (page)
11e33f6a
MG
3283 goto out;
3284
06ad276a
MH
3285 /* Coredumps can quickly deplete all memory reserves */
3286 if (current->flags & PF_DUMPCORE)
3287 goto out;
3288 /* The OOM killer will not help higher order allocs */
3289 if (order > PAGE_ALLOC_COSTLY_ORDER)
3290 goto out;
dcda9b04
MH
3291 /*
3292 * We have already exhausted all our reclaim opportunities without any
3293 * success so it is time to admit defeat. We will skip the OOM killer
3294 * because it is very likely that the caller has a more reasonable
3295 * fallback than shooting a random task.
3296 */
3297 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3298 goto out;
06ad276a
MH
3299 /* The OOM killer does not needlessly kill tasks for lowmem */
3300 if (ac->high_zoneidx < ZONE_NORMAL)
3301 goto out;
3302 if (pm_suspended_storage())
3303 goto out;
3304 /*
3305 * XXX: GFP_NOFS allocations should rather fail than rely on
3306 * other request to make a forward progress.
3307 * We are in an unfortunate situation where out_of_memory cannot
3308 * do much for this context but let's try it to at least get
3309 * access to memory reserved if the current task is killed (see
3310 * out_of_memory). Once filesystems are ready to handle allocation
3311 * failures more gracefully we should just bail out here.
3312 */
3313
3314 /* The OOM killer may not free memory on a specific node */
3315 if (gfp_mask & __GFP_THISNODE)
3316 goto out;
3da88fb3 3317
11e33f6a 3318 /* Exhausted what can be done so it's blamo time */
5020e285 3319 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3320 *did_some_progress = 1;
5020e285 3321
6c18ba7a
MH
3322 /*
3323 * Help non-failing allocations by giving them access to memory
3324 * reserves
3325 */
3326 if (gfp_mask & __GFP_NOFAIL)
3327 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3328 ALLOC_NO_WATERMARKS, ac);
5020e285 3329 }
11e33f6a 3330out:
dc56401f 3331 mutex_unlock(&oom_lock);
11e33f6a
MG
3332 return page;
3333}
3334
33c2d214
MH
3335/*
3336 * Maximum number of compaction retries wit a progress before OOM
3337 * killer is consider as the only way to move forward.
3338 */
3339#define MAX_COMPACT_RETRIES 16
3340
56de7263
MG
3341#ifdef CONFIG_COMPACTION
3342/* Try memory compaction for high-order allocations before reclaim */
3343static struct page *
3344__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3345 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3346 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3347{
98dd3b48 3348 struct page *page;
499118e9 3349 unsigned int noreclaim_flag;
53853e2d
VB
3350
3351 if (!order)
66199712 3352 return NULL;
66199712 3353
499118e9 3354 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3355 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3356 prio);
499118e9 3357 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3358
c5d01d0d 3359 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3360 return NULL;
53853e2d 3361
98dd3b48
VB
3362 /*
3363 * At least in one zone compaction wasn't deferred or skipped, so let's
3364 * count a compaction stall
3365 */
3366 count_vm_event(COMPACTSTALL);
8fb74b9f 3367
31a6c190 3368 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3369
98dd3b48
VB
3370 if (page) {
3371 struct zone *zone = page_zone(page);
53853e2d 3372
98dd3b48
VB
3373 zone->compact_blockskip_flush = false;
3374 compaction_defer_reset(zone, order, true);
3375 count_vm_event(COMPACTSUCCESS);
3376 return page;
3377 }
56de7263 3378
98dd3b48
VB
3379 /*
3380 * It's bad if compaction run occurs and fails. The most likely reason
3381 * is that pages exist, but not enough to satisfy watermarks.
3382 */
3383 count_vm_event(COMPACTFAIL);
66199712 3384
98dd3b48 3385 cond_resched();
56de7263
MG
3386
3387 return NULL;
3388}
33c2d214 3389
3250845d
VB
3390static inline bool
3391should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3392 enum compact_result compact_result,
3393 enum compact_priority *compact_priority,
d9436498 3394 int *compaction_retries)
3250845d
VB
3395{
3396 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3397 int min_priority;
65190cff
MH
3398 bool ret = false;
3399 int retries = *compaction_retries;
3400 enum compact_priority priority = *compact_priority;
3250845d
VB
3401
3402 if (!order)
3403 return false;
3404
d9436498
VB
3405 if (compaction_made_progress(compact_result))
3406 (*compaction_retries)++;
3407
3250845d
VB
3408 /*
3409 * compaction considers all the zone as desperately out of memory
3410 * so it doesn't really make much sense to retry except when the
3411 * failure could be caused by insufficient priority
3412 */
d9436498
VB
3413 if (compaction_failed(compact_result))
3414 goto check_priority;
3250845d
VB
3415
3416 /*
3417 * make sure the compaction wasn't deferred or didn't bail out early
3418 * due to locks contention before we declare that we should give up.
3419 * But do not retry if the given zonelist is not suitable for
3420 * compaction.
3421 */
65190cff
MH
3422 if (compaction_withdrawn(compact_result)) {
3423 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3424 goto out;
3425 }
3250845d
VB
3426
3427 /*
dcda9b04 3428 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3429 * costly ones because they are de facto nofail and invoke OOM
3430 * killer to move on while costly can fail and users are ready
3431 * to cope with that. 1/4 retries is rather arbitrary but we
3432 * would need much more detailed feedback from compaction to
3433 * make a better decision.
3434 */
3435 if (order > PAGE_ALLOC_COSTLY_ORDER)
3436 max_retries /= 4;
65190cff
MH
3437 if (*compaction_retries <= max_retries) {
3438 ret = true;
3439 goto out;
3440 }
3250845d 3441
d9436498
VB
3442 /*
3443 * Make sure there are attempts at the highest priority if we exhausted
3444 * all retries or failed at the lower priorities.
3445 */
3446check_priority:
c2033b00
VB
3447 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3448 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3449
c2033b00 3450 if (*compact_priority > min_priority) {
d9436498
VB
3451 (*compact_priority)--;
3452 *compaction_retries = 0;
65190cff 3453 ret = true;
d9436498 3454 }
65190cff
MH
3455out:
3456 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3457 return ret;
3250845d 3458}
56de7263
MG
3459#else
3460static inline struct page *
3461__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3462 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3463 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3464{
33c2d214 3465 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3466 return NULL;
3467}
33c2d214
MH
3468
3469static inline bool
86a294a8
MH
3470should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3471 enum compact_result compact_result,
a5508cd8 3472 enum compact_priority *compact_priority,
d9436498 3473 int *compaction_retries)
33c2d214 3474{
31e49bfd
MH
3475 struct zone *zone;
3476 struct zoneref *z;
3477
3478 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3479 return false;
3480
3481 /*
3482 * There are setups with compaction disabled which would prefer to loop
3483 * inside the allocator rather than hit the oom killer prematurely.
3484 * Let's give them a good hope and keep retrying while the order-0
3485 * watermarks are OK.
3486 */
3487 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3488 ac->nodemask) {
3489 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3490 ac_classzone_idx(ac), alloc_flags))
3491 return true;
3492 }
33c2d214
MH
3493 return false;
3494}
3250845d 3495#endif /* CONFIG_COMPACTION */
56de7263 3496
bba90710
MS
3497/* Perform direct synchronous page reclaim */
3498static int
a9263751
VB
3499__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3500 const struct alloc_context *ac)
11e33f6a 3501{
11e33f6a 3502 struct reclaim_state reclaim_state;
bba90710 3503 int progress;
499118e9 3504 unsigned int noreclaim_flag;
11e33f6a
MG
3505
3506 cond_resched();
3507
3508 /* We now go into synchronous reclaim */
3509 cpuset_memory_pressure_bump();
499118e9 3510 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a
MG
3511 lockdep_set_current_reclaim_state(gfp_mask);
3512 reclaim_state.reclaimed_slab = 0;
c06b1fca 3513 current->reclaim_state = &reclaim_state;
11e33f6a 3514
a9263751
VB
3515 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3516 ac->nodemask);
11e33f6a 3517
c06b1fca 3518 current->reclaim_state = NULL;
11e33f6a 3519 lockdep_clear_current_reclaim_state();
499118e9 3520 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3521
3522 cond_resched();
3523
bba90710
MS
3524 return progress;
3525}
3526
3527/* The really slow allocator path where we enter direct reclaim */
3528static inline struct page *
3529__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3530 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3531 unsigned long *did_some_progress)
bba90710
MS
3532{
3533 struct page *page = NULL;
3534 bool drained = false;
3535
a9263751 3536 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3537 if (unlikely(!(*did_some_progress)))
3538 return NULL;
11e33f6a 3539
9ee493ce 3540retry:
31a6c190 3541 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3542
3543 /*
3544 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3545 * pages are pinned on the per-cpu lists or in high alloc reserves.
3546 * Shrink them them and try again
9ee493ce
MG
3547 */
3548 if (!page && !drained) {
29fac03b 3549 unreserve_highatomic_pageblock(ac, false);
93481ff0 3550 drain_all_pages(NULL);
9ee493ce
MG
3551 drained = true;
3552 goto retry;
3553 }
3554
11e33f6a
MG
3555 return page;
3556}
3557
a9263751 3558static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3559{
3560 struct zoneref *z;
3561 struct zone *zone;
e1a55637 3562 pg_data_t *last_pgdat = NULL;
3a025760 3563
a9263751 3564 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3565 ac->high_zoneidx, ac->nodemask) {
3566 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3567 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3568 last_pgdat = zone->zone_pgdat;
3569 }
3a025760
JW
3570}
3571
c603844b 3572static inline unsigned int
341ce06f
PZ
3573gfp_to_alloc_flags(gfp_t gfp_mask)
3574{
c603844b 3575 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3576
a56f57ff 3577 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3578 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3579
341ce06f
PZ
3580 /*
3581 * The caller may dip into page reserves a bit more if the caller
3582 * cannot run direct reclaim, or if the caller has realtime scheduling
3583 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3584 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3585 */
e6223a3b 3586 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3587
d0164adc 3588 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3589 /*
b104a35d
DR
3590 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3591 * if it can't schedule.
5c3240d9 3592 */
b104a35d 3593 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3594 alloc_flags |= ALLOC_HARDER;
523b9458 3595 /*
b104a35d 3596 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3597 * comment for __cpuset_node_allowed().
523b9458 3598 */
341ce06f 3599 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3600 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3601 alloc_flags |= ALLOC_HARDER;
3602
d95ea5d1 3603#ifdef CONFIG_CMA
43e7a34d 3604 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3605 alloc_flags |= ALLOC_CMA;
3606#endif
341ce06f
PZ
3607 return alloc_flags;
3608}
3609
072bb0aa
MG
3610bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3611{
31a6c190
VB
3612 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3613 return false;
3614
3615 if (gfp_mask & __GFP_MEMALLOC)
3616 return true;
3617 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3618 return true;
3619 if (!in_interrupt() &&
3620 ((current->flags & PF_MEMALLOC) ||
3621 unlikely(test_thread_flag(TIF_MEMDIE))))
3622 return true;
3623
3624 return false;
072bb0aa
MG
3625}
3626
0a0337e0
MH
3627/*
3628 * Checks whether it makes sense to retry the reclaim to make a forward progress
3629 * for the given allocation request.
491d79ae
JW
3630 *
3631 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3632 * without success, or when we couldn't even meet the watermark if we
3633 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3634 *
3635 * Returns true if a retry is viable or false to enter the oom path.
3636 */
3637static inline bool
3638should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3639 struct alloc_context *ac, int alloc_flags,
423b452e 3640 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3641{
3642 struct zone *zone;
3643 struct zoneref *z;
3644
423b452e
VB
3645 /*
3646 * Costly allocations might have made a progress but this doesn't mean
3647 * their order will become available due to high fragmentation so
3648 * always increment the no progress counter for them
3649 */
3650 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3651 *no_progress_loops = 0;
3652 else
3653 (*no_progress_loops)++;
3654
0a0337e0
MH
3655 /*
3656 * Make sure we converge to OOM if we cannot make any progress
3657 * several times in the row.
3658 */
04c8716f
MK
3659 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3660 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3661 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3662 }
0a0337e0 3663
bca67592
MG
3664 /*
3665 * Keep reclaiming pages while there is a chance this will lead
3666 * somewhere. If none of the target zones can satisfy our allocation
3667 * request even if all reclaimable pages are considered then we are
3668 * screwed and have to go OOM.
0a0337e0
MH
3669 */
3670 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3671 ac->nodemask) {
3672 unsigned long available;
ede37713 3673 unsigned long reclaimable;
d379f01d
MH
3674 unsigned long min_wmark = min_wmark_pages(zone);
3675 bool wmark;
0a0337e0 3676
5a1c84b4 3677 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3678 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3679
3680 /*
491d79ae
JW
3681 * Would the allocation succeed if we reclaimed all
3682 * reclaimable pages?
0a0337e0 3683 */
d379f01d
MH
3684 wmark = __zone_watermark_ok(zone, order, min_wmark,
3685 ac_classzone_idx(ac), alloc_flags, available);
3686 trace_reclaim_retry_zone(z, order, reclaimable,
3687 available, min_wmark, *no_progress_loops, wmark);
3688 if (wmark) {
ede37713
MH
3689 /*
3690 * If we didn't make any progress and have a lot of
3691 * dirty + writeback pages then we should wait for
3692 * an IO to complete to slow down the reclaim and
3693 * prevent from pre mature OOM
3694 */
3695 if (!did_some_progress) {
11fb9989 3696 unsigned long write_pending;
ede37713 3697
5a1c84b4
MG
3698 write_pending = zone_page_state_snapshot(zone,
3699 NR_ZONE_WRITE_PENDING);
ede37713 3700
11fb9989 3701 if (2 * write_pending > reclaimable) {
ede37713
MH
3702 congestion_wait(BLK_RW_ASYNC, HZ/10);
3703 return true;
3704 }
3705 }
5a1c84b4 3706
ede37713
MH
3707 /*
3708 * Memory allocation/reclaim might be called from a WQ
3709 * context and the current implementation of the WQ
3710 * concurrency control doesn't recognize that
3711 * a particular WQ is congested if the worker thread is
3712 * looping without ever sleeping. Therefore we have to
3713 * do a short sleep here rather than calling
3714 * cond_resched().
3715 */
3716 if (current->flags & PF_WQ_WORKER)
3717 schedule_timeout_uninterruptible(1);
3718 else
3719 cond_resched();
3720
0a0337e0
MH
3721 return true;
3722 }
3723 }
3724
3725 return false;
3726}
3727
902b6281
VB
3728static inline bool
3729check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3730{
3731 /*
3732 * It's possible that cpuset's mems_allowed and the nodemask from
3733 * mempolicy don't intersect. This should be normally dealt with by
3734 * policy_nodemask(), but it's possible to race with cpuset update in
3735 * such a way the check therein was true, and then it became false
3736 * before we got our cpuset_mems_cookie here.
3737 * This assumes that for all allocations, ac->nodemask can come only
3738 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3739 * when it does not intersect with the cpuset restrictions) or the
3740 * caller can deal with a violated nodemask.
3741 */
3742 if (cpusets_enabled() && ac->nodemask &&
3743 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3744 ac->nodemask = NULL;
3745 return true;
3746 }
3747
3748 /*
3749 * When updating a task's mems_allowed or mempolicy nodemask, it is
3750 * possible to race with parallel threads in such a way that our
3751 * allocation can fail while the mask is being updated. If we are about
3752 * to fail, check if the cpuset changed during allocation and if so,
3753 * retry.
3754 */
3755 if (read_mems_allowed_retry(cpuset_mems_cookie))
3756 return true;
3757
3758 return false;
3759}
3760
11e33f6a
MG
3761static inline struct page *
3762__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3763 struct alloc_context *ac)
11e33f6a 3764{
d0164adc 3765 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3766 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3767 struct page *page = NULL;
c603844b 3768 unsigned int alloc_flags;
11e33f6a 3769 unsigned long did_some_progress;
5ce9bfef 3770 enum compact_priority compact_priority;
c5d01d0d 3771 enum compact_result compact_result;
5ce9bfef
VB
3772 int compaction_retries;
3773 int no_progress_loops;
63f53dea
MH
3774 unsigned long alloc_start = jiffies;
3775 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3776 unsigned int cpuset_mems_cookie;
1da177e4 3777
72807a74
MG
3778 /*
3779 * In the slowpath, we sanity check order to avoid ever trying to
3780 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3781 * be using allocators in order of preference for an area that is
3782 * too large.
3783 */
1fc28b70
MG
3784 if (order >= MAX_ORDER) {
3785 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3786 return NULL;
1fc28b70 3787 }
1da177e4 3788
d0164adc
MG
3789 /*
3790 * We also sanity check to catch abuse of atomic reserves being used by
3791 * callers that are not in atomic context.
3792 */
3793 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3794 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3795 gfp_mask &= ~__GFP_ATOMIC;
3796
5ce9bfef
VB
3797retry_cpuset:
3798 compaction_retries = 0;
3799 no_progress_loops = 0;
3800 compact_priority = DEF_COMPACT_PRIORITY;
3801 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3802
3803 /*
3804 * The fast path uses conservative alloc_flags to succeed only until
3805 * kswapd needs to be woken up, and to avoid the cost of setting up
3806 * alloc_flags precisely. So we do that now.
3807 */
3808 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3809
e47483bc
VB
3810 /*
3811 * We need to recalculate the starting point for the zonelist iterator
3812 * because we might have used different nodemask in the fast path, or
3813 * there was a cpuset modification and we are retrying - otherwise we
3814 * could end up iterating over non-eligible zones endlessly.
3815 */
3816 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3817 ac->high_zoneidx, ac->nodemask);
3818 if (!ac->preferred_zoneref->zone)
3819 goto nopage;
3820
23771235
VB
3821 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3822 wake_all_kswapds(order, ac);
3823
3824 /*
3825 * The adjusted alloc_flags might result in immediate success, so try
3826 * that first
3827 */
3828 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3829 if (page)
3830 goto got_pg;
3831
a8161d1e
VB
3832 /*
3833 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3834 * that we have enough base pages and don't need to reclaim. For non-
3835 * movable high-order allocations, do that as well, as compaction will
3836 * try prevent permanent fragmentation by migrating from blocks of the
3837 * same migratetype.
3838 * Don't try this for allocations that are allowed to ignore
3839 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3840 */
282722b0
VB
3841 if (can_direct_reclaim &&
3842 (costly_order ||
3843 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3844 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3845 page = __alloc_pages_direct_compact(gfp_mask, order,
3846 alloc_flags, ac,
a5508cd8 3847 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3848 &compact_result);
3849 if (page)
3850 goto got_pg;
3851
3eb2771b
VB
3852 /*
3853 * Checks for costly allocations with __GFP_NORETRY, which
3854 * includes THP page fault allocations
3855 */
282722b0 3856 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3857 /*
3858 * If compaction is deferred for high-order allocations,
3859 * it is because sync compaction recently failed. If
3860 * this is the case and the caller requested a THP
3861 * allocation, we do not want to heavily disrupt the
3862 * system, so we fail the allocation instead of entering
3863 * direct reclaim.
3864 */
3865 if (compact_result == COMPACT_DEFERRED)
3866 goto nopage;
3867
a8161d1e 3868 /*
3eb2771b
VB
3869 * Looks like reclaim/compaction is worth trying, but
3870 * sync compaction could be very expensive, so keep
25160354 3871 * using async compaction.
a8161d1e 3872 */
a5508cd8 3873 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3874 }
3875 }
23771235 3876
31a6c190 3877retry:
23771235 3878 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3879 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3880 wake_all_kswapds(order, ac);
3881
23771235
VB
3882 if (gfp_pfmemalloc_allowed(gfp_mask))
3883 alloc_flags = ALLOC_NO_WATERMARKS;
3884
e46e7b77
MG
3885 /*
3886 * Reset the zonelist iterators if memory policies can be ignored.
3887 * These allocations are high priority and system rather than user
3888 * orientated.
3889 */
23771235 3890 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3891 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3892 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3893 ac->high_zoneidx, ac->nodemask);
3894 }
3895
23771235 3896 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3897 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3898 if (page)
3899 goto got_pg;
1da177e4 3900
d0164adc 3901 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3902 if (!can_direct_reclaim)
1da177e4
LT
3903 goto nopage;
3904
9a67f648
MH
3905 /* Make sure we know about allocations which stall for too long */
3906 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 3907 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
3908 "page allocation stalls for %ums, order:%u",
3909 jiffies_to_msecs(jiffies-alloc_start), order);
3910 stall_timeout += 10 * HZ;
33d53103 3911 }
341ce06f 3912
9a67f648
MH
3913 /* Avoid recursion of direct reclaim */
3914 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3915 goto nopage;
3916
a8161d1e
VB
3917 /* Try direct reclaim and then allocating */
3918 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3919 &did_some_progress);
3920 if (page)
3921 goto got_pg;
3922
3923 /* Try direct compaction and then allocating */
a9263751 3924 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3925 compact_priority, &compact_result);
56de7263
MG
3926 if (page)
3927 goto got_pg;
75f30861 3928
9083905a
JW
3929 /* Do not loop if specifically requested */
3930 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3931 goto nopage;
9083905a 3932
0a0337e0
MH
3933 /*
3934 * Do not retry costly high order allocations unless they are
dcda9b04 3935 * __GFP_RETRY_MAYFAIL
0a0337e0 3936 */
dcda9b04 3937 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 3938 goto nopage;
0a0337e0 3939
0a0337e0 3940 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3941 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3942 goto retry;
3943
33c2d214
MH
3944 /*
3945 * It doesn't make any sense to retry for the compaction if the order-0
3946 * reclaim is not able to make any progress because the current
3947 * implementation of the compaction depends on the sufficient amount
3948 * of free memory (see __compaction_suitable)
3949 */
3950 if (did_some_progress > 0 &&
86a294a8 3951 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3952 compact_result, &compact_priority,
d9436498 3953 &compaction_retries))
33c2d214
MH
3954 goto retry;
3955
902b6281
VB
3956
3957 /* Deal with possible cpuset update races before we start OOM killing */
3958 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
3959 goto retry_cpuset;
3960
9083905a
JW
3961 /* Reclaim has failed us, start killing things */
3962 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3963 if (page)
3964 goto got_pg;
3965
9a67f648 3966 /* Avoid allocations with no watermarks from looping endlessly */
c288983d
TH
3967 if (test_thread_flag(TIF_MEMDIE) &&
3968 (alloc_flags == ALLOC_NO_WATERMARKS ||
3969 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
3970 goto nopage;
3971
9083905a 3972 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3973 if (did_some_progress) {
3974 no_progress_loops = 0;
9083905a 3975 goto retry;
0a0337e0 3976 }
9083905a 3977
1da177e4 3978nopage:
902b6281
VB
3979 /* Deal with possible cpuset update races before we fail */
3980 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
3981 goto retry_cpuset;
3982
9a67f648
MH
3983 /*
3984 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3985 * we always retry
3986 */
3987 if (gfp_mask & __GFP_NOFAIL) {
3988 /*
3989 * All existing users of the __GFP_NOFAIL are blockable, so warn
3990 * of any new users that actually require GFP_NOWAIT
3991 */
3992 if (WARN_ON_ONCE(!can_direct_reclaim))
3993 goto fail;
3994
3995 /*
3996 * PF_MEMALLOC request from this context is rather bizarre
3997 * because we cannot reclaim anything and only can loop waiting
3998 * for somebody to do a work for us
3999 */
4000 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4001
4002 /*
4003 * non failing costly orders are a hard requirement which we
4004 * are not prepared for much so let's warn about these users
4005 * so that we can identify them and convert them to something
4006 * else.
4007 */
4008 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4009
6c18ba7a
MH
4010 /*
4011 * Help non-failing allocations by giving them access to memory
4012 * reserves but do not use ALLOC_NO_WATERMARKS because this
4013 * could deplete whole memory reserves which would just make
4014 * the situation worse
4015 */
4016 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4017 if (page)
4018 goto got_pg;
4019
9a67f648
MH
4020 cond_resched();
4021 goto retry;
4022 }
4023fail:
a8e99259 4024 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4025 "page allocation failure: order:%u", order);
1da177e4 4026got_pg:
072bb0aa 4027 return page;
1da177e4 4028}
11e33f6a 4029
9cd75558 4030static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4031 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4032 struct alloc_context *ac, gfp_t *alloc_mask,
4033 unsigned int *alloc_flags)
11e33f6a 4034{
9cd75558 4035 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4036 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4037 ac->nodemask = nodemask;
4038 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4039
682a3385 4040 if (cpusets_enabled()) {
9cd75558 4041 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4042 if (!ac->nodemask)
4043 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4044 else
4045 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4046 }
4047
11e33f6a
MG
4048 lockdep_trace_alloc(gfp_mask);
4049
d0164adc 4050 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4051
4052 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4053 return false;
11e33f6a 4054
9cd75558
MG
4055 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4056 *alloc_flags |= ALLOC_CMA;
4057
4058 return true;
4059}
21bb9bd1 4060
9cd75558
MG
4061/* Determine whether to spread dirty pages and what the first usable zone */
4062static inline void finalise_ac(gfp_t gfp_mask,
4063 unsigned int order, struct alloc_context *ac)
4064{
c9ab0c4f 4065 /* Dirty zone balancing only done in the fast path */
9cd75558 4066 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4067
e46e7b77
MG
4068 /*
4069 * The preferred zone is used for statistics but crucially it is
4070 * also used as the starting point for the zonelist iterator. It
4071 * may get reset for allocations that ignore memory policies.
4072 */
9cd75558
MG
4073 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4074 ac->high_zoneidx, ac->nodemask);
4075}
4076
4077/*
4078 * This is the 'heart' of the zoned buddy allocator.
4079 */
4080struct page *
04ec6264
VB
4081__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4082 nodemask_t *nodemask)
9cd75558
MG
4083{
4084 struct page *page;
4085 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4086 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4087 struct alloc_context ac = { };
4088
4089 gfp_mask &= gfp_allowed_mask;
04ec6264 4090 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4091 return NULL;
4092
4093 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4094
5117f45d 4095 /* First allocation attempt */
a9263751 4096 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4097 if (likely(page))
4098 goto out;
11e33f6a 4099
4fcb0971 4100 /*
7dea19f9
MH
4101 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4102 * resp. GFP_NOIO which has to be inherited for all allocation requests
4103 * from a particular context which has been marked by
4104 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4105 */
7dea19f9 4106 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4107 ac.spread_dirty_pages = false;
23f086f9 4108
4741526b
MG
4109 /*
4110 * Restore the original nodemask if it was potentially replaced with
4111 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4112 */
e47483bc 4113 if (unlikely(ac.nodemask != nodemask))
4741526b 4114 ac.nodemask = nodemask;
16096c25 4115
4fcb0971 4116 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4117
4fcb0971 4118out:
c4159a75
VD
4119 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4120 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4121 __free_pages(page, order);
4122 page = NULL;
4949148a
VD
4123 }
4124
4fcb0971
MG
4125 if (kmemcheck_enabled && page)
4126 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4127
4128 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4129
11e33f6a 4130 return page;
1da177e4 4131}
d239171e 4132EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4133
4134/*
4135 * Common helper functions.
4136 */
920c7a5d 4137unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4138{
945a1113
AM
4139 struct page *page;
4140
4141 /*
4142 * __get_free_pages() returns a 32-bit address, which cannot represent
4143 * a highmem page
4144 */
4145 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4146
1da177e4
LT
4147 page = alloc_pages(gfp_mask, order);
4148 if (!page)
4149 return 0;
4150 return (unsigned long) page_address(page);
4151}
1da177e4
LT
4152EXPORT_SYMBOL(__get_free_pages);
4153
920c7a5d 4154unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4155{
945a1113 4156 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4157}
1da177e4
LT
4158EXPORT_SYMBOL(get_zeroed_page);
4159
920c7a5d 4160void __free_pages(struct page *page, unsigned int order)
1da177e4 4161{
b5810039 4162 if (put_page_testzero(page)) {
1da177e4 4163 if (order == 0)
b745bc85 4164 free_hot_cold_page(page, false);
1da177e4
LT
4165 else
4166 __free_pages_ok(page, order);
4167 }
4168}
4169
4170EXPORT_SYMBOL(__free_pages);
4171
920c7a5d 4172void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4173{
4174 if (addr != 0) {
725d704e 4175 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4176 __free_pages(virt_to_page((void *)addr), order);
4177 }
4178}
4179
4180EXPORT_SYMBOL(free_pages);
4181
b63ae8ca
AD
4182/*
4183 * Page Fragment:
4184 * An arbitrary-length arbitrary-offset area of memory which resides
4185 * within a 0 or higher order page. Multiple fragments within that page
4186 * are individually refcounted, in the page's reference counter.
4187 *
4188 * The page_frag functions below provide a simple allocation framework for
4189 * page fragments. This is used by the network stack and network device
4190 * drivers to provide a backing region of memory for use as either an
4191 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4192 */
2976db80
AD
4193static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4194 gfp_t gfp_mask)
b63ae8ca
AD
4195{
4196 struct page *page = NULL;
4197 gfp_t gfp = gfp_mask;
4198
4199#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4200 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4201 __GFP_NOMEMALLOC;
4202 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4203 PAGE_FRAG_CACHE_MAX_ORDER);
4204 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4205#endif
4206 if (unlikely(!page))
4207 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4208
4209 nc->va = page ? page_address(page) : NULL;
4210
4211 return page;
4212}
4213
2976db80 4214void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4215{
4216 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4217
4218 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4219 unsigned int order = compound_order(page);
4220
44fdffd7
AD
4221 if (order == 0)
4222 free_hot_cold_page(page, false);
4223 else
4224 __free_pages_ok(page, order);
4225 }
4226}
2976db80 4227EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4228
8c2dd3e4
AD
4229void *page_frag_alloc(struct page_frag_cache *nc,
4230 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4231{
4232 unsigned int size = PAGE_SIZE;
4233 struct page *page;
4234 int offset;
4235
4236 if (unlikely(!nc->va)) {
4237refill:
2976db80 4238 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4239 if (!page)
4240 return NULL;
4241
4242#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4243 /* if size can vary use size else just use PAGE_SIZE */
4244 size = nc->size;
4245#endif
4246 /* Even if we own the page, we do not use atomic_set().
4247 * This would break get_page_unless_zero() users.
4248 */
fe896d18 4249 page_ref_add(page, size - 1);
b63ae8ca
AD
4250
4251 /* reset page count bias and offset to start of new frag */
2f064f34 4252 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4253 nc->pagecnt_bias = size;
4254 nc->offset = size;
4255 }
4256
4257 offset = nc->offset - fragsz;
4258 if (unlikely(offset < 0)) {
4259 page = virt_to_page(nc->va);
4260
fe896d18 4261 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4262 goto refill;
4263
4264#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4265 /* if size can vary use size else just use PAGE_SIZE */
4266 size = nc->size;
4267#endif
4268 /* OK, page count is 0, we can safely set it */
fe896d18 4269 set_page_count(page, size);
b63ae8ca
AD
4270
4271 /* reset page count bias and offset to start of new frag */
4272 nc->pagecnt_bias = size;
4273 offset = size - fragsz;
4274 }
4275
4276 nc->pagecnt_bias--;
4277 nc->offset = offset;
4278
4279 return nc->va + offset;
4280}
8c2dd3e4 4281EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4282
4283/*
4284 * Frees a page fragment allocated out of either a compound or order 0 page.
4285 */
8c2dd3e4 4286void page_frag_free(void *addr)
b63ae8ca
AD
4287{
4288 struct page *page = virt_to_head_page(addr);
4289
4290 if (unlikely(put_page_testzero(page)))
4291 __free_pages_ok(page, compound_order(page));
4292}
8c2dd3e4 4293EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4294
d00181b9
KS
4295static void *make_alloc_exact(unsigned long addr, unsigned int order,
4296 size_t size)
ee85c2e1
AK
4297{
4298 if (addr) {
4299 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4300 unsigned long used = addr + PAGE_ALIGN(size);
4301
4302 split_page(virt_to_page((void *)addr), order);
4303 while (used < alloc_end) {
4304 free_page(used);
4305 used += PAGE_SIZE;
4306 }
4307 }
4308 return (void *)addr;
4309}
4310
2be0ffe2
TT
4311/**
4312 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4313 * @size: the number of bytes to allocate
4314 * @gfp_mask: GFP flags for the allocation
4315 *
4316 * This function is similar to alloc_pages(), except that it allocates the
4317 * minimum number of pages to satisfy the request. alloc_pages() can only
4318 * allocate memory in power-of-two pages.
4319 *
4320 * This function is also limited by MAX_ORDER.
4321 *
4322 * Memory allocated by this function must be released by free_pages_exact().
4323 */
4324void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4325{
4326 unsigned int order = get_order(size);
4327 unsigned long addr;
4328
4329 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4330 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4331}
4332EXPORT_SYMBOL(alloc_pages_exact);
4333
ee85c2e1
AK
4334/**
4335 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4336 * pages on a node.
b5e6ab58 4337 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4338 * @size: the number of bytes to allocate
4339 * @gfp_mask: GFP flags for the allocation
4340 *
4341 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4342 * back.
ee85c2e1 4343 */
e1931811 4344void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4345{
d00181b9 4346 unsigned int order = get_order(size);
ee85c2e1
AK
4347 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4348 if (!p)
4349 return NULL;
4350 return make_alloc_exact((unsigned long)page_address(p), order, size);
4351}
ee85c2e1 4352
2be0ffe2
TT
4353/**
4354 * free_pages_exact - release memory allocated via alloc_pages_exact()
4355 * @virt: the value returned by alloc_pages_exact.
4356 * @size: size of allocation, same value as passed to alloc_pages_exact().
4357 *
4358 * Release the memory allocated by a previous call to alloc_pages_exact.
4359 */
4360void free_pages_exact(void *virt, size_t size)
4361{
4362 unsigned long addr = (unsigned long)virt;
4363 unsigned long end = addr + PAGE_ALIGN(size);
4364
4365 while (addr < end) {
4366 free_page(addr);
4367 addr += PAGE_SIZE;
4368 }
4369}
4370EXPORT_SYMBOL(free_pages_exact);
4371
e0fb5815
ZY
4372/**
4373 * nr_free_zone_pages - count number of pages beyond high watermark
4374 * @offset: The zone index of the highest zone
4375 *
4376 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4377 * high watermark within all zones at or below a given zone index. For each
4378 * zone, the number of pages is calculated as:
0e056eb5
MCC
4379 *
4380 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4381 */
ebec3862 4382static unsigned long nr_free_zone_pages(int offset)
1da177e4 4383{
dd1a239f 4384 struct zoneref *z;
54a6eb5c
MG
4385 struct zone *zone;
4386
e310fd43 4387 /* Just pick one node, since fallback list is circular */
ebec3862 4388 unsigned long sum = 0;
1da177e4 4389
0e88460d 4390 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4391
54a6eb5c 4392 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4393 unsigned long size = zone->managed_pages;
41858966 4394 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4395 if (size > high)
4396 sum += size - high;
1da177e4
LT
4397 }
4398
4399 return sum;
4400}
4401
e0fb5815
ZY
4402/**
4403 * nr_free_buffer_pages - count number of pages beyond high watermark
4404 *
4405 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4406 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4407 */
ebec3862 4408unsigned long nr_free_buffer_pages(void)
1da177e4 4409{
af4ca457 4410 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4411}
c2f1a551 4412EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4413
e0fb5815
ZY
4414/**
4415 * nr_free_pagecache_pages - count number of pages beyond high watermark
4416 *
4417 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4418 * high watermark within all zones.
1da177e4 4419 */
ebec3862 4420unsigned long nr_free_pagecache_pages(void)
1da177e4 4421{
2a1e274a 4422 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4423}
08e0f6a9
CL
4424
4425static inline void show_node(struct zone *zone)
1da177e4 4426{
e5adfffc 4427 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4428 printk("Node %d ", zone_to_nid(zone));
1da177e4 4429}
1da177e4 4430
d02bd27b
IR
4431long si_mem_available(void)
4432{
4433 long available;
4434 unsigned long pagecache;
4435 unsigned long wmark_low = 0;
4436 unsigned long pages[NR_LRU_LISTS];
4437 struct zone *zone;
4438 int lru;
4439
4440 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4441 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4442
4443 for_each_zone(zone)
4444 wmark_low += zone->watermark[WMARK_LOW];
4445
4446 /*
4447 * Estimate the amount of memory available for userspace allocations,
4448 * without causing swapping.
4449 */
4450 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4451
4452 /*
4453 * Not all the page cache can be freed, otherwise the system will
4454 * start swapping. Assume at least half of the page cache, or the
4455 * low watermark worth of cache, needs to stay.
4456 */
4457 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4458 pagecache -= min(pagecache / 2, wmark_low);
4459 available += pagecache;
4460
4461 /*
4462 * Part of the reclaimable slab consists of items that are in use,
4463 * and cannot be freed. Cap this estimate at the low watermark.
4464 */
d507e2eb
JW
4465 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4466 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4467 wmark_low);
d02bd27b
IR
4468
4469 if (available < 0)
4470 available = 0;
4471 return available;
4472}
4473EXPORT_SYMBOL_GPL(si_mem_available);
4474
1da177e4
LT
4475void si_meminfo(struct sysinfo *val)
4476{
4477 val->totalram = totalram_pages;
11fb9989 4478 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4479 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4480 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4481 val->totalhigh = totalhigh_pages;
4482 val->freehigh = nr_free_highpages();
1da177e4
LT
4483 val->mem_unit = PAGE_SIZE;
4484}
4485
4486EXPORT_SYMBOL(si_meminfo);
4487
4488#ifdef CONFIG_NUMA
4489void si_meminfo_node(struct sysinfo *val, int nid)
4490{
cdd91a77
JL
4491 int zone_type; /* needs to be signed */
4492 unsigned long managed_pages = 0;
fc2bd799
JK
4493 unsigned long managed_highpages = 0;
4494 unsigned long free_highpages = 0;
1da177e4
LT
4495 pg_data_t *pgdat = NODE_DATA(nid);
4496
cdd91a77
JL
4497 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4498 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4499 val->totalram = managed_pages;
11fb9989 4500 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4501 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4502#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4503 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4504 struct zone *zone = &pgdat->node_zones[zone_type];
4505
4506 if (is_highmem(zone)) {
4507 managed_highpages += zone->managed_pages;
4508 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4509 }
4510 }
4511 val->totalhigh = managed_highpages;
4512 val->freehigh = free_highpages;
98d2b0eb 4513#else
fc2bd799
JK
4514 val->totalhigh = managed_highpages;
4515 val->freehigh = free_highpages;
98d2b0eb 4516#endif
1da177e4
LT
4517 val->mem_unit = PAGE_SIZE;
4518}
4519#endif
4520
ddd588b5 4521/*
7bf02ea2
DR
4522 * Determine whether the node should be displayed or not, depending on whether
4523 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4524 */
9af744d7 4525static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4526{
ddd588b5 4527 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4528 return false;
ddd588b5 4529
9af744d7
MH
4530 /*
4531 * no node mask - aka implicit memory numa policy. Do not bother with
4532 * the synchronization - read_mems_allowed_begin - because we do not
4533 * have to be precise here.
4534 */
4535 if (!nodemask)
4536 nodemask = &cpuset_current_mems_allowed;
4537
4538 return !node_isset(nid, *nodemask);
ddd588b5
DR
4539}
4540
1da177e4
LT
4541#define K(x) ((x) << (PAGE_SHIFT-10))
4542
377e4f16
RV
4543static void show_migration_types(unsigned char type)
4544{
4545 static const char types[MIGRATE_TYPES] = {
4546 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4547 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4548 [MIGRATE_RECLAIMABLE] = 'E',
4549 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4550#ifdef CONFIG_CMA
4551 [MIGRATE_CMA] = 'C',
4552#endif
194159fb 4553#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4554 [MIGRATE_ISOLATE] = 'I',
194159fb 4555#endif
377e4f16
RV
4556 };
4557 char tmp[MIGRATE_TYPES + 1];
4558 char *p = tmp;
4559 int i;
4560
4561 for (i = 0; i < MIGRATE_TYPES; i++) {
4562 if (type & (1 << i))
4563 *p++ = types[i];
4564 }
4565
4566 *p = '\0';
1f84a18f 4567 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4568}
4569
1da177e4
LT
4570/*
4571 * Show free area list (used inside shift_scroll-lock stuff)
4572 * We also calculate the percentage fragmentation. We do this by counting the
4573 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4574 *
4575 * Bits in @filter:
4576 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4577 * cpuset.
1da177e4 4578 */
9af744d7 4579void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4580{
d1bfcdb8 4581 unsigned long free_pcp = 0;
c7241913 4582 int cpu;
1da177e4 4583 struct zone *zone;
599d0c95 4584 pg_data_t *pgdat;
1da177e4 4585
ee99c71c 4586 for_each_populated_zone(zone) {
9af744d7 4587 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4588 continue;
d1bfcdb8 4589
761b0677
KK
4590 for_each_online_cpu(cpu)
4591 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4592 }
4593
a731286d
KM
4594 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4595 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4596 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4597 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4598 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4599 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4600 global_node_page_state(NR_ACTIVE_ANON),
4601 global_node_page_state(NR_INACTIVE_ANON),
4602 global_node_page_state(NR_ISOLATED_ANON),
4603 global_node_page_state(NR_ACTIVE_FILE),
4604 global_node_page_state(NR_INACTIVE_FILE),
4605 global_node_page_state(NR_ISOLATED_FILE),
4606 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4607 global_node_page_state(NR_FILE_DIRTY),
4608 global_node_page_state(NR_WRITEBACK),
4609 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4610 global_node_page_state(NR_SLAB_RECLAIMABLE),
4611 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4612 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4613 global_node_page_state(NR_SHMEM),
a25700a5 4614 global_page_state(NR_PAGETABLE),
d1ce749a 4615 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4616 global_page_state(NR_FREE_PAGES),
4617 free_pcp,
d1ce749a 4618 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4619
599d0c95 4620 for_each_online_pgdat(pgdat) {
9af744d7 4621 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4622 continue;
4623
599d0c95
MG
4624 printk("Node %d"
4625 " active_anon:%lukB"
4626 " inactive_anon:%lukB"
4627 " active_file:%lukB"
4628 " inactive_file:%lukB"
4629 " unevictable:%lukB"
4630 " isolated(anon):%lukB"
4631 " isolated(file):%lukB"
50658e2e 4632 " mapped:%lukB"
11fb9989
MG
4633 " dirty:%lukB"
4634 " writeback:%lukB"
4635 " shmem:%lukB"
4636#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4637 " shmem_thp: %lukB"
4638 " shmem_pmdmapped: %lukB"
4639 " anon_thp: %lukB"
4640#endif
4641 " writeback_tmp:%lukB"
4642 " unstable:%lukB"
599d0c95
MG
4643 " all_unreclaimable? %s"
4644 "\n",
4645 pgdat->node_id,
4646 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4647 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4648 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4649 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4650 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4651 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4652 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4653 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4654 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4655 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4656 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4657#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4658 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4659 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4660 * HPAGE_PMD_NR),
4661 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4662#endif
11fb9989
MG
4663 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4664 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4665 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4666 "yes" : "no");
599d0c95
MG
4667 }
4668
ee99c71c 4669 for_each_populated_zone(zone) {
1da177e4
LT
4670 int i;
4671
9af744d7 4672 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4673 continue;
d1bfcdb8
KK
4674
4675 free_pcp = 0;
4676 for_each_online_cpu(cpu)
4677 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4678
1da177e4 4679 show_node(zone);
1f84a18f
JP
4680 printk(KERN_CONT
4681 "%s"
1da177e4
LT
4682 " free:%lukB"
4683 " min:%lukB"
4684 " low:%lukB"
4685 " high:%lukB"
71c799f4
MK
4686 " active_anon:%lukB"
4687 " inactive_anon:%lukB"
4688 " active_file:%lukB"
4689 " inactive_file:%lukB"
4690 " unevictable:%lukB"
5a1c84b4 4691 " writepending:%lukB"
1da177e4 4692 " present:%lukB"
9feedc9d 4693 " managed:%lukB"
4a0aa73f 4694 " mlocked:%lukB"
c6a7f572 4695 " kernel_stack:%lukB"
4a0aa73f 4696 " pagetables:%lukB"
4a0aa73f 4697 " bounce:%lukB"
d1bfcdb8
KK
4698 " free_pcp:%lukB"
4699 " local_pcp:%ukB"
d1ce749a 4700 " free_cma:%lukB"
1da177e4
LT
4701 "\n",
4702 zone->name,
88f5acf8 4703 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4704 K(min_wmark_pages(zone)),
4705 K(low_wmark_pages(zone)),
4706 K(high_wmark_pages(zone)),
71c799f4
MK
4707 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4708 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4709 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4710 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4711 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4712 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4713 K(zone->present_pages),
9feedc9d 4714 K(zone->managed_pages),
4a0aa73f 4715 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4716 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4717 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4718 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4719 K(free_pcp),
4720 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4721 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4722 printk("lowmem_reserve[]:");
4723 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4724 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4725 printk(KERN_CONT "\n");
1da177e4
LT
4726 }
4727
ee99c71c 4728 for_each_populated_zone(zone) {
d00181b9
KS
4729 unsigned int order;
4730 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4731 unsigned char types[MAX_ORDER];
1da177e4 4732
9af744d7 4733 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4734 continue;
1da177e4 4735 show_node(zone);
1f84a18f 4736 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4737
4738 spin_lock_irqsave(&zone->lock, flags);
4739 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4740 struct free_area *area = &zone->free_area[order];
4741 int type;
4742
4743 nr[order] = area->nr_free;
8f9de51a 4744 total += nr[order] << order;
377e4f16
RV
4745
4746 types[order] = 0;
4747 for (type = 0; type < MIGRATE_TYPES; type++) {
4748 if (!list_empty(&area->free_list[type]))
4749 types[order] |= 1 << type;
4750 }
1da177e4
LT
4751 }
4752 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4753 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4754 printk(KERN_CONT "%lu*%lukB ",
4755 nr[order], K(1UL) << order);
377e4f16
RV
4756 if (nr[order])
4757 show_migration_types(types[order]);
4758 }
1f84a18f 4759 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4760 }
4761
949f7ec5
DR
4762 hugetlb_show_meminfo();
4763
11fb9989 4764 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4765
1da177e4
LT
4766 show_swap_cache_info();
4767}
4768
19770b32
MG
4769static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4770{
4771 zoneref->zone = zone;
4772 zoneref->zone_idx = zone_idx(zone);
4773}
4774
1da177e4
LT
4775/*
4776 * Builds allocation fallback zone lists.
1a93205b
CL
4777 *
4778 * Add all populated zones of a node to the zonelist.
1da177e4 4779 */
f0c0b2b8 4780static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4781 int nr_zones)
1da177e4 4782{
1a93205b 4783 struct zone *zone;
bc732f1d 4784 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4785
4786 do {
2f6726e5 4787 zone_type--;
070f8032 4788 zone = pgdat->node_zones + zone_type;
6aa303de 4789 if (managed_zone(zone)) {
dd1a239f
MG
4790 zoneref_set_zone(zone,
4791 &zonelist->_zonerefs[nr_zones++]);
070f8032 4792 check_highest_zone(zone_type);
1da177e4 4793 }
2f6726e5 4794 } while (zone_type);
bc732f1d 4795
070f8032 4796 return nr_zones;
1da177e4
LT
4797}
4798
f0c0b2b8
KH
4799
4800/*
4801 * zonelist_order:
4802 * 0 = automatic detection of better ordering.
4803 * 1 = order by ([node] distance, -zonetype)
4804 * 2 = order by (-zonetype, [node] distance)
4805 *
4806 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4807 * the same zonelist. So only NUMA can configure this param.
4808 */
4809#define ZONELIST_ORDER_DEFAULT 0
4810#define ZONELIST_ORDER_NODE 1
4811#define ZONELIST_ORDER_ZONE 2
4812
4813/* zonelist order in the kernel.
4814 * set_zonelist_order() will set this to NODE or ZONE.
4815 */
4816static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4817static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4818
4819
1da177e4 4820#ifdef CONFIG_NUMA
f0c0b2b8
KH
4821/* The value user specified ....changed by config */
4822static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4823/* string for sysctl */
4824#define NUMA_ZONELIST_ORDER_LEN 16
4825char numa_zonelist_order[16] = "default";
4826
4827/*
4828 * interface for configure zonelist ordering.
4829 * command line option "numa_zonelist_order"
4830 * = "[dD]efault - default, automatic configuration.
4831 * = "[nN]ode - order by node locality, then by zone within node
4832 * = "[zZ]one - order by zone, then by locality within zone
4833 */
4834
4835static int __parse_numa_zonelist_order(char *s)
4836{
4837 if (*s == 'd' || *s == 'D') {
4838 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4839 } else if (*s == 'n' || *s == 'N') {
4840 user_zonelist_order = ZONELIST_ORDER_NODE;
4841 } else if (*s == 'z' || *s == 'Z') {
4842 user_zonelist_order = ZONELIST_ORDER_ZONE;
4843 } else {
1170532b 4844 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4845 return -EINVAL;
4846 }
4847 return 0;
4848}
4849
4850static __init int setup_numa_zonelist_order(char *s)
4851{
ecb256f8
VL
4852 int ret;
4853
4854 if (!s)
4855 return 0;
4856
4857 ret = __parse_numa_zonelist_order(s);
4858 if (ret == 0)
4859 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4860
4861 return ret;
f0c0b2b8
KH
4862}
4863early_param("numa_zonelist_order", setup_numa_zonelist_order);
4864
4865/*
4866 * sysctl handler for numa_zonelist_order
4867 */
cccad5b9 4868int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4869 void __user *buffer, size_t *length,
f0c0b2b8
KH
4870 loff_t *ppos)
4871{
4872 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4873 int ret;
443c6f14 4874 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4875
443c6f14 4876 mutex_lock(&zl_order_mutex);
dacbde09
CG
4877 if (write) {
4878 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4879 ret = -EINVAL;
4880 goto out;
4881 }
4882 strcpy(saved_string, (char *)table->data);
4883 }
8d65af78 4884 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4885 if (ret)
443c6f14 4886 goto out;
f0c0b2b8
KH
4887 if (write) {
4888 int oldval = user_zonelist_order;
dacbde09
CG
4889
4890 ret = __parse_numa_zonelist_order((char *)table->data);
4891 if (ret) {
f0c0b2b8
KH
4892 /*
4893 * bogus value. restore saved string
4894 */
dacbde09 4895 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4896 NUMA_ZONELIST_ORDER_LEN);
4897 user_zonelist_order = oldval;
4eaf3f64 4898 } else if (oldval != user_zonelist_order) {
167d0f25 4899 mem_hotplug_begin();
4eaf3f64 4900 mutex_lock(&zonelists_mutex);
9adb62a5 4901 build_all_zonelists(NULL, NULL);
4eaf3f64 4902 mutex_unlock(&zonelists_mutex);
167d0f25 4903 mem_hotplug_done();
4eaf3f64 4904 }
f0c0b2b8 4905 }
443c6f14
AK
4906out:
4907 mutex_unlock(&zl_order_mutex);
4908 return ret;
f0c0b2b8
KH
4909}
4910
4911
62bc62a8 4912#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4913static int node_load[MAX_NUMNODES];
4914
1da177e4 4915/**
4dc3b16b 4916 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4917 * @node: node whose fallback list we're appending
4918 * @used_node_mask: nodemask_t of already used nodes
4919 *
4920 * We use a number of factors to determine which is the next node that should
4921 * appear on a given node's fallback list. The node should not have appeared
4922 * already in @node's fallback list, and it should be the next closest node
4923 * according to the distance array (which contains arbitrary distance values
4924 * from each node to each node in the system), and should also prefer nodes
4925 * with no CPUs, since presumably they'll have very little allocation pressure
4926 * on them otherwise.
4927 * It returns -1 if no node is found.
4928 */
f0c0b2b8 4929static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4930{
4cf808eb 4931 int n, val;
1da177e4 4932 int min_val = INT_MAX;
00ef2d2f 4933 int best_node = NUMA_NO_NODE;
a70f7302 4934 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4935
4cf808eb
LT
4936 /* Use the local node if we haven't already */
4937 if (!node_isset(node, *used_node_mask)) {
4938 node_set(node, *used_node_mask);
4939 return node;
4940 }
1da177e4 4941
4b0ef1fe 4942 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4943
4944 /* Don't want a node to appear more than once */
4945 if (node_isset(n, *used_node_mask))
4946 continue;
4947
1da177e4
LT
4948 /* Use the distance array to find the distance */
4949 val = node_distance(node, n);
4950
4cf808eb
LT
4951 /* Penalize nodes under us ("prefer the next node") */
4952 val += (n < node);
4953
1da177e4 4954 /* Give preference to headless and unused nodes */
a70f7302
RR
4955 tmp = cpumask_of_node(n);
4956 if (!cpumask_empty(tmp))
1da177e4
LT
4957 val += PENALTY_FOR_NODE_WITH_CPUS;
4958
4959 /* Slight preference for less loaded node */
4960 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4961 val += node_load[n];
4962
4963 if (val < min_val) {
4964 min_val = val;
4965 best_node = n;
4966 }
4967 }
4968
4969 if (best_node >= 0)
4970 node_set(best_node, *used_node_mask);
4971
4972 return best_node;
4973}
4974
f0c0b2b8
KH
4975
4976/*
4977 * Build zonelists ordered by node and zones within node.
4978 * This results in maximum locality--normal zone overflows into local
4979 * DMA zone, if any--but risks exhausting DMA zone.
4980 */
4981static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4982{
f0c0b2b8 4983 int j;
1da177e4 4984 struct zonelist *zonelist;
f0c0b2b8 4985
c9634cf0 4986 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4987 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4988 ;
bc732f1d 4989 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4990 zonelist->_zonerefs[j].zone = NULL;
4991 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4992}
4993
523b9458
CL
4994/*
4995 * Build gfp_thisnode zonelists
4996 */
4997static void build_thisnode_zonelists(pg_data_t *pgdat)
4998{
523b9458
CL
4999 int j;
5000 struct zonelist *zonelist;
5001
c9634cf0 5002 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 5003 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
5004 zonelist->_zonerefs[j].zone = NULL;
5005 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
5006}
5007
f0c0b2b8
KH
5008/*
5009 * Build zonelists ordered by zone and nodes within zones.
5010 * This results in conserving DMA zone[s] until all Normal memory is
5011 * exhausted, but results in overflowing to remote node while memory
5012 * may still exist in local DMA zone.
5013 */
5014static int node_order[MAX_NUMNODES];
5015
5016static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
5017{
f0c0b2b8
KH
5018 int pos, j, node;
5019 int zone_type; /* needs to be signed */
5020 struct zone *z;
5021 struct zonelist *zonelist;
5022
c9634cf0 5023 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
5024 pos = 0;
5025 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5026 for (j = 0; j < nr_nodes; j++) {
5027 node = node_order[j];
5028 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 5029 if (managed_zone(z)) {
dd1a239f
MG
5030 zoneref_set_zone(z,
5031 &zonelist->_zonerefs[pos++]);
54a6eb5c 5032 check_highest_zone(zone_type);
f0c0b2b8
KH
5033 }
5034 }
f0c0b2b8 5035 }
dd1a239f
MG
5036 zonelist->_zonerefs[pos].zone = NULL;
5037 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
5038}
5039
3193913c
MG
5040#if defined(CONFIG_64BIT)
5041/*
5042 * Devices that require DMA32/DMA are relatively rare and do not justify a
5043 * penalty to every machine in case the specialised case applies. Default
5044 * to Node-ordering on 64-bit NUMA machines
5045 */
5046static int default_zonelist_order(void)
5047{
5048 return ZONELIST_ORDER_NODE;
5049}
5050#else
5051/*
5052 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5053 * by the kernel. If processes running on node 0 deplete the low memory zone
5054 * then reclaim will occur more frequency increasing stalls and potentially
5055 * be easier to OOM if a large percentage of the zone is under writeback or
5056 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5057 * Hence, default to zone ordering on 32-bit.
5058 */
f0c0b2b8
KH
5059static int default_zonelist_order(void)
5060{
f0c0b2b8
KH
5061 return ZONELIST_ORDER_ZONE;
5062}
3193913c 5063#endif /* CONFIG_64BIT */
f0c0b2b8
KH
5064
5065static void set_zonelist_order(void)
5066{
5067 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5068 current_zonelist_order = default_zonelist_order();
5069 else
5070 current_zonelist_order = user_zonelist_order;
5071}
5072
5073static void build_zonelists(pg_data_t *pgdat)
5074{
c00eb15a 5075 int i, node, load;
1da177e4 5076 nodemask_t used_mask;
f0c0b2b8
KH
5077 int local_node, prev_node;
5078 struct zonelist *zonelist;
d00181b9 5079 unsigned int order = current_zonelist_order;
1da177e4
LT
5080
5081 /* initialize zonelists */
523b9458 5082 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 5083 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
5084 zonelist->_zonerefs[0].zone = NULL;
5085 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
5086 }
5087
5088 /* NUMA-aware ordering of nodes */
5089 local_node = pgdat->node_id;
62bc62a8 5090 load = nr_online_nodes;
1da177e4
LT
5091 prev_node = local_node;
5092 nodes_clear(used_mask);
f0c0b2b8 5093
f0c0b2b8 5094 memset(node_order, 0, sizeof(node_order));
c00eb15a 5095 i = 0;
f0c0b2b8 5096
1da177e4
LT
5097 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5098 /*
5099 * We don't want to pressure a particular node.
5100 * So adding penalty to the first node in same
5101 * distance group to make it round-robin.
5102 */
957f822a
DR
5103 if (node_distance(local_node, node) !=
5104 node_distance(local_node, prev_node))
f0c0b2b8
KH
5105 node_load[node] = load;
5106
1da177e4
LT
5107 prev_node = node;
5108 load--;
f0c0b2b8
KH
5109 if (order == ZONELIST_ORDER_NODE)
5110 build_zonelists_in_node_order(pgdat, node);
5111 else
c00eb15a 5112 node_order[i++] = node; /* remember order */
f0c0b2b8 5113 }
1da177e4 5114
f0c0b2b8
KH
5115 if (order == ZONELIST_ORDER_ZONE) {
5116 /* calculate node order -- i.e., DMA last! */
c00eb15a 5117 build_zonelists_in_zone_order(pgdat, i);
1da177e4 5118 }
523b9458
CL
5119
5120 build_thisnode_zonelists(pgdat);
1da177e4
LT
5121}
5122
7aac7898
LS
5123#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5124/*
5125 * Return node id of node used for "local" allocations.
5126 * I.e., first node id of first zone in arg node's generic zonelist.
5127 * Used for initializing percpu 'numa_mem', which is used primarily
5128 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5129 */
5130int local_memory_node(int node)
5131{
c33d6c06 5132 struct zoneref *z;
7aac7898 5133
c33d6c06 5134 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5135 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5136 NULL);
5137 return z->zone->node;
7aac7898
LS
5138}
5139#endif
f0c0b2b8 5140
6423aa81
JK
5141static void setup_min_unmapped_ratio(void);
5142static void setup_min_slab_ratio(void);
1da177e4
LT
5143#else /* CONFIG_NUMA */
5144
f0c0b2b8
KH
5145static void set_zonelist_order(void)
5146{
5147 current_zonelist_order = ZONELIST_ORDER_ZONE;
5148}
5149
5150static void build_zonelists(pg_data_t *pgdat)
1da177e4 5151{
19655d34 5152 int node, local_node;
54a6eb5c
MG
5153 enum zone_type j;
5154 struct zonelist *zonelist;
1da177e4
LT
5155
5156 local_node = pgdat->node_id;
1da177e4 5157
c9634cf0 5158 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5159 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5160
54a6eb5c
MG
5161 /*
5162 * Now we build the zonelist so that it contains the zones
5163 * of all the other nodes.
5164 * We don't want to pressure a particular node, so when
5165 * building the zones for node N, we make sure that the
5166 * zones coming right after the local ones are those from
5167 * node N+1 (modulo N)
5168 */
5169 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5170 if (!node_online(node))
5171 continue;
bc732f1d 5172 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5173 }
54a6eb5c
MG
5174 for (node = 0; node < local_node; node++) {
5175 if (!node_online(node))
5176 continue;
bc732f1d 5177 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5178 }
5179
dd1a239f
MG
5180 zonelist->_zonerefs[j].zone = NULL;
5181 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5182}
5183
5184#endif /* CONFIG_NUMA */
5185
99dcc3e5
CL
5186/*
5187 * Boot pageset table. One per cpu which is going to be used for all
5188 * zones and all nodes. The parameters will be set in such a way
5189 * that an item put on a list will immediately be handed over to
5190 * the buddy list. This is safe since pageset manipulation is done
5191 * with interrupts disabled.
5192 *
5193 * The boot_pagesets must be kept even after bootup is complete for
5194 * unused processors and/or zones. They do play a role for bootstrapping
5195 * hotplugged processors.
5196 *
5197 * zoneinfo_show() and maybe other functions do
5198 * not check if the processor is online before following the pageset pointer.
5199 * Other parts of the kernel may not check if the zone is available.
5200 */
5201static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5202static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5203static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
1f522509 5204static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5205
4eaf3f64
HL
5206/*
5207 * Global mutex to protect against size modification of zonelists
5208 * as well as to serialize pageset setup for the new populated zone.
5209 */
5210DEFINE_MUTEX(zonelists_mutex);
5211
9b1a4d38 5212/* return values int ....just for stop_machine() */
4ed7e022 5213static int __build_all_zonelists(void *data)
1da177e4 5214{
6811378e 5215 int nid;
99dcc3e5 5216 int cpu;
9adb62a5 5217 pg_data_t *self = data;
9276b1bc 5218
7f9cfb31
BL
5219#ifdef CONFIG_NUMA
5220 memset(node_load, 0, sizeof(node_load));
5221#endif
9adb62a5
JL
5222
5223 if (self && !node_online(self->node_id)) {
5224 build_zonelists(self);
9adb62a5
JL
5225 }
5226
9276b1bc 5227 for_each_online_node(nid) {
7ea1530a
CL
5228 pg_data_t *pgdat = NODE_DATA(nid);
5229
5230 build_zonelists(pgdat);
9276b1bc 5231 }
99dcc3e5
CL
5232
5233 /*
5234 * Initialize the boot_pagesets that are going to be used
5235 * for bootstrapping processors. The real pagesets for
5236 * each zone will be allocated later when the per cpu
5237 * allocator is available.
5238 *
5239 * boot_pagesets are used also for bootstrapping offline
5240 * cpus if the system is already booted because the pagesets
5241 * are needed to initialize allocators on a specific cpu too.
5242 * F.e. the percpu allocator needs the page allocator which
5243 * needs the percpu allocator in order to allocate its pagesets
5244 * (a chicken-egg dilemma).
5245 */
7aac7898 5246 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5247 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5248
7aac7898
LS
5249#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5250 /*
5251 * We now know the "local memory node" for each node--
5252 * i.e., the node of the first zone in the generic zonelist.
5253 * Set up numa_mem percpu variable for on-line cpus. During
5254 * boot, only the boot cpu should be on-line; we'll init the
5255 * secondary cpus' numa_mem as they come on-line. During
5256 * node/memory hotplug, we'll fixup all on-line cpus.
5257 */
5258 if (cpu_online(cpu))
5259 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5260#endif
5261 }
5262
6811378e
YG
5263 return 0;
5264}
5265
061f67bc
RV
5266static noinline void __init
5267build_all_zonelists_init(void)
5268{
5269 __build_all_zonelists(NULL);
5270 mminit_verify_zonelist();
5271 cpuset_init_current_mems_allowed();
5272}
5273
4eaf3f64
HL
5274/*
5275 * Called with zonelists_mutex held always
5276 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5277 *
5278 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5279 * [we're only called with non-NULL zone through __meminit paths] and
5280 * (2) call of __init annotated helper build_all_zonelists_init
5281 * [protected by SYSTEM_BOOTING].
4eaf3f64 5282 */
9adb62a5 5283void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5284{
f0c0b2b8
KH
5285 set_zonelist_order();
5286
6811378e 5287 if (system_state == SYSTEM_BOOTING) {
061f67bc 5288 build_all_zonelists_init();
6811378e 5289 } else {
e9959f0f 5290#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5291 if (zone)
5292 setup_zone_pageset(zone);
e9959f0f 5293#endif
dd1895e2
CS
5294 /* we have to stop all cpus to guarantee there is no user
5295 of zonelist */
3f906ba2 5296 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5297 /* cpuset refresh routine should be here */
5298 }
bd1e22b8 5299 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5300 /*
5301 * Disable grouping by mobility if the number of pages in the
5302 * system is too low to allow the mechanism to work. It would be
5303 * more accurate, but expensive to check per-zone. This check is
5304 * made on memory-hotadd so a system can start with mobility
5305 * disabled and enable it later
5306 */
d9c23400 5307 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5308 page_group_by_mobility_disabled = 1;
5309 else
5310 page_group_by_mobility_disabled = 0;
5311
756a025f
JP
5312 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5313 nr_online_nodes,
5314 zonelist_order_name[current_zonelist_order],
5315 page_group_by_mobility_disabled ? "off" : "on",
5316 vm_total_pages);
f0c0b2b8 5317#ifdef CONFIG_NUMA
f88dfff5 5318 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5319#endif
1da177e4
LT
5320}
5321
1da177e4
LT
5322/*
5323 * Initially all pages are reserved - free ones are freed
5324 * up by free_all_bootmem() once the early boot process is
5325 * done. Non-atomic initialization, single-pass.
5326 */
c09b4240 5327void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5328 unsigned long start_pfn, enum memmap_context context)
1da177e4 5329{
4b94ffdc 5330 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5331 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5332 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5333 unsigned long pfn;
3a80a7fa 5334 unsigned long nr_initialised = 0;
342332e6
TI
5335#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5336 struct memblock_region *r = NULL, *tmp;
5337#endif
1da177e4 5338
22b31eec
HD
5339 if (highest_memmap_pfn < end_pfn - 1)
5340 highest_memmap_pfn = end_pfn - 1;
5341
4b94ffdc
DW
5342 /*
5343 * Honor reservation requested by the driver for this ZONE_DEVICE
5344 * memory
5345 */
5346 if (altmap && start_pfn == altmap->base_pfn)
5347 start_pfn += altmap->reserve;
5348
cbe8dd4a 5349 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5350 /*
b72d0ffb
AM
5351 * There can be holes in boot-time mem_map[]s handed to this
5352 * function. They do not exist on hotplugged memory.
a2f3aa02 5353 */
b72d0ffb
AM
5354 if (context != MEMMAP_EARLY)
5355 goto not_early;
5356
b92df1de
PB
5357 if (!early_pfn_valid(pfn)) {
5358#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5359 /*
5360 * Skip to the pfn preceding the next valid one (or
5361 * end_pfn), such that we hit a valid pfn (or end_pfn)
5362 * on our next iteration of the loop.
5363 */
5364 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5365#endif
b72d0ffb 5366 continue;
b92df1de 5367 }
b72d0ffb
AM
5368 if (!early_pfn_in_nid(pfn, nid))
5369 continue;
5370 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5371 break;
342332e6
TI
5372
5373#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5374 /*
5375 * Check given memblock attribute by firmware which can affect
5376 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5377 * mirrored, it's an overlapped memmap init. skip it.
5378 */
5379 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5380 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5381 for_each_memblock(memory, tmp)
5382 if (pfn < memblock_region_memory_end_pfn(tmp))
5383 break;
5384 r = tmp;
5385 }
5386 if (pfn >= memblock_region_memory_base_pfn(r) &&
5387 memblock_is_mirror(r)) {
5388 /* already initialized as NORMAL */
5389 pfn = memblock_region_memory_end_pfn(r);
5390 continue;
342332e6 5391 }
a2f3aa02 5392 }
b72d0ffb 5393#endif
ac5d2539 5394
b72d0ffb 5395not_early:
ac5d2539
MG
5396 /*
5397 * Mark the block movable so that blocks are reserved for
5398 * movable at startup. This will force kernel allocations
5399 * to reserve their blocks rather than leaking throughout
5400 * the address space during boot when many long-lived
974a786e 5401 * kernel allocations are made.
ac5d2539
MG
5402 *
5403 * bitmap is created for zone's valid pfn range. but memmap
5404 * can be created for invalid pages (for alignment)
5405 * check here not to call set_pageblock_migratetype() against
5406 * pfn out of zone.
5407 */
5408 if (!(pfn & (pageblock_nr_pages - 1))) {
5409 struct page *page = pfn_to_page(pfn);
5410
5411 __init_single_page(page, pfn, zone, nid);
5412 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5413 } else {
5414 __init_single_pfn(pfn, zone, nid);
5415 }
1da177e4
LT
5416 }
5417}
5418
1e548deb 5419static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5420{
7aeb09f9 5421 unsigned int order, t;
b2a0ac88
MG
5422 for_each_migratetype_order(order, t) {
5423 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5424 zone->free_area[order].nr_free = 0;
5425 }
5426}
5427
5428#ifndef __HAVE_ARCH_MEMMAP_INIT
5429#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5430 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5431#endif
5432
7cd2b0a3 5433static int zone_batchsize(struct zone *zone)
e7c8d5c9 5434{
3a6be87f 5435#ifdef CONFIG_MMU
e7c8d5c9
CL
5436 int batch;
5437
5438 /*
5439 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5440 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5441 *
5442 * OK, so we don't know how big the cache is. So guess.
5443 */
b40da049 5444 batch = zone->managed_pages / 1024;
ba56e91c
SR
5445 if (batch * PAGE_SIZE > 512 * 1024)
5446 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5447 batch /= 4; /* We effectively *= 4 below */
5448 if (batch < 1)
5449 batch = 1;
5450
5451 /*
0ceaacc9
NP
5452 * Clamp the batch to a 2^n - 1 value. Having a power
5453 * of 2 value was found to be more likely to have
5454 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5455 *
0ceaacc9
NP
5456 * For example if 2 tasks are alternately allocating
5457 * batches of pages, one task can end up with a lot
5458 * of pages of one half of the possible page colors
5459 * and the other with pages of the other colors.
e7c8d5c9 5460 */
9155203a 5461 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5462
e7c8d5c9 5463 return batch;
3a6be87f
DH
5464
5465#else
5466 /* The deferral and batching of frees should be suppressed under NOMMU
5467 * conditions.
5468 *
5469 * The problem is that NOMMU needs to be able to allocate large chunks
5470 * of contiguous memory as there's no hardware page translation to
5471 * assemble apparent contiguous memory from discontiguous pages.
5472 *
5473 * Queueing large contiguous runs of pages for batching, however,
5474 * causes the pages to actually be freed in smaller chunks. As there
5475 * can be a significant delay between the individual batches being
5476 * recycled, this leads to the once large chunks of space being
5477 * fragmented and becoming unavailable for high-order allocations.
5478 */
5479 return 0;
5480#endif
e7c8d5c9
CL
5481}
5482
8d7a8fa9
CS
5483/*
5484 * pcp->high and pcp->batch values are related and dependent on one another:
5485 * ->batch must never be higher then ->high.
5486 * The following function updates them in a safe manner without read side
5487 * locking.
5488 *
5489 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5490 * those fields changing asynchronously (acording the the above rule).
5491 *
5492 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5493 * outside of boot time (or some other assurance that no concurrent updaters
5494 * exist).
5495 */
5496static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5497 unsigned long batch)
5498{
5499 /* start with a fail safe value for batch */
5500 pcp->batch = 1;
5501 smp_wmb();
5502
5503 /* Update high, then batch, in order */
5504 pcp->high = high;
5505 smp_wmb();
5506
5507 pcp->batch = batch;
5508}
5509
3664033c 5510/* a companion to pageset_set_high() */
4008bab7
CS
5511static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5512{
8d7a8fa9 5513 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5514}
5515
88c90dbc 5516static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5517{
5518 struct per_cpu_pages *pcp;
5f8dcc21 5519 int migratetype;
2caaad41 5520
1c6fe946
MD
5521 memset(p, 0, sizeof(*p));
5522
3dfa5721 5523 pcp = &p->pcp;
2caaad41 5524 pcp->count = 0;
5f8dcc21
MG
5525 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5526 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5527}
5528
88c90dbc
CS
5529static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5530{
5531 pageset_init(p);
5532 pageset_set_batch(p, batch);
5533}
5534
8ad4b1fb 5535/*
3664033c 5536 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5537 * to the value high for the pageset p.
5538 */
3664033c 5539static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5540 unsigned long high)
5541{
8d7a8fa9
CS
5542 unsigned long batch = max(1UL, high / 4);
5543 if ((high / 4) > (PAGE_SHIFT * 8))
5544 batch = PAGE_SHIFT * 8;
8ad4b1fb 5545
8d7a8fa9 5546 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5547}
5548
7cd2b0a3
DR
5549static void pageset_set_high_and_batch(struct zone *zone,
5550 struct per_cpu_pageset *pcp)
56cef2b8 5551{
56cef2b8 5552 if (percpu_pagelist_fraction)
3664033c 5553 pageset_set_high(pcp,
56cef2b8
CS
5554 (zone->managed_pages /
5555 percpu_pagelist_fraction));
5556 else
5557 pageset_set_batch(pcp, zone_batchsize(zone));
5558}
5559
169f6c19
CS
5560static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5561{
5562 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5563
5564 pageset_init(pcp);
5565 pageset_set_high_and_batch(zone, pcp);
5566}
5567
4ed7e022 5568static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5569{
5570 int cpu;
319774e2 5571 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5572 for_each_possible_cpu(cpu)
5573 zone_pageset_init(zone, cpu);
319774e2
WF
5574}
5575
2caaad41 5576/*
99dcc3e5
CL
5577 * Allocate per cpu pagesets and initialize them.
5578 * Before this call only boot pagesets were available.
e7c8d5c9 5579 */
99dcc3e5 5580void __init setup_per_cpu_pageset(void)
e7c8d5c9 5581{
b4911ea2 5582 struct pglist_data *pgdat;
99dcc3e5 5583 struct zone *zone;
e7c8d5c9 5584
319774e2
WF
5585 for_each_populated_zone(zone)
5586 setup_zone_pageset(zone);
b4911ea2
MG
5587
5588 for_each_online_pgdat(pgdat)
5589 pgdat->per_cpu_nodestats =
5590 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5591}
5592
c09b4240 5593static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5594{
99dcc3e5
CL
5595 /*
5596 * per cpu subsystem is not up at this point. The following code
5597 * relies on the ability of the linker to provide the
5598 * offset of a (static) per cpu variable into the per cpu area.
5599 */
5600 zone->pageset = &boot_pageset;
ed8ece2e 5601
b38a8725 5602 if (populated_zone(zone))
99dcc3e5
CL
5603 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5604 zone->name, zone->present_pages,
5605 zone_batchsize(zone));
ed8ece2e
DH
5606}
5607
dc0bbf3b 5608void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5609 unsigned long zone_start_pfn,
b171e409 5610 unsigned long size)
ed8ece2e
DH
5611{
5612 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5613
ed8ece2e
DH
5614 pgdat->nr_zones = zone_idx(zone) + 1;
5615
ed8ece2e
DH
5616 zone->zone_start_pfn = zone_start_pfn;
5617
708614e6
MG
5618 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5619 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5620 pgdat->node_id,
5621 (unsigned long)zone_idx(zone),
5622 zone_start_pfn, (zone_start_pfn + size));
5623
1e548deb 5624 zone_init_free_lists(zone);
9dcb8b68 5625 zone->initialized = 1;
ed8ece2e
DH
5626}
5627
0ee332c1 5628#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5629#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5630
c713216d
MG
5631/*
5632 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5633 */
8a942fde
MG
5634int __meminit __early_pfn_to_nid(unsigned long pfn,
5635 struct mminit_pfnnid_cache *state)
c713216d 5636{
c13291a5 5637 unsigned long start_pfn, end_pfn;
e76b63f8 5638 int nid;
7c243c71 5639
8a942fde
MG
5640 if (state->last_start <= pfn && pfn < state->last_end)
5641 return state->last_nid;
c713216d 5642
e76b63f8
YL
5643 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5644 if (nid != -1) {
8a942fde
MG
5645 state->last_start = start_pfn;
5646 state->last_end = end_pfn;
5647 state->last_nid = nid;
e76b63f8
YL
5648 }
5649
5650 return nid;
c713216d
MG
5651}
5652#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5653
c713216d 5654/**
6782832e 5655 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5656 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5657 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5658 *
7d018176
ZZ
5659 * If an architecture guarantees that all ranges registered contain no holes
5660 * and may be freed, this this function may be used instead of calling
5661 * memblock_free_early_nid() manually.
c713216d 5662 */
c13291a5 5663void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5664{
c13291a5
TH
5665 unsigned long start_pfn, end_pfn;
5666 int i, this_nid;
edbe7d23 5667
c13291a5
TH
5668 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5669 start_pfn = min(start_pfn, max_low_pfn);
5670 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5671
c13291a5 5672 if (start_pfn < end_pfn)
6782832e
SS
5673 memblock_free_early_nid(PFN_PHYS(start_pfn),
5674 (end_pfn - start_pfn) << PAGE_SHIFT,
5675 this_nid);
edbe7d23 5676 }
edbe7d23 5677}
edbe7d23 5678
c713216d
MG
5679/**
5680 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5681 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5682 *
7d018176
ZZ
5683 * If an architecture guarantees that all ranges registered contain no holes and may
5684 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5685 */
5686void __init sparse_memory_present_with_active_regions(int nid)
5687{
c13291a5
TH
5688 unsigned long start_pfn, end_pfn;
5689 int i, this_nid;
c713216d 5690
c13291a5
TH
5691 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5692 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5693}
5694
5695/**
5696 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5697 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5698 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5699 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5700 *
5701 * It returns the start and end page frame of a node based on information
7d018176 5702 * provided by memblock_set_node(). If called for a node
c713216d 5703 * with no available memory, a warning is printed and the start and end
88ca3b94 5704 * PFNs will be 0.
c713216d 5705 */
a3142c8e 5706void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5707 unsigned long *start_pfn, unsigned long *end_pfn)
5708{
c13291a5 5709 unsigned long this_start_pfn, this_end_pfn;
c713216d 5710 int i;
c13291a5 5711
c713216d
MG
5712 *start_pfn = -1UL;
5713 *end_pfn = 0;
5714
c13291a5
TH
5715 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5716 *start_pfn = min(*start_pfn, this_start_pfn);
5717 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5718 }
5719
633c0666 5720 if (*start_pfn == -1UL)
c713216d 5721 *start_pfn = 0;
c713216d
MG
5722}
5723
2a1e274a
MG
5724/*
5725 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5726 * assumption is made that zones within a node are ordered in monotonic
5727 * increasing memory addresses so that the "highest" populated zone is used
5728 */
b69a7288 5729static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5730{
5731 int zone_index;
5732 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5733 if (zone_index == ZONE_MOVABLE)
5734 continue;
5735
5736 if (arch_zone_highest_possible_pfn[zone_index] >
5737 arch_zone_lowest_possible_pfn[zone_index])
5738 break;
5739 }
5740
5741 VM_BUG_ON(zone_index == -1);
5742 movable_zone = zone_index;
5743}
5744
5745/*
5746 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5747 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5748 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5749 * in each node depending on the size of each node and how evenly kernelcore
5750 * is distributed. This helper function adjusts the zone ranges
5751 * provided by the architecture for a given node by using the end of the
5752 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5753 * zones within a node are in order of monotonic increases memory addresses
5754 */
b69a7288 5755static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5756 unsigned long zone_type,
5757 unsigned long node_start_pfn,
5758 unsigned long node_end_pfn,
5759 unsigned long *zone_start_pfn,
5760 unsigned long *zone_end_pfn)
5761{
5762 /* Only adjust if ZONE_MOVABLE is on this node */
5763 if (zone_movable_pfn[nid]) {
5764 /* Size ZONE_MOVABLE */
5765 if (zone_type == ZONE_MOVABLE) {
5766 *zone_start_pfn = zone_movable_pfn[nid];
5767 *zone_end_pfn = min(node_end_pfn,
5768 arch_zone_highest_possible_pfn[movable_zone]);
5769
e506b996
XQ
5770 /* Adjust for ZONE_MOVABLE starting within this range */
5771 } else if (!mirrored_kernelcore &&
5772 *zone_start_pfn < zone_movable_pfn[nid] &&
5773 *zone_end_pfn > zone_movable_pfn[nid]) {
5774 *zone_end_pfn = zone_movable_pfn[nid];
5775
2a1e274a
MG
5776 /* Check if this whole range is within ZONE_MOVABLE */
5777 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5778 *zone_start_pfn = *zone_end_pfn;
5779 }
5780}
5781
c713216d
MG
5782/*
5783 * Return the number of pages a zone spans in a node, including holes
5784 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5785 */
6ea6e688 5786static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5787 unsigned long zone_type,
7960aedd
ZY
5788 unsigned long node_start_pfn,
5789 unsigned long node_end_pfn,
d91749c1
TI
5790 unsigned long *zone_start_pfn,
5791 unsigned long *zone_end_pfn,
c713216d
MG
5792 unsigned long *ignored)
5793{
b5685e92 5794 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5795 if (!node_start_pfn && !node_end_pfn)
5796 return 0;
5797
7960aedd 5798 /* Get the start and end of the zone */
d91749c1
TI
5799 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5800 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5801 adjust_zone_range_for_zone_movable(nid, zone_type,
5802 node_start_pfn, node_end_pfn,
d91749c1 5803 zone_start_pfn, zone_end_pfn);
c713216d
MG
5804
5805 /* Check that this node has pages within the zone's required range */
d91749c1 5806 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5807 return 0;
5808
5809 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5810 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5811 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5812
5813 /* Return the spanned pages */
d91749c1 5814 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5815}
5816
5817/*
5818 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5819 * then all holes in the requested range will be accounted for.
c713216d 5820 */
32996250 5821unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5822 unsigned long range_start_pfn,
5823 unsigned long range_end_pfn)
5824{
96e907d1
TH
5825 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5826 unsigned long start_pfn, end_pfn;
5827 int i;
c713216d 5828
96e907d1
TH
5829 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5830 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5831 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5832 nr_absent -= end_pfn - start_pfn;
c713216d 5833 }
96e907d1 5834 return nr_absent;
c713216d
MG
5835}
5836
5837/**
5838 * absent_pages_in_range - Return number of page frames in holes within a range
5839 * @start_pfn: The start PFN to start searching for holes
5840 * @end_pfn: The end PFN to stop searching for holes
5841 *
88ca3b94 5842 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5843 */
5844unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5845 unsigned long end_pfn)
5846{
5847 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5848}
5849
5850/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5851static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5852 unsigned long zone_type,
7960aedd
ZY
5853 unsigned long node_start_pfn,
5854 unsigned long node_end_pfn,
c713216d
MG
5855 unsigned long *ignored)
5856{
96e907d1
TH
5857 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5858 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5859 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5860 unsigned long nr_absent;
9c7cd687 5861
b5685e92 5862 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5863 if (!node_start_pfn && !node_end_pfn)
5864 return 0;
5865
96e907d1
TH
5866 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5867 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5868
2a1e274a
MG
5869 adjust_zone_range_for_zone_movable(nid, zone_type,
5870 node_start_pfn, node_end_pfn,
5871 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5872 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5873
5874 /*
5875 * ZONE_MOVABLE handling.
5876 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5877 * and vice versa.
5878 */
e506b996
XQ
5879 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5880 unsigned long start_pfn, end_pfn;
5881 struct memblock_region *r;
5882
5883 for_each_memblock(memory, r) {
5884 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5885 zone_start_pfn, zone_end_pfn);
5886 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5887 zone_start_pfn, zone_end_pfn);
5888
5889 if (zone_type == ZONE_MOVABLE &&
5890 memblock_is_mirror(r))
5891 nr_absent += end_pfn - start_pfn;
5892
5893 if (zone_type == ZONE_NORMAL &&
5894 !memblock_is_mirror(r))
5895 nr_absent += end_pfn - start_pfn;
342332e6
TI
5896 }
5897 }
5898
5899 return nr_absent;
c713216d 5900}
0e0b864e 5901
0ee332c1 5902#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5903static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5904 unsigned long zone_type,
7960aedd
ZY
5905 unsigned long node_start_pfn,
5906 unsigned long node_end_pfn,
d91749c1
TI
5907 unsigned long *zone_start_pfn,
5908 unsigned long *zone_end_pfn,
c713216d
MG
5909 unsigned long *zones_size)
5910{
d91749c1
TI
5911 unsigned int zone;
5912
5913 *zone_start_pfn = node_start_pfn;
5914 for (zone = 0; zone < zone_type; zone++)
5915 *zone_start_pfn += zones_size[zone];
5916
5917 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5918
c713216d
MG
5919 return zones_size[zone_type];
5920}
5921
6ea6e688 5922static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5923 unsigned long zone_type,
7960aedd
ZY
5924 unsigned long node_start_pfn,
5925 unsigned long node_end_pfn,
c713216d
MG
5926 unsigned long *zholes_size)
5927{
5928 if (!zholes_size)
5929 return 0;
5930
5931 return zholes_size[zone_type];
5932}
20e6926d 5933
0ee332c1 5934#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5935
a3142c8e 5936static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5937 unsigned long node_start_pfn,
5938 unsigned long node_end_pfn,
5939 unsigned long *zones_size,
5940 unsigned long *zholes_size)
c713216d 5941{
febd5949 5942 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5943 enum zone_type i;
5944
febd5949
GZ
5945 for (i = 0; i < MAX_NR_ZONES; i++) {
5946 struct zone *zone = pgdat->node_zones + i;
d91749c1 5947 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5948 unsigned long size, real_size;
c713216d 5949
febd5949
GZ
5950 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5951 node_start_pfn,
5952 node_end_pfn,
d91749c1
TI
5953 &zone_start_pfn,
5954 &zone_end_pfn,
febd5949
GZ
5955 zones_size);
5956 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5957 node_start_pfn, node_end_pfn,
5958 zholes_size);
d91749c1
TI
5959 if (size)
5960 zone->zone_start_pfn = zone_start_pfn;
5961 else
5962 zone->zone_start_pfn = 0;
febd5949
GZ
5963 zone->spanned_pages = size;
5964 zone->present_pages = real_size;
5965
5966 totalpages += size;
5967 realtotalpages += real_size;
5968 }
5969
5970 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5971 pgdat->node_present_pages = realtotalpages;
5972 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5973 realtotalpages);
5974}
5975
835c134e
MG
5976#ifndef CONFIG_SPARSEMEM
5977/*
5978 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5979 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5980 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5981 * round what is now in bits to nearest long in bits, then return it in
5982 * bytes.
5983 */
7c45512d 5984static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5985{
5986 unsigned long usemapsize;
5987
7c45512d 5988 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5989 usemapsize = roundup(zonesize, pageblock_nr_pages);
5990 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5991 usemapsize *= NR_PAGEBLOCK_BITS;
5992 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5993
5994 return usemapsize / 8;
5995}
5996
5997static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5998 struct zone *zone,
5999 unsigned long zone_start_pfn,
6000 unsigned long zonesize)
835c134e 6001{
7c45512d 6002 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6003 zone->pageblock_flags = NULL;
58a01a45 6004 if (usemapsize)
6782832e
SS
6005 zone->pageblock_flags =
6006 memblock_virt_alloc_node_nopanic(usemapsize,
6007 pgdat->node_id);
835c134e
MG
6008}
6009#else
7c45512d
LT
6010static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6011 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6012#endif /* CONFIG_SPARSEMEM */
6013
d9c23400 6014#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6015
d9c23400 6016/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6017void __paginginit set_pageblock_order(void)
d9c23400 6018{
955c1cd7
AM
6019 unsigned int order;
6020
d9c23400
MG
6021 /* Check that pageblock_nr_pages has not already been setup */
6022 if (pageblock_order)
6023 return;
6024
955c1cd7
AM
6025 if (HPAGE_SHIFT > PAGE_SHIFT)
6026 order = HUGETLB_PAGE_ORDER;
6027 else
6028 order = MAX_ORDER - 1;
6029
d9c23400
MG
6030 /*
6031 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6032 * This value may be variable depending on boot parameters on IA64 and
6033 * powerpc.
d9c23400
MG
6034 */
6035 pageblock_order = order;
6036}
6037#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6038
ba72cb8c
MG
6039/*
6040 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6041 * is unused as pageblock_order is set at compile-time. See
6042 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6043 * the kernel config
ba72cb8c 6044 */
15ca220e 6045void __paginginit set_pageblock_order(void)
ba72cb8c 6046{
ba72cb8c 6047}
d9c23400
MG
6048
6049#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6050
01cefaef
JL
6051static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6052 unsigned long present_pages)
6053{
6054 unsigned long pages = spanned_pages;
6055
6056 /*
6057 * Provide a more accurate estimation if there are holes within
6058 * the zone and SPARSEMEM is in use. If there are holes within the
6059 * zone, each populated memory region may cost us one or two extra
6060 * memmap pages due to alignment because memmap pages for each
89d790ab 6061 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6062 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6063 */
6064 if (spanned_pages > present_pages + (present_pages >> 4) &&
6065 IS_ENABLED(CONFIG_SPARSEMEM))
6066 pages = present_pages;
6067
6068 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6069}
6070
1da177e4
LT
6071/*
6072 * Set up the zone data structures:
6073 * - mark all pages reserved
6074 * - mark all memory queues empty
6075 * - clear the memory bitmaps
6527af5d
MK
6076 *
6077 * NOTE: pgdat should get zeroed by caller.
1da177e4 6078 */
7f3eb55b 6079static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6080{
2f1b6248 6081 enum zone_type j;
ed8ece2e 6082 int nid = pgdat->node_id;
1da177e4 6083
208d54e5 6084 pgdat_resize_init(pgdat);
8177a420
AA
6085#ifdef CONFIG_NUMA_BALANCING
6086 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6087 pgdat->numabalancing_migrate_nr_pages = 0;
6088 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6089#endif
6090#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6091 spin_lock_init(&pgdat->split_queue_lock);
6092 INIT_LIST_HEAD(&pgdat->split_queue);
6093 pgdat->split_queue_len = 0;
8177a420 6094#endif
1da177e4 6095 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6096 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6097#ifdef CONFIG_COMPACTION
6098 init_waitqueue_head(&pgdat->kcompactd_wait);
6099#endif
eefa864b 6100 pgdat_page_ext_init(pgdat);
a52633d8 6101 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6102 lruvec_init(node_lruvec(pgdat));
5f63b720 6103
385386cf
JW
6104 pgdat->per_cpu_nodestats = &boot_nodestats;
6105
1da177e4
LT
6106 for (j = 0; j < MAX_NR_ZONES; j++) {
6107 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6108 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6109 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6110
febd5949
GZ
6111 size = zone->spanned_pages;
6112 realsize = freesize = zone->present_pages;
1da177e4 6113
0e0b864e 6114 /*
9feedc9d 6115 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6116 * is used by this zone for memmap. This affects the watermark
6117 * and per-cpu initialisations
6118 */
01cefaef 6119 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6120 if (!is_highmem_idx(j)) {
6121 if (freesize >= memmap_pages) {
6122 freesize -= memmap_pages;
6123 if (memmap_pages)
6124 printk(KERN_DEBUG
6125 " %s zone: %lu pages used for memmap\n",
6126 zone_names[j], memmap_pages);
6127 } else
1170532b 6128 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6129 zone_names[j], memmap_pages, freesize);
6130 }
0e0b864e 6131
6267276f 6132 /* Account for reserved pages */
9feedc9d
JL
6133 if (j == 0 && freesize > dma_reserve) {
6134 freesize -= dma_reserve;
d903ef9f 6135 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6136 zone_names[0], dma_reserve);
0e0b864e
MG
6137 }
6138
98d2b0eb 6139 if (!is_highmem_idx(j))
9feedc9d 6140 nr_kernel_pages += freesize;
01cefaef
JL
6141 /* Charge for highmem memmap if there are enough kernel pages */
6142 else if (nr_kernel_pages > memmap_pages * 2)
6143 nr_kernel_pages -= memmap_pages;
9feedc9d 6144 nr_all_pages += freesize;
1da177e4 6145
9feedc9d
JL
6146 /*
6147 * Set an approximate value for lowmem here, it will be adjusted
6148 * when the bootmem allocator frees pages into the buddy system.
6149 * And all highmem pages will be managed by the buddy system.
6150 */
6151 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6152#ifdef CONFIG_NUMA
d5f541ed 6153 zone->node = nid;
9614634f 6154#endif
1da177e4 6155 zone->name = zone_names[j];
a52633d8 6156 zone->zone_pgdat = pgdat;
1da177e4 6157 spin_lock_init(&zone->lock);
bdc8cb98 6158 zone_seqlock_init(zone);
ed8ece2e 6159 zone_pcp_init(zone);
81c0a2bb 6160
1da177e4
LT
6161 if (!size)
6162 continue;
6163
955c1cd7 6164 set_pageblock_order();
7c45512d 6165 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6166 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6167 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6168 }
6169}
6170
bd721ea7 6171static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6172{
b0aeba74 6173 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6174 unsigned long __maybe_unused offset = 0;
6175
1da177e4
LT
6176 /* Skip empty nodes */
6177 if (!pgdat->node_spanned_pages)
6178 return;
6179
d41dee36 6180#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6181 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6182 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6183 /* ia64 gets its own node_mem_map, before this, without bootmem */
6184 if (!pgdat->node_mem_map) {
b0aeba74 6185 unsigned long size, end;
d41dee36
AW
6186 struct page *map;
6187
e984bb43
BP
6188 /*
6189 * The zone's endpoints aren't required to be MAX_ORDER
6190 * aligned but the node_mem_map endpoints must be in order
6191 * for the buddy allocator to function correctly.
6192 */
108bcc96 6193 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6194 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6195 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6196 map = alloc_remap(pgdat->node_id, size);
6197 if (!map)
6782832e
SS
6198 map = memblock_virt_alloc_node_nopanic(size,
6199 pgdat->node_id);
a1c34a3b 6200 pgdat->node_mem_map = map + offset;
1da177e4 6201 }
12d810c1 6202#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6203 /*
6204 * With no DISCONTIG, the global mem_map is just set as node 0's
6205 */
c713216d 6206 if (pgdat == NODE_DATA(0)) {
1da177e4 6207 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6208#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6209 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6210 mem_map -= offset;
0ee332c1 6211#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6212 }
1da177e4 6213#endif
d41dee36 6214#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6215}
6216
9109fb7b
JW
6217void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6218 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6219{
9109fb7b 6220 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6221 unsigned long start_pfn = 0;
6222 unsigned long end_pfn = 0;
9109fb7b 6223
88fdf75d 6224 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6225 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6226
1da177e4
LT
6227 pgdat->node_id = nid;
6228 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6229 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6230#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6231 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6232 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6233 (u64)start_pfn << PAGE_SHIFT,
6234 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6235#else
6236 start_pfn = node_start_pfn;
7960aedd
ZY
6237#endif
6238 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6239 zones_size, zholes_size);
1da177e4
LT
6240
6241 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6242#ifdef CONFIG_FLAT_NODE_MEM_MAP
6243 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6244 nid, (unsigned long)pgdat,
6245 (unsigned long)pgdat->node_mem_map);
6246#endif
1da177e4 6247
864b9a39 6248 reset_deferred_meminit(pgdat);
7f3eb55b 6249 free_area_init_core(pgdat);
1da177e4
LT
6250}
6251
0ee332c1 6252#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6253
6254#if MAX_NUMNODES > 1
6255/*
6256 * Figure out the number of possible node ids.
6257 */
f9872caf 6258void __init setup_nr_node_ids(void)
418508c1 6259{
904a9553 6260 unsigned int highest;
418508c1 6261
904a9553 6262 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6263 nr_node_ids = highest + 1;
6264}
418508c1
MS
6265#endif
6266
1e01979c
TH
6267/**
6268 * node_map_pfn_alignment - determine the maximum internode alignment
6269 *
6270 * This function should be called after node map is populated and sorted.
6271 * It calculates the maximum power of two alignment which can distinguish
6272 * all the nodes.
6273 *
6274 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6275 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6276 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6277 * shifted, 1GiB is enough and this function will indicate so.
6278 *
6279 * This is used to test whether pfn -> nid mapping of the chosen memory
6280 * model has fine enough granularity to avoid incorrect mapping for the
6281 * populated node map.
6282 *
6283 * Returns the determined alignment in pfn's. 0 if there is no alignment
6284 * requirement (single node).
6285 */
6286unsigned long __init node_map_pfn_alignment(void)
6287{
6288 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6289 unsigned long start, end, mask;
1e01979c 6290 int last_nid = -1;
c13291a5 6291 int i, nid;
1e01979c 6292
c13291a5 6293 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6294 if (!start || last_nid < 0 || last_nid == nid) {
6295 last_nid = nid;
6296 last_end = end;
6297 continue;
6298 }
6299
6300 /*
6301 * Start with a mask granular enough to pin-point to the
6302 * start pfn and tick off bits one-by-one until it becomes
6303 * too coarse to separate the current node from the last.
6304 */
6305 mask = ~((1 << __ffs(start)) - 1);
6306 while (mask && last_end <= (start & (mask << 1)))
6307 mask <<= 1;
6308
6309 /* accumulate all internode masks */
6310 accl_mask |= mask;
6311 }
6312
6313 /* convert mask to number of pages */
6314 return ~accl_mask + 1;
6315}
6316
a6af2bc3 6317/* Find the lowest pfn for a node */
b69a7288 6318static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6319{
a6af2bc3 6320 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6321 unsigned long start_pfn;
6322 int i;
1abbfb41 6323
c13291a5
TH
6324 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6325 min_pfn = min(min_pfn, start_pfn);
c713216d 6326
a6af2bc3 6327 if (min_pfn == ULONG_MAX) {
1170532b 6328 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6329 return 0;
6330 }
6331
6332 return min_pfn;
c713216d
MG
6333}
6334
6335/**
6336 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6337 *
6338 * It returns the minimum PFN based on information provided via
7d018176 6339 * memblock_set_node().
c713216d
MG
6340 */
6341unsigned long __init find_min_pfn_with_active_regions(void)
6342{
6343 return find_min_pfn_for_node(MAX_NUMNODES);
6344}
6345
37b07e41
LS
6346/*
6347 * early_calculate_totalpages()
6348 * Sum pages in active regions for movable zone.
4b0ef1fe 6349 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6350 */
484f51f8 6351static unsigned long __init early_calculate_totalpages(void)
7e63efef 6352{
7e63efef 6353 unsigned long totalpages = 0;
c13291a5
TH
6354 unsigned long start_pfn, end_pfn;
6355 int i, nid;
6356
6357 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6358 unsigned long pages = end_pfn - start_pfn;
7e63efef 6359
37b07e41
LS
6360 totalpages += pages;
6361 if (pages)
4b0ef1fe 6362 node_set_state(nid, N_MEMORY);
37b07e41 6363 }
b8af2941 6364 return totalpages;
7e63efef
MG
6365}
6366
2a1e274a
MG
6367/*
6368 * Find the PFN the Movable zone begins in each node. Kernel memory
6369 * is spread evenly between nodes as long as the nodes have enough
6370 * memory. When they don't, some nodes will have more kernelcore than
6371 * others
6372 */
b224ef85 6373static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6374{
6375 int i, nid;
6376 unsigned long usable_startpfn;
6377 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6378 /* save the state before borrow the nodemask */
4b0ef1fe 6379 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6380 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6381 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6382 struct memblock_region *r;
b2f3eebe
TC
6383
6384 /* Need to find movable_zone earlier when movable_node is specified. */
6385 find_usable_zone_for_movable();
6386
6387 /*
6388 * If movable_node is specified, ignore kernelcore and movablecore
6389 * options.
6390 */
6391 if (movable_node_is_enabled()) {
136199f0
EM
6392 for_each_memblock(memory, r) {
6393 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6394 continue;
6395
136199f0 6396 nid = r->nid;
b2f3eebe 6397
136199f0 6398 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6399 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6400 min(usable_startpfn, zone_movable_pfn[nid]) :
6401 usable_startpfn;
6402 }
6403
6404 goto out2;
6405 }
2a1e274a 6406
342332e6
TI
6407 /*
6408 * If kernelcore=mirror is specified, ignore movablecore option
6409 */
6410 if (mirrored_kernelcore) {
6411 bool mem_below_4gb_not_mirrored = false;
6412
6413 for_each_memblock(memory, r) {
6414 if (memblock_is_mirror(r))
6415 continue;
6416
6417 nid = r->nid;
6418
6419 usable_startpfn = memblock_region_memory_base_pfn(r);
6420
6421 if (usable_startpfn < 0x100000) {
6422 mem_below_4gb_not_mirrored = true;
6423 continue;
6424 }
6425
6426 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6427 min(usable_startpfn, zone_movable_pfn[nid]) :
6428 usable_startpfn;
6429 }
6430
6431 if (mem_below_4gb_not_mirrored)
6432 pr_warn("This configuration results in unmirrored kernel memory.");
6433
6434 goto out2;
6435 }
6436
7e63efef 6437 /*
b2f3eebe 6438 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6439 * kernelcore that corresponds so that memory usable for
6440 * any allocation type is evenly spread. If both kernelcore
6441 * and movablecore are specified, then the value of kernelcore
6442 * will be used for required_kernelcore if it's greater than
6443 * what movablecore would have allowed.
6444 */
6445 if (required_movablecore) {
7e63efef
MG
6446 unsigned long corepages;
6447
6448 /*
6449 * Round-up so that ZONE_MOVABLE is at least as large as what
6450 * was requested by the user
6451 */
6452 required_movablecore =
6453 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6454 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6455 corepages = totalpages - required_movablecore;
6456
6457 required_kernelcore = max(required_kernelcore, corepages);
6458 }
6459
bde304bd
XQ
6460 /*
6461 * If kernelcore was not specified or kernelcore size is larger
6462 * than totalpages, there is no ZONE_MOVABLE.
6463 */
6464 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6465 goto out;
2a1e274a
MG
6466
6467 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6468 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6469
6470restart:
6471 /* Spread kernelcore memory as evenly as possible throughout nodes */
6472 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6473 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6474 unsigned long start_pfn, end_pfn;
6475
2a1e274a
MG
6476 /*
6477 * Recalculate kernelcore_node if the division per node
6478 * now exceeds what is necessary to satisfy the requested
6479 * amount of memory for the kernel
6480 */
6481 if (required_kernelcore < kernelcore_node)
6482 kernelcore_node = required_kernelcore / usable_nodes;
6483
6484 /*
6485 * As the map is walked, we track how much memory is usable
6486 * by the kernel using kernelcore_remaining. When it is
6487 * 0, the rest of the node is usable by ZONE_MOVABLE
6488 */
6489 kernelcore_remaining = kernelcore_node;
6490
6491 /* Go through each range of PFNs within this node */
c13291a5 6492 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6493 unsigned long size_pages;
6494
c13291a5 6495 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6496 if (start_pfn >= end_pfn)
6497 continue;
6498
6499 /* Account for what is only usable for kernelcore */
6500 if (start_pfn < usable_startpfn) {
6501 unsigned long kernel_pages;
6502 kernel_pages = min(end_pfn, usable_startpfn)
6503 - start_pfn;
6504
6505 kernelcore_remaining -= min(kernel_pages,
6506 kernelcore_remaining);
6507 required_kernelcore -= min(kernel_pages,
6508 required_kernelcore);
6509
6510 /* Continue if range is now fully accounted */
6511 if (end_pfn <= usable_startpfn) {
6512
6513 /*
6514 * Push zone_movable_pfn to the end so
6515 * that if we have to rebalance
6516 * kernelcore across nodes, we will
6517 * not double account here
6518 */
6519 zone_movable_pfn[nid] = end_pfn;
6520 continue;
6521 }
6522 start_pfn = usable_startpfn;
6523 }
6524
6525 /*
6526 * The usable PFN range for ZONE_MOVABLE is from
6527 * start_pfn->end_pfn. Calculate size_pages as the
6528 * number of pages used as kernelcore
6529 */
6530 size_pages = end_pfn - start_pfn;
6531 if (size_pages > kernelcore_remaining)
6532 size_pages = kernelcore_remaining;
6533 zone_movable_pfn[nid] = start_pfn + size_pages;
6534
6535 /*
6536 * Some kernelcore has been met, update counts and
6537 * break if the kernelcore for this node has been
b8af2941 6538 * satisfied
2a1e274a
MG
6539 */
6540 required_kernelcore -= min(required_kernelcore,
6541 size_pages);
6542 kernelcore_remaining -= size_pages;
6543 if (!kernelcore_remaining)
6544 break;
6545 }
6546 }
6547
6548 /*
6549 * If there is still required_kernelcore, we do another pass with one
6550 * less node in the count. This will push zone_movable_pfn[nid] further
6551 * along on the nodes that still have memory until kernelcore is
b8af2941 6552 * satisfied
2a1e274a
MG
6553 */
6554 usable_nodes--;
6555 if (usable_nodes && required_kernelcore > usable_nodes)
6556 goto restart;
6557
b2f3eebe 6558out2:
2a1e274a
MG
6559 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6560 for (nid = 0; nid < MAX_NUMNODES; nid++)
6561 zone_movable_pfn[nid] =
6562 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6563
20e6926d 6564out:
66918dcd 6565 /* restore the node_state */
4b0ef1fe 6566 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6567}
6568
4b0ef1fe
LJ
6569/* Any regular or high memory on that node ? */
6570static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6571{
37b07e41
LS
6572 enum zone_type zone_type;
6573
4b0ef1fe
LJ
6574 if (N_MEMORY == N_NORMAL_MEMORY)
6575 return;
6576
6577 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6578 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6579 if (populated_zone(zone)) {
4b0ef1fe
LJ
6580 node_set_state(nid, N_HIGH_MEMORY);
6581 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6582 zone_type <= ZONE_NORMAL)
6583 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6584 break;
6585 }
37b07e41 6586 }
37b07e41
LS
6587}
6588
c713216d
MG
6589/**
6590 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6591 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6592 *
6593 * This will call free_area_init_node() for each active node in the system.
7d018176 6594 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6595 * zone in each node and their holes is calculated. If the maximum PFN
6596 * between two adjacent zones match, it is assumed that the zone is empty.
6597 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6598 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6599 * starts where the previous one ended. For example, ZONE_DMA32 starts
6600 * at arch_max_dma_pfn.
6601 */
6602void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6603{
c13291a5
TH
6604 unsigned long start_pfn, end_pfn;
6605 int i, nid;
a6af2bc3 6606
c713216d
MG
6607 /* Record where the zone boundaries are */
6608 memset(arch_zone_lowest_possible_pfn, 0,
6609 sizeof(arch_zone_lowest_possible_pfn));
6610 memset(arch_zone_highest_possible_pfn, 0,
6611 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6612
6613 start_pfn = find_min_pfn_with_active_regions();
6614
6615 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6616 if (i == ZONE_MOVABLE)
6617 continue;
90cae1fe
OH
6618
6619 end_pfn = max(max_zone_pfn[i], start_pfn);
6620 arch_zone_lowest_possible_pfn[i] = start_pfn;
6621 arch_zone_highest_possible_pfn[i] = end_pfn;
6622
6623 start_pfn = end_pfn;
c713216d 6624 }
2a1e274a
MG
6625
6626 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6627 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6628 find_zone_movable_pfns_for_nodes();
c713216d 6629
c713216d 6630 /* Print out the zone ranges */
f88dfff5 6631 pr_info("Zone ranges:\n");
2a1e274a
MG
6632 for (i = 0; i < MAX_NR_ZONES; i++) {
6633 if (i == ZONE_MOVABLE)
6634 continue;
f88dfff5 6635 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6636 if (arch_zone_lowest_possible_pfn[i] ==
6637 arch_zone_highest_possible_pfn[i])
f88dfff5 6638 pr_cont("empty\n");
72f0ba02 6639 else
8d29e18a
JG
6640 pr_cont("[mem %#018Lx-%#018Lx]\n",
6641 (u64)arch_zone_lowest_possible_pfn[i]
6642 << PAGE_SHIFT,
6643 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6644 << PAGE_SHIFT) - 1);
2a1e274a
MG
6645 }
6646
6647 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6648 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6649 for (i = 0; i < MAX_NUMNODES; i++) {
6650 if (zone_movable_pfn[i])
8d29e18a
JG
6651 pr_info(" Node %d: %#018Lx\n", i,
6652 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6653 }
c713216d 6654
f2d52fe5 6655 /* Print out the early node map */
f88dfff5 6656 pr_info("Early memory node ranges\n");
c13291a5 6657 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6658 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6659 (u64)start_pfn << PAGE_SHIFT,
6660 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6661
6662 /* Initialise every node */
708614e6 6663 mminit_verify_pageflags_layout();
8ef82866 6664 setup_nr_node_ids();
c713216d
MG
6665 for_each_online_node(nid) {
6666 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6667 free_area_init_node(nid, NULL,
c713216d 6668 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6669
6670 /* Any memory on that node */
6671 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6672 node_set_state(nid, N_MEMORY);
6673 check_for_memory(pgdat, nid);
c713216d
MG
6674 }
6675}
2a1e274a 6676
7e63efef 6677static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6678{
6679 unsigned long long coremem;
6680 if (!p)
6681 return -EINVAL;
6682
6683 coremem = memparse(p, &p);
7e63efef 6684 *core = coremem >> PAGE_SHIFT;
2a1e274a 6685
7e63efef 6686 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6687 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6688
6689 return 0;
6690}
ed7ed365 6691
7e63efef
MG
6692/*
6693 * kernelcore=size sets the amount of memory for use for allocations that
6694 * cannot be reclaimed or migrated.
6695 */
6696static int __init cmdline_parse_kernelcore(char *p)
6697{
342332e6
TI
6698 /* parse kernelcore=mirror */
6699 if (parse_option_str(p, "mirror")) {
6700 mirrored_kernelcore = true;
6701 return 0;
6702 }
6703
7e63efef
MG
6704 return cmdline_parse_core(p, &required_kernelcore);
6705}
6706
6707/*
6708 * movablecore=size sets the amount of memory for use for allocations that
6709 * can be reclaimed or migrated.
6710 */
6711static int __init cmdline_parse_movablecore(char *p)
6712{
6713 return cmdline_parse_core(p, &required_movablecore);
6714}
6715
ed7ed365 6716early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6717early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6718
0ee332c1 6719#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6720
c3d5f5f0
JL
6721void adjust_managed_page_count(struct page *page, long count)
6722{
6723 spin_lock(&managed_page_count_lock);
6724 page_zone(page)->managed_pages += count;
6725 totalram_pages += count;
3dcc0571
JL
6726#ifdef CONFIG_HIGHMEM
6727 if (PageHighMem(page))
6728 totalhigh_pages += count;
6729#endif
c3d5f5f0
JL
6730 spin_unlock(&managed_page_count_lock);
6731}
3dcc0571 6732EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6733
11199692 6734unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6735{
11199692
JL
6736 void *pos;
6737 unsigned long pages = 0;
69afade7 6738
11199692
JL
6739 start = (void *)PAGE_ALIGN((unsigned long)start);
6740 end = (void *)((unsigned long)end & PAGE_MASK);
6741 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6742 if ((unsigned int)poison <= 0xFF)
11199692
JL
6743 memset(pos, poison, PAGE_SIZE);
6744 free_reserved_page(virt_to_page(pos));
69afade7
JL
6745 }
6746
6747 if (pages && s)
adb1fe9a
JP
6748 pr_info("Freeing %s memory: %ldK\n",
6749 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6750
6751 return pages;
6752}
11199692 6753EXPORT_SYMBOL(free_reserved_area);
69afade7 6754
cfa11e08
JL
6755#ifdef CONFIG_HIGHMEM
6756void free_highmem_page(struct page *page)
6757{
6758 __free_reserved_page(page);
6759 totalram_pages++;
7b4b2a0d 6760 page_zone(page)->managed_pages++;
cfa11e08
JL
6761 totalhigh_pages++;
6762}
6763#endif
6764
7ee3d4e8
JL
6765
6766void __init mem_init_print_info(const char *str)
6767{
6768 unsigned long physpages, codesize, datasize, rosize, bss_size;
6769 unsigned long init_code_size, init_data_size;
6770
6771 physpages = get_num_physpages();
6772 codesize = _etext - _stext;
6773 datasize = _edata - _sdata;
6774 rosize = __end_rodata - __start_rodata;
6775 bss_size = __bss_stop - __bss_start;
6776 init_data_size = __init_end - __init_begin;
6777 init_code_size = _einittext - _sinittext;
6778
6779 /*
6780 * Detect special cases and adjust section sizes accordingly:
6781 * 1) .init.* may be embedded into .data sections
6782 * 2) .init.text.* may be out of [__init_begin, __init_end],
6783 * please refer to arch/tile/kernel/vmlinux.lds.S.
6784 * 3) .rodata.* may be embedded into .text or .data sections.
6785 */
6786#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6787 do { \
6788 if (start <= pos && pos < end && size > adj) \
6789 size -= adj; \
6790 } while (0)
7ee3d4e8
JL
6791
6792 adj_init_size(__init_begin, __init_end, init_data_size,
6793 _sinittext, init_code_size);
6794 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6795 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6796 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6797 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6798
6799#undef adj_init_size
6800
756a025f 6801 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6802#ifdef CONFIG_HIGHMEM
756a025f 6803 ", %luK highmem"
7ee3d4e8 6804#endif
756a025f
JP
6805 "%s%s)\n",
6806 nr_free_pages() << (PAGE_SHIFT - 10),
6807 physpages << (PAGE_SHIFT - 10),
6808 codesize >> 10, datasize >> 10, rosize >> 10,
6809 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6810 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6811 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6812#ifdef CONFIG_HIGHMEM
756a025f 6813 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6814#endif
756a025f 6815 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6816}
6817
0e0b864e 6818/**
88ca3b94
RD
6819 * set_dma_reserve - set the specified number of pages reserved in the first zone
6820 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6821 *
013110a7 6822 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6823 * In the DMA zone, a significant percentage may be consumed by kernel image
6824 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6825 * function may optionally be used to account for unfreeable pages in the
6826 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6827 * smaller per-cpu batchsize.
0e0b864e
MG
6828 */
6829void __init set_dma_reserve(unsigned long new_dma_reserve)
6830{
6831 dma_reserve = new_dma_reserve;
6832}
6833
1da177e4
LT
6834void __init free_area_init(unsigned long *zones_size)
6835{
9109fb7b 6836 free_area_init_node(0, zones_size,
1da177e4
LT
6837 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6838}
1da177e4 6839
005fd4bb 6840static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6841{
1da177e4 6842
005fd4bb
SAS
6843 lru_add_drain_cpu(cpu);
6844 drain_pages(cpu);
9f8f2172 6845
005fd4bb
SAS
6846 /*
6847 * Spill the event counters of the dead processor
6848 * into the current processors event counters.
6849 * This artificially elevates the count of the current
6850 * processor.
6851 */
6852 vm_events_fold_cpu(cpu);
9f8f2172 6853
005fd4bb
SAS
6854 /*
6855 * Zero the differential counters of the dead processor
6856 * so that the vm statistics are consistent.
6857 *
6858 * This is only okay since the processor is dead and cannot
6859 * race with what we are doing.
6860 */
6861 cpu_vm_stats_fold(cpu);
6862 return 0;
1da177e4 6863}
1da177e4
LT
6864
6865void __init page_alloc_init(void)
6866{
005fd4bb
SAS
6867 int ret;
6868
6869 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6870 "mm/page_alloc:dead", NULL,
6871 page_alloc_cpu_dead);
6872 WARN_ON(ret < 0);
1da177e4
LT
6873}
6874
cb45b0e9 6875/*
34b10060 6876 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6877 * or min_free_kbytes changes.
6878 */
6879static void calculate_totalreserve_pages(void)
6880{
6881 struct pglist_data *pgdat;
6882 unsigned long reserve_pages = 0;
2f6726e5 6883 enum zone_type i, j;
cb45b0e9
HA
6884
6885 for_each_online_pgdat(pgdat) {
281e3726
MG
6886
6887 pgdat->totalreserve_pages = 0;
6888
cb45b0e9
HA
6889 for (i = 0; i < MAX_NR_ZONES; i++) {
6890 struct zone *zone = pgdat->node_zones + i;
3484b2de 6891 long max = 0;
cb45b0e9
HA
6892
6893 /* Find valid and maximum lowmem_reserve in the zone */
6894 for (j = i; j < MAX_NR_ZONES; j++) {
6895 if (zone->lowmem_reserve[j] > max)
6896 max = zone->lowmem_reserve[j];
6897 }
6898
41858966
MG
6899 /* we treat the high watermark as reserved pages. */
6900 max += high_wmark_pages(zone);
cb45b0e9 6901
b40da049
JL
6902 if (max > zone->managed_pages)
6903 max = zone->managed_pages;
a8d01437 6904
281e3726 6905 pgdat->totalreserve_pages += max;
a8d01437 6906
cb45b0e9
HA
6907 reserve_pages += max;
6908 }
6909 }
6910 totalreserve_pages = reserve_pages;
6911}
6912
1da177e4
LT
6913/*
6914 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6915 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6916 * has a correct pages reserved value, so an adequate number of
6917 * pages are left in the zone after a successful __alloc_pages().
6918 */
6919static void setup_per_zone_lowmem_reserve(void)
6920{
6921 struct pglist_data *pgdat;
2f6726e5 6922 enum zone_type j, idx;
1da177e4 6923
ec936fc5 6924 for_each_online_pgdat(pgdat) {
1da177e4
LT
6925 for (j = 0; j < MAX_NR_ZONES; j++) {
6926 struct zone *zone = pgdat->node_zones + j;
b40da049 6927 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6928
6929 zone->lowmem_reserve[j] = 0;
6930
2f6726e5
CL
6931 idx = j;
6932 while (idx) {
1da177e4
LT
6933 struct zone *lower_zone;
6934
2f6726e5
CL
6935 idx--;
6936
1da177e4
LT
6937 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6938 sysctl_lowmem_reserve_ratio[idx] = 1;
6939
6940 lower_zone = pgdat->node_zones + idx;
b40da049 6941 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6942 sysctl_lowmem_reserve_ratio[idx];
b40da049 6943 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6944 }
6945 }
6946 }
cb45b0e9
HA
6947
6948 /* update totalreserve_pages */
6949 calculate_totalreserve_pages();
1da177e4
LT
6950}
6951
cfd3da1e 6952static void __setup_per_zone_wmarks(void)
1da177e4
LT
6953{
6954 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6955 unsigned long lowmem_pages = 0;
6956 struct zone *zone;
6957 unsigned long flags;
6958
6959 /* Calculate total number of !ZONE_HIGHMEM pages */
6960 for_each_zone(zone) {
6961 if (!is_highmem(zone))
b40da049 6962 lowmem_pages += zone->managed_pages;
1da177e4
LT
6963 }
6964
6965 for_each_zone(zone) {
ac924c60
AM
6966 u64 tmp;
6967
1125b4e3 6968 spin_lock_irqsave(&zone->lock, flags);
b40da049 6969 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6970 do_div(tmp, lowmem_pages);
1da177e4
LT
6971 if (is_highmem(zone)) {
6972 /*
669ed175
NP
6973 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6974 * need highmem pages, so cap pages_min to a small
6975 * value here.
6976 *
41858966 6977 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6978 * deltas control asynch page reclaim, and so should
669ed175 6979 * not be capped for highmem.
1da177e4 6980 */
90ae8d67 6981 unsigned long min_pages;
1da177e4 6982
b40da049 6983 min_pages = zone->managed_pages / 1024;
90ae8d67 6984 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6985 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6986 } else {
669ed175
NP
6987 /*
6988 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6989 * proportionate to the zone's size.
6990 */
41858966 6991 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6992 }
6993
795ae7a0
JW
6994 /*
6995 * Set the kswapd watermarks distance according to the
6996 * scale factor in proportion to available memory, but
6997 * ensure a minimum size on small systems.
6998 */
6999 tmp = max_t(u64, tmp >> 2,
7000 mult_frac(zone->managed_pages,
7001 watermark_scale_factor, 10000));
7002
7003 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7004 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7005
1125b4e3 7006 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7007 }
cb45b0e9
HA
7008
7009 /* update totalreserve_pages */
7010 calculate_totalreserve_pages();
1da177e4
LT
7011}
7012
cfd3da1e
MG
7013/**
7014 * setup_per_zone_wmarks - called when min_free_kbytes changes
7015 * or when memory is hot-{added|removed}
7016 *
7017 * Ensures that the watermark[min,low,high] values for each zone are set
7018 * correctly with respect to min_free_kbytes.
7019 */
7020void setup_per_zone_wmarks(void)
7021{
7022 mutex_lock(&zonelists_mutex);
7023 __setup_per_zone_wmarks();
7024 mutex_unlock(&zonelists_mutex);
7025}
7026
1da177e4
LT
7027/*
7028 * Initialise min_free_kbytes.
7029 *
7030 * For small machines we want it small (128k min). For large machines
7031 * we want it large (64MB max). But it is not linear, because network
7032 * bandwidth does not increase linearly with machine size. We use
7033 *
b8af2941 7034 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7035 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7036 *
7037 * which yields
7038 *
7039 * 16MB: 512k
7040 * 32MB: 724k
7041 * 64MB: 1024k
7042 * 128MB: 1448k
7043 * 256MB: 2048k
7044 * 512MB: 2896k
7045 * 1024MB: 4096k
7046 * 2048MB: 5792k
7047 * 4096MB: 8192k
7048 * 8192MB: 11584k
7049 * 16384MB: 16384k
7050 */
1b79acc9 7051int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7052{
7053 unsigned long lowmem_kbytes;
5f12733e 7054 int new_min_free_kbytes;
1da177e4
LT
7055
7056 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7057 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7058
7059 if (new_min_free_kbytes > user_min_free_kbytes) {
7060 min_free_kbytes = new_min_free_kbytes;
7061 if (min_free_kbytes < 128)
7062 min_free_kbytes = 128;
7063 if (min_free_kbytes > 65536)
7064 min_free_kbytes = 65536;
7065 } else {
7066 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7067 new_min_free_kbytes, user_min_free_kbytes);
7068 }
bc75d33f 7069 setup_per_zone_wmarks();
a6cccdc3 7070 refresh_zone_stat_thresholds();
1da177e4 7071 setup_per_zone_lowmem_reserve();
6423aa81
JK
7072
7073#ifdef CONFIG_NUMA
7074 setup_min_unmapped_ratio();
7075 setup_min_slab_ratio();
7076#endif
7077
1da177e4
LT
7078 return 0;
7079}
bc22af74 7080core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7081
7082/*
b8af2941 7083 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7084 * that we can call two helper functions whenever min_free_kbytes
7085 * changes.
7086 */
cccad5b9 7087int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7088 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7089{
da8c757b
HP
7090 int rc;
7091
7092 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7093 if (rc)
7094 return rc;
7095
5f12733e
MH
7096 if (write) {
7097 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7098 setup_per_zone_wmarks();
5f12733e 7099 }
1da177e4
LT
7100 return 0;
7101}
7102
795ae7a0
JW
7103int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7104 void __user *buffer, size_t *length, loff_t *ppos)
7105{
7106 int rc;
7107
7108 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7109 if (rc)
7110 return rc;
7111
7112 if (write)
7113 setup_per_zone_wmarks();
7114
7115 return 0;
7116}
7117
9614634f 7118#ifdef CONFIG_NUMA
6423aa81 7119static void setup_min_unmapped_ratio(void)
9614634f 7120{
6423aa81 7121 pg_data_t *pgdat;
9614634f 7122 struct zone *zone;
9614634f 7123
a5f5f91d 7124 for_each_online_pgdat(pgdat)
81cbcbc2 7125 pgdat->min_unmapped_pages = 0;
a5f5f91d 7126
9614634f 7127 for_each_zone(zone)
a5f5f91d 7128 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7129 sysctl_min_unmapped_ratio) / 100;
9614634f 7130}
0ff38490 7131
6423aa81
JK
7132
7133int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7134 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7135{
0ff38490
CL
7136 int rc;
7137
8d65af78 7138 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7139 if (rc)
7140 return rc;
7141
6423aa81
JK
7142 setup_min_unmapped_ratio();
7143
7144 return 0;
7145}
7146
7147static void setup_min_slab_ratio(void)
7148{
7149 pg_data_t *pgdat;
7150 struct zone *zone;
7151
a5f5f91d
MG
7152 for_each_online_pgdat(pgdat)
7153 pgdat->min_slab_pages = 0;
7154
0ff38490 7155 for_each_zone(zone)
a5f5f91d 7156 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7157 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7158}
7159
7160int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7161 void __user *buffer, size_t *length, loff_t *ppos)
7162{
7163 int rc;
7164
7165 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7166 if (rc)
7167 return rc;
7168
7169 setup_min_slab_ratio();
7170
0ff38490
CL
7171 return 0;
7172}
9614634f
CL
7173#endif
7174
1da177e4
LT
7175/*
7176 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7177 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7178 * whenever sysctl_lowmem_reserve_ratio changes.
7179 *
7180 * The reserve ratio obviously has absolutely no relation with the
41858966 7181 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7182 * if in function of the boot time zone sizes.
7183 */
cccad5b9 7184int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7185 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7186{
8d65af78 7187 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7188 setup_per_zone_lowmem_reserve();
7189 return 0;
7190}
7191
8ad4b1fb
RS
7192/*
7193 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7194 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7195 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7196 */
cccad5b9 7197int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7198 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7199{
7200 struct zone *zone;
7cd2b0a3 7201 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7202 int ret;
7203
7cd2b0a3
DR
7204 mutex_lock(&pcp_batch_high_lock);
7205 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7206
8d65af78 7207 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7208 if (!write || ret < 0)
7209 goto out;
7210
7211 /* Sanity checking to avoid pcp imbalance */
7212 if (percpu_pagelist_fraction &&
7213 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7214 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7215 ret = -EINVAL;
7216 goto out;
7217 }
7218
7219 /* No change? */
7220 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7221 goto out;
c8e251fa 7222
364df0eb 7223 for_each_populated_zone(zone) {
7cd2b0a3
DR
7224 unsigned int cpu;
7225
22a7f12b 7226 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7227 pageset_set_high_and_batch(zone,
7228 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7229 }
7cd2b0a3 7230out:
c8e251fa 7231 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7232 return ret;
8ad4b1fb
RS
7233}
7234
a9919c79 7235#ifdef CONFIG_NUMA
f034b5d4 7236int hashdist = HASHDIST_DEFAULT;
1da177e4 7237
1da177e4
LT
7238static int __init set_hashdist(char *str)
7239{
7240 if (!str)
7241 return 0;
7242 hashdist = simple_strtoul(str, &str, 0);
7243 return 1;
7244}
7245__setup("hashdist=", set_hashdist);
7246#endif
7247
f6f34b43
SD
7248#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7249/*
7250 * Returns the number of pages that arch has reserved but
7251 * is not known to alloc_large_system_hash().
7252 */
7253static unsigned long __init arch_reserved_kernel_pages(void)
7254{
7255 return 0;
7256}
7257#endif
7258
9017217b
PT
7259/*
7260 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7261 * machines. As memory size is increased the scale is also increased but at
7262 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7263 * quadruples the scale is increased by one, which means the size of hash table
7264 * only doubles, instead of quadrupling as well.
7265 * Because 32-bit systems cannot have large physical memory, where this scaling
7266 * makes sense, it is disabled on such platforms.
7267 */
7268#if __BITS_PER_LONG > 32
7269#define ADAPT_SCALE_BASE (64ul << 30)
7270#define ADAPT_SCALE_SHIFT 2
7271#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7272#endif
7273
1da177e4
LT
7274/*
7275 * allocate a large system hash table from bootmem
7276 * - it is assumed that the hash table must contain an exact power-of-2
7277 * quantity of entries
7278 * - limit is the number of hash buckets, not the total allocation size
7279 */
7280void *__init alloc_large_system_hash(const char *tablename,
7281 unsigned long bucketsize,
7282 unsigned long numentries,
7283 int scale,
7284 int flags,
7285 unsigned int *_hash_shift,
7286 unsigned int *_hash_mask,
31fe62b9
TB
7287 unsigned long low_limit,
7288 unsigned long high_limit)
1da177e4 7289{
31fe62b9 7290 unsigned long long max = high_limit;
1da177e4
LT
7291 unsigned long log2qty, size;
7292 void *table = NULL;
3749a8f0 7293 gfp_t gfp_flags;
1da177e4
LT
7294
7295 /* allow the kernel cmdline to have a say */
7296 if (!numentries) {
7297 /* round applicable memory size up to nearest megabyte */
04903664 7298 numentries = nr_kernel_pages;
f6f34b43 7299 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7300
7301 /* It isn't necessary when PAGE_SIZE >= 1MB */
7302 if (PAGE_SHIFT < 20)
7303 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7304
9017217b
PT
7305#if __BITS_PER_LONG > 32
7306 if (!high_limit) {
7307 unsigned long adapt;
7308
7309 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7310 adapt <<= ADAPT_SCALE_SHIFT)
7311 scale++;
7312 }
7313#endif
7314
1da177e4
LT
7315 /* limit to 1 bucket per 2^scale bytes of low memory */
7316 if (scale > PAGE_SHIFT)
7317 numentries >>= (scale - PAGE_SHIFT);
7318 else
7319 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7320
7321 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7322 if (unlikely(flags & HASH_SMALL)) {
7323 /* Makes no sense without HASH_EARLY */
7324 WARN_ON(!(flags & HASH_EARLY));
7325 if (!(numentries >> *_hash_shift)) {
7326 numentries = 1UL << *_hash_shift;
7327 BUG_ON(!numentries);
7328 }
7329 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7330 numentries = PAGE_SIZE / bucketsize;
1da177e4 7331 }
6e692ed3 7332 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7333
7334 /* limit allocation size to 1/16 total memory by default */
7335 if (max == 0) {
7336 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7337 do_div(max, bucketsize);
7338 }
074b8517 7339 max = min(max, 0x80000000ULL);
1da177e4 7340
31fe62b9
TB
7341 if (numentries < low_limit)
7342 numentries = low_limit;
1da177e4
LT
7343 if (numentries > max)
7344 numentries = max;
7345
f0d1b0b3 7346 log2qty = ilog2(numentries);
1da177e4 7347
3749a8f0
PT
7348 /*
7349 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7350 * currently not used when HASH_EARLY is specified.
7351 */
7352 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7353 do {
7354 size = bucketsize << log2qty;
7355 if (flags & HASH_EARLY)
6782832e 7356 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4 7357 else if (hashdist)
3749a8f0 7358 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
1da177e4 7359 else {
1037b83b
ED
7360 /*
7361 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7362 * some pages at the end of hash table which
7363 * alloc_pages_exact() automatically does
1037b83b 7364 */
264ef8a9 7365 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7366 table = alloc_pages_exact(size, gfp_flags);
7367 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7368 }
1da177e4
LT
7369 }
7370 } while (!table && size > PAGE_SIZE && --log2qty);
7371
7372 if (!table)
7373 panic("Failed to allocate %s hash table\n", tablename);
7374
1170532b
JP
7375 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7376 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7377
7378 if (_hash_shift)
7379 *_hash_shift = log2qty;
7380 if (_hash_mask)
7381 *_hash_mask = (1 << log2qty) - 1;
7382
7383 return table;
7384}
a117e66e 7385
a5d76b54 7386/*
80934513
MK
7387 * This function checks whether pageblock includes unmovable pages or not.
7388 * If @count is not zero, it is okay to include less @count unmovable pages
7389 *
b8af2941 7390 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7391 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7392 * check without lock_page also may miss some movable non-lru pages at
7393 * race condition. So you can't expect this function should be exact.
a5d76b54 7394 */
b023f468
WC
7395bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7396 bool skip_hwpoisoned_pages)
49ac8255
KH
7397{
7398 unsigned long pfn, iter, found;
47118af0
MN
7399 int mt;
7400
49ac8255
KH
7401 /*
7402 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7403 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7404 */
7405 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7406 return false;
47118af0
MN
7407 mt = get_pageblock_migratetype(page);
7408 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7409 return false;
49ac8255
KH
7410
7411 pfn = page_to_pfn(page);
7412 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7413 unsigned long check = pfn + iter;
7414
29723fcc 7415 if (!pfn_valid_within(check))
49ac8255 7416 continue;
29723fcc 7417
49ac8255 7418 page = pfn_to_page(check);
c8721bbb
NH
7419
7420 /*
7421 * Hugepages are not in LRU lists, but they're movable.
7422 * We need not scan over tail pages bacause we don't
7423 * handle each tail page individually in migration.
7424 */
7425 if (PageHuge(page)) {
7426 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7427 continue;
7428 }
7429
97d255c8
MK
7430 /*
7431 * We can't use page_count without pin a page
7432 * because another CPU can free compound page.
7433 * This check already skips compound tails of THP
0139aa7b 7434 * because their page->_refcount is zero at all time.
97d255c8 7435 */
fe896d18 7436 if (!page_ref_count(page)) {
49ac8255
KH
7437 if (PageBuddy(page))
7438 iter += (1 << page_order(page)) - 1;
7439 continue;
7440 }
97d255c8 7441
b023f468
WC
7442 /*
7443 * The HWPoisoned page may be not in buddy system, and
7444 * page_count() is not 0.
7445 */
7446 if (skip_hwpoisoned_pages && PageHWPoison(page))
7447 continue;
7448
0efadf48
YX
7449 if (__PageMovable(page))
7450 continue;
7451
49ac8255
KH
7452 if (!PageLRU(page))
7453 found++;
7454 /*
6b4f7799
JW
7455 * If there are RECLAIMABLE pages, we need to check
7456 * it. But now, memory offline itself doesn't call
7457 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7458 */
7459 /*
7460 * If the page is not RAM, page_count()should be 0.
7461 * we don't need more check. This is an _used_ not-movable page.
7462 *
7463 * The problematic thing here is PG_reserved pages. PG_reserved
7464 * is set to both of a memory hole page and a _used_ kernel
7465 * page at boot.
7466 */
7467 if (found > count)
80934513 7468 return true;
49ac8255 7469 }
80934513 7470 return false;
49ac8255
KH
7471}
7472
7473bool is_pageblock_removable_nolock(struct page *page)
7474{
656a0706
MH
7475 struct zone *zone;
7476 unsigned long pfn;
687875fb
MH
7477
7478 /*
7479 * We have to be careful here because we are iterating over memory
7480 * sections which are not zone aware so we might end up outside of
7481 * the zone but still within the section.
656a0706
MH
7482 * We have to take care about the node as well. If the node is offline
7483 * its NODE_DATA will be NULL - see page_zone.
687875fb 7484 */
656a0706
MH
7485 if (!node_online(page_to_nid(page)))
7486 return false;
7487
7488 zone = page_zone(page);
7489 pfn = page_to_pfn(page);
108bcc96 7490 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7491 return false;
7492
b023f468 7493 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7494}
0c0e6195 7495
080fe206 7496#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7497
7498static unsigned long pfn_max_align_down(unsigned long pfn)
7499{
7500 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7501 pageblock_nr_pages) - 1);
7502}
7503
7504static unsigned long pfn_max_align_up(unsigned long pfn)
7505{
7506 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7507 pageblock_nr_pages));
7508}
7509
041d3a8c 7510/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7511static int __alloc_contig_migrate_range(struct compact_control *cc,
7512 unsigned long start, unsigned long end)
041d3a8c
MN
7513{
7514 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7515 unsigned long nr_reclaimed;
041d3a8c
MN
7516 unsigned long pfn = start;
7517 unsigned int tries = 0;
7518 int ret = 0;
7519
be49a6e1 7520 migrate_prep();
041d3a8c 7521
bb13ffeb 7522 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7523 if (fatal_signal_pending(current)) {
7524 ret = -EINTR;
7525 break;
7526 }
7527
bb13ffeb
MG
7528 if (list_empty(&cc->migratepages)) {
7529 cc->nr_migratepages = 0;
edc2ca61 7530 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7531 if (!pfn) {
7532 ret = -EINTR;
7533 break;
7534 }
7535 tries = 0;
7536 } else if (++tries == 5) {
7537 ret = ret < 0 ? ret : -EBUSY;
7538 break;
7539 }
7540
beb51eaa
MK
7541 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7542 &cc->migratepages);
7543 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7544
9c620e2b 7545 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7546 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7547 }
2a6f5124
SP
7548 if (ret < 0) {
7549 putback_movable_pages(&cc->migratepages);
7550 return ret;
7551 }
7552 return 0;
041d3a8c
MN
7553}
7554
7555/**
7556 * alloc_contig_range() -- tries to allocate given range of pages
7557 * @start: start PFN to allocate
7558 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7559 * @migratetype: migratetype of the underlaying pageblocks (either
7560 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7561 * in range must have the same migratetype and it must
7562 * be either of the two.
ca96b625 7563 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7564 *
7565 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7566 * aligned, however it's the caller's responsibility to guarantee that
7567 * we are the only thread that changes migrate type of pageblocks the
7568 * pages fall in.
7569 *
7570 * The PFN range must belong to a single zone.
7571 *
7572 * Returns zero on success or negative error code. On success all
7573 * pages which PFN is in [start, end) are allocated for the caller and
7574 * need to be freed with free_contig_range().
7575 */
0815f3d8 7576int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7577 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7578{
041d3a8c 7579 unsigned long outer_start, outer_end;
d00181b9
KS
7580 unsigned int order;
7581 int ret = 0;
041d3a8c 7582
bb13ffeb
MG
7583 struct compact_control cc = {
7584 .nr_migratepages = 0,
7585 .order = -1,
7586 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7587 .mode = MIGRATE_SYNC,
bb13ffeb 7588 .ignore_skip_hint = true,
7dea19f9 7589 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7590 };
7591 INIT_LIST_HEAD(&cc.migratepages);
7592
041d3a8c
MN
7593 /*
7594 * What we do here is we mark all pageblocks in range as
7595 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7596 * have different sizes, and due to the way page allocator
7597 * work, we align the range to biggest of the two pages so
7598 * that page allocator won't try to merge buddies from
7599 * different pageblocks and change MIGRATE_ISOLATE to some
7600 * other migration type.
7601 *
7602 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7603 * migrate the pages from an unaligned range (ie. pages that
7604 * we are interested in). This will put all the pages in
7605 * range back to page allocator as MIGRATE_ISOLATE.
7606 *
7607 * When this is done, we take the pages in range from page
7608 * allocator removing them from the buddy system. This way
7609 * page allocator will never consider using them.
7610 *
7611 * This lets us mark the pageblocks back as
7612 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7613 * aligned range but not in the unaligned, original range are
7614 * put back to page allocator so that buddy can use them.
7615 */
7616
7617 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7618 pfn_max_align_up(end), migratetype,
7619 false);
041d3a8c 7620 if (ret)
86a595f9 7621 return ret;
041d3a8c 7622
8ef5849f
JK
7623 /*
7624 * In case of -EBUSY, we'd like to know which page causes problem.
7625 * So, just fall through. We will check it in test_pages_isolated().
7626 */
bb13ffeb 7627 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7628 if (ret && ret != -EBUSY)
041d3a8c
MN
7629 goto done;
7630
7631 /*
7632 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7633 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7634 * more, all pages in [start, end) are free in page allocator.
7635 * What we are going to do is to allocate all pages from
7636 * [start, end) (that is remove them from page allocator).
7637 *
7638 * The only problem is that pages at the beginning and at the
7639 * end of interesting range may be not aligned with pages that
7640 * page allocator holds, ie. they can be part of higher order
7641 * pages. Because of this, we reserve the bigger range and
7642 * once this is done free the pages we are not interested in.
7643 *
7644 * We don't have to hold zone->lock here because the pages are
7645 * isolated thus they won't get removed from buddy.
7646 */
7647
7648 lru_add_drain_all();
510f5507 7649 drain_all_pages(cc.zone);
041d3a8c
MN
7650
7651 order = 0;
7652 outer_start = start;
7653 while (!PageBuddy(pfn_to_page(outer_start))) {
7654 if (++order >= MAX_ORDER) {
8ef5849f
JK
7655 outer_start = start;
7656 break;
041d3a8c
MN
7657 }
7658 outer_start &= ~0UL << order;
7659 }
7660
8ef5849f
JK
7661 if (outer_start != start) {
7662 order = page_order(pfn_to_page(outer_start));
7663
7664 /*
7665 * outer_start page could be small order buddy page and
7666 * it doesn't include start page. Adjust outer_start
7667 * in this case to report failed page properly
7668 * on tracepoint in test_pages_isolated()
7669 */
7670 if (outer_start + (1UL << order) <= start)
7671 outer_start = start;
7672 }
7673
041d3a8c 7674 /* Make sure the range is really isolated. */
b023f468 7675 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7676 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7677 __func__, outer_start, end);
041d3a8c
MN
7678 ret = -EBUSY;
7679 goto done;
7680 }
7681
49f223a9 7682 /* Grab isolated pages from freelists. */
bb13ffeb 7683 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7684 if (!outer_end) {
7685 ret = -EBUSY;
7686 goto done;
7687 }
7688
7689 /* Free head and tail (if any) */
7690 if (start != outer_start)
7691 free_contig_range(outer_start, start - outer_start);
7692 if (end != outer_end)
7693 free_contig_range(end, outer_end - end);
7694
7695done:
7696 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7697 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7698 return ret;
7699}
7700
7701void free_contig_range(unsigned long pfn, unsigned nr_pages)
7702{
bcc2b02f
MS
7703 unsigned int count = 0;
7704
7705 for (; nr_pages--; pfn++) {
7706 struct page *page = pfn_to_page(pfn);
7707
7708 count += page_count(page) != 1;
7709 __free_page(page);
7710 }
7711 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7712}
7713#endif
7714
4ed7e022 7715#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7716/*
7717 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7718 * page high values need to be recalulated.
7719 */
4ed7e022
JL
7720void __meminit zone_pcp_update(struct zone *zone)
7721{
0a647f38 7722 unsigned cpu;
c8e251fa 7723 mutex_lock(&pcp_batch_high_lock);
0a647f38 7724 for_each_possible_cpu(cpu)
169f6c19
CS
7725 pageset_set_high_and_batch(zone,
7726 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7727 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7728}
7729#endif
7730
340175b7
JL
7731void zone_pcp_reset(struct zone *zone)
7732{
7733 unsigned long flags;
5a883813
MK
7734 int cpu;
7735 struct per_cpu_pageset *pset;
340175b7
JL
7736
7737 /* avoid races with drain_pages() */
7738 local_irq_save(flags);
7739 if (zone->pageset != &boot_pageset) {
5a883813
MK
7740 for_each_online_cpu(cpu) {
7741 pset = per_cpu_ptr(zone->pageset, cpu);
7742 drain_zonestat(zone, pset);
7743 }
340175b7
JL
7744 free_percpu(zone->pageset);
7745 zone->pageset = &boot_pageset;
7746 }
7747 local_irq_restore(flags);
7748}
7749
6dcd73d7 7750#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7751/*
b9eb6319
JK
7752 * All pages in the range must be in a single zone and isolated
7753 * before calling this.
0c0e6195
KH
7754 */
7755void
7756__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7757{
7758 struct page *page;
7759 struct zone *zone;
7aeb09f9 7760 unsigned int order, i;
0c0e6195
KH
7761 unsigned long pfn;
7762 unsigned long flags;
7763 /* find the first valid pfn */
7764 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7765 if (pfn_valid(pfn))
7766 break;
7767 if (pfn == end_pfn)
7768 return;
2d070eab 7769 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7770 zone = page_zone(pfn_to_page(pfn));
7771 spin_lock_irqsave(&zone->lock, flags);
7772 pfn = start_pfn;
7773 while (pfn < end_pfn) {
7774 if (!pfn_valid(pfn)) {
7775 pfn++;
7776 continue;
7777 }
7778 page = pfn_to_page(pfn);
b023f468
WC
7779 /*
7780 * The HWPoisoned page may be not in buddy system, and
7781 * page_count() is not 0.
7782 */
7783 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7784 pfn++;
7785 SetPageReserved(page);
7786 continue;
7787 }
7788
0c0e6195
KH
7789 BUG_ON(page_count(page));
7790 BUG_ON(!PageBuddy(page));
7791 order = page_order(page);
7792#ifdef CONFIG_DEBUG_VM
1170532b
JP
7793 pr_info("remove from free list %lx %d %lx\n",
7794 pfn, 1 << order, end_pfn);
0c0e6195
KH
7795#endif
7796 list_del(&page->lru);
7797 rmv_page_order(page);
7798 zone->free_area[order].nr_free--;
0c0e6195
KH
7799 for (i = 0; i < (1 << order); i++)
7800 SetPageReserved((page+i));
7801 pfn += (1 << order);
7802 }
7803 spin_unlock_irqrestore(&zone->lock, flags);
7804}
7805#endif
8d22ba1b 7806
8d22ba1b
WF
7807bool is_free_buddy_page(struct page *page)
7808{
7809 struct zone *zone = page_zone(page);
7810 unsigned long pfn = page_to_pfn(page);
7811 unsigned long flags;
7aeb09f9 7812 unsigned int order;
8d22ba1b
WF
7813
7814 spin_lock_irqsave(&zone->lock, flags);
7815 for (order = 0; order < MAX_ORDER; order++) {
7816 struct page *page_head = page - (pfn & ((1 << order) - 1));
7817
7818 if (PageBuddy(page_head) && page_order(page_head) >= order)
7819 break;
7820 }
7821 spin_unlock_irqrestore(&zone->lock, flags);
7822
7823 return order < MAX_ORDER;
7824}