]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm/memory_hotplug.c: fix overflow in test_pages_in_a_zone()
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
bd233f53
MG
94/* work_structs for global per-cpu drains */
95DEFINE_MUTEX(pcpu_drain_mutex);
96DEFINE_PER_CPU(struct work_struct, pcpu_drain);
97
38addce8 98#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 99volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
100EXPORT_SYMBOL(latent_entropy);
101#endif
102
1da177e4 103/*
13808910 104 * Array of node states.
1da177e4 105 */
13808910
CL
106nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
107 [N_POSSIBLE] = NODE_MASK_ALL,
108 [N_ONLINE] = { { [0] = 1UL } },
109#ifndef CONFIG_NUMA
110 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
111#ifdef CONFIG_HIGHMEM
112 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
113#endif
114#ifdef CONFIG_MOVABLE_NODE
115 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
116#endif
117 [N_CPU] = { { [0] = 1UL } },
118#endif /* NUMA */
119};
120EXPORT_SYMBOL(node_states);
121
c3d5f5f0
JL
122/* Protect totalram_pages and zone->managed_pages */
123static DEFINE_SPINLOCK(managed_page_count_lock);
124
6c231b7b 125unsigned long totalram_pages __read_mostly;
cb45b0e9 126unsigned long totalreserve_pages __read_mostly;
e48322ab 127unsigned long totalcma_pages __read_mostly;
ab8fabd4 128
1b76b02f 129int percpu_pagelist_fraction;
dcce284a 130gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 131
bb14c2c7
VB
132/*
133 * A cached value of the page's pageblock's migratetype, used when the page is
134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136 * Also the migratetype set in the page does not necessarily match the pcplist
137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138 * other index - this ensures that it will be put on the correct CMA freelist.
139 */
140static inline int get_pcppage_migratetype(struct page *page)
141{
142 return page->index;
143}
144
145static inline void set_pcppage_migratetype(struct page *page, int migratetype)
146{
147 page->index = migratetype;
148}
149
452aa699
RW
150#ifdef CONFIG_PM_SLEEP
151/*
152 * The following functions are used by the suspend/hibernate code to temporarily
153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154 * while devices are suspended. To avoid races with the suspend/hibernate code,
155 * they should always be called with pm_mutex held (gfp_allowed_mask also should
156 * only be modified with pm_mutex held, unless the suspend/hibernate code is
157 * guaranteed not to run in parallel with that modification).
158 */
c9e664f1
RW
159
160static gfp_t saved_gfp_mask;
161
162void pm_restore_gfp_mask(void)
452aa699
RW
163{
164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 if (saved_gfp_mask) {
166 gfp_allowed_mask = saved_gfp_mask;
167 saved_gfp_mask = 0;
168 }
452aa699
RW
169}
170
c9e664f1 171void pm_restrict_gfp_mask(void)
452aa699 172{
452aa699 173 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
174 WARN_ON(saved_gfp_mask);
175 saved_gfp_mask = gfp_allowed_mask;
d0164adc 176 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 177}
f90ac398
MG
178
179bool pm_suspended_storage(void)
180{
d0164adc 181 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
182 return false;
183 return true;
184}
452aa699
RW
185#endif /* CONFIG_PM_SLEEP */
186
d9c23400 187#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 188unsigned int pageblock_order __read_mostly;
d9c23400
MG
189#endif
190
d98c7a09 191static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 192
1da177e4
LT
193/*
194 * results with 256, 32 in the lowmem_reserve sysctl:
195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196 * 1G machine -> (16M dma, 784M normal, 224M high)
197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
200 *
201 * TBD: should special case ZONE_DMA32 machines here - in those we normally
202 * don't need any ZONE_NORMAL reservation
1da177e4 203 */
2f1b6248 204int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 205#ifdef CONFIG_ZONE_DMA
2f1b6248 206 256,
4b51d669 207#endif
fb0e7942 208#ifdef CONFIG_ZONE_DMA32
2f1b6248 209 256,
fb0e7942 210#endif
e53ef38d 211#ifdef CONFIG_HIGHMEM
2a1e274a 212 32,
e53ef38d 213#endif
2a1e274a 214 32,
2f1b6248 215};
1da177e4
LT
216
217EXPORT_SYMBOL(totalram_pages);
1da177e4 218
15ad7cdc 219static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 220#ifdef CONFIG_ZONE_DMA
2f1b6248 221 "DMA",
4b51d669 222#endif
fb0e7942 223#ifdef CONFIG_ZONE_DMA32
2f1b6248 224 "DMA32",
fb0e7942 225#endif
2f1b6248 226 "Normal",
e53ef38d 227#ifdef CONFIG_HIGHMEM
2a1e274a 228 "HighMem",
e53ef38d 229#endif
2a1e274a 230 "Movable",
033fbae9
DW
231#ifdef CONFIG_ZONE_DEVICE
232 "Device",
233#endif
2f1b6248
CL
234};
235
60f30350
VB
236char * const migratetype_names[MIGRATE_TYPES] = {
237 "Unmovable",
238 "Movable",
239 "Reclaimable",
240 "HighAtomic",
241#ifdef CONFIG_CMA
242 "CMA",
243#endif
244#ifdef CONFIG_MEMORY_ISOLATION
245 "Isolate",
246#endif
247};
248
f1e61557
KS
249compound_page_dtor * const compound_page_dtors[] = {
250 NULL,
251 free_compound_page,
252#ifdef CONFIG_HUGETLB_PAGE
253 free_huge_page,
254#endif
9a982250
KS
255#ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 free_transhuge_page,
257#endif
f1e61557
KS
258};
259
1da177e4 260int min_free_kbytes = 1024;
42aa83cb 261int user_min_free_kbytes = -1;
795ae7a0 262int watermark_scale_factor = 10;
1da177e4 263
2c85f51d
JB
264static unsigned long __meminitdata nr_kernel_pages;
265static unsigned long __meminitdata nr_all_pages;
a3142c8e 266static unsigned long __meminitdata dma_reserve;
1da177e4 267
0ee332c1
TH
268#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
270static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __initdata required_kernelcore;
272static unsigned long __initdata required_movablecore;
273static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 274static bool mirrored_kernelcore;
0ee332c1
TH
275
276/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
277int movable_zone;
278EXPORT_SYMBOL(movable_zone);
279#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 280
418508c1
MS
281#if MAX_NUMNODES > 1
282int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 283int nr_online_nodes __read_mostly = 1;
418508c1 284EXPORT_SYMBOL(nr_node_ids);
62bc62a8 285EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
286#endif
287
9ef9acb0
MG
288int page_group_by_mobility_disabled __read_mostly;
289
3a80a7fa
MG
290#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291static inline void reset_deferred_meminit(pg_data_t *pgdat)
292{
293 pgdat->first_deferred_pfn = ULONG_MAX;
294}
295
296/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 297static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 298{
ef70b6f4
MG
299 int nid = early_pfn_to_nid(pfn);
300
301 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
302 return true;
303
304 return false;
305}
306
307/*
308 * Returns false when the remaining initialisation should be deferred until
309 * later in the boot cycle when it can be parallelised.
310 */
311static inline bool update_defer_init(pg_data_t *pgdat,
312 unsigned long pfn, unsigned long zone_end,
313 unsigned long *nr_initialised)
314{
987b3095
LZ
315 unsigned long max_initialise;
316
3a80a7fa
MG
317 /* Always populate low zones for address-contrained allocations */
318 if (zone_end < pgdat_end_pfn(pgdat))
319 return true;
987b3095
LZ
320 /*
321 * Initialise at least 2G of a node but also take into account that
322 * two large system hashes that can take up 1GB for 0.25TB/node.
323 */
324 max_initialise = max(2UL << (30 - PAGE_SHIFT),
325 (pgdat->node_spanned_pages >> 8));
3a80a7fa 326
3a80a7fa 327 (*nr_initialised)++;
987b3095 328 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
329 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
330 pgdat->first_deferred_pfn = pfn;
331 return false;
332 }
333
334 return true;
335}
336#else
337static inline void reset_deferred_meminit(pg_data_t *pgdat)
338{
339}
340
341static inline bool early_page_uninitialised(unsigned long pfn)
342{
343 return false;
344}
345
346static inline bool update_defer_init(pg_data_t *pgdat,
347 unsigned long pfn, unsigned long zone_end,
348 unsigned long *nr_initialised)
349{
350 return true;
351}
352#endif
353
0b423ca2
MG
354/* Return a pointer to the bitmap storing bits affecting a block of pages */
355static inline unsigned long *get_pageblock_bitmap(struct page *page,
356 unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 return __pfn_to_section(pfn)->pageblock_flags;
360#else
361 return page_zone(page)->pageblock_flags;
362#endif /* CONFIG_SPARSEMEM */
363}
364
365static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
366{
367#ifdef CONFIG_SPARSEMEM
368 pfn &= (PAGES_PER_SECTION-1);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370#else
371 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373#endif /* CONFIG_SPARSEMEM */
374}
375
376/**
377 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
378 * @page: The page within the block of interest
379 * @pfn: The target page frame number
380 * @end_bitidx: The last bit of interest to retrieve
381 * @mask: mask of bits that the caller is interested in
382 *
383 * Return: pageblock_bits flags
384 */
385static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
386 unsigned long pfn,
387 unsigned long end_bitidx,
388 unsigned long mask)
389{
390 unsigned long *bitmap;
391 unsigned long bitidx, word_bitidx;
392 unsigned long word;
393
394 bitmap = get_pageblock_bitmap(page, pfn);
395 bitidx = pfn_to_bitidx(page, pfn);
396 word_bitidx = bitidx / BITS_PER_LONG;
397 bitidx &= (BITS_PER_LONG-1);
398
399 word = bitmap[word_bitidx];
400 bitidx += end_bitidx;
401 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
402}
403
404unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
405 unsigned long end_bitidx,
406 unsigned long mask)
407{
408 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
409}
410
411static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
412{
413 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
414}
415
416/**
417 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
418 * @page: The page within the block of interest
419 * @flags: The flags to set
420 * @pfn: The target page frame number
421 * @end_bitidx: The last bit of interest
422 * @mask: mask of bits that the caller is interested in
423 */
424void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
425 unsigned long pfn,
426 unsigned long end_bitidx,
427 unsigned long mask)
428{
429 unsigned long *bitmap;
430 unsigned long bitidx, word_bitidx;
431 unsigned long old_word, word;
432
433 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
434
435 bitmap = get_pageblock_bitmap(page, pfn);
436 bitidx = pfn_to_bitidx(page, pfn);
437 word_bitidx = bitidx / BITS_PER_LONG;
438 bitidx &= (BITS_PER_LONG-1);
439
440 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
441
442 bitidx += end_bitidx;
443 mask <<= (BITS_PER_LONG - bitidx - 1);
444 flags <<= (BITS_PER_LONG - bitidx - 1);
445
446 word = READ_ONCE(bitmap[word_bitidx]);
447 for (;;) {
448 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
449 if (word == old_word)
450 break;
451 word = old_word;
452 }
453}
3a80a7fa 454
ee6f509c 455void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 456{
5d0f3f72
KM
457 if (unlikely(page_group_by_mobility_disabled &&
458 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
459 migratetype = MIGRATE_UNMOVABLE;
460
b2a0ac88
MG
461 set_pageblock_flags_group(page, (unsigned long)migratetype,
462 PB_migrate, PB_migrate_end);
463}
464
13e7444b 465#ifdef CONFIG_DEBUG_VM
c6a57e19 466static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 467{
bdc8cb98
DH
468 int ret = 0;
469 unsigned seq;
470 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 471 unsigned long sp, start_pfn;
c6a57e19 472
bdc8cb98
DH
473 do {
474 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
475 start_pfn = zone->zone_start_pfn;
476 sp = zone->spanned_pages;
108bcc96 477 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
478 ret = 1;
479 } while (zone_span_seqretry(zone, seq));
480
b5e6a5a2 481 if (ret)
613813e8
DH
482 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
483 pfn, zone_to_nid(zone), zone->name,
484 start_pfn, start_pfn + sp);
b5e6a5a2 485
bdc8cb98 486 return ret;
c6a57e19
DH
487}
488
489static int page_is_consistent(struct zone *zone, struct page *page)
490{
14e07298 491 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 492 return 0;
1da177e4 493 if (zone != page_zone(page))
c6a57e19
DH
494 return 0;
495
496 return 1;
497}
498/*
499 * Temporary debugging check for pages not lying within a given zone.
500 */
501static int bad_range(struct zone *zone, struct page *page)
502{
503 if (page_outside_zone_boundaries(zone, page))
1da177e4 504 return 1;
c6a57e19
DH
505 if (!page_is_consistent(zone, page))
506 return 1;
507
1da177e4
LT
508 return 0;
509}
13e7444b
NP
510#else
511static inline int bad_range(struct zone *zone, struct page *page)
512{
513 return 0;
514}
515#endif
516
d230dec1
KS
517static void bad_page(struct page *page, const char *reason,
518 unsigned long bad_flags)
1da177e4 519{
d936cf9b
HD
520 static unsigned long resume;
521 static unsigned long nr_shown;
522 static unsigned long nr_unshown;
523
524 /*
525 * Allow a burst of 60 reports, then keep quiet for that minute;
526 * or allow a steady drip of one report per second.
527 */
528 if (nr_shown == 60) {
529 if (time_before(jiffies, resume)) {
530 nr_unshown++;
531 goto out;
532 }
533 if (nr_unshown) {
ff8e8116 534 pr_alert(
1e9e6365 535 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
536 nr_unshown);
537 nr_unshown = 0;
538 }
539 nr_shown = 0;
540 }
541 if (nr_shown++ == 0)
542 resume = jiffies + 60 * HZ;
543
ff8e8116 544 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 545 current->comm, page_to_pfn(page));
ff8e8116
VB
546 __dump_page(page, reason);
547 bad_flags &= page->flags;
548 if (bad_flags)
549 pr_alert("bad because of flags: %#lx(%pGp)\n",
550 bad_flags, &bad_flags);
4e462112 551 dump_page_owner(page);
3dc14741 552
4f31888c 553 print_modules();
1da177e4 554 dump_stack();
d936cf9b 555out:
8cc3b392 556 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 557 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 558 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
559}
560
1da177e4
LT
561/*
562 * Higher-order pages are called "compound pages". They are structured thusly:
563 *
1d798ca3 564 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 565 *
1d798ca3
KS
566 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
567 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 568 *
1d798ca3
KS
569 * The first tail page's ->compound_dtor holds the offset in array of compound
570 * page destructors. See compound_page_dtors.
1da177e4 571 *
1d798ca3 572 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 573 * This usage means that zero-order pages may not be compound.
1da177e4 574 */
d98c7a09 575
9a982250 576void free_compound_page(struct page *page)
d98c7a09 577{
d85f3385 578 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
579}
580
d00181b9 581void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
582{
583 int i;
584 int nr_pages = 1 << order;
585
f1e61557 586 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
587 set_compound_order(page, order);
588 __SetPageHead(page);
589 for (i = 1; i < nr_pages; i++) {
590 struct page *p = page + i;
58a84aa9 591 set_page_count(p, 0);
1c290f64 592 p->mapping = TAIL_MAPPING;
1d798ca3 593 set_compound_head(p, page);
18229df5 594 }
53f9263b 595 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
596}
597
c0a32fc5
SG
598#ifdef CONFIG_DEBUG_PAGEALLOC
599unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
600bool _debug_pagealloc_enabled __read_mostly
601 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 602EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
603bool _debug_guardpage_enabled __read_mostly;
604
031bc574
JK
605static int __init early_debug_pagealloc(char *buf)
606{
607 if (!buf)
608 return -EINVAL;
2a138dc7 609 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
610}
611early_param("debug_pagealloc", early_debug_pagealloc);
612
e30825f1
JK
613static bool need_debug_guardpage(void)
614{
031bc574
JK
615 /* If we don't use debug_pagealloc, we don't need guard page */
616 if (!debug_pagealloc_enabled())
617 return false;
618
f1c1e9f7
JK
619 if (!debug_guardpage_minorder())
620 return false;
621
e30825f1
JK
622 return true;
623}
624
625static void init_debug_guardpage(void)
626{
031bc574
JK
627 if (!debug_pagealloc_enabled())
628 return;
629
f1c1e9f7
JK
630 if (!debug_guardpage_minorder())
631 return;
632
e30825f1
JK
633 _debug_guardpage_enabled = true;
634}
635
636struct page_ext_operations debug_guardpage_ops = {
637 .need = need_debug_guardpage,
638 .init = init_debug_guardpage,
639};
c0a32fc5
SG
640
641static int __init debug_guardpage_minorder_setup(char *buf)
642{
643 unsigned long res;
644
645 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 646 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
647 return 0;
648 }
649 _debug_guardpage_minorder = res;
1170532b 650 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
651 return 0;
652}
f1c1e9f7 653early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 654
acbc15a4 655static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 656 unsigned int order, int migratetype)
c0a32fc5 657{
e30825f1
JK
658 struct page_ext *page_ext;
659
660 if (!debug_guardpage_enabled())
acbc15a4
JK
661 return false;
662
663 if (order >= debug_guardpage_minorder())
664 return false;
e30825f1
JK
665
666 page_ext = lookup_page_ext(page);
f86e4271 667 if (unlikely(!page_ext))
acbc15a4 668 return false;
f86e4271 669
e30825f1
JK
670 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
671
2847cf95
JK
672 INIT_LIST_HEAD(&page->lru);
673 set_page_private(page, order);
674 /* Guard pages are not available for any usage */
675 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
676
677 return true;
c0a32fc5
SG
678}
679
2847cf95
JK
680static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
c0a32fc5 682{
e30825f1
JK
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
f86e4271
YS
689 if (unlikely(!page_ext))
690 return;
691
e30825f1
JK
692 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
693
2847cf95
JK
694 set_page_private(page, 0);
695 if (!is_migrate_isolate(migratetype))
696 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
697}
698#else
980ac167 699struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
700static inline bool set_page_guard(struct zone *zone, struct page *page,
701 unsigned int order, int migratetype) { return false; }
2847cf95
JK
702static inline void clear_page_guard(struct zone *zone, struct page *page,
703 unsigned int order, int migratetype) {}
c0a32fc5
SG
704#endif
705
7aeb09f9 706static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 707{
4c21e2f2 708 set_page_private(page, order);
676165a8 709 __SetPageBuddy(page);
1da177e4
LT
710}
711
712static inline void rmv_page_order(struct page *page)
713{
676165a8 714 __ClearPageBuddy(page);
4c21e2f2 715 set_page_private(page, 0);
1da177e4
LT
716}
717
1da177e4
LT
718/*
719 * This function checks whether a page is free && is the buddy
720 * we can do coalesce a page and its buddy if
13ad59df 721 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 722 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
723 * (c) a page and its buddy have the same order &&
724 * (d) a page and its buddy are in the same zone.
676165a8 725 *
cf6fe945
WSH
726 * For recording whether a page is in the buddy system, we set ->_mapcount
727 * PAGE_BUDDY_MAPCOUNT_VALUE.
728 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
729 * serialized by zone->lock.
1da177e4 730 *
676165a8 731 * For recording page's order, we use page_private(page).
1da177e4 732 */
cb2b95e1 733static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 734 unsigned int order)
1da177e4 735{
c0a32fc5 736 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
c0a32fc5
SG
742 return 1;
743 }
744
cb2b95e1 745 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
6aa3001b 756 return 1;
676165a8 757 }
6aa3001b 758 return 0;
1da177e4
LT
759}
760
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
1da177e4 777 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
1da177e4 780 * If a block is freed, and its buddy is also free, then this
5f63b720 781 * triggers coalescing into a block of larger size.
1da177e4 782 *
6d49e352 783 * -- nyc
1da177e4
LT
784 */
785
48db57f8 786static inline void __free_one_page(struct page *page,
dc4b0caf 787 unsigned long pfn,
ed0ae21d
MG
788 struct zone *zone, unsigned int order,
789 int migratetype)
1da177e4 790{
76741e77
VB
791 unsigned long combined_pfn;
792 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 793 struct page *buddy;
d9dddbf5
VB
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 797
d29bb978 798 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 800
ed0ae21d 801 VM_BUG_ON(migratetype == -1);
d9dddbf5 802 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 804
76741e77 805 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 806 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 807
d9dddbf5 808continue_merging:
3c605096 809 while (order < max_order - 1) {
76741e77
VB
810 buddy_pfn = __find_buddy_pfn(pfn, order);
811 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
812
813 if (!pfn_valid_within(buddy_pfn))
814 goto done_merging;
cb2b95e1 815 if (!page_is_buddy(page, buddy, order))
d9dddbf5 816 goto done_merging;
c0a32fc5
SG
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
2847cf95 822 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
76741e77
VB
828 combined_pfn = buddy_pfn & pfn;
829 page = page + (combined_pfn - pfn);
830 pfn = combined_pfn;
1da177e4
LT
831 order++;
832 }
d9dddbf5
VB
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
76741e77
VB
845 buddy_pfn = __find_buddy_pfn(pfn, order);
846 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858done_merging:
1da177e4 859 set_page_order(page, order);
6dda9d55
CZ
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
13ad59df 869 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 870 struct page *higher_page, *higher_buddy;
76741e77
VB
871 combined_pfn = buddy_pfn & pfn;
872 higher_page = page + (combined_pfn - pfn);
873 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
874 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
6dda9d55
CZ
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883out:
1da177e4
LT
884 zone->free_area[order].nr_free++;
885}
886
7bfec6f4
MG
887/*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894{
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900#ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902#endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907}
908
bb552ac6 909static void free_pages_check_bad(struct page *page)
1da177e4 910{
7bfec6f4
MG
911 const char *bad_reason;
912 unsigned long bad_flags;
913
7bfec6f4
MG
914 bad_reason = NULL;
915 bad_flags = 0;
f0b791a3 916
53f9263b 917 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
fe896d18 921 if (unlikely(page_ref_count(page) != 0))
0139aa7b 922 bad_reason = "nonzero _refcount";
f0b791a3
DH
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
9edad6ea
JW
927#ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930#endif
7bfec6f4 931 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
932}
933
934static inline int free_pages_check(struct page *page)
935{
da838d4f 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 937 return 0;
bb552ac6
MG
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
7bfec6f4 941 return 1;
1da177e4
LT
942}
943
4db7548c
MG
944static int free_tail_pages_check(struct page *head_page, struct page *page)
945{
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992}
993
e2769dbd
MG
994static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
4db7548c 996{
e2769dbd 997 int bad = 0;
4db7548c 998
4db7548c
MG
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
e2769dbd
MG
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1003
1004 /*
1005 * Check tail pages before head page information is cleared to
1006 * avoid checking PageCompound for order-0 pages.
1007 */
1008 if (unlikely(order)) {
1009 bool compound = PageCompound(page);
1010 int i;
1011
1012 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1013
9a73f61b
KS
1014 if (compound)
1015 ClearPageDoubleMap(page);
e2769dbd
MG
1016 for (i = 1; i < (1 << order); i++) {
1017 if (compound)
1018 bad += free_tail_pages_check(page, page + i);
1019 if (unlikely(free_pages_check(page + i))) {
1020 bad++;
1021 continue;
1022 }
1023 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1024 }
1025 }
bda807d4 1026 if (PageMappingFlags(page))
4db7548c 1027 page->mapping = NULL;
c4159a75 1028 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1029 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1030 if (check_free)
1031 bad += free_pages_check(page);
1032 if (bad)
1033 return false;
4db7548c 1034
e2769dbd
MG
1035 page_cpupid_reset_last(page);
1036 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1037 reset_page_owner(page, order);
4db7548c
MG
1038
1039 if (!PageHighMem(page)) {
1040 debug_check_no_locks_freed(page_address(page),
e2769dbd 1041 PAGE_SIZE << order);
4db7548c 1042 debug_check_no_obj_freed(page_address(page),
e2769dbd 1043 PAGE_SIZE << order);
4db7548c 1044 }
e2769dbd
MG
1045 arch_free_page(page, order);
1046 kernel_poison_pages(page, 1 << order, 0);
1047 kernel_map_pages(page, 1 << order, 0);
29b52de1 1048 kasan_free_pages(page, order);
4db7548c 1049
4db7548c
MG
1050 return true;
1051}
1052
e2769dbd
MG
1053#ifdef CONFIG_DEBUG_VM
1054static inline bool free_pcp_prepare(struct page *page)
1055{
1056 return free_pages_prepare(page, 0, true);
1057}
1058
1059static inline bool bulkfree_pcp_prepare(struct page *page)
1060{
1061 return false;
1062}
1063#else
1064static bool free_pcp_prepare(struct page *page)
1065{
1066 return free_pages_prepare(page, 0, false);
1067}
1068
4db7548c
MG
1069static bool bulkfree_pcp_prepare(struct page *page)
1070{
1071 return free_pages_check(page);
1072}
1073#endif /* CONFIG_DEBUG_VM */
1074
1da177e4 1075/*
5f8dcc21 1076 * Frees a number of pages from the PCP lists
1da177e4 1077 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1078 * count is the number of pages to free.
1da177e4
LT
1079 *
1080 * If the zone was previously in an "all pages pinned" state then look to
1081 * see if this freeing clears that state.
1082 *
1083 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1084 * pinned" detection logic.
1085 */
5f8dcc21
MG
1086static void free_pcppages_bulk(struct zone *zone, int count,
1087 struct per_cpu_pages *pcp)
1da177e4 1088{
5f8dcc21 1089 int migratetype = 0;
a6f9edd6 1090 int batch_free = 0;
374ad05a 1091 unsigned long nr_scanned, flags;
3777999d 1092 bool isolated_pageblocks;
5f8dcc21 1093
374ad05a 1094 spin_lock_irqsave(&zone->lock, flags);
3777999d 1095 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1096 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1097 if (nr_scanned)
599d0c95 1098 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1099
e5b31ac2 1100 while (count) {
48db57f8 1101 struct page *page;
5f8dcc21
MG
1102 struct list_head *list;
1103
1104 /*
a6f9edd6
MG
1105 * Remove pages from lists in a round-robin fashion. A
1106 * batch_free count is maintained that is incremented when an
1107 * empty list is encountered. This is so more pages are freed
1108 * off fuller lists instead of spinning excessively around empty
1109 * lists
5f8dcc21
MG
1110 */
1111 do {
a6f9edd6 1112 batch_free++;
5f8dcc21
MG
1113 if (++migratetype == MIGRATE_PCPTYPES)
1114 migratetype = 0;
1115 list = &pcp->lists[migratetype];
1116 } while (list_empty(list));
48db57f8 1117
1d16871d
NK
1118 /* This is the only non-empty list. Free them all. */
1119 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1120 batch_free = count;
1d16871d 1121
a6f9edd6 1122 do {
770c8aaa
BZ
1123 int mt; /* migratetype of the to-be-freed page */
1124
a16601c5 1125 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1126 /* must delete as __free_one_page list manipulates */
1127 list_del(&page->lru);
aa016d14 1128
bb14c2c7 1129 mt = get_pcppage_migratetype(page);
aa016d14
VB
1130 /* MIGRATE_ISOLATE page should not go to pcplists */
1131 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1132 /* Pageblock could have been isolated meanwhile */
3777999d 1133 if (unlikely(isolated_pageblocks))
51bb1a40 1134 mt = get_pageblock_migratetype(page);
51bb1a40 1135
4db7548c
MG
1136 if (bulkfree_pcp_prepare(page))
1137 continue;
1138
dc4b0caf 1139 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1140 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1141 } while (--count && --batch_free && !list_empty(list));
1da177e4 1142 }
374ad05a 1143 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1144}
1145
dc4b0caf
MG
1146static void free_one_page(struct zone *zone,
1147 struct page *page, unsigned long pfn,
7aeb09f9 1148 unsigned int order,
ed0ae21d 1149 int migratetype)
1da177e4 1150{
374ad05a
MG
1151 unsigned long nr_scanned, flags;
1152 spin_lock_irqsave(&zone->lock, flags);
1153 __count_vm_events(PGFREE, 1 << order);
599d0c95 1154 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1155 if (nr_scanned)
599d0c95 1156 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1157
ad53f92e
JK
1158 if (unlikely(has_isolate_pageblock(zone) ||
1159 is_migrate_isolate(migratetype))) {
1160 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1161 }
dc4b0caf 1162 __free_one_page(page, pfn, zone, order, migratetype);
374ad05a 1163 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1164}
1165
1e8ce83c
RH
1166static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1167 unsigned long zone, int nid)
1168{
1e8ce83c 1169 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1170 init_page_count(page);
1171 page_mapcount_reset(page);
1172 page_cpupid_reset_last(page);
1e8ce83c 1173
1e8ce83c
RH
1174 INIT_LIST_HEAD(&page->lru);
1175#ifdef WANT_PAGE_VIRTUAL
1176 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1177 if (!is_highmem_idx(zone))
1178 set_page_address(page, __va(pfn << PAGE_SHIFT));
1179#endif
1180}
1181
1182static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1183 int nid)
1184{
1185 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1186}
1187
7e18adb4
MG
1188#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189static void init_reserved_page(unsigned long pfn)
1190{
1191 pg_data_t *pgdat;
1192 int nid, zid;
1193
1194 if (!early_page_uninitialised(pfn))
1195 return;
1196
1197 nid = early_pfn_to_nid(pfn);
1198 pgdat = NODE_DATA(nid);
1199
1200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201 struct zone *zone = &pgdat->node_zones[zid];
1202
1203 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1204 break;
1205 }
1206 __init_single_pfn(pfn, zid, nid);
1207}
1208#else
1209static inline void init_reserved_page(unsigned long pfn)
1210{
1211}
1212#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213
92923ca3
NZ
1214/*
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1219 */
4b50bcc7 1220void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1221{
1222 unsigned long start_pfn = PFN_DOWN(start);
1223 unsigned long end_pfn = PFN_UP(end);
1224
7e18adb4
MG
1225 for (; start_pfn < end_pfn; start_pfn++) {
1226 if (pfn_valid(start_pfn)) {
1227 struct page *page = pfn_to_page(start_pfn);
1228
1229 init_reserved_page(start_pfn);
1d798ca3
KS
1230
1231 /* Avoid false-positive PageTail() */
1232 INIT_LIST_HEAD(&page->lru);
1233
7e18adb4
MG
1234 SetPageReserved(page);
1235 }
1236 }
92923ca3
NZ
1237}
1238
ec95f53a
KM
1239static void __free_pages_ok(struct page *page, unsigned int order)
1240{
95e34412 1241 int migratetype;
dc4b0caf 1242 unsigned long pfn = page_to_pfn(page);
ec95f53a 1243
e2769dbd 1244 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1245 return;
1246
cfc47a28 1247 migratetype = get_pfnblock_migratetype(page, pfn);
dc4b0caf 1248 free_one_page(page_zone(page), page, pfn, order, migratetype);
1da177e4
LT
1249}
1250
949698a3 1251static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1252{
c3993076 1253 unsigned int nr_pages = 1 << order;
e2d0bd2b 1254 struct page *p = page;
c3993076 1255 unsigned int loop;
a226f6c8 1256
e2d0bd2b
YL
1257 prefetchw(p);
1258 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1259 prefetchw(p + 1);
c3993076
JW
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
a226f6c8 1262 }
e2d0bd2b
YL
1263 __ClearPageReserved(p);
1264 set_page_count(p, 0);
c3993076 1265
e2d0bd2b 1266 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1267 set_page_refcounted(page);
1268 __free_pages(page, order);
a226f6c8
DH
1269}
1270
75a592a4
MG
1271#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1272 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1273
75a592a4
MG
1274static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1275
1276int __meminit early_pfn_to_nid(unsigned long pfn)
1277{
7ace9917 1278 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1279 int nid;
1280
7ace9917 1281 spin_lock(&early_pfn_lock);
75a592a4 1282 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1283 if (nid < 0)
e4568d38 1284 nid = first_online_node;
7ace9917
MG
1285 spin_unlock(&early_pfn_lock);
1286
1287 return nid;
75a592a4
MG
1288}
1289#endif
1290
1291#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1292static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1293 struct mminit_pfnnid_cache *state)
1294{
1295 int nid;
1296
1297 nid = __early_pfn_to_nid(pfn, state);
1298 if (nid >= 0 && nid != node)
1299 return false;
1300 return true;
1301}
1302
1303/* Only safe to use early in boot when initialisation is single-threaded */
1304static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1305{
1306 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1307}
1308
1309#else
1310
1311static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312{
1313 return true;
1314}
1315static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1316 struct mminit_pfnnid_cache *state)
1317{
1318 return true;
1319}
1320#endif
1321
1322
0e1cc95b 1323void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1324 unsigned int order)
1325{
1326 if (early_page_uninitialised(pfn))
1327 return;
949698a3 1328 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1329}
1330
7cf91a98
JK
1331/*
1332 * Check that the whole (or subset of) a pageblock given by the interval of
1333 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1334 * with the migration of free compaction scanner. The scanners then need to
1335 * use only pfn_valid_within() check for arches that allow holes within
1336 * pageblocks.
1337 *
1338 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1339 *
1340 * It's possible on some configurations to have a setup like node0 node1 node0
1341 * i.e. it's possible that all pages within a zones range of pages do not
1342 * belong to a single zone. We assume that a border between node0 and node1
1343 * can occur within a single pageblock, but not a node0 node1 node0
1344 * interleaving within a single pageblock. It is therefore sufficient to check
1345 * the first and last page of a pageblock and avoid checking each individual
1346 * page in a pageblock.
1347 */
1348struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1349 unsigned long end_pfn, struct zone *zone)
1350{
1351 struct page *start_page;
1352 struct page *end_page;
1353
1354 /* end_pfn is one past the range we are checking */
1355 end_pfn--;
1356
1357 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1358 return NULL;
1359
1360 start_page = pfn_to_page(start_pfn);
1361
1362 if (page_zone(start_page) != zone)
1363 return NULL;
1364
1365 end_page = pfn_to_page(end_pfn);
1366
1367 /* This gives a shorter code than deriving page_zone(end_page) */
1368 if (page_zone_id(start_page) != page_zone_id(end_page))
1369 return NULL;
1370
1371 return start_page;
1372}
1373
1374void set_zone_contiguous(struct zone *zone)
1375{
1376 unsigned long block_start_pfn = zone->zone_start_pfn;
1377 unsigned long block_end_pfn;
1378
1379 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1380 for (; block_start_pfn < zone_end_pfn(zone);
1381 block_start_pfn = block_end_pfn,
1382 block_end_pfn += pageblock_nr_pages) {
1383
1384 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1385
1386 if (!__pageblock_pfn_to_page(block_start_pfn,
1387 block_end_pfn, zone))
1388 return;
1389 }
1390
1391 /* We confirm that there is no hole */
1392 zone->contiguous = true;
1393}
1394
1395void clear_zone_contiguous(struct zone *zone)
1396{
1397 zone->contiguous = false;
1398}
1399
7e18adb4 1400#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1401static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1402 unsigned long pfn, int nr_pages)
1403{
1404 int i;
1405
1406 if (!page)
1407 return;
1408
1409 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1410 if (nr_pages == pageblock_nr_pages &&
1411 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1412 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1413 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1414 return;
1415 }
1416
e780149b
XQ
1417 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1418 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1419 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1420 __free_pages_boot_core(page, 0);
e780149b 1421 }
a4de83dd
MG
1422}
1423
d3cd131d
NS
1424/* Completion tracking for deferred_init_memmap() threads */
1425static atomic_t pgdat_init_n_undone __initdata;
1426static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1427
1428static inline void __init pgdat_init_report_one_done(void)
1429{
1430 if (atomic_dec_and_test(&pgdat_init_n_undone))
1431 complete(&pgdat_init_all_done_comp);
1432}
0e1cc95b 1433
7e18adb4 1434/* Initialise remaining memory on a node */
0e1cc95b 1435static int __init deferred_init_memmap(void *data)
7e18adb4 1436{
0e1cc95b
MG
1437 pg_data_t *pgdat = data;
1438 int nid = pgdat->node_id;
7e18adb4
MG
1439 struct mminit_pfnnid_cache nid_init_state = { };
1440 unsigned long start = jiffies;
1441 unsigned long nr_pages = 0;
1442 unsigned long walk_start, walk_end;
1443 int i, zid;
1444 struct zone *zone;
7e18adb4 1445 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1446 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1447
0e1cc95b 1448 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1449 pgdat_init_report_one_done();
0e1cc95b
MG
1450 return 0;
1451 }
1452
1453 /* Bind memory initialisation thread to a local node if possible */
1454 if (!cpumask_empty(cpumask))
1455 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1456
1457 /* Sanity check boundaries */
1458 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1459 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1460 pgdat->first_deferred_pfn = ULONG_MAX;
1461
1462 /* Only the highest zone is deferred so find it */
1463 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1464 zone = pgdat->node_zones + zid;
1465 if (first_init_pfn < zone_end_pfn(zone))
1466 break;
1467 }
1468
1469 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1470 unsigned long pfn, end_pfn;
54608c3f 1471 struct page *page = NULL;
a4de83dd
MG
1472 struct page *free_base_page = NULL;
1473 unsigned long free_base_pfn = 0;
1474 int nr_to_free = 0;
7e18adb4
MG
1475
1476 end_pfn = min(walk_end, zone_end_pfn(zone));
1477 pfn = first_init_pfn;
1478 if (pfn < walk_start)
1479 pfn = walk_start;
1480 if (pfn < zone->zone_start_pfn)
1481 pfn = zone->zone_start_pfn;
1482
1483 for (; pfn < end_pfn; pfn++) {
54608c3f 1484 if (!pfn_valid_within(pfn))
a4de83dd 1485 goto free_range;
7e18adb4 1486
54608c3f
MG
1487 /*
1488 * Ensure pfn_valid is checked every
e780149b 1489 * pageblock_nr_pages for memory holes
54608c3f 1490 */
e780149b 1491 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1492 if (!pfn_valid(pfn)) {
1493 page = NULL;
a4de83dd 1494 goto free_range;
54608c3f
MG
1495 }
1496 }
1497
1498 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1499 page = NULL;
a4de83dd 1500 goto free_range;
54608c3f
MG
1501 }
1502
1503 /* Minimise pfn page lookups and scheduler checks */
e780149b 1504 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1505 page++;
1506 } else {
a4de83dd
MG
1507 nr_pages += nr_to_free;
1508 deferred_free_range(free_base_page,
1509 free_base_pfn, nr_to_free);
1510 free_base_page = NULL;
1511 free_base_pfn = nr_to_free = 0;
1512
54608c3f
MG
1513 page = pfn_to_page(pfn);
1514 cond_resched();
1515 }
7e18adb4
MG
1516
1517 if (page->flags) {
1518 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1519 goto free_range;
7e18adb4
MG
1520 }
1521
1522 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1523 if (!free_base_page) {
1524 free_base_page = page;
1525 free_base_pfn = pfn;
1526 nr_to_free = 0;
1527 }
1528 nr_to_free++;
1529
1530 /* Where possible, batch up pages for a single free */
1531 continue;
1532free_range:
1533 /* Free the current block of pages to allocator */
1534 nr_pages += nr_to_free;
1535 deferred_free_range(free_base_page, free_base_pfn,
1536 nr_to_free);
1537 free_base_page = NULL;
1538 free_base_pfn = nr_to_free = 0;
7e18adb4 1539 }
e780149b
XQ
1540 /* Free the last block of pages to allocator */
1541 nr_pages += nr_to_free;
1542 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1543
7e18adb4
MG
1544 first_init_pfn = max(end_pfn, first_init_pfn);
1545 }
1546
1547 /* Sanity check that the next zone really is unpopulated */
1548 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1549
0e1cc95b 1550 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1551 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1552
1553 pgdat_init_report_one_done();
0e1cc95b
MG
1554 return 0;
1555}
7cf91a98 1556#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1557
1558void __init page_alloc_init_late(void)
1559{
7cf91a98
JK
1560 struct zone *zone;
1561
1562#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1563 int nid;
1564
d3cd131d
NS
1565 /* There will be num_node_state(N_MEMORY) threads */
1566 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1567 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1568 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1569 }
1570
1571 /* Block until all are initialised */
d3cd131d 1572 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1573
1574 /* Reinit limits that are based on free pages after the kernel is up */
1575 files_maxfiles_init();
7cf91a98
JK
1576#endif
1577
1578 for_each_populated_zone(zone)
1579 set_zone_contiguous(zone);
7e18adb4 1580}
7e18adb4 1581
47118af0 1582#ifdef CONFIG_CMA
9cf510a5 1583/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1584void __init init_cma_reserved_pageblock(struct page *page)
1585{
1586 unsigned i = pageblock_nr_pages;
1587 struct page *p = page;
1588
1589 do {
1590 __ClearPageReserved(p);
1591 set_page_count(p, 0);
1592 } while (++p, --i);
1593
47118af0 1594 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1595
1596 if (pageblock_order >= MAX_ORDER) {
1597 i = pageblock_nr_pages;
1598 p = page;
1599 do {
1600 set_page_refcounted(p);
1601 __free_pages(p, MAX_ORDER - 1);
1602 p += MAX_ORDER_NR_PAGES;
1603 } while (i -= MAX_ORDER_NR_PAGES);
1604 } else {
1605 set_page_refcounted(page);
1606 __free_pages(page, pageblock_order);
1607 }
1608
3dcc0571 1609 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1610}
1611#endif
1da177e4
LT
1612
1613/*
1614 * The order of subdivision here is critical for the IO subsystem.
1615 * Please do not alter this order without good reasons and regression
1616 * testing. Specifically, as large blocks of memory are subdivided,
1617 * the order in which smaller blocks are delivered depends on the order
1618 * they're subdivided in this function. This is the primary factor
1619 * influencing the order in which pages are delivered to the IO
1620 * subsystem according to empirical testing, and this is also justified
1621 * by considering the behavior of a buddy system containing a single
1622 * large block of memory acted on by a series of small allocations.
1623 * This behavior is a critical factor in sglist merging's success.
1624 *
6d49e352 1625 * -- nyc
1da177e4 1626 */
085cc7d5 1627static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1628 int low, int high, struct free_area *area,
1629 int migratetype)
1da177e4
LT
1630{
1631 unsigned long size = 1 << high;
1632
1633 while (high > low) {
1634 area--;
1635 high--;
1636 size >>= 1;
309381fe 1637 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1638
acbc15a4
JK
1639 /*
1640 * Mark as guard pages (or page), that will allow to
1641 * merge back to allocator when buddy will be freed.
1642 * Corresponding page table entries will not be touched,
1643 * pages will stay not present in virtual address space
1644 */
1645 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1646 continue;
acbc15a4 1647
b2a0ac88 1648 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1649 area->nr_free++;
1650 set_page_order(&page[size], high);
1651 }
1da177e4
LT
1652}
1653
4e611801 1654static void check_new_page_bad(struct page *page)
1da177e4 1655{
4e611801
VB
1656 const char *bad_reason = NULL;
1657 unsigned long bad_flags = 0;
7bfec6f4 1658
53f9263b 1659 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1660 bad_reason = "nonzero mapcount";
1661 if (unlikely(page->mapping != NULL))
1662 bad_reason = "non-NULL mapping";
fe896d18 1663 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1664 bad_reason = "nonzero _count";
f4c18e6f
NH
1665 if (unlikely(page->flags & __PG_HWPOISON)) {
1666 bad_reason = "HWPoisoned (hardware-corrupted)";
1667 bad_flags = __PG_HWPOISON;
e570f56c
NH
1668 /* Don't complain about hwpoisoned pages */
1669 page_mapcount_reset(page); /* remove PageBuddy */
1670 return;
f4c18e6f 1671 }
f0b791a3
DH
1672 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1673 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1674 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1675 }
9edad6ea
JW
1676#ifdef CONFIG_MEMCG
1677 if (unlikely(page->mem_cgroup))
1678 bad_reason = "page still charged to cgroup";
1679#endif
4e611801
VB
1680 bad_page(page, bad_reason, bad_flags);
1681}
1682
1683/*
1684 * This page is about to be returned from the page allocator
1685 */
1686static inline int check_new_page(struct page *page)
1687{
1688 if (likely(page_expected_state(page,
1689 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1690 return 0;
1691
1692 check_new_page_bad(page);
1693 return 1;
2a7684a2
WF
1694}
1695
1414c7f4
LA
1696static inline bool free_pages_prezeroed(bool poisoned)
1697{
1698 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1699 page_poisoning_enabled() && poisoned;
1700}
1701
479f854a
MG
1702#ifdef CONFIG_DEBUG_VM
1703static bool check_pcp_refill(struct page *page)
1704{
1705 return false;
1706}
1707
1708static bool check_new_pcp(struct page *page)
1709{
1710 return check_new_page(page);
1711}
1712#else
1713static bool check_pcp_refill(struct page *page)
1714{
1715 return check_new_page(page);
1716}
1717static bool check_new_pcp(struct page *page)
1718{
1719 return false;
1720}
1721#endif /* CONFIG_DEBUG_VM */
1722
1723static bool check_new_pages(struct page *page, unsigned int order)
1724{
1725 int i;
1726 for (i = 0; i < (1 << order); i++) {
1727 struct page *p = page + i;
1728
1729 if (unlikely(check_new_page(p)))
1730 return true;
1731 }
1732
1733 return false;
1734}
1735
46f24fd8
JK
1736inline void post_alloc_hook(struct page *page, unsigned int order,
1737 gfp_t gfp_flags)
1738{
1739 set_page_private(page, 0);
1740 set_page_refcounted(page);
1741
1742 arch_alloc_page(page, order);
1743 kernel_map_pages(page, 1 << order, 1);
1744 kernel_poison_pages(page, 1 << order, 1);
1745 kasan_alloc_pages(page, order);
1746 set_page_owner(page, order, gfp_flags);
1747}
1748
479f854a 1749static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1750 unsigned int alloc_flags)
2a7684a2
WF
1751{
1752 int i;
1414c7f4 1753 bool poisoned = true;
2a7684a2
WF
1754
1755 for (i = 0; i < (1 << order); i++) {
1756 struct page *p = page + i;
1414c7f4
LA
1757 if (poisoned)
1758 poisoned &= page_is_poisoned(p);
2a7684a2 1759 }
689bcebf 1760
46f24fd8 1761 post_alloc_hook(page, order, gfp_flags);
17cf4406 1762
1414c7f4 1763 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1764 for (i = 0; i < (1 << order); i++)
1765 clear_highpage(page + i);
17cf4406
NP
1766
1767 if (order && (gfp_flags & __GFP_COMP))
1768 prep_compound_page(page, order);
1769
75379191 1770 /*
2f064f34 1771 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1772 * allocate the page. The expectation is that the caller is taking
1773 * steps that will free more memory. The caller should avoid the page
1774 * being used for !PFMEMALLOC purposes.
1775 */
2f064f34
MH
1776 if (alloc_flags & ALLOC_NO_WATERMARKS)
1777 set_page_pfmemalloc(page);
1778 else
1779 clear_page_pfmemalloc(page);
1da177e4
LT
1780}
1781
56fd56b8
MG
1782/*
1783 * Go through the free lists for the given migratetype and remove
1784 * the smallest available page from the freelists
1785 */
728ec980
MG
1786static inline
1787struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1788 int migratetype)
1789{
1790 unsigned int current_order;
b8af2941 1791 struct free_area *area;
56fd56b8
MG
1792 struct page *page;
1793
1794 /* Find a page of the appropriate size in the preferred list */
1795 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1796 area = &(zone->free_area[current_order]);
a16601c5 1797 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1798 struct page, lru);
a16601c5
GT
1799 if (!page)
1800 continue;
56fd56b8
MG
1801 list_del(&page->lru);
1802 rmv_page_order(page);
1803 area->nr_free--;
56fd56b8 1804 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1805 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1806 return page;
1807 }
1808
1809 return NULL;
1810}
1811
1812
b2a0ac88
MG
1813/*
1814 * This array describes the order lists are fallen back to when
1815 * the free lists for the desirable migrate type are depleted
1816 */
47118af0 1817static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1818 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1819 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1820 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1821#ifdef CONFIG_CMA
974a786e 1822 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1823#endif
194159fb 1824#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1825 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1826#endif
b2a0ac88
MG
1827};
1828
dc67647b
JK
1829#ifdef CONFIG_CMA
1830static struct page *__rmqueue_cma_fallback(struct zone *zone,
1831 unsigned int order)
1832{
1833 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1834}
1835#else
1836static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1837 unsigned int order) { return NULL; }
1838#endif
1839
c361be55
MG
1840/*
1841 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1842 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1843 * boundary. If alignment is required, use move_freepages_block()
1844 */
435b405c 1845int move_freepages(struct zone *zone,
b69a7288
AB
1846 struct page *start_page, struct page *end_page,
1847 int migratetype)
c361be55
MG
1848{
1849 struct page *page;
d00181b9 1850 unsigned int order;
d100313f 1851 int pages_moved = 0;
c361be55
MG
1852
1853#ifndef CONFIG_HOLES_IN_ZONE
1854 /*
1855 * page_zone is not safe to call in this context when
1856 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1857 * anyway as we check zone boundaries in move_freepages_block().
1858 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1859 * grouping pages by mobility
c361be55 1860 */
97ee4ba7 1861 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1862#endif
1863
1864 for (page = start_page; page <= end_page;) {
1865 if (!pfn_valid_within(page_to_pfn(page))) {
1866 page++;
1867 continue;
1868 }
1869
f073bdc5
AB
1870 /* Make sure we are not inadvertently changing nodes */
1871 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1872
c361be55
MG
1873 if (!PageBuddy(page)) {
1874 page++;
1875 continue;
1876 }
1877
1878 order = page_order(page);
84be48d8
KS
1879 list_move(&page->lru,
1880 &zone->free_area[order].free_list[migratetype]);
c361be55 1881 page += 1 << order;
d100313f 1882 pages_moved += 1 << order;
c361be55
MG
1883 }
1884
d100313f 1885 return pages_moved;
c361be55
MG
1886}
1887
ee6f509c 1888int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1889 int migratetype)
c361be55
MG
1890{
1891 unsigned long start_pfn, end_pfn;
1892 struct page *start_page, *end_page;
1893
1894 start_pfn = page_to_pfn(page);
d9c23400 1895 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1896 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1897 end_page = start_page + pageblock_nr_pages - 1;
1898 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1899
1900 /* Do not cross zone boundaries */
108bcc96 1901 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1902 start_page = page;
108bcc96 1903 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1904 return 0;
1905
1906 return move_freepages(zone, start_page, end_page, migratetype);
1907}
1908
2f66a68f
MG
1909static void change_pageblock_range(struct page *pageblock_page,
1910 int start_order, int migratetype)
1911{
1912 int nr_pageblocks = 1 << (start_order - pageblock_order);
1913
1914 while (nr_pageblocks--) {
1915 set_pageblock_migratetype(pageblock_page, migratetype);
1916 pageblock_page += pageblock_nr_pages;
1917 }
1918}
1919
fef903ef 1920/*
9c0415eb
VB
1921 * When we are falling back to another migratetype during allocation, try to
1922 * steal extra free pages from the same pageblocks to satisfy further
1923 * allocations, instead of polluting multiple pageblocks.
1924 *
1925 * If we are stealing a relatively large buddy page, it is likely there will
1926 * be more free pages in the pageblock, so try to steal them all. For
1927 * reclaimable and unmovable allocations, we steal regardless of page size,
1928 * as fragmentation caused by those allocations polluting movable pageblocks
1929 * is worse than movable allocations stealing from unmovable and reclaimable
1930 * pageblocks.
fef903ef 1931 */
4eb7dce6
JK
1932static bool can_steal_fallback(unsigned int order, int start_mt)
1933{
1934 /*
1935 * Leaving this order check is intended, although there is
1936 * relaxed order check in next check. The reason is that
1937 * we can actually steal whole pageblock if this condition met,
1938 * but, below check doesn't guarantee it and that is just heuristic
1939 * so could be changed anytime.
1940 */
1941 if (order >= pageblock_order)
1942 return true;
1943
1944 if (order >= pageblock_order / 2 ||
1945 start_mt == MIGRATE_RECLAIMABLE ||
1946 start_mt == MIGRATE_UNMOVABLE ||
1947 page_group_by_mobility_disabled)
1948 return true;
1949
1950 return false;
1951}
1952
1953/*
1954 * This function implements actual steal behaviour. If order is large enough,
1955 * we can steal whole pageblock. If not, we first move freepages in this
1956 * pageblock and check whether half of pages are moved or not. If half of
1957 * pages are moved, we can change migratetype of pageblock and permanently
1958 * use it's pages as requested migratetype in the future.
1959 */
1960static void steal_suitable_fallback(struct zone *zone, struct page *page,
1961 int start_type)
fef903ef 1962{
d00181b9 1963 unsigned int current_order = page_order(page);
4eb7dce6 1964 int pages;
fef903ef 1965
fef903ef
SB
1966 /* Take ownership for orders >= pageblock_order */
1967 if (current_order >= pageblock_order) {
1968 change_pageblock_range(page, current_order, start_type);
3a1086fb 1969 return;
fef903ef
SB
1970 }
1971
4eb7dce6 1972 pages = move_freepages_block(zone, page, start_type);
fef903ef 1973
4eb7dce6
JK
1974 /* Claim the whole block if over half of it is free */
1975 if (pages >= (1 << (pageblock_order-1)) ||
1976 page_group_by_mobility_disabled)
1977 set_pageblock_migratetype(page, start_type);
1978}
1979
2149cdae
JK
1980/*
1981 * Check whether there is a suitable fallback freepage with requested order.
1982 * If only_stealable is true, this function returns fallback_mt only if
1983 * we can steal other freepages all together. This would help to reduce
1984 * fragmentation due to mixed migratetype pages in one pageblock.
1985 */
1986int find_suitable_fallback(struct free_area *area, unsigned int order,
1987 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1988{
1989 int i;
1990 int fallback_mt;
1991
1992 if (area->nr_free == 0)
1993 return -1;
1994
1995 *can_steal = false;
1996 for (i = 0;; i++) {
1997 fallback_mt = fallbacks[migratetype][i];
974a786e 1998 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1999 break;
2000
2001 if (list_empty(&area->free_list[fallback_mt]))
2002 continue;
fef903ef 2003
4eb7dce6
JK
2004 if (can_steal_fallback(order, migratetype))
2005 *can_steal = true;
2006
2149cdae
JK
2007 if (!only_stealable)
2008 return fallback_mt;
2009
2010 if (*can_steal)
2011 return fallback_mt;
fef903ef 2012 }
4eb7dce6
JK
2013
2014 return -1;
fef903ef
SB
2015}
2016
0aaa29a5
MG
2017/*
2018 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2019 * there are no empty page blocks that contain a page with a suitable order
2020 */
2021static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2022 unsigned int alloc_order)
2023{
2024 int mt;
2025 unsigned long max_managed, flags;
2026
2027 /*
2028 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2029 * Check is race-prone but harmless.
2030 */
2031 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2032 if (zone->nr_reserved_highatomic >= max_managed)
2033 return;
2034
2035 spin_lock_irqsave(&zone->lock, flags);
2036
2037 /* Recheck the nr_reserved_highatomic limit under the lock */
2038 if (zone->nr_reserved_highatomic >= max_managed)
2039 goto out_unlock;
2040
2041 /* Yoink! */
2042 mt = get_pageblock_migratetype(page);
2043 if (mt != MIGRATE_HIGHATOMIC &&
2044 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2045 zone->nr_reserved_highatomic += pageblock_nr_pages;
2046 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2047 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2048 }
2049
2050out_unlock:
2051 spin_unlock_irqrestore(&zone->lock, flags);
2052}
2053
2054/*
2055 * Used when an allocation is about to fail under memory pressure. This
2056 * potentially hurts the reliability of high-order allocations when under
2057 * intense memory pressure but failed atomic allocations should be easier
2058 * to recover from than an OOM.
29fac03b
MK
2059 *
2060 * If @force is true, try to unreserve a pageblock even though highatomic
2061 * pageblock is exhausted.
0aaa29a5 2062 */
29fac03b
MK
2063static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2064 bool force)
0aaa29a5
MG
2065{
2066 struct zonelist *zonelist = ac->zonelist;
2067 unsigned long flags;
2068 struct zoneref *z;
2069 struct zone *zone;
2070 struct page *page;
2071 int order;
04c8716f 2072 bool ret;
0aaa29a5
MG
2073
2074 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2075 ac->nodemask) {
29fac03b
MK
2076 /*
2077 * Preserve at least one pageblock unless memory pressure
2078 * is really high.
2079 */
2080 if (!force && zone->nr_reserved_highatomic <=
2081 pageblock_nr_pages)
0aaa29a5
MG
2082 continue;
2083
2084 spin_lock_irqsave(&zone->lock, flags);
2085 for (order = 0; order < MAX_ORDER; order++) {
2086 struct free_area *area = &(zone->free_area[order]);
2087
a16601c5
GT
2088 page = list_first_entry_or_null(
2089 &area->free_list[MIGRATE_HIGHATOMIC],
2090 struct page, lru);
2091 if (!page)
0aaa29a5
MG
2092 continue;
2093
0aaa29a5 2094 /*
4855e4a7
MK
2095 * In page freeing path, migratetype change is racy so
2096 * we can counter several free pages in a pageblock
2097 * in this loop althoug we changed the pageblock type
2098 * from highatomic to ac->migratetype. So we should
2099 * adjust the count once.
0aaa29a5 2100 */
4855e4a7
MK
2101 if (get_pageblock_migratetype(page) ==
2102 MIGRATE_HIGHATOMIC) {
2103 /*
2104 * It should never happen but changes to
2105 * locking could inadvertently allow a per-cpu
2106 * drain to add pages to MIGRATE_HIGHATOMIC
2107 * while unreserving so be safe and watch for
2108 * underflows.
2109 */
2110 zone->nr_reserved_highatomic -= min(
2111 pageblock_nr_pages,
2112 zone->nr_reserved_highatomic);
2113 }
0aaa29a5
MG
2114
2115 /*
2116 * Convert to ac->migratetype and avoid the normal
2117 * pageblock stealing heuristics. Minimally, the caller
2118 * is doing the work and needs the pages. More
2119 * importantly, if the block was always converted to
2120 * MIGRATE_UNMOVABLE or another type then the number
2121 * of pageblocks that cannot be completely freed
2122 * may increase.
2123 */
2124 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2125 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2126 if (ret) {
2127 spin_unlock_irqrestore(&zone->lock, flags);
2128 return ret;
2129 }
0aaa29a5
MG
2130 }
2131 spin_unlock_irqrestore(&zone->lock, flags);
2132 }
04c8716f
MK
2133
2134 return false;
0aaa29a5
MG
2135}
2136
b2a0ac88 2137/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2138static inline struct page *
7aeb09f9 2139__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2140{
b8af2941 2141 struct free_area *area;
7aeb09f9 2142 unsigned int current_order;
b2a0ac88 2143 struct page *page;
4eb7dce6
JK
2144 int fallback_mt;
2145 bool can_steal;
b2a0ac88
MG
2146
2147 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2148 for (current_order = MAX_ORDER-1;
2149 current_order >= order && current_order <= MAX_ORDER-1;
2150 --current_order) {
4eb7dce6
JK
2151 area = &(zone->free_area[current_order]);
2152 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2153 start_migratetype, false, &can_steal);
4eb7dce6
JK
2154 if (fallback_mt == -1)
2155 continue;
b2a0ac88 2156
a16601c5 2157 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2158 struct page, lru);
88ed365e
MK
2159 if (can_steal &&
2160 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2161 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2162
4eb7dce6
JK
2163 /* Remove the page from the freelists */
2164 area->nr_free--;
2165 list_del(&page->lru);
2166 rmv_page_order(page);
3a1086fb 2167
4eb7dce6
JK
2168 expand(zone, page, order, current_order, area,
2169 start_migratetype);
2170 /*
bb14c2c7 2171 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2172 * migratetype depending on the decisions in
bb14c2c7
VB
2173 * find_suitable_fallback(). This is OK as long as it does not
2174 * differ for MIGRATE_CMA pageblocks. Those can be used as
2175 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2176 */
bb14c2c7 2177 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2178
4eb7dce6
JK
2179 trace_mm_page_alloc_extfrag(page, order, current_order,
2180 start_migratetype, fallback_mt);
e0fff1bd 2181
4eb7dce6 2182 return page;
b2a0ac88
MG
2183 }
2184
728ec980 2185 return NULL;
b2a0ac88
MG
2186}
2187
56fd56b8 2188/*
1da177e4
LT
2189 * Do the hard work of removing an element from the buddy allocator.
2190 * Call me with the zone->lock already held.
2191 */
b2a0ac88 2192static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2193 int migratetype)
1da177e4 2194{
1da177e4
LT
2195 struct page *page;
2196
56fd56b8 2197 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2198 if (unlikely(!page)) {
dc67647b
JK
2199 if (migratetype == MIGRATE_MOVABLE)
2200 page = __rmqueue_cma_fallback(zone, order);
2201
2202 if (!page)
2203 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2204 }
2205
0d3d062a 2206 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2207 return page;
1da177e4
LT
2208}
2209
5f63b720 2210/*
1da177e4
LT
2211 * Obtain a specified number of elements from the buddy allocator, all under
2212 * a single hold of the lock, for efficiency. Add them to the supplied list.
2213 * Returns the number of new pages which were placed at *list.
2214 */
5f63b720 2215static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2216 unsigned long count, struct list_head *list,
b745bc85 2217 int migratetype, bool cold)
1da177e4 2218{
a6de734b 2219 int i, alloced = 0;
374ad05a 2220 unsigned long flags;
5f63b720 2221
374ad05a 2222 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2223 for (i = 0; i < count; ++i) {
6ac0206b 2224 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2225 if (unlikely(page == NULL))
1da177e4 2226 break;
81eabcbe 2227
479f854a
MG
2228 if (unlikely(check_pcp_refill(page)))
2229 continue;
2230
81eabcbe
MG
2231 /*
2232 * Split buddy pages returned by expand() are received here
2233 * in physical page order. The page is added to the callers and
2234 * list and the list head then moves forward. From the callers
2235 * perspective, the linked list is ordered by page number in
2236 * some conditions. This is useful for IO devices that can
2237 * merge IO requests if the physical pages are ordered
2238 * properly.
2239 */
b745bc85 2240 if (likely(!cold))
e084b2d9
MG
2241 list_add(&page->lru, list);
2242 else
2243 list_add_tail(&page->lru, list);
81eabcbe 2244 list = &page->lru;
a6de734b 2245 alloced++;
bb14c2c7 2246 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2247 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2248 -(1 << order));
1da177e4 2249 }
a6de734b
MG
2250
2251 /*
2252 * i pages were removed from the buddy list even if some leak due
2253 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2254 * on i. Do not confuse with 'alloced' which is the number of
2255 * pages added to the pcp list.
2256 */
f2260e6b 2257 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
374ad05a 2258 spin_unlock_irqrestore(&zone->lock, flags);
a6de734b 2259 return alloced;
1da177e4
LT
2260}
2261
4ae7c039 2262#ifdef CONFIG_NUMA
8fce4d8e 2263/*
4037d452
CL
2264 * Called from the vmstat counter updater to drain pagesets of this
2265 * currently executing processor on remote nodes after they have
2266 * expired.
2267 *
879336c3
CL
2268 * Note that this function must be called with the thread pinned to
2269 * a single processor.
8fce4d8e 2270 */
4037d452 2271void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2272{
4ae7c039 2273 unsigned long flags;
7be12fc9 2274 int to_drain, batch;
4ae7c039 2275
4037d452 2276 local_irq_save(flags);
4db0c3c2 2277 batch = READ_ONCE(pcp->batch);
7be12fc9 2278 to_drain = min(pcp->count, batch);
2a13515c
KM
2279 if (to_drain > 0) {
2280 free_pcppages_bulk(zone, to_drain, pcp);
2281 pcp->count -= to_drain;
2282 }
4037d452 2283 local_irq_restore(flags);
4ae7c039
CL
2284}
2285#endif
2286
9f8f2172 2287/*
93481ff0 2288 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2289 *
2290 * The processor must either be the current processor and the
2291 * thread pinned to the current processor or a processor that
2292 * is not online.
2293 */
93481ff0 2294static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2295{
c54ad30c 2296 unsigned long flags;
93481ff0
VB
2297 struct per_cpu_pageset *pset;
2298 struct per_cpu_pages *pcp;
1da177e4 2299
93481ff0
VB
2300 local_irq_save(flags);
2301 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2302
93481ff0
VB
2303 pcp = &pset->pcp;
2304 if (pcp->count) {
2305 free_pcppages_bulk(zone, pcp->count, pcp);
2306 pcp->count = 0;
2307 }
2308 local_irq_restore(flags);
2309}
3dfa5721 2310
93481ff0
VB
2311/*
2312 * Drain pcplists of all zones on the indicated processor.
2313 *
2314 * The processor must either be the current processor and the
2315 * thread pinned to the current processor or a processor that
2316 * is not online.
2317 */
2318static void drain_pages(unsigned int cpu)
2319{
2320 struct zone *zone;
2321
2322 for_each_populated_zone(zone) {
2323 drain_pages_zone(cpu, zone);
1da177e4
LT
2324 }
2325}
1da177e4 2326
9f8f2172
CL
2327/*
2328 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2329 *
2330 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2331 * the single zone's pages.
9f8f2172 2332 */
93481ff0 2333void drain_local_pages(struct zone *zone)
9f8f2172 2334{
93481ff0
VB
2335 int cpu = smp_processor_id();
2336
2337 if (zone)
2338 drain_pages_zone(cpu, zone);
2339 else
2340 drain_pages(cpu);
9f8f2172
CL
2341}
2342
0ccce3b9
MG
2343static void drain_local_pages_wq(struct work_struct *work)
2344{
a459eeb7
MH
2345 /*
2346 * drain_all_pages doesn't use proper cpu hotplug protection so
2347 * we can race with cpu offline when the WQ can move this from
2348 * a cpu pinned worker to an unbound one. We can operate on a different
2349 * cpu which is allright but we also have to make sure to not move to
2350 * a different one.
2351 */
2352 preempt_disable();
0ccce3b9 2353 drain_local_pages(NULL);
a459eeb7 2354 preempt_enable();
0ccce3b9
MG
2355}
2356
9f8f2172 2357/*
74046494
GBY
2358 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2359 *
93481ff0
VB
2360 * When zone parameter is non-NULL, spill just the single zone's pages.
2361 *
0ccce3b9 2362 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2363 */
93481ff0 2364void drain_all_pages(struct zone *zone)
9f8f2172 2365{
74046494 2366 int cpu;
74046494
GBY
2367
2368 /*
2369 * Allocate in the BSS so we wont require allocation in
2370 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2371 */
2372 static cpumask_t cpus_with_pcps;
2373
0ccce3b9
MG
2374 /* Workqueues cannot recurse */
2375 if (current->flags & PF_WQ_WORKER)
2376 return;
2377
bd233f53
MG
2378 /*
2379 * Do not drain if one is already in progress unless it's specific to
2380 * a zone. Such callers are primarily CMA and memory hotplug and need
2381 * the drain to be complete when the call returns.
2382 */
2383 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2384 if (!zone)
2385 return;
2386 mutex_lock(&pcpu_drain_mutex);
2387 }
0ccce3b9 2388
74046494
GBY
2389 /*
2390 * We don't care about racing with CPU hotplug event
2391 * as offline notification will cause the notified
2392 * cpu to drain that CPU pcps and on_each_cpu_mask
2393 * disables preemption as part of its processing
2394 */
2395 for_each_online_cpu(cpu) {
93481ff0
VB
2396 struct per_cpu_pageset *pcp;
2397 struct zone *z;
74046494 2398 bool has_pcps = false;
93481ff0
VB
2399
2400 if (zone) {
74046494 2401 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2402 if (pcp->pcp.count)
74046494 2403 has_pcps = true;
93481ff0
VB
2404 } else {
2405 for_each_populated_zone(z) {
2406 pcp = per_cpu_ptr(z->pageset, cpu);
2407 if (pcp->pcp.count) {
2408 has_pcps = true;
2409 break;
2410 }
74046494
GBY
2411 }
2412 }
93481ff0 2413
74046494
GBY
2414 if (has_pcps)
2415 cpumask_set_cpu(cpu, &cpus_with_pcps);
2416 else
2417 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2418 }
0ccce3b9 2419
bd233f53
MG
2420 for_each_cpu(cpu, &cpus_with_pcps) {
2421 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2422 INIT_WORK(work, drain_local_pages_wq);
2423 schedule_work_on(cpu, work);
0ccce3b9 2424 }
bd233f53
MG
2425 for_each_cpu(cpu, &cpus_with_pcps)
2426 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2427
2428 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2429}
2430
296699de 2431#ifdef CONFIG_HIBERNATION
1da177e4
LT
2432
2433void mark_free_pages(struct zone *zone)
2434{
f623f0db
RW
2435 unsigned long pfn, max_zone_pfn;
2436 unsigned long flags;
7aeb09f9 2437 unsigned int order, t;
86760a2c 2438 struct page *page;
1da177e4 2439
8080fc03 2440 if (zone_is_empty(zone))
1da177e4
LT
2441 return;
2442
2443 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2444
108bcc96 2445 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2446 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2447 if (pfn_valid(pfn)) {
86760a2c 2448 page = pfn_to_page(pfn);
ba6b0979
JK
2449
2450 if (page_zone(page) != zone)
2451 continue;
2452
7be98234
RW
2453 if (!swsusp_page_is_forbidden(page))
2454 swsusp_unset_page_free(page);
f623f0db 2455 }
1da177e4 2456
b2a0ac88 2457 for_each_migratetype_order(order, t) {
86760a2c
GT
2458 list_for_each_entry(page,
2459 &zone->free_area[order].free_list[t], lru) {
f623f0db 2460 unsigned long i;
1da177e4 2461
86760a2c 2462 pfn = page_to_pfn(page);
f623f0db 2463 for (i = 0; i < (1UL << order); i++)
7be98234 2464 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2465 }
b2a0ac88 2466 }
1da177e4
LT
2467 spin_unlock_irqrestore(&zone->lock, flags);
2468}
e2c55dc8 2469#endif /* CONFIG_PM */
1da177e4 2470
1da177e4
LT
2471/*
2472 * Free a 0-order page
b745bc85 2473 * cold == true ? free a cold page : free a hot page
1da177e4 2474 */
b745bc85 2475void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2476{
2477 struct zone *zone = page_zone(page);
2478 struct per_cpu_pages *pcp;
dc4b0caf 2479 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2480 int migratetype;
1da177e4 2481
374ad05a
MG
2482 if (in_interrupt()) {
2483 __free_pages_ok(page, 0);
2484 return;
2485 }
2486
4db7548c 2487 if (!free_pcp_prepare(page))
689bcebf
HD
2488 return;
2489
dc4b0caf 2490 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2491 set_pcppage_migratetype(page, migratetype);
374ad05a 2492 preempt_disable();
da456f14 2493
5f8dcc21
MG
2494 /*
2495 * We only track unmovable, reclaimable and movable on pcp lists.
2496 * Free ISOLATE pages back to the allocator because they are being
2497 * offlined but treat RESERVE as movable pages so we can get those
2498 * areas back if necessary. Otherwise, we may have to free
2499 * excessively into the page allocator
2500 */
2501 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2502 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2503 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2504 goto out;
2505 }
2506 migratetype = MIGRATE_MOVABLE;
2507 }
2508
374ad05a 2509 __count_vm_event(PGFREE);
99dcc3e5 2510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2511 if (!cold)
5f8dcc21 2512 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2513 else
2514 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2515 pcp->count++;
48db57f8 2516 if (pcp->count >= pcp->high) {
4db0c3c2 2517 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2518 free_pcppages_bulk(zone, batch, pcp);
2519 pcp->count -= batch;
48db57f8 2520 }
5f8dcc21
MG
2521
2522out:
374ad05a 2523 preempt_enable();
1da177e4
LT
2524}
2525
cc59850e
KK
2526/*
2527 * Free a list of 0-order pages
2528 */
b745bc85 2529void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2530{
2531 struct page *page, *next;
2532
2533 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2534 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2535 free_hot_cold_page(page, cold);
2536 }
2537}
2538
8dfcc9ba
NP
2539/*
2540 * split_page takes a non-compound higher-order page, and splits it into
2541 * n (1<<order) sub-pages: page[0..n]
2542 * Each sub-page must be freed individually.
2543 *
2544 * Note: this is probably too low level an operation for use in drivers.
2545 * Please consult with lkml before using this in your driver.
2546 */
2547void split_page(struct page *page, unsigned int order)
2548{
2549 int i;
2550
309381fe
SL
2551 VM_BUG_ON_PAGE(PageCompound(page), page);
2552 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2553
2554#ifdef CONFIG_KMEMCHECK
2555 /*
2556 * Split shadow pages too, because free(page[0]) would
2557 * otherwise free the whole shadow.
2558 */
2559 if (kmemcheck_page_is_tracked(page))
2560 split_page(virt_to_page(page[0].shadow), order);
2561#endif
2562
a9627bc5 2563 for (i = 1; i < (1 << order); i++)
7835e98b 2564 set_page_refcounted(page + i);
a9627bc5 2565 split_page_owner(page, order);
8dfcc9ba 2566}
5853ff23 2567EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2568
3c605096 2569int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2570{
748446bb
MG
2571 unsigned long watermark;
2572 struct zone *zone;
2139cbe6 2573 int mt;
748446bb
MG
2574
2575 BUG_ON(!PageBuddy(page));
2576
2577 zone = page_zone(page);
2e30abd1 2578 mt = get_pageblock_migratetype(page);
748446bb 2579
194159fb 2580 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2581 /*
2582 * Obey watermarks as if the page was being allocated. We can
2583 * emulate a high-order watermark check with a raised order-0
2584 * watermark, because we already know our high-order page
2585 * exists.
2586 */
2587 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2588 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2589 return 0;
2590
8fb74b9f 2591 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2592 }
748446bb
MG
2593
2594 /* Remove page from free list */
2595 list_del(&page->lru);
2596 zone->free_area[order].nr_free--;
2597 rmv_page_order(page);
2139cbe6 2598
400bc7fd 2599 /*
2600 * Set the pageblock if the isolated page is at least half of a
2601 * pageblock
2602 */
748446bb
MG
2603 if (order >= pageblock_order - 1) {
2604 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2605 for (; page < endpage; page += pageblock_nr_pages) {
2606 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2608 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2609 set_pageblock_migratetype(page,
2610 MIGRATE_MOVABLE);
2611 }
748446bb
MG
2612 }
2613
f3a14ced 2614
8fb74b9f 2615 return 1UL << order;
1fb3f8ca
MG
2616}
2617
060e7417
MG
2618/*
2619 * Update NUMA hit/miss statistics
2620 *
2621 * Must be called with interrupts disabled.
060e7417 2622 */
41b6167e 2623static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2624{
2625#ifdef CONFIG_NUMA
060e7417
MG
2626 enum zone_stat_item local_stat = NUMA_LOCAL;
2627
2df26639 2628 if (z->node != numa_node_id())
060e7417 2629 local_stat = NUMA_OTHER;
060e7417 2630
2df26639 2631 if (z->node == preferred_zone->node)
060e7417 2632 __inc_zone_state(z, NUMA_HIT);
2df26639 2633 else {
060e7417
MG
2634 __inc_zone_state(z, NUMA_MISS);
2635 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2636 }
2df26639 2637 __inc_zone_state(z, local_stat);
060e7417
MG
2638#endif
2639}
2640
066b2393
MG
2641/* Remove page from the per-cpu list, caller must protect the list */
2642static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2643 bool cold, struct per_cpu_pages *pcp,
2644 struct list_head *list)
2645{
2646 struct page *page;
2647
374ad05a
MG
2648 VM_BUG_ON(in_interrupt());
2649
066b2393
MG
2650 do {
2651 if (list_empty(list)) {
2652 pcp->count += rmqueue_bulk(zone, 0,
2653 pcp->batch, list,
2654 migratetype, cold);
2655 if (unlikely(list_empty(list)))
2656 return NULL;
2657 }
2658
2659 if (cold)
2660 page = list_last_entry(list, struct page, lru);
2661 else
2662 page = list_first_entry(list, struct page, lru);
2663
2664 list_del(&page->lru);
2665 pcp->count--;
2666 } while (check_new_pcp(page));
2667
2668 return page;
2669}
2670
2671/* Lock and remove page from the per-cpu list */
2672static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2673 struct zone *zone, unsigned int order,
2674 gfp_t gfp_flags, int migratetype)
2675{
2676 struct per_cpu_pages *pcp;
2677 struct list_head *list;
2678 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2679 struct page *page;
066b2393 2680
374ad05a 2681 preempt_disable();
066b2393
MG
2682 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2683 list = &pcp->lists[migratetype];
2684 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2685 if (page) {
2686 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2687 zone_statistics(preferred_zone, zone);
2688 }
374ad05a 2689 preempt_enable();
066b2393
MG
2690 return page;
2691}
2692
1da177e4 2693/*
75379191 2694 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2695 */
0a15c3e9 2696static inline
066b2393 2697struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2698 struct zone *zone, unsigned int order,
c603844b
MG
2699 gfp_t gfp_flags, unsigned int alloc_flags,
2700 int migratetype)
1da177e4
LT
2701{
2702 unsigned long flags;
689bcebf 2703 struct page *page;
1da177e4 2704
374ad05a 2705 if (likely(order == 0) && !in_interrupt()) {
066b2393
MG
2706 page = rmqueue_pcplist(preferred_zone, zone, order,
2707 gfp_flags, migratetype);
2708 goto out;
2709 }
83b9355b 2710
066b2393
MG
2711 /*
2712 * We most definitely don't want callers attempting to
2713 * allocate greater than order-1 page units with __GFP_NOFAIL.
2714 */
2715 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2716 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2717
066b2393
MG
2718 do {
2719 page = NULL;
2720 if (alloc_flags & ALLOC_HARDER) {
2721 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2722 if (page)
2723 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2724 }
a74609fa 2725 if (!page)
066b2393
MG
2726 page = __rmqueue(zone, order, migratetype);
2727 } while (page && check_new_pages(page, order));
2728 spin_unlock(&zone->lock);
2729 if (!page)
2730 goto failed;
2731 __mod_zone_freepage_state(zone, -(1 << order),
2732 get_pcppage_migratetype(page));
1da177e4 2733
16709d1d 2734 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2735 zone_statistics(preferred_zone, zone);
a74609fa 2736 local_irq_restore(flags);
1da177e4 2737
066b2393
MG
2738out:
2739 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2740 return page;
a74609fa
NP
2741
2742failed:
2743 local_irq_restore(flags);
a74609fa 2744 return NULL;
1da177e4
LT
2745}
2746
933e312e
AM
2747#ifdef CONFIG_FAIL_PAGE_ALLOC
2748
b2588c4b 2749static struct {
933e312e
AM
2750 struct fault_attr attr;
2751
621a5f7a 2752 bool ignore_gfp_highmem;
71baba4b 2753 bool ignore_gfp_reclaim;
54114994 2754 u32 min_order;
933e312e
AM
2755} fail_page_alloc = {
2756 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2757 .ignore_gfp_reclaim = true,
621a5f7a 2758 .ignore_gfp_highmem = true,
54114994 2759 .min_order = 1,
933e312e
AM
2760};
2761
2762static int __init setup_fail_page_alloc(char *str)
2763{
2764 return setup_fault_attr(&fail_page_alloc.attr, str);
2765}
2766__setup("fail_page_alloc=", setup_fail_page_alloc);
2767
deaf386e 2768static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2769{
54114994 2770 if (order < fail_page_alloc.min_order)
deaf386e 2771 return false;
933e312e 2772 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2773 return false;
933e312e 2774 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2775 return false;
71baba4b
MG
2776 if (fail_page_alloc.ignore_gfp_reclaim &&
2777 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2778 return false;
933e312e
AM
2779
2780 return should_fail(&fail_page_alloc.attr, 1 << order);
2781}
2782
2783#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2784
2785static int __init fail_page_alloc_debugfs(void)
2786{
f4ae40a6 2787 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2788 struct dentry *dir;
933e312e 2789
dd48c085
AM
2790 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2791 &fail_page_alloc.attr);
2792 if (IS_ERR(dir))
2793 return PTR_ERR(dir);
933e312e 2794
b2588c4b 2795 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2796 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2797 goto fail;
2798 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2799 &fail_page_alloc.ignore_gfp_highmem))
2800 goto fail;
2801 if (!debugfs_create_u32("min-order", mode, dir,
2802 &fail_page_alloc.min_order))
2803 goto fail;
2804
2805 return 0;
2806fail:
dd48c085 2807 debugfs_remove_recursive(dir);
933e312e 2808
b2588c4b 2809 return -ENOMEM;
933e312e
AM
2810}
2811
2812late_initcall(fail_page_alloc_debugfs);
2813
2814#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2815
2816#else /* CONFIG_FAIL_PAGE_ALLOC */
2817
deaf386e 2818static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2819{
deaf386e 2820 return false;
933e312e
AM
2821}
2822
2823#endif /* CONFIG_FAIL_PAGE_ALLOC */
2824
1da177e4 2825/*
97a16fc8
MG
2826 * Return true if free base pages are above 'mark'. For high-order checks it
2827 * will return true of the order-0 watermark is reached and there is at least
2828 * one free page of a suitable size. Checking now avoids taking the zone lock
2829 * to check in the allocation paths if no pages are free.
1da177e4 2830 */
86a294a8
MH
2831bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2832 int classzone_idx, unsigned int alloc_flags,
2833 long free_pages)
1da177e4 2834{
d23ad423 2835 long min = mark;
1da177e4 2836 int o;
c603844b 2837 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2838
0aaa29a5 2839 /* free_pages may go negative - that's OK */
df0a6daa 2840 free_pages -= (1 << order) - 1;
0aaa29a5 2841
7fb1d9fc 2842 if (alloc_flags & ALLOC_HIGH)
1da177e4 2843 min -= min / 2;
0aaa29a5
MG
2844
2845 /*
2846 * If the caller does not have rights to ALLOC_HARDER then subtract
2847 * the high-atomic reserves. This will over-estimate the size of the
2848 * atomic reserve but it avoids a search.
2849 */
97a16fc8 2850 if (likely(!alloc_harder))
0aaa29a5
MG
2851 free_pages -= z->nr_reserved_highatomic;
2852 else
1da177e4 2853 min -= min / 4;
e2b19197 2854
d95ea5d1
BZ
2855#ifdef CONFIG_CMA
2856 /* If allocation can't use CMA areas don't use free CMA pages */
2857 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2858 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2859#endif
026b0814 2860
97a16fc8
MG
2861 /*
2862 * Check watermarks for an order-0 allocation request. If these
2863 * are not met, then a high-order request also cannot go ahead
2864 * even if a suitable page happened to be free.
2865 */
2866 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2867 return false;
1da177e4 2868
97a16fc8
MG
2869 /* If this is an order-0 request then the watermark is fine */
2870 if (!order)
2871 return true;
2872
2873 /* For a high-order request, check at least one suitable page is free */
2874 for (o = order; o < MAX_ORDER; o++) {
2875 struct free_area *area = &z->free_area[o];
2876 int mt;
2877
2878 if (!area->nr_free)
2879 continue;
2880
2881 if (alloc_harder)
2882 return true;
1da177e4 2883
97a16fc8
MG
2884 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2885 if (!list_empty(&area->free_list[mt]))
2886 return true;
2887 }
2888
2889#ifdef CONFIG_CMA
2890 if ((alloc_flags & ALLOC_CMA) &&
2891 !list_empty(&area->free_list[MIGRATE_CMA])) {
2892 return true;
2893 }
2894#endif
1da177e4 2895 }
97a16fc8 2896 return false;
88f5acf8
MG
2897}
2898
7aeb09f9 2899bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2900 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2901{
2902 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2903 zone_page_state(z, NR_FREE_PAGES));
2904}
2905
48ee5f36
MG
2906static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2907 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2908{
2909 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2910 long cma_pages = 0;
2911
2912#ifdef CONFIG_CMA
2913 /* If allocation can't use CMA areas don't use free CMA pages */
2914 if (!(alloc_flags & ALLOC_CMA))
2915 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2916#endif
2917
2918 /*
2919 * Fast check for order-0 only. If this fails then the reserves
2920 * need to be calculated. There is a corner case where the check
2921 * passes but only the high-order atomic reserve are free. If
2922 * the caller is !atomic then it'll uselessly search the free
2923 * list. That corner case is then slower but it is harmless.
2924 */
2925 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2926 return true;
2927
2928 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2929 free_pages);
2930}
2931
7aeb09f9 2932bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2933 unsigned long mark, int classzone_idx)
88f5acf8
MG
2934{
2935 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2936
2937 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2938 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2939
e2b19197 2940 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2941 free_pages);
1da177e4
LT
2942}
2943
9276b1bc 2944#ifdef CONFIG_NUMA
957f822a
DR
2945static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2946{
5f7a75ac
MG
2947 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2948 RECLAIM_DISTANCE;
957f822a 2949}
9276b1bc 2950#else /* CONFIG_NUMA */
957f822a
DR
2951static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2952{
2953 return true;
2954}
9276b1bc
PJ
2955#endif /* CONFIG_NUMA */
2956
7fb1d9fc 2957/*
0798e519 2958 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2959 * a page.
2960 */
2961static struct page *
a9263751
VB
2962get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2963 const struct alloc_context *ac)
753ee728 2964{
c33d6c06 2965 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2966 struct zone *zone;
3b8c0be4
MG
2967 struct pglist_data *last_pgdat_dirty_limit = NULL;
2968
7fb1d9fc 2969 /*
9276b1bc 2970 * Scan zonelist, looking for a zone with enough free.
344736f2 2971 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2972 */
c33d6c06 2973 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2974 ac->nodemask) {
be06af00 2975 struct page *page;
e085dbc5
JW
2976 unsigned long mark;
2977
664eedde
MG
2978 if (cpusets_enabled() &&
2979 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2980 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2981 continue;
a756cf59
JW
2982 /*
2983 * When allocating a page cache page for writing, we
281e3726
MG
2984 * want to get it from a node that is within its dirty
2985 * limit, such that no single node holds more than its
a756cf59 2986 * proportional share of globally allowed dirty pages.
281e3726 2987 * The dirty limits take into account the node's
a756cf59
JW
2988 * lowmem reserves and high watermark so that kswapd
2989 * should be able to balance it without having to
2990 * write pages from its LRU list.
2991 *
a756cf59 2992 * XXX: For now, allow allocations to potentially
281e3726 2993 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2994 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2995 * which is important when on a NUMA setup the allowed
281e3726 2996 * nodes are together not big enough to reach the
a756cf59 2997 * global limit. The proper fix for these situations
281e3726 2998 * will require awareness of nodes in the
a756cf59
JW
2999 * dirty-throttling and the flusher threads.
3000 */
3b8c0be4
MG
3001 if (ac->spread_dirty_pages) {
3002 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3003 continue;
3004
3005 if (!node_dirty_ok(zone->zone_pgdat)) {
3006 last_pgdat_dirty_limit = zone->zone_pgdat;
3007 continue;
3008 }
3009 }
7fb1d9fc 3010
e085dbc5 3011 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3012 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3013 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3014 int ret;
3015
5dab2911
MG
3016 /* Checked here to keep the fast path fast */
3017 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3018 if (alloc_flags & ALLOC_NO_WATERMARKS)
3019 goto try_this_zone;
3020
a5f5f91d 3021 if (node_reclaim_mode == 0 ||
c33d6c06 3022 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3023 continue;
3024
a5f5f91d 3025 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3026 switch (ret) {
a5f5f91d 3027 case NODE_RECLAIM_NOSCAN:
fa5e084e 3028 /* did not scan */
cd38b115 3029 continue;
a5f5f91d 3030 case NODE_RECLAIM_FULL:
fa5e084e 3031 /* scanned but unreclaimable */
cd38b115 3032 continue;
fa5e084e
MG
3033 default:
3034 /* did we reclaim enough */
fed2719e 3035 if (zone_watermark_ok(zone, order, mark,
93ea9964 3036 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3037 goto try_this_zone;
3038
fed2719e 3039 continue;
0798e519 3040 }
7fb1d9fc
RS
3041 }
3042
fa5e084e 3043try_this_zone:
066b2393 3044 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3045 gfp_mask, alloc_flags, ac->migratetype);
75379191 3046 if (page) {
479f854a 3047 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3048
3049 /*
3050 * If this is a high-order atomic allocation then check
3051 * if the pageblock should be reserved for the future
3052 */
3053 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3054 reserve_highatomic_pageblock(page, zone, order);
3055
75379191
VB
3056 return page;
3057 }
54a6eb5c 3058 }
9276b1bc 3059
4ffeaf35 3060 return NULL;
753ee728
MH
3061}
3062
29423e77
DR
3063/*
3064 * Large machines with many possible nodes should not always dump per-node
3065 * meminfo in irq context.
3066 */
3067static inline bool should_suppress_show_mem(void)
3068{
3069 bool ret = false;
3070
3071#if NODES_SHIFT > 8
3072 ret = in_interrupt();
3073#endif
3074 return ret;
3075}
3076
9af744d7 3077static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3078{
a238ab5b 3079 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3080 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3081
aa187507 3082 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3083 return;
3084
3085 /*
3086 * This documents exceptions given to allocations in certain
3087 * contexts that are allowed to allocate outside current's set
3088 * of allowed nodes.
3089 */
3090 if (!(gfp_mask & __GFP_NOMEMALLOC))
3091 if (test_thread_flag(TIF_MEMDIE) ||
3092 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3093 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3094 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3095 filter &= ~SHOW_MEM_FILTER_NODES;
3096
9af744d7 3097 show_mem(filter, nodemask);
aa187507
MH
3098}
3099
a8e99259 3100void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3101{
3102 struct va_format vaf;
3103 va_list args;
3104 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3105 DEFAULT_RATELIMIT_BURST);
3106
3107 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3108 debug_guardpage_minorder() > 0)
3109 return;
3110
7877cdcc 3111 pr_warn("%s: ", current->comm);
3ee9a4f0 3112
7877cdcc
MH
3113 va_start(args, fmt);
3114 vaf.fmt = fmt;
3115 vaf.va = &args;
3116 pr_cont("%pV", &vaf);
3117 va_end(args);
3ee9a4f0 3118
685dbf6f
DR
3119 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3120 if (nodemask)
3121 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3122 else
3123 pr_cont("(null)\n");
3124
a8e99259 3125 cpuset_print_current_mems_allowed();
3ee9a4f0 3126
a238ab5b 3127 dump_stack();
685dbf6f 3128 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3129}
3130
6c18ba7a
MH
3131static inline struct page *
3132__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3133 unsigned int alloc_flags,
3134 const struct alloc_context *ac)
3135{
3136 struct page *page;
3137
3138 page = get_page_from_freelist(gfp_mask, order,
3139 alloc_flags|ALLOC_CPUSET, ac);
3140 /*
3141 * fallback to ignore cpuset restriction if our nodes
3142 * are depleted
3143 */
3144 if (!page)
3145 page = get_page_from_freelist(gfp_mask, order,
3146 alloc_flags, ac);
3147
3148 return page;
3149}
3150
11e33f6a
MG
3151static inline struct page *
3152__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3153 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3154{
6e0fc46d
DR
3155 struct oom_control oc = {
3156 .zonelist = ac->zonelist,
3157 .nodemask = ac->nodemask,
2a966b77 3158 .memcg = NULL,
6e0fc46d
DR
3159 .gfp_mask = gfp_mask,
3160 .order = order,
6e0fc46d 3161 };
11e33f6a
MG
3162 struct page *page;
3163
9879de73
JW
3164 *did_some_progress = 0;
3165
9879de73 3166 /*
dc56401f
JW
3167 * Acquire the oom lock. If that fails, somebody else is
3168 * making progress for us.
9879de73 3169 */
dc56401f 3170 if (!mutex_trylock(&oom_lock)) {
9879de73 3171 *did_some_progress = 1;
11e33f6a 3172 schedule_timeout_uninterruptible(1);
1da177e4
LT
3173 return NULL;
3174 }
6b1de916 3175
11e33f6a
MG
3176 /*
3177 * Go through the zonelist yet one more time, keep very high watermark
3178 * here, this is only to catch a parallel oom killing, we must fail if
3179 * we're still under heavy pressure.
3180 */
a9263751
VB
3181 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3182 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3183 if (page)
11e33f6a
MG
3184 goto out;
3185
06ad276a
MH
3186 /* Coredumps can quickly deplete all memory reserves */
3187 if (current->flags & PF_DUMPCORE)
3188 goto out;
3189 /* The OOM killer will not help higher order allocs */
3190 if (order > PAGE_ALLOC_COSTLY_ORDER)
3191 goto out;
3192 /* The OOM killer does not needlessly kill tasks for lowmem */
3193 if (ac->high_zoneidx < ZONE_NORMAL)
3194 goto out;
3195 if (pm_suspended_storage())
3196 goto out;
3197 /*
3198 * XXX: GFP_NOFS allocations should rather fail than rely on
3199 * other request to make a forward progress.
3200 * We are in an unfortunate situation where out_of_memory cannot
3201 * do much for this context but let's try it to at least get
3202 * access to memory reserved if the current task is killed (see
3203 * out_of_memory). Once filesystems are ready to handle allocation
3204 * failures more gracefully we should just bail out here.
3205 */
3206
3207 /* The OOM killer may not free memory on a specific node */
3208 if (gfp_mask & __GFP_THISNODE)
3209 goto out;
3da88fb3 3210
11e33f6a 3211 /* Exhausted what can be done so it's blamo time */
5020e285 3212 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3213 *did_some_progress = 1;
5020e285 3214
6c18ba7a
MH
3215 /*
3216 * Help non-failing allocations by giving them access to memory
3217 * reserves
3218 */
3219 if (gfp_mask & __GFP_NOFAIL)
3220 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3221 ALLOC_NO_WATERMARKS, ac);
5020e285 3222 }
11e33f6a 3223out:
dc56401f 3224 mutex_unlock(&oom_lock);
11e33f6a
MG
3225 return page;
3226}
3227
33c2d214
MH
3228/*
3229 * Maximum number of compaction retries wit a progress before OOM
3230 * killer is consider as the only way to move forward.
3231 */
3232#define MAX_COMPACT_RETRIES 16
3233
56de7263
MG
3234#ifdef CONFIG_COMPACTION
3235/* Try memory compaction for high-order allocations before reclaim */
3236static struct page *
3237__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3238 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3239 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3240{
98dd3b48 3241 struct page *page;
53853e2d
VB
3242
3243 if (!order)
66199712 3244 return NULL;
66199712 3245
c06b1fca 3246 current->flags |= PF_MEMALLOC;
c5d01d0d 3247 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3248 prio);
c06b1fca 3249 current->flags &= ~PF_MEMALLOC;
56de7263 3250
c5d01d0d 3251 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3252 return NULL;
53853e2d 3253
98dd3b48
VB
3254 /*
3255 * At least in one zone compaction wasn't deferred or skipped, so let's
3256 * count a compaction stall
3257 */
3258 count_vm_event(COMPACTSTALL);
8fb74b9f 3259
31a6c190 3260 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3261
98dd3b48
VB
3262 if (page) {
3263 struct zone *zone = page_zone(page);
53853e2d 3264
98dd3b48
VB
3265 zone->compact_blockskip_flush = false;
3266 compaction_defer_reset(zone, order, true);
3267 count_vm_event(COMPACTSUCCESS);
3268 return page;
3269 }
56de7263 3270
98dd3b48
VB
3271 /*
3272 * It's bad if compaction run occurs and fails. The most likely reason
3273 * is that pages exist, but not enough to satisfy watermarks.
3274 */
3275 count_vm_event(COMPACTFAIL);
66199712 3276
98dd3b48 3277 cond_resched();
56de7263
MG
3278
3279 return NULL;
3280}
33c2d214 3281
3250845d
VB
3282static inline bool
3283should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3284 enum compact_result compact_result,
3285 enum compact_priority *compact_priority,
d9436498 3286 int *compaction_retries)
3250845d
VB
3287{
3288 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3289 int min_priority;
65190cff
MH
3290 bool ret = false;
3291 int retries = *compaction_retries;
3292 enum compact_priority priority = *compact_priority;
3250845d
VB
3293
3294 if (!order)
3295 return false;
3296
d9436498
VB
3297 if (compaction_made_progress(compact_result))
3298 (*compaction_retries)++;
3299
3250845d
VB
3300 /*
3301 * compaction considers all the zone as desperately out of memory
3302 * so it doesn't really make much sense to retry except when the
3303 * failure could be caused by insufficient priority
3304 */
d9436498
VB
3305 if (compaction_failed(compact_result))
3306 goto check_priority;
3250845d
VB
3307
3308 /*
3309 * make sure the compaction wasn't deferred or didn't bail out early
3310 * due to locks contention before we declare that we should give up.
3311 * But do not retry if the given zonelist is not suitable for
3312 * compaction.
3313 */
65190cff
MH
3314 if (compaction_withdrawn(compact_result)) {
3315 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3316 goto out;
3317 }
3250845d
VB
3318
3319 /*
3320 * !costly requests are much more important than __GFP_REPEAT
3321 * costly ones because they are de facto nofail and invoke OOM
3322 * killer to move on while costly can fail and users are ready
3323 * to cope with that. 1/4 retries is rather arbitrary but we
3324 * would need much more detailed feedback from compaction to
3325 * make a better decision.
3326 */
3327 if (order > PAGE_ALLOC_COSTLY_ORDER)
3328 max_retries /= 4;
65190cff
MH
3329 if (*compaction_retries <= max_retries) {
3330 ret = true;
3331 goto out;
3332 }
3250845d 3333
d9436498
VB
3334 /*
3335 * Make sure there are attempts at the highest priority if we exhausted
3336 * all retries or failed at the lower priorities.
3337 */
3338check_priority:
c2033b00
VB
3339 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3340 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3341
c2033b00 3342 if (*compact_priority > min_priority) {
d9436498
VB
3343 (*compact_priority)--;
3344 *compaction_retries = 0;
65190cff 3345 ret = true;
d9436498 3346 }
65190cff
MH
3347out:
3348 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3349 return ret;
3250845d 3350}
56de7263
MG
3351#else
3352static inline struct page *
3353__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3354 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3355 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3356{
33c2d214 3357 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3358 return NULL;
3359}
33c2d214
MH
3360
3361static inline bool
86a294a8
MH
3362should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3363 enum compact_result compact_result,
a5508cd8 3364 enum compact_priority *compact_priority,
d9436498 3365 int *compaction_retries)
33c2d214 3366{
31e49bfd
MH
3367 struct zone *zone;
3368 struct zoneref *z;
3369
3370 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3371 return false;
3372
3373 /*
3374 * There are setups with compaction disabled which would prefer to loop
3375 * inside the allocator rather than hit the oom killer prematurely.
3376 * Let's give them a good hope and keep retrying while the order-0
3377 * watermarks are OK.
3378 */
3379 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3380 ac->nodemask) {
3381 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3382 ac_classzone_idx(ac), alloc_flags))
3383 return true;
3384 }
33c2d214
MH
3385 return false;
3386}
3250845d 3387#endif /* CONFIG_COMPACTION */
56de7263 3388
bba90710
MS
3389/* Perform direct synchronous page reclaim */
3390static int
a9263751
VB
3391__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3392 const struct alloc_context *ac)
11e33f6a 3393{
11e33f6a 3394 struct reclaim_state reclaim_state;
bba90710 3395 int progress;
11e33f6a
MG
3396
3397 cond_resched();
3398
3399 /* We now go into synchronous reclaim */
3400 cpuset_memory_pressure_bump();
c06b1fca 3401 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3402 lockdep_set_current_reclaim_state(gfp_mask);
3403 reclaim_state.reclaimed_slab = 0;
c06b1fca 3404 current->reclaim_state = &reclaim_state;
11e33f6a 3405
a9263751
VB
3406 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3407 ac->nodemask);
11e33f6a 3408
c06b1fca 3409 current->reclaim_state = NULL;
11e33f6a 3410 lockdep_clear_current_reclaim_state();
c06b1fca 3411 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3412
3413 cond_resched();
3414
bba90710
MS
3415 return progress;
3416}
3417
3418/* The really slow allocator path where we enter direct reclaim */
3419static inline struct page *
3420__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3421 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3422 unsigned long *did_some_progress)
bba90710
MS
3423{
3424 struct page *page = NULL;
3425 bool drained = false;
3426
a9263751 3427 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3428 if (unlikely(!(*did_some_progress)))
3429 return NULL;
11e33f6a 3430
9ee493ce 3431retry:
31a6c190 3432 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3433
3434 /*
3435 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3436 * pages are pinned on the per-cpu lists or in high alloc reserves.
3437 * Shrink them them and try again
9ee493ce
MG
3438 */
3439 if (!page && !drained) {
29fac03b 3440 unreserve_highatomic_pageblock(ac, false);
93481ff0 3441 drain_all_pages(NULL);
9ee493ce
MG
3442 drained = true;
3443 goto retry;
3444 }
3445
11e33f6a
MG
3446 return page;
3447}
3448
a9263751 3449static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3450{
3451 struct zoneref *z;
3452 struct zone *zone;
e1a55637 3453 pg_data_t *last_pgdat = NULL;
3a025760 3454
a9263751 3455 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3456 ac->high_zoneidx, ac->nodemask) {
3457 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3458 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3459 last_pgdat = zone->zone_pgdat;
3460 }
3a025760
JW
3461}
3462
c603844b 3463static inline unsigned int
341ce06f
PZ
3464gfp_to_alloc_flags(gfp_t gfp_mask)
3465{
c603844b 3466 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3467
a56f57ff 3468 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3469 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3470
341ce06f
PZ
3471 /*
3472 * The caller may dip into page reserves a bit more if the caller
3473 * cannot run direct reclaim, or if the caller has realtime scheduling
3474 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3475 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3476 */
e6223a3b 3477 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3478
d0164adc 3479 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3480 /*
b104a35d
DR
3481 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3482 * if it can't schedule.
5c3240d9 3483 */
b104a35d 3484 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3485 alloc_flags |= ALLOC_HARDER;
523b9458 3486 /*
b104a35d 3487 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3488 * comment for __cpuset_node_allowed().
523b9458 3489 */
341ce06f 3490 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3491 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3492 alloc_flags |= ALLOC_HARDER;
3493
d95ea5d1 3494#ifdef CONFIG_CMA
43e7a34d 3495 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3496 alloc_flags |= ALLOC_CMA;
3497#endif
341ce06f
PZ
3498 return alloc_flags;
3499}
3500
072bb0aa
MG
3501bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3502{
31a6c190
VB
3503 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3504 return false;
3505
3506 if (gfp_mask & __GFP_MEMALLOC)
3507 return true;
3508 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3509 return true;
3510 if (!in_interrupt() &&
3511 ((current->flags & PF_MEMALLOC) ||
3512 unlikely(test_thread_flag(TIF_MEMDIE))))
3513 return true;
3514
3515 return false;
072bb0aa
MG
3516}
3517
0a0337e0
MH
3518/*
3519 * Maximum number of reclaim retries without any progress before OOM killer
3520 * is consider as the only way to move forward.
3521 */
3522#define MAX_RECLAIM_RETRIES 16
3523
3524/*
3525 * Checks whether it makes sense to retry the reclaim to make a forward progress
3526 * for the given allocation request.
3527 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3528 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3529 * any progress in a row) is considered as well as the reclaimable pages on the
3530 * applicable zone list (with a backoff mechanism which is a function of
3531 * no_progress_loops).
0a0337e0
MH
3532 *
3533 * Returns true if a retry is viable or false to enter the oom path.
3534 */
3535static inline bool
3536should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3537 struct alloc_context *ac, int alloc_flags,
423b452e 3538 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3539{
3540 struct zone *zone;
3541 struct zoneref *z;
3542
423b452e
VB
3543 /*
3544 * Costly allocations might have made a progress but this doesn't mean
3545 * their order will become available due to high fragmentation so
3546 * always increment the no progress counter for them
3547 */
3548 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3549 *no_progress_loops = 0;
3550 else
3551 (*no_progress_loops)++;
3552
0a0337e0
MH
3553 /*
3554 * Make sure we converge to OOM if we cannot make any progress
3555 * several times in the row.
3556 */
04c8716f
MK
3557 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3558 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3559 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3560 }
0a0337e0 3561
bca67592
MG
3562 /*
3563 * Keep reclaiming pages while there is a chance this will lead
3564 * somewhere. If none of the target zones can satisfy our allocation
3565 * request even if all reclaimable pages are considered then we are
3566 * screwed and have to go OOM.
0a0337e0
MH
3567 */
3568 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3569 ac->nodemask) {
3570 unsigned long available;
ede37713 3571 unsigned long reclaimable;
d379f01d
MH
3572 unsigned long min_wmark = min_wmark_pages(zone);
3573 bool wmark;
0a0337e0 3574
5a1c84b4 3575 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3576 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3577 MAX_RECLAIM_RETRIES);
5a1c84b4 3578 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3579
3580 /*
3581 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3582 * available?
0a0337e0 3583 */
d379f01d
MH
3584 wmark = __zone_watermark_ok(zone, order, min_wmark,
3585 ac_classzone_idx(ac), alloc_flags, available);
3586 trace_reclaim_retry_zone(z, order, reclaimable,
3587 available, min_wmark, *no_progress_loops, wmark);
3588 if (wmark) {
ede37713
MH
3589 /*
3590 * If we didn't make any progress and have a lot of
3591 * dirty + writeback pages then we should wait for
3592 * an IO to complete to slow down the reclaim and
3593 * prevent from pre mature OOM
3594 */
3595 if (!did_some_progress) {
11fb9989 3596 unsigned long write_pending;
ede37713 3597
5a1c84b4
MG
3598 write_pending = zone_page_state_snapshot(zone,
3599 NR_ZONE_WRITE_PENDING);
ede37713 3600
11fb9989 3601 if (2 * write_pending > reclaimable) {
ede37713
MH
3602 congestion_wait(BLK_RW_ASYNC, HZ/10);
3603 return true;
3604 }
3605 }
5a1c84b4 3606
ede37713
MH
3607 /*
3608 * Memory allocation/reclaim might be called from a WQ
3609 * context and the current implementation of the WQ
3610 * concurrency control doesn't recognize that
3611 * a particular WQ is congested if the worker thread is
3612 * looping without ever sleeping. Therefore we have to
3613 * do a short sleep here rather than calling
3614 * cond_resched().
3615 */
3616 if (current->flags & PF_WQ_WORKER)
3617 schedule_timeout_uninterruptible(1);
3618 else
3619 cond_resched();
3620
0a0337e0
MH
3621 return true;
3622 }
3623 }
3624
3625 return false;
3626}
3627
11e33f6a
MG
3628static inline struct page *
3629__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3630 struct alloc_context *ac)
11e33f6a 3631{
d0164adc 3632 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3633 struct page *page = NULL;
c603844b 3634 unsigned int alloc_flags;
11e33f6a 3635 unsigned long did_some_progress;
5ce9bfef 3636 enum compact_priority compact_priority;
c5d01d0d 3637 enum compact_result compact_result;
5ce9bfef
VB
3638 int compaction_retries;
3639 int no_progress_loops;
63f53dea
MH
3640 unsigned long alloc_start = jiffies;
3641 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3642 unsigned int cpuset_mems_cookie;
1da177e4 3643
72807a74
MG
3644 /*
3645 * In the slowpath, we sanity check order to avoid ever trying to
3646 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3647 * be using allocators in order of preference for an area that is
3648 * too large.
3649 */
1fc28b70
MG
3650 if (order >= MAX_ORDER) {
3651 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3652 return NULL;
1fc28b70 3653 }
1da177e4 3654
d0164adc
MG
3655 /*
3656 * We also sanity check to catch abuse of atomic reserves being used by
3657 * callers that are not in atomic context.
3658 */
3659 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3660 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3661 gfp_mask &= ~__GFP_ATOMIC;
3662
5ce9bfef
VB
3663retry_cpuset:
3664 compaction_retries = 0;
3665 no_progress_loops = 0;
3666 compact_priority = DEF_COMPACT_PRIORITY;
3667 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3668
3669 /*
3670 * The fast path uses conservative alloc_flags to succeed only until
3671 * kswapd needs to be woken up, and to avoid the cost of setting up
3672 * alloc_flags precisely. So we do that now.
3673 */
3674 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3675
e47483bc
VB
3676 /*
3677 * We need to recalculate the starting point for the zonelist iterator
3678 * because we might have used different nodemask in the fast path, or
3679 * there was a cpuset modification and we are retrying - otherwise we
3680 * could end up iterating over non-eligible zones endlessly.
3681 */
3682 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3683 ac->high_zoneidx, ac->nodemask);
3684 if (!ac->preferred_zoneref->zone)
3685 goto nopage;
3686
23771235
VB
3687 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3688 wake_all_kswapds(order, ac);
3689
3690 /*
3691 * The adjusted alloc_flags might result in immediate success, so try
3692 * that first
3693 */
3694 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3695 if (page)
3696 goto got_pg;
3697
a8161d1e
VB
3698 /*
3699 * For costly allocations, try direct compaction first, as it's likely
3700 * that we have enough base pages and don't need to reclaim. Don't try
3701 * that for allocations that are allowed to ignore watermarks, as the
3702 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3703 */
3704 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3705 !gfp_pfmemalloc_allowed(gfp_mask)) {
3706 page = __alloc_pages_direct_compact(gfp_mask, order,
3707 alloc_flags, ac,
a5508cd8 3708 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3709 &compact_result);
3710 if (page)
3711 goto got_pg;
3712
3eb2771b
VB
3713 /*
3714 * Checks for costly allocations with __GFP_NORETRY, which
3715 * includes THP page fault allocations
3716 */
3717 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3718 /*
3719 * If compaction is deferred for high-order allocations,
3720 * it is because sync compaction recently failed. If
3721 * this is the case and the caller requested a THP
3722 * allocation, we do not want to heavily disrupt the
3723 * system, so we fail the allocation instead of entering
3724 * direct reclaim.
3725 */
3726 if (compact_result == COMPACT_DEFERRED)
3727 goto nopage;
3728
a8161d1e 3729 /*
3eb2771b
VB
3730 * Looks like reclaim/compaction is worth trying, but
3731 * sync compaction could be very expensive, so keep
25160354 3732 * using async compaction.
a8161d1e 3733 */
a5508cd8 3734 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3735 }
3736 }
23771235 3737
31a6c190 3738retry:
23771235 3739 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3740 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3741 wake_all_kswapds(order, ac);
3742
23771235
VB
3743 if (gfp_pfmemalloc_allowed(gfp_mask))
3744 alloc_flags = ALLOC_NO_WATERMARKS;
3745
e46e7b77
MG
3746 /*
3747 * Reset the zonelist iterators if memory policies can be ignored.
3748 * These allocations are high priority and system rather than user
3749 * orientated.
3750 */
23771235 3751 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3752 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3753 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3754 ac->high_zoneidx, ac->nodemask);
3755 }
3756
23771235 3757 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3758 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3759 if (page)
3760 goto got_pg;
1da177e4 3761
d0164adc 3762 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3763 if (!can_direct_reclaim)
1da177e4
LT
3764 goto nopage;
3765
9a67f648
MH
3766 /* Make sure we know about allocations which stall for too long */
3767 if (time_after(jiffies, alloc_start + stall_timeout)) {
3768 warn_alloc(gfp_mask, ac->nodemask,
3769 "page allocation stalls for %ums, order:%u",
3770 jiffies_to_msecs(jiffies-alloc_start), order);
3771 stall_timeout += 10 * HZ;
33d53103 3772 }
341ce06f 3773
9a67f648
MH
3774 /* Avoid recursion of direct reclaim */
3775 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3776 goto nopage;
3777
a8161d1e
VB
3778 /* Try direct reclaim and then allocating */
3779 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3780 &did_some_progress);
3781 if (page)
3782 goto got_pg;
3783
3784 /* Try direct compaction and then allocating */
a9263751 3785 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3786 compact_priority, &compact_result);
56de7263
MG
3787 if (page)
3788 goto got_pg;
75f30861 3789
9083905a
JW
3790 /* Do not loop if specifically requested */
3791 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3792 goto nopage;
9083905a 3793
0a0337e0
MH
3794 /*
3795 * Do not retry costly high order allocations unless they are
3796 * __GFP_REPEAT
3797 */
3798 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3799 goto nopage;
0a0337e0 3800
0a0337e0 3801 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3802 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3803 goto retry;
3804
33c2d214
MH
3805 /*
3806 * It doesn't make any sense to retry for the compaction if the order-0
3807 * reclaim is not able to make any progress because the current
3808 * implementation of the compaction depends on the sufficient amount
3809 * of free memory (see __compaction_suitable)
3810 */
3811 if (did_some_progress > 0 &&
86a294a8 3812 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3813 compact_result, &compact_priority,
d9436498 3814 &compaction_retries))
33c2d214
MH
3815 goto retry;
3816
e47483bc
VB
3817 /*
3818 * It's possible we raced with cpuset update so the OOM would be
3819 * premature (see below the nopage: label for full explanation).
3820 */
3821 if (read_mems_allowed_retry(cpuset_mems_cookie))
3822 goto retry_cpuset;
3823
9083905a
JW
3824 /* Reclaim has failed us, start killing things */
3825 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3826 if (page)
3827 goto got_pg;
3828
9a67f648
MH
3829 /* Avoid allocations with no watermarks from looping endlessly */
3830 if (test_thread_flag(TIF_MEMDIE))
3831 goto nopage;
3832
9083905a 3833 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3834 if (did_some_progress) {
3835 no_progress_loops = 0;
9083905a 3836 goto retry;
0a0337e0 3837 }
9083905a 3838
1da177e4 3839nopage:
5ce9bfef 3840 /*
e47483bc
VB
3841 * When updating a task's mems_allowed or mempolicy nodemask, it is
3842 * possible to race with parallel threads in such a way that our
3843 * allocation can fail while the mask is being updated. If we are about
3844 * to fail, check if the cpuset changed during allocation and if so,
3845 * retry.
5ce9bfef
VB
3846 */
3847 if (read_mems_allowed_retry(cpuset_mems_cookie))
3848 goto retry_cpuset;
3849
9a67f648
MH
3850 /*
3851 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3852 * we always retry
3853 */
3854 if (gfp_mask & __GFP_NOFAIL) {
3855 /*
3856 * All existing users of the __GFP_NOFAIL are blockable, so warn
3857 * of any new users that actually require GFP_NOWAIT
3858 */
3859 if (WARN_ON_ONCE(!can_direct_reclaim))
3860 goto fail;
3861
3862 /*
3863 * PF_MEMALLOC request from this context is rather bizarre
3864 * because we cannot reclaim anything and only can loop waiting
3865 * for somebody to do a work for us
3866 */
3867 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3868
3869 /*
3870 * non failing costly orders are a hard requirement which we
3871 * are not prepared for much so let's warn about these users
3872 * so that we can identify them and convert them to something
3873 * else.
3874 */
3875 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3876
6c18ba7a
MH
3877 /*
3878 * Help non-failing allocations by giving them access to memory
3879 * reserves but do not use ALLOC_NO_WATERMARKS because this
3880 * could deplete whole memory reserves which would just make
3881 * the situation worse
3882 */
3883 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3884 if (page)
3885 goto got_pg;
3886
9a67f648
MH
3887 cond_resched();
3888 goto retry;
3889 }
3890fail:
a8e99259 3891 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3892 "page allocation failure: order:%u", order);
1da177e4 3893got_pg:
072bb0aa 3894 return page;
1da177e4 3895}
11e33f6a 3896
9cd75558
MG
3897static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3898 struct zonelist *zonelist, nodemask_t *nodemask,
3899 struct alloc_context *ac, gfp_t *alloc_mask,
3900 unsigned int *alloc_flags)
11e33f6a 3901{
9cd75558
MG
3902 ac->high_zoneidx = gfp_zone(gfp_mask);
3903 ac->zonelist = zonelist;
3904 ac->nodemask = nodemask;
3905 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3906
682a3385 3907 if (cpusets_enabled()) {
9cd75558 3908 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
3909 if (!ac->nodemask)
3910 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
3911 else
3912 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
3913 }
3914
11e33f6a
MG
3915 lockdep_trace_alloc(gfp_mask);
3916
d0164adc 3917 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3918
3919 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 3920 return false;
11e33f6a 3921
9cd75558
MG
3922 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3923 *alloc_flags |= ALLOC_CMA;
3924
3925 return true;
3926}
21bb9bd1 3927
9cd75558
MG
3928/* Determine whether to spread dirty pages and what the first usable zone */
3929static inline void finalise_ac(gfp_t gfp_mask,
3930 unsigned int order, struct alloc_context *ac)
3931{
c9ab0c4f 3932 /* Dirty zone balancing only done in the fast path */
9cd75558 3933 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 3934
e46e7b77
MG
3935 /*
3936 * The preferred zone is used for statistics but crucially it is
3937 * also used as the starting point for the zonelist iterator. It
3938 * may get reset for allocations that ignore memory policies.
3939 */
9cd75558
MG
3940 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3941 ac->high_zoneidx, ac->nodemask);
3942}
3943
3944/*
3945 * This is the 'heart' of the zoned buddy allocator.
3946 */
3947struct page *
3948__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3949 struct zonelist *zonelist, nodemask_t *nodemask)
3950{
3951 struct page *page;
3952 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3953 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3954 struct alloc_context ac = { };
3955
3956 gfp_mask &= gfp_allowed_mask;
3957 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3958 return NULL;
3959
3960 finalise_ac(gfp_mask, order, &ac);
5bb1b169 3961
5117f45d 3962 /* First allocation attempt */
a9263751 3963 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3964 if (likely(page))
3965 goto out;
11e33f6a 3966
4fcb0971
MG
3967 /*
3968 * Runtime PM, block IO and its error handling path can deadlock
3969 * because I/O on the device might not complete.
3970 */
3971 alloc_mask = memalloc_noio_flags(gfp_mask);
3972 ac.spread_dirty_pages = false;
23f086f9 3973
4741526b
MG
3974 /*
3975 * Restore the original nodemask if it was potentially replaced with
3976 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3977 */
e47483bc 3978 if (unlikely(ac.nodemask != nodemask))
4741526b 3979 ac.nodemask = nodemask;
16096c25 3980
4fcb0971 3981 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3982
4fcb0971 3983out:
c4159a75
VD
3984 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3985 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3986 __free_pages(page, order);
3987 page = NULL;
4949148a
VD
3988 }
3989
4fcb0971
MG
3990 if (kmemcheck_enabled && page)
3991 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3992
3993 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3994
11e33f6a 3995 return page;
1da177e4 3996}
d239171e 3997EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3998
3999/*
4000 * Common helper functions.
4001 */
920c7a5d 4002unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4003{
945a1113
AM
4004 struct page *page;
4005
4006 /*
4007 * __get_free_pages() returns a 32-bit address, which cannot represent
4008 * a highmem page
4009 */
4010 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4011
1da177e4
LT
4012 page = alloc_pages(gfp_mask, order);
4013 if (!page)
4014 return 0;
4015 return (unsigned long) page_address(page);
4016}
1da177e4
LT
4017EXPORT_SYMBOL(__get_free_pages);
4018
920c7a5d 4019unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4020{
945a1113 4021 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4022}
1da177e4
LT
4023EXPORT_SYMBOL(get_zeroed_page);
4024
920c7a5d 4025void __free_pages(struct page *page, unsigned int order)
1da177e4 4026{
b5810039 4027 if (put_page_testzero(page)) {
1da177e4 4028 if (order == 0)
b745bc85 4029 free_hot_cold_page(page, false);
1da177e4
LT
4030 else
4031 __free_pages_ok(page, order);
4032 }
4033}
4034
4035EXPORT_SYMBOL(__free_pages);
4036
920c7a5d 4037void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4038{
4039 if (addr != 0) {
725d704e 4040 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4041 __free_pages(virt_to_page((void *)addr), order);
4042 }
4043}
4044
4045EXPORT_SYMBOL(free_pages);
4046
b63ae8ca
AD
4047/*
4048 * Page Fragment:
4049 * An arbitrary-length arbitrary-offset area of memory which resides
4050 * within a 0 or higher order page. Multiple fragments within that page
4051 * are individually refcounted, in the page's reference counter.
4052 *
4053 * The page_frag functions below provide a simple allocation framework for
4054 * page fragments. This is used by the network stack and network device
4055 * drivers to provide a backing region of memory for use as either an
4056 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4057 */
2976db80
AD
4058static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4059 gfp_t gfp_mask)
b63ae8ca
AD
4060{
4061 struct page *page = NULL;
4062 gfp_t gfp = gfp_mask;
4063
4064#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4065 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4066 __GFP_NOMEMALLOC;
4067 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4068 PAGE_FRAG_CACHE_MAX_ORDER);
4069 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4070#endif
4071 if (unlikely(!page))
4072 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4073
4074 nc->va = page ? page_address(page) : NULL;
4075
4076 return page;
4077}
4078
2976db80 4079void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4080{
4081 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4082
4083 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4084 unsigned int order = compound_order(page);
4085
44fdffd7
AD
4086 if (order == 0)
4087 free_hot_cold_page(page, false);
4088 else
4089 __free_pages_ok(page, order);
4090 }
4091}
2976db80 4092EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4093
8c2dd3e4
AD
4094void *page_frag_alloc(struct page_frag_cache *nc,
4095 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4096{
4097 unsigned int size = PAGE_SIZE;
4098 struct page *page;
4099 int offset;
4100
4101 if (unlikely(!nc->va)) {
4102refill:
2976db80 4103 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4104 if (!page)
4105 return NULL;
4106
4107#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4108 /* if size can vary use size else just use PAGE_SIZE */
4109 size = nc->size;
4110#endif
4111 /* Even if we own the page, we do not use atomic_set().
4112 * This would break get_page_unless_zero() users.
4113 */
fe896d18 4114 page_ref_add(page, size - 1);
b63ae8ca
AD
4115
4116 /* reset page count bias and offset to start of new frag */
2f064f34 4117 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4118 nc->pagecnt_bias = size;
4119 nc->offset = size;
4120 }
4121
4122 offset = nc->offset - fragsz;
4123 if (unlikely(offset < 0)) {
4124 page = virt_to_page(nc->va);
4125
fe896d18 4126 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4127 goto refill;
4128
4129#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4130 /* if size can vary use size else just use PAGE_SIZE */
4131 size = nc->size;
4132#endif
4133 /* OK, page count is 0, we can safely set it */
fe896d18 4134 set_page_count(page, size);
b63ae8ca
AD
4135
4136 /* reset page count bias and offset to start of new frag */
4137 nc->pagecnt_bias = size;
4138 offset = size - fragsz;
4139 }
4140
4141 nc->pagecnt_bias--;
4142 nc->offset = offset;
4143
4144 return nc->va + offset;
4145}
8c2dd3e4 4146EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4147
4148/*
4149 * Frees a page fragment allocated out of either a compound or order 0 page.
4150 */
8c2dd3e4 4151void page_frag_free(void *addr)
b63ae8ca
AD
4152{
4153 struct page *page = virt_to_head_page(addr);
4154
4155 if (unlikely(put_page_testzero(page)))
4156 __free_pages_ok(page, compound_order(page));
4157}
8c2dd3e4 4158EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4159
d00181b9
KS
4160static void *make_alloc_exact(unsigned long addr, unsigned int order,
4161 size_t size)
ee85c2e1
AK
4162{
4163 if (addr) {
4164 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4165 unsigned long used = addr + PAGE_ALIGN(size);
4166
4167 split_page(virt_to_page((void *)addr), order);
4168 while (used < alloc_end) {
4169 free_page(used);
4170 used += PAGE_SIZE;
4171 }
4172 }
4173 return (void *)addr;
4174}
4175
2be0ffe2
TT
4176/**
4177 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4178 * @size: the number of bytes to allocate
4179 * @gfp_mask: GFP flags for the allocation
4180 *
4181 * This function is similar to alloc_pages(), except that it allocates the
4182 * minimum number of pages to satisfy the request. alloc_pages() can only
4183 * allocate memory in power-of-two pages.
4184 *
4185 * This function is also limited by MAX_ORDER.
4186 *
4187 * Memory allocated by this function must be released by free_pages_exact().
4188 */
4189void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4190{
4191 unsigned int order = get_order(size);
4192 unsigned long addr;
4193
4194 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4195 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4196}
4197EXPORT_SYMBOL(alloc_pages_exact);
4198
ee85c2e1
AK
4199/**
4200 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4201 * pages on a node.
b5e6ab58 4202 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4203 * @size: the number of bytes to allocate
4204 * @gfp_mask: GFP flags for the allocation
4205 *
4206 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4207 * back.
ee85c2e1 4208 */
e1931811 4209void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4210{
d00181b9 4211 unsigned int order = get_order(size);
ee85c2e1
AK
4212 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4213 if (!p)
4214 return NULL;
4215 return make_alloc_exact((unsigned long)page_address(p), order, size);
4216}
ee85c2e1 4217
2be0ffe2
TT
4218/**
4219 * free_pages_exact - release memory allocated via alloc_pages_exact()
4220 * @virt: the value returned by alloc_pages_exact.
4221 * @size: size of allocation, same value as passed to alloc_pages_exact().
4222 *
4223 * Release the memory allocated by a previous call to alloc_pages_exact.
4224 */
4225void free_pages_exact(void *virt, size_t size)
4226{
4227 unsigned long addr = (unsigned long)virt;
4228 unsigned long end = addr + PAGE_ALIGN(size);
4229
4230 while (addr < end) {
4231 free_page(addr);
4232 addr += PAGE_SIZE;
4233 }
4234}
4235EXPORT_SYMBOL(free_pages_exact);
4236
e0fb5815
ZY
4237/**
4238 * nr_free_zone_pages - count number of pages beyond high watermark
4239 * @offset: The zone index of the highest zone
4240 *
4241 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4242 * high watermark within all zones at or below a given zone index. For each
4243 * zone, the number of pages is calculated as:
834405c3 4244 * managed_pages - high_pages
e0fb5815 4245 */
ebec3862 4246static unsigned long nr_free_zone_pages(int offset)
1da177e4 4247{
dd1a239f 4248 struct zoneref *z;
54a6eb5c
MG
4249 struct zone *zone;
4250
e310fd43 4251 /* Just pick one node, since fallback list is circular */
ebec3862 4252 unsigned long sum = 0;
1da177e4 4253
0e88460d 4254 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4255
54a6eb5c 4256 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4257 unsigned long size = zone->managed_pages;
41858966 4258 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4259 if (size > high)
4260 sum += size - high;
1da177e4
LT
4261 }
4262
4263 return sum;
4264}
4265
e0fb5815
ZY
4266/**
4267 * nr_free_buffer_pages - count number of pages beyond high watermark
4268 *
4269 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4270 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4271 */
ebec3862 4272unsigned long nr_free_buffer_pages(void)
1da177e4 4273{
af4ca457 4274 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4275}
c2f1a551 4276EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4277
e0fb5815
ZY
4278/**
4279 * nr_free_pagecache_pages - count number of pages beyond high watermark
4280 *
4281 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4282 * high watermark within all zones.
1da177e4 4283 */
ebec3862 4284unsigned long nr_free_pagecache_pages(void)
1da177e4 4285{
2a1e274a 4286 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4287}
08e0f6a9
CL
4288
4289static inline void show_node(struct zone *zone)
1da177e4 4290{
e5adfffc 4291 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4292 printk("Node %d ", zone_to_nid(zone));
1da177e4 4293}
1da177e4 4294
d02bd27b
IR
4295long si_mem_available(void)
4296{
4297 long available;
4298 unsigned long pagecache;
4299 unsigned long wmark_low = 0;
4300 unsigned long pages[NR_LRU_LISTS];
4301 struct zone *zone;
4302 int lru;
4303
4304 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4305 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4306
4307 for_each_zone(zone)
4308 wmark_low += zone->watermark[WMARK_LOW];
4309
4310 /*
4311 * Estimate the amount of memory available for userspace allocations,
4312 * without causing swapping.
4313 */
4314 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4315
4316 /*
4317 * Not all the page cache can be freed, otherwise the system will
4318 * start swapping. Assume at least half of the page cache, or the
4319 * low watermark worth of cache, needs to stay.
4320 */
4321 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4322 pagecache -= min(pagecache / 2, wmark_low);
4323 available += pagecache;
4324
4325 /*
4326 * Part of the reclaimable slab consists of items that are in use,
4327 * and cannot be freed. Cap this estimate at the low watermark.
4328 */
4329 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4330 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4331
4332 if (available < 0)
4333 available = 0;
4334 return available;
4335}
4336EXPORT_SYMBOL_GPL(si_mem_available);
4337
1da177e4
LT
4338void si_meminfo(struct sysinfo *val)
4339{
4340 val->totalram = totalram_pages;
11fb9989 4341 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4342 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4343 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4344 val->totalhigh = totalhigh_pages;
4345 val->freehigh = nr_free_highpages();
1da177e4
LT
4346 val->mem_unit = PAGE_SIZE;
4347}
4348
4349EXPORT_SYMBOL(si_meminfo);
4350
4351#ifdef CONFIG_NUMA
4352void si_meminfo_node(struct sysinfo *val, int nid)
4353{
cdd91a77
JL
4354 int zone_type; /* needs to be signed */
4355 unsigned long managed_pages = 0;
fc2bd799
JK
4356 unsigned long managed_highpages = 0;
4357 unsigned long free_highpages = 0;
1da177e4
LT
4358 pg_data_t *pgdat = NODE_DATA(nid);
4359
cdd91a77
JL
4360 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4361 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4362 val->totalram = managed_pages;
11fb9989 4363 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4364 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4365#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4366 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4367 struct zone *zone = &pgdat->node_zones[zone_type];
4368
4369 if (is_highmem(zone)) {
4370 managed_highpages += zone->managed_pages;
4371 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4372 }
4373 }
4374 val->totalhigh = managed_highpages;
4375 val->freehigh = free_highpages;
98d2b0eb 4376#else
fc2bd799
JK
4377 val->totalhigh = managed_highpages;
4378 val->freehigh = free_highpages;
98d2b0eb 4379#endif
1da177e4
LT
4380 val->mem_unit = PAGE_SIZE;
4381}
4382#endif
4383
ddd588b5 4384/*
7bf02ea2
DR
4385 * Determine whether the node should be displayed or not, depending on whether
4386 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4387 */
9af744d7 4388static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4389{
ddd588b5 4390 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4391 return false;
ddd588b5 4392
9af744d7
MH
4393 /*
4394 * no node mask - aka implicit memory numa policy. Do not bother with
4395 * the synchronization - read_mems_allowed_begin - because we do not
4396 * have to be precise here.
4397 */
4398 if (!nodemask)
4399 nodemask = &cpuset_current_mems_allowed;
4400
4401 return !node_isset(nid, *nodemask);
ddd588b5
DR
4402}
4403
1da177e4
LT
4404#define K(x) ((x) << (PAGE_SHIFT-10))
4405
377e4f16
RV
4406static void show_migration_types(unsigned char type)
4407{
4408 static const char types[MIGRATE_TYPES] = {
4409 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4410 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4411 [MIGRATE_RECLAIMABLE] = 'E',
4412 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4413#ifdef CONFIG_CMA
4414 [MIGRATE_CMA] = 'C',
4415#endif
194159fb 4416#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4417 [MIGRATE_ISOLATE] = 'I',
194159fb 4418#endif
377e4f16
RV
4419 };
4420 char tmp[MIGRATE_TYPES + 1];
4421 char *p = tmp;
4422 int i;
4423
4424 for (i = 0; i < MIGRATE_TYPES; i++) {
4425 if (type & (1 << i))
4426 *p++ = types[i];
4427 }
4428
4429 *p = '\0';
1f84a18f 4430 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4431}
4432
1da177e4
LT
4433/*
4434 * Show free area list (used inside shift_scroll-lock stuff)
4435 * We also calculate the percentage fragmentation. We do this by counting the
4436 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4437 *
4438 * Bits in @filter:
4439 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4440 * cpuset.
1da177e4 4441 */
9af744d7 4442void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4443{
d1bfcdb8 4444 unsigned long free_pcp = 0;
c7241913 4445 int cpu;
1da177e4 4446 struct zone *zone;
599d0c95 4447 pg_data_t *pgdat;
1da177e4 4448
ee99c71c 4449 for_each_populated_zone(zone) {
9af744d7 4450 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4451 continue;
d1bfcdb8 4452
761b0677
KK
4453 for_each_online_cpu(cpu)
4454 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4455 }
4456
a731286d
KM
4457 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4458 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4459 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4460 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4461 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4462 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4463 global_node_page_state(NR_ACTIVE_ANON),
4464 global_node_page_state(NR_INACTIVE_ANON),
4465 global_node_page_state(NR_ISOLATED_ANON),
4466 global_node_page_state(NR_ACTIVE_FILE),
4467 global_node_page_state(NR_INACTIVE_FILE),
4468 global_node_page_state(NR_ISOLATED_FILE),
4469 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4470 global_node_page_state(NR_FILE_DIRTY),
4471 global_node_page_state(NR_WRITEBACK),
4472 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4473 global_page_state(NR_SLAB_RECLAIMABLE),
4474 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4475 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4476 global_node_page_state(NR_SHMEM),
a25700a5 4477 global_page_state(NR_PAGETABLE),
d1ce749a 4478 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4479 global_page_state(NR_FREE_PAGES),
4480 free_pcp,
d1ce749a 4481 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4482
599d0c95 4483 for_each_online_pgdat(pgdat) {
9af744d7 4484 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4485 continue;
4486
599d0c95
MG
4487 printk("Node %d"
4488 " active_anon:%lukB"
4489 " inactive_anon:%lukB"
4490 " active_file:%lukB"
4491 " inactive_file:%lukB"
4492 " unevictable:%lukB"
4493 " isolated(anon):%lukB"
4494 " isolated(file):%lukB"
50658e2e 4495 " mapped:%lukB"
11fb9989
MG
4496 " dirty:%lukB"
4497 " writeback:%lukB"
4498 " shmem:%lukB"
4499#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4500 " shmem_thp: %lukB"
4501 " shmem_pmdmapped: %lukB"
4502 " anon_thp: %lukB"
4503#endif
4504 " writeback_tmp:%lukB"
4505 " unstable:%lukB"
33e077bd 4506 " pages_scanned:%lu"
599d0c95
MG
4507 " all_unreclaimable? %s"
4508 "\n",
4509 pgdat->node_id,
4510 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4511 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4512 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4513 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4514 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4515 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4516 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4517 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4518 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4519 K(node_page_state(pgdat, NR_WRITEBACK)),
4520#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4521 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4522 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4523 * HPAGE_PMD_NR),
4524 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4525#endif
4526 K(node_page_state(pgdat, NR_SHMEM)),
4527 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4528 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4529 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4530 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4531 }
4532
ee99c71c 4533 for_each_populated_zone(zone) {
1da177e4
LT
4534 int i;
4535
9af744d7 4536 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4537 continue;
d1bfcdb8
KK
4538
4539 free_pcp = 0;
4540 for_each_online_cpu(cpu)
4541 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4542
1da177e4 4543 show_node(zone);
1f84a18f
JP
4544 printk(KERN_CONT
4545 "%s"
1da177e4
LT
4546 " free:%lukB"
4547 " min:%lukB"
4548 " low:%lukB"
4549 " high:%lukB"
71c799f4
MK
4550 " active_anon:%lukB"
4551 " inactive_anon:%lukB"
4552 " active_file:%lukB"
4553 " inactive_file:%lukB"
4554 " unevictable:%lukB"
5a1c84b4 4555 " writepending:%lukB"
1da177e4 4556 " present:%lukB"
9feedc9d 4557 " managed:%lukB"
4a0aa73f 4558 " mlocked:%lukB"
4a0aa73f
KM
4559 " slab_reclaimable:%lukB"
4560 " slab_unreclaimable:%lukB"
c6a7f572 4561 " kernel_stack:%lukB"
4a0aa73f 4562 " pagetables:%lukB"
4a0aa73f 4563 " bounce:%lukB"
d1bfcdb8
KK
4564 " free_pcp:%lukB"
4565 " local_pcp:%ukB"
d1ce749a 4566 " free_cma:%lukB"
1da177e4
LT
4567 "\n",
4568 zone->name,
88f5acf8 4569 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4570 K(min_wmark_pages(zone)),
4571 K(low_wmark_pages(zone)),
4572 K(high_wmark_pages(zone)),
71c799f4
MK
4573 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4574 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4575 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4576 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4577 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4578 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4579 K(zone->present_pages),
9feedc9d 4580 K(zone->managed_pages),
4a0aa73f 4581 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4582 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4583 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4584 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4585 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4586 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4587 K(free_pcp),
4588 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4589 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4590 printk("lowmem_reserve[]:");
4591 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4592 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4593 printk(KERN_CONT "\n");
1da177e4
LT
4594 }
4595
ee99c71c 4596 for_each_populated_zone(zone) {
d00181b9
KS
4597 unsigned int order;
4598 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4599 unsigned char types[MAX_ORDER];
1da177e4 4600
9af744d7 4601 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4602 continue;
1da177e4 4603 show_node(zone);
1f84a18f 4604 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4605
4606 spin_lock_irqsave(&zone->lock, flags);
4607 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4608 struct free_area *area = &zone->free_area[order];
4609 int type;
4610
4611 nr[order] = area->nr_free;
8f9de51a 4612 total += nr[order] << order;
377e4f16
RV
4613
4614 types[order] = 0;
4615 for (type = 0; type < MIGRATE_TYPES; type++) {
4616 if (!list_empty(&area->free_list[type]))
4617 types[order] |= 1 << type;
4618 }
1da177e4
LT
4619 }
4620 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4621 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4622 printk(KERN_CONT "%lu*%lukB ",
4623 nr[order], K(1UL) << order);
377e4f16
RV
4624 if (nr[order])
4625 show_migration_types(types[order]);
4626 }
1f84a18f 4627 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4628 }
4629
949f7ec5
DR
4630 hugetlb_show_meminfo();
4631
11fb9989 4632 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4633
1da177e4
LT
4634 show_swap_cache_info();
4635}
4636
19770b32
MG
4637static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4638{
4639 zoneref->zone = zone;
4640 zoneref->zone_idx = zone_idx(zone);
4641}
4642
1da177e4
LT
4643/*
4644 * Builds allocation fallback zone lists.
1a93205b
CL
4645 *
4646 * Add all populated zones of a node to the zonelist.
1da177e4 4647 */
f0c0b2b8 4648static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4649 int nr_zones)
1da177e4 4650{
1a93205b 4651 struct zone *zone;
bc732f1d 4652 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4653
4654 do {
2f6726e5 4655 zone_type--;
070f8032 4656 zone = pgdat->node_zones + zone_type;
6aa303de 4657 if (managed_zone(zone)) {
dd1a239f
MG
4658 zoneref_set_zone(zone,
4659 &zonelist->_zonerefs[nr_zones++]);
070f8032 4660 check_highest_zone(zone_type);
1da177e4 4661 }
2f6726e5 4662 } while (zone_type);
bc732f1d 4663
070f8032 4664 return nr_zones;
1da177e4
LT
4665}
4666
f0c0b2b8
KH
4667
4668/*
4669 * zonelist_order:
4670 * 0 = automatic detection of better ordering.
4671 * 1 = order by ([node] distance, -zonetype)
4672 * 2 = order by (-zonetype, [node] distance)
4673 *
4674 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4675 * the same zonelist. So only NUMA can configure this param.
4676 */
4677#define ZONELIST_ORDER_DEFAULT 0
4678#define ZONELIST_ORDER_NODE 1
4679#define ZONELIST_ORDER_ZONE 2
4680
4681/* zonelist order in the kernel.
4682 * set_zonelist_order() will set this to NODE or ZONE.
4683 */
4684static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4685static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4686
4687
1da177e4 4688#ifdef CONFIG_NUMA
f0c0b2b8
KH
4689/* The value user specified ....changed by config */
4690static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4691/* string for sysctl */
4692#define NUMA_ZONELIST_ORDER_LEN 16
4693char numa_zonelist_order[16] = "default";
4694
4695/*
4696 * interface for configure zonelist ordering.
4697 * command line option "numa_zonelist_order"
4698 * = "[dD]efault - default, automatic configuration.
4699 * = "[nN]ode - order by node locality, then by zone within node
4700 * = "[zZ]one - order by zone, then by locality within zone
4701 */
4702
4703static int __parse_numa_zonelist_order(char *s)
4704{
4705 if (*s == 'd' || *s == 'D') {
4706 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4707 } else if (*s == 'n' || *s == 'N') {
4708 user_zonelist_order = ZONELIST_ORDER_NODE;
4709 } else if (*s == 'z' || *s == 'Z') {
4710 user_zonelist_order = ZONELIST_ORDER_ZONE;
4711 } else {
1170532b 4712 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4713 return -EINVAL;
4714 }
4715 return 0;
4716}
4717
4718static __init int setup_numa_zonelist_order(char *s)
4719{
ecb256f8
VL
4720 int ret;
4721
4722 if (!s)
4723 return 0;
4724
4725 ret = __parse_numa_zonelist_order(s);
4726 if (ret == 0)
4727 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4728
4729 return ret;
f0c0b2b8
KH
4730}
4731early_param("numa_zonelist_order", setup_numa_zonelist_order);
4732
4733/*
4734 * sysctl handler for numa_zonelist_order
4735 */
cccad5b9 4736int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4737 void __user *buffer, size_t *length,
f0c0b2b8
KH
4738 loff_t *ppos)
4739{
4740 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4741 int ret;
443c6f14 4742 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4743
443c6f14 4744 mutex_lock(&zl_order_mutex);
dacbde09
CG
4745 if (write) {
4746 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4747 ret = -EINVAL;
4748 goto out;
4749 }
4750 strcpy(saved_string, (char *)table->data);
4751 }
8d65af78 4752 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4753 if (ret)
443c6f14 4754 goto out;
f0c0b2b8
KH
4755 if (write) {
4756 int oldval = user_zonelist_order;
dacbde09
CG
4757
4758 ret = __parse_numa_zonelist_order((char *)table->data);
4759 if (ret) {
f0c0b2b8
KH
4760 /*
4761 * bogus value. restore saved string
4762 */
dacbde09 4763 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4764 NUMA_ZONELIST_ORDER_LEN);
4765 user_zonelist_order = oldval;
4eaf3f64
HL
4766 } else if (oldval != user_zonelist_order) {
4767 mutex_lock(&zonelists_mutex);
9adb62a5 4768 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4769 mutex_unlock(&zonelists_mutex);
4770 }
f0c0b2b8 4771 }
443c6f14
AK
4772out:
4773 mutex_unlock(&zl_order_mutex);
4774 return ret;
f0c0b2b8
KH
4775}
4776
4777
62bc62a8 4778#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4779static int node_load[MAX_NUMNODES];
4780
1da177e4 4781/**
4dc3b16b 4782 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4783 * @node: node whose fallback list we're appending
4784 * @used_node_mask: nodemask_t of already used nodes
4785 *
4786 * We use a number of factors to determine which is the next node that should
4787 * appear on a given node's fallback list. The node should not have appeared
4788 * already in @node's fallback list, and it should be the next closest node
4789 * according to the distance array (which contains arbitrary distance values
4790 * from each node to each node in the system), and should also prefer nodes
4791 * with no CPUs, since presumably they'll have very little allocation pressure
4792 * on them otherwise.
4793 * It returns -1 if no node is found.
4794 */
f0c0b2b8 4795static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4796{
4cf808eb 4797 int n, val;
1da177e4 4798 int min_val = INT_MAX;
00ef2d2f 4799 int best_node = NUMA_NO_NODE;
a70f7302 4800 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4801
4cf808eb
LT
4802 /* Use the local node if we haven't already */
4803 if (!node_isset(node, *used_node_mask)) {
4804 node_set(node, *used_node_mask);
4805 return node;
4806 }
1da177e4 4807
4b0ef1fe 4808 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4809
4810 /* Don't want a node to appear more than once */
4811 if (node_isset(n, *used_node_mask))
4812 continue;
4813
1da177e4
LT
4814 /* Use the distance array to find the distance */
4815 val = node_distance(node, n);
4816
4cf808eb
LT
4817 /* Penalize nodes under us ("prefer the next node") */
4818 val += (n < node);
4819
1da177e4 4820 /* Give preference to headless and unused nodes */
a70f7302
RR
4821 tmp = cpumask_of_node(n);
4822 if (!cpumask_empty(tmp))
1da177e4
LT
4823 val += PENALTY_FOR_NODE_WITH_CPUS;
4824
4825 /* Slight preference for less loaded node */
4826 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4827 val += node_load[n];
4828
4829 if (val < min_val) {
4830 min_val = val;
4831 best_node = n;
4832 }
4833 }
4834
4835 if (best_node >= 0)
4836 node_set(best_node, *used_node_mask);
4837
4838 return best_node;
4839}
4840
f0c0b2b8
KH
4841
4842/*
4843 * Build zonelists ordered by node and zones within node.
4844 * This results in maximum locality--normal zone overflows into local
4845 * DMA zone, if any--but risks exhausting DMA zone.
4846 */
4847static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4848{
f0c0b2b8 4849 int j;
1da177e4 4850 struct zonelist *zonelist;
f0c0b2b8 4851
c9634cf0 4852 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4853 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4854 ;
bc732f1d 4855 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4856 zonelist->_zonerefs[j].zone = NULL;
4857 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4858}
4859
523b9458
CL
4860/*
4861 * Build gfp_thisnode zonelists
4862 */
4863static void build_thisnode_zonelists(pg_data_t *pgdat)
4864{
523b9458
CL
4865 int j;
4866 struct zonelist *zonelist;
4867
c9634cf0 4868 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4869 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4870 zonelist->_zonerefs[j].zone = NULL;
4871 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4872}
4873
f0c0b2b8
KH
4874/*
4875 * Build zonelists ordered by zone and nodes within zones.
4876 * This results in conserving DMA zone[s] until all Normal memory is
4877 * exhausted, but results in overflowing to remote node while memory
4878 * may still exist in local DMA zone.
4879 */
4880static int node_order[MAX_NUMNODES];
4881
4882static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4883{
f0c0b2b8
KH
4884 int pos, j, node;
4885 int zone_type; /* needs to be signed */
4886 struct zone *z;
4887 struct zonelist *zonelist;
4888
c9634cf0 4889 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4890 pos = 0;
4891 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4892 for (j = 0; j < nr_nodes; j++) {
4893 node = node_order[j];
4894 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4895 if (managed_zone(z)) {
dd1a239f
MG
4896 zoneref_set_zone(z,
4897 &zonelist->_zonerefs[pos++]);
54a6eb5c 4898 check_highest_zone(zone_type);
f0c0b2b8
KH
4899 }
4900 }
f0c0b2b8 4901 }
dd1a239f
MG
4902 zonelist->_zonerefs[pos].zone = NULL;
4903 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4904}
4905
3193913c
MG
4906#if defined(CONFIG_64BIT)
4907/*
4908 * Devices that require DMA32/DMA are relatively rare and do not justify a
4909 * penalty to every machine in case the specialised case applies. Default
4910 * to Node-ordering on 64-bit NUMA machines
4911 */
4912static int default_zonelist_order(void)
4913{
4914 return ZONELIST_ORDER_NODE;
4915}
4916#else
4917/*
4918 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4919 * by the kernel. If processes running on node 0 deplete the low memory zone
4920 * then reclaim will occur more frequency increasing stalls and potentially
4921 * be easier to OOM if a large percentage of the zone is under writeback or
4922 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4923 * Hence, default to zone ordering on 32-bit.
4924 */
f0c0b2b8
KH
4925static int default_zonelist_order(void)
4926{
f0c0b2b8
KH
4927 return ZONELIST_ORDER_ZONE;
4928}
3193913c 4929#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4930
4931static void set_zonelist_order(void)
4932{
4933 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4934 current_zonelist_order = default_zonelist_order();
4935 else
4936 current_zonelist_order = user_zonelist_order;
4937}
4938
4939static void build_zonelists(pg_data_t *pgdat)
4940{
c00eb15a 4941 int i, node, load;
1da177e4 4942 nodemask_t used_mask;
f0c0b2b8
KH
4943 int local_node, prev_node;
4944 struct zonelist *zonelist;
d00181b9 4945 unsigned int order = current_zonelist_order;
1da177e4
LT
4946
4947 /* initialize zonelists */
523b9458 4948 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4949 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4950 zonelist->_zonerefs[0].zone = NULL;
4951 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4952 }
4953
4954 /* NUMA-aware ordering of nodes */
4955 local_node = pgdat->node_id;
62bc62a8 4956 load = nr_online_nodes;
1da177e4
LT
4957 prev_node = local_node;
4958 nodes_clear(used_mask);
f0c0b2b8 4959
f0c0b2b8 4960 memset(node_order, 0, sizeof(node_order));
c00eb15a 4961 i = 0;
f0c0b2b8 4962
1da177e4
LT
4963 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4964 /*
4965 * We don't want to pressure a particular node.
4966 * So adding penalty to the first node in same
4967 * distance group to make it round-robin.
4968 */
957f822a
DR
4969 if (node_distance(local_node, node) !=
4970 node_distance(local_node, prev_node))
f0c0b2b8
KH
4971 node_load[node] = load;
4972
1da177e4
LT
4973 prev_node = node;
4974 load--;
f0c0b2b8
KH
4975 if (order == ZONELIST_ORDER_NODE)
4976 build_zonelists_in_node_order(pgdat, node);
4977 else
c00eb15a 4978 node_order[i++] = node; /* remember order */
f0c0b2b8 4979 }
1da177e4 4980
f0c0b2b8
KH
4981 if (order == ZONELIST_ORDER_ZONE) {
4982 /* calculate node order -- i.e., DMA last! */
c00eb15a 4983 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4984 }
523b9458
CL
4985
4986 build_thisnode_zonelists(pgdat);
1da177e4
LT
4987}
4988
7aac7898
LS
4989#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4990/*
4991 * Return node id of node used for "local" allocations.
4992 * I.e., first node id of first zone in arg node's generic zonelist.
4993 * Used for initializing percpu 'numa_mem', which is used primarily
4994 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4995 */
4996int local_memory_node(int node)
4997{
c33d6c06 4998 struct zoneref *z;
7aac7898 4999
c33d6c06 5000 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5001 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5002 NULL);
5003 return z->zone->node;
7aac7898
LS
5004}
5005#endif
f0c0b2b8 5006
6423aa81
JK
5007static void setup_min_unmapped_ratio(void);
5008static void setup_min_slab_ratio(void);
1da177e4
LT
5009#else /* CONFIG_NUMA */
5010
f0c0b2b8
KH
5011static void set_zonelist_order(void)
5012{
5013 current_zonelist_order = ZONELIST_ORDER_ZONE;
5014}
5015
5016static void build_zonelists(pg_data_t *pgdat)
1da177e4 5017{
19655d34 5018 int node, local_node;
54a6eb5c
MG
5019 enum zone_type j;
5020 struct zonelist *zonelist;
1da177e4
LT
5021
5022 local_node = pgdat->node_id;
1da177e4 5023
c9634cf0 5024 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5025 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5026
54a6eb5c
MG
5027 /*
5028 * Now we build the zonelist so that it contains the zones
5029 * of all the other nodes.
5030 * We don't want to pressure a particular node, so when
5031 * building the zones for node N, we make sure that the
5032 * zones coming right after the local ones are those from
5033 * node N+1 (modulo N)
5034 */
5035 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5036 if (!node_online(node))
5037 continue;
bc732f1d 5038 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5039 }
54a6eb5c
MG
5040 for (node = 0; node < local_node; node++) {
5041 if (!node_online(node))
5042 continue;
bc732f1d 5043 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5044 }
5045
dd1a239f
MG
5046 zonelist->_zonerefs[j].zone = NULL;
5047 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5048}
5049
5050#endif /* CONFIG_NUMA */
5051
99dcc3e5
CL
5052/*
5053 * Boot pageset table. One per cpu which is going to be used for all
5054 * zones and all nodes. The parameters will be set in such a way
5055 * that an item put on a list will immediately be handed over to
5056 * the buddy list. This is safe since pageset manipulation is done
5057 * with interrupts disabled.
5058 *
5059 * The boot_pagesets must be kept even after bootup is complete for
5060 * unused processors and/or zones. They do play a role for bootstrapping
5061 * hotplugged processors.
5062 *
5063 * zoneinfo_show() and maybe other functions do
5064 * not check if the processor is online before following the pageset pointer.
5065 * Other parts of the kernel may not check if the zone is available.
5066 */
5067static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5068static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5069static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5070
4eaf3f64
HL
5071/*
5072 * Global mutex to protect against size modification of zonelists
5073 * as well as to serialize pageset setup for the new populated zone.
5074 */
5075DEFINE_MUTEX(zonelists_mutex);
5076
9b1a4d38 5077/* return values int ....just for stop_machine() */
4ed7e022 5078static int __build_all_zonelists(void *data)
1da177e4 5079{
6811378e 5080 int nid;
99dcc3e5 5081 int cpu;
9adb62a5 5082 pg_data_t *self = data;
9276b1bc 5083
7f9cfb31
BL
5084#ifdef CONFIG_NUMA
5085 memset(node_load, 0, sizeof(node_load));
5086#endif
9adb62a5
JL
5087
5088 if (self && !node_online(self->node_id)) {
5089 build_zonelists(self);
9adb62a5
JL
5090 }
5091
9276b1bc 5092 for_each_online_node(nid) {
7ea1530a
CL
5093 pg_data_t *pgdat = NODE_DATA(nid);
5094
5095 build_zonelists(pgdat);
9276b1bc 5096 }
99dcc3e5
CL
5097
5098 /*
5099 * Initialize the boot_pagesets that are going to be used
5100 * for bootstrapping processors. The real pagesets for
5101 * each zone will be allocated later when the per cpu
5102 * allocator is available.
5103 *
5104 * boot_pagesets are used also for bootstrapping offline
5105 * cpus if the system is already booted because the pagesets
5106 * are needed to initialize allocators on a specific cpu too.
5107 * F.e. the percpu allocator needs the page allocator which
5108 * needs the percpu allocator in order to allocate its pagesets
5109 * (a chicken-egg dilemma).
5110 */
7aac7898 5111 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5112 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5113
7aac7898
LS
5114#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5115 /*
5116 * We now know the "local memory node" for each node--
5117 * i.e., the node of the first zone in the generic zonelist.
5118 * Set up numa_mem percpu variable for on-line cpus. During
5119 * boot, only the boot cpu should be on-line; we'll init the
5120 * secondary cpus' numa_mem as they come on-line. During
5121 * node/memory hotplug, we'll fixup all on-line cpus.
5122 */
5123 if (cpu_online(cpu))
5124 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5125#endif
5126 }
5127
6811378e
YG
5128 return 0;
5129}
5130
061f67bc
RV
5131static noinline void __init
5132build_all_zonelists_init(void)
5133{
5134 __build_all_zonelists(NULL);
5135 mminit_verify_zonelist();
5136 cpuset_init_current_mems_allowed();
5137}
5138
4eaf3f64
HL
5139/*
5140 * Called with zonelists_mutex held always
5141 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5142 *
5143 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5144 * [we're only called with non-NULL zone through __meminit paths] and
5145 * (2) call of __init annotated helper build_all_zonelists_init
5146 * [protected by SYSTEM_BOOTING].
4eaf3f64 5147 */
9adb62a5 5148void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5149{
f0c0b2b8
KH
5150 set_zonelist_order();
5151
6811378e 5152 if (system_state == SYSTEM_BOOTING) {
061f67bc 5153 build_all_zonelists_init();
6811378e 5154 } else {
e9959f0f 5155#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5156 if (zone)
5157 setup_zone_pageset(zone);
e9959f0f 5158#endif
dd1895e2
CS
5159 /* we have to stop all cpus to guarantee there is no user
5160 of zonelist */
9adb62a5 5161 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5162 /* cpuset refresh routine should be here */
5163 }
bd1e22b8 5164 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5165 /*
5166 * Disable grouping by mobility if the number of pages in the
5167 * system is too low to allow the mechanism to work. It would be
5168 * more accurate, but expensive to check per-zone. This check is
5169 * made on memory-hotadd so a system can start with mobility
5170 * disabled and enable it later
5171 */
d9c23400 5172 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5173 page_group_by_mobility_disabled = 1;
5174 else
5175 page_group_by_mobility_disabled = 0;
5176
756a025f
JP
5177 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5178 nr_online_nodes,
5179 zonelist_order_name[current_zonelist_order],
5180 page_group_by_mobility_disabled ? "off" : "on",
5181 vm_total_pages);
f0c0b2b8 5182#ifdef CONFIG_NUMA
f88dfff5 5183 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5184#endif
1da177e4
LT
5185}
5186
1da177e4
LT
5187/*
5188 * Initially all pages are reserved - free ones are freed
5189 * up by free_all_bootmem() once the early boot process is
5190 * done. Non-atomic initialization, single-pass.
5191 */
c09b4240 5192void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5193 unsigned long start_pfn, enum memmap_context context)
1da177e4 5194{
4b94ffdc 5195 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5196 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5197 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5198 unsigned long pfn;
3a80a7fa 5199 unsigned long nr_initialised = 0;
342332e6
TI
5200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5201 struct memblock_region *r = NULL, *tmp;
5202#endif
1da177e4 5203
22b31eec
HD
5204 if (highest_memmap_pfn < end_pfn - 1)
5205 highest_memmap_pfn = end_pfn - 1;
5206
4b94ffdc
DW
5207 /*
5208 * Honor reservation requested by the driver for this ZONE_DEVICE
5209 * memory
5210 */
5211 if (altmap && start_pfn == altmap->base_pfn)
5212 start_pfn += altmap->reserve;
5213
cbe8dd4a 5214 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5215 /*
b72d0ffb
AM
5216 * There can be holes in boot-time mem_map[]s handed to this
5217 * function. They do not exist on hotplugged memory.
a2f3aa02 5218 */
b72d0ffb
AM
5219 if (context != MEMMAP_EARLY)
5220 goto not_early;
5221
b92df1de
PB
5222 if (!early_pfn_valid(pfn)) {
5223#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5224 /*
5225 * Skip to the pfn preceding the next valid one (or
5226 * end_pfn), such that we hit a valid pfn (or end_pfn)
5227 * on our next iteration of the loop.
5228 */
5229 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5230#endif
b72d0ffb 5231 continue;
b92df1de 5232 }
b72d0ffb
AM
5233 if (!early_pfn_in_nid(pfn, nid))
5234 continue;
5235 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5236 break;
342332e6
TI
5237
5238#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5239 /*
5240 * Check given memblock attribute by firmware which can affect
5241 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5242 * mirrored, it's an overlapped memmap init. skip it.
5243 */
5244 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5245 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5246 for_each_memblock(memory, tmp)
5247 if (pfn < memblock_region_memory_end_pfn(tmp))
5248 break;
5249 r = tmp;
5250 }
5251 if (pfn >= memblock_region_memory_base_pfn(r) &&
5252 memblock_is_mirror(r)) {
5253 /* already initialized as NORMAL */
5254 pfn = memblock_region_memory_end_pfn(r);
5255 continue;
342332e6 5256 }
a2f3aa02 5257 }
b72d0ffb 5258#endif
ac5d2539 5259
b72d0ffb 5260not_early:
ac5d2539
MG
5261 /*
5262 * Mark the block movable so that blocks are reserved for
5263 * movable at startup. This will force kernel allocations
5264 * to reserve their blocks rather than leaking throughout
5265 * the address space during boot when many long-lived
974a786e 5266 * kernel allocations are made.
ac5d2539
MG
5267 *
5268 * bitmap is created for zone's valid pfn range. but memmap
5269 * can be created for invalid pages (for alignment)
5270 * check here not to call set_pageblock_migratetype() against
5271 * pfn out of zone.
5272 */
5273 if (!(pfn & (pageblock_nr_pages - 1))) {
5274 struct page *page = pfn_to_page(pfn);
5275
5276 __init_single_page(page, pfn, zone, nid);
5277 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5278 } else {
5279 __init_single_pfn(pfn, zone, nid);
5280 }
1da177e4
LT
5281 }
5282}
5283
1e548deb 5284static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5285{
7aeb09f9 5286 unsigned int order, t;
b2a0ac88
MG
5287 for_each_migratetype_order(order, t) {
5288 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5289 zone->free_area[order].nr_free = 0;
5290 }
5291}
5292
5293#ifndef __HAVE_ARCH_MEMMAP_INIT
5294#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5295 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5296#endif
5297
7cd2b0a3 5298static int zone_batchsize(struct zone *zone)
e7c8d5c9 5299{
3a6be87f 5300#ifdef CONFIG_MMU
e7c8d5c9
CL
5301 int batch;
5302
5303 /*
5304 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5305 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5306 *
5307 * OK, so we don't know how big the cache is. So guess.
5308 */
b40da049 5309 batch = zone->managed_pages / 1024;
ba56e91c
SR
5310 if (batch * PAGE_SIZE > 512 * 1024)
5311 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5312 batch /= 4; /* We effectively *= 4 below */
5313 if (batch < 1)
5314 batch = 1;
5315
5316 /*
0ceaacc9
NP
5317 * Clamp the batch to a 2^n - 1 value. Having a power
5318 * of 2 value was found to be more likely to have
5319 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5320 *
0ceaacc9
NP
5321 * For example if 2 tasks are alternately allocating
5322 * batches of pages, one task can end up with a lot
5323 * of pages of one half of the possible page colors
5324 * and the other with pages of the other colors.
e7c8d5c9 5325 */
9155203a 5326 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5327
e7c8d5c9 5328 return batch;
3a6be87f
DH
5329
5330#else
5331 /* The deferral and batching of frees should be suppressed under NOMMU
5332 * conditions.
5333 *
5334 * The problem is that NOMMU needs to be able to allocate large chunks
5335 * of contiguous memory as there's no hardware page translation to
5336 * assemble apparent contiguous memory from discontiguous pages.
5337 *
5338 * Queueing large contiguous runs of pages for batching, however,
5339 * causes the pages to actually be freed in smaller chunks. As there
5340 * can be a significant delay between the individual batches being
5341 * recycled, this leads to the once large chunks of space being
5342 * fragmented and becoming unavailable for high-order allocations.
5343 */
5344 return 0;
5345#endif
e7c8d5c9
CL
5346}
5347
8d7a8fa9
CS
5348/*
5349 * pcp->high and pcp->batch values are related and dependent on one another:
5350 * ->batch must never be higher then ->high.
5351 * The following function updates them in a safe manner without read side
5352 * locking.
5353 *
5354 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5355 * those fields changing asynchronously (acording the the above rule).
5356 *
5357 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5358 * outside of boot time (or some other assurance that no concurrent updaters
5359 * exist).
5360 */
5361static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5362 unsigned long batch)
5363{
5364 /* start with a fail safe value for batch */
5365 pcp->batch = 1;
5366 smp_wmb();
5367
5368 /* Update high, then batch, in order */
5369 pcp->high = high;
5370 smp_wmb();
5371
5372 pcp->batch = batch;
5373}
5374
3664033c 5375/* a companion to pageset_set_high() */
4008bab7
CS
5376static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5377{
8d7a8fa9 5378 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5379}
5380
88c90dbc 5381static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5382{
5383 struct per_cpu_pages *pcp;
5f8dcc21 5384 int migratetype;
2caaad41 5385
1c6fe946
MD
5386 memset(p, 0, sizeof(*p));
5387
3dfa5721 5388 pcp = &p->pcp;
2caaad41 5389 pcp->count = 0;
5f8dcc21
MG
5390 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5391 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5392}
5393
88c90dbc
CS
5394static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5395{
5396 pageset_init(p);
5397 pageset_set_batch(p, batch);
5398}
5399
8ad4b1fb 5400/*
3664033c 5401 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5402 * to the value high for the pageset p.
5403 */
3664033c 5404static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5405 unsigned long high)
5406{
8d7a8fa9
CS
5407 unsigned long batch = max(1UL, high / 4);
5408 if ((high / 4) > (PAGE_SHIFT * 8))
5409 batch = PAGE_SHIFT * 8;
8ad4b1fb 5410
8d7a8fa9 5411 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5412}
5413
7cd2b0a3
DR
5414static void pageset_set_high_and_batch(struct zone *zone,
5415 struct per_cpu_pageset *pcp)
56cef2b8 5416{
56cef2b8 5417 if (percpu_pagelist_fraction)
3664033c 5418 pageset_set_high(pcp,
56cef2b8
CS
5419 (zone->managed_pages /
5420 percpu_pagelist_fraction));
5421 else
5422 pageset_set_batch(pcp, zone_batchsize(zone));
5423}
5424
169f6c19
CS
5425static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5426{
5427 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5428
5429 pageset_init(pcp);
5430 pageset_set_high_and_batch(zone, pcp);
5431}
5432
4ed7e022 5433static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5434{
5435 int cpu;
319774e2 5436 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5437 for_each_possible_cpu(cpu)
5438 zone_pageset_init(zone, cpu);
319774e2
WF
5439}
5440
2caaad41 5441/*
99dcc3e5
CL
5442 * Allocate per cpu pagesets and initialize them.
5443 * Before this call only boot pagesets were available.
e7c8d5c9 5444 */
99dcc3e5 5445void __init setup_per_cpu_pageset(void)
e7c8d5c9 5446{
b4911ea2 5447 struct pglist_data *pgdat;
99dcc3e5 5448 struct zone *zone;
e7c8d5c9 5449
319774e2
WF
5450 for_each_populated_zone(zone)
5451 setup_zone_pageset(zone);
b4911ea2
MG
5452
5453 for_each_online_pgdat(pgdat)
5454 pgdat->per_cpu_nodestats =
5455 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5456}
5457
c09b4240 5458static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5459{
99dcc3e5
CL
5460 /*
5461 * per cpu subsystem is not up at this point. The following code
5462 * relies on the ability of the linker to provide the
5463 * offset of a (static) per cpu variable into the per cpu area.
5464 */
5465 zone->pageset = &boot_pageset;
ed8ece2e 5466
b38a8725 5467 if (populated_zone(zone))
99dcc3e5
CL
5468 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5469 zone->name, zone->present_pages,
5470 zone_batchsize(zone));
ed8ece2e
DH
5471}
5472
4ed7e022 5473int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5474 unsigned long zone_start_pfn,
b171e409 5475 unsigned long size)
ed8ece2e
DH
5476{
5477 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5478
ed8ece2e
DH
5479 pgdat->nr_zones = zone_idx(zone) + 1;
5480
ed8ece2e
DH
5481 zone->zone_start_pfn = zone_start_pfn;
5482
708614e6
MG
5483 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5484 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5485 pgdat->node_id,
5486 (unsigned long)zone_idx(zone),
5487 zone_start_pfn, (zone_start_pfn + size));
5488
1e548deb 5489 zone_init_free_lists(zone);
9dcb8b68 5490 zone->initialized = 1;
718127cc
YG
5491
5492 return 0;
ed8ece2e
DH
5493}
5494
0ee332c1 5495#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5496#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5497
c713216d
MG
5498/*
5499 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5500 */
8a942fde
MG
5501int __meminit __early_pfn_to_nid(unsigned long pfn,
5502 struct mminit_pfnnid_cache *state)
c713216d 5503{
c13291a5 5504 unsigned long start_pfn, end_pfn;
e76b63f8 5505 int nid;
7c243c71 5506
8a942fde
MG
5507 if (state->last_start <= pfn && pfn < state->last_end)
5508 return state->last_nid;
c713216d 5509
e76b63f8
YL
5510 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5511 if (nid != -1) {
8a942fde
MG
5512 state->last_start = start_pfn;
5513 state->last_end = end_pfn;
5514 state->last_nid = nid;
e76b63f8
YL
5515 }
5516
5517 return nid;
c713216d
MG
5518}
5519#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5520
c713216d 5521/**
6782832e 5522 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5523 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5524 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5525 *
7d018176
ZZ
5526 * If an architecture guarantees that all ranges registered contain no holes
5527 * and may be freed, this this function may be used instead of calling
5528 * memblock_free_early_nid() manually.
c713216d 5529 */
c13291a5 5530void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5531{
c13291a5
TH
5532 unsigned long start_pfn, end_pfn;
5533 int i, this_nid;
edbe7d23 5534
c13291a5
TH
5535 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5536 start_pfn = min(start_pfn, max_low_pfn);
5537 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5538
c13291a5 5539 if (start_pfn < end_pfn)
6782832e
SS
5540 memblock_free_early_nid(PFN_PHYS(start_pfn),
5541 (end_pfn - start_pfn) << PAGE_SHIFT,
5542 this_nid);
edbe7d23 5543 }
edbe7d23 5544}
edbe7d23 5545
c713216d
MG
5546/**
5547 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5548 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5549 *
7d018176
ZZ
5550 * If an architecture guarantees that all ranges registered contain no holes and may
5551 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5552 */
5553void __init sparse_memory_present_with_active_regions(int nid)
5554{
c13291a5
TH
5555 unsigned long start_pfn, end_pfn;
5556 int i, this_nid;
c713216d 5557
c13291a5
TH
5558 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5559 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5560}
5561
5562/**
5563 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5564 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5565 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5566 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5567 *
5568 * It returns the start and end page frame of a node based on information
7d018176 5569 * provided by memblock_set_node(). If called for a node
c713216d 5570 * with no available memory, a warning is printed and the start and end
88ca3b94 5571 * PFNs will be 0.
c713216d 5572 */
a3142c8e 5573void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5574 unsigned long *start_pfn, unsigned long *end_pfn)
5575{
c13291a5 5576 unsigned long this_start_pfn, this_end_pfn;
c713216d 5577 int i;
c13291a5 5578
c713216d
MG
5579 *start_pfn = -1UL;
5580 *end_pfn = 0;
5581
c13291a5
TH
5582 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5583 *start_pfn = min(*start_pfn, this_start_pfn);
5584 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5585 }
5586
633c0666 5587 if (*start_pfn == -1UL)
c713216d 5588 *start_pfn = 0;
c713216d
MG
5589}
5590
2a1e274a
MG
5591/*
5592 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5593 * assumption is made that zones within a node are ordered in monotonic
5594 * increasing memory addresses so that the "highest" populated zone is used
5595 */
b69a7288 5596static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5597{
5598 int zone_index;
5599 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5600 if (zone_index == ZONE_MOVABLE)
5601 continue;
5602
5603 if (arch_zone_highest_possible_pfn[zone_index] >
5604 arch_zone_lowest_possible_pfn[zone_index])
5605 break;
5606 }
5607
5608 VM_BUG_ON(zone_index == -1);
5609 movable_zone = zone_index;
5610}
5611
5612/*
5613 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5614 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5615 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5616 * in each node depending on the size of each node and how evenly kernelcore
5617 * is distributed. This helper function adjusts the zone ranges
5618 * provided by the architecture for a given node by using the end of the
5619 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5620 * zones within a node are in order of monotonic increases memory addresses
5621 */
b69a7288 5622static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5623 unsigned long zone_type,
5624 unsigned long node_start_pfn,
5625 unsigned long node_end_pfn,
5626 unsigned long *zone_start_pfn,
5627 unsigned long *zone_end_pfn)
5628{
5629 /* Only adjust if ZONE_MOVABLE is on this node */
5630 if (zone_movable_pfn[nid]) {
5631 /* Size ZONE_MOVABLE */
5632 if (zone_type == ZONE_MOVABLE) {
5633 *zone_start_pfn = zone_movable_pfn[nid];
5634 *zone_end_pfn = min(node_end_pfn,
5635 arch_zone_highest_possible_pfn[movable_zone]);
5636
e506b996
XQ
5637 /* Adjust for ZONE_MOVABLE starting within this range */
5638 } else if (!mirrored_kernelcore &&
5639 *zone_start_pfn < zone_movable_pfn[nid] &&
5640 *zone_end_pfn > zone_movable_pfn[nid]) {
5641 *zone_end_pfn = zone_movable_pfn[nid];
5642
2a1e274a
MG
5643 /* Check if this whole range is within ZONE_MOVABLE */
5644 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5645 *zone_start_pfn = *zone_end_pfn;
5646 }
5647}
5648
c713216d
MG
5649/*
5650 * Return the number of pages a zone spans in a node, including holes
5651 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5652 */
6ea6e688 5653static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5654 unsigned long zone_type,
7960aedd
ZY
5655 unsigned long node_start_pfn,
5656 unsigned long node_end_pfn,
d91749c1
TI
5657 unsigned long *zone_start_pfn,
5658 unsigned long *zone_end_pfn,
c713216d
MG
5659 unsigned long *ignored)
5660{
b5685e92 5661 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5662 if (!node_start_pfn && !node_end_pfn)
5663 return 0;
5664
7960aedd 5665 /* Get the start and end of the zone */
d91749c1
TI
5666 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5667 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5668 adjust_zone_range_for_zone_movable(nid, zone_type,
5669 node_start_pfn, node_end_pfn,
d91749c1 5670 zone_start_pfn, zone_end_pfn);
c713216d
MG
5671
5672 /* Check that this node has pages within the zone's required range */
d91749c1 5673 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5674 return 0;
5675
5676 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5677 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5678 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5679
5680 /* Return the spanned pages */
d91749c1 5681 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5682}
5683
5684/*
5685 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5686 * then all holes in the requested range will be accounted for.
c713216d 5687 */
32996250 5688unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5689 unsigned long range_start_pfn,
5690 unsigned long range_end_pfn)
5691{
96e907d1
TH
5692 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5693 unsigned long start_pfn, end_pfn;
5694 int i;
c713216d 5695
96e907d1
TH
5696 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5697 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5698 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5699 nr_absent -= end_pfn - start_pfn;
c713216d 5700 }
96e907d1 5701 return nr_absent;
c713216d
MG
5702}
5703
5704/**
5705 * absent_pages_in_range - Return number of page frames in holes within a range
5706 * @start_pfn: The start PFN to start searching for holes
5707 * @end_pfn: The end PFN to stop searching for holes
5708 *
88ca3b94 5709 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5710 */
5711unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5712 unsigned long end_pfn)
5713{
5714 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5715}
5716
5717/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5718static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5719 unsigned long zone_type,
7960aedd
ZY
5720 unsigned long node_start_pfn,
5721 unsigned long node_end_pfn,
c713216d
MG
5722 unsigned long *ignored)
5723{
96e907d1
TH
5724 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5725 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5726 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5727 unsigned long nr_absent;
9c7cd687 5728
b5685e92 5729 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5730 if (!node_start_pfn && !node_end_pfn)
5731 return 0;
5732
96e907d1
TH
5733 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5734 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5735
2a1e274a
MG
5736 adjust_zone_range_for_zone_movable(nid, zone_type,
5737 node_start_pfn, node_end_pfn,
5738 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5739 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5740
5741 /*
5742 * ZONE_MOVABLE handling.
5743 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5744 * and vice versa.
5745 */
e506b996
XQ
5746 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5747 unsigned long start_pfn, end_pfn;
5748 struct memblock_region *r;
5749
5750 for_each_memblock(memory, r) {
5751 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5752 zone_start_pfn, zone_end_pfn);
5753 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5754 zone_start_pfn, zone_end_pfn);
5755
5756 if (zone_type == ZONE_MOVABLE &&
5757 memblock_is_mirror(r))
5758 nr_absent += end_pfn - start_pfn;
5759
5760 if (zone_type == ZONE_NORMAL &&
5761 !memblock_is_mirror(r))
5762 nr_absent += end_pfn - start_pfn;
342332e6
TI
5763 }
5764 }
5765
5766 return nr_absent;
c713216d 5767}
0e0b864e 5768
0ee332c1 5769#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5770static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5771 unsigned long zone_type,
7960aedd
ZY
5772 unsigned long node_start_pfn,
5773 unsigned long node_end_pfn,
d91749c1
TI
5774 unsigned long *zone_start_pfn,
5775 unsigned long *zone_end_pfn,
c713216d
MG
5776 unsigned long *zones_size)
5777{
d91749c1
TI
5778 unsigned int zone;
5779
5780 *zone_start_pfn = node_start_pfn;
5781 for (zone = 0; zone < zone_type; zone++)
5782 *zone_start_pfn += zones_size[zone];
5783
5784 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5785
c713216d
MG
5786 return zones_size[zone_type];
5787}
5788
6ea6e688 5789static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5790 unsigned long zone_type,
7960aedd
ZY
5791 unsigned long node_start_pfn,
5792 unsigned long node_end_pfn,
c713216d
MG
5793 unsigned long *zholes_size)
5794{
5795 if (!zholes_size)
5796 return 0;
5797
5798 return zholes_size[zone_type];
5799}
20e6926d 5800
0ee332c1 5801#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5802
a3142c8e 5803static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5804 unsigned long node_start_pfn,
5805 unsigned long node_end_pfn,
5806 unsigned long *zones_size,
5807 unsigned long *zholes_size)
c713216d 5808{
febd5949 5809 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5810 enum zone_type i;
5811
febd5949
GZ
5812 for (i = 0; i < MAX_NR_ZONES; i++) {
5813 struct zone *zone = pgdat->node_zones + i;
d91749c1 5814 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5815 unsigned long size, real_size;
c713216d 5816
febd5949
GZ
5817 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5818 node_start_pfn,
5819 node_end_pfn,
d91749c1
TI
5820 &zone_start_pfn,
5821 &zone_end_pfn,
febd5949
GZ
5822 zones_size);
5823 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5824 node_start_pfn, node_end_pfn,
5825 zholes_size);
d91749c1
TI
5826 if (size)
5827 zone->zone_start_pfn = zone_start_pfn;
5828 else
5829 zone->zone_start_pfn = 0;
febd5949
GZ
5830 zone->spanned_pages = size;
5831 zone->present_pages = real_size;
5832
5833 totalpages += size;
5834 realtotalpages += real_size;
5835 }
5836
5837 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5838 pgdat->node_present_pages = realtotalpages;
5839 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5840 realtotalpages);
5841}
5842
835c134e
MG
5843#ifndef CONFIG_SPARSEMEM
5844/*
5845 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5846 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5847 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5848 * round what is now in bits to nearest long in bits, then return it in
5849 * bytes.
5850 */
7c45512d 5851static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5852{
5853 unsigned long usemapsize;
5854
7c45512d 5855 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5856 usemapsize = roundup(zonesize, pageblock_nr_pages);
5857 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5858 usemapsize *= NR_PAGEBLOCK_BITS;
5859 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5860
5861 return usemapsize / 8;
5862}
5863
5864static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5865 struct zone *zone,
5866 unsigned long zone_start_pfn,
5867 unsigned long zonesize)
835c134e 5868{
7c45512d 5869 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5870 zone->pageblock_flags = NULL;
58a01a45 5871 if (usemapsize)
6782832e
SS
5872 zone->pageblock_flags =
5873 memblock_virt_alloc_node_nopanic(usemapsize,
5874 pgdat->node_id);
835c134e
MG
5875}
5876#else
7c45512d
LT
5877static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5878 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5879#endif /* CONFIG_SPARSEMEM */
5880
d9c23400 5881#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5882
d9c23400 5883/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5884void __paginginit set_pageblock_order(void)
d9c23400 5885{
955c1cd7
AM
5886 unsigned int order;
5887
d9c23400
MG
5888 /* Check that pageblock_nr_pages has not already been setup */
5889 if (pageblock_order)
5890 return;
5891
955c1cd7
AM
5892 if (HPAGE_SHIFT > PAGE_SHIFT)
5893 order = HUGETLB_PAGE_ORDER;
5894 else
5895 order = MAX_ORDER - 1;
5896
d9c23400
MG
5897 /*
5898 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5899 * This value may be variable depending on boot parameters on IA64 and
5900 * powerpc.
d9c23400
MG
5901 */
5902 pageblock_order = order;
5903}
5904#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5905
ba72cb8c
MG
5906/*
5907 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5908 * is unused as pageblock_order is set at compile-time. See
5909 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5910 * the kernel config
ba72cb8c 5911 */
15ca220e 5912void __paginginit set_pageblock_order(void)
ba72cb8c 5913{
ba72cb8c 5914}
d9c23400
MG
5915
5916#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5917
01cefaef
JL
5918static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5919 unsigned long present_pages)
5920{
5921 unsigned long pages = spanned_pages;
5922
5923 /*
5924 * Provide a more accurate estimation if there are holes within
5925 * the zone and SPARSEMEM is in use. If there are holes within the
5926 * zone, each populated memory region may cost us one or two extra
5927 * memmap pages due to alignment because memmap pages for each
5928 * populated regions may not naturally algined on page boundary.
5929 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5930 */
5931 if (spanned_pages > present_pages + (present_pages >> 4) &&
5932 IS_ENABLED(CONFIG_SPARSEMEM))
5933 pages = present_pages;
5934
5935 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5936}
5937
1da177e4
LT
5938/*
5939 * Set up the zone data structures:
5940 * - mark all pages reserved
5941 * - mark all memory queues empty
5942 * - clear the memory bitmaps
6527af5d
MK
5943 *
5944 * NOTE: pgdat should get zeroed by caller.
1da177e4 5945 */
7f3eb55b 5946static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5947{
2f1b6248 5948 enum zone_type j;
ed8ece2e 5949 int nid = pgdat->node_id;
718127cc 5950 int ret;
1da177e4 5951
208d54e5 5952 pgdat_resize_init(pgdat);
8177a420
AA
5953#ifdef CONFIG_NUMA_BALANCING
5954 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5955 pgdat->numabalancing_migrate_nr_pages = 0;
5956 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5957#endif
5958#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5959 spin_lock_init(&pgdat->split_queue_lock);
5960 INIT_LIST_HEAD(&pgdat->split_queue);
5961 pgdat->split_queue_len = 0;
8177a420 5962#endif
1da177e4 5963 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5964 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5965#ifdef CONFIG_COMPACTION
5966 init_waitqueue_head(&pgdat->kcompactd_wait);
5967#endif
eefa864b 5968 pgdat_page_ext_init(pgdat);
a52633d8 5969 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5970 lruvec_init(node_lruvec(pgdat));
5f63b720 5971
1da177e4
LT
5972 for (j = 0; j < MAX_NR_ZONES; j++) {
5973 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5974 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5975 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5976
febd5949
GZ
5977 size = zone->spanned_pages;
5978 realsize = freesize = zone->present_pages;
1da177e4 5979
0e0b864e 5980 /*
9feedc9d 5981 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5982 * is used by this zone for memmap. This affects the watermark
5983 * and per-cpu initialisations
5984 */
01cefaef 5985 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5986 if (!is_highmem_idx(j)) {
5987 if (freesize >= memmap_pages) {
5988 freesize -= memmap_pages;
5989 if (memmap_pages)
5990 printk(KERN_DEBUG
5991 " %s zone: %lu pages used for memmap\n",
5992 zone_names[j], memmap_pages);
5993 } else
1170532b 5994 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5995 zone_names[j], memmap_pages, freesize);
5996 }
0e0b864e 5997
6267276f 5998 /* Account for reserved pages */
9feedc9d
JL
5999 if (j == 0 && freesize > dma_reserve) {
6000 freesize -= dma_reserve;
d903ef9f 6001 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6002 zone_names[0], dma_reserve);
0e0b864e
MG
6003 }
6004
98d2b0eb 6005 if (!is_highmem_idx(j))
9feedc9d 6006 nr_kernel_pages += freesize;
01cefaef
JL
6007 /* Charge for highmem memmap if there are enough kernel pages */
6008 else if (nr_kernel_pages > memmap_pages * 2)
6009 nr_kernel_pages -= memmap_pages;
9feedc9d 6010 nr_all_pages += freesize;
1da177e4 6011
9feedc9d
JL
6012 /*
6013 * Set an approximate value for lowmem here, it will be adjusted
6014 * when the bootmem allocator frees pages into the buddy system.
6015 * And all highmem pages will be managed by the buddy system.
6016 */
6017 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6018#ifdef CONFIG_NUMA
d5f541ed 6019 zone->node = nid;
9614634f 6020#endif
1da177e4 6021 zone->name = zone_names[j];
a52633d8 6022 zone->zone_pgdat = pgdat;
1da177e4 6023 spin_lock_init(&zone->lock);
bdc8cb98 6024 zone_seqlock_init(zone);
ed8ece2e 6025 zone_pcp_init(zone);
81c0a2bb 6026
1da177e4
LT
6027 if (!size)
6028 continue;
6029
955c1cd7 6030 set_pageblock_order();
7c45512d 6031 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6032 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6033 BUG_ON(ret);
76cdd58e 6034 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6035 }
6036}
6037
bd721ea7 6038static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6039{
b0aeba74 6040 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6041 unsigned long __maybe_unused offset = 0;
6042
1da177e4
LT
6043 /* Skip empty nodes */
6044 if (!pgdat->node_spanned_pages)
6045 return;
6046
d41dee36 6047#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6048 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6049 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6050 /* ia64 gets its own node_mem_map, before this, without bootmem */
6051 if (!pgdat->node_mem_map) {
b0aeba74 6052 unsigned long size, end;
d41dee36
AW
6053 struct page *map;
6054
e984bb43
BP
6055 /*
6056 * The zone's endpoints aren't required to be MAX_ORDER
6057 * aligned but the node_mem_map endpoints must be in order
6058 * for the buddy allocator to function correctly.
6059 */
108bcc96 6060 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6061 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6062 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6063 map = alloc_remap(pgdat->node_id, size);
6064 if (!map)
6782832e
SS
6065 map = memblock_virt_alloc_node_nopanic(size,
6066 pgdat->node_id);
a1c34a3b 6067 pgdat->node_mem_map = map + offset;
1da177e4 6068 }
12d810c1 6069#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6070 /*
6071 * With no DISCONTIG, the global mem_map is just set as node 0's
6072 */
c713216d 6073 if (pgdat == NODE_DATA(0)) {
1da177e4 6074 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6075#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6076 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6077 mem_map -= offset;
0ee332c1 6078#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6079 }
1da177e4 6080#endif
d41dee36 6081#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6082}
6083
9109fb7b
JW
6084void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6085 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6086{
9109fb7b 6087 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6088 unsigned long start_pfn = 0;
6089 unsigned long end_pfn = 0;
9109fb7b 6090
88fdf75d 6091 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6092 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6093
3a80a7fa 6094 reset_deferred_meminit(pgdat);
1da177e4
LT
6095 pgdat->node_id = nid;
6096 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6097 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6098#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6099 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6100 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6101 (u64)start_pfn << PAGE_SHIFT,
6102 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6103#else
6104 start_pfn = node_start_pfn;
7960aedd
ZY
6105#endif
6106 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6107 zones_size, zholes_size);
1da177e4
LT
6108
6109 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6110#ifdef CONFIG_FLAT_NODE_MEM_MAP
6111 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6112 nid, (unsigned long)pgdat,
6113 (unsigned long)pgdat->node_mem_map);
6114#endif
1da177e4 6115
7f3eb55b 6116 free_area_init_core(pgdat);
1da177e4
LT
6117}
6118
0ee332c1 6119#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6120
6121#if MAX_NUMNODES > 1
6122/*
6123 * Figure out the number of possible node ids.
6124 */
f9872caf 6125void __init setup_nr_node_ids(void)
418508c1 6126{
904a9553 6127 unsigned int highest;
418508c1 6128
904a9553 6129 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6130 nr_node_ids = highest + 1;
6131}
418508c1
MS
6132#endif
6133
1e01979c
TH
6134/**
6135 * node_map_pfn_alignment - determine the maximum internode alignment
6136 *
6137 * This function should be called after node map is populated and sorted.
6138 * It calculates the maximum power of two alignment which can distinguish
6139 * all the nodes.
6140 *
6141 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6142 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6143 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6144 * shifted, 1GiB is enough and this function will indicate so.
6145 *
6146 * This is used to test whether pfn -> nid mapping of the chosen memory
6147 * model has fine enough granularity to avoid incorrect mapping for the
6148 * populated node map.
6149 *
6150 * Returns the determined alignment in pfn's. 0 if there is no alignment
6151 * requirement (single node).
6152 */
6153unsigned long __init node_map_pfn_alignment(void)
6154{
6155 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6156 unsigned long start, end, mask;
1e01979c 6157 int last_nid = -1;
c13291a5 6158 int i, nid;
1e01979c 6159
c13291a5 6160 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6161 if (!start || last_nid < 0 || last_nid == nid) {
6162 last_nid = nid;
6163 last_end = end;
6164 continue;
6165 }
6166
6167 /*
6168 * Start with a mask granular enough to pin-point to the
6169 * start pfn and tick off bits one-by-one until it becomes
6170 * too coarse to separate the current node from the last.
6171 */
6172 mask = ~((1 << __ffs(start)) - 1);
6173 while (mask && last_end <= (start & (mask << 1)))
6174 mask <<= 1;
6175
6176 /* accumulate all internode masks */
6177 accl_mask |= mask;
6178 }
6179
6180 /* convert mask to number of pages */
6181 return ~accl_mask + 1;
6182}
6183
a6af2bc3 6184/* Find the lowest pfn for a node */
b69a7288 6185static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6186{
a6af2bc3 6187 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6188 unsigned long start_pfn;
6189 int i;
1abbfb41 6190
c13291a5
TH
6191 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6192 min_pfn = min(min_pfn, start_pfn);
c713216d 6193
a6af2bc3 6194 if (min_pfn == ULONG_MAX) {
1170532b 6195 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6196 return 0;
6197 }
6198
6199 return min_pfn;
c713216d
MG
6200}
6201
6202/**
6203 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6204 *
6205 * It returns the minimum PFN based on information provided via
7d018176 6206 * memblock_set_node().
c713216d
MG
6207 */
6208unsigned long __init find_min_pfn_with_active_regions(void)
6209{
6210 return find_min_pfn_for_node(MAX_NUMNODES);
6211}
6212
37b07e41
LS
6213/*
6214 * early_calculate_totalpages()
6215 * Sum pages in active regions for movable zone.
4b0ef1fe 6216 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6217 */
484f51f8 6218static unsigned long __init early_calculate_totalpages(void)
7e63efef 6219{
7e63efef 6220 unsigned long totalpages = 0;
c13291a5
TH
6221 unsigned long start_pfn, end_pfn;
6222 int i, nid;
6223
6224 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6225 unsigned long pages = end_pfn - start_pfn;
7e63efef 6226
37b07e41
LS
6227 totalpages += pages;
6228 if (pages)
4b0ef1fe 6229 node_set_state(nid, N_MEMORY);
37b07e41 6230 }
b8af2941 6231 return totalpages;
7e63efef
MG
6232}
6233
2a1e274a
MG
6234/*
6235 * Find the PFN the Movable zone begins in each node. Kernel memory
6236 * is spread evenly between nodes as long as the nodes have enough
6237 * memory. When they don't, some nodes will have more kernelcore than
6238 * others
6239 */
b224ef85 6240static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6241{
6242 int i, nid;
6243 unsigned long usable_startpfn;
6244 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6245 /* save the state before borrow the nodemask */
4b0ef1fe 6246 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6247 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6248 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6249 struct memblock_region *r;
b2f3eebe
TC
6250
6251 /* Need to find movable_zone earlier when movable_node is specified. */
6252 find_usable_zone_for_movable();
6253
6254 /*
6255 * If movable_node is specified, ignore kernelcore and movablecore
6256 * options.
6257 */
6258 if (movable_node_is_enabled()) {
136199f0
EM
6259 for_each_memblock(memory, r) {
6260 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6261 continue;
6262
136199f0 6263 nid = r->nid;
b2f3eebe 6264
136199f0 6265 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6266 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6267 min(usable_startpfn, zone_movable_pfn[nid]) :
6268 usable_startpfn;
6269 }
6270
6271 goto out2;
6272 }
2a1e274a 6273
342332e6
TI
6274 /*
6275 * If kernelcore=mirror is specified, ignore movablecore option
6276 */
6277 if (mirrored_kernelcore) {
6278 bool mem_below_4gb_not_mirrored = false;
6279
6280 for_each_memblock(memory, r) {
6281 if (memblock_is_mirror(r))
6282 continue;
6283
6284 nid = r->nid;
6285
6286 usable_startpfn = memblock_region_memory_base_pfn(r);
6287
6288 if (usable_startpfn < 0x100000) {
6289 mem_below_4gb_not_mirrored = true;
6290 continue;
6291 }
6292
6293 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6294 min(usable_startpfn, zone_movable_pfn[nid]) :
6295 usable_startpfn;
6296 }
6297
6298 if (mem_below_4gb_not_mirrored)
6299 pr_warn("This configuration results in unmirrored kernel memory.");
6300
6301 goto out2;
6302 }
6303
7e63efef 6304 /*
b2f3eebe 6305 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6306 * kernelcore that corresponds so that memory usable for
6307 * any allocation type is evenly spread. If both kernelcore
6308 * and movablecore are specified, then the value of kernelcore
6309 * will be used for required_kernelcore if it's greater than
6310 * what movablecore would have allowed.
6311 */
6312 if (required_movablecore) {
7e63efef
MG
6313 unsigned long corepages;
6314
6315 /*
6316 * Round-up so that ZONE_MOVABLE is at least as large as what
6317 * was requested by the user
6318 */
6319 required_movablecore =
6320 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6321 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6322 corepages = totalpages - required_movablecore;
6323
6324 required_kernelcore = max(required_kernelcore, corepages);
6325 }
6326
bde304bd
XQ
6327 /*
6328 * If kernelcore was not specified or kernelcore size is larger
6329 * than totalpages, there is no ZONE_MOVABLE.
6330 */
6331 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6332 goto out;
2a1e274a
MG
6333
6334 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6335 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6336
6337restart:
6338 /* Spread kernelcore memory as evenly as possible throughout nodes */
6339 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6340 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6341 unsigned long start_pfn, end_pfn;
6342
2a1e274a
MG
6343 /*
6344 * Recalculate kernelcore_node if the division per node
6345 * now exceeds what is necessary to satisfy the requested
6346 * amount of memory for the kernel
6347 */
6348 if (required_kernelcore < kernelcore_node)
6349 kernelcore_node = required_kernelcore / usable_nodes;
6350
6351 /*
6352 * As the map is walked, we track how much memory is usable
6353 * by the kernel using kernelcore_remaining. When it is
6354 * 0, the rest of the node is usable by ZONE_MOVABLE
6355 */
6356 kernelcore_remaining = kernelcore_node;
6357
6358 /* Go through each range of PFNs within this node */
c13291a5 6359 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6360 unsigned long size_pages;
6361
c13291a5 6362 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6363 if (start_pfn >= end_pfn)
6364 continue;
6365
6366 /* Account for what is only usable for kernelcore */
6367 if (start_pfn < usable_startpfn) {
6368 unsigned long kernel_pages;
6369 kernel_pages = min(end_pfn, usable_startpfn)
6370 - start_pfn;
6371
6372 kernelcore_remaining -= min(kernel_pages,
6373 kernelcore_remaining);
6374 required_kernelcore -= min(kernel_pages,
6375 required_kernelcore);
6376
6377 /* Continue if range is now fully accounted */
6378 if (end_pfn <= usable_startpfn) {
6379
6380 /*
6381 * Push zone_movable_pfn to the end so
6382 * that if we have to rebalance
6383 * kernelcore across nodes, we will
6384 * not double account here
6385 */
6386 zone_movable_pfn[nid] = end_pfn;
6387 continue;
6388 }
6389 start_pfn = usable_startpfn;
6390 }
6391
6392 /*
6393 * The usable PFN range for ZONE_MOVABLE is from
6394 * start_pfn->end_pfn. Calculate size_pages as the
6395 * number of pages used as kernelcore
6396 */
6397 size_pages = end_pfn - start_pfn;
6398 if (size_pages > kernelcore_remaining)
6399 size_pages = kernelcore_remaining;
6400 zone_movable_pfn[nid] = start_pfn + size_pages;
6401
6402 /*
6403 * Some kernelcore has been met, update counts and
6404 * break if the kernelcore for this node has been
b8af2941 6405 * satisfied
2a1e274a
MG
6406 */
6407 required_kernelcore -= min(required_kernelcore,
6408 size_pages);
6409 kernelcore_remaining -= size_pages;
6410 if (!kernelcore_remaining)
6411 break;
6412 }
6413 }
6414
6415 /*
6416 * If there is still required_kernelcore, we do another pass with one
6417 * less node in the count. This will push zone_movable_pfn[nid] further
6418 * along on the nodes that still have memory until kernelcore is
b8af2941 6419 * satisfied
2a1e274a
MG
6420 */
6421 usable_nodes--;
6422 if (usable_nodes && required_kernelcore > usable_nodes)
6423 goto restart;
6424
b2f3eebe 6425out2:
2a1e274a
MG
6426 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6427 for (nid = 0; nid < MAX_NUMNODES; nid++)
6428 zone_movable_pfn[nid] =
6429 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6430
20e6926d 6431out:
66918dcd 6432 /* restore the node_state */
4b0ef1fe 6433 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6434}
6435
4b0ef1fe
LJ
6436/* Any regular or high memory on that node ? */
6437static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6438{
37b07e41
LS
6439 enum zone_type zone_type;
6440
4b0ef1fe
LJ
6441 if (N_MEMORY == N_NORMAL_MEMORY)
6442 return;
6443
6444 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6445 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6446 if (populated_zone(zone)) {
4b0ef1fe
LJ
6447 node_set_state(nid, N_HIGH_MEMORY);
6448 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6449 zone_type <= ZONE_NORMAL)
6450 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6451 break;
6452 }
37b07e41 6453 }
37b07e41
LS
6454}
6455
c713216d
MG
6456/**
6457 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6458 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6459 *
6460 * This will call free_area_init_node() for each active node in the system.
7d018176 6461 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6462 * zone in each node and their holes is calculated. If the maximum PFN
6463 * between two adjacent zones match, it is assumed that the zone is empty.
6464 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6465 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6466 * starts where the previous one ended. For example, ZONE_DMA32 starts
6467 * at arch_max_dma_pfn.
6468 */
6469void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6470{
c13291a5
TH
6471 unsigned long start_pfn, end_pfn;
6472 int i, nid;
a6af2bc3 6473
c713216d
MG
6474 /* Record where the zone boundaries are */
6475 memset(arch_zone_lowest_possible_pfn, 0,
6476 sizeof(arch_zone_lowest_possible_pfn));
6477 memset(arch_zone_highest_possible_pfn, 0,
6478 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6479
6480 start_pfn = find_min_pfn_with_active_regions();
6481
6482 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6483 if (i == ZONE_MOVABLE)
6484 continue;
90cae1fe
OH
6485
6486 end_pfn = max(max_zone_pfn[i], start_pfn);
6487 arch_zone_lowest_possible_pfn[i] = start_pfn;
6488 arch_zone_highest_possible_pfn[i] = end_pfn;
6489
6490 start_pfn = end_pfn;
c713216d 6491 }
2a1e274a
MG
6492 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6493 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6494
6495 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6496 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6497 find_zone_movable_pfns_for_nodes();
c713216d 6498
c713216d 6499 /* Print out the zone ranges */
f88dfff5 6500 pr_info("Zone ranges:\n");
2a1e274a
MG
6501 for (i = 0; i < MAX_NR_ZONES; i++) {
6502 if (i == ZONE_MOVABLE)
6503 continue;
f88dfff5 6504 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6505 if (arch_zone_lowest_possible_pfn[i] ==
6506 arch_zone_highest_possible_pfn[i])
f88dfff5 6507 pr_cont("empty\n");
72f0ba02 6508 else
8d29e18a
JG
6509 pr_cont("[mem %#018Lx-%#018Lx]\n",
6510 (u64)arch_zone_lowest_possible_pfn[i]
6511 << PAGE_SHIFT,
6512 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6513 << PAGE_SHIFT) - 1);
2a1e274a
MG
6514 }
6515
6516 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6517 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6518 for (i = 0; i < MAX_NUMNODES; i++) {
6519 if (zone_movable_pfn[i])
8d29e18a
JG
6520 pr_info(" Node %d: %#018Lx\n", i,
6521 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6522 }
c713216d 6523
f2d52fe5 6524 /* Print out the early node map */
f88dfff5 6525 pr_info("Early memory node ranges\n");
c13291a5 6526 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6527 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6528 (u64)start_pfn << PAGE_SHIFT,
6529 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6530
6531 /* Initialise every node */
708614e6 6532 mminit_verify_pageflags_layout();
8ef82866 6533 setup_nr_node_ids();
c713216d
MG
6534 for_each_online_node(nid) {
6535 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6536 free_area_init_node(nid, NULL,
c713216d 6537 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6538
6539 /* Any memory on that node */
6540 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6541 node_set_state(nid, N_MEMORY);
6542 check_for_memory(pgdat, nid);
c713216d
MG
6543 }
6544}
2a1e274a 6545
7e63efef 6546static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6547{
6548 unsigned long long coremem;
6549 if (!p)
6550 return -EINVAL;
6551
6552 coremem = memparse(p, &p);
7e63efef 6553 *core = coremem >> PAGE_SHIFT;
2a1e274a 6554
7e63efef 6555 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6556 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6557
6558 return 0;
6559}
ed7ed365 6560
7e63efef
MG
6561/*
6562 * kernelcore=size sets the amount of memory for use for allocations that
6563 * cannot be reclaimed or migrated.
6564 */
6565static int __init cmdline_parse_kernelcore(char *p)
6566{
342332e6
TI
6567 /* parse kernelcore=mirror */
6568 if (parse_option_str(p, "mirror")) {
6569 mirrored_kernelcore = true;
6570 return 0;
6571 }
6572
7e63efef
MG
6573 return cmdline_parse_core(p, &required_kernelcore);
6574}
6575
6576/*
6577 * movablecore=size sets the amount of memory for use for allocations that
6578 * can be reclaimed or migrated.
6579 */
6580static int __init cmdline_parse_movablecore(char *p)
6581{
6582 return cmdline_parse_core(p, &required_movablecore);
6583}
6584
ed7ed365 6585early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6586early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6587
0ee332c1 6588#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6589
c3d5f5f0
JL
6590void adjust_managed_page_count(struct page *page, long count)
6591{
6592 spin_lock(&managed_page_count_lock);
6593 page_zone(page)->managed_pages += count;
6594 totalram_pages += count;
3dcc0571
JL
6595#ifdef CONFIG_HIGHMEM
6596 if (PageHighMem(page))
6597 totalhigh_pages += count;
6598#endif
c3d5f5f0
JL
6599 spin_unlock(&managed_page_count_lock);
6600}
3dcc0571 6601EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6602
11199692 6603unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6604{
11199692
JL
6605 void *pos;
6606 unsigned long pages = 0;
69afade7 6607
11199692
JL
6608 start = (void *)PAGE_ALIGN((unsigned long)start);
6609 end = (void *)((unsigned long)end & PAGE_MASK);
6610 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6611 if ((unsigned int)poison <= 0xFF)
11199692
JL
6612 memset(pos, poison, PAGE_SIZE);
6613 free_reserved_page(virt_to_page(pos));
69afade7
JL
6614 }
6615
6616 if (pages && s)
adb1fe9a
JP
6617 pr_info("Freeing %s memory: %ldK\n",
6618 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6619
6620 return pages;
6621}
11199692 6622EXPORT_SYMBOL(free_reserved_area);
69afade7 6623
cfa11e08
JL
6624#ifdef CONFIG_HIGHMEM
6625void free_highmem_page(struct page *page)
6626{
6627 __free_reserved_page(page);
6628 totalram_pages++;
7b4b2a0d 6629 page_zone(page)->managed_pages++;
cfa11e08
JL
6630 totalhigh_pages++;
6631}
6632#endif
6633
7ee3d4e8
JL
6634
6635void __init mem_init_print_info(const char *str)
6636{
6637 unsigned long physpages, codesize, datasize, rosize, bss_size;
6638 unsigned long init_code_size, init_data_size;
6639
6640 physpages = get_num_physpages();
6641 codesize = _etext - _stext;
6642 datasize = _edata - _sdata;
6643 rosize = __end_rodata - __start_rodata;
6644 bss_size = __bss_stop - __bss_start;
6645 init_data_size = __init_end - __init_begin;
6646 init_code_size = _einittext - _sinittext;
6647
6648 /*
6649 * Detect special cases and adjust section sizes accordingly:
6650 * 1) .init.* may be embedded into .data sections
6651 * 2) .init.text.* may be out of [__init_begin, __init_end],
6652 * please refer to arch/tile/kernel/vmlinux.lds.S.
6653 * 3) .rodata.* may be embedded into .text or .data sections.
6654 */
6655#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6656 do { \
6657 if (start <= pos && pos < end && size > adj) \
6658 size -= adj; \
6659 } while (0)
7ee3d4e8
JL
6660
6661 adj_init_size(__init_begin, __init_end, init_data_size,
6662 _sinittext, init_code_size);
6663 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6664 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6665 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6666 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6667
6668#undef adj_init_size
6669
756a025f 6670 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6671#ifdef CONFIG_HIGHMEM
756a025f 6672 ", %luK highmem"
7ee3d4e8 6673#endif
756a025f
JP
6674 "%s%s)\n",
6675 nr_free_pages() << (PAGE_SHIFT - 10),
6676 physpages << (PAGE_SHIFT - 10),
6677 codesize >> 10, datasize >> 10, rosize >> 10,
6678 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6679 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6680 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6681#ifdef CONFIG_HIGHMEM
756a025f 6682 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6683#endif
756a025f 6684 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6685}
6686
0e0b864e 6687/**
88ca3b94
RD
6688 * set_dma_reserve - set the specified number of pages reserved in the first zone
6689 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6690 *
013110a7 6691 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6692 * In the DMA zone, a significant percentage may be consumed by kernel image
6693 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6694 * function may optionally be used to account for unfreeable pages in the
6695 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6696 * smaller per-cpu batchsize.
0e0b864e
MG
6697 */
6698void __init set_dma_reserve(unsigned long new_dma_reserve)
6699{
6700 dma_reserve = new_dma_reserve;
6701}
6702
1da177e4
LT
6703void __init free_area_init(unsigned long *zones_size)
6704{
9109fb7b 6705 free_area_init_node(0, zones_size,
1da177e4
LT
6706 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6707}
1da177e4 6708
005fd4bb 6709static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6710{
1da177e4 6711
005fd4bb
SAS
6712 lru_add_drain_cpu(cpu);
6713 drain_pages(cpu);
9f8f2172 6714
005fd4bb
SAS
6715 /*
6716 * Spill the event counters of the dead processor
6717 * into the current processors event counters.
6718 * This artificially elevates the count of the current
6719 * processor.
6720 */
6721 vm_events_fold_cpu(cpu);
9f8f2172 6722
005fd4bb
SAS
6723 /*
6724 * Zero the differential counters of the dead processor
6725 * so that the vm statistics are consistent.
6726 *
6727 * This is only okay since the processor is dead and cannot
6728 * race with what we are doing.
6729 */
6730 cpu_vm_stats_fold(cpu);
6731 return 0;
1da177e4 6732}
1da177e4
LT
6733
6734void __init page_alloc_init(void)
6735{
005fd4bb
SAS
6736 int ret;
6737
6738 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6739 "mm/page_alloc:dead", NULL,
6740 page_alloc_cpu_dead);
6741 WARN_ON(ret < 0);
1da177e4
LT
6742}
6743
cb45b0e9 6744/*
34b10060 6745 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6746 * or min_free_kbytes changes.
6747 */
6748static void calculate_totalreserve_pages(void)
6749{
6750 struct pglist_data *pgdat;
6751 unsigned long reserve_pages = 0;
2f6726e5 6752 enum zone_type i, j;
cb45b0e9
HA
6753
6754 for_each_online_pgdat(pgdat) {
281e3726
MG
6755
6756 pgdat->totalreserve_pages = 0;
6757
cb45b0e9
HA
6758 for (i = 0; i < MAX_NR_ZONES; i++) {
6759 struct zone *zone = pgdat->node_zones + i;
3484b2de 6760 long max = 0;
cb45b0e9
HA
6761
6762 /* Find valid and maximum lowmem_reserve in the zone */
6763 for (j = i; j < MAX_NR_ZONES; j++) {
6764 if (zone->lowmem_reserve[j] > max)
6765 max = zone->lowmem_reserve[j];
6766 }
6767
41858966
MG
6768 /* we treat the high watermark as reserved pages. */
6769 max += high_wmark_pages(zone);
cb45b0e9 6770
b40da049
JL
6771 if (max > zone->managed_pages)
6772 max = zone->managed_pages;
a8d01437 6773
281e3726 6774 pgdat->totalreserve_pages += max;
a8d01437 6775
cb45b0e9
HA
6776 reserve_pages += max;
6777 }
6778 }
6779 totalreserve_pages = reserve_pages;
6780}
6781
1da177e4
LT
6782/*
6783 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6784 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6785 * has a correct pages reserved value, so an adequate number of
6786 * pages are left in the zone after a successful __alloc_pages().
6787 */
6788static void setup_per_zone_lowmem_reserve(void)
6789{
6790 struct pglist_data *pgdat;
2f6726e5 6791 enum zone_type j, idx;
1da177e4 6792
ec936fc5 6793 for_each_online_pgdat(pgdat) {
1da177e4
LT
6794 for (j = 0; j < MAX_NR_ZONES; j++) {
6795 struct zone *zone = pgdat->node_zones + j;
b40da049 6796 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6797
6798 zone->lowmem_reserve[j] = 0;
6799
2f6726e5
CL
6800 idx = j;
6801 while (idx) {
1da177e4
LT
6802 struct zone *lower_zone;
6803
2f6726e5
CL
6804 idx--;
6805
1da177e4
LT
6806 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6807 sysctl_lowmem_reserve_ratio[idx] = 1;
6808
6809 lower_zone = pgdat->node_zones + idx;
b40da049 6810 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6811 sysctl_lowmem_reserve_ratio[idx];
b40da049 6812 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6813 }
6814 }
6815 }
cb45b0e9
HA
6816
6817 /* update totalreserve_pages */
6818 calculate_totalreserve_pages();
1da177e4
LT
6819}
6820
cfd3da1e 6821static void __setup_per_zone_wmarks(void)
1da177e4
LT
6822{
6823 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6824 unsigned long lowmem_pages = 0;
6825 struct zone *zone;
6826 unsigned long flags;
6827
6828 /* Calculate total number of !ZONE_HIGHMEM pages */
6829 for_each_zone(zone) {
6830 if (!is_highmem(zone))
b40da049 6831 lowmem_pages += zone->managed_pages;
1da177e4
LT
6832 }
6833
6834 for_each_zone(zone) {
ac924c60
AM
6835 u64 tmp;
6836
1125b4e3 6837 spin_lock_irqsave(&zone->lock, flags);
b40da049 6838 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6839 do_div(tmp, lowmem_pages);
1da177e4
LT
6840 if (is_highmem(zone)) {
6841 /*
669ed175
NP
6842 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6843 * need highmem pages, so cap pages_min to a small
6844 * value here.
6845 *
41858966 6846 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6847 * deltas control asynch page reclaim, and so should
669ed175 6848 * not be capped for highmem.
1da177e4 6849 */
90ae8d67 6850 unsigned long min_pages;
1da177e4 6851
b40da049 6852 min_pages = zone->managed_pages / 1024;
90ae8d67 6853 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6854 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6855 } else {
669ed175
NP
6856 /*
6857 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6858 * proportionate to the zone's size.
6859 */
41858966 6860 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6861 }
6862
795ae7a0
JW
6863 /*
6864 * Set the kswapd watermarks distance according to the
6865 * scale factor in proportion to available memory, but
6866 * ensure a minimum size on small systems.
6867 */
6868 tmp = max_t(u64, tmp >> 2,
6869 mult_frac(zone->managed_pages,
6870 watermark_scale_factor, 10000));
6871
6872 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6873 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6874
1125b4e3 6875 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6876 }
cb45b0e9
HA
6877
6878 /* update totalreserve_pages */
6879 calculate_totalreserve_pages();
1da177e4
LT
6880}
6881
cfd3da1e
MG
6882/**
6883 * setup_per_zone_wmarks - called when min_free_kbytes changes
6884 * or when memory is hot-{added|removed}
6885 *
6886 * Ensures that the watermark[min,low,high] values for each zone are set
6887 * correctly with respect to min_free_kbytes.
6888 */
6889void setup_per_zone_wmarks(void)
6890{
6891 mutex_lock(&zonelists_mutex);
6892 __setup_per_zone_wmarks();
6893 mutex_unlock(&zonelists_mutex);
6894}
6895
1da177e4
LT
6896/*
6897 * Initialise min_free_kbytes.
6898 *
6899 * For small machines we want it small (128k min). For large machines
6900 * we want it large (64MB max). But it is not linear, because network
6901 * bandwidth does not increase linearly with machine size. We use
6902 *
b8af2941 6903 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6904 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6905 *
6906 * which yields
6907 *
6908 * 16MB: 512k
6909 * 32MB: 724k
6910 * 64MB: 1024k
6911 * 128MB: 1448k
6912 * 256MB: 2048k
6913 * 512MB: 2896k
6914 * 1024MB: 4096k
6915 * 2048MB: 5792k
6916 * 4096MB: 8192k
6917 * 8192MB: 11584k
6918 * 16384MB: 16384k
6919 */
1b79acc9 6920int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6921{
6922 unsigned long lowmem_kbytes;
5f12733e 6923 int new_min_free_kbytes;
1da177e4
LT
6924
6925 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6926 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6927
6928 if (new_min_free_kbytes > user_min_free_kbytes) {
6929 min_free_kbytes = new_min_free_kbytes;
6930 if (min_free_kbytes < 128)
6931 min_free_kbytes = 128;
6932 if (min_free_kbytes > 65536)
6933 min_free_kbytes = 65536;
6934 } else {
6935 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6936 new_min_free_kbytes, user_min_free_kbytes);
6937 }
bc75d33f 6938 setup_per_zone_wmarks();
a6cccdc3 6939 refresh_zone_stat_thresholds();
1da177e4 6940 setup_per_zone_lowmem_reserve();
6423aa81
JK
6941
6942#ifdef CONFIG_NUMA
6943 setup_min_unmapped_ratio();
6944 setup_min_slab_ratio();
6945#endif
6946
1da177e4
LT
6947 return 0;
6948}
bc22af74 6949core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6950
6951/*
b8af2941 6952 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6953 * that we can call two helper functions whenever min_free_kbytes
6954 * changes.
6955 */
cccad5b9 6956int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6957 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6958{
da8c757b
HP
6959 int rc;
6960
6961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6962 if (rc)
6963 return rc;
6964
5f12733e
MH
6965 if (write) {
6966 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6967 setup_per_zone_wmarks();
5f12733e 6968 }
1da177e4
LT
6969 return 0;
6970}
6971
795ae7a0
JW
6972int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6973 void __user *buffer, size_t *length, loff_t *ppos)
6974{
6975 int rc;
6976
6977 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6978 if (rc)
6979 return rc;
6980
6981 if (write)
6982 setup_per_zone_wmarks();
6983
6984 return 0;
6985}
6986
9614634f 6987#ifdef CONFIG_NUMA
6423aa81 6988static void setup_min_unmapped_ratio(void)
9614634f 6989{
6423aa81 6990 pg_data_t *pgdat;
9614634f 6991 struct zone *zone;
9614634f 6992
a5f5f91d 6993 for_each_online_pgdat(pgdat)
81cbcbc2 6994 pgdat->min_unmapped_pages = 0;
a5f5f91d 6995
9614634f 6996 for_each_zone(zone)
a5f5f91d 6997 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6998 sysctl_min_unmapped_ratio) / 100;
9614634f 6999}
0ff38490 7000
6423aa81
JK
7001
7002int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7003 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7004{
0ff38490
CL
7005 int rc;
7006
8d65af78 7007 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7008 if (rc)
7009 return rc;
7010
6423aa81
JK
7011 setup_min_unmapped_ratio();
7012
7013 return 0;
7014}
7015
7016static void setup_min_slab_ratio(void)
7017{
7018 pg_data_t *pgdat;
7019 struct zone *zone;
7020
a5f5f91d
MG
7021 for_each_online_pgdat(pgdat)
7022 pgdat->min_slab_pages = 0;
7023
0ff38490 7024 for_each_zone(zone)
a5f5f91d 7025 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7026 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7027}
7028
7029int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7030 void __user *buffer, size_t *length, loff_t *ppos)
7031{
7032 int rc;
7033
7034 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7035 if (rc)
7036 return rc;
7037
7038 setup_min_slab_ratio();
7039
0ff38490
CL
7040 return 0;
7041}
9614634f
CL
7042#endif
7043
1da177e4
LT
7044/*
7045 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7046 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7047 * whenever sysctl_lowmem_reserve_ratio changes.
7048 *
7049 * The reserve ratio obviously has absolutely no relation with the
41858966 7050 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7051 * if in function of the boot time zone sizes.
7052 */
cccad5b9 7053int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7054 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7055{
8d65af78 7056 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7057 setup_per_zone_lowmem_reserve();
7058 return 0;
7059}
7060
8ad4b1fb
RS
7061/*
7062 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7063 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7064 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7065 */
cccad5b9 7066int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7067 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7068{
7069 struct zone *zone;
7cd2b0a3 7070 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7071 int ret;
7072
7cd2b0a3
DR
7073 mutex_lock(&pcp_batch_high_lock);
7074 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7075
8d65af78 7076 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7077 if (!write || ret < 0)
7078 goto out;
7079
7080 /* Sanity checking to avoid pcp imbalance */
7081 if (percpu_pagelist_fraction &&
7082 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7083 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7084 ret = -EINVAL;
7085 goto out;
7086 }
7087
7088 /* No change? */
7089 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7090 goto out;
c8e251fa 7091
364df0eb 7092 for_each_populated_zone(zone) {
7cd2b0a3
DR
7093 unsigned int cpu;
7094
22a7f12b 7095 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7096 pageset_set_high_and_batch(zone,
7097 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7098 }
7cd2b0a3 7099out:
c8e251fa 7100 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7101 return ret;
8ad4b1fb
RS
7102}
7103
a9919c79 7104#ifdef CONFIG_NUMA
f034b5d4 7105int hashdist = HASHDIST_DEFAULT;
1da177e4 7106
1da177e4
LT
7107static int __init set_hashdist(char *str)
7108{
7109 if (!str)
7110 return 0;
7111 hashdist = simple_strtoul(str, &str, 0);
7112 return 1;
7113}
7114__setup("hashdist=", set_hashdist);
7115#endif
7116
f6f34b43
SD
7117#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7118/*
7119 * Returns the number of pages that arch has reserved but
7120 * is not known to alloc_large_system_hash().
7121 */
7122static unsigned long __init arch_reserved_kernel_pages(void)
7123{
7124 return 0;
7125}
7126#endif
7127
1da177e4
LT
7128/*
7129 * allocate a large system hash table from bootmem
7130 * - it is assumed that the hash table must contain an exact power-of-2
7131 * quantity of entries
7132 * - limit is the number of hash buckets, not the total allocation size
7133 */
7134void *__init alloc_large_system_hash(const char *tablename,
7135 unsigned long bucketsize,
7136 unsigned long numentries,
7137 int scale,
7138 int flags,
7139 unsigned int *_hash_shift,
7140 unsigned int *_hash_mask,
31fe62b9
TB
7141 unsigned long low_limit,
7142 unsigned long high_limit)
1da177e4 7143{
31fe62b9 7144 unsigned long long max = high_limit;
1da177e4
LT
7145 unsigned long log2qty, size;
7146 void *table = NULL;
7147
7148 /* allow the kernel cmdline to have a say */
7149 if (!numentries) {
7150 /* round applicable memory size up to nearest megabyte */
04903664 7151 numentries = nr_kernel_pages;
f6f34b43 7152 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7153
7154 /* It isn't necessary when PAGE_SIZE >= 1MB */
7155 if (PAGE_SHIFT < 20)
7156 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7157
7158 /* limit to 1 bucket per 2^scale bytes of low memory */
7159 if (scale > PAGE_SHIFT)
7160 numentries >>= (scale - PAGE_SHIFT);
7161 else
7162 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7163
7164 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7165 if (unlikely(flags & HASH_SMALL)) {
7166 /* Makes no sense without HASH_EARLY */
7167 WARN_ON(!(flags & HASH_EARLY));
7168 if (!(numentries >> *_hash_shift)) {
7169 numentries = 1UL << *_hash_shift;
7170 BUG_ON(!numentries);
7171 }
7172 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7173 numentries = PAGE_SIZE / bucketsize;
1da177e4 7174 }
6e692ed3 7175 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7176
7177 /* limit allocation size to 1/16 total memory by default */
7178 if (max == 0) {
7179 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7180 do_div(max, bucketsize);
7181 }
074b8517 7182 max = min(max, 0x80000000ULL);
1da177e4 7183
31fe62b9
TB
7184 if (numentries < low_limit)
7185 numentries = low_limit;
1da177e4
LT
7186 if (numentries > max)
7187 numentries = max;
7188
f0d1b0b3 7189 log2qty = ilog2(numentries);
1da177e4
LT
7190
7191 do {
7192 size = bucketsize << log2qty;
7193 if (flags & HASH_EARLY)
6782832e 7194 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7195 else if (hashdist)
7196 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7197 else {
1037b83b
ED
7198 /*
7199 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7200 * some pages at the end of hash table which
7201 * alloc_pages_exact() automatically does
1037b83b 7202 */
264ef8a9 7203 if (get_order(size) < MAX_ORDER) {
a1dd268c 7204 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7205 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7206 }
1da177e4
LT
7207 }
7208 } while (!table && size > PAGE_SIZE && --log2qty);
7209
7210 if (!table)
7211 panic("Failed to allocate %s hash table\n", tablename);
7212
1170532b
JP
7213 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7214 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7215
7216 if (_hash_shift)
7217 *_hash_shift = log2qty;
7218 if (_hash_mask)
7219 *_hash_mask = (1 << log2qty) - 1;
7220
7221 return table;
7222}
a117e66e 7223
a5d76b54 7224/*
80934513
MK
7225 * This function checks whether pageblock includes unmovable pages or not.
7226 * If @count is not zero, it is okay to include less @count unmovable pages
7227 *
b8af2941 7228 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7229 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7230 * check without lock_page also may miss some movable non-lru pages at
7231 * race condition. So you can't expect this function should be exact.
a5d76b54 7232 */
b023f468
WC
7233bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7234 bool skip_hwpoisoned_pages)
49ac8255
KH
7235{
7236 unsigned long pfn, iter, found;
47118af0
MN
7237 int mt;
7238
49ac8255
KH
7239 /*
7240 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7241 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7242 */
7243 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7244 return false;
47118af0
MN
7245 mt = get_pageblock_migratetype(page);
7246 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7247 return false;
49ac8255
KH
7248
7249 pfn = page_to_pfn(page);
7250 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7251 unsigned long check = pfn + iter;
7252
29723fcc 7253 if (!pfn_valid_within(check))
49ac8255 7254 continue;
29723fcc 7255
49ac8255 7256 page = pfn_to_page(check);
c8721bbb
NH
7257
7258 /*
7259 * Hugepages are not in LRU lists, but they're movable.
7260 * We need not scan over tail pages bacause we don't
7261 * handle each tail page individually in migration.
7262 */
7263 if (PageHuge(page)) {
7264 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7265 continue;
7266 }
7267
97d255c8
MK
7268 /*
7269 * We can't use page_count without pin a page
7270 * because another CPU can free compound page.
7271 * This check already skips compound tails of THP
0139aa7b 7272 * because their page->_refcount is zero at all time.
97d255c8 7273 */
fe896d18 7274 if (!page_ref_count(page)) {
49ac8255
KH
7275 if (PageBuddy(page))
7276 iter += (1 << page_order(page)) - 1;
7277 continue;
7278 }
97d255c8 7279
b023f468
WC
7280 /*
7281 * The HWPoisoned page may be not in buddy system, and
7282 * page_count() is not 0.
7283 */
7284 if (skip_hwpoisoned_pages && PageHWPoison(page))
7285 continue;
7286
0efadf48
YX
7287 if (__PageMovable(page))
7288 continue;
7289
49ac8255
KH
7290 if (!PageLRU(page))
7291 found++;
7292 /*
6b4f7799
JW
7293 * If there are RECLAIMABLE pages, we need to check
7294 * it. But now, memory offline itself doesn't call
7295 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7296 */
7297 /*
7298 * If the page is not RAM, page_count()should be 0.
7299 * we don't need more check. This is an _used_ not-movable page.
7300 *
7301 * The problematic thing here is PG_reserved pages. PG_reserved
7302 * is set to both of a memory hole page and a _used_ kernel
7303 * page at boot.
7304 */
7305 if (found > count)
80934513 7306 return true;
49ac8255 7307 }
80934513 7308 return false;
49ac8255
KH
7309}
7310
7311bool is_pageblock_removable_nolock(struct page *page)
7312{
656a0706
MH
7313 struct zone *zone;
7314 unsigned long pfn;
687875fb
MH
7315
7316 /*
7317 * We have to be careful here because we are iterating over memory
7318 * sections which are not zone aware so we might end up outside of
7319 * the zone but still within the section.
656a0706
MH
7320 * We have to take care about the node as well. If the node is offline
7321 * its NODE_DATA will be NULL - see page_zone.
687875fb 7322 */
656a0706
MH
7323 if (!node_online(page_to_nid(page)))
7324 return false;
7325
7326 zone = page_zone(page);
7327 pfn = page_to_pfn(page);
108bcc96 7328 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7329 return false;
7330
b023f468 7331 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7332}
0c0e6195 7333
080fe206 7334#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7335
7336static unsigned long pfn_max_align_down(unsigned long pfn)
7337{
7338 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7339 pageblock_nr_pages) - 1);
7340}
7341
7342static unsigned long pfn_max_align_up(unsigned long pfn)
7343{
7344 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7345 pageblock_nr_pages));
7346}
7347
041d3a8c 7348/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7349static int __alloc_contig_migrate_range(struct compact_control *cc,
7350 unsigned long start, unsigned long end)
041d3a8c
MN
7351{
7352 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7353 unsigned long nr_reclaimed;
041d3a8c
MN
7354 unsigned long pfn = start;
7355 unsigned int tries = 0;
7356 int ret = 0;
7357
be49a6e1 7358 migrate_prep();
041d3a8c 7359
bb13ffeb 7360 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7361 if (fatal_signal_pending(current)) {
7362 ret = -EINTR;
7363 break;
7364 }
7365
bb13ffeb
MG
7366 if (list_empty(&cc->migratepages)) {
7367 cc->nr_migratepages = 0;
edc2ca61 7368 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7369 if (!pfn) {
7370 ret = -EINTR;
7371 break;
7372 }
7373 tries = 0;
7374 } else if (++tries == 5) {
7375 ret = ret < 0 ? ret : -EBUSY;
7376 break;
7377 }
7378
beb51eaa
MK
7379 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7380 &cc->migratepages);
7381 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7382
9c620e2b 7383 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7384 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7385 }
2a6f5124
SP
7386 if (ret < 0) {
7387 putback_movable_pages(&cc->migratepages);
7388 return ret;
7389 }
7390 return 0;
041d3a8c
MN
7391}
7392
7393/**
7394 * alloc_contig_range() -- tries to allocate given range of pages
7395 * @start: start PFN to allocate
7396 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7397 * @migratetype: migratetype of the underlaying pageblocks (either
7398 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7399 * in range must have the same migratetype and it must
7400 * be either of the two.
ca96b625 7401 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7402 *
7403 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7404 * aligned, however it's the caller's responsibility to guarantee that
7405 * we are the only thread that changes migrate type of pageblocks the
7406 * pages fall in.
7407 *
7408 * The PFN range must belong to a single zone.
7409 *
7410 * Returns zero on success or negative error code. On success all
7411 * pages which PFN is in [start, end) are allocated for the caller and
7412 * need to be freed with free_contig_range().
7413 */
0815f3d8 7414int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7415 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7416{
041d3a8c 7417 unsigned long outer_start, outer_end;
d00181b9
KS
7418 unsigned int order;
7419 int ret = 0;
041d3a8c 7420
bb13ffeb
MG
7421 struct compact_control cc = {
7422 .nr_migratepages = 0,
7423 .order = -1,
7424 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7425 .mode = MIGRATE_SYNC,
bb13ffeb 7426 .ignore_skip_hint = true,
ca96b625 7427 .gfp_mask = memalloc_noio_flags(gfp_mask),
bb13ffeb
MG
7428 };
7429 INIT_LIST_HEAD(&cc.migratepages);
7430
041d3a8c
MN
7431 /*
7432 * What we do here is we mark all pageblocks in range as
7433 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7434 * have different sizes, and due to the way page allocator
7435 * work, we align the range to biggest of the two pages so
7436 * that page allocator won't try to merge buddies from
7437 * different pageblocks and change MIGRATE_ISOLATE to some
7438 * other migration type.
7439 *
7440 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7441 * migrate the pages from an unaligned range (ie. pages that
7442 * we are interested in). This will put all the pages in
7443 * range back to page allocator as MIGRATE_ISOLATE.
7444 *
7445 * When this is done, we take the pages in range from page
7446 * allocator removing them from the buddy system. This way
7447 * page allocator will never consider using them.
7448 *
7449 * This lets us mark the pageblocks back as
7450 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7451 * aligned range but not in the unaligned, original range are
7452 * put back to page allocator so that buddy can use them.
7453 */
7454
7455 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7456 pfn_max_align_up(end), migratetype,
7457 false);
041d3a8c 7458 if (ret)
86a595f9 7459 return ret;
041d3a8c 7460
8ef5849f
JK
7461 /*
7462 * In case of -EBUSY, we'd like to know which page causes problem.
7463 * So, just fall through. We will check it in test_pages_isolated().
7464 */
bb13ffeb 7465 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7466 if (ret && ret != -EBUSY)
041d3a8c
MN
7467 goto done;
7468
7469 /*
7470 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7471 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7472 * more, all pages in [start, end) are free in page allocator.
7473 * What we are going to do is to allocate all pages from
7474 * [start, end) (that is remove them from page allocator).
7475 *
7476 * The only problem is that pages at the beginning and at the
7477 * end of interesting range may be not aligned with pages that
7478 * page allocator holds, ie. they can be part of higher order
7479 * pages. Because of this, we reserve the bigger range and
7480 * once this is done free the pages we are not interested in.
7481 *
7482 * We don't have to hold zone->lock here because the pages are
7483 * isolated thus they won't get removed from buddy.
7484 */
7485
7486 lru_add_drain_all();
510f5507 7487 drain_all_pages(cc.zone);
041d3a8c
MN
7488
7489 order = 0;
7490 outer_start = start;
7491 while (!PageBuddy(pfn_to_page(outer_start))) {
7492 if (++order >= MAX_ORDER) {
8ef5849f
JK
7493 outer_start = start;
7494 break;
041d3a8c
MN
7495 }
7496 outer_start &= ~0UL << order;
7497 }
7498
8ef5849f
JK
7499 if (outer_start != start) {
7500 order = page_order(pfn_to_page(outer_start));
7501
7502 /*
7503 * outer_start page could be small order buddy page and
7504 * it doesn't include start page. Adjust outer_start
7505 * in this case to report failed page properly
7506 * on tracepoint in test_pages_isolated()
7507 */
7508 if (outer_start + (1UL << order) <= start)
7509 outer_start = start;
7510 }
7511
041d3a8c 7512 /* Make sure the range is really isolated. */
b023f468 7513 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7514 pr_info("%s: [%lx, %lx) PFNs busy\n",
7515 __func__, outer_start, end);
041d3a8c
MN
7516 ret = -EBUSY;
7517 goto done;
7518 }
7519
49f223a9 7520 /* Grab isolated pages from freelists. */
bb13ffeb 7521 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7522 if (!outer_end) {
7523 ret = -EBUSY;
7524 goto done;
7525 }
7526
7527 /* Free head and tail (if any) */
7528 if (start != outer_start)
7529 free_contig_range(outer_start, start - outer_start);
7530 if (end != outer_end)
7531 free_contig_range(end, outer_end - end);
7532
7533done:
7534 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7535 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7536 return ret;
7537}
7538
7539void free_contig_range(unsigned long pfn, unsigned nr_pages)
7540{
bcc2b02f
MS
7541 unsigned int count = 0;
7542
7543 for (; nr_pages--; pfn++) {
7544 struct page *page = pfn_to_page(pfn);
7545
7546 count += page_count(page) != 1;
7547 __free_page(page);
7548 }
7549 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7550}
7551#endif
7552
4ed7e022 7553#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7554/*
7555 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7556 * page high values need to be recalulated.
7557 */
4ed7e022
JL
7558void __meminit zone_pcp_update(struct zone *zone)
7559{
0a647f38 7560 unsigned cpu;
c8e251fa 7561 mutex_lock(&pcp_batch_high_lock);
0a647f38 7562 for_each_possible_cpu(cpu)
169f6c19
CS
7563 pageset_set_high_and_batch(zone,
7564 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7565 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7566}
7567#endif
7568
340175b7
JL
7569void zone_pcp_reset(struct zone *zone)
7570{
7571 unsigned long flags;
5a883813
MK
7572 int cpu;
7573 struct per_cpu_pageset *pset;
340175b7
JL
7574
7575 /* avoid races with drain_pages() */
7576 local_irq_save(flags);
7577 if (zone->pageset != &boot_pageset) {
5a883813
MK
7578 for_each_online_cpu(cpu) {
7579 pset = per_cpu_ptr(zone->pageset, cpu);
7580 drain_zonestat(zone, pset);
7581 }
340175b7
JL
7582 free_percpu(zone->pageset);
7583 zone->pageset = &boot_pageset;
7584 }
7585 local_irq_restore(flags);
7586}
7587
6dcd73d7 7588#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7589/*
b9eb6319
JK
7590 * All pages in the range must be in a single zone and isolated
7591 * before calling this.
0c0e6195
KH
7592 */
7593void
7594__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7595{
7596 struct page *page;
7597 struct zone *zone;
7aeb09f9 7598 unsigned int order, i;
0c0e6195
KH
7599 unsigned long pfn;
7600 unsigned long flags;
7601 /* find the first valid pfn */
7602 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7603 if (pfn_valid(pfn))
7604 break;
7605 if (pfn == end_pfn)
7606 return;
7607 zone = page_zone(pfn_to_page(pfn));
7608 spin_lock_irqsave(&zone->lock, flags);
7609 pfn = start_pfn;
7610 while (pfn < end_pfn) {
7611 if (!pfn_valid(pfn)) {
7612 pfn++;
7613 continue;
7614 }
7615 page = pfn_to_page(pfn);
b023f468
WC
7616 /*
7617 * The HWPoisoned page may be not in buddy system, and
7618 * page_count() is not 0.
7619 */
7620 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7621 pfn++;
7622 SetPageReserved(page);
7623 continue;
7624 }
7625
0c0e6195
KH
7626 BUG_ON(page_count(page));
7627 BUG_ON(!PageBuddy(page));
7628 order = page_order(page);
7629#ifdef CONFIG_DEBUG_VM
1170532b
JP
7630 pr_info("remove from free list %lx %d %lx\n",
7631 pfn, 1 << order, end_pfn);
0c0e6195
KH
7632#endif
7633 list_del(&page->lru);
7634 rmv_page_order(page);
7635 zone->free_area[order].nr_free--;
0c0e6195
KH
7636 for (i = 0; i < (1 << order); i++)
7637 SetPageReserved((page+i));
7638 pfn += (1 << order);
7639 }
7640 spin_unlock_irqrestore(&zone->lock, flags);
7641}
7642#endif
8d22ba1b 7643
8d22ba1b
WF
7644bool is_free_buddy_page(struct page *page)
7645{
7646 struct zone *zone = page_zone(page);
7647 unsigned long pfn = page_to_pfn(page);
7648 unsigned long flags;
7aeb09f9 7649 unsigned int order;
8d22ba1b
WF
7650
7651 spin_lock_irqsave(&zone->lock, flags);
7652 for (order = 0; order < MAX_ORDER; order++) {
7653 struct page *page_head = page - (pfn & ((1 << order) - 1));
7654
7655 if (PageBuddy(page_head) && page_order(page_head) >= order)
7656 break;
7657 }
7658 spin_unlock_irqrestore(&zone->lock, flags);
7659
7660 return order < MAX_ORDER;
7661}