]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm/rmap.c: cleanup ttu_flags
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
7aeb09f9
MG
412static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
17cf4406
NP
414{
415 int i;
416
6626c5d5
AM
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
725d704e 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424}
425
c0a32fc5
SG
426#ifdef CONFIG_DEBUG_PAGEALLOC
427unsigned int _debug_guardpage_minorder;
428
429static int __init debug_guardpage_minorder_setup(char *buf)
430{
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440}
441__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443static inline void set_page_guard_flag(struct page *page)
444{
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446}
447
448static inline void clear_page_guard_flag(struct page *page)
449{
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451}
452#else
453static inline void set_page_guard_flag(struct page *page) { }
454static inline void clear_page_guard_flag(struct page *page) { }
455#endif
456
7aeb09f9 457static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 458{
4c21e2f2 459 set_page_private(page, order);
676165a8 460 __SetPageBuddy(page);
1da177e4
LT
461}
462
463static inline void rmv_page_order(struct page *page)
464{
676165a8 465 __ClearPageBuddy(page);
4c21e2f2 466 set_page_private(page, 0);
1da177e4
LT
467}
468
469/*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
d6e05edc 484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 485 */
1da177e4 486static inline unsigned long
43506fad 487__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 488{
43506fad 489 return page_idx ^ (1 << order);
1da177e4
LT
490}
491
492/*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
13e7444b 495 * (a) the buddy is not in a hole &&
676165a8 496 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
676165a8 499 *
cf6fe945
WSH
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
1da177e4 504 *
676165a8 505 * For recording page's order, we use page_private(page).
1da177e4 506 */
cb2b95e1 507static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 508 unsigned int order)
1da177e4 509{
14e07298 510 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 511 return 0;
13e7444b 512
c0a32fc5 513 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
c0a32fc5
SG
519 return 1;
520 }
521
cb2b95e1 522 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
6aa3001b 533 return 1;
676165a8 534 }
6aa3001b 535 return 0;
1da177e4
LT
536}
537
538/*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
1da177e4 554 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
1da177e4 557 * If a block is freed, and its buddy is also free, then this
5f63b720 558 * triggers coalescing into a block of larger size.
1da177e4 559 *
6d49e352 560 * -- nyc
1da177e4
LT
561 */
562
48db57f8 563static inline void __free_one_page(struct page *page,
dc4b0caf 564 unsigned long pfn,
ed0ae21d
MG
565 struct zone *zone, unsigned int order,
566 int migratetype)
1da177e4
LT
567{
568 unsigned long page_idx;
6dda9d55 569 unsigned long combined_idx;
43506fad 570 unsigned long uninitialized_var(buddy_idx);
6dda9d55 571 struct page *buddy;
1da177e4 572
d29bb978
CS
573 VM_BUG_ON(!zone_is_initialized(zone));
574
224abf92 575 if (unlikely(PageCompound(page)))
8cc3b392
HD
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
1da177e4 578
ed0ae21d
MG
579 VM_BUG_ON(migratetype == -1);
580
dc4b0caf 581 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 582
309381fe
SL
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 585
1da177e4 586 while (order < MAX_ORDER-1) {
43506fad
KC
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
cb2b95e1 589 if (!page_is_buddy(page, buddy, order))
3c82d0ce 590 break;
c0a32fc5
SG
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
596 clear_page_guard_flag(buddy);
597 set_page_private(page, 0);
d1ce749a
BZ
598 __mod_zone_freepage_state(zone, 1 << order,
599 migratetype);
c0a32fc5
SG
600 } else {
601 list_del(&buddy->lru);
602 zone->free_area[order].nr_free--;
603 rmv_page_order(buddy);
604 }
43506fad 605 combined_idx = buddy_idx & page_idx;
1da177e4
LT
606 page = page + (combined_idx - page_idx);
607 page_idx = combined_idx;
608 order++;
609 }
610 set_page_order(page, order);
6dda9d55
CZ
611
612 /*
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
619 */
b7f50cfa 620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 621 struct page *higher_page, *higher_buddy;
43506fad
KC
622 combined_idx = buddy_idx & page_idx;
623 higher_page = page + (combined_idx - page_idx);
624 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 625 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 list_add_tail(&page->lru,
628 &zone->free_area[order].free_list[migratetype]);
629 goto out;
630 }
631 }
632
633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634out:
1da177e4
LT
635 zone->free_area[order].nr_free++;
636}
637
224abf92 638static inline int free_pages_check(struct page *page)
1da177e4 639{
d230dec1 640 const char *bad_reason = NULL;
f0b791a3
DH
641 unsigned long bad_flags = 0;
642
643 if (unlikely(page_mapcount(page)))
644 bad_reason = "nonzero mapcount";
645 if (unlikely(page->mapping != NULL))
646 bad_reason = "non-NULL mapping";
647 if (unlikely(atomic_read(&page->_count) != 0))
648 bad_reason = "nonzero _count";
649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 }
653 if (unlikely(mem_cgroup_bad_page_check(page)))
654 bad_reason = "cgroup check failed";
655 if (unlikely(bad_reason)) {
656 bad_page(page, bad_reason, bad_flags);
79f4b7bf 657 return 1;
8cc3b392 658 }
90572890 659 page_cpupid_reset_last(page);
79f4b7bf
HD
660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 return 0;
1da177e4
LT
663}
664
665/*
5f8dcc21 666 * Frees a number of pages from the PCP lists
1da177e4 667 * Assumes all pages on list are in same zone, and of same order.
207f36ee 668 * count is the number of pages to free.
1da177e4
LT
669 *
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
672 *
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
675 */
5f8dcc21
MG
676static void free_pcppages_bulk(struct zone *zone, int count,
677 struct per_cpu_pages *pcp)
1da177e4 678{
5f8dcc21 679 int migratetype = 0;
a6f9edd6 680 int batch_free = 0;
72853e29 681 int to_free = count;
5f8dcc21 682
c54ad30c 683 spin_lock(&zone->lock);
1da177e4 684 zone->pages_scanned = 0;
f2260e6b 685
72853e29 686 while (to_free) {
48db57f8 687 struct page *page;
5f8dcc21
MG
688 struct list_head *list;
689
690 /*
a6f9edd6
MG
691 * Remove pages from lists in a round-robin fashion. A
692 * batch_free count is maintained that is incremented when an
693 * empty list is encountered. This is so more pages are freed
694 * off fuller lists instead of spinning excessively around empty
695 * lists
5f8dcc21
MG
696 */
697 do {
a6f9edd6 698 batch_free++;
5f8dcc21
MG
699 if (++migratetype == MIGRATE_PCPTYPES)
700 migratetype = 0;
701 list = &pcp->lists[migratetype];
702 } while (list_empty(list));
48db57f8 703
1d16871d
NK
704 /* This is the only non-empty list. Free them all. */
705 if (batch_free == MIGRATE_PCPTYPES)
706 batch_free = to_free;
707
a6f9edd6 708 do {
770c8aaa
BZ
709 int mt; /* migratetype of the to-be-freed page */
710
a6f9edd6
MG
711 page = list_entry(list->prev, struct page, lru);
712 /* must delete as __free_one_page list manipulates */
713 list_del(&page->lru);
b12c4ad1 714 mt = get_freepage_migratetype(page);
a7016235 715 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 716 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 717 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 718 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
719 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
720 if (is_migrate_cma(mt))
721 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
722 }
72853e29 723 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 724 }
c54ad30c 725 spin_unlock(&zone->lock);
1da177e4
LT
726}
727
dc4b0caf
MG
728static void free_one_page(struct zone *zone,
729 struct page *page, unsigned long pfn,
7aeb09f9 730 unsigned int order,
ed0ae21d 731 int migratetype)
1da177e4 732{
006d22d9 733 spin_lock(&zone->lock);
006d22d9 734 zone->pages_scanned = 0;
f2260e6b 735
dc4b0caf 736 __free_one_page(page, pfn, zone, order, migratetype);
194159fb 737 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 738 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 739 spin_unlock(&zone->lock);
48db57f8
NP
740}
741
ec95f53a 742static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 743{
1da177e4 744 int i;
8cc3b392 745 int bad = 0;
1da177e4 746
b413d48a 747 trace_mm_page_free(page, order);
b1eeab67
VN
748 kmemcheck_free_shadow(page, order);
749
8dd60a3a
AA
750 if (PageAnon(page))
751 page->mapping = NULL;
752 for (i = 0; i < (1 << order); i++)
753 bad += free_pages_check(page + i);
8cc3b392 754 if (bad)
ec95f53a 755 return false;
689bcebf 756
3ac7fe5a 757 if (!PageHighMem(page)) {
b8af2941
PK
758 debug_check_no_locks_freed(page_address(page),
759 PAGE_SIZE << order);
3ac7fe5a
TG
760 debug_check_no_obj_freed(page_address(page),
761 PAGE_SIZE << order);
762 }
dafb1367 763 arch_free_page(page, order);
48db57f8 764 kernel_map_pages(page, 1 << order, 0);
dafb1367 765
ec95f53a
KM
766 return true;
767}
768
769static void __free_pages_ok(struct page *page, unsigned int order)
770{
771 unsigned long flags;
95e34412 772 int migratetype;
dc4b0caf 773 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
774
775 if (!free_pages_prepare(page, order))
776 return;
777
cfc47a28 778 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 779 local_irq_save(flags);
f8891e5e 780 __count_vm_events(PGFREE, 1 << order);
95e34412 781 set_freepage_migratetype(page, migratetype);
dc4b0caf 782 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 783 local_irq_restore(flags);
1da177e4
LT
784}
785
170a5a7e 786void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 787{
c3993076 788 unsigned int nr_pages = 1 << order;
e2d0bd2b 789 struct page *p = page;
c3993076 790 unsigned int loop;
a226f6c8 791
e2d0bd2b
YL
792 prefetchw(p);
793 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
794 prefetchw(p + 1);
c3993076
JW
795 __ClearPageReserved(p);
796 set_page_count(p, 0);
a226f6c8 797 }
e2d0bd2b
YL
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
c3993076 800
e2d0bd2b 801 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
802 set_page_refcounted(page);
803 __free_pages(page, order);
a226f6c8
DH
804}
805
47118af0 806#ifdef CONFIG_CMA
9cf510a5 807/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
808void __init init_cma_reserved_pageblock(struct page *page)
809{
810 unsigned i = pageblock_nr_pages;
811 struct page *p = page;
812
813 do {
814 __ClearPageReserved(p);
815 set_page_count(p, 0);
816 } while (++p, --i);
817
818 set_page_refcounted(page);
819 set_pageblock_migratetype(page, MIGRATE_CMA);
820 __free_pages(page, pageblock_order);
3dcc0571 821 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
822}
823#endif
1da177e4
LT
824
825/*
826 * The order of subdivision here is critical for the IO subsystem.
827 * Please do not alter this order without good reasons and regression
828 * testing. Specifically, as large blocks of memory are subdivided,
829 * the order in which smaller blocks are delivered depends on the order
830 * they're subdivided in this function. This is the primary factor
831 * influencing the order in which pages are delivered to the IO
832 * subsystem according to empirical testing, and this is also justified
833 * by considering the behavior of a buddy system containing a single
834 * large block of memory acted on by a series of small allocations.
835 * This behavior is a critical factor in sglist merging's success.
836 *
6d49e352 837 * -- nyc
1da177e4 838 */
085cc7d5 839static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
840 int low, int high, struct free_area *area,
841 int migratetype)
1da177e4
LT
842{
843 unsigned long size = 1 << high;
844
845 while (high > low) {
846 area--;
847 high--;
848 size >>= 1;
309381fe 849 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
850
851#ifdef CONFIG_DEBUG_PAGEALLOC
852 if (high < debug_guardpage_minorder()) {
853 /*
854 * Mark as guard pages (or page), that will allow to
855 * merge back to allocator when buddy will be freed.
856 * Corresponding page table entries will not be touched,
857 * pages will stay not present in virtual address space
858 */
859 INIT_LIST_HEAD(&page[size].lru);
860 set_page_guard_flag(&page[size]);
861 set_page_private(&page[size], high);
862 /* Guard pages are not available for any usage */
d1ce749a
BZ
863 __mod_zone_freepage_state(zone, -(1 << high),
864 migratetype);
c0a32fc5
SG
865 continue;
866 }
867#endif
b2a0ac88 868 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
869 area->nr_free++;
870 set_page_order(&page[size], high);
871 }
1da177e4
LT
872}
873
1da177e4
LT
874/*
875 * This page is about to be returned from the page allocator
876 */
2a7684a2 877static inline int check_new_page(struct page *page)
1da177e4 878{
d230dec1 879 const char *bad_reason = NULL;
f0b791a3
DH
880 unsigned long bad_flags = 0;
881
882 if (unlikely(page_mapcount(page)))
883 bad_reason = "nonzero mapcount";
884 if (unlikely(page->mapping != NULL))
885 bad_reason = "non-NULL mapping";
886 if (unlikely(atomic_read(&page->_count) != 0))
887 bad_reason = "nonzero _count";
888 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
889 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
890 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
891 }
892 if (unlikely(mem_cgroup_bad_page_check(page)))
893 bad_reason = "cgroup check failed";
894 if (unlikely(bad_reason)) {
895 bad_page(page, bad_reason, bad_flags);
689bcebf 896 return 1;
8cc3b392 897 }
2a7684a2
WF
898 return 0;
899}
900
7aeb09f9 901static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
902{
903 int i;
904
905 for (i = 0; i < (1 << order); i++) {
906 struct page *p = page + i;
907 if (unlikely(check_new_page(p)))
908 return 1;
909 }
689bcebf 910
4c21e2f2 911 set_page_private(page, 0);
7835e98b 912 set_page_refcounted(page);
cc102509
NP
913
914 arch_alloc_page(page, order);
1da177e4 915 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
916
917 if (gfp_flags & __GFP_ZERO)
918 prep_zero_page(page, order, gfp_flags);
919
920 if (order && (gfp_flags & __GFP_COMP))
921 prep_compound_page(page, order);
922
689bcebf 923 return 0;
1da177e4
LT
924}
925
56fd56b8
MG
926/*
927 * Go through the free lists for the given migratetype and remove
928 * the smallest available page from the freelists
929 */
728ec980
MG
930static inline
931struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
932 int migratetype)
933{
934 unsigned int current_order;
b8af2941 935 struct free_area *area;
56fd56b8
MG
936 struct page *page;
937
938 /* Find a page of the appropriate size in the preferred list */
939 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
940 area = &(zone->free_area[current_order]);
941 if (list_empty(&area->free_list[migratetype]))
942 continue;
943
944 page = list_entry(area->free_list[migratetype].next,
945 struct page, lru);
946 list_del(&page->lru);
947 rmv_page_order(page);
948 area->nr_free--;
56fd56b8 949 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 950 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
951 return page;
952 }
953
954 return NULL;
955}
956
957
b2a0ac88
MG
958/*
959 * This array describes the order lists are fallen back to when
960 * the free lists for the desirable migrate type are depleted
961 */
47118af0
MN
962static int fallbacks[MIGRATE_TYPES][4] = {
963 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
964 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
965#ifdef CONFIG_CMA
966 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
967 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
968#else
969 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
970#endif
6d4a4916 971 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 972#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 973 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 974#endif
b2a0ac88
MG
975};
976
c361be55
MG
977/*
978 * Move the free pages in a range to the free lists of the requested type.
d9c23400 979 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
980 * boundary. If alignment is required, use move_freepages_block()
981 */
435b405c 982int move_freepages(struct zone *zone,
b69a7288
AB
983 struct page *start_page, struct page *end_page,
984 int migratetype)
c361be55
MG
985{
986 struct page *page;
987 unsigned long order;
d100313f 988 int pages_moved = 0;
c361be55
MG
989
990#ifndef CONFIG_HOLES_IN_ZONE
991 /*
992 * page_zone is not safe to call in this context when
993 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
994 * anyway as we check zone boundaries in move_freepages_block().
995 * Remove at a later date when no bug reports exist related to
ac0e5b7a 996 * grouping pages by mobility
c361be55
MG
997 */
998 BUG_ON(page_zone(start_page) != page_zone(end_page));
999#endif
1000
1001 for (page = start_page; page <= end_page;) {
344c790e 1002 /* Make sure we are not inadvertently changing nodes */
309381fe 1003 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1004
c361be55
MG
1005 if (!pfn_valid_within(page_to_pfn(page))) {
1006 page++;
1007 continue;
1008 }
1009
1010 if (!PageBuddy(page)) {
1011 page++;
1012 continue;
1013 }
1014
1015 order = page_order(page);
84be48d8
KS
1016 list_move(&page->lru,
1017 &zone->free_area[order].free_list[migratetype]);
95e34412 1018 set_freepage_migratetype(page, migratetype);
c361be55 1019 page += 1 << order;
d100313f 1020 pages_moved += 1 << order;
c361be55
MG
1021 }
1022
d100313f 1023 return pages_moved;
c361be55
MG
1024}
1025
ee6f509c 1026int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1027 int migratetype)
c361be55
MG
1028{
1029 unsigned long start_pfn, end_pfn;
1030 struct page *start_page, *end_page;
1031
1032 start_pfn = page_to_pfn(page);
d9c23400 1033 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1034 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1035 end_page = start_page + pageblock_nr_pages - 1;
1036 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1037
1038 /* Do not cross zone boundaries */
108bcc96 1039 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1040 start_page = page;
108bcc96 1041 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1042 return 0;
1043
1044 return move_freepages(zone, start_page, end_page, migratetype);
1045}
1046
2f66a68f
MG
1047static void change_pageblock_range(struct page *pageblock_page,
1048 int start_order, int migratetype)
1049{
1050 int nr_pageblocks = 1 << (start_order - pageblock_order);
1051
1052 while (nr_pageblocks--) {
1053 set_pageblock_migratetype(pageblock_page, migratetype);
1054 pageblock_page += pageblock_nr_pages;
1055 }
1056}
1057
fef903ef
SB
1058/*
1059 * If breaking a large block of pages, move all free pages to the preferred
1060 * allocation list. If falling back for a reclaimable kernel allocation, be
1061 * more aggressive about taking ownership of free pages.
1062 *
1063 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1064 * nor move CMA pages to different free lists. We don't want unmovable pages
1065 * to be allocated from MIGRATE_CMA areas.
1066 *
1067 * Returns the new migratetype of the pageblock (or the same old migratetype
1068 * if it was unchanged).
1069 */
1070static int try_to_steal_freepages(struct zone *zone, struct page *page,
1071 int start_type, int fallback_type)
1072{
1073 int current_order = page_order(page);
1074
0cbef29a
KM
1075 /*
1076 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1077 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1078 * is set to CMA so it is returned to the correct freelist in case
1079 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1080 */
fef903ef
SB
1081 if (is_migrate_cma(fallback_type))
1082 return fallback_type;
1083
1084 /* Take ownership for orders >= pageblock_order */
1085 if (current_order >= pageblock_order) {
1086 change_pageblock_range(page, current_order, start_type);
1087 return start_type;
1088 }
1089
1090 if (current_order >= pageblock_order / 2 ||
1091 start_type == MIGRATE_RECLAIMABLE ||
1092 page_group_by_mobility_disabled) {
1093 int pages;
1094
1095 pages = move_freepages_block(zone, page, start_type);
1096
1097 /* Claim the whole block if over half of it is free */
1098 if (pages >= (1 << (pageblock_order-1)) ||
1099 page_group_by_mobility_disabled) {
1100
1101 set_pageblock_migratetype(page, start_type);
1102 return start_type;
1103 }
1104
1105 }
1106
1107 return fallback_type;
1108}
1109
b2a0ac88 1110/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1111static inline struct page *
7aeb09f9 1112__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1113{
b8af2941 1114 struct free_area *area;
7aeb09f9 1115 unsigned int current_order;
b2a0ac88 1116 struct page *page;
fef903ef 1117 int migratetype, new_type, i;
b2a0ac88
MG
1118
1119 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1120 for (current_order = MAX_ORDER-1;
1121 current_order >= order && current_order <= MAX_ORDER-1;
1122 --current_order) {
6d4a4916 1123 for (i = 0;; i++) {
b2a0ac88
MG
1124 migratetype = fallbacks[start_migratetype][i];
1125
56fd56b8
MG
1126 /* MIGRATE_RESERVE handled later if necessary */
1127 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1128 break;
e010487d 1129
b2a0ac88
MG
1130 area = &(zone->free_area[current_order]);
1131 if (list_empty(&area->free_list[migratetype]))
1132 continue;
1133
1134 page = list_entry(area->free_list[migratetype].next,
1135 struct page, lru);
1136 area->nr_free--;
1137
fef903ef
SB
1138 new_type = try_to_steal_freepages(zone, page,
1139 start_migratetype,
1140 migratetype);
b2a0ac88
MG
1141
1142 /* Remove the page from the freelists */
1143 list_del(&page->lru);
1144 rmv_page_order(page);
b2a0ac88 1145
47118af0 1146 expand(zone, page, order, current_order, area,
0cbef29a 1147 new_type);
5bcc9f86
VB
1148 /* The freepage_migratetype may differ from pageblock's
1149 * migratetype depending on the decisions in
1150 * try_to_steal_freepages. This is OK as long as it does
1151 * not differ for MIGRATE_CMA type.
1152 */
1153 set_freepage_migratetype(page, new_type);
e0fff1bd 1154
52c8f6a5
KM
1155 trace_mm_page_alloc_extfrag(page, order, current_order,
1156 start_migratetype, migratetype, new_type);
e0fff1bd 1157
b2a0ac88
MG
1158 return page;
1159 }
1160 }
1161
728ec980 1162 return NULL;
b2a0ac88
MG
1163}
1164
56fd56b8 1165/*
1da177e4
LT
1166 * Do the hard work of removing an element from the buddy allocator.
1167 * Call me with the zone->lock already held.
1168 */
b2a0ac88
MG
1169static struct page *__rmqueue(struct zone *zone, unsigned int order,
1170 int migratetype)
1da177e4 1171{
1da177e4
LT
1172 struct page *page;
1173
728ec980 1174retry_reserve:
56fd56b8 1175 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1176
728ec980 1177 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1178 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1179
728ec980
MG
1180 /*
1181 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1182 * is used because __rmqueue_smallest is an inline function
1183 * and we want just one call site
1184 */
1185 if (!page) {
1186 migratetype = MIGRATE_RESERVE;
1187 goto retry_reserve;
1188 }
1189 }
1190
0d3d062a 1191 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1192 return page;
1da177e4
LT
1193}
1194
5f63b720 1195/*
1da177e4
LT
1196 * Obtain a specified number of elements from the buddy allocator, all under
1197 * a single hold of the lock, for efficiency. Add them to the supplied list.
1198 * Returns the number of new pages which were placed at *list.
1199 */
5f63b720 1200static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1201 unsigned long count, struct list_head *list,
b745bc85 1202 int migratetype, bool cold)
1da177e4 1203{
5bcc9f86 1204 int i;
5f63b720 1205
c54ad30c 1206 spin_lock(&zone->lock);
1da177e4 1207 for (i = 0; i < count; ++i) {
b2a0ac88 1208 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1209 if (unlikely(page == NULL))
1da177e4 1210 break;
81eabcbe
MG
1211
1212 /*
1213 * Split buddy pages returned by expand() are received here
1214 * in physical page order. The page is added to the callers and
1215 * list and the list head then moves forward. From the callers
1216 * perspective, the linked list is ordered by page number in
1217 * some conditions. This is useful for IO devices that can
1218 * merge IO requests if the physical pages are ordered
1219 * properly.
1220 */
b745bc85 1221 if (likely(!cold))
e084b2d9
MG
1222 list_add(&page->lru, list);
1223 else
1224 list_add_tail(&page->lru, list);
81eabcbe 1225 list = &page->lru;
5bcc9f86 1226 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1227 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1228 -(1 << order));
1da177e4 1229 }
f2260e6b 1230 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1231 spin_unlock(&zone->lock);
085cc7d5 1232 return i;
1da177e4
LT
1233}
1234
4ae7c039 1235#ifdef CONFIG_NUMA
8fce4d8e 1236/*
4037d452
CL
1237 * Called from the vmstat counter updater to drain pagesets of this
1238 * currently executing processor on remote nodes after they have
1239 * expired.
1240 *
879336c3
CL
1241 * Note that this function must be called with the thread pinned to
1242 * a single processor.
8fce4d8e 1243 */
4037d452 1244void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1245{
4ae7c039 1246 unsigned long flags;
4037d452 1247 int to_drain;
998d39cb 1248 unsigned long batch;
4ae7c039 1249
4037d452 1250 local_irq_save(flags);
998d39cb
CS
1251 batch = ACCESS_ONCE(pcp->batch);
1252 if (pcp->count >= batch)
1253 to_drain = batch;
4037d452
CL
1254 else
1255 to_drain = pcp->count;
2a13515c
KM
1256 if (to_drain > 0) {
1257 free_pcppages_bulk(zone, to_drain, pcp);
1258 pcp->count -= to_drain;
1259 }
4037d452 1260 local_irq_restore(flags);
4ae7c039
CL
1261}
1262#endif
1263
9f8f2172
CL
1264/*
1265 * Drain pages of the indicated processor.
1266 *
1267 * The processor must either be the current processor and the
1268 * thread pinned to the current processor or a processor that
1269 * is not online.
1270 */
1271static void drain_pages(unsigned int cpu)
1da177e4 1272{
c54ad30c 1273 unsigned long flags;
1da177e4 1274 struct zone *zone;
1da177e4 1275
ee99c71c 1276 for_each_populated_zone(zone) {
1da177e4 1277 struct per_cpu_pageset *pset;
3dfa5721 1278 struct per_cpu_pages *pcp;
1da177e4 1279
99dcc3e5
CL
1280 local_irq_save(flags);
1281 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1282
1283 pcp = &pset->pcp;
2ff754fa
DR
1284 if (pcp->count) {
1285 free_pcppages_bulk(zone, pcp->count, pcp);
1286 pcp->count = 0;
1287 }
3dfa5721 1288 local_irq_restore(flags);
1da177e4
LT
1289 }
1290}
1da177e4 1291
9f8f2172
CL
1292/*
1293 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1294 */
1295void drain_local_pages(void *arg)
1296{
1297 drain_pages(smp_processor_id());
1298}
1299
1300/*
74046494
GBY
1301 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1302 *
1303 * Note that this code is protected against sending an IPI to an offline
1304 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1305 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1306 * nothing keeps CPUs from showing up after we populated the cpumask and
1307 * before the call to on_each_cpu_mask().
9f8f2172
CL
1308 */
1309void drain_all_pages(void)
1310{
74046494
GBY
1311 int cpu;
1312 struct per_cpu_pageset *pcp;
1313 struct zone *zone;
1314
1315 /*
1316 * Allocate in the BSS so we wont require allocation in
1317 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1318 */
1319 static cpumask_t cpus_with_pcps;
1320
1321 /*
1322 * We don't care about racing with CPU hotplug event
1323 * as offline notification will cause the notified
1324 * cpu to drain that CPU pcps and on_each_cpu_mask
1325 * disables preemption as part of its processing
1326 */
1327 for_each_online_cpu(cpu) {
1328 bool has_pcps = false;
1329 for_each_populated_zone(zone) {
1330 pcp = per_cpu_ptr(zone->pageset, cpu);
1331 if (pcp->pcp.count) {
1332 has_pcps = true;
1333 break;
1334 }
1335 }
1336 if (has_pcps)
1337 cpumask_set_cpu(cpu, &cpus_with_pcps);
1338 else
1339 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1340 }
1341 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1342}
1343
296699de 1344#ifdef CONFIG_HIBERNATION
1da177e4
LT
1345
1346void mark_free_pages(struct zone *zone)
1347{
f623f0db
RW
1348 unsigned long pfn, max_zone_pfn;
1349 unsigned long flags;
7aeb09f9 1350 unsigned int order, t;
1da177e4
LT
1351 struct list_head *curr;
1352
8080fc03 1353 if (zone_is_empty(zone))
1da177e4
LT
1354 return;
1355
1356 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1357
108bcc96 1358 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1359 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1360 if (pfn_valid(pfn)) {
1361 struct page *page = pfn_to_page(pfn);
1362
7be98234
RW
1363 if (!swsusp_page_is_forbidden(page))
1364 swsusp_unset_page_free(page);
f623f0db 1365 }
1da177e4 1366
b2a0ac88
MG
1367 for_each_migratetype_order(order, t) {
1368 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1369 unsigned long i;
1da177e4 1370
f623f0db
RW
1371 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1372 for (i = 0; i < (1UL << order); i++)
7be98234 1373 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1374 }
b2a0ac88 1375 }
1da177e4
LT
1376 spin_unlock_irqrestore(&zone->lock, flags);
1377}
e2c55dc8 1378#endif /* CONFIG_PM */
1da177e4 1379
1da177e4
LT
1380/*
1381 * Free a 0-order page
b745bc85 1382 * cold == true ? free a cold page : free a hot page
1da177e4 1383 */
b745bc85 1384void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1385{
1386 struct zone *zone = page_zone(page);
1387 struct per_cpu_pages *pcp;
1388 unsigned long flags;
dc4b0caf 1389 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1390 int migratetype;
1da177e4 1391
ec95f53a 1392 if (!free_pages_prepare(page, 0))
689bcebf
HD
1393 return;
1394
dc4b0caf 1395 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1396 set_freepage_migratetype(page, migratetype);
1da177e4 1397 local_irq_save(flags);
f8891e5e 1398 __count_vm_event(PGFREE);
da456f14 1399
5f8dcc21
MG
1400 /*
1401 * We only track unmovable, reclaimable and movable on pcp lists.
1402 * Free ISOLATE pages back to the allocator because they are being
1403 * offlined but treat RESERVE as movable pages so we can get those
1404 * areas back if necessary. Otherwise, we may have to free
1405 * excessively into the page allocator
1406 */
1407 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1408 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1409 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1410 goto out;
1411 }
1412 migratetype = MIGRATE_MOVABLE;
1413 }
1414
99dcc3e5 1415 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1416 if (!cold)
5f8dcc21 1417 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1418 else
1419 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1420 pcp->count++;
48db57f8 1421 if (pcp->count >= pcp->high) {
998d39cb
CS
1422 unsigned long batch = ACCESS_ONCE(pcp->batch);
1423 free_pcppages_bulk(zone, batch, pcp);
1424 pcp->count -= batch;
48db57f8 1425 }
5f8dcc21
MG
1426
1427out:
1da177e4 1428 local_irq_restore(flags);
1da177e4
LT
1429}
1430
cc59850e
KK
1431/*
1432 * Free a list of 0-order pages
1433 */
b745bc85 1434void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1435{
1436 struct page *page, *next;
1437
1438 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1439 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1440 free_hot_cold_page(page, cold);
1441 }
1442}
1443
8dfcc9ba
NP
1444/*
1445 * split_page takes a non-compound higher-order page, and splits it into
1446 * n (1<<order) sub-pages: page[0..n]
1447 * Each sub-page must be freed individually.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452void split_page(struct page *page, unsigned int order)
1453{
1454 int i;
1455
309381fe
SL
1456 VM_BUG_ON_PAGE(PageCompound(page), page);
1457 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1458
1459#ifdef CONFIG_KMEMCHECK
1460 /*
1461 * Split shadow pages too, because free(page[0]) would
1462 * otherwise free the whole shadow.
1463 */
1464 if (kmemcheck_page_is_tracked(page))
1465 split_page(virt_to_page(page[0].shadow), order);
1466#endif
1467
7835e98b
NP
1468 for (i = 1; i < (1 << order); i++)
1469 set_page_refcounted(page + i);
8dfcc9ba 1470}
5853ff23 1471EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1472
8fb74b9f 1473static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1474{
748446bb
MG
1475 unsigned long watermark;
1476 struct zone *zone;
2139cbe6 1477 int mt;
748446bb
MG
1478
1479 BUG_ON(!PageBuddy(page));
1480
1481 zone = page_zone(page);
2e30abd1 1482 mt = get_pageblock_migratetype(page);
748446bb 1483
194159fb 1484 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1485 /* Obey watermarks as if the page was being allocated */
1486 watermark = low_wmark_pages(zone) + (1 << order);
1487 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1488 return 0;
1489
8fb74b9f 1490 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1491 }
748446bb
MG
1492
1493 /* Remove page from free list */
1494 list_del(&page->lru);
1495 zone->free_area[order].nr_free--;
1496 rmv_page_order(page);
2139cbe6 1497
8fb74b9f 1498 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1499 if (order >= pageblock_order - 1) {
1500 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1501 for (; page < endpage; page += pageblock_nr_pages) {
1502 int mt = get_pageblock_migratetype(page);
194159fb 1503 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1504 set_pageblock_migratetype(page,
1505 MIGRATE_MOVABLE);
1506 }
748446bb
MG
1507 }
1508
8fb74b9f 1509 return 1UL << order;
1fb3f8ca
MG
1510}
1511
1512/*
1513 * Similar to split_page except the page is already free. As this is only
1514 * being used for migration, the migratetype of the block also changes.
1515 * As this is called with interrupts disabled, the caller is responsible
1516 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1517 * are enabled.
1518 *
1519 * Note: this is probably too low level an operation for use in drivers.
1520 * Please consult with lkml before using this in your driver.
1521 */
1522int split_free_page(struct page *page)
1523{
1524 unsigned int order;
1525 int nr_pages;
1526
1fb3f8ca
MG
1527 order = page_order(page);
1528
8fb74b9f 1529 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1530 if (!nr_pages)
1531 return 0;
1532
1533 /* Split into individual pages */
1534 set_page_refcounted(page);
1535 split_page(page, order);
1536 return nr_pages;
748446bb
MG
1537}
1538
1da177e4
LT
1539/*
1540 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1541 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1542 * or two.
1543 */
0a15c3e9
MG
1544static inline
1545struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1546 struct zone *zone, unsigned int order,
1547 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1548{
1549 unsigned long flags;
689bcebf 1550 struct page *page;
b745bc85 1551 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1552
689bcebf 1553again:
48db57f8 1554 if (likely(order == 0)) {
1da177e4 1555 struct per_cpu_pages *pcp;
5f8dcc21 1556 struct list_head *list;
1da177e4 1557
1da177e4 1558 local_irq_save(flags);
99dcc3e5
CL
1559 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1560 list = &pcp->lists[migratetype];
5f8dcc21 1561 if (list_empty(list)) {
535131e6 1562 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1563 pcp->batch, list,
e084b2d9 1564 migratetype, cold);
5f8dcc21 1565 if (unlikely(list_empty(list)))
6fb332fa 1566 goto failed;
535131e6 1567 }
b92a6edd 1568
5f8dcc21
MG
1569 if (cold)
1570 page = list_entry(list->prev, struct page, lru);
1571 else
1572 page = list_entry(list->next, struct page, lru);
1573
b92a6edd
MG
1574 list_del(&page->lru);
1575 pcp->count--;
7fb1d9fc 1576 } else {
dab48dab
AM
1577 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1578 /*
1579 * __GFP_NOFAIL is not to be used in new code.
1580 *
1581 * All __GFP_NOFAIL callers should be fixed so that they
1582 * properly detect and handle allocation failures.
1583 *
1584 * We most definitely don't want callers attempting to
4923abf9 1585 * allocate greater than order-1 page units with
dab48dab
AM
1586 * __GFP_NOFAIL.
1587 */
4923abf9 1588 WARN_ON_ONCE(order > 1);
dab48dab 1589 }
1da177e4 1590 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1591 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1592 spin_unlock(&zone->lock);
1593 if (!page)
1594 goto failed;
d1ce749a 1595 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1596 get_freepage_migratetype(page));
1da177e4
LT
1597 }
1598
3a025760 1599 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1600
f8891e5e 1601 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1602 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1603 local_irq_restore(flags);
1da177e4 1604
309381fe 1605 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1606 if (prep_new_page(page, order, gfp_flags))
a74609fa 1607 goto again;
1da177e4 1608 return page;
a74609fa
NP
1609
1610failed:
1611 local_irq_restore(flags);
a74609fa 1612 return NULL;
1da177e4
LT
1613}
1614
933e312e
AM
1615#ifdef CONFIG_FAIL_PAGE_ALLOC
1616
b2588c4b 1617static struct {
933e312e
AM
1618 struct fault_attr attr;
1619
1620 u32 ignore_gfp_highmem;
1621 u32 ignore_gfp_wait;
54114994 1622 u32 min_order;
933e312e
AM
1623} fail_page_alloc = {
1624 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1625 .ignore_gfp_wait = 1,
1626 .ignore_gfp_highmem = 1,
54114994 1627 .min_order = 1,
933e312e
AM
1628};
1629
1630static int __init setup_fail_page_alloc(char *str)
1631{
1632 return setup_fault_attr(&fail_page_alloc.attr, str);
1633}
1634__setup("fail_page_alloc=", setup_fail_page_alloc);
1635
deaf386e 1636static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1637{
54114994 1638 if (order < fail_page_alloc.min_order)
deaf386e 1639 return false;
933e312e 1640 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1641 return false;
933e312e 1642 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1643 return false;
933e312e 1644 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1645 return false;
933e312e
AM
1646
1647 return should_fail(&fail_page_alloc.attr, 1 << order);
1648}
1649
1650#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1651
1652static int __init fail_page_alloc_debugfs(void)
1653{
f4ae40a6 1654 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1655 struct dentry *dir;
933e312e 1656
dd48c085
AM
1657 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1658 &fail_page_alloc.attr);
1659 if (IS_ERR(dir))
1660 return PTR_ERR(dir);
933e312e 1661
b2588c4b
AM
1662 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1663 &fail_page_alloc.ignore_gfp_wait))
1664 goto fail;
1665 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1666 &fail_page_alloc.ignore_gfp_highmem))
1667 goto fail;
1668 if (!debugfs_create_u32("min-order", mode, dir,
1669 &fail_page_alloc.min_order))
1670 goto fail;
1671
1672 return 0;
1673fail:
dd48c085 1674 debugfs_remove_recursive(dir);
933e312e 1675
b2588c4b 1676 return -ENOMEM;
933e312e
AM
1677}
1678
1679late_initcall(fail_page_alloc_debugfs);
1680
1681#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1682
1683#else /* CONFIG_FAIL_PAGE_ALLOC */
1684
deaf386e 1685static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1686{
deaf386e 1687 return false;
933e312e
AM
1688}
1689
1690#endif /* CONFIG_FAIL_PAGE_ALLOC */
1691
1da177e4 1692/*
88f5acf8 1693 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1694 * of the allocation.
1695 */
7aeb09f9
MG
1696static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1697 unsigned long mark, int classzone_idx, int alloc_flags,
1698 long free_pages)
1da177e4
LT
1699{
1700 /* free_pages my go negative - that's OK */
d23ad423 1701 long min = mark;
2cfed075 1702 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1703 int o;
026b0814 1704 long free_cma = 0;
1da177e4 1705
df0a6daa 1706 free_pages -= (1 << order) - 1;
7fb1d9fc 1707 if (alloc_flags & ALLOC_HIGH)
1da177e4 1708 min -= min / 2;
7fb1d9fc 1709 if (alloc_flags & ALLOC_HARDER)
1da177e4 1710 min -= min / 4;
d95ea5d1
BZ
1711#ifdef CONFIG_CMA
1712 /* If allocation can't use CMA areas don't use free CMA pages */
1713 if (!(alloc_flags & ALLOC_CMA))
026b0814 1714 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1715#endif
026b0814
TS
1716
1717 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1718 return false;
1da177e4
LT
1719 for (o = 0; o < order; o++) {
1720 /* At the next order, this order's pages become unavailable */
1721 free_pages -= z->free_area[o].nr_free << o;
1722
1723 /* Require fewer higher order pages to be free */
1724 min >>= 1;
1725
1726 if (free_pages <= min)
88f5acf8 1727 return false;
1da177e4 1728 }
88f5acf8
MG
1729 return true;
1730}
1731
7aeb09f9 1732bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1733 int classzone_idx, int alloc_flags)
1734{
1735 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1736 zone_page_state(z, NR_FREE_PAGES));
1737}
1738
7aeb09f9
MG
1739bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1740 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1741{
1742 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1743
1744 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1745 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1746
1747 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1748 free_pages);
1da177e4
LT
1749}
1750
9276b1bc
PJ
1751#ifdef CONFIG_NUMA
1752/*
1753 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1754 * skip over zones that are not allowed by the cpuset, or that have
1755 * been recently (in last second) found to be nearly full. See further
1756 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1757 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1758 *
a1aeb65a 1759 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1760 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1761 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1762 *
1763 * If the zonelist cache is not available for this zonelist, does
1764 * nothing and returns NULL.
1765 *
1766 * If the fullzones BITMAP in the zonelist cache is stale (more than
1767 * a second since last zap'd) then we zap it out (clear its bits.)
1768 *
1769 * We hold off even calling zlc_setup, until after we've checked the
1770 * first zone in the zonelist, on the theory that most allocations will
1771 * be satisfied from that first zone, so best to examine that zone as
1772 * quickly as we can.
1773 */
1774static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1775{
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777 nodemask_t *allowednodes; /* zonelist_cache approximation */
1778
1779 zlc = zonelist->zlcache_ptr;
1780 if (!zlc)
1781 return NULL;
1782
f05111f5 1783 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1784 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1785 zlc->last_full_zap = jiffies;
1786 }
1787
1788 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1789 &cpuset_current_mems_allowed :
4b0ef1fe 1790 &node_states[N_MEMORY];
9276b1bc
PJ
1791 return allowednodes;
1792}
1793
1794/*
1795 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1796 * if it is worth looking at further for free memory:
1797 * 1) Check that the zone isn't thought to be full (doesn't have its
1798 * bit set in the zonelist_cache fullzones BITMAP).
1799 * 2) Check that the zones node (obtained from the zonelist_cache
1800 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1801 * Return true (non-zero) if zone is worth looking at further, or
1802 * else return false (zero) if it is not.
1803 *
1804 * This check -ignores- the distinction between various watermarks,
1805 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1806 * found to be full for any variation of these watermarks, it will
1807 * be considered full for up to one second by all requests, unless
1808 * we are so low on memory on all allowed nodes that we are forced
1809 * into the second scan of the zonelist.
1810 *
1811 * In the second scan we ignore this zonelist cache and exactly
1812 * apply the watermarks to all zones, even it is slower to do so.
1813 * We are low on memory in the second scan, and should leave no stone
1814 * unturned looking for a free page.
1815 */
dd1a239f 1816static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1817 nodemask_t *allowednodes)
1818{
1819 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1820 int i; /* index of *z in zonelist zones */
1821 int n; /* node that zone *z is on */
1822
1823 zlc = zonelist->zlcache_ptr;
1824 if (!zlc)
1825 return 1;
1826
dd1a239f 1827 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1828 n = zlc->z_to_n[i];
1829
1830 /* This zone is worth trying if it is allowed but not full */
1831 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1832}
1833
1834/*
1835 * Given 'z' scanning a zonelist, set the corresponding bit in
1836 * zlc->fullzones, so that subsequent attempts to allocate a page
1837 * from that zone don't waste time re-examining it.
1838 */
dd1a239f 1839static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1840{
1841 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1842 int i; /* index of *z in zonelist zones */
1843
1844 zlc = zonelist->zlcache_ptr;
1845 if (!zlc)
1846 return;
1847
dd1a239f 1848 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1849
1850 set_bit(i, zlc->fullzones);
1851}
1852
76d3fbf8
MG
1853/*
1854 * clear all zones full, called after direct reclaim makes progress so that
1855 * a zone that was recently full is not skipped over for up to a second
1856 */
1857static void zlc_clear_zones_full(struct zonelist *zonelist)
1858{
1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1860
1861 zlc = zonelist->zlcache_ptr;
1862 if (!zlc)
1863 return;
1864
1865 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1866}
1867
81c0a2bb
JW
1868static bool zone_local(struct zone *local_zone, struct zone *zone)
1869{
fff4068c 1870 return local_zone->node == zone->node;
81c0a2bb
JW
1871}
1872
957f822a
DR
1873static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1874{
5f7a75ac
MG
1875 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1876 RECLAIM_DISTANCE;
957f822a
DR
1877}
1878
9276b1bc
PJ
1879#else /* CONFIG_NUMA */
1880
1881static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1882{
1883 return NULL;
1884}
1885
dd1a239f 1886static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1887 nodemask_t *allowednodes)
1888{
1889 return 1;
1890}
1891
dd1a239f 1892static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1893{
1894}
76d3fbf8
MG
1895
1896static void zlc_clear_zones_full(struct zonelist *zonelist)
1897{
1898}
957f822a 1899
81c0a2bb
JW
1900static bool zone_local(struct zone *local_zone, struct zone *zone)
1901{
1902 return true;
1903}
1904
957f822a
DR
1905static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1906{
1907 return true;
1908}
1909
9276b1bc
PJ
1910#endif /* CONFIG_NUMA */
1911
7fb1d9fc 1912/*
0798e519 1913 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1914 * a page.
1915 */
1916static struct page *
19770b32 1917get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1918 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1919 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1920{
dd1a239f 1921 struct zoneref *z;
7fb1d9fc 1922 struct page *page = NULL;
5117f45d 1923 struct zone *zone;
9276b1bc
PJ
1924 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1925 int zlc_active = 0; /* set if using zonelist_cache */
1926 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1927 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1928 (gfp_mask & __GFP_WRITE);
54a6eb5c 1929
9276b1bc 1930zonelist_scan:
7fb1d9fc 1931 /*
9276b1bc 1932 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1933 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1934 */
19770b32
MG
1935 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1936 high_zoneidx, nodemask) {
e085dbc5
JW
1937 unsigned long mark;
1938
e5adfffc 1939 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
664eedde
MG
1942 if (cpusets_enabled() &&
1943 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1944 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1945 continue;
81c0a2bb
JW
1946 /*
1947 * Distribute pages in proportion to the individual
1948 * zone size to ensure fair page aging. The zone a
1949 * page was allocated in should have no effect on the
1950 * time the page has in memory before being reclaimed.
81c0a2bb 1951 */
3a025760 1952 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1953 if (!zone_local(preferred_zone, zone))
81c0a2bb 1954 continue;
3a025760
JW
1955 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1956 continue;
81c0a2bb 1957 }
a756cf59
JW
1958 /*
1959 * When allocating a page cache page for writing, we
1960 * want to get it from a zone that is within its dirty
1961 * limit, such that no single zone holds more than its
1962 * proportional share of globally allowed dirty pages.
1963 * The dirty limits take into account the zone's
1964 * lowmem reserves and high watermark so that kswapd
1965 * should be able to balance it without having to
1966 * write pages from its LRU list.
1967 *
1968 * This may look like it could increase pressure on
1969 * lower zones by failing allocations in higher zones
1970 * before they are full. But the pages that do spill
1971 * over are limited as the lower zones are protected
1972 * by this very same mechanism. It should not become
1973 * a practical burden to them.
1974 *
1975 * XXX: For now, allow allocations to potentially
1976 * exceed the per-zone dirty limit in the slowpath
1977 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1978 * which is important when on a NUMA setup the allowed
1979 * zones are together not big enough to reach the
1980 * global limit. The proper fix for these situations
1981 * will require awareness of zones in the
1982 * dirty-throttling and the flusher threads.
1983 */
a6e21b14 1984 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 1985 continue;
7fb1d9fc 1986
e085dbc5
JW
1987 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1988 if (!zone_watermark_ok(zone, order, mark,
1989 classzone_idx, alloc_flags)) {
fa5e084e
MG
1990 int ret;
1991
5dab2911
MG
1992 /* Checked here to keep the fast path fast */
1993 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1994 if (alloc_flags & ALLOC_NO_WATERMARKS)
1995 goto try_this_zone;
1996
e5adfffc
KS
1997 if (IS_ENABLED(CONFIG_NUMA) &&
1998 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1999 /*
2000 * we do zlc_setup if there are multiple nodes
2001 * and before considering the first zone allowed
2002 * by the cpuset.
2003 */
2004 allowednodes = zlc_setup(zonelist, alloc_flags);
2005 zlc_active = 1;
2006 did_zlc_setup = 1;
2007 }
2008
957f822a
DR
2009 if (zone_reclaim_mode == 0 ||
2010 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2011 goto this_zone_full;
2012
cd38b115
MG
2013 /*
2014 * As we may have just activated ZLC, check if the first
2015 * eligible zone has failed zone_reclaim recently.
2016 */
e5adfffc 2017 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2018 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2019 continue;
2020
fa5e084e
MG
2021 ret = zone_reclaim(zone, gfp_mask, order);
2022 switch (ret) {
2023 case ZONE_RECLAIM_NOSCAN:
2024 /* did not scan */
cd38b115 2025 continue;
fa5e084e
MG
2026 case ZONE_RECLAIM_FULL:
2027 /* scanned but unreclaimable */
cd38b115 2028 continue;
fa5e084e
MG
2029 default:
2030 /* did we reclaim enough */
fed2719e 2031 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2032 classzone_idx, alloc_flags))
fed2719e
MG
2033 goto try_this_zone;
2034
2035 /*
2036 * Failed to reclaim enough to meet watermark.
2037 * Only mark the zone full if checking the min
2038 * watermark or if we failed to reclaim just
2039 * 1<<order pages or else the page allocator
2040 * fastpath will prematurely mark zones full
2041 * when the watermark is between the low and
2042 * min watermarks.
2043 */
2044 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2045 ret == ZONE_RECLAIM_SOME)
9276b1bc 2046 goto this_zone_full;
fed2719e
MG
2047
2048 continue;
0798e519 2049 }
7fb1d9fc
RS
2050 }
2051
fa5e084e 2052try_this_zone:
3dd28266
MG
2053 page = buffered_rmqueue(preferred_zone, zone, order,
2054 gfp_mask, migratetype);
0798e519 2055 if (page)
7fb1d9fc 2056 break;
9276b1bc 2057this_zone_full:
65bb3719 2058 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2059 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2060 }
9276b1bc 2061
e5adfffc 2062 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2063 /* Disable zlc cache for second zonelist scan */
2064 zlc_active = 0;
2065 goto zonelist_scan;
2066 }
b121186a
AS
2067
2068 if (page)
2069 /*
2070 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2071 * necessary to allocate the page. The expectation is
2072 * that the caller is taking steps that will free more
2073 * memory. The caller should avoid the page being used
2074 * for !PFMEMALLOC purposes.
2075 */
2076 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2077
7fb1d9fc 2078 return page;
753ee728
MH
2079}
2080
29423e77
DR
2081/*
2082 * Large machines with many possible nodes should not always dump per-node
2083 * meminfo in irq context.
2084 */
2085static inline bool should_suppress_show_mem(void)
2086{
2087 bool ret = false;
2088
2089#if NODES_SHIFT > 8
2090 ret = in_interrupt();
2091#endif
2092 return ret;
2093}
2094
a238ab5b
DH
2095static DEFINE_RATELIMIT_STATE(nopage_rs,
2096 DEFAULT_RATELIMIT_INTERVAL,
2097 DEFAULT_RATELIMIT_BURST);
2098
2099void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2100{
a238ab5b
DH
2101 unsigned int filter = SHOW_MEM_FILTER_NODES;
2102
c0a32fc5
SG
2103 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2104 debug_guardpage_minorder() > 0)
a238ab5b
DH
2105 return;
2106
2107 /*
2108 * This documents exceptions given to allocations in certain
2109 * contexts that are allowed to allocate outside current's set
2110 * of allowed nodes.
2111 */
2112 if (!(gfp_mask & __GFP_NOMEMALLOC))
2113 if (test_thread_flag(TIF_MEMDIE) ||
2114 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2115 filter &= ~SHOW_MEM_FILTER_NODES;
2116 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2117 filter &= ~SHOW_MEM_FILTER_NODES;
2118
2119 if (fmt) {
3ee9a4f0
JP
2120 struct va_format vaf;
2121 va_list args;
2122
a238ab5b 2123 va_start(args, fmt);
3ee9a4f0
JP
2124
2125 vaf.fmt = fmt;
2126 vaf.va = &args;
2127
2128 pr_warn("%pV", &vaf);
2129
a238ab5b
DH
2130 va_end(args);
2131 }
2132
3ee9a4f0
JP
2133 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2134 current->comm, order, gfp_mask);
a238ab5b
DH
2135
2136 dump_stack();
2137 if (!should_suppress_show_mem())
2138 show_mem(filter);
2139}
2140
11e33f6a
MG
2141static inline int
2142should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2143 unsigned long did_some_progress,
11e33f6a 2144 unsigned long pages_reclaimed)
1da177e4 2145{
11e33f6a
MG
2146 /* Do not loop if specifically requested */
2147 if (gfp_mask & __GFP_NORETRY)
2148 return 0;
1da177e4 2149
f90ac398
MG
2150 /* Always retry if specifically requested */
2151 if (gfp_mask & __GFP_NOFAIL)
2152 return 1;
2153
2154 /*
2155 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2156 * making forward progress without invoking OOM. Suspend also disables
2157 * storage devices so kswapd will not help. Bail if we are suspending.
2158 */
2159 if (!did_some_progress && pm_suspended_storage())
2160 return 0;
2161
11e33f6a
MG
2162 /*
2163 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2164 * means __GFP_NOFAIL, but that may not be true in other
2165 * implementations.
2166 */
2167 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2168 return 1;
2169
2170 /*
2171 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2172 * specified, then we retry until we no longer reclaim any pages
2173 * (above), or we've reclaimed an order of pages at least as
2174 * large as the allocation's order. In both cases, if the
2175 * allocation still fails, we stop retrying.
2176 */
2177 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2178 return 1;
cf40bd16 2179
11e33f6a
MG
2180 return 0;
2181}
933e312e 2182
11e33f6a
MG
2183static inline struct page *
2184__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2185 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2186 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2187 int classzone_idx, int migratetype)
11e33f6a
MG
2188{
2189 struct page *page;
2190
2191 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2192 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2193 schedule_timeout_uninterruptible(1);
1da177e4
LT
2194 return NULL;
2195 }
6b1de916 2196
11e33f6a
MG
2197 /*
2198 * Go through the zonelist yet one more time, keep very high watermark
2199 * here, this is only to catch a parallel oom killing, we must fail if
2200 * we're still under heavy pressure.
2201 */
2202 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2203 order, zonelist, high_zoneidx,
5117f45d 2204 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2205 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2206 if (page)
11e33f6a
MG
2207 goto out;
2208
4365a567
KH
2209 if (!(gfp_mask & __GFP_NOFAIL)) {
2210 /* The OOM killer will not help higher order allocs */
2211 if (order > PAGE_ALLOC_COSTLY_ORDER)
2212 goto out;
03668b3c
DR
2213 /* The OOM killer does not needlessly kill tasks for lowmem */
2214 if (high_zoneidx < ZONE_NORMAL)
2215 goto out;
4365a567
KH
2216 /*
2217 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2218 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2219 * The caller should handle page allocation failure by itself if
2220 * it specifies __GFP_THISNODE.
2221 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2222 */
2223 if (gfp_mask & __GFP_THISNODE)
2224 goto out;
2225 }
11e33f6a 2226 /* Exhausted what can be done so it's blamo time */
08ab9b10 2227 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2228
2229out:
2230 clear_zonelist_oom(zonelist, gfp_mask);
2231 return page;
2232}
2233
56de7263
MG
2234#ifdef CONFIG_COMPACTION
2235/* Try memory compaction for high-order allocations before reclaim */
2236static struct page *
2237__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2238 struct zonelist *zonelist, enum zone_type high_zoneidx,
2239 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2240 int classzone_idx, int migratetype, enum migrate_mode mode,
c67fe375 2241 bool *contended_compaction, bool *deferred_compaction,
66199712 2242 unsigned long *did_some_progress)
56de7263 2243{
66199712 2244 if (!order)
56de7263
MG
2245 return NULL;
2246
aff62249 2247 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2248 *deferred_compaction = true;
2249 return NULL;
2250 }
2251
c06b1fca 2252 current->flags |= PF_MEMALLOC;
56de7263 2253 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2254 nodemask, mode,
8fb74b9f 2255 contended_compaction);
c06b1fca 2256 current->flags &= ~PF_MEMALLOC;
56de7263 2257
1fb3f8ca 2258 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2259 struct page *page;
2260
56de7263
MG
2261 /* Page migration frees to the PCP lists but we want merging */
2262 drain_pages(get_cpu());
2263 put_cpu();
2264
2265 page = get_page_from_freelist(gfp_mask, nodemask,
2266 order, zonelist, high_zoneidx,
cfd19c5a 2267 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2268 preferred_zone, classzone_idx, migratetype);
56de7263 2269 if (page) {
62997027 2270 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2271 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2272 count_vm_event(COMPACTSUCCESS);
2273 return page;
2274 }
2275
2276 /*
2277 * It's bad if compaction run occurs and fails.
2278 * The most likely reason is that pages exist,
2279 * but not enough to satisfy watermarks.
2280 */
2281 count_vm_event(COMPACTFAIL);
66199712
MG
2282
2283 /*
2284 * As async compaction considers a subset of pageblocks, only
2285 * defer if the failure was a sync compaction failure.
2286 */
e0b9daeb 2287 if (mode != MIGRATE_ASYNC)
aff62249 2288 defer_compaction(preferred_zone, order);
56de7263
MG
2289
2290 cond_resched();
2291 }
2292
2293 return NULL;
2294}
2295#else
2296static inline struct page *
2297__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2298 struct zonelist *zonelist, enum zone_type high_zoneidx,
2299 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374
MG
2300 int classzone_idx, int migratetype,
2301 enum migrate_mode mode, bool *contended_compaction,
e0b9daeb 2302 bool *deferred_compaction, unsigned long *did_some_progress)
56de7263
MG
2303{
2304 return NULL;
2305}
2306#endif /* CONFIG_COMPACTION */
2307
bba90710
MS
2308/* Perform direct synchronous page reclaim */
2309static int
2310__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2311 nodemask_t *nodemask)
11e33f6a 2312{
11e33f6a 2313 struct reclaim_state reclaim_state;
bba90710 2314 int progress;
11e33f6a
MG
2315
2316 cond_resched();
2317
2318 /* We now go into synchronous reclaim */
2319 cpuset_memory_pressure_bump();
c06b1fca 2320 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2321 lockdep_set_current_reclaim_state(gfp_mask);
2322 reclaim_state.reclaimed_slab = 0;
c06b1fca 2323 current->reclaim_state = &reclaim_state;
11e33f6a 2324
bba90710 2325 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2326
c06b1fca 2327 current->reclaim_state = NULL;
11e33f6a 2328 lockdep_clear_current_reclaim_state();
c06b1fca 2329 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2330
2331 cond_resched();
2332
bba90710
MS
2333 return progress;
2334}
2335
2336/* The really slow allocator path where we enter direct reclaim */
2337static inline struct page *
2338__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2339 struct zonelist *zonelist, enum zone_type high_zoneidx,
2340 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2341 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2342{
2343 struct page *page = NULL;
2344 bool drained = false;
2345
2346 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2347 nodemask);
9ee493ce
MG
2348 if (unlikely(!(*did_some_progress)))
2349 return NULL;
11e33f6a 2350
76d3fbf8 2351 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2352 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2353 zlc_clear_zones_full(zonelist);
2354
9ee493ce
MG
2355retry:
2356 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2357 zonelist, high_zoneidx,
cfd19c5a 2358 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2359 preferred_zone, classzone_idx,
2360 migratetype);
9ee493ce
MG
2361
2362 /*
2363 * If an allocation failed after direct reclaim, it could be because
2364 * pages are pinned on the per-cpu lists. Drain them and try again
2365 */
2366 if (!page && !drained) {
2367 drain_all_pages();
2368 drained = true;
2369 goto retry;
2370 }
2371
11e33f6a
MG
2372 return page;
2373}
2374
1da177e4 2375/*
11e33f6a
MG
2376 * This is called in the allocator slow-path if the allocation request is of
2377 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2378 */
11e33f6a
MG
2379static inline struct page *
2380__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2381 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2382 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2383 int classzone_idx, int migratetype)
11e33f6a
MG
2384{
2385 struct page *page;
2386
2387 do {
2388 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2389 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2390 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2391
2392 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2393 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2394 } while (!page && (gfp_mask & __GFP_NOFAIL));
2395
2396 return page;
2397}
2398
3a025760
JW
2399static void reset_alloc_batches(struct zonelist *zonelist,
2400 enum zone_type high_zoneidx,
2401 struct zone *preferred_zone)
1da177e4 2402{
dd1a239f
MG
2403 struct zoneref *z;
2404 struct zone *zone;
1da177e4 2405
81c0a2bb 2406 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2407 /*
2408 * Only reset the batches of zones that were actually
3a025760
JW
2409 * considered in the fairness pass, we don't want to
2410 * trash fairness information for zones that are not
81c0a2bb
JW
2411 * actually part of this zonelist's round-robin cycle.
2412 */
fff4068c 2413 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2414 continue;
2415 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2416 high_wmark_pages(zone) - low_wmark_pages(zone) -
2417 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2418 }
11e33f6a 2419}
cf40bd16 2420
3a025760
JW
2421static void wake_all_kswapds(unsigned int order,
2422 struct zonelist *zonelist,
2423 enum zone_type high_zoneidx,
2424 struct zone *preferred_zone)
2425{
2426 struct zoneref *z;
2427 struct zone *zone;
2428
2429 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2430 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2431}
2432
341ce06f
PZ
2433static inline int
2434gfp_to_alloc_flags(gfp_t gfp_mask)
2435{
341ce06f
PZ
2436 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2437 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2438
a56f57ff 2439 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2440 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2441
341ce06f
PZ
2442 /*
2443 * The caller may dip into page reserves a bit more if the caller
2444 * cannot run direct reclaim, or if the caller has realtime scheduling
2445 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2446 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2447 */
e6223a3b 2448 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2449
341ce06f 2450 if (!wait) {
5c3240d9
AA
2451 /*
2452 * Not worth trying to allocate harder for
2453 * __GFP_NOMEMALLOC even if it can't schedule.
2454 */
2455 if (!(gfp_mask & __GFP_NOMEMALLOC))
2456 alloc_flags |= ALLOC_HARDER;
523b9458 2457 /*
341ce06f
PZ
2458 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2459 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2460 */
341ce06f 2461 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2462 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2463 alloc_flags |= ALLOC_HARDER;
2464
b37f1dd0
MG
2465 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2466 if (gfp_mask & __GFP_MEMALLOC)
2467 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2468 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2469 alloc_flags |= ALLOC_NO_WATERMARKS;
2470 else if (!in_interrupt() &&
2471 ((current->flags & PF_MEMALLOC) ||
2472 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2473 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2474 }
d95ea5d1
BZ
2475#ifdef CONFIG_CMA
2476 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2477 alloc_flags |= ALLOC_CMA;
2478#endif
341ce06f
PZ
2479 return alloc_flags;
2480}
2481
072bb0aa
MG
2482bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2483{
b37f1dd0 2484 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2485}
2486
11e33f6a
MG
2487static inline struct page *
2488__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2489 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2490 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2491 int classzone_idx, int migratetype)
11e33f6a
MG
2492{
2493 const gfp_t wait = gfp_mask & __GFP_WAIT;
2494 struct page *page = NULL;
2495 int alloc_flags;
2496 unsigned long pages_reclaimed = 0;
2497 unsigned long did_some_progress;
e0b9daeb 2498 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2499 bool deferred_compaction = false;
c67fe375 2500 bool contended_compaction = false;
1da177e4 2501
72807a74
MG
2502 /*
2503 * In the slowpath, we sanity check order to avoid ever trying to
2504 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2505 * be using allocators in order of preference for an area that is
2506 * too large.
2507 */
1fc28b70
MG
2508 if (order >= MAX_ORDER) {
2509 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2510 return NULL;
1fc28b70 2511 }
1da177e4 2512
952f3b51
CL
2513 /*
2514 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2515 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2516 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2517 * using a larger set of nodes after it has established that the
2518 * allowed per node queues are empty and that nodes are
2519 * over allocated.
2520 */
3a025760
JW
2521 if (IS_ENABLED(CONFIG_NUMA) &&
2522 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2523 goto nopage;
2524
cc4a6851 2525restart:
3a025760
JW
2526 if (!(gfp_mask & __GFP_NO_KSWAPD))
2527 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2528
9bf2229f 2529 /*
7fb1d9fc
RS
2530 * OK, we're below the kswapd watermark and have kicked background
2531 * reclaim. Now things get more complex, so set up alloc_flags according
2532 * to how we want to proceed.
9bf2229f 2533 */
341ce06f 2534 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2535
f33261d7
DR
2536 /*
2537 * Find the true preferred zone if the allocation is unconstrained by
2538 * cpusets.
2539 */
d8846374
MG
2540 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2541 struct zoneref *preferred_zoneref;
2542 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2543 NULL, &preferred_zone);
2544 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2545 }
f33261d7 2546
cfa54a0f 2547rebalance:
341ce06f 2548 /* This is the last chance, in general, before the goto nopage. */
19770b32 2549 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2550 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2551 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2552 if (page)
2553 goto got_pg;
1da177e4 2554
11e33f6a 2555 /* Allocate without watermarks if the context allows */
341ce06f 2556 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2557 /*
2558 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2559 * the allocation is high priority and these type of
2560 * allocations are system rather than user orientated
2561 */
2562 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2563
341ce06f
PZ
2564 page = __alloc_pages_high_priority(gfp_mask, order,
2565 zonelist, high_zoneidx, nodemask,
d8846374 2566 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2567 if (page) {
341ce06f 2568 goto got_pg;
cfd19c5a 2569 }
1da177e4
LT
2570 }
2571
2572 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2573 if (!wait) {
2574 /*
2575 * All existing users of the deprecated __GFP_NOFAIL are
2576 * blockable, so warn of any new users that actually allow this
2577 * type of allocation to fail.
2578 */
2579 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2580 goto nopage;
aed0a0e3 2581 }
1da177e4 2582
341ce06f 2583 /* Avoid recursion of direct reclaim */
c06b1fca 2584 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2585 goto nopage;
2586
6583bb64
DR
2587 /* Avoid allocations with no watermarks from looping endlessly */
2588 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2589 goto nopage;
2590
77f1fe6b
MG
2591 /*
2592 * Try direct compaction. The first pass is asynchronous. Subsequent
2593 * attempts after direct reclaim are synchronous
2594 */
e0b9daeb
DR
2595 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2596 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2597 preferred_zone,
2598 classzone_idx, migratetype,
e0b9daeb 2599 migration_mode, &contended_compaction,
66199712
MG
2600 &deferred_compaction,
2601 &did_some_progress);
56de7263
MG
2602 if (page)
2603 goto got_pg;
75f30861
DR
2604
2605 /*
2606 * It can become very expensive to allocate transparent hugepages at
2607 * fault, so use asynchronous memory compaction for THP unless it is
2608 * khugepaged trying to collapse.
2609 */
2610 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2611 migration_mode = MIGRATE_SYNC_LIGHT;
56de7263 2612
31f8d42d
LT
2613 /*
2614 * If compaction is deferred for high-order allocations, it is because
2615 * sync compaction recently failed. In this is the case and the caller
2616 * requested a movable allocation that does not heavily disrupt the
2617 * system then fail the allocation instead of entering direct reclaim.
2618 */
2619 if ((deferred_compaction || contended_compaction) &&
caf49191 2620 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2621 goto nopage;
66199712 2622
11e33f6a
MG
2623 /* Try direct reclaim and then allocating */
2624 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2625 zonelist, high_zoneidx,
2626 nodemask,
5117f45d 2627 alloc_flags, preferred_zone,
d8846374
MG
2628 classzone_idx, migratetype,
2629 &did_some_progress);
11e33f6a
MG
2630 if (page)
2631 goto got_pg;
1da177e4 2632
e33c3b5e 2633 /*
11e33f6a
MG
2634 * If we failed to make any progress reclaiming, then we are
2635 * running out of options and have to consider going OOM
e33c3b5e 2636 */
11e33f6a 2637 if (!did_some_progress) {
b9921ecd 2638 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2639 if (oom_killer_disabled)
2640 goto nopage;
29fd66d2
DR
2641 /* Coredumps can quickly deplete all memory reserves */
2642 if ((current->flags & PF_DUMPCORE) &&
2643 !(gfp_mask & __GFP_NOFAIL))
2644 goto nopage;
11e33f6a
MG
2645 page = __alloc_pages_may_oom(gfp_mask, order,
2646 zonelist, high_zoneidx,
3dd28266 2647 nodemask, preferred_zone,
d8846374 2648 classzone_idx, migratetype);
11e33f6a
MG
2649 if (page)
2650 goto got_pg;
1da177e4 2651
03668b3c
DR
2652 if (!(gfp_mask & __GFP_NOFAIL)) {
2653 /*
2654 * The oom killer is not called for high-order
2655 * allocations that may fail, so if no progress
2656 * is being made, there are no other options and
2657 * retrying is unlikely to help.
2658 */
2659 if (order > PAGE_ALLOC_COSTLY_ORDER)
2660 goto nopage;
2661 /*
2662 * The oom killer is not called for lowmem
2663 * allocations to prevent needlessly killing
2664 * innocent tasks.
2665 */
2666 if (high_zoneidx < ZONE_NORMAL)
2667 goto nopage;
2668 }
e2c55dc8 2669
ff0ceb9d
DR
2670 goto restart;
2671 }
1da177e4
LT
2672 }
2673
11e33f6a 2674 /* Check if we should retry the allocation */
a41f24ea 2675 pages_reclaimed += did_some_progress;
f90ac398
MG
2676 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2677 pages_reclaimed)) {
11e33f6a 2678 /* Wait for some write requests to complete then retry */
0e093d99 2679 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2680 goto rebalance;
3e7d3449
MG
2681 } else {
2682 /*
2683 * High-order allocations do not necessarily loop after
2684 * direct reclaim and reclaim/compaction depends on compaction
2685 * being called after reclaim so call directly if necessary
2686 */
e0b9daeb
DR
2687 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2688 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2689 preferred_zone,
2690 classzone_idx, migratetype,
e0b9daeb 2691 migration_mode, &contended_compaction,
66199712
MG
2692 &deferred_compaction,
2693 &did_some_progress);
3e7d3449
MG
2694 if (page)
2695 goto got_pg;
1da177e4
LT
2696 }
2697
2698nopage:
a238ab5b 2699 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2700 return page;
1da177e4 2701got_pg:
b1eeab67
VN
2702 if (kmemcheck_enabled)
2703 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2704
072bb0aa 2705 return page;
1da177e4 2706}
11e33f6a
MG
2707
2708/*
2709 * This is the 'heart' of the zoned buddy allocator.
2710 */
2711struct page *
2712__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2713 struct zonelist *zonelist, nodemask_t *nodemask)
2714{
2715 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2716 struct zone *preferred_zone;
d8846374 2717 struct zoneref *preferred_zoneref;
cc9a6c87 2718 struct page *page = NULL;
3dd28266 2719 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2720 unsigned int cpuset_mems_cookie;
3a025760 2721 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2722 int classzone_idx;
11e33f6a 2723
dcce284a
BH
2724 gfp_mask &= gfp_allowed_mask;
2725
11e33f6a
MG
2726 lockdep_trace_alloc(gfp_mask);
2727
2728 might_sleep_if(gfp_mask & __GFP_WAIT);
2729
2730 if (should_fail_alloc_page(gfp_mask, order))
2731 return NULL;
2732
2733 /*
2734 * Check the zones suitable for the gfp_mask contain at least one
2735 * valid zone. It's possible to have an empty zonelist as a result
2736 * of GFP_THISNODE and a memoryless node
2737 */
2738 if (unlikely(!zonelist->_zonerefs->zone))
2739 return NULL;
2740
cc9a6c87 2741retry_cpuset:
d26914d1 2742 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2743
5117f45d 2744 /* The preferred zone is used for statistics later */
d8846374 2745 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2746 nodemask ? : &cpuset_current_mems_allowed,
2747 &preferred_zone);
cc9a6c87
MG
2748 if (!preferred_zone)
2749 goto out;
d8846374 2750 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d 2751
d95ea5d1
BZ
2752#ifdef CONFIG_CMA
2753 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2754 alloc_flags |= ALLOC_CMA;
2755#endif
3a025760 2756retry:
5117f45d 2757 /* First allocation attempt */
11e33f6a 2758 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2759 zonelist, high_zoneidx, alloc_flags,
d8846374 2760 preferred_zone, classzone_idx, migratetype);
21caf2fc 2761 if (unlikely(!page)) {
3a025760
JW
2762 /*
2763 * The first pass makes sure allocations are spread
2764 * fairly within the local node. However, the local
2765 * node might have free pages left after the fairness
2766 * batches are exhausted, and remote zones haven't
2767 * even been considered yet. Try once more without
2768 * fairness, and include remote zones now, before
2769 * entering the slowpath and waking kswapd: prefer
2770 * spilling to a remote zone over swapping locally.
2771 */
2772 if (alloc_flags & ALLOC_FAIR) {
2773 reset_alloc_batches(zonelist, high_zoneidx,
2774 preferred_zone);
2775 alloc_flags &= ~ALLOC_FAIR;
2776 goto retry;
2777 }
21caf2fc
ML
2778 /*
2779 * Runtime PM, block IO and its error handling path
2780 * can deadlock because I/O on the device might not
2781 * complete.
2782 */
2783 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2784 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2785 zonelist, high_zoneidx, nodemask,
d8846374 2786 preferred_zone, classzone_idx, migratetype);
21caf2fc 2787 }
11e33f6a 2788
4b4f278c 2789 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2790
2791out:
2792 /*
2793 * When updating a task's mems_allowed, it is possible to race with
2794 * parallel threads in such a way that an allocation can fail while
2795 * the mask is being updated. If a page allocation is about to fail,
2796 * check if the cpuset changed during allocation and if so, retry.
2797 */
d26914d1 2798 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2799 goto retry_cpuset;
2800
11e33f6a 2801 return page;
1da177e4 2802}
d239171e 2803EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2804
2805/*
2806 * Common helper functions.
2807 */
920c7a5d 2808unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2809{
945a1113
AM
2810 struct page *page;
2811
2812 /*
2813 * __get_free_pages() returns a 32-bit address, which cannot represent
2814 * a highmem page
2815 */
2816 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2817
1da177e4
LT
2818 page = alloc_pages(gfp_mask, order);
2819 if (!page)
2820 return 0;
2821 return (unsigned long) page_address(page);
2822}
1da177e4
LT
2823EXPORT_SYMBOL(__get_free_pages);
2824
920c7a5d 2825unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2826{
945a1113 2827 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2828}
1da177e4
LT
2829EXPORT_SYMBOL(get_zeroed_page);
2830
920c7a5d 2831void __free_pages(struct page *page, unsigned int order)
1da177e4 2832{
b5810039 2833 if (put_page_testzero(page)) {
1da177e4 2834 if (order == 0)
b745bc85 2835 free_hot_cold_page(page, false);
1da177e4
LT
2836 else
2837 __free_pages_ok(page, order);
2838 }
2839}
2840
2841EXPORT_SYMBOL(__free_pages);
2842
920c7a5d 2843void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2844{
2845 if (addr != 0) {
725d704e 2846 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2847 __free_pages(virt_to_page((void *)addr), order);
2848 }
2849}
2850
2851EXPORT_SYMBOL(free_pages);
2852
6a1a0d3b 2853/*
52383431
VD
2854 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2855 * of the current memory cgroup.
6a1a0d3b 2856 *
52383431
VD
2857 * It should be used when the caller would like to use kmalloc, but since the
2858 * allocation is large, it has to fall back to the page allocator.
2859 */
2860struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2861{
2862 struct page *page;
2863 struct mem_cgroup *memcg = NULL;
2864
2865 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2866 return NULL;
2867 page = alloc_pages(gfp_mask, order);
2868 memcg_kmem_commit_charge(page, memcg, order);
2869 return page;
2870}
2871
2872struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2873{
2874 struct page *page;
2875 struct mem_cgroup *memcg = NULL;
2876
2877 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2878 return NULL;
2879 page = alloc_pages_node(nid, gfp_mask, order);
2880 memcg_kmem_commit_charge(page, memcg, order);
2881 return page;
2882}
2883
2884/*
2885 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2886 * alloc_kmem_pages.
6a1a0d3b 2887 */
52383431 2888void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2889{
2890 memcg_kmem_uncharge_pages(page, order);
2891 __free_pages(page, order);
2892}
2893
52383431 2894void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2895{
2896 if (addr != 0) {
2897 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2898 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2899 }
2900}
2901
ee85c2e1
AK
2902static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2903{
2904 if (addr) {
2905 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2906 unsigned long used = addr + PAGE_ALIGN(size);
2907
2908 split_page(virt_to_page((void *)addr), order);
2909 while (used < alloc_end) {
2910 free_page(used);
2911 used += PAGE_SIZE;
2912 }
2913 }
2914 return (void *)addr;
2915}
2916
2be0ffe2
TT
2917/**
2918 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2919 * @size: the number of bytes to allocate
2920 * @gfp_mask: GFP flags for the allocation
2921 *
2922 * This function is similar to alloc_pages(), except that it allocates the
2923 * minimum number of pages to satisfy the request. alloc_pages() can only
2924 * allocate memory in power-of-two pages.
2925 *
2926 * This function is also limited by MAX_ORDER.
2927 *
2928 * Memory allocated by this function must be released by free_pages_exact().
2929 */
2930void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2931{
2932 unsigned int order = get_order(size);
2933 unsigned long addr;
2934
2935 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2936 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2937}
2938EXPORT_SYMBOL(alloc_pages_exact);
2939
ee85c2e1
AK
2940/**
2941 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2942 * pages on a node.
b5e6ab58 2943 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2944 * @size: the number of bytes to allocate
2945 * @gfp_mask: GFP flags for the allocation
2946 *
2947 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2948 * back.
2949 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2950 * but is not exact.
2951 */
2952void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2953{
2954 unsigned order = get_order(size);
2955 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2956 if (!p)
2957 return NULL;
2958 return make_alloc_exact((unsigned long)page_address(p), order, size);
2959}
2960EXPORT_SYMBOL(alloc_pages_exact_nid);
2961
2be0ffe2
TT
2962/**
2963 * free_pages_exact - release memory allocated via alloc_pages_exact()
2964 * @virt: the value returned by alloc_pages_exact.
2965 * @size: size of allocation, same value as passed to alloc_pages_exact().
2966 *
2967 * Release the memory allocated by a previous call to alloc_pages_exact.
2968 */
2969void free_pages_exact(void *virt, size_t size)
2970{
2971 unsigned long addr = (unsigned long)virt;
2972 unsigned long end = addr + PAGE_ALIGN(size);
2973
2974 while (addr < end) {
2975 free_page(addr);
2976 addr += PAGE_SIZE;
2977 }
2978}
2979EXPORT_SYMBOL(free_pages_exact);
2980
e0fb5815
ZY
2981/**
2982 * nr_free_zone_pages - count number of pages beyond high watermark
2983 * @offset: The zone index of the highest zone
2984 *
2985 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2986 * high watermark within all zones at or below a given zone index. For each
2987 * zone, the number of pages is calculated as:
834405c3 2988 * managed_pages - high_pages
e0fb5815 2989 */
ebec3862 2990static unsigned long nr_free_zone_pages(int offset)
1da177e4 2991{
dd1a239f 2992 struct zoneref *z;
54a6eb5c
MG
2993 struct zone *zone;
2994
e310fd43 2995 /* Just pick one node, since fallback list is circular */
ebec3862 2996 unsigned long sum = 0;
1da177e4 2997
0e88460d 2998 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2999
54a6eb5c 3000 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3001 unsigned long size = zone->managed_pages;
41858966 3002 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3003 if (size > high)
3004 sum += size - high;
1da177e4
LT
3005 }
3006
3007 return sum;
3008}
3009
e0fb5815
ZY
3010/**
3011 * nr_free_buffer_pages - count number of pages beyond high watermark
3012 *
3013 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3014 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3015 */
ebec3862 3016unsigned long nr_free_buffer_pages(void)
1da177e4 3017{
af4ca457 3018 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3019}
c2f1a551 3020EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3021
e0fb5815
ZY
3022/**
3023 * nr_free_pagecache_pages - count number of pages beyond high watermark
3024 *
3025 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3026 * high watermark within all zones.
1da177e4 3027 */
ebec3862 3028unsigned long nr_free_pagecache_pages(void)
1da177e4 3029{
2a1e274a 3030 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3031}
08e0f6a9
CL
3032
3033static inline void show_node(struct zone *zone)
1da177e4 3034{
e5adfffc 3035 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3036 printk("Node %d ", zone_to_nid(zone));
1da177e4 3037}
1da177e4 3038
1da177e4
LT
3039void si_meminfo(struct sysinfo *val)
3040{
3041 val->totalram = totalram_pages;
3042 val->sharedram = 0;
d23ad423 3043 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3044 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3045 val->totalhigh = totalhigh_pages;
3046 val->freehigh = nr_free_highpages();
1da177e4
LT
3047 val->mem_unit = PAGE_SIZE;
3048}
3049
3050EXPORT_SYMBOL(si_meminfo);
3051
3052#ifdef CONFIG_NUMA
3053void si_meminfo_node(struct sysinfo *val, int nid)
3054{
cdd91a77
JL
3055 int zone_type; /* needs to be signed */
3056 unsigned long managed_pages = 0;
1da177e4
LT
3057 pg_data_t *pgdat = NODE_DATA(nid);
3058
cdd91a77
JL
3059 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3060 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3061 val->totalram = managed_pages;
d23ad423 3062 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3063#ifdef CONFIG_HIGHMEM
b40da049 3064 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3065 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3066 NR_FREE_PAGES);
98d2b0eb
CL
3067#else
3068 val->totalhigh = 0;
3069 val->freehigh = 0;
3070#endif
1da177e4
LT
3071 val->mem_unit = PAGE_SIZE;
3072}
3073#endif
3074
ddd588b5 3075/*
7bf02ea2
DR
3076 * Determine whether the node should be displayed or not, depending on whether
3077 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3078 */
7bf02ea2 3079bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3080{
3081 bool ret = false;
cc9a6c87 3082 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3083
3084 if (!(flags & SHOW_MEM_FILTER_NODES))
3085 goto out;
3086
cc9a6c87 3087 do {
d26914d1 3088 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3089 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3090 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3091out:
3092 return ret;
3093}
3094
1da177e4
LT
3095#define K(x) ((x) << (PAGE_SHIFT-10))
3096
377e4f16
RV
3097static void show_migration_types(unsigned char type)
3098{
3099 static const char types[MIGRATE_TYPES] = {
3100 [MIGRATE_UNMOVABLE] = 'U',
3101 [MIGRATE_RECLAIMABLE] = 'E',
3102 [MIGRATE_MOVABLE] = 'M',
3103 [MIGRATE_RESERVE] = 'R',
3104#ifdef CONFIG_CMA
3105 [MIGRATE_CMA] = 'C',
3106#endif
194159fb 3107#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3108 [MIGRATE_ISOLATE] = 'I',
194159fb 3109#endif
377e4f16
RV
3110 };
3111 char tmp[MIGRATE_TYPES + 1];
3112 char *p = tmp;
3113 int i;
3114
3115 for (i = 0; i < MIGRATE_TYPES; i++) {
3116 if (type & (1 << i))
3117 *p++ = types[i];
3118 }
3119
3120 *p = '\0';
3121 printk("(%s) ", tmp);
3122}
3123
1da177e4
LT
3124/*
3125 * Show free area list (used inside shift_scroll-lock stuff)
3126 * We also calculate the percentage fragmentation. We do this by counting the
3127 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3128 * Suppresses nodes that are not allowed by current's cpuset if
3129 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3130 */
7bf02ea2 3131void show_free_areas(unsigned int filter)
1da177e4 3132{
c7241913 3133 int cpu;
1da177e4
LT
3134 struct zone *zone;
3135
ee99c71c 3136 for_each_populated_zone(zone) {
7bf02ea2 3137 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3138 continue;
c7241913
JS
3139 show_node(zone);
3140 printk("%s per-cpu:\n", zone->name);
1da177e4 3141
6b482c67 3142 for_each_online_cpu(cpu) {
1da177e4
LT
3143 struct per_cpu_pageset *pageset;
3144
99dcc3e5 3145 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3146
3dfa5721
CL
3147 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3148 cpu, pageset->pcp.high,
3149 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3150 }
3151 }
3152
a731286d
KM
3153 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3154 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3155 " unevictable:%lu"
b76146ed 3156 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3157 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3158 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3159 " free_cma:%lu\n",
4f98a2fe 3160 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3161 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3162 global_page_state(NR_ISOLATED_ANON),
3163 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3164 global_page_state(NR_INACTIVE_FILE),
a731286d 3165 global_page_state(NR_ISOLATED_FILE),
7b854121 3166 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3167 global_page_state(NR_FILE_DIRTY),
ce866b34 3168 global_page_state(NR_WRITEBACK),
fd39fc85 3169 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3170 global_page_state(NR_FREE_PAGES),
3701b033
KM
3171 global_page_state(NR_SLAB_RECLAIMABLE),
3172 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3173 global_page_state(NR_FILE_MAPPED),
4b02108a 3174 global_page_state(NR_SHMEM),
a25700a5 3175 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3176 global_page_state(NR_BOUNCE),
3177 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3178
ee99c71c 3179 for_each_populated_zone(zone) {
1da177e4
LT
3180 int i;
3181
7bf02ea2 3182 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3183 continue;
1da177e4
LT
3184 show_node(zone);
3185 printk("%s"
3186 " free:%lukB"
3187 " min:%lukB"
3188 " low:%lukB"
3189 " high:%lukB"
4f98a2fe
RR
3190 " active_anon:%lukB"
3191 " inactive_anon:%lukB"
3192 " active_file:%lukB"
3193 " inactive_file:%lukB"
7b854121 3194 " unevictable:%lukB"
a731286d
KM
3195 " isolated(anon):%lukB"
3196 " isolated(file):%lukB"
1da177e4 3197 " present:%lukB"
9feedc9d 3198 " managed:%lukB"
4a0aa73f
KM
3199 " mlocked:%lukB"
3200 " dirty:%lukB"
3201 " writeback:%lukB"
3202 " mapped:%lukB"
4b02108a 3203 " shmem:%lukB"
4a0aa73f
KM
3204 " slab_reclaimable:%lukB"
3205 " slab_unreclaimable:%lukB"
c6a7f572 3206 " kernel_stack:%lukB"
4a0aa73f
KM
3207 " pagetables:%lukB"
3208 " unstable:%lukB"
3209 " bounce:%lukB"
d1ce749a 3210 " free_cma:%lukB"
4a0aa73f 3211 " writeback_tmp:%lukB"
1da177e4
LT
3212 " pages_scanned:%lu"
3213 " all_unreclaimable? %s"
3214 "\n",
3215 zone->name,
88f5acf8 3216 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3217 K(min_wmark_pages(zone)),
3218 K(low_wmark_pages(zone)),
3219 K(high_wmark_pages(zone)),
4f98a2fe
RR
3220 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3221 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3222 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3223 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3224 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3225 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3226 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3227 K(zone->present_pages),
9feedc9d 3228 K(zone->managed_pages),
4a0aa73f
KM
3229 K(zone_page_state(zone, NR_MLOCK)),
3230 K(zone_page_state(zone, NR_FILE_DIRTY)),
3231 K(zone_page_state(zone, NR_WRITEBACK)),
3232 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3233 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3234 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3235 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3236 zone_page_state(zone, NR_KERNEL_STACK) *
3237 THREAD_SIZE / 1024,
4a0aa73f
KM
3238 K(zone_page_state(zone, NR_PAGETABLE)),
3239 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3240 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3241 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3242 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3243 zone->pages_scanned,
6e543d57 3244 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3245 );
3246 printk("lowmem_reserve[]:");
3247 for (i = 0; i < MAX_NR_ZONES; i++)
3248 printk(" %lu", zone->lowmem_reserve[i]);
3249 printk("\n");
3250 }
3251
ee99c71c 3252 for_each_populated_zone(zone) {
b8af2941 3253 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3254 unsigned char types[MAX_ORDER];
1da177e4 3255
7bf02ea2 3256 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3257 continue;
1da177e4
LT
3258 show_node(zone);
3259 printk("%s: ", zone->name);
1da177e4
LT
3260
3261 spin_lock_irqsave(&zone->lock, flags);
3262 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3263 struct free_area *area = &zone->free_area[order];
3264 int type;
3265
3266 nr[order] = area->nr_free;
8f9de51a 3267 total += nr[order] << order;
377e4f16
RV
3268
3269 types[order] = 0;
3270 for (type = 0; type < MIGRATE_TYPES; type++) {
3271 if (!list_empty(&area->free_list[type]))
3272 types[order] |= 1 << type;
3273 }
1da177e4
LT
3274 }
3275 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3276 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3277 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3278 if (nr[order])
3279 show_migration_types(types[order]);
3280 }
1da177e4
LT
3281 printk("= %lukB\n", K(total));
3282 }
3283
949f7ec5
DR
3284 hugetlb_show_meminfo();
3285
e6f3602d
LW
3286 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3287
1da177e4
LT
3288 show_swap_cache_info();
3289}
3290
19770b32
MG
3291static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3292{
3293 zoneref->zone = zone;
3294 zoneref->zone_idx = zone_idx(zone);
3295}
3296
1da177e4
LT
3297/*
3298 * Builds allocation fallback zone lists.
1a93205b
CL
3299 *
3300 * Add all populated zones of a node to the zonelist.
1da177e4 3301 */
f0c0b2b8 3302static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3303 int nr_zones)
1da177e4 3304{
1a93205b 3305 struct zone *zone;
bc732f1d 3306 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3307
3308 do {
2f6726e5 3309 zone_type--;
070f8032 3310 zone = pgdat->node_zones + zone_type;
1a93205b 3311 if (populated_zone(zone)) {
dd1a239f
MG
3312 zoneref_set_zone(zone,
3313 &zonelist->_zonerefs[nr_zones++]);
070f8032 3314 check_highest_zone(zone_type);
1da177e4 3315 }
2f6726e5 3316 } while (zone_type);
bc732f1d 3317
070f8032 3318 return nr_zones;
1da177e4
LT
3319}
3320
f0c0b2b8
KH
3321
3322/*
3323 * zonelist_order:
3324 * 0 = automatic detection of better ordering.
3325 * 1 = order by ([node] distance, -zonetype)
3326 * 2 = order by (-zonetype, [node] distance)
3327 *
3328 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3329 * the same zonelist. So only NUMA can configure this param.
3330 */
3331#define ZONELIST_ORDER_DEFAULT 0
3332#define ZONELIST_ORDER_NODE 1
3333#define ZONELIST_ORDER_ZONE 2
3334
3335/* zonelist order in the kernel.
3336 * set_zonelist_order() will set this to NODE or ZONE.
3337 */
3338static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3339static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3340
3341
1da177e4 3342#ifdef CONFIG_NUMA
f0c0b2b8
KH
3343/* The value user specified ....changed by config */
3344static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3345/* string for sysctl */
3346#define NUMA_ZONELIST_ORDER_LEN 16
3347char numa_zonelist_order[16] = "default";
3348
3349/*
3350 * interface for configure zonelist ordering.
3351 * command line option "numa_zonelist_order"
3352 * = "[dD]efault - default, automatic configuration.
3353 * = "[nN]ode - order by node locality, then by zone within node
3354 * = "[zZ]one - order by zone, then by locality within zone
3355 */
3356
3357static int __parse_numa_zonelist_order(char *s)
3358{
3359 if (*s == 'd' || *s == 'D') {
3360 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3361 } else if (*s == 'n' || *s == 'N') {
3362 user_zonelist_order = ZONELIST_ORDER_NODE;
3363 } else if (*s == 'z' || *s == 'Z') {
3364 user_zonelist_order = ZONELIST_ORDER_ZONE;
3365 } else {
3366 printk(KERN_WARNING
3367 "Ignoring invalid numa_zonelist_order value: "
3368 "%s\n", s);
3369 return -EINVAL;
3370 }
3371 return 0;
3372}
3373
3374static __init int setup_numa_zonelist_order(char *s)
3375{
ecb256f8
VL
3376 int ret;
3377
3378 if (!s)
3379 return 0;
3380
3381 ret = __parse_numa_zonelist_order(s);
3382 if (ret == 0)
3383 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3384
3385 return ret;
f0c0b2b8
KH
3386}
3387early_param("numa_zonelist_order", setup_numa_zonelist_order);
3388
3389/*
3390 * sysctl handler for numa_zonelist_order
3391 */
3392int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3393 void __user *buffer, size_t *length,
f0c0b2b8
KH
3394 loff_t *ppos)
3395{
3396 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3397 int ret;
443c6f14 3398 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3399
443c6f14 3400 mutex_lock(&zl_order_mutex);
dacbde09
CG
3401 if (write) {
3402 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3403 ret = -EINVAL;
3404 goto out;
3405 }
3406 strcpy(saved_string, (char *)table->data);
3407 }
8d65af78 3408 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3409 if (ret)
443c6f14 3410 goto out;
f0c0b2b8
KH
3411 if (write) {
3412 int oldval = user_zonelist_order;
dacbde09
CG
3413
3414 ret = __parse_numa_zonelist_order((char *)table->data);
3415 if (ret) {
f0c0b2b8
KH
3416 /*
3417 * bogus value. restore saved string
3418 */
dacbde09 3419 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3420 NUMA_ZONELIST_ORDER_LEN);
3421 user_zonelist_order = oldval;
4eaf3f64
HL
3422 } else if (oldval != user_zonelist_order) {
3423 mutex_lock(&zonelists_mutex);
9adb62a5 3424 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3425 mutex_unlock(&zonelists_mutex);
3426 }
f0c0b2b8 3427 }
443c6f14
AK
3428out:
3429 mutex_unlock(&zl_order_mutex);
3430 return ret;
f0c0b2b8
KH
3431}
3432
3433
62bc62a8 3434#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3435static int node_load[MAX_NUMNODES];
3436
1da177e4 3437/**
4dc3b16b 3438 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3439 * @node: node whose fallback list we're appending
3440 * @used_node_mask: nodemask_t of already used nodes
3441 *
3442 * We use a number of factors to determine which is the next node that should
3443 * appear on a given node's fallback list. The node should not have appeared
3444 * already in @node's fallback list, and it should be the next closest node
3445 * according to the distance array (which contains arbitrary distance values
3446 * from each node to each node in the system), and should also prefer nodes
3447 * with no CPUs, since presumably they'll have very little allocation pressure
3448 * on them otherwise.
3449 * It returns -1 if no node is found.
3450 */
f0c0b2b8 3451static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3452{
4cf808eb 3453 int n, val;
1da177e4 3454 int min_val = INT_MAX;
00ef2d2f 3455 int best_node = NUMA_NO_NODE;
a70f7302 3456 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3457
4cf808eb
LT
3458 /* Use the local node if we haven't already */
3459 if (!node_isset(node, *used_node_mask)) {
3460 node_set(node, *used_node_mask);
3461 return node;
3462 }
1da177e4 3463
4b0ef1fe 3464 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3465
3466 /* Don't want a node to appear more than once */
3467 if (node_isset(n, *used_node_mask))
3468 continue;
3469
1da177e4
LT
3470 /* Use the distance array to find the distance */
3471 val = node_distance(node, n);
3472
4cf808eb
LT
3473 /* Penalize nodes under us ("prefer the next node") */
3474 val += (n < node);
3475
1da177e4 3476 /* Give preference to headless and unused nodes */
a70f7302
RR
3477 tmp = cpumask_of_node(n);
3478 if (!cpumask_empty(tmp))
1da177e4
LT
3479 val += PENALTY_FOR_NODE_WITH_CPUS;
3480
3481 /* Slight preference for less loaded node */
3482 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3483 val += node_load[n];
3484
3485 if (val < min_val) {
3486 min_val = val;
3487 best_node = n;
3488 }
3489 }
3490
3491 if (best_node >= 0)
3492 node_set(best_node, *used_node_mask);
3493
3494 return best_node;
3495}
3496
f0c0b2b8
KH
3497
3498/*
3499 * Build zonelists ordered by node and zones within node.
3500 * This results in maximum locality--normal zone overflows into local
3501 * DMA zone, if any--but risks exhausting DMA zone.
3502 */
3503static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3504{
f0c0b2b8 3505 int j;
1da177e4 3506 struct zonelist *zonelist;
f0c0b2b8 3507
54a6eb5c 3508 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3509 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3510 ;
bc732f1d 3511 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3512 zonelist->_zonerefs[j].zone = NULL;
3513 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3514}
3515
523b9458
CL
3516/*
3517 * Build gfp_thisnode zonelists
3518 */
3519static void build_thisnode_zonelists(pg_data_t *pgdat)
3520{
523b9458
CL
3521 int j;
3522 struct zonelist *zonelist;
3523
54a6eb5c 3524 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3525 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3526 zonelist->_zonerefs[j].zone = NULL;
3527 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3528}
3529
f0c0b2b8
KH
3530/*
3531 * Build zonelists ordered by zone and nodes within zones.
3532 * This results in conserving DMA zone[s] until all Normal memory is
3533 * exhausted, but results in overflowing to remote node while memory
3534 * may still exist in local DMA zone.
3535 */
3536static int node_order[MAX_NUMNODES];
3537
3538static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3539{
f0c0b2b8
KH
3540 int pos, j, node;
3541 int zone_type; /* needs to be signed */
3542 struct zone *z;
3543 struct zonelist *zonelist;
3544
54a6eb5c
MG
3545 zonelist = &pgdat->node_zonelists[0];
3546 pos = 0;
3547 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3548 for (j = 0; j < nr_nodes; j++) {
3549 node = node_order[j];
3550 z = &NODE_DATA(node)->node_zones[zone_type];
3551 if (populated_zone(z)) {
dd1a239f
MG
3552 zoneref_set_zone(z,
3553 &zonelist->_zonerefs[pos++]);
54a6eb5c 3554 check_highest_zone(zone_type);
f0c0b2b8
KH
3555 }
3556 }
f0c0b2b8 3557 }
dd1a239f
MG
3558 zonelist->_zonerefs[pos].zone = NULL;
3559 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3560}
3561
3562static int default_zonelist_order(void)
3563{
3564 int nid, zone_type;
b8af2941 3565 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3566 struct zone *z;
3567 int average_size;
3568 /*
b8af2941 3569 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3570 * If they are really small and used heavily, the system can fall
3571 * into OOM very easily.
e325c90f 3572 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3573 */
3574 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3575 low_kmem_size = 0;
3576 total_size = 0;
3577 for_each_online_node(nid) {
3578 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3579 z = &NODE_DATA(nid)->node_zones[zone_type];
3580 if (populated_zone(z)) {
3581 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3582 low_kmem_size += z->managed_pages;
3583 total_size += z->managed_pages;
e325c90f
DR
3584 } else if (zone_type == ZONE_NORMAL) {
3585 /*
3586 * If any node has only lowmem, then node order
3587 * is preferred to allow kernel allocations
3588 * locally; otherwise, they can easily infringe
3589 * on other nodes when there is an abundance of
3590 * lowmem available to allocate from.
3591 */
3592 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3593 }
3594 }
3595 }
3596 if (!low_kmem_size || /* there are no DMA area. */
3597 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3598 return ZONELIST_ORDER_NODE;
3599 /*
3600 * look into each node's config.
b8af2941
PK
3601 * If there is a node whose DMA/DMA32 memory is very big area on
3602 * local memory, NODE_ORDER may be suitable.
3603 */
37b07e41 3604 average_size = total_size /
4b0ef1fe 3605 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3606 for_each_online_node(nid) {
3607 low_kmem_size = 0;
3608 total_size = 0;
3609 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3610 z = &NODE_DATA(nid)->node_zones[zone_type];
3611 if (populated_zone(z)) {
3612 if (zone_type < ZONE_NORMAL)
3613 low_kmem_size += z->present_pages;
3614 total_size += z->present_pages;
3615 }
3616 }
3617 if (low_kmem_size &&
3618 total_size > average_size && /* ignore small node */
3619 low_kmem_size > total_size * 70/100)
3620 return ZONELIST_ORDER_NODE;
3621 }
3622 return ZONELIST_ORDER_ZONE;
3623}
3624
3625static void set_zonelist_order(void)
3626{
3627 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3628 current_zonelist_order = default_zonelist_order();
3629 else
3630 current_zonelist_order = user_zonelist_order;
3631}
3632
3633static void build_zonelists(pg_data_t *pgdat)
3634{
3635 int j, node, load;
3636 enum zone_type i;
1da177e4 3637 nodemask_t used_mask;
f0c0b2b8
KH
3638 int local_node, prev_node;
3639 struct zonelist *zonelist;
3640 int order = current_zonelist_order;
1da177e4
LT
3641
3642 /* initialize zonelists */
523b9458 3643 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3644 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3645 zonelist->_zonerefs[0].zone = NULL;
3646 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3647 }
3648
3649 /* NUMA-aware ordering of nodes */
3650 local_node = pgdat->node_id;
62bc62a8 3651 load = nr_online_nodes;
1da177e4
LT
3652 prev_node = local_node;
3653 nodes_clear(used_mask);
f0c0b2b8 3654
f0c0b2b8
KH
3655 memset(node_order, 0, sizeof(node_order));
3656 j = 0;
3657
1da177e4
LT
3658 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3659 /*
3660 * We don't want to pressure a particular node.
3661 * So adding penalty to the first node in same
3662 * distance group to make it round-robin.
3663 */
957f822a
DR
3664 if (node_distance(local_node, node) !=
3665 node_distance(local_node, prev_node))
f0c0b2b8
KH
3666 node_load[node] = load;
3667
1da177e4
LT
3668 prev_node = node;
3669 load--;
f0c0b2b8
KH
3670 if (order == ZONELIST_ORDER_NODE)
3671 build_zonelists_in_node_order(pgdat, node);
3672 else
3673 node_order[j++] = node; /* remember order */
3674 }
1da177e4 3675
f0c0b2b8
KH
3676 if (order == ZONELIST_ORDER_ZONE) {
3677 /* calculate node order -- i.e., DMA last! */
3678 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3679 }
523b9458
CL
3680
3681 build_thisnode_zonelists(pgdat);
1da177e4
LT
3682}
3683
9276b1bc 3684/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3685static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3686{
54a6eb5c
MG
3687 struct zonelist *zonelist;
3688 struct zonelist_cache *zlc;
dd1a239f 3689 struct zoneref *z;
9276b1bc 3690
54a6eb5c
MG
3691 zonelist = &pgdat->node_zonelists[0];
3692 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3693 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3694 for (z = zonelist->_zonerefs; z->zone; z++)
3695 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3696}
3697
7aac7898
LS
3698#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3699/*
3700 * Return node id of node used for "local" allocations.
3701 * I.e., first node id of first zone in arg node's generic zonelist.
3702 * Used for initializing percpu 'numa_mem', which is used primarily
3703 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3704 */
3705int local_memory_node(int node)
3706{
3707 struct zone *zone;
3708
3709 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3710 gfp_zone(GFP_KERNEL),
3711 NULL,
3712 &zone);
3713 return zone->node;
3714}
3715#endif
f0c0b2b8 3716
1da177e4
LT
3717#else /* CONFIG_NUMA */
3718
f0c0b2b8
KH
3719static void set_zonelist_order(void)
3720{
3721 current_zonelist_order = ZONELIST_ORDER_ZONE;
3722}
3723
3724static void build_zonelists(pg_data_t *pgdat)
1da177e4 3725{
19655d34 3726 int node, local_node;
54a6eb5c
MG
3727 enum zone_type j;
3728 struct zonelist *zonelist;
1da177e4
LT
3729
3730 local_node = pgdat->node_id;
1da177e4 3731
54a6eb5c 3732 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3733 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3734
54a6eb5c
MG
3735 /*
3736 * Now we build the zonelist so that it contains the zones
3737 * of all the other nodes.
3738 * We don't want to pressure a particular node, so when
3739 * building the zones for node N, we make sure that the
3740 * zones coming right after the local ones are those from
3741 * node N+1 (modulo N)
3742 */
3743 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3744 if (!node_online(node))
3745 continue;
bc732f1d 3746 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3747 }
54a6eb5c
MG
3748 for (node = 0; node < local_node; node++) {
3749 if (!node_online(node))
3750 continue;
bc732f1d 3751 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3752 }
3753
dd1a239f
MG
3754 zonelist->_zonerefs[j].zone = NULL;
3755 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3756}
3757
9276b1bc 3758/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3759static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3760{
54a6eb5c 3761 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3762}
3763
1da177e4
LT
3764#endif /* CONFIG_NUMA */
3765
99dcc3e5
CL
3766/*
3767 * Boot pageset table. One per cpu which is going to be used for all
3768 * zones and all nodes. The parameters will be set in such a way
3769 * that an item put on a list will immediately be handed over to
3770 * the buddy list. This is safe since pageset manipulation is done
3771 * with interrupts disabled.
3772 *
3773 * The boot_pagesets must be kept even after bootup is complete for
3774 * unused processors and/or zones. They do play a role for bootstrapping
3775 * hotplugged processors.
3776 *
3777 * zoneinfo_show() and maybe other functions do
3778 * not check if the processor is online before following the pageset pointer.
3779 * Other parts of the kernel may not check if the zone is available.
3780 */
3781static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3782static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3783static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3784
4eaf3f64
HL
3785/*
3786 * Global mutex to protect against size modification of zonelists
3787 * as well as to serialize pageset setup for the new populated zone.
3788 */
3789DEFINE_MUTEX(zonelists_mutex);
3790
9b1a4d38 3791/* return values int ....just for stop_machine() */
4ed7e022 3792static int __build_all_zonelists(void *data)
1da177e4 3793{
6811378e 3794 int nid;
99dcc3e5 3795 int cpu;
9adb62a5 3796 pg_data_t *self = data;
9276b1bc 3797
7f9cfb31
BL
3798#ifdef CONFIG_NUMA
3799 memset(node_load, 0, sizeof(node_load));
3800#endif
9adb62a5
JL
3801
3802 if (self && !node_online(self->node_id)) {
3803 build_zonelists(self);
3804 build_zonelist_cache(self);
3805 }
3806
9276b1bc 3807 for_each_online_node(nid) {
7ea1530a
CL
3808 pg_data_t *pgdat = NODE_DATA(nid);
3809
3810 build_zonelists(pgdat);
3811 build_zonelist_cache(pgdat);
9276b1bc 3812 }
99dcc3e5
CL
3813
3814 /*
3815 * Initialize the boot_pagesets that are going to be used
3816 * for bootstrapping processors. The real pagesets for
3817 * each zone will be allocated later when the per cpu
3818 * allocator is available.
3819 *
3820 * boot_pagesets are used also for bootstrapping offline
3821 * cpus if the system is already booted because the pagesets
3822 * are needed to initialize allocators on a specific cpu too.
3823 * F.e. the percpu allocator needs the page allocator which
3824 * needs the percpu allocator in order to allocate its pagesets
3825 * (a chicken-egg dilemma).
3826 */
7aac7898 3827 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3828 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3829
7aac7898
LS
3830#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3831 /*
3832 * We now know the "local memory node" for each node--
3833 * i.e., the node of the first zone in the generic zonelist.
3834 * Set up numa_mem percpu variable for on-line cpus. During
3835 * boot, only the boot cpu should be on-line; we'll init the
3836 * secondary cpus' numa_mem as they come on-line. During
3837 * node/memory hotplug, we'll fixup all on-line cpus.
3838 */
3839 if (cpu_online(cpu))
3840 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3841#endif
3842 }
3843
6811378e
YG
3844 return 0;
3845}
3846
4eaf3f64
HL
3847/*
3848 * Called with zonelists_mutex held always
3849 * unless system_state == SYSTEM_BOOTING.
3850 */
9adb62a5 3851void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3852{
f0c0b2b8
KH
3853 set_zonelist_order();
3854
6811378e 3855 if (system_state == SYSTEM_BOOTING) {
423b41d7 3856 __build_all_zonelists(NULL);
68ad8df4 3857 mminit_verify_zonelist();
6811378e
YG
3858 cpuset_init_current_mems_allowed();
3859 } else {
e9959f0f 3860#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3861 if (zone)
3862 setup_zone_pageset(zone);
e9959f0f 3863#endif
dd1895e2
CS
3864 /* we have to stop all cpus to guarantee there is no user
3865 of zonelist */
9adb62a5 3866 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3867 /* cpuset refresh routine should be here */
3868 }
bd1e22b8 3869 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3870 /*
3871 * Disable grouping by mobility if the number of pages in the
3872 * system is too low to allow the mechanism to work. It would be
3873 * more accurate, but expensive to check per-zone. This check is
3874 * made on memory-hotadd so a system can start with mobility
3875 * disabled and enable it later
3876 */
d9c23400 3877 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3878 page_group_by_mobility_disabled = 1;
3879 else
3880 page_group_by_mobility_disabled = 0;
3881
3882 printk("Built %i zonelists in %s order, mobility grouping %s. "
3883 "Total pages: %ld\n",
62bc62a8 3884 nr_online_nodes,
f0c0b2b8 3885 zonelist_order_name[current_zonelist_order],
9ef9acb0 3886 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3887 vm_total_pages);
3888#ifdef CONFIG_NUMA
3889 printk("Policy zone: %s\n", zone_names[policy_zone]);
3890#endif
1da177e4
LT
3891}
3892
3893/*
3894 * Helper functions to size the waitqueue hash table.
3895 * Essentially these want to choose hash table sizes sufficiently
3896 * large so that collisions trying to wait on pages are rare.
3897 * But in fact, the number of active page waitqueues on typical
3898 * systems is ridiculously low, less than 200. So this is even
3899 * conservative, even though it seems large.
3900 *
3901 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3902 * waitqueues, i.e. the size of the waitq table given the number of pages.
3903 */
3904#define PAGES_PER_WAITQUEUE 256
3905
cca448fe 3906#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3907static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3908{
3909 unsigned long size = 1;
3910
3911 pages /= PAGES_PER_WAITQUEUE;
3912
3913 while (size < pages)
3914 size <<= 1;
3915
3916 /*
3917 * Once we have dozens or even hundreds of threads sleeping
3918 * on IO we've got bigger problems than wait queue collision.
3919 * Limit the size of the wait table to a reasonable size.
3920 */
3921 size = min(size, 4096UL);
3922
3923 return max(size, 4UL);
3924}
cca448fe
YG
3925#else
3926/*
3927 * A zone's size might be changed by hot-add, so it is not possible to determine
3928 * a suitable size for its wait_table. So we use the maximum size now.
3929 *
3930 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3931 *
3932 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3933 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3934 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3935 *
3936 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3937 * or more by the traditional way. (See above). It equals:
3938 *
3939 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3940 * ia64(16K page size) : = ( 8G + 4M)byte.
3941 * powerpc (64K page size) : = (32G +16M)byte.
3942 */
3943static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3944{
3945 return 4096UL;
3946}
3947#endif
1da177e4
LT
3948
3949/*
3950 * This is an integer logarithm so that shifts can be used later
3951 * to extract the more random high bits from the multiplicative
3952 * hash function before the remainder is taken.
3953 */
3954static inline unsigned long wait_table_bits(unsigned long size)
3955{
3956 return ffz(~size);
3957}
3958
6d3163ce
AH
3959/*
3960 * Check if a pageblock contains reserved pages
3961 */
3962static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3963{
3964 unsigned long pfn;
3965
3966 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3967 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3968 return 1;
3969 }
3970 return 0;
3971}
3972
56fd56b8 3973/*
d9c23400 3974 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3975 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3976 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3977 * higher will lead to a bigger reserve which will get freed as contiguous
3978 * blocks as reclaim kicks in
3979 */
3980static void setup_zone_migrate_reserve(struct zone *zone)
3981{
6d3163ce 3982 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3983 struct page *page;
78986a67
MG
3984 unsigned long block_migratetype;
3985 int reserve;
943dca1a 3986 int old_reserve;
56fd56b8 3987
d0215638
MH
3988 /*
3989 * Get the start pfn, end pfn and the number of blocks to reserve
3990 * We have to be careful to be aligned to pageblock_nr_pages to
3991 * make sure that we always check pfn_valid for the first page in
3992 * the block.
3993 */
56fd56b8 3994 start_pfn = zone->zone_start_pfn;
108bcc96 3995 end_pfn = zone_end_pfn(zone);
d0215638 3996 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3997 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3998 pageblock_order;
56fd56b8 3999
78986a67
MG
4000 /*
4001 * Reserve blocks are generally in place to help high-order atomic
4002 * allocations that are short-lived. A min_free_kbytes value that
4003 * would result in more than 2 reserve blocks for atomic allocations
4004 * is assumed to be in place to help anti-fragmentation for the
4005 * future allocation of hugepages at runtime.
4006 */
4007 reserve = min(2, reserve);
943dca1a
YI
4008 old_reserve = zone->nr_migrate_reserve_block;
4009
4010 /* When memory hot-add, we almost always need to do nothing */
4011 if (reserve == old_reserve)
4012 return;
4013 zone->nr_migrate_reserve_block = reserve;
78986a67 4014
d9c23400 4015 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4016 if (!pfn_valid(pfn))
4017 continue;
4018 page = pfn_to_page(pfn);
4019
344c790e
AL
4020 /* Watch out for overlapping nodes */
4021 if (page_to_nid(page) != zone_to_nid(zone))
4022 continue;
4023
56fd56b8
MG
4024 block_migratetype = get_pageblock_migratetype(page);
4025
938929f1
MG
4026 /* Only test what is necessary when the reserves are not met */
4027 if (reserve > 0) {
4028 /*
4029 * Blocks with reserved pages will never free, skip
4030 * them.
4031 */
4032 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4033 if (pageblock_is_reserved(pfn, block_end_pfn))
4034 continue;
56fd56b8 4035
938929f1
MG
4036 /* If this block is reserved, account for it */
4037 if (block_migratetype == MIGRATE_RESERVE) {
4038 reserve--;
4039 continue;
4040 }
4041
4042 /* Suitable for reserving if this block is movable */
4043 if (block_migratetype == MIGRATE_MOVABLE) {
4044 set_pageblock_migratetype(page,
4045 MIGRATE_RESERVE);
4046 move_freepages_block(zone, page,
4047 MIGRATE_RESERVE);
4048 reserve--;
4049 continue;
4050 }
943dca1a
YI
4051 } else if (!old_reserve) {
4052 /*
4053 * At boot time we don't need to scan the whole zone
4054 * for turning off MIGRATE_RESERVE.
4055 */
4056 break;
56fd56b8
MG
4057 }
4058
4059 /*
4060 * If the reserve is met and this is a previous reserved block,
4061 * take it back
4062 */
4063 if (block_migratetype == MIGRATE_RESERVE) {
4064 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4065 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4066 }
4067 }
4068}
ac0e5b7a 4069
1da177e4
LT
4070/*
4071 * Initially all pages are reserved - free ones are freed
4072 * up by free_all_bootmem() once the early boot process is
4073 * done. Non-atomic initialization, single-pass.
4074 */
c09b4240 4075void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4076 unsigned long start_pfn, enum memmap_context context)
1da177e4 4077{
1da177e4 4078 struct page *page;
29751f69
AW
4079 unsigned long end_pfn = start_pfn + size;
4080 unsigned long pfn;
86051ca5 4081 struct zone *z;
1da177e4 4082
22b31eec
HD
4083 if (highest_memmap_pfn < end_pfn - 1)
4084 highest_memmap_pfn = end_pfn - 1;
4085
86051ca5 4086 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4087 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4088 /*
4089 * There can be holes in boot-time mem_map[]s
4090 * handed to this function. They do not
4091 * exist on hotplugged memory.
4092 */
4093 if (context == MEMMAP_EARLY) {
4094 if (!early_pfn_valid(pfn))
4095 continue;
4096 if (!early_pfn_in_nid(pfn, nid))
4097 continue;
4098 }
d41dee36
AW
4099 page = pfn_to_page(pfn);
4100 set_page_links(page, zone, nid, pfn);
708614e6 4101 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4102 init_page_count(page);
22b751c3 4103 page_mapcount_reset(page);
90572890 4104 page_cpupid_reset_last(page);
1da177e4 4105 SetPageReserved(page);
b2a0ac88
MG
4106 /*
4107 * Mark the block movable so that blocks are reserved for
4108 * movable at startup. This will force kernel allocations
4109 * to reserve their blocks rather than leaking throughout
4110 * the address space during boot when many long-lived
56fd56b8
MG
4111 * kernel allocations are made. Later some blocks near
4112 * the start are marked MIGRATE_RESERVE by
4113 * setup_zone_migrate_reserve()
86051ca5
KH
4114 *
4115 * bitmap is created for zone's valid pfn range. but memmap
4116 * can be created for invalid pages (for alignment)
4117 * check here not to call set_pageblock_migratetype() against
4118 * pfn out of zone.
b2a0ac88 4119 */
86051ca5 4120 if ((z->zone_start_pfn <= pfn)
108bcc96 4121 && (pfn < zone_end_pfn(z))
86051ca5 4122 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4123 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4124
1da177e4
LT
4125 INIT_LIST_HEAD(&page->lru);
4126#ifdef WANT_PAGE_VIRTUAL
4127 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4128 if (!is_highmem_idx(zone))
3212c6be 4129 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4130#endif
1da177e4
LT
4131 }
4132}
4133
1e548deb 4134static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4135{
7aeb09f9 4136 unsigned int order, t;
b2a0ac88
MG
4137 for_each_migratetype_order(order, t) {
4138 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4139 zone->free_area[order].nr_free = 0;
4140 }
4141}
4142
4143#ifndef __HAVE_ARCH_MEMMAP_INIT
4144#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4145 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4146#endif
4147
4ed7e022 4148static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4149{
3a6be87f 4150#ifdef CONFIG_MMU
e7c8d5c9
CL
4151 int batch;
4152
4153 /*
4154 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4155 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4156 *
4157 * OK, so we don't know how big the cache is. So guess.
4158 */
b40da049 4159 batch = zone->managed_pages / 1024;
ba56e91c
SR
4160 if (batch * PAGE_SIZE > 512 * 1024)
4161 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4162 batch /= 4; /* We effectively *= 4 below */
4163 if (batch < 1)
4164 batch = 1;
4165
4166 /*
0ceaacc9
NP
4167 * Clamp the batch to a 2^n - 1 value. Having a power
4168 * of 2 value was found to be more likely to have
4169 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4170 *
0ceaacc9
NP
4171 * For example if 2 tasks are alternately allocating
4172 * batches of pages, one task can end up with a lot
4173 * of pages of one half of the possible page colors
4174 * and the other with pages of the other colors.
e7c8d5c9 4175 */
9155203a 4176 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4177
e7c8d5c9 4178 return batch;
3a6be87f
DH
4179
4180#else
4181 /* The deferral and batching of frees should be suppressed under NOMMU
4182 * conditions.
4183 *
4184 * The problem is that NOMMU needs to be able to allocate large chunks
4185 * of contiguous memory as there's no hardware page translation to
4186 * assemble apparent contiguous memory from discontiguous pages.
4187 *
4188 * Queueing large contiguous runs of pages for batching, however,
4189 * causes the pages to actually be freed in smaller chunks. As there
4190 * can be a significant delay between the individual batches being
4191 * recycled, this leads to the once large chunks of space being
4192 * fragmented and becoming unavailable for high-order allocations.
4193 */
4194 return 0;
4195#endif
e7c8d5c9
CL
4196}
4197
8d7a8fa9
CS
4198/*
4199 * pcp->high and pcp->batch values are related and dependent on one another:
4200 * ->batch must never be higher then ->high.
4201 * The following function updates them in a safe manner without read side
4202 * locking.
4203 *
4204 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4205 * those fields changing asynchronously (acording the the above rule).
4206 *
4207 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4208 * outside of boot time (or some other assurance that no concurrent updaters
4209 * exist).
4210 */
4211static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4212 unsigned long batch)
4213{
4214 /* start with a fail safe value for batch */
4215 pcp->batch = 1;
4216 smp_wmb();
4217
4218 /* Update high, then batch, in order */
4219 pcp->high = high;
4220 smp_wmb();
4221
4222 pcp->batch = batch;
4223}
4224
3664033c 4225/* a companion to pageset_set_high() */
4008bab7
CS
4226static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4227{
8d7a8fa9 4228 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4229}
4230
88c90dbc 4231static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4232{
4233 struct per_cpu_pages *pcp;
5f8dcc21 4234 int migratetype;
2caaad41 4235
1c6fe946
MD
4236 memset(p, 0, sizeof(*p));
4237
3dfa5721 4238 pcp = &p->pcp;
2caaad41 4239 pcp->count = 0;
5f8dcc21
MG
4240 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4241 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4242}
4243
88c90dbc
CS
4244static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4245{
4246 pageset_init(p);
4247 pageset_set_batch(p, batch);
4248}
4249
8ad4b1fb 4250/*
3664033c 4251 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4252 * to the value high for the pageset p.
4253 */
3664033c 4254static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4255 unsigned long high)
4256{
8d7a8fa9
CS
4257 unsigned long batch = max(1UL, high / 4);
4258 if ((high / 4) > (PAGE_SHIFT * 8))
4259 batch = PAGE_SHIFT * 8;
8ad4b1fb 4260
8d7a8fa9 4261 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4262}
4263
169f6c19
CS
4264static void __meminit pageset_set_high_and_batch(struct zone *zone,
4265 struct per_cpu_pageset *pcp)
56cef2b8 4266{
56cef2b8 4267 if (percpu_pagelist_fraction)
3664033c 4268 pageset_set_high(pcp,
56cef2b8
CS
4269 (zone->managed_pages /
4270 percpu_pagelist_fraction));
4271 else
4272 pageset_set_batch(pcp, zone_batchsize(zone));
4273}
4274
169f6c19
CS
4275static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4276{
4277 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4278
4279 pageset_init(pcp);
4280 pageset_set_high_and_batch(zone, pcp);
4281}
4282
4ed7e022 4283static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4284{
4285 int cpu;
319774e2 4286 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4287 for_each_possible_cpu(cpu)
4288 zone_pageset_init(zone, cpu);
319774e2
WF
4289}
4290
2caaad41 4291/*
99dcc3e5
CL
4292 * Allocate per cpu pagesets and initialize them.
4293 * Before this call only boot pagesets were available.
e7c8d5c9 4294 */
99dcc3e5 4295void __init setup_per_cpu_pageset(void)
e7c8d5c9 4296{
99dcc3e5 4297 struct zone *zone;
e7c8d5c9 4298
319774e2
WF
4299 for_each_populated_zone(zone)
4300 setup_zone_pageset(zone);
e7c8d5c9
CL
4301}
4302
577a32f6 4303static noinline __init_refok
cca448fe 4304int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4305{
4306 int i;
cca448fe 4307 size_t alloc_size;
ed8ece2e
DH
4308
4309 /*
4310 * The per-page waitqueue mechanism uses hashed waitqueues
4311 * per zone.
4312 */
02b694de
YG
4313 zone->wait_table_hash_nr_entries =
4314 wait_table_hash_nr_entries(zone_size_pages);
4315 zone->wait_table_bits =
4316 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4317 alloc_size = zone->wait_table_hash_nr_entries
4318 * sizeof(wait_queue_head_t);
4319
cd94b9db 4320 if (!slab_is_available()) {
cca448fe 4321 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4322 memblock_virt_alloc_node_nopanic(
4323 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4324 } else {
4325 /*
4326 * This case means that a zone whose size was 0 gets new memory
4327 * via memory hot-add.
4328 * But it may be the case that a new node was hot-added. In
4329 * this case vmalloc() will not be able to use this new node's
4330 * memory - this wait_table must be initialized to use this new
4331 * node itself as well.
4332 * To use this new node's memory, further consideration will be
4333 * necessary.
4334 */
8691f3a7 4335 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4336 }
4337 if (!zone->wait_table)
4338 return -ENOMEM;
ed8ece2e 4339
b8af2941 4340 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4341 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4342
4343 return 0;
ed8ece2e
DH
4344}
4345
c09b4240 4346static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4347{
99dcc3e5
CL
4348 /*
4349 * per cpu subsystem is not up at this point. The following code
4350 * relies on the ability of the linker to provide the
4351 * offset of a (static) per cpu variable into the per cpu area.
4352 */
4353 zone->pageset = &boot_pageset;
ed8ece2e 4354
b38a8725 4355 if (populated_zone(zone))
99dcc3e5
CL
4356 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4357 zone->name, zone->present_pages,
4358 zone_batchsize(zone));
ed8ece2e
DH
4359}
4360
4ed7e022 4361int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4362 unsigned long zone_start_pfn,
a2f3aa02
DH
4363 unsigned long size,
4364 enum memmap_context context)
ed8ece2e
DH
4365{
4366 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4367 int ret;
4368 ret = zone_wait_table_init(zone, size);
4369 if (ret)
4370 return ret;
ed8ece2e
DH
4371 pgdat->nr_zones = zone_idx(zone) + 1;
4372
ed8ece2e
DH
4373 zone->zone_start_pfn = zone_start_pfn;
4374
708614e6
MG
4375 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4376 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4377 pgdat->node_id,
4378 (unsigned long)zone_idx(zone),
4379 zone_start_pfn, (zone_start_pfn + size));
4380
1e548deb 4381 zone_init_free_lists(zone);
718127cc
YG
4382
4383 return 0;
ed8ece2e
DH
4384}
4385
0ee332c1 4386#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4387#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4388/*
4389 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4390 * Architectures may implement their own version but if add_active_range()
4391 * was used and there are no special requirements, this is a convenient
4392 * alternative
4393 */
f2dbcfa7 4394int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4395{
c13291a5 4396 unsigned long start_pfn, end_pfn;
e76b63f8 4397 int nid;
7c243c71
RA
4398 /*
4399 * NOTE: The following SMP-unsafe globals are only used early in boot
4400 * when the kernel is running single-threaded.
4401 */
4402 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4403 static int __meminitdata last_nid;
4404
4405 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4406 return last_nid;
c713216d 4407
e76b63f8
YL
4408 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4409 if (nid != -1) {
4410 last_start_pfn = start_pfn;
4411 last_end_pfn = end_pfn;
4412 last_nid = nid;
4413 }
4414
4415 return nid;
c713216d
MG
4416}
4417#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4418
f2dbcfa7
KH
4419int __meminit early_pfn_to_nid(unsigned long pfn)
4420{
cc2559bc
KH
4421 int nid;
4422
4423 nid = __early_pfn_to_nid(pfn);
4424 if (nid >= 0)
4425 return nid;
4426 /* just returns 0 */
4427 return 0;
f2dbcfa7
KH
4428}
4429
cc2559bc
KH
4430#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4431bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4432{
4433 int nid;
4434
4435 nid = __early_pfn_to_nid(pfn);
4436 if (nid >= 0 && nid != node)
4437 return false;
4438 return true;
4439}
4440#endif
f2dbcfa7 4441
c713216d 4442/**
6782832e 4443 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4444 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4445 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4446 *
4447 * If an architecture guarantees that all ranges registered with
4448 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4449 * this function may be used instead of calling memblock_free_early_nid()
4450 * manually.
c713216d 4451 */
c13291a5 4452void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4453{
c13291a5
TH
4454 unsigned long start_pfn, end_pfn;
4455 int i, this_nid;
edbe7d23 4456
c13291a5
TH
4457 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4458 start_pfn = min(start_pfn, max_low_pfn);
4459 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4460
c13291a5 4461 if (start_pfn < end_pfn)
6782832e
SS
4462 memblock_free_early_nid(PFN_PHYS(start_pfn),
4463 (end_pfn - start_pfn) << PAGE_SHIFT,
4464 this_nid);
edbe7d23 4465 }
edbe7d23 4466}
edbe7d23 4467
c713216d
MG
4468/**
4469 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4470 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4471 *
4472 * If an architecture guarantees that all ranges registered with
4473 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4474 * function may be used instead of calling memory_present() manually.
c713216d
MG
4475 */
4476void __init sparse_memory_present_with_active_regions(int nid)
4477{
c13291a5
TH
4478 unsigned long start_pfn, end_pfn;
4479 int i, this_nid;
c713216d 4480
c13291a5
TH
4481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4482 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4483}
4484
4485/**
4486 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4487 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4488 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4489 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4490 *
4491 * It returns the start and end page frame of a node based on information
4492 * provided by an arch calling add_active_range(). If called for a node
4493 * with no available memory, a warning is printed and the start and end
88ca3b94 4494 * PFNs will be 0.
c713216d 4495 */
a3142c8e 4496void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4497 unsigned long *start_pfn, unsigned long *end_pfn)
4498{
c13291a5 4499 unsigned long this_start_pfn, this_end_pfn;
c713216d 4500 int i;
c13291a5 4501
c713216d
MG
4502 *start_pfn = -1UL;
4503 *end_pfn = 0;
4504
c13291a5
TH
4505 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4506 *start_pfn = min(*start_pfn, this_start_pfn);
4507 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4508 }
4509
633c0666 4510 if (*start_pfn == -1UL)
c713216d 4511 *start_pfn = 0;
c713216d
MG
4512}
4513
2a1e274a
MG
4514/*
4515 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4516 * assumption is made that zones within a node are ordered in monotonic
4517 * increasing memory addresses so that the "highest" populated zone is used
4518 */
b69a7288 4519static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4520{
4521 int zone_index;
4522 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4523 if (zone_index == ZONE_MOVABLE)
4524 continue;
4525
4526 if (arch_zone_highest_possible_pfn[zone_index] >
4527 arch_zone_lowest_possible_pfn[zone_index])
4528 break;
4529 }
4530
4531 VM_BUG_ON(zone_index == -1);
4532 movable_zone = zone_index;
4533}
4534
4535/*
4536 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4537 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4538 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4539 * in each node depending on the size of each node and how evenly kernelcore
4540 * is distributed. This helper function adjusts the zone ranges
4541 * provided by the architecture for a given node by using the end of the
4542 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4543 * zones within a node are in order of monotonic increases memory addresses
4544 */
b69a7288 4545static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4546 unsigned long zone_type,
4547 unsigned long node_start_pfn,
4548 unsigned long node_end_pfn,
4549 unsigned long *zone_start_pfn,
4550 unsigned long *zone_end_pfn)
4551{
4552 /* Only adjust if ZONE_MOVABLE is on this node */
4553 if (zone_movable_pfn[nid]) {
4554 /* Size ZONE_MOVABLE */
4555 if (zone_type == ZONE_MOVABLE) {
4556 *zone_start_pfn = zone_movable_pfn[nid];
4557 *zone_end_pfn = min(node_end_pfn,
4558 arch_zone_highest_possible_pfn[movable_zone]);
4559
4560 /* Adjust for ZONE_MOVABLE starting within this range */
4561 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4562 *zone_end_pfn > zone_movable_pfn[nid]) {
4563 *zone_end_pfn = zone_movable_pfn[nid];
4564
4565 /* Check if this whole range is within ZONE_MOVABLE */
4566 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4567 *zone_start_pfn = *zone_end_pfn;
4568 }
4569}
4570
c713216d
MG
4571/*
4572 * Return the number of pages a zone spans in a node, including holes
4573 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4574 */
6ea6e688 4575static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4576 unsigned long zone_type,
7960aedd
ZY
4577 unsigned long node_start_pfn,
4578 unsigned long node_end_pfn,
c713216d
MG
4579 unsigned long *ignored)
4580{
c713216d
MG
4581 unsigned long zone_start_pfn, zone_end_pfn;
4582
7960aedd 4583 /* Get the start and end of the zone */
c713216d
MG
4584 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4585 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4586 adjust_zone_range_for_zone_movable(nid, zone_type,
4587 node_start_pfn, node_end_pfn,
4588 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4589
4590 /* Check that this node has pages within the zone's required range */
4591 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4592 return 0;
4593
4594 /* Move the zone boundaries inside the node if necessary */
4595 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4596 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4597
4598 /* Return the spanned pages */
4599 return zone_end_pfn - zone_start_pfn;
4600}
4601
4602/*
4603 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4604 * then all holes in the requested range will be accounted for.
c713216d 4605 */
32996250 4606unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4607 unsigned long range_start_pfn,
4608 unsigned long range_end_pfn)
4609{
96e907d1
TH
4610 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4611 unsigned long start_pfn, end_pfn;
4612 int i;
c713216d 4613
96e907d1
TH
4614 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4615 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4616 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4617 nr_absent -= end_pfn - start_pfn;
c713216d 4618 }
96e907d1 4619 return nr_absent;
c713216d
MG
4620}
4621
4622/**
4623 * absent_pages_in_range - Return number of page frames in holes within a range
4624 * @start_pfn: The start PFN to start searching for holes
4625 * @end_pfn: The end PFN to stop searching for holes
4626 *
88ca3b94 4627 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4628 */
4629unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4630 unsigned long end_pfn)
4631{
4632 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4633}
4634
4635/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4636static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4637 unsigned long zone_type,
7960aedd
ZY
4638 unsigned long node_start_pfn,
4639 unsigned long node_end_pfn,
c713216d
MG
4640 unsigned long *ignored)
4641{
96e907d1
TH
4642 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4643 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4644 unsigned long zone_start_pfn, zone_end_pfn;
4645
96e907d1
TH
4646 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4647 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4648
2a1e274a
MG
4649 adjust_zone_range_for_zone_movable(nid, zone_type,
4650 node_start_pfn, node_end_pfn,
4651 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4652 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4653}
0e0b864e 4654
0ee332c1 4655#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4656static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4657 unsigned long zone_type,
7960aedd
ZY
4658 unsigned long node_start_pfn,
4659 unsigned long node_end_pfn,
c713216d
MG
4660 unsigned long *zones_size)
4661{
4662 return zones_size[zone_type];
4663}
4664
6ea6e688 4665static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4666 unsigned long zone_type,
7960aedd
ZY
4667 unsigned long node_start_pfn,
4668 unsigned long node_end_pfn,
c713216d
MG
4669 unsigned long *zholes_size)
4670{
4671 if (!zholes_size)
4672 return 0;
4673
4674 return zholes_size[zone_type];
4675}
20e6926d 4676
0ee332c1 4677#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4678
a3142c8e 4679static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4680 unsigned long node_start_pfn,
4681 unsigned long node_end_pfn,
4682 unsigned long *zones_size,
4683 unsigned long *zholes_size)
c713216d
MG
4684{
4685 unsigned long realtotalpages, totalpages = 0;
4686 enum zone_type i;
4687
4688 for (i = 0; i < MAX_NR_ZONES; i++)
4689 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4690 node_start_pfn,
4691 node_end_pfn,
4692 zones_size);
c713216d
MG
4693 pgdat->node_spanned_pages = totalpages;
4694
4695 realtotalpages = totalpages;
4696 for (i = 0; i < MAX_NR_ZONES; i++)
4697 realtotalpages -=
4698 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4699 node_start_pfn, node_end_pfn,
4700 zholes_size);
c713216d
MG
4701 pgdat->node_present_pages = realtotalpages;
4702 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4703 realtotalpages);
4704}
4705
835c134e
MG
4706#ifndef CONFIG_SPARSEMEM
4707/*
4708 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4709 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4710 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4711 * round what is now in bits to nearest long in bits, then return it in
4712 * bytes.
4713 */
7c45512d 4714static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4715{
4716 unsigned long usemapsize;
4717
7c45512d 4718 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4719 usemapsize = roundup(zonesize, pageblock_nr_pages);
4720 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4721 usemapsize *= NR_PAGEBLOCK_BITS;
4722 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4723
4724 return usemapsize / 8;
4725}
4726
4727static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4728 struct zone *zone,
4729 unsigned long zone_start_pfn,
4730 unsigned long zonesize)
835c134e 4731{
7c45512d 4732 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4733 zone->pageblock_flags = NULL;
58a01a45 4734 if (usemapsize)
6782832e
SS
4735 zone->pageblock_flags =
4736 memblock_virt_alloc_node_nopanic(usemapsize,
4737 pgdat->node_id);
835c134e
MG
4738}
4739#else
7c45512d
LT
4740static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4741 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4742#endif /* CONFIG_SPARSEMEM */
4743
d9c23400 4744#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4745
d9c23400 4746/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4747void __paginginit set_pageblock_order(void)
d9c23400 4748{
955c1cd7
AM
4749 unsigned int order;
4750
d9c23400
MG
4751 /* Check that pageblock_nr_pages has not already been setup */
4752 if (pageblock_order)
4753 return;
4754
955c1cd7
AM
4755 if (HPAGE_SHIFT > PAGE_SHIFT)
4756 order = HUGETLB_PAGE_ORDER;
4757 else
4758 order = MAX_ORDER - 1;
4759
d9c23400
MG
4760 /*
4761 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4762 * This value may be variable depending on boot parameters on IA64 and
4763 * powerpc.
d9c23400
MG
4764 */
4765 pageblock_order = order;
4766}
4767#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4768
ba72cb8c
MG
4769/*
4770 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4771 * is unused as pageblock_order is set at compile-time. See
4772 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4773 * the kernel config
ba72cb8c 4774 */
15ca220e 4775void __paginginit set_pageblock_order(void)
ba72cb8c 4776{
ba72cb8c 4777}
d9c23400
MG
4778
4779#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4780
01cefaef
JL
4781static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4782 unsigned long present_pages)
4783{
4784 unsigned long pages = spanned_pages;
4785
4786 /*
4787 * Provide a more accurate estimation if there are holes within
4788 * the zone and SPARSEMEM is in use. If there are holes within the
4789 * zone, each populated memory region may cost us one or two extra
4790 * memmap pages due to alignment because memmap pages for each
4791 * populated regions may not naturally algined on page boundary.
4792 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4793 */
4794 if (spanned_pages > present_pages + (present_pages >> 4) &&
4795 IS_ENABLED(CONFIG_SPARSEMEM))
4796 pages = present_pages;
4797
4798 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4799}
4800
1da177e4
LT
4801/*
4802 * Set up the zone data structures:
4803 * - mark all pages reserved
4804 * - mark all memory queues empty
4805 * - clear the memory bitmaps
6527af5d
MK
4806 *
4807 * NOTE: pgdat should get zeroed by caller.
1da177e4 4808 */
b5a0e011 4809static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4810 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4811 unsigned long *zones_size, unsigned long *zholes_size)
4812{
2f1b6248 4813 enum zone_type j;
ed8ece2e 4814 int nid = pgdat->node_id;
1da177e4 4815 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4816 int ret;
1da177e4 4817
208d54e5 4818 pgdat_resize_init(pgdat);
8177a420
AA
4819#ifdef CONFIG_NUMA_BALANCING
4820 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4821 pgdat->numabalancing_migrate_nr_pages = 0;
4822 pgdat->numabalancing_migrate_next_window = jiffies;
4823#endif
1da177e4 4824 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4825 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4826 pgdat_page_cgroup_init(pgdat);
5f63b720 4827
1da177e4
LT
4828 for (j = 0; j < MAX_NR_ZONES; j++) {
4829 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4830 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4831
7960aedd
ZY
4832 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4833 node_end_pfn, zones_size);
9feedc9d 4834 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4835 node_start_pfn,
4836 node_end_pfn,
c713216d 4837 zholes_size);
1da177e4 4838
0e0b864e 4839 /*
9feedc9d 4840 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4841 * is used by this zone for memmap. This affects the watermark
4842 * and per-cpu initialisations
4843 */
01cefaef 4844 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4845 if (freesize >= memmap_pages) {
4846 freesize -= memmap_pages;
5594c8c8
YL
4847 if (memmap_pages)
4848 printk(KERN_DEBUG
4849 " %s zone: %lu pages used for memmap\n",
4850 zone_names[j], memmap_pages);
0e0b864e
MG
4851 } else
4852 printk(KERN_WARNING
9feedc9d
JL
4853 " %s zone: %lu pages exceeds freesize %lu\n",
4854 zone_names[j], memmap_pages, freesize);
0e0b864e 4855
6267276f 4856 /* Account for reserved pages */
9feedc9d
JL
4857 if (j == 0 && freesize > dma_reserve) {
4858 freesize -= dma_reserve;
d903ef9f 4859 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4860 zone_names[0], dma_reserve);
0e0b864e
MG
4861 }
4862
98d2b0eb 4863 if (!is_highmem_idx(j))
9feedc9d 4864 nr_kernel_pages += freesize;
01cefaef
JL
4865 /* Charge for highmem memmap if there are enough kernel pages */
4866 else if (nr_kernel_pages > memmap_pages * 2)
4867 nr_kernel_pages -= memmap_pages;
9feedc9d 4868 nr_all_pages += freesize;
1da177e4
LT
4869
4870 zone->spanned_pages = size;
306f2e9e 4871 zone->present_pages = realsize;
9feedc9d
JL
4872 /*
4873 * Set an approximate value for lowmem here, it will be adjusted
4874 * when the bootmem allocator frees pages into the buddy system.
4875 * And all highmem pages will be managed by the buddy system.
4876 */
4877 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4878#ifdef CONFIG_NUMA
d5f541ed 4879 zone->node = nid;
9feedc9d 4880 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4881 / 100;
9feedc9d 4882 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4883#endif
1da177e4
LT
4884 zone->name = zone_names[j];
4885 spin_lock_init(&zone->lock);
4886 spin_lock_init(&zone->lru_lock);
bdc8cb98 4887 zone_seqlock_init(zone);
1da177e4 4888 zone->zone_pgdat = pgdat;
ed8ece2e 4889 zone_pcp_init(zone);
81c0a2bb
JW
4890
4891 /* For bootup, initialized properly in watermark setup */
4892 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4893
bea8c150 4894 lruvec_init(&zone->lruvec);
1da177e4
LT
4895 if (!size)
4896 continue;
4897
955c1cd7 4898 set_pageblock_order();
7c45512d 4899 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4900 ret = init_currently_empty_zone(zone, zone_start_pfn,
4901 size, MEMMAP_EARLY);
718127cc 4902 BUG_ON(ret);
76cdd58e 4903 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4904 zone_start_pfn += size;
1da177e4
LT
4905 }
4906}
4907
577a32f6 4908static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4909{
1da177e4
LT
4910 /* Skip empty nodes */
4911 if (!pgdat->node_spanned_pages)
4912 return;
4913
d41dee36 4914#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4915 /* ia64 gets its own node_mem_map, before this, without bootmem */
4916 if (!pgdat->node_mem_map) {
e984bb43 4917 unsigned long size, start, end;
d41dee36
AW
4918 struct page *map;
4919
e984bb43
BP
4920 /*
4921 * The zone's endpoints aren't required to be MAX_ORDER
4922 * aligned but the node_mem_map endpoints must be in order
4923 * for the buddy allocator to function correctly.
4924 */
4925 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4926 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4927 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4928 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4929 map = alloc_remap(pgdat->node_id, size);
4930 if (!map)
6782832e
SS
4931 map = memblock_virt_alloc_node_nopanic(size,
4932 pgdat->node_id);
e984bb43 4933 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4934 }
12d810c1 4935#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4936 /*
4937 * With no DISCONTIG, the global mem_map is just set as node 0's
4938 */
c713216d 4939 if (pgdat == NODE_DATA(0)) {
1da177e4 4940 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4941#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4942 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4943 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4944#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4945 }
1da177e4 4946#endif
d41dee36 4947#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4948}
4949
9109fb7b
JW
4950void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4951 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4952{
9109fb7b 4953 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4954 unsigned long start_pfn = 0;
4955 unsigned long end_pfn = 0;
9109fb7b 4956
88fdf75d 4957 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4958 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4959
1da177e4
LT
4960 pgdat->node_id = nid;
4961 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4962#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4963 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4964#endif
4965 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4966 zones_size, zholes_size);
1da177e4
LT
4967
4968 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4969#ifdef CONFIG_FLAT_NODE_MEM_MAP
4970 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4971 nid, (unsigned long)pgdat,
4972 (unsigned long)pgdat->node_mem_map);
4973#endif
1da177e4 4974
7960aedd
ZY
4975 free_area_init_core(pgdat, start_pfn, end_pfn,
4976 zones_size, zholes_size);
1da177e4
LT
4977}
4978
0ee332c1 4979#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4980
4981#if MAX_NUMNODES > 1
4982/*
4983 * Figure out the number of possible node ids.
4984 */
f9872caf 4985void __init setup_nr_node_ids(void)
418508c1
MS
4986{
4987 unsigned int node;
4988 unsigned int highest = 0;
4989
4990 for_each_node_mask(node, node_possible_map)
4991 highest = node;
4992 nr_node_ids = highest + 1;
4993}
418508c1
MS
4994#endif
4995
1e01979c
TH
4996/**
4997 * node_map_pfn_alignment - determine the maximum internode alignment
4998 *
4999 * This function should be called after node map is populated and sorted.
5000 * It calculates the maximum power of two alignment which can distinguish
5001 * all the nodes.
5002 *
5003 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5004 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5005 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5006 * shifted, 1GiB is enough and this function will indicate so.
5007 *
5008 * This is used to test whether pfn -> nid mapping of the chosen memory
5009 * model has fine enough granularity to avoid incorrect mapping for the
5010 * populated node map.
5011 *
5012 * Returns the determined alignment in pfn's. 0 if there is no alignment
5013 * requirement (single node).
5014 */
5015unsigned long __init node_map_pfn_alignment(void)
5016{
5017 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5018 unsigned long start, end, mask;
1e01979c 5019 int last_nid = -1;
c13291a5 5020 int i, nid;
1e01979c 5021
c13291a5 5022 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5023 if (!start || last_nid < 0 || last_nid == nid) {
5024 last_nid = nid;
5025 last_end = end;
5026 continue;
5027 }
5028
5029 /*
5030 * Start with a mask granular enough to pin-point to the
5031 * start pfn and tick off bits one-by-one until it becomes
5032 * too coarse to separate the current node from the last.
5033 */
5034 mask = ~((1 << __ffs(start)) - 1);
5035 while (mask && last_end <= (start & (mask << 1)))
5036 mask <<= 1;
5037
5038 /* accumulate all internode masks */
5039 accl_mask |= mask;
5040 }
5041
5042 /* convert mask to number of pages */
5043 return ~accl_mask + 1;
5044}
5045
a6af2bc3 5046/* Find the lowest pfn for a node */
b69a7288 5047static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5048{
a6af2bc3 5049 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5050 unsigned long start_pfn;
5051 int i;
1abbfb41 5052
c13291a5
TH
5053 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5054 min_pfn = min(min_pfn, start_pfn);
c713216d 5055
a6af2bc3
MG
5056 if (min_pfn == ULONG_MAX) {
5057 printk(KERN_WARNING
2bc0d261 5058 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5059 return 0;
5060 }
5061
5062 return min_pfn;
c713216d
MG
5063}
5064
5065/**
5066 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5067 *
5068 * It returns the minimum PFN based on information provided via
88ca3b94 5069 * add_active_range().
c713216d
MG
5070 */
5071unsigned long __init find_min_pfn_with_active_regions(void)
5072{
5073 return find_min_pfn_for_node(MAX_NUMNODES);
5074}
5075
37b07e41
LS
5076/*
5077 * early_calculate_totalpages()
5078 * Sum pages in active regions for movable zone.
4b0ef1fe 5079 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5080 */
484f51f8 5081static unsigned long __init early_calculate_totalpages(void)
7e63efef 5082{
7e63efef 5083 unsigned long totalpages = 0;
c13291a5
TH
5084 unsigned long start_pfn, end_pfn;
5085 int i, nid;
5086
5087 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5088 unsigned long pages = end_pfn - start_pfn;
7e63efef 5089
37b07e41
LS
5090 totalpages += pages;
5091 if (pages)
4b0ef1fe 5092 node_set_state(nid, N_MEMORY);
37b07e41 5093 }
b8af2941 5094 return totalpages;
7e63efef
MG
5095}
5096
2a1e274a
MG
5097/*
5098 * Find the PFN the Movable zone begins in each node. Kernel memory
5099 * is spread evenly between nodes as long as the nodes have enough
5100 * memory. When they don't, some nodes will have more kernelcore than
5101 * others
5102 */
b224ef85 5103static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5104{
5105 int i, nid;
5106 unsigned long usable_startpfn;
5107 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5108 /* save the state before borrow the nodemask */
4b0ef1fe 5109 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5110 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5111 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5112 struct memblock_region *r;
b2f3eebe
TC
5113
5114 /* Need to find movable_zone earlier when movable_node is specified. */
5115 find_usable_zone_for_movable();
5116
5117 /*
5118 * If movable_node is specified, ignore kernelcore and movablecore
5119 * options.
5120 */
5121 if (movable_node_is_enabled()) {
136199f0
EM
5122 for_each_memblock(memory, r) {
5123 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5124 continue;
5125
136199f0 5126 nid = r->nid;
b2f3eebe 5127
136199f0 5128 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5129 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5130 min(usable_startpfn, zone_movable_pfn[nid]) :
5131 usable_startpfn;
5132 }
5133
5134 goto out2;
5135 }
2a1e274a 5136
7e63efef 5137 /*
b2f3eebe 5138 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5139 * kernelcore that corresponds so that memory usable for
5140 * any allocation type is evenly spread. If both kernelcore
5141 * and movablecore are specified, then the value of kernelcore
5142 * will be used for required_kernelcore if it's greater than
5143 * what movablecore would have allowed.
5144 */
5145 if (required_movablecore) {
7e63efef
MG
5146 unsigned long corepages;
5147
5148 /*
5149 * Round-up so that ZONE_MOVABLE is at least as large as what
5150 * was requested by the user
5151 */
5152 required_movablecore =
5153 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5154 corepages = totalpages - required_movablecore;
5155
5156 required_kernelcore = max(required_kernelcore, corepages);
5157 }
5158
20e6926d
YL
5159 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5160 if (!required_kernelcore)
66918dcd 5161 goto out;
2a1e274a
MG
5162
5163 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5164 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5165
5166restart:
5167 /* Spread kernelcore memory as evenly as possible throughout nodes */
5168 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5169 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5170 unsigned long start_pfn, end_pfn;
5171
2a1e274a
MG
5172 /*
5173 * Recalculate kernelcore_node if the division per node
5174 * now exceeds what is necessary to satisfy the requested
5175 * amount of memory for the kernel
5176 */
5177 if (required_kernelcore < kernelcore_node)
5178 kernelcore_node = required_kernelcore / usable_nodes;
5179
5180 /*
5181 * As the map is walked, we track how much memory is usable
5182 * by the kernel using kernelcore_remaining. When it is
5183 * 0, the rest of the node is usable by ZONE_MOVABLE
5184 */
5185 kernelcore_remaining = kernelcore_node;
5186
5187 /* Go through each range of PFNs within this node */
c13291a5 5188 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5189 unsigned long size_pages;
5190
c13291a5 5191 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5192 if (start_pfn >= end_pfn)
5193 continue;
5194
5195 /* Account for what is only usable for kernelcore */
5196 if (start_pfn < usable_startpfn) {
5197 unsigned long kernel_pages;
5198 kernel_pages = min(end_pfn, usable_startpfn)
5199 - start_pfn;
5200
5201 kernelcore_remaining -= min(kernel_pages,
5202 kernelcore_remaining);
5203 required_kernelcore -= min(kernel_pages,
5204 required_kernelcore);
5205
5206 /* Continue if range is now fully accounted */
5207 if (end_pfn <= usable_startpfn) {
5208
5209 /*
5210 * Push zone_movable_pfn to the end so
5211 * that if we have to rebalance
5212 * kernelcore across nodes, we will
5213 * not double account here
5214 */
5215 zone_movable_pfn[nid] = end_pfn;
5216 continue;
5217 }
5218 start_pfn = usable_startpfn;
5219 }
5220
5221 /*
5222 * The usable PFN range for ZONE_MOVABLE is from
5223 * start_pfn->end_pfn. Calculate size_pages as the
5224 * number of pages used as kernelcore
5225 */
5226 size_pages = end_pfn - start_pfn;
5227 if (size_pages > kernelcore_remaining)
5228 size_pages = kernelcore_remaining;
5229 zone_movable_pfn[nid] = start_pfn + size_pages;
5230
5231 /*
5232 * Some kernelcore has been met, update counts and
5233 * break if the kernelcore for this node has been
b8af2941 5234 * satisfied
2a1e274a
MG
5235 */
5236 required_kernelcore -= min(required_kernelcore,
5237 size_pages);
5238 kernelcore_remaining -= size_pages;
5239 if (!kernelcore_remaining)
5240 break;
5241 }
5242 }
5243
5244 /*
5245 * If there is still required_kernelcore, we do another pass with one
5246 * less node in the count. This will push zone_movable_pfn[nid] further
5247 * along on the nodes that still have memory until kernelcore is
b8af2941 5248 * satisfied
2a1e274a
MG
5249 */
5250 usable_nodes--;
5251 if (usable_nodes && required_kernelcore > usable_nodes)
5252 goto restart;
5253
b2f3eebe 5254out2:
2a1e274a
MG
5255 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5256 for (nid = 0; nid < MAX_NUMNODES; nid++)
5257 zone_movable_pfn[nid] =
5258 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5259
20e6926d 5260out:
66918dcd 5261 /* restore the node_state */
4b0ef1fe 5262 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5263}
5264
4b0ef1fe
LJ
5265/* Any regular or high memory on that node ? */
5266static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5267{
37b07e41
LS
5268 enum zone_type zone_type;
5269
4b0ef1fe
LJ
5270 if (N_MEMORY == N_NORMAL_MEMORY)
5271 return;
5272
5273 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5274 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5275 if (populated_zone(zone)) {
4b0ef1fe
LJ
5276 node_set_state(nid, N_HIGH_MEMORY);
5277 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5278 zone_type <= ZONE_NORMAL)
5279 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5280 break;
5281 }
37b07e41 5282 }
37b07e41
LS
5283}
5284
c713216d
MG
5285/**
5286 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5287 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5288 *
5289 * This will call free_area_init_node() for each active node in the system.
5290 * Using the page ranges provided by add_active_range(), the size of each
5291 * zone in each node and their holes is calculated. If the maximum PFN
5292 * between two adjacent zones match, it is assumed that the zone is empty.
5293 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5294 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5295 * starts where the previous one ended. For example, ZONE_DMA32 starts
5296 * at arch_max_dma_pfn.
5297 */
5298void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5299{
c13291a5
TH
5300 unsigned long start_pfn, end_pfn;
5301 int i, nid;
a6af2bc3 5302
c713216d
MG
5303 /* Record where the zone boundaries are */
5304 memset(arch_zone_lowest_possible_pfn, 0,
5305 sizeof(arch_zone_lowest_possible_pfn));
5306 memset(arch_zone_highest_possible_pfn, 0,
5307 sizeof(arch_zone_highest_possible_pfn));
5308 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5309 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5310 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5311 if (i == ZONE_MOVABLE)
5312 continue;
c713216d
MG
5313 arch_zone_lowest_possible_pfn[i] =
5314 arch_zone_highest_possible_pfn[i-1];
5315 arch_zone_highest_possible_pfn[i] =
5316 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5317 }
2a1e274a
MG
5318 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5319 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5320
5321 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5322 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5323 find_zone_movable_pfns_for_nodes();
c713216d 5324
c713216d 5325 /* Print out the zone ranges */
a62e2f4f 5326 printk("Zone ranges:\n");
2a1e274a
MG
5327 for (i = 0; i < MAX_NR_ZONES; i++) {
5328 if (i == ZONE_MOVABLE)
5329 continue;
155cbfc8 5330 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5331 if (arch_zone_lowest_possible_pfn[i] ==
5332 arch_zone_highest_possible_pfn[i])
155cbfc8 5333 printk(KERN_CONT "empty\n");
72f0ba02 5334 else
a62e2f4f
BH
5335 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5336 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5337 (arch_zone_highest_possible_pfn[i]
5338 << PAGE_SHIFT) - 1);
2a1e274a
MG
5339 }
5340
5341 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5342 printk("Movable zone start for each node\n");
2a1e274a
MG
5343 for (i = 0; i < MAX_NUMNODES; i++) {
5344 if (zone_movable_pfn[i])
a62e2f4f
BH
5345 printk(" Node %d: %#010lx\n", i,
5346 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5347 }
c713216d 5348
f2d52fe5 5349 /* Print out the early node map */
a62e2f4f 5350 printk("Early memory node ranges\n");
c13291a5 5351 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5352 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5353 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5354
5355 /* Initialise every node */
708614e6 5356 mminit_verify_pageflags_layout();
8ef82866 5357 setup_nr_node_ids();
c713216d
MG
5358 for_each_online_node(nid) {
5359 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5360 free_area_init_node(nid, NULL,
c713216d 5361 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5362
5363 /* Any memory on that node */
5364 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5365 node_set_state(nid, N_MEMORY);
5366 check_for_memory(pgdat, nid);
c713216d
MG
5367 }
5368}
2a1e274a 5369
7e63efef 5370static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5371{
5372 unsigned long long coremem;
5373 if (!p)
5374 return -EINVAL;
5375
5376 coremem = memparse(p, &p);
7e63efef 5377 *core = coremem >> PAGE_SHIFT;
2a1e274a 5378
7e63efef 5379 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5380 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5381
5382 return 0;
5383}
ed7ed365 5384
7e63efef
MG
5385/*
5386 * kernelcore=size sets the amount of memory for use for allocations that
5387 * cannot be reclaimed or migrated.
5388 */
5389static int __init cmdline_parse_kernelcore(char *p)
5390{
5391 return cmdline_parse_core(p, &required_kernelcore);
5392}
5393
5394/*
5395 * movablecore=size sets the amount of memory for use for allocations that
5396 * can be reclaimed or migrated.
5397 */
5398static int __init cmdline_parse_movablecore(char *p)
5399{
5400 return cmdline_parse_core(p, &required_movablecore);
5401}
5402
ed7ed365 5403early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5404early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5405
0ee332c1 5406#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5407
c3d5f5f0
JL
5408void adjust_managed_page_count(struct page *page, long count)
5409{
5410 spin_lock(&managed_page_count_lock);
5411 page_zone(page)->managed_pages += count;
5412 totalram_pages += count;
3dcc0571
JL
5413#ifdef CONFIG_HIGHMEM
5414 if (PageHighMem(page))
5415 totalhigh_pages += count;
5416#endif
c3d5f5f0
JL
5417 spin_unlock(&managed_page_count_lock);
5418}
3dcc0571 5419EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5420
11199692 5421unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5422{
11199692
JL
5423 void *pos;
5424 unsigned long pages = 0;
69afade7 5425
11199692
JL
5426 start = (void *)PAGE_ALIGN((unsigned long)start);
5427 end = (void *)((unsigned long)end & PAGE_MASK);
5428 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5429 if ((unsigned int)poison <= 0xFF)
11199692
JL
5430 memset(pos, poison, PAGE_SIZE);
5431 free_reserved_page(virt_to_page(pos));
69afade7
JL
5432 }
5433
5434 if (pages && s)
11199692 5435 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5436 s, pages << (PAGE_SHIFT - 10), start, end);
5437
5438 return pages;
5439}
11199692 5440EXPORT_SYMBOL(free_reserved_area);
69afade7 5441
cfa11e08
JL
5442#ifdef CONFIG_HIGHMEM
5443void free_highmem_page(struct page *page)
5444{
5445 __free_reserved_page(page);
5446 totalram_pages++;
7b4b2a0d 5447 page_zone(page)->managed_pages++;
cfa11e08
JL
5448 totalhigh_pages++;
5449}
5450#endif
5451
7ee3d4e8
JL
5452
5453void __init mem_init_print_info(const char *str)
5454{
5455 unsigned long physpages, codesize, datasize, rosize, bss_size;
5456 unsigned long init_code_size, init_data_size;
5457
5458 physpages = get_num_physpages();
5459 codesize = _etext - _stext;
5460 datasize = _edata - _sdata;
5461 rosize = __end_rodata - __start_rodata;
5462 bss_size = __bss_stop - __bss_start;
5463 init_data_size = __init_end - __init_begin;
5464 init_code_size = _einittext - _sinittext;
5465
5466 /*
5467 * Detect special cases and adjust section sizes accordingly:
5468 * 1) .init.* may be embedded into .data sections
5469 * 2) .init.text.* may be out of [__init_begin, __init_end],
5470 * please refer to arch/tile/kernel/vmlinux.lds.S.
5471 * 3) .rodata.* may be embedded into .text or .data sections.
5472 */
5473#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5474 do { \
5475 if (start <= pos && pos < end && size > adj) \
5476 size -= adj; \
5477 } while (0)
7ee3d4e8
JL
5478
5479 adj_init_size(__init_begin, __init_end, init_data_size,
5480 _sinittext, init_code_size);
5481 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5482 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5483 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5484 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5485
5486#undef adj_init_size
5487
5488 printk("Memory: %luK/%luK available "
5489 "(%luK kernel code, %luK rwdata, %luK rodata, "
5490 "%luK init, %luK bss, %luK reserved"
5491#ifdef CONFIG_HIGHMEM
5492 ", %luK highmem"
5493#endif
5494 "%s%s)\n",
5495 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5496 codesize >> 10, datasize >> 10, rosize >> 10,
5497 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5498 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5499#ifdef CONFIG_HIGHMEM
5500 totalhigh_pages << (PAGE_SHIFT-10),
5501#endif
5502 str ? ", " : "", str ? str : "");
5503}
5504
0e0b864e 5505/**
88ca3b94
RD
5506 * set_dma_reserve - set the specified number of pages reserved in the first zone
5507 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5508 *
5509 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5510 * In the DMA zone, a significant percentage may be consumed by kernel image
5511 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5512 * function may optionally be used to account for unfreeable pages in the
5513 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5514 * smaller per-cpu batchsize.
0e0b864e
MG
5515 */
5516void __init set_dma_reserve(unsigned long new_dma_reserve)
5517{
5518 dma_reserve = new_dma_reserve;
5519}
5520
1da177e4
LT
5521void __init free_area_init(unsigned long *zones_size)
5522{
9109fb7b 5523 free_area_init_node(0, zones_size,
1da177e4
LT
5524 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5525}
1da177e4 5526
1da177e4
LT
5527static int page_alloc_cpu_notify(struct notifier_block *self,
5528 unsigned long action, void *hcpu)
5529{
5530 int cpu = (unsigned long)hcpu;
1da177e4 5531
8bb78442 5532 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5533 lru_add_drain_cpu(cpu);
9f8f2172
CL
5534 drain_pages(cpu);
5535
5536 /*
5537 * Spill the event counters of the dead processor
5538 * into the current processors event counters.
5539 * This artificially elevates the count of the current
5540 * processor.
5541 */
f8891e5e 5542 vm_events_fold_cpu(cpu);
9f8f2172
CL
5543
5544 /*
5545 * Zero the differential counters of the dead processor
5546 * so that the vm statistics are consistent.
5547 *
5548 * This is only okay since the processor is dead and cannot
5549 * race with what we are doing.
5550 */
2bb921e5 5551 cpu_vm_stats_fold(cpu);
1da177e4
LT
5552 }
5553 return NOTIFY_OK;
5554}
1da177e4
LT
5555
5556void __init page_alloc_init(void)
5557{
5558 hotcpu_notifier(page_alloc_cpu_notify, 0);
5559}
5560
cb45b0e9
HA
5561/*
5562 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5563 * or min_free_kbytes changes.
5564 */
5565static void calculate_totalreserve_pages(void)
5566{
5567 struct pglist_data *pgdat;
5568 unsigned long reserve_pages = 0;
2f6726e5 5569 enum zone_type i, j;
cb45b0e9
HA
5570
5571 for_each_online_pgdat(pgdat) {
5572 for (i = 0; i < MAX_NR_ZONES; i++) {
5573 struct zone *zone = pgdat->node_zones + i;
5574 unsigned long max = 0;
5575
5576 /* Find valid and maximum lowmem_reserve in the zone */
5577 for (j = i; j < MAX_NR_ZONES; j++) {
5578 if (zone->lowmem_reserve[j] > max)
5579 max = zone->lowmem_reserve[j];
5580 }
5581
41858966
MG
5582 /* we treat the high watermark as reserved pages. */
5583 max += high_wmark_pages(zone);
cb45b0e9 5584
b40da049
JL
5585 if (max > zone->managed_pages)
5586 max = zone->managed_pages;
cb45b0e9 5587 reserve_pages += max;
ab8fabd4
JW
5588 /*
5589 * Lowmem reserves are not available to
5590 * GFP_HIGHUSER page cache allocations and
5591 * kswapd tries to balance zones to their high
5592 * watermark. As a result, neither should be
5593 * regarded as dirtyable memory, to prevent a
5594 * situation where reclaim has to clean pages
5595 * in order to balance the zones.
5596 */
5597 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5598 }
5599 }
ab8fabd4 5600 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5601 totalreserve_pages = reserve_pages;
5602}
5603
1da177e4
LT
5604/*
5605 * setup_per_zone_lowmem_reserve - called whenever
5606 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5607 * has a correct pages reserved value, so an adequate number of
5608 * pages are left in the zone after a successful __alloc_pages().
5609 */
5610static void setup_per_zone_lowmem_reserve(void)
5611{
5612 struct pglist_data *pgdat;
2f6726e5 5613 enum zone_type j, idx;
1da177e4 5614
ec936fc5 5615 for_each_online_pgdat(pgdat) {
1da177e4
LT
5616 for (j = 0; j < MAX_NR_ZONES; j++) {
5617 struct zone *zone = pgdat->node_zones + j;
b40da049 5618 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5619
5620 zone->lowmem_reserve[j] = 0;
5621
2f6726e5
CL
5622 idx = j;
5623 while (idx) {
1da177e4
LT
5624 struct zone *lower_zone;
5625
2f6726e5
CL
5626 idx--;
5627
1da177e4
LT
5628 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5629 sysctl_lowmem_reserve_ratio[idx] = 1;
5630
5631 lower_zone = pgdat->node_zones + idx;
b40da049 5632 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5633 sysctl_lowmem_reserve_ratio[idx];
b40da049 5634 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5635 }
5636 }
5637 }
cb45b0e9
HA
5638
5639 /* update totalreserve_pages */
5640 calculate_totalreserve_pages();
1da177e4
LT
5641}
5642
cfd3da1e 5643static void __setup_per_zone_wmarks(void)
1da177e4
LT
5644{
5645 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5646 unsigned long lowmem_pages = 0;
5647 struct zone *zone;
5648 unsigned long flags;
5649
5650 /* Calculate total number of !ZONE_HIGHMEM pages */
5651 for_each_zone(zone) {
5652 if (!is_highmem(zone))
b40da049 5653 lowmem_pages += zone->managed_pages;
1da177e4
LT
5654 }
5655
5656 for_each_zone(zone) {
ac924c60
AM
5657 u64 tmp;
5658
1125b4e3 5659 spin_lock_irqsave(&zone->lock, flags);
b40da049 5660 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5661 do_div(tmp, lowmem_pages);
1da177e4
LT
5662 if (is_highmem(zone)) {
5663 /*
669ed175
NP
5664 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5665 * need highmem pages, so cap pages_min to a small
5666 * value here.
5667 *
41858966 5668 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5669 * deltas controls asynch page reclaim, and so should
5670 * not be capped for highmem.
1da177e4 5671 */
90ae8d67 5672 unsigned long min_pages;
1da177e4 5673
b40da049 5674 min_pages = zone->managed_pages / 1024;
90ae8d67 5675 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5676 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5677 } else {
669ed175
NP
5678 /*
5679 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5680 * proportionate to the zone's size.
5681 */
41858966 5682 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5683 }
5684
41858966
MG
5685 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5686 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5687
81c0a2bb
JW
5688 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5689 high_wmark_pages(zone) -
5690 low_wmark_pages(zone) -
5691 zone_page_state(zone, NR_ALLOC_BATCH));
5692
56fd56b8 5693 setup_zone_migrate_reserve(zone);
1125b4e3 5694 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5695 }
cb45b0e9
HA
5696
5697 /* update totalreserve_pages */
5698 calculate_totalreserve_pages();
1da177e4
LT
5699}
5700
cfd3da1e
MG
5701/**
5702 * setup_per_zone_wmarks - called when min_free_kbytes changes
5703 * or when memory is hot-{added|removed}
5704 *
5705 * Ensures that the watermark[min,low,high] values for each zone are set
5706 * correctly with respect to min_free_kbytes.
5707 */
5708void setup_per_zone_wmarks(void)
5709{
5710 mutex_lock(&zonelists_mutex);
5711 __setup_per_zone_wmarks();
5712 mutex_unlock(&zonelists_mutex);
5713}
5714
55a4462a 5715/*
556adecb
RR
5716 * The inactive anon list should be small enough that the VM never has to
5717 * do too much work, but large enough that each inactive page has a chance
5718 * to be referenced again before it is swapped out.
5719 *
5720 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5721 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5722 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5723 * the anonymous pages are kept on the inactive list.
5724 *
5725 * total target max
5726 * memory ratio inactive anon
5727 * -------------------------------------
5728 * 10MB 1 5MB
5729 * 100MB 1 50MB
5730 * 1GB 3 250MB
5731 * 10GB 10 0.9GB
5732 * 100GB 31 3GB
5733 * 1TB 101 10GB
5734 * 10TB 320 32GB
5735 */
1b79acc9 5736static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5737{
96cb4df5 5738 unsigned int gb, ratio;
556adecb 5739
96cb4df5 5740 /* Zone size in gigabytes */
b40da049 5741 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5742 if (gb)
556adecb 5743 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5744 else
5745 ratio = 1;
556adecb 5746
96cb4df5
MK
5747 zone->inactive_ratio = ratio;
5748}
556adecb 5749
839a4fcc 5750static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5751{
5752 struct zone *zone;
5753
5754 for_each_zone(zone)
5755 calculate_zone_inactive_ratio(zone);
556adecb
RR
5756}
5757
1da177e4
LT
5758/*
5759 * Initialise min_free_kbytes.
5760 *
5761 * For small machines we want it small (128k min). For large machines
5762 * we want it large (64MB max). But it is not linear, because network
5763 * bandwidth does not increase linearly with machine size. We use
5764 *
b8af2941 5765 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5766 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5767 *
5768 * which yields
5769 *
5770 * 16MB: 512k
5771 * 32MB: 724k
5772 * 64MB: 1024k
5773 * 128MB: 1448k
5774 * 256MB: 2048k
5775 * 512MB: 2896k
5776 * 1024MB: 4096k
5777 * 2048MB: 5792k
5778 * 4096MB: 8192k
5779 * 8192MB: 11584k
5780 * 16384MB: 16384k
5781 */
1b79acc9 5782int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5783{
5784 unsigned long lowmem_kbytes;
5f12733e 5785 int new_min_free_kbytes;
1da177e4
LT
5786
5787 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5788 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5789
5790 if (new_min_free_kbytes > user_min_free_kbytes) {
5791 min_free_kbytes = new_min_free_kbytes;
5792 if (min_free_kbytes < 128)
5793 min_free_kbytes = 128;
5794 if (min_free_kbytes > 65536)
5795 min_free_kbytes = 65536;
5796 } else {
5797 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5798 new_min_free_kbytes, user_min_free_kbytes);
5799 }
bc75d33f 5800 setup_per_zone_wmarks();
a6cccdc3 5801 refresh_zone_stat_thresholds();
1da177e4 5802 setup_per_zone_lowmem_reserve();
556adecb 5803 setup_per_zone_inactive_ratio();
1da177e4
LT
5804 return 0;
5805}
bc75d33f 5806module_init(init_per_zone_wmark_min)
1da177e4
LT
5807
5808/*
b8af2941 5809 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5810 * that we can call two helper functions whenever min_free_kbytes
5811 * changes.
5812 */
b8af2941 5813int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5814 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5815{
da8c757b
HP
5816 int rc;
5817
5818 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5819 if (rc)
5820 return rc;
5821
5f12733e
MH
5822 if (write) {
5823 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5824 setup_per_zone_wmarks();
5f12733e 5825 }
1da177e4
LT
5826 return 0;
5827}
5828
9614634f
CL
5829#ifdef CONFIG_NUMA
5830int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5831 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5832{
5833 struct zone *zone;
5834 int rc;
5835
8d65af78 5836 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5837 if (rc)
5838 return rc;
5839
5840 for_each_zone(zone)
b40da049 5841 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5842 sysctl_min_unmapped_ratio) / 100;
5843 return 0;
5844}
0ff38490
CL
5845
5846int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5847 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5848{
5849 struct zone *zone;
5850 int rc;
5851
8d65af78 5852 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5853 if (rc)
5854 return rc;
5855
5856 for_each_zone(zone)
b40da049 5857 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5858 sysctl_min_slab_ratio) / 100;
5859 return 0;
5860}
9614634f
CL
5861#endif
5862
1da177e4
LT
5863/*
5864 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5865 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5866 * whenever sysctl_lowmem_reserve_ratio changes.
5867 *
5868 * The reserve ratio obviously has absolutely no relation with the
41858966 5869 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5870 * if in function of the boot time zone sizes.
5871 */
5872int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5873 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5874{
8d65af78 5875 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5876 setup_per_zone_lowmem_reserve();
5877 return 0;
5878}
5879
8ad4b1fb
RS
5880/*
5881 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5882 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5883 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5884 */
8ad4b1fb 5885int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5886 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5887{
5888 struct zone *zone;
5889 unsigned int cpu;
5890 int ret;
5891
8d65af78 5892 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5893 if (!write || (ret < 0))
8ad4b1fb 5894 return ret;
c8e251fa
CS
5895
5896 mutex_lock(&pcp_batch_high_lock);
364df0eb 5897 for_each_populated_zone(zone) {
22a7f12b
CS
5898 unsigned long high;
5899 high = zone->managed_pages / percpu_pagelist_fraction;
5900 for_each_possible_cpu(cpu)
3664033c
CS
5901 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5902 high);
8ad4b1fb 5903 }
c8e251fa 5904 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5905 return 0;
5906}
5907
f034b5d4 5908int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5909
5910#ifdef CONFIG_NUMA
5911static int __init set_hashdist(char *str)
5912{
5913 if (!str)
5914 return 0;
5915 hashdist = simple_strtoul(str, &str, 0);
5916 return 1;
5917}
5918__setup("hashdist=", set_hashdist);
5919#endif
5920
5921/*
5922 * allocate a large system hash table from bootmem
5923 * - it is assumed that the hash table must contain an exact power-of-2
5924 * quantity of entries
5925 * - limit is the number of hash buckets, not the total allocation size
5926 */
5927void *__init alloc_large_system_hash(const char *tablename,
5928 unsigned long bucketsize,
5929 unsigned long numentries,
5930 int scale,
5931 int flags,
5932 unsigned int *_hash_shift,
5933 unsigned int *_hash_mask,
31fe62b9
TB
5934 unsigned long low_limit,
5935 unsigned long high_limit)
1da177e4 5936{
31fe62b9 5937 unsigned long long max = high_limit;
1da177e4
LT
5938 unsigned long log2qty, size;
5939 void *table = NULL;
5940
5941 /* allow the kernel cmdline to have a say */
5942 if (!numentries) {
5943 /* round applicable memory size up to nearest megabyte */
04903664 5944 numentries = nr_kernel_pages;
a7e83318
JZ
5945
5946 /* It isn't necessary when PAGE_SIZE >= 1MB */
5947 if (PAGE_SHIFT < 20)
5948 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5949
5950 /* limit to 1 bucket per 2^scale bytes of low memory */
5951 if (scale > PAGE_SHIFT)
5952 numentries >>= (scale - PAGE_SHIFT);
5953 else
5954 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5955
5956 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5957 if (unlikely(flags & HASH_SMALL)) {
5958 /* Makes no sense without HASH_EARLY */
5959 WARN_ON(!(flags & HASH_EARLY));
5960 if (!(numentries >> *_hash_shift)) {
5961 numentries = 1UL << *_hash_shift;
5962 BUG_ON(!numentries);
5963 }
5964 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5965 numentries = PAGE_SIZE / bucketsize;
1da177e4 5966 }
6e692ed3 5967 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5968
5969 /* limit allocation size to 1/16 total memory by default */
5970 if (max == 0) {
5971 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5972 do_div(max, bucketsize);
5973 }
074b8517 5974 max = min(max, 0x80000000ULL);
1da177e4 5975
31fe62b9
TB
5976 if (numentries < low_limit)
5977 numentries = low_limit;
1da177e4
LT
5978 if (numentries > max)
5979 numentries = max;
5980
f0d1b0b3 5981 log2qty = ilog2(numentries);
1da177e4
LT
5982
5983 do {
5984 size = bucketsize << log2qty;
5985 if (flags & HASH_EARLY)
6782832e 5986 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5987 else if (hashdist)
5988 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5989 else {
1037b83b
ED
5990 /*
5991 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5992 * some pages at the end of hash table which
5993 * alloc_pages_exact() automatically does
1037b83b 5994 */
264ef8a9 5995 if (get_order(size) < MAX_ORDER) {
a1dd268c 5996 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5997 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5998 }
1da177e4
LT
5999 }
6000 } while (!table && size > PAGE_SIZE && --log2qty);
6001
6002 if (!table)
6003 panic("Failed to allocate %s hash table\n", tablename);
6004
f241e660 6005 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6006 tablename,
f241e660 6007 (1UL << log2qty),
f0d1b0b3 6008 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6009 size);
6010
6011 if (_hash_shift)
6012 *_hash_shift = log2qty;
6013 if (_hash_mask)
6014 *_hash_mask = (1 << log2qty) - 1;
6015
6016 return table;
6017}
a117e66e 6018
835c134e
MG
6019/* Return a pointer to the bitmap storing bits affecting a block of pages */
6020static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6021 unsigned long pfn)
6022{
6023#ifdef CONFIG_SPARSEMEM
6024 return __pfn_to_section(pfn)->pageblock_flags;
6025#else
6026 return zone->pageblock_flags;
6027#endif /* CONFIG_SPARSEMEM */
6028}
6029
6030static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6031{
6032#ifdef CONFIG_SPARSEMEM
6033 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6034 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6035#else
c060f943 6036 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6037 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6038#endif /* CONFIG_SPARSEMEM */
6039}
6040
6041/**
d9c23400 6042 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6043 * @page: The page within the block of interest
6044 * @start_bitidx: The first bit of interest to retrieve
6045 * @end_bitidx: The last bit of interest
6046 * returns pageblock_bits flags
6047 */
dc4b0caf 6048unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6049 unsigned long end_bitidx,
6050 unsigned long mask)
835c134e
MG
6051{
6052 struct zone *zone;
6053 unsigned long *bitmap;
dc4b0caf 6054 unsigned long bitidx, word_bitidx;
e58469ba 6055 unsigned long word;
835c134e
MG
6056
6057 zone = page_zone(page);
835c134e
MG
6058 bitmap = get_pageblock_bitmap(zone, pfn);
6059 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6060 word_bitidx = bitidx / BITS_PER_LONG;
6061 bitidx &= (BITS_PER_LONG-1);
835c134e 6062
e58469ba
MG
6063 word = bitmap[word_bitidx];
6064 bitidx += end_bitidx;
6065 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6066}
6067
6068/**
dc4b0caf 6069 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6070 * @page: The page within the block of interest
6071 * @start_bitidx: The first bit of interest
6072 * @end_bitidx: The last bit of interest
6073 * @flags: The flags to set
6074 */
dc4b0caf
MG
6075void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6076 unsigned long pfn,
e58469ba
MG
6077 unsigned long end_bitidx,
6078 unsigned long mask)
835c134e
MG
6079{
6080 struct zone *zone;
6081 unsigned long *bitmap;
dc4b0caf 6082 unsigned long bitidx, word_bitidx;
e58469ba
MG
6083 unsigned long old_word, word;
6084
6085 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6086
6087 zone = page_zone(page);
835c134e
MG
6088 bitmap = get_pageblock_bitmap(zone, pfn);
6089 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6090 word_bitidx = bitidx / BITS_PER_LONG;
6091 bitidx &= (BITS_PER_LONG-1);
6092
309381fe 6093 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6094
e58469ba
MG
6095 bitidx += end_bitidx;
6096 mask <<= (BITS_PER_LONG - bitidx - 1);
6097 flags <<= (BITS_PER_LONG - bitidx - 1);
6098
6099 word = ACCESS_ONCE(bitmap[word_bitidx]);
6100 for (;;) {
6101 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6102 if (word == old_word)
6103 break;
6104 word = old_word;
6105 }
835c134e 6106}
a5d76b54
KH
6107
6108/*
80934513
MK
6109 * This function checks whether pageblock includes unmovable pages or not.
6110 * If @count is not zero, it is okay to include less @count unmovable pages
6111 *
b8af2941 6112 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6113 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6114 * expect this function should be exact.
a5d76b54 6115 */
b023f468
WC
6116bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6117 bool skip_hwpoisoned_pages)
49ac8255
KH
6118{
6119 unsigned long pfn, iter, found;
47118af0
MN
6120 int mt;
6121
49ac8255
KH
6122 /*
6123 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6124 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6125 */
6126 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6127 return false;
47118af0
MN
6128 mt = get_pageblock_migratetype(page);
6129 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6130 return false;
49ac8255
KH
6131
6132 pfn = page_to_pfn(page);
6133 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6134 unsigned long check = pfn + iter;
6135
29723fcc 6136 if (!pfn_valid_within(check))
49ac8255 6137 continue;
29723fcc 6138
49ac8255 6139 page = pfn_to_page(check);
c8721bbb
NH
6140
6141 /*
6142 * Hugepages are not in LRU lists, but they're movable.
6143 * We need not scan over tail pages bacause we don't
6144 * handle each tail page individually in migration.
6145 */
6146 if (PageHuge(page)) {
6147 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6148 continue;
6149 }
6150
97d255c8
MK
6151 /*
6152 * We can't use page_count without pin a page
6153 * because another CPU can free compound page.
6154 * This check already skips compound tails of THP
6155 * because their page->_count is zero at all time.
6156 */
6157 if (!atomic_read(&page->_count)) {
49ac8255
KH
6158 if (PageBuddy(page))
6159 iter += (1 << page_order(page)) - 1;
6160 continue;
6161 }
97d255c8 6162
b023f468
WC
6163 /*
6164 * The HWPoisoned page may be not in buddy system, and
6165 * page_count() is not 0.
6166 */
6167 if (skip_hwpoisoned_pages && PageHWPoison(page))
6168 continue;
6169
49ac8255
KH
6170 if (!PageLRU(page))
6171 found++;
6172 /*
6173 * If there are RECLAIMABLE pages, we need to check it.
6174 * But now, memory offline itself doesn't call shrink_slab()
6175 * and it still to be fixed.
6176 */
6177 /*
6178 * If the page is not RAM, page_count()should be 0.
6179 * we don't need more check. This is an _used_ not-movable page.
6180 *
6181 * The problematic thing here is PG_reserved pages. PG_reserved
6182 * is set to both of a memory hole page and a _used_ kernel
6183 * page at boot.
6184 */
6185 if (found > count)
80934513 6186 return true;
49ac8255 6187 }
80934513 6188 return false;
49ac8255
KH
6189}
6190
6191bool is_pageblock_removable_nolock(struct page *page)
6192{
656a0706
MH
6193 struct zone *zone;
6194 unsigned long pfn;
687875fb
MH
6195
6196 /*
6197 * We have to be careful here because we are iterating over memory
6198 * sections which are not zone aware so we might end up outside of
6199 * the zone but still within the section.
656a0706
MH
6200 * We have to take care about the node as well. If the node is offline
6201 * its NODE_DATA will be NULL - see page_zone.
687875fb 6202 */
656a0706
MH
6203 if (!node_online(page_to_nid(page)))
6204 return false;
6205
6206 zone = page_zone(page);
6207 pfn = page_to_pfn(page);
108bcc96 6208 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6209 return false;
6210
b023f468 6211 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6212}
0c0e6195 6213
041d3a8c
MN
6214#ifdef CONFIG_CMA
6215
6216static unsigned long pfn_max_align_down(unsigned long pfn)
6217{
6218 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6219 pageblock_nr_pages) - 1);
6220}
6221
6222static unsigned long pfn_max_align_up(unsigned long pfn)
6223{
6224 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6225 pageblock_nr_pages));
6226}
6227
041d3a8c 6228/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6229static int __alloc_contig_migrate_range(struct compact_control *cc,
6230 unsigned long start, unsigned long end)
041d3a8c
MN
6231{
6232 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6233 unsigned long nr_reclaimed;
041d3a8c
MN
6234 unsigned long pfn = start;
6235 unsigned int tries = 0;
6236 int ret = 0;
6237
be49a6e1 6238 migrate_prep();
041d3a8c 6239
bb13ffeb 6240 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6241 if (fatal_signal_pending(current)) {
6242 ret = -EINTR;
6243 break;
6244 }
6245
bb13ffeb
MG
6246 if (list_empty(&cc->migratepages)) {
6247 cc->nr_migratepages = 0;
6248 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6249 pfn, end, true);
041d3a8c
MN
6250 if (!pfn) {
6251 ret = -EINTR;
6252 break;
6253 }
6254 tries = 0;
6255 } else if (++tries == 5) {
6256 ret = ret < 0 ? ret : -EBUSY;
6257 break;
6258 }
6259
beb51eaa
MK
6260 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6261 &cc->migratepages);
6262 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6263
9c620e2b 6264 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6265 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6266 }
2a6f5124
SP
6267 if (ret < 0) {
6268 putback_movable_pages(&cc->migratepages);
6269 return ret;
6270 }
6271 return 0;
041d3a8c
MN
6272}
6273
6274/**
6275 * alloc_contig_range() -- tries to allocate given range of pages
6276 * @start: start PFN to allocate
6277 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6278 * @migratetype: migratetype of the underlaying pageblocks (either
6279 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6280 * in range must have the same migratetype and it must
6281 * be either of the two.
041d3a8c
MN
6282 *
6283 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6284 * aligned, however it's the caller's responsibility to guarantee that
6285 * we are the only thread that changes migrate type of pageblocks the
6286 * pages fall in.
6287 *
6288 * The PFN range must belong to a single zone.
6289 *
6290 * Returns zero on success or negative error code. On success all
6291 * pages which PFN is in [start, end) are allocated for the caller and
6292 * need to be freed with free_contig_range().
6293 */
0815f3d8
MN
6294int alloc_contig_range(unsigned long start, unsigned long end,
6295 unsigned migratetype)
041d3a8c 6296{
041d3a8c
MN
6297 unsigned long outer_start, outer_end;
6298 int ret = 0, order;
6299
bb13ffeb
MG
6300 struct compact_control cc = {
6301 .nr_migratepages = 0,
6302 .order = -1,
6303 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6304 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6305 .ignore_skip_hint = true,
6306 };
6307 INIT_LIST_HEAD(&cc.migratepages);
6308
041d3a8c
MN
6309 /*
6310 * What we do here is we mark all pageblocks in range as
6311 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6312 * have different sizes, and due to the way page allocator
6313 * work, we align the range to biggest of the two pages so
6314 * that page allocator won't try to merge buddies from
6315 * different pageblocks and change MIGRATE_ISOLATE to some
6316 * other migration type.
6317 *
6318 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6319 * migrate the pages from an unaligned range (ie. pages that
6320 * we are interested in). This will put all the pages in
6321 * range back to page allocator as MIGRATE_ISOLATE.
6322 *
6323 * When this is done, we take the pages in range from page
6324 * allocator removing them from the buddy system. This way
6325 * page allocator will never consider using them.
6326 *
6327 * This lets us mark the pageblocks back as
6328 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6329 * aligned range but not in the unaligned, original range are
6330 * put back to page allocator so that buddy can use them.
6331 */
6332
6333 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6334 pfn_max_align_up(end), migratetype,
6335 false);
041d3a8c 6336 if (ret)
86a595f9 6337 return ret;
041d3a8c 6338
bb13ffeb 6339 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6340 if (ret)
6341 goto done;
6342
6343 /*
6344 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6345 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6346 * more, all pages in [start, end) are free in page allocator.
6347 * What we are going to do is to allocate all pages from
6348 * [start, end) (that is remove them from page allocator).
6349 *
6350 * The only problem is that pages at the beginning and at the
6351 * end of interesting range may be not aligned with pages that
6352 * page allocator holds, ie. they can be part of higher order
6353 * pages. Because of this, we reserve the bigger range and
6354 * once this is done free the pages we are not interested in.
6355 *
6356 * We don't have to hold zone->lock here because the pages are
6357 * isolated thus they won't get removed from buddy.
6358 */
6359
6360 lru_add_drain_all();
6361 drain_all_pages();
6362
6363 order = 0;
6364 outer_start = start;
6365 while (!PageBuddy(pfn_to_page(outer_start))) {
6366 if (++order >= MAX_ORDER) {
6367 ret = -EBUSY;
6368 goto done;
6369 }
6370 outer_start &= ~0UL << order;
6371 }
6372
6373 /* Make sure the range is really isolated. */
b023f468 6374 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6375 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6376 outer_start, end);
6377 ret = -EBUSY;
6378 goto done;
6379 }
6380
49f223a9
MS
6381
6382 /* Grab isolated pages from freelists. */
bb13ffeb 6383 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6384 if (!outer_end) {
6385 ret = -EBUSY;
6386 goto done;
6387 }
6388
6389 /* Free head and tail (if any) */
6390 if (start != outer_start)
6391 free_contig_range(outer_start, start - outer_start);
6392 if (end != outer_end)
6393 free_contig_range(end, outer_end - end);
6394
6395done:
6396 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6397 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6398 return ret;
6399}
6400
6401void free_contig_range(unsigned long pfn, unsigned nr_pages)
6402{
bcc2b02f
MS
6403 unsigned int count = 0;
6404
6405 for (; nr_pages--; pfn++) {
6406 struct page *page = pfn_to_page(pfn);
6407
6408 count += page_count(page) != 1;
6409 __free_page(page);
6410 }
6411 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6412}
6413#endif
6414
4ed7e022 6415#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6416/*
6417 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6418 * page high values need to be recalulated.
6419 */
4ed7e022
JL
6420void __meminit zone_pcp_update(struct zone *zone)
6421{
0a647f38 6422 unsigned cpu;
c8e251fa 6423 mutex_lock(&pcp_batch_high_lock);
0a647f38 6424 for_each_possible_cpu(cpu)
169f6c19
CS
6425 pageset_set_high_and_batch(zone,
6426 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6427 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6428}
6429#endif
6430
340175b7
JL
6431void zone_pcp_reset(struct zone *zone)
6432{
6433 unsigned long flags;
5a883813
MK
6434 int cpu;
6435 struct per_cpu_pageset *pset;
340175b7
JL
6436
6437 /* avoid races with drain_pages() */
6438 local_irq_save(flags);
6439 if (zone->pageset != &boot_pageset) {
5a883813
MK
6440 for_each_online_cpu(cpu) {
6441 pset = per_cpu_ptr(zone->pageset, cpu);
6442 drain_zonestat(zone, pset);
6443 }
340175b7
JL
6444 free_percpu(zone->pageset);
6445 zone->pageset = &boot_pageset;
6446 }
6447 local_irq_restore(flags);
6448}
6449
6dcd73d7 6450#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6451/*
6452 * All pages in the range must be isolated before calling this.
6453 */
6454void
6455__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6456{
6457 struct page *page;
6458 struct zone *zone;
7aeb09f9 6459 unsigned int order, i;
0c0e6195
KH
6460 unsigned long pfn;
6461 unsigned long flags;
6462 /* find the first valid pfn */
6463 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6464 if (pfn_valid(pfn))
6465 break;
6466 if (pfn == end_pfn)
6467 return;
6468 zone = page_zone(pfn_to_page(pfn));
6469 spin_lock_irqsave(&zone->lock, flags);
6470 pfn = start_pfn;
6471 while (pfn < end_pfn) {
6472 if (!pfn_valid(pfn)) {
6473 pfn++;
6474 continue;
6475 }
6476 page = pfn_to_page(pfn);
b023f468
WC
6477 /*
6478 * The HWPoisoned page may be not in buddy system, and
6479 * page_count() is not 0.
6480 */
6481 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6482 pfn++;
6483 SetPageReserved(page);
6484 continue;
6485 }
6486
0c0e6195
KH
6487 BUG_ON(page_count(page));
6488 BUG_ON(!PageBuddy(page));
6489 order = page_order(page);
6490#ifdef CONFIG_DEBUG_VM
6491 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6492 pfn, 1 << order, end_pfn);
6493#endif
6494 list_del(&page->lru);
6495 rmv_page_order(page);
6496 zone->free_area[order].nr_free--;
0c0e6195
KH
6497 for (i = 0; i < (1 << order); i++)
6498 SetPageReserved((page+i));
6499 pfn += (1 << order);
6500 }
6501 spin_unlock_irqrestore(&zone->lock, flags);
6502}
6503#endif
8d22ba1b
WF
6504
6505#ifdef CONFIG_MEMORY_FAILURE
6506bool is_free_buddy_page(struct page *page)
6507{
6508 struct zone *zone = page_zone(page);
6509 unsigned long pfn = page_to_pfn(page);
6510 unsigned long flags;
7aeb09f9 6511 unsigned int order;
8d22ba1b
WF
6512
6513 spin_lock_irqsave(&zone->lock, flags);
6514 for (order = 0; order < MAX_ORDER; order++) {
6515 struct page *page_head = page - (pfn & ((1 << order) - 1));
6516
6517 if (PageBuddy(page_head) && page_order(page_head) >= order)
6518 break;
6519 }
6520 spin_unlock_irqrestore(&zone->lock, flags);
6521
6522 return order < MAX_ORDER;
6523}
6524#endif
718a3821 6525
51300cef 6526static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6527 {1UL << PG_locked, "locked" },
6528 {1UL << PG_error, "error" },
6529 {1UL << PG_referenced, "referenced" },
6530 {1UL << PG_uptodate, "uptodate" },
6531 {1UL << PG_dirty, "dirty" },
6532 {1UL << PG_lru, "lru" },
6533 {1UL << PG_active, "active" },
6534 {1UL << PG_slab, "slab" },
6535 {1UL << PG_owner_priv_1, "owner_priv_1" },
6536 {1UL << PG_arch_1, "arch_1" },
6537 {1UL << PG_reserved, "reserved" },
6538 {1UL << PG_private, "private" },
6539 {1UL << PG_private_2, "private_2" },
6540 {1UL << PG_writeback, "writeback" },
6541#ifdef CONFIG_PAGEFLAGS_EXTENDED
6542 {1UL << PG_head, "head" },
6543 {1UL << PG_tail, "tail" },
6544#else
6545 {1UL << PG_compound, "compound" },
6546#endif
6547 {1UL << PG_swapcache, "swapcache" },
6548 {1UL << PG_mappedtodisk, "mappedtodisk" },
6549 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6550 {1UL << PG_swapbacked, "swapbacked" },
6551 {1UL << PG_unevictable, "unevictable" },
6552#ifdef CONFIG_MMU
6553 {1UL << PG_mlocked, "mlocked" },
6554#endif
6555#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6556 {1UL << PG_uncached, "uncached" },
6557#endif
6558#ifdef CONFIG_MEMORY_FAILURE
6559 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6560#endif
6561#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6562 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6563#endif
718a3821
WF
6564};
6565
6566static void dump_page_flags(unsigned long flags)
6567{
6568 const char *delim = "";
6569 unsigned long mask;
6570 int i;
6571
51300cef 6572 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6573
718a3821
WF
6574 printk(KERN_ALERT "page flags: %#lx(", flags);
6575
6576 /* remove zone id */
6577 flags &= (1UL << NR_PAGEFLAGS) - 1;
6578
51300cef 6579 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6580
6581 mask = pageflag_names[i].mask;
6582 if ((flags & mask) != mask)
6583 continue;
6584
6585 flags &= ~mask;
6586 printk("%s%s", delim, pageflag_names[i].name);
6587 delim = "|";
6588 }
6589
6590 /* check for left over flags */
6591 if (flags)
6592 printk("%s%#lx", delim, flags);
6593
6594 printk(")\n");
6595}
6596
d230dec1
KS
6597void dump_page_badflags(struct page *page, const char *reason,
6598 unsigned long badflags)
718a3821
WF
6599{
6600 printk(KERN_ALERT
6601 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6602 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6603 page->mapping, page->index);
6604 dump_page_flags(page->flags);
f0b791a3
DH
6605 if (reason)
6606 pr_alert("page dumped because: %s\n", reason);
6607 if (page->flags & badflags) {
6608 pr_alert("bad because of flags:\n");
6609 dump_page_flags(page->flags & badflags);
6610 }
f212ad7c 6611 mem_cgroup_print_bad_page(page);
718a3821 6612}
f0b791a3 6613
d230dec1 6614void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6615{
6616 dump_page_badflags(page, reason, 0);
6617}
ed12d845 6618EXPORT_SYMBOL(dump_page);