]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm/cma: change fallback behaviour for CMA freepage
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
ee6f509c 238void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 239{
5d0f3f72
KM
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
242 migratetype = MIGRATE_UNMOVABLE;
243
b2a0ac88
MG
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246}
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
7aeb09f9
MG
383static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
17cf4406
NP
385{
386 int i;
387
6626c5d5
AM
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
725d704e 392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395}
396
c0a32fc5
SG
397#ifdef CONFIG_DEBUG_PAGEALLOC
398unsigned int _debug_guardpage_minorder;
031bc574 399bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
400bool _debug_guardpage_enabled __read_mostly;
401
031bc574
JK
402static int __init early_debug_pagealloc(char *buf)
403{
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411}
412early_param("debug_pagealloc", early_debug_pagealloc);
413
e30825f1
JK
414static bool need_debug_guardpage(void)
415{
031bc574
JK
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
e30825f1
JK
420 return true;
421}
422
423static void init_debug_guardpage(void)
424{
031bc574
JK
425 if (!debug_pagealloc_enabled())
426 return;
427
e30825f1
JK
428 _debug_guardpage_enabled = true;
429}
430
431struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434};
c0a32fc5
SG
435
436static int __init debug_guardpage_minorder_setup(char *buf)
437{
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447}
448__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
2847cf95
JK
450static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
c0a32fc5 452{
e30825f1
JK
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
2847cf95
JK
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
465}
466
2847cf95
JK
467static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
c0a32fc5 469{
e30825f1
JK
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
2847cf95
JK
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
481}
482#else
e30825f1 483struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
484static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
c0a32fc5
SG
488#endif
489
7aeb09f9 490static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 491{
4c21e2f2 492 set_page_private(page, order);
676165a8 493 __SetPageBuddy(page);
1da177e4
LT
494}
495
496static inline void rmv_page_order(struct page *page)
497{
676165a8 498 __ClearPageBuddy(page);
4c21e2f2 499 set_page_private(page, 0);
1da177e4
LT
500}
501
1da177e4
LT
502/*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
13e7444b 505 * (a) the buddy is not in a hole &&
676165a8 506 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
676165a8 509 *
cf6fe945
WSH
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
1da177e4 514 *
676165a8 515 * For recording page's order, we use page_private(page).
1da177e4 516 */
cb2b95e1 517static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 518 unsigned int order)
1da177e4 519{
14e07298 520 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 521 return 0;
13e7444b 522
c0a32fc5 523 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
4c5018ce
WY
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
c0a32fc5
SG
529 return 1;
530 }
531
cb2b95e1 532 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
4c5018ce
WY
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
6aa3001b 543 return 1;
676165a8 544 }
6aa3001b 545 return 0;
1da177e4
LT
546}
547
548/*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
1da177e4 564 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
1da177e4 567 * If a block is freed, and its buddy is also free, then this
5f63b720 568 * triggers coalescing into a block of larger size.
1da177e4 569 *
6d49e352 570 * -- nyc
1da177e4
LT
571 */
572
48db57f8 573static inline void __free_one_page(struct page *page,
dc4b0caf 574 unsigned long pfn,
ed0ae21d
MG
575 struct zone *zone, unsigned int order,
576 int migratetype)
1da177e4
LT
577{
578 unsigned long page_idx;
6dda9d55 579 unsigned long combined_idx;
43506fad 580 unsigned long uninitialized_var(buddy_idx);
6dda9d55 581 struct page *buddy;
3c605096 582 int max_order = MAX_ORDER;
1da177e4 583
d29bb978 584 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 586
ed0ae21d 587 VM_BUG_ON(migratetype == -1);
3c605096
JK
588 if (is_migrate_isolate(migratetype)) {
589 /*
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
594 */
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
8f82b55d 597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 598 }
ed0ae21d 599
3c605096 600 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 601
309381fe
SL
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 604
3c605096 605 while (order < max_order - 1) {
43506fad
KC
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
cb2b95e1 608 if (!page_is_buddy(page, buddy, order))
3c82d0ce 609 break;
c0a32fc5
SG
610 /*
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
613 */
614 if (page_is_guard(buddy)) {
2847cf95 615 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
620 }
43506fad 621 combined_idx = buddy_idx & page_idx;
1da177e4
LT
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
625 }
626 set_page_order(page, order);
6dda9d55
CZ
627
628 /*
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
635 */
b7f50cfa 636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 637 struct page *higher_page, *higher_buddy;
43506fad
KC
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 641 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
646 }
647 }
648
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650out:
1da177e4
LT
651 zone->free_area[order].nr_free++;
652}
653
224abf92 654static inline int free_pages_check(struct page *page)
1da177e4 655{
d230dec1 656 const char *bad_reason = NULL;
f0b791a3
DH
657 unsigned long bad_flags = 0;
658
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 }
9edad6ea
JW
669#ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672#endif
f0b791a3
DH
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
79f4b7bf 675 return 1;
8cc3b392 676 }
90572890 677 page_cpupid_reset_last(page);
79f4b7bf
HD
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
1da177e4
LT
681}
682
683/*
5f8dcc21 684 * Frees a number of pages from the PCP lists
1da177e4 685 * Assumes all pages on list are in same zone, and of same order.
207f36ee 686 * count is the number of pages to free.
1da177e4
LT
687 *
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
690 *
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
693 */
5f8dcc21
MG
694static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
1da177e4 696{
5f8dcc21 697 int migratetype = 0;
a6f9edd6 698 int batch_free = 0;
72853e29 699 int to_free = count;
0d5d823a 700 unsigned long nr_scanned;
5f8dcc21 701
c54ad30c 702 spin_lock(&zone->lock);
0d5d823a
MG
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 706
72853e29 707 while (to_free) {
48db57f8 708 struct page *page;
5f8dcc21
MG
709 struct list_head *list;
710
711 /*
a6f9edd6
MG
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
5f8dcc21
MG
717 */
718 do {
a6f9edd6 719 batch_free++;
5f8dcc21
MG
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
48db57f8 724
1d16871d
NK
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
728
a6f9edd6 729 do {
770c8aaa
BZ
730 int mt; /* migratetype of the to-be-freed page */
731
a6f9edd6
MG
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
b12c4ad1 735 mt = get_freepage_migratetype(page);
8f82b55d 736 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 737 mt = get_pageblock_migratetype(page);
51bb1a40 738
a7016235 739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 741 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 742 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 743 }
c54ad30c 744 spin_unlock(&zone->lock);
1da177e4
LT
745}
746
dc4b0caf
MG
747static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
7aeb09f9 749 unsigned int order,
ed0ae21d 750 int migratetype)
1da177e4 751{
0d5d823a 752 unsigned long nr_scanned;
006d22d9 753 spin_lock(&zone->lock);
0d5d823a
MG
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 757
ad53f92e
JK
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 761 }
dc4b0caf 762 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 763 spin_unlock(&zone->lock);
48db57f8
NP
764}
765
81422f29
KS
766static int free_tail_pages_check(struct page *head_page, struct page *page)
767{
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
773 }
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
777 }
778 return 0;
779}
780
ec95f53a 781static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 782{
81422f29
KS
783 bool compound = PageCompound(page);
784 int i, bad = 0;
1da177e4 785
ab1f306f 786 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 788
b413d48a 789 trace_mm_page_free(page, order);
b1eeab67 790 kmemcheck_free_shadow(page, order);
b8c73fc2 791 kasan_free_pages(page, order);
b1eeab67 792
8dd60a3a
AA
793 if (PageAnon(page))
794 page->mapping = NULL;
81422f29
KS
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
8dd60a3a 799 bad += free_pages_check(page + i);
81422f29 800 }
8cc3b392 801 if (bad)
ec95f53a 802 return false;
689bcebf 803
48c96a36
JK
804 reset_page_owner(page, order);
805
3ac7fe5a 806 if (!PageHighMem(page)) {
b8af2941
PK
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
3ac7fe5a
TG
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
811 }
dafb1367 812 arch_free_page(page, order);
48db57f8 813 kernel_map_pages(page, 1 << order, 0);
dafb1367 814
ec95f53a
KM
815 return true;
816}
817
818static void __free_pages_ok(struct page *page, unsigned int order)
819{
820 unsigned long flags;
95e34412 821 int migratetype;
dc4b0caf 822 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
823
824 if (!free_pages_prepare(page, order))
825 return;
826
cfc47a28 827 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 828 local_irq_save(flags);
f8891e5e 829 __count_vm_events(PGFREE, 1 << order);
95e34412 830 set_freepage_migratetype(page, migratetype);
dc4b0caf 831 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 832 local_irq_restore(flags);
1da177e4
LT
833}
834
170a5a7e 835void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 836{
c3993076 837 unsigned int nr_pages = 1 << order;
e2d0bd2b 838 struct page *p = page;
c3993076 839 unsigned int loop;
a226f6c8 840
e2d0bd2b
YL
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
c3993076
JW
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
a226f6c8 846 }
e2d0bd2b
YL
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
c3993076 849
e2d0bd2b 850 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
851 set_page_refcounted(page);
852 __free_pages(page, order);
a226f6c8
DH
853}
854
47118af0 855#ifdef CONFIG_CMA
9cf510a5 856/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
857void __init init_cma_reserved_pageblock(struct page *page)
858{
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
861
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
866
47118af0 867 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
868
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
880 }
881
3dcc0571 882 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
883}
884#endif
1da177e4
LT
885
886/*
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
897 *
6d49e352 898 * -- nyc
1da177e4 899 */
085cc7d5 900static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
901 int low, int high, struct free_area *area,
902 int migratetype)
1da177e4
LT
903{
904 unsigned long size = 1 << high;
905
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
309381fe 910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 911
2847cf95 912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 913 debug_guardpage_enabled() &&
2847cf95 914 high < debug_guardpage_minorder()) {
c0a32fc5
SG
915 /*
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
920 */
2847cf95 921 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
922 continue;
923 }
b2a0ac88 924 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
925 area->nr_free++;
926 set_page_order(&page[size], high);
927 }
1da177e4
LT
928}
929
1da177e4
LT
930/*
931 * This page is about to be returned from the page allocator
932 */
2a7684a2 933static inline int check_new_page(struct page *page)
1da177e4 934{
d230dec1 935 const char *bad_reason = NULL;
f0b791a3
DH
936 unsigned long bad_flags = 0;
937
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 }
9edad6ea
JW
948#ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951#endif
f0b791a3
DH
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
689bcebf 954 return 1;
8cc3b392 955 }
2a7684a2
WF
956 return 0;
957}
958
75379191
VB
959static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
2a7684a2
WF
961{
962 int i;
963
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
968 }
689bcebf 969
4c21e2f2 970 set_page_private(page, 0);
7835e98b 971 set_page_refcounted(page);
cc102509
NP
972
973 arch_alloc_page(page, order);
1da177e4 974 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 975 kasan_alloc_pages(page, order);
17cf4406
NP
976
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
979
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
982
48c96a36
JK
983 set_page_owner(page, order, gfp_flags);
984
75379191
VB
985 /*
986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
990 */
991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992
689bcebf 993 return 0;
1da177e4
LT
994}
995
56fd56b8
MG
996/*
997 * Go through the free lists for the given migratetype and remove
998 * the smallest available page from the freelists
999 */
728ec980
MG
1000static inline
1001struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1002 int migratetype)
1003{
1004 unsigned int current_order;
b8af2941 1005 struct free_area *area;
56fd56b8
MG
1006 struct page *page;
1007
1008 /* Find a page of the appropriate size in the preferred list */
1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 area = &(zone->free_area[current_order]);
1011 if (list_empty(&area->free_list[migratetype]))
1012 continue;
1013
1014 page = list_entry(area->free_list[migratetype].next,
1015 struct page, lru);
1016 list_del(&page->lru);
1017 rmv_page_order(page);
1018 area->nr_free--;
56fd56b8 1019 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1020 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1021 return page;
1022 }
1023
1024 return NULL;
1025}
1026
1027
b2a0ac88
MG
1028/*
1029 * This array describes the order lists are fallen back to when
1030 * the free lists for the desirable migrate type are depleted
1031 */
47118af0
MN
1032static int fallbacks[MIGRATE_TYPES][4] = {
1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1035 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1036#ifdef CONFIG_CMA
47118af0 1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1038#endif
6d4a4916 1039 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1040#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1041 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1042#endif
b2a0ac88
MG
1043};
1044
dc67647b
JK
1045#ifdef CONFIG_CMA
1046static struct page *__rmqueue_cma_fallback(struct zone *zone,
1047 unsigned int order)
1048{
1049 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1050}
1051#else
1052static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1053 unsigned int order) { return NULL; }
1054#endif
1055
c361be55
MG
1056/*
1057 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1058 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1059 * boundary. If alignment is required, use move_freepages_block()
1060 */
435b405c 1061int move_freepages(struct zone *zone,
b69a7288
AB
1062 struct page *start_page, struct page *end_page,
1063 int migratetype)
c361be55
MG
1064{
1065 struct page *page;
1066 unsigned long order;
d100313f 1067 int pages_moved = 0;
c361be55
MG
1068
1069#ifndef CONFIG_HOLES_IN_ZONE
1070 /*
1071 * page_zone is not safe to call in this context when
1072 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1073 * anyway as we check zone boundaries in move_freepages_block().
1074 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1075 * grouping pages by mobility
c361be55 1076 */
97ee4ba7 1077 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1078#endif
1079
1080 for (page = start_page; page <= end_page;) {
344c790e 1081 /* Make sure we are not inadvertently changing nodes */
309381fe 1082 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1083
c361be55
MG
1084 if (!pfn_valid_within(page_to_pfn(page))) {
1085 page++;
1086 continue;
1087 }
1088
1089 if (!PageBuddy(page)) {
1090 page++;
1091 continue;
1092 }
1093
1094 order = page_order(page);
84be48d8
KS
1095 list_move(&page->lru,
1096 &zone->free_area[order].free_list[migratetype]);
95e34412 1097 set_freepage_migratetype(page, migratetype);
c361be55 1098 page += 1 << order;
d100313f 1099 pages_moved += 1 << order;
c361be55
MG
1100 }
1101
d100313f 1102 return pages_moved;
c361be55
MG
1103}
1104
ee6f509c 1105int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1106 int migratetype)
c361be55
MG
1107{
1108 unsigned long start_pfn, end_pfn;
1109 struct page *start_page, *end_page;
1110
1111 start_pfn = page_to_pfn(page);
d9c23400 1112 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1113 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1114 end_page = start_page + pageblock_nr_pages - 1;
1115 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1116
1117 /* Do not cross zone boundaries */
108bcc96 1118 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1119 start_page = page;
108bcc96 1120 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1121 return 0;
1122
1123 return move_freepages(zone, start_page, end_page, migratetype);
1124}
1125
2f66a68f
MG
1126static void change_pageblock_range(struct page *pageblock_page,
1127 int start_order, int migratetype)
1128{
1129 int nr_pageblocks = 1 << (start_order - pageblock_order);
1130
1131 while (nr_pageblocks--) {
1132 set_pageblock_migratetype(pageblock_page, migratetype);
1133 pageblock_page += pageblock_nr_pages;
1134 }
1135}
1136
fef903ef 1137/*
9c0415eb
VB
1138 * When we are falling back to another migratetype during allocation, try to
1139 * steal extra free pages from the same pageblocks to satisfy further
1140 * allocations, instead of polluting multiple pageblocks.
1141 *
1142 * If we are stealing a relatively large buddy page, it is likely there will
1143 * be more free pages in the pageblock, so try to steal them all. For
1144 * reclaimable and unmovable allocations, we steal regardless of page size,
1145 * as fragmentation caused by those allocations polluting movable pageblocks
1146 * is worse than movable allocations stealing from unmovable and reclaimable
1147 * pageblocks.
1148 *
1149 * If we claim more than half of the pageblock, change pageblock's migratetype
1150 * as well.
fef903ef 1151 */
3a1086fb 1152static void try_to_steal_freepages(struct zone *zone, struct page *page,
fef903ef
SB
1153 int start_type, int fallback_type)
1154{
1155 int current_order = page_order(page);
1156
fef903ef
SB
1157 /* Take ownership for orders >= pageblock_order */
1158 if (current_order >= pageblock_order) {
1159 change_pageblock_range(page, current_order, start_type);
3a1086fb 1160 return;
fef903ef
SB
1161 }
1162
1163 if (current_order >= pageblock_order / 2 ||
1164 start_type == MIGRATE_RECLAIMABLE ||
9c0415eb 1165 start_type == MIGRATE_UNMOVABLE ||
fef903ef
SB
1166 page_group_by_mobility_disabled) {
1167 int pages;
1168
1169 pages = move_freepages_block(zone, page, start_type);
1170
1171 /* Claim the whole block if over half of it is free */
1172 if (pages >= (1 << (pageblock_order-1)) ||
99592d59 1173 page_group_by_mobility_disabled)
fef903ef 1174 set_pageblock_migratetype(page, start_type);
fef903ef 1175 }
fef903ef
SB
1176}
1177
b2a0ac88 1178/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1179static inline struct page *
7aeb09f9 1180__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1181{
b8af2941 1182 struct free_area *area;
7aeb09f9 1183 unsigned int current_order;
b2a0ac88 1184 struct page *page;
b2a0ac88
MG
1185
1186 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1187 for (current_order = MAX_ORDER-1;
1188 current_order >= order && current_order <= MAX_ORDER-1;
1189 --current_order) {
3a1086fb 1190 int i;
6d4a4916 1191 for (i = 0;; i++) {
3a1086fb
VB
1192 int migratetype = fallbacks[start_migratetype][i];
1193 int buddy_type = start_migratetype;
b2a0ac88 1194
56fd56b8
MG
1195 /* MIGRATE_RESERVE handled later if necessary */
1196 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1197 break;
e010487d 1198
b2a0ac88
MG
1199 area = &(zone->free_area[current_order]);
1200 if (list_empty(&area->free_list[migratetype]))
1201 continue;
1202
1203 page = list_entry(area->free_list[migratetype].next,
1204 struct page, lru);
1205 area->nr_free--;
1206
dc67647b
JK
1207 try_to_steal_freepages(zone, page, start_migratetype,
1208 migratetype);
b2a0ac88
MG
1209
1210 /* Remove the page from the freelists */
1211 list_del(&page->lru);
1212 rmv_page_order(page);
b2a0ac88 1213
47118af0 1214 expand(zone, page, order, current_order, area,
3a1086fb
VB
1215 buddy_type);
1216
1217 /*
1218 * The freepage_migratetype may differ from pageblock's
5bcc9f86 1219 * migratetype depending on the decisions in
3a1086fb
VB
1220 * try_to_steal_freepages(). This is OK as long as it
1221 * does not differ for MIGRATE_CMA pageblocks. For CMA
1222 * we need to make sure unallocated pages flushed from
1223 * pcp lists are returned to the correct freelist.
5bcc9f86 1224 */
3a1086fb 1225 set_freepage_migratetype(page, buddy_type);
e0fff1bd 1226
52c8f6a5 1227 trace_mm_page_alloc_extfrag(page, order, current_order,
99592d59 1228 start_migratetype, migratetype);
e0fff1bd 1229
b2a0ac88
MG
1230 return page;
1231 }
1232 }
1233
728ec980 1234 return NULL;
b2a0ac88
MG
1235}
1236
56fd56b8 1237/*
1da177e4
LT
1238 * Do the hard work of removing an element from the buddy allocator.
1239 * Call me with the zone->lock already held.
1240 */
b2a0ac88
MG
1241static struct page *__rmqueue(struct zone *zone, unsigned int order,
1242 int migratetype)
1da177e4 1243{
1da177e4
LT
1244 struct page *page;
1245
728ec980 1246retry_reserve:
56fd56b8 1247 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1248
728ec980 1249 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1250 if (migratetype == MIGRATE_MOVABLE)
1251 page = __rmqueue_cma_fallback(zone, order);
1252
1253 if (!page)
1254 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1255
728ec980
MG
1256 /*
1257 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1258 * is used because __rmqueue_smallest is an inline function
1259 * and we want just one call site
1260 */
1261 if (!page) {
1262 migratetype = MIGRATE_RESERVE;
1263 goto retry_reserve;
1264 }
1265 }
1266
0d3d062a 1267 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1268 return page;
1da177e4
LT
1269}
1270
5f63b720 1271/*
1da177e4
LT
1272 * Obtain a specified number of elements from the buddy allocator, all under
1273 * a single hold of the lock, for efficiency. Add them to the supplied list.
1274 * Returns the number of new pages which were placed at *list.
1275 */
5f63b720 1276static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1277 unsigned long count, struct list_head *list,
b745bc85 1278 int migratetype, bool cold)
1da177e4 1279{
5bcc9f86 1280 int i;
5f63b720 1281
c54ad30c 1282 spin_lock(&zone->lock);
1da177e4 1283 for (i = 0; i < count; ++i) {
b2a0ac88 1284 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1285 if (unlikely(page == NULL))
1da177e4 1286 break;
81eabcbe
MG
1287
1288 /*
1289 * Split buddy pages returned by expand() are received here
1290 * in physical page order. The page is added to the callers and
1291 * list and the list head then moves forward. From the callers
1292 * perspective, the linked list is ordered by page number in
1293 * some conditions. This is useful for IO devices that can
1294 * merge IO requests if the physical pages are ordered
1295 * properly.
1296 */
b745bc85 1297 if (likely(!cold))
e084b2d9
MG
1298 list_add(&page->lru, list);
1299 else
1300 list_add_tail(&page->lru, list);
81eabcbe 1301 list = &page->lru;
5bcc9f86 1302 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1303 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1304 -(1 << order));
1da177e4 1305 }
f2260e6b 1306 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1307 spin_unlock(&zone->lock);
085cc7d5 1308 return i;
1da177e4
LT
1309}
1310
4ae7c039 1311#ifdef CONFIG_NUMA
8fce4d8e 1312/*
4037d452
CL
1313 * Called from the vmstat counter updater to drain pagesets of this
1314 * currently executing processor on remote nodes after they have
1315 * expired.
1316 *
879336c3
CL
1317 * Note that this function must be called with the thread pinned to
1318 * a single processor.
8fce4d8e 1319 */
4037d452 1320void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1321{
4ae7c039 1322 unsigned long flags;
7be12fc9 1323 int to_drain, batch;
4ae7c039 1324
4037d452 1325 local_irq_save(flags);
998d39cb 1326 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1327 to_drain = min(pcp->count, batch);
2a13515c
KM
1328 if (to_drain > 0) {
1329 free_pcppages_bulk(zone, to_drain, pcp);
1330 pcp->count -= to_drain;
1331 }
4037d452 1332 local_irq_restore(flags);
4ae7c039
CL
1333}
1334#endif
1335
9f8f2172 1336/*
93481ff0 1337 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1338 *
1339 * The processor must either be the current processor and the
1340 * thread pinned to the current processor or a processor that
1341 * is not online.
1342 */
93481ff0 1343static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1344{
c54ad30c 1345 unsigned long flags;
93481ff0
VB
1346 struct per_cpu_pageset *pset;
1347 struct per_cpu_pages *pcp;
1da177e4 1348
93481ff0
VB
1349 local_irq_save(flags);
1350 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1351
93481ff0
VB
1352 pcp = &pset->pcp;
1353 if (pcp->count) {
1354 free_pcppages_bulk(zone, pcp->count, pcp);
1355 pcp->count = 0;
1356 }
1357 local_irq_restore(flags);
1358}
3dfa5721 1359
93481ff0
VB
1360/*
1361 * Drain pcplists of all zones on the indicated processor.
1362 *
1363 * The processor must either be the current processor and the
1364 * thread pinned to the current processor or a processor that
1365 * is not online.
1366 */
1367static void drain_pages(unsigned int cpu)
1368{
1369 struct zone *zone;
1370
1371 for_each_populated_zone(zone) {
1372 drain_pages_zone(cpu, zone);
1da177e4
LT
1373 }
1374}
1da177e4 1375
9f8f2172
CL
1376/*
1377 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1378 *
1379 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1380 * the single zone's pages.
9f8f2172 1381 */
93481ff0 1382void drain_local_pages(struct zone *zone)
9f8f2172 1383{
93481ff0
VB
1384 int cpu = smp_processor_id();
1385
1386 if (zone)
1387 drain_pages_zone(cpu, zone);
1388 else
1389 drain_pages(cpu);
9f8f2172
CL
1390}
1391
1392/*
74046494
GBY
1393 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1394 *
93481ff0
VB
1395 * When zone parameter is non-NULL, spill just the single zone's pages.
1396 *
74046494
GBY
1397 * Note that this code is protected against sending an IPI to an offline
1398 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1399 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1400 * nothing keeps CPUs from showing up after we populated the cpumask and
1401 * before the call to on_each_cpu_mask().
9f8f2172 1402 */
93481ff0 1403void drain_all_pages(struct zone *zone)
9f8f2172 1404{
74046494 1405 int cpu;
74046494
GBY
1406
1407 /*
1408 * Allocate in the BSS so we wont require allocation in
1409 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1410 */
1411 static cpumask_t cpus_with_pcps;
1412
1413 /*
1414 * We don't care about racing with CPU hotplug event
1415 * as offline notification will cause the notified
1416 * cpu to drain that CPU pcps and on_each_cpu_mask
1417 * disables preemption as part of its processing
1418 */
1419 for_each_online_cpu(cpu) {
93481ff0
VB
1420 struct per_cpu_pageset *pcp;
1421 struct zone *z;
74046494 1422 bool has_pcps = false;
93481ff0
VB
1423
1424 if (zone) {
74046494 1425 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1426 if (pcp->pcp.count)
74046494 1427 has_pcps = true;
93481ff0
VB
1428 } else {
1429 for_each_populated_zone(z) {
1430 pcp = per_cpu_ptr(z->pageset, cpu);
1431 if (pcp->pcp.count) {
1432 has_pcps = true;
1433 break;
1434 }
74046494
GBY
1435 }
1436 }
93481ff0 1437
74046494
GBY
1438 if (has_pcps)
1439 cpumask_set_cpu(cpu, &cpus_with_pcps);
1440 else
1441 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1442 }
93481ff0
VB
1443 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1444 zone, 1);
9f8f2172
CL
1445}
1446
296699de 1447#ifdef CONFIG_HIBERNATION
1da177e4
LT
1448
1449void mark_free_pages(struct zone *zone)
1450{
f623f0db
RW
1451 unsigned long pfn, max_zone_pfn;
1452 unsigned long flags;
7aeb09f9 1453 unsigned int order, t;
1da177e4
LT
1454 struct list_head *curr;
1455
8080fc03 1456 if (zone_is_empty(zone))
1da177e4
LT
1457 return;
1458
1459 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1460
108bcc96 1461 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1462 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1463 if (pfn_valid(pfn)) {
1464 struct page *page = pfn_to_page(pfn);
1465
7be98234
RW
1466 if (!swsusp_page_is_forbidden(page))
1467 swsusp_unset_page_free(page);
f623f0db 1468 }
1da177e4 1469
b2a0ac88
MG
1470 for_each_migratetype_order(order, t) {
1471 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1472 unsigned long i;
1da177e4 1473
f623f0db
RW
1474 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1475 for (i = 0; i < (1UL << order); i++)
7be98234 1476 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1477 }
b2a0ac88 1478 }
1da177e4
LT
1479 spin_unlock_irqrestore(&zone->lock, flags);
1480}
e2c55dc8 1481#endif /* CONFIG_PM */
1da177e4 1482
1da177e4
LT
1483/*
1484 * Free a 0-order page
b745bc85 1485 * cold == true ? free a cold page : free a hot page
1da177e4 1486 */
b745bc85 1487void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1488{
1489 struct zone *zone = page_zone(page);
1490 struct per_cpu_pages *pcp;
1491 unsigned long flags;
dc4b0caf 1492 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1493 int migratetype;
1da177e4 1494
ec95f53a 1495 if (!free_pages_prepare(page, 0))
689bcebf
HD
1496 return;
1497
dc4b0caf 1498 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1499 set_freepage_migratetype(page, migratetype);
1da177e4 1500 local_irq_save(flags);
f8891e5e 1501 __count_vm_event(PGFREE);
da456f14 1502
5f8dcc21
MG
1503 /*
1504 * We only track unmovable, reclaimable and movable on pcp lists.
1505 * Free ISOLATE pages back to the allocator because they are being
1506 * offlined but treat RESERVE as movable pages so we can get those
1507 * areas back if necessary. Otherwise, we may have to free
1508 * excessively into the page allocator
1509 */
1510 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1511 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1512 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1513 goto out;
1514 }
1515 migratetype = MIGRATE_MOVABLE;
1516 }
1517
99dcc3e5 1518 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1519 if (!cold)
5f8dcc21 1520 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1521 else
1522 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1523 pcp->count++;
48db57f8 1524 if (pcp->count >= pcp->high) {
998d39cb
CS
1525 unsigned long batch = ACCESS_ONCE(pcp->batch);
1526 free_pcppages_bulk(zone, batch, pcp);
1527 pcp->count -= batch;
48db57f8 1528 }
5f8dcc21
MG
1529
1530out:
1da177e4 1531 local_irq_restore(flags);
1da177e4
LT
1532}
1533
cc59850e
KK
1534/*
1535 * Free a list of 0-order pages
1536 */
b745bc85 1537void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1538{
1539 struct page *page, *next;
1540
1541 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1542 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1543 free_hot_cold_page(page, cold);
1544 }
1545}
1546
8dfcc9ba
NP
1547/*
1548 * split_page takes a non-compound higher-order page, and splits it into
1549 * n (1<<order) sub-pages: page[0..n]
1550 * Each sub-page must be freed individually.
1551 *
1552 * Note: this is probably too low level an operation for use in drivers.
1553 * Please consult with lkml before using this in your driver.
1554 */
1555void split_page(struct page *page, unsigned int order)
1556{
1557 int i;
1558
309381fe
SL
1559 VM_BUG_ON_PAGE(PageCompound(page), page);
1560 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1561
1562#ifdef CONFIG_KMEMCHECK
1563 /*
1564 * Split shadow pages too, because free(page[0]) would
1565 * otherwise free the whole shadow.
1566 */
1567 if (kmemcheck_page_is_tracked(page))
1568 split_page(virt_to_page(page[0].shadow), order);
1569#endif
1570
48c96a36
JK
1571 set_page_owner(page, 0, 0);
1572 for (i = 1; i < (1 << order); i++) {
7835e98b 1573 set_page_refcounted(page + i);
48c96a36
JK
1574 set_page_owner(page + i, 0, 0);
1575 }
8dfcc9ba 1576}
5853ff23 1577EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1578
3c605096 1579int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1580{
748446bb
MG
1581 unsigned long watermark;
1582 struct zone *zone;
2139cbe6 1583 int mt;
748446bb
MG
1584
1585 BUG_ON(!PageBuddy(page));
1586
1587 zone = page_zone(page);
2e30abd1 1588 mt = get_pageblock_migratetype(page);
748446bb 1589
194159fb 1590 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1591 /* Obey watermarks as if the page was being allocated */
1592 watermark = low_wmark_pages(zone) + (1 << order);
1593 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1594 return 0;
1595
8fb74b9f 1596 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1597 }
748446bb
MG
1598
1599 /* Remove page from free list */
1600 list_del(&page->lru);
1601 zone->free_area[order].nr_free--;
1602 rmv_page_order(page);
2139cbe6 1603
8fb74b9f 1604 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1605 if (order >= pageblock_order - 1) {
1606 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1607 for (; page < endpage; page += pageblock_nr_pages) {
1608 int mt = get_pageblock_migratetype(page);
194159fb 1609 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1610 set_pageblock_migratetype(page,
1611 MIGRATE_MOVABLE);
1612 }
748446bb
MG
1613 }
1614
48c96a36 1615 set_page_owner(page, order, 0);
8fb74b9f 1616 return 1UL << order;
1fb3f8ca
MG
1617}
1618
1619/*
1620 * Similar to split_page except the page is already free. As this is only
1621 * being used for migration, the migratetype of the block also changes.
1622 * As this is called with interrupts disabled, the caller is responsible
1623 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1624 * are enabled.
1625 *
1626 * Note: this is probably too low level an operation for use in drivers.
1627 * Please consult with lkml before using this in your driver.
1628 */
1629int split_free_page(struct page *page)
1630{
1631 unsigned int order;
1632 int nr_pages;
1633
1fb3f8ca
MG
1634 order = page_order(page);
1635
8fb74b9f 1636 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1637 if (!nr_pages)
1638 return 0;
1639
1640 /* Split into individual pages */
1641 set_page_refcounted(page);
1642 split_page(page, order);
1643 return nr_pages;
748446bb
MG
1644}
1645
1da177e4 1646/*
75379191 1647 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1648 */
0a15c3e9
MG
1649static inline
1650struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1651 struct zone *zone, unsigned int order,
1652 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1653{
1654 unsigned long flags;
689bcebf 1655 struct page *page;
b745bc85 1656 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1657
48db57f8 1658 if (likely(order == 0)) {
1da177e4 1659 struct per_cpu_pages *pcp;
5f8dcc21 1660 struct list_head *list;
1da177e4 1661
1da177e4 1662 local_irq_save(flags);
99dcc3e5
CL
1663 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1664 list = &pcp->lists[migratetype];
5f8dcc21 1665 if (list_empty(list)) {
535131e6 1666 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1667 pcp->batch, list,
e084b2d9 1668 migratetype, cold);
5f8dcc21 1669 if (unlikely(list_empty(list)))
6fb332fa 1670 goto failed;
535131e6 1671 }
b92a6edd 1672
5f8dcc21
MG
1673 if (cold)
1674 page = list_entry(list->prev, struct page, lru);
1675 else
1676 page = list_entry(list->next, struct page, lru);
1677
b92a6edd
MG
1678 list_del(&page->lru);
1679 pcp->count--;
7fb1d9fc 1680 } else {
dab48dab
AM
1681 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1682 /*
1683 * __GFP_NOFAIL is not to be used in new code.
1684 *
1685 * All __GFP_NOFAIL callers should be fixed so that they
1686 * properly detect and handle allocation failures.
1687 *
1688 * We most definitely don't want callers attempting to
4923abf9 1689 * allocate greater than order-1 page units with
dab48dab
AM
1690 * __GFP_NOFAIL.
1691 */
4923abf9 1692 WARN_ON_ONCE(order > 1);
dab48dab 1693 }
1da177e4 1694 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1695 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1696 spin_unlock(&zone->lock);
1697 if (!page)
1698 goto failed;
d1ce749a 1699 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1700 get_freepage_migratetype(page));
1da177e4
LT
1701 }
1702
3a025760 1703 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1704 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1705 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1706 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1707
f8891e5e 1708 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1709 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1710 local_irq_restore(flags);
1da177e4 1711
309381fe 1712 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1713 return page;
a74609fa
NP
1714
1715failed:
1716 local_irq_restore(flags);
a74609fa 1717 return NULL;
1da177e4
LT
1718}
1719
933e312e
AM
1720#ifdef CONFIG_FAIL_PAGE_ALLOC
1721
b2588c4b 1722static struct {
933e312e
AM
1723 struct fault_attr attr;
1724
1725 u32 ignore_gfp_highmem;
1726 u32 ignore_gfp_wait;
54114994 1727 u32 min_order;
933e312e
AM
1728} fail_page_alloc = {
1729 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1730 .ignore_gfp_wait = 1,
1731 .ignore_gfp_highmem = 1,
54114994 1732 .min_order = 1,
933e312e
AM
1733};
1734
1735static int __init setup_fail_page_alloc(char *str)
1736{
1737 return setup_fault_attr(&fail_page_alloc.attr, str);
1738}
1739__setup("fail_page_alloc=", setup_fail_page_alloc);
1740
deaf386e 1741static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1742{
54114994 1743 if (order < fail_page_alloc.min_order)
deaf386e 1744 return false;
933e312e 1745 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1746 return false;
933e312e 1747 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1748 return false;
933e312e 1749 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1750 return false;
933e312e
AM
1751
1752 return should_fail(&fail_page_alloc.attr, 1 << order);
1753}
1754
1755#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1756
1757static int __init fail_page_alloc_debugfs(void)
1758{
f4ae40a6 1759 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1760 struct dentry *dir;
933e312e 1761
dd48c085
AM
1762 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1763 &fail_page_alloc.attr);
1764 if (IS_ERR(dir))
1765 return PTR_ERR(dir);
933e312e 1766
b2588c4b
AM
1767 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1768 &fail_page_alloc.ignore_gfp_wait))
1769 goto fail;
1770 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1771 &fail_page_alloc.ignore_gfp_highmem))
1772 goto fail;
1773 if (!debugfs_create_u32("min-order", mode, dir,
1774 &fail_page_alloc.min_order))
1775 goto fail;
1776
1777 return 0;
1778fail:
dd48c085 1779 debugfs_remove_recursive(dir);
933e312e 1780
b2588c4b 1781 return -ENOMEM;
933e312e
AM
1782}
1783
1784late_initcall(fail_page_alloc_debugfs);
1785
1786#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1787
1788#else /* CONFIG_FAIL_PAGE_ALLOC */
1789
deaf386e 1790static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1791{
deaf386e 1792 return false;
933e312e
AM
1793}
1794
1795#endif /* CONFIG_FAIL_PAGE_ALLOC */
1796
1da177e4 1797/*
88f5acf8 1798 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1799 * of the allocation.
1800 */
7aeb09f9
MG
1801static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1802 unsigned long mark, int classzone_idx, int alloc_flags,
1803 long free_pages)
1da177e4 1804{
26086de3 1805 /* free_pages may go negative - that's OK */
d23ad423 1806 long min = mark;
1da177e4 1807 int o;
026b0814 1808 long free_cma = 0;
1da177e4 1809
df0a6daa 1810 free_pages -= (1 << order) - 1;
7fb1d9fc 1811 if (alloc_flags & ALLOC_HIGH)
1da177e4 1812 min -= min / 2;
7fb1d9fc 1813 if (alloc_flags & ALLOC_HARDER)
1da177e4 1814 min -= min / 4;
d95ea5d1
BZ
1815#ifdef CONFIG_CMA
1816 /* If allocation can't use CMA areas don't use free CMA pages */
1817 if (!(alloc_flags & ALLOC_CMA))
026b0814 1818 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1819#endif
026b0814 1820
3484b2de 1821 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1822 return false;
1da177e4
LT
1823 for (o = 0; o < order; o++) {
1824 /* At the next order, this order's pages become unavailable */
1825 free_pages -= z->free_area[o].nr_free << o;
1826
1827 /* Require fewer higher order pages to be free */
1828 min >>= 1;
1829
1830 if (free_pages <= min)
88f5acf8 1831 return false;
1da177e4 1832 }
88f5acf8
MG
1833 return true;
1834}
1835
7aeb09f9 1836bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1837 int classzone_idx, int alloc_flags)
1838{
1839 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1840 zone_page_state(z, NR_FREE_PAGES));
1841}
1842
7aeb09f9
MG
1843bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1844 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1845{
1846 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1847
1848 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1849 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1850
1851 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1852 free_pages);
1da177e4
LT
1853}
1854
9276b1bc
PJ
1855#ifdef CONFIG_NUMA
1856/*
1857 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1858 * skip over zones that are not allowed by the cpuset, or that have
1859 * been recently (in last second) found to be nearly full. See further
1860 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1861 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1862 *
a1aeb65a 1863 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1864 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1865 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1866 *
1867 * If the zonelist cache is not available for this zonelist, does
1868 * nothing and returns NULL.
1869 *
1870 * If the fullzones BITMAP in the zonelist cache is stale (more than
1871 * a second since last zap'd) then we zap it out (clear its bits.)
1872 *
1873 * We hold off even calling zlc_setup, until after we've checked the
1874 * first zone in the zonelist, on the theory that most allocations will
1875 * be satisfied from that first zone, so best to examine that zone as
1876 * quickly as we can.
1877 */
1878static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1879{
1880 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1881 nodemask_t *allowednodes; /* zonelist_cache approximation */
1882
1883 zlc = zonelist->zlcache_ptr;
1884 if (!zlc)
1885 return NULL;
1886
f05111f5 1887 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1888 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1889 zlc->last_full_zap = jiffies;
1890 }
1891
1892 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1893 &cpuset_current_mems_allowed :
4b0ef1fe 1894 &node_states[N_MEMORY];
9276b1bc
PJ
1895 return allowednodes;
1896}
1897
1898/*
1899 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1900 * if it is worth looking at further for free memory:
1901 * 1) Check that the zone isn't thought to be full (doesn't have its
1902 * bit set in the zonelist_cache fullzones BITMAP).
1903 * 2) Check that the zones node (obtained from the zonelist_cache
1904 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1905 * Return true (non-zero) if zone is worth looking at further, or
1906 * else return false (zero) if it is not.
1907 *
1908 * This check -ignores- the distinction between various watermarks,
1909 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1910 * found to be full for any variation of these watermarks, it will
1911 * be considered full for up to one second by all requests, unless
1912 * we are so low on memory on all allowed nodes that we are forced
1913 * into the second scan of the zonelist.
1914 *
1915 * In the second scan we ignore this zonelist cache and exactly
1916 * apply the watermarks to all zones, even it is slower to do so.
1917 * We are low on memory in the second scan, and should leave no stone
1918 * unturned looking for a free page.
1919 */
dd1a239f 1920static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1921 nodemask_t *allowednodes)
1922{
1923 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1924 int i; /* index of *z in zonelist zones */
1925 int n; /* node that zone *z is on */
1926
1927 zlc = zonelist->zlcache_ptr;
1928 if (!zlc)
1929 return 1;
1930
dd1a239f 1931 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1932 n = zlc->z_to_n[i];
1933
1934 /* This zone is worth trying if it is allowed but not full */
1935 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1936}
1937
1938/*
1939 * Given 'z' scanning a zonelist, set the corresponding bit in
1940 * zlc->fullzones, so that subsequent attempts to allocate a page
1941 * from that zone don't waste time re-examining it.
1942 */
dd1a239f 1943static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1944{
1945 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1946 int i; /* index of *z in zonelist zones */
1947
1948 zlc = zonelist->zlcache_ptr;
1949 if (!zlc)
1950 return;
1951
dd1a239f 1952 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1953
1954 set_bit(i, zlc->fullzones);
1955}
1956
76d3fbf8
MG
1957/*
1958 * clear all zones full, called after direct reclaim makes progress so that
1959 * a zone that was recently full is not skipped over for up to a second
1960 */
1961static void zlc_clear_zones_full(struct zonelist *zonelist)
1962{
1963 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1964
1965 zlc = zonelist->zlcache_ptr;
1966 if (!zlc)
1967 return;
1968
1969 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1970}
1971
81c0a2bb
JW
1972static bool zone_local(struct zone *local_zone, struct zone *zone)
1973{
fff4068c 1974 return local_zone->node == zone->node;
81c0a2bb
JW
1975}
1976
957f822a
DR
1977static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1978{
5f7a75ac
MG
1979 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1980 RECLAIM_DISTANCE;
957f822a
DR
1981}
1982
9276b1bc
PJ
1983#else /* CONFIG_NUMA */
1984
1985static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1986{
1987 return NULL;
1988}
1989
dd1a239f 1990static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1991 nodemask_t *allowednodes)
1992{
1993 return 1;
1994}
1995
dd1a239f 1996static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1997{
1998}
76d3fbf8
MG
1999
2000static void zlc_clear_zones_full(struct zonelist *zonelist)
2001{
2002}
957f822a 2003
81c0a2bb
JW
2004static bool zone_local(struct zone *local_zone, struct zone *zone)
2005{
2006 return true;
2007}
2008
957f822a
DR
2009static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2010{
2011 return true;
2012}
2013
9276b1bc
PJ
2014#endif /* CONFIG_NUMA */
2015
4ffeaf35
MG
2016static void reset_alloc_batches(struct zone *preferred_zone)
2017{
2018 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2019
2020 do {
2021 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2022 high_wmark_pages(zone) - low_wmark_pages(zone) -
2023 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2024 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2025 } while (zone++ != preferred_zone);
2026}
2027
7fb1d9fc 2028/*
0798e519 2029 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2030 * a page.
2031 */
2032static struct page *
a9263751
VB
2033get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2034 const struct alloc_context *ac)
753ee728 2035{
a9263751 2036 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2037 struct zoneref *z;
7fb1d9fc 2038 struct page *page = NULL;
5117f45d 2039 struct zone *zone;
9276b1bc
PJ
2040 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2041 int zlc_active = 0; /* set if using zonelist_cache */
2042 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2043 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2044 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2045 int nr_fair_skipped = 0;
2046 bool zonelist_rescan;
54a6eb5c 2047
9276b1bc 2048zonelist_scan:
4ffeaf35
MG
2049 zonelist_rescan = false;
2050
7fb1d9fc 2051 /*
9276b1bc 2052 * Scan zonelist, looking for a zone with enough free.
344736f2 2053 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2054 */
a9263751
VB
2055 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 ac->nodemask) {
e085dbc5
JW
2057 unsigned long mark;
2058
e5adfffc 2059 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2060 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2061 continue;
664eedde
MG
2062 if (cpusets_enabled() &&
2063 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2064 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2065 continue;
81c0a2bb
JW
2066 /*
2067 * Distribute pages in proportion to the individual
2068 * zone size to ensure fair page aging. The zone a
2069 * page was allocated in should have no effect on the
2070 * time the page has in memory before being reclaimed.
81c0a2bb 2071 */
3a025760 2072 if (alloc_flags & ALLOC_FAIR) {
a9263751 2073 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2074 break;
57054651 2075 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2076 nr_fair_skipped++;
3a025760 2077 continue;
4ffeaf35 2078 }
81c0a2bb 2079 }
a756cf59
JW
2080 /*
2081 * When allocating a page cache page for writing, we
2082 * want to get it from a zone that is within its dirty
2083 * limit, such that no single zone holds more than its
2084 * proportional share of globally allowed dirty pages.
2085 * The dirty limits take into account the zone's
2086 * lowmem reserves and high watermark so that kswapd
2087 * should be able to balance it without having to
2088 * write pages from its LRU list.
2089 *
2090 * This may look like it could increase pressure on
2091 * lower zones by failing allocations in higher zones
2092 * before they are full. But the pages that do spill
2093 * over are limited as the lower zones are protected
2094 * by this very same mechanism. It should not become
2095 * a practical burden to them.
2096 *
2097 * XXX: For now, allow allocations to potentially
2098 * exceed the per-zone dirty limit in the slowpath
2099 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2100 * which is important when on a NUMA setup the allowed
2101 * zones are together not big enough to reach the
2102 * global limit. The proper fix for these situations
2103 * will require awareness of zones in the
2104 * dirty-throttling and the flusher threads.
2105 */
a6e21b14 2106 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2107 continue;
7fb1d9fc 2108
e085dbc5
JW
2109 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2110 if (!zone_watermark_ok(zone, order, mark,
a9263751 2111 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2112 int ret;
2113
5dab2911
MG
2114 /* Checked here to keep the fast path fast */
2115 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2116 if (alloc_flags & ALLOC_NO_WATERMARKS)
2117 goto try_this_zone;
2118
e5adfffc
KS
2119 if (IS_ENABLED(CONFIG_NUMA) &&
2120 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2121 /*
2122 * we do zlc_setup if there are multiple nodes
2123 * and before considering the first zone allowed
2124 * by the cpuset.
2125 */
2126 allowednodes = zlc_setup(zonelist, alloc_flags);
2127 zlc_active = 1;
2128 did_zlc_setup = 1;
2129 }
2130
957f822a 2131 if (zone_reclaim_mode == 0 ||
a9263751 2132 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2133 goto this_zone_full;
2134
cd38b115
MG
2135 /*
2136 * As we may have just activated ZLC, check if the first
2137 * eligible zone has failed zone_reclaim recently.
2138 */
e5adfffc 2139 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2140 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2141 continue;
2142
fa5e084e
MG
2143 ret = zone_reclaim(zone, gfp_mask, order);
2144 switch (ret) {
2145 case ZONE_RECLAIM_NOSCAN:
2146 /* did not scan */
cd38b115 2147 continue;
fa5e084e
MG
2148 case ZONE_RECLAIM_FULL:
2149 /* scanned but unreclaimable */
cd38b115 2150 continue;
fa5e084e
MG
2151 default:
2152 /* did we reclaim enough */
fed2719e 2153 if (zone_watermark_ok(zone, order, mark,
a9263751 2154 ac->classzone_idx, alloc_flags))
fed2719e
MG
2155 goto try_this_zone;
2156
2157 /*
2158 * Failed to reclaim enough to meet watermark.
2159 * Only mark the zone full if checking the min
2160 * watermark or if we failed to reclaim just
2161 * 1<<order pages or else the page allocator
2162 * fastpath will prematurely mark zones full
2163 * when the watermark is between the low and
2164 * min watermarks.
2165 */
2166 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2167 ret == ZONE_RECLAIM_SOME)
9276b1bc 2168 goto this_zone_full;
fed2719e
MG
2169
2170 continue;
0798e519 2171 }
7fb1d9fc
RS
2172 }
2173
fa5e084e 2174try_this_zone:
a9263751
VB
2175 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2176 gfp_mask, ac->migratetype);
75379191
VB
2177 if (page) {
2178 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2179 goto try_this_zone;
2180 return page;
2181 }
9276b1bc 2182this_zone_full:
65bb3719 2183 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2184 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2185 }
9276b1bc 2186
4ffeaf35
MG
2187 /*
2188 * The first pass makes sure allocations are spread fairly within the
2189 * local node. However, the local node might have free pages left
2190 * after the fairness batches are exhausted, and remote zones haven't
2191 * even been considered yet. Try once more without fairness, and
2192 * include remote zones now, before entering the slowpath and waking
2193 * kswapd: prefer spilling to a remote zone over swapping locally.
2194 */
2195 if (alloc_flags & ALLOC_FAIR) {
2196 alloc_flags &= ~ALLOC_FAIR;
2197 if (nr_fair_skipped) {
2198 zonelist_rescan = true;
a9263751 2199 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2200 }
2201 if (nr_online_nodes > 1)
2202 zonelist_rescan = true;
2203 }
2204
2205 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2206 /* Disable zlc cache for second zonelist scan */
2207 zlc_active = 0;
2208 zonelist_rescan = true;
2209 }
2210
2211 if (zonelist_rescan)
2212 goto zonelist_scan;
2213
2214 return NULL;
753ee728
MH
2215}
2216
29423e77
DR
2217/*
2218 * Large machines with many possible nodes should not always dump per-node
2219 * meminfo in irq context.
2220 */
2221static inline bool should_suppress_show_mem(void)
2222{
2223 bool ret = false;
2224
2225#if NODES_SHIFT > 8
2226 ret = in_interrupt();
2227#endif
2228 return ret;
2229}
2230
a238ab5b
DH
2231static DEFINE_RATELIMIT_STATE(nopage_rs,
2232 DEFAULT_RATELIMIT_INTERVAL,
2233 DEFAULT_RATELIMIT_BURST);
2234
2235void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2236{
a238ab5b
DH
2237 unsigned int filter = SHOW_MEM_FILTER_NODES;
2238
c0a32fc5
SG
2239 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2240 debug_guardpage_minorder() > 0)
a238ab5b
DH
2241 return;
2242
2243 /*
2244 * This documents exceptions given to allocations in certain
2245 * contexts that are allowed to allocate outside current's set
2246 * of allowed nodes.
2247 */
2248 if (!(gfp_mask & __GFP_NOMEMALLOC))
2249 if (test_thread_flag(TIF_MEMDIE) ||
2250 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2251 filter &= ~SHOW_MEM_FILTER_NODES;
2252 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2253 filter &= ~SHOW_MEM_FILTER_NODES;
2254
2255 if (fmt) {
3ee9a4f0
JP
2256 struct va_format vaf;
2257 va_list args;
2258
a238ab5b 2259 va_start(args, fmt);
3ee9a4f0
JP
2260
2261 vaf.fmt = fmt;
2262 vaf.va = &args;
2263
2264 pr_warn("%pV", &vaf);
2265
a238ab5b
DH
2266 va_end(args);
2267 }
2268
3ee9a4f0
JP
2269 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2270 current->comm, order, gfp_mask);
a238ab5b
DH
2271
2272 dump_stack();
2273 if (!should_suppress_show_mem())
2274 show_mem(filter);
2275}
2276
11e33f6a
MG
2277static inline int
2278should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2279 unsigned long did_some_progress,
11e33f6a 2280 unsigned long pages_reclaimed)
1da177e4 2281{
11e33f6a
MG
2282 /* Do not loop if specifically requested */
2283 if (gfp_mask & __GFP_NORETRY)
2284 return 0;
1da177e4 2285
f90ac398
MG
2286 /* Always retry if specifically requested */
2287 if (gfp_mask & __GFP_NOFAIL)
2288 return 1;
2289
2290 /*
2291 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2292 * making forward progress without invoking OOM. Suspend also disables
2293 * storage devices so kswapd will not help. Bail if we are suspending.
2294 */
2295 if (!did_some_progress && pm_suspended_storage())
2296 return 0;
2297
11e33f6a
MG
2298 /*
2299 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2300 * means __GFP_NOFAIL, but that may not be true in other
2301 * implementations.
2302 */
2303 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2304 return 1;
2305
2306 /*
2307 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2308 * specified, then we retry until we no longer reclaim any pages
2309 * (above), or we've reclaimed an order of pages at least as
2310 * large as the allocation's order. In both cases, if the
2311 * allocation still fails, we stop retrying.
2312 */
2313 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2314 return 1;
cf40bd16 2315
11e33f6a
MG
2316 return 0;
2317}
933e312e 2318
11e33f6a
MG
2319static inline struct page *
2320__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2321 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2322{
2323 struct page *page;
2324
9879de73
JW
2325 *did_some_progress = 0;
2326
9879de73
JW
2327 /*
2328 * Acquire the per-zone oom lock for each zone. If that
2329 * fails, somebody else is making progress for us.
2330 */
a9263751 2331 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
9879de73 2332 *did_some_progress = 1;
11e33f6a 2333 schedule_timeout_uninterruptible(1);
1da177e4
LT
2334 return NULL;
2335 }
6b1de916 2336
11e33f6a
MG
2337 /*
2338 * Go through the zonelist yet one more time, keep very high watermark
2339 * here, this is only to catch a parallel oom killing, we must fail if
2340 * we're still under heavy pressure.
2341 */
a9263751
VB
2342 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2343 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2344 if (page)
11e33f6a
MG
2345 goto out;
2346
4365a567 2347 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2348 /* Coredumps can quickly deplete all memory reserves */
2349 if (current->flags & PF_DUMPCORE)
2350 goto out;
4365a567
KH
2351 /* The OOM killer will not help higher order allocs */
2352 if (order > PAGE_ALLOC_COSTLY_ORDER)
2353 goto out;
03668b3c 2354 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2355 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2356 goto out;
9879de73 2357 /* The OOM killer does not compensate for light reclaim */
cc873177
JW
2358 if (!(gfp_mask & __GFP_FS)) {
2359 /*
2360 * XXX: Page reclaim didn't yield anything,
2361 * and the OOM killer can't be invoked, but
2362 * keep looping as per should_alloc_retry().
2363 */
2364 *did_some_progress = 1;
9879de73 2365 goto out;
cc873177 2366 }
4365a567
KH
2367 /*
2368 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2369 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2370 * The caller should handle page allocation failure by itself if
2371 * it specifies __GFP_THISNODE.
2372 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2373 */
2374 if (gfp_mask & __GFP_THISNODE)
2375 goto out;
2376 }
11e33f6a 2377 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2378 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2379 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2380 *did_some_progress = 1;
11e33f6a 2381out:
a9263751 2382 oom_zonelist_unlock(ac->zonelist, gfp_mask);
11e33f6a
MG
2383 return page;
2384}
2385
56de7263
MG
2386#ifdef CONFIG_COMPACTION
2387/* Try memory compaction for high-order allocations before reclaim */
2388static struct page *
2389__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2390 int alloc_flags, const struct alloc_context *ac,
2391 enum migrate_mode mode, int *contended_compaction,
2392 bool *deferred_compaction)
56de7263 2393{
53853e2d 2394 unsigned long compact_result;
98dd3b48 2395 struct page *page;
53853e2d
VB
2396
2397 if (!order)
66199712 2398 return NULL;
66199712 2399
c06b1fca 2400 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2401 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2402 mode, contended_compaction);
c06b1fca 2403 current->flags &= ~PF_MEMALLOC;
56de7263 2404
98dd3b48
VB
2405 switch (compact_result) {
2406 case COMPACT_DEFERRED:
53853e2d 2407 *deferred_compaction = true;
98dd3b48
VB
2408 /* fall-through */
2409 case COMPACT_SKIPPED:
2410 return NULL;
2411 default:
2412 break;
2413 }
53853e2d 2414
98dd3b48
VB
2415 /*
2416 * At least in one zone compaction wasn't deferred or skipped, so let's
2417 * count a compaction stall
2418 */
2419 count_vm_event(COMPACTSTALL);
8fb74b9f 2420
a9263751
VB
2421 page = get_page_from_freelist(gfp_mask, order,
2422 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2423
98dd3b48
VB
2424 if (page) {
2425 struct zone *zone = page_zone(page);
53853e2d 2426
98dd3b48
VB
2427 zone->compact_blockskip_flush = false;
2428 compaction_defer_reset(zone, order, true);
2429 count_vm_event(COMPACTSUCCESS);
2430 return page;
2431 }
56de7263 2432
98dd3b48
VB
2433 /*
2434 * It's bad if compaction run occurs and fails. The most likely reason
2435 * is that pages exist, but not enough to satisfy watermarks.
2436 */
2437 count_vm_event(COMPACTFAIL);
66199712 2438
98dd3b48 2439 cond_resched();
56de7263
MG
2440
2441 return NULL;
2442}
2443#else
2444static inline struct page *
2445__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2446 int alloc_flags, const struct alloc_context *ac,
2447 enum migrate_mode mode, int *contended_compaction,
2448 bool *deferred_compaction)
56de7263
MG
2449{
2450 return NULL;
2451}
2452#endif /* CONFIG_COMPACTION */
2453
bba90710
MS
2454/* Perform direct synchronous page reclaim */
2455static int
a9263751
VB
2456__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2457 const struct alloc_context *ac)
11e33f6a 2458{
11e33f6a 2459 struct reclaim_state reclaim_state;
bba90710 2460 int progress;
11e33f6a
MG
2461
2462 cond_resched();
2463
2464 /* We now go into synchronous reclaim */
2465 cpuset_memory_pressure_bump();
c06b1fca 2466 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2467 lockdep_set_current_reclaim_state(gfp_mask);
2468 reclaim_state.reclaimed_slab = 0;
c06b1fca 2469 current->reclaim_state = &reclaim_state;
11e33f6a 2470
a9263751
VB
2471 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2472 ac->nodemask);
11e33f6a 2473
c06b1fca 2474 current->reclaim_state = NULL;
11e33f6a 2475 lockdep_clear_current_reclaim_state();
c06b1fca 2476 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2477
2478 cond_resched();
2479
bba90710
MS
2480 return progress;
2481}
2482
2483/* The really slow allocator path where we enter direct reclaim */
2484static inline struct page *
2485__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2486 int alloc_flags, const struct alloc_context *ac,
2487 unsigned long *did_some_progress)
bba90710
MS
2488{
2489 struct page *page = NULL;
2490 bool drained = false;
2491
a9263751 2492 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2493 if (unlikely(!(*did_some_progress)))
2494 return NULL;
11e33f6a 2495
76d3fbf8 2496 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2497 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2498 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2499
9ee493ce 2500retry:
a9263751
VB
2501 page = get_page_from_freelist(gfp_mask, order,
2502 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2503
2504 /*
2505 * If an allocation failed after direct reclaim, it could be because
2506 * pages are pinned on the per-cpu lists. Drain them and try again
2507 */
2508 if (!page && !drained) {
93481ff0 2509 drain_all_pages(NULL);
9ee493ce
MG
2510 drained = true;
2511 goto retry;
2512 }
2513
11e33f6a
MG
2514 return page;
2515}
2516
1da177e4 2517/*
11e33f6a
MG
2518 * This is called in the allocator slow-path if the allocation request is of
2519 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2520 */
11e33f6a
MG
2521static inline struct page *
2522__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2523 const struct alloc_context *ac)
11e33f6a
MG
2524{
2525 struct page *page;
2526
2527 do {
a9263751
VB
2528 page = get_page_from_freelist(gfp_mask, order,
2529 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2530
2531 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2532 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2533 HZ/50);
11e33f6a
MG
2534 } while (!page && (gfp_mask & __GFP_NOFAIL));
2535
2536 return page;
2537}
2538
a9263751 2539static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2540{
2541 struct zoneref *z;
2542 struct zone *zone;
2543
a9263751
VB
2544 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2545 ac->high_zoneidx, ac->nodemask)
2546 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2547}
2548
341ce06f
PZ
2549static inline int
2550gfp_to_alloc_flags(gfp_t gfp_mask)
2551{
341ce06f 2552 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2553 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2554
a56f57ff 2555 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2556 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2557
341ce06f
PZ
2558 /*
2559 * The caller may dip into page reserves a bit more if the caller
2560 * cannot run direct reclaim, or if the caller has realtime scheduling
2561 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2562 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2563 */
e6223a3b 2564 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2565
b104a35d 2566 if (atomic) {
5c3240d9 2567 /*
b104a35d
DR
2568 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2569 * if it can't schedule.
5c3240d9 2570 */
b104a35d 2571 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2572 alloc_flags |= ALLOC_HARDER;
523b9458 2573 /*
b104a35d 2574 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2575 * comment for __cpuset_node_allowed().
523b9458 2576 */
341ce06f 2577 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2578 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2579 alloc_flags |= ALLOC_HARDER;
2580
b37f1dd0
MG
2581 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2582 if (gfp_mask & __GFP_MEMALLOC)
2583 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2584 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2585 alloc_flags |= ALLOC_NO_WATERMARKS;
2586 else if (!in_interrupt() &&
2587 ((current->flags & PF_MEMALLOC) ||
2588 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2589 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2590 }
d95ea5d1 2591#ifdef CONFIG_CMA
43e7a34d 2592 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2593 alloc_flags |= ALLOC_CMA;
2594#endif
341ce06f
PZ
2595 return alloc_flags;
2596}
2597
072bb0aa
MG
2598bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2599{
b37f1dd0 2600 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2601}
2602
11e33f6a
MG
2603static inline struct page *
2604__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2605 struct alloc_context *ac)
11e33f6a
MG
2606{
2607 const gfp_t wait = gfp_mask & __GFP_WAIT;
2608 struct page *page = NULL;
2609 int alloc_flags;
2610 unsigned long pages_reclaimed = 0;
2611 unsigned long did_some_progress;
e0b9daeb 2612 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2613 bool deferred_compaction = false;
1f9efdef 2614 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2615
72807a74
MG
2616 /*
2617 * In the slowpath, we sanity check order to avoid ever trying to
2618 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2619 * be using allocators in order of preference for an area that is
2620 * too large.
2621 */
1fc28b70
MG
2622 if (order >= MAX_ORDER) {
2623 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2624 return NULL;
1fc28b70 2625 }
1da177e4 2626
952f3b51
CL
2627 /*
2628 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2629 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2630 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2631 * using a larger set of nodes after it has established that the
2632 * allowed per node queues are empty and that nodes are
2633 * over allocated.
2634 */
3a025760
JW
2635 if (IS_ENABLED(CONFIG_NUMA) &&
2636 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2637 goto nopage;
2638
9879de73 2639retry:
3a025760 2640 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2641 wake_all_kswapds(order, ac);
1da177e4 2642
9bf2229f 2643 /*
7fb1d9fc
RS
2644 * OK, we're below the kswapd watermark and have kicked background
2645 * reclaim. Now things get more complex, so set up alloc_flags according
2646 * to how we want to proceed.
9bf2229f 2647 */
341ce06f 2648 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2649
f33261d7
DR
2650 /*
2651 * Find the true preferred zone if the allocation is unconstrained by
2652 * cpusets.
2653 */
a9263751 2654 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2655 struct zoneref *preferred_zoneref;
a9263751
VB
2656 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2657 ac->high_zoneidx, NULL, &ac->preferred_zone);
2658 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2659 }
f33261d7 2660
341ce06f 2661 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2662 page = get_page_from_freelist(gfp_mask, order,
2663 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2664 if (page)
2665 goto got_pg;
1da177e4 2666
11e33f6a 2667 /* Allocate without watermarks if the context allows */
341ce06f 2668 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2669 /*
2670 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2671 * the allocation is high priority and these type of
2672 * allocations are system rather than user orientated
2673 */
a9263751
VB
2674 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2675
2676 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2677
cfd19c5a 2678 if (page) {
341ce06f 2679 goto got_pg;
cfd19c5a 2680 }
1da177e4
LT
2681 }
2682
2683 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2684 if (!wait) {
2685 /*
2686 * All existing users of the deprecated __GFP_NOFAIL are
2687 * blockable, so warn of any new users that actually allow this
2688 * type of allocation to fail.
2689 */
2690 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2691 goto nopage;
aed0a0e3 2692 }
1da177e4 2693
341ce06f 2694 /* Avoid recursion of direct reclaim */
c06b1fca 2695 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2696 goto nopage;
2697
6583bb64
DR
2698 /* Avoid allocations with no watermarks from looping endlessly */
2699 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2700 goto nopage;
2701
77f1fe6b
MG
2702 /*
2703 * Try direct compaction. The first pass is asynchronous. Subsequent
2704 * attempts after direct reclaim are synchronous
2705 */
a9263751
VB
2706 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2707 migration_mode,
2708 &contended_compaction,
53853e2d 2709 &deferred_compaction);
56de7263
MG
2710 if (page)
2711 goto got_pg;
75f30861 2712
1f9efdef
VB
2713 /* Checks for THP-specific high-order allocations */
2714 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2715 /*
2716 * If compaction is deferred for high-order allocations, it is
2717 * because sync compaction recently failed. If this is the case
2718 * and the caller requested a THP allocation, we do not want
2719 * to heavily disrupt the system, so we fail the allocation
2720 * instead of entering direct reclaim.
2721 */
2722 if (deferred_compaction)
2723 goto nopage;
2724
2725 /*
2726 * In all zones where compaction was attempted (and not
2727 * deferred or skipped), lock contention has been detected.
2728 * For THP allocation we do not want to disrupt the others
2729 * so we fallback to base pages instead.
2730 */
2731 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2732 goto nopage;
2733
2734 /*
2735 * If compaction was aborted due to need_resched(), we do not
2736 * want to further increase allocation latency, unless it is
2737 * khugepaged trying to collapse.
2738 */
2739 if (contended_compaction == COMPACT_CONTENDED_SCHED
2740 && !(current->flags & PF_KTHREAD))
2741 goto nopage;
2742 }
66199712 2743
8fe78048
DR
2744 /*
2745 * It can become very expensive to allocate transparent hugepages at
2746 * fault, so use asynchronous memory compaction for THP unless it is
2747 * khugepaged trying to collapse.
2748 */
2749 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2750 (current->flags & PF_KTHREAD))
2751 migration_mode = MIGRATE_SYNC_LIGHT;
2752
11e33f6a 2753 /* Try direct reclaim and then allocating */
a9263751
VB
2754 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2755 &did_some_progress);
11e33f6a
MG
2756 if (page)
2757 goto got_pg;
1da177e4 2758
11e33f6a 2759 /* Check if we should retry the allocation */
a41f24ea 2760 pages_reclaimed += did_some_progress;
f90ac398
MG
2761 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2762 pages_reclaimed)) {
9879de73
JW
2763 /*
2764 * If we fail to make progress by freeing individual
2765 * pages, but the allocation wants us to keep going,
2766 * start OOM killing tasks.
2767 */
2768 if (!did_some_progress) {
a9263751
VB
2769 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2770 &did_some_progress);
9879de73
JW
2771 if (page)
2772 goto got_pg;
2773 if (!did_some_progress)
2774 goto nopage;
2775 }
11e33f6a 2776 /* Wait for some write requests to complete then retry */
a9263751 2777 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2778 goto retry;
3e7d3449
MG
2779 } else {
2780 /*
2781 * High-order allocations do not necessarily loop after
2782 * direct reclaim and reclaim/compaction depends on compaction
2783 * being called after reclaim so call directly if necessary
2784 */
a9263751
VB
2785 page = __alloc_pages_direct_compact(gfp_mask, order,
2786 alloc_flags, ac, migration_mode,
2787 &contended_compaction,
53853e2d 2788 &deferred_compaction);
3e7d3449
MG
2789 if (page)
2790 goto got_pg;
1da177e4
LT
2791 }
2792
2793nopage:
a238ab5b 2794 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2795got_pg:
072bb0aa 2796 return page;
1da177e4 2797}
11e33f6a
MG
2798
2799/*
2800 * This is the 'heart' of the zoned buddy allocator.
2801 */
2802struct page *
2803__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2804 struct zonelist *zonelist, nodemask_t *nodemask)
2805{
d8846374 2806 struct zoneref *preferred_zoneref;
cc9a6c87 2807 struct page *page = NULL;
cc9a6c87 2808 unsigned int cpuset_mems_cookie;
3a025760 2809 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2810 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2811 struct alloc_context ac = {
2812 .high_zoneidx = gfp_zone(gfp_mask),
2813 .nodemask = nodemask,
2814 .migratetype = gfpflags_to_migratetype(gfp_mask),
2815 };
11e33f6a 2816
dcce284a
BH
2817 gfp_mask &= gfp_allowed_mask;
2818
11e33f6a
MG
2819 lockdep_trace_alloc(gfp_mask);
2820
2821 might_sleep_if(gfp_mask & __GFP_WAIT);
2822
2823 if (should_fail_alloc_page(gfp_mask, order))
2824 return NULL;
2825
2826 /*
2827 * Check the zones suitable for the gfp_mask contain at least one
2828 * valid zone. It's possible to have an empty zonelist as a result
2829 * of GFP_THISNODE and a memoryless node
2830 */
2831 if (unlikely(!zonelist->_zonerefs->zone))
2832 return NULL;
2833
a9263751 2834 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2835 alloc_flags |= ALLOC_CMA;
2836
cc9a6c87 2837retry_cpuset:
d26914d1 2838 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2839
a9263751
VB
2840 /* We set it here, as __alloc_pages_slowpath might have changed it */
2841 ac.zonelist = zonelist;
5117f45d 2842 /* The preferred zone is used for statistics later */
a9263751
VB
2843 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2844 ac.nodemask ? : &cpuset_current_mems_allowed,
2845 &ac.preferred_zone);
2846 if (!ac.preferred_zone)
cc9a6c87 2847 goto out;
a9263751 2848 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2849
2850 /* First allocation attempt */
91fbdc0f 2851 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2852 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2853 if (unlikely(!page)) {
2854 /*
2855 * Runtime PM, block IO and its error handling path
2856 * can deadlock because I/O on the device might not
2857 * complete.
2858 */
91fbdc0f
AM
2859 alloc_mask = memalloc_noio_flags(gfp_mask);
2860
a9263751 2861 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2862 }
11e33f6a 2863
23f086f9
XQ
2864 if (kmemcheck_enabled && page)
2865 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2866
a9263751 2867 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2868
2869out:
2870 /*
2871 * When updating a task's mems_allowed, it is possible to race with
2872 * parallel threads in such a way that an allocation can fail while
2873 * the mask is being updated. If a page allocation is about to fail,
2874 * check if the cpuset changed during allocation and if so, retry.
2875 */
d26914d1 2876 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2877 goto retry_cpuset;
2878
11e33f6a 2879 return page;
1da177e4 2880}
d239171e 2881EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2882
2883/*
2884 * Common helper functions.
2885 */
920c7a5d 2886unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2887{
945a1113
AM
2888 struct page *page;
2889
2890 /*
2891 * __get_free_pages() returns a 32-bit address, which cannot represent
2892 * a highmem page
2893 */
2894 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2895
1da177e4
LT
2896 page = alloc_pages(gfp_mask, order);
2897 if (!page)
2898 return 0;
2899 return (unsigned long) page_address(page);
2900}
1da177e4
LT
2901EXPORT_SYMBOL(__get_free_pages);
2902
920c7a5d 2903unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2904{
945a1113 2905 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2906}
1da177e4
LT
2907EXPORT_SYMBOL(get_zeroed_page);
2908
920c7a5d 2909void __free_pages(struct page *page, unsigned int order)
1da177e4 2910{
b5810039 2911 if (put_page_testzero(page)) {
1da177e4 2912 if (order == 0)
b745bc85 2913 free_hot_cold_page(page, false);
1da177e4
LT
2914 else
2915 __free_pages_ok(page, order);
2916 }
2917}
2918
2919EXPORT_SYMBOL(__free_pages);
2920
920c7a5d 2921void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2922{
2923 if (addr != 0) {
725d704e 2924 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2925 __free_pages(virt_to_page((void *)addr), order);
2926 }
2927}
2928
2929EXPORT_SYMBOL(free_pages);
2930
6a1a0d3b 2931/*
52383431
VD
2932 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2933 * of the current memory cgroup.
6a1a0d3b 2934 *
52383431
VD
2935 * It should be used when the caller would like to use kmalloc, but since the
2936 * allocation is large, it has to fall back to the page allocator.
2937 */
2938struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2939{
2940 struct page *page;
2941 struct mem_cgroup *memcg = NULL;
2942
2943 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2944 return NULL;
2945 page = alloc_pages(gfp_mask, order);
2946 memcg_kmem_commit_charge(page, memcg, order);
2947 return page;
2948}
2949
2950struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2951{
2952 struct page *page;
2953 struct mem_cgroup *memcg = NULL;
2954
2955 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2956 return NULL;
2957 page = alloc_pages_node(nid, gfp_mask, order);
2958 memcg_kmem_commit_charge(page, memcg, order);
2959 return page;
2960}
2961
2962/*
2963 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2964 * alloc_kmem_pages.
6a1a0d3b 2965 */
52383431 2966void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2967{
2968 memcg_kmem_uncharge_pages(page, order);
2969 __free_pages(page, order);
2970}
2971
52383431 2972void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2973{
2974 if (addr != 0) {
2975 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2976 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2977 }
2978}
2979
ee85c2e1
AK
2980static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2981{
2982 if (addr) {
2983 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2984 unsigned long used = addr + PAGE_ALIGN(size);
2985
2986 split_page(virt_to_page((void *)addr), order);
2987 while (used < alloc_end) {
2988 free_page(used);
2989 used += PAGE_SIZE;
2990 }
2991 }
2992 return (void *)addr;
2993}
2994
2be0ffe2
TT
2995/**
2996 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2997 * @size: the number of bytes to allocate
2998 * @gfp_mask: GFP flags for the allocation
2999 *
3000 * This function is similar to alloc_pages(), except that it allocates the
3001 * minimum number of pages to satisfy the request. alloc_pages() can only
3002 * allocate memory in power-of-two pages.
3003 *
3004 * This function is also limited by MAX_ORDER.
3005 *
3006 * Memory allocated by this function must be released by free_pages_exact().
3007 */
3008void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3009{
3010 unsigned int order = get_order(size);
3011 unsigned long addr;
3012
3013 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3014 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3015}
3016EXPORT_SYMBOL(alloc_pages_exact);
3017
ee85c2e1
AK
3018/**
3019 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3020 * pages on a node.
b5e6ab58 3021 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3022 * @size: the number of bytes to allocate
3023 * @gfp_mask: GFP flags for the allocation
3024 *
3025 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3026 * back.
3027 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3028 * but is not exact.
3029 */
e1931811 3030void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3031{
3032 unsigned order = get_order(size);
3033 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3034 if (!p)
3035 return NULL;
3036 return make_alloc_exact((unsigned long)page_address(p), order, size);
3037}
ee85c2e1 3038
2be0ffe2
TT
3039/**
3040 * free_pages_exact - release memory allocated via alloc_pages_exact()
3041 * @virt: the value returned by alloc_pages_exact.
3042 * @size: size of allocation, same value as passed to alloc_pages_exact().
3043 *
3044 * Release the memory allocated by a previous call to alloc_pages_exact.
3045 */
3046void free_pages_exact(void *virt, size_t size)
3047{
3048 unsigned long addr = (unsigned long)virt;
3049 unsigned long end = addr + PAGE_ALIGN(size);
3050
3051 while (addr < end) {
3052 free_page(addr);
3053 addr += PAGE_SIZE;
3054 }
3055}
3056EXPORT_SYMBOL(free_pages_exact);
3057
e0fb5815
ZY
3058/**
3059 * nr_free_zone_pages - count number of pages beyond high watermark
3060 * @offset: The zone index of the highest zone
3061 *
3062 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3063 * high watermark within all zones at or below a given zone index. For each
3064 * zone, the number of pages is calculated as:
834405c3 3065 * managed_pages - high_pages
e0fb5815 3066 */
ebec3862 3067static unsigned long nr_free_zone_pages(int offset)
1da177e4 3068{
dd1a239f 3069 struct zoneref *z;
54a6eb5c
MG
3070 struct zone *zone;
3071
e310fd43 3072 /* Just pick one node, since fallback list is circular */
ebec3862 3073 unsigned long sum = 0;
1da177e4 3074
0e88460d 3075 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3076
54a6eb5c 3077 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3078 unsigned long size = zone->managed_pages;
41858966 3079 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3080 if (size > high)
3081 sum += size - high;
1da177e4
LT
3082 }
3083
3084 return sum;
3085}
3086
e0fb5815
ZY
3087/**
3088 * nr_free_buffer_pages - count number of pages beyond high watermark
3089 *
3090 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3091 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3092 */
ebec3862 3093unsigned long nr_free_buffer_pages(void)
1da177e4 3094{
af4ca457 3095 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3096}
c2f1a551 3097EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3098
e0fb5815
ZY
3099/**
3100 * nr_free_pagecache_pages - count number of pages beyond high watermark
3101 *
3102 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3103 * high watermark within all zones.
1da177e4 3104 */
ebec3862 3105unsigned long nr_free_pagecache_pages(void)
1da177e4 3106{
2a1e274a 3107 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3108}
08e0f6a9
CL
3109
3110static inline void show_node(struct zone *zone)
1da177e4 3111{
e5adfffc 3112 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3113 printk("Node %d ", zone_to_nid(zone));
1da177e4 3114}
1da177e4 3115
1da177e4
LT
3116void si_meminfo(struct sysinfo *val)
3117{
3118 val->totalram = totalram_pages;
cc7452b6 3119 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3120 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3121 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3122 val->totalhigh = totalhigh_pages;
3123 val->freehigh = nr_free_highpages();
1da177e4
LT
3124 val->mem_unit = PAGE_SIZE;
3125}
3126
3127EXPORT_SYMBOL(si_meminfo);
3128
3129#ifdef CONFIG_NUMA
3130void si_meminfo_node(struct sysinfo *val, int nid)
3131{
cdd91a77
JL
3132 int zone_type; /* needs to be signed */
3133 unsigned long managed_pages = 0;
1da177e4
LT
3134 pg_data_t *pgdat = NODE_DATA(nid);
3135
cdd91a77
JL
3136 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3137 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3138 val->totalram = managed_pages;
cc7452b6 3139 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3140 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3141#ifdef CONFIG_HIGHMEM
b40da049 3142 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3143 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3144 NR_FREE_PAGES);
98d2b0eb
CL
3145#else
3146 val->totalhigh = 0;
3147 val->freehigh = 0;
3148#endif
1da177e4
LT
3149 val->mem_unit = PAGE_SIZE;
3150}
3151#endif
3152
ddd588b5 3153/*
7bf02ea2
DR
3154 * Determine whether the node should be displayed or not, depending on whether
3155 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3156 */
7bf02ea2 3157bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3158{
3159 bool ret = false;
cc9a6c87 3160 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3161
3162 if (!(flags & SHOW_MEM_FILTER_NODES))
3163 goto out;
3164
cc9a6c87 3165 do {
d26914d1 3166 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3167 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3168 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3169out:
3170 return ret;
3171}
3172
1da177e4
LT
3173#define K(x) ((x) << (PAGE_SHIFT-10))
3174
377e4f16
RV
3175static void show_migration_types(unsigned char type)
3176{
3177 static const char types[MIGRATE_TYPES] = {
3178 [MIGRATE_UNMOVABLE] = 'U',
3179 [MIGRATE_RECLAIMABLE] = 'E',
3180 [MIGRATE_MOVABLE] = 'M',
3181 [MIGRATE_RESERVE] = 'R',
3182#ifdef CONFIG_CMA
3183 [MIGRATE_CMA] = 'C',
3184#endif
194159fb 3185#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3186 [MIGRATE_ISOLATE] = 'I',
194159fb 3187#endif
377e4f16
RV
3188 };
3189 char tmp[MIGRATE_TYPES + 1];
3190 char *p = tmp;
3191 int i;
3192
3193 for (i = 0; i < MIGRATE_TYPES; i++) {
3194 if (type & (1 << i))
3195 *p++ = types[i];
3196 }
3197
3198 *p = '\0';
3199 printk("(%s) ", tmp);
3200}
3201
1da177e4
LT
3202/*
3203 * Show free area list (used inside shift_scroll-lock stuff)
3204 * We also calculate the percentage fragmentation. We do this by counting the
3205 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3206 * Suppresses nodes that are not allowed by current's cpuset if
3207 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3208 */
7bf02ea2 3209void show_free_areas(unsigned int filter)
1da177e4 3210{
c7241913 3211 int cpu;
1da177e4
LT
3212 struct zone *zone;
3213
ee99c71c 3214 for_each_populated_zone(zone) {
7bf02ea2 3215 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3216 continue;
c7241913
JS
3217 show_node(zone);
3218 printk("%s per-cpu:\n", zone->name);
1da177e4 3219
6b482c67 3220 for_each_online_cpu(cpu) {
1da177e4
LT
3221 struct per_cpu_pageset *pageset;
3222
99dcc3e5 3223 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3224
3dfa5721
CL
3225 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3226 cpu, pageset->pcp.high,
3227 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3228 }
3229 }
3230
a731286d
KM
3231 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3232 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3233 " unevictable:%lu"
b76146ed 3234 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3235 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3236 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3237 " free_cma:%lu\n",
4f98a2fe 3238 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3239 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3240 global_page_state(NR_ISOLATED_ANON),
3241 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3242 global_page_state(NR_INACTIVE_FILE),
a731286d 3243 global_page_state(NR_ISOLATED_FILE),
7b854121 3244 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3245 global_page_state(NR_FILE_DIRTY),
ce866b34 3246 global_page_state(NR_WRITEBACK),
fd39fc85 3247 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3248 global_page_state(NR_FREE_PAGES),
3701b033
KM
3249 global_page_state(NR_SLAB_RECLAIMABLE),
3250 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3251 global_page_state(NR_FILE_MAPPED),
4b02108a 3252 global_page_state(NR_SHMEM),
a25700a5 3253 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3254 global_page_state(NR_BOUNCE),
3255 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3256
ee99c71c 3257 for_each_populated_zone(zone) {
1da177e4
LT
3258 int i;
3259
7bf02ea2 3260 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3261 continue;
1da177e4
LT
3262 show_node(zone);
3263 printk("%s"
3264 " free:%lukB"
3265 " min:%lukB"
3266 " low:%lukB"
3267 " high:%lukB"
4f98a2fe
RR
3268 " active_anon:%lukB"
3269 " inactive_anon:%lukB"
3270 " active_file:%lukB"
3271 " inactive_file:%lukB"
7b854121 3272 " unevictable:%lukB"
a731286d
KM
3273 " isolated(anon):%lukB"
3274 " isolated(file):%lukB"
1da177e4 3275 " present:%lukB"
9feedc9d 3276 " managed:%lukB"
4a0aa73f
KM
3277 " mlocked:%lukB"
3278 " dirty:%lukB"
3279 " writeback:%lukB"
3280 " mapped:%lukB"
4b02108a 3281 " shmem:%lukB"
4a0aa73f
KM
3282 " slab_reclaimable:%lukB"
3283 " slab_unreclaimable:%lukB"
c6a7f572 3284 " kernel_stack:%lukB"
4a0aa73f
KM
3285 " pagetables:%lukB"
3286 " unstable:%lukB"
3287 " bounce:%lukB"
d1ce749a 3288 " free_cma:%lukB"
4a0aa73f 3289 " writeback_tmp:%lukB"
1da177e4
LT
3290 " pages_scanned:%lu"
3291 " all_unreclaimable? %s"
3292 "\n",
3293 zone->name,
88f5acf8 3294 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3295 K(min_wmark_pages(zone)),
3296 K(low_wmark_pages(zone)),
3297 K(high_wmark_pages(zone)),
4f98a2fe
RR
3298 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3299 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3300 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3301 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3302 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3303 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3304 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3305 K(zone->present_pages),
9feedc9d 3306 K(zone->managed_pages),
4a0aa73f
KM
3307 K(zone_page_state(zone, NR_MLOCK)),
3308 K(zone_page_state(zone, NR_FILE_DIRTY)),
3309 K(zone_page_state(zone, NR_WRITEBACK)),
3310 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3311 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3312 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3313 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3314 zone_page_state(zone, NR_KERNEL_STACK) *
3315 THREAD_SIZE / 1024,
4a0aa73f
KM
3316 K(zone_page_state(zone, NR_PAGETABLE)),
3317 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3318 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3319 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3320 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3321 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3322 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3323 );
3324 printk("lowmem_reserve[]:");
3325 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3326 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3327 printk("\n");
3328 }
3329
ee99c71c 3330 for_each_populated_zone(zone) {
b8af2941 3331 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3332 unsigned char types[MAX_ORDER];
1da177e4 3333
7bf02ea2 3334 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3335 continue;
1da177e4
LT
3336 show_node(zone);
3337 printk("%s: ", zone->name);
1da177e4
LT
3338
3339 spin_lock_irqsave(&zone->lock, flags);
3340 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3341 struct free_area *area = &zone->free_area[order];
3342 int type;
3343
3344 nr[order] = area->nr_free;
8f9de51a 3345 total += nr[order] << order;
377e4f16
RV
3346
3347 types[order] = 0;
3348 for (type = 0; type < MIGRATE_TYPES; type++) {
3349 if (!list_empty(&area->free_list[type]))
3350 types[order] |= 1 << type;
3351 }
1da177e4
LT
3352 }
3353 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3354 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3355 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3356 if (nr[order])
3357 show_migration_types(types[order]);
3358 }
1da177e4
LT
3359 printk("= %lukB\n", K(total));
3360 }
3361
949f7ec5
DR
3362 hugetlb_show_meminfo();
3363
e6f3602d
LW
3364 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3365
1da177e4
LT
3366 show_swap_cache_info();
3367}
3368
19770b32
MG
3369static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3370{
3371 zoneref->zone = zone;
3372 zoneref->zone_idx = zone_idx(zone);
3373}
3374
1da177e4
LT
3375/*
3376 * Builds allocation fallback zone lists.
1a93205b
CL
3377 *
3378 * Add all populated zones of a node to the zonelist.
1da177e4 3379 */
f0c0b2b8 3380static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3381 int nr_zones)
1da177e4 3382{
1a93205b 3383 struct zone *zone;
bc732f1d 3384 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3385
3386 do {
2f6726e5 3387 zone_type--;
070f8032 3388 zone = pgdat->node_zones + zone_type;
1a93205b 3389 if (populated_zone(zone)) {
dd1a239f
MG
3390 zoneref_set_zone(zone,
3391 &zonelist->_zonerefs[nr_zones++]);
070f8032 3392 check_highest_zone(zone_type);
1da177e4 3393 }
2f6726e5 3394 } while (zone_type);
bc732f1d 3395
070f8032 3396 return nr_zones;
1da177e4
LT
3397}
3398
f0c0b2b8
KH
3399
3400/*
3401 * zonelist_order:
3402 * 0 = automatic detection of better ordering.
3403 * 1 = order by ([node] distance, -zonetype)
3404 * 2 = order by (-zonetype, [node] distance)
3405 *
3406 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3407 * the same zonelist. So only NUMA can configure this param.
3408 */
3409#define ZONELIST_ORDER_DEFAULT 0
3410#define ZONELIST_ORDER_NODE 1
3411#define ZONELIST_ORDER_ZONE 2
3412
3413/* zonelist order in the kernel.
3414 * set_zonelist_order() will set this to NODE or ZONE.
3415 */
3416static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3417static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3418
3419
1da177e4 3420#ifdef CONFIG_NUMA
f0c0b2b8
KH
3421/* The value user specified ....changed by config */
3422static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3423/* string for sysctl */
3424#define NUMA_ZONELIST_ORDER_LEN 16
3425char numa_zonelist_order[16] = "default";
3426
3427/*
3428 * interface for configure zonelist ordering.
3429 * command line option "numa_zonelist_order"
3430 * = "[dD]efault - default, automatic configuration.
3431 * = "[nN]ode - order by node locality, then by zone within node
3432 * = "[zZ]one - order by zone, then by locality within zone
3433 */
3434
3435static int __parse_numa_zonelist_order(char *s)
3436{
3437 if (*s == 'd' || *s == 'D') {
3438 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3439 } else if (*s == 'n' || *s == 'N') {
3440 user_zonelist_order = ZONELIST_ORDER_NODE;
3441 } else if (*s == 'z' || *s == 'Z') {
3442 user_zonelist_order = ZONELIST_ORDER_ZONE;
3443 } else {
3444 printk(KERN_WARNING
3445 "Ignoring invalid numa_zonelist_order value: "
3446 "%s\n", s);
3447 return -EINVAL;
3448 }
3449 return 0;
3450}
3451
3452static __init int setup_numa_zonelist_order(char *s)
3453{
ecb256f8
VL
3454 int ret;
3455
3456 if (!s)
3457 return 0;
3458
3459 ret = __parse_numa_zonelist_order(s);
3460 if (ret == 0)
3461 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3462
3463 return ret;
f0c0b2b8
KH
3464}
3465early_param("numa_zonelist_order", setup_numa_zonelist_order);
3466
3467/*
3468 * sysctl handler for numa_zonelist_order
3469 */
cccad5b9 3470int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3471 void __user *buffer, size_t *length,
f0c0b2b8
KH
3472 loff_t *ppos)
3473{
3474 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3475 int ret;
443c6f14 3476 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3477
443c6f14 3478 mutex_lock(&zl_order_mutex);
dacbde09
CG
3479 if (write) {
3480 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3481 ret = -EINVAL;
3482 goto out;
3483 }
3484 strcpy(saved_string, (char *)table->data);
3485 }
8d65af78 3486 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3487 if (ret)
443c6f14 3488 goto out;
f0c0b2b8
KH
3489 if (write) {
3490 int oldval = user_zonelist_order;
dacbde09
CG
3491
3492 ret = __parse_numa_zonelist_order((char *)table->data);
3493 if (ret) {
f0c0b2b8
KH
3494 /*
3495 * bogus value. restore saved string
3496 */
dacbde09 3497 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3498 NUMA_ZONELIST_ORDER_LEN);
3499 user_zonelist_order = oldval;
4eaf3f64
HL
3500 } else if (oldval != user_zonelist_order) {
3501 mutex_lock(&zonelists_mutex);
9adb62a5 3502 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3503 mutex_unlock(&zonelists_mutex);
3504 }
f0c0b2b8 3505 }
443c6f14
AK
3506out:
3507 mutex_unlock(&zl_order_mutex);
3508 return ret;
f0c0b2b8
KH
3509}
3510
3511
62bc62a8 3512#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3513static int node_load[MAX_NUMNODES];
3514
1da177e4 3515/**
4dc3b16b 3516 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3517 * @node: node whose fallback list we're appending
3518 * @used_node_mask: nodemask_t of already used nodes
3519 *
3520 * We use a number of factors to determine which is the next node that should
3521 * appear on a given node's fallback list. The node should not have appeared
3522 * already in @node's fallback list, and it should be the next closest node
3523 * according to the distance array (which contains arbitrary distance values
3524 * from each node to each node in the system), and should also prefer nodes
3525 * with no CPUs, since presumably they'll have very little allocation pressure
3526 * on them otherwise.
3527 * It returns -1 if no node is found.
3528 */
f0c0b2b8 3529static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3530{
4cf808eb 3531 int n, val;
1da177e4 3532 int min_val = INT_MAX;
00ef2d2f 3533 int best_node = NUMA_NO_NODE;
a70f7302 3534 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3535
4cf808eb
LT
3536 /* Use the local node if we haven't already */
3537 if (!node_isset(node, *used_node_mask)) {
3538 node_set(node, *used_node_mask);
3539 return node;
3540 }
1da177e4 3541
4b0ef1fe 3542 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3543
3544 /* Don't want a node to appear more than once */
3545 if (node_isset(n, *used_node_mask))
3546 continue;
3547
1da177e4
LT
3548 /* Use the distance array to find the distance */
3549 val = node_distance(node, n);
3550
4cf808eb
LT
3551 /* Penalize nodes under us ("prefer the next node") */
3552 val += (n < node);
3553
1da177e4 3554 /* Give preference to headless and unused nodes */
a70f7302
RR
3555 tmp = cpumask_of_node(n);
3556 if (!cpumask_empty(tmp))
1da177e4
LT
3557 val += PENALTY_FOR_NODE_WITH_CPUS;
3558
3559 /* Slight preference for less loaded node */
3560 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3561 val += node_load[n];
3562
3563 if (val < min_val) {
3564 min_val = val;
3565 best_node = n;
3566 }
3567 }
3568
3569 if (best_node >= 0)
3570 node_set(best_node, *used_node_mask);
3571
3572 return best_node;
3573}
3574
f0c0b2b8
KH
3575
3576/*
3577 * Build zonelists ordered by node and zones within node.
3578 * This results in maximum locality--normal zone overflows into local
3579 * DMA zone, if any--but risks exhausting DMA zone.
3580 */
3581static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3582{
f0c0b2b8 3583 int j;
1da177e4 3584 struct zonelist *zonelist;
f0c0b2b8 3585
54a6eb5c 3586 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3587 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3588 ;
bc732f1d 3589 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3590 zonelist->_zonerefs[j].zone = NULL;
3591 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3592}
3593
523b9458
CL
3594/*
3595 * Build gfp_thisnode zonelists
3596 */
3597static void build_thisnode_zonelists(pg_data_t *pgdat)
3598{
523b9458
CL
3599 int j;
3600 struct zonelist *zonelist;
3601
54a6eb5c 3602 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3603 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3604 zonelist->_zonerefs[j].zone = NULL;
3605 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3606}
3607
f0c0b2b8
KH
3608/*
3609 * Build zonelists ordered by zone and nodes within zones.
3610 * This results in conserving DMA zone[s] until all Normal memory is
3611 * exhausted, but results in overflowing to remote node while memory
3612 * may still exist in local DMA zone.
3613 */
3614static int node_order[MAX_NUMNODES];
3615
3616static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3617{
f0c0b2b8
KH
3618 int pos, j, node;
3619 int zone_type; /* needs to be signed */
3620 struct zone *z;
3621 struct zonelist *zonelist;
3622
54a6eb5c
MG
3623 zonelist = &pgdat->node_zonelists[0];
3624 pos = 0;
3625 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3626 for (j = 0; j < nr_nodes; j++) {
3627 node = node_order[j];
3628 z = &NODE_DATA(node)->node_zones[zone_type];
3629 if (populated_zone(z)) {
dd1a239f
MG
3630 zoneref_set_zone(z,
3631 &zonelist->_zonerefs[pos++]);
54a6eb5c 3632 check_highest_zone(zone_type);
f0c0b2b8
KH
3633 }
3634 }
f0c0b2b8 3635 }
dd1a239f
MG
3636 zonelist->_zonerefs[pos].zone = NULL;
3637 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3638}
3639
3193913c
MG
3640#if defined(CONFIG_64BIT)
3641/*
3642 * Devices that require DMA32/DMA are relatively rare and do not justify a
3643 * penalty to every machine in case the specialised case applies. Default
3644 * to Node-ordering on 64-bit NUMA machines
3645 */
3646static int default_zonelist_order(void)
3647{
3648 return ZONELIST_ORDER_NODE;
3649}
3650#else
3651/*
3652 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3653 * by the kernel. If processes running on node 0 deplete the low memory zone
3654 * then reclaim will occur more frequency increasing stalls and potentially
3655 * be easier to OOM if a large percentage of the zone is under writeback or
3656 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3657 * Hence, default to zone ordering on 32-bit.
3658 */
f0c0b2b8
KH
3659static int default_zonelist_order(void)
3660{
f0c0b2b8
KH
3661 return ZONELIST_ORDER_ZONE;
3662}
3193913c 3663#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3664
3665static void set_zonelist_order(void)
3666{
3667 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3668 current_zonelist_order = default_zonelist_order();
3669 else
3670 current_zonelist_order = user_zonelist_order;
3671}
3672
3673static void build_zonelists(pg_data_t *pgdat)
3674{
3675 int j, node, load;
3676 enum zone_type i;
1da177e4 3677 nodemask_t used_mask;
f0c0b2b8
KH
3678 int local_node, prev_node;
3679 struct zonelist *zonelist;
3680 int order = current_zonelist_order;
1da177e4
LT
3681
3682 /* initialize zonelists */
523b9458 3683 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3684 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3685 zonelist->_zonerefs[0].zone = NULL;
3686 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3687 }
3688
3689 /* NUMA-aware ordering of nodes */
3690 local_node = pgdat->node_id;
62bc62a8 3691 load = nr_online_nodes;
1da177e4
LT
3692 prev_node = local_node;
3693 nodes_clear(used_mask);
f0c0b2b8 3694
f0c0b2b8
KH
3695 memset(node_order, 0, sizeof(node_order));
3696 j = 0;
3697
1da177e4
LT
3698 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3699 /*
3700 * We don't want to pressure a particular node.
3701 * So adding penalty to the first node in same
3702 * distance group to make it round-robin.
3703 */
957f822a
DR
3704 if (node_distance(local_node, node) !=
3705 node_distance(local_node, prev_node))
f0c0b2b8
KH
3706 node_load[node] = load;
3707
1da177e4
LT
3708 prev_node = node;
3709 load--;
f0c0b2b8
KH
3710 if (order == ZONELIST_ORDER_NODE)
3711 build_zonelists_in_node_order(pgdat, node);
3712 else
3713 node_order[j++] = node; /* remember order */
3714 }
1da177e4 3715
f0c0b2b8
KH
3716 if (order == ZONELIST_ORDER_ZONE) {
3717 /* calculate node order -- i.e., DMA last! */
3718 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3719 }
523b9458
CL
3720
3721 build_thisnode_zonelists(pgdat);
1da177e4
LT
3722}
3723
9276b1bc 3724/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3725static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3726{
54a6eb5c
MG
3727 struct zonelist *zonelist;
3728 struct zonelist_cache *zlc;
dd1a239f 3729 struct zoneref *z;
9276b1bc 3730
54a6eb5c
MG
3731 zonelist = &pgdat->node_zonelists[0];
3732 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3734 for (z = zonelist->_zonerefs; z->zone; z++)
3735 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3736}
3737
7aac7898
LS
3738#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3739/*
3740 * Return node id of node used for "local" allocations.
3741 * I.e., first node id of first zone in arg node's generic zonelist.
3742 * Used for initializing percpu 'numa_mem', which is used primarily
3743 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3744 */
3745int local_memory_node(int node)
3746{
3747 struct zone *zone;
3748
3749 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3750 gfp_zone(GFP_KERNEL),
3751 NULL,
3752 &zone);
3753 return zone->node;
3754}
3755#endif
f0c0b2b8 3756
1da177e4
LT
3757#else /* CONFIG_NUMA */
3758
f0c0b2b8
KH
3759static void set_zonelist_order(void)
3760{
3761 current_zonelist_order = ZONELIST_ORDER_ZONE;
3762}
3763
3764static void build_zonelists(pg_data_t *pgdat)
1da177e4 3765{
19655d34 3766 int node, local_node;
54a6eb5c
MG
3767 enum zone_type j;
3768 struct zonelist *zonelist;
1da177e4
LT
3769
3770 local_node = pgdat->node_id;
1da177e4 3771
54a6eb5c 3772 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3773 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3774
54a6eb5c
MG
3775 /*
3776 * Now we build the zonelist so that it contains the zones
3777 * of all the other nodes.
3778 * We don't want to pressure a particular node, so when
3779 * building the zones for node N, we make sure that the
3780 * zones coming right after the local ones are those from
3781 * node N+1 (modulo N)
3782 */
3783 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3784 if (!node_online(node))
3785 continue;
bc732f1d 3786 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3787 }
54a6eb5c
MG
3788 for (node = 0; node < local_node; node++) {
3789 if (!node_online(node))
3790 continue;
bc732f1d 3791 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3792 }
3793
dd1a239f
MG
3794 zonelist->_zonerefs[j].zone = NULL;
3795 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3796}
3797
9276b1bc 3798/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3799static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3800{
54a6eb5c 3801 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3802}
3803
1da177e4
LT
3804#endif /* CONFIG_NUMA */
3805
99dcc3e5
CL
3806/*
3807 * Boot pageset table. One per cpu which is going to be used for all
3808 * zones and all nodes. The parameters will be set in such a way
3809 * that an item put on a list will immediately be handed over to
3810 * the buddy list. This is safe since pageset manipulation is done
3811 * with interrupts disabled.
3812 *
3813 * The boot_pagesets must be kept even after bootup is complete for
3814 * unused processors and/or zones. They do play a role for bootstrapping
3815 * hotplugged processors.
3816 *
3817 * zoneinfo_show() and maybe other functions do
3818 * not check if the processor is online before following the pageset pointer.
3819 * Other parts of the kernel may not check if the zone is available.
3820 */
3821static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3822static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3823static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3824
4eaf3f64
HL
3825/*
3826 * Global mutex to protect against size modification of zonelists
3827 * as well as to serialize pageset setup for the new populated zone.
3828 */
3829DEFINE_MUTEX(zonelists_mutex);
3830
9b1a4d38 3831/* return values int ....just for stop_machine() */
4ed7e022 3832static int __build_all_zonelists(void *data)
1da177e4 3833{
6811378e 3834 int nid;
99dcc3e5 3835 int cpu;
9adb62a5 3836 pg_data_t *self = data;
9276b1bc 3837
7f9cfb31
BL
3838#ifdef CONFIG_NUMA
3839 memset(node_load, 0, sizeof(node_load));
3840#endif
9adb62a5
JL
3841
3842 if (self && !node_online(self->node_id)) {
3843 build_zonelists(self);
3844 build_zonelist_cache(self);
3845 }
3846
9276b1bc 3847 for_each_online_node(nid) {
7ea1530a
CL
3848 pg_data_t *pgdat = NODE_DATA(nid);
3849
3850 build_zonelists(pgdat);
3851 build_zonelist_cache(pgdat);
9276b1bc 3852 }
99dcc3e5
CL
3853
3854 /*
3855 * Initialize the boot_pagesets that are going to be used
3856 * for bootstrapping processors. The real pagesets for
3857 * each zone will be allocated later when the per cpu
3858 * allocator is available.
3859 *
3860 * boot_pagesets are used also for bootstrapping offline
3861 * cpus if the system is already booted because the pagesets
3862 * are needed to initialize allocators on a specific cpu too.
3863 * F.e. the percpu allocator needs the page allocator which
3864 * needs the percpu allocator in order to allocate its pagesets
3865 * (a chicken-egg dilemma).
3866 */
7aac7898 3867 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3868 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3869
7aac7898
LS
3870#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3871 /*
3872 * We now know the "local memory node" for each node--
3873 * i.e., the node of the first zone in the generic zonelist.
3874 * Set up numa_mem percpu variable for on-line cpus. During
3875 * boot, only the boot cpu should be on-line; we'll init the
3876 * secondary cpus' numa_mem as they come on-line. During
3877 * node/memory hotplug, we'll fixup all on-line cpus.
3878 */
3879 if (cpu_online(cpu))
3880 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3881#endif
3882 }
3883
6811378e
YG
3884 return 0;
3885}
3886
061f67bc
RV
3887static noinline void __init
3888build_all_zonelists_init(void)
3889{
3890 __build_all_zonelists(NULL);
3891 mminit_verify_zonelist();
3892 cpuset_init_current_mems_allowed();
3893}
3894
4eaf3f64
HL
3895/*
3896 * Called with zonelists_mutex held always
3897 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
3898 *
3899 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3900 * [we're only called with non-NULL zone through __meminit paths] and
3901 * (2) call of __init annotated helper build_all_zonelists_init
3902 * [protected by SYSTEM_BOOTING].
4eaf3f64 3903 */
9adb62a5 3904void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3905{
f0c0b2b8
KH
3906 set_zonelist_order();
3907
6811378e 3908 if (system_state == SYSTEM_BOOTING) {
061f67bc 3909 build_all_zonelists_init();
6811378e 3910 } else {
e9959f0f 3911#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3912 if (zone)
3913 setup_zone_pageset(zone);
e9959f0f 3914#endif
dd1895e2
CS
3915 /* we have to stop all cpus to guarantee there is no user
3916 of zonelist */
9adb62a5 3917 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3918 /* cpuset refresh routine should be here */
3919 }
bd1e22b8 3920 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3921 /*
3922 * Disable grouping by mobility if the number of pages in the
3923 * system is too low to allow the mechanism to work. It would be
3924 * more accurate, but expensive to check per-zone. This check is
3925 * made on memory-hotadd so a system can start with mobility
3926 * disabled and enable it later
3927 */
d9c23400 3928 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3929 page_group_by_mobility_disabled = 1;
3930 else
3931 page_group_by_mobility_disabled = 0;
3932
f88dfff5 3933 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3934 "Total pages: %ld\n",
62bc62a8 3935 nr_online_nodes,
f0c0b2b8 3936 zonelist_order_name[current_zonelist_order],
9ef9acb0 3937 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3938 vm_total_pages);
3939#ifdef CONFIG_NUMA
f88dfff5 3940 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3941#endif
1da177e4
LT
3942}
3943
3944/*
3945 * Helper functions to size the waitqueue hash table.
3946 * Essentially these want to choose hash table sizes sufficiently
3947 * large so that collisions trying to wait on pages are rare.
3948 * But in fact, the number of active page waitqueues on typical
3949 * systems is ridiculously low, less than 200. So this is even
3950 * conservative, even though it seems large.
3951 *
3952 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3953 * waitqueues, i.e. the size of the waitq table given the number of pages.
3954 */
3955#define PAGES_PER_WAITQUEUE 256
3956
cca448fe 3957#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3958static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3959{
3960 unsigned long size = 1;
3961
3962 pages /= PAGES_PER_WAITQUEUE;
3963
3964 while (size < pages)
3965 size <<= 1;
3966
3967 /*
3968 * Once we have dozens or even hundreds of threads sleeping
3969 * on IO we've got bigger problems than wait queue collision.
3970 * Limit the size of the wait table to a reasonable size.
3971 */
3972 size = min(size, 4096UL);
3973
3974 return max(size, 4UL);
3975}
cca448fe
YG
3976#else
3977/*
3978 * A zone's size might be changed by hot-add, so it is not possible to determine
3979 * a suitable size for its wait_table. So we use the maximum size now.
3980 *
3981 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3982 *
3983 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3984 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3985 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3986 *
3987 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3988 * or more by the traditional way. (See above). It equals:
3989 *
3990 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3991 * ia64(16K page size) : = ( 8G + 4M)byte.
3992 * powerpc (64K page size) : = (32G +16M)byte.
3993 */
3994static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3995{
3996 return 4096UL;
3997}
3998#endif
1da177e4
LT
3999
4000/*
4001 * This is an integer logarithm so that shifts can be used later
4002 * to extract the more random high bits from the multiplicative
4003 * hash function before the remainder is taken.
4004 */
4005static inline unsigned long wait_table_bits(unsigned long size)
4006{
4007 return ffz(~size);
4008}
4009
6d3163ce
AH
4010/*
4011 * Check if a pageblock contains reserved pages
4012 */
4013static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4014{
4015 unsigned long pfn;
4016
4017 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4018 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4019 return 1;
4020 }
4021 return 0;
4022}
4023
56fd56b8 4024/*
d9c23400 4025 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4026 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4027 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4028 * higher will lead to a bigger reserve which will get freed as contiguous
4029 * blocks as reclaim kicks in
4030 */
4031static void setup_zone_migrate_reserve(struct zone *zone)
4032{
6d3163ce 4033 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4034 struct page *page;
78986a67
MG
4035 unsigned long block_migratetype;
4036 int reserve;
943dca1a 4037 int old_reserve;
56fd56b8 4038
d0215638
MH
4039 /*
4040 * Get the start pfn, end pfn and the number of blocks to reserve
4041 * We have to be careful to be aligned to pageblock_nr_pages to
4042 * make sure that we always check pfn_valid for the first page in
4043 * the block.
4044 */
56fd56b8 4045 start_pfn = zone->zone_start_pfn;
108bcc96 4046 end_pfn = zone_end_pfn(zone);
d0215638 4047 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4048 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4049 pageblock_order;
56fd56b8 4050
78986a67
MG
4051 /*
4052 * Reserve blocks are generally in place to help high-order atomic
4053 * allocations that are short-lived. A min_free_kbytes value that
4054 * would result in more than 2 reserve blocks for atomic allocations
4055 * is assumed to be in place to help anti-fragmentation for the
4056 * future allocation of hugepages at runtime.
4057 */
4058 reserve = min(2, reserve);
943dca1a
YI
4059 old_reserve = zone->nr_migrate_reserve_block;
4060
4061 /* When memory hot-add, we almost always need to do nothing */
4062 if (reserve == old_reserve)
4063 return;
4064 zone->nr_migrate_reserve_block = reserve;
78986a67 4065
d9c23400 4066 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4067 if (!pfn_valid(pfn))
4068 continue;
4069 page = pfn_to_page(pfn);
4070
344c790e
AL
4071 /* Watch out for overlapping nodes */
4072 if (page_to_nid(page) != zone_to_nid(zone))
4073 continue;
4074
56fd56b8
MG
4075 block_migratetype = get_pageblock_migratetype(page);
4076
938929f1
MG
4077 /* Only test what is necessary when the reserves are not met */
4078 if (reserve > 0) {
4079 /*
4080 * Blocks with reserved pages will never free, skip
4081 * them.
4082 */
4083 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4084 if (pageblock_is_reserved(pfn, block_end_pfn))
4085 continue;
56fd56b8 4086
938929f1
MG
4087 /* If this block is reserved, account for it */
4088 if (block_migratetype == MIGRATE_RESERVE) {
4089 reserve--;
4090 continue;
4091 }
4092
4093 /* Suitable for reserving if this block is movable */
4094 if (block_migratetype == MIGRATE_MOVABLE) {
4095 set_pageblock_migratetype(page,
4096 MIGRATE_RESERVE);
4097 move_freepages_block(zone, page,
4098 MIGRATE_RESERVE);
4099 reserve--;
4100 continue;
4101 }
943dca1a
YI
4102 } else if (!old_reserve) {
4103 /*
4104 * At boot time we don't need to scan the whole zone
4105 * for turning off MIGRATE_RESERVE.
4106 */
4107 break;
56fd56b8
MG
4108 }
4109
4110 /*
4111 * If the reserve is met and this is a previous reserved block,
4112 * take it back
4113 */
4114 if (block_migratetype == MIGRATE_RESERVE) {
4115 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4116 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4117 }
4118 }
4119}
ac0e5b7a 4120
1da177e4
LT
4121/*
4122 * Initially all pages are reserved - free ones are freed
4123 * up by free_all_bootmem() once the early boot process is
4124 * done. Non-atomic initialization, single-pass.
4125 */
c09b4240 4126void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4127 unsigned long start_pfn, enum memmap_context context)
1da177e4 4128{
1da177e4 4129 struct page *page;
29751f69
AW
4130 unsigned long end_pfn = start_pfn + size;
4131 unsigned long pfn;
86051ca5 4132 struct zone *z;
1da177e4 4133
22b31eec
HD
4134 if (highest_memmap_pfn < end_pfn - 1)
4135 highest_memmap_pfn = end_pfn - 1;
4136
86051ca5 4137 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4138 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4139 /*
4140 * There can be holes in boot-time mem_map[]s
4141 * handed to this function. They do not
4142 * exist on hotplugged memory.
4143 */
4144 if (context == MEMMAP_EARLY) {
4145 if (!early_pfn_valid(pfn))
4146 continue;
4147 if (!early_pfn_in_nid(pfn, nid))
4148 continue;
4149 }
d41dee36
AW
4150 page = pfn_to_page(pfn);
4151 set_page_links(page, zone, nid, pfn);
708614e6 4152 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4153 init_page_count(page);
22b751c3 4154 page_mapcount_reset(page);
90572890 4155 page_cpupid_reset_last(page);
1da177e4 4156 SetPageReserved(page);
b2a0ac88
MG
4157 /*
4158 * Mark the block movable so that blocks are reserved for
4159 * movable at startup. This will force kernel allocations
4160 * to reserve their blocks rather than leaking throughout
4161 * the address space during boot when many long-lived
56fd56b8
MG
4162 * kernel allocations are made. Later some blocks near
4163 * the start are marked MIGRATE_RESERVE by
4164 * setup_zone_migrate_reserve()
86051ca5
KH
4165 *
4166 * bitmap is created for zone's valid pfn range. but memmap
4167 * can be created for invalid pages (for alignment)
4168 * check here not to call set_pageblock_migratetype() against
4169 * pfn out of zone.
b2a0ac88 4170 */
86051ca5 4171 if ((z->zone_start_pfn <= pfn)
108bcc96 4172 && (pfn < zone_end_pfn(z))
86051ca5 4173 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4174 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4175
1da177e4
LT
4176 INIT_LIST_HEAD(&page->lru);
4177#ifdef WANT_PAGE_VIRTUAL
4178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4179 if (!is_highmem_idx(zone))
3212c6be 4180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4181#endif
1da177e4
LT
4182 }
4183}
4184
1e548deb 4185static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4186{
7aeb09f9 4187 unsigned int order, t;
b2a0ac88
MG
4188 for_each_migratetype_order(order, t) {
4189 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4190 zone->free_area[order].nr_free = 0;
4191 }
4192}
4193
4194#ifndef __HAVE_ARCH_MEMMAP_INIT
4195#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4196 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4197#endif
4198
7cd2b0a3 4199static int zone_batchsize(struct zone *zone)
e7c8d5c9 4200{
3a6be87f 4201#ifdef CONFIG_MMU
e7c8d5c9
CL
4202 int batch;
4203
4204 /*
4205 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4206 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4207 *
4208 * OK, so we don't know how big the cache is. So guess.
4209 */
b40da049 4210 batch = zone->managed_pages / 1024;
ba56e91c
SR
4211 if (batch * PAGE_SIZE > 512 * 1024)
4212 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4213 batch /= 4; /* We effectively *= 4 below */
4214 if (batch < 1)
4215 batch = 1;
4216
4217 /*
0ceaacc9
NP
4218 * Clamp the batch to a 2^n - 1 value. Having a power
4219 * of 2 value was found to be more likely to have
4220 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4221 *
0ceaacc9
NP
4222 * For example if 2 tasks are alternately allocating
4223 * batches of pages, one task can end up with a lot
4224 * of pages of one half of the possible page colors
4225 * and the other with pages of the other colors.
e7c8d5c9 4226 */
9155203a 4227 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4228
e7c8d5c9 4229 return batch;
3a6be87f
DH
4230
4231#else
4232 /* The deferral and batching of frees should be suppressed under NOMMU
4233 * conditions.
4234 *
4235 * The problem is that NOMMU needs to be able to allocate large chunks
4236 * of contiguous memory as there's no hardware page translation to
4237 * assemble apparent contiguous memory from discontiguous pages.
4238 *
4239 * Queueing large contiguous runs of pages for batching, however,
4240 * causes the pages to actually be freed in smaller chunks. As there
4241 * can be a significant delay between the individual batches being
4242 * recycled, this leads to the once large chunks of space being
4243 * fragmented and becoming unavailable for high-order allocations.
4244 */
4245 return 0;
4246#endif
e7c8d5c9
CL
4247}
4248
8d7a8fa9
CS
4249/*
4250 * pcp->high and pcp->batch values are related and dependent on one another:
4251 * ->batch must never be higher then ->high.
4252 * The following function updates them in a safe manner without read side
4253 * locking.
4254 *
4255 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4256 * those fields changing asynchronously (acording the the above rule).
4257 *
4258 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4259 * outside of boot time (or some other assurance that no concurrent updaters
4260 * exist).
4261 */
4262static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4263 unsigned long batch)
4264{
4265 /* start with a fail safe value for batch */
4266 pcp->batch = 1;
4267 smp_wmb();
4268
4269 /* Update high, then batch, in order */
4270 pcp->high = high;
4271 smp_wmb();
4272
4273 pcp->batch = batch;
4274}
4275
3664033c 4276/* a companion to pageset_set_high() */
4008bab7
CS
4277static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4278{
8d7a8fa9 4279 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4280}
4281
88c90dbc 4282static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4283{
4284 struct per_cpu_pages *pcp;
5f8dcc21 4285 int migratetype;
2caaad41 4286
1c6fe946
MD
4287 memset(p, 0, sizeof(*p));
4288
3dfa5721 4289 pcp = &p->pcp;
2caaad41 4290 pcp->count = 0;
5f8dcc21
MG
4291 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4292 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4293}
4294
88c90dbc
CS
4295static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4296{
4297 pageset_init(p);
4298 pageset_set_batch(p, batch);
4299}
4300
8ad4b1fb 4301/*
3664033c 4302 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4303 * to the value high for the pageset p.
4304 */
3664033c 4305static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4306 unsigned long high)
4307{
8d7a8fa9
CS
4308 unsigned long batch = max(1UL, high / 4);
4309 if ((high / 4) > (PAGE_SHIFT * 8))
4310 batch = PAGE_SHIFT * 8;
8ad4b1fb 4311
8d7a8fa9 4312 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4313}
4314
7cd2b0a3
DR
4315static void pageset_set_high_and_batch(struct zone *zone,
4316 struct per_cpu_pageset *pcp)
56cef2b8 4317{
56cef2b8 4318 if (percpu_pagelist_fraction)
3664033c 4319 pageset_set_high(pcp,
56cef2b8
CS
4320 (zone->managed_pages /
4321 percpu_pagelist_fraction));
4322 else
4323 pageset_set_batch(pcp, zone_batchsize(zone));
4324}
4325
169f6c19
CS
4326static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4327{
4328 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4329
4330 pageset_init(pcp);
4331 pageset_set_high_and_batch(zone, pcp);
4332}
4333
4ed7e022 4334static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4335{
4336 int cpu;
319774e2 4337 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4338 for_each_possible_cpu(cpu)
4339 zone_pageset_init(zone, cpu);
319774e2
WF
4340}
4341
2caaad41 4342/*
99dcc3e5
CL
4343 * Allocate per cpu pagesets and initialize them.
4344 * Before this call only boot pagesets were available.
e7c8d5c9 4345 */
99dcc3e5 4346void __init setup_per_cpu_pageset(void)
e7c8d5c9 4347{
99dcc3e5 4348 struct zone *zone;
e7c8d5c9 4349
319774e2
WF
4350 for_each_populated_zone(zone)
4351 setup_zone_pageset(zone);
e7c8d5c9
CL
4352}
4353
577a32f6 4354static noinline __init_refok
cca448fe 4355int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4356{
4357 int i;
cca448fe 4358 size_t alloc_size;
ed8ece2e
DH
4359
4360 /*
4361 * The per-page waitqueue mechanism uses hashed waitqueues
4362 * per zone.
4363 */
02b694de
YG
4364 zone->wait_table_hash_nr_entries =
4365 wait_table_hash_nr_entries(zone_size_pages);
4366 zone->wait_table_bits =
4367 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4368 alloc_size = zone->wait_table_hash_nr_entries
4369 * sizeof(wait_queue_head_t);
4370
cd94b9db 4371 if (!slab_is_available()) {
cca448fe 4372 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4373 memblock_virt_alloc_node_nopanic(
4374 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4375 } else {
4376 /*
4377 * This case means that a zone whose size was 0 gets new memory
4378 * via memory hot-add.
4379 * But it may be the case that a new node was hot-added. In
4380 * this case vmalloc() will not be able to use this new node's
4381 * memory - this wait_table must be initialized to use this new
4382 * node itself as well.
4383 * To use this new node's memory, further consideration will be
4384 * necessary.
4385 */
8691f3a7 4386 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4387 }
4388 if (!zone->wait_table)
4389 return -ENOMEM;
ed8ece2e 4390
b8af2941 4391 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4392 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4393
4394 return 0;
ed8ece2e
DH
4395}
4396
c09b4240 4397static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4398{
99dcc3e5
CL
4399 /*
4400 * per cpu subsystem is not up at this point. The following code
4401 * relies on the ability of the linker to provide the
4402 * offset of a (static) per cpu variable into the per cpu area.
4403 */
4404 zone->pageset = &boot_pageset;
ed8ece2e 4405
b38a8725 4406 if (populated_zone(zone))
99dcc3e5
CL
4407 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4408 zone->name, zone->present_pages,
4409 zone_batchsize(zone));
ed8ece2e
DH
4410}
4411
4ed7e022 4412int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4413 unsigned long zone_start_pfn,
a2f3aa02
DH
4414 unsigned long size,
4415 enum memmap_context context)
ed8ece2e
DH
4416{
4417 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4418 int ret;
4419 ret = zone_wait_table_init(zone, size);
4420 if (ret)
4421 return ret;
ed8ece2e
DH
4422 pgdat->nr_zones = zone_idx(zone) + 1;
4423
ed8ece2e
DH
4424 zone->zone_start_pfn = zone_start_pfn;
4425
708614e6
MG
4426 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4427 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4428 pgdat->node_id,
4429 (unsigned long)zone_idx(zone),
4430 zone_start_pfn, (zone_start_pfn + size));
4431
1e548deb 4432 zone_init_free_lists(zone);
718127cc
YG
4433
4434 return 0;
ed8ece2e
DH
4435}
4436
0ee332c1 4437#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4438#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4439/*
4440 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4441 */
f2dbcfa7 4442int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4443{
c13291a5 4444 unsigned long start_pfn, end_pfn;
e76b63f8 4445 int nid;
7c243c71
RA
4446 /*
4447 * NOTE: The following SMP-unsafe globals are only used early in boot
4448 * when the kernel is running single-threaded.
4449 */
4450 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4451 static int __meminitdata last_nid;
4452
4453 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4454 return last_nid;
c713216d 4455
e76b63f8
YL
4456 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4457 if (nid != -1) {
4458 last_start_pfn = start_pfn;
4459 last_end_pfn = end_pfn;
4460 last_nid = nid;
4461 }
4462
4463 return nid;
c713216d
MG
4464}
4465#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4466
f2dbcfa7
KH
4467int __meminit early_pfn_to_nid(unsigned long pfn)
4468{
cc2559bc
KH
4469 int nid;
4470
4471 nid = __early_pfn_to_nid(pfn);
4472 if (nid >= 0)
4473 return nid;
4474 /* just returns 0 */
4475 return 0;
f2dbcfa7
KH
4476}
4477
cc2559bc
KH
4478#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4479bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4480{
4481 int nid;
4482
4483 nid = __early_pfn_to_nid(pfn);
4484 if (nid >= 0 && nid != node)
4485 return false;
4486 return true;
4487}
4488#endif
f2dbcfa7 4489
c713216d 4490/**
6782832e 4491 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4492 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4493 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4494 *
7d018176
ZZ
4495 * If an architecture guarantees that all ranges registered contain no holes
4496 * and may be freed, this this function may be used instead of calling
4497 * memblock_free_early_nid() manually.
c713216d 4498 */
c13291a5 4499void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4500{
c13291a5
TH
4501 unsigned long start_pfn, end_pfn;
4502 int i, this_nid;
edbe7d23 4503
c13291a5
TH
4504 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4505 start_pfn = min(start_pfn, max_low_pfn);
4506 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4507
c13291a5 4508 if (start_pfn < end_pfn)
6782832e
SS
4509 memblock_free_early_nid(PFN_PHYS(start_pfn),
4510 (end_pfn - start_pfn) << PAGE_SHIFT,
4511 this_nid);
edbe7d23 4512 }
edbe7d23 4513}
edbe7d23 4514
c713216d
MG
4515/**
4516 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4517 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4518 *
7d018176
ZZ
4519 * If an architecture guarantees that all ranges registered contain no holes and may
4520 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4521 */
4522void __init sparse_memory_present_with_active_regions(int nid)
4523{
c13291a5
TH
4524 unsigned long start_pfn, end_pfn;
4525 int i, this_nid;
c713216d 4526
c13291a5
TH
4527 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4528 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4529}
4530
4531/**
4532 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4533 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4534 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4535 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4536 *
4537 * It returns the start and end page frame of a node based on information
7d018176 4538 * provided by memblock_set_node(). If called for a node
c713216d 4539 * with no available memory, a warning is printed and the start and end
88ca3b94 4540 * PFNs will be 0.
c713216d 4541 */
a3142c8e 4542void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4543 unsigned long *start_pfn, unsigned long *end_pfn)
4544{
c13291a5 4545 unsigned long this_start_pfn, this_end_pfn;
c713216d 4546 int i;
c13291a5 4547
c713216d
MG
4548 *start_pfn = -1UL;
4549 *end_pfn = 0;
4550
c13291a5
TH
4551 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4552 *start_pfn = min(*start_pfn, this_start_pfn);
4553 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4554 }
4555
633c0666 4556 if (*start_pfn == -1UL)
c713216d 4557 *start_pfn = 0;
c713216d
MG
4558}
4559
2a1e274a
MG
4560/*
4561 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4562 * assumption is made that zones within a node are ordered in monotonic
4563 * increasing memory addresses so that the "highest" populated zone is used
4564 */
b69a7288 4565static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4566{
4567 int zone_index;
4568 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4569 if (zone_index == ZONE_MOVABLE)
4570 continue;
4571
4572 if (arch_zone_highest_possible_pfn[zone_index] >
4573 arch_zone_lowest_possible_pfn[zone_index])
4574 break;
4575 }
4576
4577 VM_BUG_ON(zone_index == -1);
4578 movable_zone = zone_index;
4579}
4580
4581/*
4582 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4583 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4584 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4585 * in each node depending on the size of each node and how evenly kernelcore
4586 * is distributed. This helper function adjusts the zone ranges
4587 * provided by the architecture for a given node by using the end of the
4588 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4589 * zones within a node are in order of monotonic increases memory addresses
4590 */
b69a7288 4591static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4592 unsigned long zone_type,
4593 unsigned long node_start_pfn,
4594 unsigned long node_end_pfn,
4595 unsigned long *zone_start_pfn,
4596 unsigned long *zone_end_pfn)
4597{
4598 /* Only adjust if ZONE_MOVABLE is on this node */
4599 if (zone_movable_pfn[nid]) {
4600 /* Size ZONE_MOVABLE */
4601 if (zone_type == ZONE_MOVABLE) {
4602 *zone_start_pfn = zone_movable_pfn[nid];
4603 *zone_end_pfn = min(node_end_pfn,
4604 arch_zone_highest_possible_pfn[movable_zone]);
4605
4606 /* Adjust for ZONE_MOVABLE starting within this range */
4607 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4608 *zone_end_pfn > zone_movable_pfn[nid]) {
4609 *zone_end_pfn = zone_movable_pfn[nid];
4610
4611 /* Check if this whole range is within ZONE_MOVABLE */
4612 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4613 *zone_start_pfn = *zone_end_pfn;
4614 }
4615}
4616
c713216d
MG
4617/*
4618 * Return the number of pages a zone spans in a node, including holes
4619 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4620 */
6ea6e688 4621static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4622 unsigned long zone_type,
7960aedd
ZY
4623 unsigned long node_start_pfn,
4624 unsigned long node_end_pfn,
c713216d
MG
4625 unsigned long *ignored)
4626{
c713216d
MG
4627 unsigned long zone_start_pfn, zone_end_pfn;
4628
7960aedd 4629 /* Get the start and end of the zone */
c713216d
MG
4630 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4631 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4632 adjust_zone_range_for_zone_movable(nid, zone_type,
4633 node_start_pfn, node_end_pfn,
4634 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4635
4636 /* Check that this node has pages within the zone's required range */
4637 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4638 return 0;
4639
4640 /* Move the zone boundaries inside the node if necessary */
4641 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4642 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4643
4644 /* Return the spanned pages */
4645 return zone_end_pfn - zone_start_pfn;
4646}
4647
4648/*
4649 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4650 * then all holes in the requested range will be accounted for.
c713216d 4651 */
32996250 4652unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4653 unsigned long range_start_pfn,
4654 unsigned long range_end_pfn)
4655{
96e907d1
TH
4656 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4657 unsigned long start_pfn, end_pfn;
4658 int i;
c713216d 4659
96e907d1
TH
4660 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4661 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4662 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4663 nr_absent -= end_pfn - start_pfn;
c713216d 4664 }
96e907d1 4665 return nr_absent;
c713216d
MG
4666}
4667
4668/**
4669 * absent_pages_in_range - Return number of page frames in holes within a range
4670 * @start_pfn: The start PFN to start searching for holes
4671 * @end_pfn: The end PFN to stop searching for holes
4672 *
88ca3b94 4673 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4674 */
4675unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4676 unsigned long end_pfn)
4677{
4678 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4679}
4680
4681/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4682static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4683 unsigned long zone_type,
7960aedd
ZY
4684 unsigned long node_start_pfn,
4685 unsigned long node_end_pfn,
c713216d
MG
4686 unsigned long *ignored)
4687{
96e907d1
TH
4688 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4689 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4690 unsigned long zone_start_pfn, zone_end_pfn;
4691
96e907d1
TH
4692 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4693 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4694
2a1e274a
MG
4695 adjust_zone_range_for_zone_movable(nid, zone_type,
4696 node_start_pfn, node_end_pfn,
4697 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4698 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4699}
0e0b864e 4700
0ee332c1 4701#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4702static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4703 unsigned long zone_type,
7960aedd
ZY
4704 unsigned long node_start_pfn,
4705 unsigned long node_end_pfn,
c713216d
MG
4706 unsigned long *zones_size)
4707{
4708 return zones_size[zone_type];
4709}
4710
6ea6e688 4711static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4712 unsigned long zone_type,
7960aedd
ZY
4713 unsigned long node_start_pfn,
4714 unsigned long node_end_pfn,
c713216d
MG
4715 unsigned long *zholes_size)
4716{
4717 if (!zholes_size)
4718 return 0;
4719
4720 return zholes_size[zone_type];
4721}
20e6926d 4722
0ee332c1 4723#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4724
a3142c8e 4725static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4726 unsigned long node_start_pfn,
4727 unsigned long node_end_pfn,
4728 unsigned long *zones_size,
4729 unsigned long *zholes_size)
c713216d
MG
4730{
4731 unsigned long realtotalpages, totalpages = 0;
4732 enum zone_type i;
4733
4734 for (i = 0; i < MAX_NR_ZONES; i++)
4735 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4736 node_start_pfn,
4737 node_end_pfn,
4738 zones_size);
c713216d
MG
4739 pgdat->node_spanned_pages = totalpages;
4740
4741 realtotalpages = totalpages;
4742 for (i = 0; i < MAX_NR_ZONES; i++)
4743 realtotalpages -=
4744 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4745 node_start_pfn, node_end_pfn,
4746 zholes_size);
c713216d
MG
4747 pgdat->node_present_pages = realtotalpages;
4748 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4749 realtotalpages);
4750}
4751
835c134e
MG
4752#ifndef CONFIG_SPARSEMEM
4753/*
4754 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4755 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4756 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4757 * round what is now in bits to nearest long in bits, then return it in
4758 * bytes.
4759 */
7c45512d 4760static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4761{
4762 unsigned long usemapsize;
4763
7c45512d 4764 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4765 usemapsize = roundup(zonesize, pageblock_nr_pages);
4766 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4767 usemapsize *= NR_PAGEBLOCK_BITS;
4768 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4769
4770 return usemapsize / 8;
4771}
4772
4773static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4774 struct zone *zone,
4775 unsigned long zone_start_pfn,
4776 unsigned long zonesize)
835c134e 4777{
7c45512d 4778 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4779 zone->pageblock_flags = NULL;
58a01a45 4780 if (usemapsize)
6782832e
SS
4781 zone->pageblock_flags =
4782 memblock_virt_alloc_node_nopanic(usemapsize,
4783 pgdat->node_id);
835c134e
MG
4784}
4785#else
7c45512d
LT
4786static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4787 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4788#endif /* CONFIG_SPARSEMEM */
4789
d9c23400 4790#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4791
d9c23400 4792/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4793void __paginginit set_pageblock_order(void)
d9c23400 4794{
955c1cd7
AM
4795 unsigned int order;
4796
d9c23400
MG
4797 /* Check that pageblock_nr_pages has not already been setup */
4798 if (pageblock_order)
4799 return;
4800
955c1cd7
AM
4801 if (HPAGE_SHIFT > PAGE_SHIFT)
4802 order = HUGETLB_PAGE_ORDER;
4803 else
4804 order = MAX_ORDER - 1;
4805
d9c23400
MG
4806 /*
4807 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4808 * This value may be variable depending on boot parameters on IA64 and
4809 * powerpc.
d9c23400
MG
4810 */
4811 pageblock_order = order;
4812}
4813#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4814
ba72cb8c
MG
4815/*
4816 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4817 * is unused as pageblock_order is set at compile-time. See
4818 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4819 * the kernel config
ba72cb8c 4820 */
15ca220e 4821void __paginginit set_pageblock_order(void)
ba72cb8c 4822{
ba72cb8c 4823}
d9c23400
MG
4824
4825#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4826
01cefaef
JL
4827static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4828 unsigned long present_pages)
4829{
4830 unsigned long pages = spanned_pages;
4831
4832 /*
4833 * Provide a more accurate estimation if there are holes within
4834 * the zone and SPARSEMEM is in use. If there are holes within the
4835 * zone, each populated memory region may cost us one or two extra
4836 * memmap pages due to alignment because memmap pages for each
4837 * populated regions may not naturally algined on page boundary.
4838 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4839 */
4840 if (spanned_pages > present_pages + (present_pages >> 4) &&
4841 IS_ENABLED(CONFIG_SPARSEMEM))
4842 pages = present_pages;
4843
4844 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4845}
4846
1da177e4
LT
4847/*
4848 * Set up the zone data structures:
4849 * - mark all pages reserved
4850 * - mark all memory queues empty
4851 * - clear the memory bitmaps
6527af5d
MK
4852 *
4853 * NOTE: pgdat should get zeroed by caller.
1da177e4 4854 */
b5a0e011 4855static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4856 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4857 unsigned long *zones_size, unsigned long *zholes_size)
4858{
2f1b6248 4859 enum zone_type j;
ed8ece2e 4860 int nid = pgdat->node_id;
1da177e4 4861 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4862 int ret;
1da177e4 4863
208d54e5 4864 pgdat_resize_init(pgdat);
8177a420
AA
4865#ifdef CONFIG_NUMA_BALANCING
4866 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4867 pgdat->numabalancing_migrate_nr_pages = 0;
4868 pgdat->numabalancing_migrate_next_window = jiffies;
4869#endif
1da177e4 4870 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4871 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4872 pgdat_page_ext_init(pgdat);
5f63b720 4873
1da177e4
LT
4874 for (j = 0; j < MAX_NR_ZONES; j++) {
4875 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4876 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4877
7960aedd
ZY
4878 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4879 node_end_pfn, zones_size);
9feedc9d 4880 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4881 node_start_pfn,
4882 node_end_pfn,
c713216d 4883 zholes_size);
1da177e4 4884
0e0b864e 4885 /*
9feedc9d 4886 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4887 * is used by this zone for memmap. This affects the watermark
4888 * and per-cpu initialisations
4889 */
01cefaef 4890 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4891 if (!is_highmem_idx(j)) {
4892 if (freesize >= memmap_pages) {
4893 freesize -= memmap_pages;
4894 if (memmap_pages)
4895 printk(KERN_DEBUG
4896 " %s zone: %lu pages used for memmap\n",
4897 zone_names[j], memmap_pages);
4898 } else
4899 printk(KERN_WARNING
4900 " %s zone: %lu pages exceeds freesize %lu\n",
4901 zone_names[j], memmap_pages, freesize);
4902 }
0e0b864e 4903
6267276f 4904 /* Account for reserved pages */
9feedc9d
JL
4905 if (j == 0 && freesize > dma_reserve) {
4906 freesize -= dma_reserve;
d903ef9f 4907 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4908 zone_names[0], dma_reserve);
0e0b864e
MG
4909 }
4910
98d2b0eb 4911 if (!is_highmem_idx(j))
9feedc9d 4912 nr_kernel_pages += freesize;
01cefaef
JL
4913 /* Charge for highmem memmap if there are enough kernel pages */
4914 else if (nr_kernel_pages > memmap_pages * 2)
4915 nr_kernel_pages -= memmap_pages;
9feedc9d 4916 nr_all_pages += freesize;
1da177e4
LT
4917
4918 zone->spanned_pages = size;
306f2e9e 4919 zone->present_pages = realsize;
9feedc9d
JL
4920 /*
4921 * Set an approximate value for lowmem here, it will be adjusted
4922 * when the bootmem allocator frees pages into the buddy system.
4923 * And all highmem pages will be managed by the buddy system.
4924 */
4925 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4926#ifdef CONFIG_NUMA
d5f541ed 4927 zone->node = nid;
9feedc9d 4928 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4929 / 100;
9feedc9d 4930 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4931#endif
1da177e4
LT
4932 zone->name = zone_names[j];
4933 spin_lock_init(&zone->lock);
4934 spin_lock_init(&zone->lru_lock);
bdc8cb98 4935 zone_seqlock_init(zone);
1da177e4 4936 zone->zone_pgdat = pgdat;
ed8ece2e 4937 zone_pcp_init(zone);
81c0a2bb
JW
4938
4939 /* For bootup, initialized properly in watermark setup */
4940 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4941
bea8c150 4942 lruvec_init(&zone->lruvec);
1da177e4
LT
4943 if (!size)
4944 continue;
4945
955c1cd7 4946 set_pageblock_order();
7c45512d 4947 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4948 ret = init_currently_empty_zone(zone, zone_start_pfn,
4949 size, MEMMAP_EARLY);
718127cc 4950 BUG_ON(ret);
76cdd58e 4951 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4952 zone_start_pfn += size;
1da177e4
LT
4953 }
4954}
4955
577a32f6 4956static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4957{
1da177e4
LT
4958 /* Skip empty nodes */
4959 if (!pgdat->node_spanned_pages)
4960 return;
4961
d41dee36 4962#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4963 /* ia64 gets its own node_mem_map, before this, without bootmem */
4964 if (!pgdat->node_mem_map) {
e984bb43 4965 unsigned long size, start, end;
d41dee36
AW
4966 struct page *map;
4967
e984bb43
BP
4968 /*
4969 * The zone's endpoints aren't required to be MAX_ORDER
4970 * aligned but the node_mem_map endpoints must be in order
4971 * for the buddy allocator to function correctly.
4972 */
4973 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4974 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4975 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4976 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4977 map = alloc_remap(pgdat->node_id, size);
4978 if (!map)
6782832e
SS
4979 map = memblock_virt_alloc_node_nopanic(size,
4980 pgdat->node_id);
e984bb43 4981 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4982 }
12d810c1 4983#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4984 /*
4985 * With no DISCONTIG, the global mem_map is just set as node 0's
4986 */
c713216d 4987 if (pgdat == NODE_DATA(0)) {
1da177e4 4988 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4989#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4990 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4991 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4992#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4993 }
1da177e4 4994#endif
d41dee36 4995#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4996}
4997
9109fb7b
JW
4998void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4999 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5000{
9109fb7b 5001 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5002 unsigned long start_pfn = 0;
5003 unsigned long end_pfn = 0;
9109fb7b 5004
88fdf75d 5005 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5006 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5007
1da177e4
LT
5008 pgdat->node_id = nid;
5009 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5010#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5011 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5012 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5013 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5014#endif
5015 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5016 zones_size, zholes_size);
1da177e4
LT
5017
5018 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5019#ifdef CONFIG_FLAT_NODE_MEM_MAP
5020 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5021 nid, (unsigned long)pgdat,
5022 (unsigned long)pgdat->node_mem_map);
5023#endif
1da177e4 5024
7960aedd
ZY
5025 free_area_init_core(pgdat, start_pfn, end_pfn,
5026 zones_size, zholes_size);
1da177e4
LT
5027}
5028
0ee332c1 5029#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5030
5031#if MAX_NUMNODES > 1
5032/*
5033 * Figure out the number of possible node ids.
5034 */
f9872caf 5035void __init setup_nr_node_ids(void)
418508c1
MS
5036{
5037 unsigned int node;
5038 unsigned int highest = 0;
5039
5040 for_each_node_mask(node, node_possible_map)
5041 highest = node;
5042 nr_node_ids = highest + 1;
5043}
418508c1
MS
5044#endif
5045
1e01979c
TH
5046/**
5047 * node_map_pfn_alignment - determine the maximum internode alignment
5048 *
5049 * This function should be called after node map is populated and sorted.
5050 * It calculates the maximum power of two alignment which can distinguish
5051 * all the nodes.
5052 *
5053 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5054 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5055 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5056 * shifted, 1GiB is enough and this function will indicate so.
5057 *
5058 * This is used to test whether pfn -> nid mapping of the chosen memory
5059 * model has fine enough granularity to avoid incorrect mapping for the
5060 * populated node map.
5061 *
5062 * Returns the determined alignment in pfn's. 0 if there is no alignment
5063 * requirement (single node).
5064 */
5065unsigned long __init node_map_pfn_alignment(void)
5066{
5067 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5068 unsigned long start, end, mask;
1e01979c 5069 int last_nid = -1;
c13291a5 5070 int i, nid;
1e01979c 5071
c13291a5 5072 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5073 if (!start || last_nid < 0 || last_nid == nid) {
5074 last_nid = nid;
5075 last_end = end;
5076 continue;
5077 }
5078
5079 /*
5080 * Start with a mask granular enough to pin-point to the
5081 * start pfn and tick off bits one-by-one until it becomes
5082 * too coarse to separate the current node from the last.
5083 */
5084 mask = ~((1 << __ffs(start)) - 1);
5085 while (mask && last_end <= (start & (mask << 1)))
5086 mask <<= 1;
5087
5088 /* accumulate all internode masks */
5089 accl_mask |= mask;
5090 }
5091
5092 /* convert mask to number of pages */
5093 return ~accl_mask + 1;
5094}
5095
a6af2bc3 5096/* Find the lowest pfn for a node */
b69a7288 5097static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5098{
a6af2bc3 5099 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5100 unsigned long start_pfn;
5101 int i;
1abbfb41 5102
c13291a5
TH
5103 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5104 min_pfn = min(min_pfn, start_pfn);
c713216d 5105
a6af2bc3
MG
5106 if (min_pfn == ULONG_MAX) {
5107 printk(KERN_WARNING
2bc0d261 5108 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5109 return 0;
5110 }
5111
5112 return min_pfn;
c713216d
MG
5113}
5114
5115/**
5116 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5117 *
5118 * It returns the minimum PFN based on information provided via
7d018176 5119 * memblock_set_node().
c713216d
MG
5120 */
5121unsigned long __init find_min_pfn_with_active_regions(void)
5122{
5123 return find_min_pfn_for_node(MAX_NUMNODES);
5124}
5125
37b07e41
LS
5126/*
5127 * early_calculate_totalpages()
5128 * Sum pages in active regions for movable zone.
4b0ef1fe 5129 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5130 */
484f51f8 5131static unsigned long __init early_calculate_totalpages(void)
7e63efef 5132{
7e63efef 5133 unsigned long totalpages = 0;
c13291a5
TH
5134 unsigned long start_pfn, end_pfn;
5135 int i, nid;
5136
5137 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5138 unsigned long pages = end_pfn - start_pfn;
7e63efef 5139
37b07e41
LS
5140 totalpages += pages;
5141 if (pages)
4b0ef1fe 5142 node_set_state(nid, N_MEMORY);
37b07e41 5143 }
b8af2941 5144 return totalpages;
7e63efef
MG
5145}
5146
2a1e274a
MG
5147/*
5148 * Find the PFN the Movable zone begins in each node. Kernel memory
5149 * is spread evenly between nodes as long as the nodes have enough
5150 * memory. When they don't, some nodes will have more kernelcore than
5151 * others
5152 */
b224ef85 5153static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5154{
5155 int i, nid;
5156 unsigned long usable_startpfn;
5157 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5158 /* save the state before borrow the nodemask */
4b0ef1fe 5159 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5160 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5161 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5162 struct memblock_region *r;
b2f3eebe
TC
5163
5164 /* Need to find movable_zone earlier when movable_node is specified. */
5165 find_usable_zone_for_movable();
5166
5167 /*
5168 * If movable_node is specified, ignore kernelcore and movablecore
5169 * options.
5170 */
5171 if (movable_node_is_enabled()) {
136199f0
EM
5172 for_each_memblock(memory, r) {
5173 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5174 continue;
5175
136199f0 5176 nid = r->nid;
b2f3eebe 5177
136199f0 5178 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5179 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5180 min(usable_startpfn, zone_movable_pfn[nid]) :
5181 usable_startpfn;
5182 }
5183
5184 goto out2;
5185 }
2a1e274a 5186
7e63efef 5187 /*
b2f3eebe 5188 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5189 * kernelcore that corresponds so that memory usable for
5190 * any allocation type is evenly spread. If both kernelcore
5191 * and movablecore are specified, then the value of kernelcore
5192 * will be used for required_kernelcore if it's greater than
5193 * what movablecore would have allowed.
5194 */
5195 if (required_movablecore) {
7e63efef
MG
5196 unsigned long corepages;
5197
5198 /*
5199 * Round-up so that ZONE_MOVABLE is at least as large as what
5200 * was requested by the user
5201 */
5202 required_movablecore =
5203 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5204 corepages = totalpages - required_movablecore;
5205
5206 required_kernelcore = max(required_kernelcore, corepages);
5207 }
5208
20e6926d
YL
5209 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5210 if (!required_kernelcore)
66918dcd 5211 goto out;
2a1e274a
MG
5212
5213 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5214 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5215
5216restart:
5217 /* Spread kernelcore memory as evenly as possible throughout nodes */
5218 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5219 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5220 unsigned long start_pfn, end_pfn;
5221
2a1e274a
MG
5222 /*
5223 * Recalculate kernelcore_node if the division per node
5224 * now exceeds what is necessary to satisfy the requested
5225 * amount of memory for the kernel
5226 */
5227 if (required_kernelcore < kernelcore_node)
5228 kernelcore_node = required_kernelcore / usable_nodes;
5229
5230 /*
5231 * As the map is walked, we track how much memory is usable
5232 * by the kernel using kernelcore_remaining. When it is
5233 * 0, the rest of the node is usable by ZONE_MOVABLE
5234 */
5235 kernelcore_remaining = kernelcore_node;
5236
5237 /* Go through each range of PFNs within this node */
c13291a5 5238 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5239 unsigned long size_pages;
5240
c13291a5 5241 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5242 if (start_pfn >= end_pfn)
5243 continue;
5244
5245 /* Account for what is only usable for kernelcore */
5246 if (start_pfn < usable_startpfn) {
5247 unsigned long kernel_pages;
5248 kernel_pages = min(end_pfn, usable_startpfn)
5249 - start_pfn;
5250
5251 kernelcore_remaining -= min(kernel_pages,
5252 kernelcore_remaining);
5253 required_kernelcore -= min(kernel_pages,
5254 required_kernelcore);
5255
5256 /* Continue if range is now fully accounted */
5257 if (end_pfn <= usable_startpfn) {
5258
5259 /*
5260 * Push zone_movable_pfn to the end so
5261 * that if we have to rebalance
5262 * kernelcore across nodes, we will
5263 * not double account here
5264 */
5265 zone_movable_pfn[nid] = end_pfn;
5266 continue;
5267 }
5268 start_pfn = usable_startpfn;
5269 }
5270
5271 /*
5272 * The usable PFN range for ZONE_MOVABLE is from
5273 * start_pfn->end_pfn. Calculate size_pages as the
5274 * number of pages used as kernelcore
5275 */
5276 size_pages = end_pfn - start_pfn;
5277 if (size_pages > kernelcore_remaining)
5278 size_pages = kernelcore_remaining;
5279 zone_movable_pfn[nid] = start_pfn + size_pages;
5280
5281 /*
5282 * Some kernelcore has been met, update counts and
5283 * break if the kernelcore for this node has been
b8af2941 5284 * satisfied
2a1e274a
MG
5285 */
5286 required_kernelcore -= min(required_kernelcore,
5287 size_pages);
5288 kernelcore_remaining -= size_pages;
5289 if (!kernelcore_remaining)
5290 break;
5291 }
5292 }
5293
5294 /*
5295 * If there is still required_kernelcore, we do another pass with one
5296 * less node in the count. This will push zone_movable_pfn[nid] further
5297 * along on the nodes that still have memory until kernelcore is
b8af2941 5298 * satisfied
2a1e274a
MG
5299 */
5300 usable_nodes--;
5301 if (usable_nodes && required_kernelcore > usable_nodes)
5302 goto restart;
5303
b2f3eebe 5304out2:
2a1e274a
MG
5305 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5306 for (nid = 0; nid < MAX_NUMNODES; nid++)
5307 zone_movable_pfn[nid] =
5308 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5309
20e6926d 5310out:
66918dcd 5311 /* restore the node_state */
4b0ef1fe 5312 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5313}
5314
4b0ef1fe
LJ
5315/* Any regular or high memory on that node ? */
5316static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5317{
37b07e41
LS
5318 enum zone_type zone_type;
5319
4b0ef1fe
LJ
5320 if (N_MEMORY == N_NORMAL_MEMORY)
5321 return;
5322
5323 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5324 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5325 if (populated_zone(zone)) {
4b0ef1fe
LJ
5326 node_set_state(nid, N_HIGH_MEMORY);
5327 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5328 zone_type <= ZONE_NORMAL)
5329 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5330 break;
5331 }
37b07e41 5332 }
37b07e41
LS
5333}
5334
c713216d
MG
5335/**
5336 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5337 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5338 *
5339 * This will call free_area_init_node() for each active node in the system.
7d018176 5340 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5341 * zone in each node and their holes is calculated. If the maximum PFN
5342 * between two adjacent zones match, it is assumed that the zone is empty.
5343 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5344 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5345 * starts where the previous one ended. For example, ZONE_DMA32 starts
5346 * at arch_max_dma_pfn.
5347 */
5348void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5349{
c13291a5
TH
5350 unsigned long start_pfn, end_pfn;
5351 int i, nid;
a6af2bc3 5352
c713216d
MG
5353 /* Record where the zone boundaries are */
5354 memset(arch_zone_lowest_possible_pfn, 0,
5355 sizeof(arch_zone_lowest_possible_pfn));
5356 memset(arch_zone_highest_possible_pfn, 0,
5357 sizeof(arch_zone_highest_possible_pfn));
5358 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5359 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5360 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5361 if (i == ZONE_MOVABLE)
5362 continue;
c713216d
MG
5363 arch_zone_lowest_possible_pfn[i] =
5364 arch_zone_highest_possible_pfn[i-1];
5365 arch_zone_highest_possible_pfn[i] =
5366 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5367 }
2a1e274a
MG
5368 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5369 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5370
5371 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5372 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5373 find_zone_movable_pfns_for_nodes();
c713216d 5374
c713216d 5375 /* Print out the zone ranges */
f88dfff5 5376 pr_info("Zone ranges:\n");
2a1e274a
MG
5377 for (i = 0; i < MAX_NR_ZONES; i++) {
5378 if (i == ZONE_MOVABLE)
5379 continue;
f88dfff5 5380 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5381 if (arch_zone_lowest_possible_pfn[i] ==
5382 arch_zone_highest_possible_pfn[i])
f88dfff5 5383 pr_cont("empty\n");
72f0ba02 5384 else
8d29e18a
JG
5385 pr_cont("[mem %#018Lx-%#018Lx]\n",
5386 (u64)arch_zone_lowest_possible_pfn[i]
5387 << PAGE_SHIFT,
5388 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5389 << PAGE_SHIFT) - 1);
2a1e274a
MG
5390 }
5391
5392 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5393 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5394 for (i = 0; i < MAX_NUMNODES; i++) {
5395 if (zone_movable_pfn[i])
8d29e18a
JG
5396 pr_info(" Node %d: %#018Lx\n", i,
5397 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5398 }
c713216d 5399
f2d52fe5 5400 /* Print out the early node map */
f88dfff5 5401 pr_info("Early memory node ranges\n");
c13291a5 5402 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5403 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5404 (u64)start_pfn << PAGE_SHIFT,
5405 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5406
5407 /* Initialise every node */
708614e6 5408 mminit_verify_pageflags_layout();
8ef82866 5409 setup_nr_node_ids();
c713216d
MG
5410 for_each_online_node(nid) {
5411 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5412 free_area_init_node(nid, NULL,
c713216d 5413 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5414
5415 /* Any memory on that node */
5416 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5417 node_set_state(nid, N_MEMORY);
5418 check_for_memory(pgdat, nid);
c713216d
MG
5419 }
5420}
2a1e274a 5421
7e63efef 5422static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5423{
5424 unsigned long long coremem;
5425 if (!p)
5426 return -EINVAL;
5427
5428 coremem = memparse(p, &p);
7e63efef 5429 *core = coremem >> PAGE_SHIFT;
2a1e274a 5430
7e63efef 5431 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5432 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5433
5434 return 0;
5435}
ed7ed365 5436
7e63efef
MG
5437/*
5438 * kernelcore=size sets the amount of memory for use for allocations that
5439 * cannot be reclaimed or migrated.
5440 */
5441static int __init cmdline_parse_kernelcore(char *p)
5442{
5443 return cmdline_parse_core(p, &required_kernelcore);
5444}
5445
5446/*
5447 * movablecore=size sets the amount of memory for use for allocations that
5448 * can be reclaimed or migrated.
5449 */
5450static int __init cmdline_parse_movablecore(char *p)
5451{
5452 return cmdline_parse_core(p, &required_movablecore);
5453}
5454
ed7ed365 5455early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5456early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5457
0ee332c1 5458#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5459
c3d5f5f0
JL
5460void adjust_managed_page_count(struct page *page, long count)
5461{
5462 spin_lock(&managed_page_count_lock);
5463 page_zone(page)->managed_pages += count;
5464 totalram_pages += count;
3dcc0571
JL
5465#ifdef CONFIG_HIGHMEM
5466 if (PageHighMem(page))
5467 totalhigh_pages += count;
5468#endif
c3d5f5f0
JL
5469 spin_unlock(&managed_page_count_lock);
5470}
3dcc0571 5471EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5472
11199692 5473unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5474{
11199692
JL
5475 void *pos;
5476 unsigned long pages = 0;
69afade7 5477
11199692
JL
5478 start = (void *)PAGE_ALIGN((unsigned long)start);
5479 end = (void *)((unsigned long)end & PAGE_MASK);
5480 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5481 if ((unsigned int)poison <= 0xFF)
11199692
JL
5482 memset(pos, poison, PAGE_SIZE);
5483 free_reserved_page(virt_to_page(pos));
69afade7
JL
5484 }
5485
5486 if (pages && s)
11199692 5487 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5488 s, pages << (PAGE_SHIFT - 10), start, end);
5489
5490 return pages;
5491}
11199692 5492EXPORT_SYMBOL(free_reserved_area);
69afade7 5493
cfa11e08
JL
5494#ifdef CONFIG_HIGHMEM
5495void free_highmem_page(struct page *page)
5496{
5497 __free_reserved_page(page);
5498 totalram_pages++;
7b4b2a0d 5499 page_zone(page)->managed_pages++;
cfa11e08
JL
5500 totalhigh_pages++;
5501}
5502#endif
5503
7ee3d4e8
JL
5504
5505void __init mem_init_print_info(const char *str)
5506{
5507 unsigned long physpages, codesize, datasize, rosize, bss_size;
5508 unsigned long init_code_size, init_data_size;
5509
5510 physpages = get_num_physpages();
5511 codesize = _etext - _stext;
5512 datasize = _edata - _sdata;
5513 rosize = __end_rodata - __start_rodata;
5514 bss_size = __bss_stop - __bss_start;
5515 init_data_size = __init_end - __init_begin;
5516 init_code_size = _einittext - _sinittext;
5517
5518 /*
5519 * Detect special cases and adjust section sizes accordingly:
5520 * 1) .init.* may be embedded into .data sections
5521 * 2) .init.text.* may be out of [__init_begin, __init_end],
5522 * please refer to arch/tile/kernel/vmlinux.lds.S.
5523 * 3) .rodata.* may be embedded into .text or .data sections.
5524 */
5525#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5526 do { \
5527 if (start <= pos && pos < end && size > adj) \
5528 size -= adj; \
5529 } while (0)
7ee3d4e8
JL
5530
5531 adj_init_size(__init_begin, __init_end, init_data_size,
5532 _sinittext, init_code_size);
5533 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5534 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5535 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5536 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5537
5538#undef adj_init_size
5539
f88dfff5 5540 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5541 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5542 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5543#ifdef CONFIG_HIGHMEM
5544 ", %luK highmem"
5545#endif
5546 "%s%s)\n",
5547 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5548 codesize >> 10, datasize >> 10, rosize >> 10,
5549 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5550 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5551 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5552#ifdef CONFIG_HIGHMEM
5553 totalhigh_pages << (PAGE_SHIFT-10),
5554#endif
5555 str ? ", " : "", str ? str : "");
5556}
5557
0e0b864e 5558/**
88ca3b94
RD
5559 * set_dma_reserve - set the specified number of pages reserved in the first zone
5560 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5561 *
5562 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5563 * In the DMA zone, a significant percentage may be consumed by kernel image
5564 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5565 * function may optionally be used to account for unfreeable pages in the
5566 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5567 * smaller per-cpu batchsize.
0e0b864e
MG
5568 */
5569void __init set_dma_reserve(unsigned long new_dma_reserve)
5570{
5571 dma_reserve = new_dma_reserve;
5572}
5573
1da177e4
LT
5574void __init free_area_init(unsigned long *zones_size)
5575{
9109fb7b 5576 free_area_init_node(0, zones_size,
1da177e4
LT
5577 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5578}
1da177e4 5579
1da177e4
LT
5580static int page_alloc_cpu_notify(struct notifier_block *self,
5581 unsigned long action, void *hcpu)
5582{
5583 int cpu = (unsigned long)hcpu;
1da177e4 5584
8bb78442 5585 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5586 lru_add_drain_cpu(cpu);
9f8f2172
CL
5587 drain_pages(cpu);
5588
5589 /*
5590 * Spill the event counters of the dead processor
5591 * into the current processors event counters.
5592 * This artificially elevates the count of the current
5593 * processor.
5594 */
f8891e5e 5595 vm_events_fold_cpu(cpu);
9f8f2172
CL
5596
5597 /*
5598 * Zero the differential counters of the dead processor
5599 * so that the vm statistics are consistent.
5600 *
5601 * This is only okay since the processor is dead and cannot
5602 * race with what we are doing.
5603 */
2bb921e5 5604 cpu_vm_stats_fold(cpu);
1da177e4
LT
5605 }
5606 return NOTIFY_OK;
5607}
1da177e4
LT
5608
5609void __init page_alloc_init(void)
5610{
5611 hotcpu_notifier(page_alloc_cpu_notify, 0);
5612}
5613
cb45b0e9
HA
5614/*
5615 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5616 * or min_free_kbytes changes.
5617 */
5618static void calculate_totalreserve_pages(void)
5619{
5620 struct pglist_data *pgdat;
5621 unsigned long reserve_pages = 0;
2f6726e5 5622 enum zone_type i, j;
cb45b0e9
HA
5623
5624 for_each_online_pgdat(pgdat) {
5625 for (i = 0; i < MAX_NR_ZONES; i++) {
5626 struct zone *zone = pgdat->node_zones + i;
3484b2de 5627 long max = 0;
cb45b0e9
HA
5628
5629 /* Find valid and maximum lowmem_reserve in the zone */
5630 for (j = i; j < MAX_NR_ZONES; j++) {
5631 if (zone->lowmem_reserve[j] > max)
5632 max = zone->lowmem_reserve[j];
5633 }
5634
41858966
MG
5635 /* we treat the high watermark as reserved pages. */
5636 max += high_wmark_pages(zone);
cb45b0e9 5637
b40da049
JL
5638 if (max > zone->managed_pages)
5639 max = zone->managed_pages;
cb45b0e9 5640 reserve_pages += max;
ab8fabd4
JW
5641 /*
5642 * Lowmem reserves are not available to
5643 * GFP_HIGHUSER page cache allocations and
5644 * kswapd tries to balance zones to their high
5645 * watermark. As a result, neither should be
5646 * regarded as dirtyable memory, to prevent a
5647 * situation where reclaim has to clean pages
5648 * in order to balance the zones.
5649 */
5650 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5651 }
5652 }
ab8fabd4 5653 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5654 totalreserve_pages = reserve_pages;
5655}
5656
1da177e4
LT
5657/*
5658 * setup_per_zone_lowmem_reserve - called whenever
5659 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5660 * has a correct pages reserved value, so an adequate number of
5661 * pages are left in the zone after a successful __alloc_pages().
5662 */
5663static void setup_per_zone_lowmem_reserve(void)
5664{
5665 struct pglist_data *pgdat;
2f6726e5 5666 enum zone_type j, idx;
1da177e4 5667
ec936fc5 5668 for_each_online_pgdat(pgdat) {
1da177e4
LT
5669 for (j = 0; j < MAX_NR_ZONES; j++) {
5670 struct zone *zone = pgdat->node_zones + j;
b40da049 5671 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5672
5673 zone->lowmem_reserve[j] = 0;
5674
2f6726e5
CL
5675 idx = j;
5676 while (idx) {
1da177e4
LT
5677 struct zone *lower_zone;
5678
2f6726e5
CL
5679 idx--;
5680
1da177e4
LT
5681 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5682 sysctl_lowmem_reserve_ratio[idx] = 1;
5683
5684 lower_zone = pgdat->node_zones + idx;
b40da049 5685 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5686 sysctl_lowmem_reserve_ratio[idx];
b40da049 5687 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5688 }
5689 }
5690 }
cb45b0e9
HA
5691
5692 /* update totalreserve_pages */
5693 calculate_totalreserve_pages();
1da177e4
LT
5694}
5695
cfd3da1e 5696static void __setup_per_zone_wmarks(void)
1da177e4
LT
5697{
5698 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5699 unsigned long lowmem_pages = 0;
5700 struct zone *zone;
5701 unsigned long flags;
5702
5703 /* Calculate total number of !ZONE_HIGHMEM pages */
5704 for_each_zone(zone) {
5705 if (!is_highmem(zone))
b40da049 5706 lowmem_pages += zone->managed_pages;
1da177e4
LT
5707 }
5708
5709 for_each_zone(zone) {
ac924c60
AM
5710 u64 tmp;
5711
1125b4e3 5712 spin_lock_irqsave(&zone->lock, flags);
b40da049 5713 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5714 do_div(tmp, lowmem_pages);
1da177e4
LT
5715 if (is_highmem(zone)) {
5716 /*
669ed175
NP
5717 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5718 * need highmem pages, so cap pages_min to a small
5719 * value here.
5720 *
41858966 5721 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5722 * deltas controls asynch page reclaim, and so should
5723 * not be capped for highmem.
1da177e4 5724 */
90ae8d67 5725 unsigned long min_pages;
1da177e4 5726
b40da049 5727 min_pages = zone->managed_pages / 1024;
90ae8d67 5728 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5729 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5730 } else {
669ed175
NP
5731 /*
5732 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5733 * proportionate to the zone's size.
5734 */
41858966 5735 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5736 }
5737
41858966
MG
5738 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5739 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5740
81c0a2bb 5741 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5742 high_wmark_pages(zone) - low_wmark_pages(zone) -
5743 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5744
56fd56b8 5745 setup_zone_migrate_reserve(zone);
1125b4e3 5746 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5747 }
cb45b0e9
HA
5748
5749 /* update totalreserve_pages */
5750 calculate_totalreserve_pages();
1da177e4
LT
5751}
5752
cfd3da1e
MG
5753/**
5754 * setup_per_zone_wmarks - called when min_free_kbytes changes
5755 * or when memory is hot-{added|removed}
5756 *
5757 * Ensures that the watermark[min,low,high] values for each zone are set
5758 * correctly with respect to min_free_kbytes.
5759 */
5760void setup_per_zone_wmarks(void)
5761{
5762 mutex_lock(&zonelists_mutex);
5763 __setup_per_zone_wmarks();
5764 mutex_unlock(&zonelists_mutex);
5765}
5766
55a4462a 5767/*
556adecb
RR
5768 * The inactive anon list should be small enough that the VM never has to
5769 * do too much work, but large enough that each inactive page has a chance
5770 * to be referenced again before it is swapped out.
5771 *
5772 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5773 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5774 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5775 * the anonymous pages are kept on the inactive list.
5776 *
5777 * total target max
5778 * memory ratio inactive anon
5779 * -------------------------------------
5780 * 10MB 1 5MB
5781 * 100MB 1 50MB
5782 * 1GB 3 250MB
5783 * 10GB 10 0.9GB
5784 * 100GB 31 3GB
5785 * 1TB 101 10GB
5786 * 10TB 320 32GB
5787 */
1b79acc9 5788static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5789{
96cb4df5 5790 unsigned int gb, ratio;
556adecb 5791
96cb4df5 5792 /* Zone size in gigabytes */
b40da049 5793 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5794 if (gb)
556adecb 5795 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5796 else
5797 ratio = 1;
556adecb 5798
96cb4df5
MK
5799 zone->inactive_ratio = ratio;
5800}
556adecb 5801
839a4fcc 5802static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5803{
5804 struct zone *zone;
5805
5806 for_each_zone(zone)
5807 calculate_zone_inactive_ratio(zone);
556adecb
RR
5808}
5809
1da177e4
LT
5810/*
5811 * Initialise min_free_kbytes.
5812 *
5813 * For small machines we want it small (128k min). For large machines
5814 * we want it large (64MB max). But it is not linear, because network
5815 * bandwidth does not increase linearly with machine size. We use
5816 *
b8af2941 5817 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5818 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5819 *
5820 * which yields
5821 *
5822 * 16MB: 512k
5823 * 32MB: 724k
5824 * 64MB: 1024k
5825 * 128MB: 1448k
5826 * 256MB: 2048k
5827 * 512MB: 2896k
5828 * 1024MB: 4096k
5829 * 2048MB: 5792k
5830 * 4096MB: 8192k
5831 * 8192MB: 11584k
5832 * 16384MB: 16384k
5833 */
1b79acc9 5834int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5835{
5836 unsigned long lowmem_kbytes;
5f12733e 5837 int new_min_free_kbytes;
1da177e4
LT
5838
5839 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5840 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5841
5842 if (new_min_free_kbytes > user_min_free_kbytes) {
5843 min_free_kbytes = new_min_free_kbytes;
5844 if (min_free_kbytes < 128)
5845 min_free_kbytes = 128;
5846 if (min_free_kbytes > 65536)
5847 min_free_kbytes = 65536;
5848 } else {
5849 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5850 new_min_free_kbytes, user_min_free_kbytes);
5851 }
bc75d33f 5852 setup_per_zone_wmarks();
a6cccdc3 5853 refresh_zone_stat_thresholds();
1da177e4 5854 setup_per_zone_lowmem_reserve();
556adecb 5855 setup_per_zone_inactive_ratio();
1da177e4
LT
5856 return 0;
5857}
bc75d33f 5858module_init(init_per_zone_wmark_min)
1da177e4
LT
5859
5860/*
b8af2941 5861 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5862 * that we can call two helper functions whenever min_free_kbytes
5863 * changes.
5864 */
cccad5b9 5865int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5866 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5867{
da8c757b
HP
5868 int rc;
5869
5870 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5871 if (rc)
5872 return rc;
5873
5f12733e
MH
5874 if (write) {
5875 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5876 setup_per_zone_wmarks();
5f12733e 5877 }
1da177e4
LT
5878 return 0;
5879}
5880
9614634f 5881#ifdef CONFIG_NUMA
cccad5b9 5882int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5883 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5884{
5885 struct zone *zone;
5886 int rc;
5887
8d65af78 5888 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5889 if (rc)
5890 return rc;
5891
5892 for_each_zone(zone)
b40da049 5893 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5894 sysctl_min_unmapped_ratio) / 100;
5895 return 0;
5896}
0ff38490 5897
cccad5b9 5898int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5899 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5900{
5901 struct zone *zone;
5902 int rc;
5903
8d65af78 5904 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5905 if (rc)
5906 return rc;
5907
5908 for_each_zone(zone)
b40da049 5909 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5910 sysctl_min_slab_ratio) / 100;
5911 return 0;
5912}
9614634f
CL
5913#endif
5914
1da177e4
LT
5915/*
5916 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5917 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5918 * whenever sysctl_lowmem_reserve_ratio changes.
5919 *
5920 * The reserve ratio obviously has absolutely no relation with the
41858966 5921 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5922 * if in function of the boot time zone sizes.
5923 */
cccad5b9 5924int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5925 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5926{
8d65af78 5927 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5928 setup_per_zone_lowmem_reserve();
5929 return 0;
5930}
5931
8ad4b1fb
RS
5932/*
5933 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5934 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5935 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5936 */
cccad5b9 5937int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5938 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5939{
5940 struct zone *zone;
7cd2b0a3 5941 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5942 int ret;
5943
7cd2b0a3
DR
5944 mutex_lock(&pcp_batch_high_lock);
5945 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5946
8d65af78 5947 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5948 if (!write || ret < 0)
5949 goto out;
5950
5951 /* Sanity checking to avoid pcp imbalance */
5952 if (percpu_pagelist_fraction &&
5953 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5954 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5955 ret = -EINVAL;
5956 goto out;
5957 }
5958
5959 /* No change? */
5960 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5961 goto out;
c8e251fa 5962
364df0eb 5963 for_each_populated_zone(zone) {
7cd2b0a3
DR
5964 unsigned int cpu;
5965
22a7f12b 5966 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5967 pageset_set_high_and_batch(zone,
5968 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5969 }
7cd2b0a3 5970out:
c8e251fa 5971 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5972 return ret;
8ad4b1fb
RS
5973}
5974
f034b5d4 5975int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5976
5977#ifdef CONFIG_NUMA
5978static int __init set_hashdist(char *str)
5979{
5980 if (!str)
5981 return 0;
5982 hashdist = simple_strtoul(str, &str, 0);
5983 return 1;
5984}
5985__setup("hashdist=", set_hashdist);
5986#endif
5987
5988/*
5989 * allocate a large system hash table from bootmem
5990 * - it is assumed that the hash table must contain an exact power-of-2
5991 * quantity of entries
5992 * - limit is the number of hash buckets, not the total allocation size
5993 */
5994void *__init alloc_large_system_hash(const char *tablename,
5995 unsigned long bucketsize,
5996 unsigned long numentries,
5997 int scale,
5998 int flags,
5999 unsigned int *_hash_shift,
6000 unsigned int *_hash_mask,
31fe62b9
TB
6001 unsigned long low_limit,
6002 unsigned long high_limit)
1da177e4 6003{
31fe62b9 6004 unsigned long long max = high_limit;
1da177e4
LT
6005 unsigned long log2qty, size;
6006 void *table = NULL;
6007
6008 /* allow the kernel cmdline to have a say */
6009 if (!numentries) {
6010 /* round applicable memory size up to nearest megabyte */
04903664 6011 numentries = nr_kernel_pages;
a7e83318
JZ
6012
6013 /* It isn't necessary when PAGE_SIZE >= 1MB */
6014 if (PAGE_SHIFT < 20)
6015 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6016
6017 /* limit to 1 bucket per 2^scale bytes of low memory */
6018 if (scale > PAGE_SHIFT)
6019 numentries >>= (scale - PAGE_SHIFT);
6020 else
6021 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6022
6023 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6024 if (unlikely(flags & HASH_SMALL)) {
6025 /* Makes no sense without HASH_EARLY */
6026 WARN_ON(!(flags & HASH_EARLY));
6027 if (!(numentries >> *_hash_shift)) {
6028 numentries = 1UL << *_hash_shift;
6029 BUG_ON(!numentries);
6030 }
6031 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6032 numentries = PAGE_SIZE / bucketsize;
1da177e4 6033 }
6e692ed3 6034 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6035
6036 /* limit allocation size to 1/16 total memory by default */
6037 if (max == 0) {
6038 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6039 do_div(max, bucketsize);
6040 }
074b8517 6041 max = min(max, 0x80000000ULL);
1da177e4 6042
31fe62b9
TB
6043 if (numentries < low_limit)
6044 numentries = low_limit;
1da177e4
LT
6045 if (numentries > max)
6046 numentries = max;
6047
f0d1b0b3 6048 log2qty = ilog2(numentries);
1da177e4
LT
6049
6050 do {
6051 size = bucketsize << log2qty;
6052 if (flags & HASH_EARLY)
6782832e 6053 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6054 else if (hashdist)
6055 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6056 else {
1037b83b
ED
6057 /*
6058 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6059 * some pages at the end of hash table which
6060 * alloc_pages_exact() automatically does
1037b83b 6061 */
264ef8a9 6062 if (get_order(size) < MAX_ORDER) {
a1dd268c 6063 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6064 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6065 }
1da177e4
LT
6066 }
6067 } while (!table && size > PAGE_SIZE && --log2qty);
6068
6069 if (!table)
6070 panic("Failed to allocate %s hash table\n", tablename);
6071
f241e660 6072 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6073 tablename,
f241e660 6074 (1UL << log2qty),
f0d1b0b3 6075 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6076 size);
6077
6078 if (_hash_shift)
6079 *_hash_shift = log2qty;
6080 if (_hash_mask)
6081 *_hash_mask = (1 << log2qty) - 1;
6082
6083 return table;
6084}
a117e66e 6085
835c134e
MG
6086/* Return a pointer to the bitmap storing bits affecting a block of pages */
6087static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6088 unsigned long pfn)
6089{
6090#ifdef CONFIG_SPARSEMEM
6091 return __pfn_to_section(pfn)->pageblock_flags;
6092#else
6093 return zone->pageblock_flags;
6094#endif /* CONFIG_SPARSEMEM */
6095}
6096
6097static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6098{
6099#ifdef CONFIG_SPARSEMEM
6100 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6101 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6102#else
c060f943 6103 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6104 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6105#endif /* CONFIG_SPARSEMEM */
6106}
6107
6108/**
1aab4d77 6109 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6110 * @page: The page within the block of interest
1aab4d77
RD
6111 * @pfn: The target page frame number
6112 * @end_bitidx: The last bit of interest to retrieve
6113 * @mask: mask of bits that the caller is interested in
6114 *
6115 * Return: pageblock_bits flags
835c134e 6116 */
dc4b0caf 6117unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6118 unsigned long end_bitidx,
6119 unsigned long mask)
835c134e
MG
6120{
6121 struct zone *zone;
6122 unsigned long *bitmap;
dc4b0caf 6123 unsigned long bitidx, word_bitidx;
e58469ba 6124 unsigned long word;
835c134e
MG
6125
6126 zone = page_zone(page);
835c134e
MG
6127 bitmap = get_pageblock_bitmap(zone, pfn);
6128 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6129 word_bitidx = bitidx / BITS_PER_LONG;
6130 bitidx &= (BITS_PER_LONG-1);
835c134e 6131
e58469ba
MG
6132 word = bitmap[word_bitidx];
6133 bitidx += end_bitidx;
6134 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6135}
6136
6137/**
dc4b0caf 6138 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6139 * @page: The page within the block of interest
835c134e 6140 * @flags: The flags to set
1aab4d77
RD
6141 * @pfn: The target page frame number
6142 * @end_bitidx: The last bit of interest
6143 * @mask: mask of bits that the caller is interested in
835c134e 6144 */
dc4b0caf
MG
6145void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6146 unsigned long pfn,
e58469ba
MG
6147 unsigned long end_bitidx,
6148 unsigned long mask)
835c134e
MG
6149{
6150 struct zone *zone;
6151 unsigned long *bitmap;
dc4b0caf 6152 unsigned long bitidx, word_bitidx;
e58469ba
MG
6153 unsigned long old_word, word;
6154
6155 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6156
6157 zone = page_zone(page);
835c134e
MG
6158 bitmap = get_pageblock_bitmap(zone, pfn);
6159 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6160 word_bitidx = bitidx / BITS_PER_LONG;
6161 bitidx &= (BITS_PER_LONG-1);
6162
309381fe 6163 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6164
e58469ba
MG
6165 bitidx += end_bitidx;
6166 mask <<= (BITS_PER_LONG - bitidx - 1);
6167 flags <<= (BITS_PER_LONG - bitidx - 1);
6168
6169 word = ACCESS_ONCE(bitmap[word_bitidx]);
6170 for (;;) {
6171 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6172 if (word == old_word)
6173 break;
6174 word = old_word;
6175 }
835c134e 6176}
a5d76b54
KH
6177
6178/*
80934513
MK
6179 * This function checks whether pageblock includes unmovable pages or not.
6180 * If @count is not zero, it is okay to include less @count unmovable pages
6181 *
b8af2941 6182 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6183 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6184 * expect this function should be exact.
a5d76b54 6185 */
b023f468
WC
6186bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6187 bool skip_hwpoisoned_pages)
49ac8255
KH
6188{
6189 unsigned long pfn, iter, found;
47118af0
MN
6190 int mt;
6191
49ac8255
KH
6192 /*
6193 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6194 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6195 */
6196 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6197 return false;
47118af0
MN
6198 mt = get_pageblock_migratetype(page);
6199 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6200 return false;
49ac8255
KH
6201
6202 pfn = page_to_pfn(page);
6203 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6204 unsigned long check = pfn + iter;
6205
29723fcc 6206 if (!pfn_valid_within(check))
49ac8255 6207 continue;
29723fcc 6208
49ac8255 6209 page = pfn_to_page(check);
c8721bbb
NH
6210
6211 /*
6212 * Hugepages are not in LRU lists, but they're movable.
6213 * We need not scan over tail pages bacause we don't
6214 * handle each tail page individually in migration.
6215 */
6216 if (PageHuge(page)) {
6217 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6218 continue;
6219 }
6220
97d255c8
MK
6221 /*
6222 * We can't use page_count without pin a page
6223 * because another CPU can free compound page.
6224 * This check already skips compound tails of THP
6225 * because their page->_count is zero at all time.
6226 */
6227 if (!atomic_read(&page->_count)) {
49ac8255
KH
6228 if (PageBuddy(page))
6229 iter += (1 << page_order(page)) - 1;
6230 continue;
6231 }
97d255c8 6232
b023f468
WC
6233 /*
6234 * The HWPoisoned page may be not in buddy system, and
6235 * page_count() is not 0.
6236 */
6237 if (skip_hwpoisoned_pages && PageHWPoison(page))
6238 continue;
6239
49ac8255
KH
6240 if (!PageLRU(page))
6241 found++;
6242 /*
6b4f7799
JW
6243 * If there are RECLAIMABLE pages, we need to check
6244 * it. But now, memory offline itself doesn't call
6245 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6246 */
6247 /*
6248 * If the page is not RAM, page_count()should be 0.
6249 * we don't need more check. This is an _used_ not-movable page.
6250 *
6251 * The problematic thing here is PG_reserved pages. PG_reserved
6252 * is set to both of a memory hole page and a _used_ kernel
6253 * page at boot.
6254 */
6255 if (found > count)
80934513 6256 return true;
49ac8255 6257 }
80934513 6258 return false;
49ac8255
KH
6259}
6260
6261bool is_pageblock_removable_nolock(struct page *page)
6262{
656a0706
MH
6263 struct zone *zone;
6264 unsigned long pfn;
687875fb
MH
6265
6266 /*
6267 * We have to be careful here because we are iterating over memory
6268 * sections which are not zone aware so we might end up outside of
6269 * the zone but still within the section.
656a0706
MH
6270 * We have to take care about the node as well. If the node is offline
6271 * its NODE_DATA will be NULL - see page_zone.
687875fb 6272 */
656a0706
MH
6273 if (!node_online(page_to_nid(page)))
6274 return false;
6275
6276 zone = page_zone(page);
6277 pfn = page_to_pfn(page);
108bcc96 6278 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6279 return false;
6280
b023f468 6281 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6282}
0c0e6195 6283
041d3a8c
MN
6284#ifdef CONFIG_CMA
6285
6286static unsigned long pfn_max_align_down(unsigned long pfn)
6287{
6288 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6289 pageblock_nr_pages) - 1);
6290}
6291
6292static unsigned long pfn_max_align_up(unsigned long pfn)
6293{
6294 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6295 pageblock_nr_pages));
6296}
6297
041d3a8c 6298/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6299static int __alloc_contig_migrate_range(struct compact_control *cc,
6300 unsigned long start, unsigned long end)
041d3a8c
MN
6301{
6302 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6303 unsigned long nr_reclaimed;
041d3a8c
MN
6304 unsigned long pfn = start;
6305 unsigned int tries = 0;
6306 int ret = 0;
6307
be49a6e1 6308 migrate_prep();
041d3a8c 6309
bb13ffeb 6310 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6311 if (fatal_signal_pending(current)) {
6312 ret = -EINTR;
6313 break;
6314 }
6315
bb13ffeb
MG
6316 if (list_empty(&cc->migratepages)) {
6317 cc->nr_migratepages = 0;
edc2ca61 6318 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6319 if (!pfn) {
6320 ret = -EINTR;
6321 break;
6322 }
6323 tries = 0;
6324 } else if (++tries == 5) {
6325 ret = ret < 0 ? ret : -EBUSY;
6326 break;
6327 }
6328
beb51eaa
MK
6329 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6330 &cc->migratepages);
6331 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6332
9c620e2b 6333 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6334 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6335 }
2a6f5124
SP
6336 if (ret < 0) {
6337 putback_movable_pages(&cc->migratepages);
6338 return ret;
6339 }
6340 return 0;
041d3a8c
MN
6341}
6342
6343/**
6344 * alloc_contig_range() -- tries to allocate given range of pages
6345 * @start: start PFN to allocate
6346 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6347 * @migratetype: migratetype of the underlaying pageblocks (either
6348 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6349 * in range must have the same migratetype and it must
6350 * be either of the two.
041d3a8c
MN
6351 *
6352 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6353 * aligned, however it's the caller's responsibility to guarantee that
6354 * we are the only thread that changes migrate type of pageblocks the
6355 * pages fall in.
6356 *
6357 * The PFN range must belong to a single zone.
6358 *
6359 * Returns zero on success or negative error code. On success all
6360 * pages which PFN is in [start, end) are allocated for the caller and
6361 * need to be freed with free_contig_range().
6362 */
0815f3d8
MN
6363int alloc_contig_range(unsigned long start, unsigned long end,
6364 unsigned migratetype)
041d3a8c 6365{
041d3a8c
MN
6366 unsigned long outer_start, outer_end;
6367 int ret = 0, order;
6368
bb13ffeb
MG
6369 struct compact_control cc = {
6370 .nr_migratepages = 0,
6371 .order = -1,
6372 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6373 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6374 .ignore_skip_hint = true,
6375 };
6376 INIT_LIST_HEAD(&cc.migratepages);
6377
041d3a8c
MN
6378 /*
6379 * What we do here is we mark all pageblocks in range as
6380 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6381 * have different sizes, and due to the way page allocator
6382 * work, we align the range to biggest of the two pages so
6383 * that page allocator won't try to merge buddies from
6384 * different pageblocks and change MIGRATE_ISOLATE to some
6385 * other migration type.
6386 *
6387 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6388 * migrate the pages from an unaligned range (ie. pages that
6389 * we are interested in). This will put all the pages in
6390 * range back to page allocator as MIGRATE_ISOLATE.
6391 *
6392 * When this is done, we take the pages in range from page
6393 * allocator removing them from the buddy system. This way
6394 * page allocator will never consider using them.
6395 *
6396 * This lets us mark the pageblocks back as
6397 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6398 * aligned range but not in the unaligned, original range are
6399 * put back to page allocator so that buddy can use them.
6400 */
6401
6402 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6403 pfn_max_align_up(end), migratetype,
6404 false);
041d3a8c 6405 if (ret)
86a595f9 6406 return ret;
041d3a8c 6407
bb13ffeb 6408 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6409 if (ret)
6410 goto done;
6411
6412 /*
6413 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6414 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6415 * more, all pages in [start, end) are free in page allocator.
6416 * What we are going to do is to allocate all pages from
6417 * [start, end) (that is remove them from page allocator).
6418 *
6419 * The only problem is that pages at the beginning and at the
6420 * end of interesting range may be not aligned with pages that
6421 * page allocator holds, ie. they can be part of higher order
6422 * pages. Because of this, we reserve the bigger range and
6423 * once this is done free the pages we are not interested in.
6424 *
6425 * We don't have to hold zone->lock here because the pages are
6426 * isolated thus they won't get removed from buddy.
6427 */
6428
6429 lru_add_drain_all();
510f5507 6430 drain_all_pages(cc.zone);
041d3a8c
MN
6431
6432 order = 0;
6433 outer_start = start;
6434 while (!PageBuddy(pfn_to_page(outer_start))) {
6435 if (++order >= MAX_ORDER) {
6436 ret = -EBUSY;
6437 goto done;
6438 }
6439 outer_start &= ~0UL << order;
6440 }
6441
6442 /* Make sure the range is really isolated. */
b023f468 6443 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6444 pr_info("%s: [%lx, %lx) PFNs busy\n",
6445 __func__, outer_start, end);
041d3a8c
MN
6446 ret = -EBUSY;
6447 goto done;
6448 }
6449
49f223a9 6450 /* Grab isolated pages from freelists. */
bb13ffeb 6451 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6452 if (!outer_end) {
6453 ret = -EBUSY;
6454 goto done;
6455 }
6456
6457 /* Free head and tail (if any) */
6458 if (start != outer_start)
6459 free_contig_range(outer_start, start - outer_start);
6460 if (end != outer_end)
6461 free_contig_range(end, outer_end - end);
6462
6463done:
6464 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6465 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6466 return ret;
6467}
6468
6469void free_contig_range(unsigned long pfn, unsigned nr_pages)
6470{
bcc2b02f
MS
6471 unsigned int count = 0;
6472
6473 for (; nr_pages--; pfn++) {
6474 struct page *page = pfn_to_page(pfn);
6475
6476 count += page_count(page) != 1;
6477 __free_page(page);
6478 }
6479 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6480}
6481#endif
6482
4ed7e022 6483#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6484/*
6485 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6486 * page high values need to be recalulated.
6487 */
4ed7e022
JL
6488void __meminit zone_pcp_update(struct zone *zone)
6489{
0a647f38 6490 unsigned cpu;
c8e251fa 6491 mutex_lock(&pcp_batch_high_lock);
0a647f38 6492 for_each_possible_cpu(cpu)
169f6c19
CS
6493 pageset_set_high_and_batch(zone,
6494 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6495 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6496}
6497#endif
6498
340175b7
JL
6499void zone_pcp_reset(struct zone *zone)
6500{
6501 unsigned long flags;
5a883813
MK
6502 int cpu;
6503 struct per_cpu_pageset *pset;
340175b7
JL
6504
6505 /* avoid races with drain_pages() */
6506 local_irq_save(flags);
6507 if (zone->pageset != &boot_pageset) {
5a883813
MK
6508 for_each_online_cpu(cpu) {
6509 pset = per_cpu_ptr(zone->pageset, cpu);
6510 drain_zonestat(zone, pset);
6511 }
340175b7
JL
6512 free_percpu(zone->pageset);
6513 zone->pageset = &boot_pageset;
6514 }
6515 local_irq_restore(flags);
6516}
6517
6dcd73d7 6518#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6519/*
6520 * All pages in the range must be isolated before calling this.
6521 */
6522void
6523__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6524{
6525 struct page *page;
6526 struct zone *zone;
7aeb09f9 6527 unsigned int order, i;
0c0e6195
KH
6528 unsigned long pfn;
6529 unsigned long flags;
6530 /* find the first valid pfn */
6531 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6532 if (pfn_valid(pfn))
6533 break;
6534 if (pfn == end_pfn)
6535 return;
6536 zone = page_zone(pfn_to_page(pfn));
6537 spin_lock_irqsave(&zone->lock, flags);
6538 pfn = start_pfn;
6539 while (pfn < end_pfn) {
6540 if (!pfn_valid(pfn)) {
6541 pfn++;
6542 continue;
6543 }
6544 page = pfn_to_page(pfn);
b023f468
WC
6545 /*
6546 * The HWPoisoned page may be not in buddy system, and
6547 * page_count() is not 0.
6548 */
6549 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6550 pfn++;
6551 SetPageReserved(page);
6552 continue;
6553 }
6554
0c0e6195
KH
6555 BUG_ON(page_count(page));
6556 BUG_ON(!PageBuddy(page));
6557 order = page_order(page);
6558#ifdef CONFIG_DEBUG_VM
6559 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6560 pfn, 1 << order, end_pfn);
6561#endif
6562 list_del(&page->lru);
6563 rmv_page_order(page);
6564 zone->free_area[order].nr_free--;
0c0e6195
KH
6565 for (i = 0; i < (1 << order); i++)
6566 SetPageReserved((page+i));
6567 pfn += (1 << order);
6568 }
6569 spin_unlock_irqrestore(&zone->lock, flags);
6570}
6571#endif
8d22ba1b
WF
6572
6573#ifdef CONFIG_MEMORY_FAILURE
6574bool is_free_buddy_page(struct page *page)
6575{
6576 struct zone *zone = page_zone(page);
6577 unsigned long pfn = page_to_pfn(page);
6578 unsigned long flags;
7aeb09f9 6579 unsigned int order;
8d22ba1b
WF
6580
6581 spin_lock_irqsave(&zone->lock, flags);
6582 for (order = 0; order < MAX_ORDER; order++) {
6583 struct page *page_head = page - (pfn & ((1 << order) - 1));
6584
6585 if (PageBuddy(page_head) && page_order(page_head) >= order)
6586 break;
6587 }
6588 spin_unlock_irqrestore(&zone->lock, flags);
6589
6590 return order < MAX_ORDER;
6591}
6592#endif