]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
oom: suppress nodes that are not allowed from meminfo on oom kill
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
c9e664f1
RW
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
452aa699
RW
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
452aa699
RW
117}
118
c9e664f1 119void pm_restrict_gfp_mask(void)
452aa699 120{
452aa699 121 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
125}
126#endif /* CONFIG_PM_SLEEP */
127
d9c23400
MG
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
d98c7a09 132static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 133
1da177e4
LT
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
1da177e4 144 */
2f1b6248 145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 146#ifdef CONFIG_ZONE_DMA
2f1b6248 147 256,
4b51d669 148#endif
fb0e7942 149#ifdef CONFIG_ZONE_DMA32
2f1b6248 150 256,
fb0e7942 151#endif
e53ef38d 152#ifdef CONFIG_HIGHMEM
2a1e274a 153 32,
e53ef38d 154#endif
2a1e274a 155 32,
2f1b6248 156};
1da177e4
LT
157
158EXPORT_SYMBOL(totalram_pages);
1da177e4 159
15ad7cdc 160static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 161#ifdef CONFIG_ZONE_DMA
2f1b6248 162 "DMA",
4b51d669 163#endif
fb0e7942 164#ifdef CONFIG_ZONE_DMA32
2f1b6248 165 "DMA32",
fb0e7942 166#endif
2f1b6248 167 "Normal",
e53ef38d 168#ifdef CONFIG_HIGHMEM
2a1e274a 169 "HighMem",
e53ef38d 170#endif
2a1e274a 171 "Movable",
2f1b6248
CL
172};
173
1da177e4
LT
174int min_free_kbytes = 1024;
175
2c85f51d
JB
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
a3142c8e 178static unsigned long __meminitdata dma_reserve;
1da177e4 179
c713216d
MG
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
183ff22b 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
98011f56
JB
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 205 static unsigned long __initdata required_kernelcore;
484f51f8 206 static unsigned long __initdata required_movablecore;
b69a7288 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
c713216d
MG
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
418508c1
MS
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 216int nr_online_nodes __read_mostly = 1;
418508c1 217EXPORT_SYMBOL(nr_node_ids);
62bc62a8 218EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
219#endif
220
9ef9acb0
MG
221int page_group_by_mobility_disabled __read_mostly;
222
b2a0ac88
MG
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
49255c61
MG
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
b2a0ac88
MG
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
7f33d49a
RW
233bool oom_killer_disabled __read_mostly;
234
13e7444b 235#ifdef CONFIG_DEBUG_VM
c6a57e19 236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 237{
bdc8cb98
DH
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
c6a57e19 241
bdc8cb98
DH
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
c6a57e19
DH
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
14e07298 255 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 256 return 0;
1da177e4 257 if (zone != page_zone(page))
c6a57e19
DH
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
1da177e4 268 return 1;
c6a57e19
DH
269 if (!page_is_consistent(zone, page))
270 return 1;
271
1da177e4
LT
272 return 0;
273}
13e7444b
NP
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
224abf92 281static void bad_page(struct page *page)
1da177e4 282{
d936cf9b
HD
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
2a7684a2
WF
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
ef2b4b95 289 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
290 return;
291 }
292
d936cf9b
HD
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
1e9e6365
HD
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
1e9e6365 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 314 current->comm, page_to_pfn(page));
718a3821 315 dump_page(page);
3dc14741 316
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392 319 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 320 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
59ff4216 360/* update __split_huge_page_refcount if you change this function */
8cc3b392 361static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
362{
363 int i;
364 int nr_pages = 1 << order;
8cc3b392 365 int bad = 0;
1da177e4 366
8cc3b392
HD
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
224abf92 369 bad_page(page);
8cc3b392
HD
370 bad++;
371 }
1da177e4 372
6d777953 373 __ClearPageHead(page);
8cc3b392 374
18229df5
AW
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
1da177e4 377
e713a21d 378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 379 bad_page(page);
8cc3b392
HD
380 bad++;
381 }
d85f3385 382 __ClearPageTail(p);
1da177e4 383 }
8cc3b392
HD
384
385 return bad;
1da177e4 386}
1da177e4 387
17cf4406
NP
388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389{
390 int i;
391
6626c5d5
AM
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
725d704e 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399}
400
6aa3001b
AM
401static inline void set_page_order(struct page *page, int order)
402{
4c21e2f2 403 set_page_private(page, order);
676165a8 404 __SetPageBuddy(page);
1da177e4
LT
405}
406
407static inline void rmv_page_order(struct page *page)
408{
676165a8 409 __ClearPageBuddy(page);
4c21e2f2 410 set_page_private(page, 0);
1da177e4
LT
411}
412
413/*
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
416 *
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 *
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
427 *
d6e05edc 428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 429 */
1da177e4 430static inline unsigned long
43506fad 431__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 432{
43506fad 433 return page_idx ^ (1 << order);
1da177e4
LT
434}
435
436/*
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
13e7444b 439 * (a) the buddy is not in a hole &&
676165a8 440 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
676165a8 443 *
5f24ce5f
AA
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 446 *
676165a8 447 * For recording page's order, we use page_private(page).
1da177e4 448 */
cb2b95e1
AW
449static inline int page_is_buddy(struct page *page, struct page *buddy,
450 int order)
1da177e4 451{
14e07298 452 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 453 return 0;
13e7444b 454
cb2b95e1
AW
455 if (page_zone_id(page) != page_zone_id(buddy))
456 return 0;
457
458 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 459 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 460 return 1;
676165a8 461 }
6aa3001b 462 return 0;
1da177e4
LT
463}
464
465/*
466 * Freeing function for a buddy system allocator.
467 *
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 479 * order is recorded in page_private(page) field.
1da177e4
LT
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
485 *
486 * -- wli
487 */
488
48db57f8 489static inline void __free_one_page(struct page *page,
ed0ae21d
MG
490 struct zone *zone, unsigned int order,
491 int migratetype)
1da177e4
LT
492{
493 unsigned long page_idx;
6dda9d55 494 unsigned long combined_idx;
43506fad 495 unsigned long uninitialized_var(buddy_idx);
6dda9d55 496 struct page *buddy;
1da177e4 497
224abf92 498 if (unlikely(PageCompound(page)))
8cc3b392
HD
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
1da177e4 501
ed0ae21d
MG
502 VM_BUG_ON(migratetype == -1);
503
1da177e4
LT
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
f2260e6b 506 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 507 VM_BUG_ON(bad_range(zone, page));
1da177e4 508
1da177e4 509 while (order < MAX_ORDER-1) {
43506fad
KC
510 buddy_idx = __find_buddy_index(page_idx, order);
511 buddy = page + (buddy_idx - page_idx);
cb2b95e1 512 if (!page_is_buddy(page, buddy, order))
3c82d0ce 513 break;
13e7444b 514
3c82d0ce 515 /* Our buddy is free, merge with it and move up one order. */
1da177e4 516 list_del(&buddy->lru);
b2a0ac88 517 zone->free_area[order].nr_free--;
1da177e4 518 rmv_page_order(buddy);
43506fad 519 combined_idx = buddy_idx & page_idx;
1da177e4
LT
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
523 }
524 set_page_order(page, order);
6dda9d55
CZ
525
526 /*
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
533 */
b7f50cfa 534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 535 struct page *higher_page, *higher_buddy;
43506fad
KC
536 combined_idx = buddy_idx & page_idx;
537 higher_page = page + (combined_idx - page_idx);
538 buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 list_add_tail(&page->lru,
542 &zone->free_area[order].free_list[migratetype]);
543 goto out;
544 }
545 }
546
547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548out:
1da177e4
LT
549 zone->free_area[order].nr_free++;
550}
551
092cead6
KM
552/*
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
556 */
557static inline void free_page_mlock(struct page *page)
558{
092cead6
KM
559 __dec_zone_page_state(page, NR_MLOCK);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561}
092cead6 562
224abf92 563static inline int free_pages_check(struct page *page)
1da177e4 564{
92be2e33
NP
565 if (unlikely(page_mapcount(page) |
566 (page->mapping != NULL) |
a3af9c38 567 (atomic_read(&page->_count) != 0) |
8cc3b392 568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 569 bad_page(page);
79f4b7bf 570 return 1;
8cc3b392 571 }
79f4b7bf
HD
572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 return 0;
1da177e4
LT
575}
576
577/*
5f8dcc21 578 * Frees a number of pages from the PCP lists
1da177e4 579 * Assumes all pages on list are in same zone, and of same order.
207f36ee 580 * count is the number of pages to free.
1da177e4
LT
581 *
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
584 *
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
587 */
5f8dcc21
MG
588static void free_pcppages_bulk(struct zone *zone, int count,
589 struct per_cpu_pages *pcp)
1da177e4 590{
5f8dcc21 591 int migratetype = 0;
a6f9edd6 592 int batch_free = 0;
72853e29 593 int to_free = count;
5f8dcc21 594
c54ad30c 595 spin_lock(&zone->lock);
93e4a89a 596 zone->all_unreclaimable = 0;
1da177e4 597 zone->pages_scanned = 0;
f2260e6b 598
72853e29 599 while (to_free) {
48db57f8 600 struct page *page;
5f8dcc21
MG
601 struct list_head *list;
602
603 /*
a6f9edd6
MG
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
608 * lists
5f8dcc21
MG
609 */
610 do {
a6f9edd6 611 batch_free++;
5f8dcc21
MG
612 if (++migratetype == MIGRATE_PCPTYPES)
613 migratetype = 0;
614 list = &pcp->lists[migratetype];
615 } while (list_empty(list));
48db57f8 616
a6f9edd6
MG
617 do {
618 page = list_entry(list->prev, struct page, lru);
619 /* must delete as __free_one_page list manipulates */
620 list_del(&page->lru);
a7016235
HD
621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 __free_one_page(page, zone, 0, page_private(page));
623 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 624 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 625 }
72853e29 626 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 627 spin_unlock(&zone->lock);
1da177e4
LT
628}
629
ed0ae21d
MG
630static void free_one_page(struct zone *zone, struct page *page, int order,
631 int migratetype)
1da177e4 632{
006d22d9 633 spin_lock(&zone->lock);
93e4a89a 634 zone->all_unreclaimable = 0;
006d22d9 635 zone->pages_scanned = 0;
f2260e6b 636
ed0ae21d 637 __free_one_page(page, zone, order, migratetype);
72853e29 638 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 639 spin_unlock(&zone->lock);
48db57f8
NP
640}
641
ec95f53a 642static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 643{
1da177e4 644 int i;
8cc3b392 645 int bad = 0;
1da177e4 646
f650316c 647 trace_mm_page_free_direct(page, order);
b1eeab67
VN
648 kmemcheck_free_shadow(page, order);
649
8dd60a3a
AA
650 if (PageAnon(page))
651 page->mapping = NULL;
652 for (i = 0; i < (1 << order); i++)
653 bad += free_pages_check(page + i);
8cc3b392 654 if (bad)
ec95f53a 655 return false;
689bcebf 656
3ac7fe5a 657 if (!PageHighMem(page)) {
9858db50 658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
661 }
dafb1367 662 arch_free_page(page, order);
48db57f8 663 kernel_map_pages(page, 1 << order, 0);
dafb1367 664
ec95f53a
KM
665 return true;
666}
667
668static void __free_pages_ok(struct page *page, unsigned int order)
669{
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
672
673 if (!free_pages_prepare(page, order))
674 return;
675
c54ad30c 676 local_irq_save(flags);
c277331d 677 if (unlikely(wasMlocked))
da456f14 678 free_page_mlock(page);
f8891e5e 679 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
c54ad30c 682 local_irq_restore(flags);
1da177e4
LT
683}
684
a226f6c8
DH
685/*
686 * permit the bootmem allocator to evade page validation on high-order frees
687 */
af370fb8 688void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
689{
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
7835e98b 693 set_page_refcounted(page);
545b1ea9 694 __free_page(page);
a226f6c8 695 } else {
a226f6c8
DH
696 int loop;
697
545b1ea9 698 prefetchw(page);
a226f6c8
DH
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
701
545b1ea9
NP
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
a226f6c8
DH
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
706 }
707
7835e98b 708 set_page_refcounted(page);
545b1ea9 709 __free_pages(page, order);
a226f6c8
DH
710 }
711}
712
1da177e4
LT
713
714/*
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
725 *
726 * -- wli
727 */
085cc7d5 728static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
729 int low, int high, struct free_area *area,
730 int migratetype)
1da177e4
LT
731{
732 unsigned long size = 1 << high;
733
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
725d704e 738 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 739 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
740 area->nr_free++;
741 set_page_order(&page[size], high);
742 }
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * This page is about to be returned from the page allocator
747 */
2a7684a2 748static inline int check_new_page(struct page *page)
1da177e4 749{
92be2e33
NP
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
a3af9c38 752 (atomic_read(&page->_count) != 0) |
8cc3b392 753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 754 bad_page(page);
689bcebf 755 return 1;
8cc3b392 756 }
2a7684a2
WF
757 return 0;
758}
759
760static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761{
762 int i;
763
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
768 }
689bcebf 769
4c21e2f2 770 set_page_private(page, 0);
7835e98b 771 set_page_refcounted(page);
cc102509
NP
772
773 arch_alloc_page(page, order);
1da177e4 774 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
775
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
778
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
781
689bcebf 782 return 0;
1da177e4
LT
783}
784
56fd56b8
MG
785/*
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
788 */
728ec980
MG
789static inline
790struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
791 int migratetype)
792{
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
796
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
802
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
56fd56b8
MG
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811
812 return NULL;
813}
814
815
b2a0ac88
MG
816/*
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
819 */
820static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
825};
826
c361be55
MG
827/*
828 * Move the free pages in a range to the free lists of the requested type.
d9c23400 829 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
830 * boundary. If alignment is required, use move_freepages_block()
831 */
b69a7288
AB
832static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
c361be55
MG
835{
836 struct page *page;
837 unsigned long order;
d100313f 838 int pages_moved = 0;
c361be55
MG
839
840#ifndef CONFIG_HOLES_IN_ZONE
841 /*
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
ac0e5b7a 846 * grouping pages by mobility
c361be55
MG
847 */
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849#endif
850
851 for (page = start_page; page <= end_page;) {
344c790e
AL
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854
c361be55
MG
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
858 }
859
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
863 }
864
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
d100313f 870 pages_moved += 1 << order;
c361be55
MG
871 }
872
d100313f 873 return pages_moved;
c361be55
MG
874}
875
b69a7288
AB
876static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
c361be55
MG
878{
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
881
882 start_pfn = page_to_pfn(page);
d9c23400 883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 884 start_page = pfn_to_page(start_pfn);
d9c23400
MG
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
887
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
893
894 return move_freepages(zone, start_page, end_page, migratetype);
895}
896
2f66a68f
MG
897static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
899{
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
901
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
905 }
906}
907
b2a0ac88 908/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
909static inline struct page *
910__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
911{
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
916
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
922
56fd56b8
MG
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
e010487d 926
b2a0ac88
MG
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
930
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
934
935 /*
c361be55 936 * If breaking a large block of pages, move all free
46dafbca
MG
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
b2a0ac88 940 */
d9c23400 941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
46dafbca
MG
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
947
948 /* Claim the whole block if over half of it is free */
dd5d241e
MG
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
46dafbca
MG
951 set_pageblock_migratetype(page,
952 start_migratetype);
953
b2a0ac88 954 migratetype = start_migratetype;
c361be55 955 }
b2a0ac88
MG
956
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
b2a0ac88 960
2f66a68f
MG
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
b2a0ac88
MG
964 start_migratetype);
965
966 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
967
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
970
b2a0ac88
MG
971 return page;
972 }
973 }
974
728ec980 975 return NULL;
b2a0ac88
MG
976}
977
56fd56b8 978/*
1da177e4
LT
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
981 */
b2a0ac88
MG
982static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
1da177e4 984{
1da177e4
LT
985 struct page *page;
986
728ec980 987retry_reserve:
56fd56b8 988 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 989
728ec980 990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 991 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 992
728ec980
MG
993 /*
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
997 */
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1001 }
1002 }
1003
0d3d062a 1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1005 return page;
1da177e4
LT
1006}
1007
1008/*
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1012 */
1013static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1014 unsigned long count, struct list_head *list,
e084b2d9 1015 int migratetype, int cold)
1da177e4 1016{
1da177e4 1017 int i;
1da177e4 1018
c54ad30c 1019 spin_lock(&zone->lock);
1da177e4 1020 for (i = 0; i < count; ++i) {
b2a0ac88 1021 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1022 if (unlikely(page == NULL))
1da177e4 1023 break;
81eabcbe
MG
1024
1025 /*
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1033 */
e084b2d9
MG
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
535131e6 1038 set_page_private(page, migratetype);
81eabcbe 1039 list = &page->lru;
1da177e4 1040 }
f2260e6b 1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1042 spin_unlock(&zone->lock);
085cc7d5 1043 return i;
1da177e4
LT
1044}
1045
4ae7c039 1046#ifdef CONFIG_NUMA
8fce4d8e 1047/*
4037d452
CL
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1051 *
879336c3
CL
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
8fce4d8e 1054 */
4037d452 1055void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1056{
4ae7c039 1057 unsigned long flags;
4037d452 1058 int to_drain;
4ae7c039 1059
4037d452
CL
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
5f8dcc21 1065 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
4ae7c039
CL
1068}
1069#endif
1070
9f8f2172
CL
1071/*
1072 * Drain pages of the indicated processor.
1073 *
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1077 */
1078static void drain_pages(unsigned int cpu)
1da177e4 1079{
c54ad30c 1080 unsigned long flags;
1da177e4 1081 struct zone *zone;
1da177e4 1082
ee99c71c 1083 for_each_populated_zone(zone) {
1da177e4 1084 struct per_cpu_pageset *pset;
3dfa5721 1085 struct per_cpu_pages *pcp;
1da177e4 1086
99dcc3e5
CL
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1089
1090 pcp = &pset->pcp;
2ff754fa
DR
1091 if (pcp->count) {
1092 free_pcppages_bulk(zone, pcp->count, pcp);
1093 pcp->count = 0;
1094 }
3dfa5721 1095 local_irq_restore(flags);
1da177e4
LT
1096 }
1097}
1da177e4 1098
9f8f2172
CL
1099/*
1100 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1101 */
1102void drain_local_pages(void *arg)
1103{
1104 drain_pages(smp_processor_id());
1105}
1106
1107/*
1108 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1109 */
1110void drain_all_pages(void)
1111{
15c8b6c1 1112 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1113}
1114
296699de 1115#ifdef CONFIG_HIBERNATION
1da177e4
LT
1116
1117void mark_free_pages(struct zone *zone)
1118{
f623f0db
RW
1119 unsigned long pfn, max_zone_pfn;
1120 unsigned long flags;
b2a0ac88 1121 int order, t;
1da177e4
LT
1122 struct list_head *curr;
1123
1124 if (!zone->spanned_pages)
1125 return;
1126
1127 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1128
1129 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1131 if (pfn_valid(pfn)) {
1132 struct page *page = pfn_to_page(pfn);
1133
7be98234
RW
1134 if (!swsusp_page_is_forbidden(page))
1135 swsusp_unset_page_free(page);
f623f0db 1136 }
1da177e4 1137
b2a0ac88
MG
1138 for_each_migratetype_order(order, t) {
1139 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1140 unsigned long i;
1da177e4 1141
f623f0db
RW
1142 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1143 for (i = 0; i < (1UL << order); i++)
7be98234 1144 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1145 }
b2a0ac88 1146 }
1da177e4
LT
1147 spin_unlock_irqrestore(&zone->lock, flags);
1148}
e2c55dc8 1149#endif /* CONFIG_PM */
1da177e4 1150
1da177e4
LT
1151/*
1152 * Free a 0-order page
fc91668e 1153 * cold == 1 ? free a cold page : free a hot page
1da177e4 1154 */
fc91668e 1155void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1156{
1157 struct zone *zone = page_zone(page);
1158 struct per_cpu_pages *pcp;
1159 unsigned long flags;
5f8dcc21 1160 int migratetype;
451ea25d 1161 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1162
ec95f53a 1163 if (!free_pages_prepare(page, 0))
689bcebf
HD
1164 return;
1165
5f8dcc21
MG
1166 migratetype = get_pageblock_migratetype(page);
1167 set_page_private(page, migratetype);
1da177e4 1168 local_irq_save(flags);
c277331d 1169 if (unlikely(wasMlocked))
da456f14 1170 free_page_mlock(page);
f8891e5e 1171 __count_vm_event(PGFREE);
da456f14 1172
5f8dcc21
MG
1173 /*
1174 * We only track unmovable, reclaimable and movable on pcp lists.
1175 * Free ISOLATE pages back to the allocator because they are being
1176 * offlined but treat RESERVE as movable pages so we can get those
1177 * areas back if necessary. Otherwise, we may have to free
1178 * excessively into the page allocator
1179 */
1180 if (migratetype >= MIGRATE_PCPTYPES) {
1181 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1182 free_one_page(zone, page, 0, migratetype);
1183 goto out;
1184 }
1185 migratetype = MIGRATE_MOVABLE;
1186 }
1187
99dcc3e5 1188 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1189 if (cold)
5f8dcc21 1190 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1191 else
5f8dcc21 1192 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1193 pcp->count++;
48db57f8 1194 if (pcp->count >= pcp->high) {
5f8dcc21 1195 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1196 pcp->count -= pcp->batch;
1197 }
5f8dcc21
MG
1198
1199out:
1da177e4 1200 local_irq_restore(flags);
1da177e4
LT
1201}
1202
8dfcc9ba
NP
1203/*
1204 * split_page takes a non-compound higher-order page, and splits it into
1205 * n (1<<order) sub-pages: page[0..n]
1206 * Each sub-page must be freed individually.
1207 *
1208 * Note: this is probably too low level an operation for use in drivers.
1209 * Please consult with lkml before using this in your driver.
1210 */
1211void split_page(struct page *page, unsigned int order)
1212{
1213 int i;
1214
725d704e
NP
1215 VM_BUG_ON(PageCompound(page));
1216 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1217
1218#ifdef CONFIG_KMEMCHECK
1219 /*
1220 * Split shadow pages too, because free(page[0]) would
1221 * otherwise free the whole shadow.
1222 */
1223 if (kmemcheck_page_is_tracked(page))
1224 split_page(virt_to_page(page[0].shadow), order);
1225#endif
1226
7835e98b
NP
1227 for (i = 1; i < (1 << order); i++)
1228 set_page_refcounted(page + i);
8dfcc9ba 1229}
8dfcc9ba 1230
748446bb
MG
1231/*
1232 * Similar to split_page except the page is already free. As this is only
1233 * being used for migration, the migratetype of the block also changes.
1234 * As this is called with interrupts disabled, the caller is responsible
1235 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1236 * are enabled.
1237 *
1238 * Note: this is probably too low level an operation for use in drivers.
1239 * Please consult with lkml before using this in your driver.
1240 */
1241int split_free_page(struct page *page)
1242{
1243 unsigned int order;
1244 unsigned long watermark;
1245 struct zone *zone;
1246
1247 BUG_ON(!PageBuddy(page));
1248
1249 zone = page_zone(page);
1250 order = page_order(page);
1251
1252 /* Obey watermarks as if the page was being allocated */
1253 watermark = low_wmark_pages(zone) + (1 << order);
1254 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1255 return 0;
1256
1257 /* Remove page from free list */
1258 list_del(&page->lru);
1259 zone->free_area[order].nr_free--;
1260 rmv_page_order(page);
1261 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1262
1263 /* Split into individual pages */
1264 set_page_refcounted(page);
1265 split_page(page, order);
1266
1267 if (order >= pageblock_order - 1) {
1268 struct page *endpage = page + (1 << order) - 1;
1269 for (; page < endpage; page += pageblock_nr_pages)
1270 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1271 }
1272
1273 return 1 << order;
1274}
1275
1da177e4
LT
1276/*
1277 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1278 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1279 * or two.
1280 */
0a15c3e9
MG
1281static inline
1282struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1283 struct zone *zone, int order, gfp_t gfp_flags,
1284 int migratetype)
1da177e4
LT
1285{
1286 unsigned long flags;
689bcebf 1287 struct page *page;
1da177e4
LT
1288 int cold = !!(gfp_flags & __GFP_COLD);
1289
689bcebf 1290again:
48db57f8 1291 if (likely(order == 0)) {
1da177e4 1292 struct per_cpu_pages *pcp;
5f8dcc21 1293 struct list_head *list;
1da177e4 1294
1da177e4 1295 local_irq_save(flags);
99dcc3e5
CL
1296 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1297 list = &pcp->lists[migratetype];
5f8dcc21 1298 if (list_empty(list)) {
535131e6 1299 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1300 pcp->batch, list,
e084b2d9 1301 migratetype, cold);
5f8dcc21 1302 if (unlikely(list_empty(list)))
6fb332fa 1303 goto failed;
535131e6 1304 }
b92a6edd 1305
5f8dcc21
MG
1306 if (cold)
1307 page = list_entry(list->prev, struct page, lru);
1308 else
1309 page = list_entry(list->next, struct page, lru);
1310
b92a6edd
MG
1311 list_del(&page->lru);
1312 pcp->count--;
7fb1d9fc 1313 } else {
dab48dab
AM
1314 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1315 /*
1316 * __GFP_NOFAIL is not to be used in new code.
1317 *
1318 * All __GFP_NOFAIL callers should be fixed so that they
1319 * properly detect and handle allocation failures.
1320 *
1321 * We most definitely don't want callers attempting to
4923abf9 1322 * allocate greater than order-1 page units with
dab48dab
AM
1323 * __GFP_NOFAIL.
1324 */
4923abf9 1325 WARN_ON_ONCE(order > 1);
dab48dab 1326 }
1da177e4 1327 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1328 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1329 spin_unlock(&zone->lock);
1330 if (!page)
1331 goto failed;
6ccf80eb 1332 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1333 }
1334
f8891e5e 1335 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1336 zone_statistics(preferred_zone, zone);
a74609fa 1337 local_irq_restore(flags);
1da177e4 1338
725d704e 1339 VM_BUG_ON(bad_range(zone, page));
17cf4406 1340 if (prep_new_page(page, order, gfp_flags))
a74609fa 1341 goto again;
1da177e4 1342 return page;
a74609fa
NP
1343
1344failed:
1345 local_irq_restore(flags);
a74609fa 1346 return NULL;
1da177e4
LT
1347}
1348
41858966
MG
1349/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1350#define ALLOC_WMARK_MIN WMARK_MIN
1351#define ALLOC_WMARK_LOW WMARK_LOW
1352#define ALLOC_WMARK_HIGH WMARK_HIGH
1353#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1354
1355/* Mask to get the watermark bits */
1356#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1357
3148890b
NP
1358#define ALLOC_HARDER 0x10 /* try to alloc harder */
1359#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1360#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1361
933e312e
AM
1362#ifdef CONFIG_FAIL_PAGE_ALLOC
1363
1364static struct fail_page_alloc_attr {
1365 struct fault_attr attr;
1366
1367 u32 ignore_gfp_highmem;
1368 u32 ignore_gfp_wait;
54114994 1369 u32 min_order;
933e312e
AM
1370
1371#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1372
1373 struct dentry *ignore_gfp_highmem_file;
1374 struct dentry *ignore_gfp_wait_file;
54114994 1375 struct dentry *min_order_file;
933e312e
AM
1376
1377#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1378
1379} fail_page_alloc = {
1380 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1381 .ignore_gfp_wait = 1,
1382 .ignore_gfp_highmem = 1,
54114994 1383 .min_order = 1,
933e312e
AM
1384};
1385
1386static int __init setup_fail_page_alloc(char *str)
1387{
1388 return setup_fault_attr(&fail_page_alloc.attr, str);
1389}
1390__setup("fail_page_alloc=", setup_fail_page_alloc);
1391
1392static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393{
54114994
AM
1394 if (order < fail_page_alloc.min_order)
1395 return 0;
933e312e
AM
1396 if (gfp_mask & __GFP_NOFAIL)
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399 return 0;
1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401 return 0;
1402
1403 return should_fail(&fail_page_alloc.attr, 1 << order);
1404}
1405
1406#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407
1408static int __init fail_page_alloc_debugfs(void)
1409{
1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411 struct dentry *dir;
1412 int err;
1413
1414 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1415 "fail_page_alloc");
1416 if (err)
1417 return err;
1418 dir = fail_page_alloc.attr.dentries.dir;
1419
1420 fail_page_alloc.ignore_gfp_wait_file =
1421 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1422 &fail_page_alloc.ignore_gfp_wait);
1423
1424 fail_page_alloc.ignore_gfp_highmem_file =
1425 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1426 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1427 fail_page_alloc.min_order_file =
1428 debugfs_create_u32("min-order", mode, dir,
1429 &fail_page_alloc.min_order);
933e312e
AM
1430
1431 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1432 !fail_page_alloc.ignore_gfp_highmem_file ||
1433 !fail_page_alloc.min_order_file) {
933e312e
AM
1434 err = -ENOMEM;
1435 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1436 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1437 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1438 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1439 }
1440
1441 return err;
1442}
1443
1444late_initcall(fail_page_alloc_debugfs);
1445
1446#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1447
1448#else /* CONFIG_FAIL_PAGE_ALLOC */
1449
1450static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1451{
1452 return 0;
1453}
1454
1455#endif /* CONFIG_FAIL_PAGE_ALLOC */
1456
1da177e4 1457/*
88f5acf8 1458 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1459 * of the allocation.
1460 */
88f5acf8
MG
1461static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1462 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1463{
1464 /* free_pages my go negative - that's OK */
d23ad423 1465 long min = mark;
1da177e4
LT
1466 int o;
1467
88f5acf8 1468 free_pages -= (1 << order) + 1;
7fb1d9fc 1469 if (alloc_flags & ALLOC_HIGH)
1da177e4 1470 min -= min / 2;
7fb1d9fc 1471 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1472 min -= min / 4;
1473
1474 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1475 return false;
1da177e4
LT
1476 for (o = 0; o < order; o++) {
1477 /* At the next order, this order's pages become unavailable */
1478 free_pages -= z->free_area[o].nr_free << o;
1479
1480 /* Require fewer higher order pages to be free */
1481 min >>= 1;
1482
1483 if (free_pages <= min)
88f5acf8 1484 return false;
1da177e4 1485 }
88f5acf8
MG
1486 return true;
1487}
1488
1489bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1490 int classzone_idx, int alloc_flags)
1491{
1492 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1493 zone_page_state(z, NR_FREE_PAGES));
1494}
1495
1496bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1497 int classzone_idx, int alloc_flags)
1498{
1499 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1500
1501 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1502 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1503
1504 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1505 free_pages);
1da177e4
LT
1506}
1507
9276b1bc
PJ
1508#ifdef CONFIG_NUMA
1509/*
1510 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1511 * skip over zones that are not allowed by the cpuset, or that have
1512 * been recently (in last second) found to be nearly full. See further
1513 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1514 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1515 *
1516 * If the zonelist cache is present in the passed in zonelist, then
1517 * returns a pointer to the allowed node mask (either the current
37b07e41 1518 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1519 *
1520 * If the zonelist cache is not available for this zonelist, does
1521 * nothing and returns NULL.
1522 *
1523 * If the fullzones BITMAP in the zonelist cache is stale (more than
1524 * a second since last zap'd) then we zap it out (clear its bits.)
1525 *
1526 * We hold off even calling zlc_setup, until after we've checked the
1527 * first zone in the zonelist, on the theory that most allocations will
1528 * be satisfied from that first zone, so best to examine that zone as
1529 * quickly as we can.
1530 */
1531static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1532{
1533 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1534 nodemask_t *allowednodes; /* zonelist_cache approximation */
1535
1536 zlc = zonelist->zlcache_ptr;
1537 if (!zlc)
1538 return NULL;
1539
f05111f5 1540 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1541 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1542 zlc->last_full_zap = jiffies;
1543 }
1544
1545 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1546 &cpuset_current_mems_allowed :
37b07e41 1547 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1548 return allowednodes;
1549}
1550
1551/*
1552 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1553 * if it is worth looking at further for free memory:
1554 * 1) Check that the zone isn't thought to be full (doesn't have its
1555 * bit set in the zonelist_cache fullzones BITMAP).
1556 * 2) Check that the zones node (obtained from the zonelist_cache
1557 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1558 * Return true (non-zero) if zone is worth looking at further, or
1559 * else return false (zero) if it is not.
1560 *
1561 * This check -ignores- the distinction between various watermarks,
1562 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1563 * found to be full for any variation of these watermarks, it will
1564 * be considered full for up to one second by all requests, unless
1565 * we are so low on memory on all allowed nodes that we are forced
1566 * into the second scan of the zonelist.
1567 *
1568 * In the second scan we ignore this zonelist cache and exactly
1569 * apply the watermarks to all zones, even it is slower to do so.
1570 * We are low on memory in the second scan, and should leave no stone
1571 * unturned looking for a free page.
1572 */
dd1a239f 1573static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1574 nodemask_t *allowednodes)
1575{
1576 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1577 int i; /* index of *z in zonelist zones */
1578 int n; /* node that zone *z is on */
1579
1580 zlc = zonelist->zlcache_ptr;
1581 if (!zlc)
1582 return 1;
1583
dd1a239f 1584 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1585 n = zlc->z_to_n[i];
1586
1587 /* This zone is worth trying if it is allowed but not full */
1588 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1589}
1590
1591/*
1592 * Given 'z' scanning a zonelist, set the corresponding bit in
1593 * zlc->fullzones, so that subsequent attempts to allocate a page
1594 * from that zone don't waste time re-examining it.
1595 */
dd1a239f 1596static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1597{
1598 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1599 int i; /* index of *z in zonelist zones */
1600
1601 zlc = zonelist->zlcache_ptr;
1602 if (!zlc)
1603 return;
1604
dd1a239f 1605 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1606
1607 set_bit(i, zlc->fullzones);
1608}
1609
1610#else /* CONFIG_NUMA */
1611
1612static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1613{
1614 return NULL;
1615}
1616
dd1a239f 1617static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1618 nodemask_t *allowednodes)
1619{
1620 return 1;
1621}
1622
dd1a239f 1623static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1624{
1625}
1626#endif /* CONFIG_NUMA */
1627
7fb1d9fc 1628/*
0798e519 1629 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1630 * a page.
1631 */
1632static struct page *
19770b32 1633get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1634 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1635 struct zone *preferred_zone, int migratetype)
753ee728 1636{
dd1a239f 1637 struct zoneref *z;
7fb1d9fc 1638 struct page *page = NULL;
54a6eb5c 1639 int classzone_idx;
5117f45d 1640 struct zone *zone;
9276b1bc
PJ
1641 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1642 int zlc_active = 0; /* set if using zonelist_cache */
1643 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1644
19770b32 1645 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1646zonelist_scan:
7fb1d9fc 1647 /*
9276b1bc 1648 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1649 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1650 */
19770b32
MG
1651 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1652 high_zoneidx, nodemask) {
9276b1bc
PJ
1653 if (NUMA_BUILD && zlc_active &&
1654 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1655 continue;
7fb1d9fc 1656 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1657 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1658 goto try_next_zone;
7fb1d9fc 1659
41858966 1660 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1661 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1662 unsigned long mark;
fa5e084e
MG
1663 int ret;
1664
41858966 1665 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1666 if (zone_watermark_ok(zone, order, mark,
1667 classzone_idx, alloc_flags))
1668 goto try_this_zone;
1669
1670 if (zone_reclaim_mode == 0)
1671 goto this_zone_full;
1672
1673 ret = zone_reclaim(zone, gfp_mask, order);
1674 switch (ret) {
1675 case ZONE_RECLAIM_NOSCAN:
1676 /* did not scan */
1677 goto try_next_zone;
1678 case ZONE_RECLAIM_FULL:
1679 /* scanned but unreclaimable */
1680 goto this_zone_full;
1681 default:
1682 /* did we reclaim enough */
1683 if (!zone_watermark_ok(zone, order, mark,
1684 classzone_idx, alloc_flags))
9276b1bc 1685 goto this_zone_full;
0798e519 1686 }
7fb1d9fc
RS
1687 }
1688
fa5e084e 1689try_this_zone:
3dd28266
MG
1690 page = buffered_rmqueue(preferred_zone, zone, order,
1691 gfp_mask, migratetype);
0798e519 1692 if (page)
7fb1d9fc 1693 break;
9276b1bc
PJ
1694this_zone_full:
1695 if (NUMA_BUILD)
1696 zlc_mark_zone_full(zonelist, z);
1697try_next_zone:
62bc62a8 1698 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1699 /*
1700 * we do zlc_setup after the first zone is tried but only
1701 * if there are multiple nodes make it worthwhile
1702 */
9276b1bc
PJ
1703 allowednodes = zlc_setup(zonelist, alloc_flags);
1704 zlc_active = 1;
1705 did_zlc_setup = 1;
1706 }
54a6eb5c 1707 }
9276b1bc
PJ
1708
1709 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1710 /* Disable zlc cache for second zonelist scan */
1711 zlc_active = 0;
1712 goto zonelist_scan;
1713 }
7fb1d9fc 1714 return page;
753ee728
MH
1715}
1716
11e33f6a
MG
1717static inline int
1718should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1719 unsigned long pages_reclaimed)
1da177e4 1720{
11e33f6a
MG
1721 /* Do not loop if specifically requested */
1722 if (gfp_mask & __GFP_NORETRY)
1723 return 0;
1da177e4 1724
11e33f6a
MG
1725 /*
1726 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1727 * means __GFP_NOFAIL, but that may not be true in other
1728 * implementations.
1729 */
1730 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1731 return 1;
1732
1733 /*
1734 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1735 * specified, then we retry until we no longer reclaim any pages
1736 * (above), or we've reclaimed an order of pages at least as
1737 * large as the allocation's order. In both cases, if the
1738 * allocation still fails, we stop retrying.
1739 */
1740 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1741 return 1;
cf40bd16 1742
11e33f6a
MG
1743 /*
1744 * Don't let big-order allocations loop unless the caller
1745 * explicitly requests that.
1746 */
1747 if (gfp_mask & __GFP_NOFAIL)
1748 return 1;
1da177e4 1749
11e33f6a
MG
1750 return 0;
1751}
933e312e 1752
11e33f6a
MG
1753static inline struct page *
1754__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1755 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1756 nodemask_t *nodemask, struct zone *preferred_zone,
1757 int migratetype)
11e33f6a
MG
1758{
1759 struct page *page;
1760
1761 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1762 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1763 schedule_timeout_uninterruptible(1);
1da177e4
LT
1764 return NULL;
1765 }
6b1de916 1766
11e33f6a
MG
1767 /*
1768 * Go through the zonelist yet one more time, keep very high watermark
1769 * here, this is only to catch a parallel oom killing, we must fail if
1770 * we're still under heavy pressure.
1771 */
1772 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1773 order, zonelist, high_zoneidx,
5117f45d 1774 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1775 preferred_zone, migratetype);
7fb1d9fc 1776 if (page)
11e33f6a
MG
1777 goto out;
1778
4365a567
KH
1779 if (!(gfp_mask & __GFP_NOFAIL)) {
1780 /* The OOM killer will not help higher order allocs */
1781 if (order > PAGE_ALLOC_COSTLY_ORDER)
1782 goto out;
03668b3c
DR
1783 /* The OOM killer does not needlessly kill tasks for lowmem */
1784 if (high_zoneidx < ZONE_NORMAL)
1785 goto out;
4365a567
KH
1786 /*
1787 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1788 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1789 * The caller should handle page allocation failure by itself if
1790 * it specifies __GFP_THISNODE.
1791 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1792 */
1793 if (gfp_mask & __GFP_THISNODE)
1794 goto out;
1795 }
11e33f6a 1796 /* Exhausted what can be done so it's blamo time */
4365a567 1797 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1798
1799out:
1800 clear_zonelist_oom(zonelist, gfp_mask);
1801 return page;
1802}
1803
56de7263
MG
1804#ifdef CONFIG_COMPACTION
1805/* Try memory compaction for high-order allocations before reclaim */
1806static struct page *
1807__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1808 struct zonelist *zonelist, enum zone_type high_zoneidx,
1809 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1810 int migratetype, unsigned long *did_some_progress,
1811 bool sync_migration)
56de7263
MG
1812{
1813 struct page *page;
1814
4f92e258 1815 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1816 return NULL;
1817
c06b1fca 1818 current->flags |= PF_MEMALLOC;
56de7263 1819 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1820 nodemask, sync_migration);
c06b1fca 1821 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1822 if (*did_some_progress != COMPACT_SKIPPED) {
1823
1824 /* Page migration frees to the PCP lists but we want merging */
1825 drain_pages(get_cpu());
1826 put_cpu();
1827
1828 page = get_page_from_freelist(gfp_mask, nodemask,
1829 order, zonelist, high_zoneidx,
1830 alloc_flags, preferred_zone,
1831 migratetype);
1832 if (page) {
4f92e258
MG
1833 preferred_zone->compact_considered = 0;
1834 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1835 count_vm_event(COMPACTSUCCESS);
1836 return page;
1837 }
1838
1839 /*
1840 * It's bad if compaction run occurs and fails.
1841 * The most likely reason is that pages exist,
1842 * but not enough to satisfy watermarks.
1843 */
1844 count_vm_event(COMPACTFAIL);
4f92e258 1845 defer_compaction(preferred_zone);
56de7263
MG
1846
1847 cond_resched();
1848 }
1849
1850 return NULL;
1851}
1852#else
1853static inline struct page *
1854__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1855 struct zonelist *zonelist, enum zone_type high_zoneidx,
1856 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1857 int migratetype, unsigned long *did_some_progress,
1858 bool sync_migration)
56de7263
MG
1859{
1860 return NULL;
1861}
1862#endif /* CONFIG_COMPACTION */
1863
11e33f6a
MG
1864/* The really slow allocator path where we enter direct reclaim */
1865static inline struct page *
1866__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1867 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1868 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1869 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1870{
1871 struct page *page = NULL;
1872 struct reclaim_state reclaim_state;
9ee493ce 1873 bool drained = false;
11e33f6a
MG
1874
1875 cond_resched();
1876
1877 /* We now go into synchronous reclaim */
1878 cpuset_memory_pressure_bump();
c06b1fca 1879 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1880 lockdep_set_current_reclaim_state(gfp_mask);
1881 reclaim_state.reclaimed_slab = 0;
c06b1fca 1882 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1883
1884 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1885
c06b1fca 1886 current->reclaim_state = NULL;
11e33f6a 1887 lockdep_clear_current_reclaim_state();
c06b1fca 1888 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1889
1890 cond_resched();
1891
9ee493ce
MG
1892 if (unlikely(!(*did_some_progress)))
1893 return NULL;
11e33f6a 1894
9ee493ce
MG
1895retry:
1896 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1897 zonelist, high_zoneidx,
3dd28266
MG
1898 alloc_flags, preferred_zone,
1899 migratetype);
9ee493ce
MG
1900
1901 /*
1902 * If an allocation failed after direct reclaim, it could be because
1903 * pages are pinned on the per-cpu lists. Drain them and try again
1904 */
1905 if (!page && !drained) {
1906 drain_all_pages();
1907 drained = true;
1908 goto retry;
1909 }
1910
11e33f6a
MG
1911 return page;
1912}
1913
1da177e4 1914/*
11e33f6a
MG
1915 * This is called in the allocator slow-path if the allocation request is of
1916 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1917 */
11e33f6a
MG
1918static inline struct page *
1919__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1920 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1921 nodemask_t *nodemask, struct zone *preferred_zone,
1922 int migratetype)
11e33f6a
MG
1923{
1924 struct page *page;
1925
1926 do {
1927 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1928 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1929 preferred_zone, migratetype);
11e33f6a
MG
1930
1931 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1932 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1933 } while (!page && (gfp_mask & __GFP_NOFAIL));
1934
1935 return page;
1936}
1937
1938static inline
1939void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
1940 enum zone_type high_zoneidx,
1941 enum zone_type classzone_idx)
1da177e4 1942{
dd1a239f
MG
1943 struct zoneref *z;
1944 struct zone *zone;
1da177e4 1945
11e33f6a 1946 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 1947 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 1948}
cf40bd16 1949
341ce06f
PZ
1950static inline int
1951gfp_to_alloc_flags(gfp_t gfp_mask)
1952{
341ce06f
PZ
1953 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1954 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1955
a56f57ff 1956 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 1957 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 1958
341ce06f
PZ
1959 /*
1960 * The caller may dip into page reserves a bit more if the caller
1961 * cannot run direct reclaim, or if the caller has realtime scheduling
1962 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1963 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1964 */
e6223a3b 1965 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 1966
341ce06f 1967 if (!wait) {
5c3240d9
AA
1968 /*
1969 * Not worth trying to allocate harder for
1970 * __GFP_NOMEMALLOC even if it can't schedule.
1971 */
1972 if (!(gfp_mask & __GFP_NOMEMALLOC))
1973 alloc_flags |= ALLOC_HARDER;
523b9458 1974 /*
341ce06f
PZ
1975 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1976 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1977 */
341ce06f 1978 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 1979 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
1980 alloc_flags |= ALLOC_HARDER;
1981
1982 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1983 if (!in_interrupt() &&
c06b1fca 1984 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
1985 unlikely(test_thread_flag(TIF_MEMDIE))))
1986 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1987 }
6b1de916 1988
341ce06f
PZ
1989 return alloc_flags;
1990}
1991
11e33f6a
MG
1992static inline struct page *
1993__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1994 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1995 nodemask_t *nodemask, struct zone *preferred_zone,
1996 int migratetype)
11e33f6a
MG
1997{
1998 const gfp_t wait = gfp_mask & __GFP_WAIT;
1999 struct page *page = NULL;
2000 int alloc_flags;
2001 unsigned long pages_reclaimed = 0;
2002 unsigned long did_some_progress;
77f1fe6b 2003 bool sync_migration = false;
1da177e4 2004
72807a74
MG
2005 /*
2006 * In the slowpath, we sanity check order to avoid ever trying to
2007 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2008 * be using allocators in order of preference for an area that is
2009 * too large.
2010 */
1fc28b70
MG
2011 if (order >= MAX_ORDER) {
2012 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2013 return NULL;
1fc28b70 2014 }
1da177e4 2015
952f3b51
CL
2016 /*
2017 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2018 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2019 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2020 * using a larger set of nodes after it has established that the
2021 * allowed per node queues are empty and that nodes are
2022 * over allocated.
2023 */
2024 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2025 goto nopage;
2026
cc4a6851 2027restart:
32dba98e
AA
2028 if (!(gfp_mask & __GFP_NO_KSWAPD))
2029 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2030 zone_idx(preferred_zone));
1da177e4 2031
9bf2229f 2032 /*
7fb1d9fc
RS
2033 * OK, we're below the kswapd watermark and have kicked background
2034 * reclaim. Now things get more complex, so set up alloc_flags according
2035 * to how we want to proceed.
9bf2229f 2036 */
341ce06f 2037 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2038
f33261d7
DR
2039 /*
2040 * Find the true preferred zone if the allocation is unconstrained by
2041 * cpusets.
2042 */
2043 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2044 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2045 &preferred_zone);
2046
341ce06f 2047 /* This is the last chance, in general, before the goto nopage. */
19770b32 2048 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2049 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2050 preferred_zone, migratetype);
7fb1d9fc
RS
2051 if (page)
2052 goto got_pg;
1da177e4 2053
b43a57bb 2054rebalance:
11e33f6a 2055 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2056 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2057 page = __alloc_pages_high_priority(gfp_mask, order,
2058 zonelist, high_zoneidx, nodemask,
2059 preferred_zone, migratetype);
2060 if (page)
2061 goto got_pg;
1da177e4
LT
2062 }
2063
2064 /* Atomic allocations - we can't balance anything */
2065 if (!wait)
2066 goto nopage;
2067
341ce06f 2068 /* Avoid recursion of direct reclaim */
c06b1fca 2069 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2070 goto nopage;
2071
6583bb64
DR
2072 /* Avoid allocations with no watermarks from looping endlessly */
2073 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2074 goto nopage;
2075
77f1fe6b
MG
2076 /*
2077 * Try direct compaction. The first pass is asynchronous. Subsequent
2078 * attempts after direct reclaim are synchronous
2079 */
56de7263
MG
2080 page = __alloc_pages_direct_compact(gfp_mask, order,
2081 zonelist, high_zoneidx,
2082 nodemask,
2083 alloc_flags, preferred_zone,
77f1fe6b
MG
2084 migratetype, &did_some_progress,
2085 sync_migration);
56de7263
MG
2086 if (page)
2087 goto got_pg;
77f1fe6b 2088 sync_migration = true;
56de7263 2089
11e33f6a
MG
2090 /* Try direct reclaim and then allocating */
2091 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2092 zonelist, high_zoneidx,
2093 nodemask,
5117f45d 2094 alloc_flags, preferred_zone,
3dd28266 2095 migratetype, &did_some_progress);
11e33f6a
MG
2096 if (page)
2097 goto got_pg;
1da177e4 2098
e33c3b5e 2099 /*
11e33f6a
MG
2100 * If we failed to make any progress reclaiming, then we are
2101 * running out of options and have to consider going OOM
e33c3b5e 2102 */
11e33f6a
MG
2103 if (!did_some_progress) {
2104 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2105 if (oom_killer_disabled)
2106 goto nopage;
11e33f6a
MG
2107 page = __alloc_pages_may_oom(gfp_mask, order,
2108 zonelist, high_zoneidx,
3dd28266
MG
2109 nodemask, preferred_zone,
2110 migratetype);
11e33f6a
MG
2111 if (page)
2112 goto got_pg;
1da177e4 2113
03668b3c
DR
2114 if (!(gfp_mask & __GFP_NOFAIL)) {
2115 /*
2116 * The oom killer is not called for high-order
2117 * allocations that may fail, so if no progress
2118 * is being made, there are no other options and
2119 * retrying is unlikely to help.
2120 */
2121 if (order > PAGE_ALLOC_COSTLY_ORDER)
2122 goto nopage;
2123 /*
2124 * The oom killer is not called for lowmem
2125 * allocations to prevent needlessly killing
2126 * innocent tasks.
2127 */
2128 if (high_zoneidx < ZONE_NORMAL)
2129 goto nopage;
2130 }
e2c55dc8 2131
ff0ceb9d
DR
2132 goto restart;
2133 }
1da177e4
LT
2134 }
2135
11e33f6a 2136 /* Check if we should retry the allocation */
a41f24ea 2137 pages_reclaimed += did_some_progress;
11e33f6a
MG
2138 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2139 /* Wait for some write requests to complete then retry */
0e093d99 2140 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2141 goto rebalance;
3e7d3449
MG
2142 } else {
2143 /*
2144 * High-order allocations do not necessarily loop after
2145 * direct reclaim and reclaim/compaction depends on compaction
2146 * being called after reclaim so call directly if necessary
2147 */
2148 page = __alloc_pages_direct_compact(gfp_mask, order,
2149 zonelist, high_zoneidx,
2150 nodemask,
2151 alloc_flags, preferred_zone,
77f1fe6b
MG
2152 migratetype, &did_some_progress,
2153 sync_migration);
3e7d3449
MG
2154 if (page)
2155 goto got_pg;
1da177e4
LT
2156 }
2157
2158nopage:
2159 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2160 printk(KERN_WARNING "%s: page allocation failure."
2161 " order:%d, mode:0x%x\n",
c06b1fca 2162 current->comm, order, gfp_mask);
1da177e4 2163 dump_stack();
578c2fd6 2164 show_mem();
1da177e4 2165 }
b1eeab67 2166 return page;
1da177e4 2167got_pg:
b1eeab67
VN
2168 if (kmemcheck_enabled)
2169 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2170 return page;
11e33f6a 2171
1da177e4 2172}
11e33f6a
MG
2173
2174/*
2175 * This is the 'heart' of the zoned buddy allocator.
2176 */
2177struct page *
2178__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2179 struct zonelist *zonelist, nodemask_t *nodemask)
2180{
2181 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2182 struct zone *preferred_zone;
11e33f6a 2183 struct page *page;
3dd28266 2184 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2185
dcce284a
BH
2186 gfp_mask &= gfp_allowed_mask;
2187
11e33f6a
MG
2188 lockdep_trace_alloc(gfp_mask);
2189
2190 might_sleep_if(gfp_mask & __GFP_WAIT);
2191
2192 if (should_fail_alloc_page(gfp_mask, order))
2193 return NULL;
2194
2195 /*
2196 * Check the zones suitable for the gfp_mask contain at least one
2197 * valid zone. It's possible to have an empty zonelist as a result
2198 * of GFP_THISNODE and a memoryless node
2199 */
2200 if (unlikely(!zonelist->_zonerefs->zone))
2201 return NULL;
2202
c0ff7453 2203 get_mems_allowed();
5117f45d 2204 /* The preferred zone is used for statistics later */
f33261d7
DR
2205 first_zones_zonelist(zonelist, high_zoneidx,
2206 nodemask ? : &cpuset_current_mems_allowed,
2207 &preferred_zone);
c0ff7453
MX
2208 if (!preferred_zone) {
2209 put_mems_allowed();
5117f45d 2210 return NULL;
c0ff7453 2211 }
5117f45d
MG
2212
2213 /* First allocation attempt */
11e33f6a 2214 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2215 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2216 preferred_zone, migratetype);
11e33f6a
MG
2217 if (unlikely(!page))
2218 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2219 zonelist, high_zoneidx, nodemask,
3dd28266 2220 preferred_zone, migratetype);
c0ff7453 2221 put_mems_allowed();
11e33f6a 2222
4b4f278c 2223 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2224 return page;
1da177e4 2225}
d239171e 2226EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2227
2228/*
2229 * Common helper functions.
2230 */
920c7a5d 2231unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2232{
945a1113
AM
2233 struct page *page;
2234
2235 /*
2236 * __get_free_pages() returns a 32-bit address, which cannot represent
2237 * a highmem page
2238 */
2239 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2240
1da177e4
LT
2241 page = alloc_pages(gfp_mask, order);
2242 if (!page)
2243 return 0;
2244 return (unsigned long) page_address(page);
2245}
1da177e4
LT
2246EXPORT_SYMBOL(__get_free_pages);
2247
920c7a5d 2248unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2249{
945a1113 2250 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2251}
1da177e4
LT
2252EXPORT_SYMBOL(get_zeroed_page);
2253
2254void __pagevec_free(struct pagevec *pvec)
2255{
2256 int i = pagevec_count(pvec);
2257
4b4f278c
MG
2258 while (--i >= 0) {
2259 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2260 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2261 }
1da177e4
LT
2262}
2263
920c7a5d 2264void __free_pages(struct page *page, unsigned int order)
1da177e4 2265{
b5810039 2266 if (put_page_testzero(page)) {
1da177e4 2267 if (order == 0)
fc91668e 2268 free_hot_cold_page(page, 0);
1da177e4
LT
2269 else
2270 __free_pages_ok(page, order);
2271 }
2272}
2273
2274EXPORT_SYMBOL(__free_pages);
2275
920c7a5d 2276void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2277{
2278 if (addr != 0) {
725d704e 2279 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2280 __free_pages(virt_to_page((void *)addr), order);
2281 }
2282}
2283
2284EXPORT_SYMBOL(free_pages);
2285
2be0ffe2
TT
2286/**
2287 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2288 * @size: the number of bytes to allocate
2289 * @gfp_mask: GFP flags for the allocation
2290 *
2291 * This function is similar to alloc_pages(), except that it allocates the
2292 * minimum number of pages to satisfy the request. alloc_pages() can only
2293 * allocate memory in power-of-two pages.
2294 *
2295 * This function is also limited by MAX_ORDER.
2296 *
2297 * Memory allocated by this function must be released by free_pages_exact().
2298 */
2299void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2300{
2301 unsigned int order = get_order(size);
2302 unsigned long addr;
2303
2304 addr = __get_free_pages(gfp_mask, order);
2305 if (addr) {
2306 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2307 unsigned long used = addr + PAGE_ALIGN(size);
2308
5bfd7560 2309 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2310 while (used < alloc_end) {
2311 free_page(used);
2312 used += PAGE_SIZE;
2313 }
2314 }
2315
2316 return (void *)addr;
2317}
2318EXPORT_SYMBOL(alloc_pages_exact);
2319
2320/**
2321 * free_pages_exact - release memory allocated via alloc_pages_exact()
2322 * @virt: the value returned by alloc_pages_exact.
2323 * @size: size of allocation, same value as passed to alloc_pages_exact().
2324 *
2325 * Release the memory allocated by a previous call to alloc_pages_exact.
2326 */
2327void free_pages_exact(void *virt, size_t size)
2328{
2329 unsigned long addr = (unsigned long)virt;
2330 unsigned long end = addr + PAGE_ALIGN(size);
2331
2332 while (addr < end) {
2333 free_page(addr);
2334 addr += PAGE_SIZE;
2335 }
2336}
2337EXPORT_SYMBOL(free_pages_exact);
2338
1da177e4
LT
2339static unsigned int nr_free_zone_pages(int offset)
2340{
dd1a239f 2341 struct zoneref *z;
54a6eb5c
MG
2342 struct zone *zone;
2343
e310fd43 2344 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2345 unsigned int sum = 0;
2346
0e88460d 2347 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2348
54a6eb5c 2349 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2350 unsigned long size = zone->present_pages;
41858966 2351 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2352 if (size > high)
2353 sum += size - high;
1da177e4
LT
2354 }
2355
2356 return sum;
2357}
2358
2359/*
2360 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2361 */
2362unsigned int nr_free_buffer_pages(void)
2363{
af4ca457 2364 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2365}
c2f1a551 2366EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2367
2368/*
2369 * Amount of free RAM allocatable within all zones
2370 */
2371unsigned int nr_free_pagecache_pages(void)
2372{
2a1e274a 2373 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2374}
08e0f6a9
CL
2375
2376static inline void show_node(struct zone *zone)
1da177e4 2377{
08e0f6a9 2378 if (NUMA_BUILD)
25ba77c1 2379 printk("Node %d ", zone_to_nid(zone));
1da177e4 2380}
1da177e4 2381
1da177e4
LT
2382void si_meminfo(struct sysinfo *val)
2383{
2384 val->totalram = totalram_pages;
2385 val->sharedram = 0;
d23ad423 2386 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2387 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2388 val->totalhigh = totalhigh_pages;
2389 val->freehigh = nr_free_highpages();
1da177e4
LT
2390 val->mem_unit = PAGE_SIZE;
2391}
2392
2393EXPORT_SYMBOL(si_meminfo);
2394
2395#ifdef CONFIG_NUMA
2396void si_meminfo_node(struct sysinfo *val, int nid)
2397{
2398 pg_data_t *pgdat = NODE_DATA(nid);
2399
2400 val->totalram = pgdat->node_present_pages;
d23ad423 2401 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2402#ifdef CONFIG_HIGHMEM
1da177e4 2403 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2404 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2405 NR_FREE_PAGES);
98d2b0eb
CL
2406#else
2407 val->totalhigh = 0;
2408 val->freehigh = 0;
2409#endif
1da177e4
LT
2410 val->mem_unit = PAGE_SIZE;
2411}
2412#endif
2413
ddd588b5
DR
2414/*
2415 * Determine whether the zone's node should be displayed or not, depending on
2416 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2417 */
2418static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone)
2419{
2420 bool ret = false;
2421
2422 if (!(flags & SHOW_MEM_FILTER_NODES))
2423 goto out;
2424
2425 get_mems_allowed();
2426 ret = !node_isset(zone->zone_pgdat->node_id,
2427 cpuset_current_mems_allowed);
2428 put_mems_allowed();
2429out:
2430 return ret;
2431}
2432
1da177e4
LT
2433#define K(x) ((x) << (PAGE_SHIFT-10))
2434
2435/*
2436 * Show free area list (used inside shift_scroll-lock stuff)
2437 * We also calculate the percentage fragmentation. We do this by counting the
2438 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2439 * Suppresses nodes that are not allowed by current's cpuset if
2440 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2441 */
ddd588b5 2442void __show_free_areas(unsigned int filter)
1da177e4 2443{
c7241913 2444 int cpu;
1da177e4
LT
2445 struct zone *zone;
2446
ee99c71c 2447 for_each_populated_zone(zone) {
ddd588b5
DR
2448 if (skip_free_areas_zone(filter, zone))
2449 continue;
c7241913
JS
2450 show_node(zone);
2451 printk("%s per-cpu:\n", zone->name);
1da177e4 2452
6b482c67 2453 for_each_online_cpu(cpu) {
1da177e4
LT
2454 struct per_cpu_pageset *pageset;
2455
99dcc3e5 2456 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2457
3dfa5721
CL
2458 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2459 cpu, pageset->pcp.high,
2460 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2461 }
2462 }
2463
a731286d
KM
2464 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2465 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2466 " unevictable:%lu"
b76146ed 2467 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2468 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2469 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2470 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2471 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2472 global_page_state(NR_ISOLATED_ANON),
2473 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2474 global_page_state(NR_INACTIVE_FILE),
a731286d 2475 global_page_state(NR_ISOLATED_FILE),
7b854121 2476 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2477 global_page_state(NR_FILE_DIRTY),
ce866b34 2478 global_page_state(NR_WRITEBACK),
fd39fc85 2479 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2480 global_page_state(NR_FREE_PAGES),
3701b033
KM
2481 global_page_state(NR_SLAB_RECLAIMABLE),
2482 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2483 global_page_state(NR_FILE_MAPPED),
4b02108a 2484 global_page_state(NR_SHMEM),
a25700a5
AM
2485 global_page_state(NR_PAGETABLE),
2486 global_page_state(NR_BOUNCE));
1da177e4 2487
ee99c71c 2488 for_each_populated_zone(zone) {
1da177e4
LT
2489 int i;
2490
ddd588b5
DR
2491 if (skip_free_areas_zone(filter, zone))
2492 continue;
1da177e4
LT
2493 show_node(zone);
2494 printk("%s"
2495 " free:%lukB"
2496 " min:%lukB"
2497 " low:%lukB"
2498 " high:%lukB"
4f98a2fe
RR
2499 " active_anon:%lukB"
2500 " inactive_anon:%lukB"
2501 " active_file:%lukB"
2502 " inactive_file:%lukB"
7b854121 2503 " unevictable:%lukB"
a731286d
KM
2504 " isolated(anon):%lukB"
2505 " isolated(file):%lukB"
1da177e4 2506 " present:%lukB"
4a0aa73f
KM
2507 " mlocked:%lukB"
2508 " dirty:%lukB"
2509 " writeback:%lukB"
2510 " mapped:%lukB"
4b02108a 2511 " shmem:%lukB"
4a0aa73f
KM
2512 " slab_reclaimable:%lukB"
2513 " slab_unreclaimable:%lukB"
c6a7f572 2514 " kernel_stack:%lukB"
4a0aa73f
KM
2515 " pagetables:%lukB"
2516 " unstable:%lukB"
2517 " bounce:%lukB"
2518 " writeback_tmp:%lukB"
1da177e4
LT
2519 " pages_scanned:%lu"
2520 " all_unreclaimable? %s"
2521 "\n",
2522 zone->name,
88f5acf8 2523 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2524 K(min_wmark_pages(zone)),
2525 K(low_wmark_pages(zone)),
2526 K(high_wmark_pages(zone)),
4f98a2fe
RR
2527 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2528 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2529 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2530 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2531 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2532 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2533 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2534 K(zone->present_pages),
4a0aa73f
KM
2535 K(zone_page_state(zone, NR_MLOCK)),
2536 K(zone_page_state(zone, NR_FILE_DIRTY)),
2537 K(zone_page_state(zone, NR_WRITEBACK)),
2538 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2539 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2540 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2541 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2542 zone_page_state(zone, NR_KERNEL_STACK) *
2543 THREAD_SIZE / 1024,
4a0aa73f
KM
2544 K(zone_page_state(zone, NR_PAGETABLE)),
2545 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2546 K(zone_page_state(zone, NR_BOUNCE)),
2547 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2548 zone->pages_scanned,
93e4a89a 2549 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2550 );
2551 printk("lowmem_reserve[]:");
2552 for (i = 0; i < MAX_NR_ZONES; i++)
2553 printk(" %lu", zone->lowmem_reserve[i]);
2554 printk("\n");
2555 }
2556
ee99c71c 2557 for_each_populated_zone(zone) {
8f9de51a 2558 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2559
ddd588b5
DR
2560 if (skip_free_areas_zone(filter, zone))
2561 continue;
1da177e4
LT
2562 show_node(zone);
2563 printk("%s: ", zone->name);
1da177e4
LT
2564
2565 spin_lock_irqsave(&zone->lock, flags);
2566 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2567 nr[order] = zone->free_area[order].nr_free;
2568 total += nr[order] << order;
1da177e4
LT
2569 }
2570 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2571 for (order = 0; order < MAX_ORDER; order++)
2572 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2573 printk("= %lukB\n", K(total));
2574 }
2575
e6f3602d
LW
2576 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2577
1da177e4
LT
2578 show_swap_cache_info();
2579}
2580
ddd588b5
DR
2581void show_free_areas(void)
2582{
2583 __show_free_areas(0);
2584}
2585
19770b32
MG
2586static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2587{
2588 zoneref->zone = zone;
2589 zoneref->zone_idx = zone_idx(zone);
2590}
2591
1da177e4
LT
2592/*
2593 * Builds allocation fallback zone lists.
1a93205b
CL
2594 *
2595 * Add all populated zones of a node to the zonelist.
1da177e4 2596 */
f0c0b2b8
KH
2597static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2598 int nr_zones, enum zone_type zone_type)
1da177e4 2599{
1a93205b
CL
2600 struct zone *zone;
2601
98d2b0eb 2602 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2603 zone_type++;
02a68a5e
CL
2604
2605 do {
2f6726e5 2606 zone_type--;
070f8032 2607 zone = pgdat->node_zones + zone_type;
1a93205b 2608 if (populated_zone(zone)) {
dd1a239f
MG
2609 zoneref_set_zone(zone,
2610 &zonelist->_zonerefs[nr_zones++]);
070f8032 2611 check_highest_zone(zone_type);
1da177e4 2612 }
02a68a5e 2613
2f6726e5 2614 } while (zone_type);
070f8032 2615 return nr_zones;
1da177e4
LT
2616}
2617
f0c0b2b8
KH
2618
2619/*
2620 * zonelist_order:
2621 * 0 = automatic detection of better ordering.
2622 * 1 = order by ([node] distance, -zonetype)
2623 * 2 = order by (-zonetype, [node] distance)
2624 *
2625 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2626 * the same zonelist. So only NUMA can configure this param.
2627 */
2628#define ZONELIST_ORDER_DEFAULT 0
2629#define ZONELIST_ORDER_NODE 1
2630#define ZONELIST_ORDER_ZONE 2
2631
2632/* zonelist order in the kernel.
2633 * set_zonelist_order() will set this to NODE or ZONE.
2634 */
2635static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2636static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2637
2638
1da177e4 2639#ifdef CONFIG_NUMA
f0c0b2b8
KH
2640/* The value user specified ....changed by config */
2641static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2642/* string for sysctl */
2643#define NUMA_ZONELIST_ORDER_LEN 16
2644char numa_zonelist_order[16] = "default";
2645
2646/*
2647 * interface for configure zonelist ordering.
2648 * command line option "numa_zonelist_order"
2649 * = "[dD]efault - default, automatic configuration.
2650 * = "[nN]ode - order by node locality, then by zone within node
2651 * = "[zZ]one - order by zone, then by locality within zone
2652 */
2653
2654static int __parse_numa_zonelist_order(char *s)
2655{
2656 if (*s == 'd' || *s == 'D') {
2657 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2658 } else if (*s == 'n' || *s == 'N') {
2659 user_zonelist_order = ZONELIST_ORDER_NODE;
2660 } else if (*s == 'z' || *s == 'Z') {
2661 user_zonelist_order = ZONELIST_ORDER_ZONE;
2662 } else {
2663 printk(KERN_WARNING
2664 "Ignoring invalid numa_zonelist_order value: "
2665 "%s\n", s);
2666 return -EINVAL;
2667 }
2668 return 0;
2669}
2670
2671static __init int setup_numa_zonelist_order(char *s)
2672{
ecb256f8
VL
2673 int ret;
2674
2675 if (!s)
2676 return 0;
2677
2678 ret = __parse_numa_zonelist_order(s);
2679 if (ret == 0)
2680 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2681
2682 return ret;
f0c0b2b8
KH
2683}
2684early_param("numa_zonelist_order", setup_numa_zonelist_order);
2685
2686/*
2687 * sysctl handler for numa_zonelist_order
2688 */
2689int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2690 void __user *buffer, size_t *length,
f0c0b2b8
KH
2691 loff_t *ppos)
2692{
2693 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2694 int ret;
443c6f14 2695 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2696
443c6f14 2697 mutex_lock(&zl_order_mutex);
f0c0b2b8 2698 if (write)
443c6f14 2699 strcpy(saved_string, (char*)table->data);
8d65af78 2700 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2701 if (ret)
443c6f14 2702 goto out;
f0c0b2b8
KH
2703 if (write) {
2704 int oldval = user_zonelist_order;
2705 if (__parse_numa_zonelist_order((char*)table->data)) {
2706 /*
2707 * bogus value. restore saved string
2708 */
2709 strncpy((char*)table->data, saved_string,
2710 NUMA_ZONELIST_ORDER_LEN);
2711 user_zonelist_order = oldval;
4eaf3f64
HL
2712 } else if (oldval != user_zonelist_order) {
2713 mutex_lock(&zonelists_mutex);
1f522509 2714 build_all_zonelists(NULL);
4eaf3f64
HL
2715 mutex_unlock(&zonelists_mutex);
2716 }
f0c0b2b8 2717 }
443c6f14
AK
2718out:
2719 mutex_unlock(&zl_order_mutex);
2720 return ret;
f0c0b2b8
KH
2721}
2722
2723
62bc62a8 2724#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2725static int node_load[MAX_NUMNODES];
2726
1da177e4 2727/**
4dc3b16b 2728 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2729 * @node: node whose fallback list we're appending
2730 * @used_node_mask: nodemask_t of already used nodes
2731 *
2732 * We use a number of factors to determine which is the next node that should
2733 * appear on a given node's fallback list. The node should not have appeared
2734 * already in @node's fallback list, and it should be the next closest node
2735 * according to the distance array (which contains arbitrary distance values
2736 * from each node to each node in the system), and should also prefer nodes
2737 * with no CPUs, since presumably they'll have very little allocation pressure
2738 * on them otherwise.
2739 * It returns -1 if no node is found.
2740 */
f0c0b2b8 2741static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2742{
4cf808eb 2743 int n, val;
1da177e4
LT
2744 int min_val = INT_MAX;
2745 int best_node = -1;
a70f7302 2746 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2747
4cf808eb
LT
2748 /* Use the local node if we haven't already */
2749 if (!node_isset(node, *used_node_mask)) {
2750 node_set(node, *used_node_mask);
2751 return node;
2752 }
1da177e4 2753
37b07e41 2754 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2755
2756 /* Don't want a node to appear more than once */
2757 if (node_isset(n, *used_node_mask))
2758 continue;
2759
1da177e4
LT
2760 /* Use the distance array to find the distance */
2761 val = node_distance(node, n);
2762
4cf808eb
LT
2763 /* Penalize nodes under us ("prefer the next node") */
2764 val += (n < node);
2765
1da177e4 2766 /* Give preference to headless and unused nodes */
a70f7302
RR
2767 tmp = cpumask_of_node(n);
2768 if (!cpumask_empty(tmp))
1da177e4
LT
2769 val += PENALTY_FOR_NODE_WITH_CPUS;
2770
2771 /* Slight preference for less loaded node */
2772 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2773 val += node_load[n];
2774
2775 if (val < min_val) {
2776 min_val = val;
2777 best_node = n;
2778 }
2779 }
2780
2781 if (best_node >= 0)
2782 node_set(best_node, *used_node_mask);
2783
2784 return best_node;
2785}
2786
f0c0b2b8
KH
2787
2788/*
2789 * Build zonelists ordered by node and zones within node.
2790 * This results in maximum locality--normal zone overflows into local
2791 * DMA zone, if any--but risks exhausting DMA zone.
2792 */
2793static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2794{
f0c0b2b8 2795 int j;
1da177e4 2796 struct zonelist *zonelist;
f0c0b2b8 2797
54a6eb5c 2798 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2799 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2800 ;
2801 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2802 MAX_NR_ZONES - 1);
dd1a239f
MG
2803 zonelist->_zonerefs[j].zone = NULL;
2804 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2805}
2806
523b9458
CL
2807/*
2808 * Build gfp_thisnode zonelists
2809 */
2810static void build_thisnode_zonelists(pg_data_t *pgdat)
2811{
523b9458
CL
2812 int j;
2813 struct zonelist *zonelist;
2814
54a6eb5c
MG
2815 zonelist = &pgdat->node_zonelists[1];
2816 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2817 zonelist->_zonerefs[j].zone = NULL;
2818 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2819}
2820
f0c0b2b8
KH
2821/*
2822 * Build zonelists ordered by zone and nodes within zones.
2823 * This results in conserving DMA zone[s] until all Normal memory is
2824 * exhausted, but results in overflowing to remote node while memory
2825 * may still exist in local DMA zone.
2826 */
2827static int node_order[MAX_NUMNODES];
2828
2829static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2830{
f0c0b2b8
KH
2831 int pos, j, node;
2832 int zone_type; /* needs to be signed */
2833 struct zone *z;
2834 struct zonelist *zonelist;
2835
54a6eb5c
MG
2836 zonelist = &pgdat->node_zonelists[0];
2837 pos = 0;
2838 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2839 for (j = 0; j < nr_nodes; j++) {
2840 node = node_order[j];
2841 z = &NODE_DATA(node)->node_zones[zone_type];
2842 if (populated_zone(z)) {
dd1a239f
MG
2843 zoneref_set_zone(z,
2844 &zonelist->_zonerefs[pos++]);
54a6eb5c 2845 check_highest_zone(zone_type);
f0c0b2b8
KH
2846 }
2847 }
f0c0b2b8 2848 }
dd1a239f
MG
2849 zonelist->_zonerefs[pos].zone = NULL;
2850 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2851}
2852
2853static int default_zonelist_order(void)
2854{
2855 int nid, zone_type;
2856 unsigned long low_kmem_size,total_size;
2857 struct zone *z;
2858 int average_size;
2859 /*
88393161 2860 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2861 * If they are really small and used heavily, the system can fall
2862 * into OOM very easily.
e325c90f 2863 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2864 */
2865 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2866 low_kmem_size = 0;
2867 total_size = 0;
2868 for_each_online_node(nid) {
2869 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2870 z = &NODE_DATA(nid)->node_zones[zone_type];
2871 if (populated_zone(z)) {
2872 if (zone_type < ZONE_NORMAL)
2873 low_kmem_size += z->present_pages;
2874 total_size += z->present_pages;
e325c90f
DR
2875 } else if (zone_type == ZONE_NORMAL) {
2876 /*
2877 * If any node has only lowmem, then node order
2878 * is preferred to allow kernel allocations
2879 * locally; otherwise, they can easily infringe
2880 * on other nodes when there is an abundance of
2881 * lowmem available to allocate from.
2882 */
2883 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2884 }
2885 }
2886 }
2887 if (!low_kmem_size || /* there are no DMA area. */
2888 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2889 return ZONELIST_ORDER_NODE;
2890 /*
2891 * look into each node's config.
2892 * If there is a node whose DMA/DMA32 memory is very big area on
2893 * local memory, NODE_ORDER may be suitable.
2894 */
37b07e41
LS
2895 average_size = total_size /
2896 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2897 for_each_online_node(nid) {
2898 low_kmem_size = 0;
2899 total_size = 0;
2900 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2901 z = &NODE_DATA(nid)->node_zones[zone_type];
2902 if (populated_zone(z)) {
2903 if (zone_type < ZONE_NORMAL)
2904 low_kmem_size += z->present_pages;
2905 total_size += z->present_pages;
2906 }
2907 }
2908 if (low_kmem_size &&
2909 total_size > average_size && /* ignore small node */
2910 low_kmem_size > total_size * 70/100)
2911 return ZONELIST_ORDER_NODE;
2912 }
2913 return ZONELIST_ORDER_ZONE;
2914}
2915
2916static void set_zonelist_order(void)
2917{
2918 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2919 current_zonelist_order = default_zonelist_order();
2920 else
2921 current_zonelist_order = user_zonelist_order;
2922}
2923
2924static void build_zonelists(pg_data_t *pgdat)
2925{
2926 int j, node, load;
2927 enum zone_type i;
1da177e4 2928 nodemask_t used_mask;
f0c0b2b8
KH
2929 int local_node, prev_node;
2930 struct zonelist *zonelist;
2931 int order = current_zonelist_order;
1da177e4
LT
2932
2933 /* initialize zonelists */
523b9458 2934 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2935 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2936 zonelist->_zonerefs[0].zone = NULL;
2937 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2938 }
2939
2940 /* NUMA-aware ordering of nodes */
2941 local_node = pgdat->node_id;
62bc62a8 2942 load = nr_online_nodes;
1da177e4
LT
2943 prev_node = local_node;
2944 nodes_clear(used_mask);
f0c0b2b8 2945
f0c0b2b8
KH
2946 memset(node_order, 0, sizeof(node_order));
2947 j = 0;
2948
1da177e4 2949 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2950 int distance = node_distance(local_node, node);
2951
2952 /*
2953 * If another node is sufficiently far away then it is better
2954 * to reclaim pages in a zone before going off node.
2955 */
2956 if (distance > RECLAIM_DISTANCE)
2957 zone_reclaim_mode = 1;
2958
1da177e4
LT
2959 /*
2960 * We don't want to pressure a particular node.
2961 * So adding penalty to the first node in same
2962 * distance group to make it round-robin.
2963 */
9eeff239 2964 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2965 node_load[node] = load;
2966
1da177e4
LT
2967 prev_node = node;
2968 load--;
f0c0b2b8
KH
2969 if (order == ZONELIST_ORDER_NODE)
2970 build_zonelists_in_node_order(pgdat, node);
2971 else
2972 node_order[j++] = node; /* remember order */
2973 }
1da177e4 2974
f0c0b2b8
KH
2975 if (order == ZONELIST_ORDER_ZONE) {
2976 /* calculate node order -- i.e., DMA last! */
2977 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2978 }
523b9458
CL
2979
2980 build_thisnode_zonelists(pgdat);
1da177e4
LT
2981}
2982
9276b1bc 2983/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2984static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2985{
54a6eb5c
MG
2986 struct zonelist *zonelist;
2987 struct zonelist_cache *zlc;
dd1a239f 2988 struct zoneref *z;
9276b1bc 2989
54a6eb5c
MG
2990 zonelist = &pgdat->node_zonelists[0];
2991 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2992 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2993 for (z = zonelist->_zonerefs; z->zone; z++)
2994 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2995}
2996
7aac7898
LS
2997#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2998/*
2999 * Return node id of node used for "local" allocations.
3000 * I.e., first node id of first zone in arg node's generic zonelist.
3001 * Used for initializing percpu 'numa_mem', which is used primarily
3002 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3003 */
3004int local_memory_node(int node)
3005{
3006 struct zone *zone;
3007
3008 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3009 gfp_zone(GFP_KERNEL),
3010 NULL,
3011 &zone);
3012 return zone->node;
3013}
3014#endif
f0c0b2b8 3015
1da177e4
LT
3016#else /* CONFIG_NUMA */
3017
f0c0b2b8
KH
3018static void set_zonelist_order(void)
3019{
3020 current_zonelist_order = ZONELIST_ORDER_ZONE;
3021}
3022
3023static void build_zonelists(pg_data_t *pgdat)
1da177e4 3024{
19655d34 3025 int node, local_node;
54a6eb5c
MG
3026 enum zone_type j;
3027 struct zonelist *zonelist;
1da177e4
LT
3028
3029 local_node = pgdat->node_id;
1da177e4 3030
54a6eb5c
MG
3031 zonelist = &pgdat->node_zonelists[0];
3032 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3033
54a6eb5c
MG
3034 /*
3035 * Now we build the zonelist so that it contains the zones
3036 * of all the other nodes.
3037 * We don't want to pressure a particular node, so when
3038 * building the zones for node N, we make sure that the
3039 * zones coming right after the local ones are those from
3040 * node N+1 (modulo N)
3041 */
3042 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3043 if (!node_online(node))
3044 continue;
3045 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3046 MAX_NR_ZONES - 1);
1da177e4 3047 }
54a6eb5c
MG
3048 for (node = 0; node < local_node; node++) {
3049 if (!node_online(node))
3050 continue;
3051 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3052 MAX_NR_ZONES - 1);
3053 }
3054
dd1a239f
MG
3055 zonelist->_zonerefs[j].zone = NULL;
3056 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3057}
3058
9276b1bc 3059/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3060static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3061{
54a6eb5c 3062 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3063}
3064
1da177e4
LT
3065#endif /* CONFIG_NUMA */
3066
99dcc3e5
CL
3067/*
3068 * Boot pageset table. One per cpu which is going to be used for all
3069 * zones and all nodes. The parameters will be set in such a way
3070 * that an item put on a list will immediately be handed over to
3071 * the buddy list. This is safe since pageset manipulation is done
3072 * with interrupts disabled.
3073 *
3074 * The boot_pagesets must be kept even after bootup is complete for
3075 * unused processors and/or zones. They do play a role for bootstrapping
3076 * hotplugged processors.
3077 *
3078 * zoneinfo_show() and maybe other functions do
3079 * not check if the processor is online before following the pageset pointer.
3080 * Other parts of the kernel may not check if the zone is available.
3081 */
3082static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3083static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3084static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3085
4eaf3f64
HL
3086/*
3087 * Global mutex to protect against size modification of zonelists
3088 * as well as to serialize pageset setup for the new populated zone.
3089 */
3090DEFINE_MUTEX(zonelists_mutex);
3091
9b1a4d38 3092/* return values int ....just for stop_machine() */
1f522509 3093static __init_refok int __build_all_zonelists(void *data)
1da177e4 3094{
6811378e 3095 int nid;
99dcc3e5 3096 int cpu;
9276b1bc 3097
7f9cfb31
BL
3098#ifdef CONFIG_NUMA
3099 memset(node_load, 0, sizeof(node_load));
3100#endif
9276b1bc 3101 for_each_online_node(nid) {
7ea1530a
CL
3102 pg_data_t *pgdat = NODE_DATA(nid);
3103
3104 build_zonelists(pgdat);
3105 build_zonelist_cache(pgdat);
9276b1bc 3106 }
99dcc3e5
CL
3107
3108 /*
3109 * Initialize the boot_pagesets that are going to be used
3110 * for bootstrapping processors. The real pagesets for
3111 * each zone will be allocated later when the per cpu
3112 * allocator is available.
3113 *
3114 * boot_pagesets are used also for bootstrapping offline
3115 * cpus if the system is already booted because the pagesets
3116 * are needed to initialize allocators on a specific cpu too.
3117 * F.e. the percpu allocator needs the page allocator which
3118 * needs the percpu allocator in order to allocate its pagesets
3119 * (a chicken-egg dilemma).
3120 */
7aac7898 3121 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3122 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3123
7aac7898
LS
3124#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3125 /*
3126 * We now know the "local memory node" for each node--
3127 * i.e., the node of the first zone in the generic zonelist.
3128 * Set up numa_mem percpu variable for on-line cpus. During
3129 * boot, only the boot cpu should be on-line; we'll init the
3130 * secondary cpus' numa_mem as they come on-line. During
3131 * node/memory hotplug, we'll fixup all on-line cpus.
3132 */
3133 if (cpu_online(cpu))
3134 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3135#endif
3136 }
3137
6811378e
YG
3138 return 0;
3139}
3140
4eaf3f64
HL
3141/*
3142 * Called with zonelists_mutex held always
3143 * unless system_state == SYSTEM_BOOTING.
3144 */
1f522509 3145void build_all_zonelists(void *data)
6811378e 3146{
f0c0b2b8
KH
3147 set_zonelist_order();
3148
6811378e 3149 if (system_state == SYSTEM_BOOTING) {
423b41d7 3150 __build_all_zonelists(NULL);
68ad8df4 3151 mminit_verify_zonelist();
6811378e
YG
3152 cpuset_init_current_mems_allowed();
3153 } else {
183ff22b 3154 /* we have to stop all cpus to guarantee there is no user
6811378e 3155 of zonelist */
e9959f0f
KH
3156#ifdef CONFIG_MEMORY_HOTPLUG
3157 if (data)
3158 setup_zone_pageset((struct zone *)data);
3159#endif
3160 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3161 /* cpuset refresh routine should be here */
3162 }
bd1e22b8 3163 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3164 /*
3165 * Disable grouping by mobility if the number of pages in the
3166 * system is too low to allow the mechanism to work. It would be
3167 * more accurate, but expensive to check per-zone. This check is
3168 * made on memory-hotadd so a system can start with mobility
3169 * disabled and enable it later
3170 */
d9c23400 3171 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3172 page_group_by_mobility_disabled = 1;
3173 else
3174 page_group_by_mobility_disabled = 0;
3175
3176 printk("Built %i zonelists in %s order, mobility grouping %s. "
3177 "Total pages: %ld\n",
62bc62a8 3178 nr_online_nodes,
f0c0b2b8 3179 zonelist_order_name[current_zonelist_order],
9ef9acb0 3180 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3181 vm_total_pages);
3182#ifdef CONFIG_NUMA
3183 printk("Policy zone: %s\n", zone_names[policy_zone]);
3184#endif
1da177e4
LT
3185}
3186
3187/*
3188 * Helper functions to size the waitqueue hash table.
3189 * Essentially these want to choose hash table sizes sufficiently
3190 * large so that collisions trying to wait on pages are rare.
3191 * But in fact, the number of active page waitqueues on typical
3192 * systems is ridiculously low, less than 200. So this is even
3193 * conservative, even though it seems large.
3194 *
3195 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3196 * waitqueues, i.e. the size of the waitq table given the number of pages.
3197 */
3198#define PAGES_PER_WAITQUEUE 256
3199
cca448fe 3200#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3201static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3202{
3203 unsigned long size = 1;
3204
3205 pages /= PAGES_PER_WAITQUEUE;
3206
3207 while (size < pages)
3208 size <<= 1;
3209
3210 /*
3211 * Once we have dozens or even hundreds of threads sleeping
3212 * on IO we've got bigger problems than wait queue collision.
3213 * Limit the size of the wait table to a reasonable size.
3214 */
3215 size = min(size, 4096UL);
3216
3217 return max(size, 4UL);
3218}
cca448fe
YG
3219#else
3220/*
3221 * A zone's size might be changed by hot-add, so it is not possible to determine
3222 * a suitable size for its wait_table. So we use the maximum size now.
3223 *
3224 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3225 *
3226 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3227 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3228 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3229 *
3230 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3231 * or more by the traditional way. (See above). It equals:
3232 *
3233 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3234 * ia64(16K page size) : = ( 8G + 4M)byte.
3235 * powerpc (64K page size) : = (32G +16M)byte.
3236 */
3237static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3238{
3239 return 4096UL;
3240}
3241#endif
1da177e4
LT
3242
3243/*
3244 * This is an integer logarithm so that shifts can be used later
3245 * to extract the more random high bits from the multiplicative
3246 * hash function before the remainder is taken.
3247 */
3248static inline unsigned long wait_table_bits(unsigned long size)
3249{
3250 return ffz(~size);
3251}
3252
3253#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3254
56fd56b8 3255/*
d9c23400 3256 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3257 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3258 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3259 * higher will lead to a bigger reserve which will get freed as contiguous
3260 * blocks as reclaim kicks in
3261 */
3262static void setup_zone_migrate_reserve(struct zone *zone)
3263{
3264 unsigned long start_pfn, pfn, end_pfn;
3265 struct page *page;
78986a67
MG
3266 unsigned long block_migratetype;
3267 int reserve;
56fd56b8
MG
3268
3269 /* Get the start pfn, end pfn and the number of blocks to reserve */
3270 start_pfn = zone->zone_start_pfn;
3271 end_pfn = start_pfn + zone->spanned_pages;
41858966 3272 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3273 pageblock_order;
56fd56b8 3274
78986a67
MG
3275 /*
3276 * Reserve blocks are generally in place to help high-order atomic
3277 * allocations that are short-lived. A min_free_kbytes value that
3278 * would result in more than 2 reserve blocks for atomic allocations
3279 * is assumed to be in place to help anti-fragmentation for the
3280 * future allocation of hugepages at runtime.
3281 */
3282 reserve = min(2, reserve);
3283
d9c23400 3284 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3285 if (!pfn_valid(pfn))
3286 continue;
3287 page = pfn_to_page(pfn);
3288
344c790e
AL
3289 /* Watch out for overlapping nodes */
3290 if (page_to_nid(page) != zone_to_nid(zone))
3291 continue;
3292
56fd56b8
MG
3293 /* Blocks with reserved pages will never free, skip them. */
3294 if (PageReserved(page))
3295 continue;
3296
3297 block_migratetype = get_pageblock_migratetype(page);
3298
3299 /* If this block is reserved, account for it */
3300 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3301 reserve--;
3302 continue;
3303 }
3304
3305 /* Suitable for reserving if this block is movable */
3306 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3307 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3308 move_freepages_block(zone, page, MIGRATE_RESERVE);
3309 reserve--;
3310 continue;
3311 }
3312
3313 /*
3314 * If the reserve is met and this is a previous reserved block,
3315 * take it back
3316 */
3317 if (block_migratetype == MIGRATE_RESERVE) {
3318 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3319 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3320 }
3321 }
3322}
ac0e5b7a 3323
1da177e4
LT
3324/*
3325 * Initially all pages are reserved - free ones are freed
3326 * up by free_all_bootmem() once the early boot process is
3327 * done. Non-atomic initialization, single-pass.
3328 */
c09b4240 3329void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3330 unsigned long start_pfn, enum memmap_context context)
1da177e4 3331{
1da177e4 3332 struct page *page;
29751f69
AW
3333 unsigned long end_pfn = start_pfn + size;
3334 unsigned long pfn;
86051ca5 3335 struct zone *z;
1da177e4 3336
22b31eec
HD
3337 if (highest_memmap_pfn < end_pfn - 1)
3338 highest_memmap_pfn = end_pfn - 1;
3339
86051ca5 3340 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3341 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3342 /*
3343 * There can be holes in boot-time mem_map[]s
3344 * handed to this function. They do not
3345 * exist on hotplugged memory.
3346 */
3347 if (context == MEMMAP_EARLY) {
3348 if (!early_pfn_valid(pfn))
3349 continue;
3350 if (!early_pfn_in_nid(pfn, nid))
3351 continue;
3352 }
d41dee36
AW
3353 page = pfn_to_page(pfn);
3354 set_page_links(page, zone, nid, pfn);
708614e6 3355 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3356 init_page_count(page);
1da177e4
LT
3357 reset_page_mapcount(page);
3358 SetPageReserved(page);
b2a0ac88
MG
3359 /*
3360 * Mark the block movable so that blocks are reserved for
3361 * movable at startup. This will force kernel allocations
3362 * to reserve their blocks rather than leaking throughout
3363 * the address space during boot when many long-lived
56fd56b8
MG
3364 * kernel allocations are made. Later some blocks near
3365 * the start are marked MIGRATE_RESERVE by
3366 * setup_zone_migrate_reserve()
86051ca5
KH
3367 *
3368 * bitmap is created for zone's valid pfn range. but memmap
3369 * can be created for invalid pages (for alignment)
3370 * check here not to call set_pageblock_migratetype() against
3371 * pfn out of zone.
b2a0ac88 3372 */
86051ca5
KH
3373 if ((z->zone_start_pfn <= pfn)
3374 && (pfn < z->zone_start_pfn + z->spanned_pages)
3375 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3376 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3377
1da177e4
LT
3378 INIT_LIST_HEAD(&page->lru);
3379#ifdef WANT_PAGE_VIRTUAL
3380 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3381 if (!is_highmem_idx(zone))
3212c6be 3382 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3383#endif
1da177e4
LT
3384 }
3385}
3386
1e548deb 3387static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3388{
b2a0ac88
MG
3389 int order, t;
3390 for_each_migratetype_order(order, t) {
3391 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3392 zone->free_area[order].nr_free = 0;
3393 }
3394}
3395
3396#ifndef __HAVE_ARCH_MEMMAP_INIT
3397#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3398 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3399#endif
3400
1d6f4e60 3401static int zone_batchsize(struct zone *zone)
e7c8d5c9 3402{
3a6be87f 3403#ifdef CONFIG_MMU
e7c8d5c9
CL
3404 int batch;
3405
3406 /*
3407 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3408 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3409 *
3410 * OK, so we don't know how big the cache is. So guess.
3411 */
3412 batch = zone->present_pages / 1024;
ba56e91c
SR
3413 if (batch * PAGE_SIZE > 512 * 1024)
3414 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3415 batch /= 4; /* We effectively *= 4 below */
3416 if (batch < 1)
3417 batch = 1;
3418
3419 /*
0ceaacc9
NP
3420 * Clamp the batch to a 2^n - 1 value. Having a power
3421 * of 2 value was found to be more likely to have
3422 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3423 *
0ceaacc9
NP
3424 * For example if 2 tasks are alternately allocating
3425 * batches of pages, one task can end up with a lot
3426 * of pages of one half of the possible page colors
3427 * and the other with pages of the other colors.
e7c8d5c9 3428 */
9155203a 3429 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3430
e7c8d5c9 3431 return batch;
3a6be87f
DH
3432
3433#else
3434 /* The deferral and batching of frees should be suppressed under NOMMU
3435 * conditions.
3436 *
3437 * The problem is that NOMMU needs to be able to allocate large chunks
3438 * of contiguous memory as there's no hardware page translation to
3439 * assemble apparent contiguous memory from discontiguous pages.
3440 *
3441 * Queueing large contiguous runs of pages for batching, however,
3442 * causes the pages to actually be freed in smaller chunks. As there
3443 * can be a significant delay between the individual batches being
3444 * recycled, this leads to the once large chunks of space being
3445 * fragmented and becoming unavailable for high-order allocations.
3446 */
3447 return 0;
3448#endif
e7c8d5c9
CL
3449}
3450
b69a7288 3451static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3452{
3453 struct per_cpu_pages *pcp;
5f8dcc21 3454 int migratetype;
2caaad41 3455
1c6fe946
MD
3456 memset(p, 0, sizeof(*p));
3457
3dfa5721 3458 pcp = &p->pcp;
2caaad41 3459 pcp->count = 0;
2caaad41
CL
3460 pcp->high = 6 * batch;
3461 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3462 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3463 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3464}
3465
8ad4b1fb
RS
3466/*
3467 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3468 * to the value high for the pageset p.
3469 */
3470
3471static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3472 unsigned long high)
3473{
3474 struct per_cpu_pages *pcp;
3475
3dfa5721 3476 pcp = &p->pcp;
8ad4b1fb
RS
3477 pcp->high = high;
3478 pcp->batch = max(1UL, high/4);
3479 if ((high/4) > (PAGE_SHIFT * 8))
3480 pcp->batch = PAGE_SHIFT * 8;
3481}
3482
319774e2
WF
3483static __meminit void setup_zone_pageset(struct zone *zone)
3484{
3485 int cpu;
3486
3487 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3488
3489 for_each_possible_cpu(cpu) {
3490 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3491
3492 setup_pageset(pcp, zone_batchsize(zone));
3493
3494 if (percpu_pagelist_fraction)
3495 setup_pagelist_highmark(pcp,
3496 (zone->present_pages /
3497 percpu_pagelist_fraction));
3498 }
3499}
3500
2caaad41 3501/*
99dcc3e5
CL
3502 * Allocate per cpu pagesets and initialize them.
3503 * Before this call only boot pagesets were available.
e7c8d5c9 3504 */
99dcc3e5 3505void __init setup_per_cpu_pageset(void)
e7c8d5c9 3506{
99dcc3e5 3507 struct zone *zone;
e7c8d5c9 3508
319774e2
WF
3509 for_each_populated_zone(zone)
3510 setup_zone_pageset(zone);
e7c8d5c9
CL
3511}
3512
577a32f6 3513static noinline __init_refok
cca448fe 3514int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3515{
3516 int i;
3517 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3518 size_t alloc_size;
ed8ece2e
DH
3519
3520 /*
3521 * The per-page waitqueue mechanism uses hashed waitqueues
3522 * per zone.
3523 */
02b694de
YG
3524 zone->wait_table_hash_nr_entries =
3525 wait_table_hash_nr_entries(zone_size_pages);
3526 zone->wait_table_bits =
3527 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3528 alloc_size = zone->wait_table_hash_nr_entries
3529 * sizeof(wait_queue_head_t);
3530
cd94b9db 3531 if (!slab_is_available()) {
cca448fe
YG
3532 zone->wait_table = (wait_queue_head_t *)
3533 alloc_bootmem_node(pgdat, alloc_size);
3534 } else {
3535 /*
3536 * This case means that a zone whose size was 0 gets new memory
3537 * via memory hot-add.
3538 * But it may be the case that a new node was hot-added. In
3539 * this case vmalloc() will not be able to use this new node's
3540 * memory - this wait_table must be initialized to use this new
3541 * node itself as well.
3542 * To use this new node's memory, further consideration will be
3543 * necessary.
3544 */
8691f3a7 3545 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3546 }
3547 if (!zone->wait_table)
3548 return -ENOMEM;
ed8ece2e 3549
02b694de 3550 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3551 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3552
3553 return 0;
ed8ece2e
DH
3554}
3555
112067f0
SL
3556static int __zone_pcp_update(void *data)
3557{
3558 struct zone *zone = data;
3559 int cpu;
3560 unsigned long batch = zone_batchsize(zone), flags;
3561
2d30a1f6 3562 for_each_possible_cpu(cpu) {
112067f0
SL
3563 struct per_cpu_pageset *pset;
3564 struct per_cpu_pages *pcp;
3565
99dcc3e5 3566 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3567 pcp = &pset->pcp;
3568
3569 local_irq_save(flags);
5f8dcc21 3570 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3571 setup_pageset(pset, batch);
3572 local_irq_restore(flags);
3573 }
3574 return 0;
3575}
3576
3577void zone_pcp_update(struct zone *zone)
3578{
3579 stop_machine(__zone_pcp_update, zone, NULL);
3580}
3581
c09b4240 3582static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3583{
99dcc3e5
CL
3584 /*
3585 * per cpu subsystem is not up at this point. The following code
3586 * relies on the ability of the linker to provide the
3587 * offset of a (static) per cpu variable into the per cpu area.
3588 */
3589 zone->pageset = &boot_pageset;
ed8ece2e 3590
f5335c0f 3591 if (zone->present_pages)
99dcc3e5
CL
3592 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3593 zone->name, zone->present_pages,
3594 zone_batchsize(zone));
ed8ece2e
DH
3595}
3596
718127cc
YG
3597__meminit int init_currently_empty_zone(struct zone *zone,
3598 unsigned long zone_start_pfn,
a2f3aa02
DH
3599 unsigned long size,
3600 enum memmap_context context)
ed8ece2e
DH
3601{
3602 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3603 int ret;
3604 ret = zone_wait_table_init(zone, size);
3605 if (ret)
3606 return ret;
ed8ece2e
DH
3607 pgdat->nr_zones = zone_idx(zone) + 1;
3608
ed8ece2e
DH
3609 zone->zone_start_pfn = zone_start_pfn;
3610
708614e6
MG
3611 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3612 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3613 pgdat->node_id,
3614 (unsigned long)zone_idx(zone),
3615 zone_start_pfn, (zone_start_pfn + size));
3616
1e548deb 3617 zone_init_free_lists(zone);
718127cc
YG
3618
3619 return 0;
ed8ece2e
DH
3620}
3621
c713216d
MG
3622#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3623/*
3624 * Basic iterator support. Return the first range of PFNs for a node
3625 * Note: nid == MAX_NUMNODES returns first region regardless of node
3626 */
a3142c8e 3627static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3628{
3629 int i;
3630
3631 for (i = 0; i < nr_nodemap_entries; i++)
3632 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3633 return i;
3634
3635 return -1;
3636}
3637
3638/*
3639 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3640 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3641 */
a3142c8e 3642static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3643{
3644 for (index = index + 1; index < nr_nodemap_entries; index++)
3645 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3646 return index;
3647
3648 return -1;
3649}
3650
3651#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3652/*
3653 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3654 * Architectures may implement their own version but if add_active_range()
3655 * was used and there are no special requirements, this is a convenient
3656 * alternative
3657 */
f2dbcfa7 3658int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3659{
3660 int i;
3661
3662 for (i = 0; i < nr_nodemap_entries; i++) {
3663 unsigned long start_pfn = early_node_map[i].start_pfn;
3664 unsigned long end_pfn = early_node_map[i].end_pfn;
3665
3666 if (start_pfn <= pfn && pfn < end_pfn)
3667 return early_node_map[i].nid;
3668 }
cc2559bc
KH
3669 /* This is a memory hole */
3670 return -1;
c713216d
MG
3671}
3672#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3673
f2dbcfa7
KH
3674int __meminit early_pfn_to_nid(unsigned long pfn)
3675{
cc2559bc
KH
3676 int nid;
3677
3678 nid = __early_pfn_to_nid(pfn);
3679 if (nid >= 0)
3680 return nid;
3681 /* just returns 0 */
3682 return 0;
f2dbcfa7
KH
3683}
3684
cc2559bc
KH
3685#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3686bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3687{
3688 int nid;
3689
3690 nid = __early_pfn_to_nid(pfn);
3691 if (nid >= 0 && nid != node)
3692 return false;
3693 return true;
3694}
3695#endif
f2dbcfa7 3696
c713216d
MG
3697/* Basic iterator support to walk early_node_map[] */
3698#define for_each_active_range_index_in_nid(i, nid) \
3699 for (i = first_active_region_index_in_nid(nid); i != -1; \
3700 i = next_active_region_index_in_nid(i, nid))
3701
3702/**
3703 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3704 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3705 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3706 *
3707 * If an architecture guarantees that all ranges registered with
3708 * add_active_ranges() contain no holes and may be freed, this
3709 * this function may be used instead of calling free_bootmem() manually.
3710 */
3711void __init free_bootmem_with_active_regions(int nid,
3712 unsigned long max_low_pfn)
3713{
3714 int i;
3715
3716 for_each_active_range_index_in_nid(i, nid) {
3717 unsigned long size_pages = 0;
3718 unsigned long end_pfn = early_node_map[i].end_pfn;
3719
3720 if (early_node_map[i].start_pfn >= max_low_pfn)
3721 continue;
3722
3723 if (end_pfn > max_low_pfn)
3724 end_pfn = max_low_pfn;
3725
3726 size_pages = end_pfn - early_node_map[i].start_pfn;
3727 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3728 PFN_PHYS(early_node_map[i].start_pfn),
3729 size_pages << PAGE_SHIFT);
3730 }
3731}
3732
edbe7d23 3733#ifdef CONFIG_HAVE_MEMBLOCK
cc289894
YL
3734/*
3735 * Basic iterator support. Return the last range of PFNs for a node
3736 * Note: nid == MAX_NUMNODES returns last region regardless of node
3737 */
3738static int __meminit last_active_region_index_in_nid(int nid)
3739{
3740 int i;
3741
3742 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3743 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3744 return i;
3745
3746 return -1;
3747}
3748
3749/*
3750 * Basic iterator support. Return the previous active range of PFNs for a node
3751 * Note: nid == MAX_NUMNODES returns next region regardless of node
3752 */
3753static int __meminit previous_active_region_index_in_nid(int index, int nid)
3754{
3755 for (index = index - 1; index >= 0; index--)
3756 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3757 return index;
3758
3759 return -1;
3760}
3761
3762#define for_each_active_range_index_in_nid_reverse(i, nid) \
3763 for (i = last_active_region_index_in_nid(nid); i != -1; \
3764 i = previous_active_region_index_in_nid(i, nid))
3765
edbe7d23
YL
3766u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3767 u64 goal, u64 limit)
3768{
3769 int i;
3770
3771 /* Need to go over early_node_map to find out good range for node */
1a4a678b 3772 for_each_active_range_index_in_nid_reverse(i, nid) {
edbe7d23
YL
3773 u64 addr;
3774 u64 ei_start, ei_last;
3775 u64 final_start, final_end;
3776
3777 ei_last = early_node_map[i].end_pfn;
3778 ei_last <<= PAGE_SHIFT;
3779 ei_start = early_node_map[i].start_pfn;
3780 ei_start <<= PAGE_SHIFT;
3781
3782 final_start = max(ei_start, goal);
3783 final_end = min(ei_last, limit);
3784
3785 if (final_start >= final_end)
3786 continue;
3787
3788 addr = memblock_find_in_range(final_start, final_end, size, align);
3789
3790 if (addr == MEMBLOCK_ERROR)
3791 continue;
3792
3793 return addr;
3794 }
3795
3796 return MEMBLOCK_ERROR;
3797}
3798#endif
3799
08677214
YL
3800int __init add_from_early_node_map(struct range *range, int az,
3801 int nr_range, int nid)
3802{
3803 int i;
3804 u64 start, end;
3805
3806 /* need to go over early_node_map to find out good range for node */
3807 for_each_active_range_index_in_nid(i, nid) {
3808 start = early_node_map[i].start_pfn;
3809 end = early_node_map[i].end_pfn;
3810 nr_range = add_range(range, az, nr_range, start, end);
3811 }
3812 return nr_range;
3813}
3814
b5bc6c0e
YL
3815void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3816{
3817 int i;
d52d53b8 3818 int ret;
b5bc6c0e 3819
d52d53b8
YL
3820 for_each_active_range_index_in_nid(i, nid) {
3821 ret = work_fn(early_node_map[i].start_pfn,
3822 early_node_map[i].end_pfn, data);
3823 if (ret)
3824 break;
3825 }
b5bc6c0e 3826}
c713216d
MG
3827/**
3828 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3829 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3830 *
3831 * If an architecture guarantees that all ranges registered with
3832 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3833 * function may be used instead of calling memory_present() manually.
c713216d
MG
3834 */
3835void __init sparse_memory_present_with_active_regions(int nid)
3836{
3837 int i;
3838
3839 for_each_active_range_index_in_nid(i, nid)
3840 memory_present(early_node_map[i].nid,
3841 early_node_map[i].start_pfn,
3842 early_node_map[i].end_pfn);
3843}
3844
3845/**
3846 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3847 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3848 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3849 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3850 *
3851 * It returns the start and end page frame of a node based on information
3852 * provided by an arch calling add_active_range(). If called for a node
3853 * with no available memory, a warning is printed and the start and end
88ca3b94 3854 * PFNs will be 0.
c713216d 3855 */
a3142c8e 3856void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3857 unsigned long *start_pfn, unsigned long *end_pfn)
3858{
3859 int i;
3860 *start_pfn = -1UL;
3861 *end_pfn = 0;
3862
3863 for_each_active_range_index_in_nid(i, nid) {
3864 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3865 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3866 }
3867
633c0666 3868 if (*start_pfn == -1UL)
c713216d 3869 *start_pfn = 0;
c713216d
MG
3870}
3871
2a1e274a
MG
3872/*
3873 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3874 * assumption is made that zones within a node are ordered in monotonic
3875 * increasing memory addresses so that the "highest" populated zone is used
3876 */
b69a7288 3877static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3878{
3879 int zone_index;
3880 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3881 if (zone_index == ZONE_MOVABLE)
3882 continue;
3883
3884 if (arch_zone_highest_possible_pfn[zone_index] >
3885 arch_zone_lowest_possible_pfn[zone_index])
3886 break;
3887 }
3888
3889 VM_BUG_ON(zone_index == -1);
3890 movable_zone = zone_index;
3891}
3892
3893/*
3894 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3895 * because it is sized independant of architecture. Unlike the other zones,
3896 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3897 * in each node depending on the size of each node and how evenly kernelcore
3898 * is distributed. This helper function adjusts the zone ranges
3899 * provided by the architecture for a given node by using the end of the
3900 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3901 * zones within a node are in order of monotonic increases memory addresses
3902 */
b69a7288 3903static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3904 unsigned long zone_type,
3905 unsigned long node_start_pfn,
3906 unsigned long node_end_pfn,
3907 unsigned long *zone_start_pfn,
3908 unsigned long *zone_end_pfn)
3909{
3910 /* Only adjust if ZONE_MOVABLE is on this node */
3911 if (zone_movable_pfn[nid]) {
3912 /* Size ZONE_MOVABLE */
3913 if (zone_type == ZONE_MOVABLE) {
3914 *zone_start_pfn = zone_movable_pfn[nid];
3915 *zone_end_pfn = min(node_end_pfn,
3916 arch_zone_highest_possible_pfn[movable_zone]);
3917
3918 /* Adjust for ZONE_MOVABLE starting within this range */
3919 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3920 *zone_end_pfn > zone_movable_pfn[nid]) {
3921 *zone_end_pfn = zone_movable_pfn[nid];
3922
3923 /* Check if this whole range is within ZONE_MOVABLE */
3924 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3925 *zone_start_pfn = *zone_end_pfn;
3926 }
3927}
3928
c713216d
MG
3929/*
3930 * Return the number of pages a zone spans in a node, including holes
3931 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3932 */
6ea6e688 3933static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3934 unsigned long zone_type,
3935 unsigned long *ignored)
3936{
3937 unsigned long node_start_pfn, node_end_pfn;
3938 unsigned long zone_start_pfn, zone_end_pfn;
3939
3940 /* Get the start and end of the node and zone */
3941 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3942 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3943 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3944 adjust_zone_range_for_zone_movable(nid, zone_type,
3945 node_start_pfn, node_end_pfn,
3946 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3947
3948 /* Check that this node has pages within the zone's required range */
3949 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3950 return 0;
3951
3952 /* Move the zone boundaries inside the node if necessary */
3953 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3954 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3955
3956 /* Return the spanned pages */
3957 return zone_end_pfn - zone_start_pfn;
3958}
3959
3960/*
3961 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3962 * then all holes in the requested range will be accounted for.
c713216d 3963 */
32996250 3964unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3965 unsigned long range_start_pfn,
3966 unsigned long range_end_pfn)
3967{
3968 int i = 0;
3969 unsigned long prev_end_pfn = 0, hole_pages = 0;
3970 unsigned long start_pfn;
3971
3972 /* Find the end_pfn of the first active range of pfns in the node */
3973 i = first_active_region_index_in_nid(nid);
3974 if (i == -1)
3975 return 0;
3976
b5445f95
MG
3977 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3978
9c7cd687
MG
3979 /* Account for ranges before physical memory on this node */
3980 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3981 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3982
3983 /* Find all holes for the zone within the node */
3984 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3985
3986 /* No need to continue if prev_end_pfn is outside the zone */
3987 if (prev_end_pfn >= range_end_pfn)
3988 break;
3989
3990 /* Make sure the end of the zone is not within the hole */
3991 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3992 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3993
3994 /* Update the hole size cound and move on */
3995 if (start_pfn > range_start_pfn) {
3996 BUG_ON(prev_end_pfn > start_pfn);
3997 hole_pages += start_pfn - prev_end_pfn;
3998 }
3999 prev_end_pfn = early_node_map[i].end_pfn;
4000 }
4001
9c7cd687
MG
4002 /* Account for ranges past physical memory on this node */
4003 if (range_end_pfn > prev_end_pfn)
0c6cb974 4004 hole_pages += range_end_pfn -
9c7cd687
MG
4005 max(range_start_pfn, prev_end_pfn);
4006
c713216d
MG
4007 return hole_pages;
4008}
4009
4010/**
4011 * absent_pages_in_range - Return number of page frames in holes within a range
4012 * @start_pfn: The start PFN to start searching for holes
4013 * @end_pfn: The end PFN to stop searching for holes
4014 *
88ca3b94 4015 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4016 */
4017unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4018 unsigned long end_pfn)
4019{
4020 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4021}
4022
4023/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4024static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4025 unsigned long zone_type,
4026 unsigned long *ignored)
4027{
9c7cd687
MG
4028 unsigned long node_start_pfn, node_end_pfn;
4029 unsigned long zone_start_pfn, zone_end_pfn;
4030
4031 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4032 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4033 node_start_pfn);
4034 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4035 node_end_pfn);
4036
2a1e274a
MG
4037 adjust_zone_range_for_zone_movable(nid, zone_type,
4038 node_start_pfn, node_end_pfn,
4039 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4040 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4041}
0e0b864e 4042
c713216d 4043#else
6ea6e688 4044static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4045 unsigned long zone_type,
4046 unsigned long *zones_size)
4047{
4048 return zones_size[zone_type];
4049}
4050
6ea6e688 4051static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4052 unsigned long zone_type,
4053 unsigned long *zholes_size)
4054{
4055 if (!zholes_size)
4056 return 0;
4057
4058 return zholes_size[zone_type];
4059}
0e0b864e 4060
c713216d
MG
4061#endif
4062
a3142c8e 4063static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4064 unsigned long *zones_size, unsigned long *zholes_size)
4065{
4066 unsigned long realtotalpages, totalpages = 0;
4067 enum zone_type i;
4068
4069 for (i = 0; i < MAX_NR_ZONES; i++)
4070 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4071 zones_size);
4072 pgdat->node_spanned_pages = totalpages;
4073
4074 realtotalpages = totalpages;
4075 for (i = 0; i < MAX_NR_ZONES; i++)
4076 realtotalpages -=
4077 zone_absent_pages_in_node(pgdat->node_id, i,
4078 zholes_size);
4079 pgdat->node_present_pages = realtotalpages;
4080 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4081 realtotalpages);
4082}
4083
835c134e
MG
4084#ifndef CONFIG_SPARSEMEM
4085/*
4086 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4087 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4088 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4089 * round what is now in bits to nearest long in bits, then return it in
4090 * bytes.
4091 */
4092static unsigned long __init usemap_size(unsigned long zonesize)
4093{
4094 unsigned long usemapsize;
4095
d9c23400
MG
4096 usemapsize = roundup(zonesize, pageblock_nr_pages);
4097 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4098 usemapsize *= NR_PAGEBLOCK_BITS;
4099 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4100
4101 return usemapsize / 8;
4102}
4103
4104static void __init setup_usemap(struct pglist_data *pgdat,
4105 struct zone *zone, unsigned long zonesize)
4106{
4107 unsigned long usemapsize = usemap_size(zonesize);
4108 zone->pageblock_flags = NULL;
58a01a45 4109 if (usemapsize)
835c134e 4110 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4111}
4112#else
fa9f90be 4113static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4114 struct zone *zone, unsigned long zonesize) {}
4115#endif /* CONFIG_SPARSEMEM */
4116
d9c23400 4117#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4118
4119/* Return a sensible default order for the pageblock size. */
4120static inline int pageblock_default_order(void)
4121{
4122 if (HPAGE_SHIFT > PAGE_SHIFT)
4123 return HUGETLB_PAGE_ORDER;
4124
4125 return MAX_ORDER-1;
4126}
4127
d9c23400
MG
4128/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4129static inline void __init set_pageblock_order(unsigned int order)
4130{
4131 /* Check that pageblock_nr_pages has not already been setup */
4132 if (pageblock_order)
4133 return;
4134
4135 /*
4136 * Assume the largest contiguous order of interest is a huge page.
4137 * This value may be variable depending on boot parameters on IA64
4138 */
4139 pageblock_order = order;
4140}
4141#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4142
ba72cb8c
MG
4143/*
4144 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4145 * and pageblock_default_order() are unused as pageblock_order is set
4146 * at compile-time. See include/linux/pageblock-flags.h for the values of
4147 * pageblock_order based on the kernel config
4148 */
4149static inline int pageblock_default_order(unsigned int order)
4150{
4151 return MAX_ORDER-1;
4152}
d9c23400
MG
4153#define set_pageblock_order(x) do {} while (0)
4154
4155#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4156
1da177e4
LT
4157/*
4158 * Set up the zone data structures:
4159 * - mark all pages reserved
4160 * - mark all memory queues empty
4161 * - clear the memory bitmaps
4162 */
b5a0e011 4163static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4164 unsigned long *zones_size, unsigned long *zholes_size)
4165{
2f1b6248 4166 enum zone_type j;
ed8ece2e 4167 int nid = pgdat->node_id;
1da177e4 4168 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4169 int ret;
1da177e4 4170
208d54e5 4171 pgdat_resize_init(pgdat);
1da177e4
LT
4172 pgdat->nr_zones = 0;
4173 init_waitqueue_head(&pgdat->kswapd_wait);
4174 pgdat->kswapd_max_order = 0;
52d4b9ac 4175 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4176
4177 for (j = 0; j < MAX_NR_ZONES; j++) {
4178 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4179 unsigned long size, realsize, memmap_pages;
b69408e8 4180 enum lru_list l;
1da177e4 4181
c713216d
MG
4182 size = zone_spanned_pages_in_node(nid, j, zones_size);
4183 realsize = size - zone_absent_pages_in_node(nid, j,
4184 zholes_size);
1da177e4 4185
0e0b864e
MG
4186 /*
4187 * Adjust realsize so that it accounts for how much memory
4188 * is used by this zone for memmap. This affects the watermark
4189 * and per-cpu initialisations
4190 */
f7232154
JW
4191 memmap_pages =
4192 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4193 if (realsize >= memmap_pages) {
4194 realsize -= memmap_pages;
5594c8c8
YL
4195 if (memmap_pages)
4196 printk(KERN_DEBUG
4197 " %s zone: %lu pages used for memmap\n",
4198 zone_names[j], memmap_pages);
0e0b864e
MG
4199 } else
4200 printk(KERN_WARNING
4201 " %s zone: %lu pages exceeds realsize %lu\n",
4202 zone_names[j], memmap_pages, realsize);
4203
6267276f
CL
4204 /* Account for reserved pages */
4205 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4206 realsize -= dma_reserve;
d903ef9f 4207 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4208 zone_names[0], dma_reserve);
0e0b864e
MG
4209 }
4210
98d2b0eb 4211 if (!is_highmem_idx(j))
1da177e4
LT
4212 nr_kernel_pages += realsize;
4213 nr_all_pages += realsize;
4214
4215 zone->spanned_pages = size;
4216 zone->present_pages = realsize;
9614634f 4217#ifdef CONFIG_NUMA
d5f541ed 4218 zone->node = nid;
8417bba4 4219 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4220 / 100;
0ff38490 4221 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4222#endif
1da177e4
LT
4223 zone->name = zone_names[j];
4224 spin_lock_init(&zone->lock);
4225 spin_lock_init(&zone->lru_lock);
bdc8cb98 4226 zone_seqlock_init(zone);
1da177e4 4227 zone->zone_pgdat = pgdat;
1da177e4 4228
ed8ece2e 4229 zone_pcp_init(zone);
b69408e8
CL
4230 for_each_lru(l) {
4231 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4232 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4233 }
6e901571
KM
4234 zone->reclaim_stat.recent_rotated[0] = 0;
4235 zone->reclaim_stat.recent_rotated[1] = 0;
4236 zone->reclaim_stat.recent_scanned[0] = 0;
4237 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4238 zap_zone_vm_stats(zone);
e815af95 4239 zone->flags = 0;
1da177e4
LT
4240 if (!size)
4241 continue;
4242
ba72cb8c 4243 set_pageblock_order(pageblock_default_order());
835c134e 4244 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4245 ret = init_currently_empty_zone(zone, zone_start_pfn,
4246 size, MEMMAP_EARLY);
718127cc 4247 BUG_ON(ret);
76cdd58e 4248 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4249 zone_start_pfn += size;
1da177e4
LT
4250 }
4251}
4252
577a32f6 4253static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4254{
1da177e4
LT
4255 /* Skip empty nodes */
4256 if (!pgdat->node_spanned_pages)
4257 return;
4258
d41dee36 4259#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4260 /* ia64 gets its own node_mem_map, before this, without bootmem */
4261 if (!pgdat->node_mem_map) {
e984bb43 4262 unsigned long size, start, end;
d41dee36
AW
4263 struct page *map;
4264
e984bb43
BP
4265 /*
4266 * The zone's endpoints aren't required to be MAX_ORDER
4267 * aligned but the node_mem_map endpoints must be in order
4268 * for the buddy allocator to function correctly.
4269 */
4270 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4271 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4272 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4273 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4274 map = alloc_remap(pgdat->node_id, size);
4275 if (!map)
4276 map = alloc_bootmem_node(pgdat, size);
e984bb43 4277 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4278 }
12d810c1 4279#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4280 /*
4281 * With no DISCONTIG, the global mem_map is just set as node 0's
4282 */
c713216d 4283 if (pgdat == NODE_DATA(0)) {
1da177e4 4284 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4285#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4286 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4287 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4288#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4289 }
1da177e4 4290#endif
d41dee36 4291#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4292}
4293
9109fb7b
JW
4294void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4295 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4296{
9109fb7b
JW
4297 pg_data_t *pgdat = NODE_DATA(nid);
4298
1da177e4
LT
4299 pgdat->node_id = nid;
4300 pgdat->node_start_pfn = node_start_pfn;
c713216d 4301 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4302
4303 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4304#ifdef CONFIG_FLAT_NODE_MEM_MAP
4305 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4306 nid, (unsigned long)pgdat,
4307 (unsigned long)pgdat->node_mem_map);
4308#endif
1da177e4
LT
4309
4310 free_area_init_core(pgdat, zones_size, zholes_size);
4311}
4312
c713216d 4313#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4314
4315#if MAX_NUMNODES > 1
4316/*
4317 * Figure out the number of possible node ids.
4318 */
4319static void __init setup_nr_node_ids(void)
4320{
4321 unsigned int node;
4322 unsigned int highest = 0;
4323
4324 for_each_node_mask(node, node_possible_map)
4325 highest = node;
4326 nr_node_ids = highest + 1;
4327}
4328#else
4329static inline void setup_nr_node_ids(void)
4330{
4331}
4332#endif
4333
c713216d
MG
4334/**
4335 * add_active_range - Register a range of PFNs backed by physical memory
4336 * @nid: The node ID the range resides on
4337 * @start_pfn: The start PFN of the available physical memory
4338 * @end_pfn: The end PFN of the available physical memory
4339 *
4340 * These ranges are stored in an early_node_map[] and later used by
4341 * free_area_init_nodes() to calculate zone sizes and holes. If the
4342 * range spans a memory hole, it is up to the architecture to ensure
4343 * the memory is not freed by the bootmem allocator. If possible
4344 * the range being registered will be merged with existing ranges.
4345 */
4346void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4347 unsigned long end_pfn)
4348{
4349 int i;
4350
6b74ab97
MG
4351 mminit_dprintk(MMINIT_TRACE, "memory_register",
4352 "Entering add_active_range(%d, %#lx, %#lx) "
4353 "%d entries of %d used\n",
4354 nid, start_pfn, end_pfn,
4355 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4356
2dbb51c4
MG
4357 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4358
c713216d
MG
4359 /* Merge with existing active regions if possible */
4360 for (i = 0; i < nr_nodemap_entries; i++) {
4361 if (early_node_map[i].nid != nid)
4362 continue;
4363
4364 /* Skip if an existing region covers this new one */
4365 if (start_pfn >= early_node_map[i].start_pfn &&
4366 end_pfn <= early_node_map[i].end_pfn)
4367 return;
4368
4369 /* Merge forward if suitable */
4370 if (start_pfn <= early_node_map[i].end_pfn &&
4371 end_pfn > early_node_map[i].end_pfn) {
4372 early_node_map[i].end_pfn = end_pfn;
4373 return;
4374 }
4375
4376 /* Merge backward if suitable */
d2dbe08d 4377 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4378 end_pfn >= early_node_map[i].start_pfn) {
4379 early_node_map[i].start_pfn = start_pfn;
4380 return;
4381 }
4382 }
4383
4384 /* Check that early_node_map is large enough */
4385 if (i >= MAX_ACTIVE_REGIONS) {
4386 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4387 MAX_ACTIVE_REGIONS);
4388 return;
4389 }
4390
4391 early_node_map[i].nid = nid;
4392 early_node_map[i].start_pfn = start_pfn;
4393 early_node_map[i].end_pfn = end_pfn;
4394 nr_nodemap_entries = i + 1;
4395}
4396
4397/**
cc1050ba 4398 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4399 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4400 * @start_pfn: The new PFN of the range
4401 * @end_pfn: The new PFN of the range
c713216d
MG
4402 *
4403 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4404 * The map is kept near the end physical page range that has already been
4405 * registered. This function allows an arch to shrink an existing registered
4406 * range.
c713216d 4407 */
cc1050ba
YL
4408void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4409 unsigned long end_pfn)
c713216d 4410{
cc1a9d86
YL
4411 int i, j;
4412 int removed = 0;
c713216d 4413
cc1050ba
YL
4414 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4415 nid, start_pfn, end_pfn);
4416
c713216d 4417 /* Find the old active region end and shrink */
cc1a9d86 4418 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4419 if (early_node_map[i].start_pfn >= start_pfn &&
4420 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4421 /* clear it */
cc1050ba 4422 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4423 early_node_map[i].end_pfn = 0;
4424 removed = 1;
4425 continue;
4426 }
cc1050ba
YL
4427 if (early_node_map[i].start_pfn < start_pfn &&
4428 early_node_map[i].end_pfn > start_pfn) {
4429 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4430 early_node_map[i].end_pfn = start_pfn;
4431 if (temp_end_pfn > end_pfn)
4432 add_active_range(nid, end_pfn, temp_end_pfn);
4433 continue;
4434 }
4435 if (early_node_map[i].start_pfn >= start_pfn &&
4436 early_node_map[i].end_pfn > end_pfn &&
4437 early_node_map[i].start_pfn < end_pfn) {
4438 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4439 continue;
c713216d 4440 }
cc1a9d86
YL
4441 }
4442
4443 if (!removed)
4444 return;
4445
4446 /* remove the blank ones */
4447 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4448 if (early_node_map[i].nid != nid)
4449 continue;
4450 if (early_node_map[i].end_pfn)
4451 continue;
4452 /* we found it, get rid of it */
4453 for (j = i; j < nr_nodemap_entries - 1; j++)
4454 memcpy(&early_node_map[j], &early_node_map[j+1],
4455 sizeof(early_node_map[j]));
4456 j = nr_nodemap_entries - 1;
4457 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4458 nr_nodemap_entries--;
4459 }
c713216d
MG
4460}
4461
4462/**
4463 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4464 *
c713216d
MG
4465 * During discovery, it may be found that a table like SRAT is invalid
4466 * and an alternative discovery method must be used. This function removes
4467 * all currently registered regions.
4468 */
88ca3b94 4469void __init remove_all_active_ranges(void)
c713216d
MG
4470{
4471 memset(early_node_map, 0, sizeof(early_node_map));
4472 nr_nodemap_entries = 0;
4473}
4474
4475/* Compare two active node_active_regions */
4476static int __init cmp_node_active_region(const void *a, const void *b)
4477{
4478 struct node_active_region *arange = (struct node_active_region *)a;
4479 struct node_active_region *brange = (struct node_active_region *)b;
4480
4481 /* Done this way to avoid overflows */
4482 if (arange->start_pfn > brange->start_pfn)
4483 return 1;
4484 if (arange->start_pfn < brange->start_pfn)
4485 return -1;
4486
4487 return 0;
4488}
4489
4490/* sort the node_map by start_pfn */
32996250 4491void __init sort_node_map(void)
c713216d
MG
4492{
4493 sort(early_node_map, (size_t)nr_nodemap_entries,
4494 sizeof(struct node_active_region),
4495 cmp_node_active_region, NULL);
4496}
4497
a6af2bc3 4498/* Find the lowest pfn for a node */
b69a7288 4499static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4500{
4501 int i;
a6af2bc3 4502 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4503
c713216d
MG
4504 /* Assuming a sorted map, the first range found has the starting pfn */
4505 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4506 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4507
a6af2bc3
MG
4508 if (min_pfn == ULONG_MAX) {
4509 printk(KERN_WARNING
2bc0d261 4510 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4511 return 0;
4512 }
4513
4514 return min_pfn;
c713216d
MG
4515}
4516
4517/**
4518 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4519 *
4520 * It returns the minimum PFN based on information provided via
88ca3b94 4521 * add_active_range().
c713216d
MG
4522 */
4523unsigned long __init find_min_pfn_with_active_regions(void)
4524{
4525 return find_min_pfn_for_node(MAX_NUMNODES);
4526}
4527
37b07e41
LS
4528/*
4529 * early_calculate_totalpages()
4530 * Sum pages in active regions for movable zone.
4531 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4532 */
484f51f8 4533static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4534{
4535 int i;
4536 unsigned long totalpages = 0;
4537
37b07e41
LS
4538 for (i = 0; i < nr_nodemap_entries; i++) {
4539 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4540 early_node_map[i].start_pfn;
37b07e41
LS
4541 totalpages += pages;
4542 if (pages)
4543 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4544 }
4545 return totalpages;
7e63efef
MG
4546}
4547
2a1e274a
MG
4548/*
4549 * Find the PFN the Movable zone begins in each node. Kernel memory
4550 * is spread evenly between nodes as long as the nodes have enough
4551 * memory. When they don't, some nodes will have more kernelcore than
4552 * others
4553 */
b69a7288 4554static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4555{
4556 int i, nid;
4557 unsigned long usable_startpfn;
4558 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4559 /* save the state before borrow the nodemask */
4560 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4561 unsigned long totalpages = early_calculate_totalpages();
4562 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4563
7e63efef
MG
4564 /*
4565 * If movablecore was specified, calculate what size of
4566 * kernelcore that corresponds so that memory usable for
4567 * any allocation type is evenly spread. If both kernelcore
4568 * and movablecore are specified, then the value of kernelcore
4569 * will be used for required_kernelcore if it's greater than
4570 * what movablecore would have allowed.
4571 */
4572 if (required_movablecore) {
7e63efef
MG
4573 unsigned long corepages;
4574
4575 /*
4576 * Round-up so that ZONE_MOVABLE is at least as large as what
4577 * was requested by the user
4578 */
4579 required_movablecore =
4580 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4581 corepages = totalpages - required_movablecore;
4582
4583 required_kernelcore = max(required_kernelcore, corepages);
4584 }
4585
2a1e274a
MG
4586 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4587 if (!required_kernelcore)
66918dcd 4588 goto out;
2a1e274a
MG
4589
4590 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4591 find_usable_zone_for_movable();
4592 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4593
4594restart:
4595 /* Spread kernelcore memory as evenly as possible throughout nodes */
4596 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4597 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4598 /*
4599 * Recalculate kernelcore_node if the division per node
4600 * now exceeds what is necessary to satisfy the requested
4601 * amount of memory for the kernel
4602 */
4603 if (required_kernelcore < kernelcore_node)
4604 kernelcore_node = required_kernelcore / usable_nodes;
4605
4606 /*
4607 * As the map is walked, we track how much memory is usable
4608 * by the kernel using kernelcore_remaining. When it is
4609 * 0, the rest of the node is usable by ZONE_MOVABLE
4610 */
4611 kernelcore_remaining = kernelcore_node;
4612
4613 /* Go through each range of PFNs within this node */
4614 for_each_active_range_index_in_nid(i, nid) {
4615 unsigned long start_pfn, end_pfn;
4616 unsigned long size_pages;
4617
4618 start_pfn = max(early_node_map[i].start_pfn,
4619 zone_movable_pfn[nid]);
4620 end_pfn = early_node_map[i].end_pfn;
4621 if (start_pfn >= end_pfn)
4622 continue;
4623
4624 /* Account for what is only usable for kernelcore */
4625 if (start_pfn < usable_startpfn) {
4626 unsigned long kernel_pages;
4627 kernel_pages = min(end_pfn, usable_startpfn)
4628 - start_pfn;
4629
4630 kernelcore_remaining -= min(kernel_pages,
4631 kernelcore_remaining);
4632 required_kernelcore -= min(kernel_pages,
4633 required_kernelcore);
4634
4635 /* Continue if range is now fully accounted */
4636 if (end_pfn <= usable_startpfn) {
4637
4638 /*
4639 * Push zone_movable_pfn to the end so
4640 * that if we have to rebalance
4641 * kernelcore across nodes, we will
4642 * not double account here
4643 */
4644 zone_movable_pfn[nid] = end_pfn;
4645 continue;
4646 }
4647 start_pfn = usable_startpfn;
4648 }
4649
4650 /*
4651 * The usable PFN range for ZONE_MOVABLE is from
4652 * start_pfn->end_pfn. Calculate size_pages as the
4653 * number of pages used as kernelcore
4654 */
4655 size_pages = end_pfn - start_pfn;
4656 if (size_pages > kernelcore_remaining)
4657 size_pages = kernelcore_remaining;
4658 zone_movable_pfn[nid] = start_pfn + size_pages;
4659
4660 /*
4661 * Some kernelcore has been met, update counts and
4662 * break if the kernelcore for this node has been
4663 * satisified
4664 */
4665 required_kernelcore -= min(required_kernelcore,
4666 size_pages);
4667 kernelcore_remaining -= size_pages;
4668 if (!kernelcore_remaining)
4669 break;
4670 }
4671 }
4672
4673 /*
4674 * If there is still required_kernelcore, we do another pass with one
4675 * less node in the count. This will push zone_movable_pfn[nid] further
4676 * along on the nodes that still have memory until kernelcore is
4677 * satisified
4678 */
4679 usable_nodes--;
4680 if (usable_nodes && required_kernelcore > usable_nodes)
4681 goto restart;
4682
4683 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4684 for (nid = 0; nid < MAX_NUMNODES; nid++)
4685 zone_movable_pfn[nid] =
4686 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4687
4688out:
4689 /* restore the node_state */
4690 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4691}
4692
37b07e41
LS
4693/* Any regular memory on that node ? */
4694static void check_for_regular_memory(pg_data_t *pgdat)
4695{
4696#ifdef CONFIG_HIGHMEM
4697 enum zone_type zone_type;
4698
4699 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4700 struct zone *zone = &pgdat->node_zones[zone_type];
4701 if (zone->present_pages)
4702 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4703 }
4704#endif
4705}
4706
c713216d
MG
4707/**
4708 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4709 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4710 *
4711 * This will call free_area_init_node() for each active node in the system.
4712 * Using the page ranges provided by add_active_range(), the size of each
4713 * zone in each node and their holes is calculated. If the maximum PFN
4714 * between two adjacent zones match, it is assumed that the zone is empty.
4715 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4716 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4717 * starts where the previous one ended. For example, ZONE_DMA32 starts
4718 * at arch_max_dma_pfn.
4719 */
4720void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4721{
4722 unsigned long nid;
db99100d 4723 int i;
c713216d 4724
a6af2bc3
MG
4725 /* Sort early_node_map as initialisation assumes it is sorted */
4726 sort_node_map();
4727
c713216d
MG
4728 /* Record where the zone boundaries are */
4729 memset(arch_zone_lowest_possible_pfn, 0,
4730 sizeof(arch_zone_lowest_possible_pfn));
4731 memset(arch_zone_highest_possible_pfn, 0,
4732 sizeof(arch_zone_highest_possible_pfn));
4733 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4734 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4735 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4736 if (i == ZONE_MOVABLE)
4737 continue;
c713216d
MG
4738 arch_zone_lowest_possible_pfn[i] =
4739 arch_zone_highest_possible_pfn[i-1];
4740 arch_zone_highest_possible_pfn[i] =
4741 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4742 }
2a1e274a
MG
4743 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4744 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4745
4746 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4747 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4748 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4749
c713216d
MG
4750 /* Print out the zone ranges */
4751 printk("Zone PFN ranges:\n");
2a1e274a
MG
4752 for (i = 0; i < MAX_NR_ZONES; i++) {
4753 if (i == ZONE_MOVABLE)
4754 continue;
72f0ba02
DR
4755 printk(" %-8s ", zone_names[i]);
4756 if (arch_zone_lowest_possible_pfn[i] ==
4757 arch_zone_highest_possible_pfn[i])
4758 printk("empty\n");
4759 else
4760 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4761 arch_zone_lowest_possible_pfn[i],
4762 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4763 }
4764
4765 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4766 printk("Movable zone start PFN for each node\n");
4767 for (i = 0; i < MAX_NUMNODES; i++) {
4768 if (zone_movable_pfn[i])
4769 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4770 }
c713216d
MG
4771
4772 /* Print out the early_node_map[] */
4773 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4774 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4775 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4776 early_node_map[i].start_pfn,
4777 early_node_map[i].end_pfn);
4778
4779 /* Initialise every node */
708614e6 4780 mminit_verify_pageflags_layout();
8ef82866 4781 setup_nr_node_ids();
c713216d
MG
4782 for_each_online_node(nid) {
4783 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4784 free_area_init_node(nid, NULL,
c713216d 4785 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4786
4787 /* Any memory on that node */
4788 if (pgdat->node_present_pages)
4789 node_set_state(nid, N_HIGH_MEMORY);
4790 check_for_regular_memory(pgdat);
c713216d
MG
4791 }
4792}
2a1e274a 4793
7e63efef 4794static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4795{
4796 unsigned long long coremem;
4797 if (!p)
4798 return -EINVAL;
4799
4800 coremem = memparse(p, &p);
7e63efef 4801 *core = coremem >> PAGE_SHIFT;
2a1e274a 4802
7e63efef 4803 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4804 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4805
4806 return 0;
4807}
ed7ed365 4808
7e63efef
MG
4809/*
4810 * kernelcore=size sets the amount of memory for use for allocations that
4811 * cannot be reclaimed or migrated.
4812 */
4813static int __init cmdline_parse_kernelcore(char *p)
4814{
4815 return cmdline_parse_core(p, &required_kernelcore);
4816}
4817
4818/*
4819 * movablecore=size sets the amount of memory for use for allocations that
4820 * can be reclaimed or migrated.
4821 */
4822static int __init cmdline_parse_movablecore(char *p)
4823{
4824 return cmdline_parse_core(p, &required_movablecore);
4825}
4826
ed7ed365 4827early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4828early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4829
c713216d
MG
4830#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4831
0e0b864e 4832/**
88ca3b94
RD
4833 * set_dma_reserve - set the specified number of pages reserved in the first zone
4834 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4835 *
4836 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4837 * In the DMA zone, a significant percentage may be consumed by kernel image
4838 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4839 * function may optionally be used to account for unfreeable pages in the
4840 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4841 * smaller per-cpu batchsize.
0e0b864e
MG
4842 */
4843void __init set_dma_reserve(unsigned long new_dma_reserve)
4844{
4845 dma_reserve = new_dma_reserve;
4846}
4847
1da177e4
LT
4848void __init free_area_init(unsigned long *zones_size)
4849{
9109fb7b 4850 free_area_init_node(0, zones_size,
1da177e4
LT
4851 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4852}
1da177e4 4853
1da177e4
LT
4854static int page_alloc_cpu_notify(struct notifier_block *self,
4855 unsigned long action, void *hcpu)
4856{
4857 int cpu = (unsigned long)hcpu;
1da177e4 4858
8bb78442 4859 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4860 drain_pages(cpu);
4861
4862 /*
4863 * Spill the event counters of the dead processor
4864 * into the current processors event counters.
4865 * This artificially elevates the count of the current
4866 * processor.
4867 */
f8891e5e 4868 vm_events_fold_cpu(cpu);
9f8f2172
CL
4869
4870 /*
4871 * Zero the differential counters of the dead processor
4872 * so that the vm statistics are consistent.
4873 *
4874 * This is only okay since the processor is dead and cannot
4875 * race with what we are doing.
4876 */
2244b95a 4877 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4878 }
4879 return NOTIFY_OK;
4880}
1da177e4
LT
4881
4882void __init page_alloc_init(void)
4883{
4884 hotcpu_notifier(page_alloc_cpu_notify, 0);
4885}
4886
cb45b0e9
HA
4887/*
4888 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4889 * or min_free_kbytes changes.
4890 */
4891static void calculate_totalreserve_pages(void)
4892{
4893 struct pglist_data *pgdat;
4894 unsigned long reserve_pages = 0;
2f6726e5 4895 enum zone_type i, j;
cb45b0e9
HA
4896
4897 for_each_online_pgdat(pgdat) {
4898 for (i = 0; i < MAX_NR_ZONES; i++) {
4899 struct zone *zone = pgdat->node_zones + i;
4900 unsigned long max = 0;
4901
4902 /* Find valid and maximum lowmem_reserve in the zone */
4903 for (j = i; j < MAX_NR_ZONES; j++) {
4904 if (zone->lowmem_reserve[j] > max)
4905 max = zone->lowmem_reserve[j];
4906 }
4907
41858966
MG
4908 /* we treat the high watermark as reserved pages. */
4909 max += high_wmark_pages(zone);
cb45b0e9
HA
4910
4911 if (max > zone->present_pages)
4912 max = zone->present_pages;
4913 reserve_pages += max;
4914 }
4915 }
4916 totalreserve_pages = reserve_pages;
4917}
4918
1da177e4
LT
4919/*
4920 * setup_per_zone_lowmem_reserve - called whenever
4921 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4922 * has a correct pages reserved value, so an adequate number of
4923 * pages are left in the zone after a successful __alloc_pages().
4924 */
4925static void setup_per_zone_lowmem_reserve(void)
4926{
4927 struct pglist_data *pgdat;
2f6726e5 4928 enum zone_type j, idx;
1da177e4 4929
ec936fc5 4930 for_each_online_pgdat(pgdat) {
1da177e4
LT
4931 for (j = 0; j < MAX_NR_ZONES; j++) {
4932 struct zone *zone = pgdat->node_zones + j;
4933 unsigned long present_pages = zone->present_pages;
4934
4935 zone->lowmem_reserve[j] = 0;
4936
2f6726e5
CL
4937 idx = j;
4938 while (idx) {
1da177e4
LT
4939 struct zone *lower_zone;
4940
2f6726e5
CL
4941 idx--;
4942
1da177e4
LT
4943 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4944 sysctl_lowmem_reserve_ratio[idx] = 1;
4945
4946 lower_zone = pgdat->node_zones + idx;
4947 lower_zone->lowmem_reserve[j] = present_pages /
4948 sysctl_lowmem_reserve_ratio[idx];
4949 present_pages += lower_zone->present_pages;
4950 }
4951 }
4952 }
cb45b0e9
HA
4953
4954 /* update totalreserve_pages */
4955 calculate_totalreserve_pages();
1da177e4
LT
4956}
4957
88ca3b94 4958/**
bc75d33f 4959 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4960 * or when memory is hot-{added|removed}
88ca3b94 4961 *
bc75d33f
MK
4962 * Ensures that the watermark[min,low,high] values for each zone are set
4963 * correctly with respect to min_free_kbytes.
1da177e4 4964 */
bc75d33f 4965void setup_per_zone_wmarks(void)
1da177e4
LT
4966{
4967 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4968 unsigned long lowmem_pages = 0;
4969 struct zone *zone;
4970 unsigned long flags;
4971
4972 /* Calculate total number of !ZONE_HIGHMEM pages */
4973 for_each_zone(zone) {
4974 if (!is_highmem(zone))
4975 lowmem_pages += zone->present_pages;
4976 }
4977
4978 for_each_zone(zone) {
ac924c60
AM
4979 u64 tmp;
4980
1125b4e3 4981 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4982 tmp = (u64)pages_min * zone->present_pages;
4983 do_div(tmp, lowmem_pages);
1da177e4
LT
4984 if (is_highmem(zone)) {
4985 /*
669ed175
NP
4986 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4987 * need highmem pages, so cap pages_min to a small
4988 * value here.
4989 *
41858966 4990 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4991 * deltas controls asynch page reclaim, and so should
4992 * not be capped for highmem.
1da177e4
LT
4993 */
4994 int min_pages;
4995
4996 min_pages = zone->present_pages / 1024;
4997 if (min_pages < SWAP_CLUSTER_MAX)
4998 min_pages = SWAP_CLUSTER_MAX;
4999 if (min_pages > 128)
5000 min_pages = 128;
41858966 5001 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5002 } else {
669ed175
NP
5003 /*
5004 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5005 * proportionate to the zone's size.
5006 */
41858966 5007 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5008 }
5009
41858966
MG
5010 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5011 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 5012 setup_zone_migrate_reserve(zone);
1125b4e3 5013 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5014 }
cb45b0e9
HA
5015
5016 /* update totalreserve_pages */
5017 calculate_totalreserve_pages();
1da177e4
LT
5018}
5019
55a4462a 5020/*
556adecb
RR
5021 * The inactive anon list should be small enough that the VM never has to
5022 * do too much work, but large enough that each inactive page has a chance
5023 * to be referenced again before it is swapped out.
5024 *
5025 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5026 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5027 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5028 * the anonymous pages are kept on the inactive list.
5029 *
5030 * total target max
5031 * memory ratio inactive anon
5032 * -------------------------------------
5033 * 10MB 1 5MB
5034 * 100MB 1 50MB
5035 * 1GB 3 250MB
5036 * 10GB 10 0.9GB
5037 * 100GB 31 3GB
5038 * 1TB 101 10GB
5039 * 10TB 320 32GB
5040 */
96cb4df5 5041void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5042{
96cb4df5 5043 unsigned int gb, ratio;
556adecb 5044
96cb4df5
MK
5045 /* Zone size in gigabytes */
5046 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5047 if (gb)
556adecb 5048 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5049 else
5050 ratio = 1;
556adecb 5051
96cb4df5
MK
5052 zone->inactive_ratio = ratio;
5053}
556adecb 5054
96cb4df5
MK
5055static void __init setup_per_zone_inactive_ratio(void)
5056{
5057 struct zone *zone;
5058
5059 for_each_zone(zone)
5060 calculate_zone_inactive_ratio(zone);
556adecb
RR
5061}
5062
1da177e4
LT
5063/*
5064 * Initialise min_free_kbytes.
5065 *
5066 * For small machines we want it small (128k min). For large machines
5067 * we want it large (64MB max). But it is not linear, because network
5068 * bandwidth does not increase linearly with machine size. We use
5069 *
5070 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5071 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5072 *
5073 * which yields
5074 *
5075 * 16MB: 512k
5076 * 32MB: 724k
5077 * 64MB: 1024k
5078 * 128MB: 1448k
5079 * 256MB: 2048k
5080 * 512MB: 2896k
5081 * 1024MB: 4096k
5082 * 2048MB: 5792k
5083 * 4096MB: 8192k
5084 * 8192MB: 11584k
5085 * 16384MB: 16384k
5086 */
bc75d33f 5087static int __init init_per_zone_wmark_min(void)
1da177e4
LT
5088{
5089 unsigned long lowmem_kbytes;
5090
5091 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5092
5093 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5094 if (min_free_kbytes < 128)
5095 min_free_kbytes = 128;
5096 if (min_free_kbytes > 65536)
5097 min_free_kbytes = 65536;
bc75d33f 5098 setup_per_zone_wmarks();
1da177e4 5099 setup_per_zone_lowmem_reserve();
556adecb 5100 setup_per_zone_inactive_ratio();
1da177e4
LT
5101 return 0;
5102}
bc75d33f 5103module_init(init_per_zone_wmark_min)
1da177e4
LT
5104
5105/*
5106 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5107 * that we can call two helper functions whenever min_free_kbytes
5108 * changes.
5109 */
5110int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5111 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5112{
8d65af78 5113 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5114 if (write)
bc75d33f 5115 setup_per_zone_wmarks();
1da177e4
LT
5116 return 0;
5117}
5118
9614634f
CL
5119#ifdef CONFIG_NUMA
5120int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5121 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5122{
5123 struct zone *zone;
5124 int rc;
5125
8d65af78 5126 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5127 if (rc)
5128 return rc;
5129
5130 for_each_zone(zone)
8417bba4 5131 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5132 sysctl_min_unmapped_ratio) / 100;
5133 return 0;
5134}
0ff38490
CL
5135
5136int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5137 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5138{
5139 struct zone *zone;
5140 int rc;
5141
8d65af78 5142 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5143 if (rc)
5144 return rc;
5145
5146 for_each_zone(zone)
5147 zone->min_slab_pages = (zone->present_pages *
5148 sysctl_min_slab_ratio) / 100;
5149 return 0;
5150}
9614634f
CL
5151#endif
5152
1da177e4
LT
5153/*
5154 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5155 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5156 * whenever sysctl_lowmem_reserve_ratio changes.
5157 *
5158 * The reserve ratio obviously has absolutely no relation with the
41858966 5159 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5160 * if in function of the boot time zone sizes.
5161 */
5162int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5163 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5164{
8d65af78 5165 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5166 setup_per_zone_lowmem_reserve();
5167 return 0;
5168}
5169
8ad4b1fb
RS
5170/*
5171 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5172 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5173 * can have before it gets flushed back to buddy allocator.
5174 */
5175
5176int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5177 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5178{
5179 struct zone *zone;
5180 unsigned int cpu;
5181 int ret;
5182
8d65af78 5183 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5184 if (!write || (ret == -EINVAL))
5185 return ret;
364df0eb 5186 for_each_populated_zone(zone) {
99dcc3e5 5187 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5188 unsigned long high;
5189 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5190 setup_pagelist_highmark(
5191 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5192 }
5193 }
5194 return 0;
5195}
5196
f034b5d4 5197int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5198
5199#ifdef CONFIG_NUMA
5200static int __init set_hashdist(char *str)
5201{
5202 if (!str)
5203 return 0;
5204 hashdist = simple_strtoul(str, &str, 0);
5205 return 1;
5206}
5207__setup("hashdist=", set_hashdist);
5208#endif
5209
5210/*
5211 * allocate a large system hash table from bootmem
5212 * - it is assumed that the hash table must contain an exact power-of-2
5213 * quantity of entries
5214 * - limit is the number of hash buckets, not the total allocation size
5215 */
5216void *__init alloc_large_system_hash(const char *tablename,
5217 unsigned long bucketsize,
5218 unsigned long numentries,
5219 int scale,
5220 int flags,
5221 unsigned int *_hash_shift,
5222 unsigned int *_hash_mask,
5223 unsigned long limit)
5224{
5225 unsigned long long max = limit;
5226 unsigned long log2qty, size;
5227 void *table = NULL;
5228
5229 /* allow the kernel cmdline to have a say */
5230 if (!numentries) {
5231 /* round applicable memory size up to nearest megabyte */
04903664 5232 numentries = nr_kernel_pages;
1da177e4
LT
5233 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5234 numentries >>= 20 - PAGE_SHIFT;
5235 numentries <<= 20 - PAGE_SHIFT;
5236
5237 /* limit to 1 bucket per 2^scale bytes of low memory */
5238 if (scale > PAGE_SHIFT)
5239 numentries >>= (scale - PAGE_SHIFT);
5240 else
5241 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5242
5243 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5244 if (unlikely(flags & HASH_SMALL)) {
5245 /* Makes no sense without HASH_EARLY */
5246 WARN_ON(!(flags & HASH_EARLY));
5247 if (!(numentries >> *_hash_shift)) {
5248 numentries = 1UL << *_hash_shift;
5249 BUG_ON(!numentries);
5250 }
5251 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5252 numentries = PAGE_SIZE / bucketsize;
1da177e4 5253 }
6e692ed3 5254 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5255
5256 /* limit allocation size to 1/16 total memory by default */
5257 if (max == 0) {
5258 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5259 do_div(max, bucketsize);
5260 }
5261
5262 if (numentries > max)
5263 numentries = max;
5264
f0d1b0b3 5265 log2qty = ilog2(numentries);
1da177e4
LT
5266
5267 do {
5268 size = bucketsize << log2qty;
5269 if (flags & HASH_EARLY)
74768ed8 5270 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5271 else if (hashdist)
5272 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5273 else {
1037b83b
ED
5274 /*
5275 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5276 * some pages at the end of hash table which
5277 * alloc_pages_exact() automatically does
1037b83b 5278 */
264ef8a9 5279 if (get_order(size) < MAX_ORDER) {
a1dd268c 5280 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5281 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5282 }
1da177e4
LT
5283 }
5284 } while (!table && size > PAGE_SIZE && --log2qty);
5285
5286 if (!table)
5287 panic("Failed to allocate %s hash table\n", tablename);
5288
f241e660 5289 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5290 tablename,
f241e660 5291 (1UL << log2qty),
f0d1b0b3 5292 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5293 size);
5294
5295 if (_hash_shift)
5296 *_hash_shift = log2qty;
5297 if (_hash_mask)
5298 *_hash_mask = (1 << log2qty) - 1;
5299
5300 return table;
5301}
a117e66e 5302
835c134e
MG
5303/* Return a pointer to the bitmap storing bits affecting a block of pages */
5304static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5305 unsigned long pfn)
5306{
5307#ifdef CONFIG_SPARSEMEM
5308 return __pfn_to_section(pfn)->pageblock_flags;
5309#else
5310 return zone->pageblock_flags;
5311#endif /* CONFIG_SPARSEMEM */
5312}
5313
5314static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5315{
5316#ifdef CONFIG_SPARSEMEM
5317 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5318 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5319#else
5320 pfn = pfn - zone->zone_start_pfn;
d9c23400 5321 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5322#endif /* CONFIG_SPARSEMEM */
5323}
5324
5325/**
d9c23400 5326 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5327 * @page: The page within the block of interest
5328 * @start_bitidx: The first bit of interest to retrieve
5329 * @end_bitidx: The last bit of interest
5330 * returns pageblock_bits flags
5331 */
5332unsigned long get_pageblock_flags_group(struct page *page,
5333 int start_bitidx, int end_bitidx)
5334{
5335 struct zone *zone;
5336 unsigned long *bitmap;
5337 unsigned long pfn, bitidx;
5338 unsigned long flags = 0;
5339 unsigned long value = 1;
5340
5341 zone = page_zone(page);
5342 pfn = page_to_pfn(page);
5343 bitmap = get_pageblock_bitmap(zone, pfn);
5344 bitidx = pfn_to_bitidx(zone, pfn);
5345
5346 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5347 if (test_bit(bitidx + start_bitidx, bitmap))
5348 flags |= value;
6220ec78 5349
835c134e
MG
5350 return flags;
5351}
5352
5353/**
d9c23400 5354 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5355 * @page: The page within the block of interest
5356 * @start_bitidx: The first bit of interest
5357 * @end_bitidx: The last bit of interest
5358 * @flags: The flags to set
5359 */
5360void set_pageblock_flags_group(struct page *page, unsigned long flags,
5361 int start_bitidx, int end_bitidx)
5362{
5363 struct zone *zone;
5364 unsigned long *bitmap;
5365 unsigned long pfn, bitidx;
5366 unsigned long value = 1;
5367
5368 zone = page_zone(page);
5369 pfn = page_to_pfn(page);
5370 bitmap = get_pageblock_bitmap(zone, pfn);
5371 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5372 VM_BUG_ON(pfn < zone->zone_start_pfn);
5373 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5374
5375 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5376 if (flags & value)
5377 __set_bit(bitidx + start_bitidx, bitmap);
5378 else
5379 __clear_bit(bitidx + start_bitidx, bitmap);
5380}
a5d76b54
KH
5381
5382/*
5383 * This is designed as sub function...plz see page_isolation.c also.
5384 * set/clear page block's type to be ISOLATE.
5385 * page allocater never alloc memory from ISOLATE block.
5386 */
5387
49ac8255
KH
5388static int
5389__count_immobile_pages(struct zone *zone, struct page *page, int count)
5390{
5391 unsigned long pfn, iter, found;
5392 /*
5393 * For avoiding noise data, lru_add_drain_all() should be called
5394 * If ZONE_MOVABLE, the zone never contains immobile pages
5395 */
5396 if (zone_idx(zone) == ZONE_MOVABLE)
5397 return true;
5398
5399 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5400 return true;
5401
5402 pfn = page_to_pfn(page);
5403 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5404 unsigned long check = pfn + iter;
5405
29723fcc 5406 if (!pfn_valid_within(check))
49ac8255 5407 continue;
29723fcc 5408
49ac8255
KH
5409 page = pfn_to_page(check);
5410 if (!page_count(page)) {
5411 if (PageBuddy(page))
5412 iter += (1 << page_order(page)) - 1;
5413 continue;
5414 }
5415 if (!PageLRU(page))
5416 found++;
5417 /*
5418 * If there are RECLAIMABLE pages, we need to check it.
5419 * But now, memory offline itself doesn't call shrink_slab()
5420 * and it still to be fixed.
5421 */
5422 /*
5423 * If the page is not RAM, page_count()should be 0.
5424 * we don't need more check. This is an _used_ not-movable page.
5425 *
5426 * The problematic thing here is PG_reserved pages. PG_reserved
5427 * is set to both of a memory hole page and a _used_ kernel
5428 * page at boot.
5429 */
5430 if (found > count)
5431 return false;
5432 }
5433 return true;
5434}
5435
5436bool is_pageblock_removable_nolock(struct page *page)
5437{
5438 struct zone *zone = page_zone(page);
5439 return __count_immobile_pages(zone, page, 0);
5440}
5441
a5d76b54
KH
5442int set_migratetype_isolate(struct page *page)
5443{
5444 struct zone *zone;
49ac8255 5445 unsigned long flags, pfn;
925cc71e
RJ
5446 struct memory_isolate_notify arg;
5447 int notifier_ret;
a5d76b54 5448 int ret = -EBUSY;
8e7e40d9 5449 int zone_idx;
a5d76b54
KH
5450
5451 zone = page_zone(page);
8e7e40d9 5452 zone_idx = zone_idx(zone);
925cc71e 5453
a5d76b54 5454 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5455
5456 pfn = page_to_pfn(page);
5457 arg.start_pfn = pfn;
5458 arg.nr_pages = pageblock_nr_pages;
5459 arg.pages_found = 0;
5460
a5d76b54 5461 /*
925cc71e
RJ
5462 * It may be possible to isolate a pageblock even if the
5463 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5464 * notifier chain is used by balloon drivers to return the
5465 * number of pages in a range that are held by the balloon
5466 * driver to shrink memory. If all the pages are accounted for
5467 * by balloons, are free, or on the LRU, isolation can continue.
5468 * Later, for example, when memory hotplug notifier runs, these
5469 * pages reported as "can be isolated" should be isolated(freed)
5470 * by the balloon driver through the memory notifier chain.
a5d76b54 5471 */
925cc71e
RJ
5472 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5473 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5474 if (notifier_ret)
a5d76b54 5475 goto out;
49ac8255
KH
5476 /*
5477 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5478 * We just check MOVABLE pages.
5479 */
5480 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5481 ret = 0;
5482
49ac8255
KH
5483 /*
5484 * immobile means "not-on-lru" paes. If immobile is larger than
5485 * removable-by-driver pages reported by notifier, we'll fail.
5486 */
5487
a5d76b54 5488out:
925cc71e
RJ
5489 if (!ret) {
5490 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5491 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5492 }
5493
a5d76b54
KH
5494 spin_unlock_irqrestore(&zone->lock, flags);
5495 if (!ret)
9f8f2172 5496 drain_all_pages();
a5d76b54
KH
5497 return ret;
5498}
5499
5500void unset_migratetype_isolate(struct page *page)
5501{
5502 struct zone *zone;
5503 unsigned long flags;
5504 zone = page_zone(page);
5505 spin_lock_irqsave(&zone->lock, flags);
5506 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5507 goto out;
5508 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5509 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5510out:
5511 spin_unlock_irqrestore(&zone->lock, flags);
5512}
0c0e6195
KH
5513
5514#ifdef CONFIG_MEMORY_HOTREMOVE
5515/*
5516 * All pages in the range must be isolated before calling this.
5517 */
5518void
5519__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5520{
5521 struct page *page;
5522 struct zone *zone;
5523 int order, i;
5524 unsigned long pfn;
5525 unsigned long flags;
5526 /* find the first valid pfn */
5527 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5528 if (pfn_valid(pfn))
5529 break;
5530 if (pfn == end_pfn)
5531 return;
5532 zone = page_zone(pfn_to_page(pfn));
5533 spin_lock_irqsave(&zone->lock, flags);
5534 pfn = start_pfn;
5535 while (pfn < end_pfn) {
5536 if (!pfn_valid(pfn)) {
5537 pfn++;
5538 continue;
5539 }
5540 page = pfn_to_page(pfn);
5541 BUG_ON(page_count(page));
5542 BUG_ON(!PageBuddy(page));
5543 order = page_order(page);
5544#ifdef CONFIG_DEBUG_VM
5545 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5546 pfn, 1 << order, end_pfn);
5547#endif
5548 list_del(&page->lru);
5549 rmv_page_order(page);
5550 zone->free_area[order].nr_free--;
5551 __mod_zone_page_state(zone, NR_FREE_PAGES,
5552 - (1UL << order));
5553 for (i = 0; i < (1 << order); i++)
5554 SetPageReserved((page+i));
5555 pfn += (1 << order);
5556 }
5557 spin_unlock_irqrestore(&zone->lock, flags);
5558}
5559#endif
8d22ba1b
WF
5560
5561#ifdef CONFIG_MEMORY_FAILURE
5562bool is_free_buddy_page(struct page *page)
5563{
5564 struct zone *zone = page_zone(page);
5565 unsigned long pfn = page_to_pfn(page);
5566 unsigned long flags;
5567 int order;
5568
5569 spin_lock_irqsave(&zone->lock, flags);
5570 for (order = 0; order < MAX_ORDER; order++) {
5571 struct page *page_head = page - (pfn & ((1 << order) - 1));
5572
5573 if (PageBuddy(page_head) && page_order(page_head) >= order)
5574 break;
5575 }
5576 spin_unlock_irqrestore(&zone->lock, flags);
5577
5578 return order < MAX_ORDER;
5579}
5580#endif
718a3821
WF
5581
5582static struct trace_print_flags pageflag_names[] = {
5583 {1UL << PG_locked, "locked" },
5584 {1UL << PG_error, "error" },
5585 {1UL << PG_referenced, "referenced" },
5586 {1UL << PG_uptodate, "uptodate" },
5587 {1UL << PG_dirty, "dirty" },
5588 {1UL << PG_lru, "lru" },
5589 {1UL << PG_active, "active" },
5590 {1UL << PG_slab, "slab" },
5591 {1UL << PG_owner_priv_1, "owner_priv_1" },
5592 {1UL << PG_arch_1, "arch_1" },
5593 {1UL << PG_reserved, "reserved" },
5594 {1UL << PG_private, "private" },
5595 {1UL << PG_private_2, "private_2" },
5596 {1UL << PG_writeback, "writeback" },
5597#ifdef CONFIG_PAGEFLAGS_EXTENDED
5598 {1UL << PG_head, "head" },
5599 {1UL << PG_tail, "tail" },
5600#else
5601 {1UL << PG_compound, "compound" },
5602#endif
5603 {1UL << PG_swapcache, "swapcache" },
5604 {1UL << PG_mappedtodisk, "mappedtodisk" },
5605 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5606 {1UL << PG_swapbacked, "swapbacked" },
5607 {1UL << PG_unevictable, "unevictable" },
5608#ifdef CONFIG_MMU
5609 {1UL << PG_mlocked, "mlocked" },
5610#endif
5611#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5612 {1UL << PG_uncached, "uncached" },
5613#endif
5614#ifdef CONFIG_MEMORY_FAILURE
5615 {1UL << PG_hwpoison, "hwpoison" },
5616#endif
5617 {-1UL, NULL },
5618};
5619
5620static void dump_page_flags(unsigned long flags)
5621{
5622 const char *delim = "";
5623 unsigned long mask;
5624 int i;
5625
5626 printk(KERN_ALERT "page flags: %#lx(", flags);
5627
5628 /* remove zone id */
5629 flags &= (1UL << NR_PAGEFLAGS) - 1;
5630
5631 for (i = 0; pageflag_names[i].name && flags; i++) {
5632
5633 mask = pageflag_names[i].mask;
5634 if ((flags & mask) != mask)
5635 continue;
5636
5637 flags &= ~mask;
5638 printk("%s%s", delim, pageflag_names[i].name);
5639 delim = "|";
5640 }
5641
5642 /* check for left over flags */
5643 if (flags)
5644 printk("%s%#lx", delim, flags);
5645
5646 printk(")\n");
5647}
5648
5649void dump_page(struct page *page)
5650{
5651 printk(KERN_ALERT
5652 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5653 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5654 page->mapping, page->index);
5655 dump_page_flags(page->flags);
5656}