]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: remove redundant checks from alloc fastpath
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
e30825f1 62#include <linux/page_ext.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
1da177e4 68
7ee3d4e8 69#include <asm/sections.h>
1da177e4 70#include <asm/tlbflush.h>
ac924c60 71#include <asm/div64.h>
1da177e4
LT
72#include "internal.h"
73
c8e251fa
CS
74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 76#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 77
72812019
LS
78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79DEFINE_PER_CPU(int, numa_node);
80EXPORT_PER_CPU_SYMBOL(numa_node);
81#endif
82
7aac7898
LS
83#ifdef CONFIG_HAVE_MEMORYLESS_NODES
84/*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 92int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
93#endif
94
38addce8 95#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 96volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
97EXPORT_SYMBOL(latent_entropy);
98#endif
99
1da177e4 100/*
13808910 101 * Array of node states.
1da177e4 102 */
13808910
CL
103nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
104 [N_POSSIBLE] = NODE_MASK_ALL,
105 [N_ONLINE] = { { [0] = 1UL } },
106#ifndef CONFIG_NUMA
107 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
108#ifdef CONFIG_HIGHMEM
109 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
110#endif
111#ifdef CONFIG_MOVABLE_NODE
112 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
113#endif
114 [N_CPU] = { { [0] = 1UL } },
115#endif /* NUMA */
116};
117EXPORT_SYMBOL(node_states);
118
c3d5f5f0
JL
119/* Protect totalram_pages and zone->managed_pages */
120static DEFINE_SPINLOCK(managed_page_count_lock);
121
6c231b7b 122unsigned long totalram_pages __read_mostly;
cb45b0e9 123unsigned long totalreserve_pages __read_mostly;
e48322ab 124unsigned long totalcma_pages __read_mostly;
ab8fabd4 125
1b76b02f 126int percpu_pagelist_fraction;
dcce284a 127gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 128
bb14c2c7
VB
129/*
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
136 */
137static inline int get_pcppage_migratetype(struct page *page)
138{
139 return page->index;
140}
141
142static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143{
144 page->index = migratetype;
145}
146
452aa699
RW
147#ifdef CONFIG_PM_SLEEP
148/*
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
155 */
c9e664f1
RW
156
157static gfp_t saved_gfp_mask;
158
159void pm_restore_gfp_mask(void)
452aa699
RW
160{
161 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
164 saved_gfp_mask = 0;
165 }
452aa699
RW
166}
167
c9e664f1 168void pm_restrict_gfp_mask(void)
452aa699 169{
452aa699 170 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
d0164adc 173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 174}
f90ac398
MG
175
176bool pm_suspended_storage(void)
177{
d0164adc 178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
179 return false;
180 return true;
181}
452aa699
RW
182#endif /* CONFIG_PM_SLEEP */
183
d9c23400 184#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 185unsigned int pageblock_order __read_mostly;
d9c23400
MG
186#endif
187
d98c7a09 188static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 189
1da177e4
LT
190/*
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
197 *
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
1da177e4 200 */
2f1b6248 201int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 202#ifdef CONFIG_ZONE_DMA
2f1b6248 203 256,
4b51d669 204#endif
fb0e7942 205#ifdef CONFIG_ZONE_DMA32
2f1b6248 206 256,
fb0e7942 207#endif
e53ef38d 208#ifdef CONFIG_HIGHMEM
2a1e274a 209 32,
e53ef38d 210#endif
2a1e274a 211 32,
2f1b6248 212};
1da177e4
LT
213
214EXPORT_SYMBOL(totalram_pages);
1da177e4 215
15ad7cdc 216static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 217#ifdef CONFIG_ZONE_DMA
2f1b6248 218 "DMA",
4b51d669 219#endif
fb0e7942 220#ifdef CONFIG_ZONE_DMA32
2f1b6248 221 "DMA32",
fb0e7942 222#endif
2f1b6248 223 "Normal",
e53ef38d 224#ifdef CONFIG_HIGHMEM
2a1e274a 225 "HighMem",
e53ef38d 226#endif
2a1e274a 227 "Movable",
033fbae9
DW
228#ifdef CONFIG_ZONE_DEVICE
229 "Device",
230#endif
2f1b6248
CL
231};
232
60f30350
VB
233char * const migratetype_names[MIGRATE_TYPES] = {
234 "Unmovable",
235 "Movable",
236 "Reclaimable",
237 "HighAtomic",
238#ifdef CONFIG_CMA
239 "CMA",
240#endif
241#ifdef CONFIG_MEMORY_ISOLATION
242 "Isolate",
243#endif
244};
245
f1e61557
KS
246compound_page_dtor * const compound_page_dtors[] = {
247 NULL,
248 free_compound_page,
249#ifdef CONFIG_HUGETLB_PAGE
250 free_huge_page,
251#endif
9a982250
KS
252#ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 free_transhuge_page,
254#endif
f1e61557
KS
255};
256
1da177e4 257int min_free_kbytes = 1024;
42aa83cb 258int user_min_free_kbytes = -1;
795ae7a0 259int watermark_scale_factor = 10;
1da177e4 260
2c85f51d
JB
261static unsigned long __meminitdata nr_kernel_pages;
262static unsigned long __meminitdata nr_all_pages;
a3142c8e 263static unsigned long __meminitdata dma_reserve;
1da177e4 264
0ee332c1
TH
265#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
266static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
268static unsigned long __initdata required_kernelcore;
269static unsigned long __initdata required_movablecore;
270static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 271static bool mirrored_kernelcore;
0ee332c1
TH
272
273/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274int movable_zone;
275EXPORT_SYMBOL(movable_zone);
276#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 277
418508c1
MS
278#if MAX_NUMNODES > 1
279int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 280int nr_online_nodes __read_mostly = 1;
418508c1 281EXPORT_SYMBOL(nr_node_ids);
62bc62a8 282EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
283#endif
284
9ef9acb0
MG
285int page_group_by_mobility_disabled __read_mostly;
286
3a80a7fa
MG
287#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288static inline void reset_deferred_meminit(pg_data_t *pgdat)
289{
290 pgdat->first_deferred_pfn = ULONG_MAX;
291}
292
293/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 294static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 295{
ef70b6f4
MG
296 int nid = early_pfn_to_nid(pfn);
297
298 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
299 return true;
300
301 return false;
302}
303
304/*
305 * Returns false when the remaining initialisation should be deferred until
306 * later in the boot cycle when it can be parallelised.
307 */
308static inline bool update_defer_init(pg_data_t *pgdat,
309 unsigned long pfn, unsigned long zone_end,
310 unsigned long *nr_initialised)
311{
987b3095
LZ
312 unsigned long max_initialise;
313
3a80a7fa
MG
314 /* Always populate low zones for address-contrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
316 return true;
987b3095
LZ
317 /*
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
320 */
321 max_initialise = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
3a80a7fa 323
3a80a7fa 324 (*nr_initialised)++;
987b3095 325 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
326 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
327 pgdat->first_deferred_pfn = pfn;
328 return false;
329 }
330
331 return true;
332}
333#else
334static inline void reset_deferred_meminit(pg_data_t *pgdat)
335{
336}
337
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
343static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346{
347 return true;
348}
349#endif
350
0b423ca2
MG
351/* Return a pointer to the bitmap storing bits affecting a block of pages */
352static inline unsigned long *get_pageblock_bitmap(struct page *page,
353 unsigned long pfn)
354{
355#ifdef CONFIG_SPARSEMEM
356 return __pfn_to_section(pfn)->pageblock_flags;
357#else
358 return page_zone(page)->pageblock_flags;
359#endif /* CONFIG_SPARSEMEM */
360}
361
362static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
363{
364#ifdef CONFIG_SPARSEMEM
365 pfn &= (PAGES_PER_SECTION-1);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367#else
368 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370#endif /* CONFIG_SPARSEMEM */
371}
372
373/**
374 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
375 * @page: The page within the block of interest
376 * @pfn: The target page frame number
377 * @end_bitidx: The last bit of interest to retrieve
378 * @mask: mask of bits that the caller is interested in
379 *
380 * Return: pageblock_bits flags
381 */
382static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long pfn,
384 unsigned long end_bitidx,
385 unsigned long mask)
386{
387 unsigned long *bitmap;
388 unsigned long bitidx, word_bitidx;
389 unsigned long word;
390
391 bitmap = get_pageblock_bitmap(page, pfn);
392 bitidx = pfn_to_bitidx(page, pfn);
393 word_bitidx = bitidx / BITS_PER_LONG;
394 bitidx &= (BITS_PER_LONG-1);
395
396 word = bitmap[word_bitidx];
397 bitidx += end_bitidx;
398 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
399}
400
401unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
404{
405 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
406}
407
408static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
409{
410 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
411}
412
413/**
414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
415 * @page: The page within the block of interest
416 * @flags: The flags to set
417 * @pfn: The target page frame number
418 * @end_bitidx: The last bit of interest
419 * @mask: mask of bits that the caller is interested in
420 */
421void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long pfn,
423 unsigned long end_bitidx,
424 unsigned long mask)
425{
426 unsigned long *bitmap;
427 unsigned long bitidx, word_bitidx;
428 unsigned long old_word, word;
429
430 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
431
432 bitmap = get_pageblock_bitmap(page, pfn);
433 bitidx = pfn_to_bitidx(page, pfn);
434 word_bitidx = bitidx / BITS_PER_LONG;
435 bitidx &= (BITS_PER_LONG-1);
436
437 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438
439 bitidx += end_bitidx;
440 mask <<= (BITS_PER_LONG - bitidx - 1);
441 flags <<= (BITS_PER_LONG - bitidx - 1);
442
443 word = READ_ONCE(bitmap[word_bitidx]);
444 for (;;) {
445 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
446 if (word == old_word)
447 break;
448 word = old_word;
449 }
450}
3a80a7fa 451
ee6f509c 452void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 453{
5d0f3f72
KM
454 if (unlikely(page_group_by_mobility_disabled &&
455 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
456 migratetype = MIGRATE_UNMOVABLE;
457
b2a0ac88
MG
458 set_pageblock_flags_group(page, (unsigned long)migratetype,
459 PB_migrate, PB_migrate_end);
460}
461
13e7444b 462#ifdef CONFIG_DEBUG_VM
c6a57e19 463static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 464{
bdc8cb98
DH
465 int ret = 0;
466 unsigned seq;
467 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 468 unsigned long sp, start_pfn;
c6a57e19 469
bdc8cb98
DH
470 do {
471 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
472 start_pfn = zone->zone_start_pfn;
473 sp = zone->spanned_pages;
108bcc96 474 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
475 ret = 1;
476 } while (zone_span_seqretry(zone, seq));
477
b5e6a5a2 478 if (ret)
613813e8
DH
479 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
480 pfn, zone_to_nid(zone), zone->name,
481 start_pfn, start_pfn + sp);
b5e6a5a2 482
bdc8cb98 483 return ret;
c6a57e19
DH
484}
485
486static int page_is_consistent(struct zone *zone, struct page *page)
487{
14e07298 488 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 489 return 0;
1da177e4 490 if (zone != page_zone(page))
c6a57e19
DH
491 return 0;
492
493 return 1;
494}
495/*
496 * Temporary debugging check for pages not lying within a given zone.
497 */
498static int bad_range(struct zone *zone, struct page *page)
499{
500 if (page_outside_zone_boundaries(zone, page))
1da177e4 501 return 1;
c6a57e19
DH
502 if (!page_is_consistent(zone, page))
503 return 1;
504
1da177e4
LT
505 return 0;
506}
13e7444b
NP
507#else
508static inline int bad_range(struct zone *zone, struct page *page)
509{
510 return 0;
511}
512#endif
513
d230dec1
KS
514static void bad_page(struct page *page, const char *reason,
515 unsigned long bad_flags)
1da177e4 516{
d936cf9b
HD
517 static unsigned long resume;
518 static unsigned long nr_shown;
519 static unsigned long nr_unshown;
520
521 /*
522 * Allow a burst of 60 reports, then keep quiet for that minute;
523 * or allow a steady drip of one report per second.
524 */
525 if (nr_shown == 60) {
526 if (time_before(jiffies, resume)) {
527 nr_unshown++;
528 goto out;
529 }
530 if (nr_unshown) {
ff8e8116 531 pr_alert(
1e9e6365 532 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
533 nr_unshown);
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
540
ff8e8116 541 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 542 current->comm, page_to_pfn(page));
ff8e8116
VB
543 __dump_page(page, reason);
544 bad_flags &= page->flags;
545 if (bad_flags)
546 pr_alert("bad because of flags: %#lx(%pGp)\n",
547 bad_flags, &bad_flags);
4e462112 548 dump_page_owner(page);
3dc14741 549
4f31888c 550 print_modules();
1da177e4 551 dump_stack();
d936cf9b 552out:
8cc3b392 553 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 554 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 555 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
556}
557
1da177e4
LT
558/*
559 * Higher-order pages are called "compound pages". They are structured thusly:
560 *
1d798ca3 561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 562 *
1d798ca3
KS
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 565 *
1d798ca3
KS
566 * The first tail page's ->compound_dtor holds the offset in array of compound
567 * page destructors. See compound_page_dtors.
1da177e4 568 *
1d798ca3 569 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 570 * This usage means that zero-order pages may not be compound.
1da177e4 571 */
d98c7a09 572
9a982250 573void free_compound_page(struct page *page)
d98c7a09 574{
d85f3385 575 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
576}
577
d00181b9 578void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
579{
580 int i;
581 int nr_pages = 1 << order;
582
f1e61557 583 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
584 set_compound_order(page, order);
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++) {
587 struct page *p = page + i;
58a84aa9 588 set_page_count(p, 0);
1c290f64 589 p->mapping = TAIL_MAPPING;
1d798ca3 590 set_compound_head(p, page);
18229df5 591 }
53f9263b 592 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
593}
594
c0a32fc5
SG
595#ifdef CONFIG_DEBUG_PAGEALLOC
596unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
597bool _debug_pagealloc_enabled __read_mostly
598 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 599EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
600bool _debug_guardpage_enabled __read_mostly;
601
031bc574
JK
602static int __init early_debug_pagealloc(char *buf)
603{
604 if (!buf)
605 return -EINVAL;
2a138dc7 606 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
607}
608early_param("debug_pagealloc", early_debug_pagealloc);
609
e30825f1
JK
610static bool need_debug_guardpage(void)
611{
031bc574
JK
612 /* If we don't use debug_pagealloc, we don't need guard page */
613 if (!debug_pagealloc_enabled())
614 return false;
615
f1c1e9f7
JK
616 if (!debug_guardpage_minorder())
617 return false;
618
e30825f1
JK
619 return true;
620}
621
622static void init_debug_guardpage(void)
623{
031bc574
JK
624 if (!debug_pagealloc_enabled())
625 return;
626
f1c1e9f7
JK
627 if (!debug_guardpage_minorder())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
f1c1e9f7 650early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 651
acbc15a4 652static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
acbc15a4
JK
658 return false;
659
660 if (order >= debug_guardpage_minorder())
661 return false;
e30825f1
JK
662
663 page_ext = lookup_page_ext(page);
f86e4271 664 if (unlikely(!page_ext))
acbc15a4 665 return false;
f86e4271 666
e30825f1
JK
667 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
668
2847cf95
JK
669 INIT_LIST_HEAD(&page->lru);
670 set_page_private(page, order);
671 /* Guard pages are not available for any usage */
672 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
673
674 return true;
c0a32fc5
SG
675}
676
2847cf95
JK
677static inline void clear_page_guard(struct zone *zone, struct page *page,
678 unsigned int order, int migratetype)
c0a32fc5 679{
e30825f1
JK
680 struct page_ext *page_ext;
681
682 if (!debug_guardpage_enabled())
683 return;
684
685 page_ext = lookup_page_ext(page);
f86e4271
YS
686 if (unlikely(!page_ext))
687 return;
688
e30825f1
JK
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
980ac167 696struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
697static inline bool set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) { return false; }
2847cf95
JK
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13ad59df 718 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
c0a32fc5 733 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
4c5018ce
WY
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
c0a32fc5
SG
739 return 1;
740 }
741
cb2b95e1 742 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
743 /*
744 * zone check is done late to avoid uselessly
745 * calculating zone/node ids for pages that could
746 * never merge.
747 */
748 if (page_zone_id(page) != page_zone_id(buddy))
749 return 0;
750
4c5018ce
WY
751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752
6aa3001b 753 return 1;
676165a8 754 }
6aa3001b 755 return 0;
1da177e4
LT
756}
757
758/*
759 * Freeing function for a buddy system allocator.
760 *
761 * The concept of a buddy system is to maintain direct-mapped table
762 * (containing bit values) for memory blocks of various "orders".
763 * The bottom level table contains the map for the smallest allocatable
764 * units of memory (here, pages), and each level above it describes
765 * pairs of units from the levels below, hence, "buddies".
766 * At a high level, all that happens here is marking the table entry
767 * at the bottom level available, and propagating the changes upward
768 * as necessary, plus some accounting needed to play nicely with other
769 * parts of the VM system.
770 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
771 * free pages of length of (1 << order) and marked with _mapcount
772 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
773 * field.
1da177e4 774 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
775 * other. That is, if we allocate a small block, and both were
776 * free, the remainder of the region must be split into blocks.
1da177e4 777 * If a block is freed, and its buddy is also free, then this
5f63b720 778 * triggers coalescing into a block of larger size.
1da177e4 779 *
6d49e352 780 * -- nyc
1da177e4
LT
781 */
782
48db57f8 783static inline void __free_one_page(struct page *page,
dc4b0caf 784 unsigned long pfn,
ed0ae21d
MG
785 struct zone *zone, unsigned int order,
786 int migratetype)
1da177e4 787{
76741e77
VB
788 unsigned long combined_pfn;
789 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 790 struct page *buddy;
d9dddbf5
VB
791 unsigned int max_order;
792
793 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 794
d29bb978 795 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 796 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 797
ed0ae21d 798 VM_BUG_ON(migratetype == -1);
d9dddbf5 799 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 800 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 801
76741e77 802 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 804
d9dddbf5 805continue_merging:
3c605096 806 while (order < max_order - 1) {
76741e77
VB
807 buddy_pfn = __find_buddy_pfn(pfn, order);
808 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
809
810 if (!pfn_valid_within(buddy_pfn))
811 goto done_merging;
cb2b95e1 812 if (!page_is_buddy(page, buddy, order))
d9dddbf5 813 goto done_merging;
c0a32fc5
SG
814 /*
815 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
816 * merge with it and move up one order.
817 */
818 if (page_is_guard(buddy)) {
2847cf95 819 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
820 } else {
821 list_del(&buddy->lru);
822 zone->free_area[order].nr_free--;
823 rmv_page_order(buddy);
824 }
76741e77
VB
825 combined_pfn = buddy_pfn & pfn;
826 page = page + (combined_pfn - pfn);
827 pfn = combined_pfn;
1da177e4
LT
828 order++;
829 }
d9dddbf5
VB
830 if (max_order < MAX_ORDER) {
831 /* If we are here, it means order is >= pageblock_order.
832 * We want to prevent merge between freepages on isolate
833 * pageblock and normal pageblock. Without this, pageblock
834 * isolation could cause incorrect freepage or CMA accounting.
835 *
836 * We don't want to hit this code for the more frequent
837 * low-order merging.
838 */
839 if (unlikely(has_isolate_pageblock(zone))) {
840 int buddy_mt;
841
76741e77
VB
842 buddy_pfn = __find_buddy_pfn(pfn, order);
843 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
844 buddy_mt = get_pageblock_migratetype(buddy);
845
846 if (migratetype != buddy_mt
847 && (is_migrate_isolate(migratetype) ||
848 is_migrate_isolate(buddy_mt)))
849 goto done_merging;
850 }
851 max_order++;
852 goto continue_merging;
853 }
854
855done_merging:
1da177e4 856 set_page_order(page, order);
6dda9d55
CZ
857
858 /*
859 * If this is not the largest possible page, check if the buddy
860 * of the next-highest order is free. If it is, it's possible
861 * that pages are being freed that will coalesce soon. In case,
862 * that is happening, add the free page to the tail of the list
863 * so it's less likely to be used soon and more likely to be merged
864 * as a higher order page
865 */
13ad59df 866 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 867 struct page *higher_page, *higher_buddy;
76741e77
VB
868 combined_pfn = buddy_pfn & pfn;
869 higher_page = page + (combined_pfn - pfn);
870 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
871 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
6dda9d55
CZ
872 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
873 list_add_tail(&page->lru,
874 &zone->free_area[order].free_list[migratetype]);
875 goto out;
876 }
877 }
878
879 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
880out:
1da177e4
LT
881 zone->free_area[order].nr_free++;
882}
883
7bfec6f4
MG
884/*
885 * A bad page could be due to a number of fields. Instead of multiple branches,
886 * try and check multiple fields with one check. The caller must do a detailed
887 * check if necessary.
888 */
889static inline bool page_expected_state(struct page *page,
890 unsigned long check_flags)
891{
892 if (unlikely(atomic_read(&page->_mapcount) != -1))
893 return false;
894
895 if (unlikely((unsigned long)page->mapping |
896 page_ref_count(page) |
897#ifdef CONFIG_MEMCG
898 (unsigned long)page->mem_cgroup |
899#endif
900 (page->flags & check_flags)))
901 return false;
902
903 return true;
904}
905
bb552ac6 906static void free_pages_check_bad(struct page *page)
1da177e4 907{
7bfec6f4
MG
908 const char *bad_reason;
909 unsigned long bad_flags;
910
7bfec6f4
MG
911 bad_reason = NULL;
912 bad_flags = 0;
f0b791a3 913
53f9263b 914 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
915 bad_reason = "nonzero mapcount";
916 if (unlikely(page->mapping != NULL))
917 bad_reason = "non-NULL mapping";
fe896d18 918 if (unlikely(page_ref_count(page) != 0))
0139aa7b 919 bad_reason = "nonzero _refcount";
f0b791a3
DH
920 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
921 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
922 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
923 }
9edad6ea
JW
924#ifdef CONFIG_MEMCG
925 if (unlikely(page->mem_cgroup))
926 bad_reason = "page still charged to cgroup";
927#endif
7bfec6f4 928 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
929}
930
931static inline int free_pages_check(struct page *page)
932{
da838d4f 933 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 934 return 0;
bb552ac6
MG
935
936 /* Something has gone sideways, find it */
937 free_pages_check_bad(page);
7bfec6f4 938 return 1;
1da177e4
LT
939}
940
4db7548c
MG
941static int free_tail_pages_check(struct page *head_page, struct page *page)
942{
943 int ret = 1;
944
945 /*
946 * We rely page->lru.next never has bit 0 set, unless the page
947 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
948 */
949 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
950
951 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
952 ret = 0;
953 goto out;
954 }
955 switch (page - head_page) {
956 case 1:
957 /* the first tail page: ->mapping is compound_mapcount() */
958 if (unlikely(compound_mapcount(page))) {
959 bad_page(page, "nonzero compound_mapcount", 0);
960 goto out;
961 }
962 break;
963 case 2:
964 /*
965 * the second tail page: ->mapping is
966 * page_deferred_list().next -- ignore value.
967 */
968 break;
969 default:
970 if (page->mapping != TAIL_MAPPING) {
971 bad_page(page, "corrupted mapping in tail page", 0);
972 goto out;
973 }
974 break;
975 }
976 if (unlikely(!PageTail(page))) {
977 bad_page(page, "PageTail not set", 0);
978 goto out;
979 }
980 if (unlikely(compound_head(page) != head_page)) {
981 bad_page(page, "compound_head not consistent", 0);
982 goto out;
983 }
984 ret = 0;
985out:
986 page->mapping = NULL;
987 clear_compound_head(page);
988 return ret;
989}
990
e2769dbd
MG
991static __always_inline bool free_pages_prepare(struct page *page,
992 unsigned int order, bool check_free)
4db7548c 993{
e2769dbd 994 int bad = 0;
4db7548c 995
4db7548c
MG
996 VM_BUG_ON_PAGE(PageTail(page), page);
997
e2769dbd
MG
998 trace_mm_page_free(page, order);
999 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1000
1001 /*
1002 * Check tail pages before head page information is cleared to
1003 * avoid checking PageCompound for order-0 pages.
1004 */
1005 if (unlikely(order)) {
1006 bool compound = PageCompound(page);
1007 int i;
1008
1009 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1010
9a73f61b
KS
1011 if (compound)
1012 ClearPageDoubleMap(page);
e2769dbd
MG
1013 for (i = 1; i < (1 << order); i++) {
1014 if (compound)
1015 bad += free_tail_pages_check(page, page + i);
1016 if (unlikely(free_pages_check(page + i))) {
1017 bad++;
1018 continue;
1019 }
1020 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1021 }
1022 }
bda807d4 1023 if (PageMappingFlags(page))
4db7548c 1024 page->mapping = NULL;
c4159a75 1025 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1026 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
4db7548c 1031
e2769dbd
MG
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
4db7548c
MG
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
e2769dbd 1038 PAGE_SIZE << order);
4db7548c 1039 debug_check_no_obj_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 }
e2769dbd
MG
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
29b52de1 1045 kasan_free_pages(page, order);
4db7548c 1046
4db7548c
MG
1047 return true;
1048}
1049
e2769dbd
MG
1050#ifdef CONFIG_DEBUG_VM
1051static inline bool free_pcp_prepare(struct page *page)
1052{
1053 return free_pages_prepare(page, 0, true);
1054}
1055
1056static inline bool bulkfree_pcp_prepare(struct page *page)
1057{
1058 return false;
1059}
1060#else
1061static bool free_pcp_prepare(struct page *page)
1062{
1063 return free_pages_prepare(page, 0, false);
1064}
1065
4db7548c
MG
1066static bool bulkfree_pcp_prepare(struct page *page)
1067{
1068 return free_pages_check(page);
1069}
1070#endif /* CONFIG_DEBUG_VM */
1071
1da177e4 1072/*
5f8dcc21 1073 * Frees a number of pages from the PCP lists
1da177e4 1074 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1075 * count is the number of pages to free.
1da177e4
LT
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
5f8dcc21
MG
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084 struct per_cpu_pages *pcp)
1da177e4 1085{
5f8dcc21 1086 int migratetype = 0;
a6f9edd6 1087 int batch_free = 0;
374ad05a 1088 unsigned long nr_scanned, flags;
3777999d 1089 bool isolated_pageblocks;
5f8dcc21 1090
374ad05a 1091 spin_lock_irqsave(&zone->lock, flags);
3777999d 1092 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1093 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1094 if (nr_scanned)
599d0c95 1095 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1096
e5b31ac2 1097 while (count) {
48db57f8 1098 struct page *page;
5f8dcc21
MG
1099 struct list_head *list;
1100
1101 /*
a6f9edd6
MG
1102 * Remove pages from lists in a round-robin fashion. A
1103 * batch_free count is maintained that is incremented when an
1104 * empty list is encountered. This is so more pages are freed
1105 * off fuller lists instead of spinning excessively around empty
1106 * lists
5f8dcc21
MG
1107 */
1108 do {
a6f9edd6 1109 batch_free++;
5f8dcc21
MG
1110 if (++migratetype == MIGRATE_PCPTYPES)
1111 migratetype = 0;
1112 list = &pcp->lists[migratetype];
1113 } while (list_empty(list));
48db57f8 1114
1d16871d
NK
1115 /* This is the only non-empty list. Free them all. */
1116 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1117 batch_free = count;
1d16871d 1118
a6f9edd6 1119 do {
770c8aaa
BZ
1120 int mt; /* migratetype of the to-be-freed page */
1121
a16601c5 1122 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1123 /* must delete as __free_one_page list manipulates */
1124 list_del(&page->lru);
aa016d14 1125
bb14c2c7 1126 mt = get_pcppage_migratetype(page);
aa016d14
VB
1127 /* MIGRATE_ISOLATE page should not go to pcplists */
1128 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1129 /* Pageblock could have been isolated meanwhile */
3777999d 1130 if (unlikely(isolated_pageblocks))
51bb1a40 1131 mt = get_pageblock_migratetype(page);
51bb1a40 1132
4db7548c
MG
1133 if (bulkfree_pcp_prepare(page))
1134 continue;
1135
dc4b0caf 1136 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1137 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1138 } while (--count && --batch_free && !list_empty(list));
1da177e4 1139 }
374ad05a 1140 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1141}
1142
dc4b0caf
MG
1143static void free_one_page(struct zone *zone,
1144 struct page *page, unsigned long pfn,
7aeb09f9 1145 unsigned int order,
ed0ae21d 1146 int migratetype)
1da177e4 1147{
374ad05a
MG
1148 unsigned long nr_scanned, flags;
1149 spin_lock_irqsave(&zone->lock, flags);
1150 __count_vm_events(PGFREE, 1 << order);
599d0c95 1151 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1152 if (nr_scanned)
599d0c95 1153 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1154
ad53f92e
JK
1155 if (unlikely(has_isolate_pageblock(zone) ||
1156 is_migrate_isolate(migratetype))) {
1157 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1158 }
dc4b0caf 1159 __free_one_page(page, pfn, zone, order, migratetype);
374ad05a 1160 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1161}
1162
1e8ce83c
RH
1163static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1164 unsigned long zone, int nid)
1165{
1e8ce83c 1166 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1167 init_page_count(page);
1168 page_mapcount_reset(page);
1169 page_cpupid_reset_last(page);
1e8ce83c 1170
1e8ce83c
RH
1171 INIT_LIST_HEAD(&page->lru);
1172#ifdef WANT_PAGE_VIRTUAL
1173 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1174 if (!is_highmem_idx(zone))
1175 set_page_address(page, __va(pfn << PAGE_SHIFT));
1176#endif
1177}
1178
1179static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1180 int nid)
1181{
1182 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1183}
1184
7e18adb4
MG
1185#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1186static void init_reserved_page(unsigned long pfn)
1187{
1188 pg_data_t *pgdat;
1189 int nid, zid;
1190
1191 if (!early_page_uninitialised(pfn))
1192 return;
1193
1194 nid = early_pfn_to_nid(pfn);
1195 pgdat = NODE_DATA(nid);
1196
1197 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1198 struct zone *zone = &pgdat->node_zones[zid];
1199
1200 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1201 break;
1202 }
1203 __init_single_pfn(pfn, zid, nid);
1204}
1205#else
1206static inline void init_reserved_page(unsigned long pfn)
1207{
1208}
1209#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1210
92923ca3
NZ
1211/*
1212 * Initialised pages do not have PageReserved set. This function is
1213 * called for each range allocated by the bootmem allocator and
1214 * marks the pages PageReserved. The remaining valid pages are later
1215 * sent to the buddy page allocator.
1216 */
4b50bcc7 1217void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1218{
1219 unsigned long start_pfn = PFN_DOWN(start);
1220 unsigned long end_pfn = PFN_UP(end);
1221
7e18adb4
MG
1222 for (; start_pfn < end_pfn; start_pfn++) {
1223 if (pfn_valid(start_pfn)) {
1224 struct page *page = pfn_to_page(start_pfn);
1225
1226 init_reserved_page(start_pfn);
1d798ca3
KS
1227
1228 /* Avoid false-positive PageTail() */
1229 INIT_LIST_HEAD(&page->lru);
1230
7e18adb4
MG
1231 SetPageReserved(page);
1232 }
1233 }
92923ca3
NZ
1234}
1235
ec95f53a
KM
1236static void __free_pages_ok(struct page *page, unsigned int order)
1237{
95e34412 1238 int migratetype;
dc4b0caf 1239 unsigned long pfn = page_to_pfn(page);
ec95f53a 1240
e2769dbd 1241 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1242 return;
1243
cfc47a28 1244 migratetype = get_pfnblock_migratetype(page, pfn);
dc4b0caf 1245 free_one_page(page_zone(page), page, pfn, order, migratetype);
1da177e4
LT
1246}
1247
949698a3 1248static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1249{
c3993076 1250 unsigned int nr_pages = 1 << order;
e2d0bd2b 1251 struct page *p = page;
c3993076 1252 unsigned int loop;
a226f6c8 1253
e2d0bd2b
YL
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
c3993076
JW
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
a226f6c8 1259 }
e2d0bd2b
YL
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
c3993076 1262
e2d0bd2b 1263 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
a226f6c8
DH
1266}
1267
75a592a4
MG
1268#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1270
75a592a4
MG
1271static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273int __meminit early_pfn_to_nid(unsigned long pfn)
1274{
7ace9917 1275 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1276 int nid;
1277
7ace9917 1278 spin_lock(&early_pfn_lock);
75a592a4 1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1280 if (nid < 0)
e4568d38 1281 nid = first_online_node;
7ace9917
MG
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
75a592a4
MG
1285}
1286#endif
1287
1288#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291{
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298}
1299
1300/* Only safe to use early in boot when initialisation is single-threaded */
1301static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302{
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304}
1305
1306#else
1307
1308static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309{
1310 return true;
1311}
1312static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314{
1315 return true;
1316}
1317#endif
1318
1319
0e1cc95b 1320void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1321 unsigned int order)
1322{
1323 if (early_page_uninitialised(pfn))
1324 return;
949698a3 1325 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1326}
1327
7cf91a98
JK
1328/*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347{
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369}
1370
1371void set_zone_contiguous(struct zone *zone)
1372{
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390}
1391
1392void clear_zone_contiguous(struct zone *zone)
1393{
1394 zone->contiguous = false;
1395}
1396
7e18adb4 1397#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1398static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1399 unsigned long pfn, int nr_pages)
1400{
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1410 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1411 return;
1412 }
1413
e780149b
XQ
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1417 __free_pages_boot_core(page, 0);
e780149b 1418 }
a4de83dd
MG
1419}
1420
d3cd131d
NS
1421/* Completion tracking for deferred_init_memmap() threads */
1422static atomic_t pgdat_init_n_undone __initdata;
1423static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425static inline void __init pgdat_init_report_one_done(void)
1426{
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429}
0e1cc95b 1430
7e18adb4 1431/* Initialise remaining memory on a node */
0e1cc95b 1432static int __init deferred_init_memmap(void *data)
7e18adb4 1433{
0e1cc95b
MG
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
7e18adb4
MG
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
7e18adb4 1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1444
0e1cc95b 1445 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1446 pgdat_init_report_one_done();
0e1cc95b
MG
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
54608c3f 1468 struct page *page = NULL;
a4de83dd
MG
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
7e18adb4
MG
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
54608c3f 1481 if (!pfn_valid_within(pfn))
a4de83dd 1482 goto free_range;
7e18adb4 1483
54608c3f
MG
1484 /*
1485 * Ensure pfn_valid is checked every
e780149b 1486 * pageblock_nr_pages for memory holes
54608c3f 1487 */
e780149b 1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
a4de83dd 1497 goto free_range;
54608c3f
MG
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
e780149b 1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1502 page++;
1503 } else {
a4de83dd
MG
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
54608c3f
MG
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
7e18adb4
MG
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1516 goto free_range;
7e18adb4
MG
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
7e18adb4 1536 }
e780149b
XQ
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1540
7e18adb4
MG
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
0e1cc95b 1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1548 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1549
1550 pgdat_init_report_one_done();
0e1cc95b
MG
1551 return 0;
1552}
7cf91a98 1553#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1554
1555void __init page_alloc_init_late(void)
1556{
7cf91a98
JK
1557 struct zone *zone;
1558
1559#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1560 int nid;
1561
d3cd131d
NS
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1564 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
d3cd131d 1569 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
7cf91a98
JK
1573#endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
7e18adb4 1577}
7e18adb4 1578
47118af0 1579#ifdef CONFIG_CMA
9cf510a5 1580/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1581void __init init_cma_reserved_pageblock(struct page *page)
1582{
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
47118af0 1591 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
3dcc0571 1606 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1607}
1608#endif
1da177e4
LT
1609
1610/*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
6d49e352 1622 * -- nyc
1da177e4 1623 */
085cc7d5 1624static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1da177e4
LT
1627{
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
309381fe 1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1635
acbc15a4
JK
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1643 continue;
acbc15a4 1644
b2a0ac88 1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1da177e4
LT
1649}
1650
4e611801 1651static void check_new_page_bad(struct page *page)
1da177e4 1652{
4e611801
VB
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
7bfec6f4 1655
53f9263b 1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
fe896d18 1660 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1661 bad_reason = "nonzero _count";
f4c18e6f
NH
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
e570f56c
NH
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
f4c18e6f 1668 }
f0b791a3
DH
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
9edad6ea
JW
1673#ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676#endif
4e611801
VB
1677 bad_page(page, bad_reason, bad_flags);
1678}
1679
1680/*
1681 * This page is about to be returned from the page allocator
1682 */
1683static inline int check_new_page(struct page *page)
1684{
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
2a7684a2
WF
1691}
1692
1414c7f4
LA
1693static inline bool free_pages_prezeroed(bool poisoned)
1694{
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled() && poisoned;
1697}
1698
479f854a
MG
1699#ifdef CONFIG_DEBUG_VM
1700static bool check_pcp_refill(struct page *page)
1701{
1702 return false;
1703}
1704
1705static bool check_new_pcp(struct page *page)
1706{
1707 return check_new_page(page);
1708}
1709#else
1710static bool check_pcp_refill(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714static bool check_new_pcp(struct page *page)
1715{
1716 return false;
1717}
1718#endif /* CONFIG_DEBUG_VM */
1719
1720static bool check_new_pages(struct page *page, unsigned int order)
1721{
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731}
1732
46f24fd8
JK
1733inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735{
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744}
1745
479f854a 1746static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1747 unsigned int alloc_flags)
2a7684a2
WF
1748{
1749 int i;
1414c7f4 1750 bool poisoned = true;
2a7684a2
WF
1751
1752 for (i = 0; i < (1 << order); i++) {
1753 struct page *p = page + i;
1414c7f4
LA
1754 if (poisoned)
1755 poisoned &= page_is_poisoned(p);
2a7684a2 1756 }
689bcebf 1757
46f24fd8 1758 post_alloc_hook(page, order, gfp_flags);
17cf4406 1759
1414c7f4 1760 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1761 for (i = 0; i < (1 << order); i++)
1762 clear_highpage(page + i);
17cf4406
NP
1763
1764 if (order && (gfp_flags & __GFP_COMP))
1765 prep_compound_page(page, order);
1766
75379191 1767 /*
2f064f34 1768 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1769 * allocate the page. The expectation is that the caller is taking
1770 * steps that will free more memory. The caller should avoid the page
1771 * being used for !PFMEMALLOC purposes.
1772 */
2f064f34
MH
1773 if (alloc_flags & ALLOC_NO_WATERMARKS)
1774 set_page_pfmemalloc(page);
1775 else
1776 clear_page_pfmemalloc(page);
1da177e4
LT
1777}
1778
56fd56b8
MG
1779/*
1780 * Go through the free lists for the given migratetype and remove
1781 * the smallest available page from the freelists
1782 */
728ec980
MG
1783static inline
1784struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1785 int migratetype)
1786{
1787 unsigned int current_order;
b8af2941 1788 struct free_area *area;
56fd56b8
MG
1789 struct page *page;
1790
1791 /* Find a page of the appropriate size in the preferred list */
1792 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1793 area = &(zone->free_area[current_order]);
a16601c5 1794 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1795 struct page, lru);
a16601c5
GT
1796 if (!page)
1797 continue;
56fd56b8
MG
1798 list_del(&page->lru);
1799 rmv_page_order(page);
1800 area->nr_free--;
56fd56b8 1801 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1802 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1803 return page;
1804 }
1805
1806 return NULL;
1807}
1808
1809
b2a0ac88
MG
1810/*
1811 * This array describes the order lists are fallen back to when
1812 * the free lists for the desirable migrate type are depleted
1813 */
47118af0 1814static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1815 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1817 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1818#ifdef CONFIG_CMA
974a786e 1819 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1820#endif
194159fb 1821#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1822 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1823#endif
b2a0ac88
MG
1824};
1825
dc67647b
JK
1826#ifdef CONFIG_CMA
1827static struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order)
1829{
1830 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831}
1832#else
1833static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order) { return NULL; }
1835#endif
1836
c361be55
MG
1837/*
1838 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1839 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1840 * boundary. If alignment is required, use move_freepages_block()
1841 */
435b405c 1842int move_freepages(struct zone *zone,
b69a7288
AB
1843 struct page *start_page, struct page *end_page,
1844 int migratetype)
c361be55
MG
1845{
1846 struct page *page;
d00181b9 1847 unsigned int order;
d100313f 1848 int pages_moved = 0;
c361be55
MG
1849
1850#ifndef CONFIG_HOLES_IN_ZONE
1851 /*
1852 * page_zone is not safe to call in this context when
1853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1854 * anyway as we check zone boundaries in move_freepages_block().
1855 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1856 * grouping pages by mobility
c361be55 1857 */
97ee4ba7 1858 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1859#endif
1860
1861 for (page = start_page; page <= end_page;) {
1862 if (!pfn_valid_within(page_to_pfn(page))) {
1863 page++;
1864 continue;
1865 }
1866
f073bdc5
AB
1867 /* Make sure we are not inadvertently changing nodes */
1868 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1869
c361be55
MG
1870 if (!PageBuddy(page)) {
1871 page++;
1872 continue;
1873 }
1874
1875 order = page_order(page);
84be48d8
KS
1876 list_move(&page->lru,
1877 &zone->free_area[order].free_list[migratetype]);
c361be55 1878 page += 1 << order;
d100313f 1879 pages_moved += 1 << order;
c361be55
MG
1880 }
1881
d100313f 1882 return pages_moved;
c361be55
MG
1883}
1884
ee6f509c 1885int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1886 int migratetype)
c361be55
MG
1887{
1888 unsigned long start_pfn, end_pfn;
1889 struct page *start_page, *end_page;
1890
1891 start_pfn = page_to_pfn(page);
d9c23400 1892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1893 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1894 end_page = start_page + pageblock_nr_pages - 1;
1895 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1896
1897 /* Do not cross zone boundaries */
108bcc96 1898 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1899 start_page = page;
108bcc96 1900 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1901 return 0;
1902
1903 return move_freepages(zone, start_page, end_page, migratetype);
1904}
1905
2f66a68f
MG
1906static void change_pageblock_range(struct page *pageblock_page,
1907 int start_order, int migratetype)
1908{
1909 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910
1911 while (nr_pageblocks--) {
1912 set_pageblock_migratetype(pageblock_page, migratetype);
1913 pageblock_page += pageblock_nr_pages;
1914 }
1915}
1916
fef903ef 1917/*
9c0415eb
VB
1918 * When we are falling back to another migratetype during allocation, try to
1919 * steal extra free pages from the same pageblocks to satisfy further
1920 * allocations, instead of polluting multiple pageblocks.
1921 *
1922 * If we are stealing a relatively large buddy page, it is likely there will
1923 * be more free pages in the pageblock, so try to steal them all. For
1924 * reclaimable and unmovable allocations, we steal regardless of page size,
1925 * as fragmentation caused by those allocations polluting movable pageblocks
1926 * is worse than movable allocations stealing from unmovable and reclaimable
1927 * pageblocks.
fef903ef 1928 */
4eb7dce6
JK
1929static bool can_steal_fallback(unsigned int order, int start_mt)
1930{
1931 /*
1932 * Leaving this order check is intended, although there is
1933 * relaxed order check in next check. The reason is that
1934 * we can actually steal whole pageblock if this condition met,
1935 * but, below check doesn't guarantee it and that is just heuristic
1936 * so could be changed anytime.
1937 */
1938 if (order >= pageblock_order)
1939 return true;
1940
1941 if (order >= pageblock_order / 2 ||
1942 start_mt == MIGRATE_RECLAIMABLE ||
1943 start_mt == MIGRATE_UNMOVABLE ||
1944 page_group_by_mobility_disabled)
1945 return true;
1946
1947 return false;
1948}
1949
1950/*
1951 * This function implements actual steal behaviour. If order is large enough,
1952 * we can steal whole pageblock. If not, we first move freepages in this
1953 * pageblock and check whether half of pages are moved or not. If half of
1954 * pages are moved, we can change migratetype of pageblock and permanently
1955 * use it's pages as requested migratetype in the future.
1956 */
1957static void steal_suitable_fallback(struct zone *zone, struct page *page,
1958 int start_type)
fef903ef 1959{
d00181b9 1960 unsigned int current_order = page_order(page);
4eb7dce6 1961 int pages;
fef903ef 1962
fef903ef
SB
1963 /* Take ownership for orders >= pageblock_order */
1964 if (current_order >= pageblock_order) {
1965 change_pageblock_range(page, current_order, start_type);
3a1086fb 1966 return;
fef903ef
SB
1967 }
1968
4eb7dce6 1969 pages = move_freepages_block(zone, page, start_type);
fef903ef 1970
4eb7dce6
JK
1971 /* Claim the whole block if over half of it is free */
1972 if (pages >= (1 << (pageblock_order-1)) ||
1973 page_group_by_mobility_disabled)
1974 set_pageblock_migratetype(page, start_type);
1975}
1976
2149cdae
JK
1977/*
1978 * Check whether there is a suitable fallback freepage with requested order.
1979 * If only_stealable is true, this function returns fallback_mt only if
1980 * we can steal other freepages all together. This would help to reduce
1981 * fragmentation due to mixed migratetype pages in one pageblock.
1982 */
1983int find_suitable_fallback(struct free_area *area, unsigned int order,
1984 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1985{
1986 int i;
1987 int fallback_mt;
1988
1989 if (area->nr_free == 0)
1990 return -1;
1991
1992 *can_steal = false;
1993 for (i = 0;; i++) {
1994 fallback_mt = fallbacks[migratetype][i];
974a786e 1995 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1996 break;
1997
1998 if (list_empty(&area->free_list[fallback_mt]))
1999 continue;
fef903ef 2000
4eb7dce6
JK
2001 if (can_steal_fallback(order, migratetype))
2002 *can_steal = true;
2003
2149cdae
JK
2004 if (!only_stealable)
2005 return fallback_mt;
2006
2007 if (*can_steal)
2008 return fallback_mt;
fef903ef 2009 }
4eb7dce6
JK
2010
2011 return -1;
fef903ef
SB
2012}
2013
0aaa29a5
MG
2014/*
2015 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2016 * there are no empty page blocks that contain a page with a suitable order
2017 */
2018static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2019 unsigned int alloc_order)
2020{
2021 int mt;
2022 unsigned long max_managed, flags;
2023
2024 /*
2025 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2026 * Check is race-prone but harmless.
2027 */
2028 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 return;
2031
2032 spin_lock_irqsave(&zone->lock, flags);
2033
2034 /* Recheck the nr_reserved_highatomic limit under the lock */
2035 if (zone->nr_reserved_highatomic >= max_managed)
2036 goto out_unlock;
2037
2038 /* Yoink! */
2039 mt = get_pageblock_migratetype(page);
2040 if (mt != MIGRATE_HIGHATOMIC &&
2041 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2042 zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2044 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2045 }
2046
2047out_unlock:
2048 spin_unlock_irqrestore(&zone->lock, flags);
2049}
2050
2051/*
2052 * Used when an allocation is about to fail under memory pressure. This
2053 * potentially hurts the reliability of high-order allocations when under
2054 * intense memory pressure but failed atomic allocations should be easier
2055 * to recover from than an OOM.
29fac03b
MK
2056 *
2057 * If @force is true, try to unreserve a pageblock even though highatomic
2058 * pageblock is exhausted.
0aaa29a5 2059 */
29fac03b
MK
2060static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2061 bool force)
0aaa29a5
MG
2062{
2063 struct zonelist *zonelist = ac->zonelist;
2064 unsigned long flags;
2065 struct zoneref *z;
2066 struct zone *zone;
2067 struct page *page;
2068 int order;
04c8716f 2069 bool ret;
0aaa29a5
MG
2070
2071 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2072 ac->nodemask) {
29fac03b
MK
2073 /*
2074 * Preserve at least one pageblock unless memory pressure
2075 * is really high.
2076 */
2077 if (!force && zone->nr_reserved_highatomic <=
2078 pageblock_nr_pages)
0aaa29a5
MG
2079 continue;
2080
2081 spin_lock_irqsave(&zone->lock, flags);
2082 for (order = 0; order < MAX_ORDER; order++) {
2083 struct free_area *area = &(zone->free_area[order]);
2084
a16601c5
GT
2085 page = list_first_entry_or_null(
2086 &area->free_list[MIGRATE_HIGHATOMIC],
2087 struct page, lru);
2088 if (!page)
0aaa29a5
MG
2089 continue;
2090
0aaa29a5 2091 /*
4855e4a7
MK
2092 * In page freeing path, migratetype change is racy so
2093 * we can counter several free pages in a pageblock
2094 * in this loop althoug we changed the pageblock type
2095 * from highatomic to ac->migratetype. So we should
2096 * adjust the count once.
0aaa29a5 2097 */
4855e4a7
MK
2098 if (get_pageblock_migratetype(page) ==
2099 MIGRATE_HIGHATOMIC) {
2100 /*
2101 * It should never happen but changes to
2102 * locking could inadvertently allow a per-cpu
2103 * drain to add pages to MIGRATE_HIGHATOMIC
2104 * while unreserving so be safe and watch for
2105 * underflows.
2106 */
2107 zone->nr_reserved_highatomic -= min(
2108 pageblock_nr_pages,
2109 zone->nr_reserved_highatomic);
2110 }
0aaa29a5
MG
2111
2112 /*
2113 * Convert to ac->migratetype and avoid the normal
2114 * pageblock stealing heuristics. Minimally, the caller
2115 * is doing the work and needs the pages. More
2116 * importantly, if the block was always converted to
2117 * MIGRATE_UNMOVABLE or another type then the number
2118 * of pageblocks that cannot be completely freed
2119 * may increase.
2120 */
2121 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2122 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2123 if (ret) {
2124 spin_unlock_irqrestore(&zone->lock, flags);
2125 return ret;
2126 }
0aaa29a5
MG
2127 }
2128 spin_unlock_irqrestore(&zone->lock, flags);
2129 }
04c8716f
MK
2130
2131 return false;
0aaa29a5
MG
2132}
2133
b2a0ac88 2134/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2135static inline struct page *
7aeb09f9 2136__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2137{
b8af2941 2138 struct free_area *area;
7aeb09f9 2139 unsigned int current_order;
b2a0ac88 2140 struct page *page;
4eb7dce6
JK
2141 int fallback_mt;
2142 bool can_steal;
b2a0ac88
MG
2143
2144 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2145 for (current_order = MAX_ORDER-1;
2146 current_order >= order && current_order <= MAX_ORDER-1;
2147 --current_order) {
4eb7dce6
JK
2148 area = &(zone->free_area[current_order]);
2149 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2150 start_migratetype, false, &can_steal);
4eb7dce6
JK
2151 if (fallback_mt == -1)
2152 continue;
b2a0ac88 2153
a16601c5 2154 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2155 struct page, lru);
88ed365e
MK
2156 if (can_steal &&
2157 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2158 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2159
4eb7dce6
JK
2160 /* Remove the page from the freelists */
2161 area->nr_free--;
2162 list_del(&page->lru);
2163 rmv_page_order(page);
3a1086fb 2164
4eb7dce6
JK
2165 expand(zone, page, order, current_order, area,
2166 start_migratetype);
2167 /*
bb14c2c7 2168 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2169 * migratetype depending on the decisions in
bb14c2c7
VB
2170 * find_suitable_fallback(). This is OK as long as it does not
2171 * differ for MIGRATE_CMA pageblocks. Those can be used as
2172 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2173 */
bb14c2c7 2174 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2175
4eb7dce6
JK
2176 trace_mm_page_alloc_extfrag(page, order, current_order,
2177 start_migratetype, fallback_mt);
e0fff1bd 2178
4eb7dce6 2179 return page;
b2a0ac88
MG
2180 }
2181
728ec980 2182 return NULL;
b2a0ac88
MG
2183}
2184
56fd56b8 2185/*
1da177e4
LT
2186 * Do the hard work of removing an element from the buddy allocator.
2187 * Call me with the zone->lock already held.
2188 */
b2a0ac88 2189static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2190 int migratetype)
1da177e4 2191{
1da177e4
LT
2192 struct page *page;
2193
56fd56b8 2194 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2195 if (unlikely(!page)) {
dc67647b
JK
2196 if (migratetype == MIGRATE_MOVABLE)
2197 page = __rmqueue_cma_fallback(zone, order);
2198
2199 if (!page)
2200 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2201 }
2202
0d3d062a 2203 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2204 return page;
1da177e4
LT
2205}
2206
5f63b720 2207/*
1da177e4
LT
2208 * Obtain a specified number of elements from the buddy allocator, all under
2209 * a single hold of the lock, for efficiency. Add them to the supplied list.
2210 * Returns the number of new pages which were placed at *list.
2211 */
5f63b720 2212static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2213 unsigned long count, struct list_head *list,
b745bc85 2214 int migratetype, bool cold)
1da177e4 2215{
a6de734b 2216 int i, alloced = 0;
374ad05a 2217 unsigned long flags;
5f63b720 2218
374ad05a 2219 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2220 for (i = 0; i < count; ++i) {
6ac0206b 2221 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2222 if (unlikely(page == NULL))
1da177e4 2223 break;
81eabcbe 2224
479f854a
MG
2225 if (unlikely(check_pcp_refill(page)))
2226 continue;
2227
81eabcbe
MG
2228 /*
2229 * Split buddy pages returned by expand() are received here
2230 * in physical page order. The page is added to the callers and
2231 * list and the list head then moves forward. From the callers
2232 * perspective, the linked list is ordered by page number in
2233 * some conditions. This is useful for IO devices that can
2234 * merge IO requests if the physical pages are ordered
2235 * properly.
2236 */
b745bc85 2237 if (likely(!cold))
e084b2d9
MG
2238 list_add(&page->lru, list);
2239 else
2240 list_add_tail(&page->lru, list);
81eabcbe 2241 list = &page->lru;
a6de734b 2242 alloced++;
bb14c2c7 2243 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2244 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2245 -(1 << order));
1da177e4 2246 }
a6de734b
MG
2247
2248 /*
2249 * i pages were removed from the buddy list even if some leak due
2250 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2251 * on i. Do not confuse with 'alloced' which is the number of
2252 * pages added to the pcp list.
2253 */
f2260e6b 2254 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
374ad05a 2255 spin_unlock_irqrestore(&zone->lock, flags);
a6de734b 2256 return alloced;
1da177e4
LT
2257}
2258
4ae7c039 2259#ifdef CONFIG_NUMA
8fce4d8e 2260/*
4037d452
CL
2261 * Called from the vmstat counter updater to drain pagesets of this
2262 * currently executing processor on remote nodes after they have
2263 * expired.
2264 *
879336c3
CL
2265 * Note that this function must be called with the thread pinned to
2266 * a single processor.
8fce4d8e 2267 */
4037d452 2268void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2269{
4ae7c039 2270 unsigned long flags;
7be12fc9 2271 int to_drain, batch;
4ae7c039 2272
4037d452 2273 local_irq_save(flags);
4db0c3c2 2274 batch = READ_ONCE(pcp->batch);
7be12fc9 2275 to_drain = min(pcp->count, batch);
2a13515c
KM
2276 if (to_drain > 0) {
2277 free_pcppages_bulk(zone, to_drain, pcp);
2278 pcp->count -= to_drain;
2279 }
4037d452 2280 local_irq_restore(flags);
4ae7c039
CL
2281}
2282#endif
2283
9f8f2172 2284/*
93481ff0 2285 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2286 *
2287 * The processor must either be the current processor and the
2288 * thread pinned to the current processor or a processor that
2289 * is not online.
2290 */
93481ff0 2291static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2292{
c54ad30c 2293 unsigned long flags;
93481ff0
VB
2294 struct per_cpu_pageset *pset;
2295 struct per_cpu_pages *pcp;
1da177e4 2296
93481ff0
VB
2297 local_irq_save(flags);
2298 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2299
93481ff0
VB
2300 pcp = &pset->pcp;
2301 if (pcp->count) {
2302 free_pcppages_bulk(zone, pcp->count, pcp);
2303 pcp->count = 0;
2304 }
2305 local_irq_restore(flags);
2306}
3dfa5721 2307
93481ff0
VB
2308/*
2309 * Drain pcplists of all zones on the indicated processor.
2310 *
2311 * The processor must either be the current processor and the
2312 * thread pinned to the current processor or a processor that
2313 * is not online.
2314 */
2315static void drain_pages(unsigned int cpu)
2316{
2317 struct zone *zone;
2318
2319 for_each_populated_zone(zone) {
2320 drain_pages_zone(cpu, zone);
1da177e4
LT
2321 }
2322}
1da177e4 2323
9f8f2172
CL
2324/*
2325 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2326 *
2327 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2328 * the single zone's pages.
9f8f2172 2329 */
93481ff0 2330void drain_local_pages(struct zone *zone)
9f8f2172 2331{
93481ff0
VB
2332 int cpu = smp_processor_id();
2333
2334 if (zone)
2335 drain_pages_zone(cpu, zone);
2336 else
2337 drain_pages(cpu);
9f8f2172
CL
2338}
2339
0ccce3b9
MG
2340static void drain_local_pages_wq(struct work_struct *work)
2341{
a459eeb7
MH
2342 /*
2343 * drain_all_pages doesn't use proper cpu hotplug protection so
2344 * we can race with cpu offline when the WQ can move this from
2345 * a cpu pinned worker to an unbound one. We can operate on a different
2346 * cpu which is allright but we also have to make sure to not move to
2347 * a different one.
2348 */
2349 preempt_disable();
0ccce3b9 2350 drain_local_pages(NULL);
a459eeb7 2351 preempt_enable();
0ccce3b9
MG
2352}
2353
9f8f2172 2354/*
74046494
GBY
2355 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2356 *
93481ff0
VB
2357 * When zone parameter is non-NULL, spill just the single zone's pages.
2358 *
0ccce3b9 2359 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2360 */
93481ff0 2361void drain_all_pages(struct zone *zone)
9f8f2172 2362{
0ccce3b9 2363 struct work_struct __percpu *works;
74046494 2364 int cpu;
74046494
GBY
2365
2366 /*
2367 * Allocate in the BSS so we wont require allocation in
2368 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2369 */
2370 static cpumask_t cpus_with_pcps;
2371
0ccce3b9
MG
2372 /* Workqueues cannot recurse */
2373 if (current->flags & PF_WQ_WORKER)
2374 return;
2375
0ccce3b9
MG
2376 works = alloc_percpu_gfp(struct work_struct, GFP_ATOMIC);
2377
74046494
GBY
2378 /*
2379 * We don't care about racing with CPU hotplug event
2380 * as offline notification will cause the notified
2381 * cpu to drain that CPU pcps and on_each_cpu_mask
2382 * disables preemption as part of its processing
2383 */
2384 for_each_online_cpu(cpu) {
93481ff0
VB
2385 struct per_cpu_pageset *pcp;
2386 struct zone *z;
74046494 2387 bool has_pcps = false;
93481ff0
VB
2388
2389 if (zone) {
74046494 2390 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2391 if (pcp->pcp.count)
74046494 2392 has_pcps = true;
93481ff0
VB
2393 } else {
2394 for_each_populated_zone(z) {
2395 pcp = per_cpu_ptr(z->pageset, cpu);
2396 if (pcp->pcp.count) {
2397 has_pcps = true;
2398 break;
2399 }
74046494
GBY
2400 }
2401 }
93481ff0 2402
74046494
GBY
2403 if (has_pcps)
2404 cpumask_set_cpu(cpu, &cpus_with_pcps);
2405 else
2406 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2407 }
0ccce3b9
MG
2408
2409 if (works) {
2410 for_each_cpu(cpu, &cpus_with_pcps) {
2411 struct work_struct *work = per_cpu_ptr(works, cpu);
2412 INIT_WORK(work, drain_local_pages_wq);
2413 schedule_work_on(cpu, work);
2414 }
2415 for_each_cpu(cpu, &cpus_with_pcps)
2416 flush_work(per_cpu_ptr(works, cpu));
2417 } else {
2418 for_each_cpu(cpu, &cpus_with_pcps) {
2419 struct work_struct work;
2420
2421 INIT_WORK(&work, drain_local_pages_wq);
2422 schedule_work_on(cpu, &work);
2423 flush_work(&work);
2424 }
2425 }
9f8f2172
CL
2426}
2427
296699de 2428#ifdef CONFIG_HIBERNATION
1da177e4
LT
2429
2430void mark_free_pages(struct zone *zone)
2431{
f623f0db
RW
2432 unsigned long pfn, max_zone_pfn;
2433 unsigned long flags;
7aeb09f9 2434 unsigned int order, t;
86760a2c 2435 struct page *page;
1da177e4 2436
8080fc03 2437 if (zone_is_empty(zone))
1da177e4
LT
2438 return;
2439
2440 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2441
108bcc96 2442 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2443 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2444 if (pfn_valid(pfn)) {
86760a2c 2445 page = pfn_to_page(pfn);
ba6b0979
JK
2446
2447 if (page_zone(page) != zone)
2448 continue;
2449
7be98234
RW
2450 if (!swsusp_page_is_forbidden(page))
2451 swsusp_unset_page_free(page);
f623f0db 2452 }
1da177e4 2453
b2a0ac88 2454 for_each_migratetype_order(order, t) {
86760a2c
GT
2455 list_for_each_entry(page,
2456 &zone->free_area[order].free_list[t], lru) {
f623f0db 2457 unsigned long i;
1da177e4 2458
86760a2c 2459 pfn = page_to_pfn(page);
f623f0db 2460 for (i = 0; i < (1UL << order); i++)
7be98234 2461 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2462 }
b2a0ac88 2463 }
1da177e4
LT
2464 spin_unlock_irqrestore(&zone->lock, flags);
2465}
e2c55dc8 2466#endif /* CONFIG_PM */
1da177e4 2467
1da177e4
LT
2468/*
2469 * Free a 0-order page
b745bc85 2470 * cold == true ? free a cold page : free a hot page
1da177e4 2471 */
b745bc85 2472void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2473{
2474 struct zone *zone = page_zone(page);
2475 struct per_cpu_pages *pcp;
dc4b0caf 2476 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2477 int migratetype;
1da177e4 2478
374ad05a
MG
2479 if (in_interrupt()) {
2480 __free_pages_ok(page, 0);
2481 return;
2482 }
2483
4db7548c 2484 if (!free_pcp_prepare(page))
689bcebf
HD
2485 return;
2486
dc4b0caf 2487 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2488 set_pcppage_migratetype(page, migratetype);
374ad05a 2489 preempt_disable();
da456f14 2490
5f8dcc21
MG
2491 /*
2492 * We only track unmovable, reclaimable and movable on pcp lists.
2493 * Free ISOLATE pages back to the allocator because they are being
2494 * offlined but treat RESERVE as movable pages so we can get those
2495 * areas back if necessary. Otherwise, we may have to free
2496 * excessively into the page allocator
2497 */
2498 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2499 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2500 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2501 goto out;
2502 }
2503 migratetype = MIGRATE_MOVABLE;
2504 }
2505
374ad05a 2506 __count_vm_event(PGFREE);
99dcc3e5 2507 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2508 if (!cold)
5f8dcc21 2509 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2510 else
2511 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2512 pcp->count++;
48db57f8 2513 if (pcp->count >= pcp->high) {
4db0c3c2 2514 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2515 free_pcppages_bulk(zone, batch, pcp);
2516 pcp->count -= batch;
48db57f8 2517 }
5f8dcc21
MG
2518
2519out:
374ad05a 2520 preempt_enable();
1da177e4
LT
2521}
2522
cc59850e
KK
2523/*
2524 * Free a list of 0-order pages
2525 */
b745bc85 2526void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2527{
2528 struct page *page, *next;
2529
2530 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2531 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2532 free_hot_cold_page(page, cold);
2533 }
2534}
2535
8dfcc9ba
NP
2536/*
2537 * split_page takes a non-compound higher-order page, and splits it into
2538 * n (1<<order) sub-pages: page[0..n]
2539 * Each sub-page must be freed individually.
2540 *
2541 * Note: this is probably too low level an operation for use in drivers.
2542 * Please consult with lkml before using this in your driver.
2543 */
2544void split_page(struct page *page, unsigned int order)
2545{
2546 int i;
2547
309381fe
SL
2548 VM_BUG_ON_PAGE(PageCompound(page), page);
2549 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2550
2551#ifdef CONFIG_KMEMCHECK
2552 /*
2553 * Split shadow pages too, because free(page[0]) would
2554 * otherwise free the whole shadow.
2555 */
2556 if (kmemcheck_page_is_tracked(page))
2557 split_page(virt_to_page(page[0].shadow), order);
2558#endif
2559
a9627bc5 2560 for (i = 1; i < (1 << order); i++)
7835e98b 2561 set_page_refcounted(page + i);
a9627bc5 2562 split_page_owner(page, order);
8dfcc9ba 2563}
5853ff23 2564EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2565
3c605096 2566int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2567{
748446bb
MG
2568 unsigned long watermark;
2569 struct zone *zone;
2139cbe6 2570 int mt;
748446bb
MG
2571
2572 BUG_ON(!PageBuddy(page));
2573
2574 zone = page_zone(page);
2e30abd1 2575 mt = get_pageblock_migratetype(page);
748446bb 2576
194159fb 2577 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2578 /*
2579 * Obey watermarks as if the page was being allocated. We can
2580 * emulate a high-order watermark check with a raised order-0
2581 * watermark, because we already know our high-order page
2582 * exists.
2583 */
2584 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2585 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2586 return 0;
2587
8fb74b9f 2588 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2589 }
748446bb
MG
2590
2591 /* Remove page from free list */
2592 list_del(&page->lru);
2593 zone->free_area[order].nr_free--;
2594 rmv_page_order(page);
2139cbe6 2595
400bc7fd 2596 /*
2597 * Set the pageblock if the isolated page is at least half of a
2598 * pageblock
2599 */
748446bb
MG
2600 if (order >= pageblock_order - 1) {
2601 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2602 for (; page < endpage; page += pageblock_nr_pages) {
2603 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2604 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2605 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2606 set_pageblock_migratetype(page,
2607 MIGRATE_MOVABLE);
2608 }
748446bb
MG
2609 }
2610
f3a14ced 2611
8fb74b9f 2612 return 1UL << order;
1fb3f8ca
MG
2613}
2614
060e7417
MG
2615/*
2616 * Update NUMA hit/miss statistics
2617 *
2618 * Must be called with interrupts disabled.
060e7417 2619 */
41b6167e 2620static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2621{
2622#ifdef CONFIG_NUMA
060e7417
MG
2623 enum zone_stat_item local_stat = NUMA_LOCAL;
2624
2df26639 2625 if (z->node != numa_node_id())
060e7417 2626 local_stat = NUMA_OTHER;
060e7417 2627
2df26639 2628 if (z->node == preferred_zone->node)
060e7417 2629 __inc_zone_state(z, NUMA_HIT);
2df26639 2630 else {
060e7417
MG
2631 __inc_zone_state(z, NUMA_MISS);
2632 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2633 }
2df26639 2634 __inc_zone_state(z, local_stat);
060e7417
MG
2635#endif
2636}
2637
066b2393
MG
2638/* Remove page from the per-cpu list, caller must protect the list */
2639static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2640 bool cold, struct per_cpu_pages *pcp,
2641 struct list_head *list)
2642{
2643 struct page *page;
2644
374ad05a
MG
2645 VM_BUG_ON(in_interrupt());
2646
066b2393
MG
2647 do {
2648 if (list_empty(list)) {
2649 pcp->count += rmqueue_bulk(zone, 0,
2650 pcp->batch, list,
2651 migratetype, cold);
2652 if (unlikely(list_empty(list)))
2653 return NULL;
2654 }
2655
2656 if (cold)
2657 page = list_last_entry(list, struct page, lru);
2658 else
2659 page = list_first_entry(list, struct page, lru);
2660
2661 list_del(&page->lru);
2662 pcp->count--;
2663 } while (check_new_pcp(page));
2664
2665 return page;
2666}
2667
2668/* Lock and remove page from the per-cpu list */
2669static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2670 struct zone *zone, unsigned int order,
2671 gfp_t gfp_flags, int migratetype)
2672{
2673 struct per_cpu_pages *pcp;
2674 struct list_head *list;
2675 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2676 struct page *page;
066b2393 2677
374ad05a 2678 preempt_disable();
066b2393
MG
2679 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2680 list = &pcp->lists[migratetype];
2681 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2682 if (page) {
2683 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2684 zone_statistics(preferred_zone, zone);
2685 }
374ad05a 2686 preempt_enable();
066b2393
MG
2687 return page;
2688}
2689
1da177e4 2690/*
75379191 2691 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2692 */
0a15c3e9 2693static inline
066b2393 2694struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2695 struct zone *zone, unsigned int order,
c603844b
MG
2696 gfp_t gfp_flags, unsigned int alloc_flags,
2697 int migratetype)
1da177e4
LT
2698{
2699 unsigned long flags;
689bcebf 2700 struct page *page;
1da177e4 2701
374ad05a 2702 if (likely(order == 0) && !in_interrupt()) {
066b2393
MG
2703 page = rmqueue_pcplist(preferred_zone, zone, order,
2704 gfp_flags, migratetype);
2705 goto out;
2706 }
83b9355b 2707
066b2393
MG
2708 /*
2709 * We most definitely don't want callers attempting to
2710 * allocate greater than order-1 page units with __GFP_NOFAIL.
2711 */
2712 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2713 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2714
066b2393
MG
2715 do {
2716 page = NULL;
2717 if (alloc_flags & ALLOC_HARDER) {
2718 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2719 if (page)
2720 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2721 }
a74609fa 2722 if (!page)
066b2393
MG
2723 page = __rmqueue(zone, order, migratetype);
2724 } while (page && check_new_pages(page, order));
2725 spin_unlock(&zone->lock);
2726 if (!page)
2727 goto failed;
2728 __mod_zone_freepage_state(zone, -(1 << order),
2729 get_pcppage_migratetype(page));
1da177e4 2730
16709d1d 2731 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2732 zone_statistics(preferred_zone, zone);
a74609fa 2733 local_irq_restore(flags);
1da177e4 2734
066b2393
MG
2735out:
2736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2737 return page;
a74609fa
NP
2738
2739failed:
2740 local_irq_restore(flags);
a74609fa 2741 return NULL;
1da177e4
LT
2742}
2743
933e312e
AM
2744#ifdef CONFIG_FAIL_PAGE_ALLOC
2745
b2588c4b 2746static struct {
933e312e
AM
2747 struct fault_attr attr;
2748
621a5f7a 2749 bool ignore_gfp_highmem;
71baba4b 2750 bool ignore_gfp_reclaim;
54114994 2751 u32 min_order;
933e312e
AM
2752} fail_page_alloc = {
2753 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2754 .ignore_gfp_reclaim = true,
621a5f7a 2755 .ignore_gfp_highmem = true,
54114994 2756 .min_order = 1,
933e312e
AM
2757};
2758
2759static int __init setup_fail_page_alloc(char *str)
2760{
2761 return setup_fault_attr(&fail_page_alloc.attr, str);
2762}
2763__setup("fail_page_alloc=", setup_fail_page_alloc);
2764
deaf386e 2765static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2766{
54114994 2767 if (order < fail_page_alloc.min_order)
deaf386e 2768 return false;
933e312e 2769 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2770 return false;
933e312e 2771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2772 return false;
71baba4b
MG
2773 if (fail_page_alloc.ignore_gfp_reclaim &&
2774 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2775 return false;
933e312e
AM
2776
2777 return should_fail(&fail_page_alloc.attr, 1 << order);
2778}
2779
2780#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2781
2782static int __init fail_page_alloc_debugfs(void)
2783{
f4ae40a6 2784 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2785 struct dentry *dir;
933e312e 2786
dd48c085
AM
2787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2788 &fail_page_alloc.attr);
2789 if (IS_ERR(dir))
2790 return PTR_ERR(dir);
933e312e 2791
b2588c4b 2792 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2793 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2794 goto fail;
2795 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2796 &fail_page_alloc.ignore_gfp_highmem))
2797 goto fail;
2798 if (!debugfs_create_u32("min-order", mode, dir,
2799 &fail_page_alloc.min_order))
2800 goto fail;
2801
2802 return 0;
2803fail:
dd48c085 2804 debugfs_remove_recursive(dir);
933e312e 2805
b2588c4b 2806 return -ENOMEM;
933e312e
AM
2807}
2808
2809late_initcall(fail_page_alloc_debugfs);
2810
2811#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2812
2813#else /* CONFIG_FAIL_PAGE_ALLOC */
2814
deaf386e 2815static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2816{
deaf386e 2817 return false;
933e312e
AM
2818}
2819
2820#endif /* CONFIG_FAIL_PAGE_ALLOC */
2821
1da177e4 2822/*
97a16fc8
MG
2823 * Return true if free base pages are above 'mark'. For high-order checks it
2824 * will return true of the order-0 watermark is reached and there is at least
2825 * one free page of a suitable size. Checking now avoids taking the zone lock
2826 * to check in the allocation paths if no pages are free.
1da177e4 2827 */
86a294a8
MH
2828bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2829 int classzone_idx, unsigned int alloc_flags,
2830 long free_pages)
1da177e4 2831{
d23ad423 2832 long min = mark;
1da177e4 2833 int o;
c603844b 2834 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2835
0aaa29a5 2836 /* free_pages may go negative - that's OK */
df0a6daa 2837 free_pages -= (1 << order) - 1;
0aaa29a5 2838
7fb1d9fc 2839 if (alloc_flags & ALLOC_HIGH)
1da177e4 2840 min -= min / 2;
0aaa29a5
MG
2841
2842 /*
2843 * If the caller does not have rights to ALLOC_HARDER then subtract
2844 * the high-atomic reserves. This will over-estimate the size of the
2845 * atomic reserve but it avoids a search.
2846 */
97a16fc8 2847 if (likely(!alloc_harder))
0aaa29a5
MG
2848 free_pages -= z->nr_reserved_highatomic;
2849 else
1da177e4 2850 min -= min / 4;
e2b19197 2851
d95ea5d1
BZ
2852#ifdef CONFIG_CMA
2853 /* If allocation can't use CMA areas don't use free CMA pages */
2854 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2855 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2856#endif
026b0814 2857
97a16fc8
MG
2858 /*
2859 * Check watermarks for an order-0 allocation request. If these
2860 * are not met, then a high-order request also cannot go ahead
2861 * even if a suitable page happened to be free.
2862 */
2863 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2864 return false;
1da177e4 2865
97a16fc8
MG
2866 /* If this is an order-0 request then the watermark is fine */
2867 if (!order)
2868 return true;
2869
2870 /* For a high-order request, check at least one suitable page is free */
2871 for (o = order; o < MAX_ORDER; o++) {
2872 struct free_area *area = &z->free_area[o];
2873 int mt;
2874
2875 if (!area->nr_free)
2876 continue;
2877
2878 if (alloc_harder)
2879 return true;
1da177e4 2880
97a16fc8
MG
2881 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2882 if (!list_empty(&area->free_list[mt]))
2883 return true;
2884 }
2885
2886#ifdef CONFIG_CMA
2887 if ((alloc_flags & ALLOC_CMA) &&
2888 !list_empty(&area->free_list[MIGRATE_CMA])) {
2889 return true;
2890 }
2891#endif
1da177e4 2892 }
97a16fc8 2893 return false;
88f5acf8
MG
2894}
2895
7aeb09f9 2896bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2897 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2898{
2899 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2900 zone_page_state(z, NR_FREE_PAGES));
2901}
2902
48ee5f36
MG
2903static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2904 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2905{
2906 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2907 long cma_pages = 0;
2908
2909#ifdef CONFIG_CMA
2910 /* If allocation can't use CMA areas don't use free CMA pages */
2911 if (!(alloc_flags & ALLOC_CMA))
2912 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2913#endif
2914
2915 /*
2916 * Fast check for order-0 only. If this fails then the reserves
2917 * need to be calculated. There is a corner case where the check
2918 * passes but only the high-order atomic reserve are free. If
2919 * the caller is !atomic then it'll uselessly search the free
2920 * list. That corner case is then slower but it is harmless.
2921 */
2922 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2923 return true;
2924
2925 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2926 free_pages);
2927}
2928
7aeb09f9 2929bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2930 unsigned long mark, int classzone_idx)
88f5acf8
MG
2931{
2932 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2933
2934 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2935 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2936
e2b19197 2937 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2938 free_pages);
1da177e4
LT
2939}
2940
9276b1bc 2941#ifdef CONFIG_NUMA
957f822a
DR
2942static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2943{
5f7a75ac
MG
2944 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2945 RECLAIM_DISTANCE;
957f822a 2946}
9276b1bc 2947#else /* CONFIG_NUMA */
957f822a
DR
2948static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2949{
2950 return true;
2951}
9276b1bc
PJ
2952#endif /* CONFIG_NUMA */
2953
7fb1d9fc 2954/*
0798e519 2955 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2956 * a page.
2957 */
2958static struct page *
a9263751
VB
2959get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2960 const struct alloc_context *ac)
753ee728 2961{
c33d6c06 2962 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2963 struct zone *zone;
3b8c0be4
MG
2964 struct pglist_data *last_pgdat_dirty_limit = NULL;
2965
7fb1d9fc 2966 /*
9276b1bc 2967 * Scan zonelist, looking for a zone with enough free.
344736f2 2968 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2969 */
c33d6c06 2970 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2971 ac->nodemask) {
be06af00 2972 struct page *page;
e085dbc5
JW
2973 unsigned long mark;
2974
664eedde
MG
2975 if (cpusets_enabled() &&
2976 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2977 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2978 continue;
a756cf59
JW
2979 /*
2980 * When allocating a page cache page for writing, we
281e3726
MG
2981 * want to get it from a node that is within its dirty
2982 * limit, such that no single node holds more than its
a756cf59 2983 * proportional share of globally allowed dirty pages.
281e3726 2984 * The dirty limits take into account the node's
a756cf59
JW
2985 * lowmem reserves and high watermark so that kswapd
2986 * should be able to balance it without having to
2987 * write pages from its LRU list.
2988 *
a756cf59 2989 * XXX: For now, allow allocations to potentially
281e3726 2990 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2991 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2992 * which is important when on a NUMA setup the allowed
281e3726 2993 * nodes are together not big enough to reach the
a756cf59 2994 * global limit. The proper fix for these situations
281e3726 2995 * will require awareness of nodes in the
a756cf59
JW
2996 * dirty-throttling and the flusher threads.
2997 */
3b8c0be4
MG
2998 if (ac->spread_dirty_pages) {
2999 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3000 continue;
3001
3002 if (!node_dirty_ok(zone->zone_pgdat)) {
3003 last_pgdat_dirty_limit = zone->zone_pgdat;
3004 continue;
3005 }
3006 }
7fb1d9fc 3007
e085dbc5 3008 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3009 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3010 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3011 int ret;
3012
5dab2911
MG
3013 /* Checked here to keep the fast path fast */
3014 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3015 if (alloc_flags & ALLOC_NO_WATERMARKS)
3016 goto try_this_zone;
3017
a5f5f91d 3018 if (node_reclaim_mode == 0 ||
c33d6c06 3019 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3020 continue;
3021
a5f5f91d 3022 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3023 switch (ret) {
a5f5f91d 3024 case NODE_RECLAIM_NOSCAN:
fa5e084e 3025 /* did not scan */
cd38b115 3026 continue;
a5f5f91d 3027 case NODE_RECLAIM_FULL:
fa5e084e 3028 /* scanned but unreclaimable */
cd38b115 3029 continue;
fa5e084e
MG
3030 default:
3031 /* did we reclaim enough */
fed2719e 3032 if (zone_watermark_ok(zone, order, mark,
93ea9964 3033 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3034 goto try_this_zone;
3035
fed2719e 3036 continue;
0798e519 3037 }
7fb1d9fc
RS
3038 }
3039
fa5e084e 3040try_this_zone:
066b2393 3041 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3042 gfp_mask, alloc_flags, ac->migratetype);
75379191 3043 if (page) {
479f854a 3044 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3045
3046 /*
3047 * If this is a high-order atomic allocation then check
3048 * if the pageblock should be reserved for the future
3049 */
3050 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3051 reserve_highatomic_pageblock(page, zone, order);
3052
75379191
VB
3053 return page;
3054 }
54a6eb5c 3055 }
9276b1bc 3056
4ffeaf35 3057 return NULL;
753ee728
MH
3058}
3059
29423e77
DR
3060/*
3061 * Large machines with many possible nodes should not always dump per-node
3062 * meminfo in irq context.
3063 */
3064static inline bool should_suppress_show_mem(void)
3065{
3066 bool ret = false;
3067
3068#if NODES_SHIFT > 8
3069 ret = in_interrupt();
3070#endif
3071 return ret;
3072}
3073
9af744d7 3074static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3075{
a238ab5b 3076 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3077 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3078
aa187507 3079 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3080 return;
3081
3082 /*
3083 * This documents exceptions given to allocations in certain
3084 * contexts that are allowed to allocate outside current's set
3085 * of allowed nodes.
3086 */
3087 if (!(gfp_mask & __GFP_NOMEMALLOC))
3088 if (test_thread_flag(TIF_MEMDIE) ||
3089 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3090 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3091 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3092 filter &= ~SHOW_MEM_FILTER_NODES;
3093
9af744d7 3094 show_mem(filter, nodemask);
aa187507
MH
3095}
3096
a8e99259 3097void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3098{
3099 struct va_format vaf;
3100 va_list args;
3101 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3102 DEFAULT_RATELIMIT_BURST);
3103
3104 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3105 debug_guardpage_minorder() > 0)
3106 return;
3107
7877cdcc 3108 pr_warn("%s: ", current->comm);
3ee9a4f0 3109
7877cdcc
MH
3110 va_start(args, fmt);
3111 vaf.fmt = fmt;
3112 vaf.va = &args;
3113 pr_cont("%pV", &vaf);
3114 va_end(args);
3ee9a4f0 3115
685dbf6f
DR
3116 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3117 if (nodemask)
3118 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3119 else
3120 pr_cont("(null)\n");
3121
a8e99259 3122 cpuset_print_current_mems_allowed();
3ee9a4f0 3123
a238ab5b 3124 dump_stack();
685dbf6f 3125 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3126}
3127
6c18ba7a
MH
3128static inline struct page *
3129__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3130 unsigned int alloc_flags,
3131 const struct alloc_context *ac)
3132{
3133 struct page *page;
3134
3135 page = get_page_from_freelist(gfp_mask, order,
3136 alloc_flags|ALLOC_CPUSET, ac);
3137 /*
3138 * fallback to ignore cpuset restriction if our nodes
3139 * are depleted
3140 */
3141 if (!page)
3142 page = get_page_from_freelist(gfp_mask, order,
3143 alloc_flags, ac);
3144
3145 return page;
3146}
3147
11e33f6a
MG
3148static inline struct page *
3149__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3150 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3151{
6e0fc46d
DR
3152 struct oom_control oc = {
3153 .zonelist = ac->zonelist,
3154 .nodemask = ac->nodemask,
2a966b77 3155 .memcg = NULL,
6e0fc46d
DR
3156 .gfp_mask = gfp_mask,
3157 .order = order,
6e0fc46d 3158 };
11e33f6a
MG
3159 struct page *page;
3160
9879de73
JW
3161 *did_some_progress = 0;
3162
9879de73 3163 /*
dc56401f
JW
3164 * Acquire the oom lock. If that fails, somebody else is
3165 * making progress for us.
9879de73 3166 */
dc56401f 3167 if (!mutex_trylock(&oom_lock)) {
9879de73 3168 *did_some_progress = 1;
11e33f6a 3169 schedule_timeout_uninterruptible(1);
1da177e4
LT
3170 return NULL;
3171 }
6b1de916 3172
11e33f6a
MG
3173 /*
3174 * Go through the zonelist yet one more time, keep very high watermark
3175 * here, this is only to catch a parallel oom killing, we must fail if
3176 * we're still under heavy pressure.
3177 */
a9263751
VB
3178 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3179 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3180 if (page)
11e33f6a
MG
3181 goto out;
3182
06ad276a
MH
3183 /* Coredumps can quickly deplete all memory reserves */
3184 if (current->flags & PF_DUMPCORE)
3185 goto out;
3186 /* The OOM killer will not help higher order allocs */
3187 if (order > PAGE_ALLOC_COSTLY_ORDER)
3188 goto out;
3189 /* The OOM killer does not needlessly kill tasks for lowmem */
3190 if (ac->high_zoneidx < ZONE_NORMAL)
3191 goto out;
3192 if (pm_suspended_storage())
3193 goto out;
3194 /*
3195 * XXX: GFP_NOFS allocations should rather fail than rely on
3196 * other request to make a forward progress.
3197 * We are in an unfortunate situation where out_of_memory cannot
3198 * do much for this context but let's try it to at least get
3199 * access to memory reserved if the current task is killed (see
3200 * out_of_memory). Once filesystems are ready to handle allocation
3201 * failures more gracefully we should just bail out here.
3202 */
3203
3204 /* The OOM killer may not free memory on a specific node */
3205 if (gfp_mask & __GFP_THISNODE)
3206 goto out;
3da88fb3 3207
11e33f6a 3208 /* Exhausted what can be done so it's blamo time */
5020e285 3209 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3210 *did_some_progress = 1;
5020e285 3211
6c18ba7a
MH
3212 /*
3213 * Help non-failing allocations by giving them access to memory
3214 * reserves
3215 */
3216 if (gfp_mask & __GFP_NOFAIL)
3217 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3218 ALLOC_NO_WATERMARKS, ac);
5020e285 3219 }
11e33f6a 3220out:
dc56401f 3221 mutex_unlock(&oom_lock);
11e33f6a
MG
3222 return page;
3223}
3224
33c2d214
MH
3225/*
3226 * Maximum number of compaction retries wit a progress before OOM
3227 * killer is consider as the only way to move forward.
3228 */
3229#define MAX_COMPACT_RETRIES 16
3230
56de7263
MG
3231#ifdef CONFIG_COMPACTION
3232/* Try memory compaction for high-order allocations before reclaim */
3233static struct page *
3234__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3235 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3236 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3237{
98dd3b48 3238 struct page *page;
53853e2d
VB
3239
3240 if (!order)
66199712 3241 return NULL;
66199712 3242
c06b1fca 3243 current->flags |= PF_MEMALLOC;
c5d01d0d 3244 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3245 prio);
c06b1fca 3246 current->flags &= ~PF_MEMALLOC;
56de7263 3247
c5d01d0d 3248 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3249 return NULL;
53853e2d 3250
98dd3b48
VB
3251 /*
3252 * At least in one zone compaction wasn't deferred or skipped, so let's
3253 * count a compaction stall
3254 */
3255 count_vm_event(COMPACTSTALL);
8fb74b9f 3256
31a6c190 3257 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3258
98dd3b48
VB
3259 if (page) {
3260 struct zone *zone = page_zone(page);
53853e2d 3261
98dd3b48
VB
3262 zone->compact_blockskip_flush = false;
3263 compaction_defer_reset(zone, order, true);
3264 count_vm_event(COMPACTSUCCESS);
3265 return page;
3266 }
56de7263 3267
98dd3b48
VB
3268 /*
3269 * It's bad if compaction run occurs and fails. The most likely reason
3270 * is that pages exist, but not enough to satisfy watermarks.
3271 */
3272 count_vm_event(COMPACTFAIL);
66199712 3273
98dd3b48 3274 cond_resched();
56de7263
MG
3275
3276 return NULL;
3277}
33c2d214 3278
3250845d
VB
3279static inline bool
3280should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3281 enum compact_result compact_result,
3282 enum compact_priority *compact_priority,
d9436498 3283 int *compaction_retries)
3250845d
VB
3284{
3285 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3286 int min_priority;
65190cff
MH
3287 bool ret = false;
3288 int retries = *compaction_retries;
3289 enum compact_priority priority = *compact_priority;
3250845d
VB
3290
3291 if (!order)
3292 return false;
3293
d9436498
VB
3294 if (compaction_made_progress(compact_result))
3295 (*compaction_retries)++;
3296
3250845d
VB
3297 /*
3298 * compaction considers all the zone as desperately out of memory
3299 * so it doesn't really make much sense to retry except when the
3300 * failure could be caused by insufficient priority
3301 */
d9436498
VB
3302 if (compaction_failed(compact_result))
3303 goto check_priority;
3250845d
VB
3304
3305 /*
3306 * make sure the compaction wasn't deferred or didn't bail out early
3307 * due to locks contention before we declare that we should give up.
3308 * But do not retry if the given zonelist is not suitable for
3309 * compaction.
3310 */
65190cff
MH
3311 if (compaction_withdrawn(compact_result)) {
3312 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3313 goto out;
3314 }
3250845d
VB
3315
3316 /*
3317 * !costly requests are much more important than __GFP_REPEAT
3318 * costly ones because they are de facto nofail and invoke OOM
3319 * killer to move on while costly can fail and users are ready
3320 * to cope with that. 1/4 retries is rather arbitrary but we
3321 * would need much more detailed feedback from compaction to
3322 * make a better decision.
3323 */
3324 if (order > PAGE_ALLOC_COSTLY_ORDER)
3325 max_retries /= 4;
65190cff
MH
3326 if (*compaction_retries <= max_retries) {
3327 ret = true;
3328 goto out;
3329 }
3250845d 3330
d9436498
VB
3331 /*
3332 * Make sure there are attempts at the highest priority if we exhausted
3333 * all retries or failed at the lower priorities.
3334 */
3335check_priority:
c2033b00
VB
3336 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3337 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3338
c2033b00 3339 if (*compact_priority > min_priority) {
d9436498
VB
3340 (*compact_priority)--;
3341 *compaction_retries = 0;
65190cff 3342 ret = true;
d9436498 3343 }
65190cff
MH
3344out:
3345 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3346 return ret;
3250845d 3347}
56de7263
MG
3348#else
3349static inline struct page *
3350__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3351 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3352 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3353{
33c2d214 3354 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3355 return NULL;
3356}
33c2d214
MH
3357
3358static inline bool
86a294a8
MH
3359should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3360 enum compact_result compact_result,
a5508cd8 3361 enum compact_priority *compact_priority,
d9436498 3362 int *compaction_retries)
33c2d214 3363{
31e49bfd
MH
3364 struct zone *zone;
3365 struct zoneref *z;
3366
3367 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3368 return false;
3369
3370 /*
3371 * There are setups with compaction disabled which would prefer to loop
3372 * inside the allocator rather than hit the oom killer prematurely.
3373 * Let's give them a good hope and keep retrying while the order-0
3374 * watermarks are OK.
3375 */
3376 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3377 ac->nodemask) {
3378 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3379 ac_classzone_idx(ac), alloc_flags))
3380 return true;
3381 }
33c2d214
MH
3382 return false;
3383}
3250845d 3384#endif /* CONFIG_COMPACTION */
56de7263 3385
bba90710
MS
3386/* Perform direct synchronous page reclaim */
3387static int
a9263751
VB
3388__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3389 const struct alloc_context *ac)
11e33f6a 3390{
11e33f6a 3391 struct reclaim_state reclaim_state;
bba90710 3392 int progress;
11e33f6a
MG
3393
3394 cond_resched();
3395
3396 /* We now go into synchronous reclaim */
3397 cpuset_memory_pressure_bump();
c06b1fca 3398 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3399 lockdep_set_current_reclaim_state(gfp_mask);
3400 reclaim_state.reclaimed_slab = 0;
c06b1fca 3401 current->reclaim_state = &reclaim_state;
11e33f6a 3402
a9263751
VB
3403 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3404 ac->nodemask);
11e33f6a 3405
c06b1fca 3406 current->reclaim_state = NULL;
11e33f6a 3407 lockdep_clear_current_reclaim_state();
c06b1fca 3408 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3409
3410 cond_resched();
3411
bba90710
MS
3412 return progress;
3413}
3414
3415/* The really slow allocator path where we enter direct reclaim */
3416static inline struct page *
3417__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3418 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3419 unsigned long *did_some_progress)
bba90710
MS
3420{
3421 struct page *page = NULL;
3422 bool drained = false;
3423
a9263751 3424 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3425 if (unlikely(!(*did_some_progress)))
3426 return NULL;
11e33f6a 3427
9ee493ce 3428retry:
31a6c190 3429 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3430
3431 /*
3432 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3433 * pages are pinned on the per-cpu lists or in high alloc reserves.
3434 * Shrink them them and try again
9ee493ce
MG
3435 */
3436 if (!page && !drained) {
29fac03b 3437 unreserve_highatomic_pageblock(ac, false);
93481ff0 3438 drain_all_pages(NULL);
9ee493ce
MG
3439 drained = true;
3440 goto retry;
3441 }
3442
11e33f6a
MG
3443 return page;
3444}
3445
a9263751 3446static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3447{
3448 struct zoneref *z;
3449 struct zone *zone;
e1a55637 3450 pg_data_t *last_pgdat = NULL;
3a025760 3451
a9263751 3452 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3453 ac->high_zoneidx, ac->nodemask) {
3454 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3455 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3456 last_pgdat = zone->zone_pgdat;
3457 }
3a025760
JW
3458}
3459
c603844b 3460static inline unsigned int
341ce06f
PZ
3461gfp_to_alloc_flags(gfp_t gfp_mask)
3462{
c603844b 3463 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3464
a56f57ff 3465 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3466 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3467
341ce06f
PZ
3468 /*
3469 * The caller may dip into page reserves a bit more if the caller
3470 * cannot run direct reclaim, or if the caller has realtime scheduling
3471 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3472 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3473 */
e6223a3b 3474 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3475
d0164adc 3476 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3477 /*
b104a35d
DR
3478 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3479 * if it can't schedule.
5c3240d9 3480 */
b104a35d 3481 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3482 alloc_flags |= ALLOC_HARDER;
523b9458 3483 /*
b104a35d 3484 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3485 * comment for __cpuset_node_allowed().
523b9458 3486 */
341ce06f 3487 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3488 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3489 alloc_flags |= ALLOC_HARDER;
3490
d95ea5d1 3491#ifdef CONFIG_CMA
43e7a34d 3492 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3493 alloc_flags |= ALLOC_CMA;
3494#endif
341ce06f
PZ
3495 return alloc_flags;
3496}
3497
072bb0aa
MG
3498bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3499{
31a6c190
VB
3500 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3501 return false;
3502
3503 if (gfp_mask & __GFP_MEMALLOC)
3504 return true;
3505 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3506 return true;
3507 if (!in_interrupt() &&
3508 ((current->flags & PF_MEMALLOC) ||
3509 unlikely(test_thread_flag(TIF_MEMDIE))))
3510 return true;
3511
3512 return false;
072bb0aa
MG
3513}
3514
0a0337e0
MH
3515/*
3516 * Maximum number of reclaim retries without any progress before OOM killer
3517 * is consider as the only way to move forward.
3518 */
3519#define MAX_RECLAIM_RETRIES 16
3520
3521/*
3522 * Checks whether it makes sense to retry the reclaim to make a forward progress
3523 * for the given allocation request.
3524 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3525 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3526 * any progress in a row) is considered as well as the reclaimable pages on the
3527 * applicable zone list (with a backoff mechanism which is a function of
3528 * no_progress_loops).
0a0337e0
MH
3529 *
3530 * Returns true if a retry is viable or false to enter the oom path.
3531 */
3532static inline bool
3533should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3534 struct alloc_context *ac, int alloc_flags,
423b452e 3535 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3536{
3537 struct zone *zone;
3538 struct zoneref *z;
3539
423b452e
VB
3540 /*
3541 * Costly allocations might have made a progress but this doesn't mean
3542 * their order will become available due to high fragmentation so
3543 * always increment the no progress counter for them
3544 */
3545 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3546 *no_progress_loops = 0;
3547 else
3548 (*no_progress_loops)++;
3549
0a0337e0
MH
3550 /*
3551 * Make sure we converge to OOM if we cannot make any progress
3552 * several times in the row.
3553 */
04c8716f
MK
3554 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3555 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3556 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3557 }
0a0337e0 3558
bca67592
MG
3559 /*
3560 * Keep reclaiming pages while there is a chance this will lead
3561 * somewhere. If none of the target zones can satisfy our allocation
3562 * request even if all reclaimable pages are considered then we are
3563 * screwed and have to go OOM.
0a0337e0
MH
3564 */
3565 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3566 ac->nodemask) {
3567 unsigned long available;
ede37713 3568 unsigned long reclaimable;
d379f01d
MH
3569 unsigned long min_wmark = min_wmark_pages(zone);
3570 bool wmark;
0a0337e0 3571
5a1c84b4 3572 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3573 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3574 MAX_RECLAIM_RETRIES);
5a1c84b4 3575 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3576
3577 /*
3578 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3579 * available?
0a0337e0 3580 */
d379f01d
MH
3581 wmark = __zone_watermark_ok(zone, order, min_wmark,
3582 ac_classzone_idx(ac), alloc_flags, available);
3583 trace_reclaim_retry_zone(z, order, reclaimable,
3584 available, min_wmark, *no_progress_loops, wmark);
3585 if (wmark) {
ede37713
MH
3586 /*
3587 * If we didn't make any progress and have a lot of
3588 * dirty + writeback pages then we should wait for
3589 * an IO to complete to slow down the reclaim and
3590 * prevent from pre mature OOM
3591 */
3592 if (!did_some_progress) {
11fb9989 3593 unsigned long write_pending;
ede37713 3594
5a1c84b4
MG
3595 write_pending = zone_page_state_snapshot(zone,
3596 NR_ZONE_WRITE_PENDING);
ede37713 3597
11fb9989 3598 if (2 * write_pending > reclaimable) {
ede37713
MH
3599 congestion_wait(BLK_RW_ASYNC, HZ/10);
3600 return true;
3601 }
3602 }
5a1c84b4 3603
ede37713
MH
3604 /*
3605 * Memory allocation/reclaim might be called from a WQ
3606 * context and the current implementation of the WQ
3607 * concurrency control doesn't recognize that
3608 * a particular WQ is congested if the worker thread is
3609 * looping without ever sleeping. Therefore we have to
3610 * do a short sleep here rather than calling
3611 * cond_resched().
3612 */
3613 if (current->flags & PF_WQ_WORKER)
3614 schedule_timeout_uninterruptible(1);
3615 else
3616 cond_resched();
3617
0a0337e0
MH
3618 return true;
3619 }
3620 }
3621
3622 return false;
3623}
3624
11e33f6a
MG
3625static inline struct page *
3626__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3627 struct alloc_context *ac)
11e33f6a 3628{
d0164adc 3629 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3630 struct page *page = NULL;
c603844b 3631 unsigned int alloc_flags;
11e33f6a 3632 unsigned long did_some_progress;
5ce9bfef 3633 enum compact_priority compact_priority;
c5d01d0d 3634 enum compact_result compact_result;
5ce9bfef
VB
3635 int compaction_retries;
3636 int no_progress_loops;
63f53dea
MH
3637 unsigned long alloc_start = jiffies;
3638 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3639 unsigned int cpuset_mems_cookie;
1da177e4 3640
72807a74
MG
3641 /*
3642 * In the slowpath, we sanity check order to avoid ever trying to
3643 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3644 * be using allocators in order of preference for an area that is
3645 * too large.
3646 */
1fc28b70
MG
3647 if (order >= MAX_ORDER) {
3648 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3649 return NULL;
1fc28b70 3650 }
1da177e4 3651
d0164adc
MG
3652 /*
3653 * We also sanity check to catch abuse of atomic reserves being used by
3654 * callers that are not in atomic context.
3655 */
3656 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3657 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3658 gfp_mask &= ~__GFP_ATOMIC;
3659
5ce9bfef
VB
3660retry_cpuset:
3661 compaction_retries = 0;
3662 no_progress_loops = 0;
3663 compact_priority = DEF_COMPACT_PRIORITY;
3664 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3665
3666 /*
3667 * The fast path uses conservative alloc_flags to succeed only until
3668 * kswapd needs to be woken up, and to avoid the cost of setting up
3669 * alloc_flags precisely. So we do that now.
3670 */
3671 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3672
e47483bc
VB
3673 /*
3674 * We need to recalculate the starting point for the zonelist iterator
3675 * because we might have used different nodemask in the fast path, or
3676 * there was a cpuset modification and we are retrying - otherwise we
3677 * could end up iterating over non-eligible zones endlessly.
3678 */
3679 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3680 ac->high_zoneidx, ac->nodemask);
3681 if (!ac->preferred_zoneref->zone)
3682 goto nopage;
3683
23771235
VB
3684 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3685 wake_all_kswapds(order, ac);
3686
3687 /*
3688 * The adjusted alloc_flags might result in immediate success, so try
3689 * that first
3690 */
3691 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3692 if (page)
3693 goto got_pg;
3694
a8161d1e
VB
3695 /*
3696 * For costly allocations, try direct compaction first, as it's likely
3697 * that we have enough base pages and don't need to reclaim. Don't try
3698 * that for allocations that are allowed to ignore watermarks, as the
3699 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3700 */
3701 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3702 !gfp_pfmemalloc_allowed(gfp_mask)) {
3703 page = __alloc_pages_direct_compact(gfp_mask, order,
3704 alloc_flags, ac,
a5508cd8 3705 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3706 &compact_result);
3707 if (page)
3708 goto got_pg;
3709
3eb2771b
VB
3710 /*
3711 * Checks for costly allocations with __GFP_NORETRY, which
3712 * includes THP page fault allocations
3713 */
3714 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3715 /*
3716 * If compaction is deferred for high-order allocations,
3717 * it is because sync compaction recently failed. If
3718 * this is the case and the caller requested a THP
3719 * allocation, we do not want to heavily disrupt the
3720 * system, so we fail the allocation instead of entering
3721 * direct reclaim.
3722 */
3723 if (compact_result == COMPACT_DEFERRED)
3724 goto nopage;
3725
a8161d1e 3726 /*
3eb2771b
VB
3727 * Looks like reclaim/compaction is worth trying, but
3728 * sync compaction could be very expensive, so keep
25160354 3729 * using async compaction.
a8161d1e 3730 */
a5508cd8 3731 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3732 }
3733 }
23771235 3734
31a6c190 3735retry:
23771235 3736 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3737 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3738 wake_all_kswapds(order, ac);
3739
23771235
VB
3740 if (gfp_pfmemalloc_allowed(gfp_mask))
3741 alloc_flags = ALLOC_NO_WATERMARKS;
3742
e46e7b77
MG
3743 /*
3744 * Reset the zonelist iterators if memory policies can be ignored.
3745 * These allocations are high priority and system rather than user
3746 * orientated.
3747 */
23771235 3748 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3749 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3750 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3751 ac->high_zoneidx, ac->nodemask);
3752 }
3753
23771235 3754 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3755 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3756 if (page)
3757 goto got_pg;
1da177e4 3758
d0164adc 3759 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3760 if (!can_direct_reclaim)
1da177e4
LT
3761 goto nopage;
3762
9a67f648
MH
3763 /* Make sure we know about allocations which stall for too long */
3764 if (time_after(jiffies, alloc_start + stall_timeout)) {
3765 warn_alloc(gfp_mask, ac->nodemask,
3766 "page allocation stalls for %ums, order:%u",
3767 jiffies_to_msecs(jiffies-alloc_start), order);
3768 stall_timeout += 10 * HZ;
33d53103 3769 }
341ce06f 3770
9a67f648
MH
3771 /* Avoid recursion of direct reclaim */
3772 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3773 goto nopage;
3774
a8161d1e
VB
3775 /* Try direct reclaim and then allocating */
3776 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3777 &did_some_progress);
3778 if (page)
3779 goto got_pg;
3780
3781 /* Try direct compaction and then allocating */
a9263751 3782 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3783 compact_priority, &compact_result);
56de7263
MG
3784 if (page)
3785 goto got_pg;
75f30861 3786
9083905a
JW
3787 /* Do not loop if specifically requested */
3788 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3789 goto nopage;
9083905a 3790
0a0337e0
MH
3791 /*
3792 * Do not retry costly high order allocations unless they are
3793 * __GFP_REPEAT
3794 */
3795 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3796 goto nopage;
0a0337e0 3797
0a0337e0 3798 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3799 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3800 goto retry;
3801
33c2d214
MH
3802 /*
3803 * It doesn't make any sense to retry for the compaction if the order-0
3804 * reclaim is not able to make any progress because the current
3805 * implementation of the compaction depends on the sufficient amount
3806 * of free memory (see __compaction_suitable)
3807 */
3808 if (did_some_progress > 0 &&
86a294a8 3809 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3810 compact_result, &compact_priority,
d9436498 3811 &compaction_retries))
33c2d214
MH
3812 goto retry;
3813
e47483bc
VB
3814 /*
3815 * It's possible we raced with cpuset update so the OOM would be
3816 * premature (see below the nopage: label for full explanation).
3817 */
3818 if (read_mems_allowed_retry(cpuset_mems_cookie))
3819 goto retry_cpuset;
3820
9083905a
JW
3821 /* Reclaim has failed us, start killing things */
3822 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3823 if (page)
3824 goto got_pg;
3825
9a67f648
MH
3826 /* Avoid allocations with no watermarks from looping endlessly */
3827 if (test_thread_flag(TIF_MEMDIE))
3828 goto nopage;
3829
9083905a 3830 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3831 if (did_some_progress) {
3832 no_progress_loops = 0;
9083905a 3833 goto retry;
0a0337e0 3834 }
9083905a 3835
1da177e4 3836nopage:
5ce9bfef 3837 /*
e47483bc
VB
3838 * When updating a task's mems_allowed or mempolicy nodemask, it is
3839 * possible to race with parallel threads in such a way that our
3840 * allocation can fail while the mask is being updated. If we are about
3841 * to fail, check if the cpuset changed during allocation and if so,
3842 * retry.
5ce9bfef
VB
3843 */
3844 if (read_mems_allowed_retry(cpuset_mems_cookie))
3845 goto retry_cpuset;
3846
9a67f648
MH
3847 /*
3848 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3849 * we always retry
3850 */
3851 if (gfp_mask & __GFP_NOFAIL) {
3852 /*
3853 * All existing users of the __GFP_NOFAIL are blockable, so warn
3854 * of any new users that actually require GFP_NOWAIT
3855 */
3856 if (WARN_ON_ONCE(!can_direct_reclaim))
3857 goto fail;
3858
3859 /*
3860 * PF_MEMALLOC request from this context is rather bizarre
3861 * because we cannot reclaim anything and only can loop waiting
3862 * for somebody to do a work for us
3863 */
3864 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3865
3866 /*
3867 * non failing costly orders are a hard requirement which we
3868 * are not prepared for much so let's warn about these users
3869 * so that we can identify them and convert them to something
3870 * else.
3871 */
3872 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3873
6c18ba7a
MH
3874 /*
3875 * Help non-failing allocations by giving them access to memory
3876 * reserves but do not use ALLOC_NO_WATERMARKS because this
3877 * could deplete whole memory reserves which would just make
3878 * the situation worse
3879 */
3880 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3881 if (page)
3882 goto got_pg;
3883
9a67f648
MH
3884 cond_resched();
3885 goto retry;
3886 }
3887fail:
a8e99259 3888 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3889 "page allocation failure: order:%u", order);
1da177e4 3890got_pg:
072bb0aa 3891 return page;
1da177e4 3892}
11e33f6a 3893
9cd75558
MG
3894static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3895 struct zonelist *zonelist, nodemask_t *nodemask,
3896 struct alloc_context *ac, gfp_t *alloc_mask,
3897 unsigned int *alloc_flags)
11e33f6a 3898{
9cd75558
MG
3899 ac->high_zoneidx = gfp_zone(gfp_mask);
3900 ac->zonelist = zonelist;
3901 ac->nodemask = nodemask;
3902 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3903
682a3385 3904 if (cpusets_enabled()) {
9cd75558
MG
3905 *alloc_mask |= __GFP_HARDWALL;
3906 *alloc_flags |= ALLOC_CPUSET;
3907 if (!ac->nodemask)
3908 ac->nodemask = &cpuset_current_mems_allowed;
682a3385
MG
3909 }
3910
11e33f6a
MG
3911 lockdep_trace_alloc(gfp_mask);
3912
d0164adc 3913 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3914
3915 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 3916 return false;
11e33f6a 3917
9cd75558
MG
3918 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3919 *alloc_flags |= ALLOC_CMA;
3920
3921 return true;
3922}
21bb9bd1 3923
9cd75558
MG
3924/* Determine whether to spread dirty pages and what the first usable zone */
3925static inline void finalise_ac(gfp_t gfp_mask,
3926 unsigned int order, struct alloc_context *ac)
3927{
c9ab0c4f 3928 /* Dirty zone balancing only done in the fast path */
9cd75558 3929 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 3930
e46e7b77
MG
3931 /*
3932 * The preferred zone is used for statistics but crucially it is
3933 * also used as the starting point for the zonelist iterator. It
3934 * may get reset for allocations that ignore memory policies.
3935 */
9cd75558
MG
3936 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3937 ac->high_zoneidx, ac->nodemask);
3938}
3939
3940/*
3941 * This is the 'heart' of the zoned buddy allocator.
3942 */
3943struct page *
3944__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3945 struct zonelist *zonelist, nodemask_t *nodemask)
3946{
3947 struct page *page;
3948 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3949 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3950 struct alloc_context ac = { };
3951
3952 gfp_mask &= gfp_allowed_mask;
3953 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3954 return NULL;
3955
3956 finalise_ac(gfp_mask, order, &ac);
5bb1b169 3957
5117f45d 3958 /* First allocation attempt */
a9263751 3959 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3960 if (likely(page))
3961 goto out;
11e33f6a 3962
4fcb0971
MG
3963 /*
3964 * Runtime PM, block IO and its error handling path can deadlock
3965 * because I/O on the device might not complete.
3966 */
3967 alloc_mask = memalloc_noio_flags(gfp_mask);
3968 ac.spread_dirty_pages = false;
23f086f9 3969
4741526b
MG
3970 /*
3971 * Restore the original nodemask if it was potentially replaced with
3972 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3973 */
e47483bc 3974 if (unlikely(ac.nodemask != nodemask))
4741526b 3975 ac.nodemask = nodemask;
16096c25 3976
4fcb0971 3977 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3978
4fcb0971 3979out:
c4159a75
VD
3980 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3981 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3982 __free_pages(page, order);
3983 page = NULL;
4949148a
VD
3984 }
3985
4fcb0971
MG
3986 if (kmemcheck_enabled && page)
3987 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3988
3989 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3990
11e33f6a 3991 return page;
1da177e4 3992}
d239171e 3993EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3994
3995/*
3996 * Common helper functions.
3997 */
920c7a5d 3998unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3999{
945a1113
AM
4000 struct page *page;
4001
4002 /*
4003 * __get_free_pages() returns a 32-bit address, which cannot represent
4004 * a highmem page
4005 */
4006 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4007
1da177e4
LT
4008 page = alloc_pages(gfp_mask, order);
4009 if (!page)
4010 return 0;
4011 return (unsigned long) page_address(page);
4012}
1da177e4
LT
4013EXPORT_SYMBOL(__get_free_pages);
4014
920c7a5d 4015unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4016{
945a1113 4017 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4018}
1da177e4
LT
4019EXPORT_SYMBOL(get_zeroed_page);
4020
920c7a5d 4021void __free_pages(struct page *page, unsigned int order)
1da177e4 4022{
b5810039 4023 if (put_page_testzero(page)) {
1da177e4 4024 if (order == 0)
b745bc85 4025 free_hot_cold_page(page, false);
1da177e4
LT
4026 else
4027 __free_pages_ok(page, order);
4028 }
4029}
4030
4031EXPORT_SYMBOL(__free_pages);
4032
920c7a5d 4033void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4034{
4035 if (addr != 0) {
725d704e 4036 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4037 __free_pages(virt_to_page((void *)addr), order);
4038 }
4039}
4040
4041EXPORT_SYMBOL(free_pages);
4042
b63ae8ca
AD
4043/*
4044 * Page Fragment:
4045 * An arbitrary-length arbitrary-offset area of memory which resides
4046 * within a 0 or higher order page. Multiple fragments within that page
4047 * are individually refcounted, in the page's reference counter.
4048 *
4049 * The page_frag functions below provide a simple allocation framework for
4050 * page fragments. This is used by the network stack and network device
4051 * drivers to provide a backing region of memory for use as either an
4052 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4053 */
2976db80
AD
4054static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4055 gfp_t gfp_mask)
b63ae8ca
AD
4056{
4057 struct page *page = NULL;
4058 gfp_t gfp = gfp_mask;
4059
4060#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4061 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4062 __GFP_NOMEMALLOC;
4063 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4064 PAGE_FRAG_CACHE_MAX_ORDER);
4065 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4066#endif
4067 if (unlikely(!page))
4068 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4069
4070 nc->va = page ? page_address(page) : NULL;
4071
4072 return page;
4073}
4074
2976db80 4075void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4076{
4077 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4078
4079 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4080 unsigned int order = compound_order(page);
4081
44fdffd7
AD
4082 if (order == 0)
4083 free_hot_cold_page(page, false);
4084 else
4085 __free_pages_ok(page, order);
4086 }
4087}
2976db80 4088EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4089
8c2dd3e4
AD
4090void *page_frag_alloc(struct page_frag_cache *nc,
4091 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4092{
4093 unsigned int size = PAGE_SIZE;
4094 struct page *page;
4095 int offset;
4096
4097 if (unlikely(!nc->va)) {
4098refill:
2976db80 4099 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4100 if (!page)
4101 return NULL;
4102
4103#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4104 /* if size can vary use size else just use PAGE_SIZE */
4105 size = nc->size;
4106#endif
4107 /* Even if we own the page, we do not use atomic_set().
4108 * This would break get_page_unless_zero() users.
4109 */
fe896d18 4110 page_ref_add(page, size - 1);
b63ae8ca
AD
4111
4112 /* reset page count bias and offset to start of new frag */
2f064f34 4113 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4114 nc->pagecnt_bias = size;
4115 nc->offset = size;
4116 }
4117
4118 offset = nc->offset - fragsz;
4119 if (unlikely(offset < 0)) {
4120 page = virt_to_page(nc->va);
4121
fe896d18 4122 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4123 goto refill;
4124
4125#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4126 /* if size can vary use size else just use PAGE_SIZE */
4127 size = nc->size;
4128#endif
4129 /* OK, page count is 0, we can safely set it */
fe896d18 4130 set_page_count(page, size);
b63ae8ca
AD
4131
4132 /* reset page count bias and offset to start of new frag */
4133 nc->pagecnt_bias = size;
4134 offset = size - fragsz;
4135 }
4136
4137 nc->pagecnt_bias--;
4138 nc->offset = offset;
4139
4140 return nc->va + offset;
4141}
8c2dd3e4 4142EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4143
4144/*
4145 * Frees a page fragment allocated out of either a compound or order 0 page.
4146 */
8c2dd3e4 4147void page_frag_free(void *addr)
b63ae8ca
AD
4148{
4149 struct page *page = virt_to_head_page(addr);
4150
4151 if (unlikely(put_page_testzero(page)))
4152 __free_pages_ok(page, compound_order(page));
4153}
8c2dd3e4 4154EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4155
d00181b9
KS
4156static void *make_alloc_exact(unsigned long addr, unsigned int order,
4157 size_t size)
ee85c2e1
AK
4158{
4159 if (addr) {
4160 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4161 unsigned long used = addr + PAGE_ALIGN(size);
4162
4163 split_page(virt_to_page((void *)addr), order);
4164 while (used < alloc_end) {
4165 free_page(used);
4166 used += PAGE_SIZE;
4167 }
4168 }
4169 return (void *)addr;
4170}
4171
2be0ffe2
TT
4172/**
4173 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4174 * @size: the number of bytes to allocate
4175 * @gfp_mask: GFP flags for the allocation
4176 *
4177 * This function is similar to alloc_pages(), except that it allocates the
4178 * minimum number of pages to satisfy the request. alloc_pages() can only
4179 * allocate memory in power-of-two pages.
4180 *
4181 * This function is also limited by MAX_ORDER.
4182 *
4183 * Memory allocated by this function must be released by free_pages_exact().
4184 */
4185void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4186{
4187 unsigned int order = get_order(size);
4188 unsigned long addr;
4189
4190 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4191 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4192}
4193EXPORT_SYMBOL(alloc_pages_exact);
4194
ee85c2e1
AK
4195/**
4196 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4197 * pages on a node.
b5e6ab58 4198 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4199 * @size: the number of bytes to allocate
4200 * @gfp_mask: GFP flags for the allocation
4201 *
4202 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4203 * back.
ee85c2e1 4204 */
e1931811 4205void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4206{
d00181b9 4207 unsigned int order = get_order(size);
ee85c2e1
AK
4208 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4209 if (!p)
4210 return NULL;
4211 return make_alloc_exact((unsigned long)page_address(p), order, size);
4212}
ee85c2e1 4213
2be0ffe2
TT
4214/**
4215 * free_pages_exact - release memory allocated via alloc_pages_exact()
4216 * @virt: the value returned by alloc_pages_exact.
4217 * @size: size of allocation, same value as passed to alloc_pages_exact().
4218 *
4219 * Release the memory allocated by a previous call to alloc_pages_exact.
4220 */
4221void free_pages_exact(void *virt, size_t size)
4222{
4223 unsigned long addr = (unsigned long)virt;
4224 unsigned long end = addr + PAGE_ALIGN(size);
4225
4226 while (addr < end) {
4227 free_page(addr);
4228 addr += PAGE_SIZE;
4229 }
4230}
4231EXPORT_SYMBOL(free_pages_exact);
4232
e0fb5815
ZY
4233/**
4234 * nr_free_zone_pages - count number of pages beyond high watermark
4235 * @offset: The zone index of the highest zone
4236 *
4237 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4238 * high watermark within all zones at or below a given zone index. For each
4239 * zone, the number of pages is calculated as:
834405c3 4240 * managed_pages - high_pages
e0fb5815 4241 */
ebec3862 4242static unsigned long nr_free_zone_pages(int offset)
1da177e4 4243{
dd1a239f 4244 struct zoneref *z;
54a6eb5c
MG
4245 struct zone *zone;
4246
e310fd43 4247 /* Just pick one node, since fallback list is circular */
ebec3862 4248 unsigned long sum = 0;
1da177e4 4249
0e88460d 4250 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4251
54a6eb5c 4252 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4253 unsigned long size = zone->managed_pages;
41858966 4254 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4255 if (size > high)
4256 sum += size - high;
1da177e4
LT
4257 }
4258
4259 return sum;
4260}
4261
e0fb5815
ZY
4262/**
4263 * nr_free_buffer_pages - count number of pages beyond high watermark
4264 *
4265 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4266 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4267 */
ebec3862 4268unsigned long nr_free_buffer_pages(void)
1da177e4 4269{
af4ca457 4270 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4271}
c2f1a551 4272EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4273
e0fb5815
ZY
4274/**
4275 * nr_free_pagecache_pages - count number of pages beyond high watermark
4276 *
4277 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4278 * high watermark within all zones.
1da177e4 4279 */
ebec3862 4280unsigned long nr_free_pagecache_pages(void)
1da177e4 4281{
2a1e274a 4282 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4283}
08e0f6a9
CL
4284
4285static inline void show_node(struct zone *zone)
1da177e4 4286{
e5adfffc 4287 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4288 printk("Node %d ", zone_to_nid(zone));
1da177e4 4289}
1da177e4 4290
d02bd27b
IR
4291long si_mem_available(void)
4292{
4293 long available;
4294 unsigned long pagecache;
4295 unsigned long wmark_low = 0;
4296 unsigned long pages[NR_LRU_LISTS];
4297 struct zone *zone;
4298 int lru;
4299
4300 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4301 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4302
4303 for_each_zone(zone)
4304 wmark_low += zone->watermark[WMARK_LOW];
4305
4306 /*
4307 * Estimate the amount of memory available for userspace allocations,
4308 * without causing swapping.
4309 */
4310 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4311
4312 /*
4313 * Not all the page cache can be freed, otherwise the system will
4314 * start swapping. Assume at least half of the page cache, or the
4315 * low watermark worth of cache, needs to stay.
4316 */
4317 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4318 pagecache -= min(pagecache / 2, wmark_low);
4319 available += pagecache;
4320
4321 /*
4322 * Part of the reclaimable slab consists of items that are in use,
4323 * and cannot be freed. Cap this estimate at the low watermark.
4324 */
4325 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4326 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4327
4328 if (available < 0)
4329 available = 0;
4330 return available;
4331}
4332EXPORT_SYMBOL_GPL(si_mem_available);
4333
1da177e4
LT
4334void si_meminfo(struct sysinfo *val)
4335{
4336 val->totalram = totalram_pages;
11fb9989 4337 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4338 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4339 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4340 val->totalhigh = totalhigh_pages;
4341 val->freehigh = nr_free_highpages();
1da177e4
LT
4342 val->mem_unit = PAGE_SIZE;
4343}
4344
4345EXPORT_SYMBOL(si_meminfo);
4346
4347#ifdef CONFIG_NUMA
4348void si_meminfo_node(struct sysinfo *val, int nid)
4349{
cdd91a77
JL
4350 int zone_type; /* needs to be signed */
4351 unsigned long managed_pages = 0;
fc2bd799
JK
4352 unsigned long managed_highpages = 0;
4353 unsigned long free_highpages = 0;
1da177e4
LT
4354 pg_data_t *pgdat = NODE_DATA(nid);
4355
cdd91a77
JL
4356 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4357 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4358 val->totalram = managed_pages;
11fb9989 4359 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4360 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4361#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4362 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4363 struct zone *zone = &pgdat->node_zones[zone_type];
4364
4365 if (is_highmem(zone)) {
4366 managed_highpages += zone->managed_pages;
4367 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4368 }
4369 }
4370 val->totalhigh = managed_highpages;
4371 val->freehigh = free_highpages;
98d2b0eb 4372#else
fc2bd799
JK
4373 val->totalhigh = managed_highpages;
4374 val->freehigh = free_highpages;
98d2b0eb 4375#endif
1da177e4
LT
4376 val->mem_unit = PAGE_SIZE;
4377}
4378#endif
4379
ddd588b5 4380/*
7bf02ea2
DR
4381 * Determine whether the node should be displayed or not, depending on whether
4382 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4383 */
9af744d7 4384static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4385{
ddd588b5 4386 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4387 return false;
ddd588b5 4388
9af744d7
MH
4389 /*
4390 * no node mask - aka implicit memory numa policy. Do not bother with
4391 * the synchronization - read_mems_allowed_begin - because we do not
4392 * have to be precise here.
4393 */
4394 if (!nodemask)
4395 nodemask = &cpuset_current_mems_allowed;
4396
4397 return !node_isset(nid, *nodemask);
ddd588b5
DR
4398}
4399
1da177e4
LT
4400#define K(x) ((x) << (PAGE_SHIFT-10))
4401
377e4f16
RV
4402static void show_migration_types(unsigned char type)
4403{
4404 static const char types[MIGRATE_TYPES] = {
4405 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4406 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4407 [MIGRATE_RECLAIMABLE] = 'E',
4408 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4409#ifdef CONFIG_CMA
4410 [MIGRATE_CMA] = 'C',
4411#endif
194159fb 4412#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4413 [MIGRATE_ISOLATE] = 'I',
194159fb 4414#endif
377e4f16
RV
4415 };
4416 char tmp[MIGRATE_TYPES + 1];
4417 char *p = tmp;
4418 int i;
4419
4420 for (i = 0; i < MIGRATE_TYPES; i++) {
4421 if (type & (1 << i))
4422 *p++ = types[i];
4423 }
4424
4425 *p = '\0';
1f84a18f 4426 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4427}
4428
1da177e4
LT
4429/*
4430 * Show free area list (used inside shift_scroll-lock stuff)
4431 * We also calculate the percentage fragmentation. We do this by counting the
4432 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4433 *
4434 * Bits in @filter:
4435 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4436 * cpuset.
1da177e4 4437 */
9af744d7 4438void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4439{
d1bfcdb8 4440 unsigned long free_pcp = 0;
c7241913 4441 int cpu;
1da177e4 4442 struct zone *zone;
599d0c95 4443 pg_data_t *pgdat;
1da177e4 4444
ee99c71c 4445 for_each_populated_zone(zone) {
9af744d7 4446 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4447 continue;
d1bfcdb8 4448
761b0677
KK
4449 for_each_online_cpu(cpu)
4450 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4451 }
4452
a731286d
KM
4453 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4454 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4455 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4456 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4457 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4458 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4459 global_node_page_state(NR_ACTIVE_ANON),
4460 global_node_page_state(NR_INACTIVE_ANON),
4461 global_node_page_state(NR_ISOLATED_ANON),
4462 global_node_page_state(NR_ACTIVE_FILE),
4463 global_node_page_state(NR_INACTIVE_FILE),
4464 global_node_page_state(NR_ISOLATED_FILE),
4465 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4466 global_node_page_state(NR_FILE_DIRTY),
4467 global_node_page_state(NR_WRITEBACK),
4468 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4469 global_page_state(NR_SLAB_RECLAIMABLE),
4470 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4471 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4472 global_node_page_state(NR_SHMEM),
a25700a5 4473 global_page_state(NR_PAGETABLE),
d1ce749a 4474 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4475 global_page_state(NR_FREE_PAGES),
4476 free_pcp,
d1ce749a 4477 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4478
599d0c95 4479 for_each_online_pgdat(pgdat) {
9af744d7 4480 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4481 continue;
4482
599d0c95
MG
4483 printk("Node %d"
4484 " active_anon:%lukB"
4485 " inactive_anon:%lukB"
4486 " active_file:%lukB"
4487 " inactive_file:%lukB"
4488 " unevictable:%lukB"
4489 " isolated(anon):%lukB"
4490 " isolated(file):%lukB"
50658e2e 4491 " mapped:%lukB"
11fb9989
MG
4492 " dirty:%lukB"
4493 " writeback:%lukB"
4494 " shmem:%lukB"
4495#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4496 " shmem_thp: %lukB"
4497 " shmem_pmdmapped: %lukB"
4498 " anon_thp: %lukB"
4499#endif
4500 " writeback_tmp:%lukB"
4501 " unstable:%lukB"
33e077bd 4502 " pages_scanned:%lu"
599d0c95
MG
4503 " all_unreclaimable? %s"
4504 "\n",
4505 pgdat->node_id,
4506 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4507 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4508 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4509 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4510 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4511 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4512 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4513 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4514 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4515 K(node_page_state(pgdat, NR_WRITEBACK)),
4516#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4517 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4518 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4519 * HPAGE_PMD_NR),
4520 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4521#endif
4522 K(node_page_state(pgdat, NR_SHMEM)),
4523 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4524 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4525 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4526 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4527 }
4528
ee99c71c 4529 for_each_populated_zone(zone) {
1da177e4
LT
4530 int i;
4531
9af744d7 4532 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4533 continue;
d1bfcdb8
KK
4534
4535 free_pcp = 0;
4536 for_each_online_cpu(cpu)
4537 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4538
1da177e4 4539 show_node(zone);
1f84a18f
JP
4540 printk(KERN_CONT
4541 "%s"
1da177e4
LT
4542 " free:%lukB"
4543 " min:%lukB"
4544 " low:%lukB"
4545 " high:%lukB"
71c799f4
MK
4546 " active_anon:%lukB"
4547 " inactive_anon:%lukB"
4548 " active_file:%lukB"
4549 " inactive_file:%lukB"
4550 " unevictable:%lukB"
5a1c84b4 4551 " writepending:%lukB"
1da177e4 4552 " present:%lukB"
9feedc9d 4553 " managed:%lukB"
4a0aa73f 4554 " mlocked:%lukB"
4a0aa73f
KM
4555 " slab_reclaimable:%lukB"
4556 " slab_unreclaimable:%lukB"
c6a7f572 4557 " kernel_stack:%lukB"
4a0aa73f 4558 " pagetables:%lukB"
4a0aa73f 4559 " bounce:%lukB"
d1bfcdb8
KK
4560 " free_pcp:%lukB"
4561 " local_pcp:%ukB"
d1ce749a 4562 " free_cma:%lukB"
1da177e4
LT
4563 "\n",
4564 zone->name,
88f5acf8 4565 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4566 K(min_wmark_pages(zone)),
4567 K(low_wmark_pages(zone)),
4568 K(high_wmark_pages(zone)),
71c799f4
MK
4569 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4570 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4571 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4572 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4573 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4574 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4575 K(zone->present_pages),
9feedc9d 4576 K(zone->managed_pages),
4a0aa73f 4577 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4578 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4579 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4580 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4581 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4582 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4583 K(free_pcp),
4584 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4585 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4586 printk("lowmem_reserve[]:");
4587 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4588 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4589 printk(KERN_CONT "\n");
1da177e4
LT
4590 }
4591
ee99c71c 4592 for_each_populated_zone(zone) {
d00181b9
KS
4593 unsigned int order;
4594 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4595 unsigned char types[MAX_ORDER];
1da177e4 4596
9af744d7 4597 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4598 continue;
1da177e4 4599 show_node(zone);
1f84a18f 4600 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4601
4602 spin_lock_irqsave(&zone->lock, flags);
4603 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4604 struct free_area *area = &zone->free_area[order];
4605 int type;
4606
4607 nr[order] = area->nr_free;
8f9de51a 4608 total += nr[order] << order;
377e4f16
RV
4609
4610 types[order] = 0;
4611 for (type = 0; type < MIGRATE_TYPES; type++) {
4612 if (!list_empty(&area->free_list[type]))
4613 types[order] |= 1 << type;
4614 }
1da177e4
LT
4615 }
4616 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4617 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4618 printk(KERN_CONT "%lu*%lukB ",
4619 nr[order], K(1UL) << order);
377e4f16
RV
4620 if (nr[order])
4621 show_migration_types(types[order]);
4622 }
1f84a18f 4623 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4624 }
4625
949f7ec5
DR
4626 hugetlb_show_meminfo();
4627
11fb9989 4628 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4629
1da177e4
LT
4630 show_swap_cache_info();
4631}
4632
19770b32
MG
4633static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4634{
4635 zoneref->zone = zone;
4636 zoneref->zone_idx = zone_idx(zone);
4637}
4638
1da177e4
LT
4639/*
4640 * Builds allocation fallback zone lists.
1a93205b
CL
4641 *
4642 * Add all populated zones of a node to the zonelist.
1da177e4 4643 */
f0c0b2b8 4644static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4645 int nr_zones)
1da177e4 4646{
1a93205b 4647 struct zone *zone;
bc732f1d 4648 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4649
4650 do {
2f6726e5 4651 zone_type--;
070f8032 4652 zone = pgdat->node_zones + zone_type;
6aa303de 4653 if (managed_zone(zone)) {
dd1a239f
MG
4654 zoneref_set_zone(zone,
4655 &zonelist->_zonerefs[nr_zones++]);
070f8032 4656 check_highest_zone(zone_type);
1da177e4 4657 }
2f6726e5 4658 } while (zone_type);
bc732f1d 4659
070f8032 4660 return nr_zones;
1da177e4
LT
4661}
4662
f0c0b2b8
KH
4663
4664/*
4665 * zonelist_order:
4666 * 0 = automatic detection of better ordering.
4667 * 1 = order by ([node] distance, -zonetype)
4668 * 2 = order by (-zonetype, [node] distance)
4669 *
4670 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4671 * the same zonelist. So only NUMA can configure this param.
4672 */
4673#define ZONELIST_ORDER_DEFAULT 0
4674#define ZONELIST_ORDER_NODE 1
4675#define ZONELIST_ORDER_ZONE 2
4676
4677/* zonelist order in the kernel.
4678 * set_zonelist_order() will set this to NODE or ZONE.
4679 */
4680static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4681static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4682
4683
1da177e4 4684#ifdef CONFIG_NUMA
f0c0b2b8
KH
4685/* The value user specified ....changed by config */
4686static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4687/* string for sysctl */
4688#define NUMA_ZONELIST_ORDER_LEN 16
4689char numa_zonelist_order[16] = "default";
4690
4691/*
4692 * interface for configure zonelist ordering.
4693 * command line option "numa_zonelist_order"
4694 * = "[dD]efault - default, automatic configuration.
4695 * = "[nN]ode - order by node locality, then by zone within node
4696 * = "[zZ]one - order by zone, then by locality within zone
4697 */
4698
4699static int __parse_numa_zonelist_order(char *s)
4700{
4701 if (*s == 'd' || *s == 'D') {
4702 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4703 } else if (*s == 'n' || *s == 'N') {
4704 user_zonelist_order = ZONELIST_ORDER_NODE;
4705 } else if (*s == 'z' || *s == 'Z') {
4706 user_zonelist_order = ZONELIST_ORDER_ZONE;
4707 } else {
1170532b 4708 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4709 return -EINVAL;
4710 }
4711 return 0;
4712}
4713
4714static __init int setup_numa_zonelist_order(char *s)
4715{
ecb256f8
VL
4716 int ret;
4717
4718 if (!s)
4719 return 0;
4720
4721 ret = __parse_numa_zonelist_order(s);
4722 if (ret == 0)
4723 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4724
4725 return ret;
f0c0b2b8
KH
4726}
4727early_param("numa_zonelist_order", setup_numa_zonelist_order);
4728
4729/*
4730 * sysctl handler for numa_zonelist_order
4731 */
cccad5b9 4732int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4733 void __user *buffer, size_t *length,
f0c0b2b8
KH
4734 loff_t *ppos)
4735{
4736 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4737 int ret;
443c6f14 4738 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4739
443c6f14 4740 mutex_lock(&zl_order_mutex);
dacbde09
CG
4741 if (write) {
4742 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4743 ret = -EINVAL;
4744 goto out;
4745 }
4746 strcpy(saved_string, (char *)table->data);
4747 }
8d65af78 4748 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4749 if (ret)
443c6f14 4750 goto out;
f0c0b2b8
KH
4751 if (write) {
4752 int oldval = user_zonelist_order;
dacbde09
CG
4753
4754 ret = __parse_numa_zonelist_order((char *)table->data);
4755 if (ret) {
f0c0b2b8
KH
4756 /*
4757 * bogus value. restore saved string
4758 */
dacbde09 4759 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4760 NUMA_ZONELIST_ORDER_LEN);
4761 user_zonelist_order = oldval;
4eaf3f64
HL
4762 } else if (oldval != user_zonelist_order) {
4763 mutex_lock(&zonelists_mutex);
9adb62a5 4764 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4765 mutex_unlock(&zonelists_mutex);
4766 }
f0c0b2b8 4767 }
443c6f14
AK
4768out:
4769 mutex_unlock(&zl_order_mutex);
4770 return ret;
f0c0b2b8
KH
4771}
4772
4773
62bc62a8 4774#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4775static int node_load[MAX_NUMNODES];
4776
1da177e4 4777/**
4dc3b16b 4778 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4779 * @node: node whose fallback list we're appending
4780 * @used_node_mask: nodemask_t of already used nodes
4781 *
4782 * We use a number of factors to determine which is the next node that should
4783 * appear on a given node's fallback list. The node should not have appeared
4784 * already in @node's fallback list, and it should be the next closest node
4785 * according to the distance array (which contains arbitrary distance values
4786 * from each node to each node in the system), and should also prefer nodes
4787 * with no CPUs, since presumably they'll have very little allocation pressure
4788 * on them otherwise.
4789 * It returns -1 if no node is found.
4790 */
f0c0b2b8 4791static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4792{
4cf808eb 4793 int n, val;
1da177e4 4794 int min_val = INT_MAX;
00ef2d2f 4795 int best_node = NUMA_NO_NODE;
a70f7302 4796 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4797
4cf808eb
LT
4798 /* Use the local node if we haven't already */
4799 if (!node_isset(node, *used_node_mask)) {
4800 node_set(node, *used_node_mask);
4801 return node;
4802 }
1da177e4 4803
4b0ef1fe 4804 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4805
4806 /* Don't want a node to appear more than once */
4807 if (node_isset(n, *used_node_mask))
4808 continue;
4809
1da177e4
LT
4810 /* Use the distance array to find the distance */
4811 val = node_distance(node, n);
4812
4cf808eb
LT
4813 /* Penalize nodes under us ("prefer the next node") */
4814 val += (n < node);
4815
1da177e4 4816 /* Give preference to headless and unused nodes */
a70f7302
RR
4817 tmp = cpumask_of_node(n);
4818 if (!cpumask_empty(tmp))
1da177e4
LT
4819 val += PENALTY_FOR_NODE_WITH_CPUS;
4820
4821 /* Slight preference for less loaded node */
4822 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4823 val += node_load[n];
4824
4825 if (val < min_val) {
4826 min_val = val;
4827 best_node = n;
4828 }
4829 }
4830
4831 if (best_node >= 0)
4832 node_set(best_node, *used_node_mask);
4833
4834 return best_node;
4835}
4836
f0c0b2b8
KH
4837
4838/*
4839 * Build zonelists ordered by node and zones within node.
4840 * This results in maximum locality--normal zone overflows into local
4841 * DMA zone, if any--but risks exhausting DMA zone.
4842 */
4843static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4844{
f0c0b2b8 4845 int j;
1da177e4 4846 struct zonelist *zonelist;
f0c0b2b8 4847
c9634cf0 4848 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4849 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4850 ;
bc732f1d 4851 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4852 zonelist->_zonerefs[j].zone = NULL;
4853 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4854}
4855
523b9458
CL
4856/*
4857 * Build gfp_thisnode zonelists
4858 */
4859static void build_thisnode_zonelists(pg_data_t *pgdat)
4860{
523b9458
CL
4861 int j;
4862 struct zonelist *zonelist;
4863
c9634cf0 4864 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4865 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4866 zonelist->_zonerefs[j].zone = NULL;
4867 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4868}
4869
f0c0b2b8
KH
4870/*
4871 * Build zonelists ordered by zone and nodes within zones.
4872 * This results in conserving DMA zone[s] until all Normal memory is
4873 * exhausted, but results in overflowing to remote node while memory
4874 * may still exist in local DMA zone.
4875 */
4876static int node_order[MAX_NUMNODES];
4877
4878static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4879{
f0c0b2b8
KH
4880 int pos, j, node;
4881 int zone_type; /* needs to be signed */
4882 struct zone *z;
4883 struct zonelist *zonelist;
4884
c9634cf0 4885 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4886 pos = 0;
4887 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4888 for (j = 0; j < nr_nodes; j++) {
4889 node = node_order[j];
4890 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4891 if (managed_zone(z)) {
dd1a239f
MG
4892 zoneref_set_zone(z,
4893 &zonelist->_zonerefs[pos++]);
54a6eb5c 4894 check_highest_zone(zone_type);
f0c0b2b8
KH
4895 }
4896 }
f0c0b2b8 4897 }
dd1a239f
MG
4898 zonelist->_zonerefs[pos].zone = NULL;
4899 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4900}
4901
3193913c
MG
4902#if defined(CONFIG_64BIT)
4903/*
4904 * Devices that require DMA32/DMA are relatively rare and do not justify a
4905 * penalty to every machine in case the specialised case applies. Default
4906 * to Node-ordering on 64-bit NUMA machines
4907 */
4908static int default_zonelist_order(void)
4909{
4910 return ZONELIST_ORDER_NODE;
4911}
4912#else
4913/*
4914 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4915 * by the kernel. If processes running on node 0 deplete the low memory zone
4916 * then reclaim will occur more frequency increasing stalls and potentially
4917 * be easier to OOM if a large percentage of the zone is under writeback or
4918 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4919 * Hence, default to zone ordering on 32-bit.
4920 */
f0c0b2b8
KH
4921static int default_zonelist_order(void)
4922{
f0c0b2b8
KH
4923 return ZONELIST_ORDER_ZONE;
4924}
3193913c 4925#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4926
4927static void set_zonelist_order(void)
4928{
4929 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4930 current_zonelist_order = default_zonelist_order();
4931 else
4932 current_zonelist_order = user_zonelist_order;
4933}
4934
4935static void build_zonelists(pg_data_t *pgdat)
4936{
c00eb15a 4937 int i, node, load;
1da177e4 4938 nodemask_t used_mask;
f0c0b2b8
KH
4939 int local_node, prev_node;
4940 struct zonelist *zonelist;
d00181b9 4941 unsigned int order = current_zonelist_order;
1da177e4
LT
4942
4943 /* initialize zonelists */
523b9458 4944 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4945 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4946 zonelist->_zonerefs[0].zone = NULL;
4947 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4948 }
4949
4950 /* NUMA-aware ordering of nodes */
4951 local_node = pgdat->node_id;
62bc62a8 4952 load = nr_online_nodes;
1da177e4
LT
4953 prev_node = local_node;
4954 nodes_clear(used_mask);
f0c0b2b8 4955
f0c0b2b8 4956 memset(node_order, 0, sizeof(node_order));
c00eb15a 4957 i = 0;
f0c0b2b8 4958
1da177e4
LT
4959 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4960 /*
4961 * We don't want to pressure a particular node.
4962 * So adding penalty to the first node in same
4963 * distance group to make it round-robin.
4964 */
957f822a
DR
4965 if (node_distance(local_node, node) !=
4966 node_distance(local_node, prev_node))
f0c0b2b8
KH
4967 node_load[node] = load;
4968
1da177e4
LT
4969 prev_node = node;
4970 load--;
f0c0b2b8
KH
4971 if (order == ZONELIST_ORDER_NODE)
4972 build_zonelists_in_node_order(pgdat, node);
4973 else
c00eb15a 4974 node_order[i++] = node; /* remember order */
f0c0b2b8 4975 }
1da177e4 4976
f0c0b2b8
KH
4977 if (order == ZONELIST_ORDER_ZONE) {
4978 /* calculate node order -- i.e., DMA last! */
c00eb15a 4979 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4980 }
523b9458
CL
4981
4982 build_thisnode_zonelists(pgdat);
1da177e4
LT
4983}
4984
7aac7898
LS
4985#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4986/*
4987 * Return node id of node used for "local" allocations.
4988 * I.e., first node id of first zone in arg node's generic zonelist.
4989 * Used for initializing percpu 'numa_mem', which is used primarily
4990 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4991 */
4992int local_memory_node(int node)
4993{
c33d6c06 4994 struct zoneref *z;
7aac7898 4995
c33d6c06 4996 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4997 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4998 NULL);
4999 return z->zone->node;
7aac7898
LS
5000}
5001#endif
f0c0b2b8 5002
6423aa81
JK
5003static void setup_min_unmapped_ratio(void);
5004static void setup_min_slab_ratio(void);
1da177e4
LT
5005#else /* CONFIG_NUMA */
5006
f0c0b2b8
KH
5007static void set_zonelist_order(void)
5008{
5009 current_zonelist_order = ZONELIST_ORDER_ZONE;
5010}
5011
5012static void build_zonelists(pg_data_t *pgdat)
1da177e4 5013{
19655d34 5014 int node, local_node;
54a6eb5c
MG
5015 enum zone_type j;
5016 struct zonelist *zonelist;
1da177e4
LT
5017
5018 local_node = pgdat->node_id;
1da177e4 5019
c9634cf0 5020 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5021 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5022
54a6eb5c
MG
5023 /*
5024 * Now we build the zonelist so that it contains the zones
5025 * of all the other nodes.
5026 * We don't want to pressure a particular node, so when
5027 * building the zones for node N, we make sure that the
5028 * zones coming right after the local ones are those from
5029 * node N+1 (modulo N)
5030 */
5031 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5032 if (!node_online(node))
5033 continue;
bc732f1d 5034 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5035 }
54a6eb5c
MG
5036 for (node = 0; node < local_node; node++) {
5037 if (!node_online(node))
5038 continue;
bc732f1d 5039 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5040 }
5041
dd1a239f
MG
5042 zonelist->_zonerefs[j].zone = NULL;
5043 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5044}
5045
5046#endif /* CONFIG_NUMA */
5047
99dcc3e5
CL
5048/*
5049 * Boot pageset table. One per cpu which is going to be used for all
5050 * zones and all nodes. The parameters will be set in such a way
5051 * that an item put on a list will immediately be handed over to
5052 * the buddy list. This is safe since pageset manipulation is done
5053 * with interrupts disabled.
5054 *
5055 * The boot_pagesets must be kept even after bootup is complete for
5056 * unused processors and/or zones. They do play a role for bootstrapping
5057 * hotplugged processors.
5058 *
5059 * zoneinfo_show() and maybe other functions do
5060 * not check if the processor is online before following the pageset pointer.
5061 * Other parts of the kernel may not check if the zone is available.
5062 */
5063static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5064static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5065static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5066
4eaf3f64
HL
5067/*
5068 * Global mutex to protect against size modification of zonelists
5069 * as well as to serialize pageset setup for the new populated zone.
5070 */
5071DEFINE_MUTEX(zonelists_mutex);
5072
9b1a4d38 5073/* return values int ....just for stop_machine() */
4ed7e022 5074static int __build_all_zonelists(void *data)
1da177e4 5075{
6811378e 5076 int nid;
99dcc3e5 5077 int cpu;
9adb62a5 5078 pg_data_t *self = data;
9276b1bc 5079
7f9cfb31
BL
5080#ifdef CONFIG_NUMA
5081 memset(node_load, 0, sizeof(node_load));
5082#endif
9adb62a5
JL
5083
5084 if (self && !node_online(self->node_id)) {
5085 build_zonelists(self);
9adb62a5
JL
5086 }
5087
9276b1bc 5088 for_each_online_node(nid) {
7ea1530a
CL
5089 pg_data_t *pgdat = NODE_DATA(nid);
5090
5091 build_zonelists(pgdat);
9276b1bc 5092 }
99dcc3e5
CL
5093
5094 /*
5095 * Initialize the boot_pagesets that are going to be used
5096 * for bootstrapping processors. The real pagesets for
5097 * each zone will be allocated later when the per cpu
5098 * allocator is available.
5099 *
5100 * boot_pagesets are used also for bootstrapping offline
5101 * cpus if the system is already booted because the pagesets
5102 * are needed to initialize allocators on a specific cpu too.
5103 * F.e. the percpu allocator needs the page allocator which
5104 * needs the percpu allocator in order to allocate its pagesets
5105 * (a chicken-egg dilemma).
5106 */
7aac7898 5107 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5108 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5109
7aac7898
LS
5110#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5111 /*
5112 * We now know the "local memory node" for each node--
5113 * i.e., the node of the first zone in the generic zonelist.
5114 * Set up numa_mem percpu variable for on-line cpus. During
5115 * boot, only the boot cpu should be on-line; we'll init the
5116 * secondary cpus' numa_mem as they come on-line. During
5117 * node/memory hotplug, we'll fixup all on-line cpus.
5118 */
5119 if (cpu_online(cpu))
5120 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5121#endif
5122 }
5123
6811378e
YG
5124 return 0;
5125}
5126
061f67bc
RV
5127static noinline void __init
5128build_all_zonelists_init(void)
5129{
5130 __build_all_zonelists(NULL);
5131 mminit_verify_zonelist();
5132 cpuset_init_current_mems_allowed();
5133}
5134
4eaf3f64
HL
5135/*
5136 * Called with zonelists_mutex held always
5137 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5138 *
5139 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5140 * [we're only called with non-NULL zone through __meminit paths] and
5141 * (2) call of __init annotated helper build_all_zonelists_init
5142 * [protected by SYSTEM_BOOTING].
4eaf3f64 5143 */
9adb62a5 5144void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5145{
f0c0b2b8
KH
5146 set_zonelist_order();
5147
6811378e 5148 if (system_state == SYSTEM_BOOTING) {
061f67bc 5149 build_all_zonelists_init();
6811378e 5150 } else {
e9959f0f 5151#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5152 if (zone)
5153 setup_zone_pageset(zone);
e9959f0f 5154#endif
dd1895e2
CS
5155 /* we have to stop all cpus to guarantee there is no user
5156 of zonelist */
9adb62a5 5157 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5158 /* cpuset refresh routine should be here */
5159 }
bd1e22b8 5160 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5161 /*
5162 * Disable grouping by mobility if the number of pages in the
5163 * system is too low to allow the mechanism to work. It would be
5164 * more accurate, but expensive to check per-zone. This check is
5165 * made on memory-hotadd so a system can start with mobility
5166 * disabled and enable it later
5167 */
d9c23400 5168 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5169 page_group_by_mobility_disabled = 1;
5170 else
5171 page_group_by_mobility_disabled = 0;
5172
756a025f
JP
5173 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5174 nr_online_nodes,
5175 zonelist_order_name[current_zonelist_order],
5176 page_group_by_mobility_disabled ? "off" : "on",
5177 vm_total_pages);
f0c0b2b8 5178#ifdef CONFIG_NUMA
f88dfff5 5179 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5180#endif
1da177e4
LT
5181}
5182
1da177e4
LT
5183/*
5184 * Initially all pages are reserved - free ones are freed
5185 * up by free_all_bootmem() once the early boot process is
5186 * done. Non-atomic initialization, single-pass.
5187 */
c09b4240 5188void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5189 unsigned long start_pfn, enum memmap_context context)
1da177e4 5190{
4b94ffdc 5191 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5192 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5193 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5194 unsigned long pfn;
3a80a7fa 5195 unsigned long nr_initialised = 0;
342332e6
TI
5196#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5197 struct memblock_region *r = NULL, *tmp;
5198#endif
1da177e4 5199
22b31eec
HD
5200 if (highest_memmap_pfn < end_pfn - 1)
5201 highest_memmap_pfn = end_pfn - 1;
5202
4b94ffdc
DW
5203 /*
5204 * Honor reservation requested by the driver for this ZONE_DEVICE
5205 * memory
5206 */
5207 if (altmap && start_pfn == altmap->base_pfn)
5208 start_pfn += altmap->reserve;
5209
cbe8dd4a 5210 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5211 /*
b72d0ffb
AM
5212 * There can be holes in boot-time mem_map[]s handed to this
5213 * function. They do not exist on hotplugged memory.
a2f3aa02 5214 */
b72d0ffb
AM
5215 if (context != MEMMAP_EARLY)
5216 goto not_early;
5217
b92df1de
PB
5218 if (!early_pfn_valid(pfn)) {
5219#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5220 /*
5221 * Skip to the pfn preceding the next valid one (or
5222 * end_pfn), such that we hit a valid pfn (or end_pfn)
5223 * on our next iteration of the loop.
5224 */
5225 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5226#endif
b72d0ffb 5227 continue;
b92df1de 5228 }
b72d0ffb
AM
5229 if (!early_pfn_in_nid(pfn, nid))
5230 continue;
5231 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5232 break;
342332e6
TI
5233
5234#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5235 /*
5236 * Check given memblock attribute by firmware which can affect
5237 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5238 * mirrored, it's an overlapped memmap init. skip it.
5239 */
5240 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5241 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5242 for_each_memblock(memory, tmp)
5243 if (pfn < memblock_region_memory_end_pfn(tmp))
5244 break;
5245 r = tmp;
5246 }
5247 if (pfn >= memblock_region_memory_base_pfn(r) &&
5248 memblock_is_mirror(r)) {
5249 /* already initialized as NORMAL */
5250 pfn = memblock_region_memory_end_pfn(r);
5251 continue;
342332e6 5252 }
a2f3aa02 5253 }
b72d0ffb 5254#endif
ac5d2539 5255
b72d0ffb 5256not_early:
ac5d2539
MG
5257 /*
5258 * Mark the block movable so that blocks are reserved for
5259 * movable at startup. This will force kernel allocations
5260 * to reserve their blocks rather than leaking throughout
5261 * the address space during boot when many long-lived
974a786e 5262 * kernel allocations are made.
ac5d2539
MG
5263 *
5264 * bitmap is created for zone's valid pfn range. but memmap
5265 * can be created for invalid pages (for alignment)
5266 * check here not to call set_pageblock_migratetype() against
5267 * pfn out of zone.
5268 */
5269 if (!(pfn & (pageblock_nr_pages - 1))) {
5270 struct page *page = pfn_to_page(pfn);
5271
5272 __init_single_page(page, pfn, zone, nid);
5273 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5274 } else {
5275 __init_single_pfn(pfn, zone, nid);
5276 }
1da177e4
LT
5277 }
5278}
5279
1e548deb 5280static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5281{
7aeb09f9 5282 unsigned int order, t;
b2a0ac88
MG
5283 for_each_migratetype_order(order, t) {
5284 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5285 zone->free_area[order].nr_free = 0;
5286 }
5287}
5288
5289#ifndef __HAVE_ARCH_MEMMAP_INIT
5290#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5291 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5292#endif
5293
7cd2b0a3 5294static int zone_batchsize(struct zone *zone)
e7c8d5c9 5295{
3a6be87f 5296#ifdef CONFIG_MMU
e7c8d5c9
CL
5297 int batch;
5298
5299 /*
5300 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5301 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5302 *
5303 * OK, so we don't know how big the cache is. So guess.
5304 */
b40da049 5305 batch = zone->managed_pages / 1024;
ba56e91c
SR
5306 if (batch * PAGE_SIZE > 512 * 1024)
5307 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5308 batch /= 4; /* We effectively *= 4 below */
5309 if (batch < 1)
5310 batch = 1;
5311
5312 /*
0ceaacc9
NP
5313 * Clamp the batch to a 2^n - 1 value. Having a power
5314 * of 2 value was found to be more likely to have
5315 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5316 *
0ceaacc9
NP
5317 * For example if 2 tasks are alternately allocating
5318 * batches of pages, one task can end up with a lot
5319 * of pages of one half of the possible page colors
5320 * and the other with pages of the other colors.
e7c8d5c9 5321 */
9155203a 5322 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5323
e7c8d5c9 5324 return batch;
3a6be87f
DH
5325
5326#else
5327 /* The deferral and batching of frees should be suppressed under NOMMU
5328 * conditions.
5329 *
5330 * The problem is that NOMMU needs to be able to allocate large chunks
5331 * of contiguous memory as there's no hardware page translation to
5332 * assemble apparent contiguous memory from discontiguous pages.
5333 *
5334 * Queueing large contiguous runs of pages for batching, however,
5335 * causes the pages to actually be freed in smaller chunks. As there
5336 * can be a significant delay between the individual batches being
5337 * recycled, this leads to the once large chunks of space being
5338 * fragmented and becoming unavailable for high-order allocations.
5339 */
5340 return 0;
5341#endif
e7c8d5c9
CL
5342}
5343
8d7a8fa9
CS
5344/*
5345 * pcp->high and pcp->batch values are related and dependent on one another:
5346 * ->batch must never be higher then ->high.
5347 * The following function updates them in a safe manner without read side
5348 * locking.
5349 *
5350 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5351 * those fields changing asynchronously (acording the the above rule).
5352 *
5353 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5354 * outside of boot time (or some other assurance that no concurrent updaters
5355 * exist).
5356 */
5357static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5358 unsigned long batch)
5359{
5360 /* start with a fail safe value for batch */
5361 pcp->batch = 1;
5362 smp_wmb();
5363
5364 /* Update high, then batch, in order */
5365 pcp->high = high;
5366 smp_wmb();
5367
5368 pcp->batch = batch;
5369}
5370
3664033c 5371/* a companion to pageset_set_high() */
4008bab7
CS
5372static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5373{
8d7a8fa9 5374 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5375}
5376
88c90dbc 5377static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5378{
5379 struct per_cpu_pages *pcp;
5f8dcc21 5380 int migratetype;
2caaad41 5381
1c6fe946
MD
5382 memset(p, 0, sizeof(*p));
5383
3dfa5721 5384 pcp = &p->pcp;
2caaad41 5385 pcp->count = 0;
5f8dcc21
MG
5386 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5387 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5388}
5389
88c90dbc
CS
5390static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5391{
5392 pageset_init(p);
5393 pageset_set_batch(p, batch);
5394}
5395
8ad4b1fb 5396/*
3664033c 5397 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5398 * to the value high for the pageset p.
5399 */
3664033c 5400static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5401 unsigned long high)
5402{
8d7a8fa9
CS
5403 unsigned long batch = max(1UL, high / 4);
5404 if ((high / 4) > (PAGE_SHIFT * 8))
5405 batch = PAGE_SHIFT * 8;
8ad4b1fb 5406
8d7a8fa9 5407 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5408}
5409
7cd2b0a3
DR
5410static void pageset_set_high_and_batch(struct zone *zone,
5411 struct per_cpu_pageset *pcp)
56cef2b8 5412{
56cef2b8 5413 if (percpu_pagelist_fraction)
3664033c 5414 pageset_set_high(pcp,
56cef2b8
CS
5415 (zone->managed_pages /
5416 percpu_pagelist_fraction));
5417 else
5418 pageset_set_batch(pcp, zone_batchsize(zone));
5419}
5420
169f6c19
CS
5421static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5422{
5423 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5424
5425 pageset_init(pcp);
5426 pageset_set_high_and_batch(zone, pcp);
5427}
5428
4ed7e022 5429static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5430{
5431 int cpu;
319774e2 5432 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5433 for_each_possible_cpu(cpu)
5434 zone_pageset_init(zone, cpu);
319774e2
WF
5435}
5436
2caaad41 5437/*
99dcc3e5
CL
5438 * Allocate per cpu pagesets and initialize them.
5439 * Before this call only boot pagesets were available.
e7c8d5c9 5440 */
99dcc3e5 5441void __init setup_per_cpu_pageset(void)
e7c8d5c9 5442{
b4911ea2 5443 struct pglist_data *pgdat;
99dcc3e5 5444 struct zone *zone;
e7c8d5c9 5445
319774e2
WF
5446 for_each_populated_zone(zone)
5447 setup_zone_pageset(zone);
b4911ea2
MG
5448
5449 for_each_online_pgdat(pgdat)
5450 pgdat->per_cpu_nodestats =
5451 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5452}
5453
c09b4240 5454static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5455{
99dcc3e5
CL
5456 /*
5457 * per cpu subsystem is not up at this point. The following code
5458 * relies on the ability of the linker to provide the
5459 * offset of a (static) per cpu variable into the per cpu area.
5460 */
5461 zone->pageset = &boot_pageset;
ed8ece2e 5462
b38a8725 5463 if (populated_zone(zone))
99dcc3e5
CL
5464 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5465 zone->name, zone->present_pages,
5466 zone_batchsize(zone));
ed8ece2e
DH
5467}
5468
4ed7e022 5469int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5470 unsigned long zone_start_pfn,
b171e409 5471 unsigned long size)
ed8ece2e
DH
5472{
5473 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5474
ed8ece2e
DH
5475 pgdat->nr_zones = zone_idx(zone) + 1;
5476
ed8ece2e
DH
5477 zone->zone_start_pfn = zone_start_pfn;
5478
708614e6
MG
5479 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5480 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5481 pgdat->node_id,
5482 (unsigned long)zone_idx(zone),
5483 zone_start_pfn, (zone_start_pfn + size));
5484
1e548deb 5485 zone_init_free_lists(zone);
9dcb8b68 5486 zone->initialized = 1;
718127cc
YG
5487
5488 return 0;
ed8ece2e
DH
5489}
5490
0ee332c1 5491#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5492#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5493
c713216d
MG
5494/*
5495 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5496 */
8a942fde
MG
5497int __meminit __early_pfn_to_nid(unsigned long pfn,
5498 struct mminit_pfnnid_cache *state)
c713216d 5499{
c13291a5 5500 unsigned long start_pfn, end_pfn;
e76b63f8 5501 int nid;
7c243c71 5502
8a942fde
MG
5503 if (state->last_start <= pfn && pfn < state->last_end)
5504 return state->last_nid;
c713216d 5505
e76b63f8
YL
5506 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5507 if (nid != -1) {
8a942fde
MG
5508 state->last_start = start_pfn;
5509 state->last_end = end_pfn;
5510 state->last_nid = nid;
e76b63f8
YL
5511 }
5512
5513 return nid;
c713216d
MG
5514}
5515#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5516
c713216d 5517/**
6782832e 5518 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5519 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5520 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5521 *
7d018176
ZZ
5522 * If an architecture guarantees that all ranges registered contain no holes
5523 * and may be freed, this this function may be used instead of calling
5524 * memblock_free_early_nid() manually.
c713216d 5525 */
c13291a5 5526void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5527{
c13291a5
TH
5528 unsigned long start_pfn, end_pfn;
5529 int i, this_nid;
edbe7d23 5530
c13291a5
TH
5531 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5532 start_pfn = min(start_pfn, max_low_pfn);
5533 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5534
c13291a5 5535 if (start_pfn < end_pfn)
6782832e
SS
5536 memblock_free_early_nid(PFN_PHYS(start_pfn),
5537 (end_pfn - start_pfn) << PAGE_SHIFT,
5538 this_nid);
edbe7d23 5539 }
edbe7d23 5540}
edbe7d23 5541
c713216d
MG
5542/**
5543 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5544 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5545 *
7d018176
ZZ
5546 * If an architecture guarantees that all ranges registered contain no holes and may
5547 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5548 */
5549void __init sparse_memory_present_with_active_regions(int nid)
5550{
c13291a5
TH
5551 unsigned long start_pfn, end_pfn;
5552 int i, this_nid;
c713216d 5553
c13291a5
TH
5554 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5555 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5556}
5557
5558/**
5559 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5560 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5561 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5562 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5563 *
5564 * It returns the start and end page frame of a node based on information
7d018176 5565 * provided by memblock_set_node(). If called for a node
c713216d 5566 * with no available memory, a warning is printed and the start and end
88ca3b94 5567 * PFNs will be 0.
c713216d 5568 */
a3142c8e 5569void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5570 unsigned long *start_pfn, unsigned long *end_pfn)
5571{
c13291a5 5572 unsigned long this_start_pfn, this_end_pfn;
c713216d 5573 int i;
c13291a5 5574
c713216d
MG
5575 *start_pfn = -1UL;
5576 *end_pfn = 0;
5577
c13291a5
TH
5578 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5579 *start_pfn = min(*start_pfn, this_start_pfn);
5580 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5581 }
5582
633c0666 5583 if (*start_pfn == -1UL)
c713216d 5584 *start_pfn = 0;
c713216d
MG
5585}
5586
2a1e274a
MG
5587/*
5588 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5589 * assumption is made that zones within a node are ordered in monotonic
5590 * increasing memory addresses so that the "highest" populated zone is used
5591 */
b69a7288 5592static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5593{
5594 int zone_index;
5595 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5596 if (zone_index == ZONE_MOVABLE)
5597 continue;
5598
5599 if (arch_zone_highest_possible_pfn[zone_index] >
5600 arch_zone_lowest_possible_pfn[zone_index])
5601 break;
5602 }
5603
5604 VM_BUG_ON(zone_index == -1);
5605 movable_zone = zone_index;
5606}
5607
5608/*
5609 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5610 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5611 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5612 * in each node depending on the size of each node and how evenly kernelcore
5613 * is distributed. This helper function adjusts the zone ranges
5614 * provided by the architecture for a given node by using the end of the
5615 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5616 * zones within a node are in order of monotonic increases memory addresses
5617 */
b69a7288 5618static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5619 unsigned long zone_type,
5620 unsigned long node_start_pfn,
5621 unsigned long node_end_pfn,
5622 unsigned long *zone_start_pfn,
5623 unsigned long *zone_end_pfn)
5624{
5625 /* Only adjust if ZONE_MOVABLE is on this node */
5626 if (zone_movable_pfn[nid]) {
5627 /* Size ZONE_MOVABLE */
5628 if (zone_type == ZONE_MOVABLE) {
5629 *zone_start_pfn = zone_movable_pfn[nid];
5630 *zone_end_pfn = min(node_end_pfn,
5631 arch_zone_highest_possible_pfn[movable_zone]);
5632
e506b996
XQ
5633 /* Adjust for ZONE_MOVABLE starting within this range */
5634 } else if (!mirrored_kernelcore &&
5635 *zone_start_pfn < zone_movable_pfn[nid] &&
5636 *zone_end_pfn > zone_movable_pfn[nid]) {
5637 *zone_end_pfn = zone_movable_pfn[nid];
5638
2a1e274a
MG
5639 /* Check if this whole range is within ZONE_MOVABLE */
5640 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5641 *zone_start_pfn = *zone_end_pfn;
5642 }
5643}
5644
c713216d
MG
5645/*
5646 * Return the number of pages a zone spans in a node, including holes
5647 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5648 */
6ea6e688 5649static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5650 unsigned long zone_type,
7960aedd
ZY
5651 unsigned long node_start_pfn,
5652 unsigned long node_end_pfn,
d91749c1
TI
5653 unsigned long *zone_start_pfn,
5654 unsigned long *zone_end_pfn,
c713216d
MG
5655 unsigned long *ignored)
5656{
b5685e92 5657 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5658 if (!node_start_pfn && !node_end_pfn)
5659 return 0;
5660
7960aedd 5661 /* Get the start and end of the zone */
d91749c1
TI
5662 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5663 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5664 adjust_zone_range_for_zone_movable(nid, zone_type,
5665 node_start_pfn, node_end_pfn,
d91749c1 5666 zone_start_pfn, zone_end_pfn);
c713216d
MG
5667
5668 /* Check that this node has pages within the zone's required range */
d91749c1 5669 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5670 return 0;
5671
5672 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5673 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5674 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5675
5676 /* Return the spanned pages */
d91749c1 5677 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5678}
5679
5680/*
5681 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5682 * then all holes in the requested range will be accounted for.
c713216d 5683 */
32996250 5684unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5685 unsigned long range_start_pfn,
5686 unsigned long range_end_pfn)
5687{
96e907d1
TH
5688 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5689 unsigned long start_pfn, end_pfn;
5690 int i;
c713216d 5691
96e907d1
TH
5692 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5693 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5694 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5695 nr_absent -= end_pfn - start_pfn;
c713216d 5696 }
96e907d1 5697 return nr_absent;
c713216d
MG
5698}
5699
5700/**
5701 * absent_pages_in_range - Return number of page frames in holes within a range
5702 * @start_pfn: The start PFN to start searching for holes
5703 * @end_pfn: The end PFN to stop searching for holes
5704 *
88ca3b94 5705 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5706 */
5707unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5708 unsigned long end_pfn)
5709{
5710 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5711}
5712
5713/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5714static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5715 unsigned long zone_type,
7960aedd
ZY
5716 unsigned long node_start_pfn,
5717 unsigned long node_end_pfn,
c713216d
MG
5718 unsigned long *ignored)
5719{
96e907d1
TH
5720 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5721 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5722 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5723 unsigned long nr_absent;
9c7cd687 5724
b5685e92 5725 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5726 if (!node_start_pfn && !node_end_pfn)
5727 return 0;
5728
96e907d1
TH
5729 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5730 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5731
2a1e274a
MG
5732 adjust_zone_range_for_zone_movable(nid, zone_type,
5733 node_start_pfn, node_end_pfn,
5734 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5735 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5736
5737 /*
5738 * ZONE_MOVABLE handling.
5739 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5740 * and vice versa.
5741 */
e506b996
XQ
5742 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5743 unsigned long start_pfn, end_pfn;
5744 struct memblock_region *r;
5745
5746 for_each_memblock(memory, r) {
5747 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5748 zone_start_pfn, zone_end_pfn);
5749 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5750 zone_start_pfn, zone_end_pfn);
5751
5752 if (zone_type == ZONE_MOVABLE &&
5753 memblock_is_mirror(r))
5754 nr_absent += end_pfn - start_pfn;
5755
5756 if (zone_type == ZONE_NORMAL &&
5757 !memblock_is_mirror(r))
5758 nr_absent += end_pfn - start_pfn;
342332e6
TI
5759 }
5760 }
5761
5762 return nr_absent;
c713216d 5763}
0e0b864e 5764
0ee332c1 5765#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5766static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5767 unsigned long zone_type,
7960aedd
ZY
5768 unsigned long node_start_pfn,
5769 unsigned long node_end_pfn,
d91749c1
TI
5770 unsigned long *zone_start_pfn,
5771 unsigned long *zone_end_pfn,
c713216d
MG
5772 unsigned long *zones_size)
5773{
d91749c1
TI
5774 unsigned int zone;
5775
5776 *zone_start_pfn = node_start_pfn;
5777 for (zone = 0; zone < zone_type; zone++)
5778 *zone_start_pfn += zones_size[zone];
5779
5780 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5781
c713216d
MG
5782 return zones_size[zone_type];
5783}
5784
6ea6e688 5785static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5786 unsigned long zone_type,
7960aedd
ZY
5787 unsigned long node_start_pfn,
5788 unsigned long node_end_pfn,
c713216d
MG
5789 unsigned long *zholes_size)
5790{
5791 if (!zholes_size)
5792 return 0;
5793
5794 return zholes_size[zone_type];
5795}
20e6926d 5796
0ee332c1 5797#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5798
a3142c8e 5799static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5800 unsigned long node_start_pfn,
5801 unsigned long node_end_pfn,
5802 unsigned long *zones_size,
5803 unsigned long *zholes_size)
c713216d 5804{
febd5949 5805 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5806 enum zone_type i;
5807
febd5949
GZ
5808 for (i = 0; i < MAX_NR_ZONES; i++) {
5809 struct zone *zone = pgdat->node_zones + i;
d91749c1 5810 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5811 unsigned long size, real_size;
c713216d 5812
febd5949
GZ
5813 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5814 node_start_pfn,
5815 node_end_pfn,
d91749c1
TI
5816 &zone_start_pfn,
5817 &zone_end_pfn,
febd5949
GZ
5818 zones_size);
5819 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5820 node_start_pfn, node_end_pfn,
5821 zholes_size);
d91749c1
TI
5822 if (size)
5823 zone->zone_start_pfn = zone_start_pfn;
5824 else
5825 zone->zone_start_pfn = 0;
febd5949
GZ
5826 zone->spanned_pages = size;
5827 zone->present_pages = real_size;
5828
5829 totalpages += size;
5830 realtotalpages += real_size;
5831 }
5832
5833 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5834 pgdat->node_present_pages = realtotalpages;
5835 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5836 realtotalpages);
5837}
5838
835c134e
MG
5839#ifndef CONFIG_SPARSEMEM
5840/*
5841 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5842 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5843 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5844 * round what is now in bits to nearest long in bits, then return it in
5845 * bytes.
5846 */
7c45512d 5847static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5848{
5849 unsigned long usemapsize;
5850
7c45512d 5851 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5852 usemapsize = roundup(zonesize, pageblock_nr_pages);
5853 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5854 usemapsize *= NR_PAGEBLOCK_BITS;
5855 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5856
5857 return usemapsize / 8;
5858}
5859
5860static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5861 struct zone *zone,
5862 unsigned long zone_start_pfn,
5863 unsigned long zonesize)
835c134e 5864{
7c45512d 5865 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5866 zone->pageblock_flags = NULL;
58a01a45 5867 if (usemapsize)
6782832e
SS
5868 zone->pageblock_flags =
5869 memblock_virt_alloc_node_nopanic(usemapsize,
5870 pgdat->node_id);
835c134e
MG
5871}
5872#else
7c45512d
LT
5873static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5874 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5875#endif /* CONFIG_SPARSEMEM */
5876
d9c23400 5877#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5878
d9c23400 5879/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5880void __paginginit set_pageblock_order(void)
d9c23400 5881{
955c1cd7
AM
5882 unsigned int order;
5883
d9c23400
MG
5884 /* Check that pageblock_nr_pages has not already been setup */
5885 if (pageblock_order)
5886 return;
5887
955c1cd7
AM
5888 if (HPAGE_SHIFT > PAGE_SHIFT)
5889 order = HUGETLB_PAGE_ORDER;
5890 else
5891 order = MAX_ORDER - 1;
5892
d9c23400
MG
5893 /*
5894 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5895 * This value may be variable depending on boot parameters on IA64 and
5896 * powerpc.
d9c23400
MG
5897 */
5898 pageblock_order = order;
5899}
5900#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5901
ba72cb8c
MG
5902/*
5903 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5904 * is unused as pageblock_order is set at compile-time. See
5905 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5906 * the kernel config
ba72cb8c 5907 */
15ca220e 5908void __paginginit set_pageblock_order(void)
ba72cb8c 5909{
ba72cb8c 5910}
d9c23400
MG
5911
5912#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5913
01cefaef
JL
5914static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5915 unsigned long present_pages)
5916{
5917 unsigned long pages = spanned_pages;
5918
5919 /*
5920 * Provide a more accurate estimation if there are holes within
5921 * the zone and SPARSEMEM is in use. If there are holes within the
5922 * zone, each populated memory region may cost us one or two extra
5923 * memmap pages due to alignment because memmap pages for each
5924 * populated regions may not naturally algined on page boundary.
5925 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5926 */
5927 if (spanned_pages > present_pages + (present_pages >> 4) &&
5928 IS_ENABLED(CONFIG_SPARSEMEM))
5929 pages = present_pages;
5930
5931 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5932}
5933
1da177e4
LT
5934/*
5935 * Set up the zone data structures:
5936 * - mark all pages reserved
5937 * - mark all memory queues empty
5938 * - clear the memory bitmaps
6527af5d
MK
5939 *
5940 * NOTE: pgdat should get zeroed by caller.
1da177e4 5941 */
7f3eb55b 5942static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5943{
2f1b6248 5944 enum zone_type j;
ed8ece2e 5945 int nid = pgdat->node_id;
718127cc 5946 int ret;
1da177e4 5947
208d54e5 5948 pgdat_resize_init(pgdat);
8177a420
AA
5949#ifdef CONFIG_NUMA_BALANCING
5950 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5951 pgdat->numabalancing_migrate_nr_pages = 0;
5952 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5953#endif
5954#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5955 spin_lock_init(&pgdat->split_queue_lock);
5956 INIT_LIST_HEAD(&pgdat->split_queue);
5957 pgdat->split_queue_len = 0;
8177a420 5958#endif
1da177e4 5959 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5960 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5961#ifdef CONFIG_COMPACTION
5962 init_waitqueue_head(&pgdat->kcompactd_wait);
5963#endif
eefa864b 5964 pgdat_page_ext_init(pgdat);
a52633d8 5965 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5966 lruvec_init(node_lruvec(pgdat));
5f63b720 5967
1da177e4
LT
5968 for (j = 0; j < MAX_NR_ZONES; j++) {
5969 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5970 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5971 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5972
febd5949
GZ
5973 size = zone->spanned_pages;
5974 realsize = freesize = zone->present_pages;
1da177e4 5975
0e0b864e 5976 /*
9feedc9d 5977 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5978 * is used by this zone for memmap. This affects the watermark
5979 * and per-cpu initialisations
5980 */
01cefaef 5981 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5982 if (!is_highmem_idx(j)) {
5983 if (freesize >= memmap_pages) {
5984 freesize -= memmap_pages;
5985 if (memmap_pages)
5986 printk(KERN_DEBUG
5987 " %s zone: %lu pages used for memmap\n",
5988 zone_names[j], memmap_pages);
5989 } else
1170532b 5990 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5991 zone_names[j], memmap_pages, freesize);
5992 }
0e0b864e 5993
6267276f 5994 /* Account for reserved pages */
9feedc9d
JL
5995 if (j == 0 && freesize > dma_reserve) {
5996 freesize -= dma_reserve;
d903ef9f 5997 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5998 zone_names[0], dma_reserve);
0e0b864e
MG
5999 }
6000
98d2b0eb 6001 if (!is_highmem_idx(j))
9feedc9d 6002 nr_kernel_pages += freesize;
01cefaef
JL
6003 /* Charge for highmem memmap if there are enough kernel pages */
6004 else if (nr_kernel_pages > memmap_pages * 2)
6005 nr_kernel_pages -= memmap_pages;
9feedc9d 6006 nr_all_pages += freesize;
1da177e4 6007
9feedc9d
JL
6008 /*
6009 * Set an approximate value for lowmem here, it will be adjusted
6010 * when the bootmem allocator frees pages into the buddy system.
6011 * And all highmem pages will be managed by the buddy system.
6012 */
6013 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6014#ifdef CONFIG_NUMA
d5f541ed 6015 zone->node = nid;
9614634f 6016#endif
1da177e4 6017 zone->name = zone_names[j];
a52633d8 6018 zone->zone_pgdat = pgdat;
1da177e4 6019 spin_lock_init(&zone->lock);
bdc8cb98 6020 zone_seqlock_init(zone);
ed8ece2e 6021 zone_pcp_init(zone);
81c0a2bb 6022
1da177e4
LT
6023 if (!size)
6024 continue;
6025
955c1cd7 6026 set_pageblock_order();
7c45512d 6027 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6028 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6029 BUG_ON(ret);
76cdd58e 6030 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6031 }
6032}
6033
bd721ea7 6034static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6035{
b0aeba74 6036 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6037 unsigned long __maybe_unused offset = 0;
6038
1da177e4
LT
6039 /* Skip empty nodes */
6040 if (!pgdat->node_spanned_pages)
6041 return;
6042
d41dee36 6043#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6044 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6045 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6046 /* ia64 gets its own node_mem_map, before this, without bootmem */
6047 if (!pgdat->node_mem_map) {
b0aeba74 6048 unsigned long size, end;
d41dee36
AW
6049 struct page *map;
6050
e984bb43
BP
6051 /*
6052 * The zone's endpoints aren't required to be MAX_ORDER
6053 * aligned but the node_mem_map endpoints must be in order
6054 * for the buddy allocator to function correctly.
6055 */
108bcc96 6056 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6057 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6058 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6059 map = alloc_remap(pgdat->node_id, size);
6060 if (!map)
6782832e
SS
6061 map = memblock_virt_alloc_node_nopanic(size,
6062 pgdat->node_id);
a1c34a3b 6063 pgdat->node_mem_map = map + offset;
1da177e4 6064 }
12d810c1 6065#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6066 /*
6067 * With no DISCONTIG, the global mem_map is just set as node 0's
6068 */
c713216d 6069 if (pgdat == NODE_DATA(0)) {
1da177e4 6070 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6071#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6072 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6073 mem_map -= offset;
0ee332c1 6074#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6075 }
1da177e4 6076#endif
d41dee36 6077#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6078}
6079
9109fb7b
JW
6080void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6081 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6082{
9109fb7b 6083 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6084 unsigned long start_pfn = 0;
6085 unsigned long end_pfn = 0;
9109fb7b 6086
88fdf75d 6087 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6088 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6089
3a80a7fa 6090 reset_deferred_meminit(pgdat);
1da177e4
LT
6091 pgdat->node_id = nid;
6092 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6093 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6094#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6095 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6096 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6097 (u64)start_pfn << PAGE_SHIFT,
6098 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6099#else
6100 start_pfn = node_start_pfn;
7960aedd
ZY
6101#endif
6102 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6103 zones_size, zholes_size);
1da177e4
LT
6104
6105 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6106#ifdef CONFIG_FLAT_NODE_MEM_MAP
6107 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6108 nid, (unsigned long)pgdat,
6109 (unsigned long)pgdat->node_mem_map);
6110#endif
1da177e4 6111
7f3eb55b 6112 free_area_init_core(pgdat);
1da177e4
LT
6113}
6114
0ee332c1 6115#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6116
6117#if MAX_NUMNODES > 1
6118/*
6119 * Figure out the number of possible node ids.
6120 */
f9872caf 6121void __init setup_nr_node_ids(void)
418508c1 6122{
904a9553 6123 unsigned int highest;
418508c1 6124
904a9553 6125 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6126 nr_node_ids = highest + 1;
6127}
418508c1
MS
6128#endif
6129
1e01979c
TH
6130/**
6131 * node_map_pfn_alignment - determine the maximum internode alignment
6132 *
6133 * This function should be called after node map is populated and sorted.
6134 * It calculates the maximum power of two alignment which can distinguish
6135 * all the nodes.
6136 *
6137 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6138 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6139 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6140 * shifted, 1GiB is enough and this function will indicate so.
6141 *
6142 * This is used to test whether pfn -> nid mapping of the chosen memory
6143 * model has fine enough granularity to avoid incorrect mapping for the
6144 * populated node map.
6145 *
6146 * Returns the determined alignment in pfn's. 0 if there is no alignment
6147 * requirement (single node).
6148 */
6149unsigned long __init node_map_pfn_alignment(void)
6150{
6151 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6152 unsigned long start, end, mask;
1e01979c 6153 int last_nid = -1;
c13291a5 6154 int i, nid;
1e01979c 6155
c13291a5 6156 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6157 if (!start || last_nid < 0 || last_nid == nid) {
6158 last_nid = nid;
6159 last_end = end;
6160 continue;
6161 }
6162
6163 /*
6164 * Start with a mask granular enough to pin-point to the
6165 * start pfn and tick off bits one-by-one until it becomes
6166 * too coarse to separate the current node from the last.
6167 */
6168 mask = ~((1 << __ffs(start)) - 1);
6169 while (mask && last_end <= (start & (mask << 1)))
6170 mask <<= 1;
6171
6172 /* accumulate all internode masks */
6173 accl_mask |= mask;
6174 }
6175
6176 /* convert mask to number of pages */
6177 return ~accl_mask + 1;
6178}
6179
a6af2bc3 6180/* Find the lowest pfn for a node */
b69a7288 6181static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6182{
a6af2bc3 6183 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6184 unsigned long start_pfn;
6185 int i;
1abbfb41 6186
c13291a5
TH
6187 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6188 min_pfn = min(min_pfn, start_pfn);
c713216d 6189
a6af2bc3 6190 if (min_pfn == ULONG_MAX) {
1170532b 6191 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6192 return 0;
6193 }
6194
6195 return min_pfn;
c713216d
MG
6196}
6197
6198/**
6199 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6200 *
6201 * It returns the minimum PFN based on information provided via
7d018176 6202 * memblock_set_node().
c713216d
MG
6203 */
6204unsigned long __init find_min_pfn_with_active_regions(void)
6205{
6206 return find_min_pfn_for_node(MAX_NUMNODES);
6207}
6208
37b07e41
LS
6209/*
6210 * early_calculate_totalpages()
6211 * Sum pages in active regions for movable zone.
4b0ef1fe 6212 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6213 */
484f51f8 6214static unsigned long __init early_calculate_totalpages(void)
7e63efef 6215{
7e63efef 6216 unsigned long totalpages = 0;
c13291a5
TH
6217 unsigned long start_pfn, end_pfn;
6218 int i, nid;
6219
6220 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6221 unsigned long pages = end_pfn - start_pfn;
7e63efef 6222
37b07e41
LS
6223 totalpages += pages;
6224 if (pages)
4b0ef1fe 6225 node_set_state(nid, N_MEMORY);
37b07e41 6226 }
b8af2941 6227 return totalpages;
7e63efef
MG
6228}
6229
2a1e274a
MG
6230/*
6231 * Find the PFN the Movable zone begins in each node. Kernel memory
6232 * is spread evenly between nodes as long as the nodes have enough
6233 * memory. When they don't, some nodes will have more kernelcore than
6234 * others
6235 */
b224ef85 6236static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6237{
6238 int i, nid;
6239 unsigned long usable_startpfn;
6240 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6241 /* save the state before borrow the nodemask */
4b0ef1fe 6242 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6243 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6244 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6245 struct memblock_region *r;
b2f3eebe
TC
6246
6247 /* Need to find movable_zone earlier when movable_node is specified. */
6248 find_usable_zone_for_movable();
6249
6250 /*
6251 * If movable_node is specified, ignore kernelcore and movablecore
6252 * options.
6253 */
6254 if (movable_node_is_enabled()) {
136199f0
EM
6255 for_each_memblock(memory, r) {
6256 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6257 continue;
6258
136199f0 6259 nid = r->nid;
b2f3eebe 6260
136199f0 6261 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6262 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6263 min(usable_startpfn, zone_movable_pfn[nid]) :
6264 usable_startpfn;
6265 }
6266
6267 goto out2;
6268 }
2a1e274a 6269
342332e6
TI
6270 /*
6271 * If kernelcore=mirror is specified, ignore movablecore option
6272 */
6273 if (mirrored_kernelcore) {
6274 bool mem_below_4gb_not_mirrored = false;
6275
6276 for_each_memblock(memory, r) {
6277 if (memblock_is_mirror(r))
6278 continue;
6279
6280 nid = r->nid;
6281
6282 usable_startpfn = memblock_region_memory_base_pfn(r);
6283
6284 if (usable_startpfn < 0x100000) {
6285 mem_below_4gb_not_mirrored = true;
6286 continue;
6287 }
6288
6289 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6290 min(usable_startpfn, zone_movable_pfn[nid]) :
6291 usable_startpfn;
6292 }
6293
6294 if (mem_below_4gb_not_mirrored)
6295 pr_warn("This configuration results in unmirrored kernel memory.");
6296
6297 goto out2;
6298 }
6299
7e63efef 6300 /*
b2f3eebe 6301 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6302 * kernelcore that corresponds so that memory usable for
6303 * any allocation type is evenly spread. If both kernelcore
6304 * and movablecore are specified, then the value of kernelcore
6305 * will be used for required_kernelcore if it's greater than
6306 * what movablecore would have allowed.
6307 */
6308 if (required_movablecore) {
7e63efef
MG
6309 unsigned long corepages;
6310
6311 /*
6312 * Round-up so that ZONE_MOVABLE is at least as large as what
6313 * was requested by the user
6314 */
6315 required_movablecore =
6316 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6317 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6318 corepages = totalpages - required_movablecore;
6319
6320 required_kernelcore = max(required_kernelcore, corepages);
6321 }
6322
bde304bd
XQ
6323 /*
6324 * If kernelcore was not specified or kernelcore size is larger
6325 * than totalpages, there is no ZONE_MOVABLE.
6326 */
6327 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6328 goto out;
2a1e274a
MG
6329
6330 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6331 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6332
6333restart:
6334 /* Spread kernelcore memory as evenly as possible throughout nodes */
6335 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6336 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6337 unsigned long start_pfn, end_pfn;
6338
2a1e274a
MG
6339 /*
6340 * Recalculate kernelcore_node if the division per node
6341 * now exceeds what is necessary to satisfy the requested
6342 * amount of memory for the kernel
6343 */
6344 if (required_kernelcore < kernelcore_node)
6345 kernelcore_node = required_kernelcore / usable_nodes;
6346
6347 /*
6348 * As the map is walked, we track how much memory is usable
6349 * by the kernel using kernelcore_remaining. When it is
6350 * 0, the rest of the node is usable by ZONE_MOVABLE
6351 */
6352 kernelcore_remaining = kernelcore_node;
6353
6354 /* Go through each range of PFNs within this node */
c13291a5 6355 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6356 unsigned long size_pages;
6357
c13291a5 6358 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6359 if (start_pfn >= end_pfn)
6360 continue;
6361
6362 /* Account for what is only usable for kernelcore */
6363 if (start_pfn < usable_startpfn) {
6364 unsigned long kernel_pages;
6365 kernel_pages = min(end_pfn, usable_startpfn)
6366 - start_pfn;
6367
6368 kernelcore_remaining -= min(kernel_pages,
6369 kernelcore_remaining);
6370 required_kernelcore -= min(kernel_pages,
6371 required_kernelcore);
6372
6373 /* Continue if range is now fully accounted */
6374 if (end_pfn <= usable_startpfn) {
6375
6376 /*
6377 * Push zone_movable_pfn to the end so
6378 * that if we have to rebalance
6379 * kernelcore across nodes, we will
6380 * not double account here
6381 */
6382 zone_movable_pfn[nid] = end_pfn;
6383 continue;
6384 }
6385 start_pfn = usable_startpfn;
6386 }
6387
6388 /*
6389 * The usable PFN range for ZONE_MOVABLE is from
6390 * start_pfn->end_pfn. Calculate size_pages as the
6391 * number of pages used as kernelcore
6392 */
6393 size_pages = end_pfn - start_pfn;
6394 if (size_pages > kernelcore_remaining)
6395 size_pages = kernelcore_remaining;
6396 zone_movable_pfn[nid] = start_pfn + size_pages;
6397
6398 /*
6399 * Some kernelcore has been met, update counts and
6400 * break if the kernelcore for this node has been
b8af2941 6401 * satisfied
2a1e274a
MG
6402 */
6403 required_kernelcore -= min(required_kernelcore,
6404 size_pages);
6405 kernelcore_remaining -= size_pages;
6406 if (!kernelcore_remaining)
6407 break;
6408 }
6409 }
6410
6411 /*
6412 * If there is still required_kernelcore, we do another pass with one
6413 * less node in the count. This will push zone_movable_pfn[nid] further
6414 * along on the nodes that still have memory until kernelcore is
b8af2941 6415 * satisfied
2a1e274a
MG
6416 */
6417 usable_nodes--;
6418 if (usable_nodes && required_kernelcore > usable_nodes)
6419 goto restart;
6420
b2f3eebe 6421out2:
2a1e274a
MG
6422 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6423 for (nid = 0; nid < MAX_NUMNODES; nid++)
6424 zone_movable_pfn[nid] =
6425 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6426
20e6926d 6427out:
66918dcd 6428 /* restore the node_state */
4b0ef1fe 6429 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6430}
6431
4b0ef1fe
LJ
6432/* Any regular or high memory on that node ? */
6433static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6434{
37b07e41
LS
6435 enum zone_type zone_type;
6436
4b0ef1fe
LJ
6437 if (N_MEMORY == N_NORMAL_MEMORY)
6438 return;
6439
6440 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6441 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6442 if (populated_zone(zone)) {
4b0ef1fe
LJ
6443 node_set_state(nid, N_HIGH_MEMORY);
6444 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6445 zone_type <= ZONE_NORMAL)
6446 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6447 break;
6448 }
37b07e41 6449 }
37b07e41
LS
6450}
6451
c713216d
MG
6452/**
6453 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6454 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6455 *
6456 * This will call free_area_init_node() for each active node in the system.
7d018176 6457 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6458 * zone in each node and their holes is calculated. If the maximum PFN
6459 * between two adjacent zones match, it is assumed that the zone is empty.
6460 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6461 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6462 * starts where the previous one ended. For example, ZONE_DMA32 starts
6463 * at arch_max_dma_pfn.
6464 */
6465void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6466{
c13291a5
TH
6467 unsigned long start_pfn, end_pfn;
6468 int i, nid;
a6af2bc3 6469
c713216d
MG
6470 /* Record where the zone boundaries are */
6471 memset(arch_zone_lowest_possible_pfn, 0,
6472 sizeof(arch_zone_lowest_possible_pfn));
6473 memset(arch_zone_highest_possible_pfn, 0,
6474 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6475
6476 start_pfn = find_min_pfn_with_active_regions();
6477
6478 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6479 if (i == ZONE_MOVABLE)
6480 continue;
90cae1fe
OH
6481
6482 end_pfn = max(max_zone_pfn[i], start_pfn);
6483 arch_zone_lowest_possible_pfn[i] = start_pfn;
6484 arch_zone_highest_possible_pfn[i] = end_pfn;
6485
6486 start_pfn = end_pfn;
c713216d 6487 }
2a1e274a
MG
6488 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6489 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6490
6491 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6492 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6493 find_zone_movable_pfns_for_nodes();
c713216d 6494
c713216d 6495 /* Print out the zone ranges */
f88dfff5 6496 pr_info("Zone ranges:\n");
2a1e274a
MG
6497 for (i = 0; i < MAX_NR_ZONES; i++) {
6498 if (i == ZONE_MOVABLE)
6499 continue;
f88dfff5 6500 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6501 if (arch_zone_lowest_possible_pfn[i] ==
6502 arch_zone_highest_possible_pfn[i])
f88dfff5 6503 pr_cont("empty\n");
72f0ba02 6504 else
8d29e18a
JG
6505 pr_cont("[mem %#018Lx-%#018Lx]\n",
6506 (u64)arch_zone_lowest_possible_pfn[i]
6507 << PAGE_SHIFT,
6508 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6509 << PAGE_SHIFT) - 1);
2a1e274a
MG
6510 }
6511
6512 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6513 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6514 for (i = 0; i < MAX_NUMNODES; i++) {
6515 if (zone_movable_pfn[i])
8d29e18a
JG
6516 pr_info(" Node %d: %#018Lx\n", i,
6517 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6518 }
c713216d 6519
f2d52fe5 6520 /* Print out the early node map */
f88dfff5 6521 pr_info("Early memory node ranges\n");
c13291a5 6522 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6523 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6524 (u64)start_pfn << PAGE_SHIFT,
6525 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6526
6527 /* Initialise every node */
708614e6 6528 mminit_verify_pageflags_layout();
8ef82866 6529 setup_nr_node_ids();
c713216d
MG
6530 for_each_online_node(nid) {
6531 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6532 free_area_init_node(nid, NULL,
c713216d 6533 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6534
6535 /* Any memory on that node */
6536 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6537 node_set_state(nid, N_MEMORY);
6538 check_for_memory(pgdat, nid);
c713216d
MG
6539 }
6540}
2a1e274a 6541
7e63efef 6542static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6543{
6544 unsigned long long coremem;
6545 if (!p)
6546 return -EINVAL;
6547
6548 coremem = memparse(p, &p);
7e63efef 6549 *core = coremem >> PAGE_SHIFT;
2a1e274a 6550
7e63efef 6551 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6552 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6553
6554 return 0;
6555}
ed7ed365 6556
7e63efef
MG
6557/*
6558 * kernelcore=size sets the amount of memory for use for allocations that
6559 * cannot be reclaimed or migrated.
6560 */
6561static int __init cmdline_parse_kernelcore(char *p)
6562{
342332e6
TI
6563 /* parse kernelcore=mirror */
6564 if (parse_option_str(p, "mirror")) {
6565 mirrored_kernelcore = true;
6566 return 0;
6567 }
6568
7e63efef
MG
6569 return cmdline_parse_core(p, &required_kernelcore);
6570}
6571
6572/*
6573 * movablecore=size sets the amount of memory for use for allocations that
6574 * can be reclaimed or migrated.
6575 */
6576static int __init cmdline_parse_movablecore(char *p)
6577{
6578 return cmdline_parse_core(p, &required_movablecore);
6579}
6580
ed7ed365 6581early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6582early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6583
0ee332c1 6584#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6585
c3d5f5f0
JL
6586void adjust_managed_page_count(struct page *page, long count)
6587{
6588 spin_lock(&managed_page_count_lock);
6589 page_zone(page)->managed_pages += count;
6590 totalram_pages += count;
3dcc0571
JL
6591#ifdef CONFIG_HIGHMEM
6592 if (PageHighMem(page))
6593 totalhigh_pages += count;
6594#endif
c3d5f5f0
JL
6595 spin_unlock(&managed_page_count_lock);
6596}
3dcc0571 6597EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6598
11199692 6599unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6600{
11199692
JL
6601 void *pos;
6602 unsigned long pages = 0;
69afade7 6603
11199692
JL
6604 start = (void *)PAGE_ALIGN((unsigned long)start);
6605 end = (void *)((unsigned long)end & PAGE_MASK);
6606 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6607 if ((unsigned int)poison <= 0xFF)
11199692
JL
6608 memset(pos, poison, PAGE_SIZE);
6609 free_reserved_page(virt_to_page(pos));
69afade7
JL
6610 }
6611
6612 if (pages && s)
adb1fe9a
JP
6613 pr_info("Freeing %s memory: %ldK\n",
6614 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6615
6616 return pages;
6617}
11199692 6618EXPORT_SYMBOL(free_reserved_area);
69afade7 6619
cfa11e08
JL
6620#ifdef CONFIG_HIGHMEM
6621void free_highmem_page(struct page *page)
6622{
6623 __free_reserved_page(page);
6624 totalram_pages++;
7b4b2a0d 6625 page_zone(page)->managed_pages++;
cfa11e08
JL
6626 totalhigh_pages++;
6627}
6628#endif
6629
7ee3d4e8
JL
6630
6631void __init mem_init_print_info(const char *str)
6632{
6633 unsigned long physpages, codesize, datasize, rosize, bss_size;
6634 unsigned long init_code_size, init_data_size;
6635
6636 physpages = get_num_physpages();
6637 codesize = _etext - _stext;
6638 datasize = _edata - _sdata;
6639 rosize = __end_rodata - __start_rodata;
6640 bss_size = __bss_stop - __bss_start;
6641 init_data_size = __init_end - __init_begin;
6642 init_code_size = _einittext - _sinittext;
6643
6644 /*
6645 * Detect special cases and adjust section sizes accordingly:
6646 * 1) .init.* may be embedded into .data sections
6647 * 2) .init.text.* may be out of [__init_begin, __init_end],
6648 * please refer to arch/tile/kernel/vmlinux.lds.S.
6649 * 3) .rodata.* may be embedded into .text or .data sections.
6650 */
6651#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6652 do { \
6653 if (start <= pos && pos < end && size > adj) \
6654 size -= adj; \
6655 } while (0)
7ee3d4e8
JL
6656
6657 adj_init_size(__init_begin, __init_end, init_data_size,
6658 _sinittext, init_code_size);
6659 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6660 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6661 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6662 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6663
6664#undef adj_init_size
6665
756a025f 6666 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6667#ifdef CONFIG_HIGHMEM
756a025f 6668 ", %luK highmem"
7ee3d4e8 6669#endif
756a025f
JP
6670 "%s%s)\n",
6671 nr_free_pages() << (PAGE_SHIFT - 10),
6672 physpages << (PAGE_SHIFT - 10),
6673 codesize >> 10, datasize >> 10, rosize >> 10,
6674 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6675 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6676 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6677#ifdef CONFIG_HIGHMEM
756a025f 6678 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6679#endif
756a025f 6680 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6681}
6682
0e0b864e 6683/**
88ca3b94
RD
6684 * set_dma_reserve - set the specified number of pages reserved in the first zone
6685 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6686 *
013110a7 6687 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6688 * In the DMA zone, a significant percentage may be consumed by kernel image
6689 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6690 * function may optionally be used to account for unfreeable pages in the
6691 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6692 * smaller per-cpu batchsize.
0e0b864e
MG
6693 */
6694void __init set_dma_reserve(unsigned long new_dma_reserve)
6695{
6696 dma_reserve = new_dma_reserve;
6697}
6698
1da177e4
LT
6699void __init free_area_init(unsigned long *zones_size)
6700{
9109fb7b 6701 free_area_init_node(0, zones_size,
1da177e4
LT
6702 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6703}
1da177e4 6704
005fd4bb 6705static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6706{
1da177e4 6707
005fd4bb
SAS
6708 lru_add_drain_cpu(cpu);
6709 drain_pages(cpu);
9f8f2172 6710
005fd4bb
SAS
6711 /*
6712 * Spill the event counters of the dead processor
6713 * into the current processors event counters.
6714 * This artificially elevates the count of the current
6715 * processor.
6716 */
6717 vm_events_fold_cpu(cpu);
9f8f2172 6718
005fd4bb
SAS
6719 /*
6720 * Zero the differential counters of the dead processor
6721 * so that the vm statistics are consistent.
6722 *
6723 * This is only okay since the processor is dead and cannot
6724 * race with what we are doing.
6725 */
6726 cpu_vm_stats_fold(cpu);
6727 return 0;
1da177e4 6728}
1da177e4
LT
6729
6730void __init page_alloc_init(void)
6731{
005fd4bb
SAS
6732 int ret;
6733
6734 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6735 "mm/page_alloc:dead", NULL,
6736 page_alloc_cpu_dead);
6737 WARN_ON(ret < 0);
1da177e4
LT
6738}
6739
cb45b0e9 6740/*
34b10060 6741 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6742 * or min_free_kbytes changes.
6743 */
6744static void calculate_totalreserve_pages(void)
6745{
6746 struct pglist_data *pgdat;
6747 unsigned long reserve_pages = 0;
2f6726e5 6748 enum zone_type i, j;
cb45b0e9
HA
6749
6750 for_each_online_pgdat(pgdat) {
281e3726
MG
6751
6752 pgdat->totalreserve_pages = 0;
6753
cb45b0e9
HA
6754 for (i = 0; i < MAX_NR_ZONES; i++) {
6755 struct zone *zone = pgdat->node_zones + i;
3484b2de 6756 long max = 0;
cb45b0e9
HA
6757
6758 /* Find valid and maximum lowmem_reserve in the zone */
6759 for (j = i; j < MAX_NR_ZONES; j++) {
6760 if (zone->lowmem_reserve[j] > max)
6761 max = zone->lowmem_reserve[j];
6762 }
6763
41858966
MG
6764 /* we treat the high watermark as reserved pages. */
6765 max += high_wmark_pages(zone);
cb45b0e9 6766
b40da049
JL
6767 if (max > zone->managed_pages)
6768 max = zone->managed_pages;
a8d01437 6769
281e3726 6770 pgdat->totalreserve_pages += max;
a8d01437 6771
cb45b0e9
HA
6772 reserve_pages += max;
6773 }
6774 }
6775 totalreserve_pages = reserve_pages;
6776}
6777
1da177e4
LT
6778/*
6779 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6780 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6781 * has a correct pages reserved value, so an adequate number of
6782 * pages are left in the zone after a successful __alloc_pages().
6783 */
6784static void setup_per_zone_lowmem_reserve(void)
6785{
6786 struct pglist_data *pgdat;
2f6726e5 6787 enum zone_type j, idx;
1da177e4 6788
ec936fc5 6789 for_each_online_pgdat(pgdat) {
1da177e4
LT
6790 for (j = 0; j < MAX_NR_ZONES; j++) {
6791 struct zone *zone = pgdat->node_zones + j;
b40da049 6792 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6793
6794 zone->lowmem_reserve[j] = 0;
6795
2f6726e5
CL
6796 idx = j;
6797 while (idx) {
1da177e4
LT
6798 struct zone *lower_zone;
6799
2f6726e5
CL
6800 idx--;
6801
1da177e4
LT
6802 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6803 sysctl_lowmem_reserve_ratio[idx] = 1;
6804
6805 lower_zone = pgdat->node_zones + idx;
b40da049 6806 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6807 sysctl_lowmem_reserve_ratio[idx];
b40da049 6808 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6809 }
6810 }
6811 }
cb45b0e9
HA
6812
6813 /* update totalreserve_pages */
6814 calculate_totalreserve_pages();
1da177e4
LT
6815}
6816
cfd3da1e 6817static void __setup_per_zone_wmarks(void)
1da177e4
LT
6818{
6819 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6820 unsigned long lowmem_pages = 0;
6821 struct zone *zone;
6822 unsigned long flags;
6823
6824 /* Calculate total number of !ZONE_HIGHMEM pages */
6825 for_each_zone(zone) {
6826 if (!is_highmem(zone))
b40da049 6827 lowmem_pages += zone->managed_pages;
1da177e4
LT
6828 }
6829
6830 for_each_zone(zone) {
ac924c60
AM
6831 u64 tmp;
6832
1125b4e3 6833 spin_lock_irqsave(&zone->lock, flags);
b40da049 6834 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6835 do_div(tmp, lowmem_pages);
1da177e4
LT
6836 if (is_highmem(zone)) {
6837 /*
669ed175
NP
6838 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6839 * need highmem pages, so cap pages_min to a small
6840 * value here.
6841 *
41858966 6842 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6843 * deltas control asynch page reclaim, and so should
669ed175 6844 * not be capped for highmem.
1da177e4 6845 */
90ae8d67 6846 unsigned long min_pages;
1da177e4 6847
b40da049 6848 min_pages = zone->managed_pages / 1024;
90ae8d67 6849 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6850 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6851 } else {
669ed175
NP
6852 /*
6853 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6854 * proportionate to the zone's size.
6855 */
41858966 6856 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6857 }
6858
795ae7a0
JW
6859 /*
6860 * Set the kswapd watermarks distance according to the
6861 * scale factor in proportion to available memory, but
6862 * ensure a minimum size on small systems.
6863 */
6864 tmp = max_t(u64, tmp >> 2,
6865 mult_frac(zone->managed_pages,
6866 watermark_scale_factor, 10000));
6867
6868 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6869 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6870
1125b4e3 6871 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6872 }
cb45b0e9
HA
6873
6874 /* update totalreserve_pages */
6875 calculate_totalreserve_pages();
1da177e4
LT
6876}
6877
cfd3da1e
MG
6878/**
6879 * setup_per_zone_wmarks - called when min_free_kbytes changes
6880 * or when memory is hot-{added|removed}
6881 *
6882 * Ensures that the watermark[min,low,high] values for each zone are set
6883 * correctly with respect to min_free_kbytes.
6884 */
6885void setup_per_zone_wmarks(void)
6886{
6887 mutex_lock(&zonelists_mutex);
6888 __setup_per_zone_wmarks();
6889 mutex_unlock(&zonelists_mutex);
6890}
6891
1da177e4
LT
6892/*
6893 * Initialise min_free_kbytes.
6894 *
6895 * For small machines we want it small (128k min). For large machines
6896 * we want it large (64MB max). But it is not linear, because network
6897 * bandwidth does not increase linearly with machine size. We use
6898 *
b8af2941 6899 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6900 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6901 *
6902 * which yields
6903 *
6904 * 16MB: 512k
6905 * 32MB: 724k
6906 * 64MB: 1024k
6907 * 128MB: 1448k
6908 * 256MB: 2048k
6909 * 512MB: 2896k
6910 * 1024MB: 4096k
6911 * 2048MB: 5792k
6912 * 4096MB: 8192k
6913 * 8192MB: 11584k
6914 * 16384MB: 16384k
6915 */
1b79acc9 6916int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6917{
6918 unsigned long lowmem_kbytes;
5f12733e 6919 int new_min_free_kbytes;
1da177e4
LT
6920
6921 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6922 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6923
6924 if (new_min_free_kbytes > user_min_free_kbytes) {
6925 min_free_kbytes = new_min_free_kbytes;
6926 if (min_free_kbytes < 128)
6927 min_free_kbytes = 128;
6928 if (min_free_kbytes > 65536)
6929 min_free_kbytes = 65536;
6930 } else {
6931 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6932 new_min_free_kbytes, user_min_free_kbytes);
6933 }
bc75d33f 6934 setup_per_zone_wmarks();
a6cccdc3 6935 refresh_zone_stat_thresholds();
1da177e4 6936 setup_per_zone_lowmem_reserve();
6423aa81
JK
6937
6938#ifdef CONFIG_NUMA
6939 setup_min_unmapped_ratio();
6940 setup_min_slab_ratio();
6941#endif
6942
1da177e4
LT
6943 return 0;
6944}
bc22af74 6945core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6946
6947/*
b8af2941 6948 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6949 * that we can call two helper functions whenever min_free_kbytes
6950 * changes.
6951 */
cccad5b9 6952int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6953 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6954{
da8c757b
HP
6955 int rc;
6956
6957 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6958 if (rc)
6959 return rc;
6960
5f12733e
MH
6961 if (write) {
6962 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6963 setup_per_zone_wmarks();
5f12733e 6964 }
1da177e4
LT
6965 return 0;
6966}
6967
795ae7a0
JW
6968int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6969 void __user *buffer, size_t *length, loff_t *ppos)
6970{
6971 int rc;
6972
6973 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6974 if (rc)
6975 return rc;
6976
6977 if (write)
6978 setup_per_zone_wmarks();
6979
6980 return 0;
6981}
6982
9614634f 6983#ifdef CONFIG_NUMA
6423aa81 6984static void setup_min_unmapped_ratio(void)
9614634f 6985{
6423aa81 6986 pg_data_t *pgdat;
9614634f 6987 struct zone *zone;
9614634f 6988
a5f5f91d 6989 for_each_online_pgdat(pgdat)
81cbcbc2 6990 pgdat->min_unmapped_pages = 0;
a5f5f91d 6991
9614634f 6992 for_each_zone(zone)
a5f5f91d 6993 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6994 sysctl_min_unmapped_ratio) / 100;
9614634f 6995}
0ff38490 6996
6423aa81
JK
6997
6998int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6999 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7000{
0ff38490
CL
7001 int rc;
7002
8d65af78 7003 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7004 if (rc)
7005 return rc;
7006
6423aa81
JK
7007 setup_min_unmapped_ratio();
7008
7009 return 0;
7010}
7011
7012static void setup_min_slab_ratio(void)
7013{
7014 pg_data_t *pgdat;
7015 struct zone *zone;
7016
a5f5f91d
MG
7017 for_each_online_pgdat(pgdat)
7018 pgdat->min_slab_pages = 0;
7019
0ff38490 7020 for_each_zone(zone)
a5f5f91d 7021 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7022 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7023}
7024
7025int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7026 void __user *buffer, size_t *length, loff_t *ppos)
7027{
7028 int rc;
7029
7030 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7031 if (rc)
7032 return rc;
7033
7034 setup_min_slab_ratio();
7035
0ff38490
CL
7036 return 0;
7037}
9614634f
CL
7038#endif
7039
1da177e4
LT
7040/*
7041 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7042 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7043 * whenever sysctl_lowmem_reserve_ratio changes.
7044 *
7045 * The reserve ratio obviously has absolutely no relation with the
41858966 7046 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7047 * if in function of the boot time zone sizes.
7048 */
cccad5b9 7049int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7050 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7051{
8d65af78 7052 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7053 setup_per_zone_lowmem_reserve();
7054 return 0;
7055}
7056
8ad4b1fb
RS
7057/*
7058 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7059 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7060 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7061 */
cccad5b9 7062int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7063 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7064{
7065 struct zone *zone;
7cd2b0a3 7066 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7067 int ret;
7068
7cd2b0a3
DR
7069 mutex_lock(&pcp_batch_high_lock);
7070 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7071
8d65af78 7072 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7073 if (!write || ret < 0)
7074 goto out;
7075
7076 /* Sanity checking to avoid pcp imbalance */
7077 if (percpu_pagelist_fraction &&
7078 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7079 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7080 ret = -EINVAL;
7081 goto out;
7082 }
7083
7084 /* No change? */
7085 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7086 goto out;
c8e251fa 7087
364df0eb 7088 for_each_populated_zone(zone) {
7cd2b0a3
DR
7089 unsigned int cpu;
7090
22a7f12b 7091 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7092 pageset_set_high_and_batch(zone,
7093 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7094 }
7cd2b0a3 7095out:
c8e251fa 7096 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7097 return ret;
8ad4b1fb
RS
7098}
7099
a9919c79 7100#ifdef CONFIG_NUMA
f034b5d4 7101int hashdist = HASHDIST_DEFAULT;
1da177e4 7102
1da177e4
LT
7103static int __init set_hashdist(char *str)
7104{
7105 if (!str)
7106 return 0;
7107 hashdist = simple_strtoul(str, &str, 0);
7108 return 1;
7109}
7110__setup("hashdist=", set_hashdist);
7111#endif
7112
f6f34b43
SD
7113#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7114/*
7115 * Returns the number of pages that arch has reserved but
7116 * is not known to alloc_large_system_hash().
7117 */
7118static unsigned long __init arch_reserved_kernel_pages(void)
7119{
7120 return 0;
7121}
7122#endif
7123
1da177e4
LT
7124/*
7125 * allocate a large system hash table from bootmem
7126 * - it is assumed that the hash table must contain an exact power-of-2
7127 * quantity of entries
7128 * - limit is the number of hash buckets, not the total allocation size
7129 */
7130void *__init alloc_large_system_hash(const char *tablename,
7131 unsigned long bucketsize,
7132 unsigned long numentries,
7133 int scale,
7134 int flags,
7135 unsigned int *_hash_shift,
7136 unsigned int *_hash_mask,
31fe62b9
TB
7137 unsigned long low_limit,
7138 unsigned long high_limit)
1da177e4 7139{
31fe62b9 7140 unsigned long long max = high_limit;
1da177e4
LT
7141 unsigned long log2qty, size;
7142 void *table = NULL;
7143
7144 /* allow the kernel cmdline to have a say */
7145 if (!numentries) {
7146 /* round applicable memory size up to nearest megabyte */
04903664 7147 numentries = nr_kernel_pages;
f6f34b43 7148 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7149
7150 /* It isn't necessary when PAGE_SIZE >= 1MB */
7151 if (PAGE_SHIFT < 20)
7152 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7153
7154 /* limit to 1 bucket per 2^scale bytes of low memory */
7155 if (scale > PAGE_SHIFT)
7156 numentries >>= (scale - PAGE_SHIFT);
7157 else
7158 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7159
7160 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7161 if (unlikely(flags & HASH_SMALL)) {
7162 /* Makes no sense without HASH_EARLY */
7163 WARN_ON(!(flags & HASH_EARLY));
7164 if (!(numentries >> *_hash_shift)) {
7165 numentries = 1UL << *_hash_shift;
7166 BUG_ON(!numentries);
7167 }
7168 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7169 numentries = PAGE_SIZE / bucketsize;
1da177e4 7170 }
6e692ed3 7171 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7172
7173 /* limit allocation size to 1/16 total memory by default */
7174 if (max == 0) {
7175 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7176 do_div(max, bucketsize);
7177 }
074b8517 7178 max = min(max, 0x80000000ULL);
1da177e4 7179
31fe62b9
TB
7180 if (numentries < low_limit)
7181 numentries = low_limit;
1da177e4
LT
7182 if (numentries > max)
7183 numentries = max;
7184
f0d1b0b3 7185 log2qty = ilog2(numentries);
1da177e4
LT
7186
7187 do {
7188 size = bucketsize << log2qty;
7189 if (flags & HASH_EARLY)
6782832e 7190 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7191 else if (hashdist)
7192 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7193 else {
1037b83b
ED
7194 /*
7195 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7196 * some pages at the end of hash table which
7197 * alloc_pages_exact() automatically does
1037b83b 7198 */
264ef8a9 7199 if (get_order(size) < MAX_ORDER) {
a1dd268c 7200 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7201 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7202 }
1da177e4
LT
7203 }
7204 } while (!table && size > PAGE_SIZE && --log2qty);
7205
7206 if (!table)
7207 panic("Failed to allocate %s hash table\n", tablename);
7208
1170532b
JP
7209 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7210 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7211
7212 if (_hash_shift)
7213 *_hash_shift = log2qty;
7214 if (_hash_mask)
7215 *_hash_mask = (1 << log2qty) - 1;
7216
7217 return table;
7218}
a117e66e 7219
a5d76b54 7220/*
80934513
MK
7221 * This function checks whether pageblock includes unmovable pages or not.
7222 * If @count is not zero, it is okay to include less @count unmovable pages
7223 *
b8af2941 7224 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7225 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7226 * expect this function should be exact.
a5d76b54 7227 */
b023f468
WC
7228bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7229 bool skip_hwpoisoned_pages)
49ac8255
KH
7230{
7231 unsigned long pfn, iter, found;
47118af0
MN
7232 int mt;
7233
49ac8255
KH
7234 /*
7235 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7236 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7237 */
7238 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7239 return false;
47118af0
MN
7240 mt = get_pageblock_migratetype(page);
7241 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7242 return false;
49ac8255
KH
7243
7244 pfn = page_to_pfn(page);
7245 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7246 unsigned long check = pfn + iter;
7247
29723fcc 7248 if (!pfn_valid_within(check))
49ac8255 7249 continue;
29723fcc 7250
49ac8255 7251 page = pfn_to_page(check);
c8721bbb
NH
7252
7253 /*
7254 * Hugepages are not in LRU lists, but they're movable.
7255 * We need not scan over tail pages bacause we don't
7256 * handle each tail page individually in migration.
7257 */
7258 if (PageHuge(page)) {
7259 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7260 continue;
7261 }
7262
97d255c8
MK
7263 /*
7264 * We can't use page_count without pin a page
7265 * because another CPU can free compound page.
7266 * This check already skips compound tails of THP
0139aa7b 7267 * because their page->_refcount is zero at all time.
97d255c8 7268 */
fe896d18 7269 if (!page_ref_count(page)) {
49ac8255
KH
7270 if (PageBuddy(page))
7271 iter += (1 << page_order(page)) - 1;
7272 continue;
7273 }
97d255c8 7274
b023f468
WC
7275 /*
7276 * The HWPoisoned page may be not in buddy system, and
7277 * page_count() is not 0.
7278 */
7279 if (skip_hwpoisoned_pages && PageHWPoison(page))
7280 continue;
7281
49ac8255
KH
7282 if (!PageLRU(page))
7283 found++;
7284 /*
6b4f7799
JW
7285 * If there are RECLAIMABLE pages, we need to check
7286 * it. But now, memory offline itself doesn't call
7287 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7288 */
7289 /*
7290 * If the page is not RAM, page_count()should be 0.
7291 * we don't need more check. This is an _used_ not-movable page.
7292 *
7293 * The problematic thing here is PG_reserved pages. PG_reserved
7294 * is set to both of a memory hole page and a _used_ kernel
7295 * page at boot.
7296 */
7297 if (found > count)
80934513 7298 return true;
49ac8255 7299 }
80934513 7300 return false;
49ac8255
KH
7301}
7302
7303bool is_pageblock_removable_nolock(struct page *page)
7304{
656a0706
MH
7305 struct zone *zone;
7306 unsigned long pfn;
687875fb
MH
7307
7308 /*
7309 * We have to be careful here because we are iterating over memory
7310 * sections which are not zone aware so we might end up outside of
7311 * the zone but still within the section.
656a0706
MH
7312 * We have to take care about the node as well. If the node is offline
7313 * its NODE_DATA will be NULL - see page_zone.
687875fb 7314 */
656a0706
MH
7315 if (!node_online(page_to_nid(page)))
7316 return false;
7317
7318 zone = page_zone(page);
7319 pfn = page_to_pfn(page);
108bcc96 7320 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7321 return false;
7322
b023f468 7323 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7324}
0c0e6195 7325
080fe206 7326#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7327
7328static unsigned long pfn_max_align_down(unsigned long pfn)
7329{
7330 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7331 pageblock_nr_pages) - 1);
7332}
7333
7334static unsigned long pfn_max_align_up(unsigned long pfn)
7335{
7336 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7337 pageblock_nr_pages));
7338}
7339
041d3a8c 7340/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7341static int __alloc_contig_migrate_range(struct compact_control *cc,
7342 unsigned long start, unsigned long end)
041d3a8c
MN
7343{
7344 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7345 unsigned long nr_reclaimed;
041d3a8c
MN
7346 unsigned long pfn = start;
7347 unsigned int tries = 0;
7348 int ret = 0;
7349
be49a6e1 7350 migrate_prep();
041d3a8c 7351
bb13ffeb 7352 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7353 if (fatal_signal_pending(current)) {
7354 ret = -EINTR;
7355 break;
7356 }
7357
bb13ffeb
MG
7358 if (list_empty(&cc->migratepages)) {
7359 cc->nr_migratepages = 0;
edc2ca61 7360 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7361 if (!pfn) {
7362 ret = -EINTR;
7363 break;
7364 }
7365 tries = 0;
7366 } else if (++tries == 5) {
7367 ret = ret < 0 ? ret : -EBUSY;
7368 break;
7369 }
7370
beb51eaa
MK
7371 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7372 &cc->migratepages);
7373 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7374
9c620e2b 7375 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7376 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7377 }
2a6f5124
SP
7378 if (ret < 0) {
7379 putback_movable_pages(&cc->migratepages);
7380 return ret;
7381 }
7382 return 0;
041d3a8c
MN
7383}
7384
7385/**
7386 * alloc_contig_range() -- tries to allocate given range of pages
7387 * @start: start PFN to allocate
7388 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7389 * @migratetype: migratetype of the underlaying pageblocks (either
7390 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7391 * in range must have the same migratetype and it must
7392 * be either of the two.
041d3a8c
MN
7393 *
7394 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7395 * aligned, however it's the caller's responsibility to guarantee that
7396 * we are the only thread that changes migrate type of pageblocks the
7397 * pages fall in.
7398 *
7399 * The PFN range must belong to a single zone.
7400 *
7401 * Returns zero on success or negative error code. On success all
7402 * pages which PFN is in [start, end) are allocated for the caller and
7403 * need to be freed with free_contig_range().
7404 */
0815f3d8
MN
7405int alloc_contig_range(unsigned long start, unsigned long end,
7406 unsigned migratetype)
041d3a8c 7407{
041d3a8c 7408 unsigned long outer_start, outer_end;
d00181b9
KS
7409 unsigned int order;
7410 int ret = 0;
041d3a8c 7411
bb13ffeb
MG
7412 struct compact_control cc = {
7413 .nr_migratepages = 0,
7414 .order = -1,
7415 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7416 .mode = MIGRATE_SYNC,
bb13ffeb 7417 .ignore_skip_hint = true,
424f6c48 7418 .gfp_mask = GFP_KERNEL,
bb13ffeb
MG
7419 };
7420 INIT_LIST_HEAD(&cc.migratepages);
7421
041d3a8c
MN
7422 /*
7423 * What we do here is we mark all pageblocks in range as
7424 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7425 * have different sizes, and due to the way page allocator
7426 * work, we align the range to biggest of the two pages so
7427 * that page allocator won't try to merge buddies from
7428 * different pageblocks and change MIGRATE_ISOLATE to some
7429 * other migration type.
7430 *
7431 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7432 * migrate the pages from an unaligned range (ie. pages that
7433 * we are interested in). This will put all the pages in
7434 * range back to page allocator as MIGRATE_ISOLATE.
7435 *
7436 * When this is done, we take the pages in range from page
7437 * allocator removing them from the buddy system. This way
7438 * page allocator will never consider using them.
7439 *
7440 * This lets us mark the pageblocks back as
7441 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7442 * aligned range but not in the unaligned, original range are
7443 * put back to page allocator so that buddy can use them.
7444 */
7445
7446 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7447 pfn_max_align_up(end), migratetype,
7448 false);
041d3a8c 7449 if (ret)
86a595f9 7450 return ret;
041d3a8c 7451
8ef5849f
JK
7452 /*
7453 * In case of -EBUSY, we'd like to know which page causes problem.
7454 * So, just fall through. We will check it in test_pages_isolated().
7455 */
bb13ffeb 7456 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7457 if (ret && ret != -EBUSY)
041d3a8c
MN
7458 goto done;
7459
7460 /*
7461 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7462 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7463 * more, all pages in [start, end) are free in page allocator.
7464 * What we are going to do is to allocate all pages from
7465 * [start, end) (that is remove them from page allocator).
7466 *
7467 * The only problem is that pages at the beginning and at the
7468 * end of interesting range may be not aligned with pages that
7469 * page allocator holds, ie. they can be part of higher order
7470 * pages. Because of this, we reserve the bigger range and
7471 * once this is done free the pages we are not interested in.
7472 *
7473 * We don't have to hold zone->lock here because the pages are
7474 * isolated thus they won't get removed from buddy.
7475 */
7476
7477 lru_add_drain_all();
510f5507 7478 drain_all_pages(cc.zone);
041d3a8c
MN
7479
7480 order = 0;
7481 outer_start = start;
7482 while (!PageBuddy(pfn_to_page(outer_start))) {
7483 if (++order >= MAX_ORDER) {
8ef5849f
JK
7484 outer_start = start;
7485 break;
041d3a8c
MN
7486 }
7487 outer_start &= ~0UL << order;
7488 }
7489
8ef5849f
JK
7490 if (outer_start != start) {
7491 order = page_order(pfn_to_page(outer_start));
7492
7493 /*
7494 * outer_start page could be small order buddy page and
7495 * it doesn't include start page. Adjust outer_start
7496 * in this case to report failed page properly
7497 * on tracepoint in test_pages_isolated()
7498 */
7499 if (outer_start + (1UL << order) <= start)
7500 outer_start = start;
7501 }
7502
041d3a8c 7503 /* Make sure the range is really isolated. */
b023f468 7504 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7505 pr_info("%s: [%lx, %lx) PFNs busy\n",
7506 __func__, outer_start, end);
041d3a8c
MN
7507 ret = -EBUSY;
7508 goto done;
7509 }
7510
49f223a9 7511 /* Grab isolated pages from freelists. */
bb13ffeb 7512 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7513 if (!outer_end) {
7514 ret = -EBUSY;
7515 goto done;
7516 }
7517
7518 /* Free head and tail (if any) */
7519 if (start != outer_start)
7520 free_contig_range(outer_start, start - outer_start);
7521 if (end != outer_end)
7522 free_contig_range(end, outer_end - end);
7523
7524done:
7525 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7526 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7527 return ret;
7528}
7529
7530void free_contig_range(unsigned long pfn, unsigned nr_pages)
7531{
bcc2b02f
MS
7532 unsigned int count = 0;
7533
7534 for (; nr_pages--; pfn++) {
7535 struct page *page = pfn_to_page(pfn);
7536
7537 count += page_count(page) != 1;
7538 __free_page(page);
7539 }
7540 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7541}
7542#endif
7543
4ed7e022 7544#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7545/*
7546 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7547 * page high values need to be recalulated.
7548 */
4ed7e022
JL
7549void __meminit zone_pcp_update(struct zone *zone)
7550{
0a647f38 7551 unsigned cpu;
c8e251fa 7552 mutex_lock(&pcp_batch_high_lock);
0a647f38 7553 for_each_possible_cpu(cpu)
169f6c19
CS
7554 pageset_set_high_and_batch(zone,
7555 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7556 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7557}
7558#endif
7559
340175b7
JL
7560void zone_pcp_reset(struct zone *zone)
7561{
7562 unsigned long flags;
5a883813
MK
7563 int cpu;
7564 struct per_cpu_pageset *pset;
340175b7
JL
7565
7566 /* avoid races with drain_pages() */
7567 local_irq_save(flags);
7568 if (zone->pageset != &boot_pageset) {
5a883813
MK
7569 for_each_online_cpu(cpu) {
7570 pset = per_cpu_ptr(zone->pageset, cpu);
7571 drain_zonestat(zone, pset);
7572 }
340175b7
JL
7573 free_percpu(zone->pageset);
7574 zone->pageset = &boot_pageset;
7575 }
7576 local_irq_restore(flags);
7577}
7578
6dcd73d7 7579#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7580/*
b9eb6319
JK
7581 * All pages in the range must be in a single zone and isolated
7582 * before calling this.
0c0e6195
KH
7583 */
7584void
7585__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7586{
7587 struct page *page;
7588 struct zone *zone;
7aeb09f9 7589 unsigned int order, i;
0c0e6195
KH
7590 unsigned long pfn;
7591 unsigned long flags;
7592 /* find the first valid pfn */
7593 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7594 if (pfn_valid(pfn))
7595 break;
7596 if (pfn == end_pfn)
7597 return;
7598 zone = page_zone(pfn_to_page(pfn));
7599 spin_lock_irqsave(&zone->lock, flags);
7600 pfn = start_pfn;
7601 while (pfn < end_pfn) {
7602 if (!pfn_valid(pfn)) {
7603 pfn++;
7604 continue;
7605 }
7606 page = pfn_to_page(pfn);
b023f468
WC
7607 /*
7608 * The HWPoisoned page may be not in buddy system, and
7609 * page_count() is not 0.
7610 */
7611 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7612 pfn++;
7613 SetPageReserved(page);
7614 continue;
7615 }
7616
0c0e6195
KH
7617 BUG_ON(page_count(page));
7618 BUG_ON(!PageBuddy(page));
7619 order = page_order(page);
7620#ifdef CONFIG_DEBUG_VM
1170532b
JP
7621 pr_info("remove from free list %lx %d %lx\n",
7622 pfn, 1 << order, end_pfn);
0c0e6195
KH
7623#endif
7624 list_del(&page->lru);
7625 rmv_page_order(page);
7626 zone->free_area[order].nr_free--;
0c0e6195
KH
7627 for (i = 0; i < (1 << order); i++)
7628 SetPageReserved((page+i));
7629 pfn += (1 << order);
7630 }
7631 spin_unlock_irqrestore(&zone->lock, flags);
7632}
7633#endif
8d22ba1b 7634
8d22ba1b
WF
7635bool is_free_buddy_page(struct page *page)
7636{
7637 struct zone *zone = page_zone(page);
7638 unsigned long pfn = page_to_pfn(page);
7639 unsigned long flags;
7aeb09f9 7640 unsigned int order;
8d22ba1b
WF
7641
7642 spin_lock_irqsave(&zone->lock, flags);
7643 for (order = 0; order < MAX_ORDER; order++) {
7644 struct page *page_head = page - (pfn & ((1 << order) - 1));
7645
7646 if (PageBuddy(page_head) && page_order(page_head) >= order)
7647 break;
7648 }
7649 spin_unlock_irqrestore(&zone->lock, flags);
7650
7651 return order < MAX_ORDER;
7652}