]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm: define memblock_virt_alloc_try_nid_raw
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
7aac7898
LS
85#ifdef CONFIG_HAVE_MEMORYLESS_NODES
86/*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 94int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
95#endif
96
bd233f53
MG
97/* work_structs for global per-cpu drains */
98DEFINE_MUTEX(pcpu_drain_mutex);
99DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
38addce8 101#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 102volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
103EXPORT_SYMBOL(latent_entropy);
104#endif
105
1da177e4 106/*
13808910 107 * Array of node states.
1da177e4 108 */
13808910
CL
109nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112#ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114#ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 116#endif
20b2f52b 117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa
MG
291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292static inline void reset_deferred_meminit(pg_data_t *pgdat)
293{
864b9a39
MH
294 unsigned long max_initialise;
295 unsigned long reserved_lowmem;
296
297 /*
298 * Initialise at least 2G of a node but also take into account that
299 * two large system hashes that can take up 1GB for 0.25TB/node.
300 */
301 max_initialise = max(2UL << (30 - PAGE_SHIFT),
302 (pgdat->node_spanned_pages >> 8));
303
304 /*
305 * Compensate the all the memblock reservations (e.g. crash kernel)
306 * from the initial estimation to make sure we will initialize enough
307 * memory to boot.
308 */
309 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
310 pgdat->node_start_pfn + max_initialise);
311 max_initialise += reserved_lowmem;
312
313 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
314 pgdat->first_deferred_pfn = ULONG_MAX;
315}
316
317/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 318static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 319{
ef70b6f4
MG
320 int nid = early_pfn_to_nid(pfn);
321
322 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
323 return true;
324
325 return false;
326}
327
328/*
329 * Returns false when the remaining initialisation should be deferred until
330 * later in the boot cycle when it can be parallelised.
331 */
332static inline bool update_defer_init(pg_data_t *pgdat,
333 unsigned long pfn, unsigned long zone_end,
334 unsigned long *nr_initialised)
335{
336 /* Always populate low zones for address-contrained allocations */
337 if (zone_end < pgdat_end_pfn(pgdat))
338 return true;
3a80a7fa 339 (*nr_initialised)++;
864b9a39 340 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
341 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
342 pgdat->first_deferred_pfn = pfn;
343 return false;
344 }
345
346 return true;
347}
348#else
349static inline void reset_deferred_meminit(pg_data_t *pgdat)
350{
351}
352
353static inline bool early_page_uninitialised(unsigned long pfn)
354{
355 return false;
356}
357
358static inline bool update_defer_init(pg_data_t *pgdat,
359 unsigned long pfn, unsigned long zone_end,
360 unsigned long *nr_initialised)
361{
362 return true;
363}
364#endif
365
0b423ca2
MG
366/* Return a pointer to the bitmap storing bits affecting a block of pages */
367static inline unsigned long *get_pageblock_bitmap(struct page *page,
368 unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 return __pfn_to_section(pfn)->pageblock_flags;
372#else
373 return page_zone(page)->pageblock_flags;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
378{
379#ifdef CONFIG_SPARSEMEM
380 pfn &= (PAGES_PER_SECTION-1);
381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
382#else
383 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
385#endif /* CONFIG_SPARSEMEM */
386}
387
388/**
389 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
390 * @page: The page within the block of interest
391 * @pfn: The target page frame number
392 * @end_bitidx: The last bit of interest to retrieve
393 * @mask: mask of bits that the caller is interested in
394 *
395 * Return: pageblock_bits flags
396 */
397static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
398 unsigned long pfn,
399 unsigned long end_bitidx,
400 unsigned long mask)
401{
402 unsigned long *bitmap;
403 unsigned long bitidx, word_bitidx;
404 unsigned long word;
405
406 bitmap = get_pageblock_bitmap(page, pfn);
407 bitidx = pfn_to_bitidx(page, pfn);
408 word_bitidx = bitidx / BITS_PER_LONG;
409 bitidx &= (BITS_PER_LONG-1);
410
411 word = bitmap[word_bitidx];
412 bitidx += end_bitidx;
413 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
414}
415
416unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
421}
422
423static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
424{
425 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
426}
427
428/**
429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
430 * @page: The page within the block of interest
431 * @flags: The flags to set
432 * @pfn: The target page frame number
433 * @end_bitidx: The last bit of interest
434 * @mask: mask of bits that the caller is interested in
435 */
436void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
437 unsigned long pfn,
438 unsigned long end_bitidx,
439 unsigned long mask)
440{
441 unsigned long *bitmap;
442 unsigned long bitidx, word_bitidx;
443 unsigned long old_word, word;
444
445 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
446
447 bitmap = get_pageblock_bitmap(page, pfn);
448 bitidx = pfn_to_bitidx(page, pfn);
449 word_bitidx = bitidx / BITS_PER_LONG;
450 bitidx &= (BITS_PER_LONG-1);
451
452 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
453
454 bitidx += end_bitidx;
455 mask <<= (BITS_PER_LONG - bitidx - 1);
456 flags <<= (BITS_PER_LONG - bitidx - 1);
457
458 word = READ_ONCE(bitmap[word_bitidx]);
459 for (;;) {
460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
461 if (word == old_word)
462 break;
463 word = old_word;
464 }
465}
3a80a7fa 466
ee6f509c 467void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 468{
5d0f3f72
KM
469 if (unlikely(page_group_by_mobility_disabled &&
470 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
471 migratetype = MIGRATE_UNMOVABLE;
472
b2a0ac88
MG
473 set_pageblock_flags_group(page, (unsigned long)migratetype,
474 PB_migrate, PB_migrate_end);
475}
476
13e7444b 477#ifdef CONFIG_DEBUG_VM
c6a57e19 478static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 479{
bdc8cb98
DH
480 int ret = 0;
481 unsigned seq;
482 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 483 unsigned long sp, start_pfn;
c6a57e19 484
bdc8cb98
DH
485 do {
486 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
487 start_pfn = zone->zone_start_pfn;
488 sp = zone->spanned_pages;
108bcc96 489 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
490 ret = 1;
491 } while (zone_span_seqretry(zone, seq));
492
b5e6a5a2 493 if (ret)
613813e8
DH
494 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
495 pfn, zone_to_nid(zone), zone->name,
496 start_pfn, start_pfn + sp);
b5e6a5a2 497
bdc8cb98 498 return ret;
c6a57e19
DH
499}
500
501static int page_is_consistent(struct zone *zone, struct page *page)
502{
14e07298 503 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 504 return 0;
1da177e4 505 if (zone != page_zone(page))
c6a57e19
DH
506 return 0;
507
508 return 1;
509}
510/*
511 * Temporary debugging check for pages not lying within a given zone.
512 */
d73d3c9f 513static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
514{
515 if (page_outside_zone_boundaries(zone, page))
1da177e4 516 return 1;
c6a57e19
DH
517 if (!page_is_consistent(zone, page))
518 return 1;
519
1da177e4
LT
520 return 0;
521}
13e7444b 522#else
d73d3c9f 523static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
524{
525 return 0;
526}
527#endif
528
d230dec1
KS
529static void bad_page(struct page *page, const char *reason,
530 unsigned long bad_flags)
1da177e4 531{
d936cf9b
HD
532 static unsigned long resume;
533 static unsigned long nr_shown;
534 static unsigned long nr_unshown;
535
536 /*
537 * Allow a burst of 60 reports, then keep quiet for that minute;
538 * or allow a steady drip of one report per second.
539 */
540 if (nr_shown == 60) {
541 if (time_before(jiffies, resume)) {
542 nr_unshown++;
543 goto out;
544 }
545 if (nr_unshown) {
ff8e8116 546 pr_alert(
1e9e6365 547 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
548 nr_unshown);
549 nr_unshown = 0;
550 }
551 nr_shown = 0;
552 }
553 if (nr_shown++ == 0)
554 resume = jiffies + 60 * HZ;
555
ff8e8116 556 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 557 current->comm, page_to_pfn(page));
ff8e8116
VB
558 __dump_page(page, reason);
559 bad_flags &= page->flags;
560 if (bad_flags)
561 pr_alert("bad because of flags: %#lx(%pGp)\n",
562 bad_flags, &bad_flags);
4e462112 563 dump_page_owner(page);
3dc14741 564
4f31888c 565 print_modules();
1da177e4 566 dump_stack();
d936cf9b 567out:
8cc3b392 568 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 569 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
571}
572
1da177e4
LT
573/*
574 * Higher-order pages are called "compound pages". They are structured thusly:
575 *
1d798ca3 576 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 577 *
1d798ca3
KS
578 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
579 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 580 *
1d798ca3
KS
581 * The first tail page's ->compound_dtor holds the offset in array of compound
582 * page destructors. See compound_page_dtors.
1da177e4 583 *
1d798ca3 584 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 585 * This usage means that zero-order pages may not be compound.
1da177e4 586 */
d98c7a09 587
9a982250 588void free_compound_page(struct page *page)
d98c7a09 589{
d85f3385 590 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
591}
592
d00181b9 593void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
594{
595 int i;
596 int nr_pages = 1 << order;
597
f1e61557 598 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
599 set_compound_order(page, order);
600 __SetPageHead(page);
601 for (i = 1; i < nr_pages; i++) {
602 struct page *p = page + i;
58a84aa9 603 set_page_count(p, 0);
1c290f64 604 p->mapping = TAIL_MAPPING;
1d798ca3 605 set_compound_head(p, page);
18229df5 606 }
53f9263b 607 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
608}
609
c0a32fc5
SG
610#ifdef CONFIG_DEBUG_PAGEALLOC
611unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
612bool _debug_pagealloc_enabled __read_mostly
613 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 614EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
615bool _debug_guardpage_enabled __read_mostly;
616
031bc574
JK
617static int __init early_debug_pagealloc(char *buf)
618{
619 if (!buf)
620 return -EINVAL;
2a138dc7 621 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
622}
623early_param("debug_pagealloc", early_debug_pagealloc);
624
e30825f1
JK
625static bool need_debug_guardpage(void)
626{
031bc574
JK
627 /* If we don't use debug_pagealloc, we don't need guard page */
628 if (!debug_pagealloc_enabled())
629 return false;
630
f1c1e9f7
JK
631 if (!debug_guardpage_minorder())
632 return false;
633
e30825f1
JK
634 return true;
635}
636
637static void init_debug_guardpage(void)
638{
031bc574
JK
639 if (!debug_pagealloc_enabled())
640 return;
641
f1c1e9f7
JK
642 if (!debug_guardpage_minorder())
643 return;
644
e30825f1
JK
645 _debug_guardpage_enabled = true;
646}
647
648struct page_ext_operations debug_guardpage_ops = {
649 .need = need_debug_guardpage,
650 .init = init_debug_guardpage,
651};
c0a32fc5
SG
652
653static int __init debug_guardpage_minorder_setup(char *buf)
654{
655 unsigned long res;
656
657 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 658 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
659 return 0;
660 }
661 _debug_guardpage_minorder = res;
1170532b 662 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
663 return 0;
664}
f1c1e9f7 665early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 666
acbc15a4 667static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 668 unsigned int order, int migratetype)
c0a32fc5 669{
e30825f1
JK
670 struct page_ext *page_ext;
671
672 if (!debug_guardpage_enabled())
acbc15a4
JK
673 return false;
674
675 if (order >= debug_guardpage_minorder())
676 return false;
e30825f1
JK
677
678 page_ext = lookup_page_ext(page);
f86e4271 679 if (unlikely(!page_ext))
acbc15a4 680 return false;
f86e4271 681
e30825f1
JK
682 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
2847cf95
JK
684 INIT_LIST_HEAD(&page->lru);
685 set_page_private(page, order);
686 /* Guard pages are not available for any usage */
687 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
688
689 return true;
c0a32fc5
SG
690}
691
2847cf95
JK
692static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype)
c0a32fc5 694{
e30825f1
JK
695 struct page_ext *page_ext;
696
697 if (!debug_guardpage_enabled())
698 return;
699
700 page_ext = lookup_page_ext(page);
f86e4271
YS
701 if (unlikely(!page_ext))
702 return;
703
e30825f1
JK
704 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
705
2847cf95
JK
706 set_page_private(page, 0);
707 if (!is_migrate_isolate(migratetype))
708 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
709}
710#else
980ac167 711struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
712static inline bool set_page_guard(struct zone *zone, struct page *page,
713 unsigned int order, int migratetype) { return false; }
2847cf95
JK
714static inline void clear_page_guard(struct zone *zone, struct page *page,
715 unsigned int order, int migratetype) {}
c0a32fc5
SG
716#endif
717
7aeb09f9 718static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 719{
4c21e2f2 720 set_page_private(page, order);
676165a8 721 __SetPageBuddy(page);
1da177e4
LT
722}
723
724static inline void rmv_page_order(struct page *page)
725{
676165a8 726 __ClearPageBuddy(page);
4c21e2f2 727 set_page_private(page, 0);
1da177e4
LT
728}
729
1da177e4
LT
730/*
731 * This function checks whether a page is free && is the buddy
732 * we can do coalesce a page and its buddy if
13ad59df 733 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 734 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
735 * (c) a page and its buddy have the same order &&
736 * (d) a page and its buddy are in the same zone.
676165a8 737 *
cf6fe945
WSH
738 * For recording whether a page is in the buddy system, we set ->_mapcount
739 * PAGE_BUDDY_MAPCOUNT_VALUE.
740 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
741 * serialized by zone->lock.
1da177e4 742 *
676165a8 743 * For recording page's order, we use page_private(page).
1da177e4 744 */
cb2b95e1 745static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 746 unsigned int order)
1da177e4 747{
c0a32fc5 748 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
749 if (page_zone_id(page) != page_zone_id(buddy))
750 return 0;
751
4c5018ce
WY
752 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
753
c0a32fc5
SG
754 return 1;
755 }
756
cb2b95e1 757 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
758 /*
759 * zone check is done late to avoid uselessly
760 * calculating zone/node ids for pages that could
761 * never merge.
762 */
763 if (page_zone_id(page) != page_zone_id(buddy))
764 return 0;
765
4c5018ce
WY
766 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
767
6aa3001b 768 return 1;
676165a8 769 }
6aa3001b 770 return 0;
1da177e4
LT
771}
772
773/*
774 * Freeing function for a buddy system allocator.
775 *
776 * The concept of a buddy system is to maintain direct-mapped table
777 * (containing bit values) for memory blocks of various "orders".
778 * The bottom level table contains the map for the smallest allocatable
779 * units of memory (here, pages), and each level above it describes
780 * pairs of units from the levels below, hence, "buddies".
781 * At a high level, all that happens here is marking the table entry
782 * at the bottom level available, and propagating the changes upward
783 * as necessary, plus some accounting needed to play nicely with other
784 * parts of the VM system.
785 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
786 * free pages of length of (1 << order) and marked with _mapcount
787 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
788 * field.
1da177e4 789 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
790 * other. That is, if we allocate a small block, and both were
791 * free, the remainder of the region must be split into blocks.
1da177e4 792 * If a block is freed, and its buddy is also free, then this
5f63b720 793 * triggers coalescing into a block of larger size.
1da177e4 794 *
6d49e352 795 * -- nyc
1da177e4
LT
796 */
797
48db57f8 798static inline void __free_one_page(struct page *page,
dc4b0caf 799 unsigned long pfn,
ed0ae21d
MG
800 struct zone *zone, unsigned int order,
801 int migratetype)
1da177e4 802{
76741e77
VB
803 unsigned long combined_pfn;
804 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 805 struct page *buddy;
d9dddbf5
VB
806 unsigned int max_order;
807
808 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 809
d29bb978 810 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 811 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 812
ed0ae21d 813 VM_BUG_ON(migratetype == -1);
d9dddbf5 814 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 815 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 816
76741e77 817 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 818 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 819
d9dddbf5 820continue_merging:
3c605096 821 while (order < max_order - 1) {
76741e77
VB
822 buddy_pfn = __find_buddy_pfn(pfn, order);
823 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
824
825 if (!pfn_valid_within(buddy_pfn))
826 goto done_merging;
cb2b95e1 827 if (!page_is_buddy(page, buddy, order))
d9dddbf5 828 goto done_merging;
c0a32fc5
SG
829 /*
830 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
831 * merge with it and move up one order.
832 */
833 if (page_is_guard(buddy)) {
2847cf95 834 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
835 } else {
836 list_del(&buddy->lru);
837 zone->free_area[order].nr_free--;
838 rmv_page_order(buddy);
839 }
76741e77
VB
840 combined_pfn = buddy_pfn & pfn;
841 page = page + (combined_pfn - pfn);
842 pfn = combined_pfn;
1da177e4
LT
843 order++;
844 }
d9dddbf5
VB
845 if (max_order < MAX_ORDER) {
846 /* If we are here, it means order is >= pageblock_order.
847 * We want to prevent merge between freepages on isolate
848 * pageblock and normal pageblock. Without this, pageblock
849 * isolation could cause incorrect freepage or CMA accounting.
850 *
851 * We don't want to hit this code for the more frequent
852 * low-order merging.
853 */
854 if (unlikely(has_isolate_pageblock(zone))) {
855 int buddy_mt;
856
76741e77
VB
857 buddy_pfn = __find_buddy_pfn(pfn, order);
858 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
859 buddy_mt = get_pageblock_migratetype(buddy);
860
861 if (migratetype != buddy_mt
862 && (is_migrate_isolate(migratetype) ||
863 is_migrate_isolate(buddy_mt)))
864 goto done_merging;
865 }
866 max_order++;
867 goto continue_merging;
868 }
869
870done_merging:
1da177e4 871 set_page_order(page, order);
6dda9d55
CZ
872
873 /*
874 * If this is not the largest possible page, check if the buddy
875 * of the next-highest order is free. If it is, it's possible
876 * that pages are being freed that will coalesce soon. In case,
877 * that is happening, add the free page to the tail of the list
878 * so it's less likely to be used soon and more likely to be merged
879 * as a higher order page
880 */
13ad59df 881 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 882 struct page *higher_page, *higher_buddy;
76741e77
VB
883 combined_pfn = buddy_pfn & pfn;
884 higher_page = page + (combined_pfn - pfn);
885 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
886 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
887 if (pfn_valid_within(buddy_pfn) &&
888 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
889 list_add_tail(&page->lru,
890 &zone->free_area[order].free_list[migratetype]);
891 goto out;
892 }
893 }
894
895 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
896out:
1da177e4
LT
897 zone->free_area[order].nr_free++;
898}
899
7bfec6f4
MG
900/*
901 * A bad page could be due to a number of fields. Instead of multiple branches,
902 * try and check multiple fields with one check. The caller must do a detailed
903 * check if necessary.
904 */
905static inline bool page_expected_state(struct page *page,
906 unsigned long check_flags)
907{
908 if (unlikely(atomic_read(&page->_mapcount) != -1))
909 return false;
910
911 if (unlikely((unsigned long)page->mapping |
912 page_ref_count(page) |
913#ifdef CONFIG_MEMCG
914 (unsigned long)page->mem_cgroup |
915#endif
916 (page->flags & check_flags)))
917 return false;
918
919 return true;
920}
921
bb552ac6 922static void free_pages_check_bad(struct page *page)
1da177e4 923{
7bfec6f4
MG
924 const char *bad_reason;
925 unsigned long bad_flags;
926
7bfec6f4
MG
927 bad_reason = NULL;
928 bad_flags = 0;
f0b791a3 929
53f9263b 930 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
931 bad_reason = "nonzero mapcount";
932 if (unlikely(page->mapping != NULL))
933 bad_reason = "non-NULL mapping";
fe896d18 934 if (unlikely(page_ref_count(page) != 0))
0139aa7b 935 bad_reason = "nonzero _refcount";
f0b791a3
DH
936 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
937 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
938 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
939 }
9edad6ea
JW
940#ifdef CONFIG_MEMCG
941 if (unlikely(page->mem_cgroup))
942 bad_reason = "page still charged to cgroup";
943#endif
7bfec6f4 944 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
945}
946
947static inline int free_pages_check(struct page *page)
948{
da838d4f 949 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 950 return 0;
bb552ac6
MG
951
952 /* Something has gone sideways, find it */
953 free_pages_check_bad(page);
7bfec6f4 954 return 1;
1da177e4
LT
955}
956
4db7548c
MG
957static int free_tail_pages_check(struct page *head_page, struct page *page)
958{
959 int ret = 1;
960
961 /*
962 * We rely page->lru.next never has bit 0 set, unless the page
963 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
964 */
965 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
966
967 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
968 ret = 0;
969 goto out;
970 }
971 switch (page - head_page) {
972 case 1:
973 /* the first tail page: ->mapping is compound_mapcount() */
974 if (unlikely(compound_mapcount(page))) {
975 bad_page(page, "nonzero compound_mapcount", 0);
976 goto out;
977 }
978 break;
979 case 2:
980 /*
981 * the second tail page: ->mapping is
982 * page_deferred_list().next -- ignore value.
983 */
984 break;
985 default:
986 if (page->mapping != TAIL_MAPPING) {
987 bad_page(page, "corrupted mapping in tail page", 0);
988 goto out;
989 }
990 break;
991 }
992 if (unlikely(!PageTail(page))) {
993 bad_page(page, "PageTail not set", 0);
994 goto out;
995 }
996 if (unlikely(compound_head(page) != head_page)) {
997 bad_page(page, "compound_head not consistent", 0);
998 goto out;
999 }
1000 ret = 0;
1001out:
1002 page->mapping = NULL;
1003 clear_compound_head(page);
1004 return ret;
1005}
1006
e2769dbd
MG
1007static __always_inline bool free_pages_prepare(struct page *page,
1008 unsigned int order, bool check_free)
4db7548c 1009{
e2769dbd 1010 int bad = 0;
4db7548c 1011
4db7548c
MG
1012 VM_BUG_ON_PAGE(PageTail(page), page);
1013
e2769dbd 1014 trace_mm_page_free(page, order);
e2769dbd
MG
1015
1016 /*
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1019 */
1020 if (unlikely(order)) {
1021 bool compound = PageCompound(page);
1022 int i;
1023
1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1025
9a73f61b
KS
1026 if (compound)
1027 ClearPageDoubleMap(page);
e2769dbd
MG
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 if (unlikely(free_pages_check(page + i))) {
1032 bad++;
1033 continue;
1034 }
1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 }
1037 }
bda807d4 1038 if (PageMappingFlags(page))
4db7548c 1039 page->mapping = NULL;
c4159a75 1040 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1041 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1042 if (check_free)
1043 bad += free_pages_check(page);
1044 if (bad)
1045 return false;
4db7548c 1046
e2769dbd
MG
1047 page_cpupid_reset_last(page);
1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 reset_page_owner(page, order);
4db7548c
MG
1050
1051 if (!PageHighMem(page)) {
1052 debug_check_no_locks_freed(page_address(page),
e2769dbd 1053 PAGE_SIZE << order);
4db7548c 1054 debug_check_no_obj_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 }
e2769dbd
MG
1057 arch_free_page(page, order);
1058 kernel_poison_pages(page, 1 << order, 0);
1059 kernel_map_pages(page, 1 << order, 0);
29b52de1 1060 kasan_free_pages(page, order);
4db7548c 1061
4db7548c
MG
1062 return true;
1063}
1064
e2769dbd
MG
1065#ifdef CONFIG_DEBUG_VM
1066static inline bool free_pcp_prepare(struct page *page)
1067{
1068 return free_pages_prepare(page, 0, true);
1069}
1070
1071static inline bool bulkfree_pcp_prepare(struct page *page)
1072{
1073 return false;
1074}
1075#else
1076static bool free_pcp_prepare(struct page *page)
1077{
1078 return free_pages_prepare(page, 0, false);
1079}
1080
4db7548c
MG
1081static bool bulkfree_pcp_prepare(struct page *page)
1082{
1083 return free_pages_check(page);
1084}
1085#endif /* CONFIG_DEBUG_VM */
1086
1da177e4 1087/*
5f8dcc21 1088 * Frees a number of pages from the PCP lists
1da177e4 1089 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1090 * count is the number of pages to free.
1da177e4
LT
1091 *
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1094 *
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1097 */
5f8dcc21
MG
1098static void free_pcppages_bulk(struct zone *zone, int count,
1099 struct per_cpu_pages *pcp)
1da177e4 1100{
5f8dcc21 1101 int migratetype = 0;
a6f9edd6 1102 int batch_free = 0;
3777999d 1103 bool isolated_pageblocks;
5f8dcc21 1104
d34b0733 1105 spin_lock(&zone->lock);
3777999d 1106 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1107
e5b31ac2 1108 while (count) {
48db57f8 1109 struct page *page;
5f8dcc21
MG
1110 struct list_head *list;
1111
1112 /*
a6f9edd6
MG
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1117 * lists
5f8dcc21
MG
1118 */
1119 do {
a6f9edd6 1120 batch_free++;
5f8dcc21
MG
1121 if (++migratetype == MIGRATE_PCPTYPES)
1122 migratetype = 0;
1123 list = &pcp->lists[migratetype];
1124 } while (list_empty(list));
48db57f8 1125
1d16871d
NK
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1128 batch_free = count;
1d16871d 1129
a6f9edd6 1130 do {
770c8aaa
BZ
1131 int mt; /* migratetype of the to-be-freed page */
1132
a16601c5 1133 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page->lru);
aa016d14 1136
bb14c2c7 1137 mt = get_pcppage_migratetype(page);
aa016d14
VB
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 /* Pageblock could have been isolated meanwhile */
3777999d 1141 if (unlikely(isolated_pageblocks))
51bb1a40 1142 mt = get_pageblock_migratetype(page);
51bb1a40 1143
4db7548c
MG
1144 if (bulkfree_pcp_prepare(page))
1145 continue;
1146
dc4b0caf 1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1148 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1149 } while (--count && --batch_free && !list_empty(list));
1da177e4 1150 }
d34b0733 1151 spin_unlock(&zone->lock);
1da177e4
LT
1152}
1153
dc4b0caf
MG
1154static void free_one_page(struct zone *zone,
1155 struct page *page, unsigned long pfn,
7aeb09f9 1156 unsigned int order,
ed0ae21d 1157 int migratetype)
1da177e4 1158{
d34b0733 1159 spin_lock(&zone->lock);
ad53f92e
JK
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1163 }
dc4b0caf 1164 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1165 spin_unlock(&zone->lock);
48db57f8
NP
1166}
1167
1e8ce83c
RH
1168static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170{
1e8ce83c 1171 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1172 init_page_count(page);
1173 page_mapcount_reset(page);
1174 page_cpupid_reset_last(page);
1e8ce83c 1175
1e8ce83c
RH
1176 INIT_LIST_HEAD(&page->lru);
1177#ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone))
1180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1181#endif
1182}
1183
1184static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 int nid)
1186{
1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188}
1189
7e18adb4 1190#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1191static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1192{
1193 pg_data_t *pgdat;
1194 int nid, zid;
1195
1196 if (!early_page_uninitialised(pfn))
1197 return;
1198
1199 nid = early_pfn_to_nid(pfn);
1200 pgdat = NODE_DATA(nid);
1201
1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 struct zone *zone = &pgdat->node_zones[zid];
1204
1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 break;
1207 }
1208 __init_single_pfn(pfn, zid, nid);
1209}
1210#else
1211static inline void init_reserved_page(unsigned long pfn)
1212{
1213}
1214#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215
92923ca3
NZ
1216/*
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1221 */
4b50bcc7 1222void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1223{
1224 unsigned long start_pfn = PFN_DOWN(start);
1225 unsigned long end_pfn = PFN_UP(end);
1226
7e18adb4
MG
1227 for (; start_pfn < end_pfn; start_pfn++) {
1228 if (pfn_valid(start_pfn)) {
1229 struct page *page = pfn_to_page(start_pfn);
1230
1231 init_reserved_page(start_pfn);
1d798ca3
KS
1232
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page->lru);
1235
7e18adb4
MG
1236 SetPageReserved(page);
1237 }
1238 }
92923ca3
NZ
1239}
1240
ec95f53a
KM
1241static void __free_pages_ok(struct page *page, unsigned int order)
1242{
d34b0733 1243 unsigned long flags;
95e34412 1244 int migratetype;
dc4b0caf 1245 unsigned long pfn = page_to_pfn(page);
ec95f53a 1246
e2769dbd 1247 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1248 return;
1249
cfc47a28 1250 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1251 local_irq_save(flags);
1252 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1253 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1254 local_irq_restore(flags);
1da177e4
LT
1255}
1256
949698a3 1257static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1258{
c3993076 1259 unsigned int nr_pages = 1 << order;
e2d0bd2b 1260 struct page *p = page;
c3993076 1261 unsigned int loop;
a226f6c8 1262
e2d0bd2b
YL
1263 prefetchw(p);
1264 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1265 prefetchw(p + 1);
c3993076
JW
1266 __ClearPageReserved(p);
1267 set_page_count(p, 0);
a226f6c8 1268 }
e2d0bd2b
YL
1269 __ClearPageReserved(p);
1270 set_page_count(p, 0);
c3993076 1271
e2d0bd2b 1272 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1273 set_page_refcounted(page);
1274 __free_pages(page, order);
a226f6c8
DH
1275}
1276
75a592a4
MG
1277#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1278 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1279
75a592a4
MG
1280static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1281
1282int __meminit early_pfn_to_nid(unsigned long pfn)
1283{
7ace9917 1284 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1285 int nid;
1286
7ace9917 1287 spin_lock(&early_pfn_lock);
75a592a4 1288 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1289 if (nid < 0)
e4568d38 1290 nid = first_online_node;
7ace9917
MG
1291 spin_unlock(&early_pfn_lock);
1292
1293 return nid;
75a592a4
MG
1294}
1295#endif
1296
1297#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1298static inline bool __meminit __maybe_unused
1299meminit_pfn_in_nid(unsigned long pfn, int node,
1300 struct mminit_pfnnid_cache *state)
75a592a4
MG
1301{
1302 int nid;
1303
1304 nid = __early_pfn_to_nid(pfn, state);
1305 if (nid >= 0 && nid != node)
1306 return false;
1307 return true;
1308}
1309
1310/* Only safe to use early in boot when initialisation is single-threaded */
1311static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312{
1313 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314}
1315
1316#else
1317
1318static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319{
1320 return true;
1321}
d73d3c9f
MK
1322static inline bool __meminit __maybe_unused
1323meminit_pfn_in_nid(unsigned long pfn, int node,
1324 struct mminit_pfnnid_cache *state)
75a592a4
MG
1325{
1326 return true;
1327}
1328#endif
1329
1330
0e1cc95b 1331void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1332 unsigned int order)
1333{
1334 if (early_page_uninitialised(pfn))
1335 return;
949698a3 1336 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1337}
1338
7cf91a98
JK
1339/*
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1344 * pageblocks.
1345 *
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347 *
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1355 */
1356struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 unsigned long end_pfn, struct zone *zone)
1358{
1359 struct page *start_page;
1360 struct page *end_page;
1361
1362 /* end_pfn is one past the range we are checking */
1363 end_pfn--;
1364
1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 return NULL;
1367
2d070eab
MH
1368 start_page = pfn_to_online_page(start_pfn);
1369 if (!start_page)
1370 return NULL;
7cf91a98
JK
1371
1372 if (page_zone(start_page) != zone)
1373 return NULL;
1374
1375 end_page = pfn_to_page(end_pfn);
1376
1377 /* This gives a shorter code than deriving page_zone(end_page) */
1378 if (page_zone_id(start_page) != page_zone_id(end_page))
1379 return NULL;
1380
1381 return start_page;
1382}
1383
1384void set_zone_contiguous(struct zone *zone)
1385{
1386 unsigned long block_start_pfn = zone->zone_start_pfn;
1387 unsigned long block_end_pfn;
1388
1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 for (; block_start_pfn < zone_end_pfn(zone);
1391 block_start_pfn = block_end_pfn,
1392 block_end_pfn += pageblock_nr_pages) {
1393
1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1395
1396 if (!__pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, zone))
1398 return;
1399 }
1400
1401 /* We confirm that there is no hole */
1402 zone->contiguous = true;
1403}
1404
1405void clear_zone_contiguous(struct zone *zone)
1406{
1407 zone->contiguous = false;
1408}
1409
7e18adb4 1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1411static void __init deferred_free_range(unsigned long pfn,
1412 unsigned long nr_pages)
a4de83dd 1413{
2f47a91f
PT
1414 struct page *page;
1415 unsigned long i;
a4de83dd 1416
2f47a91f 1417 if (!nr_pages)
a4de83dd
MG
1418 return;
1419
2f47a91f
PT
1420 page = pfn_to_page(pfn);
1421
a4de83dd 1422 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1423 if (nr_pages == pageblock_nr_pages &&
1424 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1425 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1426 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1427 return;
1428 }
1429
e780149b
XQ
1430 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1431 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1432 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1433 __free_pages_boot_core(page, 0);
e780149b 1434 }
a4de83dd
MG
1435}
1436
d3cd131d
NS
1437/* Completion tracking for deferred_init_memmap() threads */
1438static atomic_t pgdat_init_n_undone __initdata;
1439static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1440
1441static inline void __init pgdat_init_report_one_done(void)
1442{
1443 if (atomic_dec_and_test(&pgdat_init_n_undone))
1444 complete(&pgdat_init_all_done_comp);
1445}
0e1cc95b 1446
2f47a91f
PT
1447/*
1448 * Helper for deferred_init_range, free the given range, reset the counters, and
1449 * return number of pages freed.
1450 */
1451static inline unsigned long __init __def_free(unsigned long *nr_free,
1452 unsigned long *free_base_pfn,
1453 struct page **page)
1454{
1455 unsigned long nr = *nr_free;
1456
1457 deferred_free_range(*free_base_pfn, nr);
1458 *free_base_pfn = 0;
1459 *nr_free = 0;
1460 *page = NULL;
1461
1462 return nr;
1463}
1464
1465static unsigned long __init deferred_init_range(int nid, int zid,
1466 unsigned long start_pfn,
1467 unsigned long end_pfn)
1468{
1469 struct mminit_pfnnid_cache nid_init_state = { };
1470 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1471 unsigned long free_base_pfn = 0;
1472 unsigned long nr_pages = 0;
1473 unsigned long nr_free = 0;
1474 struct page *page = NULL;
1475 unsigned long pfn;
1476
1477 /*
1478 * First we check if pfn is valid on architectures where it is possible
1479 * to have holes within pageblock_nr_pages. On systems where it is not
1480 * possible, this function is optimized out.
1481 *
1482 * Then, we check if a current large page is valid by only checking the
1483 * validity of the head pfn.
1484 *
1485 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1486 * within a node: a pfn is between start and end of a node, but does not
1487 * belong to this memory node.
1488 *
1489 * Finally, we minimize pfn page lookups and scheduler checks by
1490 * performing it only once every pageblock_nr_pages.
1491 *
1492 * We do it in two loops: first we initialize struct page, than free to
1493 * buddy allocator, becuse while we are freeing pages we can access
1494 * pages that are ahead (computing buddy page in __free_one_page()).
1495 */
1496 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1497 if (!pfn_valid_within(pfn))
1498 continue;
1499 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1500 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 if (page && (pfn & nr_pgmask))
1502 page++;
1503 else
1504 page = pfn_to_page(pfn);
1505 __init_single_page(page, pfn, zid, nid);
1506 cond_resched();
1507 }
1508 }
1509 }
1510
1511 page = NULL;
1512 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1513 if (!pfn_valid_within(pfn)) {
1514 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1515 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1516 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1517 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1519 } else if (page && (pfn & nr_pgmask)) {
1520 page++;
1521 nr_free++;
1522 } else {
1523 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1524 page = pfn_to_page(pfn);
1525 free_base_pfn = pfn;
1526 nr_free = 1;
1527 cond_resched();
1528 }
1529 }
1530 /* Free the last block of pages to allocator */
1531 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1532
1533 return nr_pages;
1534}
1535
7e18adb4 1536/* Initialise remaining memory on a node */
0e1cc95b 1537static int __init deferred_init_memmap(void *data)
7e18adb4 1538{
0e1cc95b
MG
1539 pg_data_t *pgdat = data;
1540 int nid = pgdat->node_id;
7e18adb4
MG
1541 unsigned long start = jiffies;
1542 unsigned long nr_pages = 0;
2f47a91f
PT
1543 unsigned long spfn, epfn;
1544 phys_addr_t spa, epa;
1545 int zid;
7e18adb4 1546 struct zone *zone;
7e18adb4 1547 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1548 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1549 u64 i;
7e18adb4 1550
0e1cc95b 1551 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1552 pgdat_init_report_one_done();
0e1cc95b
MG
1553 return 0;
1554 }
1555
1556 /* Bind memory initialisation thread to a local node if possible */
1557 if (!cpumask_empty(cpumask))
1558 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1559
1560 /* Sanity check boundaries */
1561 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1562 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1563 pgdat->first_deferred_pfn = ULONG_MAX;
1564
1565 /* Only the highest zone is deferred so find it */
1566 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1567 zone = pgdat->node_zones + zid;
1568 if (first_init_pfn < zone_end_pfn(zone))
1569 break;
1570 }
2f47a91f 1571 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1572
2f47a91f
PT
1573 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1574 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1575 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1576 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1577 }
1578
1579 /* Sanity check that the next zone really is unpopulated */
1580 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1581
0e1cc95b 1582 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1583 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1584
1585 pgdat_init_report_one_done();
0e1cc95b
MG
1586 return 0;
1587}
7cf91a98 1588#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1589
1590void __init page_alloc_init_late(void)
1591{
7cf91a98
JK
1592 struct zone *zone;
1593
1594#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1595 int nid;
1596
d3cd131d
NS
1597 /* There will be num_node_state(N_MEMORY) threads */
1598 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1599 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1600 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1601 }
1602
1603 /* Block until all are initialised */
d3cd131d 1604 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1605
1606 /* Reinit limits that are based on free pages after the kernel is up */
1607 files_maxfiles_init();
7cf91a98 1608#endif
3010f876
PT
1609#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1610 /* Discard memblock private memory */
1611 memblock_discard();
1612#endif
7cf91a98
JK
1613
1614 for_each_populated_zone(zone)
1615 set_zone_contiguous(zone);
7e18adb4 1616}
7e18adb4 1617
47118af0 1618#ifdef CONFIG_CMA
9cf510a5 1619/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1620void __init init_cma_reserved_pageblock(struct page *page)
1621{
1622 unsigned i = pageblock_nr_pages;
1623 struct page *p = page;
1624
1625 do {
1626 __ClearPageReserved(p);
1627 set_page_count(p, 0);
1628 } while (++p, --i);
1629
47118af0 1630 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1631
1632 if (pageblock_order >= MAX_ORDER) {
1633 i = pageblock_nr_pages;
1634 p = page;
1635 do {
1636 set_page_refcounted(p);
1637 __free_pages(p, MAX_ORDER - 1);
1638 p += MAX_ORDER_NR_PAGES;
1639 } while (i -= MAX_ORDER_NR_PAGES);
1640 } else {
1641 set_page_refcounted(page);
1642 __free_pages(page, pageblock_order);
1643 }
1644
3dcc0571 1645 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1646}
1647#endif
1da177e4
LT
1648
1649/*
1650 * The order of subdivision here is critical for the IO subsystem.
1651 * Please do not alter this order without good reasons and regression
1652 * testing. Specifically, as large blocks of memory are subdivided,
1653 * the order in which smaller blocks are delivered depends on the order
1654 * they're subdivided in this function. This is the primary factor
1655 * influencing the order in which pages are delivered to the IO
1656 * subsystem according to empirical testing, and this is also justified
1657 * by considering the behavior of a buddy system containing a single
1658 * large block of memory acted on by a series of small allocations.
1659 * This behavior is a critical factor in sglist merging's success.
1660 *
6d49e352 1661 * -- nyc
1da177e4 1662 */
085cc7d5 1663static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1664 int low, int high, struct free_area *area,
1665 int migratetype)
1da177e4
LT
1666{
1667 unsigned long size = 1 << high;
1668
1669 while (high > low) {
1670 area--;
1671 high--;
1672 size >>= 1;
309381fe 1673 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1674
acbc15a4
JK
1675 /*
1676 * Mark as guard pages (or page), that will allow to
1677 * merge back to allocator when buddy will be freed.
1678 * Corresponding page table entries will not be touched,
1679 * pages will stay not present in virtual address space
1680 */
1681 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1682 continue;
acbc15a4 1683
b2a0ac88 1684 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1685 area->nr_free++;
1686 set_page_order(&page[size], high);
1687 }
1da177e4
LT
1688}
1689
4e611801 1690static void check_new_page_bad(struct page *page)
1da177e4 1691{
4e611801
VB
1692 const char *bad_reason = NULL;
1693 unsigned long bad_flags = 0;
7bfec6f4 1694
53f9263b 1695 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1696 bad_reason = "nonzero mapcount";
1697 if (unlikely(page->mapping != NULL))
1698 bad_reason = "non-NULL mapping";
fe896d18 1699 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1700 bad_reason = "nonzero _count";
f4c18e6f
NH
1701 if (unlikely(page->flags & __PG_HWPOISON)) {
1702 bad_reason = "HWPoisoned (hardware-corrupted)";
1703 bad_flags = __PG_HWPOISON;
e570f56c
NH
1704 /* Don't complain about hwpoisoned pages */
1705 page_mapcount_reset(page); /* remove PageBuddy */
1706 return;
f4c18e6f 1707 }
f0b791a3
DH
1708 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1709 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1710 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1711 }
9edad6ea
JW
1712#ifdef CONFIG_MEMCG
1713 if (unlikely(page->mem_cgroup))
1714 bad_reason = "page still charged to cgroup";
1715#endif
4e611801
VB
1716 bad_page(page, bad_reason, bad_flags);
1717}
1718
1719/*
1720 * This page is about to be returned from the page allocator
1721 */
1722static inline int check_new_page(struct page *page)
1723{
1724 if (likely(page_expected_state(page,
1725 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1726 return 0;
1727
1728 check_new_page_bad(page);
1729 return 1;
2a7684a2
WF
1730}
1731
bd33ef36 1732static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1733{
1734 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1735 page_poisoning_enabled();
1414c7f4
LA
1736}
1737
479f854a
MG
1738#ifdef CONFIG_DEBUG_VM
1739static bool check_pcp_refill(struct page *page)
1740{
1741 return false;
1742}
1743
1744static bool check_new_pcp(struct page *page)
1745{
1746 return check_new_page(page);
1747}
1748#else
1749static bool check_pcp_refill(struct page *page)
1750{
1751 return check_new_page(page);
1752}
1753static bool check_new_pcp(struct page *page)
1754{
1755 return false;
1756}
1757#endif /* CONFIG_DEBUG_VM */
1758
1759static bool check_new_pages(struct page *page, unsigned int order)
1760{
1761 int i;
1762 for (i = 0; i < (1 << order); i++) {
1763 struct page *p = page + i;
1764
1765 if (unlikely(check_new_page(p)))
1766 return true;
1767 }
1768
1769 return false;
1770}
1771
46f24fd8
JK
1772inline void post_alloc_hook(struct page *page, unsigned int order,
1773 gfp_t gfp_flags)
1774{
1775 set_page_private(page, 0);
1776 set_page_refcounted(page);
1777
1778 arch_alloc_page(page, order);
1779 kernel_map_pages(page, 1 << order, 1);
1780 kernel_poison_pages(page, 1 << order, 1);
1781 kasan_alloc_pages(page, order);
1782 set_page_owner(page, order, gfp_flags);
1783}
1784
479f854a 1785static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1786 unsigned int alloc_flags)
2a7684a2
WF
1787{
1788 int i;
689bcebf 1789
46f24fd8 1790 post_alloc_hook(page, order, gfp_flags);
17cf4406 1791
bd33ef36 1792 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1793 for (i = 0; i < (1 << order); i++)
1794 clear_highpage(page + i);
17cf4406
NP
1795
1796 if (order && (gfp_flags & __GFP_COMP))
1797 prep_compound_page(page, order);
1798
75379191 1799 /*
2f064f34 1800 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1801 * allocate the page. The expectation is that the caller is taking
1802 * steps that will free more memory. The caller should avoid the page
1803 * being used for !PFMEMALLOC purposes.
1804 */
2f064f34
MH
1805 if (alloc_flags & ALLOC_NO_WATERMARKS)
1806 set_page_pfmemalloc(page);
1807 else
1808 clear_page_pfmemalloc(page);
1da177e4
LT
1809}
1810
56fd56b8
MG
1811/*
1812 * Go through the free lists for the given migratetype and remove
1813 * the smallest available page from the freelists
1814 */
728ec980
MG
1815static inline
1816struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1817 int migratetype)
1818{
1819 unsigned int current_order;
b8af2941 1820 struct free_area *area;
56fd56b8
MG
1821 struct page *page;
1822
1823 /* Find a page of the appropriate size in the preferred list */
1824 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1825 area = &(zone->free_area[current_order]);
a16601c5 1826 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1827 struct page, lru);
a16601c5
GT
1828 if (!page)
1829 continue;
56fd56b8
MG
1830 list_del(&page->lru);
1831 rmv_page_order(page);
1832 area->nr_free--;
56fd56b8 1833 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1834 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1835 return page;
1836 }
1837
1838 return NULL;
1839}
1840
1841
b2a0ac88
MG
1842/*
1843 * This array describes the order lists are fallen back to when
1844 * the free lists for the desirable migrate type are depleted
1845 */
47118af0 1846static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1847 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1848 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1849 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1850#ifdef CONFIG_CMA
974a786e 1851 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1852#endif
194159fb 1853#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1854 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1855#endif
b2a0ac88
MG
1856};
1857
dc67647b
JK
1858#ifdef CONFIG_CMA
1859static struct page *__rmqueue_cma_fallback(struct zone *zone,
1860 unsigned int order)
1861{
1862 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1863}
1864#else
1865static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1866 unsigned int order) { return NULL; }
1867#endif
1868
c361be55
MG
1869/*
1870 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1871 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1872 * boundary. If alignment is required, use move_freepages_block()
1873 */
02aa0cdd 1874static int move_freepages(struct zone *zone,
b69a7288 1875 struct page *start_page, struct page *end_page,
02aa0cdd 1876 int migratetype, int *num_movable)
c361be55
MG
1877{
1878 struct page *page;
d00181b9 1879 unsigned int order;
d100313f 1880 int pages_moved = 0;
c361be55
MG
1881
1882#ifndef CONFIG_HOLES_IN_ZONE
1883 /*
1884 * page_zone is not safe to call in this context when
1885 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1886 * anyway as we check zone boundaries in move_freepages_block().
1887 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1888 * grouping pages by mobility
c361be55 1889 */
97ee4ba7 1890 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1891#endif
1892
02aa0cdd
VB
1893 if (num_movable)
1894 *num_movable = 0;
1895
c361be55
MG
1896 for (page = start_page; page <= end_page;) {
1897 if (!pfn_valid_within(page_to_pfn(page))) {
1898 page++;
1899 continue;
1900 }
1901
f073bdc5
AB
1902 /* Make sure we are not inadvertently changing nodes */
1903 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1904
c361be55 1905 if (!PageBuddy(page)) {
02aa0cdd
VB
1906 /*
1907 * We assume that pages that could be isolated for
1908 * migration are movable. But we don't actually try
1909 * isolating, as that would be expensive.
1910 */
1911 if (num_movable &&
1912 (PageLRU(page) || __PageMovable(page)))
1913 (*num_movable)++;
1914
c361be55
MG
1915 page++;
1916 continue;
1917 }
1918
1919 order = page_order(page);
84be48d8
KS
1920 list_move(&page->lru,
1921 &zone->free_area[order].free_list[migratetype]);
c361be55 1922 page += 1 << order;
d100313f 1923 pages_moved += 1 << order;
c361be55
MG
1924 }
1925
d100313f 1926 return pages_moved;
c361be55
MG
1927}
1928
ee6f509c 1929int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1930 int migratetype, int *num_movable)
c361be55
MG
1931{
1932 unsigned long start_pfn, end_pfn;
1933 struct page *start_page, *end_page;
1934
1935 start_pfn = page_to_pfn(page);
d9c23400 1936 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1937 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1938 end_page = start_page + pageblock_nr_pages - 1;
1939 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1940
1941 /* Do not cross zone boundaries */
108bcc96 1942 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1943 start_page = page;
108bcc96 1944 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1945 return 0;
1946
02aa0cdd
VB
1947 return move_freepages(zone, start_page, end_page, migratetype,
1948 num_movable);
c361be55
MG
1949}
1950
2f66a68f
MG
1951static void change_pageblock_range(struct page *pageblock_page,
1952 int start_order, int migratetype)
1953{
1954 int nr_pageblocks = 1 << (start_order - pageblock_order);
1955
1956 while (nr_pageblocks--) {
1957 set_pageblock_migratetype(pageblock_page, migratetype);
1958 pageblock_page += pageblock_nr_pages;
1959 }
1960}
1961
fef903ef 1962/*
9c0415eb
VB
1963 * When we are falling back to another migratetype during allocation, try to
1964 * steal extra free pages from the same pageblocks to satisfy further
1965 * allocations, instead of polluting multiple pageblocks.
1966 *
1967 * If we are stealing a relatively large buddy page, it is likely there will
1968 * be more free pages in the pageblock, so try to steal them all. For
1969 * reclaimable and unmovable allocations, we steal regardless of page size,
1970 * as fragmentation caused by those allocations polluting movable pageblocks
1971 * is worse than movable allocations stealing from unmovable and reclaimable
1972 * pageblocks.
fef903ef 1973 */
4eb7dce6
JK
1974static bool can_steal_fallback(unsigned int order, int start_mt)
1975{
1976 /*
1977 * Leaving this order check is intended, although there is
1978 * relaxed order check in next check. The reason is that
1979 * we can actually steal whole pageblock if this condition met,
1980 * but, below check doesn't guarantee it and that is just heuristic
1981 * so could be changed anytime.
1982 */
1983 if (order >= pageblock_order)
1984 return true;
1985
1986 if (order >= pageblock_order / 2 ||
1987 start_mt == MIGRATE_RECLAIMABLE ||
1988 start_mt == MIGRATE_UNMOVABLE ||
1989 page_group_by_mobility_disabled)
1990 return true;
1991
1992 return false;
1993}
1994
1995/*
1996 * This function implements actual steal behaviour. If order is large enough,
1997 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1998 * pageblock to our migratetype and determine how many already-allocated pages
1999 * are there in the pageblock with a compatible migratetype. If at least half
2000 * of pages are free or compatible, we can change migratetype of the pageblock
2001 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2002 */
2003static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2004 int start_type, bool whole_block)
fef903ef 2005{
d00181b9 2006 unsigned int current_order = page_order(page);
3bc48f96 2007 struct free_area *area;
02aa0cdd
VB
2008 int free_pages, movable_pages, alike_pages;
2009 int old_block_type;
2010
2011 old_block_type = get_pageblock_migratetype(page);
fef903ef 2012
3bc48f96
VB
2013 /*
2014 * This can happen due to races and we want to prevent broken
2015 * highatomic accounting.
2016 */
02aa0cdd 2017 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2018 goto single_page;
2019
fef903ef
SB
2020 /* Take ownership for orders >= pageblock_order */
2021 if (current_order >= pageblock_order) {
2022 change_pageblock_range(page, current_order, start_type);
3bc48f96 2023 goto single_page;
fef903ef
SB
2024 }
2025
3bc48f96
VB
2026 /* We are not allowed to try stealing from the whole block */
2027 if (!whole_block)
2028 goto single_page;
2029
02aa0cdd
VB
2030 free_pages = move_freepages_block(zone, page, start_type,
2031 &movable_pages);
2032 /*
2033 * Determine how many pages are compatible with our allocation.
2034 * For movable allocation, it's the number of movable pages which
2035 * we just obtained. For other types it's a bit more tricky.
2036 */
2037 if (start_type == MIGRATE_MOVABLE) {
2038 alike_pages = movable_pages;
2039 } else {
2040 /*
2041 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2042 * to MOVABLE pageblock, consider all non-movable pages as
2043 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2044 * vice versa, be conservative since we can't distinguish the
2045 * exact migratetype of non-movable pages.
2046 */
2047 if (old_block_type == MIGRATE_MOVABLE)
2048 alike_pages = pageblock_nr_pages
2049 - (free_pages + movable_pages);
2050 else
2051 alike_pages = 0;
2052 }
2053
3bc48f96 2054 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2055 if (!free_pages)
3bc48f96 2056 goto single_page;
fef903ef 2057
02aa0cdd
VB
2058 /*
2059 * If a sufficient number of pages in the block are either free or of
2060 * comparable migratability as our allocation, claim the whole block.
2061 */
2062 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2063 page_group_by_mobility_disabled)
2064 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2065
2066 return;
2067
2068single_page:
2069 area = &zone->free_area[current_order];
2070 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2071}
2072
2149cdae
JK
2073/*
2074 * Check whether there is a suitable fallback freepage with requested order.
2075 * If only_stealable is true, this function returns fallback_mt only if
2076 * we can steal other freepages all together. This would help to reduce
2077 * fragmentation due to mixed migratetype pages in one pageblock.
2078 */
2079int find_suitable_fallback(struct free_area *area, unsigned int order,
2080 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2081{
2082 int i;
2083 int fallback_mt;
2084
2085 if (area->nr_free == 0)
2086 return -1;
2087
2088 *can_steal = false;
2089 for (i = 0;; i++) {
2090 fallback_mt = fallbacks[migratetype][i];
974a786e 2091 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2092 break;
2093
2094 if (list_empty(&area->free_list[fallback_mt]))
2095 continue;
fef903ef 2096
4eb7dce6
JK
2097 if (can_steal_fallback(order, migratetype))
2098 *can_steal = true;
2099
2149cdae
JK
2100 if (!only_stealable)
2101 return fallback_mt;
2102
2103 if (*can_steal)
2104 return fallback_mt;
fef903ef 2105 }
4eb7dce6
JK
2106
2107 return -1;
fef903ef
SB
2108}
2109
0aaa29a5
MG
2110/*
2111 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2112 * there are no empty page blocks that contain a page with a suitable order
2113 */
2114static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2115 unsigned int alloc_order)
2116{
2117 int mt;
2118 unsigned long max_managed, flags;
2119
2120 /*
2121 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2122 * Check is race-prone but harmless.
2123 */
2124 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2125 if (zone->nr_reserved_highatomic >= max_managed)
2126 return;
2127
2128 spin_lock_irqsave(&zone->lock, flags);
2129
2130 /* Recheck the nr_reserved_highatomic limit under the lock */
2131 if (zone->nr_reserved_highatomic >= max_managed)
2132 goto out_unlock;
2133
2134 /* Yoink! */
2135 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2136 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2137 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2138 zone->nr_reserved_highatomic += pageblock_nr_pages;
2139 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2140 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2141 }
2142
2143out_unlock:
2144 spin_unlock_irqrestore(&zone->lock, flags);
2145}
2146
2147/*
2148 * Used when an allocation is about to fail under memory pressure. This
2149 * potentially hurts the reliability of high-order allocations when under
2150 * intense memory pressure but failed atomic allocations should be easier
2151 * to recover from than an OOM.
29fac03b
MK
2152 *
2153 * If @force is true, try to unreserve a pageblock even though highatomic
2154 * pageblock is exhausted.
0aaa29a5 2155 */
29fac03b
MK
2156static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2157 bool force)
0aaa29a5
MG
2158{
2159 struct zonelist *zonelist = ac->zonelist;
2160 unsigned long flags;
2161 struct zoneref *z;
2162 struct zone *zone;
2163 struct page *page;
2164 int order;
04c8716f 2165 bool ret;
0aaa29a5
MG
2166
2167 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2168 ac->nodemask) {
29fac03b
MK
2169 /*
2170 * Preserve at least one pageblock unless memory pressure
2171 * is really high.
2172 */
2173 if (!force && zone->nr_reserved_highatomic <=
2174 pageblock_nr_pages)
0aaa29a5
MG
2175 continue;
2176
2177 spin_lock_irqsave(&zone->lock, flags);
2178 for (order = 0; order < MAX_ORDER; order++) {
2179 struct free_area *area = &(zone->free_area[order]);
2180
a16601c5
GT
2181 page = list_first_entry_or_null(
2182 &area->free_list[MIGRATE_HIGHATOMIC],
2183 struct page, lru);
2184 if (!page)
0aaa29a5
MG
2185 continue;
2186
0aaa29a5 2187 /*
4855e4a7
MK
2188 * In page freeing path, migratetype change is racy so
2189 * we can counter several free pages in a pageblock
2190 * in this loop althoug we changed the pageblock type
2191 * from highatomic to ac->migratetype. So we should
2192 * adjust the count once.
0aaa29a5 2193 */
a6ffdc07 2194 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2195 /*
2196 * It should never happen but changes to
2197 * locking could inadvertently allow a per-cpu
2198 * drain to add pages to MIGRATE_HIGHATOMIC
2199 * while unreserving so be safe and watch for
2200 * underflows.
2201 */
2202 zone->nr_reserved_highatomic -= min(
2203 pageblock_nr_pages,
2204 zone->nr_reserved_highatomic);
2205 }
0aaa29a5
MG
2206
2207 /*
2208 * Convert to ac->migratetype and avoid the normal
2209 * pageblock stealing heuristics. Minimally, the caller
2210 * is doing the work and needs the pages. More
2211 * importantly, if the block was always converted to
2212 * MIGRATE_UNMOVABLE or another type then the number
2213 * of pageblocks that cannot be completely freed
2214 * may increase.
2215 */
2216 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2217 ret = move_freepages_block(zone, page, ac->migratetype,
2218 NULL);
29fac03b
MK
2219 if (ret) {
2220 spin_unlock_irqrestore(&zone->lock, flags);
2221 return ret;
2222 }
0aaa29a5
MG
2223 }
2224 spin_unlock_irqrestore(&zone->lock, flags);
2225 }
04c8716f
MK
2226
2227 return false;
0aaa29a5
MG
2228}
2229
3bc48f96
VB
2230/*
2231 * Try finding a free buddy page on the fallback list and put it on the free
2232 * list of requested migratetype, possibly along with other pages from the same
2233 * block, depending on fragmentation avoidance heuristics. Returns true if
2234 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2235 *
2236 * The use of signed ints for order and current_order is a deliberate
2237 * deviation from the rest of this file, to make the for loop
2238 * condition simpler.
3bc48f96
VB
2239 */
2240static inline bool
b002529d 2241__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2242{
b8af2941 2243 struct free_area *area;
b002529d 2244 int current_order;
b2a0ac88 2245 struct page *page;
4eb7dce6
JK
2246 int fallback_mt;
2247 bool can_steal;
b2a0ac88 2248
7a8f58f3
VB
2249 /*
2250 * Find the largest available free page in the other list. This roughly
2251 * approximates finding the pageblock with the most free pages, which
2252 * would be too costly to do exactly.
2253 */
b002529d 2254 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2255 --current_order) {
4eb7dce6
JK
2256 area = &(zone->free_area[current_order]);
2257 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2258 start_migratetype, false, &can_steal);
4eb7dce6
JK
2259 if (fallback_mt == -1)
2260 continue;
b2a0ac88 2261
7a8f58f3
VB
2262 /*
2263 * We cannot steal all free pages from the pageblock and the
2264 * requested migratetype is movable. In that case it's better to
2265 * steal and split the smallest available page instead of the
2266 * largest available page, because even if the next movable
2267 * allocation falls back into a different pageblock than this
2268 * one, it won't cause permanent fragmentation.
2269 */
2270 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2271 && current_order > order)
2272 goto find_smallest;
b2a0ac88 2273
7a8f58f3
VB
2274 goto do_steal;
2275 }
e0fff1bd 2276
7a8f58f3 2277 return false;
e0fff1bd 2278
7a8f58f3
VB
2279find_smallest:
2280 for (current_order = order; current_order < MAX_ORDER;
2281 current_order++) {
2282 area = &(zone->free_area[current_order]);
2283 fallback_mt = find_suitable_fallback(area, current_order,
2284 start_migratetype, false, &can_steal);
2285 if (fallback_mt != -1)
2286 break;
b2a0ac88
MG
2287 }
2288
7a8f58f3
VB
2289 /*
2290 * This should not happen - we already found a suitable fallback
2291 * when looking for the largest page.
2292 */
2293 VM_BUG_ON(current_order == MAX_ORDER);
2294
2295do_steal:
2296 page = list_first_entry(&area->free_list[fallback_mt],
2297 struct page, lru);
2298
2299 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2300
2301 trace_mm_page_alloc_extfrag(page, order, current_order,
2302 start_migratetype, fallback_mt);
2303
2304 return true;
2305
b2a0ac88
MG
2306}
2307
56fd56b8 2308/*
1da177e4
LT
2309 * Do the hard work of removing an element from the buddy allocator.
2310 * Call me with the zone->lock already held.
2311 */
b2a0ac88 2312static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2313 int migratetype)
1da177e4 2314{
1da177e4
LT
2315 struct page *page;
2316
3bc48f96 2317retry:
56fd56b8 2318 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2319 if (unlikely(!page)) {
dc67647b
JK
2320 if (migratetype == MIGRATE_MOVABLE)
2321 page = __rmqueue_cma_fallback(zone, order);
2322
3bc48f96
VB
2323 if (!page && __rmqueue_fallback(zone, order, migratetype))
2324 goto retry;
728ec980
MG
2325 }
2326
0d3d062a 2327 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2328 return page;
1da177e4
LT
2329}
2330
5f63b720 2331/*
1da177e4
LT
2332 * Obtain a specified number of elements from the buddy allocator, all under
2333 * a single hold of the lock, for efficiency. Add them to the supplied list.
2334 * Returns the number of new pages which were placed at *list.
2335 */
5f63b720 2336static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2337 unsigned long count, struct list_head *list,
b745bc85 2338 int migratetype, bool cold)
1da177e4 2339{
a6de734b 2340 int i, alloced = 0;
5f63b720 2341
d34b0733 2342 spin_lock(&zone->lock);
1da177e4 2343 for (i = 0; i < count; ++i) {
6ac0206b 2344 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2345 if (unlikely(page == NULL))
1da177e4 2346 break;
81eabcbe 2347
479f854a
MG
2348 if (unlikely(check_pcp_refill(page)))
2349 continue;
2350
81eabcbe
MG
2351 /*
2352 * Split buddy pages returned by expand() are received here
2353 * in physical page order. The page is added to the callers and
2354 * list and the list head then moves forward. From the callers
2355 * perspective, the linked list is ordered by page number in
2356 * some conditions. This is useful for IO devices that can
2357 * merge IO requests if the physical pages are ordered
2358 * properly.
2359 */
b745bc85 2360 if (likely(!cold))
e084b2d9
MG
2361 list_add(&page->lru, list);
2362 else
2363 list_add_tail(&page->lru, list);
81eabcbe 2364 list = &page->lru;
a6de734b 2365 alloced++;
bb14c2c7 2366 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2367 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2368 -(1 << order));
1da177e4 2369 }
a6de734b
MG
2370
2371 /*
2372 * i pages were removed from the buddy list even if some leak due
2373 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2374 * on i. Do not confuse with 'alloced' which is the number of
2375 * pages added to the pcp list.
2376 */
f2260e6b 2377 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2378 spin_unlock(&zone->lock);
a6de734b 2379 return alloced;
1da177e4
LT
2380}
2381
4ae7c039 2382#ifdef CONFIG_NUMA
8fce4d8e 2383/*
4037d452
CL
2384 * Called from the vmstat counter updater to drain pagesets of this
2385 * currently executing processor on remote nodes after they have
2386 * expired.
2387 *
879336c3
CL
2388 * Note that this function must be called with the thread pinned to
2389 * a single processor.
8fce4d8e 2390 */
4037d452 2391void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2392{
4ae7c039 2393 unsigned long flags;
7be12fc9 2394 int to_drain, batch;
4ae7c039 2395
4037d452 2396 local_irq_save(flags);
4db0c3c2 2397 batch = READ_ONCE(pcp->batch);
7be12fc9 2398 to_drain = min(pcp->count, batch);
2a13515c
KM
2399 if (to_drain > 0) {
2400 free_pcppages_bulk(zone, to_drain, pcp);
2401 pcp->count -= to_drain;
2402 }
4037d452 2403 local_irq_restore(flags);
4ae7c039
CL
2404}
2405#endif
2406
9f8f2172 2407/*
93481ff0 2408 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2409 *
2410 * The processor must either be the current processor and the
2411 * thread pinned to the current processor or a processor that
2412 * is not online.
2413 */
93481ff0 2414static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2415{
c54ad30c 2416 unsigned long flags;
93481ff0
VB
2417 struct per_cpu_pageset *pset;
2418 struct per_cpu_pages *pcp;
1da177e4 2419
93481ff0
VB
2420 local_irq_save(flags);
2421 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2422
93481ff0
VB
2423 pcp = &pset->pcp;
2424 if (pcp->count) {
2425 free_pcppages_bulk(zone, pcp->count, pcp);
2426 pcp->count = 0;
2427 }
2428 local_irq_restore(flags);
2429}
3dfa5721 2430
93481ff0
VB
2431/*
2432 * Drain pcplists of all zones on the indicated processor.
2433 *
2434 * The processor must either be the current processor and the
2435 * thread pinned to the current processor or a processor that
2436 * is not online.
2437 */
2438static void drain_pages(unsigned int cpu)
2439{
2440 struct zone *zone;
2441
2442 for_each_populated_zone(zone) {
2443 drain_pages_zone(cpu, zone);
1da177e4
LT
2444 }
2445}
1da177e4 2446
9f8f2172
CL
2447/*
2448 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2449 *
2450 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2451 * the single zone's pages.
9f8f2172 2452 */
93481ff0 2453void drain_local_pages(struct zone *zone)
9f8f2172 2454{
93481ff0
VB
2455 int cpu = smp_processor_id();
2456
2457 if (zone)
2458 drain_pages_zone(cpu, zone);
2459 else
2460 drain_pages(cpu);
9f8f2172
CL
2461}
2462
0ccce3b9
MG
2463static void drain_local_pages_wq(struct work_struct *work)
2464{
a459eeb7
MH
2465 /*
2466 * drain_all_pages doesn't use proper cpu hotplug protection so
2467 * we can race with cpu offline when the WQ can move this from
2468 * a cpu pinned worker to an unbound one. We can operate on a different
2469 * cpu which is allright but we also have to make sure to not move to
2470 * a different one.
2471 */
2472 preempt_disable();
0ccce3b9 2473 drain_local_pages(NULL);
a459eeb7 2474 preempt_enable();
0ccce3b9
MG
2475}
2476
9f8f2172 2477/*
74046494
GBY
2478 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2479 *
93481ff0
VB
2480 * When zone parameter is non-NULL, spill just the single zone's pages.
2481 *
0ccce3b9 2482 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2483 */
93481ff0 2484void drain_all_pages(struct zone *zone)
9f8f2172 2485{
74046494 2486 int cpu;
74046494
GBY
2487
2488 /*
2489 * Allocate in the BSS so we wont require allocation in
2490 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2491 */
2492 static cpumask_t cpus_with_pcps;
2493
ce612879
MH
2494 /*
2495 * Make sure nobody triggers this path before mm_percpu_wq is fully
2496 * initialized.
2497 */
2498 if (WARN_ON_ONCE(!mm_percpu_wq))
2499 return;
2500
0ccce3b9
MG
2501 /* Workqueues cannot recurse */
2502 if (current->flags & PF_WQ_WORKER)
2503 return;
2504
bd233f53
MG
2505 /*
2506 * Do not drain if one is already in progress unless it's specific to
2507 * a zone. Such callers are primarily CMA and memory hotplug and need
2508 * the drain to be complete when the call returns.
2509 */
2510 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2511 if (!zone)
2512 return;
2513 mutex_lock(&pcpu_drain_mutex);
2514 }
0ccce3b9 2515
74046494
GBY
2516 /*
2517 * We don't care about racing with CPU hotplug event
2518 * as offline notification will cause the notified
2519 * cpu to drain that CPU pcps and on_each_cpu_mask
2520 * disables preemption as part of its processing
2521 */
2522 for_each_online_cpu(cpu) {
93481ff0
VB
2523 struct per_cpu_pageset *pcp;
2524 struct zone *z;
74046494 2525 bool has_pcps = false;
93481ff0
VB
2526
2527 if (zone) {
74046494 2528 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2529 if (pcp->pcp.count)
74046494 2530 has_pcps = true;
93481ff0
VB
2531 } else {
2532 for_each_populated_zone(z) {
2533 pcp = per_cpu_ptr(z->pageset, cpu);
2534 if (pcp->pcp.count) {
2535 has_pcps = true;
2536 break;
2537 }
74046494
GBY
2538 }
2539 }
93481ff0 2540
74046494
GBY
2541 if (has_pcps)
2542 cpumask_set_cpu(cpu, &cpus_with_pcps);
2543 else
2544 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2545 }
0ccce3b9 2546
bd233f53
MG
2547 for_each_cpu(cpu, &cpus_with_pcps) {
2548 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2549 INIT_WORK(work, drain_local_pages_wq);
ce612879 2550 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2551 }
bd233f53
MG
2552 for_each_cpu(cpu, &cpus_with_pcps)
2553 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2554
2555 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2556}
2557
296699de 2558#ifdef CONFIG_HIBERNATION
1da177e4 2559
556b969a
CY
2560/*
2561 * Touch the watchdog for every WD_PAGE_COUNT pages.
2562 */
2563#define WD_PAGE_COUNT (128*1024)
2564
1da177e4
LT
2565void mark_free_pages(struct zone *zone)
2566{
556b969a 2567 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2568 unsigned long flags;
7aeb09f9 2569 unsigned int order, t;
86760a2c 2570 struct page *page;
1da177e4 2571
8080fc03 2572 if (zone_is_empty(zone))
1da177e4
LT
2573 return;
2574
2575 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2576
108bcc96 2577 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2578 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2579 if (pfn_valid(pfn)) {
86760a2c 2580 page = pfn_to_page(pfn);
ba6b0979 2581
556b969a
CY
2582 if (!--page_count) {
2583 touch_nmi_watchdog();
2584 page_count = WD_PAGE_COUNT;
2585 }
2586
ba6b0979
JK
2587 if (page_zone(page) != zone)
2588 continue;
2589
7be98234
RW
2590 if (!swsusp_page_is_forbidden(page))
2591 swsusp_unset_page_free(page);
f623f0db 2592 }
1da177e4 2593
b2a0ac88 2594 for_each_migratetype_order(order, t) {
86760a2c
GT
2595 list_for_each_entry(page,
2596 &zone->free_area[order].free_list[t], lru) {
f623f0db 2597 unsigned long i;
1da177e4 2598
86760a2c 2599 pfn = page_to_pfn(page);
556b969a
CY
2600 for (i = 0; i < (1UL << order); i++) {
2601 if (!--page_count) {
2602 touch_nmi_watchdog();
2603 page_count = WD_PAGE_COUNT;
2604 }
7be98234 2605 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2606 }
f623f0db 2607 }
b2a0ac88 2608 }
1da177e4
LT
2609 spin_unlock_irqrestore(&zone->lock, flags);
2610}
e2c55dc8 2611#endif /* CONFIG_PM */
1da177e4 2612
1da177e4
LT
2613/*
2614 * Free a 0-order page
b745bc85 2615 * cold == true ? free a cold page : free a hot page
1da177e4 2616 */
b745bc85 2617void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2618{
2619 struct zone *zone = page_zone(page);
2620 struct per_cpu_pages *pcp;
d34b0733 2621 unsigned long flags;
dc4b0caf 2622 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2623 int migratetype;
1da177e4 2624
4db7548c 2625 if (!free_pcp_prepare(page))
689bcebf
HD
2626 return;
2627
dc4b0caf 2628 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2629 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2630 local_irq_save(flags);
2631 __count_vm_event(PGFREE);
da456f14 2632
5f8dcc21
MG
2633 /*
2634 * We only track unmovable, reclaimable and movable on pcp lists.
2635 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2636 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2637 * areas back if necessary. Otherwise, we may have to free
2638 * excessively into the page allocator
2639 */
2640 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2641 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2642 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2643 goto out;
2644 }
2645 migratetype = MIGRATE_MOVABLE;
2646 }
2647
99dcc3e5 2648 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2649 if (!cold)
5f8dcc21 2650 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2651 else
2652 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2653 pcp->count++;
48db57f8 2654 if (pcp->count >= pcp->high) {
4db0c3c2 2655 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2656 free_pcppages_bulk(zone, batch, pcp);
2657 pcp->count -= batch;
48db57f8 2658 }
5f8dcc21
MG
2659
2660out:
d34b0733 2661 local_irq_restore(flags);
1da177e4
LT
2662}
2663
cc59850e
KK
2664/*
2665 * Free a list of 0-order pages
2666 */
b745bc85 2667void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2668{
2669 struct page *page, *next;
2670
2671 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2672 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2673 free_hot_cold_page(page, cold);
2674 }
2675}
2676
8dfcc9ba
NP
2677/*
2678 * split_page takes a non-compound higher-order page, and splits it into
2679 * n (1<<order) sub-pages: page[0..n]
2680 * Each sub-page must be freed individually.
2681 *
2682 * Note: this is probably too low level an operation for use in drivers.
2683 * Please consult with lkml before using this in your driver.
2684 */
2685void split_page(struct page *page, unsigned int order)
2686{
2687 int i;
2688
309381fe
SL
2689 VM_BUG_ON_PAGE(PageCompound(page), page);
2690 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2691
a9627bc5 2692 for (i = 1; i < (1 << order); i++)
7835e98b 2693 set_page_refcounted(page + i);
a9627bc5 2694 split_page_owner(page, order);
8dfcc9ba 2695}
5853ff23 2696EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2697
3c605096 2698int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2699{
748446bb
MG
2700 unsigned long watermark;
2701 struct zone *zone;
2139cbe6 2702 int mt;
748446bb
MG
2703
2704 BUG_ON(!PageBuddy(page));
2705
2706 zone = page_zone(page);
2e30abd1 2707 mt = get_pageblock_migratetype(page);
748446bb 2708
194159fb 2709 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2710 /*
2711 * Obey watermarks as if the page was being allocated. We can
2712 * emulate a high-order watermark check with a raised order-0
2713 * watermark, because we already know our high-order page
2714 * exists.
2715 */
2716 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2717 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2718 return 0;
2719
8fb74b9f 2720 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2721 }
748446bb
MG
2722
2723 /* Remove page from free list */
2724 list_del(&page->lru);
2725 zone->free_area[order].nr_free--;
2726 rmv_page_order(page);
2139cbe6 2727
400bc7fd 2728 /*
2729 * Set the pageblock if the isolated page is at least half of a
2730 * pageblock
2731 */
748446bb
MG
2732 if (order >= pageblock_order - 1) {
2733 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2734 for (; page < endpage; page += pageblock_nr_pages) {
2735 int mt = get_pageblock_migratetype(page);
88ed365e 2736 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2737 && !is_migrate_highatomic(mt))
47118af0
MN
2738 set_pageblock_migratetype(page,
2739 MIGRATE_MOVABLE);
2740 }
748446bb
MG
2741 }
2742
f3a14ced 2743
8fb74b9f 2744 return 1UL << order;
1fb3f8ca
MG
2745}
2746
060e7417
MG
2747/*
2748 * Update NUMA hit/miss statistics
2749 *
2750 * Must be called with interrupts disabled.
060e7417 2751 */
41b6167e 2752static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2753{
2754#ifdef CONFIG_NUMA
3a321d2a 2755 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2756
2df26639 2757 if (z->node != numa_node_id())
060e7417 2758 local_stat = NUMA_OTHER;
060e7417 2759
2df26639 2760 if (z->node == preferred_zone->node)
3a321d2a 2761 __inc_numa_state(z, NUMA_HIT);
2df26639 2762 else {
3a321d2a
KW
2763 __inc_numa_state(z, NUMA_MISS);
2764 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2765 }
3a321d2a 2766 __inc_numa_state(z, local_stat);
060e7417
MG
2767#endif
2768}
2769
066b2393
MG
2770/* Remove page from the per-cpu list, caller must protect the list */
2771static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2772 bool cold, struct per_cpu_pages *pcp,
2773 struct list_head *list)
2774{
2775 struct page *page;
2776
2777 do {
2778 if (list_empty(list)) {
2779 pcp->count += rmqueue_bulk(zone, 0,
2780 pcp->batch, list,
2781 migratetype, cold);
2782 if (unlikely(list_empty(list)))
2783 return NULL;
2784 }
2785
2786 if (cold)
2787 page = list_last_entry(list, struct page, lru);
2788 else
2789 page = list_first_entry(list, struct page, lru);
2790
2791 list_del(&page->lru);
2792 pcp->count--;
2793 } while (check_new_pcp(page));
2794
2795 return page;
2796}
2797
2798/* Lock and remove page from the per-cpu list */
2799static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2800 struct zone *zone, unsigned int order,
2801 gfp_t gfp_flags, int migratetype)
2802{
2803 struct per_cpu_pages *pcp;
2804 struct list_head *list;
2805 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2806 struct page *page;
d34b0733 2807 unsigned long flags;
066b2393 2808
d34b0733 2809 local_irq_save(flags);
066b2393
MG
2810 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2811 list = &pcp->lists[migratetype];
2812 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2813 if (page) {
2814 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2815 zone_statistics(preferred_zone, zone);
2816 }
d34b0733 2817 local_irq_restore(flags);
066b2393
MG
2818 return page;
2819}
2820
1da177e4 2821/*
75379191 2822 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2823 */
0a15c3e9 2824static inline
066b2393 2825struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2826 struct zone *zone, unsigned int order,
c603844b
MG
2827 gfp_t gfp_flags, unsigned int alloc_flags,
2828 int migratetype)
1da177e4
LT
2829{
2830 unsigned long flags;
689bcebf 2831 struct page *page;
1da177e4 2832
d34b0733 2833 if (likely(order == 0)) {
066b2393
MG
2834 page = rmqueue_pcplist(preferred_zone, zone, order,
2835 gfp_flags, migratetype);
2836 goto out;
2837 }
83b9355b 2838
066b2393
MG
2839 /*
2840 * We most definitely don't want callers attempting to
2841 * allocate greater than order-1 page units with __GFP_NOFAIL.
2842 */
2843 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2844 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2845
066b2393
MG
2846 do {
2847 page = NULL;
2848 if (alloc_flags & ALLOC_HARDER) {
2849 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2850 if (page)
2851 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2852 }
a74609fa 2853 if (!page)
066b2393
MG
2854 page = __rmqueue(zone, order, migratetype);
2855 } while (page && check_new_pages(page, order));
2856 spin_unlock(&zone->lock);
2857 if (!page)
2858 goto failed;
2859 __mod_zone_freepage_state(zone, -(1 << order),
2860 get_pcppage_migratetype(page));
1da177e4 2861
16709d1d 2862 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2863 zone_statistics(preferred_zone, zone);
a74609fa 2864 local_irq_restore(flags);
1da177e4 2865
066b2393
MG
2866out:
2867 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2868 return page;
a74609fa
NP
2869
2870failed:
2871 local_irq_restore(flags);
a74609fa 2872 return NULL;
1da177e4
LT
2873}
2874
933e312e
AM
2875#ifdef CONFIG_FAIL_PAGE_ALLOC
2876
b2588c4b 2877static struct {
933e312e
AM
2878 struct fault_attr attr;
2879
621a5f7a 2880 bool ignore_gfp_highmem;
71baba4b 2881 bool ignore_gfp_reclaim;
54114994 2882 u32 min_order;
933e312e
AM
2883} fail_page_alloc = {
2884 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2885 .ignore_gfp_reclaim = true,
621a5f7a 2886 .ignore_gfp_highmem = true,
54114994 2887 .min_order = 1,
933e312e
AM
2888};
2889
2890static int __init setup_fail_page_alloc(char *str)
2891{
2892 return setup_fault_attr(&fail_page_alloc.attr, str);
2893}
2894__setup("fail_page_alloc=", setup_fail_page_alloc);
2895
deaf386e 2896static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2897{
54114994 2898 if (order < fail_page_alloc.min_order)
deaf386e 2899 return false;
933e312e 2900 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2901 return false;
933e312e 2902 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2903 return false;
71baba4b
MG
2904 if (fail_page_alloc.ignore_gfp_reclaim &&
2905 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2906 return false;
933e312e
AM
2907
2908 return should_fail(&fail_page_alloc.attr, 1 << order);
2909}
2910
2911#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2912
2913static int __init fail_page_alloc_debugfs(void)
2914{
f4ae40a6 2915 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2916 struct dentry *dir;
933e312e 2917
dd48c085
AM
2918 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2919 &fail_page_alloc.attr);
2920 if (IS_ERR(dir))
2921 return PTR_ERR(dir);
933e312e 2922
b2588c4b 2923 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2924 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2925 goto fail;
2926 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2927 &fail_page_alloc.ignore_gfp_highmem))
2928 goto fail;
2929 if (!debugfs_create_u32("min-order", mode, dir,
2930 &fail_page_alloc.min_order))
2931 goto fail;
2932
2933 return 0;
2934fail:
dd48c085 2935 debugfs_remove_recursive(dir);
933e312e 2936
b2588c4b 2937 return -ENOMEM;
933e312e
AM
2938}
2939
2940late_initcall(fail_page_alloc_debugfs);
2941
2942#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2943
2944#else /* CONFIG_FAIL_PAGE_ALLOC */
2945
deaf386e 2946static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2947{
deaf386e 2948 return false;
933e312e
AM
2949}
2950
2951#endif /* CONFIG_FAIL_PAGE_ALLOC */
2952
1da177e4 2953/*
97a16fc8
MG
2954 * Return true if free base pages are above 'mark'. For high-order checks it
2955 * will return true of the order-0 watermark is reached and there is at least
2956 * one free page of a suitable size. Checking now avoids taking the zone lock
2957 * to check in the allocation paths if no pages are free.
1da177e4 2958 */
86a294a8
MH
2959bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2960 int classzone_idx, unsigned int alloc_flags,
2961 long free_pages)
1da177e4 2962{
d23ad423 2963 long min = mark;
1da177e4 2964 int o;
cd04ae1e 2965 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 2966
0aaa29a5 2967 /* free_pages may go negative - that's OK */
df0a6daa 2968 free_pages -= (1 << order) - 1;
0aaa29a5 2969
7fb1d9fc 2970 if (alloc_flags & ALLOC_HIGH)
1da177e4 2971 min -= min / 2;
0aaa29a5
MG
2972
2973 /*
2974 * If the caller does not have rights to ALLOC_HARDER then subtract
2975 * the high-atomic reserves. This will over-estimate the size of the
2976 * atomic reserve but it avoids a search.
2977 */
cd04ae1e 2978 if (likely(!alloc_harder)) {
0aaa29a5 2979 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
2980 } else {
2981 /*
2982 * OOM victims can try even harder than normal ALLOC_HARDER
2983 * users on the grounds that it's definitely going to be in
2984 * the exit path shortly and free memory. Any allocation it
2985 * makes during the free path will be small and short-lived.
2986 */
2987 if (alloc_flags & ALLOC_OOM)
2988 min -= min / 2;
2989 else
2990 min -= min / 4;
2991 }
2992
e2b19197 2993
d95ea5d1
BZ
2994#ifdef CONFIG_CMA
2995 /* If allocation can't use CMA areas don't use free CMA pages */
2996 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2997 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2998#endif
026b0814 2999
97a16fc8
MG
3000 /*
3001 * Check watermarks for an order-0 allocation request. If these
3002 * are not met, then a high-order request also cannot go ahead
3003 * even if a suitable page happened to be free.
3004 */
3005 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3006 return false;
1da177e4 3007
97a16fc8
MG
3008 /* If this is an order-0 request then the watermark is fine */
3009 if (!order)
3010 return true;
3011
3012 /* For a high-order request, check at least one suitable page is free */
3013 for (o = order; o < MAX_ORDER; o++) {
3014 struct free_area *area = &z->free_area[o];
3015 int mt;
3016
3017 if (!area->nr_free)
3018 continue;
3019
3020 if (alloc_harder)
3021 return true;
1da177e4 3022
97a16fc8
MG
3023 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3024 if (!list_empty(&area->free_list[mt]))
3025 return true;
3026 }
3027
3028#ifdef CONFIG_CMA
3029 if ((alloc_flags & ALLOC_CMA) &&
3030 !list_empty(&area->free_list[MIGRATE_CMA])) {
3031 return true;
3032 }
3033#endif
1da177e4 3034 }
97a16fc8 3035 return false;
88f5acf8
MG
3036}
3037
7aeb09f9 3038bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3039 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3040{
3041 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3042 zone_page_state(z, NR_FREE_PAGES));
3043}
3044
48ee5f36
MG
3045static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3046 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3047{
3048 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3049 long cma_pages = 0;
3050
3051#ifdef CONFIG_CMA
3052 /* If allocation can't use CMA areas don't use free CMA pages */
3053 if (!(alloc_flags & ALLOC_CMA))
3054 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3055#endif
3056
3057 /*
3058 * Fast check for order-0 only. If this fails then the reserves
3059 * need to be calculated. There is a corner case where the check
3060 * passes but only the high-order atomic reserve are free. If
3061 * the caller is !atomic then it'll uselessly search the free
3062 * list. That corner case is then slower but it is harmless.
3063 */
3064 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3065 return true;
3066
3067 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3068 free_pages);
3069}
3070
7aeb09f9 3071bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3072 unsigned long mark, int classzone_idx)
88f5acf8
MG
3073{
3074 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3075
3076 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3077 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3078
e2b19197 3079 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3080 free_pages);
1da177e4
LT
3081}
3082
9276b1bc 3083#ifdef CONFIG_NUMA
957f822a
DR
3084static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3085{
e02dc017 3086 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3087 RECLAIM_DISTANCE;
957f822a 3088}
9276b1bc 3089#else /* CONFIG_NUMA */
957f822a
DR
3090static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3091{
3092 return true;
3093}
9276b1bc
PJ
3094#endif /* CONFIG_NUMA */
3095
7fb1d9fc 3096/*
0798e519 3097 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3098 * a page.
3099 */
3100static struct page *
a9263751
VB
3101get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3102 const struct alloc_context *ac)
753ee728 3103{
c33d6c06 3104 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3105 struct zone *zone;
3b8c0be4
MG
3106 struct pglist_data *last_pgdat_dirty_limit = NULL;
3107
7fb1d9fc 3108 /*
9276b1bc 3109 * Scan zonelist, looking for a zone with enough free.
344736f2 3110 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3111 */
c33d6c06 3112 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3113 ac->nodemask) {
be06af00 3114 struct page *page;
e085dbc5
JW
3115 unsigned long mark;
3116
664eedde
MG
3117 if (cpusets_enabled() &&
3118 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3119 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3120 continue;
a756cf59
JW
3121 /*
3122 * When allocating a page cache page for writing, we
281e3726
MG
3123 * want to get it from a node that is within its dirty
3124 * limit, such that no single node holds more than its
a756cf59 3125 * proportional share of globally allowed dirty pages.
281e3726 3126 * The dirty limits take into account the node's
a756cf59
JW
3127 * lowmem reserves and high watermark so that kswapd
3128 * should be able to balance it without having to
3129 * write pages from its LRU list.
3130 *
a756cf59 3131 * XXX: For now, allow allocations to potentially
281e3726 3132 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3133 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3134 * which is important when on a NUMA setup the allowed
281e3726 3135 * nodes are together not big enough to reach the
a756cf59 3136 * global limit. The proper fix for these situations
281e3726 3137 * will require awareness of nodes in the
a756cf59
JW
3138 * dirty-throttling and the flusher threads.
3139 */
3b8c0be4
MG
3140 if (ac->spread_dirty_pages) {
3141 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3142 continue;
3143
3144 if (!node_dirty_ok(zone->zone_pgdat)) {
3145 last_pgdat_dirty_limit = zone->zone_pgdat;
3146 continue;
3147 }
3148 }
7fb1d9fc 3149
e085dbc5 3150 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3151 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3152 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3153 int ret;
3154
5dab2911
MG
3155 /* Checked here to keep the fast path fast */
3156 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3157 if (alloc_flags & ALLOC_NO_WATERMARKS)
3158 goto try_this_zone;
3159
a5f5f91d 3160 if (node_reclaim_mode == 0 ||
c33d6c06 3161 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3162 continue;
3163
a5f5f91d 3164 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3165 switch (ret) {
a5f5f91d 3166 case NODE_RECLAIM_NOSCAN:
fa5e084e 3167 /* did not scan */
cd38b115 3168 continue;
a5f5f91d 3169 case NODE_RECLAIM_FULL:
fa5e084e 3170 /* scanned but unreclaimable */
cd38b115 3171 continue;
fa5e084e
MG
3172 default:
3173 /* did we reclaim enough */
fed2719e 3174 if (zone_watermark_ok(zone, order, mark,
93ea9964 3175 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3176 goto try_this_zone;
3177
fed2719e 3178 continue;
0798e519 3179 }
7fb1d9fc
RS
3180 }
3181
fa5e084e 3182try_this_zone:
066b2393 3183 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3184 gfp_mask, alloc_flags, ac->migratetype);
75379191 3185 if (page) {
479f854a 3186 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3187
3188 /*
3189 * If this is a high-order atomic allocation then check
3190 * if the pageblock should be reserved for the future
3191 */
3192 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3193 reserve_highatomic_pageblock(page, zone, order);
3194
75379191
VB
3195 return page;
3196 }
54a6eb5c 3197 }
9276b1bc 3198
4ffeaf35 3199 return NULL;
753ee728
MH
3200}
3201
29423e77
DR
3202/*
3203 * Large machines with many possible nodes should not always dump per-node
3204 * meminfo in irq context.
3205 */
3206static inline bool should_suppress_show_mem(void)
3207{
3208 bool ret = false;
3209
3210#if NODES_SHIFT > 8
3211 ret = in_interrupt();
3212#endif
3213 return ret;
3214}
3215
9af744d7 3216static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3217{
a238ab5b 3218 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3219 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3220
aa187507 3221 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3222 return;
3223
3224 /*
3225 * This documents exceptions given to allocations in certain
3226 * contexts that are allowed to allocate outside current's set
3227 * of allowed nodes.
3228 */
3229 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3230 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3231 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3232 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3233 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3234 filter &= ~SHOW_MEM_FILTER_NODES;
3235
9af744d7 3236 show_mem(filter, nodemask);
aa187507
MH
3237}
3238
a8e99259 3239void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3240{
3241 struct va_format vaf;
3242 va_list args;
3243 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3244 DEFAULT_RATELIMIT_BURST);
3245
0f7896f1 3246 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3247 return;
3248
7877cdcc 3249 pr_warn("%s: ", current->comm);
3ee9a4f0 3250
7877cdcc
MH
3251 va_start(args, fmt);
3252 vaf.fmt = fmt;
3253 vaf.va = &args;
3254 pr_cont("%pV", &vaf);
3255 va_end(args);
3ee9a4f0 3256
685dbf6f
DR
3257 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3258 if (nodemask)
3259 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3260 else
3261 pr_cont("(null)\n");
3262
a8e99259 3263 cpuset_print_current_mems_allowed();
3ee9a4f0 3264
a238ab5b 3265 dump_stack();
685dbf6f 3266 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3267}
3268
6c18ba7a
MH
3269static inline struct page *
3270__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3271 unsigned int alloc_flags,
3272 const struct alloc_context *ac)
3273{
3274 struct page *page;
3275
3276 page = get_page_from_freelist(gfp_mask, order,
3277 alloc_flags|ALLOC_CPUSET, ac);
3278 /*
3279 * fallback to ignore cpuset restriction if our nodes
3280 * are depleted
3281 */
3282 if (!page)
3283 page = get_page_from_freelist(gfp_mask, order,
3284 alloc_flags, ac);
3285
3286 return page;
3287}
3288
11e33f6a
MG
3289static inline struct page *
3290__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3291 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3292{
6e0fc46d
DR
3293 struct oom_control oc = {
3294 .zonelist = ac->zonelist,
3295 .nodemask = ac->nodemask,
2a966b77 3296 .memcg = NULL,
6e0fc46d
DR
3297 .gfp_mask = gfp_mask,
3298 .order = order,
6e0fc46d 3299 };
11e33f6a
MG
3300 struct page *page;
3301
9879de73
JW
3302 *did_some_progress = 0;
3303
9879de73 3304 /*
dc56401f
JW
3305 * Acquire the oom lock. If that fails, somebody else is
3306 * making progress for us.
9879de73 3307 */
dc56401f 3308 if (!mutex_trylock(&oom_lock)) {
9879de73 3309 *did_some_progress = 1;
11e33f6a 3310 schedule_timeout_uninterruptible(1);
1da177e4
LT
3311 return NULL;
3312 }
6b1de916 3313
11e33f6a
MG
3314 /*
3315 * Go through the zonelist yet one more time, keep very high watermark
3316 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3317 * we're still under heavy pressure. But make sure that this reclaim
3318 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3319 * allocation which will never fail due to oom_lock already held.
11e33f6a 3320 */
e746bf73
TH
3321 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3322 ~__GFP_DIRECT_RECLAIM, order,
3323 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3324 if (page)
11e33f6a
MG
3325 goto out;
3326
06ad276a
MH
3327 /* Coredumps can quickly deplete all memory reserves */
3328 if (current->flags & PF_DUMPCORE)
3329 goto out;
3330 /* The OOM killer will not help higher order allocs */
3331 if (order > PAGE_ALLOC_COSTLY_ORDER)
3332 goto out;
dcda9b04
MH
3333 /*
3334 * We have already exhausted all our reclaim opportunities without any
3335 * success so it is time to admit defeat. We will skip the OOM killer
3336 * because it is very likely that the caller has a more reasonable
3337 * fallback than shooting a random task.
3338 */
3339 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3340 goto out;
06ad276a
MH
3341 /* The OOM killer does not needlessly kill tasks for lowmem */
3342 if (ac->high_zoneidx < ZONE_NORMAL)
3343 goto out;
3344 if (pm_suspended_storage())
3345 goto out;
3346 /*
3347 * XXX: GFP_NOFS allocations should rather fail than rely on
3348 * other request to make a forward progress.
3349 * We are in an unfortunate situation where out_of_memory cannot
3350 * do much for this context but let's try it to at least get
3351 * access to memory reserved if the current task is killed (see
3352 * out_of_memory). Once filesystems are ready to handle allocation
3353 * failures more gracefully we should just bail out here.
3354 */
3355
3356 /* The OOM killer may not free memory on a specific node */
3357 if (gfp_mask & __GFP_THISNODE)
3358 goto out;
3da88fb3 3359
11e33f6a 3360 /* Exhausted what can be done so it's blamo time */
5020e285 3361 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3362 *did_some_progress = 1;
5020e285 3363
6c18ba7a
MH
3364 /*
3365 * Help non-failing allocations by giving them access to memory
3366 * reserves
3367 */
3368 if (gfp_mask & __GFP_NOFAIL)
3369 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3370 ALLOC_NO_WATERMARKS, ac);
5020e285 3371 }
11e33f6a 3372out:
dc56401f 3373 mutex_unlock(&oom_lock);
11e33f6a
MG
3374 return page;
3375}
3376
33c2d214
MH
3377/*
3378 * Maximum number of compaction retries wit a progress before OOM
3379 * killer is consider as the only way to move forward.
3380 */
3381#define MAX_COMPACT_RETRIES 16
3382
56de7263
MG
3383#ifdef CONFIG_COMPACTION
3384/* Try memory compaction for high-order allocations before reclaim */
3385static struct page *
3386__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3387 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3388 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3389{
98dd3b48 3390 struct page *page;
499118e9 3391 unsigned int noreclaim_flag;
53853e2d
VB
3392
3393 if (!order)
66199712 3394 return NULL;
66199712 3395
499118e9 3396 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3397 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3398 prio);
499118e9 3399 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3400
c5d01d0d 3401 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3402 return NULL;
53853e2d 3403
98dd3b48
VB
3404 /*
3405 * At least in one zone compaction wasn't deferred or skipped, so let's
3406 * count a compaction stall
3407 */
3408 count_vm_event(COMPACTSTALL);
8fb74b9f 3409
31a6c190 3410 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3411
98dd3b48
VB
3412 if (page) {
3413 struct zone *zone = page_zone(page);
53853e2d 3414
98dd3b48
VB
3415 zone->compact_blockskip_flush = false;
3416 compaction_defer_reset(zone, order, true);
3417 count_vm_event(COMPACTSUCCESS);
3418 return page;
3419 }
56de7263 3420
98dd3b48
VB
3421 /*
3422 * It's bad if compaction run occurs and fails. The most likely reason
3423 * is that pages exist, but not enough to satisfy watermarks.
3424 */
3425 count_vm_event(COMPACTFAIL);
66199712 3426
98dd3b48 3427 cond_resched();
56de7263
MG
3428
3429 return NULL;
3430}
33c2d214 3431
3250845d
VB
3432static inline bool
3433should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3434 enum compact_result compact_result,
3435 enum compact_priority *compact_priority,
d9436498 3436 int *compaction_retries)
3250845d
VB
3437{
3438 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3439 int min_priority;
65190cff
MH
3440 bool ret = false;
3441 int retries = *compaction_retries;
3442 enum compact_priority priority = *compact_priority;
3250845d
VB
3443
3444 if (!order)
3445 return false;
3446
d9436498
VB
3447 if (compaction_made_progress(compact_result))
3448 (*compaction_retries)++;
3449
3250845d
VB
3450 /*
3451 * compaction considers all the zone as desperately out of memory
3452 * so it doesn't really make much sense to retry except when the
3453 * failure could be caused by insufficient priority
3454 */
d9436498
VB
3455 if (compaction_failed(compact_result))
3456 goto check_priority;
3250845d
VB
3457
3458 /*
3459 * make sure the compaction wasn't deferred or didn't bail out early
3460 * due to locks contention before we declare that we should give up.
3461 * But do not retry if the given zonelist is not suitable for
3462 * compaction.
3463 */
65190cff
MH
3464 if (compaction_withdrawn(compact_result)) {
3465 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3466 goto out;
3467 }
3250845d
VB
3468
3469 /*
dcda9b04 3470 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3471 * costly ones because they are de facto nofail and invoke OOM
3472 * killer to move on while costly can fail and users are ready
3473 * to cope with that. 1/4 retries is rather arbitrary but we
3474 * would need much more detailed feedback from compaction to
3475 * make a better decision.
3476 */
3477 if (order > PAGE_ALLOC_COSTLY_ORDER)
3478 max_retries /= 4;
65190cff
MH
3479 if (*compaction_retries <= max_retries) {
3480 ret = true;
3481 goto out;
3482 }
3250845d 3483
d9436498
VB
3484 /*
3485 * Make sure there are attempts at the highest priority if we exhausted
3486 * all retries or failed at the lower priorities.
3487 */
3488check_priority:
c2033b00
VB
3489 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3490 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3491
c2033b00 3492 if (*compact_priority > min_priority) {
d9436498
VB
3493 (*compact_priority)--;
3494 *compaction_retries = 0;
65190cff 3495 ret = true;
d9436498 3496 }
65190cff
MH
3497out:
3498 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3499 return ret;
3250845d 3500}
56de7263
MG
3501#else
3502static inline struct page *
3503__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3504 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3505 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3506{
33c2d214 3507 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3508 return NULL;
3509}
33c2d214
MH
3510
3511static inline bool
86a294a8
MH
3512should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3513 enum compact_result compact_result,
a5508cd8 3514 enum compact_priority *compact_priority,
d9436498 3515 int *compaction_retries)
33c2d214 3516{
31e49bfd
MH
3517 struct zone *zone;
3518 struct zoneref *z;
3519
3520 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3521 return false;
3522
3523 /*
3524 * There are setups with compaction disabled which would prefer to loop
3525 * inside the allocator rather than hit the oom killer prematurely.
3526 * Let's give them a good hope and keep retrying while the order-0
3527 * watermarks are OK.
3528 */
3529 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3530 ac->nodemask) {
3531 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3532 ac_classzone_idx(ac), alloc_flags))
3533 return true;
3534 }
33c2d214
MH
3535 return false;
3536}
3250845d 3537#endif /* CONFIG_COMPACTION */
56de7263 3538
d92a8cfc
PZ
3539#ifdef CONFIG_LOCKDEP
3540struct lockdep_map __fs_reclaim_map =
3541 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3542
3543static bool __need_fs_reclaim(gfp_t gfp_mask)
3544{
3545 gfp_mask = current_gfp_context(gfp_mask);
3546
3547 /* no reclaim without waiting on it */
3548 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3549 return false;
3550
3551 /* this guy won't enter reclaim */
3552 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3553 return false;
3554
3555 /* We're only interested __GFP_FS allocations for now */
3556 if (!(gfp_mask & __GFP_FS))
3557 return false;
3558
3559 if (gfp_mask & __GFP_NOLOCKDEP)
3560 return false;
3561
3562 return true;
3563}
3564
3565void fs_reclaim_acquire(gfp_t gfp_mask)
3566{
3567 if (__need_fs_reclaim(gfp_mask))
3568 lock_map_acquire(&__fs_reclaim_map);
3569}
3570EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3571
3572void fs_reclaim_release(gfp_t gfp_mask)
3573{
3574 if (__need_fs_reclaim(gfp_mask))
3575 lock_map_release(&__fs_reclaim_map);
3576}
3577EXPORT_SYMBOL_GPL(fs_reclaim_release);
3578#endif
3579
bba90710
MS
3580/* Perform direct synchronous page reclaim */
3581static int
a9263751
VB
3582__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3583 const struct alloc_context *ac)
11e33f6a 3584{
11e33f6a 3585 struct reclaim_state reclaim_state;
bba90710 3586 int progress;
499118e9 3587 unsigned int noreclaim_flag;
11e33f6a
MG
3588
3589 cond_resched();
3590
3591 /* We now go into synchronous reclaim */
3592 cpuset_memory_pressure_bump();
499118e9 3593 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3594 fs_reclaim_acquire(gfp_mask);
11e33f6a 3595 reclaim_state.reclaimed_slab = 0;
c06b1fca 3596 current->reclaim_state = &reclaim_state;
11e33f6a 3597
a9263751
VB
3598 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3599 ac->nodemask);
11e33f6a 3600
c06b1fca 3601 current->reclaim_state = NULL;
d92a8cfc 3602 fs_reclaim_release(gfp_mask);
499118e9 3603 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3604
3605 cond_resched();
3606
bba90710
MS
3607 return progress;
3608}
3609
3610/* The really slow allocator path where we enter direct reclaim */
3611static inline struct page *
3612__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3613 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3614 unsigned long *did_some_progress)
bba90710
MS
3615{
3616 struct page *page = NULL;
3617 bool drained = false;
3618
a9263751 3619 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3620 if (unlikely(!(*did_some_progress)))
3621 return NULL;
11e33f6a 3622
9ee493ce 3623retry:
31a6c190 3624 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3625
3626 /*
3627 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3628 * pages are pinned on the per-cpu lists or in high alloc reserves.
3629 * Shrink them them and try again
9ee493ce
MG
3630 */
3631 if (!page && !drained) {
29fac03b 3632 unreserve_highatomic_pageblock(ac, false);
93481ff0 3633 drain_all_pages(NULL);
9ee493ce
MG
3634 drained = true;
3635 goto retry;
3636 }
3637
11e33f6a
MG
3638 return page;
3639}
3640
a9263751 3641static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3642{
3643 struct zoneref *z;
3644 struct zone *zone;
e1a55637 3645 pg_data_t *last_pgdat = NULL;
3a025760 3646
a9263751 3647 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3648 ac->high_zoneidx, ac->nodemask) {
3649 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3650 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3651 last_pgdat = zone->zone_pgdat;
3652 }
3a025760
JW
3653}
3654
c603844b 3655static inline unsigned int
341ce06f
PZ
3656gfp_to_alloc_flags(gfp_t gfp_mask)
3657{
c603844b 3658 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3659
a56f57ff 3660 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3661 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3662
341ce06f
PZ
3663 /*
3664 * The caller may dip into page reserves a bit more if the caller
3665 * cannot run direct reclaim, or if the caller has realtime scheduling
3666 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3667 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3668 */
e6223a3b 3669 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3670
d0164adc 3671 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3672 /*
b104a35d
DR
3673 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3674 * if it can't schedule.
5c3240d9 3675 */
b104a35d 3676 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3677 alloc_flags |= ALLOC_HARDER;
523b9458 3678 /*
b104a35d 3679 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3680 * comment for __cpuset_node_allowed().
523b9458 3681 */
341ce06f 3682 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3683 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3684 alloc_flags |= ALLOC_HARDER;
3685
d95ea5d1 3686#ifdef CONFIG_CMA
43e7a34d 3687 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3688 alloc_flags |= ALLOC_CMA;
3689#endif
341ce06f
PZ
3690 return alloc_flags;
3691}
3692
cd04ae1e 3693static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3694{
cd04ae1e
MH
3695 if (!tsk_is_oom_victim(tsk))
3696 return false;
3697
3698 /*
3699 * !MMU doesn't have oom reaper so give access to memory reserves
3700 * only to the thread with TIF_MEMDIE set
3701 */
3702 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3703 return false;
3704
cd04ae1e
MH
3705 return true;
3706}
3707
3708/*
3709 * Distinguish requests which really need access to full memory
3710 * reserves from oom victims which can live with a portion of it
3711 */
3712static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3713{
3714 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3715 return 0;
31a6c190 3716 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3717 return ALLOC_NO_WATERMARKS;
31a6c190 3718 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3719 return ALLOC_NO_WATERMARKS;
3720 if (!in_interrupt()) {
3721 if (current->flags & PF_MEMALLOC)
3722 return ALLOC_NO_WATERMARKS;
3723 else if (oom_reserves_allowed(current))
3724 return ALLOC_OOM;
3725 }
31a6c190 3726
cd04ae1e
MH
3727 return 0;
3728}
3729
3730bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3731{
3732 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3733}
3734
0a0337e0
MH
3735/*
3736 * Checks whether it makes sense to retry the reclaim to make a forward progress
3737 * for the given allocation request.
491d79ae
JW
3738 *
3739 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3740 * without success, or when we couldn't even meet the watermark if we
3741 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3742 *
3743 * Returns true if a retry is viable or false to enter the oom path.
3744 */
3745static inline bool
3746should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3747 struct alloc_context *ac, int alloc_flags,
423b452e 3748 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3749{
3750 struct zone *zone;
3751 struct zoneref *z;
3752
423b452e
VB
3753 /*
3754 * Costly allocations might have made a progress but this doesn't mean
3755 * their order will become available due to high fragmentation so
3756 * always increment the no progress counter for them
3757 */
3758 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3759 *no_progress_loops = 0;
3760 else
3761 (*no_progress_loops)++;
3762
0a0337e0
MH
3763 /*
3764 * Make sure we converge to OOM if we cannot make any progress
3765 * several times in the row.
3766 */
04c8716f
MK
3767 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3768 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3769 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3770 }
0a0337e0 3771
bca67592
MG
3772 /*
3773 * Keep reclaiming pages while there is a chance this will lead
3774 * somewhere. If none of the target zones can satisfy our allocation
3775 * request even if all reclaimable pages are considered then we are
3776 * screwed and have to go OOM.
0a0337e0
MH
3777 */
3778 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3779 ac->nodemask) {
3780 unsigned long available;
ede37713 3781 unsigned long reclaimable;
d379f01d
MH
3782 unsigned long min_wmark = min_wmark_pages(zone);
3783 bool wmark;
0a0337e0 3784
5a1c84b4 3785 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3786 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3787
3788 /*
491d79ae
JW
3789 * Would the allocation succeed if we reclaimed all
3790 * reclaimable pages?
0a0337e0 3791 */
d379f01d
MH
3792 wmark = __zone_watermark_ok(zone, order, min_wmark,
3793 ac_classzone_idx(ac), alloc_flags, available);
3794 trace_reclaim_retry_zone(z, order, reclaimable,
3795 available, min_wmark, *no_progress_loops, wmark);
3796 if (wmark) {
ede37713
MH
3797 /*
3798 * If we didn't make any progress and have a lot of
3799 * dirty + writeback pages then we should wait for
3800 * an IO to complete to slow down the reclaim and
3801 * prevent from pre mature OOM
3802 */
3803 if (!did_some_progress) {
11fb9989 3804 unsigned long write_pending;
ede37713 3805
5a1c84b4
MG
3806 write_pending = zone_page_state_snapshot(zone,
3807 NR_ZONE_WRITE_PENDING);
ede37713 3808
11fb9989 3809 if (2 * write_pending > reclaimable) {
ede37713
MH
3810 congestion_wait(BLK_RW_ASYNC, HZ/10);
3811 return true;
3812 }
3813 }
5a1c84b4 3814
ede37713
MH
3815 /*
3816 * Memory allocation/reclaim might be called from a WQ
3817 * context and the current implementation of the WQ
3818 * concurrency control doesn't recognize that
3819 * a particular WQ is congested if the worker thread is
3820 * looping without ever sleeping. Therefore we have to
3821 * do a short sleep here rather than calling
3822 * cond_resched().
3823 */
3824 if (current->flags & PF_WQ_WORKER)
3825 schedule_timeout_uninterruptible(1);
3826 else
3827 cond_resched();
3828
0a0337e0
MH
3829 return true;
3830 }
3831 }
3832
3833 return false;
3834}
3835
902b6281
VB
3836static inline bool
3837check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3838{
3839 /*
3840 * It's possible that cpuset's mems_allowed and the nodemask from
3841 * mempolicy don't intersect. This should be normally dealt with by
3842 * policy_nodemask(), but it's possible to race with cpuset update in
3843 * such a way the check therein was true, and then it became false
3844 * before we got our cpuset_mems_cookie here.
3845 * This assumes that for all allocations, ac->nodemask can come only
3846 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3847 * when it does not intersect with the cpuset restrictions) or the
3848 * caller can deal with a violated nodemask.
3849 */
3850 if (cpusets_enabled() && ac->nodemask &&
3851 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3852 ac->nodemask = NULL;
3853 return true;
3854 }
3855
3856 /*
3857 * When updating a task's mems_allowed or mempolicy nodemask, it is
3858 * possible to race with parallel threads in such a way that our
3859 * allocation can fail while the mask is being updated. If we are about
3860 * to fail, check if the cpuset changed during allocation and if so,
3861 * retry.
3862 */
3863 if (read_mems_allowed_retry(cpuset_mems_cookie))
3864 return true;
3865
3866 return false;
3867}
3868
11e33f6a
MG
3869static inline struct page *
3870__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3871 struct alloc_context *ac)
11e33f6a 3872{
d0164adc 3873 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3874 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3875 struct page *page = NULL;
c603844b 3876 unsigned int alloc_flags;
11e33f6a 3877 unsigned long did_some_progress;
5ce9bfef 3878 enum compact_priority compact_priority;
c5d01d0d 3879 enum compact_result compact_result;
5ce9bfef
VB
3880 int compaction_retries;
3881 int no_progress_loops;
63f53dea
MH
3882 unsigned long alloc_start = jiffies;
3883 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3884 unsigned int cpuset_mems_cookie;
cd04ae1e 3885 int reserve_flags;
1da177e4 3886
72807a74
MG
3887 /*
3888 * In the slowpath, we sanity check order to avoid ever trying to
3889 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3890 * be using allocators in order of preference for an area that is
3891 * too large.
3892 */
1fc28b70
MG
3893 if (order >= MAX_ORDER) {
3894 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3895 return NULL;
1fc28b70 3896 }
1da177e4 3897
d0164adc
MG
3898 /*
3899 * We also sanity check to catch abuse of atomic reserves being used by
3900 * callers that are not in atomic context.
3901 */
3902 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3903 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3904 gfp_mask &= ~__GFP_ATOMIC;
3905
5ce9bfef
VB
3906retry_cpuset:
3907 compaction_retries = 0;
3908 no_progress_loops = 0;
3909 compact_priority = DEF_COMPACT_PRIORITY;
3910 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3911
3912 /*
3913 * The fast path uses conservative alloc_flags to succeed only until
3914 * kswapd needs to be woken up, and to avoid the cost of setting up
3915 * alloc_flags precisely. So we do that now.
3916 */
3917 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3918
e47483bc
VB
3919 /*
3920 * We need to recalculate the starting point for the zonelist iterator
3921 * because we might have used different nodemask in the fast path, or
3922 * there was a cpuset modification and we are retrying - otherwise we
3923 * could end up iterating over non-eligible zones endlessly.
3924 */
3925 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3926 ac->high_zoneidx, ac->nodemask);
3927 if (!ac->preferred_zoneref->zone)
3928 goto nopage;
3929
23771235
VB
3930 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3931 wake_all_kswapds(order, ac);
3932
3933 /*
3934 * The adjusted alloc_flags might result in immediate success, so try
3935 * that first
3936 */
3937 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3938 if (page)
3939 goto got_pg;
3940
a8161d1e
VB
3941 /*
3942 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3943 * that we have enough base pages and don't need to reclaim. For non-
3944 * movable high-order allocations, do that as well, as compaction will
3945 * try prevent permanent fragmentation by migrating from blocks of the
3946 * same migratetype.
3947 * Don't try this for allocations that are allowed to ignore
3948 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3949 */
282722b0
VB
3950 if (can_direct_reclaim &&
3951 (costly_order ||
3952 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3953 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3954 page = __alloc_pages_direct_compact(gfp_mask, order,
3955 alloc_flags, ac,
a5508cd8 3956 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3957 &compact_result);
3958 if (page)
3959 goto got_pg;
3960
3eb2771b
VB
3961 /*
3962 * Checks for costly allocations with __GFP_NORETRY, which
3963 * includes THP page fault allocations
3964 */
282722b0 3965 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3966 /*
3967 * If compaction is deferred for high-order allocations,
3968 * it is because sync compaction recently failed. If
3969 * this is the case and the caller requested a THP
3970 * allocation, we do not want to heavily disrupt the
3971 * system, so we fail the allocation instead of entering
3972 * direct reclaim.
3973 */
3974 if (compact_result == COMPACT_DEFERRED)
3975 goto nopage;
3976
a8161d1e 3977 /*
3eb2771b
VB
3978 * Looks like reclaim/compaction is worth trying, but
3979 * sync compaction could be very expensive, so keep
25160354 3980 * using async compaction.
a8161d1e 3981 */
a5508cd8 3982 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3983 }
3984 }
23771235 3985
31a6c190 3986retry:
23771235 3987 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3988 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3989 wake_all_kswapds(order, ac);
3990
cd04ae1e
MH
3991 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3992 if (reserve_flags)
3993 alloc_flags = reserve_flags;
23771235 3994
e46e7b77
MG
3995 /*
3996 * Reset the zonelist iterators if memory policies can be ignored.
3997 * These allocations are high priority and system rather than user
3998 * orientated.
3999 */
cd04ae1e 4000 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4001 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4002 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4003 ac->high_zoneidx, ac->nodemask);
4004 }
4005
23771235 4006 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4007 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4008 if (page)
4009 goto got_pg;
1da177e4 4010
d0164adc 4011 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4012 if (!can_direct_reclaim)
1da177e4
LT
4013 goto nopage;
4014
9a67f648
MH
4015 /* Make sure we know about allocations which stall for too long */
4016 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 4017 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
4018 "page allocation stalls for %ums, order:%u",
4019 jiffies_to_msecs(jiffies-alloc_start), order);
4020 stall_timeout += 10 * HZ;
33d53103 4021 }
341ce06f 4022
9a67f648
MH
4023 /* Avoid recursion of direct reclaim */
4024 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4025 goto nopage;
4026
a8161d1e
VB
4027 /* Try direct reclaim and then allocating */
4028 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4029 &did_some_progress);
4030 if (page)
4031 goto got_pg;
4032
4033 /* Try direct compaction and then allocating */
a9263751 4034 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4035 compact_priority, &compact_result);
56de7263
MG
4036 if (page)
4037 goto got_pg;
75f30861 4038
9083905a
JW
4039 /* Do not loop if specifically requested */
4040 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4041 goto nopage;
9083905a 4042
0a0337e0
MH
4043 /*
4044 * Do not retry costly high order allocations unless they are
dcda9b04 4045 * __GFP_RETRY_MAYFAIL
0a0337e0 4046 */
dcda9b04 4047 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4048 goto nopage;
0a0337e0 4049
0a0337e0 4050 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4051 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4052 goto retry;
4053
33c2d214
MH
4054 /*
4055 * It doesn't make any sense to retry for the compaction if the order-0
4056 * reclaim is not able to make any progress because the current
4057 * implementation of the compaction depends on the sufficient amount
4058 * of free memory (see __compaction_suitable)
4059 */
4060 if (did_some_progress > 0 &&
86a294a8 4061 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4062 compact_result, &compact_priority,
d9436498 4063 &compaction_retries))
33c2d214
MH
4064 goto retry;
4065
902b6281
VB
4066
4067 /* Deal with possible cpuset update races before we start OOM killing */
4068 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4069 goto retry_cpuset;
4070
9083905a
JW
4071 /* Reclaim has failed us, start killing things */
4072 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4073 if (page)
4074 goto got_pg;
4075
9a67f648 4076 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4077 if (tsk_is_oom_victim(current) &&
4078 (alloc_flags == ALLOC_OOM ||
c288983d 4079 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4080 goto nopage;
4081
9083905a 4082 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4083 if (did_some_progress) {
4084 no_progress_loops = 0;
9083905a 4085 goto retry;
0a0337e0 4086 }
9083905a 4087
1da177e4 4088nopage:
902b6281
VB
4089 /* Deal with possible cpuset update races before we fail */
4090 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4091 goto retry_cpuset;
4092
9a67f648
MH
4093 /*
4094 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4095 * we always retry
4096 */
4097 if (gfp_mask & __GFP_NOFAIL) {
4098 /*
4099 * All existing users of the __GFP_NOFAIL are blockable, so warn
4100 * of any new users that actually require GFP_NOWAIT
4101 */
4102 if (WARN_ON_ONCE(!can_direct_reclaim))
4103 goto fail;
4104
4105 /*
4106 * PF_MEMALLOC request from this context is rather bizarre
4107 * because we cannot reclaim anything and only can loop waiting
4108 * for somebody to do a work for us
4109 */
4110 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4111
4112 /*
4113 * non failing costly orders are a hard requirement which we
4114 * are not prepared for much so let's warn about these users
4115 * so that we can identify them and convert them to something
4116 * else.
4117 */
4118 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4119
6c18ba7a
MH
4120 /*
4121 * Help non-failing allocations by giving them access to memory
4122 * reserves but do not use ALLOC_NO_WATERMARKS because this
4123 * could deplete whole memory reserves which would just make
4124 * the situation worse
4125 */
4126 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4127 if (page)
4128 goto got_pg;
4129
9a67f648
MH
4130 cond_resched();
4131 goto retry;
4132 }
4133fail:
a8e99259 4134 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4135 "page allocation failure: order:%u", order);
1da177e4 4136got_pg:
072bb0aa 4137 return page;
1da177e4 4138}
11e33f6a 4139
9cd75558 4140static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4141 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4142 struct alloc_context *ac, gfp_t *alloc_mask,
4143 unsigned int *alloc_flags)
11e33f6a 4144{
9cd75558 4145 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4146 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4147 ac->nodemask = nodemask;
4148 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4149
682a3385 4150 if (cpusets_enabled()) {
9cd75558 4151 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4152 if (!ac->nodemask)
4153 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4154 else
4155 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4156 }
4157
d92a8cfc
PZ
4158 fs_reclaim_acquire(gfp_mask);
4159 fs_reclaim_release(gfp_mask);
11e33f6a 4160
d0164adc 4161 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4162
4163 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4164 return false;
11e33f6a 4165
9cd75558
MG
4166 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4167 *alloc_flags |= ALLOC_CMA;
4168
4169 return true;
4170}
21bb9bd1 4171
9cd75558
MG
4172/* Determine whether to spread dirty pages and what the first usable zone */
4173static inline void finalise_ac(gfp_t gfp_mask,
4174 unsigned int order, struct alloc_context *ac)
4175{
c9ab0c4f 4176 /* Dirty zone balancing only done in the fast path */
9cd75558 4177 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4178
e46e7b77
MG
4179 /*
4180 * The preferred zone is used for statistics but crucially it is
4181 * also used as the starting point for the zonelist iterator. It
4182 * may get reset for allocations that ignore memory policies.
4183 */
9cd75558
MG
4184 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4185 ac->high_zoneidx, ac->nodemask);
4186}
4187
4188/*
4189 * This is the 'heart' of the zoned buddy allocator.
4190 */
4191struct page *
04ec6264
VB
4192__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4193 nodemask_t *nodemask)
9cd75558
MG
4194{
4195 struct page *page;
4196 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4197 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4198 struct alloc_context ac = { };
4199
4200 gfp_mask &= gfp_allowed_mask;
f19360f0 4201 alloc_mask = gfp_mask;
04ec6264 4202 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4203 return NULL;
4204
4205 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4206
5117f45d 4207 /* First allocation attempt */
a9263751 4208 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4209 if (likely(page))
4210 goto out;
11e33f6a 4211
4fcb0971 4212 /*
7dea19f9
MH
4213 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4214 * resp. GFP_NOIO which has to be inherited for all allocation requests
4215 * from a particular context which has been marked by
4216 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4217 */
7dea19f9 4218 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4219 ac.spread_dirty_pages = false;
23f086f9 4220
4741526b
MG
4221 /*
4222 * Restore the original nodemask if it was potentially replaced with
4223 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4224 */
e47483bc 4225 if (unlikely(ac.nodemask != nodemask))
4741526b 4226 ac.nodemask = nodemask;
16096c25 4227
4fcb0971 4228 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4229
4fcb0971 4230out:
c4159a75
VD
4231 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4232 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4233 __free_pages(page, order);
4234 page = NULL;
4949148a
VD
4235 }
4236
4fcb0971
MG
4237 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4238
11e33f6a 4239 return page;
1da177e4 4240}
d239171e 4241EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4242
4243/*
4244 * Common helper functions.
4245 */
920c7a5d 4246unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4247{
945a1113
AM
4248 struct page *page;
4249
4250 /*
4251 * __get_free_pages() returns a 32-bit address, which cannot represent
4252 * a highmem page
4253 */
4254 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4255
1da177e4
LT
4256 page = alloc_pages(gfp_mask, order);
4257 if (!page)
4258 return 0;
4259 return (unsigned long) page_address(page);
4260}
1da177e4
LT
4261EXPORT_SYMBOL(__get_free_pages);
4262
920c7a5d 4263unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4264{
945a1113 4265 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4266}
1da177e4
LT
4267EXPORT_SYMBOL(get_zeroed_page);
4268
920c7a5d 4269void __free_pages(struct page *page, unsigned int order)
1da177e4 4270{
b5810039 4271 if (put_page_testzero(page)) {
1da177e4 4272 if (order == 0)
b745bc85 4273 free_hot_cold_page(page, false);
1da177e4
LT
4274 else
4275 __free_pages_ok(page, order);
4276 }
4277}
4278
4279EXPORT_SYMBOL(__free_pages);
4280
920c7a5d 4281void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4282{
4283 if (addr != 0) {
725d704e 4284 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4285 __free_pages(virt_to_page((void *)addr), order);
4286 }
4287}
4288
4289EXPORT_SYMBOL(free_pages);
4290
b63ae8ca
AD
4291/*
4292 * Page Fragment:
4293 * An arbitrary-length arbitrary-offset area of memory which resides
4294 * within a 0 or higher order page. Multiple fragments within that page
4295 * are individually refcounted, in the page's reference counter.
4296 *
4297 * The page_frag functions below provide a simple allocation framework for
4298 * page fragments. This is used by the network stack and network device
4299 * drivers to provide a backing region of memory for use as either an
4300 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4301 */
2976db80
AD
4302static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4303 gfp_t gfp_mask)
b63ae8ca
AD
4304{
4305 struct page *page = NULL;
4306 gfp_t gfp = gfp_mask;
4307
4308#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4309 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4310 __GFP_NOMEMALLOC;
4311 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4312 PAGE_FRAG_CACHE_MAX_ORDER);
4313 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4314#endif
4315 if (unlikely(!page))
4316 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4317
4318 nc->va = page ? page_address(page) : NULL;
4319
4320 return page;
4321}
4322
2976db80 4323void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4324{
4325 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4326
4327 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4328 unsigned int order = compound_order(page);
4329
44fdffd7
AD
4330 if (order == 0)
4331 free_hot_cold_page(page, false);
4332 else
4333 __free_pages_ok(page, order);
4334 }
4335}
2976db80 4336EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4337
8c2dd3e4
AD
4338void *page_frag_alloc(struct page_frag_cache *nc,
4339 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4340{
4341 unsigned int size = PAGE_SIZE;
4342 struct page *page;
4343 int offset;
4344
4345 if (unlikely(!nc->va)) {
4346refill:
2976db80 4347 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4348 if (!page)
4349 return NULL;
4350
4351#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4352 /* if size can vary use size else just use PAGE_SIZE */
4353 size = nc->size;
4354#endif
4355 /* Even if we own the page, we do not use atomic_set().
4356 * This would break get_page_unless_zero() users.
4357 */
fe896d18 4358 page_ref_add(page, size - 1);
b63ae8ca
AD
4359
4360 /* reset page count bias and offset to start of new frag */
2f064f34 4361 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4362 nc->pagecnt_bias = size;
4363 nc->offset = size;
4364 }
4365
4366 offset = nc->offset - fragsz;
4367 if (unlikely(offset < 0)) {
4368 page = virt_to_page(nc->va);
4369
fe896d18 4370 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4371 goto refill;
4372
4373#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4374 /* if size can vary use size else just use PAGE_SIZE */
4375 size = nc->size;
4376#endif
4377 /* OK, page count is 0, we can safely set it */
fe896d18 4378 set_page_count(page, size);
b63ae8ca
AD
4379
4380 /* reset page count bias and offset to start of new frag */
4381 nc->pagecnt_bias = size;
4382 offset = size - fragsz;
4383 }
4384
4385 nc->pagecnt_bias--;
4386 nc->offset = offset;
4387
4388 return nc->va + offset;
4389}
8c2dd3e4 4390EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4391
4392/*
4393 * Frees a page fragment allocated out of either a compound or order 0 page.
4394 */
8c2dd3e4 4395void page_frag_free(void *addr)
b63ae8ca
AD
4396{
4397 struct page *page = virt_to_head_page(addr);
4398
4399 if (unlikely(put_page_testzero(page)))
4400 __free_pages_ok(page, compound_order(page));
4401}
8c2dd3e4 4402EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4403
d00181b9
KS
4404static void *make_alloc_exact(unsigned long addr, unsigned int order,
4405 size_t size)
ee85c2e1
AK
4406{
4407 if (addr) {
4408 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4409 unsigned long used = addr + PAGE_ALIGN(size);
4410
4411 split_page(virt_to_page((void *)addr), order);
4412 while (used < alloc_end) {
4413 free_page(used);
4414 used += PAGE_SIZE;
4415 }
4416 }
4417 return (void *)addr;
4418}
4419
2be0ffe2
TT
4420/**
4421 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4422 * @size: the number of bytes to allocate
4423 * @gfp_mask: GFP flags for the allocation
4424 *
4425 * This function is similar to alloc_pages(), except that it allocates the
4426 * minimum number of pages to satisfy the request. alloc_pages() can only
4427 * allocate memory in power-of-two pages.
4428 *
4429 * This function is also limited by MAX_ORDER.
4430 *
4431 * Memory allocated by this function must be released by free_pages_exact().
4432 */
4433void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4434{
4435 unsigned int order = get_order(size);
4436 unsigned long addr;
4437
4438 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4439 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4440}
4441EXPORT_SYMBOL(alloc_pages_exact);
4442
ee85c2e1
AK
4443/**
4444 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4445 * pages on a node.
b5e6ab58 4446 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4447 * @size: the number of bytes to allocate
4448 * @gfp_mask: GFP flags for the allocation
4449 *
4450 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4451 * back.
ee85c2e1 4452 */
e1931811 4453void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4454{
d00181b9 4455 unsigned int order = get_order(size);
ee85c2e1
AK
4456 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4457 if (!p)
4458 return NULL;
4459 return make_alloc_exact((unsigned long)page_address(p), order, size);
4460}
ee85c2e1 4461
2be0ffe2
TT
4462/**
4463 * free_pages_exact - release memory allocated via alloc_pages_exact()
4464 * @virt: the value returned by alloc_pages_exact.
4465 * @size: size of allocation, same value as passed to alloc_pages_exact().
4466 *
4467 * Release the memory allocated by a previous call to alloc_pages_exact.
4468 */
4469void free_pages_exact(void *virt, size_t size)
4470{
4471 unsigned long addr = (unsigned long)virt;
4472 unsigned long end = addr + PAGE_ALIGN(size);
4473
4474 while (addr < end) {
4475 free_page(addr);
4476 addr += PAGE_SIZE;
4477 }
4478}
4479EXPORT_SYMBOL(free_pages_exact);
4480
e0fb5815
ZY
4481/**
4482 * nr_free_zone_pages - count number of pages beyond high watermark
4483 * @offset: The zone index of the highest zone
4484 *
4485 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4486 * high watermark within all zones at or below a given zone index. For each
4487 * zone, the number of pages is calculated as:
0e056eb5
MCC
4488 *
4489 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4490 */
ebec3862 4491static unsigned long nr_free_zone_pages(int offset)
1da177e4 4492{
dd1a239f 4493 struct zoneref *z;
54a6eb5c
MG
4494 struct zone *zone;
4495
e310fd43 4496 /* Just pick one node, since fallback list is circular */
ebec3862 4497 unsigned long sum = 0;
1da177e4 4498
0e88460d 4499 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4500
54a6eb5c 4501 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4502 unsigned long size = zone->managed_pages;
41858966 4503 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4504 if (size > high)
4505 sum += size - high;
1da177e4
LT
4506 }
4507
4508 return sum;
4509}
4510
e0fb5815
ZY
4511/**
4512 * nr_free_buffer_pages - count number of pages beyond high watermark
4513 *
4514 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4515 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4516 */
ebec3862 4517unsigned long nr_free_buffer_pages(void)
1da177e4 4518{
af4ca457 4519 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4520}
c2f1a551 4521EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4522
e0fb5815
ZY
4523/**
4524 * nr_free_pagecache_pages - count number of pages beyond high watermark
4525 *
4526 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4527 * high watermark within all zones.
1da177e4 4528 */
ebec3862 4529unsigned long nr_free_pagecache_pages(void)
1da177e4 4530{
2a1e274a 4531 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4532}
08e0f6a9
CL
4533
4534static inline void show_node(struct zone *zone)
1da177e4 4535{
e5adfffc 4536 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4537 printk("Node %d ", zone_to_nid(zone));
1da177e4 4538}
1da177e4 4539
d02bd27b
IR
4540long si_mem_available(void)
4541{
4542 long available;
4543 unsigned long pagecache;
4544 unsigned long wmark_low = 0;
4545 unsigned long pages[NR_LRU_LISTS];
4546 struct zone *zone;
4547 int lru;
4548
4549 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4550 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4551
4552 for_each_zone(zone)
4553 wmark_low += zone->watermark[WMARK_LOW];
4554
4555 /*
4556 * Estimate the amount of memory available for userspace allocations,
4557 * without causing swapping.
4558 */
c41f012a 4559 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4560
4561 /*
4562 * Not all the page cache can be freed, otherwise the system will
4563 * start swapping. Assume at least half of the page cache, or the
4564 * low watermark worth of cache, needs to stay.
4565 */
4566 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4567 pagecache -= min(pagecache / 2, wmark_low);
4568 available += pagecache;
4569
4570 /*
4571 * Part of the reclaimable slab consists of items that are in use,
4572 * and cannot be freed. Cap this estimate at the low watermark.
4573 */
d507e2eb
JW
4574 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4575 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4576 wmark_low);
d02bd27b
IR
4577
4578 if (available < 0)
4579 available = 0;
4580 return available;
4581}
4582EXPORT_SYMBOL_GPL(si_mem_available);
4583
1da177e4
LT
4584void si_meminfo(struct sysinfo *val)
4585{
4586 val->totalram = totalram_pages;
11fb9989 4587 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4588 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4589 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4590 val->totalhigh = totalhigh_pages;
4591 val->freehigh = nr_free_highpages();
1da177e4
LT
4592 val->mem_unit = PAGE_SIZE;
4593}
4594
4595EXPORT_SYMBOL(si_meminfo);
4596
4597#ifdef CONFIG_NUMA
4598void si_meminfo_node(struct sysinfo *val, int nid)
4599{
cdd91a77
JL
4600 int zone_type; /* needs to be signed */
4601 unsigned long managed_pages = 0;
fc2bd799
JK
4602 unsigned long managed_highpages = 0;
4603 unsigned long free_highpages = 0;
1da177e4
LT
4604 pg_data_t *pgdat = NODE_DATA(nid);
4605
cdd91a77
JL
4606 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4607 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4608 val->totalram = managed_pages;
11fb9989 4609 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4610 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4611#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4612 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4613 struct zone *zone = &pgdat->node_zones[zone_type];
4614
4615 if (is_highmem(zone)) {
4616 managed_highpages += zone->managed_pages;
4617 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4618 }
4619 }
4620 val->totalhigh = managed_highpages;
4621 val->freehigh = free_highpages;
98d2b0eb 4622#else
fc2bd799
JK
4623 val->totalhigh = managed_highpages;
4624 val->freehigh = free_highpages;
98d2b0eb 4625#endif
1da177e4
LT
4626 val->mem_unit = PAGE_SIZE;
4627}
4628#endif
4629
ddd588b5 4630/*
7bf02ea2
DR
4631 * Determine whether the node should be displayed or not, depending on whether
4632 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4633 */
9af744d7 4634static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4635{
ddd588b5 4636 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4637 return false;
ddd588b5 4638
9af744d7
MH
4639 /*
4640 * no node mask - aka implicit memory numa policy. Do not bother with
4641 * the synchronization - read_mems_allowed_begin - because we do not
4642 * have to be precise here.
4643 */
4644 if (!nodemask)
4645 nodemask = &cpuset_current_mems_allowed;
4646
4647 return !node_isset(nid, *nodemask);
ddd588b5
DR
4648}
4649
1da177e4
LT
4650#define K(x) ((x) << (PAGE_SHIFT-10))
4651
377e4f16
RV
4652static void show_migration_types(unsigned char type)
4653{
4654 static const char types[MIGRATE_TYPES] = {
4655 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4656 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4657 [MIGRATE_RECLAIMABLE] = 'E',
4658 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4659#ifdef CONFIG_CMA
4660 [MIGRATE_CMA] = 'C',
4661#endif
194159fb 4662#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4663 [MIGRATE_ISOLATE] = 'I',
194159fb 4664#endif
377e4f16
RV
4665 };
4666 char tmp[MIGRATE_TYPES + 1];
4667 char *p = tmp;
4668 int i;
4669
4670 for (i = 0; i < MIGRATE_TYPES; i++) {
4671 if (type & (1 << i))
4672 *p++ = types[i];
4673 }
4674
4675 *p = '\0';
1f84a18f 4676 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4677}
4678
1da177e4
LT
4679/*
4680 * Show free area list (used inside shift_scroll-lock stuff)
4681 * We also calculate the percentage fragmentation. We do this by counting the
4682 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4683 *
4684 * Bits in @filter:
4685 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4686 * cpuset.
1da177e4 4687 */
9af744d7 4688void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4689{
d1bfcdb8 4690 unsigned long free_pcp = 0;
c7241913 4691 int cpu;
1da177e4 4692 struct zone *zone;
599d0c95 4693 pg_data_t *pgdat;
1da177e4 4694
ee99c71c 4695 for_each_populated_zone(zone) {
9af744d7 4696 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4697 continue;
d1bfcdb8 4698
761b0677
KK
4699 for_each_online_cpu(cpu)
4700 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4701 }
4702
a731286d
KM
4703 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4704 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4705 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4706 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4707 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4708 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4709 global_node_page_state(NR_ACTIVE_ANON),
4710 global_node_page_state(NR_INACTIVE_ANON),
4711 global_node_page_state(NR_ISOLATED_ANON),
4712 global_node_page_state(NR_ACTIVE_FILE),
4713 global_node_page_state(NR_INACTIVE_FILE),
4714 global_node_page_state(NR_ISOLATED_FILE),
4715 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4716 global_node_page_state(NR_FILE_DIRTY),
4717 global_node_page_state(NR_WRITEBACK),
4718 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4719 global_node_page_state(NR_SLAB_RECLAIMABLE),
4720 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4721 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4722 global_node_page_state(NR_SHMEM),
c41f012a
MH
4723 global_zone_page_state(NR_PAGETABLE),
4724 global_zone_page_state(NR_BOUNCE),
4725 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4726 free_pcp,
c41f012a 4727 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4728
599d0c95 4729 for_each_online_pgdat(pgdat) {
9af744d7 4730 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4731 continue;
4732
599d0c95
MG
4733 printk("Node %d"
4734 " active_anon:%lukB"
4735 " inactive_anon:%lukB"
4736 " active_file:%lukB"
4737 " inactive_file:%lukB"
4738 " unevictable:%lukB"
4739 " isolated(anon):%lukB"
4740 " isolated(file):%lukB"
50658e2e 4741 " mapped:%lukB"
11fb9989
MG
4742 " dirty:%lukB"
4743 " writeback:%lukB"
4744 " shmem:%lukB"
4745#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4746 " shmem_thp: %lukB"
4747 " shmem_pmdmapped: %lukB"
4748 " anon_thp: %lukB"
4749#endif
4750 " writeback_tmp:%lukB"
4751 " unstable:%lukB"
599d0c95
MG
4752 " all_unreclaimable? %s"
4753 "\n",
4754 pgdat->node_id,
4755 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4756 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4757 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4758 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4759 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4760 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4761 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4762 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4763 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4764 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4765 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4766#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4767 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4768 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4769 * HPAGE_PMD_NR),
4770 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4771#endif
11fb9989
MG
4772 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4773 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4774 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4775 "yes" : "no");
599d0c95
MG
4776 }
4777
ee99c71c 4778 for_each_populated_zone(zone) {
1da177e4
LT
4779 int i;
4780
9af744d7 4781 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4782 continue;
d1bfcdb8
KK
4783
4784 free_pcp = 0;
4785 for_each_online_cpu(cpu)
4786 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4787
1da177e4 4788 show_node(zone);
1f84a18f
JP
4789 printk(KERN_CONT
4790 "%s"
1da177e4
LT
4791 " free:%lukB"
4792 " min:%lukB"
4793 " low:%lukB"
4794 " high:%lukB"
71c799f4
MK
4795 " active_anon:%lukB"
4796 " inactive_anon:%lukB"
4797 " active_file:%lukB"
4798 " inactive_file:%lukB"
4799 " unevictable:%lukB"
5a1c84b4 4800 " writepending:%lukB"
1da177e4 4801 " present:%lukB"
9feedc9d 4802 " managed:%lukB"
4a0aa73f 4803 " mlocked:%lukB"
c6a7f572 4804 " kernel_stack:%lukB"
4a0aa73f 4805 " pagetables:%lukB"
4a0aa73f 4806 " bounce:%lukB"
d1bfcdb8
KK
4807 " free_pcp:%lukB"
4808 " local_pcp:%ukB"
d1ce749a 4809 " free_cma:%lukB"
1da177e4
LT
4810 "\n",
4811 zone->name,
88f5acf8 4812 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4813 K(min_wmark_pages(zone)),
4814 K(low_wmark_pages(zone)),
4815 K(high_wmark_pages(zone)),
71c799f4
MK
4816 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4817 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4818 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4819 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4820 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4821 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4822 K(zone->present_pages),
9feedc9d 4823 K(zone->managed_pages),
4a0aa73f 4824 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4825 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4826 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4827 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4828 K(free_pcp),
4829 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4830 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4831 printk("lowmem_reserve[]:");
4832 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4833 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4834 printk(KERN_CONT "\n");
1da177e4
LT
4835 }
4836
ee99c71c 4837 for_each_populated_zone(zone) {
d00181b9
KS
4838 unsigned int order;
4839 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4840 unsigned char types[MAX_ORDER];
1da177e4 4841
9af744d7 4842 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4843 continue;
1da177e4 4844 show_node(zone);
1f84a18f 4845 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4846
4847 spin_lock_irqsave(&zone->lock, flags);
4848 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4849 struct free_area *area = &zone->free_area[order];
4850 int type;
4851
4852 nr[order] = area->nr_free;
8f9de51a 4853 total += nr[order] << order;
377e4f16
RV
4854
4855 types[order] = 0;
4856 for (type = 0; type < MIGRATE_TYPES; type++) {
4857 if (!list_empty(&area->free_list[type]))
4858 types[order] |= 1 << type;
4859 }
1da177e4
LT
4860 }
4861 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4862 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4863 printk(KERN_CONT "%lu*%lukB ",
4864 nr[order], K(1UL) << order);
377e4f16
RV
4865 if (nr[order])
4866 show_migration_types(types[order]);
4867 }
1f84a18f 4868 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4869 }
4870
949f7ec5
DR
4871 hugetlb_show_meminfo();
4872
11fb9989 4873 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4874
1da177e4
LT
4875 show_swap_cache_info();
4876}
4877
19770b32
MG
4878static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4879{
4880 zoneref->zone = zone;
4881 zoneref->zone_idx = zone_idx(zone);
4882}
4883
1da177e4
LT
4884/*
4885 * Builds allocation fallback zone lists.
1a93205b
CL
4886 *
4887 * Add all populated zones of a node to the zonelist.
1da177e4 4888 */
9d3be21b 4889static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4890{
1a93205b 4891 struct zone *zone;
bc732f1d 4892 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4893 int nr_zones = 0;
02a68a5e
CL
4894
4895 do {
2f6726e5 4896 zone_type--;
070f8032 4897 zone = pgdat->node_zones + zone_type;
6aa303de 4898 if (managed_zone(zone)) {
9d3be21b 4899 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4900 check_highest_zone(zone_type);
1da177e4 4901 }
2f6726e5 4902 } while (zone_type);
bc732f1d 4903
070f8032 4904 return nr_zones;
1da177e4
LT
4905}
4906
4907#ifdef CONFIG_NUMA
f0c0b2b8
KH
4908
4909static int __parse_numa_zonelist_order(char *s)
4910{
c9bff3ee
MH
4911 /*
4912 * We used to support different zonlists modes but they turned
4913 * out to be just not useful. Let's keep the warning in place
4914 * if somebody still use the cmd line parameter so that we do
4915 * not fail it silently
4916 */
4917 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4918 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4919 return -EINVAL;
4920 }
4921 return 0;
4922}
4923
4924static __init int setup_numa_zonelist_order(char *s)
4925{
ecb256f8
VL
4926 if (!s)
4927 return 0;
4928
c9bff3ee 4929 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4930}
4931early_param("numa_zonelist_order", setup_numa_zonelist_order);
4932
c9bff3ee
MH
4933char numa_zonelist_order[] = "Node";
4934
f0c0b2b8
KH
4935/*
4936 * sysctl handler for numa_zonelist_order
4937 */
cccad5b9 4938int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4939 void __user *buffer, size_t *length,
f0c0b2b8
KH
4940 loff_t *ppos)
4941{
c9bff3ee 4942 char *str;
f0c0b2b8
KH
4943 int ret;
4944
c9bff3ee
MH
4945 if (!write)
4946 return proc_dostring(table, write, buffer, length, ppos);
4947 str = memdup_user_nul(buffer, 16);
4948 if (IS_ERR(str))
4949 return PTR_ERR(str);
dacbde09 4950
c9bff3ee
MH
4951 ret = __parse_numa_zonelist_order(str);
4952 kfree(str);
443c6f14 4953 return ret;
f0c0b2b8
KH
4954}
4955
4956
62bc62a8 4957#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4958static int node_load[MAX_NUMNODES];
4959
1da177e4 4960/**
4dc3b16b 4961 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4962 * @node: node whose fallback list we're appending
4963 * @used_node_mask: nodemask_t of already used nodes
4964 *
4965 * We use a number of factors to determine which is the next node that should
4966 * appear on a given node's fallback list. The node should not have appeared
4967 * already in @node's fallback list, and it should be the next closest node
4968 * according to the distance array (which contains arbitrary distance values
4969 * from each node to each node in the system), and should also prefer nodes
4970 * with no CPUs, since presumably they'll have very little allocation pressure
4971 * on them otherwise.
4972 * It returns -1 if no node is found.
4973 */
f0c0b2b8 4974static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4975{
4cf808eb 4976 int n, val;
1da177e4 4977 int min_val = INT_MAX;
00ef2d2f 4978 int best_node = NUMA_NO_NODE;
a70f7302 4979 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4980
4cf808eb
LT
4981 /* Use the local node if we haven't already */
4982 if (!node_isset(node, *used_node_mask)) {
4983 node_set(node, *used_node_mask);
4984 return node;
4985 }
1da177e4 4986
4b0ef1fe 4987 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4988
4989 /* Don't want a node to appear more than once */
4990 if (node_isset(n, *used_node_mask))
4991 continue;
4992
1da177e4
LT
4993 /* Use the distance array to find the distance */
4994 val = node_distance(node, n);
4995
4cf808eb
LT
4996 /* Penalize nodes under us ("prefer the next node") */
4997 val += (n < node);
4998
1da177e4 4999 /* Give preference to headless and unused nodes */
a70f7302
RR
5000 tmp = cpumask_of_node(n);
5001 if (!cpumask_empty(tmp))
1da177e4
LT
5002 val += PENALTY_FOR_NODE_WITH_CPUS;
5003
5004 /* Slight preference for less loaded node */
5005 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5006 val += node_load[n];
5007
5008 if (val < min_val) {
5009 min_val = val;
5010 best_node = n;
5011 }
5012 }
5013
5014 if (best_node >= 0)
5015 node_set(best_node, *used_node_mask);
5016
5017 return best_node;
5018}
5019
f0c0b2b8
KH
5020
5021/*
5022 * Build zonelists ordered by node and zones within node.
5023 * This results in maximum locality--normal zone overflows into local
5024 * DMA zone, if any--but risks exhausting DMA zone.
5025 */
9d3be21b
MH
5026static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5027 unsigned nr_nodes)
1da177e4 5028{
9d3be21b
MH
5029 struct zoneref *zonerefs;
5030 int i;
5031
5032 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5033
5034 for (i = 0; i < nr_nodes; i++) {
5035 int nr_zones;
5036
5037 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5038
9d3be21b
MH
5039 nr_zones = build_zonerefs_node(node, zonerefs);
5040 zonerefs += nr_zones;
5041 }
5042 zonerefs->zone = NULL;
5043 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5044}
5045
523b9458
CL
5046/*
5047 * Build gfp_thisnode zonelists
5048 */
5049static void build_thisnode_zonelists(pg_data_t *pgdat)
5050{
9d3be21b
MH
5051 struct zoneref *zonerefs;
5052 int nr_zones;
523b9458 5053
9d3be21b
MH
5054 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5055 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5056 zonerefs += nr_zones;
5057 zonerefs->zone = NULL;
5058 zonerefs->zone_idx = 0;
523b9458
CL
5059}
5060
f0c0b2b8
KH
5061/*
5062 * Build zonelists ordered by zone and nodes within zones.
5063 * This results in conserving DMA zone[s] until all Normal memory is
5064 * exhausted, but results in overflowing to remote node while memory
5065 * may still exist in local DMA zone.
5066 */
f0c0b2b8 5067
f0c0b2b8
KH
5068static void build_zonelists(pg_data_t *pgdat)
5069{
9d3be21b
MH
5070 static int node_order[MAX_NUMNODES];
5071 int node, load, nr_nodes = 0;
1da177e4 5072 nodemask_t used_mask;
f0c0b2b8 5073 int local_node, prev_node;
1da177e4
LT
5074
5075 /* NUMA-aware ordering of nodes */
5076 local_node = pgdat->node_id;
62bc62a8 5077 load = nr_online_nodes;
1da177e4
LT
5078 prev_node = local_node;
5079 nodes_clear(used_mask);
f0c0b2b8 5080
f0c0b2b8 5081 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5082 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5083 /*
5084 * We don't want to pressure a particular node.
5085 * So adding penalty to the first node in same
5086 * distance group to make it round-robin.
5087 */
957f822a
DR
5088 if (node_distance(local_node, node) !=
5089 node_distance(local_node, prev_node))
f0c0b2b8
KH
5090 node_load[node] = load;
5091
9d3be21b 5092 node_order[nr_nodes++] = node;
1da177e4
LT
5093 prev_node = node;
5094 load--;
1da177e4 5095 }
523b9458 5096
9d3be21b 5097 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5098 build_thisnode_zonelists(pgdat);
1da177e4
LT
5099}
5100
7aac7898
LS
5101#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5102/*
5103 * Return node id of node used for "local" allocations.
5104 * I.e., first node id of first zone in arg node's generic zonelist.
5105 * Used for initializing percpu 'numa_mem', which is used primarily
5106 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5107 */
5108int local_memory_node(int node)
5109{
c33d6c06 5110 struct zoneref *z;
7aac7898 5111
c33d6c06 5112 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5113 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5114 NULL);
5115 return z->zone->node;
7aac7898
LS
5116}
5117#endif
f0c0b2b8 5118
6423aa81
JK
5119static void setup_min_unmapped_ratio(void);
5120static void setup_min_slab_ratio(void);
1da177e4
LT
5121#else /* CONFIG_NUMA */
5122
f0c0b2b8 5123static void build_zonelists(pg_data_t *pgdat)
1da177e4 5124{
19655d34 5125 int node, local_node;
9d3be21b
MH
5126 struct zoneref *zonerefs;
5127 int nr_zones;
1da177e4
LT
5128
5129 local_node = pgdat->node_id;
1da177e4 5130
9d3be21b
MH
5131 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5132 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5133 zonerefs += nr_zones;
1da177e4 5134
54a6eb5c
MG
5135 /*
5136 * Now we build the zonelist so that it contains the zones
5137 * of all the other nodes.
5138 * We don't want to pressure a particular node, so when
5139 * building the zones for node N, we make sure that the
5140 * zones coming right after the local ones are those from
5141 * node N+1 (modulo N)
5142 */
5143 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5144 if (!node_online(node))
5145 continue;
9d3be21b
MH
5146 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5147 zonerefs += nr_zones;
1da177e4 5148 }
54a6eb5c
MG
5149 for (node = 0; node < local_node; node++) {
5150 if (!node_online(node))
5151 continue;
9d3be21b
MH
5152 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5153 zonerefs += nr_zones;
54a6eb5c
MG
5154 }
5155
9d3be21b
MH
5156 zonerefs->zone = NULL;
5157 zonerefs->zone_idx = 0;
1da177e4
LT
5158}
5159
5160#endif /* CONFIG_NUMA */
5161
99dcc3e5
CL
5162/*
5163 * Boot pageset table. One per cpu which is going to be used for all
5164 * zones and all nodes. The parameters will be set in such a way
5165 * that an item put on a list will immediately be handed over to
5166 * the buddy list. This is safe since pageset manipulation is done
5167 * with interrupts disabled.
5168 *
5169 * The boot_pagesets must be kept even after bootup is complete for
5170 * unused processors and/or zones. They do play a role for bootstrapping
5171 * hotplugged processors.
5172 *
5173 * zoneinfo_show() and maybe other functions do
5174 * not check if the processor is online before following the pageset pointer.
5175 * Other parts of the kernel may not check if the zone is available.
5176 */
5177static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5178static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5179static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5180
11cd8638 5181static void __build_all_zonelists(void *data)
1da177e4 5182{
6811378e 5183 int nid;
afb6ebb3 5184 int __maybe_unused cpu;
9adb62a5 5185 pg_data_t *self = data;
b93e0f32
MH
5186 static DEFINE_SPINLOCK(lock);
5187
5188 spin_lock(&lock);
9276b1bc 5189
7f9cfb31
BL
5190#ifdef CONFIG_NUMA
5191 memset(node_load, 0, sizeof(node_load));
5192#endif
9adb62a5 5193
c1152583
WY
5194 /*
5195 * This node is hotadded and no memory is yet present. So just
5196 * building zonelists is fine - no need to touch other nodes.
5197 */
9adb62a5
JL
5198 if (self && !node_online(self->node_id)) {
5199 build_zonelists(self);
c1152583
WY
5200 } else {
5201 for_each_online_node(nid) {
5202 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5203
c1152583
WY
5204 build_zonelists(pgdat);
5205 }
99dcc3e5 5206
7aac7898
LS
5207#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5208 /*
5209 * We now know the "local memory node" for each node--
5210 * i.e., the node of the first zone in the generic zonelist.
5211 * Set up numa_mem percpu variable for on-line cpus. During
5212 * boot, only the boot cpu should be on-line; we'll init the
5213 * secondary cpus' numa_mem as they come on-line. During
5214 * node/memory hotplug, we'll fixup all on-line cpus.
5215 */
d9c9a0b9 5216 for_each_online_cpu(cpu)
7aac7898 5217 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5218#endif
d9c9a0b9 5219 }
b93e0f32
MH
5220
5221 spin_unlock(&lock);
6811378e
YG
5222}
5223
061f67bc
RV
5224static noinline void __init
5225build_all_zonelists_init(void)
5226{
afb6ebb3
MH
5227 int cpu;
5228
061f67bc 5229 __build_all_zonelists(NULL);
afb6ebb3
MH
5230
5231 /*
5232 * Initialize the boot_pagesets that are going to be used
5233 * for bootstrapping processors. The real pagesets for
5234 * each zone will be allocated later when the per cpu
5235 * allocator is available.
5236 *
5237 * boot_pagesets are used also for bootstrapping offline
5238 * cpus if the system is already booted because the pagesets
5239 * are needed to initialize allocators on a specific cpu too.
5240 * F.e. the percpu allocator needs the page allocator which
5241 * needs the percpu allocator in order to allocate its pagesets
5242 * (a chicken-egg dilemma).
5243 */
5244 for_each_possible_cpu(cpu)
5245 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5246
061f67bc
RV
5247 mminit_verify_zonelist();
5248 cpuset_init_current_mems_allowed();
5249}
5250
4eaf3f64 5251/*
4eaf3f64 5252 * unless system_state == SYSTEM_BOOTING.
061f67bc 5253 *
72675e13 5254 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5255 * [protected by SYSTEM_BOOTING].
4eaf3f64 5256 */
72675e13 5257void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5258{
5259 if (system_state == SYSTEM_BOOTING) {
061f67bc 5260 build_all_zonelists_init();
6811378e 5261 } else {
11cd8638 5262 __build_all_zonelists(pgdat);
6811378e
YG
5263 /* cpuset refresh routine should be here */
5264 }
bd1e22b8 5265 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5266 /*
5267 * Disable grouping by mobility if the number of pages in the
5268 * system is too low to allow the mechanism to work. It would be
5269 * more accurate, but expensive to check per-zone. This check is
5270 * made on memory-hotadd so a system can start with mobility
5271 * disabled and enable it later
5272 */
d9c23400 5273 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5274 page_group_by_mobility_disabled = 1;
5275 else
5276 page_group_by_mobility_disabled = 0;
5277
c9bff3ee 5278 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5279 nr_online_nodes,
756a025f
JP
5280 page_group_by_mobility_disabled ? "off" : "on",
5281 vm_total_pages);
f0c0b2b8 5282#ifdef CONFIG_NUMA
f88dfff5 5283 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5284#endif
1da177e4
LT
5285}
5286
1da177e4
LT
5287/*
5288 * Initially all pages are reserved - free ones are freed
5289 * up by free_all_bootmem() once the early boot process is
5290 * done. Non-atomic initialization, single-pass.
5291 */
c09b4240 5292void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5293 unsigned long start_pfn, enum memmap_context context)
1da177e4 5294{
4b94ffdc 5295 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5296 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5297 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5298 unsigned long pfn;
3a80a7fa 5299 unsigned long nr_initialised = 0;
342332e6
TI
5300#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5301 struct memblock_region *r = NULL, *tmp;
5302#endif
1da177e4 5303
22b31eec
HD
5304 if (highest_memmap_pfn < end_pfn - 1)
5305 highest_memmap_pfn = end_pfn - 1;
5306
4b94ffdc
DW
5307 /*
5308 * Honor reservation requested by the driver for this ZONE_DEVICE
5309 * memory
5310 */
5311 if (altmap && start_pfn == altmap->base_pfn)
5312 start_pfn += altmap->reserve;
5313
cbe8dd4a 5314 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5315 /*
b72d0ffb
AM
5316 * There can be holes in boot-time mem_map[]s handed to this
5317 * function. They do not exist on hotplugged memory.
a2f3aa02 5318 */
b72d0ffb
AM
5319 if (context != MEMMAP_EARLY)
5320 goto not_early;
5321
b92df1de
PB
5322 if (!early_pfn_valid(pfn)) {
5323#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5324 /*
5325 * Skip to the pfn preceding the next valid one (or
5326 * end_pfn), such that we hit a valid pfn (or end_pfn)
5327 * on our next iteration of the loop.
5328 */
5329 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5330#endif
b72d0ffb 5331 continue;
b92df1de 5332 }
b72d0ffb
AM
5333 if (!early_pfn_in_nid(pfn, nid))
5334 continue;
5335 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5336 break;
342332e6
TI
5337
5338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5339 /*
5340 * Check given memblock attribute by firmware which can affect
5341 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5342 * mirrored, it's an overlapped memmap init. skip it.
5343 */
5344 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5345 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5346 for_each_memblock(memory, tmp)
5347 if (pfn < memblock_region_memory_end_pfn(tmp))
5348 break;
5349 r = tmp;
5350 }
5351 if (pfn >= memblock_region_memory_base_pfn(r) &&
5352 memblock_is_mirror(r)) {
5353 /* already initialized as NORMAL */
5354 pfn = memblock_region_memory_end_pfn(r);
5355 continue;
342332e6 5356 }
a2f3aa02 5357 }
b72d0ffb 5358#endif
ac5d2539 5359
b72d0ffb 5360not_early:
ac5d2539
MG
5361 /*
5362 * Mark the block movable so that blocks are reserved for
5363 * movable at startup. This will force kernel allocations
5364 * to reserve their blocks rather than leaking throughout
5365 * the address space during boot when many long-lived
974a786e 5366 * kernel allocations are made.
ac5d2539
MG
5367 *
5368 * bitmap is created for zone's valid pfn range. but memmap
5369 * can be created for invalid pages (for alignment)
5370 * check here not to call set_pageblock_migratetype() against
5371 * pfn out of zone.
5372 */
5373 if (!(pfn & (pageblock_nr_pages - 1))) {
5374 struct page *page = pfn_to_page(pfn);
5375
5376 __init_single_page(page, pfn, zone, nid);
5377 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5378 cond_resched();
ac5d2539
MG
5379 } else {
5380 __init_single_pfn(pfn, zone, nid);
5381 }
1da177e4
LT
5382 }
5383}
5384
1e548deb 5385static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5386{
7aeb09f9 5387 unsigned int order, t;
b2a0ac88
MG
5388 for_each_migratetype_order(order, t) {
5389 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5390 zone->free_area[order].nr_free = 0;
5391 }
5392}
5393
5394#ifndef __HAVE_ARCH_MEMMAP_INIT
5395#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5396 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5397#endif
5398
7cd2b0a3 5399static int zone_batchsize(struct zone *zone)
e7c8d5c9 5400{
3a6be87f 5401#ifdef CONFIG_MMU
e7c8d5c9
CL
5402 int batch;
5403
5404 /*
5405 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5406 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5407 *
5408 * OK, so we don't know how big the cache is. So guess.
5409 */
b40da049 5410 batch = zone->managed_pages / 1024;
ba56e91c
SR
5411 if (batch * PAGE_SIZE > 512 * 1024)
5412 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5413 batch /= 4; /* We effectively *= 4 below */
5414 if (batch < 1)
5415 batch = 1;
5416
5417 /*
0ceaacc9
NP
5418 * Clamp the batch to a 2^n - 1 value. Having a power
5419 * of 2 value was found to be more likely to have
5420 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5421 *
0ceaacc9
NP
5422 * For example if 2 tasks are alternately allocating
5423 * batches of pages, one task can end up with a lot
5424 * of pages of one half of the possible page colors
5425 * and the other with pages of the other colors.
e7c8d5c9 5426 */
9155203a 5427 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5428
e7c8d5c9 5429 return batch;
3a6be87f
DH
5430
5431#else
5432 /* The deferral and batching of frees should be suppressed under NOMMU
5433 * conditions.
5434 *
5435 * The problem is that NOMMU needs to be able to allocate large chunks
5436 * of contiguous memory as there's no hardware page translation to
5437 * assemble apparent contiguous memory from discontiguous pages.
5438 *
5439 * Queueing large contiguous runs of pages for batching, however,
5440 * causes the pages to actually be freed in smaller chunks. As there
5441 * can be a significant delay between the individual batches being
5442 * recycled, this leads to the once large chunks of space being
5443 * fragmented and becoming unavailable for high-order allocations.
5444 */
5445 return 0;
5446#endif
e7c8d5c9
CL
5447}
5448
8d7a8fa9
CS
5449/*
5450 * pcp->high and pcp->batch values are related and dependent on one another:
5451 * ->batch must never be higher then ->high.
5452 * The following function updates them in a safe manner without read side
5453 * locking.
5454 *
5455 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5456 * those fields changing asynchronously (acording the the above rule).
5457 *
5458 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5459 * outside of boot time (or some other assurance that no concurrent updaters
5460 * exist).
5461 */
5462static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5463 unsigned long batch)
5464{
5465 /* start with a fail safe value for batch */
5466 pcp->batch = 1;
5467 smp_wmb();
5468
5469 /* Update high, then batch, in order */
5470 pcp->high = high;
5471 smp_wmb();
5472
5473 pcp->batch = batch;
5474}
5475
3664033c 5476/* a companion to pageset_set_high() */
4008bab7
CS
5477static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5478{
8d7a8fa9 5479 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5480}
5481
88c90dbc 5482static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5483{
5484 struct per_cpu_pages *pcp;
5f8dcc21 5485 int migratetype;
2caaad41 5486
1c6fe946
MD
5487 memset(p, 0, sizeof(*p));
5488
3dfa5721 5489 pcp = &p->pcp;
2caaad41 5490 pcp->count = 0;
5f8dcc21
MG
5491 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5492 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5493}
5494
88c90dbc
CS
5495static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5496{
5497 pageset_init(p);
5498 pageset_set_batch(p, batch);
5499}
5500
8ad4b1fb 5501/*
3664033c 5502 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5503 * to the value high for the pageset p.
5504 */
3664033c 5505static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5506 unsigned long high)
5507{
8d7a8fa9
CS
5508 unsigned long batch = max(1UL, high / 4);
5509 if ((high / 4) > (PAGE_SHIFT * 8))
5510 batch = PAGE_SHIFT * 8;
8ad4b1fb 5511
8d7a8fa9 5512 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5513}
5514
7cd2b0a3
DR
5515static void pageset_set_high_and_batch(struct zone *zone,
5516 struct per_cpu_pageset *pcp)
56cef2b8 5517{
56cef2b8 5518 if (percpu_pagelist_fraction)
3664033c 5519 pageset_set_high(pcp,
56cef2b8
CS
5520 (zone->managed_pages /
5521 percpu_pagelist_fraction));
5522 else
5523 pageset_set_batch(pcp, zone_batchsize(zone));
5524}
5525
169f6c19
CS
5526static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5527{
5528 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5529
5530 pageset_init(pcp);
5531 pageset_set_high_and_batch(zone, pcp);
5532}
5533
72675e13 5534void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5535{
5536 int cpu;
319774e2 5537 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5538 for_each_possible_cpu(cpu)
5539 zone_pageset_init(zone, cpu);
319774e2
WF
5540}
5541
2caaad41 5542/*
99dcc3e5
CL
5543 * Allocate per cpu pagesets and initialize them.
5544 * Before this call only boot pagesets were available.
e7c8d5c9 5545 */
99dcc3e5 5546void __init setup_per_cpu_pageset(void)
e7c8d5c9 5547{
b4911ea2 5548 struct pglist_data *pgdat;
99dcc3e5 5549 struct zone *zone;
e7c8d5c9 5550
319774e2
WF
5551 for_each_populated_zone(zone)
5552 setup_zone_pageset(zone);
b4911ea2
MG
5553
5554 for_each_online_pgdat(pgdat)
5555 pgdat->per_cpu_nodestats =
5556 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5557}
5558
c09b4240 5559static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5560{
99dcc3e5
CL
5561 /*
5562 * per cpu subsystem is not up at this point. The following code
5563 * relies on the ability of the linker to provide the
5564 * offset of a (static) per cpu variable into the per cpu area.
5565 */
5566 zone->pageset = &boot_pageset;
ed8ece2e 5567
b38a8725 5568 if (populated_zone(zone))
99dcc3e5
CL
5569 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5570 zone->name, zone->present_pages,
5571 zone_batchsize(zone));
ed8ece2e
DH
5572}
5573
dc0bbf3b 5574void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5575 unsigned long zone_start_pfn,
b171e409 5576 unsigned long size)
ed8ece2e
DH
5577{
5578 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5579
ed8ece2e
DH
5580 pgdat->nr_zones = zone_idx(zone) + 1;
5581
ed8ece2e
DH
5582 zone->zone_start_pfn = zone_start_pfn;
5583
708614e6
MG
5584 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5585 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5586 pgdat->node_id,
5587 (unsigned long)zone_idx(zone),
5588 zone_start_pfn, (zone_start_pfn + size));
5589
1e548deb 5590 zone_init_free_lists(zone);
9dcb8b68 5591 zone->initialized = 1;
ed8ece2e
DH
5592}
5593
0ee332c1 5594#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5595#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5596
c713216d
MG
5597/*
5598 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5599 */
8a942fde
MG
5600int __meminit __early_pfn_to_nid(unsigned long pfn,
5601 struct mminit_pfnnid_cache *state)
c713216d 5602{
c13291a5 5603 unsigned long start_pfn, end_pfn;
e76b63f8 5604 int nid;
7c243c71 5605
8a942fde
MG
5606 if (state->last_start <= pfn && pfn < state->last_end)
5607 return state->last_nid;
c713216d 5608
e76b63f8
YL
5609 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5610 if (nid != -1) {
8a942fde
MG
5611 state->last_start = start_pfn;
5612 state->last_end = end_pfn;
5613 state->last_nid = nid;
e76b63f8
YL
5614 }
5615
5616 return nid;
c713216d
MG
5617}
5618#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5619
c713216d 5620/**
6782832e 5621 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5622 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5623 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5624 *
7d018176
ZZ
5625 * If an architecture guarantees that all ranges registered contain no holes
5626 * and may be freed, this this function may be used instead of calling
5627 * memblock_free_early_nid() manually.
c713216d 5628 */
c13291a5 5629void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5630{
c13291a5
TH
5631 unsigned long start_pfn, end_pfn;
5632 int i, this_nid;
edbe7d23 5633
c13291a5
TH
5634 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5635 start_pfn = min(start_pfn, max_low_pfn);
5636 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5637
c13291a5 5638 if (start_pfn < end_pfn)
6782832e
SS
5639 memblock_free_early_nid(PFN_PHYS(start_pfn),
5640 (end_pfn - start_pfn) << PAGE_SHIFT,
5641 this_nid);
edbe7d23 5642 }
edbe7d23 5643}
edbe7d23 5644
c713216d
MG
5645/**
5646 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5647 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5648 *
7d018176
ZZ
5649 * If an architecture guarantees that all ranges registered contain no holes and may
5650 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5651 */
5652void __init sparse_memory_present_with_active_regions(int nid)
5653{
c13291a5
TH
5654 unsigned long start_pfn, end_pfn;
5655 int i, this_nid;
c713216d 5656
c13291a5
TH
5657 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5658 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5659}
5660
5661/**
5662 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5663 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5664 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5665 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5666 *
5667 * It returns the start and end page frame of a node based on information
7d018176 5668 * provided by memblock_set_node(). If called for a node
c713216d 5669 * with no available memory, a warning is printed and the start and end
88ca3b94 5670 * PFNs will be 0.
c713216d 5671 */
a3142c8e 5672void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5673 unsigned long *start_pfn, unsigned long *end_pfn)
5674{
c13291a5 5675 unsigned long this_start_pfn, this_end_pfn;
c713216d 5676 int i;
c13291a5 5677
c713216d
MG
5678 *start_pfn = -1UL;
5679 *end_pfn = 0;
5680
c13291a5
TH
5681 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5682 *start_pfn = min(*start_pfn, this_start_pfn);
5683 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5684 }
5685
633c0666 5686 if (*start_pfn == -1UL)
c713216d 5687 *start_pfn = 0;
c713216d
MG
5688}
5689
2a1e274a
MG
5690/*
5691 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5692 * assumption is made that zones within a node are ordered in monotonic
5693 * increasing memory addresses so that the "highest" populated zone is used
5694 */
b69a7288 5695static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5696{
5697 int zone_index;
5698 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5699 if (zone_index == ZONE_MOVABLE)
5700 continue;
5701
5702 if (arch_zone_highest_possible_pfn[zone_index] >
5703 arch_zone_lowest_possible_pfn[zone_index])
5704 break;
5705 }
5706
5707 VM_BUG_ON(zone_index == -1);
5708 movable_zone = zone_index;
5709}
5710
5711/*
5712 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5713 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5714 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5715 * in each node depending on the size of each node and how evenly kernelcore
5716 * is distributed. This helper function adjusts the zone ranges
5717 * provided by the architecture for a given node by using the end of the
5718 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5719 * zones within a node are in order of monotonic increases memory addresses
5720 */
b69a7288 5721static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5722 unsigned long zone_type,
5723 unsigned long node_start_pfn,
5724 unsigned long node_end_pfn,
5725 unsigned long *zone_start_pfn,
5726 unsigned long *zone_end_pfn)
5727{
5728 /* Only adjust if ZONE_MOVABLE is on this node */
5729 if (zone_movable_pfn[nid]) {
5730 /* Size ZONE_MOVABLE */
5731 if (zone_type == ZONE_MOVABLE) {
5732 *zone_start_pfn = zone_movable_pfn[nid];
5733 *zone_end_pfn = min(node_end_pfn,
5734 arch_zone_highest_possible_pfn[movable_zone]);
5735
e506b996
XQ
5736 /* Adjust for ZONE_MOVABLE starting within this range */
5737 } else if (!mirrored_kernelcore &&
5738 *zone_start_pfn < zone_movable_pfn[nid] &&
5739 *zone_end_pfn > zone_movable_pfn[nid]) {
5740 *zone_end_pfn = zone_movable_pfn[nid];
5741
2a1e274a
MG
5742 /* Check if this whole range is within ZONE_MOVABLE */
5743 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5744 *zone_start_pfn = *zone_end_pfn;
5745 }
5746}
5747
c713216d
MG
5748/*
5749 * Return the number of pages a zone spans in a node, including holes
5750 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5751 */
6ea6e688 5752static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5753 unsigned long zone_type,
7960aedd
ZY
5754 unsigned long node_start_pfn,
5755 unsigned long node_end_pfn,
d91749c1
TI
5756 unsigned long *zone_start_pfn,
5757 unsigned long *zone_end_pfn,
c713216d
MG
5758 unsigned long *ignored)
5759{
b5685e92 5760 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5761 if (!node_start_pfn && !node_end_pfn)
5762 return 0;
5763
7960aedd 5764 /* Get the start and end of the zone */
d91749c1
TI
5765 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5766 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5767 adjust_zone_range_for_zone_movable(nid, zone_type,
5768 node_start_pfn, node_end_pfn,
d91749c1 5769 zone_start_pfn, zone_end_pfn);
c713216d
MG
5770
5771 /* Check that this node has pages within the zone's required range */
d91749c1 5772 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5773 return 0;
5774
5775 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5776 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5777 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5778
5779 /* Return the spanned pages */
d91749c1 5780 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5781}
5782
5783/*
5784 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5785 * then all holes in the requested range will be accounted for.
c713216d 5786 */
32996250 5787unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5788 unsigned long range_start_pfn,
5789 unsigned long range_end_pfn)
5790{
96e907d1
TH
5791 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5792 unsigned long start_pfn, end_pfn;
5793 int i;
c713216d 5794
96e907d1
TH
5795 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5796 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5797 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5798 nr_absent -= end_pfn - start_pfn;
c713216d 5799 }
96e907d1 5800 return nr_absent;
c713216d
MG
5801}
5802
5803/**
5804 * absent_pages_in_range - Return number of page frames in holes within a range
5805 * @start_pfn: The start PFN to start searching for holes
5806 * @end_pfn: The end PFN to stop searching for holes
5807 *
88ca3b94 5808 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5809 */
5810unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5811 unsigned long end_pfn)
5812{
5813 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5814}
5815
5816/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5817static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5818 unsigned long zone_type,
7960aedd
ZY
5819 unsigned long node_start_pfn,
5820 unsigned long node_end_pfn,
c713216d
MG
5821 unsigned long *ignored)
5822{
96e907d1
TH
5823 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5824 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5825 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5826 unsigned long nr_absent;
9c7cd687 5827
b5685e92 5828 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5829 if (!node_start_pfn && !node_end_pfn)
5830 return 0;
5831
96e907d1
TH
5832 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5833 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5834
2a1e274a
MG
5835 adjust_zone_range_for_zone_movable(nid, zone_type,
5836 node_start_pfn, node_end_pfn,
5837 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5838 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5839
5840 /*
5841 * ZONE_MOVABLE handling.
5842 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5843 * and vice versa.
5844 */
e506b996
XQ
5845 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5846 unsigned long start_pfn, end_pfn;
5847 struct memblock_region *r;
5848
5849 for_each_memblock(memory, r) {
5850 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5851 zone_start_pfn, zone_end_pfn);
5852 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5853 zone_start_pfn, zone_end_pfn);
5854
5855 if (zone_type == ZONE_MOVABLE &&
5856 memblock_is_mirror(r))
5857 nr_absent += end_pfn - start_pfn;
5858
5859 if (zone_type == ZONE_NORMAL &&
5860 !memblock_is_mirror(r))
5861 nr_absent += end_pfn - start_pfn;
342332e6
TI
5862 }
5863 }
5864
5865 return nr_absent;
c713216d 5866}
0e0b864e 5867
0ee332c1 5868#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5869static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5870 unsigned long zone_type,
7960aedd
ZY
5871 unsigned long node_start_pfn,
5872 unsigned long node_end_pfn,
d91749c1
TI
5873 unsigned long *zone_start_pfn,
5874 unsigned long *zone_end_pfn,
c713216d
MG
5875 unsigned long *zones_size)
5876{
d91749c1
TI
5877 unsigned int zone;
5878
5879 *zone_start_pfn = node_start_pfn;
5880 for (zone = 0; zone < zone_type; zone++)
5881 *zone_start_pfn += zones_size[zone];
5882
5883 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5884
c713216d
MG
5885 return zones_size[zone_type];
5886}
5887
6ea6e688 5888static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5889 unsigned long zone_type,
7960aedd
ZY
5890 unsigned long node_start_pfn,
5891 unsigned long node_end_pfn,
c713216d
MG
5892 unsigned long *zholes_size)
5893{
5894 if (!zholes_size)
5895 return 0;
5896
5897 return zholes_size[zone_type];
5898}
20e6926d 5899
0ee332c1 5900#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5901
a3142c8e 5902static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5903 unsigned long node_start_pfn,
5904 unsigned long node_end_pfn,
5905 unsigned long *zones_size,
5906 unsigned long *zholes_size)
c713216d 5907{
febd5949 5908 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5909 enum zone_type i;
5910
febd5949
GZ
5911 for (i = 0; i < MAX_NR_ZONES; i++) {
5912 struct zone *zone = pgdat->node_zones + i;
d91749c1 5913 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5914 unsigned long size, real_size;
c713216d 5915
febd5949
GZ
5916 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5917 node_start_pfn,
5918 node_end_pfn,
d91749c1
TI
5919 &zone_start_pfn,
5920 &zone_end_pfn,
febd5949
GZ
5921 zones_size);
5922 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5923 node_start_pfn, node_end_pfn,
5924 zholes_size);
d91749c1
TI
5925 if (size)
5926 zone->zone_start_pfn = zone_start_pfn;
5927 else
5928 zone->zone_start_pfn = 0;
febd5949
GZ
5929 zone->spanned_pages = size;
5930 zone->present_pages = real_size;
5931
5932 totalpages += size;
5933 realtotalpages += real_size;
5934 }
5935
5936 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5937 pgdat->node_present_pages = realtotalpages;
5938 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5939 realtotalpages);
5940}
5941
835c134e
MG
5942#ifndef CONFIG_SPARSEMEM
5943/*
5944 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5945 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5946 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5947 * round what is now in bits to nearest long in bits, then return it in
5948 * bytes.
5949 */
7c45512d 5950static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5951{
5952 unsigned long usemapsize;
5953
7c45512d 5954 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5955 usemapsize = roundup(zonesize, pageblock_nr_pages);
5956 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5957 usemapsize *= NR_PAGEBLOCK_BITS;
5958 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5959
5960 return usemapsize / 8;
5961}
5962
5963static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5964 struct zone *zone,
5965 unsigned long zone_start_pfn,
5966 unsigned long zonesize)
835c134e 5967{
7c45512d 5968 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5969 zone->pageblock_flags = NULL;
58a01a45 5970 if (usemapsize)
6782832e
SS
5971 zone->pageblock_flags =
5972 memblock_virt_alloc_node_nopanic(usemapsize,
5973 pgdat->node_id);
835c134e
MG
5974}
5975#else
7c45512d
LT
5976static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5977 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5978#endif /* CONFIG_SPARSEMEM */
5979
d9c23400 5980#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5981
d9c23400 5982/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5983void __paginginit set_pageblock_order(void)
d9c23400 5984{
955c1cd7
AM
5985 unsigned int order;
5986
d9c23400
MG
5987 /* Check that pageblock_nr_pages has not already been setup */
5988 if (pageblock_order)
5989 return;
5990
955c1cd7
AM
5991 if (HPAGE_SHIFT > PAGE_SHIFT)
5992 order = HUGETLB_PAGE_ORDER;
5993 else
5994 order = MAX_ORDER - 1;
5995
d9c23400
MG
5996 /*
5997 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5998 * This value may be variable depending on boot parameters on IA64 and
5999 * powerpc.
d9c23400
MG
6000 */
6001 pageblock_order = order;
6002}
6003#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6004
ba72cb8c
MG
6005/*
6006 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6007 * is unused as pageblock_order is set at compile-time. See
6008 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6009 * the kernel config
ba72cb8c 6010 */
15ca220e 6011void __paginginit set_pageblock_order(void)
ba72cb8c 6012{
ba72cb8c 6013}
d9c23400
MG
6014
6015#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6016
01cefaef
JL
6017static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6018 unsigned long present_pages)
6019{
6020 unsigned long pages = spanned_pages;
6021
6022 /*
6023 * Provide a more accurate estimation if there are holes within
6024 * the zone and SPARSEMEM is in use. If there are holes within the
6025 * zone, each populated memory region may cost us one or two extra
6026 * memmap pages due to alignment because memmap pages for each
89d790ab 6027 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6028 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6029 */
6030 if (spanned_pages > present_pages + (present_pages >> 4) &&
6031 IS_ENABLED(CONFIG_SPARSEMEM))
6032 pages = present_pages;
6033
6034 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6035}
6036
1da177e4
LT
6037/*
6038 * Set up the zone data structures:
6039 * - mark all pages reserved
6040 * - mark all memory queues empty
6041 * - clear the memory bitmaps
6527af5d
MK
6042 *
6043 * NOTE: pgdat should get zeroed by caller.
1da177e4 6044 */
7f3eb55b 6045static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6046{
2f1b6248 6047 enum zone_type j;
ed8ece2e 6048 int nid = pgdat->node_id;
1da177e4 6049
208d54e5 6050 pgdat_resize_init(pgdat);
8177a420
AA
6051#ifdef CONFIG_NUMA_BALANCING
6052 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6053 pgdat->numabalancing_migrate_nr_pages = 0;
6054 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6055#endif
6056#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6057 spin_lock_init(&pgdat->split_queue_lock);
6058 INIT_LIST_HEAD(&pgdat->split_queue);
6059 pgdat->split_queue_len = 0;
8177a420 6060#endif
1da177e4 6061 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6062 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6063#ifdef CONFIG_COMPACTION
6064 init_waitqueue_head(&pgdat->kcompactd_wait);
6065#endif
eefa864b 6066 pgdat_page_ext_init(pgdat);
a52633d8 6067 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6068 lruvec_init(node_lruvec(pgdat));
5f63b720 6069
385386cf
JW
6070 pgdat->per_cpu_nodestats = &boot_nodestats;
6071
1da177e4
LT
6072 for (j = 0; j < MAX_NR_ZONES; j++) {
6073 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6074 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6075 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6076
febd5949
GZ
6077 size = zone->spanned_pages;
6078 realsize = freesize = zone->present_pages;
1da177e4 6079
0e0b864e 6080 /*
9feedc9d 6081 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6082 * is used by this zone for memmap. This affects the watermark
6083 * and per-cpu initialisations
6084 */
01cefaef 6085 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6086 if (!is_highmem_idx(j)) {
6087 if (freesize >= memmap_pages) {
6088 freesize -= memmap_pages;
6089 if (memmap_pages)
6090 printk(KERN_DEBUG
6091 " %s zone: %lu pages used for memmap\n",
6092 zone_names[j], memmap_pages);
6093 } else
1170532b 6094 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6095 zone_names[j], memmap_pages, freesize);
6096 }
0e0b864e 6097
6267276f 6098 /* Account for reserved pages */
9feedc9d
JL
6099 if (j == 0 && freesize > dma_reserve) {
6100 freesize -= dma_reserve;
d903ef9f 6101 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6102 zone_names[0], dma_reserve);
0e0b864e
MG
6103 }
6104
98d2b0eb 6105 if (!is_highmem_idx(j))
9feedc9d 6106 nr_kernel_pages += freesize;
01cefaef
JL
6107 /* Charge for highmem memmap if there are enough kernel pages */
6108 else if (nr_kernel_pages > memmap_pages * 2)
6109 nr_kernel_pages -= memmap_pages;
9feedc9d 6110 nr_all_pages += freesize;
1da177e4 6111
9feedc9d
JL
6112 /*
6113 * Set an approximate value for lowmem here, it will be adjusted
6114 * when the bootmem allocator frees pages into the buddy system.
6115 * And all highmem pages will be managed by the buddy system.
6116 */
6117 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6118#ifdef CONFIG_NUMA
d5f541ed 6119 zone->node = nid;
9614634f 6120#endif
1da177e4 6121 zone->name = zone_names[j];
a52633d8 6122 zone->zone_pgdat = pgdat;
1da177e4 6123 spin_lock_init(&zone->lock);
bdc8cb98 6124 zone_seqlock_init(zone);
ed8ece2e 6125 zone_pcp_init(zone);
81c0a2bb 6126
1da177e4
LT
6127 if (!size)
6128 continue;
6129
955c1cd7 6130 set_pageblock_order();
7c45512d 6131 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6132 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6133 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6134 }
6135}
6136
bd721ea7 6137static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6138{
b0aeba74 6139 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6140 unsigned long __maybe_unused offset = 0;
6141
1da177e4
LT
6142 /* Skip empty nodes */
6143 if (!pgdat->node_spanned_pages)
6144 return;
6145
d41dee36 6146#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6147 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6148 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6149 /* ia64 gets its own node_mem_map, before this, without bootmem */
6150 if (!pgdat->node_mem_map) {
b0aeba74 6151 unsigned long size, end;
d41dee36
AW
6152 struct page *map;
6153
e984bb43
BP
6154 /*
6155 * The zone's endpoints aren't required to be MAX_ORDER
6156 * aligned but the node_mem_map endpoints must be in order
6157 * for the buddy allocator to function correctly.
6158 */
108bcc96 6159 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6160 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6161 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6162 map = alloc_remap(pgdat->node_id, size);
6163 if (!map)
6782832e
SS
6164 map = memblock_virt_alloc_node_nopanic(size,
6165 pgdat->node_id);
a1c34a3b 6166 pgdat->node_mem_map = map + offset;
1da177e4 6167 }
12d810c1 6168#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6169 /*
6170 * With no DISCONTIG, the global mem_map is just set as node 0's
6171 */
c713216d 6172 if (pgdat == NODE_DATA(0)) {
1da177e4 6173 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6174#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6175 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6176 mem_map -= offset;
0ee332c1 6177#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6178 }
1da177e4 6179#endif
d41dee36 6180#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6181}
6182
9109fb7b
JW
6183void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6184 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6185{
9109fb7b 6186 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6187 unsigned long start_pfn = 0;
6188 unsigned long end_pfn = 0;
9109fb7b 6189
88fdf75d 6190 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6191 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6192
1da177e4
LT
6193 pgdat->node_id = nid;
6194 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6195 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6196#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6197 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6198 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6199 (u64)start_pfn << PAGE_SHIFT,
6200 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6201#else
6202 start_pfn = node_start_pfn;
7960aedd
ZY
6203#endif
6204 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6205 zones_size, zholes_size);
1da177e4
LT
6206
6207 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6208#ifdef CONFIG_FLAT_NODE_MEM_MAP
6209 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6210 nid, (unsigned long)pgdat,
6211 (unsigned long)pgdat->node_mem_map);
6212#endif
1da177e4 6213
864b9a39 6214 reset_deferred_meminit(pgdat);
7f3eb55b 6215 free_area_init_core(pgdat);
1da177e4
LT
6216}
6217
0ee332c1 6218#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6219
6220#if MAX_NUMNODES > 1
6221/*
6222 * Figure out the number of possible node ids.
6223 */
f9872caf 6224void __init setup_nr_node_ids(void)
418508c1 6225{
904a9553 6226 unsigned int highest;
418508c1 6227
904a9553 6228 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6229 nr_node_ids = highest + 1;
6230}
418508c1
MS
6231#endif
6232
1e01979c
TH
6233/**
6234 * node_map_pfn_alignment - determine the maximum internode alignment
6235 *
6236 * This function should be called after node map is populated and sorted.
6237 * It calculates the maximum power of two alignment which can distinguish
6238 * all the nodes.
6239 *
6240 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6241 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6242 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6243 * shifted, 1GiB is enough and this function will indicate so.
6244 *
6245 * This is used to test whether pfn -> nid mapping of the chosen memory
6246 * model has fine enough granularity to avoid incorrect mapping for the
6247 * populated node map.
6248 *
6249 * Returns the determined alignment in pfn's. 0 if there is no alignment
6250 * requirement (single node).
6251 */
6252unsigned long __init node_map_pfn_alignment(void)
6253{
6254 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6255 unsigned long start, end, mask;
1e01979c 6256 int last_nid = -1;
c13291a5 6257 int i, nid;
1e01979c 6258
c13291a5 6259 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6260 if (!start || last_nid < 0 || last_nid == nid) {
6261 last_nid = nid;
6262 last_end = end;
6263 continue;
6264 }
6265
6266 /*
6267 * Start with a mask granular enough to pin-point to the
6268 * start pfn and tick off bits one-by-one until it becomes
6269 * too coarse to separate the current node from the last.
6270 */
6271 mask = ~((1 << __ffs(start)) - 1);
6272 while (mask && last_end <= (start & (mask << 1)))
6273 mask <<= 1;
6274
6275 /* accumulate all internode masks */
6276 accl_mask |= mask;
6277 }
6278
6279 /* convert mask to number of pages */
6280 return ~accl_mask + 1;
6281}
6282
a6af2bc3 6283/* Find the lowest pfn for a node */
b69a7288 6284static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6285{
a6af2bc3 6286 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6287 unsigned long start_pfn;
6288 int i;
1abbfb41 6289
c13291a5
TH
6290 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6291 min_pfn = min(min_pfn, start_pfn);
c713216d 6292
a6af2bc3 6293 if (min_pfn == ULONG_MAX) {
1170532b 6294 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6295 return 0;
6296 }
6297
6298 return min_pfn;
c713216d
MG
6299}
6300
6301/**
6302 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6303 *
6304 * It returns the minimum PFN based on information provided via
7d018176 6305 * memblock_set_node().
c713216d
MG
6306 */
6307unsigned long __init find_min_pfn_with_active_regions(void)
6308{
6309 return find_min_pfn_for_node(MAX_NUMNODES);
6310}
6311
37b07e41
LS
6312/*
6313 * early_calculate_totalpages()
6314 * Sum pages in active regions for movable zone.
4b0ef1fe 6315 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6316 */
484f51f8 6317static unsigned long __init early_calculate_totalpages(void)
7e63efef 6318{
7e63efef 6319 unsigned long totalpages = 0;
c13291a5
TH
6320 unsigned long start_pfn, end_pfn;
6321 int i, nid;
6322
6323 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6324 unsigned long pages = end_pfn - start_pfn;
7e63efef 6325
37b07e41
LS
6326 totalpages += pages;
6327 if (pages)
4b0ef1fe 6328 node_set_state(nid, N_MEMORY);
37b07e41 6329 }
b8af2941 6330 return totalpages;
7e63efef
MG
6331}
6332
2a1e274a
MG
6333/*
6334 * Find the PFN the Movable zone begins in each node. Kernel memory
6335 * is spread evenly between nodes as long as the nodes have enough
6336 * memory. When they don't, some nodes will have more kernelcore than
6337 * others
6338 */
b224ef85 6339static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6340{
6341 int i, nid;
6342 unsigned long usable_startpfn;
6343 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6344 /* save the state before borrow the nodemask */
4b0ef1fe 6345 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6346 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6347 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6348 struct memblock_region *r;
b2f3eebe
TC
6349
6350 /* Need to find movable_zone earlier when movable_node is specified. */
6351 find_usable_zone_for_movable();
6352
6353 /*
6354 * If movable_node is specified, ignore kernelcore and movablecore
6355 * options.
6356 */
6357 if (movable_node_is_enabled()) {
136199f0
EM
6358 for_each_memblock(memory, r) {
6359 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6360 continue;
6361
136199f0 6362 nid = r->nid;
b2f3eebe 6363
136199f0 6364 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6365 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6366 min(usable_startpfn, zone_movable_pfn[nid]) :
6367 usable_startpfn;
6368 }
6369
6370 goto out2;
6371 }
2a1e274a 6372
342332e6
TI
6373 /*
6374 * If kernelcore=mirror is specified, ignore movablecore option
6375 */
6376 if (mirrored_kernelcore) {
6377 bool mem_below_4gb_not_mirrored = false;
6378
6379 for_each_memblock(memory, r) {
6380 if (memblock_is_mirror(r))
6381 continue;
6382
6383 nid = r->nid;
6384
6385 usable_startpfn = memblock_region_memory_base_pfn(r);
6386
6387 if (usable_startpfn < 0x100000) {
6388 mem_below_4gb_not_mirrored = true;
6389 continue;
6390 }
6391
6392 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6393 min(usable_startpfn, zone_movable_pfn[nid]) :
6394 usable_startpfn;
6395 }
6396
6397 if (mem_below_4gb_not_mirrored)
6398 pr_warn("This configuration results in unmirrored kernel memory.");
6399
6400 goto out2;
6401 }
6402
7e63efef 6403 /*
b2f3eebe 6404 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6405 * kernelcore that corresponds so that memory usable for
6406 * any allocation type is evenly spread. If both kernelcore
6407 * and movablecore are specified, then the value of kernelcore
6408 * will be used for required_kernelcore if it's greater than
6409 * what movablecore would have allowed.
6410 */
6411 if (required_movablecore) {
7e63efef
MG
6412 unsigned long corepages;
6413
6414 /*
6415 * Round-up so that ZONE_MOVABLE is at least as large as what
6416 * was requested by the user
6417 */
6418 required_movablecore =
6419 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6420 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6421 corepages = totalpages - required_movablecore;
6422
6423 required_kernelcore = max(required_kernelcore, corepages);
6424 }
6425
bde304bd
XQ
6426 /*
6427 * If kernelcore was not specified or kernelcore size is larger
6428 * than totalpages, there is no ZONE_MOVABLE.
6429 */
6430 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6431 goto out;
2a1e274a
MG
6432
6433 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6434 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6435
6436restart:
6437 /* Spread kernelcore memory as evenly as possible throughout nodes */
6438 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6439 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6440 unsigned long start_pfn, end_pfn;
6441
2a1e274a
MG
6442 /*
6443 * Recalculate kernelcore_node if the division per node
6444 * now exceeds what is necessary to satisfy the requested
6445 * amount of memory for the kernel
6446 */
6447 if (required_kernelcore < kernelcore_node)
6448 kernelcore_node = required_kernelcore / usable_nodes;
6449
6450 /*
6451 * As the map is walked, we track how much memory is usable
6452 * by the kernel using kernelcore_remaining. When it is
6453 * 0, the rest of the node is usable by ZONE_MOVABLE
6454 */
6455 kernelcore_remaining = kernelcore_node;
6456
6457 /* Go through each range of PFNs within this node */
c13291a5 6458 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6459 unsigned long size_pages;
6460
c13291a5 6461 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6462 if (start_pfn >= end_pfn)
6463 continue;
6464
6465 /* Account for what is only usable for kernelcore */
6466 if (start_pfn < usable_startpfn) {
6467 unsigned long kernel_pages;
6468 kernel_pages = min(end_pfn, usable_startpfn)
6469 - start_pfn;
6470
6471 kernelcore_remaining -= min(kernel_pages,
6472 kernelcore_remaining);
6473 required_kernelcore -= min(kernel_pages,
6474 required_kernelcore);
6475
6476 /* Continue if range is now fully accounted */
6477 if (end_pfn <= usable_startpfn) {
6478
6479 /*
6480 * Push zone_movable_pfn to the end so
6481 * that if we have to rebalance
6482 * kernelcore across nodes, we will
6483 * not double account here
6484 */
6485 zone_movable_pfn[nid] = end_pfn;
6486 continue;
6487 }
6488 start_pfn = usable_startpfn;
6489 }
6490
6491 /*
6492 * The usable PFN range for ZONE_MOVABLE is from
6493 * start_pfn->end_pfn. Calculate size_pages as the
6494 * number of pages used as kernelcore
6495 */
6496 size_pages = end_pfn - start_pfn;
6497 if (size_pages > kernelcore_remaining)
6498 size_pages = kernelcore_remaining;
6499 zone_movable_pfn[nid] = start_pfn + size_pages;
6500
6501 /*
6502 * Some kernelcore has been met, update counts and
6503 * break if the kernelcore for this node has been
b8af2941 6504 * satisfied
2a1e274a
MG
6505 */
6506 required_kernelcore -= min(required_kernelcore,
6507 size_pages);
6508 kernelcore_remaining -= size_pages;
6509 if (!kernelcore_remaining)
6510 break;
6511 }
6512 }
6513
6514 /*
6515 * If there is still required_kernelcore, we do another pass with one
6516 * less node in the count. This will push zone_movable_pfn[nid] further
6517 * along on the nodes that still have memory until kernelcore is
b8af2941 6518 * satisfied
2a1e274a
MG
6519 */
6520 usable_nodes--;
6521 if (usable_nodes && required_kernelcore > usable_nodes)
6522 goto restart;
6523
b2f3eebe 6524out2:
2a1e274a
MG
6525 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6526 for (nid = 0; nid < MAX_NUMNODES; nid++)
6527 zone_movable_pfn[nid] =
6528 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6529
20e6926d 6530out:
66918dcd 6531 /* restore the node_state */
4b0ef1fe 6532 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6533}
6534
4b0ef1fe
LJ
6535/* Any regular or high memory on that node ? */
6536static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6537{
37b07e41
LS
6538 enum zone_type zone_type;
6539
4b0ef1fe
LJ
6540 if (N_MEMORY == N_NORMAL_MEMORY)
6541 return;
6542
6543 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6544 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6545 if (populated_zone(zone)) {
4b0ef1fe
LJ
6546 node_set_state(nid, N_HIGH_MEMORY);
6547 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6548 zone_type <= ZONE_NORMAL)
6549 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6550 break;
6551 }
37b07e41 6552 }
37b07e41
LS
6553}
6554
c713216d
MG
6555/**
6556 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6557 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6558 *
6559 * This will call free_area_init_node() for each active node in the system.
7d018176 6560 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6561 * zone in each node and their holes is calculated. If the maximum PFN
6562 * between two adjacent zones match, it is assumed that the zone is empty.
6563 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6564 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6565 * starts where the previous one ended. For example, ZONE_DMA32 starts
6566 * at arch_max_dma_pfn.
6567 */
6568void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6569{
c13291a5
TH
6570 unsigned long start_pfn, end_pfn;
6571 int i, nid;
a6af2bc3 6572
c713216d
MG
6573 /* Record where the zone boundaries are */
6574 memset(arch_zone_lowest_possible_pfn, 0,
6575 sizeof(arch_zone_lowest_possible_pfn));
6576 memset(arch_zone_highest_possible_pfn, 0,
6577 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6578
6579 start_pfn = find_min_pfn_with_active_regions();
6580
6581 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6582 if (i == ZONE_MOVABLE)
6583 continue;
90cae1fe
OH
6584
6585 end_pfn = max(max_zone_pfn[i], start_pfn);
6586 arch_zone_lowest_possible_pfn[i] = start_pfn;
6587 arch_zone_highest_possible_pfn[i] = end_pfn;
6588
6589 start_pfn = end_pfn;
c713216d 6590 }
2a1e274a
MG
6591
6592 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6593 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6594 find_zone_movable_pfns_for_nodes();
c713216d 6595
c713216d 6596 /* Print out the zone ranges */
f88dfff5 6597 pr_info("Zone ranges:\n");
2a1e274a
MG
6598 for (i = 0; i < MAX_NR_ZONES; i++) {
6599 if (i == ZONE_MOVABLE)
6600 continue;
f88dfff5 6601 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6602 if (arch_zone_lowest_possible_pfn[i] ==
6603 arch_zone_highest_possible_pfn[i])
f88dfff5 6604 pr_cont("empty\n");
72f0ba02 6605 else
8d29e18a
JG
6606 pr_cont("[mem %#018Lx-%#018Lx]\n",
6607 (u64)arch_zone_lowest_possible_pfn[i]
6608 << PAGE_SHIFT,
6609 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6610 << PAGE_SHIFT) - 1);
2a1e274a
MG
6611 }
6612
6613 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6614 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6615 for (i = 0; i < MAX_NUMNODES; i++) {
6616 if (zone_movable_pfn[i])
8d29e18a
JG
6617 pr_info(" Node %d: %#018Lx\n", i,
6618 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6619 }
c713216d 6620
f2d52fe5 6621 /* Print out the early node map */
f88dfff5 6622 pr_info("Early memory node ranges\n");
c13291a5 6623 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6624 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6625 (u64)start_pfn << PAGE_SHIFT,
6626 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6627
6628 /* Initialise every node */
708614e6 6629 mminit_verify_pageflags_layout();
8ef82866 6630 setup_nr_node_ids();
c713216d
MG
6631 for_each_online_node(nid) {
6632 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6633 free_area_init_node(nid, NULL,
c713216d 6634 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6635
6636 /* Any memory on that node */
6637 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6638 node_set_state(nid, N_MEMORY);
6639 check_for_memory(pgdat, nid);
c713216d
MG
6640 }
6641}
2a1e274a 6642
7e63efef 6643static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6644{
6645 unsigned long long coremem;
6646 if (!p)
6647 return -EINVAL;
6648
6649 coremem = memparse(p, &p);
7e63efef 6650 *core = coremem >> PAGE_SHIFT;
2a1e274a 6651
7e63efef 6652 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6653 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6654
6655 return 0;
6656}
ed7ed365 6657
7e63efef
MG
6658/*
6659 * kernelcore=size sets the amount of memory for use for allocations that
6660 * cannot be reclaimed or migrated.
6661 */
6662static int __init cmdline_parse_kernelcore(char *p)
6663{
342332e6
TI
6664 /* parse kernelcore=mirror */
6665 if (parse_option_str(p, "mirror")) {
6666 mirrored_kernelcore = true;
6667 return 0;
6668 }
6669
7e63efef
MG
6670 return cmdline_parse_core(p, &required_kernelcore);
6671}
6672
6673/*
6674 * movablecore=size sets the amount of memory for use for allocations that
6675 * can be reclaimed or migrated.
6676 */
6677static int __init cmdline_parse_movablecore(char *p)
6678{
6679 return cmdline_parse_core(p, &required_movablecore);
6680}
6681
ed7ed365 6682early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6683early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6684
0ee332c1 6685#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6686
c3d5f5f0
JL
6687void adjust_managed_page_count(struct page *page, long count)
6688{
6689 spin_lock(&managed_page_count_lock);
6690 page_zone(page)->managed_pages += count;
6691 totalram_pages += count;
3dcc0571
JL
6692#ifdef CONFIG_HIGHMEM
6693 if (PageHighMem(page))
6694 totalhigh_pages += count;
6695#endif
c3d5f5f0
JL
6696 spin_unlock(&managed_page_count_lock);
6697}
3dcc0571 6698EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6699
11199692 6700unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6701{
11199692
JL
6702 void *pos;
6703 unsigned long pages = 0;
69afade7 6704
11199692
JL
6705 start = (void *)PAGE_ALIGN((unsigned long)start);
6706 end = (void *)((unsigned long)end & PAGE_MASK);
6707 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6708 if ((unsigned int)poison <= 0xFF)
11199692
JL
6709 memset(pos, poison, PAGE_SIZE);
6710 free_reserved_page(virt_to_page(pos));
69afade7
JL
6711 }
6712
6713 if (pages && s)
adb1fe9a
JP
6714 pr_info("Freeing %s memory: %ldK\n",
6715 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6716
6717 return pages;
6718}
11199692 6719EXPORT_SYMBOL(free_reserved_area);
69afade7 6720
cfa11e08
JL
6721#ifdef CONFIG_HIGHMEM
6722void free_highmem_page(struct page *page)
6723{
6724 __free_reserved_page(page);
6725 totalram_pages++;
7b4b2a0d 6726 page_zone(page)->managed_pages++;
cfa11e08
JL
6727 totalhigh_pages++;
6728}
6729#endif
6730
7ee3d4e8
JL
6731
6732void __init mem_init_print_info(const char *str)
6733{
6734 unsigned long physpages, codesize, datasize, rosize, bss_size;
6735 unsigned long init_code_size, init_data_size;
6736
6737 physpages = get_num_physpages();
6738 codesize = _etext - _stext;
6739 datasize = _edata - _sdata;
6740 rosize = __end_rodata - __start_rodata;
6741 bss_size = __bss_stop - __bss_start;
6742 init_data_size = __init_end - __init_begin;
6743 init_code_size = _einittext - _sinittext;
6744
6745 /*
6746 * Detect special cases and adjust section sizes accordingly:
6747 * 1) .init.* may be embedded into .data sections
6748 * 2) .init.text.* may be out of [__init_begin, __init_end],
6749 * please refer to arch/tile/kernel/vmlinux.lds.S.
6750 * 3) .rodata.* may be embedded into .text or .data sections.
6751 */
6752#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6753 do { \
6754 if (start <= pos && pos < end && size > adj) \
6755 size -= adj; \
6756 } while (0)
7ee3d4e8
JL
6757
6758 adj_init_size(__init_begin, __init_end, init_data_size,
6759 _sinittext, init_code_size);
6760 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6761 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6762 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6763 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6764
6765#undef adj_init_size
6766
756a025f 6767 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6768#ifdef CONFIG_HIGHMEM
756a025f 6769 ", %luK highmem"
7ee3d4e8 6770#endif
756a025f
JP
6771 "%s%s)\n",
6772 nr_free_pages() << (PAGE_SHIFT - 10),
6773 physpages << (PAGE_SHIFT - 10),
6774 codesize >> 10, datasize >> 10, rosize >> 10,
6775 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6776 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6777 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6778#ifdef CONFIG_HIGHMEM
756a025f 6779 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6780#endif
756a025f 6781 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6782}
6783
0e0b864e 6784/**
88ca3b94
RD
6785 * set_dma_reserve - set the specified number of pages reserved in the first zone
6786 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6787 *
013110a7 6788 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6789 * In the DMA zone, a significant percentage may be consumed by kernel image
6790 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6791 * function may optionally be used to account for unfreeable pages in the
6792 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6793 * smaller per-cpu batchsize.
0e0b864e
MG
6794 */
6795void __init set_dma_reserve(unsigned long new_dma_reserve)
6796{
6797 dma_reserve = new_dma_reserve;
6798}
6799
1da177e4
LT
6800void __init free_area_init(unsigned long *zones_size)
6801{
9109fb7b 6802 free_area_init_node(0, zones_size,
1da177e4
LT
6803 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6804}
1da177e4 6805
005fd4bb 6806static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6807{
1da177e4 6808
005fd4bb
SAS
6809 lru_add_drain_cpu(cpu);
6810 drain_pages(cpu);
9f8f2172 6811
005fd4bb
SAS
6812 /*
6813 * Spill the event counters of the dead processor
6814 * into the current processors event counters.
6815 * This artificially elevates the count of the current
6816 * processor.
6817 */
6818 vm_events_fold_cpu(cpu);
9f8f2172 6819
005fd4bb
SAS
6820 /*
6821 * Zero the differential counters of the dead processor
6822 * so that the vm statistics are consistent.
6823 *
6824 * This is only okay since the processor is dead and cannot
6825 * race with what we are doing.
6826 */
6827 cpu_vm_stats_fold(cpu);
6828 return 0;
1da177e4 6829}
1da177e4
LT
6830
6831void __init page_alloc_init(void)
6832{
005fd4bb
SAS
6833 int ret;
6834
6835 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6836 "mm/page_alloc:dead", NULL,
6837 page_alloc_cpu_dead);
6838 WARN_ON(ret < 0);
1da177e4
LT
6839}
6840
cb45b0e9 6841/*
34b10060 6842 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6843 * or min_free_kbytes changes.
6844 */
6845static void calculate_totalreserve_pages(void)
6846{
6847 struct pglist_data *pgdat;
6848 unsigned long reserve_pages = 0;
2f6726e5 6849 enum zone_type i, j;
cb45b0e9
HA
6850
6851 for_each_online_pgdat(pgdat) {
281e3726
MG
6852
6853 pgdat->totalreserve_pages = 0;
6854
cb45b0e9
HA
6855 for (i = 0; i < MAX_NR_ZONES; i++) {
6856 struct zone *zone = pgdat->node_zones + i;
3484b2de 6857 long max = 0;
cb45b0e9
HA
6858
6859 /* Find valid and maximum lowmem_reserve in the zone */
6860 for (j = i; j < MAX_NR_ZONES; j++) {
6861 if (zone->lowmem_reserve[j] > max)
6862 max = zone->lowmem_reserve[j];
6863 }
6864
41858966
MG
6865 /* we treat the high watermark as reserved pages. */
6866 max += high_wmark_pages(zone);
cb45b0e9 6867
b40da049
JL
6868 if (max > zone->managed_pages)
6869 max = zone->managed_pages;
a8d01437 6870
281e3726 6871 pgdat->totalreserve_pages += max;
a8d01437 6872
cb45b0e9
HA
6873 reserve_pages += max;
6874 }
6875 }
6876 totalreserve_pages = reserve_pages;
6877}
6878
1da177e4
LT
6879/*
6880 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6881 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6882 * has a correct pages reserved value, so an adequate number of
6883 * pages are left in the zone after a successful __alloc_pages().
6884 */
6885static void setup_per_zone_lowmem_reserve(void)
6886{
6887 struct pglist_data *pgdat;
2f6726e5 6888 enum zone_type j, idx;
1da177e4 6889
ec936fc5 6890 for_each_online_pgdat(pgdat) {
1da177e4
LT
6891 for (j = 0; j < MAX_NR_ZONES; j++) {
6892 struct zone *zone = pgdat->node_zones + j;
b40da049 6893 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6894
6895 zone->lowmem_reserve[j] = 0;
6896
2f6726e5
CL
6897 idx = j;
6898 while (idx) {
1da177e4
LT
6899 struct zone *lower_zone;
6900
2f6726e5
CL
6901 idx--;
6902
1da177e4
LT
6903 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6904 sysctl_lowmem_reserve_ratio[idx] = 1;
6905
6906 lower_zone = pgdat->node_zones + idx;
b40da049 6907 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6908 sysctl_lowmem_reserve_ratio[idx];
b40da049 6909 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6910 }
6911 }
6912 }
cb45b0e9
HA
6913
6914 /* update totalreserve_pages */
6915 calculate_totalreserve_pages();
1da177e4
LT
6916}
6917
cfd3da1e 6918static void __setup_per_zone_wmarks(void)
1da177e4
LT
6919{
6920 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6921 unsigned long lowmem_pages = 0;
6922 struct zone *zone;
6923 unsigned long flags;
6924
6925 /* Calculate total number of !ZONE_HIGHMEM pages */
6926 for_each_zone(zone) {
6927 if (!is_highmem(zone))
b40da049 6928 lowmem_pages += zone->managed_pages;
1da177e4
LT
6929 }
6930
6931 for_each_zone(zone) {
ac924c60
AM
6932 u64 tmp;
6933
1125b4e3 6934 spin_lock_irqsave(&zone->lock, flags);
b40da049 6935 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6936 do_div(tmp, lowmem_pages);
1da177e4
LT
6937 if (is_highmem(zone)) {
6938 /*
669ed175
NP
6939 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6940 * need highmem pages, so cap pages_min to a small
6941 * value here.
6942 *
41858966 6943 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6944 * deltas control asynch page reclaim, and so should
669ed175 6945 * not be capped for highmem.
1da177e4 6946 */
90ae8d67 6947 unsigned long min_pages;
1da177e4 6948
b40da049 6949 min_pages = zone->managed_pages / 1024;
90ae8d67 6950 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6951 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6952 } else {
669ed175
NP
6953 /*
6954 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6955 * proportionate to the zone's size.
6956 */
41858966 6957 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6958 }
6959
795ae7a0
JW
6960 /*
6961 * Set the kswapd watermarks distance according to the
6962 * scale factor in proportion to available memory, but
6963 * ensure a minimum size on small systems.
6964 */
6965 tmp = max_t(u64, tmp >> 2,
6966 mult_frac(zone->managed_pages,
6967 watermark_scale_factor, 10000));
6968
6969 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6970 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6971
1125b4e3 6972 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6973 }
cb45b0e9
HA
6974
6975 /* update totalreserve_pages */
6976 calculate_totalreserve_pages();
1da177e4
LT
6977}
6978
cfd3da1e
MG
6979/**
6980 * setup_per_zone_wmarks - called when min_free_kbytes changes
6981 * or when memory is hot-{added|removed}
6982 *
6983 * Ensures that the watermark[min,low,high] values for each zone are set
6984 * correctly with respect to min_free_kbytes.
6985 */
6986void setup_per_zone_wmarks(void)
6987{
b93e0f32
MH
6988 static DEFINE_SPINLOCK(lock);
6989
6990 spin_lock(&lock);
cfd3da1e 6991 __setup_per_zone_wmarks();
b93e0f32 6992 spin_unlock(&lock);
cfd3da1e
MG
6993}
6994
1da177e4
LT
6995/*
6996 * Initialise min_free_kbytes.
6997 *
6998 * For small machines we want it small (128k min). For large machines
6999 * we want it large (64MB max). But it is not linear, because network
7000 * bandwidth does not increase linearly with machine size. We use
7001 *
b8af2941 7002 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7003 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7004 *
7005 * which yields
7006 *
7007 * 16MB: 512k
7008 * 32MB: 724k
7009 * 64MB: 1024k
7010 * 128MB: 1448k
7011 * 256MB: 2048k
7012 * 512MB: 2896k
7013 * 1024MB: 4096k
7014 * 2048MB: 5792k
7015 * 4096MB: 8192k
7016 * 8192MB: 11584k
7017 * 16384MB: 16384k
7018 */
1b79acc9 7019int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7020{
7021 unsigned long lowmem_kbytes;
5f12733e 7022 int new_min_free_kbytes;
1da177e4
LT
7023
7024 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7025 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7026
7027 if (new_min_free_kbytes > user_min_free_kbytes) {
7028 min_free_kbytes = new_min_free_kbytes;
7029 if (min_free_kbytes < 128)
7030 min_free_kbytes = 128;
7031 if (min_free_kbytes > 65536)
7032 min_free_kbytes = 65536;
7033 } else {
7034 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7035 new_min_free_kbytes, user_min_free_kbytes);
7036 }
bc75d33f 7037 setup_per_zone_wmarks();
a6cccdc3 7038 refresh_zone_stat_thresholds();
1da177e4 7039 setup_per_zone_lowmem_reserve();
6423aa81
JK
7040
7041#ifdef CONFIG_NUMA
7042 setup_min_unmapped_ratio();
7043 setup_min_slab_ratio();
7044#endif
7045
1da177e4
LT
7046 return 0;
7047}
bc22af74 7048core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7049
7050/*
b8af2941 7051 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7052 * that we can call two helper functions whenever min_free_kbytes
7053 * changes.
7054 */
cccad5b9 7055int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7056 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7057{
da8c757b
HP
7058 int rc;
7059
7060 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7061 if (rc)
7062 return rc;
7063
5f12733e
MH
7064 if (write) {
7065 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7066 setup_per_zone_wmarks();
5f12733e 7067 }
1da177e4
LT
7068 return 0;
7069}
7070
795ae7a0
JW
7071int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7072 void __user *buffer, size_t *length, loff_t *ppos)
7073{
7074 int rc;
7075
7076 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7077 if (rc)
7078 return rc;
7079
7080 if (write)
7081 setup_per_zone_wmarks();
7082
7083 return 0;
7084}
7085
9614634f 7086#ifdef CONFIG_NUMA
6423aa81 7087static void setup_min_unmapped_ratio(void)
9614634f 7088{
6423aa81 7089 pg_data_t *pgdat;
9614634f 7090 struct zone *zone;
9614634f 7091
a5f5f91d 7092 for_each_online_pgdat(pgdat)
81cbcbc2 7093 pgdat->min_unmapped_pages = 0;
a5f5f91d 7094
9614634f 7095 for_each_zone(zone)
a5f5f91d 7096 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7097 sysctl_min_unmapped_ratio) / 100;
9614634f 7098}
0ff38490 7099
6423aa81
JK
7100
7101int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7102 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7103{
0ff38490
CL
7104 int rc;
7105
8d65af78 7106 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7107 if (rc)
7108 return rc;
7109
6423aa81
JK
7110 setup_min_unmapped_ratio();
7111
7112 return 0;
7113}
7114
7115static void setup_min_slab_ratio(void)
7116{
7117 pg_data_t *pgdat;
7118 struct zone *zone;
7119
a5f5f91d
MG
7120 for_each_online_pgdat(pgdat)
7121 pgdat->min_slab_pages = 0;
7122
0ff38490 7123 for_each_zone(zone)
a5f5f91d 7124 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7125 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7126}
7127
7128int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7129 void __user *buffer, size_t *length, loff_t *ppos)
7130{
7131 int rc;
7132
7133 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7134 if (rc)
7135 return rc;
7136
7137 setup_min_slab_ratio();
7138
0ff38490
CL
7139 return 0;
7140}
9614634f
CL
7141#endif
7142
1da177e4
LT
7143/*
7144 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7145 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7146 * whenever sysctl_lowmem_reserve_ratio changes.
7147 *
7148 * The reserve ratio obviously has absolutely no relation with the
41858966 7149 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7150 * if in function of the boot time zone sizes.
7151 */
cccad5b9 7152int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7153 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7154{
8d65af78 7155 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7156 setup_per_zone_lowmem_reserve();
7157 return 0;
7158}
7159
8ad4b1fb
RS
7160/*
7161 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7162 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7163 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7164 */
cccad5b9 7165int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7166 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7167{
7168 struct zone *zone;
7cd2b0a3 7169 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7170 int ret;
7171
7cd2b0a3
DR
7172 mutex_lock(&pcp_batch_high_lock);
7173 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7174
8d65af78 7175 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7176 if (!write || ret < 0)
7177 goto out;
7178
7179 /* Sanity checking to avoid pcp imbalance */
7180 if (percpu_pagelist_fraction &&
7181 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7182 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7183 ret = -EINVAL;
7184 goto out;
7185 }
7186
7187 /* No change? */
7188 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7189 goto out;
c8e251fa 7190
364df0eb 7191 for_each_populated_zone(zone) {
7cd2b0a3
DR
7192 unsigned int cpu;
7193
22a7f12b 7194 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7195 pageset_set_high_and_batch(zone,
7196 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7197 }
7cd2b0a3 7198out:
c8e251fa 7199 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7200 return ret;
8ad4b1fb
RS
7201}
7202
a9919c79 7203#ifdef CONFIG_NUMA
f034b5d4 7204int hashdist = HASHDIST_DEFAULT;
1da177e4 7205
1da177e4
LT
7206static int __init set_hashdist(char *str)
7207{
7208 if (!str)
7209 return 0;
7210 hashdist = simple_strtoul(str, &str, 0);
7211 return 1;
7212}
7213__setup("hashdist=", set_hashdist);
7214#endif
7215
f6f34b43
SD
7216#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7217/*
7218 * Returns the number of pages that arch has reserved but
7219 * is not known to alloc_large_system_hash().
7220 */
7221static unsigned long __init arch_reserved_kernel_pages(void)
7222{
7223 return 0;
7224}
7225#endif
7226
9017217b
PT
7227/*
7228 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7229 * machines. As memory size is increased the scale is also increased but at
7230 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7231 * quadruples the scale is increased by one, which means the size of hash table
7232 * only doubles, instead of quadrupling as well.
7233 * Because 32-bit systems cannot have large physical memory, where this scaling
7234 * makes sense, it is disabled on such platforms.
7235 */
7236#if __BITS_PER_LONG > 32
7237#define ADAPT_SCALE_BASE (64ul << 30)
7238#define ADAPT_SCALE_SHIFT 2
7239#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7240#endif
7241
1da177e4
LT
7242/*
7243 * allocate a large system hash table from bootmem
7244 * - it is assumed that the hash table must contain an exact power-of-2
7245 * quantity of entries
7246 * - limit is the number of hash buckets, not the total allocation size
7247 */
7248void *__init alloc_large_system_hash(const char *tablename,
7249 unsigned long bucketsize,
7250 unsigned long numentries,
7251 int scale,
7252 int flags,
7253 unsigned int *_hash_shift,
7254 unsigned int *_hash_mask,
31fe62b9
TB
7255 unsigned long low_limit,
7256 unsigned long high_limit)
1da177e4 7257{
31fe62b9 7258 unsigned long long max = high_limit;
1da177e4
LT
7259 unsigned long log2qty, size;
7260 void *table = NULL;
3749a8f0 7261 gfp_t gfp_flags;
1da177e4
LT
7262
7263 /* allow the kernel cmdline to have a say */
7264 if (!numentries) {
7265 /* round applicable memory size up to nearest megabyte */
04903664 7266 numentries = nr_kernel_pages;
f6f34b43 7267 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7268
7269 /* It isn't necessary when PAGE_SIZE >= 1MB */
7270 if (PAGE_SHIFT < 20)
7271 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7272
9017217b
PT
7273#if __BITS_PER_LONG > 32
7274 if (!high_limit) {
7275 unsigned long adapt;
7276
7277 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7278 adapt <<= ADAPT_SCALE_SHIFT)
7279 scale++;
7280 }
7281#endif
7282
1da177e4
LT
7283 /* limit to 1 bucket per 2^scale bytes of low memory */
7284 if (scale > PAGE_SHIFT)
7285 numentries >>= (scale - PAGE_SHIFT);
7286 else
7287 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7288
7289 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7290 if (unlikely(flags & HASH_SMALL)) {
7291 /* Makes no sense without HASH_EARLY */
7292 WARN_ON(!(flags & HASH_EARLY));
7293 if (!(numentries >> *_hash_shift)) {
7294 numentries = 1UL << *_hash_shift;
7295 BUG_ON(!numentries);
7296 }
7297 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7298 numentries = PAGE_SIZE / bucketsize;
1da177e4 7299 }
6e692ed3 7300 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7301
7302 /* limit allocation size to 1/16 total memory by default */
7303 if (max == 0) {
7304 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7305 do_div(max, bucketsize);
7306 }
074b8517 7307 max = min(max, 0x80000000ULL);
1da177e4 7308
31fe62b9
TB
7309 if (numentries < low_limit)
7310 numentries = low_limit;
1da177e4
LT
7311 if (numentries > max)
7312 numentries = max;
7313
f0d1b0b3 7314 log2qty = ilog2(numentries);
1da177e4 7315
3749a8f0 7316 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7317 do {
7318 size = bucketsize << log2qty;
ea1f5f37
PT
7319 if (flags & HASH_EARLY) {
7320 if (flags & HASH_ZERO)
7321 table = memblock_virt_alloc_nopanic(size, 0);
7322 else
7323 table = memblock_virt_alloc_raw(size, 0);
7324 } else if (hashdist) {
3749a8f0 7325 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7326 } else {
1037b83b
ED
7327 /*
7328 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7329 * some pages at the end of hash table which
7330 * alloc_pages_exact() automatically does
1037b83b 7331 */
264ef8a9 7332 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7333 table = alloc_pages_exact(size, gfp_flags);
7334 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7335 }
1da177e4
LT
7336 }
7337 } while (!table && size > PAGE_SIZE && --log2qty);
7338
7339 if (!table)
7340 panic("Failed to allocate %s hash table\n", tablename);
7341
1170532b
JP
7342 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7343 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7344
7345 if (_hash_shift)
7346 *_hash_shift = log2qty;
7347 if (_hash_mask)
7348 *_hash_mask = (1 << log2qty) - 1;
7349
7350 return table;
7351}
a117e66e 7352
a5d76b54 7353/*
80934513
MK
7354 * This function checks whether pageblock includes unmovable pages or not.
7355 * If @count is not zero, it is okay to include less @count unmovable pages
7356 *
b8af2941 7357 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7358 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7359 * check without lock_page also may miss some movable non-lru pages at
7360 * race condition. So you can't expect this function should be exact.
a5d76b54 7361 */
b023f468 7362bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7363 int migratetype,
b023f468 7364 bool skip_hwpoisoned_pages)
49ac8255
KH
7365{
7366 unsigned long pfn, iter, found;
47118af0 7367
49ac8255
KH
7368 /*
7369 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7370 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7371 */
7372 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7373 return false;
49ac8255 7374
4da2ce25
MH
7375 /*
7376 * CMA allocations (alloc_contig_range) really need to mark isolate
7377 * CMA pageblocks even when they are not movable in fact so consider
7378 * them movable here.
7379 */
7380 if (is_migrate_cma(migratetype) &&
7381 is_migrate_cma(get_pageblock_migratetype(page)))
7382 return false;
7383
49ac8255
KH
7384 pfn = page_to_pfn(page);
7385 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7386 unsigned long check = pfn + iter;
7387
29723fcc 7388 if (!pfn_valid_within(check))
49ac8255 7389 continue;
29723fcc 7390
49ac8255 7391 page = pfn_to_page(check);
c8721bbb 7392
d7ab3672
MH
7393 if (PageReserved(page))
7394 return true;
7395
c8721bbb
NH
7396 /*
7397 * Hugepages are not in LRU lists, but they're movable.
7398 * We need not scan over tail pages bacause we don't
7399 * handle each tail page individually in migration.
7400 */
7401 if (PageHuge(page)) {
7402 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7403 continue;
7404 }
7405
97d255c8
MK
7406 /*
7407 * We can't use page_count without pin a page
7408 * because another CPU can free compound page.
7409 * This check already skips compound tails of THP
0139aa7b 7410 * because their page->_refcount is zero at all time.
97d255c8 7411 */
fe896d18 7412 if (!page_ref_count(page)) {
49ac8255
KH
7413 if (PageBuddy(page))
7414 iter += (1 << page_order(page)) - 1;
7415 continue;
7416 }
97d255c8 7417
b023f468
WC
7418 /*
7419 * The HWPoisoned page may be not in buddy system, and
7420 * page_count() is not 0.
7421 */
7422 if (skip_hwpoisoned_pages && PageHWPoison(page))
7423 continue;
7424
0efadf48
YX
7425 if (__PageMovable(page))
7426 continue;
7427
49ac8255
KH
7428 if (!PageLRU(page))
7429 found++;
7430 /*
6b4f7799
JW
7431 * If there are RECLAIMABLE pages, we need to check
7432 * it. But now, memory offline itself doesn't call
7433 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7434 */
7435 /*
7436 * If the page is not RAM, page_count()should be 0.
7437 * we don't need more check. This is an _used_ not-movable page.
7438 *
7439 * The problematic thing here is PG_reserved pages. PG_reserved
7440 * is set to both of a memory hole page and a _used_ kernel
7441 * page at boot.
7442 */
7443 if (found > count)
80934513 7444 return true;
49ac8255 7445 }
80934513 7446 return false;
49ac8255
KH
7447}
7448
7449bool is_pageblock_removable_nolock(struct page *page)
7450{
656a0706
MH
7451 struct zone *zone;
7452 unsigned long pfn;
687875fb
MH
7453
7454 /*
7455 * We have to be careful here because we are iterating over memory
7456 * sections which are not zone aware so we might end up outside of
7457 * the zone but still within the section.
656a0706
MH
7458 * We have to take care about the node as well. If the node is offline
7459 * its NODE_DATA will be NULL - see page_zone.
687875fb 7460 */
656a0706
MH
7461 if (!node_online(page_to_nid(page)))
7462 return false;
7463
7464 zone = page_zone(page);
7465 pfn = page_to_pfn(page);
108bcc96 7466 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7467 return false;
7468
4da2ce25 7469 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7470}
0c0e6195 7471
080fe206 7472#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7473
7474static unsigned long pfn_max_align_down(unsigned long pfn)
7475{
7476 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7477 pageblock_nr_pages) - 1);
7478}
7479
7480static unsigned long pfn_max_align_up(unsigned long pfn)
7481{
7482 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7483 pageblock_nr_pages));
7484}
7485
041d3a8c 7486/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7487static int __alloc_contig_migrate_range(struct compact_control *cc,
7488 unsigned long start, unsigned long end)
041d3a8c
MN
7489{
7490 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7491 unsigned long nr_reclaimed;
041d3a8c
MN
7492 unsigned long pfn = start;
7493 unsigned int tries = 0;
7494 int ret = 0;
7495
be49a6e1 7496 migrate_prep();
041d3a8c 7497
bb13ffeb 7498 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7499 if (fatal_signal_pending(current)) {
7500 ret = -EINTR;
7501 break;
7502 }
7503
bb13ffeb
MG
7504 if (list_empty(&cc->migratepages)) {
7505 cc->nr_migratepages = 0;
edc2ca61 7506 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7507 if (!pfn) {
7508 ret = -EINTR;
7509 break;
7510 }
7511 tries = 0;
7512 } else if (++tries == 5) {
7513 ret = ret < 0 ? ret : -EBUSY;
7514 break;
7515 }
7516
beb51eaa
MK
7517 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7518 &cc->migratepages);
7519 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7520
9c620e2b 7521 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7522 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7523 }
2a6f5124
SP
7524 if (ret < 0) {
7525 putback_movable_pages(&cc->migratepages);
7526 return ret;
7527 }
7528 return 0;
041d3a8c
MN
7529}
7530
7531/**
7532 * alloc_contig_range() -- tries to allocate given range of pages
7533 * @start: start PFN to allocate
7534 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7535 * @migratetype: migratetype of the underlaying pageblocks (either
7536 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7537 * in range must have the same migratetype and it must
7538 * be either of the two.
ca96b625 7539 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7540 *
7541 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7542 * aligned, however it's the caller's responsibility to guarantee that
7543 * we are the only thread that changes migrate type of pageblocks the
7544 * pages fall in.
7545 *
7546 * The PFN range must belong to a single zone.
7547 *
7548 * Returns zero on success or negative error code. On success all
7549 * pages which PFN is in [start, end) are allocated for the caller and
7550 * need to be freed with free_contig_range().
7551 */
0815f3d8 7552int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7553 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7554{
041d3a8c 7555 unsigned long outer_start, outer_end;
d00181b9
KS
7556 unsigned int order;
7557 int ret = 0;
041d3a8c 7558
bb13ffeb
MG
7559 struct compact_control cc = {
7560 .nr_migratepages = 0,
7561 .order = -1,
7562 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7563 .mode = MIGRATE_SYNC,
bb13ffeb 7564 .ignore_skip_hint = true,
7dea19f9 7565 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7566 };
7567 INIT_LIST_HEAD(&cc.migratepages);
7568
041d3a8c
MN
7569 /*
7570 * What we do here is we mark all pageblocks in range as
7571 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7572 * have different sizes, and due to the way page allocator
7573 * work, we align the range to biggest of the two pages so
7574 * that page allocator won't try to merge buddies from
7575 * different pageblocks and change MIGRATE_ISOLATE to some
7576 * other migration type.
7577 *
7578 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7579 * migrate the pages from an unaligned range (ie. pages that
7580 * we are interested in). This will put all the pages in
7581 * range back to page allocator as MIGRATE_ISOLATE.
7582 *
7583 * When this is done, we take the pages in range from page
7584 * allocator removing them from the buddy system. This way
7585 * page allocator will never consider using them.
7586 *
7587 * This lets us mark the pageblocks back as
7588 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7589 * aligned range but not in the unaligned, original range are
7590 * put back to page allocator so that buddy can use them.
7591 */
7592
7593 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7594 pfn_max_align_up(end), migratetype,
7595 false);
041d3a8c 7596 if (ret)
86a595f9 7597 return ret;
041d3a8c 7598
8ef5849f
JK
7599 /*
7600 * In case of -EBUSY, we'd like to know which page causes problem.
7601 * So, just fall through. We will check it in test_pages_isolated().
7602 */
bb13ffeb 7603 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7604 if (ret && ret != -EBUSY)
041d3a8c
MN
7605 goto done;
7606
7607 /*
7608 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7609 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7610 * more, all pages in [start, end) are free in page allocator.
7611 * What we are going to do is to allocate all pages from
7612 * [start, end) (that is remove them from page allocator).
7613 *
7614 * The only problem is that pages at the beginning and at the
7615 * end of interesting range may be not aligned with pages that
7616 * page allocator holds, ie. they can be part of higher order
7617 * pages. Because of this, we reserve the bigger range and
7618 * once this is done free the pages we are not interested in.
7619 *
7620 * We don't have to hold zone->lock here because the pages are
7621 * isolated thus they won't get removed from buddy.
7622 */
7623
7624 lru_add_drain_all();
510f5507 7625 drain_all_pages(cc.zone);
041d3a8c
MN
7626
7627 order = 0;
7628 outer_start = start;
7629 while (!PageBuddy(pfn_to_page(outer_start))) {
7630 if (++order >= MAX_ORDER) {
8ef5849f
JK
7631 outer_start = start;
7632 break;
041d3a8c
MN
7633 }
7634 outer_start &= ~0UL << order;
7635 }
7636
8ef5849f
JK
7637 if (outer_start != start) {
7638 order = page_order(pfn_to_page(outer_start));
7639
7640 /*
7641 * outer_start page could be small order buddy page and
7642 * it doesn't include start page. Adjust outer_start
7643 * in this case to report failed page properly
7644 * on tracepoint in test_pages_isolated()
7645 */
7646 if (outer_start + (1UL << order) <= start)
7647 outer_start = start;
7648 }
7649
041d3a8c 7650 /* Make sure the range is really isolated. */
b023f468 7651 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7652 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7653 __func__, outer_start, end);
041d3a8c
MN
7654 ret = -EBUSY;
7655 goto done;
7656 }
7657
49f223a9 7658 /* Grab isolated pages from freelists. */
bb13ffeb 7659 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7660 if (!outer_end) {
7661 ret = -EBUSY;
7662 goto done;
7663 }
7664
7665 /* Free head and tail (if any) */
7666 if (start != outer_start)
7667 free_contig_range(outer_start, start - outer_start);
7668 if (end != outer_end)
7669 free_contig_range(end, outer_end - end);
7670
7671done:
7672 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7673 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7674 return ret;
7675}
7676
7677void free_contig_range(unsigned long pfn, unsigned nr_pages)
7678{
bcc2b02f
MS
7679 unsigned int count = 0;
7680
7681 for (; nr_pages--; pfn++) {
7682 struct page *page = pfn_to_page(pfn);
7683
7684 count += page_count(page) != 1;
7685 __free_page(page);
7686 }
7687 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7688}
7689#endif
7690
4ed7e022 7691#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7692/*
7693 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7694 * page high values need to be recalulated.
7695 */
4ed7e022
JL
7696void __meminit zone_pcp_update(struct zone *zone)
7697{
0a647f38 7698 unsigned cpu;
c8e251fa 7699 mutex_lock(&pcp_batch_high_lock);
0a647f38 7700 for_each_possible_cpu(cpu)
169f6c19
CS
7701 pageset_set_high_and_batch(zone,
7702 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7703 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7704}
7705#endif
7706
340175b7
JL
7707void zone_pcp_reset(struct zone *zone)
7708{
7709 unsigned long flags;
5a883813
MK
7710 int cpu;
7711 struct per_cpu_pageset *pset;
340175b7
JL
7712
7713 /* avoid races with drain_pages() */
7714 local_irq_save(flags);
7715 if (zone->pageset != &boot_pageset) {
5a883813
MK
7716 for_each_online_cpu(cpu) {
7717 pset = per_cpu_ptr(zone->pageset, cpu);
7718 drain_zonestat(zone, pset);
7719 }
340175b7
JL
7720 free_percpu(zone->pageset);
7721 zone->pageset = &boot_pageset;
7722 }
7723 local_irq_restore(flags);
7724}
7725
6dcd73d7 7726#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7727/*
b9eb6319
JK
7728 * All pages in the range must be in a single zone and isolated
7729 * before calling this.
0c0e6195
KH
7730 */
7731void
7732__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7733{
7734 struct page *page;
7735 struct zone *zone;
7aeb09f9 7736 unsigned int order, i;
0c0e6195
KH
7737 unsigned long pfn;
7738 unsigned long flags;
7739 /* find the first valid pfn */
7740 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7741 if (pfn_valid(pfn))
7742 break;
7743 if (pfn == end_pfn)
7744 return;
2d070eab 7745 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7746 zone = page_zone(pfn_to_page(pfn));
7747 spin_lock_irqsave(&zone->lock, flags);
7748 pfn = start_pfn;
7749 while (pfn < end_pfn) {
7750 if (!pfn_valid(pfn)) {
7751 pfn++;
7752 continue;
7753 }
7754 page = pfn_to_page(pfn);
b023f468
WC
7755 /*
7756 * The HWPoisoned page may be not in buddy system, and
7757 * page_count() is not 0.
7758 */
7759 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7760 pfn++;
7761 SetPageReserved(page);
7762 continue;
7763 }
7764
0c0e6195
KH
7765 BUG_ON(page_count(page));
7766 BUG_ON(!PageBuddy(page));
7767 order = page_order(page);
7768#ifdef CONFIG_DEBUG_VM
1170532b
JP
7769 pr_info("remove from free list %lx %d %lx\n",
7770 pfn, 1 << order, end_pfn);
0c0e6195
KH
7771#endif
7772 list_del(&page->lru);
7773 rmv_page_order(page);
7774 zone->free_area[order].nr_free--;
0c0e6195
KH
7775 for (i = 0; i < (1 << order); i++)
7776 SetPageReserved((page+i));
7777 pfn += (1 << order);
7778 }
7779 spin_unlock_irqrestore(&zone->lock, flags);
7780}
7781#endif
8d22ba1b 7782
8d22ba1b
WF
7783bool is_free_buddy_page(struct page *page)
7784{
7785 struct zone *zone = page_zone(page);
7786 unsigned long pfn = page_to_pfn(page);
7787 unsigned long flags;
7aeb09f9 7788 unsigned int order;
8d22ba1b
WF
7789
7790 spin_lock_irqsave(&zone->lock, flags);
7791 for (order = 0; order < MAX_ORDER; order++) {
7792 struct page *page_head = page - (pfn & ((1 << order) - 1));
7793
7794 if (PageBuddy(page_head) && page_order(page_head) >= order)
7795 break;
7796 }
7797 spin_unlock_irqrestore(&zone->lock, flags);
7798
7799 return order < MAX_ORDER;
7800}