]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm, compaction: pass classzone_idx and alloc_flags to watermark checking
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
c0a32fc5 59#include <linux/page-debug-flags.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4 62
7ee3d4e8 63#include <asm/sections.h>
1da177e4 64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 70#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 86int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
7aeb09f9
MG
412static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
17cf4406
NP
414{
415 int i;
416
6626c5d5
AM
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
725d704e 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424}
425
c0a32fc5
SG
426#ifdef CONFIG_DEBUG_PAGEALLOC
427unsigned int _debug_guardpage_minorder;
428
429static int __init debug_guardpage_minorder_setup(char *buf)
430{
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440}
441__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443static inline void set_page_guard_flag(struct page *page)
444{
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446}
447
448static inline void clear_page_guard_flag(struct page *page)
449{
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451}
452#else
453static inline void set_page_guard_flag(struct page *page) { }
454static inline void clear_page_guard_flag(struct page *page) { }
455#endif
456
7aeb09f9 457static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 458{
4c21e2f2 459 set_page_private(page, order);
676165a8 460 __SetPageBuddy(page);
1da177e4
LT
461}
462
463static inline void rmv_page_order(struct page *page)
464{
676165a8 465 __ClearPageBuddy(page);
4c21e2f2 466 set_page_private(page, 0);
1da177e4
LT
467}
468
1da177e4
LT
469/*
470 * This function checks whether a page is free && is the buddy
471 * we can do coalesce a page and its buddy if
13e7444b 472 * (a) the buddy is not in a hole &&
676165a8 473 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
474 * (c) a page and its buddy have the same order &&
475 * (d) a page and its buddy are in the same zone.
676165a8 476 *
cf6fe945
WSH
477 * For recording whether a page is in the buddy system, we set ->_mapcount
478 * PAGE_BUDDY_MAPCOUNT_VALUE.
479 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
480 * serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1 484static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 485 unsigned int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
c0a32fc5 490 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 491 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
492
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
c0a32fc5
SG
496 return 1;
497 }
498
cb2b95e1 499 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 500 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
501
502 /*
503 * zone check is done late to avoid uselessly
504 * calculating zone/node ids for pages that could
505 * never merge.
506 */
507 if (page_zone_id(page) != page_zone_id(buddy))
508 return 0;
509
6aa3001b 510 return 1;
676165a8 511 }
6aa3001b 512 return 0;
1da177e4
LT
513}
514
515/*
516 * Freeing function for a buddy system allocator.
517 *
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
528 * free pages of length of (1 << order) and marked with _mapcount
529 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
530 * field.
1da177e4 531 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
532 * other. That is, if we allocate a small block, and both were
533 * free, the remainder of the region must be split into blocks.
1da177e4 534 * If a block is freed, and its buddy is also free, then this
5f63b720 535 * triggers coalescing into a block of larger size.
1da177e4 536 *
6d49e352 537 * -- nyc
1da177e4
LT
538 */
539
48db57f8 540static inline void __free_one_page(struct page *page,
dc4b0caf 541 unsigned long pfn,
ed0ae21d
MG
542 struct zone *zone, unsigned int order,
543 int migratetype)
1da177e4
LT
544{
545 unsigned long page_idx;
6dda9d55 546 unsigned long combined_idx;
43506fad 547 unsigned long uninitialized_var(buddy_idx);
6dda9d55 548 struct page *buddy;
3c605096 549 int max_order = MAX_ORDER;
1da177e4 550
d29bb978
CS
551 VM_BUG_ON(!zone_is_initialized(zone));
552
224abf92 553 if (unlikely(PageCompound(page)))
8cc3b392
HD
554 if (unlikely(destroy_compound_page(page, order)))
555 return;
1da177e4 556
ed0ae21d 557 VM_BUG_ON(migratetype == -1);
3c605096
JK
558 if (is_migrate_isolate(migratetype)) {
559 /*
560 * We restrict max order of merging to prevent merge
561 * between freepages on isolate pageblock and normal
562 * pageblock. Without this, pageblock isolation
563 * could cause incorrect freepage accounting.
564 */
565 max_order = min(MAX_ORDER, pageblock_order + 1);
566 } else {
8f82b55d 567 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 568 }
ed0ae21d 569
3c605096 570 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 571
309381fe
SL
572 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
573 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 574
3c605096 575 while (order < max_order - 1) {
43506fad
KC
576 buddy_idx = __find_buddy_index(page_idx, order);
577 buddy = page + (buddy_idx - page_idx);
cb2b95e1 578 if (!page_is_buddy(page, buddy, order))
3c82d0ce 579 break;
c0a32fc5
SG
580 /*
581 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
582 * merge with it and move up one order.
583 */
584 if (page_is_guard(buddy)) {
585 clear_page_guard_flag(buddy);
57cbc87e
JK
586 set_page_private(buddy, 0);
587 if (!is_migrate_isolate(migratetype)) {
588 __mod_zone_freepage_state(zone, 1 << order,
589 migratetype);
590 }
c0a32fc5
SG
591 } else {
592 list_del(&buddy->lru);
593 zone->free_area[order].nr_free--;
594 rmv_page_order(buddy);
595 }
43506fad 596 combined_idx = buddy_idx & page_idx;
1da177e4
LT
597 page = page + (combined_idx - page_idx);
598 page_idx = combined_idx;
599 order++;
600 }
601 set_page_order(page, order);
6dda9d55
CZ
602
603 /*
604 * If this is not the largest possible page, check if the buddy
605 * of the next-highest order is free. If it is, it's possible
606 * that pages are being freed that will coalesce soon. In case,
607 * that is happening, add the free page to the tail of the list
608 * so it's less likely to be used soon and more likely to be merged
609 * as a higher order page
610 */
b7f50cfa 611 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 612 struct page *higher_page, *higher_buddy;
43506fad
KC
613 combined_idx = buddy_idx & page_idx;
614 higher_page = page + (combined_idx - page_idx);
615 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 616 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
617 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
618 list_add_tail(&page->lru,
619 &zone->free_area[order].free_list[migratetype]);
620 goto out;
621 }
622 }
623
624 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
625out:
1da177e4
LT
626 zone->free_area[order].nr_free++;
627}
628
224abf92 629static inline int free_pages_check(struct page *page)
1da177e4 630{
d230dec1 631 const char *bad_reason = NULL;
f0b791a3
DH
632 unsigned long bad_flags = 0;
633
634 if (unlikely(page_mapcount(page)))
635 bad_reason = "nonzero mapcount";
636 if (unlikely(page->mapping != NULL))
637 bad_reason = "non-NULL mapping";
638 if (unlikely(atomic_read(&page->_count) != 0))
639 bad_reason = "nonzero _count";
640 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
641 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
642 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
643 }
644 if (unlikely(mem_cgroup_bad_page_check(page)))
645 bad_reason = "cgroup check failed";
646 if (unlikely(bad_reason)) {
647 bad_page(page, bad_reason, bad_flags);
79f4b7bf 648 return 1;
8cc3b392 649 }
90572890 650 page_cpupid_reset_last(page);
79f4b7bf
HD
651 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
652 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
653 return 0;
1da177e4
LT
654}
655
656/*
5f8dcc21 657 * Frees a number of pages from the PCP lists
1da177e4 658 * Assumes all pages on list are in same zone, and of same order.
207f36ee 659 * count is the number of pages to free.
1da177e4
LT
660 *
661 * If the zone was previously in an "all pages pinned" state then look to
662 * see if this freeing clears that state.
663 *
664 * And clear the zone's pages_scanned counter, to hold off the "all pages are
665 * pinned" detection logic.
666 */
5f8dcc21
MG
667static void free_pcppages_bulk(struct zone *zone, int count,
668 struct per_cpu_pages *pcp)
1da177e4 669{
5f8dcc21 670 int migratetype = 0;
a6f9edd6 671 int batch_free = 0;
72853e29 672 int to_free = count;
0d5d823a 673 unsigned long nr_scanned;
5f8dcc21 674
c54ad30c 675 spin_lock(&zone->lock);
0d5d823a
MG
676 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
677 if (nr_scanned)
678 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 679
72853e29 680 while (to_free) {
48db57f8 681 struct page *page;
5f8dcc21
MG
682 struct list_head *list;
683
684 /*
a6f9edd6
MG
685 * Remove pages from lists in a round-robin fashion. A
686 * batch_free count is maintained that is incremented when an
687 * empty list is encountered. This is so more pages are freed
688 * off fuller lists instead of spinning excessively around empty
689 * lists
5f8dcc21
MG
690 */
691 do {
a6f9edd6 692 batch_free++;
5f8dcc21
MG
693 if (++migratetype == MIGRATE_PCPTYPES)
694 migratetype = 0;
695 list = &pcp->lists[migratetype];
696 } while (list_empty(list));
48db57f8 697
1d16871d
NK
698 /* This is the only non-empty list. Free them all. */
699 if (batch_free == MIGRATE_PCPTYPES)
700 batch_free = to_free;
701
a6f9edd6 702 do {
770c8aaa
BZ
703 int mt; /* migratetype of the to-be-freed page */
704
a6f9edd6
MG
705 page = list_entry(list->prev, struct page, lru);
706 /* must delete as __free_one_page list manipulates */
707 list_del(&page->lru);
b12c4ad1 708 mt = get_freepage_migratetype(page);
8f82b55d 709 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 710 mt = get_pageblock_migratetype(page);
51bb1a40 711
a7016235 712 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 713 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 714 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 715 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 716 }
c54ad30c 717 spin_unlock(&zone->lock);
1da177e4
LT
718}
719
dc4b0caf
MG
720static void free_one_page(struct zone *zone,
721 struct page *page, unsigned long pfn,
7aeb09f9 722 unsigned int order,
ed0ae21d 723 int migratetype)
1da177e4 724{
0d5d823a 725 unsigned long nr_scanned;
006d22d9 726 spin_lock(&zone->lock);
0d5d823a
MG
727 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
728 if (nr_scanned)
729 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 730
ad53f92e
JK
731 if (unlikely(has_isolate_pageblock(zone) ||
732 is_migrate_isolate(migratetype))) {
733 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 734 }
dc4b0caf 735 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 736 spin_unlock(&zone->lock);
48db57f8
NP
737}
738
ec95f53a 739static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 740{
1da177e4 741 int i;
8cc3b392 742 int bad = 0;
1da177e4 743
ab1f306f
YZ
744 VM_BUG_ON_PAGE(PageTail(page), page);
745 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
746
b413d48a 747 trace_mm_page_free(page, order);
b1eeab67
VN
748 kmemcheck_free_shadow(page, order);
749
8dd60a3a
AA
750 if (PageAnon(page))
751 page->mapping = NULL;
752 for (i = 0; i < (1 << order); i++)
753 bad += free_pages_check(page + i);
8cc3b392 754 if (bad)
ec95f53a 755 return false;
689bcebf 756
3ac7fe5a 757 if (!PageHighMem(page)) {
b8af2941
PK
758 debug_check_no_locks_freed(page_address(page),
759 PAGE_SIZE << order);
3ac7fe5a
TG
760 debug_check_no_obj_freed(page_address(page),
761 PAGE_SIZE << order);
762 }
dafb1367 763 arch_free_page(page, order);
48db57f8 764 kernel_map_pages(page, 1 << order, 0);
dafb1367 765
ec95f53a
KM
766 return true;
767}
768
769static void __free_pages_ok(struct page *page, unsigned int order)
770{
771 unsigned long flags;
95e34412 772 int migratetype;
dc4b0caf 773 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
774
775 if (!free_pages_prepare(page, order))
776 return;
777
cfc47a28 778 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 779 local_irq_save(flags);
f8891e5e 780 __count_vm_events(PGFREE, 1 << order);
95e34412 781 set_freepage_migratetype(page, migratetype);
dc4b0caf 782 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 783 local_irq_restore(flags);
1da177e4
LT
784}
785
170a5a7e 786void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 787{
c3993076 788 unsigned int nr_pages = 1 << order;
e2d0bd2b 789 struct page *p = page;
c3993076 790 unsigned int loop;
a226f6c8 791
e2d0bd2b
YL
792 prefetchw(p);
793 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
794 prefetchw(p + 1);
c3993076
JW
795 __ClearPageReserved(p);
796 set_page_count(p, 0);
a226f6c8 797 }
e2d0bd2b
YL
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
c3993076 800
e2d0bd2b 801 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
802 set_page_refcounted(page);
803 __free_pages(page, order);
a226f6c8
DH
804}
805
47118af0 806#ifdef CONFIG_CMA
9cf510a5 807/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
808void __init init_cma_reserved_pageblock(struct page *page)
809{
810 unsigned i = pageblock_nr_pages;
811 struct page *p = page;
812
813 do {
814 __ClearPageReserved(p);
815 set_page_count(p, 0);
816 } while (++p, --i);
817
47118af0 818 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
819
820 if (pageblock_order >= MAX_ORDER) {
821 i = pageblock_nr_pages;
822 p = page;
823 do {
824 set_page_refcounted(p);
825 __free_pages(p, MAX_ORDER - 1);
826 p += MAX_ORDER_NR_PAGES;
827 } while (i -= MAX_ORDER_NR_PAGES);
828 } else {
829 set_page_refcounted(page);
830 __free_pages(page, pageblock_order);
831 }
832
3dcc0571 833 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
834}
835#endif
1da177e4
LT
836
837/*
838 * The order of subdivision here is critical for the IO subsystem.
839 * Please do not alter this order without good reasons and regression
840 * testing. Specifically, as large blocks of memory are subdivided,
841 * the order in which smaller blocks are delivered depends on the order
842 * they're subdivided in this function. This is the primary factor
843 * influencing the order in which pages are delivered to the IO
844 * subsystem according to empirical testing, and this is also justified
845 * by considering the behavior of a buddy system containing a single
846 * large block of memory acted on by a series of small allocations.
847 * This behavior is a critical factor in sglist merging's success.
848 *
6d49e352 849 * -- nyc
1da177e4 850 */
085cc7d5 851static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
852 int low, int high, struct free_area *area,
853 int migratetype)
1da177e4
LT
854{
855 unsigned long size = 1 << high;
856
857 while (high > low) {
858 area--;
859 high--;
860 size >>= 1;
309381fe 861 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
862
863#ifdef CONFIG_DEBUG_PAGEALLOC
864 if (high < debug_guardpage_minorder()) {
865 /*
866 * Mark as guard pages (or page), that will allow to
867 * merge back to allocator when buddy will be freed.
868 * Corresponding page table entries will not be touched,
869 * pages will stay not present in virtual address space
870 */
871 INIT_LIST_HEAD(&page[size].lru);
872 set_page_guard_flag(&page[size]);
873 set_page_private(&page[size], high);
874 /* Guard pages are not available for any usage */
d1ce749a
BZ
875 __mod_zone_freepage_state(zone, -(1 << high),
876 migratetype);
c0a32fc5
SG
877 continue;
878 }
879#endif
b2a0ac88 880 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
881 area->nr_free++;
882 set_page_order(&page[size], high);
883 }
1da177e4
LT
884}
885
1da177e4
LT
886/*
887 * This page is about to be returned from the page allocator
888 */
2a7684a2 889static inline int check_new_page(struct page *page)
1da177e4 890{
d230dec1 891 const char *bad_reason = NULL;
f0b791a3
DH
892 unsigned long bad_flags = 0;
893
894 if (unlikely(page_mapcount(page)))
895 bad_reason = "nonzero mapcount";
896 if (unlikely(page->mapping != NULL))
897 bad_reason = "non-NULL mapping";
898 if (unlikely(atomic_read(&page->_count) != 0))
899 bad_reason = "nonzero _count";
900 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
901 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
902 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
903 }
904 if (unlikely(mem_cgroup_bad_page_check(page)))
905 bad_reason = "cgroup check failed";
906 if (unlikely(bad_reason)) {
907 bad_page(page, bad_reason, bad_flags);
689bcebf 908 return 1;
8cc3b392 909 }
2a7684a2
WF
910 return 0;
911}
912
7aeb09f9 913static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
914{
915 int i;
916
917 for (i = 0; i < (1 << order); i++) {
918 struct page *p = page + i;
919 if (unlikely(check_new_page(p)))
920 return 1;
921 }
689bcebf 922
4c21e2f2 923 set_page_private(page, 0);
7835e98b 924 set_page_refcounted(page);
cc102509
NP
925
926 arch_alloc_page(page, order);
1da177e4 927 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
928
929 if (gfp_flags & __GFP_ZERO)
930 prep_zero_page(page, order, gfp_flags);
931
932 if (order && (gfp_flags & __GFP_COMP))
933 prep_compound_page(page, order);
934
689bcebf 935 return 0;
1da177e4
LT
936}
937
56fd56b8
MG
938/*
939 * Go through the free lists for the given migratetype and remove
940 * the smallest available page from the freelists
941 */
728ec980
MG
942static inline
943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
944 int migratetype)
945{
946 unsigned int current_order;
b8af2941 947 struct free_area *area;
56fd56b8
MG
948 struct page *page;
949
950 /* Find a page of the appropriate size in the preferred list */
951 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
952 area = &(zone->free_area[current_order]);
953 if (list_empty(&area->free_list[migratetype]))
954 continue;
955
956 page = list_entry(area->free_list[migratetype].next,
957 struct page, lru);
958 list_del(&page->lru);
959 rmv_page_order(page);
960 area->nr_free--;
56fd56b8 961 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 962 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
963 return page;
964 }
965
966 return NULL;
967}
968
969
b2a0ac88
MG
970/*
971 * This array describes the order lists are fallen back to when
972 * the free lists for the desirable migrate type are depleted
973 */
47118af0
MN
974static int fallbacks[MIGRATE_TYPES][4] = {
975 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
976 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
977#ifdef CONFIG_CMA
978 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
979 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
980#else
981 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
982#endif
6d4a4916 983 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 984#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 985 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 986#endif
b2a0ac88
MG
987};
988
c361be55
MG
989/*
990 * Move the free pages in a range to the free lists of the requested type.
d9c23400 991 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
992 * boundary. If alignment is required, use move_freepages_block()
993 */
435b405c 994int move_freepages(struct zone *zone,
b69a7288
AB
995 struct page *start_page, struct page *end_page,
996 int migratetype)
c361be55
MG
997{
998 struct page *page;
999 unsigned long order;
d100313f 1000 int pages_moved = 0;
c361be55
MG
1001
1002#ifndef CONFIG_HOLES_IN_ZONE
1003 /*
1004 * page_zone is not safe to call in this context when
1005 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1006 * anyway as we check zone boundaries in move_freepages_block().
1007 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1008 * grouping pages by mobility
c361be55 1009 */
97ee4ba7 1010 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1011#endif
1012
1013 for (page = start_page; page <= end_page;) {
344c790e 1014 /* Make sure we are not inadvertently changing nodes */
309381fe 1015 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1016
c361be55
MG
1017 if (!pfn_valid_within(page_to_pfn(page))) {
1018 page++;
1019 continue;
1020 }
1021
1022 if (!PageBuddy(page)) {
1023 page++;
1024 continue;
1025 }
1026
1027 order = page_order(page);
84be48d8
KS
1028 list_move(&page->lru,
1029 &zone->free_area[order].free_list[migratetype]);
95e34412 1030 set_freepage_migratetype(page, migratetype);
c361be55 1031 page += 1 << order;
d100313f 1032 pages_moved += 1 << order;
c361be55
MG
1033 }
1034
d100313f 1035 return pages_moved;
c361be55
MG
1036}
1037
ee6f509c 1038int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1039 int migratetype)
c361be55
MG
1040{
1041 unsigned long start_pfn, end_pfn;
1042 struct page *start_page, *end_page;
1043
1044 start_pfn = page_to_pfn(page);
d9c23400 1045 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1046 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1047 end_page = start_page + pageblock_nr_pages - 1;
1048 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1049
1050 /* Do not cross zone boundaries */
108bcc96 1051 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1052 start_page = page;
108bcc96 1053 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1054 return 0;
1055
1056 return move_freepages(zone, start_page, end_page, migratetype);
1057}
1058
2f66a68f
MG
1059static void change_pageblock_range(struct page *pageblock_page,
1060 int start_order, int migratetype)
1061{
1062 int nr_pageblocks = 1 << (start_order - pageblock_order);
1063
1064 while (nr_pageblocks--) {
1065 set_pageblock_migratetype(pageblock_page, migratetype);
1066 pageblock_page += pageblock_nr_pages;
1067 }
1068}
1069
fef903ef
SB
1070/*
1071 * If breaking a large block of pages, move all free pages to the preferred
1072 * allocation list. If falling back for a reclaimable kernel allocation, be
1073 * more aggressive about taking ownership of free pages.
1074 *
1075 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1076 * nor move CMA pages to different free lists. We don't want unmovable pages
1077 * to be allocated from MIGRATE_CMA areas.
1078 *
1079 * Returns the new migratetype of the pageblock (or the same old migratetype
1080 * if it was unchanged).
1081 */
1082static int try_to_steal_freepages(struct zone *zone, struct page *page,
1083 int start_type, int fallback_type)
1084{
1085 int current_order = page_order(page);
1086
0cbef29a
KM
1087 /*
1088 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1089 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1090 * is set to CMA so it is returned to the correct freelist in case
1091 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1092 */
fef903ef
SB
1093 if (is_migrate_cma(fallback_type))
1094 return fallback_type;
1095
1096 /* Take ownership for orders >= pageblock_order */
1097 if (current_order >= pageblock_order) {
1098 change_pageblock_range(page, current_order, start_type);
1099 return start_type;
1100 }
1101
1102 if (current_order >= pageblock_order / 2 ||
1103 start_type == MIGRATE_RECLAIMABLE ||
1104 page_group_by_mobility_disabled) {
1105 int pages;
1106
1107 pages = move_freepages_block(zone, page, start_type);
1108
1109 /* Claim the whole block if over half of it is free */
1110 if (pages >= (1 << (pageblock_order-1)) ||
1111 page_group_by_mobility_disabled) {
1112
1113 set_pageblock_migratetype(page, start_type);
1114 return start_type;
1115 }
1116
1117 }
1118
1119 return fallback_type;
1120}
1121
b2a0ac88 1122/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1123static inline struct page *
7aeb09f9 1124__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1125{
b8af2941 1126 struct free_area *area;
7aeb09f9 1127 unsigned int current_order;
b2a0ac88 1128 struct page *page;
fef903ef 1129 int migratetype, new_type, i;
b2a0ac88
MG
1130
1131 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1132 for (current_order = MAX_ORDER-1;
1133 current_order >= order && current_order <= MAX_ORDER-1;
1134 --current_order) {
6d4a4916 1135 for (i = 0;; i++) {
b2a0ac88
MG
1136 migratetype = fallbacks[start_migratetype][i];
1137
56fd56b8
MG
1138 /* MIGRATE_RESERVE handled later if necessary */
1139 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1140 break;
e010487d 1141
b2a0ac88
MG
1142 area = &(zone->free_area[current_order]);
1143 if (list_empty(&area->free_list[migratetype]))
1144 continue;
1145
1146 page = list_entry(area->free_list[migratetype].next,
1147 struct page, lru);
1148 area->nr_free--;
1149
fef903ef
SB
1150 new_type = try_to_steal_freepages(zone, page,
1151 start_migratetype,
1152 migratetype);
b2a0ac88
MG
1153
1154 /* Remove the page from the freelists */
1155 list_del(&page->lru);
1156 rmv_page_order(page);
b2a0ac88 1157
47118af0 1158 expand(zone, page, order, current_order, area,
0cbef29a 1159 new_type);
5bcc9f86
VB
1160 /* The freepage_migratetype may differ from pageblock's
1161 * migratetype depending on the decisions in
1162 * try_to_steal_freepages. This is OK as long as it does
1163 * not differ for MIGRATE_CMA type.
1164 */
1165 set_freepage_migratetype(page, new_type);
e0fff1bd 1166
52c8f6a5
KM
1167 trace_mm_page_alloc_extfrag(page, order, current_order,
1168 start_migratetype, migratetype, new_type);
e0fff1bd 1169
b2a0ac88
MG
1170 return page;
1171 }
1172 }
1173
728ec980 1174 return NULL;
b2a0ac88
MG
1175}
1176
56fd56b8 1177/*
1da177e4
LT
1178 * Do the hard work of removing an element from the buddy allocator.
1179 * Call me with the zone->lock already held.
1180 */
b2a0ac88
MG
1181static struct page *__rmqueue(struct zone *zone, unsigned int order,
1182 int migratetype)
1da177e4 1183{
1da177e4
LT
1184 struct page *page;
1185
728ec980 1186retry_reserve:
56fd56b8 1187 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1188
728ec980 1189 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1190 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1191
728ec980
MG
1192 /*
1193 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1194 * is used because __rmqueue_smallest is an inline function
1195 * and we want just one call site
1196 */
1197 if (!page) {
1198 migratetype = MIGRATE_RESERVE;
1199 goto retry_reserve;
1200 }
1201 }
1202
0d3d062a 1203 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1204 return page;
1da177e4
LT
1205}
1206
5f63b720 1207/*
1da177e4
LT
1208 * Obtain a specified number of elements from the buddy allocator, all under
1209 * a single hold of the lock, for efficiency. Add them to the supplied list.
1210 * Returns the number of new pages which were placed at *list.
1211 */
5f63b720 1212static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1213 unsigned long count, struct list_head *list,
b745bc85 1214 int migratetype, bool cold)
1da177e4 1215{
5bcc9f86 1216 int i;
5f63b720 1217
c54ad30c 1218 spin_lock(&zone->lock);
1da177e4 1219 for (i = 0; i < count; ++i) {
b2a0ac88 1220 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1221 if (unlikely(page == NULL))
1da177e4 1222 break;
81eabcbe
MG
1223
1224 /*
1225 * Split buddy pages returned by expand() are received here
1226 * in physical page order. The page is added to the callers and
1227 * list and the list head then moves forward. From the callers
1228 * perspective, the linked list is ordered by page number in
1229 * some conditions. This is useful for IO devices that can
1230 * merge IO requests if the physical pages are ordered
1231 * properly.
1232 */
b745bc85 1233 if (likely(!cold))
e084b2d9
MG
1234 list_add(&page->lru, list);
1235 else
1236 list_add_tail(&page->lru, list);
81eabcbe 1237 list = &page->lru;
5bcc9f86 1238 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1239 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1240 -(1 << order));
1da177e4 1241 }
f2260e6b 1242 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1243 spin_unlock(&zone->lock);
085cc7d5 1244 return i;
1da177e4
LT
1245}
1246
4ae7c039 1247#ifdef CONFIG_NUMA
8fce4d8e 1248/*
4037d452
CL
1249 * Called from the vmstat counter updater to drain pagesets of this
1250 * currently executing processor on remote nodes after they have
1251 * expired.
1252 *
879336c3
CL
1253 * Note that this function must be called with the thread pinned to
1254 * a single processor.
8fce4d8e 1255 */
4037d452 1256void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1257{
4ae7c039 1258 unsigned long flags;
7be12fc9 1259 int to_drain, batch;
4ae7c039 1260
4037d452 1261 local_irq_save(flags);
998d39cb 1262 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1263 to_drain = min(pcp->count, batch);
2a13515c
KM
1264 if (to_drain > 0) {
1265 free_pcppages_bulk(zone, to_drain, pcp);
1266 pcp->count -= to_drain;
1267 }
4037d452 1268 local_irq_restore(flags);
4ae7c039
CL
1269}
1270#endif
1271
9f8f2172 1272/*
93481ff0 1273 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1274 *
1275 * The processor must either be the current processor and the
1276 * thread pinned to the current processor or a processor that
1277 * is not online.
1278 */
93481ff0 1279static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1280{
c54ad30c 1281 unsigned long flags;
93481ff0
VB
1282 struct per_cpu_pageset *pset;
1283 struct per_cpu_pages *pcp;
1da177e4 1284
93481ff0
VB
1285 local_irq_save(flags);
1286 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1287
93481ff0
VB
1288 pcp = &pset->pcp;
1289 if (pcp->count) {
1290 free_pcppages_bulk(zone, pcp->count, pcp);
1291 pcp->count = 0;
1292 }
1293 local_irq_restore(flags);
1294}
3dfa5721 1295
93481ff0
VB
1296/*
1297 * Drain pcplists of all zones on the indicated processor.
1298 *
1299 * The processor must either be the current processor and the
1300 * thread pinned to the current processor or a processor that
1301 * is not online.
1302 */
1303static void drain_pages(unsigned int cpu)
1304{
1305 struct zone *zone;
1306
1307 for_each_populated_zone(zone) {
1308 drain_pages_zone(cpu, zone);
1da177e4
LT
1309 }
1310}
1da177e4 1311
9f8f2172
CL
1312/*
1313 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1314 *
1315 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1316 * the single zone's pages.
9f8f2172 1317 */
93481ff0 1318void drain_local_pages(struct zone *zone)
9f8f2172 1319{
93481ff0
VB
1320 int cpu = smp_processor_id();
1321
1322 if (zone)
1323 drain_pages_zone(cpu, zone);
1324 else
1325 drain_pages(cpu);
9f8f2172
CL
1326}
1327
1328/*
74046494
GBY
1329 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1330 *
93481ff0
VB
1331 * When zone parameter is non-NULL, spill just the single zone's pages.
1332 *
74046494
GBY
1333 * Note that this code is protected against sending an IPI to an offline
1334 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1335 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1336 * nothing keeps CPUs from showing up after we populated the cpumask and
1337 * before the call to on_each_cpu_mask().
9f8f2172 1338 */
93481ff0 1339void drain_all_pages(struct zone *zone)
9f8f2172 1340{
74046494 1341 int cpu;
74046494
GBY
1342
1343 /*
1344 * Allocate in the BSS so we wont require allocation in
1345 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1346 */
1347 static cpumask_t cpus_with_pcps;
1348
1349 /*
1350 * We don't care about racing with CPU hotplug event
1351 * as offline notification will cause the notified
1352 * cpu to drain that CPU pcps and on_each_cpu_mask
1353 * disables preemption as part of its processing
1354 */
1355 for_each_online_cpu(cpu) {
93481ff0
VB
1356 struct per_cpu_pageset *pcp;
1357 struct zone *z;
74046494 1358 bool has_pcps = false;
93481ff0
VB
1359
1360 if (zone) {
74046494 1361 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1362 if (pcp->pcp.count)
74046494 1363 has_pcps = true;
93481ff0
VB
1364 } else {
1365 for_each_populated_zone(z) {
1366 pcp = per_cpu_ptr(z->pageset, cpu);
1367 if (pcp->pcp.count) {
1368 has_pcps = true;
1369 break;
1370 }
74046494
GBY
1371 }
1372 }
93481ff0 1373
74046494
GBY
1374 if (has_pcps)
1375 cpumask_set_cpu(cpu, &cpus_with_pcps);
1376 else
1377 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1378 }
93481ff0
VB
1379 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1380 zone, 1);
9f8f2172
CL
1381}
1382
296699de 1383#ifdef CONFIG_HIBERNATION
1da177e4
LT
1384
1385void mark_free_pages(struct zone *zone)
1386{
f623f0db
RW
1387 unsigned long pfn, max_zone_pfn;
1388 unsigned long flags;
7aeb09f9 1389 unsigned int order, t;
1da177e4
LT
1390 struct list_head *curr;
1391
8080fc03 1392 if (zone_is_empty(zone))
1da177e4
LT
1393 return;
1394
1395 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1396
108bcc96 1397 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1398 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1399 if (pfn_valid(pfn)) {
1400 struct page *page = pfn_to_page(pfn);
1401
7be98234
RW
1402 if (!swsusp_page_is_forbidden(page))
1403 swsusp_unset_page_free(page);
f623f0db 1404 }
1da177e4 1405
b2a0ac88
MG
1406 for_each_migratetype_order(order, t) {
1407 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1408 unsigned long i;
1da177e4 1409
f623f0db
RW
1410 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1411 for (i = 0; i < (1UL << order); i++)
7be98234 1412 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1413 }
b2a0ac88 1414 }
1da177e4
LT
1415 spin_unlock_irqrestore(&zone->lock, flags);
1416}
e2c55dc8 1417#endif /* CONFIG_PM */
1da177e4 1418
1da177e4
LT
1419/*
1420 * Free a 0-order page
b745bc85 1421 * cold == true ? free a cold page : free a hot page
1da177e4 1422 */
b745bc85 1423void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1424{
1425 struct zone *zone = page_zone(page);
1426 struct per_cpu_pages *pcp;
1427 unsigned long flags;
dc4b0caf 1428 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1429 int migratetype;
1da177e4 1430
ec95f53a 1431 if (!free_pages_prepare(page, 0))
689bcebf
HD
1432 return;
1433
dc4b0caf 1434 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1435 set_freepage_migratetype(page, migratetype);
1da177e4 1436 local_irq_save(flags);
f8891e5e 1437 __count_vm_event(PGFREE);
da456f14 1438
5f8dcc21
MG
1439 /*
1440 * We only track unmovable, reclaimable and movable on pcp lists.
1441 * Free ISOLATE pages back to the allocator because they are being
1442 * offlined but treat RESERVE as movable pages so we can get those
1443 * areas back if necessary. Otherwise, we may have to free
1444 * excessively into the page allocator
1445 */
1446 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1447 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1448 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1449 goto out;
1450 }
1451 migratetype = MIGRATE_MOVABLE;
1452 }
1453
99dcc3e5 1454 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1455 if (!cold)
5f8dcc21 1456 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1457 else
1458 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1459 pcp->count++;
48db57f8 1460 if (pcp->count >= pcp->high) {
998d39cb
CS
1461 unsigned long batch = ACCESS_ONCE(pcp->batch);
1462 free_pcppages_bulk(zone, batch, pcp);
1463 pcp->count -= batch;
48db57f8 1464 }
5f8dcc21
MG
1465
1466out:
1da177e4 1467 local_irq_restore(flags);
1da177e4
LT
1468}
1469
cc59850e
KK
1470/*
1471 * Free a list of 0-order pages
1472 */
b745bc85 1473void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1474{
1475 struct page *page, *next;
1476
1477 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1478 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1479 free_hot_cold_page(page, cold);
1480 }
1481}
1482
8dfcc9ba
NP
1483/*
1484 * split_page takes a non-compound higher-order page, and splits it into
1485 * n (1<<order) sub-pages: page[0..n]
1486 * Each sub-page must be freed individually.
1487 *
1488 * Note: this is probably too low level an operation for use in drivers.
1489 * Please consult with lkml before using this in your driver.
1490 */
1491void split_page(struct page *page, unsigned int order)
1492{
1493 int i;
1494
309381fe
SL
1495 VM_BUG_ON_PAGE(PageCompound(page), page);
1496 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1497
1498#ifdef CONFIG_KMEMCHECK
1499 /*
1500 * Split shadow pages too, because free(page[0]) would
1501 * otherwise free the whole shadow.
1502 */
1503 if (kmemcheck_page_is_tracked(page))
1504 split_page(virt_to_page(page[0].shadow), order);
1505#endif
1506
7835e98b
NP
1507 for (i = 1; i < (1 << order); i++)
1508 set_page_refcounted(page + i);
8dfcc9ba 1509}
5853ff23 1510EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1511
3c605096 1512int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1513{
748446bb
MG
1514 unsigned long watermark;
1515 struct zone *zone;
2139cbe6 1516 int mt;
748446bb
MG
1517
1518 BUG_ON(!PageBuddy(page));
1519
1520 zone = page_zone(page);
2e30abd1 1521 mt = get_pageblock_migratetype(page);
748446bb 1522
194159fb 1523 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1524 /* Obey watermarks as if the page was being allocated */
1525 watermark = low_wmark_pages(zone) + (1 << order);
1526 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1527 return 0;
1528
8fb74b9f 1529 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1530 }
748446bb
MG
1531
1532 /* Remove page from free list */
1533 list_del(&page->lru);
1534 zone->free_area[order].nr_free--;
1535 rmv_page_order(page);
2139cbe6 1536
8fb74b9f 1537 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1538 if (order >= pageblock_order - 1) {
1539 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1540 for (; page < endpage; page += pageblock_nr_pages) {
1541 int mt = get_pageblock_migratetype(page);
194159fb 1542 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1543 set_pageblock_migratetype(page,
1544 MIGRATE_MOVABLE);
1545 }
748446bb
MG
1546 }
1547
8fb74b9f 1548 return 1UL << order;
1fb3f8ca
MG
1549}
1550
1551/*
1552 * Similar to split_page except the page is already free. As this is only
1553 * being used for migration, the migratetype of the block also changes.
1554 * As this is called with interrupts disabled, the caller is responsible
1555 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1556 * are enabled.
1557 *
1558 * Note: this is probably too low level an operation for use in drivers.
1559 * Please consult with lkml before using this in your driver.
1560 */
1561int split_free_page(struct page *page)
1562{
1563 unsigned int order;
1564 int nr_pages;
1565
1fb3f8ca
MG
1566 order = page_order(page);
1567
8fb74b9f 1568 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1569 if (!nr_pages)
1570 return 0;
1571
1572 /* Split into individual pages */
1573 set_page_refcounted(page);
1574 split_page(page, order);
1575 return nr_pages;
748446bb
MG
1576}
1577
1da177e4
LT
1578/*
1579 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1580 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1581 * or two.
1582 */
0a15c3e9
MG
1583static inline
1584struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1585 struct zone *zone, unsigned int order,
1586 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1587{
1588 unsigned long flags;
689bcebf 1589 struct page *page;
b745bc85 1590 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1591
689bcebf 1592again:
48db57f8 1593 if (likely(order == 0)) {
1da177e4 1594 struct per_cpu_pages *pcp;
5f8dcc21 1595 struct list_head *list;
1da177e4 1596
1da177e4 1597 local_irq_save(flags);
99dcc3e5
CL
1598 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1599 list = &pcp->lists[migratetype];
5f8dcc21 1600 if (list_empty(list)) {
535131e6 1601 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1602 pcp->batch, list,
e084b2d9 1603 migratetype, cold);
5f8dcc21 1604 if (unlikely(list_empty(list)))
6fb332fa 1605 goto failed;
535131e6 1606 }
b92a6edd 1607
5f8dcc21
MG
1608 if (cold)
1609 page = list_entry(list->prev, struct page, lru);
1610 else
1611 page = list_entry(list->next, struct page, lru);
1612
b92a6edd
MG
1613 list_del(&page->lru);
1614 pcp->count--;
7fb1d9fc 1615 } else {
dab48dab
AM
1616 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1617 /*
1618 * __GFP_NOFAIL is not to be used in new code.
1619 *
1620 * All __GFP_NOFAIL callers should be fixed so that they
1621 * properly detect and handle allocation failures.
1622 *
1623 * We most definitely don't want callers attempting to
4923abf9 1624 * allocate greater than order-1 page units with
dab48dab
AM
1625 * __GFP_NOFAIL.
1626 */
4923abf9 1627 WARN_ON_ONCE(order > 1);
dab48dab 1628 }
1da177e4 1629 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1630 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1631 spin_unlock(&zone->lock);
1632 if (!page)
1633 goto failed;
d1ce749a 1634 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1635 get_freepage_migratetype(page));
1da177e4
LT
1636 }
1637
3a025760 1638 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1639 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1640 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1641 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1642
f8891e5e 1643 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1644 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1645 local_irq_restore(flags);
1da177e4 1646
309381fe 1647 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1648 if (prep_new_page(page, order, gfp_flags))
a74609fa 1649 goto again;
1da177e4 1650 return page;
a74609fa
NP
1651
1652failed:
1653 local_irq_restore(flags);
a74609fa 1654 return NULL;
1da177e4
LT
1655}
1656
933e312e
AM
1657#ifdef CONFIG_FAIL_PAGE_ALLOC
1658
b2588c4b 1659static struct {
933e312e
AM
1660 struct fault_attr attr;
1661
1662 u32 ignore_gfp_highmem;
1663 u32 ignore_gfp_wait;
54114994 1664 u32 min_order;
933e312e
AM
1665} fail_page_alloc = {
1666 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1667 .ignore_gfp_wait = 1,
1668 .ignore_gfp_highmem = 1,
54114994 1669 .min_order = 1,
933e312e
AM
1670};
1671
1672static int __init setup_fail_page_alloc(char *str)
1673{
1674 return setup_fault_attr(&fail_page_alloc.attr, str);
1675}
1676__setup("fail_page_alloc=", setup_fail_page_alloc);
1677
deaf386e 1678static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1679{
54114994 1680 if (order < fail_page_alloc.min_order)
deaf386e 1681 return false;
933e312e 1682 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1683 return false;
933e312e 1684 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1685 return false;
933e312e 1686 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1687 return false;
933e312e
AM
1688
1689 return should_fail(&fail_page_alloc.attr, 1 << order);
1690}
1691
1692#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1693
1694static int __init fail_page_alloc_debugfs(void)
1695{
f4ae40a6 1696 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1697 struct dentry *dir;
933e312e 1698
dd48c085
AM
1699 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1700 &fail_page_alloc.attr);
1701 if (IS_ERR(dir))
1702 return PTR_ERR(dir);
933e312e 1703
b2588c4b
AM
1704 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1705 &fail_page_alloc.ignore_gfp_wait))
1706 goto fail;
1707 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1708 &fail_page_alloc.ignore_gfp_highmem))
1709 goto fail;
1710 if (!debugfs_create_u32("min-order", mode, dir,
1711 &fail_page_alloc.min_order))
1712 goto fail;
1713
1714 return 0;
1715fail:
dd48c085 1716 debugfs_remove_recursive(dir);
933e312e 1717
b2588c4b 1718 return -ENOMEM;
933e312e
AM
1719}
1720
1721late_initcall(fail_page_alloc_debugfs);
1722
1723#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1724
1725#else /* CONFIG_FAIL_PAGE_ALLOC */
1726
deaf386e 1727static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1728{
deaf386e 1729 return false;
933e312e
AM
1730}
1731
1732#endif /* CONFIG_FAIL_PAGE_ALLOC */
1733
1da177e4 1734/*
88f5acf8 1735 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1736 * of the allocation.
1737 */
7aeb09f9
MG
1738static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1739 unsigned long mark, int classzone_idx, int alloc_flags,
1740 long free_pages)
1da177e4
LT
1741{
1742 /* free_pages my go negative - that's OK */
d23ad423 1743 long min = mark;
1da177e4 1744 int o;
026b0814 1745 long free_cma = 0;
1da177e4 1746
df0a6daa 1747 free_pages -= (1 << order) - 1;
7fb1d9fc 1748 if (alloc_flags & ALLOC_HIGH)
1da177e4 1749 min -= min / 2;
7fb1d9fc 1750 if (alloc_flags & ALLOC_HARDER)
1da177e4 1751 min -= min / 4;
d95ea5d1
BZ
1752#ifdef CONFIG_CMA
1753 /* If allocation can't use CMA areas don't use free CMA pages */
1754 if (!(alloc_flags & ALLOC_CMA))
026b0814 1755 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1756#endif
026b0814 1757
3484b2de 1758 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1759 return false;
1da177e4
LT
1760 for (o = 0; o < order; o++) {
1761 /* At the next order, this order's pages become unavailable */
1762 free_pages -= z->free_area[o].nr_free << o;
1763
1764 /* Require fewer higher order pages to be free */
1765 min >>= 1;
1766
1767 if (free_pages <= min)
88f5acf8 1768 return false;
1da177e4 1769 }
88f5acf8
MG
1770 return true;
1771}
1772
7aeb09f9 1773bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1774 int classzone_idx, int alloc_flags)
1775{
1776 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1777 zone_page_state(z, NR_FREE_PAGES));
1778}
1779
7aeb09f9
MG
1780bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1781 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1782{
1783 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1784
1785 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1786 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1787
1788 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1789 free_pages);
1da177e4
LT
1790}
1791
9276b1bc
PJ
1792#ifdef CONFIG_NUMA
1793/*
1794 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1795 * skip over zones that are not allowed by the cpuset, or that have
1796 * been recently (in last second) found to be nearly full. See further
1797 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1798 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1799 *
a1aeb65a 1800 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1801 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1802 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1803 *
1804 * If the zonelist cache is not available for this zonelist, does
1805 * nothing and returns NULL.
1806 *
1807 * If the fullzones BITMAP in the zonelist cache is stale (more than
1808 * a second since last zap'd) then we zap it out (clear its bits.)
1809 *
1810 * We hold off even calling zlc_setup, until after we've checked the
1811 * first zone in the zonelist, on the theory that most allocations will
1812 * be satisfied from that first zone, so best to examine that zone as
1813 * quickly as we can.
1814 */
1815static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1816{
1817 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1818 nodemask_t *allowednodes; /* zonelist_cache approximation */
1819
1820 zlc = zonelist->zlcache_ptr;
1821 if (!zlc)
1822 return NULL;
1823
f05111f5 1824 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1825 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1826 zlc->last_full_zap = jiffies;
1827 }
1828
1829 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1830 &cpuset_current_mems_allowed :
4b0ef1fe 1831 &node_states[N_MEMORY];
9276b1bc
PJ
1832 return allowednodes;
1833}
1834
1835/*
1836 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1837 * if it is worth looking at further for free memory:
1838 * 1) Check that the zone isn't thought to be full (doesn't have its
1839 * bit set in the zonelist_cache fullzones BITMAP).
1840 * 2) Check that the zones node (obtained from the zonelist_cache
1841 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1842 * Return true (non-zero) if zone is worth looking at further, or
1843 * else return false (zero) if it is not.
1844 *
1845 * This check -ignores- the distinction between various watermarks,
1846 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1847 * found to be full for any variation of these watermarks, it will
1848 * be considered full for up to one second by all requests, unless
1849 * we are so low on memory on all allowed nodes that we are forced
1850 * into the second scan of the zonelist.
1851 *
1852 * In the second scan we ignore this zonelist cache and exactly
1853 * apply the watermarks to all zones, even it is slower to do so.
1854 * We are low on memory in the second scan, and should leave no stone
1855 * unturned looking for a free page.
1856 */
dd1a239f 1857static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1858 nodemask_t *allowednodes)
1859{
1860 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1861 int i; /* index of *z in zonelist zones */
1862 int n; /* node that zone *z is on */
1863
1864 zlc = zonelist->zlcache_ptr;
1865 if (!zlc)
1866 return 1;
1867
dd1a239f 1868 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1869 n = zlc->z_to_n[i];
1870
1871 /* This zone is worth trying if it is allowed but not full */
1872 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1873}
1874
1875/*
1876 * Given 'z' scanning a zonelist, set the corresponding bit in
1877 * zlc->fullzones, so that subsequent attempts to allocate a page
1878 * from that zone don't waste time re-examining it.
1879 */
dd1a239f 1880static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1881{
1882 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1883 int i; /* index of *z in zonelist zones */
1884
1885 zlc = zonelist->zlcache_ptr;
1886 if (!zlc)
1887 return;
1888
dd1a239f 1889 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1890
1891 set_bit(i, zlc->fullzones);
1892}
1893
76d3fbf8
MG
1894/*
1895 * clear all zones full, called after direct reclaim makes progress so that
1896 * a zone that was recently full is not skipped over for up to a second
1897 */
1898static void zlc_clear_zones_full(struct zonelist *zonelist)
1899{
1900 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1901
1902 zlc = zonelist->zlcache_ptr;
1903 if (!zlc)
1904 return;
1905
1906 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1907}
1908
81c0a2bb
JW
1909static bool zone_local(struct zone *local_zone, struct zone *zone)
1910{
fff4068c 1911 return local_zone->node == zone->node;
81c0a2bb
JW
1912}
1913
957f822a
DR
1914static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1915{
5f7a75ac
MG
1916 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1917 RECLAIM_DISTANCE;
957f822a
DR
1918}
1919
9276b1bc
PJ
1920#else /* CONFIG_NUMA */
1921
1922static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1923{
1924 return NULL;
1925}
1926
dd1a239f 1927static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1928 nodemask_t *allowednodes)
1929{
1930 return 1;
1931}
1932
dd1a239f 1933static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1934{
1935}
76d3fbf8
MG
1936
1937static void zlc_clear_zones_full(struct zonelist *zonelist)
1938{
1939}
957f822a 1940
81c0a2bb
JW
1941static bool zone_local(struct zone *local_zone, struct zone *zone)
1942{
1943 return true;
1944}
1945
957f822a
DR
1946static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1947{
1948 return true;
1949}
1950
9276b1bc
PJ
1951#endif /* CONFIG_NUMA */
1952
4ffeaf35
MG
1953static void reset_alloc_batches(struct zone *preferred_zone)
1954{
1955 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1956
1957 do {
1958 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1959 high_wmark_pages(zone) - low_wmark_pages(zone) -
1960 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 1961 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
1962 } while (zone++ != preferred_zone);
1963}
1964
7fb1d9fc 1965/*
0798e519 1966 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1967 * a page.
1968 */
1969static struct page *
19770b32 1970get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1971 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1972 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1973{
dd1a239f 1974 struct zoneref *z;
7fb1d9fc 1975 struct page *page = NULL;
5117f45d 1976 struct zone *zone;
9276b1bc
PJ
1977 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1978 int zlc_active = 0; /* set if using zonelist_cache */
1979 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1980 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1981 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
1982 int nr_fair_skipped = 0;
1983 bool zonelist_rescan;
54a6eb5c 1984
9276b1bc 1985zonelist_scan:
4ffeaf35
MG
1986 zonelist_rescan = false;
1987
7fb1d9fc 1988 /*
9276b1bc 1989 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1990 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1991 */
19770b32
MG
1992 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1993 high_zoneidx, nodemask) {
e085dbc5
JW
1994 unsigned long mark;
1995
e5adfffc 1996 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1997 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1998 continue;
664eedde
MG
1999 if (cpusets_enabled() &&
2000 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 2001 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 2002 continue;
81c0a2bb
JW
2003 /*
2004 * Distribute pages in proportion to the individual
2005 * zone size to ensure fair page aging. The zone a
2006 * page was allocated in should have no effect on the
2007 * time the page has in memory before being reclaimed.
81c0a2bb 2008 */
3a025760 2009 if (alloc_flags & ALLOC_FAIR) {
fff4068c 2010 if (!zone_local(preferred_zone, zone))
f7b5d647 2011 break;
57054651 2012 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2013 nr_fair_skipped++;
3a025760 2014 continue;
4ffeaf35 2015 }
81c0a2bb 2016 }
a756cf59
JW
2017 /*
2018 * When allocating a page cache page for writing, we
2019 * want to get it from a zone that is within its dirty
2020 * limit, such that no single zone holds more than its
2021 * proportional share of globally allowed dirty pages.
2022 * The dirty limits take into account the zone's
2023 * lowmem reserves and high watermark so that kswapd
2024 * should be able to balance it without having to
2025 * write pages from its LRU list.
2026 *
2027 * This may look like it could increase pressure on
2028 * lower zones by failing allocations in higher zones
2029 * before they are full. But the pages that do spill
2030 * over are limited as the lower zones are protected
2031 * by this very same mechanism. It should not become
2032 * a practical burden to them.
2033 *
2034 * XXX: For now, allow allocations to potentially
2035 * exceed the per-zone dirty limit in the slowpath
2036 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2037 * which is important when on a NUMA setup the allowed
2038 * zones are together not big enough to reach the
2039 * global limit. The proper fix for these situations
2040 * will require awareness of zones in the
2041 * dirty-throttling and the flusher threads.
2042 */
a6e21b14 2043 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2044 continue;
7fb1d9fc 2045
e085dbc5
JW
2046 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2047 if (!zone_watermark_ok(zone, order, mark,
2048 classzone_idx, alloc_flags)) {
fa5e084e
MG
2049 int ret;
2050
5dab2911
MG
2051 /* Checked here to keep the fast path fast */
2052 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2053 if (alloc_flags & ALLOC_NO_WATERMARKS)
2054 goto try_this_zone;
2055
e5adfffc
KS
2056 if (IS_ENABLED(CONFIG_NUMA) &&
2057 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2058 /*
2059 * we do zlc_setup if there are multiple nodes
2060 * and before considering the first zone allowed
2061 * by the cpuset.
2062 */
2063 allowednodes = zlc_setup(zonelist, alloc_flags);
2064 zlc_active = 1;
2065 did_zlc_setup = 1;
2066 }
2067
957f822a
DR
2068 if (zone_reclaim_mode == 0 ||
2069 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2070 goto this_zone_full;
2071
cd38b115
MG
2072 /*
2073 * As we may have just activated ZLC, check if the first
2074 * eligible zone has failed zone_reclaim recently.
2075 */
e5adfffc 2076 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2077 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2078 continue;
2079
fa5e084e
MG
2080 ret = zone_reclaim(zone, gfp_mask, order);
2081 switch (ret) {
2082 case ZONE_RECLAIM_NOSCAN:
2083 /* did not scan */
cd38b115 2084 continue;
fa5e084e
MG
2085 case ZONE_RECLAIM_FULL:
2086 /* scanned but unreclaimable */
cd38b115 2087 continue;
fa5e084e
MG
2088 default:
2089 /* did we reclaim enough */
fed2719e 2090 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2091 classzone_idx, alloc_flags))
fed2719e
MG
2092 goto try_this_zone;
2093
2094 /*
2095 * Failed to reclaim enough to meet watermark.
2096 * Only mark the zone full if checking the min
2097 * watermark or if we failed to reclaim just
2098 * 1<<order pages or else the page allocator
2099 * fastpath will prematurely mark zones full
2100 * when the watermark is between the low and
2101 * min watermarks.
2102 */
2103 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2104 ret == ZONE_RECLAIM_SOME)
9276b1bc 2105 goto this_zone_full;
fed2719e
MG
2106
2107 continue;
0798e519 2108 }
7fb1d9fc
RS
2109 }
2110
fa5e084e 2111try_this_zone:
3dd28266
MG
2112 page = buffered_rmqueue(preferred_zone, zone, order,
2113 gfp_mask, migratetype);
0798e519 2114 if (page)
7fb1d9fc 2115 break;
9276b1bc 2116this_zone_full:
65bb3719 2117 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2118 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2119 }
9276b1bc 2120
4ffeaf35 2121 if (page) {
b121186a
AS
2122 /*
2123 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2124 * necessary to allocate the page. The expectation is
2125 * that the caller is taking steps that will free more
2126 * memory. The caller should avoid the page being used
2127 * for !PFMEMALLOC purposes.
2128 */
2129 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2130 return page;
2131 }
b121186a 2132
4ffeaf35
MG
2133 /*
2134 * The first pass makes sure allocations are spread fairly within the
2135 * local node. However, the local node might have free pages left
2136 * after the fairness batches are exhausted, and remote zones haven't
2137 * even been considered yet. Try once more without fairness, and
2138 * include remote zones now, before entering the slowpath and waking
2139 * kswapd: prefer spilling to a remote zone over swapping locally.
2140 */
2141 if (alloc_flags & ALLOC_FAIR) {
2142 alloc_flags &= ~ALLOC_FAIR;
2143 if (nr_fair_skipped) {
2144 zonelist_rescan = true;
2145 reset_alloc_batches(preferred_zone);
2146 }
2147 if (nr_online_nodes > 1)
2148 zonelist_rescan = true;
2149 }
2150
2151 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2152 /* Disable zlc cache for second zonelist scan */
2153 zlc_active = 0;
2154 zonelist_rescan = true;
2155 }
2156
2157 if (zonelist_rescan)
2158 goto zonelist_scan;
2159
2160 return NULL;
753ee728
MH
2161}
2162
29423e77
DR
2163/*
2164 * Large machines with many possible nodes should not always dump per-node
2165 * meminfo in irq context.
2166 */
2167static inline bool should_suppress_show_mem(void)
2168{
2169 bool ret = false;
2170
2171#if NODES_SHIFT > 8
2172 ret = in_interrupt();
2173#endif
2174 return ret;
2175}
2176
a238ab5b
DH
2177static DEFINE_RATELIMIT_STATE(nopage_rs,
2178 DEFAULT_RATELIMIT_INTERVAL,
2179 DEFAULT_RATELIMIT_BURST);
2180
2181void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2182{
a238ab5b
DH
2183 unsigned int filter = SHOW_MEM_FILTER_NODES;
2184
c0a32fc5
SG
2185 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2186 debug_guardpage_minorder() > 0)
a238ab5b
DH
2187 return;
2188
2189 /*
2190 * This documents exceptions given to allocations in certain
2191 * contexts that are allowed to allocate outside current's set
2192 * of allowed nodes.
2193 */
2194 if (!(gfp_mask & __GFP_NOMEMALLOC))
2195 if (test_thread_flag(TIF_MEMDIE) ||
2196 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2197 filter &= ~SHOW_MEM_FILTER_NODES;
2198 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2199 filter &= ~SHOW_MEM_FILTER_NODES;
2200
2201 if (fmt) {
3ee9a4f0
JP
2202 struct va_format vaf;
2203 va_list args;
2204
a238ab5b 2205 va_start(args, fmt);
3ee9a4f0
JP
2206
2207 vaf.fmt = fmt;
2208 vaf.va = &args;
2209
2210 pr_warn("%pV", &vaf);
2211
a238ab5b
DH
2212 va_end(args);
2213 }
2214
3ee9a4f0
JP
2215 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2216 current->comm, order, gfp_mask);
a238ab5b
DH
2217
2218 dump_stack();
2219 if (!should_suppress_show_mem())
2220 show_mem(filter);
2221}
2222
11e33f6a
MG
2223static inline int
2224should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2225 unsigned long did_some_progress,
11e33f6a 2226 unsigned long pages_reclaimed)
1da177e4 2227{
11e33f6a
MG
2228 /* Do not loop if specifically requested */
2229 if (gfp_mask & __GFP_NORETRY)
2230 return 0;
1da177e4 2231
f90ac398
MG
2232 /* Always retry if specifically requested */
2233 if (gfp_mask & __GFP_NOFAIL)
2234 return 1;
2235
2236 /*
2237 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2238 * making forward progress without invoking OOM. Suspend also disables
2239 * storage devices so kswapd will not help. Bail if we are suspending.
2240 */
2241 if (!did_some_progress && pm_suspended_storage())
2242 return 0;
2243
11e33f6a
MG
2244 /*
2245 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2246 * means __GFP_NOFAIL, but that may not be true in other
2247 * implementations.
2248 */
2249 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2250 return 1;
2251
2252 /*
2253 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2254 * specified, then we retry until we no longer reclaim any pages
2255 * (above), or we've reclaimed an order of pages at least as
2256 * large as the allocation's order. In both cases, if the
2257 * allocation still fails, we stop retrying.
2258 */
2259 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2260 return 1;
cf40bd16 2261
11e33f6a
MG
2262 return 0;
2263}
933e312e 2264
11e33f6a
MG
2265static inline struct page *
2266__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2268 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2269 int classzone_idx, int migratetype)
11e33f6a
MG
2270{
2271 struct page *page;
2272
e972a070
DR
2273 /* Acquire the per-zone oom lock for each zone */
2274 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
11e33f6a 2275 schedule_timeout_uninterruptible(1);
1da177e4
LT
2276 return NULL;
2277 }
6b1de916 2278
5695be14
MH
2279 /*
2280 * PM-freezer should be notified that there might be an OOM killer on
2281 * its way to kill and wake somebody up. This is too early and we might
2282 * end up not killing anything but false positives are acceptable.
2283 * See freeze_processes.
2284 */
2285 note_oom_kill();
2286
11e33f6a
MG
2287 /*
2288 * Go through the zonelist yet one more time, keep very high watermark
2289 * here, this is only to catch a parallel oom killing, we must fail if
2290 * we're still under heavy pressure.
2291 */
2292 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2293 order, zonelist, high_zoneidx,
5117f45d 2294 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2295 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2296 if (page)
11e33f6a
MG
2297 goto out;
2298
4365a567
KH
2299 if (!(gfp_mask & __GFP_NOFAIL)) {
2300 /* The OOM killer will not help higher order allocs */
2301 if (order > PAGE_ALLOC_COSTLY_ORDER)
2302 goto out;
03668b3c
DR
2303 /* The OOM killer does not needlessly kill tasks for lowmem */
2304 if (high_zoneidx < ZONE_NORMAL)
2305 goto out;
4365a567
KH
2306 /*
2307 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2308 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2309 * The caller should handle page allocation failure by itself if
2310 * it specifies __GFP_THISNODE.
2311 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2312 */
2313 if (gfp_mask & __GFP_THISNODE)
2314 goto out;
2315 }
11e33f6a 2316 /* Exhausted what can be done so it's blamo time */
08ab9b10 2317 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2318
2319out:
e972a070 2320 oom_zonelist_unlock(zonelist, gfp_mask);
11e33f6a
MG
2321 return page;
2322}
2323
56de7263
MG
2324#ifdef CONFIG_COMPACTION
2325/* Try memory compaction for high-order allocations before reclaim */
2326static struct page *
2327__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2328 struct zonelist *zonelist, enum zone_type high_zoneidx,
2329 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2330 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2331 int *contended_compaction, bool *deferred_compaction)
56de7263 2332{
53853e2d
VB
2333 struct zone *last_compact_zone = NULL;
2334 unsigned long compact_result;
98dd3b48 2335 struct page *page;
53853e2d
VB
2336
2337 if (!order)
66199712 2338 return NULL;
66199712 2339
c06b1fca 2340 current->flags |= PF_MEMALLOC;
53853e2d 2341 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2342 nodemask, mode,
53853e2d 2343 contended_compaction,
ebff3980 2344 alloc_flags, classzone_idx,
53853e2d 2345 &last_compact_zone);
c06b1fca 2346 current->flags &= ~PF_MEMALLOC;
56de7263 2347
98dd3b48
VB
2348 switch (compact_result) {
2349 case COMPACT_DEFERRED:
53853e2d 2350 *deferred_compaction = true;
98dd3b48
VB
2351 /* fall-through */
2352 case COMPACT_SKIPPED:
2353 return NULL;
2354 default:
2355 break;
2356 }
53853e2d 2357
98dd3b48
VB
2358 /*
2359 * At least in one zone compaction wasn't deferred or skipped, so let's
2360 * count a compaction stall
2361 */
2362 count_vm_event(COMPACTSTALL);
8fb74b9f 2363
98dd3b48
VB
2364 /* Page migration frees to the PCP lists but we want merging */
2365 drain_pages(get_cpu());
2366 put_cpu();
56de7263 2367
98dd3b48
VB
2368 page = get_page_from_freelist(gfp_mask, nodemask,
2369 order, zonelist, high_zoneidx,
2370 alloc_flags & ~ALLOC_NO_WATERMARKS,
2371 preferred_zone, classzone_idx, migratetype);
53853e2d 2372
98dd3b48
VB
2373 if (page) {
2374 struct zone *zone = page_zone(page);
53853e2d 2375
98dd3b48
VB
2376 zone->compact_blockskip_flush = false;
2377 compaction_defer_reset(zone, order, true);
2378 count_vm_event(COMPACTSUCCESS);
2379 return page;
2380 }
56de7263 2381
98dd3b48
VB
2382 /*
2383 * last_compact_zone is where try_to_compact_pages thought allocation
2384 * should succeed, so it did not defer compaction. But here we know
2385 * that it didn't succeed, so we do the defer.
2386 */
2387 if (last_compact_zone && mode != MIGRATE_ASYNC)
2388 defer_compaction(last_compact_zone, order);
53853e2d 2389
98dd3b48
VB
2390 /*
2391 * It's bad if compaction run occurs and fails. The most likely reason
2392 * is that pages exist, but not enough to satisfy watermarks.
2393 */
2394 count_vm_event(COMPACTFAIL);
66199712 2395
98dd3b48 2396 cond_resched();
56de7263
MG
2397
2398 return NULL;
2399}
2400#else
2401static inline struct page *
2402__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2403 struct zonelist *zonelist, enum zone_type high_zoneidx,
2404 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
53853e2d 2405 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2406 int *contended_compaction, bool *deferred_compaction)
56de7263
MG
2407{
2408 return NULL;
2409}
2410#endif /* CONFIG_COMPACTION */
2411
bba90710
MS
2412/* Perform direct synchronous page reclaim */
2413static int
2414__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2415 nodemask_t *nodemask)
11e33f6a 2416{
11e33f6a 2417 struct reclaim_state reclaim_state;
bba90710 2418 int progress;
11e33f6a
MG
2419
2420 cond_resched();
2421
2422 /* We now go into synchronous reclaim */
2423 cpuset_memory_pressure_bump();
c06b1fca 2424 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2425 lockdep_set_current_reclaim_state(gfp_mask);
2426 reclaim_state.reclaimed_slab = 0;
c06b1fca 2427 current->reclaim_state = &reclaim_state;
11e33f6a 2428
bba90710 2429 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2430
c06b1fca 2431 current->reclaim_state = NULL;
11e33f6a 2432 lockdep_clear_current_reclaim_state();
c06b1fca 2433 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2434
2435 cond_resched();
2436
bba90710
MS
2437 return progress;
2438}
2439
2440/* The really slow allocator path where we enter direct reclaim */
2441static inline struct page *
2442__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2443 struct zonelist *zonelist, enum zone_type high_zoneidx,
2444 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2445 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2446{
2447 struct page *page = NULL;
2448 bool drained = false;
2449
2450 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2451 nodemask);
9ee493ce
MG
2452 if (unlikely(!(*did_some_progress)))
2453 return NULL;
11e33f6a 2454
76d3fbf8 2455 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2456 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2457 zlc_clear_zones_full(zonelist);
2458
9ee493ce
MG
2459retry:
2460 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2461 zonelist, high_zoneidx,
cfd19c5a 2462 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2463 preferred_zone, classzone_idx,
2464 migratetype);
9ee493ce
MG
2465
2466 /*
2467 * If an allocation failed after direct reclaim, it could be because
2468 * pages are pinned on the per-cpu lists. Drain them and try again
2469 */
2470 if (!page && !drained) {
93481ff0 2471 drain_all_pages(NULL);
9ee493ce
MG
2472 drained = true;
2473 goto retry;
2474 }
2475
11e33f6a
MG
2476 return page;
2477}
2478
1da177e4 2479/*
11e33f6a
MG
2480 * This is called in the allocator slow-path if the allocation request is of
2481 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2482 */
11e33f6a
MG
2483static inline struct page *
2484__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2485 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2486 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2487 int classzone_idx, int migratetype)
11e33f6a
MG
2488{
2489 struct page *page;
2490
2491 do {
2492 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2493 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2494 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2495
2496 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2497 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2498 } while (!page && (gfp_mask & __GFP_NOFAIL));
2499
2500 return page;
2501}
2502
3a025760
JW
2503static void wake_all_kswapds(unsigned int order,
2504 struct zonelist *zonelist,
2505 enum zone_type high_zoneidx,
7ade3c99
WY
2506 struct zone *preferred_zone,
2507 nodemask_t *nodemask)
3a025760
JW
2508{
2509 struct zoneref *z;
2510 struct zone *zone;
2511
7ade3c99
WY
2512 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2513 high_zoneidx, nodemask)
3a025760
JW
2514 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2515}
2516
341ce06f
PZ
2517static inline int
2518gfp_to_alloc_flags(gfp_t gfp_mask)
2519{
341ce06f 2520 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2521 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2522
a56f57ff 2523 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2524 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2525
341ce06f
PZ
2526 /*
2527 * The caller may dip into page reserves a bit more if the caller
2528 * cannot run direct reclaim, or if the caller has realtime scheduling
2529 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2530 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2531 */
e6223a3b 2532 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2533
b104a35d 2534 if (atomic) {
5c3240d9 2535 /*
b104a35d
DR
2536 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2537 * if it can't schedule.
5c3240d9 2538 */
b104a35d 2539 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2540 alloc_flags |= ALLOC_HARDER;
523b9458 2541 /*
b104a35d
DR
2542 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2543 * comment for __cpuset_node_allowed_softwall().
523b9458 2544 */
341ce06f 2545 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2546 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2547 alloc_flags |= ALLOC_HARDER;
2548
b37f1dd0
MG
2549 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2550 if (gfp_mask & __GFP_MEMALLOC)
2551 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2552 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2553 alloc_flags |= ALLOC_NO_WATERMARKS;
2554 else if (!in_interrupt() &&
2555 ((current->flags & PF_MEMALLOC) ||
2556 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2557 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2558 }
d95ea5d1 2559#ifdef CONFIG_CMA
43e7a34d 2560 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2561 alloc_flags |= ALLOC_CMA;
2562#endif
341ce06f
PZ
2563 return alloc_flags;
2564}
2565
072bb0aa
MG
2566bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2567{
b37f1dd0 2568 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2569}
2570
11e33f6a
MG
2571static inline struct page *
2572__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2573 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2574 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2575 int classzone_idx, int migratetype)
11e33f6a
MG
2576{
2577 const gfp_t wait = gfp_mask & __GFP_WAIT;
2578 struct page *page = NULL;
2579 int alloc_flags;
2580 unsigned long pages_reclaimed = 0;
2581 unsigned long did_some_progress;
e0b9daeb 2582 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2583 bool deferred_compaction = false;
1f9efdef 2584 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2585
72807a74
MG
2586 /*
2587 * In the slowpath, we sanity check order to avoid ever trying to
2588 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2589 * be using allocators in order of preference for an area that is
2590 * too large.
2591 */
1fc28b70
MG
2592 if (order >= MAX_ORDER) {
2593 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2594 return NULL;
1fc28b70 2595 }
1da177e4 2596
952f3b51
CL
2597 /*
2598 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2599 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2600 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2601 * using a larger set of nodes after it has established that the
2602 * allowed per node queues are empty and that nodes are
2603 * over allocated.
2604 */
3a025760
JW
2605 if (IS_ENABLED(CONFIG_NUMA) &&
2606 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2607 goto nopage;
2608
cc4a6851 2609restart:
3a025760 2610 if (!(gfp_mask & __GFP_NO_KSWAPD))
7ade3c99
WY
2611 wake_all_kswapds(order, zonelist, high_zoneidx,
2612 preferred_zone, nodemask);
1da177e4 2613
9bf2229f 2614 /*
7fb1d9fc
RS
2615 * OK, we're below the kswapd watermark and have kicked background
2616 * reclaim. Now things get more complex, so set up alloc_flags according
2617 * to how we want to proceed.
9bf2229f 2618 */
341ce06f 2619 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2620
f33261d7
DR
2621 /*
2622 * Find the true preferred zone if the allocation is unconstrained by
2623 * cpusets.
2624 */
d8846374
MG
2625 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2626 struct zoneref *preferred_zoneref;
2627 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2628 NULL, &preferred_zone);
2629 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2630 }
f33261d7 2631
cfa54a0f 2632rebalance:
341ce06f 2633 /* This is the last chance, in general, before the goto nopage. */
19770b32 2634 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2635 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2636 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2637 if (page)
2638 goto got_pg;
1da177e4 2639
11e33f6a 2640 /* Allocate without watermarks if the context allows */
341ce06f 2641 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2642 /*
2643 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2644 * the allocation is high priority and these type of
2645 * allocations are system rather than user orientated
2646 */
2647 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2648
341ce06f
PZ
2649 page = __alloc_pages_high_priority(gfp_mask, order,
2650 zonelist, high_zoneidx, nodemask,
d8846374 2651 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2652 if (page) {
341ce06f 2653 goto got_pg;
cfd19c5a 2654 }
1da177e4
LT
2655 }
2656
2657 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2658 if (!wait) {
2659 /*
2660 * All existing users of the deprecated __GFP_NOFAIL are
2661 * blockable, so warn of any new users that actually allow this
2662 * type of allocation to fail.
2663 */
2664 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2665 goto nopage;
aed0a0e3 2666 }
1da177e4 2667
341ce06f 2668 /* Avoid recursion of direct reclaim */
c06b1fca 2669 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2670 goto nopage;
2671
6583bb64
DR
2672 /* Avoid allocations with no watermarks from looping endlessly */
2673 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2674 goto nopage;
2675
77f1fe6b
MG
2676 /*
2677 * Try direct compaction. The first pass is asynchronous. Subsequent
2678 * attempts after direct reclaim are synchronous
2679 */
e0b9daeb
DR
2680 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2681 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2682 preferred_zone,
2683 classzone_idx, migratetype,
e0b9daeb 2684 migration_mode, &contended_compaction,
53853e2d 2685 &deferred_compaction);
56de7263
MG
2686 if (page)
2687 goto got_pg;
75f30861 2688
1f9efdef
VB
2689 /* Checks for THP-specific high-order allocations */
2690 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2691 /*
2692 * If compaction is deferred for high-order allocations, it is
2693 * because sync compaction recently failed. If this is the case
2694 * and the caller requested a THP allocation, we do not want
2695 * to heavily disrupt the system, so we fail the allocation
2696 * instead of entering direct reclaim.
2697 */
2698 if (deferred_compaction)
2699 goto nopage;
2700
2701 /*
2702 * In all zones where compaction was attempted (and not
2703 * deferred or skipped), lock contention has been detected.
2704 * For THP allocation we do not want to disrupt the others
2705 * so we fallback to base pages instead.
2706 */
2707 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2708 goto nopage;
2709
2710 /*
2711 * If compaction was aborted due to need_resched(), we do not
2712 * want to further increase allocation latency, unless it is
2713 * khugepaged trying to collapse.
2714 */
2715 if (contended_compaction == COMPACT_CONTENDED_SCHED
2716 && !(current->flags & PF_KTHREAD))
2717 goto nopage;
2718 }
66199712 2719
8fe78048
DR
2720 /*
2721 * It can become very expensive to allocate transparent hugepages at
2722 * fault, so use asynchronous memory compaction for THP unless it is
2723 * khugepaged trying to collapse.
2724 */
2725 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2726 (current->flags & PF_KTHREAD))
2727 migration_mode = MIGRATE_SYNC_LIGHT;
2728
11e33f6a
MG
2729 /* Try direct reclaim and then allocating */
2730 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2731 zonelist, high_zoneidx,
2732 nodemask,
5117f45d 2733 alloc_flags, preferred_zone,
d8846374
MG
2734 classzone_idx, migratetype,
2735 &did_some_progress);
11e33f6a
MG
2736 if (page)
2737 goto got_pg;
1da177e4 2738
e33c3b5e 2739 /*
11e33f6a
MG
2740 * If we failed to make any progress reclaiming, then we are
2741 * running out of options and have to consider going OOM
e33c3b5e 2742 */
11e33f6a 2743 if (!did_some_progress) {
b9921ecd 2744 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2745 if (oom_killer_disabled)
2746 goto nopage;
29fd66d2
DR
2747 /* Coredumps can quickly deplete all memory reserves */
2748 if ((current->flags & PF_DUMPCORE) &&
2749 !(gfp_mask & __GFP_NOFAIL))
2750 goto nopage;
11e33f6a
MG
2751 page = __alloc_pages_may_oom(gfp_mask, order,
2752 zonelist, high_zoneidx,
3dd28266 2753 nodemask, preferred_zone,
d8846374 2754 classzone_idx, migratetype);
11e33f6a
MG
2755 if (page)
2756 goto got_pg;
1da177e4 2757
03668b3c
DR
2758 if (!(gfp_mask & __GFP_NOFAIL)) {
2759 /*
2760 * The oom killer is not called for high-order
2761 * allocations that may fail, so if no progress
2762 * is being made, there are no other options and
2763 * retrying is unlikely to help.
2764 */
2765 if (order > PAGE_ALLOC_COSTLY_ORDER)
2766 goto nopage;
2767 /*
2768 * The oom killer is not called for lowmem
2769 * allocations to prevent needlessly killing
2770 * innocent tasks.
2771 */
2772 if (high_zoneidx < ZONE_NORMAL)
2773 goto nopage;
2774 }
e2c55dc8 2775
ff0ceb9d
DR
2776 goto restart;
2777 }
1da177e4
LT
2778 }
2779
11e33f6a 2780 /* Check if we should retry the allocation */
a41f24ea 2781 pages_reclaimed += did_some_progress;
f90ac398
MG
2782 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2783 pages_reclaimed)) {
11e33f6a 2784 /* Wait for some write requests to complete then retry */
0e093d99 2785 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2786 goto rebalance;
3e7d3449
MG
2787 } else {
2788 /*
2789 * High-order allocations do not necessarily loop after
2790 * direct reclaim and reclaim/compaction depends on compaction
2791 * being called after reclaim so call directly if necessary
2792 */
e0b9daeb
DR
2793 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2794 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2795 preferred_zone,
2796 classzone_idx, migratetype,
e0b9daeb 2797 migration_mode, &contended_compaction,
53853e2d 2798 &deferred_compaction);
3e7d3449
MG
2799 if (page)
2800 goto got_pg;
1da177e4
LT
2801 }
2802
2803nopage:
a238ab5b 2804 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2805 return page;
1da177e4 2806got_pg:
b1eeab67
VN
2807 if (kmemcheck_enabled)
2808 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2809
072bb0aa 2810 return page;
1da177e4 2811}
11e33f6a
MG
2812
2813/*
2814 * This is the 'heart' of the zoned buddy allocator.
2815 */
2816struct page *
2817__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2818 struct zonelist *zonelist, nodemask_t *nodemask)
2819{
2820 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2821 struct zone *preferred_zone;
d8846374 2822 struct zoneref *preferred_zoneref;
cc9a6c87 2823 struct page *page = NULL;
43e7a34d 2824 int migratetype = gfpflags_to_migratetype(gfp_mask);
cc9a6c87 2825 unsigned int cpuset_mems_cookie;
3a025760 2826 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2827 int classzone_idx;
11e33f6a 2828
dcce284a
BH
2829 gfp_mask &= gfp_allowed_mask;
2830
11e33f6a
MG
2831 lockdep_trace_alloc(gfp_mask);
2832
2833 might_sleep_if(gfp_mask & __GFP_WAIT);
2834
2835 if (should_fail_alloc_page(gfp_mask, order))
2836 return NULL;
2837
2838 /*
2839 * Check the zones suitable for the gfp_mask contain at least one
2840 * valid zone. It's possible to have an empty zonelist as a result
2841 * of GFP_THISNODE and a memoryless node
2842 */
2843 if (unlikely(!zonelist->_zonerefs->zone))
2844 return NULL;
2845
21bb9bd1
VB
2846 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2847 alloc_flags |= ALLOC_CMA;
2848
cc9a6c87 2849retry_cpuset:
d26914d1 2850 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2851
5117f45d 2852 /* The preferred zone is used for statistics later */
d8846374 2853 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2854 nodemask ? : &cpuset_current_mems_allowed,
2855 &preferred_zone);
cc9a6c87
MG
2856 if (!preferred_zone)
2857 goto out;
d8846374 2858 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2859
2860 /* First allocation attempt */
11e33f6a 2861 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2862 zonelist, high_zoneidx, alloc_flags,
d8846374 2863 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2864 if (unlikely(!page)) {
2865 /*
2866 * Runtime PM, block IO and its error handling path
2867 * can deadlock because I/O on the device might not
2868 * complete.
2869 */
2870 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2871 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2872 zonelist, high_zoneidx, nodemask,
d8846374 2873 preferred_zone, classzone_idx, migratetype);
21caf2fc 2874 }
11e33f6a 2875
4b4f278c 2876 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2877
2878out:
2879 /*
2880 * When updating a task's mems_allowed, it is possible to race with
2881 * parallel threads in such a way that an allocation can fail while
2882 * the mask is being updated. If a page allocation is about to fail,
2883 * check if the cpuset changed during allocation and if so, retry.
2884 */
d26914d1 2885 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2886 goto retry_cpuset;
2887
11e33f6a 2888 return page;
1da177e4 2889}
d239171e 2890EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2891
2892/*
2893 * Common helper functions.
2894 */
920c7a5d 2895unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2896{
945a1113
AM
2897 struct page *page;
2898
2899 /*
2900 * __get_free_pages() returns a 32-bit address, which cannot represent
2901 * a highmem page
2902 */
2903 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2904
1da177e4
LT
2905 page = alloc_pages(gfp_mask, order);
2906 if (!page)
2907 return 0;
2908 return (unsigned long) page_address(page);
2909}
1da177e4
LT
2910EXPORT_SYMBOL(__get_free_pages);
2911
920c7a5d 2912unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2913{
945a1113 2914 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2915}
1da177e4
LT
2916EXPORT_SYMBOL(get_zeroed_page);
2917
920c7a5d 2918void __free_pages(struct page *page, unsigned int order)
1da177e4 2919{
b5810039 2920 if (put_page_testzero(page)) {
1da177e4 2921 if (order == 0)
b745bc85 2922 free_hot_cold_page(page, false);
1da177e4
LT
2923 else
2924 __free_pages_ok(page, order);
2925 }
2926}
2927
2928EXPORT_SYMBOL(__free_pages);
2929
920c7a5d 2930void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2931{
2932 if (addr != 0) {
725d704e 2933 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2934 __free_pages(virt_to_page((void *)addr), order);
2935 }
2936}
2937
2938EXPORT_SYMBOL(free_pages);
2939
6a1a0d3b 2940/*
52383431
VD
2941 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2942 * of the current memory cgroup.
6a1a0d3b 2943 *
52383431
VD
2944 * It should be used when the caller would like to use kmalloc, but since the
2945 * allocation is large, it has to fall back to the page allocator.
2946 */
2947struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2948{
2949 struct page *page;
2950 struct mem_cgroup *memcg = NULL;
2951
2952 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2953 return NULL;
2954 page = alloc_pages(gfp_mask, order);
2955 memcg_kmem_commit_charge(page, memcg, order);
2956 return page;
2957}
2958
2959struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2960{
2961 struct page *page;
2962 struct mem_cgroup *memcg = NULL;
2963
2964 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2965 return NULL;
2966 page = alloc_pages_node(nid, gfp_mask, order);
2967 memcg_kmem_commit_charge(page, memcg, order);
2968 return page;
2969}
2970
2971/*
2972 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2973 * alloc_kmem_pages.
6a1a0d3b 2974 */
52383431 2975void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2976{
2977 memcg_kmem_uncharge_pages(page, order);
2978 __free_pages(page, order);
2979}
2980
52383431 2981void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2982{
2983 if (addr != 0) {
2984 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2985 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2986 }
2987}
2988
ee85c2e1
AK
2989static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2990{
2991 if (addr) {
2992 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2993 unsigned long used = addr + PAGE_ALIGN(size);
2994
2995 split_page(virt_to_page((void *)addr), order);
2996 while (used < alloc_end) {
2997 free_page(used);
2998 used += PAGE_SIZE;
2999 }
3000 }
3001 return (void *)addr;
3002}
3003
2be0ffe2
TT
3004/**
3005 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3006 * @size: the number of bytes to allocate
3007 * @gfp_mask: GFP flags for the allocation
3008 *
3009 * This function is similar to alloc_pages(), except that it allocates the
3010 * minimum number of pages to satisfy the request. alloc_pages() can only
3011 * allocate memory in power-of-two pages.
3012 *
3013 * This function is also limited by MAX_ORDER.
3014 *
3015 * Memory allocated by this function must be released by free_pages_exact().
3016 */
3017void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3018{
3019 unsigned int order = get_order(size);
3020 unsigned long addr;
3021
3022 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3023 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3024}
3025EXPORT_SYMBOL(alloc_pages_exact);
3026
ee85c2e1
AK
3027/**
3028 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3029 * pages on a node.
b5e6ab58 3030 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3031 * @size: the number of bytes to allocate
3032 * @gfp_mask: GFP flags for the allocation
3033 *
3034 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3035 * back.
3036 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3037 * but is not exact.
3038 */
e1931811 3039void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3040{
3041 unsigned order = get_order(size);
3042 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3043 if (!p)
3044 return NULL;
3045 return make_alloc_exact((unsigned long)page_address(p), order, size);
3046}
ee85c2e1 3047
2be0ffe2
TT
3048/**
3049 * free_pages_exact - release memory allocated via alloc_pages_exact()
3050 * @virt: the value returned by alloc_pages_exact.
3051 * @size: size of allocation, same value as passed to alloc_pages_exact().
3052 *
3053 * Release the memory allocated by a previous call to alloc_pages_exact.
3054 */
3055void free_pages_exact(void *virt, size_t size)
3056{
3057 unsigned long addr = (unsigned long)virt;
3058 unsigned long end = addr + PAGE_ALIGN(size);
3059
3060 while (addr < end) {
3061 free_page(addr);
3062 addr += PAGE_SIZE;
3063 }
3064}
3065EXPORT_SYMBOL(free_pages_exact);
3066
e0fb5815
ZY
3067/**
3068 * nr_free_zone_pages - count number of pages beyond high watermark
3069 * @offset: The zone index of the highest zone
3070 *
3071 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3072 * high watermark within all zones at or below a given zone index. For each
3073 * zone, the number of pages is calculated as:
834405c3 3074 * managed_pages - high_pages
e0fb5815 3075 */
ebec3862 3076static unsigned long nr_free_zone_pages(int offset)
1da177e4 3077{
dd1a239f 3078 struct zoneref *z;
54a6eb5c
MG
3079 struct zone *zone;
3080
e310fd43 3081 /* Just pick one node, since fallback list is circular */
ebec3862 3082 unsigned long sum = 0;
1da177e4 3083
0e88460d 3084 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3085
54a6eb5c 3086 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3087 unsigned long size = zone->managed_pages;
41858966 3088 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3089 if (size > high)
3090 sum += size - high;
1da177e4
LT
3091 }
3092
3093 return sum;
3094}
3095
e0fb5815
ZY
3096/**
3097 * nr_free_buffer_pages - count number of pages beyond high watermark
3098 *
3099 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3100 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3101 */
ebec3862 3102unsigned long nr_free_buffer_pages(void)
1da177e4 3103{
af4ca457 3104 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3105}
c2f1a551 3106EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3107
e0fb5815
ZY
3108/**
3109 * nr_free_pagecache_pages - count number of pages beyond high watermark
3110 *
3111 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3112 * high watermark within all zones.
1da177e4 3113 */
ebec3862 3114unsigned long nr_free_pagecache_pages(void)
1da177e4 3115{
2a1e274a 3116 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3117}
08e0f6a9
CL
3118
3119static inline void show_node(struct zone *zone)
1da177e4 3120{
e5adfffc 3121 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3122 printk("Node %d ", zone_to_nid(zone));
1da177e4 3123}
1da177e4 3124
1da177e4
LT
3125void si_meminfo(struct sysinfo *val)
3126{
3127 val->totalram = totalram_pages;
cc7452b6 3128 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3129 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3130 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3131 val->totalhigh = totalhigh_pages;
3132 val->freehigh = nr_free_highpages();
1da177e4
LT
3133 val->mem_unit = PAGE_SIZE;
3134}
3135
3136EXPORT_SYMBOL(si_meminfo);
3137
3138#ifdef CONFIG_NUMA
3139void si_meminfo_node(struct sysinfo *val, int nid)
3140{
cdd91a77
JL
3141 int zone_type; /* needs to be signed */
3142 unsigned long managed_pages = 0;
1da177e4
LT
3143 pg_data_t *pgdat = NODE_DATA(nid);
3144
cdd91a77
JL
3145 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3146 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3147 val->totalram = managed_pages;
cc7452b6 3148 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3149 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3150#ifdef CONFIG_HIGHMEM
b40da049 3151 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3152 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3153 NR_FREE_PAGES);
98d2b0eb
CL
3154#else
3155 val->totalhigh = 0;
3156 val->freehigh = 0;
3157#endif
1da177e4
LT
3158 val->mem_unit = PAGE_SIZE;
3159}
3160#endif
3161
ddd588b5 3162/*
7bf02ea2
DR
3163 * Determine whether the node should be displayed or not, depending on whether
3164 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3165 */
7bf02ea2 3166bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3167{
3168 bool ret = false;
cc9a6c87 3169 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3170
3171 if (!(flags & SHOW_MEM_FILTER_NODES))
3172 goto out;
3173
cc9a6c87 3174 do {
d26914d1 3175 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3176 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3177 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3178out:
3179 return ret;
3180}
3181
1da177e4
LT
3182#define K(x) ((x) << (PAGE_SHIFT-10))
3183
377e4f16
RV
3184static void show_migration_types(unsigned char type)
3185{
3186 static const char types[MIGRATE_TYPES] = {
3187 [MIGRATE_UNMOVABLE] = 'U',
3188 [MIGRATE_RECLAIMABLE] = 'E',
3189 [MIGRATE_MOVABLE] = 'M',
3190 [MIGRATE_RESERVE] = 'R',
3191#ifdef CONFIG_CMA
3192 [MIGRATE_CMA] = 'C',
3193#endif
194159fb 3194#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3195 [MIGRATE_ISOLATE] = 'I',
194159fb 3196#endif
377e4f16
RV
3197 };
3198 char tmp[MIGRATE_TYPES + 1];
3199 char *p = tmp;
3200 int i;
3201
3202 for (i = 0; i < MIGRATE_TYPES; i++) {
3203 if (type & (1 << i))
3204 *p++ = types[i];
3205 }
3206
3207 *p = '\0';
3208 printk("(%s) ", tmp);
3209}
3210
1da177e4
LT
3211/*
3212 * Show free area list (used inside shift_scroll-lock stuff)
3213 * We also calculate the percentage fragmentation. We do this by counting the
3214 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3215 * Suppresses nodes that are not allowed by current's cpuset if
3216 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3217 */
7bf02ea2 3218void show_free_areas(unsigned int filter)
1da177e4 3219{
c7241913 3220 int cpu;
1da177e4
LT
3221 struct zone *zone;
3222
ee99c71c 3223 for_each_populated_zone(zone) {
7bf02ea2 3224 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3225 continue;
c7241913
JS
3226 show_node(zone);
3227 printk("%s per-cpu:\n", zone->name);
1da177e4 3228
6b482c67 3229 for_each_online_cpu(cpu) {
1da177e4
LT
3230 struct per_cpu_pageset *pageset;
3231
99dcc3e5 3232 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3233
3dfa5721
CL
3234 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3235 cpu, pageset->pcp.high,
3236 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3237 }
3238 }
3239
a731286d
KM
3240 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3241 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3242 " unevictable:%lu"
b76146ed 3243 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3244 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3245 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3246 " free_cma:%lu\n",
4f98a2fe 3247 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3248 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3249 global_page_state(NR_ISOLATED_ANON),
3250 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3251 global_page_state(NR_INACTIVE_FILE),
a731286d 3252 global_page_state(NR_ISOLATED_FILE),
7b854121 3253 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3254 global_page_state(NR_FILE_DIRTY),
ce866b34 3255 global_page_state(NR_WRITEBACK),
fd39fc85 3256 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3257 global_page_state(NR_FREE_PAGES),
3701b033
KM
3258 global_page_state(NR_SLAB_RECLAIMABLE),
3259 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3260 global_page_state(NR_FILE_MAPPED),
4b02108a 3261 global_page_state(NR_SHMEM),
a25700a5 3262 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3263 global_page_state(NR_BOUNCE),
3264 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3265
ee99c71c 3266 for_each_populated_zone(zone) {
1da177e4
LT
3267 int i;
3268
7bf02ea2 3269 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3270 continue;
1da177e4
LT
3271 show_node(zone);
3272 printk("%s"
3273 " free:%lukB"
3274 " min:%lukB"
3275 " low:%lukB"
3276 " high:%lukB"
4f98a2fe
RR
3277 " active_anon:%lukB"
3278 " inactive_anon:%lukB"
3279 " active_file:%lukB"
3280 " inactive_file:%lukB"
7b854121 3281 " unevictable:%lukB"
a731286d
KM
3282 " isolated(anon):%lukB"
3283 " isolated(file):%lukB"
1da177e4 3284 " present:%lukB"
9feedc9d 3285 " managed:%lukB"
4a0aa73f
KM
3286 " mlocked:%lukB"
3287 " dirty:%lukB"
3288 " writeback:%lukB"
3289 " mapped:%lukB"
4b02108a 3290 " shmem:%lukB"
4a0aa73f
KM
3291 " slab_reclaimable:%lukB"
3292 " slab_unreclaimable:%lukB"
c6a7f572 3293 " kernel_stack:%lukB"
4a0aa73f
KM
3294 " pagetables:%lukB"
3295 " unstable:%lukB"
3296 " bounce:%lukB"
d1ce749a 3297 " free_cma:%lukB"
4a0aa73f 3298 " writeback_tmp:%lukB"
1da177e4
LT
3299 " pages_scanned:%lu"
3300 " all_unreclaimable? %s"
3301 "\n",
3302 zone->name,
88f5acf8 3303 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3304 K(min_wmark_pages(zone)),
3305 K(low_wmark_pages(zone)),
3306 K(high_wmark_pages(zone)),
4f98a2fe
RR
3307 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3308 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3309 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3310 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3311 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3312 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3313 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3314 K(zone->present_pages),
9feedc9d 3315 K(zone->managed_pages),
4a0aa73f
KM
3316 K(zone_page_state(zone, NR_MLOCK)),
3317 K(zone_page_state(zone, NR_FILE_DIRTY)),
3318 K(zone_page_state(zone, NR_WRITEBACK)),
3319 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3320 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3321 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3322 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3323 zone_page_state(zone, NR_KERNEL_STACK) *
3324 THREAD_SIZE / 1024,
4a0aa73f
KM
3325 K(zone_page_state(zone, NR_PAGETABLE)),
3326 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3327 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3328 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3329 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3330 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3331 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3332 );
3333 printk("lowmem_reserve[]:");
3334 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3335 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3336 printk("\n");
3337 }
3338
ee99c71c 3339 for_each_populated_zone(zone) {
b8af2941 3340 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3341 unsigned char types[MAX_ORDER];
1da177e4 3342
7bf02ea2 3343 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3344 continue;
1da177e4
LT
3345 show_node(zone);
3346 printk("%s: ", zone->name);
1da177e4
LT
3347
3348 spin_lock_irqsave(&zone->lock, flags);
3349 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3350 struct free_area *area = &zone->free_area[order];
3351 int type;
3352
3353 nr[order] = area->nr_free;
8f9de51a 3354 total += nr[order] << order;
377e4f16
RV
3355
3356 types[order] = 0;
3357 for (type = 0; type < MIGRATE_TYPES; type++) {
3358 if (!list_empty(&area->free_list[type]))
3359 types[order] |= 1 << type;
3360 }
1da177e4
LT
3361 }
3362 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3363 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3364 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3365 if (nr[order])
3366 show_migration_types(types[order]);
3367 }
1da177e4
LT
3368 printk("= %lukB\n", K(total));
3369 }
3370
949f7ec5
DR
3371 hugetlb_show_meminfo();
3372
e6f3602d
LW
3373 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3374
1da177e4
LT
3375 show_swap_cache_info();
3376}
3377
19770b32
MG
3378static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3379{
3380 zoneref->zone = zone;
3381 zoneref->zone_idx = zone_idx(zone);
3382}
3383
1da177e4
LT
3384/*
3385 * Builds allocation fallback zone lists.
1a93205b
CL
3386 *
3387 * Add all populated zones of a node to the zonelist.
1da177e4 3388 */
f0c0b2b8 3389static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3390 int nr_zones)
1da177e4 3391{
1a93205b 3392 struct zone *zone;
bc732f1d 3393 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3394
3395 do {
2f6726e5 3396 zone_type--;
070f8032 3397 zone = pgdat->node_zones + zone_type;
1a93205b 3398 if (populated_zone(zone)) {
dd1a239f
MG
3399 zoneref_set_zone(zone,
3400 &zonelist->_zonerefs[nr_zones++]);
070f8032 3401 check_highest_zone(zone_type);
1da177e4 3402 }
2f6726e5 3403 } while (zone_type);
bc732f1d 3404
070f8032 3405 return nr_zones;
1da177e4
LT
3406}
3407
f0c0b2b8
KH
3408
3409/*
3410 * zonelist_order:
3411 * 0 = automatic detection of better ordering.
3412 * 1 = order by ([node] distance, -zonetype)
3413 * 2 = order by (-zonetype, [node] distance)
3414 *
3415 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3416 * the same zonelist. So only NUMA can configure this param.
3417 */
3418#define ZONELIST_ORDER_DEFAULT 0
3419#define ZONELIST_ORDER_NODE 1
3420#define ZONELIST_ORDER_ZONE 2
3421
3422/* zonelist order in the kernel.
3423 * set_zonelist_order() will set this to NODE or ZONE.
3424 */
3425static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3426static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3427
3428
1da177e4 3429#ifdef CONFIG_NUMA
f0c0b2b8
KH
3430/* The value user specified ....changed by config */
3431static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3432/* string for sysctl */
3433#define NUMA_ZONELIST_ORDER_LEN 16
3434char numa_zonelist_order[16] = "default";
3435
3436/*
3437 * interface for configure zonelist ordering.
3438 * command line option "numa_zonelist_order"
3439 * = "[dD]efault - default, automatic configuration.
3440 * = "[nN]ode - order by node locality, then by zone within node
3441 * = "[zZ]one - order by zone, then by locality within zone
3442 */
3443
3444static int __parse_numa_zonelist_order(char *s)
3445{
3446 if (*s == 'd' || *s == 'D') {
3447 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3448 } else if (*s == 'n' || *s == 'N') {
3449 user_zonelist_order = ZONELIST_ORDER_NODE;
3450 } else if (*s == 'z' || *s == 'Z') {
3451 user_zonelist_order = ZONELIST_ORDER_ZONE;
3452 } else {
3453 printk(KERN_WARNING
3454 "Ignoring invalid numa_zonelist_order value: "
3455 "%s\n", s);
3456 return -EINVAL;
3457 }
3458 return 0;
3459}
3460
3461static __init int setup_numa_zonelist_order(char *s)
3462{
ecb256f8
VL
3463 int ret;
3464
3465 if (!s)
3466 return 0;
3467
3468 ret = __parse_numa_zonelist_order(s);
3469 if (ret == 0)
3470 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3471
3472 return ret;
f0c0b2b8
KH
3473}
3474early_param("numa_zonelist_order", setup_numa_zonelist_order);
3475
3476/*
3477 * sysctl handler for numa_zonelist_order
3478 */
cccad5b9 3479int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3480 void __user *buffer, size_t *length,
f0c0b2b8
KH
3481 loff_t *ppos)
3482{
3483 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3484 int ret;
443c6f14 3485 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3486
443c6f14 3487 mutex_lock(&zl_order_mutex);
dacbde09
CG
3488 if (write) {
3489 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3490 ret = -EINVAL;
3491 goto out;
3492 }
3493 strcpy(saved_string, (char *)table->data);
3494 }
8d65af78 3495 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3496 if (ret)
443c6f14 3497 goto out;
f0c0b2b8
KH
3498 if (write) {
3499 int oldval = user_zonelist_order;
dacbde09
CG
3500
3501 ret = __parse_numa_zonelist_order((char *)table->data);
3502 if (ret) {
f0c0b2b8
KH
3503 /*
3504 * bogus value. restore saved string
3505 */
dacbde09 3506 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3507 NUMA_ZONELIST_ORDER_LEN);
3508 user_zonelist_order = oldval;
4eaf3f64
HL
3509 } else if (oldval != user_zonelist_order) {
3510 mutex_lock(&zonelists_mutex);
9adb62a5 3511 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3512 mutex_unlock(&zonelists_mutex);
3513 }
f0c0b2b8 3514 }
443c6f14
AK
3515out:
3516 mutex_unlock(&zl_order_mutex);
3517 return ret;
f0c0b2b8
KH
3518}
3519
3520
62bc62a8 3521#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3522static int node_load[MAX_NUMNODES];
3523
1da177e4 3524/**
4dc3b16b 3525 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3526 * @node: node whose fallback list we're appending
3527 * @used_node_mask: nodemask_t of already used nodes
3528 *
3529 * We use a number of factors to determine which is the next node that should
3530 * appear on a given node's fallback list. The node should not have appeared
3531 * already in @node's fallback list, and it should be the next closest node
3532 * according to the distance array (which contains arbitrary distance values
3533 * from each node to each node in the system), and should also prefer nodes
3534 * with no CPUs, since presumably they'll have very little allocation pressure
3535 * on them otherwise.
3536 * It returns -1 if no node is found.
3537 */
f0c0b2b8 3538static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3539{
4cf808eb 3540 int n, val;
1da177e4 3541 int min_val = INT_MAX;
00ef2d2f 3542 int best_node = NUMA_NO_NODE;
a70f7302 3543 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3544
4cf808eb
LT
3545 /* Use the local node if we haven't already */
3546 if (!node_isset(node, *used_node_mask)) {
3547 node_set(node, *used_node_mask);
3548 return node;
3549 }
1da177e4 3550
4b0ef1fe 3551 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3552
3553 /* Don't want a node to appear more than once */
3554 if (node_isset(n, *used_node_mask))
3555 continue;
3556
1da177e4
LT
3557 /* Use the distance array to find the distance */
3558 val = node_distance(node, n);
3559
4cf808eb
LT
3560 /* Penalize nodes under us ("prefer the next node") */
3561 val += (n < node);
3562
1da177e4 3563 /* Give preference to headless and unused nodes */
a70f7302
RR
3564 tmp = cpumask_of_node(n);
3565 if (!cpumask_empty(tmp))
1da177e4
LT
3566 val += PENALTY_FOR_NODE_WITH_CPUS;
3567
3568 /* Slight preference for less loaded node */
3569 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3570 val += node_load[n];
3571
3572 if (val < min_val) {
3573 min_val = val;
3574 best_node = n;
3575 }
3576 }
3577
3578 if (best_node >= 0)
3579 node_set(best_node, *used_node_mask);
3580
3581 return best_node;
3582}
3583
f0c0b2b8
KH
3584
3585/*
3586 * Build zonelists ordered by node and zones within node.
3587 * This results in maximum locality--normal zone overflows into local
3588 * DMA zone, if any--but risks exhausting DMA zone.
3589 */
3590static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3591{
f0c0b2b8 3592 int j;
1da177e4 3593 struct zonelist *zonelist;
f0c0b2b8 3594
54a6eb5c 3595 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3596 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3597 ;
bc732f1d 3598 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3599 zonelist->_zonerefs[j].zone = NULL;
3600 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3601}
3602
523b9458
CL
3603/*
3604 * Build gfp_thisnode zonelists
3605 */
3606static void build_thisnode_zonelists(pg_data_t *pgdat)
3607{
523b9458
CL
3608 int j;
3609 struct zonelist *zonelist;
3610
54a6eb5c 3611 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3612 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3613 zonelist->_zonerefs[j].zone = NULL;
3614 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3615}
3616
f0c0b2b8
KH
3617/*
3618 * Build zonelists ordered by zone and nodes within zones.
3619 * This results in conserving DMA zone[s] until all Normal memory is
3620 * exhausted, but results in overflowing to remote node while memory
3621 * may still exist in local DMA zone.
3622 */
3623static int node_order[MAX_NUMNODES];
3624
3625static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3626{
f0c0b2b8
KH
3627 int pos, j, node;
3628 int zone_type; /* needs to be signed */
3629 struct zone *z;
3630 struct zonelist *zonelist;
3631
54a6eb5c
MG
3632 zonelist = &pgdat->node_zonelists[0];
3633 pos = 0;
3634 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3635 for (j = 0; j < nr_nodes; j++) {
3636 node = node_order[j];
3637 z = &NODE_DATA(node)->node_zones[zone_type];
3638 if (populated_zone(z)) {
dd1a239f
MG
3639 zoneref_set_zone(z,
3640 &zonelist->_zonerefs[pos++]);
54a6eb5c 3641 check_highest_zone(zone_type);
f0c0b2b8
KH
3642 }
3643 }
f0c0b2b8 3644 }
dd1a239f
MG
3645 zonelist->_zonerefs[pos].zone = NULL;
3646 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3647}
3648
3193913c
MG
3649#if defined(CONFIG_64BIT)
3650/*
3651 * Devices that require DMA32/DMA are relatively rare and do not justify a
3652 * penalty to every machine in case the specialised case applies. Default
3653 * to Node-ordering on 64-bit NUMA machines
3654 */
3655static int default_zonelist_order(void)
3656{
3657 return ZONELIST_ORDER_NODE;
3658}
3659#else
3660/*
3661 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3662 * by the kernel. If processes running on node 0 deplete the low memory zone
3663 * then reclaim will occur more frequency increasing stalls and potentially
3664 * be easier to OOM if a large percentage of the zone is under writeback or
3665 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3666 * Hence, default to zone ordering on 32-bit.
3667 */
f0c0b2b8
KH
3668static int default_zonelist_order(void)
3669{
f0c0b2b8
KH
3670 return ZONELIST_ORDER_ZONE;
3671}
3193913c 3672#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3673
3674static void set_zonelist_order(void)
3675{
3676 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3677 current_zonelist_order = default_zonelist_order();
3678 else
3679 current_zonelist_order = user_zonelist_order;
3680}
3681
3682static void build_zonelists(pg_data_t *pgdat)
3683{
3684 int j, node, load;
3685 enum zone_type i;
1da177e4 3686 nodemask_t used_mask;
f0c0b2b8
KH
3687 int local_node, prev_node;
3688 struct zonelist *zonelist;
3689 int order = current_zonelist_order;
1da177e4
LT
3690
3691 /* initialize zonelists */
523b9458 3692 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3693 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3694 zonelist->_zonerefs[0].zone = NULL;
3695 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3696 }
3697
3698 /* NUMA-aware ordering of nodes */
3699 local_node = pgdat->node_id;
62bc62a8 3700 load = nr_online_nodes;
1da177e4
LT
3701 prev_node = local_node;
3702 nodes_clear(used_mask);
f0c0b2b8 3703
f0c0b2b8
KH
3704 memset(node_order, 0, sizeof(node_order));
3705 j = 0;
3706
1da177e4
LT
3707 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3708 /*
3709 * We don't want to pressure a particular node.
3710 * So adding penalty to the first node in same
3711 * distance group to make it round-robin.
3712 */
957f822a
DR
3713 if (node_distance(local_node, node) !=
3714 node_distance(local_node, prev_node))
f0c0b2b8
KH
3715 node_load[node] = load;
3716
1da177e4
LT
3717 prev_node = node;
3718 load--;
f0c0b2b8
KH
3719 if (order == ZONELIST_ORDER_NODE)
3720 build_zonelists_in_node_order(pgdat, node);
3721 else
3722 node_order[j++] = node; /* remember order */
3723 }
1da177e4 3724
f0c0b2b8
KH
3725 if (order == ZONELIST_ORDER_ZONE) {
3726 /* calculate node order -- i.e., DMA last! */
3727 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3728 }
523b9458
CL
3729
3730 build_thisnode_zonelists(pgdat);
1da177e4
LT
3731}
3732
9276b1bc 3733/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3734static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3735{
54a6eb5c
MG
3736 struct zonelist *zonelist;
3737 struct zonelist_cache *zlc;
dd1a239f 3738 struct zoneref *z;
9276b1bc 3739
54a6eb5c
MG
3740 zonelist = &pgdat->node_zonelists[0];
3741 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3742 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3743 for (z = zonelist->_zonerefs; z->zone; z++)
3744 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3745}
3746
7aac7898
LS
3747#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3748/*
3749 * Return node id of node used for "local" allocations.
3750 * I.e., first node id of first zone in arg node's generic zonelist.
3751 * Used for initializing percpu 'numa_mem', which is used primarily
3752 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3753 */
3754int local_memory_node(int node)
3755{
3756 struct zone *zone;
3757
3758 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3759 gfp_zone(GFP_KERNEL),
3760 NULL,
3761 &zone);
3762 return zone->node;
3763}
3764#endif
f0c0b2b8 3765
1da177e4
LT
3766#else /* CONFIG_NUMA */
3767
f0c0b2b8
KH
3768static void set_zonelist_order(void)
3769{
3770 current_zonelist_order = ZONELIST_ORDER_ZONE;
3771}
3772
3773static void build_zonelists(pg_data_t *pgdat)
1da177e4 3774{
19655d34 3775 int node, local_node;
54a6eb5c
MG
3776 enum zone_type j;
3777 struct zonelist *zonelist;
1da177e4
LT
3778
3779 local_node = pgdat->node_id;
1da177e4 3780
54a6eb5c 3781 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3782 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3783
54a6eb5c
MG
3784 /*
3785 * Now we build the zonelist so that it contains the zones
3786 * of all the other nodes.
3787 * We don't want to pressure a particular node, so when
3788 * building the zones for node N, we make sure that the
3789 * zones coming right after the local ones are those from
3790 * node N+1 (modulo N)
3791 */
3792 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3793 if (!node_online(node))
3794 continue;
bc732f1d 3795 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3796 }
54a6eb5c
MG
3797 for (node = 0; node < local_node; node++) {
3798 if (!node_online(node))
3799 continue;
bc732f1d 3800 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3801 }
3802
dd1a239f
MG
3803 zonelist->_zonerefs[j].zone = NULL;
3804 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3805}
3806
9276b1bc 3807/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3808static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3809{
54a6eb5c 3810 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3811}
3812
1da177e4
LT
3813#endif /* CONFIG_NUMA */
3814
99dcc3e5
CL
3815/*
3816 * Boot pageset table. One per cpu which is going to be used for all
3817 * zones and all nodes. The parameters will be set in such a way
3818 * that an item put on a list will immediately be handed over to
3819 * the buddy list. This is safe since pageset manipulation is done
3820 * with interrupts disabled.
3821 *
3822 * The boot_pagesets must be kept even after bootup is complete for
3823 * unused processors and/or zones. They do play a role for bootstrapping
3824 * hotplugged processors.
3825 *
3826 * zoneinfo_show() and maybe other functions do
3827 * not check if the processor is online before following the pageset pointer.
3828 * Other parts of the kernel may not check if the zone is available.
3829 */
3830static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3831static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3832static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3833
4eaf3f64
HL
3834/*
3835 * Global mutex to protect against size modification of zonelists
3836 * as well as to serialize pageset setup for the new populated zone.
3837 */
3838DEFINE_MUTEX(zonelists_mutex);
3839
9b1a4d38 3840/* return values int ....just for stop_machine() */
4ed7e022 3841static int __build_all_zonelists(void *data)
1da177e4 3842{
6811378e 3843 int nid;
99dcc3e5 3844 int cpu;
9adb62a5 3845 pg_data_t *self = data;
9276b1bc 3846
7f9cfb31
BL
3847#ifdef CONFIG_NUMA
3848 memset(node_load, 0, sizeof(node_load));
3849#endif
9adb62a5
JL
3850
3851 if (self && !node_online(self->node_id)) {
3852 build_zonelists(self);
3853 build_zonelist_cache(self);
3854 }
3855
9276b1bc 3856 for_each_online_node(nid) {
7ea1530a
CL
3857 pg_data_t *pgdat = NODE_DATA(nid);
3858
3859 build_zonelists(pgdat);
3860 build_zonelist_cache(pgdat);
9276b1bc 3861 }
99dcc3e5
CL
3862
3863 /*
3864 * Initialize the boot_pagesets that are going to be used
3865 * for bootstrapping processors. The real pagesets for
3866 * each zone will be allocated later when the per cpu
3867 * allocator is available.
3868 *
3869 * boot_pagesets are used also for bootstrapping offline
3870 * cpus if the system is already booted because the pagesets
3871 * are needed to initialize allocators on a specific cpu too.
3872 * F.e. the percpu allocator needs the page allocator which
3873 * needs the percpu allocator in order to allocate its pagesets
3874 * (a chicken-egg dilemma).
3875 */
7aac7898 3876 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3877 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3878
7aac7898
LS
3879#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3880 /*
3881 * We now know the "local memory node" for each node--
3882 * i.e., the node of the first zone in the generic zonelist.
3883 * Set up numa_mem percpu variable for on-line cpus. During
3884 * boot, only the boot cpu should be on-line; we'll init the
3885 * secondary cpus' numa_mem as they come on-line. During
3886 * node/memory hotplug, we'll fixup all on-line cpus.
3887 */
3888 if (cpu_online(cpu))
3889 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3890#endif
3891 }
3892
6811378e
YG
3893 return 0;
3894}
3895
4eaf3f64
HL
3896/*
3897 * Called with zonelists_mutex held always
3898 * unless system_state == SYSTEM_BOOTING.
3899 */
9adb62a5 3900void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3901{
f0c0b2b8
KH
3902 set_zonelist_order();
3903
6811378e 3904 if (system_state == SYSTEM_BOOTING) {
423b41d7 3905 __build_all_zonelists(NULL);
68ad8df4 3906 mminit_verify_zonelist();
6811378e
YG
3907 cpuset_init_current_mems_allowed();
3908 } else {
e9959f0f 3909#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3910 if (zone)
3911 setup_zone_pageset(zone);
e9959f0f 3912#endif
dd1895e2
CS
3913 /* we have to stop all cpus to guarantee there is no user
3914 of zonelist */
9adb62a5 3915 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3916 /* cpuset refresh routine should be here */
3917 }
bd1e22b8 3918 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3919 /*
3920 * Disable grouping by mobility if the number of pages in the
3921 * system is too low to allow the mechanism to work. It would be
3922 * more accurate, but expensive to check per-zone. This check is
3923 * made on memory-hotadd so a system can start with mobility
3924 * disabled and enable it later
3925 */
d9c23400 3926 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3927 page_group_by_mobility_disabled = 1;
3928 else
3929 page_group_by_mobility_disabled = 0;
3930
f88dfff5 3931 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3932 "Total pages: %ld\n",
62bc62a8 3933 nr_online_nodes,
f0c0b2b8 3934 zonelist_order_name[current_zonelist_order],
9ef9acb0 3935 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3936 vm_total_pages);
3937#ifdef CONFIG_NUMA
f88dfff5 3938 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3939#endif
1da177e4
LT
3940}
3941
3942/*
3943 * Helper functions to size the waitqueue hash table.
3944 * Essentially these want to choose hash table sizes sufficiently
3945 * large so that collisions trying to wait on pages are rare.
3946 * But in fact, the number of active page waitqueues on typical
3947 * systems is ridiculously low, less than 200. So this is even
3948 * conservative, even though it seems large.
3949 *
3950 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3951 * waitqueues, i.e. the size of the waitq table given the number of pages.
3952 */
3953#define PAGES_PER_WAITQUEUE 256
3954
cca448fe 3955#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3956static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3957{
3958 unsigned long size = 1;
3959
3960 pages /= PAGES_PER_WAITQUEUE;
3961
3962 while (size < pages)
3963 size <<= 1;
3964
3965 /*
3966 * Once we have dozens or even hundreds of threads sleeping
3967 * on IO we've got bigger problems than wait queue collision.
3968 * Limit the size of the wait table to a reasonable size.
3969 */
3970 size = min(size, 4096UL);
3971
3972 return max(size, 4UL);
3973}
cca448fe
YG
3974#else
3975/*
3976 * A zone's size might be changed by hot-add, so it is not possible to determine
3977 * a suitable size for its wait_table. So we use the maximum size now.
3978 *
3979 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3980 *
3981 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3982 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3983 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3984 *
3985 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3986 * or more by the traditional way. (See above). It equals:
3987 *
3988 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3989 * ia64(16K page size) : = ( 8G + 4M)byte.
3990 * powerpc (64K page size) : = (32G +16M)byte.
3991 */
3992static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3993{
3994 return 4096UL;
3995}
3996#endif
1da177e4
LT
3997
3998/*
3999 * This is an integer logarithm so that shifts can be used later
4000 * to extract the more random high bits from the multiplicative
4001 * hash function before the remainder is taken.
4002 */
4003static inline unsigned long wait_table_bits(unsigned long size)
4004{
4005 return ffz(~size);
4006}
4007
6d3163ce
AH
4008/*
4009 * Check if a pageblock contains reserved pages
4010 */
4011static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4012{
4013 unsigned long pfn;
4014
4015 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4016 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4017 return 1;
4018 }
4019 return 0;
4020}
4021
56fd56b8 4022/*
d9c23400 4023 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4024 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4025 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4026 * higher will lead to a bigger reserve which will get freed as contiguous
4027 * blocks as reclaim kicks in
4028 */
4029static void setup_zone_migrate_reserve(struct zone *zone)
4030{
6d3163ce 4031 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4032 struct page *page;
78986a67
MG
4033 unsigned long block_migratetype;
4034 int reserve;
943dca1a 4035 int old_reserve;
56fd56b8 4036
d0215638
MH
4037 /*
4038 * Get the start pfn, end pfn and the number of blocks to reserve
4039 * We have to be careful to be aligned to pageblock_nr_pages to
4040 * make sure that we always check pfn_valid for the first page in
4041 * the block.
4042 */
56fd56b8 4043 start_pfn = zone->zone_start_pfn;
108bcc96 4044 end_pfn = zone_end_pfn(zone);
d0215638 4045 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4046 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4047 pageblock_order;
56fd56b8 4048
78986a67
MG
4049 /*
4050 * Reserve blocks are generally in place to help high-order atomic
4051 * allocations that are short-lived. A min_free_kbytes value that
4052 * would result in more than 2 reserve blocks for atomic allocations
4053 * is assumed to be in place to help anti-fragmentation for the
4054 * future allocation of hugepages at runtime.
4055 */
4056 reserve = min(2, reserve);
943dca1a
YI
4057 old_reserve = zone->nr_migrate_reserve_block;
4058
4059 /* When memory hot-add, we almost always need to do nothing */
4060 if (reserve == old_reserve)
4061 return;
4062 zone->nr_migrate_reserve_block = reserve;
78986a67 4063
d9c23400 4064 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4065 if (!pfn_valid(pfn))
4066 continue;
4067 page = pfn_to_page(pfn);
4068
344c790e
AL
4069 /* Watch out for overlapping nodes */
4070 if (page_to_nid(page) != zone_to_nid(zone))
4071 continue;
4072
56fd56b8
MG
4073 block_migratetype = get_pageblock_migratetype(page);
4074
938929f1
MG
4075 /* Only test what is necessary when the reserves are not met */
4076 if (reserve > 0) {
4077 /*
4078 * Blocks with reserved pages will never free, skip
4079 * them.
4080 */
4081 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4082 if (pageblock_is_reserved(pfn, block_end_pfn))
4083 continue;
56fd56b8 4084
938929f1
MG
4085 /* If this block is reserved, account for it */
4086 if (block_migratetype == MIGRATE_RESERVE) {
4087 reserve--;
4088 continue;
4089 }
4090
4091 /* Suitable for reserving if this block is movable */
4092 if (block_migratetype == MIGRATE_MOVABLE) {
4093 set_pageblock_migratetype(page,
4094 MIGRATE_RESERVE);
4095 move_freepages_block(zone, page,
4096 MIGRATE_RESERVE);
4097 reserve--;
4098 continue;
4099 }
943dca1a
YI
4100 } else if (!old_reserve) {
4101 /*
4102 * At boot time we don't need to scan the whole zone
4103 * for turning off MIGRATE_RESERVE.
4104 */
4105 break;
56fd56b8
MG
4106 }
4107
4108 /*
4109 * If the reserve is met and this is a previous reserved block,
4110 * take it back
4111 */
4112 if (block_migratetype == MIGRATE_RESERVE) {
4113 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4114 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4115 }
4116 }
4117}
ac0e5b7a 4118
1da177e4
LT
4119/*
4120 * Initially all pages are reserved - free ones are freed
4121 * up by free_all_bootmem() once the early boot process is
4122 * done. Non-atomic initialization, single-pass.
4123 */
c09b4240 4124void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4125 unsigned long start_pfn, enum memmap_context context)
1da177e4 4126{
1da177e4 4127 struct page *page;
29751f69
AW
4128 unsigned long end_pfn = start_pfn + size;
4129 unsigned long pfn;
86051ca5 4130 struct zone *z;
1da177e4 4131
22b31eec
HD
4132 if (highest_memmap_pfn < end_pfn - 1)
4133 highest_memmap_pfn = end_pfn - 1;
4134
86051ca5 4135 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4136 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4137 /*
4138 * There can be holes in boot-time mem_map[]s
4139 * handed to this function. They do not
4140 * exist on hotplugged memory.
4141 */
4142 if (context == MEMMAP_EARLY) {
4143 if (!early_pfn_valid(pfn))
4144 continue;
4145 if (!early_pfn_in_nid(pfn, nid))
4146 continue;
4147 }
d41dee36
AW
4148 page = pfn_to_page(pfn);
4149 set_page_links(page, zone, nid, pfn);
708614e6 4150 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4151 init_page_count(page);
22b751c3 4152 page_mapcount_reset(page);
90572890 4153 page_cpupid_reset_last(page);
1da177e4 4154 SetPageReserved(page);
b2a0ac88
MG
4155 /*
4156 * Mark the block movable so that blocks are reserved for
4157 * movable at startup. This will force kernel allocations
4158 * to reserve their blocks rather than leaking throughout
4159 * the address space during boot when many long-lived
56fd56b8
MG
4160 * kernel allocations are made. Later some blocks near
4161 * the start are marked MIGRATE_RESERVE by
4162 * setup_zone_migrate_reserve()
86051ca5
KH
4163 *
4164 * bitmap is created for zone's valid pfn range. but memmap
4165 * can be created for invalid pages (for alignment)
4166 * check here not to call set_pageblock_migratetype() against
4167 * pfn out of zone.
b2a0ac88 4168 */
86051ca5 4169 if ((z->zone_start_pfn <= pfn)
108bcc96 4170 && (pfn < zone_end_pfn(z))
86051ca5 4171 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4172 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4173
1da177e4
LT
4174 INIT_LIST_HEAD(&page->lru);
4175#ifdef WANT_PAGE_VIRTUAL
4176 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4177 if (!is_highmem_idx(zone))
3212c6be 4178 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4179#endif
1da177e4
LT
4180 }
4181}
4182
1e548deb 4183static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4184{
7aeb09f9 4185 unsigned int order, t;
b2a0ac88
MG
4186 for_each_migratetype_order(order, t) {
4187 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4188 zone->free_area[order].nr_free = 0;
4189 }
4190}
4191
4192#ifndef __HAVE_ARCH_MEMMAP_INIT
4193#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4194 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4195#endif
4196
7cd2b0a3 4197static int zone_batchsize(struct zone *zone)
e7c8d5c9 4198{
3a6be87f 4199#ifdef CONFIG_MMU
e7c8d5c9
CL
4200 int batch;
4201
4202 /*
4203 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4204 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4205 *
4206 * OK, so we don't know how big the cache is. So guess.
4207 */
b40da049 4208 batch = zone->managed_pages / 1024;
ba56e91c
SR
4209 if (batch * PAGE_SIZE > 512 * 1024)
4210 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4211 batch /= 4; /* We effectively *= 4 below */
4212 if (batch < 1)
4213 batch = 1;
4214
4215 /*
0ceaacc9
NP
4216 * Clamp the batch to a 2^n - 1 value. Having a power
4217 * of 2 value was found to be more likely to have
4218 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4219 *
0ceaacc9
NP
4220 * For example if 2 tasks are alternately allocating
4221 * batches of pages, one task can end up with a lot
4222 * of pages of one half of the possible page colors
4223 * and the other with pages of the other colors.
e7c8d5c9 4224 */
9155203a 4225 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4226
e7c8d5c9 4227 return batch;
3a6be87f
DH
4228
4229#else
4230 /* The deferral and batching of frees should be suppressed under NOMMU
4231 * conditions.
4232 *
4233 * The problem is that NOMMU needs to be able to allocate large chunks
4234 * of contiguous memory as there's no hardware page translation to
4235 * assemble apparent contiguous memory from discontiguous pages.
4236 *
4237 * Queueing large contiguous runs of pages for batching, however,
4238 * causes the pages to actually be freed in smaller chunks. As there
4239 * can be a significant delay between the individual batches being
4240 * recycled, this leads to the once large chunks of space being
4241 * fragmented and becoming unavailable for high-order allocations.
4242 */
4243 return 0;
4244#endif
e7c8d5c9
CL
4245}
4246
8d7a8fa9
CS
4247/*
4248 * pcp->high and pcp->batch values are related and dependent on one another:
4249 * ->batch must never be higher then ->high.
4250 * The following function updates them in a safe manner without read side
4251 * locking.
4252 *
4253 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4254 * those fields changing asynchronously (acording the the above rule).
4255 *
4256 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4257 * outside of boot time (or some other assurance that no concurrent updaters
4258 * exist).
4259 */
4260static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4261 unsigned long batch)
4262{
4263 /* start with a fail safe value for batch */
4264 pcp->batch = 1;
4265 smp_wmb();
4266
4267 /* Update high, then batch, in order */
4268 pcp->high = high;
4269 smp_wmb();
4270
4271 pcp->batch = batch;
4272}
4273
3664033c 4274/* a companion to pageset_set_high() */
4008bab7
CS
4275static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4276{
8d7a8fa9 4277 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4278}
4279
88c90dbc 4280static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4281{
4282 struct per_cpu_pages *pcp;
5f8dcc21 4283 int migratetype;
2caaad41 4284
1c6fe946
MD
4285 memset(p, 0, sizeof(*p));
4286
3dfa5721 4287 pcp = &p->pcp;
2caaad41 4288 pcp->count = 0;
5f8dcc21
MG
4289 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4290 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4291}
4292
88c90dbc
CS
4293static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4294{
4295 pageset_init(p);
4296 pageset_set_batch(p, batch);
4297}
4298
8ad4b1fb 4299/*
3664033c 4300 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4301 * to the value high for the pageset p.
4302 */
3664033c 4303static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4304 unsigned long high)
4305{
8d7a8fa9
CS
4306 unsigned long batch = max(1UL, high / 4);
4307 if ((high / 4) > (PAGE_SHIFT * 8))
4308 batch = PAGE_SHIFT * 8;
8ad4b1fb 4309
8d7a8fa9 4310 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4311}
4312
7cd2b0a3
DR
4313static void pageset_set_high_and_batch(struct zone *zone,
4314 struct per_cpu_pageset *pcp)
56cef2b8 4315{
56cef2b8 4316 if (percpu_pagelist_fraction)
3664033c 4317 pageset_set_high(pcp,
56cef2b8
CS
4318 (zone->managed_pages /
4319 percpu_pagelist_fraction));
4320 else
4321 pageset_set_batch(pcp, zone_batchsize(zone));
4322}
4323
169f6c19
CS
4324static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4325{
4326 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4327
4328 pageset_init(pcp);
4329 pageset_set_high_and_batch(zone, pcp);
4330}
4331
4ed7e022 4332static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4333{
4334 int cpu;
319774e2 4335 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4336 for_each_possible_cpu(cpu)
4337 zone_pageset_init(zone, cpu);
319774e2
WF
4338}
4339
2caaad41 4340/*
99dcc3e5
CL
4341 * Allocate per cpu pagesets and initialize them.
4342 * Before this call only boot pagesets were available.
e7c8d5c9 4343 */
99dcc3e5 4344void __init setup_per_cpu_pageset(void)
e7c8d5c9 4345{
99dcc3e5 4346 struct zone *zone;
e7c8d5c9 4347
319774e2
WF
4348 for_each_populated_zone(zone)
4349 setup_zone_pageset(zone);
e7c8d5c9
CL
4350}
4351
577a32f6 4352static noinline __init_refok
cca448fe 4353int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4354{
4355 int i;
cca448fe 4356 size_t alloc_size;
ed8ece2e
DH
4357
4358 /*
4359 * The per-page waitqueue mechanism uses hashed waitqueues
4360 * per zone.
4361 */
02b694de
YG
4362 zone->wait_table_hash_nr_entries =
4363 wait_table_hash_nr_entries(zone_size_pages);
4364 zone->wait_table_bits =
4365 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4366 alloc_size = zone->wait_table_hash_nr_entries
4367 * sizeof(wait_queue_head_t);
4368
cd94b9db 4369 if (!slab_is_available()) {
cca448fe 4370 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4371 memblock_virt_alloc_node_nopanic(
4372 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4373 } else {
4374 /*
4375 * This case means that a zone whose size was 0 gets new memory
4376 * via memory hot-add.
4377 * But it may be the case that a new node was hot-added. In
4378 * this case vmalloc() will not be able to use this new node's
4379 * memory - this wait_table must be initialized to use this new
4380 * node itself as well.
4381 * To use this new node's memory, further consideration will be
4382 * necessary.
4383 */
8691f3a7 4384 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4385 }
4386 if (!zone->wait_table)
4387 return -ENOMEM;
ed8ece2e 4388
b8af2941 4389 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4390 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4391
4392 return 0;
ed8ece2e
DH
4393}
4394
c09b4240 4395static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4396{
99dcc3e5
CL
4397 /*
4398 * per cpu subsystem is not up at this point. The following code
4399 * relies on the ability of the linker to provide the
4400 * offset of a (static) per cpu variable into the per cpu area.
4401 */
4402 zone->pageset = &boot_pageset;
ed8ece2e 4403
b38a8725 4404 if (populated_zone(zone))
99dcc3e5
CL
4405 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4406 zone->name, zone->present_pages,
4407 zone_batchsize(zone));
ed8ece2e
DH
4408}
4409
4ed7e022 4410int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4411 unsigned long zone_start_pfn,
a2f3aa02
DH
4412 unsigned long size,
4413 enum memmap_context context)
ed8ece2e
DH
4414{
4415 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4416 int ret;
4417 ret = zone_wait_table_init(zone, size);
4418 if (ret)
4419 return ret;
ed8ece2e
DH
4420 pgdat->nr_zones = zone_idx(zone) + 1;
4421
ed8ece2e
DH
4422 zone->zone_start_pfn = zone_start_pfn;
4423
708614e6
MG
4424 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4425 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4426 pgdat->node_id,
4427 (unsigned long)zone_idx(zone),
4428 zone_start_pfn, (zone_start_pfn + size));
4429
1e548deb 4430 zone_init_free_lists(zone);
718127cc
YG
4431
4432 return 0;
ed8ece2e
DH
4433}
4434
0ee332c1 4435#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4436#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4437/*
4438 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4439 */
f2dbcfa7 4440int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4441{
c13291a5 4442 unsigned long start_pfn, end_pfn;
e76b63f8 4443 int nid;
7c243c71
RA
4444 /*
4445 * NOTE: The following SMP-unsafe globals are only used early in boot
4446 * when the kernel is running single-threaded.
4447 */
4448 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4449 static int __meminitdata last_nid;
4450
4451 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4452 return last_nid;
c713216d 4453
e76b63f8
YL
4454 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4455 if (nid != -1) {
4456 last_start_pfn = start_pfn;
4457 last_end_pfn = end_pfn;
4458 last_nid = nid;
4459 }
4460
4461 return nid;
c713216d
MG
4462}
4463#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4464
f2dbcfa7
KH
4465int __meminit early_pfn_to_nid(unsigned long pfn)
4466{
cc2559bc
KH
4467 int nid;
4468
4469 nid = __early_pfn_to_nid(pfn);
4470 if (nid >= 0)
4471 return nid;
4472 /* just returns 0 */
4473 return 0;
f2dbcfa7
KH
4474}
4475
cc2559bc
KH
4476#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4477bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4478{
4479 int nid;
4480
4481 nid = __early_pfn_to_nid(pfn);
4482 if (nid >= 0 && nid != node)
4483 return false;
4484 return true;
4485}
4486#endif
f2dbcfa7 4487
c713216d 4488/**
6782832e 4489 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4490 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4491 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4492 *
7d018176
ZZ
4493 * If an architecture guarantees that all ranges registered contain no holes
4494 * and may be freed, this this function may be used instead of calling
4495 * memblock_free_early_nid() manually.
c713216d 4496 */
c13291a5 4497void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4498{
c13291a5
TH
4499 unsigned long start_pfn, end_pfn;
4500 int i, this_nid;
edbe7d23 4501
c13291a5
TH
4502 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4503 start_pfn = min(start_pfn, max_low_pfn);
4504 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4505
c13291a5 4506 if (start_pfn < end_pfn)
6782832e
SS
4507 memblock_free_early_nid(PFN_PHYS(start_pfn),
4508 (end_pfn - start_pfn) << PAGE_SHIFT,
4509 this_nid);
edbe7d23 4510 }
edbe7d23 4511}
edbe7d23 4512
c713216d
MG
4513/**
4514 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4515 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4516 *
7d018176
ZZ
4517 * If an architecture guarantees that all ranges registered contain no holes and may
4518 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4519 */
4520void __init sparse_memory_present_with_active_regions(int nid)
4521{
c13291a5
TH
4522 unsigned long start_pfn, end_pfn;
4523 int i, this_nid;
c713216d 4524
c13291a5
TH
4525 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4526 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4527}
4528
4529/**
4530 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4531 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4532 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4533 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4534 *
4535 * It returns the start and end page frame of a node based on information
7d018176 4536 * provided by memblock_set_node(). If called for a node
c713216d 4537 * with no available memory, a warning is printed and the start and end
88ca3b94 4538 * PFNs will be 0.
c713216d 4539 */
a3142c8e 4540void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4541 unsigned long *start_pfn, unsigned long *end_pfn)
4542{
c13291a5 4543 unsigned long this_start_pfn, this_end_pfn;
c713216d 4544 int i;
c13291a5 4545
c713216d
MG
4546 *start_pfn = -1UL;
4547 *end_pfn = 0;
4548
c13291a5
TH
4549 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4550 *start_pfn = min(*start_pfn, this_start_pfn);
4551 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4552 }
4553
633c0666 4554 if (*start_pfn == -1UL)
c713216d 4555 *start_pfn = 0;
c713216d
MG
4556}
4557
2a1e274a
MG
4558/*
4559 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4560 * assumption is made that zones within a node are ordered in monotonic
4561 * increasing memory addresses so that the "highest" populated zone is used
4562 */
b69a7288 4563static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4564{
4565 int zone_index;
4566 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4567 if (zone_index == ZONE_MOVABLE)
4568 continue;
4569
4570 if (arch_zone_highest_possible_pfn[zone_index] >
4571 arch_zone_lowest_possible_pfn[zone_index])
4572 break;
4573 }
4574
4575 VM_BUG_ON(zone_index == -1);
4576 movable_zone = zone_index;
4577}
4578
4579/*
4580 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4581 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4582 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4583 * in each node depending on the size of each node and how evenly kernelcore
4584 * is distributed. This helper function adjusts the zone ranges
4585 * provided by the architecture for a given node by using the end of the
4586 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4587 * zones within a node are in order of monotonic increases memory addresses
4588 */
b69a7288 4589static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4590 unsigned long zone_type,
4591 unsigned long node_start_pfn,
4592 unsigned long node_end_pfn,
4593 unsigned long *zone_start_pfn,
4594 unsigned long *zone_end_pfn)
4595{
4596 /* Only adjust if ZONE_MOVABLE is on this node */
4597 if (zone_movable_pfn[nid]) {
4598 /* Size ZONE_MOVABLE */
4599 if (zone_type == ZONE_MOVABLE) {
4600 *zone_start_pfn = zone_movable_pfn[nid];
4601 *zone_end_pfn = min(node_end_pfn,
4602 arch_zone_highest_possible_pfn[movable_zone]);
4603
4604 /* Adjust for ZONE_MOVABLE starting within this range */
4605 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4606 *zone_end_pfn > zone_movable_pfn[nid]) {
4607 *zone_end_pfn = zone_movable_pfn[nid];
4608
4609 /* Check if this whole range is within ZONE_MOVABLE */
4610 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4611 *zone_start_pfn = *zone_end_pfn;
4612 }
4613}
4614
c713216d
MG
4615/*
4616 * Return the number of pages a zone spans in a node, including holes
4617 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4618 */
6ea6e688 4619static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4620 unsigned long zone_type,
7960aedd
ZY
4621 unsigned long node_start_pfn,
4622 unsigned long node_end_pfn,
c713216d
MG
4623 unsigned long *ignored)
4624{
c713216d
MG
4625 unsigned long zone_start_pfn, zone_end_pfn;
4626
7960aedd 4627 /* Get the start and end of the zone */
c713216d
MG
4628 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4629 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4630 adjust_zone_range_for_zone_movable(nid, zone_type,
4631 node_start_pfn, node_end_pfn,
4632 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4633
4634 /* Check that this node has pages within the zone's required range */
4635 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4636 return 0;
4637
4638 /* Move the zone boundaries inside the node if necessary */
4639 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4640 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4641
4642 /* Return the spanned pages */
4643 return zone_end_pfn - zone_start_pfn;
4644}
4645
4646/*
4647 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4648 * then all holes in the requested range will be accounted for.
c713216d 4649 */
32996250 4650unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4651 unsigned long range_start_pfn,
4652 unsigned long range_end_pfn)
4653{
96e907d1
TH
4654 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4655 unsigned long start_pfn, end_pfn;
4656 int i;
c713216d 4657
96e907d1
TH
4658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4659 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4660 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4661 nr_absent -= end_pfn - start_pfn;
c713216d 4662 }
96e907d1 4663 return nr_absent;
c713216d
MG
4664}
4665
4666/**
4667 * absent_pages_in_range - Return number of page frames in holes within a range
4668 * @start_pfn: The start PFN to start searching for holes
4669 * @end_pfn: The end PFN to stop searching for holes
4670 *
88ca3b94 4671 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4672 */
4673unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4674 unsigned long end_pfn)
4675{
4676 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4677}
4678
4679/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4680static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4681 unsigned long zone_type,
7960aedd
ZY
4682 unsigned long node_start_pfn,
4683 unsigned long node_end_pfn,
c713216d
MG
4684 unsigned long *ignored)
4685{
96e907d1
TH
4686 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4687 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4688 unsigned long zone_start_pfn, zone_end_pfn;
4689
96e907d1
TH
4690 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4691 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4692
2a1e274a
MG
4693 adjust_zone_range_for_zone_movable(nid, zone_type,
4694 node_start_pfn, node_end_pfn,
4695 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4696 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4697}
0e0b864e 4698
0ee332c1 4699#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4700static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4701 unsigned long zone_type,
7960aedd
ZY
4702 unsigned long node_start_pfn,
4703 unsigned long node_end_pfn,
c713216d
MG
4704 unsigned long *zones_size)
4705{
4706 return zones_size[zone_type];
4707}
4708
6ea6e688 4709static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4710 unsigned long zone_type,
7960aedd
ZY
4711 unsigned long node_start_pfn,
4712 unsigned long node_end_pfn,
c713216d
MG
4713 unsigned long *zholes_size)
4714{
4715 if (!zholes_size)
4716 return 0;
4717
4718 return zholes_size[zone_type];
4719}
20e6926d 4720
0ee332c1 4721#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4722
a3142c8e 4723static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4724 unsigned long node_start_pfn,
4725 unsigned long node_end_pfn,
4726 unsigned long *zones_size,
4727 unsigned long *zholes_size)
c713216d
MG
4728{
4729 unsigned long realtotalpages, totalpages = 0;
4730 enum zone_type i;
4731
4732 for (i = 0; i < MAX_NR_ZONES; i++)
4733 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4734 node_start_pfn,
4735 node_end_pfn,
4736 zones_size);
c713216d
MG
4737 pgdat->node_spanned_pages = totalpages;
4738
4739 realtotalpages = totalpages;
4740 for (i = 0; i < MAX_NR_ZONES; i++)
4741 realtotalpages -=
4742 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4743 node_start_pfn, node_end_pfn,
4744 zholes_size);
c713216d
MG
4745 pgdat->node_present_pages = realtotalpages;
4746 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4747 realtotalpages);
4748}
4749
835c134e
MG
4750#ifndef CONFIG_SPARSEMEM
4751/*
4752 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4753 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4754 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4755 * round what is now in bits to nearest long in bits, then return it in
4756 * bytes.
4757 */
7c45512d 4758static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4759{
4760 unsigned long usemapsize;
4761
7c45512d 4762 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4763 usemapsize = roundup(zonesize, pageblock_nr_pages);
4764 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4765 usemapsize *= NR_PAGEBLOCK_BITS;
4766 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4767
4768 return usemapsize / 8;
4769}
4770
4771static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4772 struct zone *zone,
4773 unsigned long zone_start_pfn,
4774 unsigned long zonesize)
835c134e 4775{
7c45512d 4776 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4777 zone->pageblock_flags = NULL;
58a01a45 4778 if (usemapsize)
6782832e
SS
4779 zone->pageblock_flags =
4780 memblock_virt_alloc_node_nopanic(usemapsize,
4781 pgdat->node_id);
835c134e
MG
4782}
4783#else
7c45512d
LT
4784static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4785 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4786#endif /* CONFIG_SPARSEMEM */
4787
d9c23400 4788#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4789
d9c23400 4790/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4791void __paginginit set_pageblock_order(void)
d9c23400 4792{
955c1cd7
AM
4793 unsigned int order;
4794
d9c23400
MG
4795 /* Check that pageblock_nr_pages has not already been setup */
4796 if (pageblock_order)
4797 return;
4798
955c1cd7
AM
4799 if (HPAGE_SHIFT > PAGE_SHIFT)
4800 order = HUGETLB_PAGE_ORDER;
4801 else
4802 order = MAX_ORDER - 1;
4803
d9c23400
MG
4804 /*
4805 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4806 * This value may be variable depending on boot parameters on IA64 and
4807 * powerpc.
d9c23400
MG
4808 */
4809 pageblock_order = order;
4810}
4811#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4812
ba72cb8c
MG
4813/*
4814 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4815 * is unused as pageblock_order is set at compile-time. See
4816 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4817 * the kernel config
ba72cb8c 4818 */
15ca220e 4819void __paginginit set_pageblock_order(void)
ba72cb8c 4820{
ba72cb8c 4821}
d9c23400
MG
4822
4823#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4824
01cefaef
JL
4825static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4826 unsigned long present_pages)
4827{
4828 unsigned long pages = spanned_pages;
4829
4830 /*
4831 * Provide a more accurate estimation if there are holes within
4832 * the zone and SPARSEMEM is in use. If there are holes within the
4833 * zone, each populated memory region may cost us one or two extra
4834 * memmap pages due to alignment because memmap pages for each
4835 * populated regions may not naturally algined on page boundary.
4836 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4837 */
4838 if (spanned_pages > present_pages + (present_pages >> 4) &&
4839 IS_ENABLED(CONFIG_SPARSEMEM))
4840 pages = present_pages;
4841
4842 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4843}
4844
1da177e4
LT
4845/*
4846 * Set up the zone data structures:
4847 * - mark all pages reserved
4848 * - mark all memory queues empty
4849 * - clear the memory bitmaps
6527af5d
MK
4850 *
4851 * NOTE: pgdat should get zeroed by caller.
1da177e4 4852 */
b5a0e011 4853static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4854 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4855 unsigned long *zones_size, unsigned long *zholes_size)
4856{
2f1b6248 4857 enum zone_type j;
ed8ece2e 4858 int nid = pgdat->node_id;
1da177e4 4859 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4860 int ret;
1da177e4 4861
208d54e5 4862 pgdat_resize_init(pgdat);
8177a420
AA
4863#ifdef CONFIG_NUMA_BALANCING
4864 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4865 pgdat->numabalancing_migrate_nr_pages = 0;
4866 pgdat->numabalancing_migrate_next_window = jiffies;
4867#endif
1da177e4 4868 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4869 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4870 pgdat_page_cgroup_init(pgdat);
5f63b720 4871
1da177e4
LT
4872 for (j = 0; j < MAX_NR_ZONES; j++) {
4873 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4874 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4875
7960aedd
ZY
4876 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4877 node_end_pfn, zones_size);
9feedc9d 4878 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4879 node_start_pfn,
4880 node_end_pfn,
c713216d 4881 zholes_size);
1da177e4 4882
0e0b864e 4883 /*
9feedc9d 4884 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4885 * is used by this zone for memmap. This affects the watermark
4886 * and per-cpu initialisations
4887 */
01cefaef 4888 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4889 if (freesize >= memmap_pages) {
4890 freesize -= memmap_pages;
5594c8c8
YL
4891 if (memmap_pages)
4892 printk(KERN_DEBUG
4893 " %s zone: %lu pages used for memmap\n",
4894 zone_names[j], memmap_pages);
0e0b864e
MG
4895 } else
4896 printk(KERN_WARNING
9feedc9d
JL
4897 " %s zone: %lu pages exceeds freesize %lu\n",
4898 zone_names[j], memmap_pages, freesize);
0e0b864e 4899
6267276f 4900 /* Account for reserved pages */
9feedc9d
JL
4901 if (j == 0 && freesize > dma_reserve) {
4902 freesize -= dma_reserve;
d903ef9f 4903 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4904 zone_names[0], dma_reserve);
0e0b864e
MG
4905 }
4906
98d2b0eb 4907 if (!is_highmem_idx(j))
9feedc9d 4908 nr_kernel_pages += freesize;
01cefaef
JL
4909 /* Charge for highmem memmap if there are enough kernel pages */
4910 else if (nr_kernel_pages > memmap_pages * 2)
4911 nr_kernel_pages -= memmap_pages;
9feedc9d 4912 nr_all_pages += freesize;
1da177e4
LT
4913
4914 zone->spanned_pages = size;
306f2e9e 4915 zone->present_pages = realsize;
9feedc9d
JL
4916 /*
4917 * Set an approximate value for lowmem here, it will be adjusted
4918 * when the bootmem allocator frees pages into the buddy system.
4919 * And all highmem pages will be managed by the buddy system.
4920 */
4921 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4922#ifdef CONFIG_NUMA
d5f541ed 4923 zone->node = nid;
9feedc9d 4924 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4925 / 100;
9feedc9d 4926 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4927#endif
1da177e4
LT
4928 zone->name = zone_names[j];
4929 spin_lock_init(&zone->lock);
4930 spin_lock_init(&zone->lru_lock);
bdc8cb98 4931 zone_seqlock_init(zone);
1da177e4 4932 zone->zone_pgdat = pgdat;
ed8ece2e 4933 zone_pcp_init(zone);
81c0a2bb
JW
4934
4935 /* For bootup, initialized properly in watermark setup */
4936 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4937
bea8c150 4938 lruvec_init(&zone->lruvec);
1da177e4
LT
4939 if (!size)
4940 continue;
4941
955c1cd7 4942 set_pageblock_order();
7c45512d 4943 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4944 ret = init_currently_empty_zone(zone, zone_start_pfn,
4945 size, MEMMAP_EARLY);
718127cc 4946 BUG_ON(ret);
76cdd58e 4947 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4948 zone_start_pfn += size;
1da177e4
LT
4949 }
4950}
4951
577a32f6 4952static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4953{
1da177e4
LT
4954 /* Skip empty nodes */
4955 if (!pgdat->node_spanned_pages)
4956 return;
4957
d41dee36 4958#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4959 /* ia64 gets its own node_mem_map, before this, without bootmem */
4960 if (!pgdat->node_mem_map) {
e984bb43 4961 unsigned long size, start, end;
d41dee36
AW
4962 struct page *map;
4963
e984bb43
BP
4964 /*
4965 * The zone's endpoints aren't required to be MAX_ORDER
4966 * aligned but the node_mem_map endpoints must be in order
4967 * for the buddy allocator to function correctly.
4968 */
4969 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4970 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4971 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4972 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4973 map = alloc_remap(pgdat->node_id, size);
4974 if (!map)
6782832e
SS
4975 map = memblock_virt_alloc_node_nopanic(size,
4976 pgdat->node_id);
e984bb43 4977 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4978 }
12d810c1 4979#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4980 /*
4981 * With no DISCONTIG, the global mem_map is just set as node 0's
4982 */
c713216d 4983 if (pgdat == NODE_DATA(0)) {
1da177e4 4984 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4985#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4986 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4987 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4988#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4989 }
1da177e4 4990#endif
d41dee36 4991#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4992}
4993
9109fb7b
JW
4994void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4995 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4996{
9109fb7b 4997 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4998 unsigned long start_pfn = 0;
4999 unsigned long end_pfn = 0;
9109fb7b 5000
88fdf75d 5001 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5002 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5003
1da177e4
LT
5004 pgdat->node_id = nid;
5005 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5006#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5007 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
5008 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5009 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5010#endif
5011 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5012 zones_size, zholes_size);
1da177e4
LT
5013
5014 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5015#ifdef CONFIG_FLAT_NODE_MEM_MAP
5016 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5017 nid, (unsigned long)pgdat,
5018 (unsigned long)pgdat->node_mem_map);
5019#endif
1da177e4 5020
7960aedd
ZY
5021 free_area_init_core(pgdat, start_pfn, end_pfn,
5022 zones_size, zholes_size);
1da177e4
LT
5023}
5024
0ee332c1 5025#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5026
5027#if MAX_NUMNODES > 1
5028/*
5029 * Figure out the number of possible node ids.
5030 */
f9872caf 5031void __init setup_nr_node_ids(void)
418508c1
MS
5032{
5033 unsigned int node;
5034 unsigned int highest = 0;
5035
5036 for_each_node_mask(node, node_possible_map)
5037 highest = node;
5038 nr_node_ids = highest + 1;
5039}
418508c1
MS
5040#endif
5041
1e01979c
TH
5042/**
5043 * node_map_pfn_alignment - determine the maximum internode alignment
5044 *
5045 * This function should be called after node map is populated and sorted.
5046 * It calculates the maximum power of two alignment which can distinguish
5047 * all the nodes.
5048 *
5049 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5050 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5051 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5052 * shifted, 1GiB is enough and this function will indicate so.
5053 *
5054 * This is used to test whether pfn -> nid mapping of the chosen memory
5055 * model has fine enough granularity to avoid incorrect mapping for the
5056 * populated node map.
5057 *
5058 * Returns the determined alignment in pfn's. 0 if there is no alignment
5059 * requirement (single node).
5060 */
5061unsigned long __init node_map_pfn_alignment(void)
5062{
5063 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5064 unsigned long start, end, mask;
1e01979c 5065 int last_nid = -1;
c13291a5 5066 int i, nid;
1e01979c 5067
c13291a5 5068 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5069 if (!start || last_nid < 0 || last_nid == nid) {
5070 last_nid = nid;
5071 last_end = end;
5072 continue;
5073 }
5074
5075 /*
5076 * Start with a mask granular enough to pin-point to the
5077 * start pfn and tick off bits one-by-one until it becomes
5078 * too coarse to separate the current node from the last.
5079 */
5080 mask = ~((1 << __ffs(start)) - 1);
5081 while (mask && last_end <= (start & (mask << 1)))
5082 mask <<= 1;
5083
5084 /* accumulate all internode masks */
5085 accl_mask |= mask;
5086 }
5087
5088 /* convert mask to number of pages */
5089 return ~accl_mask + 1;
5090}
5091
a6af2bc3 5092/* Find the lowest pfn for a node */
b69a7288 5093static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5094{
a6af2bc3 5095 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5096 unsigned long start_pfn;
5097 int i;
1abbfb41 5098
c13291a5
TH
5099 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5100 min_pfn = min(min_pfn, start_pfn);
c713216d 5101
a6af2bc3
MG
5102 if (min_pfn == ULONG_MAX) {
5103 printk(KERN_WARNING
2bc0d261 5104 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5105 return 0;
5106 }
5107
5108 return min_pfn;
c713216d
MG
5109}
5110
5111/**
5112 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5113 *
5114 * It returns the minimum PFN based on information provided via
7d018176 5115 * memblock_set_node().
c713216d
MG
5116 */
5117unsigned long __init find_min_pfn_with_active_regions(void)
5118{
5119 return find_min_pfn_for_node(MAX_NUMNODES);
5120}
5121
37b07e41
LS
5122/*
5123 * early_calculate_totalpages()
5124 * Sum pages in active regions for movable zone.
4b0ef1fe 5125 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5126 */
484f51f8 5127static unsigned long __init early_calculate_totalpages(void)
7e63efef 5128{
7e63efef 5129 unsigned long totalpages = 0;
c13291a5
TH
5130 unsigned long start_pfn, end_pfn;
5131 int i, nid;
5132
5133 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5134 unsigned long pages = end_pfn - start_pfn;
7e63efef 5135
37b07e41
LS
5136 totalpages += pages;
5137 if (pages)
4b0ef1fe 5138 node_set_state(nid, N_MEMORY);
37b07e41 5139 }
b8af2941 5140 return totalpages;
7e63efef
MG
5141}
5142
2a1e274a
MG
5143/*
5144 * Find the PFN the Movable zone begins in each node. Kernel memory
5145 * is spread evenly between nodes as long as the nodes have enough
5146 * memory. When they don't, some nodes will have more kernelcore than
5147 * others
5148 */
b224ef85 5149static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5150{
5151 int i, nid;
5152 unsigned long usable_startpfn;
5153 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5154 /* save the state before borrow the nodemask */
4b0ef1fe 5155 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5156 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5157 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5158 struct memblock_region *r;
b2f3eebe
TC
5159
5160 /* Need to find movable_zone earlier when movable_node is specified. */
5161 find_usable_zone_for_movable();
5162
5163 /*
5164 * If movable_node is specified, ignore kernelcore and movablecore
5165 * options.
5166 */
5167 if (movable_node_is_enabled()) {
136199f0
EM
5168 for_each_memblock(memory, r) {
5169 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5170 continue;
5171
136199f0 5172 nid = r->nid;
b2f3eebe 5173
136199f0 5174 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5175 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5176 min(usable_startpfn, zone_movable_pfn[nid]) :
5177 usable_startpfn;
5178 }
5179
5180 goto out2;
5181 }
2a1e274a 5182
7e63efef 5183 /*
b2f3eebe 5184 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5185 * kernelcore that corresponds so that memory usable for
5186 * any allocation type is evenly spread. If both kernelcore
5187 * and movablecore are specified, then the value of kernelcore
5188 * will be used for required_kernelcore if it's greater than
5189 * what movablecore would have allowed.
5190 */
5191 if (required_movablecore) {
7e63efef
MG
5192 unsigned long corepages;
5193
5194 /*
5195 * Round-up so that ZONE_MOVABLE is at least as large as what
5196 * was requested by the user
5197 */
5198 required_movablecore =
5199 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5200 corepages = totalpages - required_movablecore;
5201
5202 required_kernelcore = max(required_kernelcore, corepages);
5203 }
5204
20e6926d
YL
5205 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5206 if (!required_kernelcore)
66918dcd 5207 goto out;
2a1e274a
MG
5208
5209 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5210 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5211
5212restart:
5213 /* Spread kernelcore memory as evenly as possible throughout nodes */
5214 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5215 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5216 unsigned long start_pfn, end_pfn;
5217
2a1e274a
MG
5218 /*
5219 * Recalculate kernelcore_node if the division per node
5220 * now exceeds what is necessary to satisfy the requested
5221 * amount of memory for the kernel
5222 */
5223 if (required_kernelcore < kernelcore_node)
5224 kernelcore_node = required_kernelcore / usable_nodes;
5225
5226 /*
5227 * As the map is walked, we track how much memory is usable
5228 * by the kernel using kernelcore_remaining. When it is
5229 * 0, the rest of the node is usable by ZONE_MOVABLE
5230 */
5231 kernelcore_remaining = kernelcore_node;
5232
5233 /* Go through each range of PFNs within this node */
c13291a5 5234 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5235 unsigned long size_pages;
5236
c13291a5 5237 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5238 if (start_pfn >= end_pfn)
5239 continue;
5240
5241 /* Account for what is only usable for kernelcore */
5242 if (start_pfn < usable_startpfn) {
5243 unsigned long kernel_pages;
5244 kernel_pages = min(end_pfn, usable_startpfn)
5245 - start_pfn;
5246
5247 kernelcore_remaining -= min(kernel_pages,
5248 kernelcore_remaining);
5249 required_kernelcore -= min(kernel_pages,
5250 required_kernelcore);
5251
5252 /* Continue if range is now fully accounted */
5253 if (end_pfn <= usable_startpfn) {
5254
5255 /*
5256 * Push zone_movable_pfn to the end so
5257 * that if we have to rebalance
5258 * kernelcore across nodes, we will
5259 * not double account here
5260 */
5261 zone_movable_pfn[nid] = end_pfn;
5262 continue;
5263 }
5264 start_pfn = usable_startpfn;
5265 }
5266
5267 /*
5268 * The usable PFN range for ZONE_MOVABLE is from
5269 * start_pfn->end_pfn. Calculate size_pages as the
5270 * number of pages used as kernelcore
5271 */
5272 size_pages = end_pfn - start_pfn;
5273 if (size_pages > kernelcore_remaining)
5274 size_pages = kernelcore_remaining;
5275 zone_movable_pfn[nid] = start_pfn + size_pages;
5276
5277 /*
5278 * Some kernelcore has been met, update counts and
5279 * break if the kernelcore for this node has been
b8af2941 5280 * satisfied
2a1e274a
MG
5281 */
5282 required_kernelcore -= min(required_kernelcore,
5283 size_pages);
5284 kernelcore_remaining -= size_pages;
5285 if (!kernelcore_remaining)
5286 break;
5287 }
5288 }
5289
5290 /*
5291 * If there is still required_kernelcore, we do another pass with one
5292 * less node in the count. This will push zone_movable_pfn[nid] further
5293 * along on the nodes that still have memory until kernelcore is
b8af2941 5294 * satisfied
2a1e274a
MG
5295 */
5296 usable_nodes--;
5297 if (usable_nodes && required_kernelcore > usable_nodes)
5298 goto restart;
5299
b2f3eebe 5300out2:
2a1e274a
MG
5301 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5302 for (nid = 0; nid < MAX_NUMNODES; nid++)
5303 zone_movable_pfn[nid] =
5304 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5305
20e6926d 5306out:
66918dcd 5307 /* restore the node_state */
4b0ef1fe 5308 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5309}
5310
4b0ef1fe
LJ
5311/* Any regular or high memory on that node ? */
5312static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5313{
37b07e41
LS
5314 enum zone_type zone_type;
5315
4b0ef1fe
LJ
5316 if (N_MEMORY == N_NORMAL_MEMORY)
5317 return;
5318
5319 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5320 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5321 if (populated_zone(zone)) {
4b0ef1fe
LJ
5322 node_set_state(nid, N_HIGH_MEMORY);
5323 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5324 zone_type <= ZONE_NORMAL)
5325 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5326 break;
5327 }
37b07e41 5328 }
37b07e41
LS
5329}
5330
c713216d
MG
5331/**
5332 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5333 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5334 *
5335 * This will call free_area_init_node() for each active node in the system.
7d018176 5336 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5337 * zone in each node and their holes is calculated. If the maximum PFN
5338 * between two adjacent zones match, it is assumed that the zone is empty.
5339 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5340 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5341 * starts where the previous one ended. For example, ZONE_DMA32 starts
5342 * at arch_max_dma_pfn.
5343 */
5344void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5345{
c13291a5
TH
5346 unsigned long start_pfn, end_pfn;
5347 int i, nid;
a6af2bc3 5348
c713216d
MG
5349 /* Record where the zone boundaries are */
5350 memset(arch_zone_lowest_possible_pfn, 0,
5351 sizeof(arch_zone_lowest_possible_pfn));
5352 memset(arch_zone_highest_possible_pfn, 0,
5353 sizeof(arch_zone_highest_possible_pfn));
5354 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5355 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5356 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5357 if (i == ZONE_MOVABLE)
5358 continue;
c713216d
MG
5359 arch_zone_lowest_possible_pfn[i] =
5360 arch_zone_highest_possible_pfn[i-1];
5361 arch_zone_highest_possible_pfn[i] =
5362 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5363 }
2a1e274a
MG
5364 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5365 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5366
5367 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5368 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5369 find_zone_movable_pfns_for_nodes();
c713216d 5370
c713216d 5371 /* Print out the zone ranges */
f88dfff5 5372 pr_info("Zone ranges:\n");
2a1e274a
MG
5373 for (i = 0; i < MAX_NR_ZONES; i++) {
5374 if (i == ZONE_MOVABLE)
5375 continue;
f88dfff5 5376 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5377 if (arch_zone_lowest_possible_pfn[i] ==
5378 arch_zone_highest_possible_pfn[i])
f88dfff5 5379 pr_cont("empty\n");
72f0ba02 5380 else
f88dfff5 5381 pr_cont("[mem %0#10lx-%0#10lx]\n",
a62e2f4f
BH
5382 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5383 (arch_zone_highest_possible_pfn[i]
5384 << PAGE_SHIFT) - 1);
2a1e274a
MG
5385 }
5386
5387 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5388 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5389 for (i = 0; i < MAX_NUMNODES; i++) {
5390 if (zone_movable_pfn[i])
f88dfff5 5391 pr_info(" Node %d: %#010lx\n", i,
a62e2f4f 5392 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5393 }
c713216d 5394
f2d52fe5 5395 /* Print out the early node map */
f88dfff5 5396 pr_info("Early memory node ranges\n");
c13291a5 5397 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
f88dfff5 5398 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
a62e2f4f 5399 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5400
5401 /* Initialise every node */
708614e6 5402 mminit_verify_pageflags_layout();
8ef82866 5403 setup_nr_node_ids();
c713216d
MG
5404 for_each_online_node(nid) {
5405 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5406 free_area_init_node(nid, NULL,
c713216d 5407 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5408
5409 /* Any memory on that node */
5410 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5411 node_set_state(nid, N_MEMORY);
5412 check_for_memory(pgdat, nid);
c713216d
MG
5413 }
5414}
2a1e274a 5415
7e63efef 5416static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5417{
5418 unsigned long long coremem;
5419 if (!p)
5420 return -EINVAL;
5421
5422 coremem = memparse(p, &p);
7e63efef 5423 *core = coremem >> PAGE_SHIFT;
2a1e274a 5424
7e63efef 5425 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5426 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5427
5428 return 0;
5429}
ed7ed365 5430
7e63efef
MG
5431/*
5432 * kernelcore=size sets the amount of memory for use for allocations that
5433 * cannot be reclaimed or migrated.
5434 */
5435static int __init cmdline_parse_kernelcore(char *p)
5436{
5437 return cmdline_parse_core(p, &required_kernelcore);
5438}
5439
5440/*
5441 * movablecore=size sets the amount of memory for use for allocations that
5442 * can be reclaimed or migrated.
5443 */
5444static int __init cmdline_parse_movablecore(char *p)
5445{
5446 return cmdline_parse_core(p, &required_movablecore);
5447}
5448
ed7ed365 5449early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5450early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5451
0ee332c1 5452#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5453
c3d5f5f0
JL
5454void adjust_managed_page_count(struct page *page, long count)
5455{
5456 spin_lock(&managed_page_count_lock);
5457 page_zone(page)->managed_pages += count;
5458 totalram_pages += count;
3dcc0571
JL
5459#ifdef CONFIG_HIGHMEM
5460 if (PageHighMem(page))
5461 totalhigh_pages += count;
5462#endif
c3d5f5f0
JL
5463 spin_unlock(&managed_page_count_lock);
5464}
3dcc0571 5465EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5466
11199692 5467unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5468{
11199692
JL
5469 void *pos;
5470 unsigned long pages = 0;
69afade7 5471
11199692
JL
5472 start = (void *)PAGE_ALIGN((unsigned long)start);
5473 end = (void *)((unsigned long)end & PAGE_MASK);
5474 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5475 if ((unsigned int)poison <= 0xFF)
11199692
JL
5476 memset(pos, poison, PAGE_SIZE);
5477 free_reserved_page(virt_to_page(pos));
69afade7
JL
5478 }
5479
5480 if (pages && s)
11199692 5481 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5482 s, pages << (PAGE_SHIFT - 10), start, end);
5483
5484 return pages;
5485}
11199692 5486EXPORT_SYMBOL(free_reserved_area);
69afade7 5487
cfa11e08
JL
5488#ifdef CONFIG_HIGHMEM
5489void free_highmem_page(struct page *page)
5490{
5491 __free_reserved_page(page);
5492 totalram_pages++;
7b4b2a0d 5493 page_zone(page)->managed_pages++;
cfa11e08
JL
5494 totalhigh_pages++;
5495}
5496#endif
5497
7ee3d4e8
JL
5498
5499void __init mem_init_print_info(const char *str)
5500{
5501 unsigned long physpages, codesize, datasize, rosize, bss_size;
5502 unsigned long init_code_size, init_data_size;
5503
5504 physpages = get_num_physpages();
5505 codesize = _etext - _stext;
5506 datasize = _edata - _sdata;
5507 rosize = __end_rodata - __start_rodata;
5508 bss_size = __bss_stop - __bss_start;
5509 init_data_size = __init_end - __init_begin;
5510 init_code_size = _einittext - _sinittext;
5511
5512 /*
5513 * Detect special cases and adjust section sizes accordingly:
5514 * 1) .init.* may be embedded into .data sections
5515 * 2) .init.text.* may be out of [__init_begin, __init_end],
5516 * please refer to arch/tile/kernel/vmlinux.lds.S.
5517 * 3) .rodata.* may be embedded into .text or .data sections.
5518 */
5519#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5520 do { \
5521 if (start <= pos && pos < end && size > adj) \
5522 size -= adj; \
5523 } while (0)
7ee3d4e8
JL
5524
5525 adj_init_size(__init_begin, __init_end, init_data_size,
5526 _sinittext, init_code_size);
5527 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5528 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5529 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5530 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5531
5532#undef adj_init_size
5533
f88dfff5 5534 pr_info("Memory: %luK/%luK available "
7ee3d4e8
JL
5535 "(%luK kernel code, %luK rwdata, %luK rodata, "
5536 "%luK init, %luK bss, %luK reserved"
5537#ifdef CONFIG_HIGHMEM
5538 ", %luK highmem"
5539#endif
5540 "%s%s)\n",
5541 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5542 codesize >> 10, datasize >> 10, rosize >> 10,
5543 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5544 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5545#ifdef CONFIG_HIGHMEM
5546 totalhigh_pages << (PAGE_SHIFT-10),
5547#endif
5548 str ? ", " : "", str ? str : "");
5549}
5550
0e0b864e 5551/**
88ca3b94
RD
5552 * set_dma_reserve - set the specified number of pages reserved in the first zone
5553 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5554 *
5555 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5556 * In the DMA zone, a significant percentage may be consumed by kernel image
5557 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5558 * function may optionally be used to account for unfreeable pages in the
5559 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5560 * smaller per-cpu batchsize.
0e0b864e
MG
5561 */
5562void __init set_dma_reserve(unsigned long new_dma_reserve)
5563{
5564 dma_reserve = new_dma_reserve;
5565}
5566
1da177e4
LT
5567void __init free_area_init(unsigned long *zones_size)
5568{
9109fb7b 5569 free_area_init_node(0, zones_size,
1da177e4
LT
5570 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5571}
1da177e4 5572
1da177e4
LT
5573static int page_alloc_cpu_notify(struct notifier_block *self,
5574 unsigned long action, void *hcpu)
5575{
5576 int cpu = (unsigned long)hcpu;
1da177e4 5577
8bb78442 5578 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5579 lru_add_drain_cpu(cpu);
9f8f2172
CL
5580 drain_pages(cpu);
5581
5582 /*
5583 * Spill the event counters of the dead processor
5584 * into the current processors event counters.
5585 * This artificially elevates the count of the current
5586 * processor.
5587 */
f8891e5e 5588 vm_events_fold_cpu(cpu);
9f8f2172
CL
5589
5590 /*
5591 * Zero the differential counters of the dead processor
5592 * so that the vm statistics are consistent.
5593 *
5594 * This is only okay since the processor is dead and cannot
5595 * race with what we are doing.
5596 */
2bb921e5 5597 cpu_vm_stats_fold(cpu);
1da177e4
LT
5598 }
5599 return NOTIFY_OK;
5600}
1da177e4
LT
5601
5602void __init page_alloc_init(void)
5603{
5604 hotcpu_notifier(page_alloc_cpu_notify, 0);
5605}
5606
cb45b0e9
HA
5607/*
5608 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5609 * or min_free_kbytes changes.
5610 */
5611static void calculate_totalreserve_pages(void)
5612{
5613 struct pglist_data *pgdat;
5614 unsigned long reserve_pages = 0;
2f6726e5 5615 enum zone_type i, j;
cb45b0e9
HA
5616
5617 for_each_online_pgdat(pgdat) {
5618 for (i = 0; i < MAX_NR_ZONES; i++) {
5619 struct zone *zone = pgdat->node_zones + i;
3484b2de 5620 long max = 0;
cb45b0e9
HA
5621
5622 /* Find valid and maximum lowmem_reserve in the zone */
5623 for (j = i; j < MAX_NR_ZONES; j++) {
5624 if (zone->lowmem_reserve[j] > max)
5625 max = zone->lowmem_reserve[j];
5626 }
5627
41858966
MG
5628 /* we treat the high watermark as reserved pages. */
5629 max += high_wmark_pages(zone);
cb45b0e9 5630
b40da049
JL
5631 if (max > zone->managed_pages)
5632 max = zone->managed_pages;
cb45b0e9 5633 reserve_pages += max;
ab8fabd4
JW
5634 /*
5635 * Lowmem reserves are not available to
5636 * GFP_HIGHUSER page cache allocations and
5637 * kswapd tries to balance zones to their high
5638 * watermark. As a result, neither should be
5639 * regarded as dirtyable memory, to prevent a
5640 * situation where reclaim has to clean pages
5641 * in order to balance the zones.
5642 */
5643 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5644 }
5645 }
ab8fabd4 5646 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5647 totalreserve_pages = reserve_pages;
5648}
5649
1da177e4
LT
5650/*
5651 * setup_per_zone_lowmem_reserve - called whenever
5652 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5653 * has a correct pages reserved value, so an adequate number of
5654 * pages are left in the zone after a successful __alloc_pages().
5655 */
5656static void setup_per_zone_lowmem_reserve(void)
5657{
5658 struct pglist_data *pgdat;
2f6726e5 5659 enum zone_type j, idx;
1da177e4 5660
ec936fc5 5661 for_each_online_pgdat(pgdat) {
1da177e4
LT
5662 for (j = 0; j < MAX_NR_ZONES; j++) {
5663 struct zone *zone = pgdat->node_zones + j;
b40da049 5664 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5665
5666 zone->lowmem_reserve[j] = 0;
5667
2f6726e5
CL
5668 idx = j;
5669 while (idx) {
1da177e4
LT
5670 struct zone *lower_zone;
5671
2f6726e5
CL
5672 idx--;
5673
1da177e4
LT
5674 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5675 sysctl_lowmem_reserve_ratio[idx] = 1;
5676
5677 lower_zone = pgdat->node_zones + idx;
b40da049 5678 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5679 sysctl_lowmem_reserve_ratio[idx];
b40da049 5680 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5681 }
5682 }
5683 }
cb45b0e9
HA
5684
5685 /* update totalreserve_pages */
5686 calculate_totalreserve_pages();
1da177e4
LT
5687}
5688
cfd3da1e 5689static void __setup_per_zone_wmarks(void)
1da177e4
LT
5690{
5691 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5692 unsigned long lowmem_pages = 0;
5693 struct zone *zone;
5694 unsigned long flags;
5695
5696 /* Calculate total number of !ZONE_HIGHMEM pages */
5697 for_each_zone(zone) {
5698 if (!is_highmem(zone))
b40da049 5699 lowmem_pages += zone->managed_pages;
1da177e4
LT
5700 }
5701
5702 for_each_zone(zone) {
ac924c60
AM
5703 u64 tmp;
5704
1125b4e3 5705 spin_lock_irqsave(&zone->lock, flags);
b40da049 5706 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5707 do_div(tmp, lowmem_pages);
1da177e4
LT
5708 if (is_highmem(zone)) {
5709 /*
669ed175
NP
5710 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5711 * need highmem pages, so cap pages_min to a small
5712 * value here.
5713 *
41858966 5714 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5715 * deltas controls asynch page reclaim, and so should
5716 * not be capped for highmem.
1da177e4 5717 */
90ae8d67 5718 unsigned long min_pages;
1da177e4 5719
b40da049 5720 min_pages = zone->managed_pages / 1024;
90ae8d67 5721 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5722 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5723 } else {
669ed175
NP
5724 /*
5725 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5726 * proportionate to the zone's size.
5727 */
41858966 5728 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5729 }
5730
41858966
MG
5731 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5732 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5733
81c0a2bb 5734 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5735 high_wmark_pages(zone) - low_wmark_pages(zone) -
5736 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5737
56fd56b8 5738 setup_zone_migrate_reserve(zone);
1125b4e3 5739 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5740 }
cb45b0e9
HA
5741
5742 /* update totalreserve_pages */
5743 calculate_totalreserve_pages();
1da177e4
LT
5744}
5745
cfd3da1e
MG
5746/**
5747 * setup_per_zone_wmarks - called when min_free_kbytes changes
5748 * or when memory is hot-{added|removed}
5749 *
5750 * Ensures that the watermark[min,low,high] values for each zone are set
5751 * correctly with respect to min_free_kbytes.
5752 */
5753void setup_per_zone_wmarks(void)
5754{
5755 mutex_lock(&zonelists_mutex);
5756 __setup_per_zone_wmarks();
5757 mutex_unlock(&zonelists_mutex);
5758}
5759
55a4462a 5760/*
556adecb
RR
5761 * The inactive anon list should be small enough that the VM never has to
5762 * do too much work, but large enough that each inactive page has a chance
5763 * to be referenced again before it is swapped out.
5764 *
5765 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5766 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5767 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5768 * the anonymous pages are kept on the inactive list.
5769 *
5770 * total target max
5771 * memory ratio inactive anon
5772 * -------------------------------------
5773 * 10MB 1 5MB
5774 * 100MB 1 50MB
5775 * 1GB 3 250MB
5776 * 10GB 10 0.9GB
5777 * 100GB 31 3GB
5778 * 1TB 101 10GB
5779 * 10TB 320 32GB
5780 */
1b79acc9 5781static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5782{
96cb4df5 5783 unsigned int gb, ratio;
556adecb 5784
96cb4df5 5785 /* Zone size in gigabytes */
b40da049 5786 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5787 if (gb)
556adecb 5788 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5789 else
5790 ratio = 1;
556adecb 5791
96cb4df5
MK
5792 zone->inactive_ratio = ratio;
5793}
556adecb 5794
839a4fcc 5795static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5796{
5797 struct zone *zone;
5798
5799 for_each_zone(zone)
5800 calculate_zone_inactive_ratio(zone);
556adecb
RR
5801}
5802
1da177e4
LT
5803/*
5804 * Initialise min_free_kbytes.
5805 *
5806 * For small machines we want it small (128k min). For large machines
5807 * we want it large (64MB max). But it is not linear, because network
5808 * bandwidth does not increase linearly with machine size. We use
5809 *
b8af2941 5810 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5811 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5812 *
5813 * which yields
5814 *
5815 * 16MB: 512k
5816 * 32MB: 724k
5817 * 64MB: 1024k
5818 * 128MB: 1448k
5819 * 256MB: 2048k
5820 * 512MB: 2896k
5821 * 1024MB: 4096k
5822 * 2048MB: 5792k
5823 * 4096MB: 8192k
5824 * 8192MB: 11584k
5825 * 16384MB: 16384k
5826 */
1b79acc9 5827int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5828{
5829 unsigned long lowmem_kbytes;
5f12733e 5830 int new_min_free_kbytes;
1da177e4
LT
5831
5832 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5833 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5834
5835 if (new_min_free_kbytes > user_min_free_kbytes) {
5836 min_free_kbytes = new_min_free_kbytes;
5837 if (min_free_kbytes < 128)
5838 min_free_kbytes = 128;
5839 if (min_free_kbytes > 65536)
5840 min_free_kbytes = 65536;
5841 } else {
5842 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5843 new_min_free_kbytes, user_min_free_kbytes);
5844 }
bc75d33f 5845 setup_per_zone_wmarks();
a6cccdc3 5846 refresh_zone_stat_thresholds();
1da177e4 5847 setup_per_zone_lowmem_reserve();
556adecb 5848 setup_per_zone_inactive_ratio();
1da177e4
LT
5849 return 0;
5850}
bc75d33f 5851module_init(init_per_zone_wmark_min)
1da177e4
LT
5852
5853/*
b8af2941 5854 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5855 * that we can call two helper functions whenever min_free_kbytes
5856 * changes.
5857 */
cccad5b9 5858int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5859 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5860{
da8c757b
HP
5861 int rc;
5862
5863 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5864 if (rc)
5865 return rc;
5866
5f12733e
MH
5867 if (write) {
5868 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5869 setup_per_zone_wmarks();
5f12733e 5870 }
1da177e4
LT
5871 return 0;
5872}
5873
9614634f 5874#ifdef CONFIG_NUMA
cccad5b9 5875int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5876 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5877{
5878 struct zone *zone;
5879 int rc;
5880
8d65af78 5881 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5882 if (rc)
5883 return rc;
5884
5885 for_each_zone(zone)
b40da049 5886 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5887 sysctl_min_unmapped_ratio) / 100;
5888 return 0;
5889}
0ff38490 5890
cccad5b9 5891int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5892 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5893{
5894 struct zone *zone;
5895 int rc;
5896
8d65af78 5897 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5898 if (rc)
5899 return rc;
5900
5901 for_each_zone(zone)
b40da049 5902 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5903 sysctl_min_slab_ratio) / 100;
5904 return 0;
5905}
9614634f
CL
5906#endif
5907
1da177e4
LT
5908/*
5909 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5910 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5911 * whenever sysctl_lowmem_reserve_ratio changes.
5912 *
5913 * The reserve ratio obviously has absolutely no relation with the
41858966 5914 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5915 * if in function of the boot time zone sizes.
5916 */
cccad5b9 5917int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5918 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5919{
8d65af78 5920 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5921 setup_per_zone_lowmem_reserve();
5922 return 0;
5923}
5924
8ad4b1fb
RS
5925/*
5926 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5927 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5928 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5929 */
cccad5b9 5930int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5931 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5932{
5933 struct zone *zone;
7cd2b0a3 5934 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5935 int ret;
5936
7cd2b0a3
DR
5937 mutex_lock(&pcp_batch_high_lock);
5938 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5939
8d65af78 5940 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5941 if (!write || ret < 0)
5942 goto out;
5943
5944 /* Sanity checking to avoid pcp imbalance */
5945 if (percpu_pagelist_fraction &&
5946 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5947 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5948 ret = -EINVAL;
5949 goto out;
5950 }
5951
5952 /* No change? */
5953 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5954 goto out;
c8e251fa 5955
364df0eb 5956 for_each_populated_zone(zone) {
7cd2b0a3
DR
5957 unsigned int cpu;
5958
22a7f12b 5959 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5960 pageset_set_high_and_batch(zone,
5961 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5962 }
7cd2b0a3 5963out:
c8e251fa 5964 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5965 return ret;
8ad4b1fb
RS
5966}
5967
f034b5d4 5968int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5969
5970#ifdef CONFIG_NUMA
5971static int __init set_hashdist(char *str)
5972{
5973 if (!str)
5974 return 0;
5975 hashdist = simple_strtoul(str, &str, 0);
5976 return 1;
5977}
5978__setup("hashdist=", set_hashdist);
5979#endif
5980
5981/*
5982 * allocate a large system hash table from bootmem
5983 * - it is assumed that the hash table must contain an exact power-of-2
5984 * quantity of entries
5985 * - limit is the number of hash buckets, not the total allocation size
5986 */
5987void *__init alloc_large_system_hash(const char *tablename,
5988 unsigned long bucketsize,
5989 unsigned long numentries,
5990 int scale,
5991 int flags,
5992 unsigned int *_hash_shift,
5993 unsigned int *_hash_mask,
31fe62b9
TB
5994 unsigned long low_limit,
5995 unsigned long high_limit)
1da177e4 5996{
31fe62b9 5997 unsigned long long max = high_limit;
1da177e4
LT
5998 unsigned long log2qty, size;
5999 void *table = NULL;
6000
6001 /* allow the kernel cmdline to have a say */
6002 if (!numentries) {
6003 /* round applicable memory size up to nearest megabyte */
04903664 6004 numentries = nr_kernel_pages;
a7e83318
JZ
6005
6006 /* It isn't necessary when PAGE_SIZE >= 1MB */
6007 if (PAGE_SHIFT < 20)
6008 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6009
6010 /* limit to 1 bucket per 2^scale bytes of low memory */
6011 if (scale > PAGE_SHIFT)
6012 numentries >>= (scale - PAGE_SHIFT);
6013 else
6014 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6015
6016 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6017 if (unlikely(flags & HASH_SMALL)) {
6018 /* Makes no sense without HASH_EARLY */
6019 WARN_ON(!(flags & HASH_EARLY));
6020 if (!(numentries >> *_hash_shift)) {
6021 numentries = 1UL << *_hash_shift;
6022 BUG_ON(!numentries);
6023 }
6024 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6025 numentries = PAGE_SIZE / bucketsize;
1da177e4 6026 }
6e692ed3 6027 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6028
6029 /* limit allocation size to 1/16 total memory by default */
6030 if (max == 0) {
6031 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6032 do_div(max, bucketsize);
6033 }
074b8517 6034 max = min(max, 0x80000000ULL);
1da177e4 6035
31fe62b9
TB
6036 if (numentries < low_limit)
6037 numentries = low_limit;
1da177e4
LT
6038 if (numentries > max)
6039 numentries = max;
6040
f0d1b0b3 6041 log2qty = ilog2(numentries);
1da177e4
LT
6042
6043 do {
6044 size = bucketsize << log2qty;
6045 if (flags & HASH_EARLY)
6782832e 6046 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6047 else if (hashdist)
6048 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6049 else {
1037b83b
ED
6050 /*
6051 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6052 * some pages at the end of hash table which
6053 * alloc_pages_exact() automatically does
1037b83b 6054 */
264ef8a9 6055 if (get_order(size) < MAX_ORDER) {
a1dd268c 6056 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6057 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6058 }
1da177e4
LT
6059 }
6060 } while (!table && size > PAGE_SIZE && --log2qty);
6061
6062 if (!table)
6063 panic("Failed to allocate %s hash table\n", tablename);
6064
f241e660 6065 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6066 tablename,
f241e660 6067 (1UL << log2qty),
f0d1b0b3 6068 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6069 size);
6070
6071 if (_hash_shift)
6072 *_hash_shift = log2qty;
6073 if (_hash_mask)
6074 *_hash_mask = (1 << log2qty) - 1;
6075
6076 return table;
6077}
a117e66e 6078
835c134e
MG
6079/* Return a pointer to the bitmap storing bits affecting a block of pages */
6080static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6081 unsigned long pfn)
6082{
6083#ifdef CONFIG_SPARSEMEM
6084 return __pfn_to_section(pfn)->pageblock_flags;
6085#else
6086 return zone->pageblock_flags;
6087#endif /* CONFIG_SPARSEMEM */
6088}
6089
6090static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6091{
6092#ifdef CONFIG_SPARSEMEM
6093 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6094 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6095#else
c060f943 6096 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6097 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6098#endif /* CONFIG_SPARSEMEM */
6099}
6100
6101/**
1aab4d77 6102 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6103 * @page: The page within the block of interest
1aab4d77
RD
6104 * @pfn: The target page frame number
6105 * @end_bitidx: The last bit of interest to retrieve
6106 * @mask: mask of bits that the caller is interested in
6107 *
6108 * Return: pageblock_bits flags
835c134e 6109 */
dc4b0caf 6110unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6111 unsigned long end_bitidx,
6112 unsigned long mask)
835c134e
MG
6113{
6114 struct zone *zone;
6115 unsigned long *bitmap;
dc4b0caf 6116 unsigned long bitidx, word_bitidx;
e58469ba 6117 unsigned long word;
835c134e
MG
6118
6119 zone = page_zone(page);
835c134e
MG
6120 bitmap = get_pageblock_bitmap(zone, pfn);
6121 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6122 word_bitidx = bitidx / BITS_PER_LONG;
6123 bitidx &= (BITS_PER_LONG-1);
835c134e 6124
e58469ba
MG
6125 word = bitmap[word_bitidx];
6126 bitidx += end_bitidx;
6127 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6128}
6129
6130/**
dc4b0caf 6131 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6132 * @page: The page within the block of interest
835c134e 6133 * @flags: The flags to set
1aab4d77
RD
6134 * @pfn: The target page frame number
6135 * @end_bitidx: The last bit of interest
6136 * @mask: mask of bits that the caller is interested in
835c134e 6137 */
dc4b0caf
MG
6138void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6139 unsigned long pfn,
e58469ba
MG
6140 unsigned long end_bitidx,
6141 unsigned long mask)
835c134e
MG
6142{
6143 struct zone *zone;
6144 unsigned long *bitmap;
dc4b0caf 6145 unsigned long bitidx, word_bitidx;
e58469ba
MG
6146 unsigned long old_word, word;
6147
6148 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6149
6150 zone = page_zone(page);
835c134e
MG
6151 bitmap = get_pageblock_bitmap(zone, pfn);
6152 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6153 word_bitidx = bitidx / BITS_PER_LONG;
6154 bitidx &= (BITS_PER_LONG-1);
6155
309381fe 6156 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6157
e58469ba
MG
6158 bitidx += end_bitidx;
6159 mask <<= (BITS_PER_LONG - bitidx - 1);
6160 flags <<= (BITS_PER_LONG - bitidx - 1);
6161
6162 word = ACCESS_ONCE(bitmap[word_bitidx]);
6163 for (;;) {
6164 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6165 if (word == old_word)
6166 break;
6167 word = old_word;
6168 }
835c134e 6169}
a5d76b54
KH
6170
6171/*
80934513
MK
6172 * This function checks whether pageblock includes unmovable pages or not.
6173 * If @count is not zero, it is okay to include less @count unmovable pages
6174 *
b8af2941 6175 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6176 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6177 * expect this function should be exact.
a5d76b54 6178 */
b023f468
WC
6179bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6180 bool skip_hwpoisoned_pages)
49ac8255
KH
6181{
6182 unsigned long pfn, iter, found;
47118af0
MN
6183 int mt;
6184
49ac8255
KH
6185 /*
6186 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6187 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6188 */
6189 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6190 return false;
47118af0
MN
6191 mt = get_pageblock_migratetype(page);
6192 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6193 return false;
49ac8255
KH
6194
6195 pfn = page_to_pfn(page);
6196 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6197 unsigned long check = pfn + iter;
6198
29723fcc 6199 if (!pfn_valid_within(check))
49ac8255 6200 continue;
29723fcc 6201
49ac8255 6202 page = pfn_to_page(check);
c8721bbb
NH
6203
6204 /*
6205 * Hugepages are not in LRU lists, but they're movable.
6206 * We need not scan over tail pages bacause we don't
6207 * handle each tail page individually in migration.
6208 */
6209 if (PageHuge(page)) {
6210 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6211 continue;
6212 }
6213
97d255c8
MK
6214 /*
6215 * We can't use page_count without pin a page
6216 * because another CPU can free compound page.
6217 * This check already skips compound tails of THP
6218 * because their page->_count is zero at all time.
6219 */
6220 if (!atomic_read(&page->_count)) {
49ac8255
KH
6221 if (PageBuddy(page))
6222 iter += (1 << page_order(page)) - 1;
6223 continue;
6224 }
97d255c8 6225
b023f468
WC
6226 /*
6227 * The HWPoisoned page may be not in buddy system, and
6228 * page_count() is not 0.
6229 */
6230 if (skip_hwpoisoned_pages && PageHWPoison(page))
6231 continue;
6232
49ac8255
KH
6233 if (!PageLRU(page))
6234 found++;
6235 /*
6236 * If there are RECLAIMABLE pages, we need to check it.
6237 * But now, memory offline itself doesn't call shrink_slab()
6238 * and it still to be fixed.
6239 */
6240 /*
6241 * If the page is not RAM, page_count()should be 0.
6242 * we don't need more check. This is an _used_ not-movable page.
6243 *
6244 * The problematic thing here is PG_reserved pages. PG_reserved
6245 * is set to both of a memory hole page and a _used_ kernel
6246 * page at boot.
6247 */
6248 if (found > count)
80934513 6249 return true;
49ac8255 6250 }
80934513 6251 return false;
49ac8255
KH
6252}
6253
6254bool is_pageblock_removable_nolock(struct page *page)
6255{
656a0706
MH
6256 struct zone *zone;
6257 unsigned long pfn;
687875fb
MH
6258
6259 /*
6260 * We have to be careful here because we are iterating over memory
6261 * sections which are not zone aware so we might end up outside of
6262 * the zone but still within the section.
656a0706
MH
6263 * We have to take care about the node as well. If the node is offline
6264 * its NODE_DATA will be NULL - see page_zone.
687875fb 6265 */
656a0706
MH
6266 if (!node_online(page_to_nid(page)))
6267 return false;
6268
6269 zone = page_zone(page);
6270 pfn = page_to_pfn(page);
108bcc96 6271 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6272 return false;
6273
b023f468 6274 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6275}
0c0e6195 6276
041d3a8c
MN
6277#ifdef CONFIG_CMA
6278
6279static unsigned long pfn_max_align_down(unsigned long pfn)
6280{
6281 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6282 pageblock_nr_pages) - 1);
6283}
6284
6285static unsigned long pfn_max_align_up(unsigned long pfn)
6286{
6287 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6288 pageblock_nr_pages));
6289}
6290
041d3a8c 6291/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6292static int __alloc_contig_migrate_range(struct compact_control *cc,
6293 unsigned long start, unsigned long end)
041d3a8c
MN
6294{
6295 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6296 unsigned long nr_reclaimed;
041d3a8c
MN
6297 unsigned long pfn = start;
6298 unsigned int tries = 0;
6299 int ret = 0;
6300
be49a6e1 6301 migrate_prep();
041d3a8c 6302
bb13ffeb 6303 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6304 if (fatal_signal_pending(current)) {
6305 ret = -EINTR;
6306 break;
6307 }
6308
bb13ffeb
MG
6309 if (list_empty(&cc->migratepages)) {
6310 cc->nr_migratepages = 0;
edc2ca61 6311 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6312 if (!pfn) {
6313 ret = -EINTR;
6314 break;
6315 }
6316 tries = 0;
6317 } else if (++tries == 5) {
6318 ret = ret < 0 ? ret : -EBUSY;
6319 break;
6320 }
6321
beb51eaa
MK
6322 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6323 &cc->migratepages);
6324 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6325
9c620e2b 6326 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6327 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6328 }
2a6f5124
SP
6329 if (ret < 0) {
6330 putback_movable_pages(&cc->migratepages);
6331 return ret;
6332 }
6333 return 0;
041d3a8c
MN
6334}
6335
6336/**
6337 * alloc_contig_range() -- tries to allocate given range of pages
6338 * @start: start PFN to allocate
6339 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6340 * @migratetype: migratetype of the underlaying pageblocks (either
6341 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6342 * in range must have the same migratetype and it must
6343 * be either of the two.
041d3a8c
MN
6344 *
6345 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6346 * aligned, however it's the caller's responsibility to guarantee that
6347 * we are the only thread that changes migrate type of pageblocks the
6348 * pages fall in.
6349 *
6350 * The PFN range must belong to a single zone.
6351 *
6352 * Returns zero on success or negative error code. On success all
6353 * pages which PFN is in [start, end) are allocated for the caller and
6354 * need to be freed with free_contig_range().
6355 */
0815f3d8
MN
6356int alloc_contig_range(unsigned long start, unsigned long end,
6357 unsigned migratetype)
041d3a8c 6358{
041d3a8c
MN
6359 unsigned long outer_start, outer_end;
6360 int ret = 0, order;
6361
bb13ffeb
MG
6362 struct compact_control cc = {
6363 .nr_migratepages = 0,
6364 .order = -1,
6365 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6366 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6367 .ignore_skip_hint = true,
6368 };
6369 INIT_LIST_HEAD(&cc.migratepages);
6370
041d3a8c
MN
6371 /*
6372 * What we do here is we mark all pageblocks in range as
6373 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6374 * have different sizes, and due to the way page allocator
6375 * work, we align the range to biggest of the two pages so
6376 * that page allocator won't try to merge buddies from
6377 * different pageblocks and change MIGRATE_ISOLATE to some
6378 * other migration type.
6379 *
6380 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6381 * migrate the pages from an unaligned range (ie. pages that
6382 * we are interested in). This will put all the pages in
6383 * range back to page allocator as MIGRATE_ISOLATE.
6384 *
6385 * When this is done, we take the pages in range from page
6386 * allocator removing them from the buddy system. This way
6387 * page allocator will never consider using them.
6388 *
6389 * This lets us mark the pageblocks back as
6390 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6391 * aligned range but not in the unaligned, original range are
6392 * put back to page allocator so that buddy can use them.
6393 */
6394
6395 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6396 pfn_max_align_up(end), migratetype,
6397 false);
041d3a8c 6398 if (ret)
86a595f9 6399 return ret;
041d3a8c 6400
bb13ffeb 6401 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6402 if (ret)
6403 goto done;
6404
6405 /*
6406 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6407 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6408 * more, all pages in [start, end) are free in page allocator.
6409 * What we are going to do is to allocate all pages from
6410 * [start, end) (that is remove them from page allocator).
6411 *
6412 * The only problem is that pages at the beginning and at the
6413 * end of interesting range may be not aligned with pages that
6414 * page allocator holds, ie. they can be part of higher order
6415 * pages. Because of this, we reserve the bigger range and
6416 * once this is done free the pages we are not interested in.
6417 *
6418 * We don't have to hold zone->lock here because the pages are
6419 * isolated thus they won't get removed from buddy.
6420 */
6421
6422 lru_add_drain_all();
510f5507 6423 drain_all_pages(cc.zone);
041d3a8c
MN
6424
6425 order = 0;
6426 outer_start = start;
6427 while (!PageBuddy(pfn_to_page(outer_start))) {
6428 if (++order >= MAX_ORDER) {
6429 ret = -EBUSY;
6430 goto done;
6431 }
6432 outer_start &= ~0UL << order;
6433 }
6434
6435 /* Make sure the range is really isolated. */
b023f468 6436 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6437 pr_info("%s: [%lx, %lx) PFNs busy\n",
6438 __func__, outer_start, end);
041d3a8c
MN
6439 ret = -EBUSY;
6440 goto done;
6441 }
6442
49f223a9 6443 /* Grab isolated pages from freelists. */
bb13ffeb 6444 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6445 if (!outer_end) {
6446 ret = -EBUSY;
6447 goto done;
6448 }
6449
6450 /* Free head and tail (if any) */
6451 if (start != outer_start)
6452 free_contig_range(outer_start, start - outer_start);
6453 if (end != outer_end)
6454 free_contig_range(end, outer_end - end);
6455
6456done:
6457 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6458 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6459 return ret;
6460}
6461
6462void free_contig_range(unsigned long pfn, unsigned nr_pages)
6463{
bcc2b02f
MS
6464 unsigned int count = 0;
6465
6466 for (; nr_pages--; pfn++) {
6467 struct page *page = pfn_to_page(pfn);
6468
6469 count += page_count(page) != 1;
6470 __free_page(page);
6471 }
6472 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6473}
6474#endif
6475
4ed7e022 6476#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6477/*
6478 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6479 * page high values need to be recalulated.
6480 */
4ed7e022
JL
6481void __meminit zone_pcp_update(struct zone *zone)
6482{
0a647f38 6483 unsigned cpu;
c8e251fa 6484 mutex_lock(&pcp_batch_high_lock);
0a647f38 6485 for_each_possible_cpu(cpu)
169f6c19
CS
6486 pageset_set_high_and_batch(zone,
6487 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6488 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6489}
6490#endif
6491
340175b7
JL
6492void zone_pcp_reset(struct zone *zone)
6493{
6494 unsigned long flags;
5a883813
MK
6495 int cpu;
6496 struct per_cpu_pageset *pset;
340175b7
JL
6497
6498 /* avoid races with drain_pages() */
6499 local_irq_save(flags);
6500 if (zone->pageset != &boot_pageset) {
5a883813
MK
6501 for_each_online_cpu(cpu) {
6502 pset = per_cpu_ptr(zone->pageset, cpu);
6503 drain_zonestat(zone, pset);
6504 }
340175b7
JL
6505 free_percpu(zone->pageset);
6506 zone->pageset = &boot_pageset;
6507 }
6508 local_irq_restore(flags);
6509}
6510
6dcd73d7 6511#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6512/*
6513 * All pages in the range must be isolated before calling this.
6514 */
6515void
6516__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6517{
6518 struct page *page;
6519 struct zone *zone;
7aeb09f9 6520 unsigned int order, i;
0c0e6195
KH
6521 unsigned long pfn;
6522 unsigned long flags;
6523 /* find the first valid pfn */
6524 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6525 if (pfn_valid(pfn))
6526 break;
6527 if (pfn == end_pfn)
6528 return;
6529 zone = page_zone(pfn_to_page(pfn));
6530 spin_lock_irqsave(&zone->lock, flags);
6531 pfn = start_pfn;
6532 while (pfn < end_pfn) {
6533 if (!pfn_valid(pfn)) {
6534 pfn++;
6535 continue;
6536 }
6537 page = pfn_to_page(pfn);
b023f468
WC
6538 /*
6539 * The HWPoisoned page may be not in buddy system, and
6540 * page_count() is not 0.
6541 */
6542 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6543 pfn++;
6544 SetPageReserved(page);
6545 continue;
6546 }
6547
0c0e6195
KH
6548 BUG_ON(page_count(page));
6549 BUG_ON(!PageBuddy(page));
6550 order = page_order(page);
6551#ifdef CONFIG_DEBUG_VM
6552 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6553 pfn, 1 << order, end_pfn);
6554#endif
6555 list_del(&page->lru);
6556 rmv_page_order(page);
6557 zone->free_area[order].nr_free--;
0c0e6195
KH
6558 for (i = 0; i < (1 << order); i++)
6559 SetPageReserved((page+i));
6560 pfn += (1 << order);
6561 }
6562 spin_unlock_irqrestore(&zone->lock, flags);
6563}
6564#endif
8d22ba1b
WF
6565
6566#ifdef CONFIG_MEMORY_FAILURE
6567bool is_free_buddy_page(struct page *page)
6568{
6569 struct zone *zone = page_zone(page);
6570 unsigned long pfn = page_to_pfn(page);
6571 unsigned long flags;
7aeb09f9 6572 unsigned int order;
8d22ba1b
WF
6573
6574 spin_lock_irqsave(&zone->lock, flags);
6575 for (order = 0; order < MAX_ORDER; order++) {
6576 struct page *page_head = page - (pfn & ((1 << order) - 1));
6577
6578 if (PageBuddy(page_head) && page_order(page_head) >= order)
6579 break;
6580 }
6581 spin_unlock_irqrestore(&zone->lock, flags);
6582
6583 return order < MAX_ORDER;
6584}
6585#endif