]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
[PATCH] unpaged: ZERO_PAGE in VM_UNPAGED
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
46 */
c3d8c141 47nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 48EXPORT_SYMBOL(node_online_map);
c3d8c141 49nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 50EXPORT_SYMBOL(node_possible_map);
c3d8c141 51struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
1da177e4
LT
54long nr_swap_pages;
55
56/*
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
63 *
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
1da177e4 66 */
a2f1b424 67int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
68
69EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
70
71/*
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
74 */
c3d8c141 75struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
76EXPORT_SYMBOL(zone_table);
77
a2f1b424 78static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
79int min_free_kbytes = 1024;
80
81unsigned long __initdata nr_kernel_pages;
82unsigned long __initdata nr_all_pages;
83
c6a57e19 84static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 85{
bdc8cb98
DH
86 int ret = 0;
87 unsigned seq;
88 unsigned long pfn = page_to_pfn(page);
c6a57e19 89
bdc8cb98
DH
90 do {
91 seq = zone_span_seqbegin(zone);
92 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
93 ret = 1;
94 else if (pfn < zone->zone_start_pfn)
95 ret = 1;
96 } while (zone_span_seqretry(zone, seq));
97
98 return ret;
c6a57e19
DH
99}
100
101static int page_is_consistent(struct zone *zone, struct page *page)
102{
1da177e4
LT
103#ifdef CONFIG_HOLES_IN_ZONE
104 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 105 return 0;
1da177e4
LT
106#endif
107 if (zone != page_zone(page))
c6a57e19
DH
108 return 0;
109
110 return 1;
111}
112/*
113 * Temporary debugging check for pages not lying within a given zone.
114 */
115static int bad_range(struct zone *zone, struct page *page)
116{
117 if (page_outside_zone_boundaries(zone, page))
1da177e4 118 return 1;
c6a57e19
DH
119 if (!page_is_consistent(zone, page))
120 return 1;
121
1da177e4
LT
122 return 0;
123}
124
125static void bad_page(const char *function, struct page *page)
126{
127 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
128 function, current->comm, page);
129 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
07808b74 130 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
1da177e4
LT
131 page->mapping, page_mapcount(page), page_count(page));
132 printk(KERN_EMERG "Backtrace:\n");
133 dump_stack();
134 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
334795ec
HD
135 page->flags &= ~(1 << PG_lru |
136 1 << PG_private |
1da177e4 137 1 << PG_locked |
1da177e4
LT
138 1 << PG_active |
139 1 << PG_dirty |
334795ec
HD
140 1 << PG_reclaim |
141 1 << PG_slab |
1da177e4 142 1 << PG_swapcache |
b5810039
NP
143 1 << PG_writeback |
144 1 << PG_reserved );
1da177e4
LT
145 set_page_count(page, 0);
146 reset_page_mapcount(page);
147 page->mapping = NULL;
9f158333 148 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
149}
150
1da177e4
LT
151/*
152 * Higher-order pages are called "compound pages". They are structured thusly:
153 *
154 * The first PAGE_SIZE page is called the "head page".
155 *
156 * The remaining PAGE_SIZE pages are called "tail pages".
157 *
158 * All pages have PG_compound set. All pages have their ->private pointing at
159 * the head page (even the head page has this).
160 *
161 * The first tail page's ->mapping, if non-zero, holds the address of the
162 * compound page's put_page() function.
163 *
164 * The order of the allocation is stored in the first tail page's ->index
165 * This is only for debug at present. This usage means that zero-order pages
166 * may not be compound.
167 */
168static void prep_compound_page(struct page *page, unsigned long order)
169{
170 int i;
171 int nr_pages = 1 << order;
172
173 page[1].mapping = NULL;
174 page[1].index = order;
175 for (i = 0; i < nr_pages; i++) {
176 struct page *p = page + i;
177
178 SetPageCompound(p);
4c21e2f2 179 set_page_private(p, (unsigned long)page);
1da177e4
LT
180 }
181}
182
183static void destroy_compound_page(struct page *page, unsigned long order)
184{
185 int i;
186 int nr_pages = 1 << order;
187
188 if (!PageCompound(page))
189 return;
190
191 if (page[1].index != order)
192 bad_page(__FUNCTION__, page);
193
194 for (i = 0; i < nr_pages; i++) {
195 struct page *p = page + i;
196
197 if (!PageCompound(p))
198 bad_page(__FUNCTION__, page);
4c21e2f2 199 if (page_private(p) != (unsigned long)page)
1da177e4
LT
200 bad_page(__FUNCTION__, page);
201 ClearPageCompound(p);
202 }
203}
1da177e4
LT
204
205/*
206 * function for dealing with page's order in buddy system.
207 * zone->lock is already acquired when we use these.
208 * So, we don't need atomic page->flags operations here.
209 */
210static inline unsigned long page_order(struct page *page) {
4c21e2f2 211 return page_private(page);
1da177e4
LT
212}
213
214static inline void set_page_order(struct page *page, int order) {
4c21e2f2 215 set_page_private(page, order);
1da177e4
LT
216 __SetPagePrivate(page);
217}
218
219static inline void rmv_page_order(struct page *page)
220{
221 __ClearPagePrivate(page);
4c21e2f2 222 set_page_private(page, 0);
1da177e4
LT
223}
224
225/*
226 * Locate the struct page for both the matching buddy in our
227 * pair (buddy1) and the combined O(n+1) page they form (page).
228 *
229 * 1) Any buddy B1 will have an order O twin B2 which satisfies
230 * the following equation:
231 * B2 = B1 ^ (1 << O)
232 * For example, if the starting buddy (buddy2) is #8 its order
233 * 1 buddy is #10:
234 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
235 *
236 * 2) Any buddy B will have an order O+1 parent P which
237 * satisfies the following equation:
238 * P = B & ~(1 << O)
239 *
240 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
241 */
242static inline struct page *
243__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
244{
245 unsigned long buddy_idx = page_idx ^ (1 << order);
246
247 return page + (buddy_idx - page_idx);
248}
249
250static inline unsigned long
251__find_combined_index(unsigned long page_idx, unsigned int order)
252{
253 return (page_idx & ~(1 << order));
254}
255
256/*
257 * This function checks whether a page is free && is the buddy
258 * we can do coalesce a page and its buddy if
259 * (a) the buddy is free &&
260 * (b) the buddy is on the buddy system &&
261 * (c) a page and its buddy have the same order.
4c21e2f2 262 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
263 *
264 */
265static inline int page_is_buddy(struct page *page, int order)
266{
267 if (PagePrivate(page) &&
268 (page_order(page) == order) &&
1da177e4
LT
269 page_count(page) == 0)
270 return 1;
271 return 0;
272}
273
274/*
275 * Freeing function for a buddy system allocator.
276 *
277 * The concept of a buddy system is to maintain direct-mapped table
278 * (containing bit values) for memory blocks of various "orders".
279 * The bottom level table contains the map for the smallest allocatable
280 * units of memory (here, pages), and each level above it describes
281 * pairs of units from the levels below, hence, "buddies".
282 * At a high level, all that happens here is marking the table entry
283 * at the bottom level available, and propagating the changes upward
284 * as necessary, plus some accounting needed to play nicely with other
285 * parts of the VM system.
286 * At each level, we keep a list of pages, which are heads of continuous
287 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 288 * order is recorded in page_private(page) field.
1da177e4
LT
289 * So when we are allocating or freeing one, we can derive the state of the
290 * other. That is, if we allocate a small block, and both were
291 * free, the remainder of the region must be split into blocks.
292 * If a block is freed, and its buddy is also free, then this
293 * triggers coalescing into a block of larger size.
294 *
295 * -- wli
296 */
297
298static inline void __free_pages_bulk (struct page *page,
299 struct zone *zone, unsigned int order)
300{
301 unsigned long page_idx;
302 int order_size = 1 << order;
303
304 if (unlikely(order))
305 destroy_compound_page(page, order);
306
307 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
308
309 BUG_ON(page_idx & (order_size - 1));
310 BUG_ON(bad_range(zone, page));
311
312 zone->free_pages += order_size;
313 while (order < MAX_ORDER-1) {
314 unsigned long combined_idx;
315 struct free_area *area;
316 struct page *buddy;
317
318 combined_idx = __find_combined_index(page_idx, order);
319 buddy = __page_find_buddy(page, page_idx, order);
320
321 if (bad_range(zone, buddy))
322 break;
323 if (!page_is_buddy(buddy, order))
324 break; /* Move the buddy up one level. */
325 list_del(&buddy->lru);
326 area = zone->free_area + order;
327 area->nr_free--;
328 rmv_page_order(buddy);
329 page = page + (combined_idx - page_idx);
330 page_idx = combined_idx;
331 order++;
332 }
333 set_page_order(page, order);
334 list_add(&page->lru, &zone->free_area[order].free_list);
335 zone->free_area[order].nr_free++;
336}
337
338static inline void free_pages_check(const char *function, struct page *page)
339{
340 if ( page_mapcount(page) ||
341 page->mapping != NULL ||
342 page_count(page) != 0 ||
343 (page->flags & (
344 1 << PG_lru |
345 1 << PG_private |
346 1 << PG_locked |
347 1 << PG_active |
348 1 << PG_reclaim |
349 1 << PG_slab |
350 1 << PG_swapcache |
b5810039
NP
351 1 << PG_writeback |
352 1 << PG_reserved )))
1da177e4
LT
353 bad_page(function, page);
354 if (PageDirty(page))
242e5468 355 __ClearPageDirty(page);
1da177e4
LT
356}
357
358/*
359 * Frees a list of pages.
360 * Assumes all pages on list are in same zone, and of same order.
207f36ee 361 * count is the number of pages to free.
1da177e4
LT
362 *
363 * If the zone was previously in an "all pages pinned" state then look to
364 * see if this freeing clears that state.
365 *
366 * And clear the zone's pages_scanned counter, to hold off the "all pages are
367 * pinned" detection logic.
368 */
369static int
370free_pages_bulk(struct zone *zone, int count,
371 struct list_head *list, unsigned int order)
372{
373 unsigned long flags;
374 struct page *page = NULL;
375 int ret = 0;
376
377 spin_lock_irqsave(&zone->lock, flags);
378 zone->all_unreclaimable = 0;
379 zone->pages_scanned = 0;
380 while (!list_empty(list) && count--) {
381 page = list_entry(list->prev, struct page, lru);
382 /* have to delete it as __free_pages_bulk list manipulates */
383 list_del(&page->lru);
384 __free_pages_bulk(page, zone, order);
385 ret++;
386 }
387 spin_unlock_irqrestore(&zone->lock, flags);
388 return ret;
389}
390
391void __free_pages_ok(struct page *page, unsigned int order)
392{
393 LIST_HEAD(list);
394 int i;
395
396 arch_free_page(page, order);
397
398 mod_page_state(pgfree, 1 << order);
399
400#ifndef CONFIG_MMU
401 if (order > 0)
402 for (i = 1 ; i < (1 << order) ; ++i)
403 __put_page(page + i);
404#endif
405
406 for (i = 0 ; i < (1 << order) ; ++i)
407 free_pages_check(__FUNCTION__, page + i);
408 list_add(&page->lru, &list);
409 kernel_map_pages(page, 1<<order, 0);
410 free_pages_bulk(page_zone(page), 1, &list, order);
411}
412
413
414/*
415 * The order of subdivision here is critical for the IO subsystem.
416 * Please do not alter this order without good reasons and regression
417 * testing. Specifically, as large blocks of memory are subdivided,
418 * the order in which smaller blocks are delivered depends on the order
419 * they're subdivided in this function. This is the primary factor
420 * influencing the order in which pages are delivered to the IO
421 * subsystem according to empirical testing, and this is also justified
422 * by considering the behavior of a buddy system containing a single
423 * large block of memory acted on by a series of small allocations.
424 * This behavior is a critical factor in sglist merging's success.
425 *
426 * -- wli
427 */
428static inline struct page *
429expand(struct zone *zone, struct page *page,
430 int low, int high, struct free_area *area)
431{
432 unsigned long size = 1 << high;
433
434 while (high > low) {
435 area--;
436 high--;
437 size >>= 1;
438 BUG_ON(bad_range(zone, &page[size]));
439 list_add(&page[size].lru, &area->free_list);
440 area->nr_free++;
441 set_page_order(&page[size], high);
442 }
443 return page;
444}
445
446void set_page_refs(struct page *page, int order)
447{
448#ifdef CONFIG_MMU
449 set_page_count(page, 1);
450#else
451 int i;
452
453 /*
454 * We need to reference all the pages for this order, otherwise if
455 * anyone accesses one of the pages with (get/put) it will be freed.
456 * - eg: access_process_vm()
457 */
458 for (i = 0; i < (1 << order); i++)
459 set_page_count(page + i, 1);
460#endif /* CONFIG_MMU */
461}
462
463/*
464 * This page is about to be returned from the page allocator
465 */
466static void prep_new_page(struct page *page, int order)
467{
334795ec
HD
468 if ( page_mapcount(page) ||
469 page->mapping != NULL ||
470 page_count(page) != 0 ||
471 (page->flags & (
472 1 << PG_lru |
1da177e4
LT
473 1 << PG_private |
474 1 << PG_locked |
1da177e4
LT
475 1 << PG_active |
476 1 << PG_dirty |
477 1 << PG_reclaim |
334795ec 478 1 << PG_slab |
1da177e4 479 1 << PG_swapcache |
b5810039
NP
480 1 << PG_writeback |
481 1 << PG_reserved )))
1da177e4
LT
482 bad_page(__FUNCTION__, page);
483
484 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
485 1 << PG_referenced | 1 << PG_arch_1 |
486 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 487 set_page_private(page, 0);
1da177e4
LT
488 set_page_refs(page, order);
489 kernel_map_pages(page, 1 << order, 1);
490}
491
492/*
493 * Do the hard work of removing an element from the buddy allocator.
494 * Call me with the zone->lock already held.
495 */
496static struct page *__rmqueue(struct zone *zone, unsigned int order)
497{
498 struct free_area * area;
499 unsigned int current_order;
500 struct page *page;
501
502 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
503 area = zone->free_area + current_order;
504 if (list_empty(&area->free_list))
505 continue;
506
507 page = list_entry(area->free_list.next, struct page, lru);
508 list_del(&page->lru);
509 rmv_page_order(page);
510 area->nr_free--;
511 zone->free_pages -= 1UL << order;
512 return expand(zone, page, order, current_order, area);
513 }
514
515 return NULL;
516}
517
518/*
519 * Obtain a specified number of elements from the buddy allocator, all under
520 * a single hold of the lock, for efficiency. Add them to the supplied list.
521 * Returns the number of new pages which were placed at *list.
522 */
523static int rmqueue_bulk(struct zone *zone, unsigned int order,
524 unsigned long count, struct list_head *list)
525{
526 unsigned long flags;
527 int i;
528 int allocated = 0;
529 struct page *page;
530
531 spin_lock_irqsave(&zone->lock, flags);
532 for (i = 0; i < count; ++i) {
533 page = __rmqueue(zone, order);
534 if (page == NULL)
535 break;
536 allocated++;
537 list_add_tail(&page->lru, list);
538 }
539 spin_unlock_irqrestore(&zone->lock, flags);
540 return allocated;
541}
542
4ae7c039
CL
543#ifdef CONFIG_NUMA
544/* Called from the slab reaper to drain remote pagesets */
545void drain_remote_pages(void)
546{
547 struct zone *zone;
548 int i;
549 unsigned long flags;
550
551 local_irq_save(flags);
552 for_each_zone(zone) {
553 struct per_cpu_pageset *pset;
554
555 /* Do not drain local pagesets */
556 if (zone->zone_pgdat->node_id == numa_node_id())
557 continue;
558
559 pset = zone->pageset[smp_processor_id()];
560 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
561 struct per_cpu_pages *pcp;
562
563 pcp = &pset->pcp[i];
564 if (pcp->count)
565 pcp->count -= free_pages_bulk(zone, pcp->count,
566 &pcp->list, 0);
567 }
568 }
569 local_irq_restore(flags);
570}
571#endif
572
1da177e4
LT
573#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
574static void __drain_pages(unsigned int cpu)
575{
576 struct zone *zone;
577 int i;
578
579 for_each_zone(zone) {
580 struct per_cpu_pageset *pset;
581
e7c8d5c9 582 pset = zone_pcp(zone, cpu);
1da177e4
LT
583 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
584 struct per_cpu_pages *pcp;
585
586 pcp = &pset->pcp[i];
587 pcp->count -= free_pages_bulk(zone, pcp->count,
588 &pcp->list, 0);
589 }
590 }
591}
592#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
593
594#ifdef CONFIG_PM
595
596void mark_free_pages(struct zone *zone)
597{
598 unsigned long zone_pfn, flags;
599 int order;
600 struct list_head *curr;
601
602 if (!zone->spanned_pages)
603 return;
604
605 spin_lock_irqsave(&zone->lock, flags);
606 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
607 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
608
609 for (order = MAX_ORDER - 1; order >= 0; --order)
610 list_for_each(curr, &zone->free_area[order].free_list) {
611 unsigned long start_pfn, i;
612
613 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
614
615 for (i=0; i < (1<<order); i++)
616 SetPageNosaveFree(pfn_to_page(start_pfn+i));
617 }
618 spin_unlock_irqrestore(&zone->lock, flags);
619}
620
621/*
622 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
623 */
624void drain_local_pages(void)
625{
626 unsigned long flags;
627
628 local_irq_save(flags);
629 __drain_pages(smp_processor_id());
630 local_irq_restore(flags);
631}
632#endif /* CONFIG_PM */
633
634static void zone_statistics(struct zonelist *zonelist, struct zone *z)
635{
636#ifdef CONFIG_NUMA
637 unsigned long flags;
638 int cpu;
639 pg_data_t *pg = z->zone_pgdat;
640 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
641 struct per_cpu_pageset *p;
642
643 local_irq_save(flags);
644 cpu = smp_processor_id();
e7c8d5c9 645 p = zone_pcp(z,cpu);
1da177e4 646 if (pg == orig) {
e7c8d5c9 647 p->numa_hit++;
1da177e4
LT
648 } else {
649 p->numa_miss++;
e7c8d5c9 650 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
651 }
652 if (pg == NODE_DATA(numa_node_id()))
653 p->local_node++;
654 else
655 p->other_node++;
656 local_irq_restore(flags);
657#endif
658}
659
660/*
661 * Free a 0-order page
662 */
663static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
664static void fastcall free_hot_cold_page(struct page *page, int cold)
665{
666 struct zone *zone = page_zone(page);
667 struct per_cpu_pages *pcp;
668 unsigned long flags;
669
670 arch_free_page(page, 0);
671
672 kernel_map_pages(page, 1, 0);
673 inc_page_state(pgfree);
674 if (PageAnon(page))
675 page->mapping = NULL;
676 free_pages_check(__FUNCTION__, page);
e7c8d5c9 677 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 678 local_irq_save(flags);
1da177e4
LT
679 list_add(&page->lru, &pcp->list);
680 pcp->count++;
2caaad41
CL
681 if (pcp->count >= pcp->high)
682 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1da177e4
LT
683 local_irq_restore(flags);
684 put_cpu();
685}
686
687void fastcall free_hot_page(struct page *page)
688{
689 free_hot_cold_page(page, 0);
690}
691
692void fastcall free_cold_page(struct page *page)
693{
694 free_hot_cold_page(page, 1);
695}
696
dd0fc66f 697static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
698{
699 int i;
700
701 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
702 for(i = 0; i < (1 << order); i++)
703 clear_highpage(page + i);
704}
705
706/*
707 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
708 * we cheat by calling it from here, in the order > 0 path. Saves a branch
709 * or two.
710 */
711static struct page *
dd0fc66f 712buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
713{
714 unsigned long flags;
715 struct page *page = NULL;
716 int cold = !!(gfp_flags & __GFP_COLD);
717
718 if (order == 0) {
719 struct per_cpu_pages *pcp;
720
e7c8d5c9 721 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4
LT
722 local_irq_save(flags);
723 if (pcp->count <= pcp->low)
724 pcp->count += rmqueue_bulk(zone, 0,
725 pcp->batch, &pcp->list);
726 if (pcp->count) {
727 page = list_entry(pcp->list.next, struct page, lru);
728 list_del(&page->lru);
729 pcp->count--;
730 }
731 local_irq_restore(flags);
732 put_cpu();
7fb1d9fc 733 } else {
1da177e4
LT
734 spin_lock_irqsave(&zone->lock, flags);
735 page = __rmqueue(zone, order);
736 spin_unlock_irqrestore(&zone->lock, flags);
737 }
738
739 if (page != NULL) {
740 BUG_ON(bad_range(zone, page));
741 mod_page_state_zone(zone, pgalloc, 1 << order);
742 prep_new_page(page, order);
743
744 if (gfp_flags & __GFP_ZERO)
745 prep_zero_page(page, order, gfp_flags);
746
747 if (order && (gfp_flags & __GFP_COMP))
748 prep_compound_page(page, order);
749 }
750 return page;
751}
752
7fb1d9fc
RS
753#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
754#define ALLOC_HARDER 0x02 /* try to alloc harder */
755#define ALLOC_HIGH 0x04 /* __GFP_HIGH set */
756#define ALLOC_CPUSET 0x08 /* check for correct cpuset */
757
1da177e4
LT
758/*
759 * Return 1 if free pages are above 'mark'. This takes into account the order
760 * of the allocation.
761 */
762int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 763 int classzone_idx, int alloc_flags)
1da177e4
LT
764{
765 /* free_pages my go negative - that's OK */
766 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
767 int o;
768
7fb1d9fc 769 if (alloc_flags & ALLOC_HIGH)
1da177e4 770 min -= min / 2;
7fb1d9fc 771 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
772 min -= min / 4;
773
774 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
775 return 0;
776 for (o = 0; o < order; o++) {
777 /* At the next order, this order's pages become unavailable */
778 free_pages -= z->free_area[o].nr_free << o;
779
780 /* Require fewer higher order pages to be free */
781 min >>= 1;
782
783 if (free_pages <= min)
784 return 0;
785 }
786 return 1;
787}
788
7fb1d9fc
RS
789/*
790 * get_page_from_freeliest goes through the zonelist trying to allocate
791 * a page.
792 */
793static struct page *
794get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
795 struct zonelist *zonelist, int alloc_flags)
753ee728 796{
7fb1d9fc
RS
797 struct zone **z = zonelist->zones;
798 struct page *page = NULL;
799 int classzone_idx = zone_idx(*z);
800
801 /*
802 * Go through the zonelist once, looking for a zone with enough free.
803 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
804 */
805 do {
806 if ((alloc_flags & ALLOC_CPUSET) &&
807 !cpuset_zone_allowed(*z, gfp_mask))
808 continue;
809
810 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
811 if (!zone_watermark_ok(*z, order, (*z)->pages_low,
812 classzone_idx, alloc_flags))
813 continue;
814 }
815
816 page = buffered_rmqueue(*z, order, gfp_mask);
817 if (page) {
818 zone_statistics(zonelist, *z);
819 break;
820 }
821 } while (*(++z) != NULL);
822 return page;
753ee728
MH
823}
824
1da177e4
LT
825/*
826 * This is the 'heart' of the zoned buddy allocator.
827 */
828struct page * fastcall
dd0fc66f 829__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
830 struct zonelist *zonelist)
831{
260b2367 832 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 833 struct zone **z;
1da177e4
LT
834 struct page *page;
835 struct reclaim_state reclaim_state;
836 struct task_struct *p = current;
1da177e4 837 int do_retry;
7fb1d9fc 838 int alloc_flags;
1da177e4
LT
839 int did_some_progress;
840
841 might_sleep_if(wait);
842
6b1de916 843restart:
7fb1d9fc 844 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 845
7fb1d9fc 846 if (unlikely(*z == NULL)) {
1da177e4
LT
847 /* Should this ever happen?? */
848 return NULL;
849 }
6b1de916 850
7fb1d9fc
RS
851 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
852 zonelist, ALLOC_CPUSET);
853 if (page)
854 goto got_pg;
1da177e4 855
6b1de916 856 do {
7fb1d9fc 857 wakeup_kswapd(*z, order);
6b1de916 858 } while (*(++z));
1da177e4 859
9bf2229f 860 /*
7fb1d9fc
RS
861 * OK, we're below the kswapd watermark and have kicked background
862 * reclaim. Now things get more complex, so set up alloc_flags according
863 * to how we want to proceed.
864 *
865 * The caller may dip into page reserves a bit more if the caller
866 * cannot run direct reclaim, or if the caller has realtime scheduling
867 * policy.
9bf2229f 868 */
7fb1d9fc
RS
869 alloc_flags = 0;
870 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
871 alloc_flags |= ALLOC_HARDER;
872 if (gfp_mask & __GFP_HIGH)
873 alloc_flags |= ALLOC_HIGH;
874 if (wait)
875 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
876
877 /*
878 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 879 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
880 *
881 * This is the last chance, in general, before the goto nopage.
882 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 883 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 884 */
7fb1d9fc
RS
885 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
886 if (page)
887 goto got_pg;
1da177e4
LT
888
889 /* This allocation should allow future memory freeing. */
b84a35be
NP
890
891 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
892 && !in_interrupt()) {
893 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 894nofail_alloc:
b84a35be 895 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc
RS
896 page = get_page_from_freelist(gfp_mask, order,
897 zonelist, ALLOC_NO_WATERMARKS|ALLOC_CPUSET);
898 if (page)
899 goto got_pg;
885036d3
KK
900 if (gfp_mask & __GFP_NOFAIL) {
901 blk_congestion_wait(WRITE, HZ/50);
902 goto nofail_alloc;
903 }
1da177e4
LT
904 }
905 goto nopage;
906 }
907
908 /* Atomic allocations - we can't balance anything */
909 if (!wait)
910 goto nopage;
911
912rebalance:
913 cond_resched();
914
915 /* We now go into synchronous reclaim */
916 p->flags |= PF_MEMALLOC;
917 reclaim_state.reclaimed_slab = 0;
918 p->reclaim_state = &reclaim_state;
919
7fb1d9fc 920 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
921
922 p->reclaim_state = NULL;
923 p->flags &= ~PF_MEMALLOC;
924
925 cond_resched();
926
927 if (likely(did_some_progress)) {
7fb1d9fc
RS
928 page = get_page_from_freelist(gfp_mask, order,
929 zonelist, alloc_flags);
930 if (page)
931 goto got_pg;
1da177e4
LT
932 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
933 /*
934 * Go through the zonelist yet one more time, keep
935 * very high watermark here, this is only to catch
936 * a parallel oom killing, we must fail if we're still
937 * under heavy pressure.
938 */
7fb1d9fc
RS
939 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
940 zonelist, ALLOC_CPUSET);
941 if (page)
942 goto got_pg;
1da177e4 943
79b9ce31 944 out_of_memory(gfp_mask, order);
1da177e4
LT
945 goto restart;
946 }
947
948 /*
949 * Don't let big-order allocations loop unless the caller explicitly
950 * requests that. Wait for some write requests to complete then retry.
951 *
952 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
953 * <= 3, but that may not be true in other implementations.
954 */
955 do_retry = 0;
956 if (!(gfp_mask & __GFP_NORETRY)) {
957 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
958 do_retry = 1;
959 if (gfp_mask & __GFP_NOFAIL)
960 do_retry = 1;
961 }
962 if (do_retry) {
963 blk_congestion_wait(WRITE, HZ/50);
964 goto rebalance;
965 }
966
967nopage:
968 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
969 printk(KERN_WARNING "%s: page allocation failure."
970 " order:%d, mode:0x%x\n",
971 p->comm, order, gfp_mask);
972 dump_stack();
578c2fd6 973 show_mem();
1da177e4 974 }
1da177e4 975got_pg:
1da177e4
LT
976 return page;
977}
978
979EXPORT_SYMBOL(__alloc_pages);
980
981/*
982 * Common helper functions.
983 */
dd0fc66f 984fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
985{
986 struct page * page;
987 page = alloc_pages(gfp_mask, order);
988 if (!page)
989 return 0;
990 return (unsigned long) page_address(page);
991}
992
993EXPORT_SYMBOL(__get_free_pages);
994
dd0fc66f 995fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
996{
997 struct page * page;
998
999 /*
1000 * get_zeroed_page() returns a 32-bit address, which cannot represent
1001 * a highmem page
1002 */
260b2367 1003 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1004
1005 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1006 if (page)
1007 return (unsigned long) page_address(page);
1008 return 0;
1009}
1010
1011EXPORT_SYMBOL(get_zeroed_page);
1012
1013void __pagevec_free(struct pagevec *pvec)
1014{
1015 int i = pagevec_count(pvec);
1016
1017 while (--i >= 0)
1018 free_hot_cold_page(pvec->pages[i], pvec->cold);
1019}
1020
1021fastcall void __free_pages(struct page *page, unsigned int order)
1022{
b5810039 1023 if (put_page_testzero(page)) {
1da177e4
LT
1024 if (order == 0)
1025 free_hot_page(page);
1026 else
1027 __free_pages_ok(page, order);
1028 }
1029}
1030
1031EXPORT_SYMBOL(__free_pages);
1032
1033fastcall void free_pages(unsigned long addr, unsigned int order)
1034{
1035 if (addr != 0) {
1036 BUG_ON(!virt_addr_valid((void *)addr));
1037 __free_pages(virt_to_page((void *)addr), order);
1038 }
1039}
1040
1041EXPORT_SYMBOL(free_pages);
1042
1043/*
1044 * Total amount of free (allocatable) RAM:
1045 */
1046unsigned int nr_free_pages(void)
1047{
1048 unsigned int sum = 0;
1049 struct zone *zone;
1050
1051 for_each_zone(zone)
1052 sum += zone->free_pages;
1053
1054 return sum;
1055}
1056
1057EXPORT_SYMBOL(nr_free_pages);
1058
1059#ifdef CONFIG_NUMA
1060unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1061{
1062 unsigned int i, sum = 0;
1063
1064 for (i = 0; i < MAX_NR_ZONES; i++)
1065 sum += pgdat->node_zones[i].free_pages;
1066
1067 return sum;
1068}
1069#endif
1070
1071static unsigned int nr_free_zone_pages(int offset)
1072{
e310fd43
MB
1073 /* Just pick one node, since fallback list is circular */
1074 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1075 unsigned int sum = 0;
1076
e310fd43
MB
1077 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1078 struct zone **zonep = zonelist->zones;
1079 struct zone *zone;
1da177e4 1080
e310fd43
MB
1081 for (zone = *zonep++; zone; zone = *zonep++) {
1082 unsigned long size = zone->present_pages;
1083 unsigned long high = zone->pages_high;
1084 if (size > high)
1085 sum += size - high;
1da177e4
LT
1086 }
1087
1088 return sum;
1089}
1090
1091/*
1092 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1093 */
1094unsigned int nr_free_buffer_pages(void)
1095{
af4ca457 1096 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1097}
1098
1099/*
1100 * Amount of free RAM allocatable within all zones
1101 */
1102unsigned int nr_free_pagecache_pages(void)
1103{
af4ca457 1104 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1105}
1106
1107#ifdef CONFIG_HIGHMEM
1108unsigned int nr_free_highpages (void)
1109{
1110 pg_data_t *pgdat;
1111 unsigned int pages = 0;
1112
1113 for_each_pgdat(pgdat)
1114 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1115
1116 return pages;
1117}
1118#endif
1119
1120#ifdef CONFIG_NUMA
1121static void show_node(struct zone *zone)
1122{
1123 printk("Node %d ", zone->zone_pgdat->node_id);
1124}
1125#else
1126#define show_node(zone) do { } while (0)
1127#endif
1128
1129/*
1130 * Accumulate the page_state information across all CPUs.
1131 * The result is unavoidably approximate - it can change
1132 * during and after execution of this function.
1133 */
1134static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1135
1136atomic_t nr_pagecache = ATOMIC_INIT(0);
1137EXPORT_SYMBOL(nr_pagecache);
1138#ifdef CONFIG_SMP
1139DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1140#endif
1141
c07e02db 1142void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1143{
1144 int cpu = 0;
1145
1146 memset(ret, 0, sizeof(*ret));
c07e02db 1147 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1148
c07e02db 1149 cpu = first_cpu(*cpumask);
1da177e4
LT
1150 while (cpu < NR_CPUS) {
1151 unsigned long *in, *out, off;
1152
1153 in = (unsigned long *)&per_cpu(page_states, cpu);
1154
c07e02db 1155 cpu = next_cpu(cpu, *cpumask);
1da177e4
LT
1156
1157 if (cpu < NR_CPUS)
1158 prefetch(&per_cpu(page_states, cpu));
1159
1160 out = (unsigned long *)ret;
1161 for (off = 0; off < nr; off++)
1162 *out++ += *in++;
1163 }
1164}
1165
c07e02db
MH
1166void get_page_state_node(struct page_state *ret, int node)
1167{
1168 int nr;
1169 cpumask_t mask = node_to_cpumask(node);
1170
1171 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1172 nr /= sizeof(unsigned long);
1173
1174 __get_page_state(ret, nr+1, &mask);
1175}
1176
1da177e4
LT
1177void get_page_state(struct page_state *ret)
1178{
1179 int nr;
c07e02db 1180 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1181
1182 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1183 nr /= sizeof(unsigned long);
1184
c07e02db 1185 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1186}
1187
1188void get_full_page_state(struct page_state *ret)
1189{
c07e02db
MH
1190 cpumask_t mask = CPU_MASK_ALL;
1191
1192 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1193}
1194
c2f29ea1 1195unsigned long __read_page_state(unsigned long offset)
1da177e4
LT
1196{
1197 unsigned long ret = 0;
1198 int cpu;
1199
1200 for_each_online_cpu(cpu) {
1201 unsigned long in;
1202
1203 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1204 ret += *((unsigned long *)in);
1205 }
1206 return ret;
1207}
1208
83e5d8f7 1209void __mod_page_state(unsigned long offset, unsigned long delta)
1da177e4
LT
1210{
1211 unsigned long flags;
1212 void* ptr;
1213
1214 local_irq_save(flags);
1215 ptr = &__get_cpu_var(page_states);
1216 *(unsigned long*)(ptr + offset) += delta;
1217 local_irq_restore(flags);
1218}
1219
1220EXPORT_SYMBOL(__mod_page_state);
1221
1222void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1223 unsigned long *free, struct pglist_data *pgdat)
1224{
1225 struct zone *zones = pgdat->node_zones;
1226 int i;
1227
1228 *active = 0;
1229 *inactive = 0;
1230 *free = 0;
1231 for (i = 0; i < MAX_NR_ZONES; i++) {
1232 *active += zones[i].nr_active;
1233 *inactive += zones[i].nr_inactive;
1234 *free += zones[i].free_pages;
1235 }
1236}
1237
1238void get_zone_counts(unsigned long *active,
1239 unsigned long *inactive, unsigned long *free)
1240{
1241 struct pglist_data *pgdat;
1242
1243 *active = 0;
1244 *inactive = 0;
1245 *free = 0;
1246 for_each_pgdat(pgdat) {
1247 unsigned long l, m, n;
1248 __get_zone_counts(&l, &m, &n, pgdat);
1249 *active += l;
1250 *inactive += m;
1251 *free += n;
1252 }
1253}
1254
1255void si_meminfo(struct sysinfo *val)
1256{
1257 val->totalram = totalram_pages;
1258 val->sharedram = 0;
1259 val->freeram = nr_free_pages();
1260 val->bufferram = nr_blockdev_pages();
1261#ifdef CONFIG_HIGHMEM
1262 val->totalhigh = totalhigh_pages;
1263 val->freehigh = nr_free_highpages();
1264#else
1265 val->totalhigh = 0;
1266 val->freehigh = 0;
1267#endif
1268 val->mem_unit = PAGE_SIZE;
1269}
1270
1271EXPORT_SYMBOL(si_meminfo);
1272
1273#ifdef CONFIG_NUMA
1274void si_meminfo_node(struct sysinfo *val, int nid)
1275{
1276 pg_data_t *pgdat = NODE_DATA(nid);
1277
1278 val->totalram = pgdat->node_present_pages;
1279 val->freeram = nr_free_pages_pgdat(pgdat);
1280 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1281 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1282 val->mem_unit = PAGE_SIZE;
1283}
1284#endif
1285
1286#define K(x) ((x) << (PAGE_SHIFT-10))
1287
1288/*
1289 * Show free area list (used inside shift_scroll-lock stuff)
1290 * We also calculate the percentage fragmentation. We do this by counting the
1291 * memory on each free list with the exception of the first item on the list.
1292 */
1293void show_free_areas(void)
1294{
1295 struct page_state ps;
1296 int cpu, temperature;
1297 unsigned long active;
1298 unsigned long inactive;
1299 unsigned long free;
1300 struct zone *zone;
1301
1302 for_each_zone(zone) {
1303 show_node(zone);
1304 printk("%s per-cpu:", zone->name);
1305
1306 if (!zone->present_pages) {
1307 printk(" empty\n");
1308 continue;
1309 } else
1310 printk("\n");
1311
6b482c67 1312 for_each_online_cpu(cpu) {
1da177e4
LT
1313 struct per_cpu_pageset *pageset;
1314
e7c8d5c9 1315 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1316
1317 for (temperature = 0; temperature < 2; temperature++)
4ae7c039 1318 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1da177e4
LT
1319 cpu,
1320 temperature ? "cold" : "hot",
1321 pageset->pcp[temperature].low,
1322 pageset->pcp[temperature].high,
4ae7c039
CL
1323 pageset->pcp[temperature].batch,
1324 pageset->pcp[temperature].count);
1da177e4
LT
1325 }
1326 }
1327
1328 get_page_state(&ps);
1329 get_zone_counts(&active, &inactive, &free);
1330
c0d62219 1331 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1332 K(nr_free_pages()),
1333 K(nr_free_highpages()));
1334
1335 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1336 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1337 active,
1338 inactive,
1339 ps.nr_dirty,
1340 ps.nr_writeback,
1341 ps.nr_unstable,
1342 nr_free_pages(),
1343 ps.nr_slab,
1344 ps.nr_mapped,
1345 ps.nr_page_table_pages);
1346
1347 for_each_zone(zone) {
1348 int i;
1349
1350 show_node(zone);
1351 printk("%s"
1352 " free:%lukB"
1353 " min:%lukB"
1354 " low:%lukB"
1355 " high:%lukB"
1356 " active:%lukB"
1357 " inactive:%lukB"
1358 " present:%lukB"
1359 " pages_scanned:%lu"
1360 " all_unreclaimable? %s"
1361 "\n",
1362 zone->name,
1363 K(zone->free_pages),
1364 K(zone->pages_min),
1365 K(zone->pages_low),
1366 K(zone->pages_high),
1367 K(zone->nr_active),
1368 K(zone->nr_inactive),
1369 K(zone->present_pages),
1370 zone->pages_scanned,
1371 (zone->all_unreclaimable ? "yes" : "no")
1372 );
1373 printk("lowmem_reserve[]:");
1374 for (i = 0; i < MAX_NR_ZONES; i++)
1375 printk(" %lu", zone->lowmem_reserve[i]);
1376 printk("\n");
1377 }
1378
1379 for_each_zone(zone) {
1380 unsigned long nr, flags, order, total = 0;
1381
1382 show_node(zone);
1383 printk("%s: ", zone->name);
1384 if (!zone->present_pages) {
1385 printk("empty\n");
1386 continue;
1387 }
1388
1389 spin_lock_irqsave(&zone->lock, flags);
1390 for (order = 0; order < MAX_ORDER; order++) {
1391 nr = zone->free_area[order].nr_free;
1392 total += nr << order;
1393 printk("%lu*%lukB ", nr, K(1UL) << order);
1394 }
1395 spin_unlock_irqrestore(&zone->lock, flags);
1396 printk("= %lukB\n", K(total));
1397 }
1398
1399 show_swap_cache_info();
1400}
1401
1402/*
1403 * Builds allocation fallback zone lists.
1404 */
1405static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1406{
1407 switch (k) {
1408 struct zone *zone;
1409 default:
1410 BUG();
1411 case ZONE_HIGHMEM:
1412 zone = pgdat->node_zones + ZONE_HIGHMEM;
1413 if (zone->present_pages) {
1414#ifndef CONFIG_HIGHMEM
1415 BUG();
1416#endif
1417 zonelist->zones[j++] = zone;
1418 }
1419 case ZONE_NORMAL:
1420 zone = pgdat->node_zones + ZONE_NORMAL;
1421 if (zone->present_pages)
1422 zonelist->zones[j++] = zone;
a2f1b424
AK
1423 case ZONE_DMA32:
1424 zone = pgdat->node_zones + ZONE_DMA32;
1425 if (zone->present_pages)
1426 zonelist->zones[j++] = zone;
1da177e4
LT
1427 case ZONE_DMA:
1428 zone = pgdat->node_zones + ZONE_DMA;
1429 if (zone->present_pages)
1430 zonelist->zones[j++] = zone;
1431 }
1432
1433 return j;
1434}
1435
260b2367
AV
1436static inline int highest_zone(int zone_bits)
1437{
1438 int res = ZONE_NORMAL;
1439 if (zone_bits & (__force int)__GFP_HIGHMEM)
1440 res = ZONE_HIGHMEM;
a2f1b424
AK
1441 if (zone_bits & (__force int)__GFP_DMA32)
1442 res = ZONE_DMA32;
260b2367
AV
1443 if (zone_bits & (__force int)__GFP_DMA)
1444 res = ZONE_DMA;
1445 return res;
1446}
1447
1da177e4
LT
1448#ifdef CONFIG_NUMA
1449#define MAX_NODE_LOAD (num_online_nodes())
1450static int __initdata node_load[MAX_NUMNODES];
1451/**
4dc3b16b 1452 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1453 * @node: node whose fallback list we're appending
1454 * @used_node_mask: nodemask_t of already used nodes
1455 *
1456 * We use a number of factors to determine which is the next node that should
1457 * appear on a given node's fallback list. The node should not have appeared
1458 * already in @node's fallback list, and it should be the next closest node
1459 * according to the distance array (which contains arbitrary distance values
1460 * from each node to each node in the system), and should also prefer nodes
1461 * with no CPUs, since presumably they'll have very little allocation pressure
1462 * on them otherwise.
1463 * It returns -1 if no node is found.
1464 */
1465static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1466{
1467 int i, n, val;
1468 int min_val = INT_MAX;
1469 int best_node = -1;
1470
1471 for_each_online_node(i) {
1472 cpumask_t tmp;
1473
1474 /* Start from local node */
1475 n = (node+i) % num_online_nodes();
1476
1477 /* Don't want a node to appear more than once */
1478 if (node_isset(n, *used_node_mask))
1479 continue;
1480
1481 /* Use the local node if we haven't already */
1482 if (!node_isset(node, *used_node_mask)) {
1483 best_node = node;
1484 break;
1485 }
1486
1487 /* Use the distance array to find the distance */
1488 val = node_distance(node, n);
1489
1490 /* Give preference to headless and unused nodes */
1491 tmp = node_to_cpumask(n);
1492 if (!cpus_empty(tmp))
1493 val += PENALTY_FOR_NODE_WITH_CPUS;
1494
1495 /* Slight preference for less loaded node */
1496 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1497 val += node_load[n];
1498
1499 if (val < min_val) {
1500 min_val = val;
1501 best_node = n;
1502 }
1503 }
1504
1505 if (best_node >= 0)
1506 node_set(best_node, *used_node_mask);
1507
1508 return best_node;
1509}
1510
1511static void __init build_zonelists(pg_data_t *pgdat)
1512{
1513 int i, j, k, node, local_node;
1514 int prev_node, load;
1515 struct zonelist *zonelist;
1516 nodemask_t used_mask;
1517
1518 /* initialize zonelists */
1519 for (i = 0; i < GFP_ZONETYPES; i++) {
1520 zonelist = pgdat->node_zonelists + i;
1521 zonelist->zones[0] = NULL;
1522 }
1523
1524 /* NUMA-aware ordering of nodes */
1525 local_node = pgdat->node_id;
1526 load = num_online_nodes();
1527 prev_node = local_node;
1528 nodes_clear(used_mask);
1529 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1530 /*
1531 * We don't want to pressure a particular node.
1532 * So adding penalty to the first node in same
1533 * distance group to make it round-robin.
1534 */
1535 if (node_distance(local_node, node) !=
1536 node_distance(local_node, prev_node))
1537 node_load[node] += load;
1538 prev_node = node;
1539 load--;
1540 for (i = 0; i < GFP_ZONETYPES; i++) {
1541 zonelist = pgdat->node_zonelists + i;
1542 for (j = 0; zonelist->zones[j] != NULL; j++);
1543
260b2367 1544 k = highest_zone(i);
1da177e4
LT
1545
1546 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1547 zonelist->zones[j] = NULL;
1548 }
1549 }
1550}
1551
1552#else /* CONFIG_NUMA */
1553
1554static void __init build_zonelists(pg_data_t *pgdat)
1555{
1556 int i, j, k, node, local_node;
1557
1558 local_node = pgdat->node_id;
1559 for (i = 0; i < GFP_ZONETYPES; i++) {
1560 struct zonelist *zonelist;
1561
1562 zonelist = pgdat->node_zonelists + i;
1563
1564 j = 0;
260b2367 1565 k = highest_zone(i);
1da177e4
LT
1566 j = build_zonelists_node(pgdat, zonelist, j, k);
1567 /*
1568 * Now we build the zonelist so that it contains the zones
1569 * of all the other nodes.
1570 * We don't want to pressure a particular node, so when
1571 * building the zones for node N, we make sure that the
1572 * zones coming right after the local ones are those from
1573 * node N+1 (modulo N)
1574 */
1575 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1576 if (!node_online(node))
1577 continue;
1578 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1579 }
1580 for (node = 0; node < local_node; node++) {
1581 if (!node_online(node))
1582 continue;
1583 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1584 }
1585
1586 zonelist->zones[j] = NULL;
1587 }
1588}
1589
1590#endif /* CONFIG_NUMA */
1591
1592void __init build_all_zonelists(void)
1593{
1594 int i;
1595
1596 for_each_online_node(i)
1597 build_zonelists(NODE_DATA(i));
1598 printk("Built %i zonelists\n", num_online_nodes());
1599 cpuset_init_current_mems_allowed();
1600}
1601
1602/*
1603 * Helper functions to size the waitqueue hash table.
1604 * Essentially these want to choose hash table sizes sufficiently
1605 * large so that collisions trying to wait on pages are rare.
1606 * But in fact, the number of active page waitqueues on typical
1607 * systems is ridiculously low, less than 200. So this is even
1608 * conservative, even though it seems large.
1609 *
1610 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1611 * waitqueues, i.e. the size of the waitq table given the number of pages.
1612 */
1613#define PAGES_PER_WAITQUEUE 256
1614
1615static inline unsigned long wait_table_size(unsigned long pages)
1616{
1617 unsigned long size = 1;
1618
1619 pages /= PAGES_PER_WAITQUEUE;
1620
1621 while (size < pages)
1622 size <<= 1;
1623
1624 /*
1625 * Once we have dozens or even hundreds of threads sleeping
1626 * on IO we've got bigger problems than wait queue collision.
1627 * Limit the size of the wait table to a reasonable size.
1628 */
1629 size = min(size, 4096UL);
1630
1631 return max(size, 4UL);
1632}
1633
1634/*
1635 * This is an integer logarithm so that shifts can be used later
1636 * to extract the more random high bits from the multiplicative
1637 * hash function before the remainder is taken.
1638 */
1639static inline unsigned long wait_table_bits(unsigned long size)
1640{
1641 return ffz(~size);
1642}
1643
1644#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1645
1646static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1647 unsigned long *zones_size, unsigned long *zholes_size)
1648{
1649 unsigned long realtotalpages, totalpages = 0;
1650 int i;
1651
1652 for (i = 0; i < MAX_NR_ZONES; i++)
1653 totalpages += zones_size[i];
1654 pgdat->node_spanned_pages = totalpages;
1655
1656 realtotalpages = totalpages;
1657 if (zholes_size)
1658 for (i = 0; i < MAX_NR_ZONES; i++)
1659 realtotalpages -= zholes_size[i];
1660 pgdat->node_present_pages = realtotalpages;
1661 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1662}
1663
1664
1665/*
1666 * Initially all pages are reserved - free ones are freed
1667 * up by free_all_bootmem() once the early boot process is
1668 * done. Non-atomic initialization, single-pass.
1669 */
3947be19 1670void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1671 unsigned long start_pfn)
1672{
1da177e4 1673 struct page *page;
29751f69
AW
1674 unsigned long end_pfn = start_pfn + size;
1675 unsigned long pfn;
1da177e4 1676
d41dee36
AW
1677 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1678 if (!early_pfn_valid(pfn))
1679 continue;
641c7673
AW
1680 if (!early_pfn_in_nid(pfn, nid))
1681 continue;
d41dee36
AW
1682 page = pfn_to_page(pfn);
1683 set_page_links(page, zone, nid, pfn);
b5810039 1684 set_page_count(page, 1);
1da177e4
LT
1685 reset_page_mapcount(page);
1686 SetPageReserved(page);
1687 INIT_LIST_HEAD(&page->lru);
1688#ifdef WANT_PAGE_VIRTUAL
1689 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1690 if (!is_highmem_idx(zone))
3212c6be 1691 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1692#endif
1da177e4
LT
1693 }
1694}
1695
1696void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1697 unsigned long size)
1698{
1699 int order;
1700 for (order = 0; order < MAX_ORDER ; order++) {
1701 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1702 zone->free_area[order].nr_free = 0;
1703 }
1704}
1705
d41dee36
AW
1706#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1707void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1708 unsigned long size)
1709{
1710 unsigned long snum = pfn_to_section_nr(pfn);
1711 unsigned long end = pfn_to_section_nr(pfn + size);
1712
1713 if (FLAGS_HAS_NODE)
1714 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1715 else
1716 for (; snum <= end; snum++)
1717 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1718}
1719
1da177e4
LT
1720#ifndef __HAVE_ARCH_MEMMAP_INIT
1721#define memmap_init(size, nid, zone, start_pfn) \
1722 memmap_init_zone((size), (nid), (zone), (start_pfn))
1723#endif
1724
e7c8d5c9
CL
1725static int __devinit zone_batchsize(struct zone *zone)
1726{
1727 int batch;
1728
1729 /*
1730 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1731 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1732 *
1733 * OK, so we don't know how big the cache is. So guess.
1734 */
1735 batch = zone->present_pages / 1024;
ba56e91c
SR
1736 if (batch * PAGE_SIZE > 512 * 1024)
1737 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1738 batch /= 4; /* We effectively *= 4 below */
1739 if (batch < 1)
1740 batch = 1;
1741
1742 /*
ba56e91c
SR
1743 * We will be trying to allcoate bigger chunks of contiguous
1744 * memory of the order of fls(batch). This should result in
1745 * better cache coloring.
e7c8d5c9 1746 *
ba56e91c 1747 * A sanity check also to ensure that batch is still in limits.
e7c8d5c9 1748 */
ba56e91c
SR
1749 batch = (1 << fls(batch + batch/2));
1750
1751 if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
1752 batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
1753
e7c8d5c9
CL
1754 return batch;
1755}
1756
2caaad41
CL
1757inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1758{
1759 struct per_cpu_pages *pcp;
1760
1c6fe946
MD
1761 memset(p, 0, sizeof(*p));
1762
2caaad41
CL
1763 pcp = &p->pcp[0]; /* hot */
1764 pcp->count = 0;
e46a5e28 1765 pcp->low = 0;
2caaad41
CL
1766 pcp->high = 6 * batch;
1767 pcp->batch = max(1UL, 1 * batch);
1768 INIT_LIST_HEAD(&pcp->list);
1769
1770 pcp = &p->pcp[1]; /* cold*/
1771 pcp->count = 0;
1772 pcp->low = 0;
1773 pcp->high = 2 * batch;
e46a5e28 1774 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1775 INIT_LIST_HEAD(&pcp->list);
1776}
1777
e7c8d5c9
CL
1778#ifdef CONFIG_NUMA
1779/*
2caaad41
CL
1780 * Boot pageset table. One per cpu which is going to be used for all
1781 * zones and all nodes. The parameters will be set in such a way
1782 * that an item put on a list will immediately be handed over to
1783 * the buddy list. This is safe since pageset manipulation is done
1784 * with interrupts disabled.
1785 *
1786 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1787 *
1788 * The boot_pagesets must be kept even after bootup is complete for
1789 * unused processors and/or zones. They do play a role for bootstrapping
1790 * hotplugged processors.
1791 *
1792 * zoneinfo_show() and maybe other functions do
1793 * not check if the processor is online before following the pageset pointer.
1794 * Other parts of the kernel may not check if the zone is available.
2caaad41
CL
1795 */
1796static struct per_cpu_pageset
b7c84c6a 1797 boot_pageset[NR_CPUS];
2caaad41
CL
1798
1799/*
1800 * Dynamically allocate memory for the
e7c8d5c9
CL
1801 * per cpu pageset array in struct zone.
1802 */
1803static int __devinit process_zones(int cpu)
1804{
1805 struct zone *zone, *dzone;
e7c8d5c9
CL
1806
1807 for_each_zone(zone) {
e7c8d5c9 1808
2caaad41 1809 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1810 GFP_KERNEL, cpu_to_node(cpu));
2caaad41 1811 if (!zone->pageset[cpu])
e7c8d5c9 1812 goto bad;
e7c8d5c9 1813
2caaad41 1814 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
e7c8d5c9
CL
1815 }
1816
1817 return 0;
1818bad:
1819 for_each_zone(dzone) {
1820 if (dzone == zone)
1821 break;
1822 kfree(dzone->pageset[cpu]);
1823 dzone->pageset[cpu] = NULL;
1824 }
1825 return -ENOMEM;
1826}
1827
1828static inline void free_zone_pagesets(int cpu)
1829{
1830#ifdef CONFIG_NUMA
1831 struct zone *zone;
1832
1833 for_each_zone(zone) {
1834 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1835
1836 zone_pcp(zone, cpu) = NULL;
1837 kfree(pset);
1838 }
1839#endif
1840}
1841
1842static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1843 unsigned long action,
1844 void *hcpu)
1845{
1846 int cpu = (long)hcpu;
1847 int ret = NOTIFY_OK;
1848
1849 switch (action) {
1850 case CPU_UP_PREPARE:
1851 if (process_zones(cpu))
1852 ret = NOTIFY_BAD;
1853 break;
b0d41693 1854 case CPU_UP_CANCELED:
e7c8d5c9
CL
1855 case CPU_DEAD:
1856 free_zone_pagesets(cpu);
1857 break;
e7c8d5c9
CL
1858 default:
1859 break;
1860 }
1861 return ret;
1862}
1863
1864static struct notifier_block pageset_notifier =
1865 { &pageset_cpuup_callback, NULL, 0 };
1866
1867void __init setup_per_cpu_pageset()
1868{
1869 int err;
1870
1871 /* Initialize per_cpu_pageset for cpu 0.
1872 * A cpuup callback will do this for every cpu
1873 * as it comes online
1874 */
1875 err = process_zones(smp_processor_id());
1876 BUG_ON(err);
1877 register_cpu_notifier(&pageset_notifier);
1878}
1879
1880#endif
1881
ed8ece2e
DH
1882static __devinit
1883void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1884{
1885 int i;
1886 struct pglist_data *pgdat = zone->zone_pgdat;
1887
1888 /*
1889 * The per-page waitqueue mechanism uses hashed waitqueues
1890 * per zone.
1891 */
1892 zone->wait_table_size = wait_table_size(zone_size_pages);
1893 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1894 zone->wait_table = (wait_queue_head_t *)
1895 alloc_bootmem_node(pgdat, zone->wait_table_size
1896 * sizeof(wait_queue_head_t));
1897
1898 for(i = 0; i < zone->wait_table_size; ++i)
1899 init_waitqueue_head(zone->wait_table + i);
1900}
1901
1902static __devinit void zone_pcp_init(struct zone *zone)
1903{
1904 int cpu;
1905 unsigned long batch = zone_batchsize(zone);
1906
1907 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1908#ifdef CONFIG_NUMA
1909 /* Early boot. Slab allocator not functional yet */
1910 zone->pageset[cpu] = &boot_pageset[cpu];
1911 setup_pageset(&boot_pageset[cpu],0);
1912#else
1913 setup_pageset(zone_pcp(zone,cpu), batch);
1914#endif
1915 }
1916 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1917 zone->name, zone->present_pages, batch);
1918}
1919
1920static __devinit void init_currently_empty_zone(struct zone *zone,
1921 unsigned long zone_start_pfn, unsigned long size)
1922{
1923 struct pglist_data *pgdat = zone->zone_pgdat;
1924
1925 zone_wait_table_init(zone, size);
1926 pgdat->nr_zones = zone_idx(zone) + 1;
1927
1928 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1929 zone->zone_start_pfn = zone_start_pfn;
1930
1931 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1932
1933 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1934}
1935
1da177e4
LT
1936/*
1937 * Set up the zone data structures:
1938 * - mark all pages reserved
1939 * - mark all memory queues empty
1940 * - clear the memory bitmaps
1941 */
1942static void __init free_area_init_core(struct pglist_data *pgdat,
1943 unsigned long *zones_size, unsigned long *zholes_size)
1944{
ed8ece2e
DH
1945 unsigned long j;
1946 int nid = pgdat->node_id;
1da177e4
LT
1947 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1948
208d54e5 1949 pgdat_resize_init(pgdat);
1da177e4
LT
1950 pgdat->nr_zones = 0;
1951 init_waitqueue_head(&pgdat->kswapd_wait);
1952 pgdat->kswapd_max_order = 0;
1953
1954 for (j = 0; j < MAX_NR_ZONES; j++) {
1955 struct zone *zone = pgdat->node_zones + j;
1956 unsigned long size, realsize;
1da177e4 1957
1da177e4
LT
1958 realsize = size = zones_size[j];
1959 if (zholes_size)
1960 realsize -= zholes_size[j];
1961
a2f1b424 1962 if (j < ZONE_HIGHMEM)
1da177e4
LT
1963 nr_kernel_pages += realsize;
1964 nr_all_pages += realsize;
1965
1966 zone->spanned_pages = size;
1967 zone->present_pages = realsize;
1968 zone->name = zone_names[j];
1969 spin_lock_init(&zone->lock);
1970 spin_lock_init(&zone->lru_lock);
bdc8cb98 1971 zone_seqlock_init(zone);
1da177e4
LT
1972 zone->zone_pgdat = pgdat;
1973 zone->free_pages = 0;
1974
1975 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1976
ed8ece2e 1977 zone_pcp_init(zone);
1da177e4
LT
1978 INIT_LIST_HEAD(&zone->active_list);
1979 INIT_LIST_HEAD(&zone->inactive_list);
1980 zone->nr_scan_active = 0;
1981 zone->nr_scan_inactive = 0;
1982 zone->nr_active = 0;
1983 zone->nr_inactive = 0;
53e9a615 1984 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
1985 if (!size)
1986 continue;
1987
d41dee36 1988 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 1989 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 1990 zone_start_pfn += size;
1da177e4
LT
1991 }
1992}
1993
1994static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1995{
1da177e4
LT
1996 /* Skip empty nodes */
1997 if (!pgdat->node_spanned_pages)
1998 return;
1999
d41dee36 2000#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2001 /* ia64 gets its own node_mem_map, before this, without bootmem */
2002 if (!pgdat->node_mem_map) {
d41dee36
AW
2003 unsigned long size;
2004 struct page *map;
2005
1da177e4 2006 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2007 map = alloc_remap(pgdat->node_id, size);
2008 if (!map)
2009 map = alloc_bootmem_node(pgdat, size);
2010 pgdat->node_mem_map = map;
1da177e4 2011 }
d41dee36 2012#ifdef CONFIG_FLATMEM
1da177e4
LT
2013 /*
2014 * With no DISCONTIG, the global mem_map is just set as node 0's
2015 */
2016 if (pgdat == NODE_DATA(0))
2017 mem_map = NODE_DATA(0)->node_mem_map;
2018#endif
d41dee36 2019#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2020}
2021
2022void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2023 unsigned long *zones_size, unsigned long node_start_pfn,
2024 unsigned long *zholes_size)
2025{
2026 pgdat->node_id = nid;
2027 pgdat->node_start_pfn = node_start_pfn;
2028 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2029
2030 alloc_node_mem_map(pgdat);
2031
2032 free_area_init_core(pgdat, zones_size, zholes_size);
2033}
2034
93b7504e 2035#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2036static bootmem_data_t contig_bootmem_data;
2037struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2038
2039EXPORT_SYMBOL(contig_page_data);
93b7504e 2040#endif
1da177e4
LT
2041
2042void __init free_area_init(unsigned long *zones_size)
2043{
93b7504e 2044 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2045 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2046}
1da177e4
LT
2047
2048#ifdef CONFIG_PROC_FS
2049
2050#include <linux/seq_file.h>
2051
2052static void *frag_start(struct seq_file *m, loff_t *pos)
2053{
2054 pg_data_t *pgdat;
2055 loff_t node = *pos;
2056
2057 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2058 --node;
2059
2060 return pgdat;
2061}
2062
2063static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2064{
2065 pg_data_t *pgdat = (pg_data_t *)arg;
2066
2067 (*pos)++;
2068 return pgdat->pgdat_next;
2069}
2070
2071static void frag_stop(struct seq_file *m, void *arg)
2072{
2073}
2074
2075/*
2076 * This walks the free areas for each zone.
2077 */
2078static int frag_show(struct seq_file *m, void *arg)
2079{
2080 pg_data_t *pgdat = (pg_data_t *)arg;
2081 struct zone *zone;
2082 struct zone *node_zones = pgdat->node_zones;
2083 unsigned long flags;
2084 int order;
2085
2086 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2087 if (!zone->present_pages)
2088 continue;
2089
2090 spin_lock_irqsave(&zone->lock, flags);
2091 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2092 for (order = 0; order < MAX_ORDER; ++order)
2093 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095 seq_putc(m, '\n');
2096 }
2097 return 0;
2098}
2099
2100struct seq_operations fragmentation_op = {
2101 .start = frag_start,
2102 .next = frag_next,
2103 .stop = frag_stop,
2104 .show = frag_show,
2105};
2106
295ab934
ND
2107/*
2108 * Output information about zones in @pgdat.
2109 */
2110static int zoneinfo_show(struct seq_file *m, void *arg)
2111{
2112 pg_data_t *pgdat = arg;
2113 struct zone *zone;
2114 struct zone *node_zones = pgdat->node_zones;
2115 unsigned long flags;
2116
2117 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2118 int i;
2119
2120 if (!zone->present_pages)
2121 continue;
2122
2123 spin_lock_irqsave(&zone->lock, flags);
2124 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2125 seq_printf(m,
2126 "\n pages free %lu"
2127 "\n min %lu"
2128 "\n low %lu"
2129 "\n high %lu"
2130 "\n active %lu"
2131 "\n inactive %lu"
2132 "\n scanned %lu (a: %lu i: %lu)"
2133 "\n spanned %lu"
2134 "\n present %lu",
2135 zone->free_pages,
2136 zone->pages_min,
2137 zone->pages_low,
2138 zone->pages_high,
2139 zone->nr_active,
2140 zone->nr_inactive,
2141 zone->pages_scanned,
2142 zone->nr_scan_active, zone->nr_scan_inactive,
2143 zone->spanned_pages,
2144 zone->present_pages);
2145 seq_printf(m,
2146 "\n protection: (%lu",
2147 zone->lowmem_reserve[0]);
2148 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2149 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2150 seq_printf(m,
2151 ")"
2152 "\n pagesets");
2153 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2154 struct per_cpu_pageset *pageset;
2155 int j;
2156
e7c8d5c9 2157 pageset = zone_pcp(zone, i);
295ab934
ND
2158 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2159 if (pageset->pcp[j].count)
2160 break;
2161 }
2162 if (j == ARRAY_SIZE(pageset->pcp))
2163 continue;
2164 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2165 seq_printf(m,
2166 "\n cpu: %i pcp: %i"
2167 "\n count: %i"
2168 "\n low: %i"
2169 "\n high: %i"
2170 "\n batch: %i",
2171 i, j,
2172 pageset->pcp[j].count,
2173 pageset->pcp[j].low,
2174 pageset->pcp[j].high,
2175 pageset->pcp[j].batch);
2176 }
2177#ifdef CONFIG_NUMA
2178 seq_printf(m,
2179 "\n numa_hit: %lu"
2180 "\n numa_miss: %lu"
2181 "\n numa_foreign: %lu"
2182 "\n interleave_hit: %lu"
2183 "\n local_node: %lu"
2184 "\n other_node: %lu",
2185 pageset->numa_hit,
2186 pageset->numa_miss,
2187 pageset->numa_foreign,
2188 pageset->interleave_hit,
2189 pageset->local_node,
2190 pageset->other_node);
2191#endif
2192 }
2193 seq_printf(m,
2194 "\n all_unreclaimable: %u"
2195 "\n prev_priority: %i"
2196 "\n temp_priority: %i"
2197 "\n start_pfn: %lu",
2198 zone->all_unreclaimable,
2199 zone->prev_priority,
2200 zone->temp_priority,
2201 zone->zone_start_pfn);
2202 spin_unlock_irqrestore(&zone->lock, flags);
2203 seq_putc(m, '\n');
2204 }
2205 return 0;
2206}
2207
2208struct seq_operations zoneinfo_op = {
2209 .start = frag_start, /* iterate over all zones. The same as in
2210 * fragmentation. */
2211 .next = frag_next,
2212 .stop = frag_stop,
2213 .show = zoneinfo_show,
2214};
2215
1da177e4
LT
2216static char *vmstat_text[] = {
2217 "nr_dirty",
2218 "nr_writeback",
2219 "nr_unstable",
2220 "nr_page_table_pages",
2221 "nr_mapped",
2222 "nr_slab",
2223
2224 "pgpgin",
2225 "pgpgout",
2226 "pswpin",
2227 "pswpout",
2228 "pgalloc_high",
2229
2230 "pgalloc_normal",
2231 "pgalloc_dma",
2232 "pgfree",
2233 "pgactivate",
2234 "pgdeactivate",
2235
2236 "pgfault",
2237 "pgmajfault",
2238 "pgrefill_high",
2239 "pgrefill_normal",
2240 "pgrefill_dma",
2241
2242 "pgsteal_high",
2243 "pgsteal_normal",
2244 "pgsteal_dma",
2245 "pgscan_kswapd_high",
2246 "pgscan_kswapd_normal",
2247
2248 "pgscan_kswapd_dma",
2249 "pgscan_direct_high",
2250 "pgscan_direct_normal",
2251 "pgscan_direct_dma",
2252 "pginodesteal",
2253
2254 "slabs_scanned",
2255 "kswapd_steal",
2256 "kswapd_inodesteal",
2257 "pageoutrun",
2258 "allocstall",
2259
2260 "pgrotated",
edfbe2b0 2261 "nr_bounce",
1da177e4
LT
2262};
2263
2264static void *vmstat_start(struct seq_file *m, loff_t *pos)
2265{
2266 struct page_state *ps;
2267
2268 if (*pos >= ARRAY_SIZE(vmstat_text))
2269 return NULL;
2270
2271 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2272 m->private = ps;
2273 if (!ps)
2274 return ERR_PTR(-ENOMEM);
2275 get_full_page_state(ps);
2276 ps->pgpgin /= 2; /* sectors -> kbytes */
2277 ps->pgpgout /= 2;
2278 return (unsigned long *)ps + *pos;
2279}
2280
2281static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2282{
2283 (*pos)++;
2284 if (*pos >= ARRAY_SIZE(vmstat_text))
2285 return NULL;
2286 return (unsigned long *)m->private + *pos;
2287}
2288
2289static int vmstat_show(struct seq_file *m, void *arg)
2290{
2291 unsigned long *l = arg;
2292 unsigned long off = l - (unsigned long *)m->private;
2293
2294 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2295 return 0;
2296}
2297
2298static void vmstat_stop(struct seq_file *m, void *arg)
2299{
2300 kfree(m->private);
2301 m->private = NULL;
2302}
2303
2304struct seq_operations vmstat_op = {
2305 .start = vmstat_start,
2306 .next = vmstat_next,
2307 .stop = vmstat_stop,
2308 .show = vmstat_show,
2309};
2310
2311#endif /* CONFIG_PROC_FS */
2312
2313#ifdef CONFIG_HOTPLUG_CPU
2314static int page_alloc_cpu_notify(struct notifier_block *self,
2315 unsigned long action, void *hcpu)
2316{
2317 int cpu = (unsigned long)hcpu;
2318 long *count;
2319 unsigned long *src, *dest;
2320
2321 if (action == CPU_DEAD) {
2322 int i;
2323
2324 /* Drain local pagecache count. */
2325 count = &per_cpu(nr_pagecache_local, cpu);
2326 atomic_add(*count, &nr_pagecache);
2327 *count = 0;
2328 local_irq_disable();
2329 __drain_pages(cpu);
2330
2331 /* Add dead cpu's page_states to our own. */
2332 dest = (unsigned long *)&__get_cpu_var(page_states);
2333 src = (unsigned long *)&per_cpu(page_states, cpu);
2334
2335 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2336 i++) {
2337 dest[i] += src[i];
2338 src[i] = 0;
2339 }
2340
2341 local_irq_enable();
2342 }
2343 return NOTIFY_OK;
2344}
2345#endif /* CONFIG_HOTPLUG_CPU */
2346
2347void __init page_alloc_init(void)
2348{
2349 hotcpu_notifier(page_alloc_cpu_notify, 0);
2350}
2351
2352/*
2353 * setup_per_zone_lowmem_reserve - called whenever
2354 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2355 * has a correct pages reserved value, so an adequate number of
2356 * pages are left in the zone after a successful __alloc_pages().
2357 */
2358static void setup_per_zone_lowmem_reserve(void)
2359{
2360 struct pglist_data *pgdat;
2361 int j, idx;
2362
2363 for_each_pgdat(pgdat) {
2364 for (j = 0; j < MAX_NR_ZONES; j++) {
2365 struct zone *zone = pgdat->node_zones + j;
2366 unsigned long present_pages = zone->present_pages;
2367
2368 zone->lowmem_reserve[j] = 0;
2369
2370 for (idx = j-1; idx >= 0; idx--) {
2371 struct zone *lower_zone;
2372
2373 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2374 sysctl_lowmem_reserve_ratio[idx] = 1;
2375
2376 lower_zone = pgdat->node_zones + idx;
2377 lower_zone->lowmem_reserve[j] = present_pages /
2378 sysctl_lowmem_reserve_ratio[idx];
2379 present_pages += lower_zone->present_pages;
2380 }
2381 }
2382 }
2383}
2384
2385/*
2386 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2387 * that the pages_{min,low,high} values for each zone are set correctly
2388 * with respect to min_free_kbytes.
2389 */
3947be19 2390void setup_per_zone_pages_min(void)
1da177e4
LT
2391{
2392 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2393 unsigned long lowmem_pages = 0;
2394 struct zone *zone;
2395 unsigned long flags;
2396
2397 /* Calculate total number of !ZONE_HIGHMEM pages */
2398 for_each_zone(zone) {
2399 if (!is_highmem(zone))
2400 lowmem_pages += zone->present_pages;
2401 }
2402
2403 for_each_zone(zone) {
669ed175 2404 unsigned long tmp;
1da177e4 2405 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2406 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2407 if (is_highmem(zone)) {
2408 /*
669ed175
NP
2409 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2410 * need highmem pages, so cap pages_min to a small
2411 * value here.
2412 *
2413 * The (pages_high-pages_low) and (pages_low-pages_min)
2414 * deltas controls asynch page reclaim, and so should
2415 * not be capped for highmem.
1da177e4
LT
2416 */
2417 int min_pages;
2418
2419 min_pages = zone->present_pages / 1024;
2420 if (min_pages < SWAP_CLUSTER_MAX)
2421 min_pages = SWAP_CLUSTER_MAX;
2422 if (min_pages > 128)
2423 min_pages = 128;
2424 zone->pages_min = min_pages;
2425 } else {
669ed175
NP
2426 /*
2427 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2428 * proportionate to the zone's size.
2429 */
669ed175 2430 zone->pages_min = tmp;
1da177e4
LT
2431 }
2432
669ed175
NP
2433 zone->pages_low = zone->pages_min + tmp / 4;
2434 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2435 spin_unlock_irqrestore(&zone->lru_lock, flags);
2436 }
2437}
2438
2439/*
2440 * Initialise min_free_kbytes.
2441 *
2442 * For small machines we want it small (128k min). For large machines
2443 * we want it large (64MB max). But it is not linear, because network
2444 * bandwidth does not increase linearly with machine size. We use
2445 *
2446 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2447 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2448 *
2449 * which yields
2450 *
2451 * 16MB: 512k
2452 * 32MB: 724k
2453 * 64MB: 1024k
2454 * 128MB: 1448k
2455 * 256MB: 2048k
2456 * 512MB: 2896k
2457 * 1024MB: 4096k
2458 * 2048MB: 5792k
2459 * 4096MB: 8192k
2460 * 8192MB: 11584k
2461 * 16384MB: 16384k
2462 */
2463static int __init init_per_zone_pages_min(void)
2464{
2465 unsigned long lowmem_kbytes;
2466
2467 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2468
2469 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2470 if (min_free_kbytes < 128)
2471 min_free_kbytes = 128;
2472 if (min_free_kbytes > 65536)
2473 min_free_kbytes = 65536;
2474 setup_per_zone_pages_min();
2475 setup_per_zone_lowmem_reserve();
2476 return 0;
2477}
2478module_init(init_per_zone_pages_min)
2479
2480/*
2481 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2482 * that we can call two helper functions whenever min_free_kbytes
2483 * changes.
2484 */
2485int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2486 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2487{
2488 proc_dointvec(table, write, file, buffer, length, ppos);
2489 setup_per_zone_pages_min();
2490 return 0;
2491}
2492
2493/*
2494 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2495 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2496 * whenever sysctl_lowmem_reserve_ratio changes.
2497 *
2498 * The reserve ratio obviously has absolutely no relation with the
2499 * pages_min watermarks. The lowmem reserve ratio can only make sense
2500 * if in function of the boot time zone sizes.
2501 */
2502int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2503 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2504{
2505 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2506 setup_per_zone_lowmem_reserve();
2507 return 0;
2508}
2509
2510__initdata int hashdist = HASHDIST_DEFAULT;
2511
2512#ifdef CONFIG_NUMA
2513static int __init set_hashdist(char *str)
2514{
2515 if (!str)
2516 return 0;
2517 hashdist = simple_strtoul(str, &str, 0);
2518 return 1;
2519}
2520__setup("hashdist=", set_hashdist);
2521#endif
2522
2523/*
2524 * allocate a large system hash table from bootmem
2525 * - it is assumed that the hash table must contain an exact power-of-2
2526 * quantity of entries
2527 * - limit is the number of hash buckets, not the total allocation size
2528 */
2529void *__init alloc_large_system_hash(const char *tablename,
2530 unsigned long bucketsize,
2531 unsigned long numentries,
2532 int scale,
2533 int flags,
2534 unsigned int *_hash_shift,
2535 unsigned int *_hash_mask,
2536 unsigned long limit)
2537{
2538 unsigned long long max = limit;
2539 unsigned long log2qty, size;
2540 void *table = NULL;
2541
2542 /* allow the kernel cmdline to have a say */
2543 if (!numentries) {
2544 /* round applicable memory size up to nearest megabyte */
2545 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2546 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2547 numentries >>= 20 - PAGE_SHIFT;
2548 numentries <<= 20 - PAGE_SHIFT;
2549
2550 /* limit to 1 bucket per 2^scale bytes of low memory */
2551 if (scale > PAGE_SHIFT)
2552 numentries >>= (scale - PAGE_SHIFT);
2553 else
2554 numentries <<= (PAGE_SHIFT - scale);
2555 }
2556 /* rounded up to nearest power of 2 in size */
2557 numentries = 1UL << (long_log2(numentries) + 1);
2558
2559 /* limit allocation size to 1/16 total memory by default */
2560 if (max == 0) {
2561 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2562 do_div(max, bucketsize);
2563 }
2564
2565 if (numentries > max)
2566 numentries = max;
2567
2568 log2qty = long_log2(numentries);
2569
2570 do {
2571 size = bucketsize << log2qty;
2572 if (flags & HASH_EARLY)
2573 table = alloc_bootmem(size);
2574 else if (hashdist)
2575 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2576 else {
2577 unsigned long order;
2578 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2579 ;
2580 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2581 }
2582 } while (!table && size > PAGE_SIZE && --log2qty);
2583
2584 if (!table)
2585 panic("Failed to allocate %s hash table\n", tablename);
2586
2587 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2588 tablename,
2589 (1U << log2qty),
2590 long_log2(size) - PAGE_SHIFT,
2591 size);
2592
2593 if (_hash_shift)
2594 *_hash_shift = log2qty;
2595 if (_hash_mask)
2596 *_hash_mask = (1 << log2qty) - 1;
2597
2598 return table;
2599}