]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm: fix devm_memremap_pages crash, use mem_hotplug_{begin, done}
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
38addce8 94#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 95volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
96EXPORT_SYMBOL(latent_entropy);
97#endif
98
1da177e4 99/*
13808910 100 * Array of node states.
1da177e4 101 */
13808910
CL
102nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105#ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107#ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
109#endif
110#ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
112#endif
113 [N_CPU] = { { [0] = 1UL } },
114#endif /* NUMA */
115};
116EXPORT_SYMBOL(node_states);
117
c3d5f5f0
JL
118/* Protect totalram_pages and zone->managed_pages */
119static DEFINE_SPINLOCK(managed_page_count_lock);
120
6c231b7b 121unsigned long totalram_pages __read_mostly;
cb45b0e9 122unsigned long totalreserve_pages __read_mostly;
e48322ab 123unsigned long totalcma_pages __read_mostly;
ab8fabd4 124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
d0164adc 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
d0164adc 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400 183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 184unsigned int pageblock_order __read_mostly;
d9c23400
MG
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
033fbae9
DW
227#ifdef CONFIG_ZONE_DEVICE
228 "Device",
229#endif
2f1b6248
CL
230};
231
60f30350
VB
232char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237#ifdef CONFIG_CMA
238 "CMA",
239#endif
240#ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242#endif
243};
244
f1e61557
KS
245compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248#ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250#endif
9a982250
KS
251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253#endif
f1e61557
KS
254};
255
1da177e4 256int min_free_kbytes = 1024;
42aa83cb 257int user_min_free_kbytes = -1;
795ae7a0 258int watermark_scale_factor = 10;
1da177e4 259
2c85f51d
JB
260static unsigned long __meminitdata nr_kernel_pages;
261static unsigned long __meminitdata nr_all_pages;
a3142c8e 262static unsigned long __meminitdata dma_reserve;
1da177e4 263
0ee332c1
TH
264#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __initdata required_kernelcore;
268static unsigned long __initdata required_movablecore;
269static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 270static bool mirrored_kernelcore;
0ee332c1
TH
271
272/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273int movable_zone;
274EXPORT_SYMBOL(movable_zone);
275#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 276
418508c1
MS
277#if MAX_NUMNODES > 1
278int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 279int nr_online_nodes __read_mostly = 1;
418508c1 280EXPORT_SYMBOL(nr_node_ids);
62bc62a8 281EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
282#endif
283
9ef9acb0
MG
284int page_group_by_mobility_disabled __read_mostly;
285
3a80a7fa
MG
286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287static inline void reset_deferred_meminit(pg_data_t *pgdat)
288{
289 pgdat->first_deferred_pfn = ULONG_MAX;
290}
291
292/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 293static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 294{
ef70b6f4
MG
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
298 return true;
299
300 return false;
301}
302
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
342static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345{
346 return true;
347}
348#endif
349
0b423ca2
MG
350/* Return a pointer to the bitmap storing bits affecting a block of pages */
351static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353{
354#ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356#else
357 return page_zone(page)->pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359}
360
361static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362{
363#ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366#else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369#endif /* CONFIG_SPARSEMEM */
370}
371
372/**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385{
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398}
399
400unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403{
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405}
406
407static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408{
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410}
411
412/**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424{
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449}
3a80a7fa 450
ee6f509c 451void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 452{
5d0f3f72
KM
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
455 migratetype = MIGRATE_UNMOVABLE;
456
b2a0ac88
MG
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459}
460
13e7444b 461#ifdef CONFIG_DEBUG_VM
c6a57e19 462static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 463{
bdc8cb98
DH
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 467 unsigned long sp, start_pfn;
c6a57e19 468
bdc8cb98
DH
469 do {
470 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
108bcc96 473 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
b5e6a5a2 477 if (ret)
613813e8
DH
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
b5e6a5a2 481
bdc8cb98 482 return ret;
c6a57e19
DH
483}
484
485static int page_is_consistent(struct zone *zone, struct page *page)
486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 488 return 0;
1da177e4 489 if (zone != page_zone(page))
c6a57e19
DH
490 return 0;
491
492 return 1;
493}
494/*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497static int bad_range(struct zone *zone, struct page *page)
498{
499 if (page_outside_zone_boundaries(zone, page))
1da177e4 500 return 1;
c6a57e19
DH
501 if (!page_is_consistent(zone, page))
502 return 1;
503
1da177e4
LT
504 return 0;
505}
13e7444b
NP
506#else
507static inline int bad_range(struct zone *zone, struct page *page)
508{
509 return 0;
510}
511#endif
512
d230dec1
KS
513static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
1da177e4 515{
d936cf9b
HD
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
ff8e8116 530 pr_alert(
1e9e6365 531 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
ff8e8116 540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 541 current->comm, page_to_pfn(page));
ff8e8116
VB
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
4e462112 547 dump_page_owner(page);
3dc14741 548
4f31888c 549 print_modules();
1da177e4 550 dump_stack();
d936cf9b 551out:
8cc3b392 552 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 553 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
555}
556
1da177e4
LT
557/*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
1d798ca3 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 561 *
1d798ca3
KS
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 564 *
1d798ca3
KS
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
1da177e4 567 *
1d798ca3 568 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 569 * This usage means that zero-order pages may not be compound.
1da177e4 570 */
d98c7a09 571
9a982250 572void free_compound_page(struct page *page)
d98c7a09 573{
d85f3385 574 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
575}
576
d00181b9 577void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
578{
579 int i;
580 int nr_pages = 1 << order;
581
f1e61557 582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
58a84aa9 587 set_page_count(p, 0);
1c290f64 588 p->mapping = TAIL_MAPPING;
1d798ca3 589 set_compound_head(p, page);
18229df5 590 }
53f9263b 591 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
592}
593
c0a32fc5
SG
594#ifdef CONFIG_DEBUG_PAGEALLOC
595unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
596bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 598EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
599bool _debug_guardpage_enabled __read_mostly;
600
031bc574
JK
601static int __init early_debug_pagealloc(char *buf)
602{
603 if (!buf)
604 return -EINVAL;
2a138dc7 605 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
606}
607early_param("debug_pagealloc", early_debug_pagealloc);
608
e30825f1
JK
609static bool need_debug_guardpage(void)
610{
031bc574
JK
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
f1c1e9f7
JK
615 if (!debug_guardpage_minorder())
616 return false;
617
e30825f1
JK
618 return true;
619}
620
621static void init_debug_guardpage(void)
622{
031bc574
JK
623 if (!debug_pagealloc_enabled())
624 return;
625
f1c1e9f7
JK
626 if (!debug_guardpage_minorder())
627 return;
628
e30825f1
JK
629 _debug_guardpage_enabled = true;
630}
631
632struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635};
c0a32fc5
SG
636
637static int __init debug_guardpage_minorder_setup(char *buf)
638{
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 642 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
1170532b 646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
647 return 0;
648}
f1c1e9f7 649early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 650
acbc15a4 651static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 652 unsigned int order, int migratetype)
c0a32fc5 653{
e30825f1
JK
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
acbc15a4
JK
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
e30825f1
JK
661
662 page_ext = lookup_page_ext(page);
f86e4271 663 if (unlikely(!page_ext))
acbc15a4 664 return false;
f86e4271 665
e30825f1
JK
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
2847cf95
JK
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
672
673 return true;
c0a32fc5
SG
674}
675
2847cf95
JK
676static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
c0a32fc5 678{
e30825f1
JK
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
f86e4271
YS
685 if (unlikely(!page_ext))
686 return;
687
e30825f1
JK
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
2847cf95
JK
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
693}
694#else
980ac167 695struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
696static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
2847cf95
JK
698static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
c0a32fc5
SG
700#endif
701
7aeb09f9 702static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 703{
4c21e2f2 704 set_page_private(page, order);
676165a8 705 __SetPageBuddy(page);
1da177e4
LT
706}
707
708static inline void rmv_page_order(struct page *page)
709{
676165a8 710 __ClearPageBuddy(page);
4c21e2f2 711 set_page_private(page, 0);
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
13e7444b 717 * (a) the buddy is not in a hole &&
676165a8 718 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
676165a8 721 *
cf6fe945
WSH
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
1da177e4 726 *
676165a8 727 * For recording page's order, we use page_private(page).
1da177e4 728 */
cb2b95e1 729static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 730 unsigned int order)
1da177e4 731{
14e07298 732 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 733 return 0;
13e7444b 734
c0a32fc5 735 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
4c5018ce
WY
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
c0a32fc5
SG
741 return 1;
742 }
743
cb2b95e1 744 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
4c5018ce
WY
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
6aa3001b 755 return 1;
676165a8 756 }
6aa3001b 757 return 0;
1da177e4
LT
758}
759
760/*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
1da177e4 776 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
1da177e4 779 * If a block is freed, and its buddy is also free, then this
5f63b720 780 * triggers coalescing into a block of larger size.
1da177e4 781 *
6d49e352 782 * -- nyc
1da177e4
LT
783 */
784
48db57f8 785static inline void __free_one_page(struct page *page,
dc4b0caf 786 unsigned long pfn,
ed0ae21d
MG
787 struct zone *zone, unsigned int order,
788 int migratetype)
1da177e4
LT
789{
790 unsigned long page_idx;
6dda9d55 791 unsigned long combined_idx;
43506fad 792 unsigned long uninitialized_var(buddy_idx);
6dda9d55 793 struct page *buddy;
d9dddbf5
VB
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 797
d29bb978 798 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 800
ed0ae21d 801 VM_BUG_ON(migratetype == -1);
d9dddbf5 802 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 804
d9dddbf5 805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 806
309381fe
SL
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 809
d9dddbf5 810continue_merging:
3c605096 811 while (order < max_order - 1) {
43506fad
KC
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
cb2b95e1 814 if (!page_is_buddy(page, buddy, order))
d9dddbf5 815 goto done_merging;
c0a32fc5
SG
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
2847cf95 821 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
43506fad 827 combined_idx = buddy_idx & page_idx;
1da177e4
LT
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
d9dddbf5
VB
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857done_merging:
1da177e4 858 set_page_order(page, order);
6dda9d55
CZ
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
b7f50cfa 868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 869 struct page *higher_page, *higher_buddy;
43506fad
KC
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 873 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882out:
1da177e4
LT
883 zone->free_area[order].nr_free++;
884}
885
7bfec6f4
MG
886/*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893{
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899#ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901#endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906}
907
bb552ac6 908static void free_pages_check_bad(struct page *page)
1da177e4 909{
7bfec6f4
MG
910 const char *bad_reason;
911 unsigned long bad_flags;
912
7bfec6f4
MG
913 bad_reason = NULL;
914 bad_flags = 0;
f0b791a3 915
53f9263b 916 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
fe896d18 920 if (unlikely(page_ref_count(page) != 0))
0139aa7b 921 bad_reason = "nonzero _refcount";
f0b791a3
DH
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
9edad6ea
JW
926#ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929#endif
7bfec6f4 930 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
931}
932
933static inline int free_pages_check(struct page *page)
934{
da838d4f 935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 936 return 0;
bb552ac6
MG
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
7bfec6f4 940 return 1;
1da177e4
LT
941}
942
4db7548c
MG
943static int free_tail_pages_check(struct page *head_page, struct page *page)
944{
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991}
992
e2769dbd
MG
993static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
4db7548c 995{
e2769dbd 996 int bad = 0;
4db7548c 997
4db7548c
MG
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
e2769dbd
MG
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1012
9a73f61b
KS
1013 if (compound)
1014 ClearPageDoubleMap(page);
e2769dbd
MG
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
bda807d4 1025 if (PageMappingFlags(page))
4db7548c 1026 page->mapping = NULL;
c4159a75 1027 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1028 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
4db7548c 1033
e2769dbd
MG
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
4db7548c
MG
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 debug_check_no_obj_freed(page_address(page),
e2769dbd 1042 PAGE_SIZE << order);
4db7548c 1043 }
e2769dbd
MG
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
29b52de1 1047 kasan_free_pages(page, order);
4db7548c 1048
4db7548c
MG
1049 return true;
1050}
1051
e2769dbd
MG
1052#ifdef CONFIG_DEBUG_VM
1053static inline bool free_pcp_prepare(struct page *page)
1054{
1055 return free_pages_prepare(page, 0, true);
1056}
1057
1058static inline bool bulkfree_pcp_prepare(struct page *page)
1059{
1060 return false;
1061}
1062#else
1063static bool free_pcp_prepare(struct page *page)
1064{
1065 return free_pages_prepare(page, 0, false);
1066}
1067
4db7548c
MG
1068static bool bulkfree_pcp_prepare(struct page *page)
1069{
1070 return free_pages_check(page);
1071}
1072#endif /* CONFIG_DEBUG_VM */
1073
1da177e4 1074/*
5f8dcc21 1075 * Frees a number of pages from the PCP lists
1da177e4 1076 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1077 * count is the number of pages to free.
1da177e4
LT
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
5f8dcc21
MG
1085static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1da177e4 1087{
5f8dcc21 1088 int migratetype = 0;
a6f9edd6 1089 int batch_free = 0;
0d5d823a 1090 unsigned long nr_scanned;
3777999d 1091 bool isolated_pageblocks;
5f8dcc21 1092
c54ad30c 1093 spin_lock(&zone->lock);
3777999d 1094 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1096 if (nr_scanned)
599d0c95 1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1098
e5b31ac2 1099 while (count) {
48db57f8 1100 struct page *page;
5f8dcc21
MG
1101 struct list_head *list;
1102
1103 /*
a6f9edd6
MG
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
5f8dcc21
MG
1109 */
1110 do {
a6f9edd6 1111 batch_free++;
5f8dcc21
MG
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
48db57f8 1116
1d16871d
NK
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1119 batch_free = count;
1d16871d 1120
a6f9edd6 1121 do {
770c8aaa
BZ
1122 int mt; /* migratetype of the to-be-freed page */
1123
a16601c5 1124 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
aa016d14 1127
bb14c2c7 1128 mt = get_pcppage_migratetype(page);
aa016d14
VB
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
3777999d 1132 if (unlikely(isolated_pageblocks))
51bb1a40 1133 mt = get_pageblock_migratetype(page);
51bb1a40 1134
4db7548c
MG
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
dc4b0caf 1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1139 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1140 } while (--count && --batch_free && !list_empty(list));
1da177e4 1141 }
c54ad30c 1142 spin_unlock(&zone->lock);
1da177e4
LT
1143}
1144
dc4b0caf
MG
1145static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
7aeb09f9 1147 unsigned int order,
ed0ae21d 1148 int migratetype)
1da177e4 1149{
0d5d823a 1150 unsigned long nr_scanned;
006d22d9 1151 spin_lock(&zone->lock);
599d0c95 1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1153 if (nr_scanned)
599d0c95 1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1155
ad53f92e
JK
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1159 }
dc4b0caf 1160 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1161 spin_unlock(&zone->lock);
48db57f8
NP
1162}
1163
1e8ce83c
RH
1164static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166{
1e8ce83c 1167 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1e8ce83c 1171
1e8ce83c
RH
1172 INIT_LIST_HEAD(&page->lru);
1173#ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177#endif
1178}
1179
1180static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182{
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184}
1185
7e18adb4
MG
1186#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187static void init_reserved_page(unsigned long pfn)
1188{
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205}
1206#else
1207static inline void init_reserved_page(unsigned long pfn)
1208{
1209}
1210#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
92923ca3
NZ
1212/*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
4b50bcc7 1218void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1219{
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
7e18adb4
MG
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1d798ca3
KS
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
7e18adb4
MG
1232 SetPageReserved(page);
1233 }
1234 }
92923ca3
NZ
1235}
1236
ec95f53a
KM
1237static void __free_pages_ok(struct page *page, unsigned int order)
1238{
1239 unsigned long flags;
95e34412 1240 int migratetype;
dc4b0caf 1241 unsigned long pfn = page_to_pfn(page);
ec95f53a 1242
e2769dbd 1243 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1244 return;
1245
cfc47a28 1246 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1247 local_irq_save(flags);
f8891e5e 1248 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1250 local_irq_restore(flags);
1da177e4
LT
1251}
1252
949698a3 1253static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1254{
c3993076 1255 unsigned int nr_pages = 1 << order;
e2d0bd2b 1256 struct page *p = page;
c3993076 1257 unsigned int loop;
a226f6c8 1258
e2d0bd2b
YL
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
c3993076
JW
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
a226f6c8 1264 }
e2d0bd2b
YL
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
c3993076 1267
e2d0bd2b 1268 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
a226f6c8
DH
1271}
1272
75a592a4
MG
1273#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1275
75a592a4
MG
1276static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278int __meminit early_pfn_to_nid(unsigned long pfn)
1279{
7ace9917 1280 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1281 int nid;
1282
7ace9917 1283 spin_lock(&early_pfn_lock);
75a592a4 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1285 if (nid < 0)
e4568d38 1286 nid = first_online_node;
7ace9917
MG
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
75a592a4
MG
1290}
1291#endif
1292
1293#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296{
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303}
1304
1305/* Only safe to use early in boot when initialisation is single-threaded */
1306static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307{
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309}
1310
1311#else
1312
1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314{
1315 return true;
1316}
1317static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319{
1320 return true;
1321}
1322#endif
1323
1324
0e1cc95b 1325void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1326 unsigned int order)
1327{
1328 if (early_page_uninitialised(pfn))
1329 return;
949698a3 1330 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1331}
1332
7cf91a98
JK
1333/*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352{
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374}
1375
1376void set_zone_contiguous(struct zone *zone)
1377{
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395}
1396
1397void clear_zone_contiguous(struct zone *zone)
1398{
1399 zone->contiguous = false;
1400}
1401
7e18adb4 1402#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1403static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1404 unsigned long pfn, int nr_pages)
1405{
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1415 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1416 return;
1417 }
1418
e780149b
XQ
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1422 __free_pages_boot_core(page, 0);
e780149b 1423 }
a4de83dd
MG
1424}
1425
d3cd131d
NS
1426/* Completion tracking for deferred_init_memmap() threads */
1427static atomic_t pgdat_init_n_undone __initdata;
1428static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430static inline void __init pgdat_init_report_one_done(void)
1431{
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434}
0e1cc95b 1435
7e18adb4 1436/* Initialise remaining memory on a node */
0e1cc95b 1437static int __init deferred_init_memmap(void *data)
7e18adb4 1438{
0e1cc95b
MG
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
7e18adb4
MG
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
7e18adb4 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1449
0e1cc95b 1450 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1451 pgdat_init_report_one_done();
0e1cc95b
MG
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
54608c3f 1473 struct page *page = NULL;
a4de83dd
MG
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
7e18adb4
MG
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
54608c3f 1486 if (!pfn_valid_within(pfn))
a4de83dd 1487 goto free_range;
7e18adb4 1488
54608c3f
MG
1489 /*
1490 * Ensure pfn_valid is checked every
e780149b 1491 * pageblock_nr_pages for memory holes
54608c3f 1492 */
e780149b 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
a4de83dd 1502 goto free_range;
54608c3f
MG
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
e780149b 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1507 page++;
1508 } else {
a4de83dd
MG
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
54608c3f
MG
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
7e18adb4
MG
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1521 goto free_range;
7e18adb4
MG
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
7e18adb4 1541 }
e780149b
XQ
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1545
7e18adb4
MG
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
0e1cc95b 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1553 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1554
1555 pgdat_init_report_one_done();
0e1cc95b
MG
1556 return 0;
1557}
7cf91a98 1558#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1559
1560void __init page_alloc_init_late(void)
1561{
7cf91a98
JK
1562 struct zone *zone;
1563
1564#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1565 int nid;
1566
d3cd131d
NS
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1569 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
d3cd131d 1574 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
7cf91a98
JK
1578#endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
7e18adb4 1582}
7e18adb4 1583
47118af0 1584#ifdef CONFIG_CMA
9cf510a5 1585/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1586void __init init_cma_reserved_pageblock(struct page *page)
1587{
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
47118af0 1596 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
3dcc0571 1611 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1612}
1613#endif
1da177e4
LT
1614
1615/*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
6d49e352 1627 * -- nyc
1da177e4 1628 */
085cc7d5 1629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1da177e4
LT
1632{
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
309381fe 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1640
acbc15a4
JK
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1648 continue;
acbc15a4 1649
b2a0ac88 1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1da177e4
LT
1654}
1655
4e611801 1656static void check_new_page_bad(struct page *page)
1da177e4 1657{
4e611801
VB
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
7bfec6f4 1660
53f9263b 1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
fe896d18 1665 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1666 bad_reason = "nonzero _count";
f4c18e6f
NH
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
e570f56c
NH
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
f4c18e6f 1673 }
f0b791a3
DH
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
9edad6ea
JW
1678#ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681#endif
4e611801
VB
1682 bad_page(page, bad_reason, bad_flags);
1683}
1684
1685/*
1686 * This page is about to be returned from the page allocator
1687 */
1688static inline int check_new_page(struct page *page)
1689{
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
2a7684a2
WF
1696}
1697
1414c7f4
LA
1698static inline bool free_pages_prezeroed(bool poisoned)
1699{
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702}
1703
479f854a
MG
1704#ifdef CONFIG_DEBUG_VM
1705static bool check_pcp_refill(struct page *page)
1706{
1707 return false;
1708}
1709
1710static bool check_new_pcp(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714#else
1715static bool check_pcp_refill(struct page *page)
1716{
1717 return check_new_page(page);
1718}
1719static bool check_new_pcp(struct page *page)
1720{
1721 return false;
1722}
1723#endif /* CONFIG_DEBUG_VM */
1724
1725static bool check_new_pages(struct page *page, unsigned int order)
1726{
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736}
1737
46f24fd8
JK
1738inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740{
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749}
1750
479f854a 1751static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1752 unsigned int alloc_flags)
2a7684a2
WF
1753{
1754 int i;
1414c7f4 1755 bool poisoned = true;
2a7684a2
WF
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1414c7f4
LA
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
2a7684a2 1761 }
689bcebf 1762
46f24fd8 1763 post_alloc_hook(page, order, gfp_flags);
17cf4406 1764
1414c7f4 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
17cf4406
NP
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
75379191 1772 /*
2f064f34 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
2f064f34
MH
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1da177e4
LT
1782}
1783
56fd56b8
MG
1784/*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
728ec980
MG
1788static inline
1789struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1790 int migratetype)
1791{
1792 unsigned int current_order;
b8af2941 1793 struct free_area *area;
56fd56b8
MG
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
a16601c5 1799 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1800 struct page, lru);
a16601c5
GT
1801 if (!page)
1802 continue;
56fd56b8
MG
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
56fd56b8 1806 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1807 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1808 return page;
1809 }
1810
1811 return NULL;
1812}
1813
1814
b2a0ac88
MG
1815/*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
47118af0 1819static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1823#ifdef CONFIG_CMA
974a786e 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1825#endif
194159fb 1826#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1828#endif
b2a0ac88
MG
1829};
1830
dc67647b
JK
1831#ifdef CONFIG_CMA
1832static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834{
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836}
1837#else
1838static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840#endif
1841
c361be55
MG
1842/*
1843 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1844 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
435b405c 1847int move_freepages(struct zone *zone,
b69a7288
AB
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
c361be55
MG
1850{
1851 struct page *page;
d00181b9 1852 unsigned int order;
d100313f 1853 int pages_moved = 0;
c361be55
MG
1854
1855#ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1861 * grouping pages by mobility
c361be55 1862 */
97ee4ba7 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1864#endif
1865
1866 for (page = start_page; page <= end_page;) {
344c790e 1867 /* Make sure we are not inadvertently changing nodes */
309381fe 1868 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1869
c361be55
MG
1870 if (!pfn_valid_within(page_to_pfn(page))) {
1871 page++;
1872 continue;
1873 }
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
84be48d8
KS
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
c361be55 1883 page += 1 << order;
d100313f 1884 pages_moved += 1 << order;
c361be55
MG
1885 }
1886
d100313f 1887 return pages_moved;
c361be55
MG
1888}
1889
ee6f509c 1890int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1891 int migratetype)
c361be55
MG
1892{
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
d9c23400 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1898 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1901
1902 /* Do not cross zone boundaries */
108bcc96 1903 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1904 start_page = page;
108bcc96 1905 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909}
1910
2f66a68f
MG
1911static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913{
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920}
1921
fef903ef 1922/*
9c0415eb
VB
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
fef903ef 1933 */
4eb7dce6
JK
1934static bool can_steal_fallback(unsigned int order, int start_mt)
1935{
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953}
1954
1955/*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
fef903ef 1964{
d00181b9 1965 unsigned int current_order = page_order(page);
4eb7dce6 1966 int pages;
fef903ef 1967
fef903ef
SB
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
3a1086fb 1971 return;
fef903ef
SB
1972 }
1973
4eb7dce6 1974 pages = move_freepages_block(zone, page, start_type);
fef903ef 1975
4eb7dce6
JK
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980}
1981
2149cdae
JK
1982/*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1990{
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
974a786e 2000 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
fef903ef 2005
4eb7dce6
JK
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2149cdae
JK
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
fef903ef 2014 }
4eb7dce6
JK
2015
2016 return -1;
fef903ef
SB
2017}
2018
0aaa29a5
MG
2019/*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025{
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054}
2055
2056/*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
29fac03b
MK
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
0aaa29a5 2064 */
29fac03b
MK
2065static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
0aaa29a5
MG
2067{
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
04c8716f 2074 bool ret;
0aaa29a5
MG
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
29fac03b
MK
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
0aaa29a5
MG
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
a16601c5
GT
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
0aaa29a5
MG
2094 continue;
2095
0aaa29a5 2096 /*
4855e4a7
MK
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
0aaa29a5 2102 */
4855e4a7
MK
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
0aaa29a5
MG
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2127 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
0aaa29a5
MG
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
04c8716f
MK
2135
2136 return false;
0aaa29a5
MG
2137}
2138
b2a0ac88 2139/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2140static inline struct page *
7aeb09f9 2141__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2142{
b8af2941 2143 struct free_area *area;
7aeb09f9 2144 unsigned int current_order;
b2a0ac88 2145 struct page *page;
4eb7dce6
JK
2146 int fallback_mt;
2147 bool can_steal;
b2a0ac88
MG
2148
2149 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
4eb7dce6
JK
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2155 start_migratetype, false, &can_steal);
4eb7dce6
JK
2156 if (fallback_mt == -1)
2157 continue;
b2a0ac88 2158
a16601c5 2159 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2160 struct page, lru);
88ed365e
MK
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2163 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2164
4eb7dce6
JK
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
3a1086fb 2169
4eb7dce6
JK
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
bb14c2c7 2173 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2174 * migratetype depending on the decisions in
bb14c2c7
VB
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2178 */
bb14c2c7 2179 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2180
4eb7dce6
JK
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
e0fff1bd 2183
4eb7dce6 2184 return page;
b2a0ac88
MG
2185 }
2186
728ec980 2187 return NULL;
b2a0ac88
MG
2188}
2189
56fd56b8 2190/*
1da177e4
LT
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
b2a0ac88 2194static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2195 int migratetype)
1da177e4 2196{
1da177e4
LT
2197 struct page *page;
2198
56fd56b8 2199 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2200 if (unlikely(!page)) {
dc67647b
JK
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2206 }
2207
0d3d062a 2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2209 return page;
1da177e4
LT
2210}
2211
5f63b720 2212/*
1da177e4
LT
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
5f63b720 2217static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2218 unsigned long count, struct list_head *list,
b745bc85 2219 int migratetype, bool cold)
1da177e4 2220{
a6de734b 2221 int i, alloced = 0;
5f63b720 2222
c54ad30c 2223 spin_lock(&zone->lock);
1da177e4 2224 for (i = 0; i < count; ++i) {
6ac0206b 2225 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2226 if (unlikely(page == NULL))
1da177e4 2227 break;
81eabcbe 2228
479f854a
MG
2229 if (unlikely(check_pcp_refill(page)))
2230 continue;
2231
81eabcbe
MG
2232 /*
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2239 * properly.
2240 */
b745bc85 2241 if (likely(!cold))
e084b2d9
MG
2242 list_add(&page->lru, list);
2243 else
2244 list_add_tail(&page->lru, list);
81eabcbe 2245 list = &page->lru;
a6de734b 2246 alloced++;
bb14c2c7 2247 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2248 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 -(1 << order));
1da177e4 2250 }
a6de734b
MG
2251
2252 /*
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2257 */
f2260e6b 2258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2259 spin_unlock(&zone->lock);
a6de734b 2260 return alloced;
1da177e4
LT
2261}
2262
4ae7c039 2263#ifdef CONFIG_NUMA
8fce4d8e 2264/*
4037d452
CL
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2267 * expired.
2268 *
879336c3
CL
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
8fce4d8e 2271 */
4037d452 2272void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2273{
4ae7c039 2274 unsigned long flags;
7be12fc9 2275 int to_drain, batch;
4ae7c039 2276
4037d452 2277 local_irq_save(flags);
4db0c3c2 2278 batch = READ_ONCE(pcp->batch);
7be12fc9 2279 to_drain = min(pcp->count, batch);
2a13515c
KM
2280 if (to_drain > 0) {
2281 free_pcppages_bulk(zone, to_drain, pcp);
2282 pcp->count -= to_drain;
2283 }
4037d452 2284 local_irq_restore(flags);
4ae7c039
CL
2285}
2286#endif
2287
9f8f2172 2288/*
93481ff0 2289 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2290 *
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2293 * is not online.
2294 */
93481ff0 2295static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2296{
c54ad30c 2297 unsigned long flags;
93481ff0
VB
2298 struct per_cpu_pageset *pset;
2299 struct per_cpu_pages *pcp;
1da177e4 2300
93481ff0
VB
2301 local_irq_save(flags);
2302 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2303
93481ff0
VB
2304 pcp = &pset->pcp;
2305 if (pcp->count) {
2306 free_pcppages_bulk(zone, pcp->count, pcp);
2307 pcp->count = 0;
2308 }
2309 local_irq_restore(flags);
2310}
3dfa5721 2311
93481ff0
VB
2312/*
2313 * Drain pcplists of all zones on the indicated processor.
2314 *
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2317 * is not online.
2318 */
2319static void drain_pages(unsigned int cpu)
2320{
2321 struct zone *zone;
2322
2323 for_each_populated_zone(zone) {
2324 drain_pages_zone(cpu, zone);
1da177e4
LT
2325 }
2326}
1da177e4 2327
9f8f2172
CL
2328/*
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2330 *
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
9f8f2172 2333 */
93481ff0 2334void drain_local_pages(struct zone *zone)
9f8f2172 2335{
93481ff0
VB
2336 int cpu = smp_processor_id();
2337
2338 if (zone)
2339 drain_pages_zone(cpu, zone);
2340 else
2341 drain_pages(cpu);
9f8f2172
CL
2342}
2343
2344/*
74046494
GBY
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346 *
93481ff0
VB
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2348 *
74046494
GBY
2349 * Note that this code is protected against sending an IPI to an offline
2350 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352 * nothing keeps CPUs from showing up after we populated the cpumask and
2353 * before the call to on_each_cpu_mask().
9f8f2172 2354 */
93481ff0 2355void drain_all_pages(struct zone *zone)
9f8f2172 2356{
74046494 2357 int cpu;
74046494
GBY
2358
2359 /*
2360 * Allocate in the BSS so we wont require allocation in
2361 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 */
2363 static cpumask_t cpus_with_pcps;
2364
2365 /*
2366 * We don't care about racing with CPU hotplug event
2367 * as offline notification will cause the notified
2368 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 * disables preemption as part of its processing
2370 */
2371 for_each_online_cpu(cpu) {
93481ff0
VB
2372 struct per_cpu_pageset *pcp;
2373 struct zone *z;
74046494 2374 bool has_pcps = false;
93481ff0
VB
2375
2376 if (zone) {
74046494 2377 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2378 if (pcp->pcp.count)
74046494 2379 has_pcps = true;
93481ff0
VB
2380 } else {
2381 for_each_populated_zone(z) {
2382 pcp = per_cpu_ptr(z->pageset, cpu);
2383 if (pcp->pcp.count) {
2384 has_pcps = true;
2385 break;
2386 }
74046494
GBY
2387 }
2388 }
93481ff0 2389
74046494
GBY
2390 if (has_pcps)
2391 cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 else
2393 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 }
93481ff0
VB
2395 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 zone, 1);
9f8f2172
CL
2397}
2398
296699de 2399#ifdef CONFIG_HIBERNATION
1da177e4
LT
2400
2401void mark_free_pages(struct zone *zone)
2402{
f623f0db
RW
2403 unsigned long pfn, max_zone_pfn;
2404 unsigned long flags;
7aeb09f9 2405 unsigned int order, t;
86760a2c 2406 struct page *page;
1da177e4 2407
8080fc03 2408 if (zone_is_empty(zone))
1da177e4
LT
2409 return;
2410
2411 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2412
108bcc96 2413 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2414 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 if (pfn_valid(pfn)) {
86760a2c 2416 page = pfn_to_page(pfn);
ba6b0979
JK
2417
2418 if (page_zone(page) != zone)
2419 continue;
2420
7be98234
RW
2421 if (!swsusp_page_is_forbidden(page))
2422 swsusp_unset_page_free(page);
f623f0db 2423 }
1da177e4 2424
b2a0ac88 2425 for_each_migratetype_order(order, t) {
86760a2c
GT
2426 list_for_each_entry(page,
2427 &zone->free_area[order].free_list[t], lru) {
f623f0db 2428 unsigned long i;
1da177e4 2429
86760a2c 2430 pfn = page_to_pfn(page);
f623f0db 2431 for (i = 0; i < (1UL << order); i++)
7be98234 2432 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2433 }
b2a0ac88 2434 }
1da177e4
LT
2435 spin_unlock_irqrestore(&zone->lock, flags);
2436}
e2c55dc8 2437#endif /* CONFIG_PM */
1da177e4 2438
1da177e4
LT
2439/*
2440 * Free a 0-order page
b745bc85 2441 * cold == true ? free a cold page : free a hot page
1da177e4 2442 */
b745bc85 2443void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2444{
2445 struct zone *zone = page_zone(page);
2446 struct per_cpu_pages *pcp;
2447 unsigned long flags;
dc4b0caf 2448 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2449 int migratetype;
1da177e4 2450
4db7548c 2451 if (!free_pcp_prepare(page))
689bcebf
HD
2452 return;
2453
dc4b0caf 2454 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2455 set_pcppage_migratetype(page, migratetype);
1da177e4 2456 local_irq_save(flags);
f8891e5e 2457 __count_vm_event(PGFREE);
da456f14 2458
5f8dcc21
MG
2459 /*
2460 * We only track unmovable, reclaimable and movable on pcp lists.
2461 * Free ISOLATE pages back to the allocator because they are being
2462 * offlined but treat RESERVE as movable pages so we can get those
2463 * areas back if necessary. Otherwise, we may have to free
2464 * excessively into the page allocator
2465 */
2466 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2467 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2468 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2469 goto out;
2470 }
2471 migratetype = MIGRATE_MOVABLE;
2472 }
2473
99dcc3e5 2474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2475 if (!cold)
5f8dcc21 2476 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2477 else
2478 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2479 pcp->count++;
48db57f8 2480 if (pcp->count >= pcp->high) {
4db0c3c2 2481 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2482 free_pcppages_bulk(zone, batch, pcp);
2483 pcp->count -= batch;
48db57f8 2484 }
5f8dcc21
MG
2485
2486out:
1da177e4 2487 local_irq_restore(flags);
1da177e4
LT
2488}
2489
cc59850e
KK
2490/*
2491 * Free a list of 0-order pages
2492 */
b745bc85 2493void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2494{
2495 struct page *page, *next;
2496
2497 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2498 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2499 free_hot_cold_page(page, cold);
2500 }
2501}
2502
8dfcc9ba
NP
2503/*
2504 * split_page takes a non-compound higher-order page, and splits it into
2505 * n (1<<order) sub-pages: page[0..n]
2506 * Each sub-page must be freed individually.
2507 *
2508 * Note: this is probably too low level an operation for use in drivers.
2509 * Please consult with lkml before using this in your driver.
2510 */
2511void split_page(struct page *page, unsigned int order)
2512{
2513 int i;
2514
309381fe
SL
2515 VM_BUG_ON_PAGE(PageCompound(page), page);
2516 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2517
2518#ifdef CONFIG_KMEMCHECK
2519 /*
2520 * Split shadow pages too, because free(page[0]) would
2521 * otherwise free the whole shadow.
2522 */
2523 if (kmemcheck_page_is_tracked(page))
2524 split_page(virt_to_page(page[0].shadow), order);
2525#endif
2526
a9627bc5 2527 for (i = 1; i < (1 << order); i++)
7835e98b 2528 set_page_refcounted(page + i);
a9627bc5 2529 split_page_owner(page, order);
8dfcc9ba 2530}
5853ff23 2531EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2532
3c605096 2533int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2534{
748446bb
MG
2535 unsigned long watermark;
2536 struct zone *zone;
2139cbe6 2537 int mt;
748446bb
MG
2538
2539 BUG_ON(!PageBuddy(page));
2540
2541 zone = page_zone(page);
2e30abd1 2542 mt = get_pageblock_migratetype(page);
748446bb 2543
194159fb 2544 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2545 /*
2546 * Obey watermarks as if the page was being allocated. We can
2547 * emulate a high-order watermark check with a raised order-0
2548 * watermark, because we already know our high-order page
2549 * exists.
2550 */
2551 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2552 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2553 return 0;
2554
8fb74b9f 2555 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2556 }
748446bb
MG
2557
2558 /* Remove page from free list */
2559 list_del(&page->lru);
2560 zone->free_area[order].nr_free--;
2561 rmv_page_order(page);
2139cbe6 2562
400bc7fd 2563 /*
2564 * Set the pageblock if the isolated page is at least half of a
2565 * pageblock
2566 */
748446bb
MG
2567 if (order >= pageblock_order - 1) {
2568 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2569 for (; page < endpage; page += pageblock_nr_pages) {
2570 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2571 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2573 set_pageblock_migratetype(page,
2574 MIGRATE_MOVABLE);
2575 }
748446bb
MG
2576 }
2577
f3a14ced 2578
8fb74b9f 2579 return 1UL << order;
1fb3f8ca
MG
2580}
2581
060e7417
MG
2582/*
2583 * Update NUMA hit/miss statistics
2584 *
2585 * Must be called with interrupts disabled.
2586 *
2587 * When __GFP_OTHER_NODE is set assume the node of the preferred
2588 * zone is the local node. This is useful for daemons who allocate
2589 * memory on behalf of other processes.
2590 */
2591static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2592 gfp_t flags)
2593{
2594#ifdef CONFIG_NUMA
2595 int local_nid = numa_node_id();
2596 enum zone_stat_item local_stat = NUMA_LOCAL;
2597
2598 if (unlikely(flags & __GFP_OTHER_NODE)) {
2599 local_stat = NUMA_OTHER;
2600 local_nid = preferred_zone->node;
2601 }
2602
2603 if (z->node == local_nid) {
2604 __inc_zone_state(z, NUMA_HIT);
2605 __inc_zone_state(z, local_stat);
2606 } else {
2607 __inc_zone_state(z, NUMA_MISS);
2608 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2609 }
2610#endif
2611}
2612
1da177e4 2613/*
75379191 2614 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2615 */
0a15c3e9
MG
2616static inline
2617struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2618 struct zone *zone, unsigned int order,
c603844b
MG
2619 gfp_t gfp_flags, unsigned int alloc_flags,
2620 int migratetype)
1da177e4
LT
2621{
2622 unsigned long flags;
689bcebf 2623 struct page *page;
b745bc85 2624 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2625
48db57f8 2626 if (likely(order == 0)) {
1da177e4 2627 struct per_cpu_pages *pcp;
5f8dcc21 2628 struct list_head *list;
1da177e4 2629
1da177e4 2630 local_irq_save(flags);
479f854a
MG
2631 do {
2632 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2633 list = &pcp->lists[migratetype];
2634 if (list_empty(list)) {
2635 pcp->count += rmqueue_bulk(zone, 0,
2636 pcp->batch, list,
2637 migratetype, cold);
2638 if (unlikely(list_empty(list)))
2639 goto failed;
2640 }
b92a6edd 2641
479f854a
MG
2642 if (cold)
2643 page = list_last_entry(list, struct page, lru);
2644 else
2645 page = list_first_entry(list, struct page, lru);
5f8dcc21 2646
83b9355b
VB
2647 list_del(&page->lru);
2648 pcp->count--;
2649
2650 } while (check_new_pcp(page));
7fb1d9fc 2651 } else {
0f352e53
MH
2652 /*
2653 * We most definitely don't want callers attempting to
2654 * allocate greater than order-1 page units with __GFP_NOFAIL.
2655 */
2656 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2657 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2658
479f854a
MG
2659 do {
2660 page = NULL;
2661 if (alloc_flags & ALLOC_HARDER) {
2662 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2663 if (page)
2664 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2665 }
2666 if (!page)
2667 page = __rmqueue(zone, order, migratetype);
2668 } while (page && check_new_pages(page, order));
a74609fa
NP
2669 spin_unlock(&zone->lock);
2670 if (!page)
2671 goto failed;
d1ce749a 2672 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2673 get_pcppage_migratetype(page));
1da177e4
LT
2674 }
2675
16709d1d 2676 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2677 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2678 local_irq_restore(flags);
1da177e4 2679
309381fe 2680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2681 return page;
a74609fa
NP
2682
2683failed:
2684 local_irq_restore(flags);
a74609fa 2685 return NULL;
1da177e4
LT
2686}
2687
933e312e
AM
2688#ifdef CONFIG_FAIL_PAGE_ALLOC
2689
b2588c4b 2690static struct {
933e312e
AM
2691 struct fault_attr attr;
2692
621a5f7a 2693 bool ignore_gfp_highmem;
71baba4b 2694 bool ignore_gfp_reclaim;
54114994 2695 u32 min_order;
933e312e
AM
2696} fail_page_alloc = {
2697 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2698 .ignore_gfp_reclaim = true,
621a5f7a 2699 .ignore_gfp_highmem = true,
54114994 2700 .min_order = 1,
933e312e
AM
2701};
2702
2703static int __init setup_fail_page_alloc(char *str)
2704{
2705 return setup_fault_attr(&fail_page_alloc.attr, str);
2706}
2707__setup("fail_page_alloc=", setup_fail_page_alloc);
2708
deaf386e 2709static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2710{
54114994 2711 if (order < fail_page_alloc.min_order)
deaf386e 2712 return false;
933e312e 2713 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2714 return false;
933e312e 2715 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2716 return false;
71baba4b
MG
2717 if (fail_page_alloc.ignore_gfp_reclaim &&
2718 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2719 return false;
933e312e
AM
2720
2721 return should_fail(&fail_page_alloc.attr, 1 << order);
2722}
2723
2724#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2725
2726static int __init fail_page_alloc_debugfs(void)
2727{
f4ae40a6 2728 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2729 struct dentry *dir;
933e312e 2730
dd48c085
AM
2731 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2732 &fail_page_alloc.attr);
2733 if (IS_ERR(dir))
2734 return PTR_ERR(dir);
933e312e 2735
b2588c4b 2736 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2737 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2738 goto fail;
2739 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2740 &fail_page_alloc.ignore_gfp_highmem))
2741 goto fail;
2742 if (!debugfs_create_u32("min-order", mode, dir,
2743 &fail_page_alloc.min_order))
2744 goto fail;
2745
2746 return 0;
2747fail:
dd48c085 2748 debugfs_remove_recursive(dir);
933e312e 2749
b2588c4b 2750 return -ENOMEM;
933e312e
AM
2751}
2752
2753late_initcall(fail_page_alloc_debugfs);
2754
2755#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2756
2757#else /* CONFIG_FAIL_PAGE_ALLOC */
2758
deaf386e 2759static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2760{
deaf386e 2761 return false;
933e312e
AM
2762}
2763
2764#endif /* CONFIG_FAIL_PAGE_ALLOC */
2765
1da177e4 2766/*
97a16fc8
MG
2767 * Return true if free base pages are above 'mark'. For high-order checks it
2768 * will return true of the order-0 watermark is reached and there is at least
2769 * one free page of a suitable size. Checking now avoids taking the zone lock
2770 * to check in the allocation paths if no pages are free.
1da177e4 2771 */
86a294a8
MH
2772bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2773 int classzone_idx, unsigned int alloc_flags,
2774 long free_pages)
1da177e4 2775{
d23ad423 2776 long min = mark;
1da177e4 2777 int o;
c603844b 2778 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2779
0aaa29a5 2780 /* free_pages may go negative - that's OK */
df0a6daa 2781 free_pages -= (1 << order) - 1;
0aaa29a5 2782
7fb1d9fc 2783 if (alloc_flags & ALLOC_HIGH)
1da177e4 2784 min -= min / 2;
0aaa29a5
MG
2785
2786 /*
2787 * If the caller does not have rights to ALLOC_HARDER then subtract
2788 * the high-atomic reserves. This will over-estimate the size of the
2789 * atomic reserve but it avoids a search.
2790 */
97a16fc8 2791 if (likely(!alloc_harder))
0aaa29a5
MG
2792 free_pages -= z->nr_reserved_highatomic;
2793 else
1da177e4 2794 min -= min / 4;
e2b19197 2795
d95ea5d1
BZ
2796#ifdef CONFIG_CMA
2797 /* If allocation can't use CMA areas don't use free CMA pages */
2798 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2799 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2800#endif
026b0814 2801
97a16fc8
MG
2802 /*
2803 * Check watermarks for an order-0 allocation request. If these
2804 * are not met, then a high-order request also cannot go ahead
2805 * even if a suitable page happened to be free.
2806 */
2807 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2808 return false;
1da177e4 2809
97a16fc8
MG
2810 /* If this is an order-0 request then the watermark is fine */
2811 if (!order)
2812 return true;
2813
2814 /* For a high-order request, check at least one suitable page is free */
2815 for (o = order; o < MAX_ORDER; o++) {
2816 struct free_area *area = &z->free_area[o];
2817 int mt;
2818
2819 if (!area->nr_free)
2820 continue;
2821
2822 if (alloc_harder)
2823 return true;
1da177e4 2824
97a16fc8
MG
2825 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2826 if (!list_empty(&area->free_list[mt]))
2827 return true;
2828 }
2829
2830#ifdef CONFIG_CMA
2831 if ((alloc_flags & ALLOC_CMA) &&
2832 !list_empty(&area->free_list[MIGRATE_CMA])) {
2833 return true;
2834 }
2835#endif
1da177e4 2836 }
97a16fc8 2837 return false;
88f5acf8
MG
2838}
2839
7aeb09f9 2840bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2841 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2842{
2843 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2844 zone_page_state(z, NR_FREE_PAGES));
2845}
2846
48ee5f36
MG
2847static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2848 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2849{
2850 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2851 long cma_pages = 0;
2852
2853#ifdef CONFIG_CMA
2854 /* If allocation can't use CMA areas don't use free CMA pages */
2855 if (!(alloc_flags & ALLOC_CMA))
2856 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2857#endif
2858
2859 /*
2860 * Fast check for order-0 only. If this fails then the reserves
2861 * need to be calculated. There is a corner case where the check
2862 * passes but only the high-order atomic reserve are free. If
2863 * the caller is !atomic then it'll uselessly search the free
2864 * list. That corner case is then slower but it is harmless.
2865 */
2866 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2867 return true;
2868
2869 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2870 free_pages);
2871}
2872
7aeb09f9 2873bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2874 unsigned long mark, int classzone_idx)
88f5acf8
MG
2875{
2876 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2877
2878 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2879 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2880
e2b19197 2881 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2882 free_pages);
1da177e4
LT
2883}
2884
9276b1bc 2885#ifdef CONFIG_NUMA
957f822a
DR
2886static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2887{
5f7a75ac
MG
2888 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2889 RECLAIM_DISTANCE;
957f822a 2890}
9276b1bc 2891#else /* CONFIG_NUMA */
957f822a
DR
2892static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2893{
2894 return true;
2895}
9276b1bc
PJ
2896#endif /* CONFIG_NUMA */
2897
7fb1d9fc 2898/*
0798e519 2899 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2900 * a page.
2901 */
2902static struct page *
a9263751
VB
2903get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2904 const struct alloc_context *ac)
753ee728 2905{
c33d6c06 2906 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2907 struct zone *zone;
3b8c0be4
MG
2908 struct pglist_data *last_pgdat_dirty_limit = NULL;
2909
7fb1d9fc 2910 /*
9276b1bc 2911 * Scan zonelist, looking for a zone with enough free.
344736f2 2912 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2913 */
c33d6c06 2914 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2915 ac->nodemask) {
be06af00 2916 struct page *page;
e085dbc5
JW
2917 unsigned long mark;
2918
664eedde
MG
2919 if (cpusets_enabled() &&
2920 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2921 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2922 continue;
a756cf59
JW
2923 /*
2924 * When allocating a page cache page for writing, we
281e3726
MG
2925 * want to get it from a node that is within its dirty
2926 * limit, such that no single node holds more than its
a756cf59 2927 * proportional share of globally allowed dirty pages.
281e3726 2928 * The dirty limits take into account the node's
a756cf59
JW
2929 * lowmem reserves and high watermark so that kswapd
2930 * should be able to balance it without having to
2931 * write pages from its LRU list.
2932 *
a756cf59 2933 * XXX: For now, allow allocations to potentially
281e3726 2934 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2935 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2936 * which is important when on a NUMA setup the allowed
281e3726 2937 * nodes are together not big enough to reach the
a756cf59 2938 * global limit. The proper fix for these situations
281e3726 2939 * will require awareness of nodes in the
a756cf59
JW
2940 * dirty-throttling and the flusher threads.
2941 */
3b8c0be4
MG
2942 if (ac->spread_dirty_pages) {
2943 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2944 continue;
2945
2946 if (!node_dirty_ok(zone->zone_pgdat)) {
2947 last_pgdat_dirty_limit = zone->zone_pgdat;
2948 continue;
2949 }
2950 }
7fb1d9fc 2951
e085dbc5 2952 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2953 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2954 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2955 int ret;
2956
5dab2911
MG
2957 /* Checked here to keep the fast path fast */
2958 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2959 if (alloc_flags & ALLOC_NO_WATERMARKS)
2960 goto try_this_zone;
2961
a5f5f91d 2962 if (node_reclaim_mode == 0 ||
c33d6c06 2963 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2964 continue;
2965
a5f5f91d 2966 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2967 switch (ret) {
a5f5f91d 2968 case NODE_RECLAIM_NOSCAN:
fa5e084e 2969 /* did not scan */
cd38b115 2970 continue;
a5f5f91d 2971 case NODE_RECLAIM_FULL:
fa5e084e 2972 /* scanned but unreclaimable */
cd38b115 2973 continue;
fa5e084e
MG
2974 default:
2975 /* did we reclaim enough */
fed2719e 2976 if (zone_watermark_ok(zone, order, mark,
93ea9964 2977 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2978 goto try_this_zone;
2979
fed2719e 2980 continue;
0798e519 2981 }
7fb1d9fc
RS
2982 }
2983
fa5e084e 2984try_this_zone:
c33d6c06 2985 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2986 gfp_mask, alloc_flags, ac->migratetype);
75379191 2987 if (page) {
479f854a 2988 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2989
2990 /*
2991 * If this is a high-order atomic allocation then check
2992 * if the pageblock should be reserved for the future
2993 */
2994 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2995 reserve_highatomic_pageblock(page, zone, order);
2996
75379191
VB
2997 return page;
2998 }
54a6eb5c 2999 }
9276b1bc 3000
4ffeaf35 3001 return NULL;
753ee728
MH
3002}
3003
29423e77
DR
3004/*
3005 * Large machines with many possible nodes should not always dump per-node
3006 * meminfo in irq context.
3007 */
3008static inline bool should_suppress_show_mem(void)
3009{
3010 bool ret = false;
3011
3012#if NODES_SHIFT > 8
3013 ret = in_interrupt();
3014#endif
3015 return ret;
3016}
3017
a238ab5b
DH
3018static DEFINE_RATELIMIT_STATE(nopage_rs,
3019 DEFAULT_RATELIMIT_INTERVAL,
3020 DEFAULT_RATELIMIT_BURST);
3021
7877cdcc 3022void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
a238ab5b 3023{
a238ab5b 3024 unsigned int filter = SHOW_MEM_FILTER_NODES;
7877cdcc
MH
3025 struct va_format vaf;
3026 va_list args;
a238ab5b 3027
c0a32fc5
SG
3028 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3029 debug_guardpage_minorder() > 0)
a238ab5b
DH
3030 return;
3031
3032 /*
3033 * This documents exceptions given to allocations in certain
3034 * contexts that are allowed to allocate outside current's set
3035 * of allowed nodes.
3036 */
3037 if (!(gfp_mask & __GFP_NOMEMALLOC))
3038 if (test_thread_flag(TIF_MEMDIE) ||
3039 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3040 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3041 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3042 filter &= ~SHOW_MEM_FILTER_NODES;
3043
7877cdcc 3044 pr_warn("%s: ", current->comm);
3ee9a4f0 3045
7877cdcc
MH
3046 va_start(args, fmt);
3047 vaf.fmt = fmt;
3048 vaf.va = &args;
3049 pr_cont("%pV", &vaf);
3050 va_end(args);
3ee9a4f0 3051
7877cdcc 3052 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3ee9a4f0 3053
a238ab5b
DH
3054 dump_stack();
3055 if (!should_suppress_show_mem())
3056 show_mem(filter);
3057}
3058
11e33f6a
MG
3059static inline struct page *
3060__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3061 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3062{
6e0fc46d
DR
3063 struct oom_control oc = {
3064 .zonelist = ac->zonelist,
3065 .nodemask = ac->nodemask,
2a966b77 3066 .memcg = NULL,
6e0fc46d
DR
3067 .gfp_mask = gfp_mask,
3068 .order = order,
6e0fc46d 3069 };
11e33f6a
MG
3070 struct page *page;
3071
9879de73
JW
3072 *did_some_progress = 0;
3073
9879de73 3074 /*
dc56401f
JW
3075 * Acquire the oom lock. If that fails, somebody else is
3076 * making progress for us.
9879de73 3077 */
dc56401f 3078 if (!mutex_trylock(&oom_lock)) {
9879de73 3079 *did_some_progress = 1;
11e33f6a 3080 schedule_timeout_uninterruptible(1);
1da177e4
LT
3081 return NULL;
3082 }
6b1de916 3083
11e33f6a
MG
3084 /*
3085 * Go through the zonelist yet one more time, keep very high watermark
3086 * here, this is only to catch a parallel oom killing, we must fail if
3087 * we're still under heavy pressure.
3088 */
a9263751
VB
3089 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3090 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3091 if (page)
11e33f6a
MG
3092 goto out;
3093
4365a567 3094 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3095 /* Coredumps can quickly deplete all memory reserves */
3096 if (current->flags & PF_DUMPCORE)
3097 goto out;
4365a567
KH
3098 /* The OOM killer will not help higher order allocs */
3099 if (order > PAGE_ALLOC_COSTLY_ORDER)
3100 goto out;
03668b3c 3101 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3102 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3103 goto out;
9083905a
JW
3104 if (pm_suspended_storage())
3105 goto out;
3da88fb3
MH
3106 /*
3107 * XXX: GFP_NOFS allocations should rather fail than rely on
3108 * other request to make a forward progress.
3109 * We are in an unfortunate situation where out_of_memory cannot
3110 * do much for this context but let's try it to at least get
3111 * access to memory reserved if the current task is killed (see
3112 * out_of_memory). Once filesystems are ready to handle allocation
3113 * failures more gracefully we should just bail out here.
3114 */
3115
4167e9b2 3116 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3117 if (gfp_mask & __GFP_THISNODE)
3118 goto out;
3119 }
11e33f6a 3120 /* Exhausted what can be done so it's blamo time */
5020e285 3121 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3122 *did_some_progress = 1;
5020e285
MH
3123
3124 if (gfp_mask & __GFP_NOFAIL) {
3125 page = get_page_from_freelist(gfp_mask, order,
3126 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3127 /*
3128 * fallback to ignore cpuset restriction if our nodes
3129 * are depleted
3130 */
3131 if (!page)
3132 page = get_page_from_freelist(gfp_mask, order,
3133 ALLOC_NO_WATERMARKS, ac);
3134 }
3135 }
11e33f6a 3136out:
dc56401f 3137 mutex_unlock(&oom_lock);
11e33f6a
MG
3138 return page;
3139}
3140
33c2d214
MH
3141/*
3142 * Maximum number of compaction retries wit a progress before OOM
3143 * killer is consider as the only way to move forward.
3144 */
3145#define MAX_COMPACT_RETRIES 16
3146
56de7263
MG
3147#ifdef CONFIG_COMPACTION
3148/* Try memory compaction for high-order allocations before reclaim */
3149static struct page *
3150__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3151 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3152 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3153{
98dd3b48 3154 struct page *page;
53853e2d
VB
3155
3156 if (!order)
66199712 3157 return NULL;
66199712 3158
c06b1fca 3159 current->flags |= PF_MEMALLOC;
c5d01d0d 3160 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3161 prio);
c06b1fca 3162 current->flags &= ~PF_MEMALLOC;
56de7263 3163
c5d01d0d 3164 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3165 return NULL;
53853e2d 3166
98dd3b48
VB
3167 /*
3168 * At least in one zone compaction wasn't deferred or skipped, so let's
3169 * count a compaction stall
3170 */
3171 count_vm_event(COMPACTSTALL);
8fb74b9f 3172
31a6c190 3173 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3174
98dd3b48
VB
3175 if (page) {
3176 struct zone *zone = page_zone(page);
53853e2d 3177
98dd3b48
VB
3178 zone->compact_blockskip_flush = false;
3179 compaction_defer_reset(zone, order, true);
3180 count_vm_event(COMPACTSUCCESS);
3181 return page;
3182 }
56de7263 3183
98dd3b48
VB
3184 /*
3185 * It's bad if compaction run occurs and fails. The most likely reason
3186 * is that pages exist, but not enough to satisfy watermarks.
3187 */
3188 count_vm_event(COMPACTFAIL);
66199712 3189
98dd3b48 3190 cond_resched();
56de7263
MG
3191
3192 return NULL;
3193}
33c2d214 3194
3250845d
VB
3195static inline bool
3196should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3197 enum compact_result compact_result,
3198 enum compact_priority *compact_priority,
d9436498 3199 int *compaction_retries)
3250845d
VB
3200{
3201 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3202 int min_priority;
3250845d
VB
3203
3204 if (!order)
3205 return false;
3206
d9436498
VB
3207 if (compaction_made_progress(compact_result))
3208 (*compaction_retries)++;
3209
3250845d
VB
3210 /*
3211 * compaction considers all the zone as desperately out of memory
3212 * so it doesn't really make much sense to retry except when the
3213 * failure could be caused by insufficient priority
3214 */
d9436498
VB
3215 if (compaction_failed(compact_result))
3216 goto check_priority;
3250845d
VB
3217
3218 /*
3219 * make sure the compaction wasn't deferred or didn't bail out early
3220 * due to locks contention before we declare that we should give up.
3221 * But do not retry if the given zonelist is not suitable for
3222 * compaction.
3223 */
3224 if (compaction_withdrawn(compact_result))
3225 return compaction_zonelist_suitable(ac, order, alloc_flags);
3226
3227 /*
3228 * !costly requests are much more important than __GFP_REPEAT
3229 * costly ones because they are de facto nofail and invoke OOM
3230 * killer to move on while costly can fail and users are ready
3231 * to cope with that. 1/4 retries is rather arbitrary but we
3232 * would need much more detailed feedback from compaction to
3233 * make a better decision.
3234 */
3235 if (order > PAGE_ALLOC_COSTLY_ORDER)
3236 max_retries /= 4;
d9436498 3237 if (*compaction_retries <= max_retries)
3250845d
VB
3238 return true;
3239
d9436498
VB
3240 /*
3241 * Make sure there are attempts at the highest priority if we exhausted
3242 * all retries or failed at the lower priorities.
3243 */
3244check_priority:
c2033b00
VB
3245 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3246 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3247 if (*compact_priority > min_priority) {
d9436498
VB
3248 (*compact_priority)--;
3249 *compaction_retries = 0;
3250 return true;
3251 }
3250845d
VB
3252 return false;
3253}
56de7263
MG
3254#else
3255static inline struct page *
3256__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3257 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3258 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3259{
33c2d214 3260 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3261 return NULL;
3262}
33c2d214
MH
3263
3264static inline bool
86a294a8
MH
3265should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3266 enum compact_result compact_result,
a5508cd8 3267 enum compact_priority *compact_priority,
d9436498 3268 int *compaction_retries)
33c2d214 3269{
31e49bfd
MH
3270 struct zone *zone;
3271 struct zoneref *z;
3272
3273 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3274 return false;
3275
3276 /*
3277 * There are setups with compaction disabled which would prefer to loop
3278 * inside the allocator rather than hit the oom killer prematurely.
3279 * Let's give them a good hope and keep retrying while the order-0
3280 * watermarks are OK.
3281 */
3282 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3283 ac->nodemask) {
3284 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3285 ac_classzone_idx(ac), alloc_flags))
3286 return true;
3287 }
33c2d214
MH
3288 return false;
3289}
3250845d 3290#endif /* CONFIG_COMPACTION */
56de7263 3291
bba90710
MS
3292/* Perform direct synchronous page reclaim */
3293static int
a9263751
VB
3294__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3295 const struct alloc_context *ac)
11e33f6a 3296{
11e33f6a 3297 struct reclaim_state reclaim_state;
bba90710 3298 int progress;
11e33f6a
MG
3299
3300 cond_resched();
3301
3302 /* We now go into synchronous reclaim */
3303 cpuset_memory_pressure_bump();
c06b1fca 3304 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3305 lockdep_set_current_reclaim_state(gfp_mask);
3306 reclaim_state.reclaimed_slab = 0;
c06b1fca 3307 current->reclaim_state = &reclaim_state;
11e33f6a 3308
a9263751
VB
3309 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3310 ac->nodemask);
11e33f6a 3311
c06b1fca 3312 current->reclaim_state = NULL;
11e33f6a 3313 lockdep_clear_current_reclaim_state();
c06b1fca 3314 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3315
3316 cond_resched();
3317
bba90710
MS
3318 return progress;
3319}
3320
3321/* The really slow allocator path where we enter direct reclaim */
3322static inline struct page *
3323__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3324 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3325 unsigned long *did_some_progress)
bba90710
MS
3326{
3327 struct page *page = NULL;
3328 bool drained = false;
3329
a9263751 3330 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3331 if (unlikely(!(*did_some_progress)))
3332 return NULL;
11e33f6a 3333
9ee493ce 3334retry:
31a6c190 3335 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3336
3337 /*
3338 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3339 * pages are pinned on the per-cpu lists or in high alloc reserves.
3340 * Shrink them them and try again
9ee493ce
MG
3341 */
3342 if (!page && !drained) {
29fac03b 3343 unreserve_highatomic_pageblock(ac, false);
93481ff0 3344 drain_all_pages(NULL);
9ee493ce
MG
3345 drained = true;
3346 goto retry;
3347 }
3348
11e33f6a
MG
3349 return page;
3350}
3351
a9263751 3352static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3353{
3354 struct zoneref *z;
3355 struct zone *zone;
e1a55637 3356 pg_data_t *last_pgdat = NULL;
3a025760 3357
a9263751 3358 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3359 ac->high_zoneidx, ac->nodemask) {
3360 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3361 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3362 last_pgdat = zone->zone_pgdat;
3363 }
3a025760
JW
3364}
3365
c603844b 3366static inline unsigned int
341ce06f
PZ
3367gfp_to_alloc_flags(gfp_t gfp_mask)
3368{
c603844b 3369 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3370
a56f57ff 3371 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3372 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3373
341ce06f
PZ
3374 /*
3375 * The caller may dip into page reserves a bit more if the caller
3376 * cannot run direct reclaim, or if the caller has realtime scheduling
3377 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3378 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3379 */
e6223a3b 3380 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3381
d0164adc 3382 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3383 /*
b104a35d
DR
3384 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3385 * if it can't schedule.
5c3240d9 3386 */
b104a35d 3387 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3388 alloc_flags |= ALLOC_HARDER;
523b9458 3389 /*
b104a35d 3390 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3391 * comment for __cpuset_node_allowed().
523b9458 3392 */
341ce06f 3393 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3394 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3395 alloc_flags |= ALLOC_HARDER;
3396
d95ea5d1 3397#ifdef CONFIG_CMA
43e7a34d 3398 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3399 alloc_flags |= ALLOC_CMA;
3400#endif
341ce06f
PZ
3401 return alloc_flags;
3402}
3403
072bb0aa
MG
3404bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3405{
31a6c190
VB
3406 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3407 return false;
3408
3409 if (gfp_mask & __GFP_MEMALLOC)
3410 return true;
3411 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3412 return true;
3413 if (!in_interrupt() &&
3414 ((current->flags & PF_MEMALLOC) ||
3415 unlikely(test_thread_flag(TIF_MEMDIE))))
3416 return true;
3417
3418 return false;
072bb0aa
MG
3419}
3420
0a0337e0
MH
3421/*
3422 * Maximum number of reclaim retries without any progress before OOM killer
3423 * is consider as the only way to move forward.
3424 */
3425#define MAX_RECLAIM_RETRIES 16
3426
3427/*
3428 * Checks whether it makes sense to retry the reclaim to make a forward progress
3429 * for the given allocation request.
3430 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3431 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3432 * any progress in a row) is considered as well as the reclaimable pages on the
3433 * applicable zone list (with a backoff mechanism which is a function of
3434 * no_progress_loops).
0a0337e0
MH
3435 *
3436 * Returns true if a retry is viable or false to enter the oom path.
3437 */
3438static inline bool
3439should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3440 struct alloc_context *ac, int alloc_flags,
423b452e 3441 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3442{
3443 struct zone *zone;
3444 struct zoneref *z;
3445
423b452e
VB
3446 /*
3447 * Costly allocations might have made a progress but this doesn't mean
3448 * their order will become available due to high fragmentation so
3449 * always increment the no progress counter for them
3450 */
3451 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3452 *no_progress_loops = 0;
3453 else
3454 (*no_progress_loops)++;
3455
0a0337e0
MH
3456 /*
3457 * Make sure we converge to OOM if we cannot make any progress
3458 * several times in the row.
3459 */
04c8716f
MK
3460 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3461 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3462 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3463 }
0a0337e0 3464
bca67592
MG
3465 /*
3466 * Keep reclaiming pages while there is a chance this will lead
3467 * somewhere. If none of the target zones can satisfy our allocation
3468 * request even if all reclaimable pages are considered then we are
3469 * screwed and have to go OOM.
0a0337e0
MH
3470 */
3471 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3472 ac->nodemask) {
3473 unsigned long available;
ede37713 3474 unsigned long reclaimable;
0a0337e0 3475
5a1c84b4 3476 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3477 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3478 MAX_RECLAIM_RETRIES);
5a1c84b4 3479 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3480
3481 /*
3482 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3483 * available?
0a0337e0 3484 */
5a1c84b4
MG
3485 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3486 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3487 /*
3488 * If we didn't make any progress and have a lot of
3489 * dirty + writeback pages then we should wait for
3490 * an IO to complete to slow down the reclaim and
3491 * prevent from pre mature OOM
3492 */
3493 if (!did_some_progress) {
11fb9989 3494 unsigned long write_pending;
ede37713 3495
5a1c84b4
MG
3496 write_pending = zone_page_state_snapshot(zone,
3497 NR_ZONE_WRITE_PENDING);
ede37713 3498
11fb9989 3499 if (2 * write_pending > reclaimable) {
ede37713
MH
3500 congestion_wait(BLK_RW_ASYNC, HZ/10);
3501 return true;
3502 }
3503 }
5a1c84b4 3504
ede37713
MH
3505 /*
3506 * Memory allocation/reclaim might be called from a WQ
3507 * context and the current implementation of the WQ
3508 * concurrency control doesn't recognize that
3509 * a particular WQ is congested if the worker thread is
3510 * looping without ever sleeping. Therefore we have to
3511 * do a short sleep here rather than calling
3512 * cond_resched().
3513 */
3514 if (current->flags & PF_WQ_WORKER)
3515 schedule_timeout_uninterruptible(1);
3516 else
3517 cond_resched();
3518
0a0337e0
MH
3519 return true;
3520 }
3521 }
3522
3523 return false;
3524}
3525
11e33f6a
MG
3526static inline struct page *
3527__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3528 struct alloc_context *ac)
11e33f6a 3529{
d0164adc 3530 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3531 struct page *page = NULL;
c603844b 3532 unsigned int alloc_flags;
11e33f6a 3533 unsigned long did_some_progress;
a5508cd8 3534 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3535 enum compact_result compact_result;
33c2d214 3536 int compaction_retries = 0;
0a0337e0 3537 int no_progress_loops = 0;
63f53dea
MH
3538 unsigned long alloc_start = jiffies;
3539 unsigned int stall_timeout = 10 * HZ;
1da177e4 3540
72807a74
MG
3541 /*
3542 * In the slowpath, we sanity check order to avoid ever trying to
3543 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3544 * be using allocators in order of preference for an area that is
3545 * too large.
3546 */
1fc28b70
MG
3547 if (order >= MAX_ORDER) {
3548 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3549 return NULL;
1fc28b70 3550 }
1da177e4 3551
d0164adc
MG
3552 /*
3553 * We also sanity check to catch abuse of atomic reserves being used by
3554 * callers that are not in atomic context.
3555 */
3556 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3557 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3558 gfp_mask &= ~__GFP_ATOMIC;
3559
9bf2229f 3560 /*
31a6c190
VB
3561 * The fast path uses conservative alloc_flags to succeed only until
3562 * kswapd needs to be woken up, and to avoid the cost of setting up
3563 * alloc_flags precisely. So we do that now.
9bf2229f 3564 */
341ce06f 3565 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3566
23771235
VB
3567 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3568 wake_all_kswapds(order, ac);
3569
3570 /*
3571 * The adjusted alloc_flags might result in immediate success, so try
3572 * that first
3573 */
3574 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3575 if (page)
3576 goto got_pg;
3577
a8161d1e
VB
3578 /*
3579 * For costly allocations, try direct compaction first, as it's likely
3580 * that we have enough base pages and don't need to reclaim. Don't try
3581 * that for allocations that are allowed to ignore watermarks, as the
3582 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3583 */
3584 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3585 !gfp_pfmemalloc_allowed(gfp_mask)) {
3586 page = __alloc_pages_direct_compact(gfp_mask, order,
3587 alloc_flags, ac,
a5508cd8 3588 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3589 &compact_result);
3590 if (page)
3591 goto got_pg;
3592
3eb2771b
VB
3593 /*
3594 * Checks for costly allocations with __GFP_NORETRY, which
3595 * includes THP page fault allocations
3596 */
3597 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3598 /*
3599 * If compaction is deferred for high-order allocations,
3600 * it is because sync compaction recently failed. If
3601 * this is the case and the caller requested a THP
3602 * allocation, we do not want to heavily disrupt the
3603 * system, so we fail the allocation instead of entering
3604 * direct reclaim.
3605 */
3606 if (compact_result == COMPACT_DEFERRED)
3607 goto nopage;
3608
a8161d1e 3609 /*
3eb2771b
VB
3610 * Looks like reclaim/compaction is worth trying, but
3611 * sync compaction could be very expensive, so keep
25160354 3612 * using async compaction.
a8161d1e 3613 */
a5508cd8 3614 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3615 }
3616 }
23771235 3617
31a6c190 3618retry:
23771235 3619 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3620 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3621 wake_all_kswapds(order, ac);
3622
23771235
VB
3623 if (gfp_pfmemalloc_allowed(gfp_mask))
3624 alloc_flags = ALLOC_NO_WATERMARKS;
3625
e46e7b77
MG
3626 /*
3627 * Reset the zonelist iterators if memory policies can be ignored.
3628 * These allocations are high priority and system rather than user
3629 * orientated.
3630 */
23771235 3631 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3632 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3633 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3634 ac->high_zoneidx, ac->nodemask);
3635 }
3636
23771235 3637 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3638 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3639 if (page)
3640 goto got_pg;
1da177e4 3641
d0164adc
MG
3642 /* Caller is not willing to reclaim, we can't balance anything */
3643 if (!can_direct_reclaim) {
aed0a0e3 3644 /*
33d53103
MH
3645 * All existing users of the __GFP_NOFAIL are blockable, so warn
3646 * of any new users that actually allow this type of allocation
3647 * to fail.
aed0a0e3
DR
3648 */
3649 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3650 goto nopage;
aed0a0e3 3651 }
1da177e4 3652
341ce06f 3653 /* Avoid recursion of direct reclaim */
33d53103
MH
3654 if (current->flags & PF_MEMALLOC) {
3655 /*
3656 * __GFP_NOFAIL request from this context is rather bizarre
3657 * because we cannot reclaim anything and only can loop waiting
3658 * for somebody to do a work for us.
3659 */
3660 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3661 cond_resched();
3662 goto retry;
3663 }
341ce06f 3664 goto nopage;
33d53103 3665 }
341ce06f 3666
6583bb64
DR
3667 /* Avoid allocations with no watermarks from looping endlessly */
3668 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3669 goto nopage;
3670
a8161d1e
VB
3671
3672 /* Try direct reclaim and then allocating */
3673 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3674 &did_some_progress);
3675 if (page)
3676 goto got_pg;
3677
3678 /* Try direct compaction and then allocating */
a9263751 3679 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3680 compact_priority, &compact_result);
56de7263
MG
3681 if (page)
3682 goto got_pg;
75f30861 3683
9083905a
JW
3684 /* Do not loop if specifically requested */
3685 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3686 goto nopage;
9083905a 3687
0a0337e0
MH
3688 /*
3689 * Do not retry costly high order allocations unless they are
3690 * __GFP_REPEAT
3691 */
3692 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3693 goto nopage;
0a0337e0 3694
63f53dea
MH
3695 /* Make sure we know about allocations which stall for too long */
3696 if (time_after(jiffies, alloc_start + stall_timeout)) {
3697 warn_alloc(gfp_mask,
9e80c719 3698 "page allocation stalls for %ums, order:%u",
63f53dea
MH
3699 jiffies_to_msecs(jiffies-alloc_start), order);
3700 stall_timeout += 10 * HZ;
3701 }
3702
0a0337e0 3703 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3704 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3705 goto retry;
3706
33c2d214
MH
3707 /*
3708 * It doesn't make any sense to retry for the compaction if the order-0
3709 * reclaim is not able to make any progress because the current
3710 * implementation of the compaction depends on the sufficient amount
3711 * of free memory (see __compaction_suitable)
3712 */
3713 if (did_some_progress > 0 &&
86a294a8 3714 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3715 compact_result, &compact_priority,
d9436498 3716 &compaction_retries))
33c2d214
MH
3717 goto retry;
3718
9083905a
JW
3719 /* Reclaim has failed us, start killing things */
3720 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3721 if (page)
3722 goto got_pg;
3723
3724 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3725 if (did_some_progress) {
3726 no_progress_loops = 0;
9083905a 3727 goto retry;
0a0337e0 3728 }
9083905a 3729
1da177e4 3730nopage:
7877cdcc
MH
3731 warn_alloc(gfp_mask,
3732 "page allocation failure: order:%u", order);
1da177e4 3733got_pg:
072bb0aa 3734 return page;
1da177e4 3735}
11e33f6a
MG
3736
3737/*
3738 * This is the 'heart' of the zoned buddy allocator.
3739 */
3740struct page *
3741__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3742 struct zonelist *zonelist, nodemask_t *nodemask)
3743{
5bb1b169 3744 struct page *page;
cc9a6c87 3745 unsigned int cpuset_mems_cookie;
e6cbd7f2 3746 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3747 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3748 struct alloc_context ac = {
3749 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3750 .zonelist = zonelist,
a9263751
VB
3751 .nodemask = nodemask,
3752 .migratetype = gfpflags_to_migratetype(gfp_mask),
3753 };
11e33f6a 3754
682a3385 3755 if (cpusets_enabled()) {
83d4ca81 3756 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3757 alloc_flags |= ALLOC_CPUSET;
3758 if (!ac.nodemask)
3759 ac.nodemask = &cpuset_current_mems_allowed;
3760 }
3761
dcce284a
BH
3762 gfp_mask &= gfp_allowed_mask;
3763
11e33f6a
MG
3764 lockdep_trace_alloc(gfp_mask);
3765
d0164adc 3766 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3767
3768 if (should_fail_alloc_page(gfp_mask, order))
3769 return NULL;
3770
3771 /*
3772 * Check the zones suitable for the gfp_mask contain at least one
3773 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3774 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3775 */
3776 if (unlikely(!zonelist->_zonerefs->zone))
3777 return NULL;
3778
a9263751 3779 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3780 alloc_flags |= ALLOC_CMA;
3781
cc9a6c87 3782retry_cpuset:
d26914d1 3783 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3784
c9ab0c4f
MG
3785 /* Dirty zone balancing only done in the fast path */
3786 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3787
e46e7b77
MG
3788 /*
3789 * The preferred zone is used for statistics but crucially it is
3790 * also used as the starting point for the zonelist iterator. It
3791 * may get reset for allocations that ignore memory policies.
3792 */
c33d6c06
MG
3793 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3794 ac.high_zoneidx, ac.nodemask);
3795 if (!ac.preferred_zoneref) {
5bb1b169 3796 page = NULL;
4fcb0971 3797 goto no_zone;
5bb1b169
MG
3798 }
3799
5117f45d 3800 /* First allocation attempt */
a9263751 3801 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3802 if (likely(page))
3803 goto out;
11e33f6a 3804
4fcb0971
MG
3805 /*
3806 * Runtime PM, block IO and its error handling path can deadlock
3807 * because I/O on the device might not complete.
3808 */
3809 alloc_mask = memalloc_noio_flags(gfp_mask);
3810 ac.spread_dirty_pages = false;
23f086f9 3811
4741526b
MG
3812 /*
3813 * Restore the original nodemask if it was potentially replaced with
3814 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3815 */
3816 if (cpusets_enabled())
3817 ac.nodemask = nodemask;
4fcb0971 3818 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3819
4fcb0971 3820no_zone:
cc9a6c87
MG
3821 /*
3822 * When updating a task's mems_allowed, it is possible to race with
3823 * parallel threads in such a way that an allocation can fail while
3824 * the mask is being updated. If a page allocation is about to fail,
3825 * check if the cpuset changed during allocation and if so, retry.
3826 */
83d4ca81
MG
3827 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3828 alloc_mask = gfp_mask;
cc9a6c87 3829 goto retry_cpuset;
83d4ca81 3830 }
cc9a6c87 3831
4fcb0971 3832out:
c4159a75
VD
3833 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3834 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3835 __free_pages(page, order);
3836 page = NULL;
4949148a
VD
3837 }
3838
4fcb0971
MG
3839 if (kmemcheck_enabled && page)
3840 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3841
3842 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3843
11e33f6a 3844 return page;
1da177e4 3845}
d239171e 3846EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3847
3848/*
3849 * Common helper functions.
3850 */
920c7a5d 3851unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3852{
945a1113
AM
3853 struct page *page;
3854
3855 /*
3856 * __get_free_pages() returns a 32-bit address, which cannot represent
3857 * a highmem page
3858 */
3859 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3860
1da177e4
LT
3861 page = alloc_pages(gfp_mask, order);
3862 if (!page)
3863 return 0;
3864 return (unsigned long) page_address(page);
3865}
1da177e4
LT
3866EXPORT_SYMBOL(__get_free_pages);
3867
920c7a5d 3868unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3869{
945a1113 3870 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3871}
1da177e4
LT
3872EXPORT_SYMBOL(get_zeroed_page);
3873
920c7a5d 3874void __free_pages(struct page *page, unsigned int order)
1da177e4 3875{
b5810039 3876 if (put_page_testzero(page)) {
1da177e4 3877 if (order == 0)
b745bc85 3878 free_hot_cold_page(page, false);
1da177e4
LT
3879 else
3880 __free_pages_ok(page, order);
3881 }
3882}
3883
3884EXPORT_SYMBOL(__free_pages);
3885
920c7a5d 3886void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3887{
3888 if (addr != 0) {
725d704e 3889 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3890 __free_pages(virt_to_page((void *)addr), order);
3891 }
3892}
3893
3894EXPORT_SYMBOL(free_pages);
3895
b63ae8ca
AD
3896/*
3897 * Page Fragment:
3898 * An arbitrary-length arbitrary-offset area of memory which resides
3899 * within a 0 or higher order page. Multiple fragments within that page
3900 * are individually refcounted, in the page's reference counter.
3901 *
3902 * The page_frag functions below provide a simple allocation framework for
3903 * page fragments. This is used by the network stack and network device
3904 * drivers to provide a backing region of memory for use as either an
3905 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3906 */
3907static struct page *__page_frag_refill(struct page_frag_cache *nc,
3908 gfp_t gfp_mask)
3909{
3910 struct page *page = NULL;
3911 gfp_t gfp = gfp_mask;
3912
3913#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3914 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3915 __GFP_NOMEMALLOC;
3916 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3917 PAGE_FRAG_CACHE_MAX_ORDER);
3918 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3919#endif
3920 if (unlikely(!page))
3921 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3922
3923 nc->va = page ? page_address(page) : NULL;
3924
3925 return page;
3926}
3927
44fdffd7
AD
3928void __page_frag_drain(struct page *page, unsigned int order,
3929 unsigned int count)
3930{
3931 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3932
3933 if (page_ref_sub_and_test(page, count)) {
3934 if (order == 0)
3935 free_hot_cold_page(page, false);
3936 else
3937 __free_pages_ok(page, order);
3938 }
3939}
3940EXPORT_SYMBOL(__page_frag_drain);
3941
b63ae8ca
AD
3942void *__alloc_page_frag(struct page_frag_cache *nc,
3943 unsigned int fragsz, gfp_t gfp_mask)
3944{
3945 unsigned int size = PAGE_SIZE;
3946 struct page *page;
3947 int offset;
3948
3949 if (unlikely(!nc->va)) {
3950refill:
3951 page = __page_frag_refill(nc, gfp_mask);
3952 if (!page)
3953 return NULL;
3954
3955#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3956 /* if size can vary use size else just use PAGE_SIZE */
3957 size = nc->size;
3958#endif
3959 /* Even if we own the page, we do not use atomic_set().
3960 * This would break get_page_unless_zero() users.
3961 */
fe896d18 3962 page_ref_add(page, size - 1);
b63ae8ca
AD
3963
3964 /* reset page count bias and offset to start of new frag */
2f064f34 3965 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3966 nc->pagecnt_bias = size;
3967 nc->offset = size;
3968 }
3969
3970 offset = nc->offset - fragsz;
3971 if (unlikely(offset < 0)) {
3972 page = virt_to_page(nc->va);
3973
fe896d18 3974 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3975 goto refill;
3976
3977#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3978 /* if size can vary use size else just use PAGE_SIZE */
3979 size = nc->size;
3980#endif
3981 /* OK, page count is 0, we can safely set it */
fe896d18 3982 set_page_count(page, size);
b63ae8ca
AD
3983
3984 /* reset page count bias and offset to start of new frag */
3985 nc->pagecnt_bias = size;
3986 offset = size - fragsz;
3987 }
3988
3989 nc->pagecnt_bias--;
3990 nc->offset = offset;
3991
3992 return nc->va + offset;
3993}
3994EXPORT_SYMBOL(__alloc_page_frag);
3995
3996/*
3997 * Frees a page fragment allocated out of either a compound or order 0 page.
3998 */
3999void __free_page_frag(void *addr)
4000{
4001 struct page *page = virt_to_head_page(addr);
4002
4003 if (unlikely(put_page_testzero(page)))
4004 __free_pages_ok(page, compound_order(page));
4005}
4006EXPORT_SYMBOL(__free_page_frag);
4007
d00181b9
KS
4008static void *make_alloc_exact(unsigned long addr, unsigned int order,
4009 size_t size)
ee85c2e1
AK
4010{
4011 if (addr) {
4012 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4013 unsigned long used = addr + PAGE_ALIGN(size);
4014
4015 split_page(virt_to_page((void *)addr), order);
4016 while (used < alloc_end) {
4017 free_page(used);
4018 used += PAGE_SIZE;
4019 }
4020 }
4021 return (void *)addr;
4022}
4023
2be0ffe2
TT
4024/**
4025 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4026 * @size: the number of bytes to allocate
4027 * @gfp_mask: GFP flags for the allocation
4028 *
4029 * This function is similar to alloc_pages(), except that it allocates the
4030 * minimum number of pages to satisfy the request. alloc_pages() can only
4031 * allocate memory in power-of-two pages.
4032 *
4033 * This function is also limited by MAX_ORDER.
4034 *
4035 * Memory allocated by this function must be released by free_pages_exact().
4036 */
4037void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4038{
4039 unsigned int order = get_order(size);
4040 unsigned long addr;
4041
4042 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4043 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4044}
4045EXPORT_SYMBOL(alloc_pages_exact);
4046
ee85c2e1
AK
4047/**
4048 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4049 * pages on a node.
b5e6ab58 4050 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4051 * @size: the number of bytes to allocate
4052 * @gfp_mask: GFP flags for the allocation
4053 *
4054 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4055 * back.
ee85c2e1 4056 */
e1931811 4057void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4058{
d00181b9 4059 unsigned int order = get_order(size);
ee85c2e1
AK
4060 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4061 if (!p)
4062 return NULL;
4063 return make_alloc_exact((unsigned long)page_address(p), order, size);
4064}
ee85c2e1 4065
2be0ffe2
TT
4066/**
4067 * free_pages_exact - release memory allocated via alloc_pages_exact()
4068 * @virt: the value returned by alloc_pages_exact.
4069 * @size: size of allocation, same value as passed to alloc_pages_exact().
4070 *
4071 * Release the memory allocated by a previous call to alloc_pages_exact.
4072 */
4073void free_pages_exact(void *virt, size_t size)
4074{
4075 unsigned long addr = (unsigned long)virt;
4076 unsigned long end = addr + PAGE_ALIGN(size);
4077
4078 while (addr < end) {
4079 free_page(addr);
4080 addr += PAGE_SIZE;
4081 }
4082}
4083EXPORT_SYMBOL(free_pages_exact);
4084
e0fb5815
ZY
4085/**
4086 * nr_free_zone_pages - count number of pages beyond high watermark
4087 * @offset: The zone index of the highest zone
4088 *
4089 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4090 * high watermark within all zones at or below a given zone index. For each
4091 * zone, the number of pages is calculated as:
834405c3 4092 * managed_pages - high_pages
e0fb5815 4093 */
ebec3862 4094static unsigned long nr_free_zone_pages(int offset)
1da177e4 4095{
dd1a239f 4096 struct zoneref *z;
54a6eb5c
MG
4097 struct zone *zone;
4098
e310fd43 4099 /* Just pick one node, since fallback list is circular */
ebec3862 4100 unsigned long sum = 0;
1da177e4 4101
0e88460d 4102 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4103
54a6eb5c 4104 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4105 unsigned long size = zone->managed_pages;
41858966 4106 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4107 if (size > high)
4108 sum += size - high;
1da177e4
LT
4109 }
4110
4111 return sum;
4112}
4113
e0fb5815
ZY
4114/**
4115 * nr_free_buffer_pages - count number of pages beyond high watermark
4116 *
4117 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4118 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4119 */
ebec3862 4120unsigned long nr_free_buffer_pages(void)
1da177e4 4121{
af4ca457 4122 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4123}
c2f1a551 4124EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4125
e0fb5815
ZY
4126/**
4127 * nr_free_pagecache_pages - count number of pages beyond high watermark
4128 *
4129 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4130 * high watermark within all zones.
1da177e4 4131 */
ebec3862 4132unsigned long nr_free_pagecache_pages(void)
1da177e4 4133{
2a1e274a 4134 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4135}
08e0f6a9
CL
4136
4137static inline void show_node(struct zone *zone)
1da177e4 4138{
e5adfffc 4139 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4140 printk("Node %d ", zone_to_nid(zone));
1da177e4 4141}
1da177e4 4142
d02bd27b
IR
4143long si_mem_available(void)
4144{
4145 long available;
4146 unsigned long pagecache;
4147 unsigned long wmark_low = 0;
4148 unsigned long pages[NR_LRU_LISTS];
4149 struct zone *zone;
4150 int lru;
4151
4152 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4153 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4154
4155 for_each_zone(zone)
4156 wmark_low += zone->watermark[WMARK_LOW];
4157
4158 /*
4159 * Estimate the amount of memory available for userspace allocations,
4160 * without causing swapping.
4161 */
4162 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4163
4164 /*
4165 * Not all the page cache can be freed, otherwise the system will
4166 * start swapping. Assume at least half of the page cache, or the
4167 * low watermark worth of cache, needs to stay.
4168 */
4169 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4170 pagecache -= min(pagecache / 2, wmark_low);
4171 available += pagecache;
4172
4173 /*
4174 * Part of the reclaimable slab consists of items that are in use,
4175 * and cannot be freed. Cap this estimate at the low watermark.
4176 */
4177 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4178 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4179
4180 if (available < 0)
4181 available = 0;
4182 return available;
4183}
4184EXPORT_SYMBOL_GPL(si_mem_available);
4185
1da177e4
LT
4186void si_meminfo(struct sysinfo *val)
4187{
4188 val->totalram = totalram_pages;
11fb9989 4189 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4190 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4191 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4192 val->totalhigh = totalhigh_pages;
4193 val->freehigh = nr_free_highpages();
1da177e4
LT
4194 val->mem_unit = PAGE_SIZE;
4195}
4196
4197EXPORT_SYMBOL(si_meminfo);
4198
4199#ifdef CONFIG_NUMA
4200void si_meminfo_node(struct sysinfo *val, int nid)
4201{
cdd91a77
JL
4202 int zone_type; /* needs to be signed */
4203 unsigned long managed_pages = 0;
fc2bd799
JK
4204 unsigned long managed_highpages = 0;
4205 unsigned long free_highpages = 0;
1da177e4
LT
4206 pg_data_t *pgdat = NODE_DATA(nid);
4207
cdd91a77
JL
4208 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4209 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4210 val->totalram = managed_pages;
11fb9989 4211 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4212 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4213#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4215 struct zone *zone = &pgdat->node_zones[zone_type];
4216
4217 if (is_highmem(zone)) {
4218 managed_highpages += zone->managed_pages;
4219 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4220 }
4221 }
4222 val->totalhigh = managed_highpages;
4223 val->freehigh = free_highpages;
98d2b0eb 4224#else
fc2bd799
JK
4225 val->totalhigh = managed_highpages;
4226 val->freehigh = free_highpages;
98d2b0eb 4227#endif
1da177e4
LT
4228 val->mem_unit = PAGE_SIZE;
4229}
4230#endif
4231
ddd588b5 4232/*
7bf02ea2
DR
4233 * Determine whether the node should be displayed or not, depending on whether
4234 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4235 */
7bf02ea2 4236bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4237{
4238 bool ret = false;
cc9a6c87 4239 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4240
4241 if (!(flags & SHOW_MEM_FILTER_NODES))
4242 goto out;
4243
cc9a6c87 4244 do {
d26914d1 4245 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4246 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4247 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4248out:
4249 return ret;
4250}
4251
1da177e4
LT
4252#define K(x) ((x) << (PAGE_SHIFT-10))
4253
377e4f16
RV
4254static void show_migration_types(unsigned char type)
4255{
4256 static const char types[MIGRATE_TYPES] = {
4257 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4258 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4259 [MIGRATE_RECLAIMABLE] = 'E',
4260 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4261#ifdef CONFIG_CMA
4262 [MIGRATE_CMA] = 'C',
4263#endif
194159fb 4264#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4265 [MIGRATE_ISOLATE] = 'I',
194159fb 4266#endif
377e4f16
RV
4267 };
4268 char tmp[MIGRATE_TYPES + 1];
4269 char *p = tmp;
4270 int i;
4271
4272 for (i = 0; i < MIGRATE_TYPES; i++) {
4273 if (type & (1 << i))
4274 *p++ = types[i];
4275 }
4276
4277 *p = '\0';
1f84a18f 4278 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4279}
4280
1da177e4
LT
4281/*
4282 * Show free area list (used inside shift_scroll-lock stuff)
4283 * We also calculate the percentage fragmentation. We do this by counting the
4284 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4285 *
4286 * Bits in @filter:
4287 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4288 * cpuset.
1da177e4 4289 */
7bf02ea2 4290void show_free_areas(unsigned int filter)
1da177e4 4291{
d1bfcdb8 4292 unsigned long free_pcp = 0;
c7241913 4293 int cpu;
1da177e4 4294 struct zone *zone;
599d0c95 4295 pg_data_t *pgdat;
1da177e4 4296
ee99c71c 4297 for_each_populated_zone(zone) {
7bf02ea2 4298 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4299 continue;
d1bfcdb8 4300
761b0677
KK
4301 for_each_online_cpu(cpu)
4302 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4303 }
4304
a731286d
KM
4305 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4306 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4307 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4308 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4309 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4310 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4311 global_node_page_state(NR_ACTIVE_ANON),
4312 global_node_page_state(NR_INACTIVE_ANON),
4313 global_node_page_state(NR_ISOLATED_ANON),
4314 global_node_page_state(NR_ACTIVE_FILE),
4315 global_node_page_state(NR_INACTIVE_FILE),
4316 global_node_page_state(NR_ISOLATED_FILE),
4317 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4318 global_node_page_state(NR_FILE_DIRTY),
4319 global_node_page_state(NR_WRITEBACK),
4320 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4321 global_page_state(NR_SLAB_RECLAIMABLE),
4322 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4323 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4324 global_node_page_state(NR_SHMEM),
a25700a5 4325 global_page_state(NR_PAGETABLE),
d1ce749a 4326 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4327 global_page_state(NR_FREE_PAGES),
4328 free_pcp,
d1ce749a 4329 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4330
599d0c95
MG
4331 for_each_online_pgdat(pgdat) {
4332 printk("Node %d"
4333 " active_anon:%lukB"
4334 " inactive_anon:%lukB"
4335 " active_file:%lukB"
4336 " inactive_file:%lukB"
4337 " unevictable:%lukB"
4338 " isolated(anon):%lukB"
4339 " isolated(file):%lukB"
50658e2e 4340 " mapped:%lukB"
11fb9989
MG
4341 " dirty:%lukB"
4342 " writeback:%lukB"
4343 " shmem:%lukB"
4344#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4345 " shmem_thp: %lukB"
4346 " shmem_pmdmapped: %lukB"
4347 " anon_thp: %lukB"
4348#endif
4349 " writeback_tmp:%lukB"
4350 " unstable:%lukB"
33e077bd 4351 " pages_scanned:%lu"
599d0c95
MG
4352 " all_unreclaimable? %s"
4353 "\n",
4354 pgdat->node_id,
4355 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4356 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4357 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4358 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4359 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4360 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4361 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4362 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4363 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4364 K(node_page_state(pgdat, NR_WRITEBACK)),
4365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4366 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4367 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4368 * HPAGE_PMD_NR),
4369 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4370#endif
4371 K(node_page_state(pgdat, NR_SHMEM)),
4372 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4373 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4374 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4375 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4376 }
4377
ee99c71c 4378 for_each_populated_zone(zone) {
1da177e4
LT
4379 int i;
4380
7bf02ea2 4381 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4382 continue;
d1bfcdb8
KK
4383
4384 free_pcp = 0;
4385 for_each_online_cpu(cpu)
4386 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4387
1da177e4 4388 show_node(zone);
1f84a18f
JP
4389 printk(KERN_CONT
4390 "%s"
1da177e4
LT
4391 " free:%lukB"
4392 " min:%lukB"
4393 " low:%lukB"
4394 " high:%lukB"
71c799f4
MK
4395 " active_anon:%lukB"
4396 " inactive_anon:%lukB"
4397 " active_file:%lukB"
4398 " inactive_file:%lukB"
4399 " unevictable:%lukB"
5a1c84b4 4400 " writepending:%lukB"
1da177e4 4401 " present:%lukB"
9feedc9d 4402 " managed:%lukB"
4a0aa73f 4403 " mlocked:%lukB"
4a0aa73f
KM
4404 " slab_reclaimable:%lukB"
4405 " slab_unreclaimable:%lukB"
c6a7f572 4406 " kernel_stack:%lukB"
4a0aa73f 4407 " pagetables:%lukB"
4a0aa73f 4408 " bounce:%lukB"
d1bfcdb8
KK
4409 " free_pcp:%lukB"
4410 " local_pcp:%ukB"
d1ce749a 4411 " free_cma:%lukB"
1da177e4
LT
4412 "\n",
4413 zone->name,
88f5acf8 4414 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4415 K(min_wmark_pages(zone)),
4416 K(low_wmark_pages(zone)),
4417 K(high_wmark_pages(zone)),
71c799f4
MK
4418 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4419 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4420 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4421 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4422 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4423 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4424 K(zone->present_pages),
9feedc9d 4425 K(zone->managed_pages),
4a0aa73f 4426 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4427 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4428 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4429 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4430 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4431 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4432 K(free_pcp),
4433 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4434 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4435 printk("lowmem_reserve[]:");
4436 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4437 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4438 printk(KERN_CONT "\n");
1da177e4
LT
4439 }
4440
ee99c71c 4441 for_each_populated_zone(zone) {
d00181b9
KS
4442 unsigned int order;
4443 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4444 unsigned char types[MAX_ORDER];
1da177e4 4445
7bf02ea2 4446 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4447 continue;
1da177e4 4448 show_node(zone);
1f84a18f 4449 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4450
4451 spin_lock_irqsave(&zone->lock, flags);
4452 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4453 struct free_area *area = &zone->free_area[order];
4454 int type;
4455
4456 nr[order] = area->nr_free;
8f9de51a 4457 total += nr[order] << order;
377e4f16
RV
4458
4459 types[order] = 0;
4460 for (type = 0; type < MIGRATE_TYPES; type++) {
4461 if (!list_empty(&area->free_list[type]))
4462 types[order] |= 1 << type;
4463 }
1da177e4
LT
4464 }
4465 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4466 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4467 printk(KERN_CONT "%lu*%lukB ",
4468 nr[order], K(1UL) << order);
377e4f16
RV
4469 if (nr[order])
4470 show_migration_types(types[order]);
4471 }
1f84a18f 4472 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4473 }
4474
949f7ec5
DR
4475 hugetlb_show_meminfo();
4476
11fb9989 4477 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4478
1da177e4
LT
4479 show_swap_cache_info();
4480}
4481
19770b32
MG
4482static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4483{
4484 zoneref->zone = zone;
4485 zoneref->zone_idx = zone_idx(zone);
4486}
4487
1da177e4
LT
4488/*
4489 * Builds allocation fallback zone lists.
1a93205b
CL
4490 *
4491 * Add all populated zones of a node to the zonelist.
1da177e4 4492 */
f0c0b2b8 4493static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4494 int nr_zones)
1da177e4 4495{
1a93205b 4496 struct zone *zone;
bc732f1d 4497 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4498
4499 do {
2f6726e5 4500 zone_type--;
070f8032 4501 zone = pgdat->node_zones + zone_type;
6aa303de 4502 if (managed_zone(zone)) {
dd1a239f
MG
4503 zoneref_set_zone(zone,
4504 &zonelist->_zonerefs[nr_zones++]);
070f8032 4505 check_highest_zone(zone_type);
1da177e4 4506 }
2f6726e5 4507 } while (zone_type);
bc732f1d 4508
070f8032 4509 return nr_zones;
1da177e4
LT
4510}
4511
f0c0b2b8
KH
4512
4513/*
4514 * zonelist_order:
4515 * 0 = automatic detection of better ordering.
4516 * 1 = order by ([node] distance, -zonetype)
4517 * 2 = order by (-zonetype, [node] distance)
4518 *
4519 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4520 * the same zonelist. So only NUMA can configure this param.
4521 */
4522#define ZONELIST_ORDER_DEFAULT 0
4523#define ZONELIST_ORDER_NODE 1
4524#define ZONELIST_ORDER_ZONE 2
4525
4526/* zonelist order in the kernel.
4527 * set_zonelist_order() will set this to NODE or ZONE.
4528 */
4529static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4530static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4531
4532
1da177e4 4533#ifdef CONFIG_NUMA
f0c0b2b8
KH
4534/* The value user specified ....changed by config */
4535static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4536/* string for sysctl */
4537#define NUMA_ZONELIST_ORDER_LEN 16
4538char numa_zonelist_order[16] = "default";
4539
4540/*
4541 * interface for configure zonelist ordering.
4542 * command line option "numa_zonelist_order"
4543 * = "[dD]efault - default, automatic configuration.
4544 * = "[nN]ode - order by node locality, then by zone within node
4545 * = "[zZ]one - order by zone, then by locality within zone
4546 */
4547
4548static int __parse_numa_zonelist_order(char *s)
4549{
4550 if (*s == 'd' || *s == 'D') {
4551 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4552 } else if (*s == 'n' || *s == 'N') {
4553 user_zonelist_order = ZONELIST_ORDER_NODE;
4554 } else if (*s == 'z' || *s == 'Z') {
4555 user_zonelist_order = ZONELIST_ORDER_ZONE;
4556 } else {
1170532b 4557 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4558 return -EINVAL;
4559 }
4560 return 0;
4561}
4562
4563static __init int setup_numa_zonelist_order(char *s)
4564{
ecb256f8
VL
4565 int ret;
4566
4567 if (!s)
4568 return 0;
4569
4570 ret = __parse_numa_zonelist_order(s);
4571 if (ret == 0)
4572 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4573
4574 return ret;
f0c0b2b8
KH
4575}
4576early_param("numa_zonelist_order", setup_numa_zonelist_order);
4577
4578/*
4579 * sysctl handler for numa_zonelist_order
4580 */
cccad5b9 4581int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4582 void __user *buffer, size_t *length,
f0c0b2b8
KH
4583 loff_t *ppos)
4584{
4585 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4586 int ret;
443c6f14 4587 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4588
443c6f14 4589 mutex_lock(&zl_order_mutex);
dacbde09
CG
4590 if (write) {
4591 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4592 ret = -EINVAL;
4593 goto out;
4594 }
4595 strcpy(saved_string, (char *)table->data);
4596 }
8d65af78 4597 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4598 if (ret)
443c6f14 4599 goto out;
f0c0b2b8
KH
4600 if (write) {
4601 int oldval = user_zonelist_order;
dacbde09
CG
4602
4603 ret = __parse_numa_zonelist_order((char *)table->data);
4604 if (ret) {
f0c0b2b8
KH
4605 /*
4606 * bogus value. restore saved string
4607 */
dacbde09 4608 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4609 NUMA_ZONELIST_ORDER_LEN);
4610 user_zonelist_order = oldval;
4eaf3f64
HL
4611 } else if (oldval != user_zonelist_order) {
4612 mutex_lock(&zonelists_mutex);
9adb62a5 4613 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4614 mutex_unlock(&zonelists_mutex);
4615 }
f0c0b2b8 4616 }
443c6f14
AK
4617out:
4618 mutex_unlock(&zl_order_mutex);
4619 return ret;
f0c0b2b8
KH
4620}
4621
4622
62bc62a8 4623#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4624static int node_load[MAX_NUMNODES];
4625
1da177e4 4626/**
4dc3b16b 4627 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4628 * @node: node whose fallback list we're appending
4629 * @used_node_mask: nodemask_t of already used nodes
4630 *
4631 * We use a number of factors to determine which is the next node that should
4632 * appear on a given node's fallback list. The node should not have appeared
4633 * already in @node's fallback list, and it should be the next closest node
4634 * according to the distance array (which contains arbitrary distance values
4635 * from each node to each node in the system), and should also prefer nodes
4636 * with no CPUs, since presumably they'll have very little allocation pressure
4637 * on them otherwise.
4638 * It returns -1 if no node is found.
4639 */
f0c0b2b8 4640static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4641{
4cf808eb 4642 int n, val;
1da177e4 4643 int min_val = INT_MAX;
00ef2d2f 4644 int best_node = NUMA_NO_NODE;
a70f7302 4645 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4646
4cf808eb
LT
4647 /* Use the local node if we haven't already */
4648 if (!node_isset(node, *used_node_mask)) {
4649 node_set(node, *used_node_mask);
4650 return node;
4651 }
1da177e4 4652
4b0ef1fe 4653 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4654
4655 /* Don't want a node to appear more than once */
4656 if (node_isset(n, *used_node_mask))
4657 continue;
4658
1da177e4
LT
4659 /* Use the distance array to find the distance */
4660 val = node_distance(node, n);
4661
4cf808eb
LT
4662 /* Penalize nodes under us ("prefer the next node") */
4663 val += (n < node);
4664
1da177e4 4665 /* Give preference to headless and unused nodes */
a70f7302
RR
4666 tmp = cpumask_of_node(n);
4667 if (!cpumask_empty(tmp))
1da177e4
LT
4668 val += PENALTY_FOR_NODE_WITH_CPUS;
4669
4670 /* Slight preference for less loaded node */
4671 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4672 val += node_load[n];
4673
4674 if (val < min_val) {
4675 min_val = val;
4676 best_node = n;
4677 }
4678 }
4679
4680 if (best_node >= 0)
4681 node_set(best_node, *used_node_mask);
4682
4683 return best_node;
4684}
4685
f0c0b2b8
KH
4686
4687/*
4688 * Build zonelists ordered by node and zones within node.
4689 * This results in maximum locality--normal zone overflows into local
4690 * DMA zone, if any--but risks exhausting DMA zone.
4691 */
4692static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4693{
f0c0b2b8 4694 int j;
1da177e4 4695 struct zonelist *zonelist;
f0c0b2b8 4696
c9634cf0 4697 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4698 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4699 ;
bc732f1d 4700 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4701 zonelist->_zonerefs[j].zone = NULL;
4702 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4703}
4704
523b9458
CL
4705/*
4706 * Build gfp_thisnode zonelists
4707 */
4708static void build_thisnode_zonelists(pg_data_t *pgdat)
4709{
523b9458
CL
4710 int j;
4711 struct zonelist *zonelist;
4712
c9634cf0 4713 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4714 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4715 zonelist->_zonerefs[j].zone = NULL;
4716 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4717}
4718
f0c0b2b8
KH
4719/*
4720 * Build zonelists ordered by zone and nodes within zones.
4721 * This results in conserving DMA zone[s] until all Normal memory is
4722 * exhausted, but results in overflowing to remote node while memory
4723 * may still exist in local DMA zone.
4724 */
4725static int node_order[MAX_NUMNODES];
4726
4727static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4728{
f0c0b2b8
KH
4729 int pos, j, node;
4730 int zone_type; /* needs to be signed */
4731 struct zone *z;
4732 struct zonelist *zonelist;
4733
c9634cf0 4734 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4735 pos = 0;
4736 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4737 for (j = 0; j < nr_nodes; j++) {
4738 node = node_order[j];
4739 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4740 if (managed_zone(z)) {
dd1a239f
MG
4741 zoneref_set_zone(z,
4742 &zonelist->_zonerefs[pos++]);
54a6eb5c 4743 check_highest_zone(zone_type);
f0c0b2b8
KH
4744 }
4745 }
f0c0b2b8 4746 }
dd1a239f
MG
4747 zonelist->_zonerefs[pos].zone = NULL;
4748 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4749}
4750
3193913c
MG
4751#if defined(CONFIG_64BIT)
4752/*
4753 * Devices that require DMA32/DMA are relatively rare and do not justify a
4754 * penalty to every machine in case the specialised case applies. Default
4755 * to Node-ordering on 64-bit NUMA machines
4756 */
4757static int default_zonelist_order(void)
4758{
4759 return ZONELIST_ORDER_NODE;
4760}
4761#else
4762/*
4763 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4764 * by the kernel. If processes running on node 0 deplete the low memory zone
4765 * then reclaim will occur more frequency increasing stalls and potentially
4766 * be easier to OOM if a large percentage of the zone is under writeback or
4767 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4768 * Hence, default to zone ordering on 32-bit.
4769 */
f0c0b2b8
KH
4770static int default_zonelist_order(void)
4771{
f0c0b2b8
KH
4772 return ZONELIST_ORDER_ZONE;
4773}
3193913c 4774#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4775
4776static void set_zonelist_order(void)
4777{
4778 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4779 current_zonelist_order = default_zonelist_order();
4780 else
4781 current_zonelist_order = user_zonelist_order;
4782}
4783
4784static void build_zonelists(pg_data_t *pgdat)
4785{
c00eb15a 4786 int i, node, load;
1da177e4 4787 nodemask_t used_mask;
f0c0b2b8
KH
4788 int local_node, prev_node;
4789 struct zonelist *zonelist;
d00181b9 4790 unsigned int order = current_zonelist_order;
1da177e4
LT
4791
4792 /* initialize zonelists */
523b9458 4793 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4794 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4795 zonelist->_zonerefs[0].zone = NULL;
4796 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4797 }
4798
4799 /* NUMA-aware ordering of nodes */
4800 local_node = pgdat->node_id;
62bc62a8 4801 load = nr_online_nodes;
1da177e4
LT
4802 prev_node = local_node;
4803 nodes_clear(used_mask);
f0c0b2b8 4804
f0c0b2b8 4805 memset(node_order, 0, sizeof(node_order));
c00eb15a 4806 i = 0;
f0c0b2b8 4807
1da177e4
LT
4808 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4809 /*
4810 * We don't want to pressure a particular node.
4811 * So adding penalty to the first node in same
4812 * distance group to make it round-robin.
4813 */
957f822a
DR
4814 if (node_distance(local_node, node) !=
4815 node_distance(local_node, prev_node))
f0c0b2b8
KH
4816 node_load[node] = load;
4817
1da177e4
LT
4818 prev_node = node;
4819 load--;
f0c0b2b8
KH
4820 if (order == ZONELIST_ORDER_NODE)
4821 build_zonelists_in_node_order(pgdat, node);
4822 else
c00eb15a 4823 node_order[i++] = node; /* remember order */
f0c0b2b8 4824 }
1da177e4 4825
f0c0b2b8
KH
4826 if (order == ZONELIST_ORDER_ZONE) {
4827 /* calculate node order -- i.e., DMA last! */
c00eb15a 4828 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4829 }
523b9458
CL
4830
4831 build_thisnode_zonelists(pgdat);
1da177e4
LT
4832}
4833
7aac7898
LS
4834#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4835/*
4836 * Return node id of node used for "local" allocations.
4837 * I.e., first node id of first zone in arg node's generic zonelist.
4838 * Used for initializing percpu 'numa_mem', which is used primarily
4839 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4840 */
4841int local_memory_node(int node)
4842{
c33d6c06 4843 struct zoneref *z;
7aac7898 4844
c33d6c06 4845 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4846 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4847 NULL);
4848 return z->zone->node;
7aac7898
LS
4849}
4850#endif
f0c0b2b8 4851
6423aa81
JK
4852static void setup_min_unmapped_ratio(void);
4853static void setup_min_slab_ratio(void);
1da177e4
LT
4854#else /* CONFIG_NUMA */
4855
f0c0b2b8
KH
4856static void set_zonelist_order(void)
4857{
4858 current_zonelist_order = ZONELIST_ORDER_ZONE;
4859}
4860
4861static void build_zonelists(pg_data_t *pgdat)
1da177e4 4862{
19655d34 4863 int node, local_node;
54a6eb5c
MG
4864 enum zone_type j;
4865 struct zonelist *zonelist;
1da177e4
LT
4866
4867 local_node = pgdat->node_id;
1da177e4 4868
c9634cf0 4869 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4870 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4871
54a6eb5c
MG
4872 /*
4873 * Now we build the zonelist so that it contains the zones
4874 * of all the other nodes.
4875 * We don't want to pressure a particular node, so when
4876 * building the zones for node N, we make sure that the
4877 * zones coming right after the local ones are those from
4878 * node N+1 (modulo N)
4879 */
4880 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4881 if (!node_online(node))
4882 continue;
bc732f1d 4883 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4884 }
54a6eb5c
MG
4885 for (node = 0; node < local_node; node++) {
4886 if (!node_online(node))
4887 continue;
bc732f1d 4888 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4889 }
4890
dd1a239f
MG
4891 zonelist->_zonerefs[j].zone = NULL;
4892 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4893}
4894
4895#endif /* CONFIG_NUMA */
4896
99dcc3e5
CL
4897/*
4898 * Boot pageset table. One per cpu which is going to be used for all
4899 * zones and all nodes. The parameters will be set in such a way
4900 * that an item put on a list will immediately be handed over to
4901 * the buddy list. This is safe since pageset manipulation is done
4902 * with interrupts disabled.
4903 *
4904 * The boot_pagesets must be kept even after bootup is complete for
4905 * unused processors and/or zones. They do play a role for bootstrapping
4906 * hotplugged processors.
4907 *
4908 * zoneinfo_show() and maybe other functions do
4909 * not check if the processor is online before following the pageset pointer.
4910 * Other parts of the kernel may not check if the zone is available.
4911 */
4912static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4913static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4914static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4915
4eaf3f64
HL
4916/*
4917 * Global mutex to protect against size modification of zonelists
4918 * as well as to serialize pageset setup for the new populated zone.
4919 */
4920DEFINE_MUTEX(zonelists_mutex);
4921
9b1a4d38 4922/* return values int ....just for stop_machine() */
4ed7e022 4923static int __build_all_zonelists(void *data)
1da177e4 4924{
6811378e 4925 int nid;
99dcc3e5 4926 int cpu;
9adb62a5 4927 pg_data_t *self = data;
9276b1bc 4928
7f9cfb31
BL
4929#ifdef CONFIG_NUMA
4930 memset(node_load, 0, sizeof(node_load));
4931#endif
9adb62a5
JL
4932
4933 if (self && !node_online(self->node_id)) {
4934 build_zonelists(self);
9adb62a5
JL
4935 }
4936
9276b1bc 4937 for_each_online_node(nid) {
7ea1530a
CL
4938 pg_data_t *pgdat = NODE_DATA(nid);
4939
4940 build_zonelists(pgdat);
9276b1bc 4941 }
99dcc3e5
CL
4942
4943 /*
4944 * Initialize the boot_pagesets that are going to be used
4945 * for bootstrapping processors. The real pagesets for
4946 * each zone will be allocated later when the per cpu
4947 * allocator is available.
4948 *
4949 * boot_pagesets are used also for bootstrapping offline
4950 * cpus if the system is already booted because the pagesets
4951 * are needed to initialize allocators on a specific cpu too.
4952 * F.e. the percpu allocator needs the page allocator which
4953 * needs the percpu allocator in order to allocate its pagesets
4954 * (a chicken-egg dilemma).
4955 */
7aac7898 4956 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4957 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4958
7aac7898
LS
4959#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4960 /*
4961 * We now know the "local memory node" for each node--
4962 * i.e., the node of the first zone in the generic zonelist.
4963 * Set up numa_mem percpu variable for on-line cpus. During
4964 * boot, only the boot cpu should be on-line; we'll init the
4965 * secondary cpus' numa_mem as they come on-line. During
4966 * node/memory hotplug, we'll fixup all on-line cpus.
4967 */
4968 if (cpu_online(cpu))
4969 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4970#endif
4971 }
4972
6811378e
YG
4973 return 0;
4974}
4975
061f67bc
RV
4976static noinline void __init
4977build_all_zonelists_init(void)
4978{
4979 __build_all_zonelists(NULL);
4980 mminit_verify_zonelist();
4981 cpuset_init_current_mems_allowed();
4982}
4983
4eaf3f64
HL
4984/*
4985 * Called with zonelists_mutex held always
4986 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4987 *
4988 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4989 * [we're only called with non-NULL zone through __meminit paths] and
4990 * (2) call of __init annotated helper build_all_zonelists_init
4991 * [protected by SYSTEM_BOOTING].
4eaf3f64 4992 */
9adb62a5 4993void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4994{
f0c0b2b8
KH
4995 set_zonelist_order();
4996
6811378e 4997 if (system_state == SYSTEM_BOOTING) {
061f67bc 4998 build_all_zonelists_init();
6811378e 4999 } else {
e9959f0f 5000#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5001 if (zone)
5002 setup_zone_pageset(zone);
e9959f0f 5003#endif
dd1895e2
CS
5004 /* we have to stop all cpus to guarantee there is no user
5005 of zonelist */
9adb62a5 5006 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5007 /* cpuset refresh routine should be here */
5008 }
bd1e22b8 5009 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5010 /*
5011 * Disable grouping by mobility if the number of pages in the
5012 * system is too low to allow the mechanism to work. It would be
5013 * more accurate, but expensive to check per-zone. This check is
5014 * made on memory-hotadd so a system can start with mobility
5015 * disabled and enable it later
5016 */
d9c23400 5017 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5018 page_group_by_mobility_disabled = 1;
5019 else
5020 page_group_by_mobility_disabled = 0;
5021
756a025f
JP
5022 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5023 nr_online_nodes,
5024 zonelist_order_name[current_zonelist_order],
5025 page_group_by_mobility_disabled ? "off" : "on",
5026 vm_total_pages);
f0c0b2b8 5027#ifdef CONFIG_NUMA
f88dfff5 5028 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5029#endif
1da177e4
LT
5030}
5031
1da177e4
LT
5032/*
5033 * Initially all pages are reserved - free ones are freed
5034 * up by free_all_bootmem() once the early boot process is
5035 * done. Non-atomic initialization, single-pass.
5036 */
c09b4240 5037void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5038 unsigned long start_pfn, enum memmap_context context)
1da177e4 5039{
4b94ffdc 5040 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5041 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5042 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5043 unsigned long pfn;
3a80a7fa 5044 unsigned long nr_initialised = 0;
342332e6
TI
5045#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5046 struct memblock_region *r = NULL, *tmp;
5047#endif
1da177e4 5048
22b31eec
HD
5049 if (highest_memmap_pfn < end_pfn - 1)
5050 highest_memmap_pfn = end_pfn - 1;
5051
4b94ffdc
DW
5052 /*
5053 * Honor reservation requested by the driver for this ZONE_DEVICE
5054 * memory
5055 */
5056 if (altmap && start_pfn == altmap->base_pfn)
5057 start_pfn += altmap->reserve;
5058
cbe8dd4a 5059 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5060 /*
b72d0ffb
AM
5061 * There can be holes in boot-time mem_map[]s handed to this
5062 * function. They do not exist on hotplugged memory.
a2f3aa02 5063 */
b72d0ffb
AM
5064 if (context != MEMMAP_EARLY)
5065 goto not_early;
5066
5067 if (!early_pfn_valid(pfn))
5068 continue;
5069 if (!early_pfn_in_nid(pfn, nid))
5070 continue;
5071 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5072 break;
342332e6
TI
5073
5074#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5075 /*
5076 * Check given memblock attribute by firmware which can affect
5077 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5078 * mirrored, it's an overlapped memmap init. skip it.
5079 */
5080 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5081 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5082 for_each_memblock(memory, tmp)
5083 if (pfn < memblock_region_memory_end_pfn(tmp))
5084 break;
5085 r = tmp;
5086 }
5087 if (pfn >= memblock_region_memory_base_pfn(r) &&
5088 memblock_is_mirror(r)) {
5089 /* already initialized as NORMAL */
5090 pfn = memblock_region_memory_end_pfn(r);
5091 continue;
342332e6 5092 }
a2f3aa02 5093 }
b72d0ffb 5094#endif
ac5d2539 5095
b72d0ffb 5096not_early:
ac5d2539
MG
5097 /*
5098 * Mark the block movable so that blocks are reserved for
5099 * movable at startup. This will force kernel allocations
5100 * to reserve their blocks rather than leaking throughout
5101 * the address space during boot when many long-lived
974a786e 5102 * kernel allocations are made.
ac5d2539
MG
5103 *
5104 * bitmap is created for zone's valid pfn range. but memmap
5105 * can be created for invalid pages (for alignment)
5106 * check here not to call set_pageblock_migratetype() against
5107 * pfn out of zone.
5108 */
5109 if (!(pfn & (pageblock_nr_pages - 1))) {
5110 struct page *page = pfn_to_page(pfn);
5111
5112 __init_single_page(page, pfn, zone, nid);
5113 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5114 } else {
5115 __init_single_pfn(pfn, zone, nid);
5116 }
1da177e4
LT
5117 }
5118}
5119
1e548deb 5120static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5121{
7aeb09f9 5122 unsigned int order, t;
b2a0ac88
MG
5123 for_each_migratetype_order(order, t) {
5124 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5125 zone->free_area[order].nr_free = 0;
5126 }
5127}
5128
5129#ifndef __HAVE_ARCH_MEMMAP_INIT
5130#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5131 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5132#endif
5133
7cd2b0a3 5134static int zone_batchsize(struct zone *zone)
e7c8d5c9 5135{
3a6be87f 5136#ifdef CONFIG_MMU
e7c8d5c9
CL
5137 int batch;
5138
5139 /*
5140 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5141 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5142 *
5143 * OK, so we don't know how big the cache is. So guess.
5144 */
b40da049 5145 batch = zone->managed_pages / 1024;
ba56e91c
SR
5146 if (batch * PAGE_SIZE > 512 * 1024)
5147 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5148 batch /= 4; /* We effectively *= 4 below */
5149 if (batch < 1)
5150 batch = 1;
5151
5152 /*
0ceaacc9
NP
5153 * Clamp the batch to a 2^n - 1 value. Having a power
5154 * of 2 value was found to be more likely to have
5155 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5156 *
0ceaacc9
NP
5157 * For example if 2 tasks are alternately allocating
5158 * batches of pages, one task can end up with a lot
5159 * of pages of one half of the possible page colors
5160 * and the other with pages of the other colors.
e7c8d5c9 5161 */
9155203a 5162 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5163
e7c8d5c9 5164 return batch;
3a6be87f
DH
5165
5166#else
5167 /* The deferral and batching of frees should be suppressed under NOMMU
5168 * conditions.
5169 *
5170 * The problem is that NOMMU needs to be able to allocate large chunks
5171 * of contiguous memory as there's no hardware page translation to
5172 * assemble apparent contiguous memory from discontiguous pages.
5173 *
5174 * Queueing large contiguous runs of pages for batching, however,
5175 * causes the pages to actually be freed in smaller chunks. As there
5176 * can be a significant delay between the individual batches being
5177 * recycled, this leads to the once large chunks of space being
5178 * fragmented and becoming unavailable for high-order allocations.
5179 */
5180 return 0;
5181#endif
e7c8d5c9
CL
5182}
5183
8d7a8fa9
CS
5184/*
5185 * pcp->high and pcp->batch values are related and dependent on one another:
5186 * ->batch must never be higher then ->high.
5187 * The following function updates them in a safe manner without read side
5188 * locking.
5189 *
5190 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5191 * those fields changing asynchronously (acording the the above rule).
5192 *
5193 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5194 * outside of boot time (or some other assurance that no concurrent updaters
5195 * exist).
5196 */
5197static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5198 unsigned long batch)
5199{
5200 /* start with a fail safe value for batch */
5201 pcp->batch = 1;
5202 smp_wmb();
5203
5204 /* Update high, then batch, in order */
5205 pcp->high = high;
5206 smp_wmb();
5207
5208 pcp->batch = batch;
5209}
5210
3664033c 5211/* a companion to pageset_set_high() */
4008bab7
CS
5212static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5213{
8d7a8fa9 5214 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5215}
5216
88c90dbc 5217static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5218{
5219 struct per_cpu_pages *pcp;
5f8dcc21 5220 int migratetype;
2caaad41 5221
1c6fe946
MD
5222 memset(p, 0, sizeof(*p));
5223
3dfa5721 5224 pcp = &p->pcp;
2caaad41 5225 pcp->count = 0;
5f8dcc21
MG
5226 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5227 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5228}
5229
88c90dbc
CS
5230static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5231{
5232 pageset_init(p);
5233 pageset_set_batch(p, batch);
5234}
5235
8ad4b1fb 5236/*
3664033c 5237 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5238 * to the value high for the pageset p.
5239 */
3664033c 5240static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5241 unsigned long high)
5242{
8d7a8fa9
CS
5243 unsigned long batch = max(1UL, high / 4);
5244 if ((high / 4) > (PAGE_SHIFT * 8))
5245 batch = PAGE_SHIFT * 8;
8ad4b1fb 5246
8d7a8fa9 5247 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5248}
5249
7cd2b0a3
DR
5250static void pageset_set_high_and_batch(struct zone *zone,
5251 struct per_cpu_pageset *pcp)
56cef2b8 5252{
56cef2b8 5253 if (percpu_pagelist_fraction)
3664033c 5254 pageset_set_high(pcp,
56cef2b8
CS
5255 (zone->managed_pages /
5256 percpu_pagelist_fraction));
5257 else
5258 pageset_set_batch(pcp, zone_batchsize(zone));
5259}
5260
169f6c19
CS
5261static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5262{
5263 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5264
5265 pageset_init(pcp);
5266 pageset_set_high_and_batch(zone, pcp);
5267}
5268
4ed7e022 5269static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5270{
5271 int cpu;
319774e2 5272 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5273 for_each_possible_cpu(cpu)
5274 zone_pageset_init(zone, cpu);
319774e2
WF
5275}
5276
2caaad41 5277/*
99dcc3e5
CL
5278 * Allocate per cpu pagesets and initialize them.
5279 * Before this call only boot pagesets were available.
e7c8d5c9 5280 */
99dcc3e5 5281void __init setup_per_cpu_pageset(void)
e7c8d5c9 5282{
b4911ea2 5283 struct pglist_data *pgdat;
99dcc3e5 5284 struct zone *zone;
e7c8d5c9 5285
319774e2
WF
5286 for_each_populated_zone(zone)
5287 setup_zone_pageset(zone);
b4911ea2
MG
5288
5289 for_each_online_pgdat(pgdat)
5290 pgdat->per_cpu_nodestats =
5291 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5292}
5293
c09b4240 5294static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5295{
99dcc3e5
CL
5296 /*
5297 * per cpu subsystem is not up at this point. The following code
5298 * relies on the ability of the linker to provide the
5299 * offset of a (static) per cpu variable into the per cpu area.
5300 */
5301 zone->pageset = &boot_pageset;
ed8ece2e 5302
b38a8725 5303 if (populated_zone(zone))
99dcc3e5
CL
5304 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5305 zone->name, zone->present_pages,
5306 zone_batchsize(zone));
ed8ece2e
DH
5307}
5308
4ed7e022 5309int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5310 unsigned long zone_start_pfn,
b171e409 5311 unsigned long size)
ed8ece2e
DH
5312{
5313 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5314
ed8ece2e
DH
5315 pgdat->nr_zones = zone_idx(zone) + 1;
5316
ed8ece2e
DH
5317 zone->zone_start_pfn = zone_start_pfn;
5318
708614e6
MG
5319 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5320 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5321 pgdat->node_id,
5322 (unsigned long)zone_idx(zone),
5323 zone_start_pfn, (zone_start_pfn + size));
5324
1e548deb 5325 zone_init_free_lists(zone);
9dcb8b68 5326 zone->initialized = 1;
718127cc
YG
5327
5328 return 0;
ed8ece2e
DH
5329}
5330
0ee332c1 5331#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5332#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5333
c713216d
MG
5334/*
5335 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5336 */
8a942fde
MG
5337int __meminit __early_pfn_to_nid(unsigned long pfn,
5338 struct mminit_pfnnid_cache *state)
c713216d 5339{
c13291a5 5340 unsigned long start_pfn, end_pfn;
e76b63f8 5341 int nid;
7c243c71 5342
8a942fde
MG
5343 if (state->last_start <= pfn && pfn < state->last_end)
5344 return state->last_nid;
c713216d 5345
e76b63f8
YL
5346 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5347 if (nid != -1) {
8a942fde
MG
5348 state->last_start = start_pfn;
5349 state->last_end = end_pfn;
5350 state->last_nid = nid;
e76b63f8
YL
5351 }
5352
5353 return nid;
c713216d
MG
5354}
5355#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5356
c713216d 5357/**
6782832e 5358 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5359 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5360 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5361 *
7d018176
ZZ
5362 * If an architecture guarantees that all ranges registered contain no holes
5363 * and may be freed, this this function may be used instead of calling
5364 * memblock_free_early_nid() manually.
c713216d 5365 */
c13291a5 5366void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5367{
c13291a5
TH
5368 unsigned long start_pfn, end_pfn;
5369 int i, this_nid;
edbe7d23 5370
c13291a5
TH
5371 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5372 start_pfn = min(start_pfn, max_low_pfn);
5373 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5374
c13291a5 5375 if (start_pfn < end_pfn)
6782832e
SS
5376 memblock_free_early_nid(PFN_PHYS(start_pfn),
5377 (end_pfn - start_pfn) << PAGE_SHIFT,
5378 this_nid);
edbe7d23 5379 }
edbe7d23 5380}
edbe7d23 5381
c713216d
MG
5382/**
5383 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5384 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5385 *
7d018176
ZZ
5386 * If an architecture guarantees that all ranges registered contain no holes and may
5387 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5388 */
5389void __init sparse_memory_present_with_active_regions(int nid)
5390{
c13291a5
TH
5391 unsigned long start_pfn, end_pfn;
5392 int i, this_nid;
c713216d 5393
c13291a5
TH
5394 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5395 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5396}
5397
5398/**
5399 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5400 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5401 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5402 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5403 *
5404 * It returns the start and end page frame of a node based on information
7d018176 5405 * provided by memblock_set_node(). If called for a node
c713216d 5406 * with no available memory, a warning is printed and the start and end
88ca3b94 5407 * PFNs will be 0.
c713216d 5408 */
a3142c8e 5409void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5410 unsigned long *start_pfn, unsigned long *end_pfn)
5411{
c13291a5 5412 unsigned long this_start_pfn, this_end_pfn;
c713216d 5413 int i;
c13291a5 5414
c713216d
MG
5415 *start_pfn = -1UL;
5416 *end_pfn = 0;
5417
c13291a5
TH
5418 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5419 *start_pfn = min(*start_pfn, this_start_pfn);
5420 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5421 }
5422
633c0666 5423 if (*start_pfn == -1UL)
c713216d 5424 *start_pfn = 0;
c713216d
MG
5425}
5426
2a1e274a
MG
5427/*
5428 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5429 * assumption is made that zones within a node are ordered in monotonic
5430 * increasing memory addresses so that the "highest" populated zone is used
5431 */
b69a7288 5432static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5433{
5434 int zone_index;
5435 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5436 if (zone_index == ZONE_MOVABLE)
5437 continue;
5438
5439 if (arch_zone_highest_possible_pfn[zone_index] >
5440 arch_zone_lowest_possible_pfn[zone_index])
5441 break;
5442 }
5443
5444 VM_BUG_ON(zone_index == -1);
5445 movable_zone = zone_index;
5446}
5447
5448/*
5449 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5450 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5451 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5452 * in each node depending on the size of each node and how evenly kernelcore
5453 * is distributed. This helper function adjusts the zone ranges
5454 * provided by the architecture for a given node by using the end of the
5455 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5456 * zones within a node are in order of monotonic increases memory addresses
5457 */
b69a7288 5458static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5459 unsigned long zone_type,
5460 unsigned long node_start_pfn,
5461 unsigned long node_end_pfn,
5462 unsigned long *zone_start_pfn,
5463 unsigned long *zone_end_pfn)
5464{
5465 /* Only adjust if ZONE_MOVABLE is on this node */
5466 if (zone_movable_pfn[nid]) {
5467 /* Size ZONE_MOVABLE */
5468 if (zone_type == ZONE_MOVABLE) {
5469 *zone_start_pfn = zone_movable_pfn[nid];
5470 *zone_end_pfn = min(node_end_pfn,
5471 arch_zone_highest_possible_pfn[movable_zone]);
5472
e506b996
XQ
5473 /* Adjust for ZONE_MOVABLE starting within this range */
5474 } else if (!mirrored_kernelcore &&
5475 *zone_start_pfn < zone_movable_pfn[nid] &&
5476 *zone_end_pfn > zone_movable_pfn[nid]) {
5477 *zone_end_pfn = zone_movable_pfn[nid];
5478
2a1e274a
MG
5479 /* Check if this whole range is within ZONE_MOVABLE */
5480 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5481 *zone_start_pfn = *zone_end_pfn;
5482 }
5483}
5484
c713216d
MG
5485/*
5486 * Return the number of pages a zone spans in a node, including holes
5487 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5488 */
6ea6e688 5489static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5490 unsigned long zone_type,
7960aedd
ZY
5491 unsigned long node_start_pfn,
5492 unsigned long node_end_pfn,
d91749c1
TI
5493 unsigned long *zone_start_pfn,
5494 unsigned long *zone_end_pfn,
c713216d
MG
5495 unsigned long *ignored)
5496{
b5685e92 5497 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5498 if (!node_start_pfn && !node_end_pfn)
5499 return 0;
5500
7960aedd 5501 /* Get the start and end of the zone */
d91749c1
TI
5502 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5503 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5504 adjust_zone_range_for_zone_movable(nid, zone_type,
5505 node_start_pfn, node_end_pfn,
d91749c1 5506 zone_start_pfn, zone_end_pfn);
c713216d
MG
5507
5508 /* Check that this node has pages within the zone's required range */
d91749c1 5509 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5510 return 0;
5511
5512 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5513 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5514 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5515
5516 /* Return the spanned pages */
d91749c1 5517 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5518}
5519
5520/*
5521 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5522 * then all holes in the requested range will be accounted for.
c713216d 5523 */
32996250 5524unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5525 unsigned long range_start_pfn,
5526 unsigned long range_end_pfn)
5527{
96e907d1
TH
5528 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5529 unsigned long start_pfn, end_pfn;
5530 int i;
c713216d 5531
96e907d1
TH
5532 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5533 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5534 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5535 nr_absent -= end_pfn - start_pfn;
c713216d 5536 }
96e907d1 5537 return nr_absent;
c713216d
MG
5538}
5539
5540/**
5541 * absent_pages_in_range - Return number of page frames in holes within a range
5542 * @start_pfn: The start PFN to start searching for holes
5543 * @end_pfn: The end PFN to stop searching for holes
5544 *
88ca3b94 5545 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5546 */
5547unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5548 unsigned long end_pfn)
5549{
5550 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5551}
5552
5553/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5554static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5555 unsigned long zone_type,
7960aedd
ZY
5556 unsigned long node_start_pfn,
5557 unsigned long node_end_pfn,
c713216d
MG
5558 unsigned long *ignored)
5559{
96e907d1
TH
5560 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5561 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5562 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5563 unsigned long nr_absent;
9c7cd687 5564
b5685e92 5565 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5566 if (!node_start_pfn && !node_end_pfn)
5567 return 0;
5568
96e907d1
TH
5569 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5570 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5571
2a1e274a
MG
5572 adjust_zone_range_for_zone_movable(nid, zone_type,
5573 node_start_pfn, node_end_pfn,
5574 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5575 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5576
5577 /*
5578 * ZONE_MOVABLE handling.
5579 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5580 * and vice versa.
5581 */
e506b996
XQ
5582 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5583 unsigned long start_pfn, end_pfn;
5584 struct memblock_region *r;
5585
5586 for_each_memblock(memory, r) {
5587 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5588 zone_start_pfn, zone_end_pfn);
5589 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5590 zone_start_pfn, zone_end_pfn);
5591
5592 if (zone_type == ZONE_MOVABLE &&
5593 memblock_is_mirror(r))
5594 nr_absent += end_pfn - start_pfn;
5595
5596 if (zone_type == ZONE_NORMAL &&
5597 !memblock_is_mirror(r))
5598 nr_absent += end_pfn - start_pfn;
342332e6
TI
5599 }
5600 }
5601
5602 return nr_absent;
c713216d 5603}
0e0b864e 5604
0ee332c1 5605#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5606static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5607 unsigned long zone_type,
7960aedd
ZY
5608 unsigned long node_start_pfn,
5609 unsigned long node_end_pfn,
d91749c1
TI
5610 unsigned long *zone_start_pfn,
5611 unsigned long *zone_end_pfn,
c713216d
MG
5612 unsigned long *zones_size)
5613{
d91749c1
TI
5614 unsigned int zone;
5615
5616 *zone_start_pfn = node_start_pfn;
5617 for (zone = 0; zone < zone_type; zone++)
5618 *zone_start_pfn += zones_size[zone];
5619
5620 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5621
c713216d
MG
5622 return zones_size[zone_type];
5623}
5624
6ea6e688 5625static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5626 unsigned long zone_type,
7960aedd
ZY
5627 unsigned long node_start_pfn,
5628 unsigned long node_end_pfn,
c713216d
MG
5629 unsigned long *zholes_size)
5630{
5631 if (!zholes_size)
5632 return 0;
5633
5634 return zholes_size[zone_type];
5635}
20e6926d 5636
0ee332c1 5637#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5638
a3142c8e 5639static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5640 unsigned long node_start_pfn,
5641 unsigned long node_end_pfn,
5642 unsigned long *zones_size,
5643 unsigned long *zholes_size)
c713216d 5644{
febd5949 5645 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5646 enum zone_type i;
5647
febd5949
GZ
5648 for (i = 0; i < MAX_NR_ZONES; i++) {
5649 struct zone *zone = pgdat->node_zones + i;
d91749c1 5650 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5651 unsigned long size, real_size;
c713216d 5652
febd5949
GZ
5653 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5654 node_start_pfn,
5655 node_end_pfn,
d91749c1
TI
5656 &zone_start_pfn,
5657 &zone_end_pfn,
febd5949
GZ
5658 zones_size);
5659 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5660 node_start_pfn, node_end_pfn,
5661 zholes_size);
d91749c1
TI
5662 if (size)
5663 zone->zone_start_pfn = zone_start_pfn;
5664 else
5665 zone->zone_start_pfn = 0;
febd5949
GZ
5666 zone->spanned_pages = size;
5667 zone->present_pages = real_size;
5668
5669 totalpages += size;
5670 realtotalpages += real_size;
5671 }
5672
5673 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5674 pgdat->node_present_pages = realtotalpages;
5675 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5676 realtotalpages);
5677}
5678
835c134e
MG
5679#ifndef CONFIG_SPARSEMEM
5680/*
5681 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5682 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5683 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5684 * round what is now in bits to nearest long in bits, then return it in
5685 * bytes.
5686 */
7c45512d 5687static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5688{
5689 unsigned long usemapsize;
5690
7c45512d 5691 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5692 usemapsize = roundup(zonesize, pageblock_nr_pages);
5693 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5694 usemapsize *= NR_PAGEBLOCK_BITS;
5695 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5696
5697 return usemapsize / 8;
5698}
5699
5700static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5701 struct zone *zone,
5702 unsigned long zone_start_pfn,
5703 unsigned long zonesize)
835c134e 5704{
7c45512d 5705 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5706 zone->pageblock_flags = NULL;
58a01a45 5707 if (usemapsize)
6782832e
SS
5708 zone->pageblock_flags =
5709 memblock_virt_alloc_node_nopanic(usemapsize,
5710 pgdat->node_id);
835c134e
MG
5711}
5712#else
7c45512d
LT
5713static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5714 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5715#endif /* CONFIG_SPARSEMEM */
5716
d9c23400 5717#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5718
d9c23400 5719/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5720void __paginginit set_pageblock_order(void)
d9c23400 5721{
955c1cd7
AM
5722 unsigned int order;
5723
d9c23400
MG
5724 /* Check that pageblock_nr_pages has not already been setup */
5725 if (pageblock_order)
5726 return;
5727
955c1cd7
AM
5728 if (HPAGE_SHIFT > PAGE_SHIFT)
5729 order = HUGETLB_PAGE_ORDER;
5730 else
5731 order = MAX_ORDER - 1;
5732
d9c23400
MG
5733 /*
5734 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5735 * This value may be variable depending on boot parameters on IA64 and
5736 * powerpc.
d9c23400
MG
5737 */
5738 pageblock_order = order;
5739}
5740#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5741
ba72cb8c
MG
5742/*
5743 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5744 * is unused as pageblock_order is set at compile-time. See
5745 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5746 * the kernel config
ba72cb8c 5747 */
15ca220e 5748void __paginginit set_pageblock_order(void)
ba72cb8c 5749{
ba72cb8c 5750}
d9c23400
MG
5751
5752#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5753
01cefaef
JL
5754static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5755 unsigned long present_pages)
5756{
5757 unsigned long pages = spanned_pages;
5758
5759 /*
5760 * Provide a more accurate estimation if there are holes within
5761 * the zone and SPARSEMEM is in use. If there are holes within the
5762 * zone, each populated memory region may cost us one or two extra
5763 * memmap pages due to alignment because memmap pages for each
5764 * populated regions may not naturally algined on page boundary.
5765 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5766 */
5767 if (spanned_pages > present_pages + (present_pages >> 4) &&
5768 IS_ENABLED(CONFIG_SPARSEMEM))
5769 pages = present_pages;
5770
5771 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5772}
5773
1da177e4
LT
5774/*
5775 * Set up the zone data structures:
5776 * - mark all pages reserved
5777 * - mark all memory queues empty
5778 * - clear the memory bitmaps
6527af5d
MK
5779 *
5780 * NOTE: pgdat should get zeroed by caller.
1da177e4 5781 */
7f3eb55b 5782static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5783{
2f1b6248 5784 enum zone_type j;
ed8ece2e 5785 int nid = pgdat->node_id;
718127cc 5786 int ret;
1da177e4 5787
208d54e5 5788 pgdat_resize_init(pgdat);
8177a420
AA
5789#ifdef CONFIG_NUMA_BALANCING
5790 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5791 pgdat->numabalancing_migrate_nr_pages = 0;
5792 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5793#endif
5794#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5795 spin_lock_init(&pgdat->split_queue_lock);
5796 INIT_LIST_HEAD(&pgdat->split_queue);
5797 pgdat->split_queue_len = 0;
8177a420 5798#endif
1da177e4 5799 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5800 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5801#ifdef CONFIG_COMPACTION
5802 init_waitqueue_head(&pgdat->kcompactd_wait);
5803#endif
eefa864b 5804 pgdat_page_ext_init(pgdat);
a52633d8 5805 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5806 lruvec_init(node_lruvec(pgdat));
5f63b720 5807
1da177e4
LT
5808 for (j = 0; j < MAX_NR_ZONES; j++) {
5809 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5810 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5811 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5812
febd5949
GZ
5813 size = zone->spanned_pages;
5814 realsize = freesize = zone->present_pages;
1da177e4 5815
0e0b864e 5816 /*
9feedc9d 5817 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5818 * is used by this zone for memmap. This affects the watermark
5819 * and per-cpu initialisations
5820 */
01cefaef 5821 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5822 if (!is_highmem_idx(j)) {
5823 if (freesize >= memmap_pages) {
5824 freesize -= memmap_pages;
5825 if (memmap_pages)
5826 printk(KERN_DEBUG
5827 " %s zone: %lu pages used for memmap\n",
5828 zone_names[j], memmap_pages);
5829 } else
1170532b 5830 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5831 zone_names[j], memmap_pages, freesize);
5832 }
0e0b864e 5833
6267276f 5834 /* Account for reserved pages */
9feedc9d
JL
5835 if (j == 0 && freesize > dma_reserve) {
5836 freesize -= dma_reserve;
d903ef9f 5837 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5838 zone_names[0], dma_reserve);
0e0b864e
MG
5839 }
5840
98d2b0eb 5841 if (!is_highmem_idx(j))
9feedc9d 5842 nr_kernel_pages += freesize;
01cefaef
JL
5843 /* Charge for highmem memmap if there are enough kernel pages */
5844 else if (nr_kernel_pages > memmap_pages * 2)
5845 nr_kernel_pages -= memmap_pages;
9feedc9d 5846 nr_all_pages += freesize;
1da177e4 5847
9feedc9d
JL
5848 /*
5849 * Set an approximate value for lowmem here, it will be adjusted
5850 * when the bootmem allocator frees pages into the buddy system.
5851 * And all highmem pages will be managed by the buddy system.
5852 */
5853 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5854#ifdef CONFIG_NUMA
d5f541ed 5855 zone->node = nid;
9614634f 5856#endif
1da177e4 5857 zone->name = zone_names[j];
a52633d8 5858 zone->zone_pgdat = pgdat;
1da177e4 5859 spin_lock_init(&zone->lock);
bdc8cb98 5860 zone_seqlock_init(zone);
ed8ece2e 5861 zone_pcp_init(zone);
81c0a2bb 5862
1da177e4
LT
5863 if (!size)
5864 continue;
5865
955c1cd7 5866 set_pageblock_order();
7c45512d 5867 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5868 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5869 BUG_ON(ret);
76cdd58e 5870 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5871 }
5872}
5873
bd721ea7 5874static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5875{
b0aeba74 5876 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5877 unsigned long __maybe_unused offset = 0;
5878
1da177e4
LT
5879 /* Skip empty nodes */
5880 if (!pgdat->node_spanned_pages)
5881 return;
5882
d41dee36 5883#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5884 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5885 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5886 /* ia64 gets its own node_mem_map, before this, without bootmem */
5887 if (!pgdat->node_mem_map) {
b0aeba74 5888 unsigned long size, end;
d41dee36
AW
5889 struct page *map;
5890
e984bb43
BP
5891 /*
5892 * The zone's endpoints aren't required to be MAX_ORDER
5893 * aligned but the node_mem_map endpoints must be in order
5894 * for the buddy allocator to function correctly.
5895 */
108bcc96 5896 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5897 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5898 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5899 map = alloc_remap(pgdat->node_id, size);
5900 if (!map)
6782832e
SS
5901 map = memblock_virt_alloc_node_nopanic(size,
5902 pgdat->node_id);
a1c34a3b 5903 pgdat->node_mem_map = map + offset;
1da177e4 5904 }
12d810c1 5905#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5906 /*
5907 * With no DISCONTIG, the global mem_map is just set as node 0's
5908 */
c713216d 5909 if (pgdat == NODE_DATA(0)) {
1da177e4 5910 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5911#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5912 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5913 mem_map -= offset;
0ee332c1 5914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5915 }
1da177e4 5916#endif
d41dee36 5917#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5918}
5919
9109fb7b
JW
5920void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5921 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5922{
9109fb7b 5923 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5924 unsigned long start_pfn = 0;
5925 unsigned long end_pfn = 0;
9109fb7b 5926
88fdf75d 5927 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5928 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5929
3a80a7fa 5930 reset_deferred_meminit(pgdat);
1da177e4
LT
5931 pgdat->node_id = nid;
5932 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5933 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5934#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5935 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5936 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5937 (u64)start_pfn << PAGE_SHIFT,
5938 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5939#else
5940 start_pfn = node_start_pfn;
7960aedd
ZY
5941#endif
5942 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5943 zones_size, zholes_size);
1da177e4
LT
5944
5945 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5946#ifdef CONFIG_FLAT_NODE_MEM_MAP
5947 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5948 nid, (unsigned long)pgdat,
5949 (unsigned long)pgdat->node_mem_map);
5950#endif
1da177e4 5951
7f3eb55b 5952 free_area_init_core(pgdat);
1da177e4
LT
5953}
5954
0ee332c1 5955#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5956
5957#if MAX_NUMNODES > 1
5958/*
5959 * Figure out the number of possible node ids.
5960 */
f9872caf 5961void __init setup_nr_node_ids(void)
418508c1 5962{
904a9553 5963 unsigned int highest;
418508c1 5964
904a9553 5965 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5966 nr_node_ids = highest + 1;
5967}
418508c1
MS
5968#endif
5969
1e01979c
TH
5970/**
5971 * node_map_pfn_alignment - determine the maximum internode alignment
5972 *
5973 * This function should be called after node map is populated and sorted.
5974 * It calculates the maximum power of two alignment which can distinguish
5975 * all the nodes.
5976 *
5977 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5978 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5979 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5980 * shifted, 1GiB is enough and this function will indicate so.
5981 *
5982 * This is used to test whether pfn -> nid mapping of the chosen memory
5983 * model has fine enough granularity to avoid incorrect mapping for the
5984 * populated node map.
5985 *
5986 * Returns the determined alignment in pfn's. 0 if there is no alignment
5987 * requirement (single node).
5988 */
5989unsigned long __init node_map_pfn_alignment(void)
5990{
5991 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5992 unsigned long start, end, mask;
1e01979c 5993 int last_nid = -1;
c13291a5 5994 int i, nid;
1e01979c 5995
c13291a5 5996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5997 if (!start || last_nid < 0 || last_nid == nid) {
5998 last_nid = nid;
5999 last_end = end;
6000 continue;
6001 }
6002
6003 /*
6004 * Start with a mask granular enough to pin-point to the
6005 * start pfn and tick off bits one-by-one until it becomes
6006 * too coarse to separate the current node from the last.
6007 */
6008 mask = ~((1 << __ffs(start)) - 1);
6009 while (mask && last_end <= (start & (mask << 1)))
6010 mask <<= 1;
6011
6012 /* accumulate all internode masks */
6013 accl_mask |= mask;
6014 }
6015
6016 /* convert mask to number of pages */
6017 return ~accl_mask + 1;
6018}
6019
a6af2bc3 6020/* Find the lowest pfn for a node */
b69a7288 6021static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6022{
a6af2bc3 6023 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6024 unsigned long start_pfn;
6025 int i;
1abbfb41 6026
c13291a5
TH
6027 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6028 min_pfn = min(min_pfn, start_pfn);
c713216d 6029
a6af2bc3 6030 if (min_pfn == ULONG_MAX) {
1170532b 6031 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6032 return 0;
6033 }
6034
6035 return min_pfn;
c713216d
MG
6036}
6037
6038/**
6039 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6040 *
6041 * It returns the minimum PFN based on information provided via
7d018176 6042 * memblock_set_node().
c713216d
MG
6043 */
6044unsigned long __init find_min_pfn_with_active_regions(void)
6045{
6046 return find_min_pfn_for_node(MAX_NUMNODES);
6047}
6048
37b07e41
LS
6049/*
6050 * early_calculate_totalpages()
6051 * Sum pages in active regions for movable zone.
4b0ef1fe 6052 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6053 */
484f51f8 6054static unsigned long __init early_calculate_totalpages(void)
7e63efef 6055{
7e63efef 6056 unsigned long totalpages = 0;
c13291a5
TH
6057 unsigned long start_pfn, end_pfn;
6058 int i, nid;
6059
6060 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6061 unsigned long pages = end_pfn - start_pfn;
7e63efef 6062
37b07e41
LS
6063 totalpages += pages;
6064 if (pages)
4b0ef1fe 6065 node_set_state(nid, N_MEMORY);
37b07e41 6066 }
b8af2941 6067 return totalpages;
7e63efef
MG
6068}
6069
2a1e274a
MG
6070/*
6071 * Find the PFN the Movable zone begins in each node. Kernel memory
6072 * is spread evenly between nodes as long as the nodes have enough
6073 * memory. When they don't, some nodes will have more kernelcore than
6074 * others
6075 */
b224ef85 6076static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6077{
6078 int i, nid;
6079 unsigned long usable_startpfn;
6080 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6081 /* save the state before borrow the nodemask */
4b0ef1fe 6082 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6083 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6084 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6085 struct memblock_region *r;
b2f3eebe
TC
6086
6087 /* Need to find movable_zone earlier when movable_node is specified. */
6088 find_usable_zone_for_movable();
6089
6090 /*
6091 * If movable_node is specified, ignore kernelcore and movablecore
6092 * options.
6093 */
6094 if (movable_node_is_enabled()) {
136199f0
EM
6095 for_each_memblock(memory, r) {
6096 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6097 continue;
6098
136199f0 6099 nid = r->nid;
b2f3eebe 6100
136199f0 6101 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6102 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6103 min(usable_startpfn, zone_movable_pfn[nid]) :
6104 usable_startpfn;
6105 }
6106
6107 goto out2;
6108 }
2a1e274a 6109
342332e6
TI
6110 /*
6111 * If kernelcore=mirror is specified, ignore movablecore option
6112 */
6113 if (mirrored_kernelcore) {
6114 bool mem_below_4gb_not_mirrored = false;
6115
6116 for_each_memblock(memory, r) {
6117 if (memblock_is_mirror(r))
6118 continue;
6119
6120 nid = r->nid;
6121
6122 usable_startpfn = memblock_region_memory_base_pfn(r);
6123
6124 if (usable_startpfn < 0x100000) {
6125 mem_below_4gb_not_mirrored = true;
6126 continue;
6127 }
6128
6129 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6130 min(usable_startpfn, zone_movable_pfn[nid]) :
6131 usable_startpfn;
6132 }
6133
6134 if (mem_below_4gb_not_mirrored)
6135 pr_warn("This configuration results in unmirrored kernel memory.");
6136
6137 goto out2;
6138 }
6139
7e63efef 6140 /*
b2f3eebe 6141 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6142 * kernelcore that corresponds so that memory usable for
6143 * any allocation type is evenly spread. If both kernelcore
6144 * and movablecore are specified, then the value of kernelcore
6145 * will be used for required_kernelcore if it's greater than
6146 * what movablecore would have allowed.
6147 */
6148 if (required_movablecore) {
7e63efef
MG
6149 unsigned long corepages;
6150
6151 /*
6152 * Round-up so that ZONE_MOVABLE is at least as large as what
6153 * was requested by the user
6154 */
6155 required_movablecore =
6156 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6157 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6158 corepages = totalpages - required_movablecore;
6159
6160 required_kernelcore = max(required_kernelcore, corepages);
6161 }
6162
bde304bd
XQ
6163 /*
6164 * If kernelcore was not specified or kernelcore size is larger
6165 * than totalpages, there is no ZONE_MOVABLE.
6166 */
6167 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6168 goto out;
2a1e274a
MG
6169
6170 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6171 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6172
6173restart:
6174 /* Spread kernelcore memory as evenly as possible throughout nodes */
6175 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6176 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6177 unsigned long start_pfn, end_pfn;
6178
2a1e274a
MG
6179 /*
6180 * Recalculate kernelcore_node if the division per node
6181 * now exceeds what is necessary to satisfy the requested
6182 * amount of memory for the kernel
6183 */
6184 if (required_kernelcore < kernelcore_node)
6185 kernelcore_node = required_kernelcore / usable_nodes;
6186
6187 /*
6188 * As the map is walked, we track how much memory is usable
6189 * by the kernel using kernelcore_remaining. When it is
6190 * 0, the rest of the node is usable by ZONE_MOVABLE
6191 */
6192 kernelcore_remaining = kernelcore_node;
6193
6194 /* Go through each range of PFNs within this node */
c13291a5 6195 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6196 unsigned long size_pages;
6197
c13291a5 6198 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6199 if (start_pfn >= end_pfn)
6200 continue;
6201
6202 /* Account for what is only usable for kernelcore */
6203 if (start_pfn < usable_startpfn) {
6204 unsigned long kernel_pages;
6205 kernel_pages = min(end_pfn, usable_startpfn)
6206 - start_pfn;
6207
6208 kernelcore_remaining -= min(kernel_pages,
6209 kernelcore_remaining);
6210 required_kernelcore -= min(kernel_pages,
6211 required_kernelcore);
6212
6213 /* Continue if range is now fully accounted */
6214 if (end_pfn <= usable_startpfn) {
6215
6216 /*
6217 * Push zone_movable_pfn to the end so
6218 * that if we have to rebalance
6219 * kernelcore across nodes, we will
6220 * not double account here
6221 */
6222 zone_movable_pfn[nid] = end_pfn;
6223 continue;
6224 }
6225 start_pfn = usable_startpfn;
6226 }
6227
6228 /*
6229 * The usable PFN range for ZONE_MOVABLE is from
6230 * start_pfn->end_pfn. Calculate size_pages as the
6231 * number of pages used as kernelcore
6232 */
6233 size_pages = end_pfn - start_pfn;
6234 if (size_pages > kernelcore_remaining)
6235 size_pages = kernelcore_remaining;
6236 zone_movable_pfn[nid] = start_pfn + size_pages;
6237
6238 /*
6239 * Some kernelcore has been met, update counts and
6240 * break if the kernelcore for this node has been
b8af2941 6241 * satisfied
2a1e274a
MG
6242 */
6243 required_kernelcore -= min(required_kernelcore,
6244 size_pages);
6245 kernelcore_remaining -= size_pages;
6246 if (!kernelcore_remaining)
6247 break;
6248 }
6249 }
6250
6251 /*
6252 * If there is still required_kernelcore, we do another pass with one
6253 * less node in the count. This will push zone_movable_pfn[nid] further
6254 * along on the nodes that still have memory until kernelcore is
b8af2941 6255 * satisfied
2a1e274a
MG
6256 */
6257 usable_nodes--;
6258 if (usable_nodes && required_kernelcore > usable_nodes)
6259 goto restart;
6260
b2f3eebe 6261out2:
2a1e274a
MG
6262 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6263 for (nid = 0; nid < MAX_NUMNODES; nid++)
6264 zone_movable_pfn[nid] =
6265 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6266
20e6926d 6267out:
66918dcd 6268 /* restore the node_state */
4b0ef1fe 6269 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6270}
6271
4b0ef1fe
LJ
6272/* Any regular or high memory on that node ? */
6273static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6274{
37b07e41
LS
6275 enum zone_type zone_type;
6276
4b0ef1fe
LJ
6277 if (N_MEMORY == N_NORMAL_MEMORY)
6278 return;
6279
6280 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6281 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6282 if (populated_zone(zone)) {
4b0ef1fe
LJ
6283 node_set_state(nid, N_HIGH_MEMORY);
6284 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6285 zone_type <= ZONE_NORMAL)
6286 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6287 break;
6288 }
37b07e41 6289 }
37b07e41
LS
6290}
6291
c713216d
MG
6292/**
6293 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6294 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6295 *
6296 * This will call free_area_init_node() for each active node in the system.
7d018176 6297 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6298 * zone in each node and their holes is calculated. If the maximum PFN
6299 * between two adjacent zones match, it is assumed that the zone is empty.
6300 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6301 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6302 * starts where the previous one ended. For example, ZONE_DMA32 starts
6303 * at arch_max_dma_pfn.
6304 */
6305void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6306{
c13291a5
TH
6307 unsigned long start_pfn, end_pfn;
6308 int i, nid;
a6af2bc3 6309
c713216d
MG
6310 /* Record where the zone boundaries are */
6311 memset(arch_zone_lowest_possible_pfn, 0,
6312 sizeof(arch_zone_lowest_possible_pfn));
6313 memset(arch_zone_highest_possible_pfn, 0,
6314 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6315
6316 start_pfn = find_min_pfn_with_active_regions();
6317
6318 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6319 if (i == ZONE_MOVABLE)
6320 continue;
90cae1fe
OH
6321
6322 end_pfn = max(max_zone_pfn[i], start_pfn);
6323 arch_zone_lowest_possible_pfn[i] = start_pfn;
6324 arch_zone_highest_possible_pfn[i] = end_pfn;
6325
6326 start_pfn = end_pfn;
c713216d 6327 }
2a1e274a
MG
6328 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6329 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6330
6331 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6332 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6333 find_zone_movable_pfns_for_nodes();
c713216d 6334
c713216d 6335 /* Print out the zone ranges */
f88dfff5 6336 pr_info("Zone ranges:\n");
2a1e274a
MG
6337 for (i = 0; i < MAX_NR_ZONES; i++) {
6338 if (i == ZONE_MOVABLE)
6339 continue;
f88dfff5 6340 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6341 if (arch_zone_lowest_possible_pfn[i] ==
6342 arch_zone_highest_possible_pfn[i])
f88dfff5 6343 pr_cont("empty\n");
72f0ba02 6344 else
8d29e18a
JG
6345 pr_cont("[mem %#018Lx-%#018Lx]\n",
6346 (u64)arch_zone_lowest_possible_pfn[i]
6347 << PAGE_SHIFT,
6348 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6349 << PAGE_SHIFT) - 1);
2a1e274a
MG
6350 }
6351
6352 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6353 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6354 for (i = 0; i < MAX_NUMNODES; i++) {
6355 if (zone_movable_pfn[i])
8d29e18a
JG
6356 pr_info(" Node %d: %#018Lx\n", i,
6357 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6358 }
c713216d 6359
f2d52fe5 6360 /* Print out the early node map */
f88dfff5 6361 pr_info("Early memory node ranges\n");
c13291a5 6362 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6363 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6364 (u64)start_pfn << PAGE_SHIFT,
6365 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6366
6367 /* Initialise every node */
708614e6 6368 mminit_verify_pageflags_layout();
8ef82866 6369 setup_nr_node_ids();
c713216d
MG
6370 for_each_online_node(nid) {
6371 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6372 free_area_init_node(nid, NULL,
c713216d 6373 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6374
6375 /* Any memory on that node */
6376 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6377 node_set_state(nid, N_MEMORY);
6378 check_for_memory(pgdat, nid);
c713216d
MG
6379 }
6380}
2a1e274a 6381
7e63efef 6382static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6383{
6384 unsigned long long coremem;
6385 if (!p)
6386 return -EINVAL;
6387
6388 coremem = memparse(p, &p);
7e63efef 6389 *core = coremem >> PAGE_SHIFT;
2a1e274a 6390
7e63efef 6391 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6392 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6393
6394 return 0;
6395}
ed7ed365 6396
7e63efef
MG
6397/*
6398 * kernelcore=size sets the amount of memory for use for allocations that
6399 * cannot be reclaimed or migrated.
6400 */
6401static int __init cmdline_parse_kernelcore(char *p)
6402{
342332e6
TI
6403 /* parse kernelcore=mirror */
6404 if (parse_option_str(p, "mirror")) {
6405 mirrored_kernelcore = true;
6406 return 0;
6407 }
6408
7e63efef
MG
6409 return cmdline_parse_core(p, &required_kernelcore);
6410}
6411
6412/*
6413 * movablecore=size sets the amount of memory for use for allocations that
6414 * can be reclaimed or migrated.
6415 */
6416static int __init cmdline_parse_movablecore(char *p)
6417{
6418 return cmdline_parse_core(p, &required_movablecore);
6419}
6420
ed7ed365 6421early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6422early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6423
0ee332c1 6424#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6425
c3d5f5f0
JL
6426void adjust_managed_page_count(struct page *page, long count)
6427{
6428 spin_lock(&managed_page_count_lock);
6429 page_zone(page)->managed_pages += count;
6430 totalram_pages += count;
3dcc0571
JL
6431#ifdef CONFIG_HIGHMEM
6432 if (PageHighMem(page))
6433 totalhigh_pages += count;
6434#endif
c3d5f5f0
JL
6435 spin_unlock(&managed_page_count_lock);
6436}
3dcc0571 6437EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6438
11199692 6439unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6440{
11199692
JL
6441 void *pos;
6442 unsigned long pages = 0;
69afade7 6443
11199692
JL
6444 start = (void *)PAGE_ALIGN((unsigned long)start);
6445 end = (void *)((unsigned long)end & PAGE_MASK);
6446 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6447 if ((unsigned int)poison <= 0xFF)
11199692
JL
6448 memset(pos, poison, PAGE_SIZE);
6449 free_reserved_page(virt_to_page(pos));
69afade7
JL
6450 }
6451
6452 if (pages && s)
adb1fe9a
JP
6453 pr_info("Freeing %s memory: %ldK\n",
6454 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6455
6456 return pages;
6457}
11199692 6458EXPORT_SYMBOL(free_reserved_area);
69afade7 6459
cfa11e08
JL
6460#ifdef CONFIG_HIGHMEM
6461void free_highmem_page(struct page *page)
6462{
6463 __free_reserved_page(page);
6464 totalram_pages++;
7b4b2a0d 6465 page_zone(page)->managed_pages++;
cfa11e08
JL
6466 totalhigh_pages++;
6467}
6468#endif
6469
7ee3d4e8
JL
6470
6471void __init mem_init_print_info(const char *str)
6472{
6473 unsigned long physpages, codesize, datasize, rosize, bss_size;
6474 unsigned long init_code_size, init_data_size;
6475
6476 physpages = get_num_physpages();
6477 codesize = _etext - _stext;
6478 datasize = _edata - _sdata;
6479 rosize = __end_rodata - __start_rodata;
6480 bss_size = __bss_stop - __bss_start;
6481 init_data_size = __init_end - __init_begin;
6482 init_code_size = _einittext - _sinittext;
6483
6484 /*
6485 * Detect special cases and adjust section sizes accordingly:
6486 * 1) .init.* may be embedded into .data sections
6487 * 2) .init.text.* may be out of [__init_begin, __init_end],
6488 * please refer to arch/tile/kernel/vmlinux.lds.S.
6489 * 3) .rodata.* may be embedded into .text or .data sections.
6490 */
6491#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6492 do { \
6493 if (start <= pos && pos < end && size > adj) \
6494 size -= adj; \
6495 } while (0)
7ee3d4e8
JL
6496
6497 adj_init_size(__init_begin, __init_end, init_data_size,
6498 _sinittext, init_code_size);
6499 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6500 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6501 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6502 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6503
6504#undef adj_init_size
6505
756a025f 6506 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6507#ifdef CONFIG_HIGHMEM
756a025f 6508 ", %luK highmem"
7ee3d4e8 6509#endif
756a025f
JP
6510 "%s%s)\n",
6511 nr_free_pages() << (PAGE_SHIFT - 10),
6512 physpages << (PAGE_SHIFT - 10),
6513 codesize >> 10, datasize >> 10, rosize >> 10,
6514 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6515 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6516 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6517#ifdef CONFIG_HIGHMEM
756a025f 6518 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6519#endif
756a025f 6520 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6521}
6522
0e0b864e 6523/**
88ca3b94
RD
6524 * set_dma_reserve - set the specified number of pages reserved in the first zone
6525 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6526 *
013110a7 6527 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6528 * In the DMA zone, a significant percentage may be consumed by kernel image
6529 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6530 * function may optionally be used to account for unfreeable pages in the
6531 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6532 * smaller per-cpu batchsize.
0e0b864e
MG
6533 */
6534void __init set_dma_reserve(unsigned long new_dma_reserve)
6535{
6536 dma_reserve = new_dma_reserve;
6537}
6538
1da177e4
LT
6539void __init free_area_init(unsigned long *zones_size)
6540{
9109fb7b 6541 free_area_init_node(0, zones_size,
1da177e4
LT
6542 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6543}
1da177e4 6544
005fd4bb 6545static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6546{
1da177e4 6547
005fd4bb
SAS
6548 lru_add_drain_cpu(cpu);
6549 drain_pages(cpu);
9f8f2172 6550
005fd4bb
SAS
6551 /*
6552 * Spill the event counters of the dead processor
6553 * into the current processors event counters.
6554 * This artificially elevates the count of the current
6555 * processor.
6556 */
6557 vm_events_fold_cpu(cpu);
9f8f2172 6558
005fd4bb
SAS
6559 /*
6560 * Zero the differential counters of the dead processor
6561 * so that the vm statistics are consistent.
6562 *
6563 * This is only okay since the processor is dead and cannot
6564 * race with what we are doing.
6565 */
6566 cpu_vm_stats_fold(cpu);
6567 return 0;
1da177e4 6568}
1da177e4
LT
6569
6570void __init page_alloc_init(void)
6571{
005fd4bb
SAS
6572 int ret;
6573
6574 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6575 "mm/page_alloc:dead", NULL,
6576 page_alloc_cpu_dead);
6577 WARN_ON(ret < 0);
1da177e4
LT
6578}
6579
cb45b0e9 6580/*
34b10060 6581 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6582 * or min_free_kbytes changes.
6583 */
6584static void calculate_totalreserve_pages(void)
6585{
6586 struct pglist_data *pgdat;
6587 unsigned long reserve_pages = 0;
2f6726e5 6588 enum zone_type i, j;
cb45b0e9
HA
6589
6590 for_each_online_pgdat(pgdat) {
281e3726
MG
6591
6592 pgdat->totalreserve_pages = 0;
6593
cb45b0e9
HA
6594 for (i = 0; i < MAX_NR_ZONES; i++) {
6595 struct zone *zone = pgdat->node_zones + i;
3484b2de 6596 long max = 0;
cb45b0e9
HA
6597
6598 /* Find valid and maximum lowmem_reserve in the zone */
6599 for (j = i; j < MAX_NR_ZONES; j++) {
6600 if (zone->lowmem_reserve[j] > max)
6601 max = zone->lowmem_reserve[j];
6602 }
6603
41858966
MG
6604 /* we treat the high watermark as reserved pages. */
6605 max += high_wmark_pages(zone);
cb45b0e9 6606
b40da049
JL
6607 if (max > zone->managed_pages)
6608 max = zone->managed_pages;
a8d01437 6609
281e3726 6610 pgdat->totalreserve_pages += max;
a8d01437 6611
cb45b0e9
HA
6612 reserve_pages += max;
6613 }
6614 }
6615 totalreserve_pages = reserve_pages;
6616}
6617
1da177e4
LT
6618/*
6619 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6620 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6621 * has a correct pages reserved value, so an adequate number of
6622 * pages are left in the zone after a successful __alloc_pages().
6623 */
6624static void setup_per_zone_lowmem_reserve(void)
6625{
6626 struct pglist_data *pgdat;
2f6726e5 6627 enum zone_type j, idx;
1da177e4 6628
ec936fc5 6629 for_each_online_pgdat(pgdat) {
1da177e4
LT
6630 for (j = 0; j < MAX_NR_ZONES; j++) {
6631 struct zone *zone = pgdat->node_zones + j;
b40da049 6632 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6633
6634 zone->lowmem_reserve[j] = 0;
6635
2f6726e5
CL
6636 idx = j;
6637 while (idx) {
1da177e4
LT
6638 struct zone *lower_zone;
6639
2f6726e5
CL
6640 idx--;
6641
1da177e4
LT
6642 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6643 sysctl_lowmem_reserve_ratio[idx] = 1;
6644
6645 lower_zone = pgdat->node_zones + idx;
b40da049 6646 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6647 sysctl_lowmem_reserve_ratio[idx];
b40da049 6648 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6649 }
6650 }
6651 }
cb45b0e9
HA
6652
6653 /* update totalreserve_pages */
6654 calculate_totalreserve_pages();
1da177e4
LT
6655}
6656
cfd3da1e 6657static void __setup_per_zone_wmarks(void)
1da177e4
LT
6658{
6659 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6660 unsigned long lowmem_pages = 0;
6661 struct zone *zone;
6662 unsigned long flags;
6663
6664 /* Calculate total number of !ZONE_HIGHMEM pages */
6665 for_each_zone(zone) {
6666 if (!is_highmem(zone))
b40da049 6667 lowmem_pages += zone->managed_pages;
1da177e4
LT
6668 }
6669
6670 for_each_zone(zone) {
ac924c60
AM
6671 u64 tmp;
6672
1125b4e3 6673 spin_lock_irqsave(&zone->lock, flags);
b40da049 6674 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6675 do_div(tmp, lowmem_pages);
1da177e4
LT
6676 if (is_highmem(zone)) {
6677 /*
669ed175
NP
6678 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6679 * need highmem pages, so cap pages_min to a small
6680 * value here.
6681 *
41858966 6682 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6683 * deltas control asynch page reclaim, and so should
669ed175 6684 * not be capped for highmem.
1da177e4 6685 */
90ae8d67 6686 unsigned long min_pages;
1da177e4 6687
b40da049 6688 min_pages = zone->managed_pages / 1024;
90ae8d67 6689 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6690 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6691 } else {
669ed175
NP
6692 /*
6693 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6694 * proportionate to the zone's size.
6695 */
41858966 6696 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6697 }
6698
795ae7a0
JW
6699 /*
6700 * Set the kswapd watermarks distance according to the
6701 * scale factor in proportion to available memory, but
6702 * ensure a minimum size on small systems.
6703 */
6704 tmp = max_t(u64, tmp >> 2,
6705 mult_frac(zone->managed_pages,
6706 watermark_scale_factor, 10000));
6707
6708 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6709 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6710
1125b4e3 6711 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6712 }
cb45b0e9
HA
6713
6714 /* update totalreserve_pages */
6715 calculate_totalreserve_pages();
1da177e4
LT
6716}
6717
cfd3da1e
MG
6718/**
6719 * setup_per_zone_wmarks - called when min_free_kbytes changes
6720 * or when memory is hot-{added|removed}
6721 *
6722 * Ensures that the watermark[min,low,high] values for each zone are set
6723 * correctly with respect to min_free_kbytes.
6724 */
6725void setup_per_zone_wmarks(void)
6726{
6727 mutex_lock(&zonelists_mutex);
6728 __setup_per_zone_wmarks();
6729 mutex_unlock(&zonelists_mutex);
6730}
6731
1da177e4
LT
6732/*
6733 * Initialise min_free_kbytes.
6734 *
6735 * For small machines we want it small (128k min). For large machines
6736 * we want it large (64MB max). But it is not linear, because network
6737 * bandwidth does not increase linearly with machine size. We use
6738 *
b8af2941 6739 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6740 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6741 *
6742 * which yields
6743 *
6744 * 16MB: 512k
6745 * 32MB: 724k
6746 * 64MB: 1024k
6747 * 128MB: 1448k
6748 * 256MB: 2048k
6749 * 512MB: 2896k
6750 * 1024MB: 4096k
6751 * 2048MB: 5792k
6752 * 4096MB: 8192k
6753 * 8192MB: 11584k
6754 * 16384MB: 16384k
6755 */
1b79acc9 6756int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6757{
6758 unsigned long lowmem_kbytes;
5f12733e 6759 int new_min_free_kbytes;
1da177e4
LT
6760
6761 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6762 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6763
6764 if (new_min_free_kbytes > user_min_free_kbytes) {
6765 min_free_kbytes = new_min_free_kbytes;
6766 if (min_free_kbytes < 128)
6767 min_free_kbytes = 128;
6768 if (min_free_kbytes > 65536)
6769 min_free_kbytes = 65536;
6770 } else {
6771 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6772 new_min_free_kbytes, user_min_free_kbytes);
6773 }
bc75d33f 6774 setup_per_zone_wmarks();
a6cccdc3 6775 refresh_zone_stat_thresholds();
1da177e4 6776 setup_per_zone_lowmem_reserve();
6423aa81
JK
6777
6778#ifdef CONFIG_NUMA
6779 setup_min_unmapped_ratio();
6780 setup_min_slab_ratio();
6781#endif
6782
1da177e4
LT
6783 return 0;
6784}
bc22af74 6785core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6786
6787/*
b8af2941 6788 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6789 * that we can call two helper functions whenever min_free_kbytes
6790 * changes.
6791 */
cccad5b9 6792int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6793 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6794{
da8c757b
HP
6795 int rc;
6796
6797 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6798 if (rc)
6799 return rc;
6800
5f12733e
MH
6801 if (write) {
6802 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6803 setup_per_zone_wmarks();
5f12733e 6804 }
1da177e4
LT
6805 return 0;
6806}
6807
795ae7a0
JW
6808int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6809 void __user *buffer, size_t *length, loff_t *ppos)
6810{
6811 int rc;
6812
6813 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6814 if (rc)
6815 return rc;
6816
6817 if (write)
6818 setup_per_zone_wmarks();
6819
6820 return 0;
6821}
6822
9614634f 6823#ifdef CONFIG_NUMA
6423aa81 6824static void setup_min_unmapped_ratio(void)
9614634f 6825{
6423aa81 6826 pg_data_t *pgdat;
9614634f 6827 struct zone *zone;
9614634f 6828
a5f5f91d 6829 for_each_online_pgdat(pgdat)
81cbcbc2 6830 pgdat->min_unmapped_pages = 0;
a5f5f91d 6831
9614634f 6832 for_each_zone(zone)
a5f5f91d 6833 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6834 sysctl_min_unmapped_ratio) / 100;
9614634f 6835}
0ff38490 6836
6423aa81
JK
6837
6838int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6839 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6840{
0ff38490
CL
6841 int rc;
6842
8d65af78 6843 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6844 if (rc)
6845 return rc;
6846
6423aa81
JK
6847 setup_min_unmapped_ratio();
6848
6849 return 0;
6850}
6851
6852static void setup_min_slab_ratio(void)
6853{
6854 pg_data_t *pgdat;
6855 struct zone *zone;
6856
a5f5f91d
MG
6857 for_each_online_pgdat(pgdat)
6858 pgdat->min_slab_pages = 0;
6859
0ff38490 6860 for_each_zone(zone)
a5f5f91d 6861 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6862 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6863}
6864
6865int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6866 void __user *buffer, size_t *length, loff_t *ppos)
6867{
6868 int rc;
6869
6870 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6871 if (rc)
6872 return rc;
6873
6874 setup_min_slab_ratio();
6875
0ff38490
CL
6876 return 0;
6877}
9614634f
CL
6878#endif
6879
1da177e4
LT
6880/*
6881 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6882 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6883 * whenever sysctl_lowmem_reserve_ratio changes.
6884 *
6885 * The reserve ratio obviously has absolutely no relation with the
41858966 6886 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6887 * if in function of the boot time zone sizes.
6888 */
cccad5b9 6889int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6890 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6891{
8d65af78 6892 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6893 setup_per_zone_lowmem_reserve();
6894 return 0;
6895}
6896
8ad4b1fb
RS
6897/*
6898 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6899 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6900 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6901 */
cccad5b9 6902int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6903 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6904{
6905 struct zone *zone;
7cd2b0a3 6906 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6907 int ret;
6908
7cd2b0a3
DR
6909 mutex_lock(&pcp_batch_high_lock);
6910 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6911
8d65af78 6912 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6913 if (!write || ret < 0)
6914 goto out;
6915
6916 /* Sanity checking to avoid pcp imbalance */
6917 if (percpu_pagelist_fraction &&
6918 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6919 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6920 ret = -EINVAL;
6921 goto out;
6922 }
6923
6924 /* No change? */
6925 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6926 goto out;
c8e251fa 6927
364df0eb 6928 for_each_populated_zone(zone) {
7cd2b0a3
DR
6929 unsigned int cpu;
6930
22a7f12b 6931 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6932 pageset_set_high_and_batch(zone,
6933 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6934 }
7cd2b0a3 6935out:
c8e251fa 6936 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6937 return ret;
8ad4b1fb
RS
6938}
6939
a9919c79 6940#ifdef CONFIG_NUMA
f034b5d4 6941int hashdist = HASHDIST_DEFAULT;
1da177e4 6942
1da177e4
LT
6943static int __init set_hashdist(char *str)
6944{
6945 if (!str)
6946 return 0;
6947 hashdist = simple_strtoul(str, &str, 0);
6948 return 1;
6949}
6950__setup("hashdist=", set_hashdist);
6951#endif
6952
f6f34b43
SD
6953#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6954/*
6955 * Returns the number of pages that arch has reserved but
6956 * is not known to alloc_large_system_hash().
6957 */
6958static unsigned long __init arch_reserved_kernel_pages(void)
6959{
6960 return 0;
6961}
6962#endif
6963
1da177e4
LT
6964/*
6965 * allocate a large system hash table from bootmem
6966 * - it is assumed that the hash table must contain an exact power-of-2
6967 * quantity of entries
6968 * - limit is the number of hash buckets, not the total allocation size
6969 */
6970void *__init alloc_large_system_hash(const char *tablename,
6971 unsigned long bucketsize,
6972 unsigned long numentries,
6973 int scale,
6974 int flags,
6975 unsigned int *_hash_shift,
6976 unsigned int *_hash_mask,
31fe62b9
TB
6977 unsigned long low_limit,
6978 unsigned long high_limit)
1da177e4 6979{
31fe62b9 6980 unsigned long long max = high_limit;
1da177e4
LT
6981 unsigned long log2qty, size;
6982 void *table = NULL;
6983
6984 /* allow the kernel cmdline to have a say */
6985 if (!numentries) {
6986 /* round applicable memory size up to nearest megabyte */
04903664 6987 numentries = nr_kernel_pages;
f6f34b43 6988 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
6989
6990 /* It isn't necessary when PAGE_SIZE >= 1MB */
6991 if (PAGE_SHIFT < 20)
6992 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6993
6994 /* limit to 1 bucket per 2^scale bytes of low memory */
6995 if (scale > PAGE_SHIFT)
6996 numentries >>= (scale - PAGE_SHIFT);
6997 else
6998 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6999
7000 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7001 if (unlikely(flags & HASH_SMALL)) {
7002 /* Makes no sense without HASH_EARLY */
7003 WARN_ON(!(flags & HASH_EARLY));
7004 if (!(numentries >> *_hash_shift)) {
7005 numentries = 1UL << *_hash_shift;
7006 BUG_ON(!numentries);
7007 }
7008 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7009 numentries = PAGE_SIZE / bucketsize;
1da177e4 7010 }
6e692ed3 7011 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7012
7013 /* limit allocation size to 1/16 total memory by default */
7014 if (max == 0) {
7015 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7016 do_div(max, bucketsize);
7017 }
074b8517 7018 max = min(max, 0x80000000ULL);
1da177e4 7019
31fe62b9
TB
7020 if (numentries < low_limit)
7021 numentries = low_limit;
1da177e4
LT
7022 if (numentries > max)
7023 numentries = max;
7024
f0d1b0b3 7025 log2qty = ilog2(numentries);
1da177e4
LT
7026
7027 do {
7028 size = bucketsize << log2qty;
7029 if (flags & HASH_EARLY)
6782832e 7030 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7031 else if (hashdist)
7032 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7033 else {
1037b83b
ED
7034 /*
7035 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7036 * some pages at the end of hash table which
7037 * alloc_pages_exact() automatically does
1037b83b 7038 */
264ef8a9 7039 if (get_order(size) < MAX_ORDER) {
a1dd268c 7040 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7041 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7042 }
1da177e4
LT
7043 }
7044 } while (!table && size > PAGE_SIZE && --log2qty);
7045
7046 if (!table)
7047 panic("Failed to allocate %s hash table\n", tablename);
7048
1170532b
JP
7049 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7050 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7051
7052 if (_hash_shift)
7053 *_hash_shift = log2qty;
7054 if (_hash_mask)
7055 *_hash_mask = (1 << log2qty) - 1;
7056
7057 return table;
7058}
a117e66e 7059
a5d76b54 7060/*
80934513
MK
7061 * This function checks whether pageblock includes unmovable pages or not.
7062 * If @count is not zero, it is okay to include less @count unmovable pages
7063 *
b8af2941 7064 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7065 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7066 * expect this function should be exact.
a5d76b54 7067 */
b023f468
WC
7068bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7069 bool skip_hwpoisoned_pages)
49ac8255
KH
7070{
7071 unsigned long pfn, iter, found;
47118af0
MN
7072 int mt;
7073
49ac8255
KH
7074 /*
7075 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7076 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7077 */
7078 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7079 return false;
47118af0
MN
7080 mt = get_pageblock_migratetype(page);
7081 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7082 return false;
49ac8255
KH
7083
7084 pfn = page_to_pfn(page);
7085 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7086 unsigned long check = pfn + iter;
7087
29723fcc 7088 if (!pfn_valid_within(check))
49ac8255 7089 continue;
29723fcc 7090
49ac8255 7091 page = pfn_to_page(check);
c8721bbb
NH
7092
7093 /*
7094 * Hugepages are not in LRU lists, but they're movable.
7095 * We need not scan over tail pages bacause we don't
7096 * handle each tail page individually in migration.
7097 */
7098 if (PageHuge(page)) {
7099 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7100 continue;
7101 }
7102
97d255c8
MK
7103 /*
7104 * We can't use page_count without pin a page
7105 * because another CPU can free compound page.
7106 * This check already skips compound tails of THP
0139aa7b 7107 * because their page->_refcount is zero at all time.
97d255c8 7108 */
fe896d18 7109 if (!page_ref_count(page)) {
49ac8255
KH
7110 if (PageBuddy(page))
7111 iter += (1 << page_order(page)) - 1;
7112 continue;
7113 }
97d255c8 7114
b023f468
WC
7115 /*
7116 * The HWPoisoned page may be not in buddy system, and
7117 * page_count() is not 0.
7118 */
7119 if (skip_hwpoisoned_pages && PageHWPoison(page))
7120 continue;
7121
49ac8255
KH
7122 if (!PageLRU(page))
7123 found++;
7124 /*
6b4f7799
JW
7125 * If there are RECLAIMABLE pages, we need to check
7126 * it. But now, memory offline itself doesn't call
7127 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7128 */
7129 /*
7130 * If the page is not RAM, page_count()should be 0.
7131 * we don't need more check. This is an _used_ not-movable page.
7132 *
7133 * The problematic thing here is PG_reserved pages. PG_reserved
7134 * is set to both of a memory hole page and a _used_ kernel
7135 * page at boot.
7136 */
7137 if (found > count)
80934513 7138 return true;
49ac8255 7139 }
80934513 7140 return false;
49ac8255
KH
7141}
7142
7143bool is_pageblock_removable_nolock(struct page *page)
7144{
656a0706
MH
7145 struct zone *zone;
7146 unsigned long pfn;
687875fb
MH
7147
7148 /*
7149 * We have to be careful here because we are iterating over memory
7150 * sections which are not zone aware so we might end up outside of
7151 * the zone but still within the section.
656a0706
MH
7152 * We have to take care about the node as well. If the node is offline
7153 * its NODE_DATA will be NULL - see page_zone.
687875fb 7154 */
656a0706
MH
7155 if (!node_online(page_to_nid(page)))
7156 return false;
7157
7158 zone = page_zone(page);
7159 pfn = page_to_pfn(page);
108bcc96 7160 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7161 return false;
7162
b023f468 7163 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7164}
0c0e6195 7165
080fe206 7166#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7167
7168static unsigned long pfn_max_align_down(unsigned long pfn)
7169{
7170 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7171 pageblock_nr_pages) - 1);
7172}
7173
7174static unsigned long pfn_max_align_up(unsigned long pfn)
7175{
7176 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7177 pageblock_nr_pages));
7178}
7179
041d3a8c 7180/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7181static int __alloc_contig_migrate_range(struct compact_control *cc,
7182 unsigned long start, unsigned long end)
041d3a8c
MN
7183{
7184 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7185 unsigned long nr_reclaimed;
041d3a8c
MN
7186 unsigned long pfn = start;
7187 unsigned int tries = 0;
7188 int ret = 0;
7189
be49a6e1 7190 migrate_prep();
041d3a8c 7191
bb13ffeb 7192 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7193 if (fatal_signal_pending(current)) {
7194 ret = -EINTR;
7195 break;
7196 }
7197
bb13ffeb
MG
7198 if (list_empty(&cc->migratepages)) {
7199 cc->nr_migratepages = 0;
edc2ca61 7200 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7201 if (!pfn) {
7202 ret = -EINTR;
7203 break;
7204 }
7205 tries = 0;
7206 } else if (++tries == 5) {
7207 ret = ret < 0 ? ret : -EBUSY;
7208 break;
7209 }
7210
beb51eaa
MK
7211 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7212 &cc->migratepages);
7213 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7214
9c620e2b 7215 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7216 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7217 }
2a6f5124
SP
7218 if (ret < 0) {
7219 putback_movable_pages(&cc->migratepages);
7220 return ret;
7221 }
7222 return 0;
041d3a8c
MN
7223}
7224
7225/**
7226 * alloc_contig_range() -- tries to allocate given range of pages
7227 * @start: start PFN to allocate
7228 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7229 * @migratetype: migratetype of the underlaying pageblocks (either
7230 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7231 * in range must have the same migratetype and it must
7232 * be either of the two.
041d3a8c
MN
7233 *
7234 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7235 * aligned, however it's the caller's responsibility to guarantee that
7236 * we are the only thread that changes migrate type of pageblocks the
7237 * pages fall in.
7238 *
7239 * The PFN range must belong to a single zone.
7240 *
7241 * Returns zero on success or negative error code. On success all
7242 * pages which PFN is in [start, end) are allocated for the caller and
7243 * need to be freed with free_contig_range().
7244 */
0815f3d8
MN
7245int alloc_contig_range(unsigned long start, unsigned long end,
7246 unsigned migratetype)
041d3a8c 7247{
041d3a8c 7248 unsigned long outer_start, outer_end;
d00181b9
KS
7249 unsigned int order;
7250 int ret = 0;
041d3a8c 7251
bb13ffeb
MG
7252 struct compact_control cc = {
7253 .nr_migratepages = 0,
7254 .order = -1,
7255 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7256 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7257 .ignore_skip_hint = true,
7258 };
7259 INIT_LIST_HEAD(&cc.migratepages);
7260
041d3a8c
MN
7261 /*
7262 * What we do here is we mark all pageblocks in range as
7263 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7264 * have different sizes, and due to the way page allocator
7265 * work, we align the range to biggest of the two pages so
7266 * that page allocator won't try to merge buddies from
7267 * different pageblocks and change MIGRATE_ISOLATE to some
7268 * other migration type.
7269 *
7270 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7271 * migrate the pages from an unaligned range (ie. pages that
7272 * we are interested in). This will put all the pages in
7273 * range back to page allocator as MIGRATE_ISOLATE.
7274 *
7275 * When this is done, we take the pages in range from page
7276 * allocator removing them from the buddy system. This way
7277 * page allocator will never consider using them.
7278 *
7279 * This lets us mark the pageblocks back as
7280 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7281 * aligned range but not in the unaligned, original range are
7282 * put back to page allocator so that buddy can use them.
7283 */
7284
7285 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7286 pfn_max_align_up(end), migratetype,
7287 false);
041d3a8c 7288 if (ret)
86a595f9 7289 return ret;
041d3a8c 7290
8ef5849f
JK
7291 /*
7292 * In case of -EBUSY, we'd like to know which page causes problem.
7293 * So, just fall through. We will check it in test_pages_isolated().
7294 */
bb13ffeb 7295 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7296 if (ret && ret != -EBUSY)
041d3a8c
MN
7297 goto done;
7298
7299 /*
7300 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7301 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7302 * more, all pages in [start, end) are free in page allocator.
7303 * What we are going to do is to allocate all pages from
7304 * [start, end) (that is remove them from page allocator).
7305 *
7306 * The only problem is that pages at the beginning and at the
7307 * end of interesting range may be not aligned with pages that
7308 * page allocator holds, ie. they can be part of higher order
7309 * pages. Because of this, we reserve the bigger range and
7310 * once this is done free the pages we are not interested in.
7311 *
7312 * We don't have to hold zone->lock here because the pages are
7313 * isolated thus they won't get removed from buddy.
7314 */
7315
7316 lru_add_drain_all();
510f5507 7317 drain_all_pages(cc.zone);
041d3a8c
MN
7318
7319 order = 0;
7320 outer_start = start;
7321 while (!PageBuddy(pfn_to_page(outer_start))) {
7322 if (++order >= MAX_ORDER) {
8ef5849f
JK
7323 outer_start = start;
7324 break;
041d3a8c
MN
7325 }
7326 outer_start &= ~0UL << order;
7327 }
7328
8ef5849f
JK
7329 if (outer_start != start) {
7330 order = page_order(pfn_to_page(outer_start));
7331
7332 /*
7333 * outer_start page could be small order buddy page and
7334 * it doesn't include start page. Adjust outer_start
7335 * in this case to report failed page properly
7336 * on tracepoint in test_pages_isolated()
7337 */
7338 if (outer_start + (1UL << order) <= start)
7339 outer_start = start;
7340 }
7341
041d3a8c 7342 /* Make sure the range is really isolated. */
b023f468 7343 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7344 pr_info("%s: [%lx, %lx) PFNs busy\n",
7345 __func__, outer_start, end);
041d3a8c
MN
7346 ret = -EBUSY;
7347 goto done;
7348 }
7349
49f223a9 7350 /* Grab isolated pages from freelists. */
bb13ffeb 7351 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7352 if (!outer_end) {
7353 ret = -EBUSY;
7354 goto done;
7355 }
7356
7357 /* Free head and tail (if any) */
7358 if (start != outer_start)
7359 free_contig_range(outer_start, start - outer_start);
7360 if (end != outer_end)
7361 free_contig_range(end, outer_end - end);
7362
7363done:
7364 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7365 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7366 return ret;
7367}
7368
7369void free_contig_range(unsigned long pfn, unsigned nr_pages)
7370{
bcc2b02f
MS
7371 unsigned int count = 0;
7372
7373 for (; nr_pages--; pfn++) {
7374 struct page *page = pfn_to_page(pfn);
7375
7376 count += page_count(page) != 1;
7377 __free_page(page);
7378 }
7379 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7380}
7381#endif
7382
4ed7e022 7383#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7384/*
7385 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7386 * page high values need to be recalulated.
7387 */
4ed7e022
JL
7388void __meminit zone_pcp_update(struct zone *zone)
7389{
0a647f38 7390 unsigned cpu;
c8e251fa 7391 mutex_lock(&pcp_batch_high_lock);
0a647f38 7392 for_each_possible_cpu(cpu)
169f6c19
CS
7393 pageset_set_high_and_batch(zone,
7394 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7395 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7396}
7397#endif
7398
340175b7
JL
7399void zone_pcp_reset(struct zone *zone)
7400{
7401 unsigned long flags;
5a883813
MK
7402 int cpu;
7403 struct per_cpu_pageset *pset;
340175b7
JL
7404
7405 /* avoid races with drain_pages() */
7406 local_irq_save(flags);
7407 if (zone->pageset != &boot_pageset) {
5a883813
MK
7408 for_each_online_cpu(cpu) {
7409 pset = per_cpu_ptr(zone->pageset, cpu);
7410 drain_zonestat(zone, pset);
7411 }
340175b7
JL
7412 free_percpu(zone->pageset);
7413 zone->pageset = &boot_pageset;
7414 }
7415 local_irq_restore(flags);
7416}
7417
6dcd73d7 7418#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7419/*
b9eb6319
JK
7420 * All pages in the range must be in a single zone and isolated
7421 * before calling this.
0c0e6195
KH
7422 */
7423void
7424__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7425{
7426 struct page *page;
7427 struct zone *zone;
7aeb09f9 7428 unsigned int order, i;
0c0e6195
KH
7429 unsigned long pfn;
7430 unsigned long flags;
7431 /* find the first valid pfn */
7432 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7433 if (pfn_valid(pfn))
7434 break;
7435 if (pfn == end_pfn)
7436 return;
7437 zone = page_zone(pfn_to_page(pfn));
7438 spin_lock_irqsave(&zone->lock, flags);
7439 pfn = start_pfn;
7440 while (pfn < end_pfn) {
7441 if (!pfn_valid(pfn)) {
7442 pfn++;
7443 continue;
7444 }
7445 page = pfn_to_page(pfn);
b023f468
WC
7446 /*
7447 * The HWPoisoned page may be not in buddy system, and
7448 * page_count() is not 0.
7449 */
7450 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7451 pfn++;
7452 SetPageReserved(page);
7453 continue;
7454 }
7455
0c0e6195
KH
7456 BUG_ON(page_count(page));
7457 BUG_ON(!PageBuddy(page));
7458 order = page_order(page);
7459#ifdef CONFIG_DEBUG_VM
1170532b
JP
7460 pr_info("remove from free list %lx %d %lx\n",
7461 pfn, 1 << order, end_pfn);
0c0e6195
KH
7462#endif
7463 list_del(&page->lru);
7464 rmv_page_order(page);
7465 zone->free_area[order].nr_free--;
0c0e6195
KH
7466 for (i = 0; i < (1 << order); i++)
7467 SetPageReserved((page+i));
7468 pfn += (1 << order);
7469 }
7470 spin_unlock_irqrestore(&zone->lock, flags);
7471}
7472#endif
8d22ba1b 7473
8d22ba1b
WF
7474bool is_free_buddy_page(struct page *page)
7475{
7476 struct zone *zone = page_zone(page);
7477 unsigned long pfn = page_to_pfn(page);
7478 unsigned long flags;
7aeb09f9 7479 unsigned int order;
8d22ba1b
WF
7480
7481 spin_lock_irqsave(&zone->lock, flags);
7482 for (order = 0; order < MAX_ORDER; order++) {
7483 struct page *page_head = page - (pfn & ((1 << order) - 1));
7484
7485 if (PageBuddy(page_head) && page_order(page_head) >= order)
7486 break;
7487 }
7488 spin_unlock_irqrestore(&zone->lock, flags);
7489
7490 return order < MAX_ORDER;
7491}