]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm/hugetlb.c: convert to pr_foo()
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
ac924c60 64#include <asm/div64.h>
1da177e4
LT
65#include "internal.h"
66
72812019
LS
67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68DEFINE_PER_CPU(int, numa_node);
69EXPORT_PER_CPU_SYMBOL(numa_node);
70#endif
71
7aac7898
LS
72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
73/*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81#endif
82
1da177e4 83/*
13808910 84 * Array of node states.
1da177e4 85 */
13808910
CL
86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89#ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91#ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
93#endif
94#ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
96#endif
97 [N_CPU] = { { [0] = 1UL } },
98#endif /* NUMA */
99};
100EXPORT_SYMBOL(node_states);
101
6c231b7b 102unsigned long totalram_pages __read_mostly;
cb45b0e9 103unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
104/*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110unsigned long dirty_balance_reserve __read_mostly;
111
1b76b02f 112int percpu_pagelist_fraction;
dcce284a 113gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 114
452aa699
RW
115#ifdef CONFIG_PM_SLEEP
116/*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
c9e664f1
RW
124
125static gfp_t saved_gfp_mask;
126
127void pm_restore_gfp_mask(void)
452aa699
RW
128{
129 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
452aa699
RW
134}
135
c9e664f1 136void pm_restrict_gfp_mask(void)
452aa699 137{
452aa699 138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 142}
f90ac398
MG
143
144bool pm_suspended_storage(void)
145{
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149}
452aa699
RW
150#endif /* CONFIG_PM_SLEEP */
151
d9c23400
MG
152#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153int pageblock_order __read_mostly;
154#endif
155
d98c7a09 156static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 157
1da177e4
LT
158/*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
1da177e4 168 */
2f1b6248 169int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 170#ifdef CONFIG_ZONE_DMA
2f1b6248 171 256,
4b51d669 172#endif
fb0e7942 173#ifdef CONFIG_ZONE_DMA32
2f1b6248 174 256,
fb0e7942 175#endif
e53ef38d 176#ifdef CONFIG_HIGHMEM
2a1e274a 177 32,
e53ef38d 178#endif
2a1e274a 179 32,
2f1b6248 180};
1da177e4
LT
181
182EXPORT_SYMBOL(totalram_pages);
1da177e4 183
15ad7cdc 184static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 185#ifdef CONFIG_ZONE_DMA
2f1b6248 186 "DMA",
4b51d669 187#endif
fb0e7942 188#ifdef CONFIG_ZONE_DMA32
2f1b6248 189 "DMA32",
fb0e7942 190#endif
2f1b6248 191 "Normal",
e53ef38d 192#ifdef CONFIG_HIGHMEM
2a1e274a 193 "HighMem",
e53ef38d 194#endif
2a1e274a 195 "Movable",
2f1b6248
CL
196};
197
1da177e4
LT
198int min_free_kbytes = 1024;
199
2c85f51d
JB
200static unsigned long __meminitdata nr_kernel_pages;
201static unsigned long __meminitdata nr_all_pages;
a3142c8e 202static unsigned long __meminitdata dma_reserve;
1da177e4 203
0ee332c1
TH
204#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207static unsigned long __initdata required_kernelcore;
208static unsigned long __initdata required_movablecore;
209static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212int movable_zone;
213EXPORT_SYMBOL(movable_zone);
214#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 215
418508c1
MS
216#if MAX_NUMNODES > 1
217int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 218int nr_online_nodes __read_mostly = 1;
418508c1 219EXPORT_SYMBOL(nr_node_ids);
62bc62a8 220EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
221#endif
222
9ef9acb0
MG
223int page_group_by_mobility_disabled __read_mostly;
224
ee6f509c 225void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 226{
49255c61
MG
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
b2a0ac88
MG
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233}
234
7f33d49a
RW
235bool oom_killer_disabled __read_mostly;
236
13e7444b 237#ifdef CONFIG_DEBUG_VM
c6a57e19 238static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 239{
bdc8cb98
DH
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
c6a57e19 243
bdc8cb98
DH
244 do {
245 seq = zone_span_seqbegin(zone);
246 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 ret = 1;
248 else if (pfn < zone->zone_start_pfn)
249 ret = 1;
250 } while (zone_span_seqretry(zone, seq));
251
252 return ret;
c6a57e19
DH
253}
254
255static int page_is_consistent(struct zone *zone, struct page *page)
256{
14e07298 257 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 258 return 0;
1da177e4 259 if (zone != page_zone(page))
c6a57e19
DH
260 return 0;
261
262 return 1;
263}
264/*
265 * Temporary debugging check for pages not lying within a given zone.
266 */
267static int bad_range(struct zone *zone, struct page *page)
268{
269 if (page_outside_zone_boundaries(zone, page))
1da177e4 270 return 1;
c6a57e19
DH
271 if (!page_is_consistent(zone, page))
272 return 1;
273
1da177e4
LT
274 return 0;
275}
13e7444b
NP
276#else
277static inline int bad_range(struct zone *zone, struct page *page)
278{
279 return 0;
280}
281#endif
282
224abf92 283static void bad_page(struct page *page)
1da177e4 284{
d936cf9b
HD
285 static unsigned long resume;
286 static unsigned long nr_shown;
287 static unsigned long nr_unshown;
288
2a7684a2
WF
289 /* Don't complain about poisoned pages */
290 if (PageHWPoison(page)) {
ef2b4b95 291 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
292 return;
293 }
294
d936cf9b
HD
295 /*
296 * Allow a burst of 60 reports, then keep quiet for that minute;
297 * or allow a steady drip of one report per second.
298 */
299 if (nr_shown == 60) {
300 if (time_before(jiffies, resume)) {
301 nr_unshown++;
302 goto out;
303 }
304 if (nr_unshown) {
1e9e6365
HD
305 printk(KERN_ALERT
306 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
307 nr_unshown);
308 nr_unshown = 0;
309 }
310 nr_shown = 0;
311 }
312 if (nr_shown++ == 0)
313 resume = jiffies + 60 * HZ;
314
1e9e6365 315 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 316 current->comm, page_to_pfn(page));
718a3821 317 dump_page(page);
3dc14741 318
4f31888c 319 print_modules();
1da177e4 320 dump_stack();
d936cf9b 321out:
8cc3b392 322 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 323 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 324 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
325}
326
1da177e4
LT
327/*
328 * Higher-order pages are called "compound pages". They are structured thusly:
329 *
330 * The first PAGE_SIZE page is called the "head page".
331 *
332 * The remaining PAGE_SIZE pages are called "tail pages".
333 *
6416b9fa
WSH
334 * All pages have PG_compound set. All tail pages have their ->first_page
335 * pointing at the head page.
1da177e4 336 *
41d78ba5
HD
337 * The first tail page's ->lru.next holds the address of the compound page's
338 * put_page() function. Its ->lru.prev holds the order of allocation.
339 * This usage means that zero-order pages may not be compound.
1da177e4 340 */
d98c7a09
HD
341
342static void free_compound_page(struct page *page)
343{
d85f3385 344 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
345}
346
01ad1c08 347void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
348{
349 int i;
350 int nr_pages = 1 << order;
351
352 set_compound_page_dtor(page, free_compound_page);
353 set_compound_order(page, order);
354 __SetPageHead(page);
355 for (i = 1; i < nr_pages; i++) {
356 struct page *p = page + i;
18229df5 357 __SetPageTail(p);
58a84aa9 358 set_page_count(p, 0);
18229df5
AW
359 p->first_page = page;
360 }
361}
362
59ff4216 363/* update __split_huge_page_refcount if you change this function */
8cc3b392 364static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
365{
366 int i;
367 int nr_pages = 1 << order;
8cc3b392 368 int bad = 0;
1da177e4 369
0bb2c763 370 if (unlikely(compound_order(page) != order)) {
224abf92 371 bad_page(page);
8cc3b392
HD
372 bad++;
373 }
1da177e4 374
6d777953 375 __ClearPageHead(page);
8cc3b392 376
18229df5
AW
377 for (i = 1; i < nr_pages; i++) {
378 struct page *p = page + i;
1da177e4 379
e713a21d 380 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 381 bad_page(page);
8cc3b392
HD
382 bad++;
383 }
d85f3385 384 __ClearPageTail(p);
1da177e4 385 }
8cc3b392
HD
386
387 return bad;
1da177e4 388}
1da177e4 389
17cf4406
NP
390static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
391{
392 int i;
393
6626c5d5
AM
394 /*
395 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
396 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 */
725d704e 398 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
399 for (i = 0; i < (1 << order); i++)
400 clear_highpage(page + i);
401}
402
c0a32fc5
SG
403#ifdef CONFIG_DEBUG_PAGEALLOC
404unsigned int _debug_guardpage_minorder;
405
406static int __init debug_guardpage_minorder_setup(char *buf)
407{
408 unsigned long res;
409
410 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
411 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
412 return 0;
413 }
414 _debug_guardpage_minorder = res;
415 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
416 return 0;
417}
418__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
419
420static inline void set_page_guard_flag(struct page *page)
421{
422 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
423}
424
425static inline void clear_page_guard_flag(struct page *page)
426{
427 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428}
429#else
430static inline void set_page_guard_flag(struct page *page) { }
431static inline void clear_page_guard_flag(struct page *page) { }
432#endif
433
6aa3001b
AM
434static inline void set_page_order(struct page *page, int order)
435{
4c21e2f2 436 set_page_private(page, order);
676165a8 437 __SetPageBuddy(page);
1da177e4
LT
438}
439
440static inline void rmv_page_order(struct page *page)
441{
676165a8 442 __ClearPageBuddy(page);
4c21e2f2 443 set_page_private(page, 0);
1da177e4
LT
444}
445
446/*
447 * Locate the struct page for both the matching buddy in our
448 * pair (buddy1) and the combined O(n+1) page they form (page).
449 *
450 * 1) Any buddy B1 will have an order O twin B2 which satisfies
451 * the following equation:
452 * B2 = B1 ^ (1 << O)
453 * For example, if the starting buddy (buddy2) is #8 its order
454 * 1 buddy is #10:
455 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
456 *
457 * 2) Any buddy B will have an order O+1 parent P which
458 * satisfies the following equation:
459 * P = B & ~(1 << O)
460 *
d6e05edc 461 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 462 */
1da177e4 463static inline unsigned long
43506fad 464__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 465{
43506fad 466 return page_idx ^ (1 << order);
1da177e4
LT
467}
468
469/*
470 * This function checks whether a page is free && is the buddy
471 * we can do coalesce a page and its buddy if
13e7444b 472 * (a) the buddy is not in a hole &&
676165a8 473 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
474 * (c) a page and its buddy have the same order &&
475 * (d) a page and its buddy are in the same zone.
676165a8 476 *
5f24ce5f
AA
477 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
478 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 479 *
676165a8 480 * For recording page's order, we use page_private(page).
1da177e4 481 */
cb2b95e1
AW
482static inline int page_is_buddy(struct page *page, struct page *buddy,
483 int order)
1da177e4 484{
14e07298 485 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 486 return 0;
13e7444b 487
cb2b95e1
AW
488 if (page_zone_id(page) != page_zone_id(buddy))
489 return 0;
490
c0a32fc5
SG
491 if (page_is_guard(buddy) && page_order(buddy) == order) {
492 VM_BUG_ON(page_count(buddy) != 0);
493 return 1;
494 }
495
cb2b95e1 496 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 497 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 498 return 1;
676165a8 499 }
6aa3001b 500 return 0;
1da177e4
LT
501}
502
503/*
504 * Freeing function for a buddy system allocator.
505 *
506 * The concept of a buddy system is to maintain direct-mapped table
507 * (containing bit values) for memory blocks of various "orders".
508 * The bottom level table contains the map for the smallest allocatable
509 * units of memory (here, pages), and each level above it describes
510 * pairs of units from the levels below, hence, "buddies".
511 * At a high level, all that happens here is marking the table entry
512 * at the bottom level available, and propagating the changes upward
513 * as necessary, plus some accounting needed to play nicely with other
514 * parts of the VM system.
515 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 516 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 517 * order is recorded in page_private(page) field.
1da177e4 518 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
519 * other. That is, if we allocate a small block, and both were
520 * free, the remainder of the region must be split into blocks.
1da177e4 521 * If a block is freed, and its buddy is also free, then this
5f63b720 522 * triggers coalescing into a block of larger size.
1da177e4 523 *
6d49e352 524 * -- nyc
1da177e4
LT
525 */
526
48db57f8 527static inline void __free_one_page(struct page *page,
ed0ae21d
MG
528 struct zone *zone, unsigned int order,
529 int migratetype)
1da177e4
LT
530{
531 unsigned long page_idx;
6dda9d55 532 unsigned long combined_idx;
43506fad 533 unsigned long uninitialized_var(buddy_idx);
6dda9d55 534 struct page *buddy;
1da177e4 535
224abf92 536 if (unlikely(PageCompound(page)))
8cc3b392
HD
537 if (unlikely(destroy_compound_page(page, order)))
538 return;
1da177e4 539
ed0ae21d
MG
540 VM_BUG_ON(migratetype == -1);
541
1da177e4
LT
542 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
543
f2260e6b 544 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 545 VM_BUG_ON(bad_range(zone, page));
1da177e4 546
1da177e4 547 while (order < MAX_ORDER-1) {
43506fad
KC
548 buddy_idx = __find_buddy_index(page_idx, order);
549 buddy = page + (buddy_idx - page_idx);
cb2b95e1 550 if (!page_is_buddy(page, buddy, order))
3c82d0ce 551 break;
c0a32fc5
SG
552 /*
553 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
554 * merge with it and move up one order.
555 */
556 if (page_is_guard(buddy)) {
557 clear_page_guard_flag(buddy);
558 set_page_private(page, 0);
d1ce749a
BZ
559 __mod_zone_freepage_state(zone, 1 << order,
560 migratetype);
c0a32fc5
SG
561 } else {
562 list_del(&buddy->lru);
563 zone->free_area[order].nr_free--;
564 rmv_page_order(buddy);
565 }
43506fad 566 combined_idx = buddy_idx & page_idx;
1da177e4
LT
567 page = page + (combined_idx - page_idx);
568 page_idx = combined_idx;
569 order++;
570 }
571 set_page_order(page, order);
6dda9d55
CZ
572
573 /*
574 * If this is not the largest possible page, check if the buddy
575 * of the next-highest order is free. If it is, it's possible
576 * that pages are being freed that will coalesce soon. In case,
577 * that is happening, add the free page to the tail of the list
578 * so it's less likely to be used soon and more likely to be merged
579 * as a higher order page
580 */
b7f50cfa 581 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 582 struct page *higher_page, *higher_buddy;
43506fad
KC
583 combined_idx = buddy_idx & page_idx;
584 higher_page = page + (combined_idx - page_idx);
585 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 586 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
587 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
588 list_add_tail(&page->lru,
589 &zone->free_area[order].free_list[migratetype]);
590 goto out;
591 }
592 }
593
594 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
595out:
1da177e4
LT
596 zone->free_area[order].nr_free++;
597}
598
224abf92 599static inline int free_pages_check(struct page *page)
1da177e4 600{
92be2e33
NP
601 if (unlikely(page_mapcount(page) |
602 (page->mapping != NULL) |
a3af9c38 603 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
604 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
605 (mem_cgroup_bad_page_check(page)))) {
224abf92 606 bad_page(page);
79f4b7bf 607 return 1;
8cc3b392 608 }
57e0a030 609 reset_page_last_nid(page);
79f4b7bf
HD
610 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
611 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
612 return 0;
1da177e4
LT
613}
614
615/*
5f8dcc21 616 * Frees a number of pages from the PCP lists
1da177e4 617 * Assumes all pages on list are in same zone, and of same order.
207f36ee 618 * count is the number of pages to free.
1da177e4
LT
619 *
620 * If the zone was previously in an "all pages pinned" state then look to
621 * see if this freeing clears that state.
622 *
623 * And clear the zone's pages_scanned counter, to hold off the "all pages are
624 * pinned" detection logic.
625 */
5f8dcc21
MG
626static void free_pcppages_bulk(struct zone *zone, int count,
627 struct per_cpu_pages *pcp)
1da177e4 628{
5f8dcc21 629 int migratetype = 0;
a6f9edd6 630 int batch_free = 0;
72853e29 631 int to_free = count;
5f8dcc21 632
c54ad30c 633 spin_lock(&zone->lock);
93e4a89a 634 zone->all_unreclaimable = 0;
1da177e4 635 zone->pages_scanned = 0;
f2260e6b 636
72853e29 637 while (to_free) {
48db57f8 638 struct page *page;
5f8dcc21
MG
639 struct list_head *list;
640
641 /*
a6f9edd6
MG
642 * Remove pages from lists in a round-robin fashion. A
643 * batch_free count is maintained that is incremented when an
644 * empty list is encountered. This is so more pages are freed
645 * off fuller lists instead of spinning excessively around empty
646 * lists
5f8dcc21
MG
647 */
648 do {
a6f9edd6 649 batch_free++;
5f8dcc21
MG
650 if (++migratetype == MIGRATE_PCPTYPES)
651 migratetype = 0;
652 list = &pcp->lists[migratetype];
653 } while (list_empty(list));
48db57f8 654
1d16871d
NK
655 /* This is the only non-empty list. Free them all. */
656 if (batch_free == MIGRATE_PCPTYPES)
657 batch_free = to_free;
658
a6f9edd6 659 do {
770c8aaa
BZ
660 int mt; /* migratetype of the to-be-freed page */
661
a6f9edd6
MG
662 page = list_entry(list->prev, struct page, lru);
663 /* must delete as __free_one_page list manipulates */
664 list_del(&page->lru);
b12c4ad1 665 mt = get_freepage_migratetype(page);
a7016235 666 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
667 __free_one_page(page, zone, 0, mt);
668 trace_mm_page_pcpu_drain(page, 0, mt);
97d0da22
WC
669 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
670 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
671 if (is_migrate_cma(mt))
672 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
673 }
72853e29 674 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 675 }
c54ad30c 676 spin_unlock(&zone->lock);
1da177e4
LT
677}
678
ed0ae21d
MG
679static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
1da177e4 681{
006d22d9 682 spin_lock(&zone->lock);
93e4a89a 683 zone->all_unreclaimable = 0;
006d22d9 684 zone->pages_scanned = 0;
f2260e6b 685
ed0ae21d 686 __free_one_page(page, zone, order, migratetype);
2139cbe6 687 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 688 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 689 spin_unlock(&zone->lock);
48db57f8
NP
690}
691
ec95f53a 692static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 693{
1da177e4 694 int i;
8cc3b392 695 int bad = 0;
1da177e4 696
b413d48a 697 trace_mm_page_free(page, order);
b1eeab67
VN
698 kmemcheck_free_shadow(page, order);
699
8dd60a3a
AA
700 if (PageAnon(page))
701 page->mapping = NULL;
702 for (i = 0; i < (1 << order); i++)
703 bad += free_pages_check(page + i);
8cc3b392 704 if (bad)
ec95f53a 705 return false;
689bcebf 706
3ac7fe5a 707 if (!PageHighMem(page)) {
9858db50 708 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
709 debug_check_no_obj_freed(page_address(page),
710 PAGE_SIZE << order);
711 }
dafb1367 712 arch_free_page(page, order);
48db57f8 713 kernel_map_pages(page, 1 << order, 0);
dafb1367 714
ec95f53a
KM
715 return true;
716}
717
718static void __free_pages_ok(struct page *page, unsigned int order)
719{
720 unsigned long flags;
95e34412 721 int migratetype;
ec95f53a
KM
722
723 if (!free_pages_prepare(page, order))
724 return;
725
c54ad30c 726 local_irq_save(flags);
f8891e5e 727 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
728 migratetype = get_pageblock_migratetype(page);
729 set_freepage_migratetype(page, migratetype);
730 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 731 local_irq_restore(flags);
1da177e4
LT
732}
733
9feedc9d
JL
734/*
735 * Read access to zone->managed_pages is safe because it's unsigned long,
736 * but we still need to serialize writers. Currently all callers of
737 * __free_pages_bootmem() except put_page_bootmem() should only be used
738 * at boot time. So for shorter boot time, we shift the burden to
739 * put_page_bootmem() to serialize writers.
740 */
af370fb8 741void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 742{
c3993076
JW
743 unsigned int nr_pages = 1 << order;
744 unsigned int loop;
a226f6c8 745
c3993076
JW
746 prefetchw(page);
747 for (loop = 0; loop < nr_pages; loop++) {
748 struct page *p = &page[loop];
749
750 if (loop + 1 < nr_pages)
751 prefetchw(p + 1);
752 __ClearPageReserved(p);
753 set_page_count(p, 0);
a226f6c8 754 }
c3993076 755
9feedc9d 756 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
757 set_page_refcounted(page);
758 __free_pages(page, order);
a226f6c8
DH
759}
760
47118af0
MN
761#ifdef CONFIG_CMA
762/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
763void __init init_cma_reserved_pageblock(struct page *page)
764{
765 unsigned i = pageblock_nr_pages;
766 struct page *p = page;
767
768 do {
769 __ClearPageReserved(p);
770 set_page_count(p, 0);
771 } while (++p, --i);
772
773 set_page_refcounted(page);
774 set_pageblock_migratetype(page, MIGRATE_CMA);
775 __free_pages(page, pageblock_order);
776 totalram_pages += pageblock_nr_pages;
41a79734
MS
777#ifdef CONFIG_HIGHMEM
778 if (PageHighMem(page))
779 totalhigh_pages += pageblock_nr_pages;
780#endif
47118af0
MN
781}
782#endif
1da177e4
LT
783
784/*
785 * The order of subdivision here is critical for the IO subsystem.
786 * Please do not alter this order without good reasons and regression
787 * testing. Specifically, as large blocks of memory are subdivided,
788 * the order in which smaller blocks are delivered depends on the order
789 * they're subdivided in this function. This is the primary factor
790 * influencing the order in which pages are delivered to the IO
791 * subsystem according to empirical testing, and this is also justified
792 * by considering the behavior of a buddy system containing a single
793 * large block of memory acted on by a series of small allocations.
794 * This behavior is a critical factor in sglist merging's success.
795 *
6d49e352 796 * -- nyc
1da177e4 797 */
085cc7d5 798static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
799 int low, int high, struct free_area *area,
800 int migratetype)
1da177e4
LT
801{
802 unsigned long size = 1 << high;
803
804 while (high > low) {
805 area--;
806 high--;
807 size >>= 1;
725d704e 808 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
809
810#ifdef CONFIG_DEBUG_PAGEALLOC
811 if (high < debug_guardpage_minorder()) {
812 /*
813 * Mark as guard pages (or page), that will allow to
814 * merge back to allocator when buddy will be freed.
815 * Corresponding page table entries will not be touched,
816 * pages will stay not present in virtual address space
817 */
818 INIT_LIST_HEAD(&page[size].lru);
819 set_page_guard_flag(&page[size]);
820 set_page_private(&page[size], high);
821 /* Guard pages are not available for any usage */
d1ce749a
BZ
822 __mod_zone_freepage_state(zone, -(1 << high),
823 migratetype);
c0a32fc5
SG
824 continue;
825 }
826#endif
b2a0ac88 827 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
828 area->nr_free++;
829 set_page_order(&page[size], high);
830 }
1da177e4
LT
831}
832
1da177e4
LT
833/*
834 * This page is about to be returned from the page allocator
835 */
2a7684a2 836static inline int check_new_page(struct page *page)
1da177e4 837{
92be2e33
NP
838 if (unlikely(page_mapcount(page) |
839 (page->mapping != NULL) |
a3af9c38 840 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
841 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
842 (mem_cgroup_bad_page_check(page)))) {
224abf92 843 bad_page(page);
689bcebf 844 return 1;
8cc3b392 845 }
2a7684a2
WF
846 return 0;
847}
848
849static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
850{
851 int i;
852
853 for (i = 0; i < (1 << order); i++) {
854 struct page *p = page + i;
855 if (unlikely(check_new_page(p)))
856 return 1;
857 }
689bcebf 858
4c21e2f2 859 set_page_private(page, 0);
7835e98b 860 set_page_refcounted(page);
cc102509
NP
861
862 arch_alloc_page(page, order);
1da177e4 863 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
864
865 if (gfp_flags & __GFP_ZERO)
866 prep_zero_page(page, order, gfp_flags);
867
868 if (order && (gfp_flags & __GFP_COMP))
869 prep_compound_page(page, order);
870
689bcebf 871 return 0;
1da177e4
LT
872}
873
56fd56b8
MG
874/*
875 * Go through the free lists for the given migratetype and remove
876 * the smallest available page from the freelists
877 */
728ec980
MG
878static inline
879struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
880 int migratetype)
881{
882 unsigned int current_order;
883 struct free_area * area;
884 struct page *page;
885
886 /* Find a page of the appropriate size in the preferred list */
887 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
888 area = &(zone->free_area[current_order]);
889 if (list_empty(&area->free_list[migratetype]))
890 continue;
891
892 page = list_entry(area->free_list[migratetype].next,
893 struct page, lru);
894 list_del(&page->lru);
895 rmv_page_order(page);
896 area->nr_free--;
56fd56b8
MG
897 expand(zone, page, order, current_order, area, migratetype);
898 return page;
899 }
900
901 return NULL;
902}
903
904
b2a0ac88
MG
905/*
906 * This array describes the order lists are fallen back to when
907 * the free lists for the desirable migrate type are depleted
908 */
47118af0
MN
909static int fallbacks[MIGRATE_TYPES][4] = {
910 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
912#ifdef CONFIG_CMA
913 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
914 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
915#else
916 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
917#endif
6d4a4916
MN
918 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
919 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
920};
921
c361be55
MG
922/*
923 * Move the free pages in a range to the free lists of the requested type.
d9c23400 924 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
925 * boundary. If alignment is required, use move_freepages_block()
926 */
435b405c 927int move_freepages(struct zone *zone,
b69a7288
AB
928 struct page *start_page, struct page *end_page,
929 int migratetype)
c361be55
MG
930{
931 struct page *page;
932 unsigned long order;
d100313f 933 int pages_moved = 0;
c361be55
MG
934
935#ifndef CONFIG_HOLES_IN_ZONE
936 /*
937 * page_zone is not safe to call in this context when
938 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
939 * anyway as we check zone boundaries in move_freepages_block().
940 * Remove at a later date when no bug reports exist related to
ac0e5b7a 941 * grouping pages by mobility
c361be55
MG
942 */
943 BUG_ON(page_zone(start_page) != page_zone(end_page));
944#endif
945
946 for (page = start_page; page <= end_page;) {
344c790e
AL
947 /* Make sure we are not inadvertently changing nodes */
948 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
949
c361be55
MG
950 if (!pfn_valid_within(page_to_pfn(page))) {
951 page++;
952 continue;
953 }
954
955 if (!PageBuddy(page)) {
956 page++;
957 continue;
958 }
959
960 order = page_order(page);
84be48d8
KS
961 list_move(&page->lru,
962 &zone->free_area[order].free_list[migratetype]);
95e34412 963 set_freepage_migratetype(page, migratetype);
c361be55 964 page += 1 << order;
d100313f 965 pages_moved += 1 << order;
c361be55
MG
966 }
967
d100313f 968 return pages_moved;
c361be55
MG
969}
970
ee6f509c 971int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 972 int migratetype)
c361be55
MG
973{
974 unsigned long start_pfn, end_pfn;
975 struct page *start_page, *end_page;
976
977 start_pfn = page_to_pfn(page);
d9c23400 978 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 979 start_page = pfn_to_page(start_pfn);
d9c23400
MG
980 end_page = start_page + pageblock_nr_pages - 1;
981 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
982
983 /* Do not cross zone boundaries */
984 if (start_pfn < zone->zone_start_pfn)
985 start_page = page;
986 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
987 return 0;
988
989 return move_freepages(zone, start_page, end_page, migratetype);
990}
991
2f66a68f
MG
992static void change_pageblock_range(struct page *pageblock_page,
993 int start_order, int migratetype)
994{
995 int nr_pageblocks = 1 << (start_order - pageblock_order);
996
997 while (nr_pageblocks--) {
998 set_pageblock_migratetype(pageblock_page, migratetype);
999 pageblock_page += pageblock_nr_pages;
1000 }
1001}
1002
b2a0ac88 1003/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1004static inline struct page *
1005__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1006{
1007 struct free_area * area;
1008 int current_order;
1009 struct page *page;
1010 int migratetype, i;
1011
1012 /* Find the largest possible block of pages in the other list */
1013 for (current_order = MAX_ORDER-1; current_order >= order;
1014 --current_order) {
6d4a4916 1015 for (i = 0;; i++) {
b2a0ac88
MG
1016 migratetype = fallbacks[start_migratetype][i];
1017
56fd56b8
MG
1018 /* MIGRATE_RESERVE handled later if necessary */
1019 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1020 break;
e010487d 1021
b2a0ac88
MG
1022 area = &(zone->free_area[current_order]);
1023 if (list_empty(&area->free_list[migratetype]))
1024 continue;
1025
1026 page = list_entry(area->free_list[migratetype].next,
1027 struct page, lru);
1028 area->nr_free--;
1029
1030 /*
c361be55 1031 * If breaking a large block of pages, move all free
46dafbca
MG
1032 * pages to the preferred allocation list. If falling
1033 * back for a reclaimable kernel allocation, be more
25985edc 1034 * aggressive about taking ownership of free pages
47118af0
MN
1035 *
1036 * On the other hand, never change migration
1037 * type of MIGRATE_CMA pageblocks nor move CMA
1038 * pages on different free lists. We don't
1039 * want unmovable pages to be allocated from
1040 * MIGRATE_CMA areas.
b2a0ac88 1041 */
47118af0
MN
1042 if (!is_migrate_cma(migratetype) &&
1043 (unlikely(current_order >= pageblock_order / 2) ||
1044 start_migratetype == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled)) {
1046 int pages;
46dafbca
MG
1047 pages = move_freepages_block(zone, page,
1048 start_migratetype);
1049
1050 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled)
46dafbca
MG
1053 set_pageblock_migratetype(page,
1054 start_migratetype);
1055
b2a0ac88 1056 migratetype = start_migratetype;
c361be55 1057 }
b2a0ac88
MG
1058
1059 /* Remove the page from the freelists */
1060 list_del(&page->lru);
1061 rmv_page_order(page);
b2a0ac88 1062
2f66a68f 1063 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1064 if (current_order >= pageblock_order &&
1065 !is_migrate_cma(migratetype))
2f66a68f 1066 change_pageblock_range(page, current_order,
b2a0ac88
MG
1067 start_migratetype);
1068
47118af0
MN
1069 expand(zone, page, order, current_order, area,
1070 is_migrate_cma(migratetype)
1071 ? migratetype : start_migratetype);
e0fff1bd
MG
1072
1073 trace_mm_page_alloc_extfrag(page, order, current_order,
1074 start_migratetype, migratetype);
1075
b2a0ac88
MG
1076 return page;
1077 }
1078 }
1079
728ec980 1080 return NULL;
b2a0ac88
MG
1081}
1082
56fd56b8 1083/*
1da177e4
LT
1084 * Do the hard work of removing an element from the buddy allocator.
1085 * Call me with the zone->lock already held.
1086 */
b2a0ac88
MG
1087static struct page *__rmqueue(struct zone *zone, unsigned int order,
1088 int migratetype)
1da177e4 1089{
1da177e4
LT
1090 struct page *page;
1091
728ec980 1092retry_reserve:
56fd56b8 1093 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1094
728ec980 1095 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1096 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1097
728ec980
MG
1098 /*
1099 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1100 * is used because __rmqueue_smallest is an inline function
1101 * and we want just one call site
1102 */
1103 if (!page) {
1104 migratetype = MIGRATE_RESERVE;
1105 goto retry_reserve;
1106 }
1107 }
1108
0d3d062a 1109 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1110 return page;
1da177e4
LT
1111}
1112
5f63b720 1113/*
1da177e4
LT
1114 * Obtain a specified number of elements from the buddy allocator, all under
1115 * a single hold of the lock, for efficiency. Add them to the supplied list.
1116 * Returns the number of new pages which were placed at *list.
1117 */
5f63b720 1118static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1119 unsigned long count, struct list_head *list,
e084b2d9 1120 int migratetype, int cold)
1da177e4 1121{
47118af0 1122 int mt = migratetype, i;
5f63b720 1123
c54ad30c 1124 spin_lock(&zone->lock);
1da177e4 1125 for (i = 0; i < count; ++i) {
b2a0ac88 1126 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1127 if (unlikely(page == NULL))
1da177e4 1128 break;
81eabcbe
MG
1129
1130 /*
1131 * Split buddy pages returned by expand() are received here
1132 * in physical page order. The page is added to the callers and
1133 * list and the list head then moves forward. From the callers
1134 * perspective, the linked list is ordered by page number in
1135 * some conditions. This is useful for IO devices that can
1136 * merge IO requests if the physical pages are ordered
1137 * properly.
1138 */
e084b2d9
MG
1139 if (likely(cold == 0))
1140 list_add(&page->lru, list);
1141 else
1142 list_add_tail(&page->lru, list);
47118af0
MN
1143 if (IS_ENABLED(CONFIG_CMA)) {
1144 mt = get_pageblock_migratetype(page);
1145 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1146 mt = migratetype;
1147 }
b12c4ad1 1148 set_freepage_migratetype(page, mt);
81eabcbe 1149 list = &page->lru;
d1ce749a
BZ
1150 if (is_migrate_cma(mt))
1151 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1152 -(1 << order));
1da177e4 1153 }
f2260e6b 1154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1155 spin_unlock(&zone->lock);
085cc7d5 1156 return i;
1da177e4
LT
1157}
1158
4ae7c039 1159#ifdef CONFIG_NUMA
8fce4d8e 1160/*
4037d452
CL
1161 * Called from the vmstat counter updater to drain pagesets of this
1162 * currently executing processor on remote nodes after they have
1163 * expired.
1164 *
879336c3
CL
1165 * Note that this function must be called with the thread pinned to
1166 * a single processor.
8fce4d8e 1167 */
4037d452 1168void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1169{
4ae7c039 1170 unsigned long flags;
4037d452 1171 int to_drain;
4ae7c039 1172
4037d452
CL
1173 local_irq_save(flags);
1174 if (pcp->count >= pcp->batch)
1175 to_drain = pcp->batch;
1176 else
1177 to_drain = pcp->count;
2a13515c
KM
1178 if (to_drain > 0) {
1179 free_pcppages_bulk(zone, to_drain, pcp);
1180 pcp->count -= to_drain;
1181 }
4037d452 1182 local_irq_restore(flags);
4ae7c039
CL
1183}
1184#endif
1185
9f8f2172
CL
1186/*
1187 * Drain pages of the indicated processor.
1188 *
1189 * The processor must either be the current processor and the
1190 * thread pinned to the current processor or a processor that
1191 * is not online.
1192 */
1193static void drain_pages(unsigned int cpu)
1da177e4 1194{
c54ad30c 1195 unsigned long flags;
1da177e4 1196 struct zone *zone;
1da177e4 1197
ee99c71c 1198 for_each_populated_zone(zone) {
1da177e4 1199 struct per_cpu_pageset *pset;
3dfa5721 1200 struct per_cpu_pages *pcp;
1da177e4 1201
99dcc3e5
CL
1202 local_irq_save(flags);
1203 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1204
1205 pcp = &pset->pcp;
2ff754fa
DR
1206 if (pcp->count) {
1207 free_pcppages_bulk(zone, pcp->count, pcp);
1208 pcp->count = 0;
1209 }
3dfa5721 1210 local_irq_restore(flags);
1da177e4
LT
1211 }
1212}
1da177e4 1213
9f8f2172
CL
1214/*
1215 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1216 */
1217void drain_local_pages(void *arg)
1218{
1219 drain_pages(smp_processor_id());
1220}
1221
1222/*
74046494
GBY
1223 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1224 *
1225 * Note that this code is protected against sending an IPI to an offline
1226 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1227 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1228 * nothing keeps CPUs from showing up after we populated the cpumask and
1229 * before the call to on_each_cpu_mask().
9f8f2172
CL
1230 */
1231void drain_all_pages(void)
1232{
74046494
GBY
1233 int cpu;
1234 struct per_cpu_pageset *pcp;
1235 struct zone *zone;
1236
1237 /*
1238 * Allocate in the BSS so we wont require allocation in
1239 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1240 */
1241 static cpumask_t cpus_with_pcps;
1242
1243 /*
1244 * We don't care about racing with CPU hotplug event
1245 * as offline notification will cause the notified
1246 * cpu to drain that CPU pcps and on_each_cpu_mask
1247 * disables preemption as part of its processing
1248 */
1249 for_each_online_cpu(cpu) {
1250 bool has_pcps = false;
1251 for_each_populated_zone(zone) {
1252 pcp = per_cpu_ptr(zone->pageset, cpu);
1253 if (pcp->pcp.count) {
1254 has_pcps = true;
1255 break;
1256 }
1257 }
1258 if (has_pcps)
1259 cpumask_set_cpu(cpu, &cpus_with_pcps);
1260 else
1261 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1262 }
1263 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1264}
1265
296699de 1266#ifdef CONFIG_HIBERNATION
1da177e4
LT
1267
1268void mark_free_pages(struct zone *zone)
1269{
f623f0db
RW
1270 unsigned long pfn, max_zone_pfn;
1271 unsigned long flags;
b2a0ac88 1272 int order, t;
1da177e4
LT
1273 struct list_head *curr;
1274
1275 if (!zone->spanned_pages)
1276 return;
1277
1278 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1279
1280 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1281 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1282 if (pfn_valid(pfn)) {
1283 struct page *page = pfn_to_page(pfn);
1284
7be98234
RW
1285 if (!swsusp_page_is_forbidden(page))
1286 swsusp_unset_page_free(page);
f623f0db 1287 }
1da177e4 1288
b2a0ac88
MG
1289 for_each_migratetype_order(order, t) {
1290 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1291 unsigned long i;
1da177e4 1292
f623f0db
RW
1293 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1294 for (i = 0; i < (1UL << order); i++)
7be98234 1295 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1296 }
b2a0ac88 1297 }
1da177e4
LT
1298 spin_unlock_irqrestore(&zone->lock, flags);
1299}
e2c55dc8 1300#endif /* CONFIG_PM */
1da177e4 1301
1da177e4
LT
1302/*
1303 * Free a 0-order page
fc91668e 1304 * cold == 1 ? free a cold page : free a hot page
1da177e4 1305 */
fc91668e 1306void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1307{
1308 struct zone *zone = page_zone(page);
1309 struct per_cpu_pages *pcp;
1310 unsigned long flags;
5f8dcc21 1311 int migratetype;
1da177e4 1312
ec95f53a 1313 if (!free_pages_prepare(page, 0))
689bcebf
HD
1314 return;
1315
5f8dcc21 1316 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1317 set_freepage_migratetype(page, migratetype);
1da177e4 1318 local_irq_save(flags);
f8891e5e 1319 __count_vm_event(PGFREE);
da456f14 1320
5f8dcc21
MG
1321 /*
1322 * We only track unmovable, reclaimable and movable on pcp lists.
1323 * Free ISOLATE pages back to the allocator because they are being
1324 * offlined but treat RESERVE as movable pages so we can get those
1325 * areas back if necessary. Otherwise, we may have to free
1326 * excessively into the page allocator
1327 */
1328 if (migratetype >= MIGRATE_PCPTYPES) {
1329 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1330 free_one_page(zone, page, 0, migratetype);
1331 goto out;
1332 }
1333 migratetype = MIGRATE_MOVABLE;
1334 }
1335
99dcc3e5 1336 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1337 if (cold)
5f8dcc21 1338 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1339 else
5f8dcc21 1340 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1341 pcp->count++;
48db57f8 1342 if (pcp->count >= pcp->high) {
5f8dcc21 1343 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1344 pcp->count -= pcp->batch;
1345 }
5f8dcc21
MG
1346
1347out:
1da177e4 1348 local_irq_restore(flags);
1da177e4
LT
1349}
1350
cc59850e
KK
1351/*
1352 * Free a list of 0-order pages
1353 */
1354void free_hot_cold_page_list(struct list_head *list, int cold)
1355{
1356 struct page *page, *next;
1357
1358 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1359 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1360 free_hot_cold_page(page, cold);
1361 }
1362}
1363
8dfcc9ba
NP
1364/*
1365 * split_page takes a non-compound higher-order page, and splits it into
1366 * n (1<<order) sub-pages: page[0..n]
1367 * Each sub-page must be freed individually.
1368 *
1369 * Note: this is probably too low level an operation for use in drivers.
1370 * Please consult with lkml before using this in your driver.
1371 */
1372void split_page(struct page *page, unsigned int order)
1373{
1374 int i;
1375
725d704e
NP
1376 VM_BUG_ON(PageCompound(page));
1377 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1378
1379#ifdef CONFIG_KMEMCHECK
1380 /*
1381 * Split shadow pages too, because free(page[0]) would
1382 * otherwise free the whole shadow.
1383 */
1384 if (kmemcheck_page_is_tracked(page))
1385 split_page(virt_to_page(page[0].shadow), order);
1386#endif
1387
7835e98b
NP
1388 for (i = 1; i < (1 << order); i++)
1389 set_page_refcounted(page + i);
8dfcc9ba 1390}
8dfcc9ba 1391
8fb74b9f 1392static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1393{
748446bb
MG
1394 unsigned long watermark;
1395 struct zone *zone;
2139cbe6 1396 int mt;
748446bb
MG
1397
1398 BUG_ON(!PageBuddy(page));
1399
1400 zone = page_zone(page);
2e30abd1 1401 mt = get_pageblock_migratetype(page);
748446bb 1402
2e30abd1
MS
1403 if (mt != MIGRATE_ISOLATE) {
1404 /* Obey watermarks as if the page was being allocated */
1405 watermark = low_wmark_pages(zone) + (1 << order);
1406 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1407 return 0;
1408
8fb74b9f 1409 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1410 }
748446bb
MG
1411
1412 /* Remove page from free list */
1413 list_del(&page->lru);
1414 zone->free_area[order].nr_free--;
1415 rmv_page_order(page);
2139cbe6 1416
8fb74b9f 1417 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1424 MIGRATE_MOVABLE);
1425 }
748446bb
MG
1426 }
1427
8fb74b9f 1428 return 1UL << order;
1fb3f8ca
MG
1429}
1430
1431/*
1432 * Similar to split_page except the page is already free. As this is only
1433 * being used for migration, the migratetype of the block also changes.
1434 * As this is called with interrupts disabled, the caller is responsible
1435 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1436 * are enabled.
1437 *
1438 * Note: this is probably too low level an operation for use in drivers.
1439 * Please consult with lkml before using this in your driver.
1440 */
1441int split_free_page(struct page *page)
1442{
1443 unsigned int order;
1444 int nr_pages;
1445
1fb3f8ca
MG
1446 order = page_order(page);
1447
8fb74b9f 1448 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1449 if (!nr_pages)
1450 return 0;
1451
1452 /* Split into individual pages */
1453 set_page_refcounted(page);
1454 split_page(page, order);
1455 return nr_pages;
748446bb
MG
1456}
1457
1da177e4
LT
1458/*
1459 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1460 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1461 * or two.
1462 */
0a15c3e9
MG
1463static inline
1464struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1465 struct zone *zone, int order, gfp_t gfp_flags,
1466 int migratetype)
1da177e4
LT
1467{
1468 unsigned long flags;
689bcebf 1469 struct page *page;
1da177e4
LT
1470 int cold = !!(gfp_flags & __GFP_COLD);
1471
689bcebf 1472again:
48db57f8 1473 if (likely(order == 0)) {
1da177e4 1474 struct per_cpu_pages *pcp;
5f8dcc21 1475 struct list_head *list;
1da177e4 1476
1da177e4 1477 local_irq_save(flags);
99dcc3e5
CL
1478 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1479 list = &pcp->lists[migratetype];
5f8dcc21 1480 if (list_empty(list)) {
535131e6 1481 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1482 pcp->batch, list,
e084b2d9 1483 migratetype, cold);
5f8dcc21 1484 if (unlikely(list_empty(list)))
6fb332fa 1485 goto failed;
535131e6 1486 }
b92a6edd 1487
5f8dcc21
MG
1488 if (cold)
1489 page = list_entry(list->prev, struct page, lru);
1490 else
1491 page = list_entry(list->next, struct page, lru);
1492
b92a6edd
MG
1493 list_del(&page->lru);
1494 pcp->count--;
7fb1d9fc 1495 } else {
dab48dab
AM
1496 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1497 /*
1498 * __GFP_NOFAIL is not to be used in new code.
1499 *
1500 * All __GFP_NOFAIL callers should be fixed so that they
1501 * properly detect and handle allocation failures.
1502 *
1503 * We most definitely don't want callers attempting to
4923abf9 1504 * allocate greater than order-1 page units with
dab48dab
AM
1505 * __GFP_NOFAIL.
1506 */
4923abf9 1507 WARN_ON_ONCE(order > 1);
dab48dab 1508 }
1da177e4 1509 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1510 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1511 spin_unlock(&zone->lock);
1512 if (!page)
1513 goto failed;
d1ce749a
BZ
1514 __mod_zone_freepage_state(zone, -(1 << order),
1515 get_pageblock_migratetype(page));
1da177e4
LT
1516 }
1517
f8891e5e 1518 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1519 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1520 local_irq_restore(flags);
1da177e4 1521
725d704e 1522 VM_BUG_ON(bad_range(zone, page));
17cf4406 1523 if (prep_new_page(page, order, gfp_flags))
a74609fa 1524 goto again;
1da177e4 1525 return page;
a74609fa
NP
1526
1527failed:
1528 local_irq_restore(flags);
a74609fa 1529 return NULL;
1da177e4
LT
1530}
1531
933e312e
AM
1532#ifdef CONFIG_FAIL_PAGE_ALLOC
1533
b2588c4b 1534static struct {
933e312e
AM
1535 struct fault_attr attr;
1536
1537 u32 ignore_gfp_highmem;
1538 u32 ignore_gfp_wait;
54114994 1539 u32 min_order;
933e312e
AM
1540} fail_page_alloc = {
1541 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1542 .ignore_gfp_wait = 1,
1543 .ignore_gfp_highmem = 1,
54114994 1544 .min_order = 1,
933e312e
AM
1545};
1546
1547static int __init setup_fail_page_alloc(char *str)
1548{
1549 return setup_fault_attr(&fail_page_alloc.attr, str);
1550}
1551__setup("fail_page_alloc=", setup_fail_page_alloc);
1552
deaf386e 1553static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1554{
54114994 1555 if (order < fail_page_alloc.min_order)
deaf386e 1556 return false;
933e312e 1557 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1558 return false;
933e312e 1559 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1560 return false;
933e312e 1561 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1562 return false;
933e312e
AM
1563
1564 return should_fail(&fail_page_alloc.attr, 1 << order);
1565}
1566
1567#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1568
1569static int __init fail_page_alloc_debugfs(void)
1570{
f4ae40a6 1571 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1572 struct dentry *dir;
933e312e 1573
dd48c085
AM
1574 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1575 &fail_page_alloc.attr);
1576 if (IS_ERR(dir))
1577 return PTR_ERR(dir);
933e312e 1578
b2588c4b
AM
1579 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1580 &fail_page_alloc.ignore_gfp_wait))
1581 goto fail;
1582 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1583 &fail_page_alloc.ignore_gfp_highmem))
1584 goto fail;
1585 if (!debugfs_create_u32("min-order", mode, dir,
1586 &fail_page_alloc.min_order))
1587 goto fail;
1588
1589 return 0;
1590fail:
dd48c085 1591 debugfs_remove_recursive(dir);
933e312e 1592
b2588c4b 1593 return -ENOMEM;
933e312e
AM
1594}
1595
1596late_initcall(fail_page_alloc_debugfs);
1597
1598#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1599
1600#else /* CONFIG_FAIL_PAGE_ALLOC */
1601
deaf386e 1602static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1603{
deaf386e 1604 return false;
933e312e
AM
1605}
1606
1607#endif /* CONFIG_FAIL_PAGE_ALLOC */
1608
1da177e4 1609/*
88f5acf8 1610 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1611 * of the allocation.
1612 */
88f5acf8
MG
1613static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1614 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1615{
1616 /* free_pages my go negative - that's OK */
d23ad423 1617 long min = mark;
2cfed075 1618 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1619 int o;
1620
df0a6daa 1621 free_pages -= (1 << order) - 1;
7fb1d9fc 1622 if (alloc_flags & ALLOC_HIGH)
1da177e4 1623 min -= min / 2;
7fb1d9fc 1624 if (alloc_flags & ALLOC_HARDER)
1da177e4 1625 min -= min / 4;
d95ea5d1
BZ
1626#ifdef CONFIG_CMA
1627 /* If allocation can't use CMA areas don't use free CMA pages */
1628 if (!(alloc_flags & ALLOC_CMA))
1629 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1630#endif
2cfed075 1631 if (free_pages <= min + lowmem_reserve)
88f5acf8 1632 return false;
1da177e4
LT
1633 for (o = 0; o < order; o++) {
1634 /* At the next order, this order's pages become unavailable */
1635 free_pages -= z->free_area[o].nr_free << o;
1636
1637 /* Require fewer higher order pages to be free */
1638 min >>= 1;
1639
1640 if (free_pages <= min)
88f5acf8 1641 return false;
1da177e4 1642 }
88f5acf8
MG
1643 return true;
1644}
1645
1646bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags)
1648{
1649 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1650 zone_page_state(z, NR_FREE_PAGES));
1651}
1652
1653bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1654 int classzone_idx, int alloc_flags)
1655{
1656 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1657
1658 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1659 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1660
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 free_pages);
1da177e4
LT
1663}
1664
9276b1bc
PJ
1665#ifdef CONFIG_NUMA
1666/*
1667 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1668 * skip over zones that are not allowed by the cpuset, or that have
1669 * been recently (in last second) found to be nearly full. See further
1670 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1671 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1672 *
1673 * If the zonelist cache is present in the passed in zonelist, then
1674 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1675 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1676 *
1677 * If the zonelist cache is not available for this zonelist, does
1678 * nothing and returns NULL.
1679 *
1680 * If the fullzones BITMAP in the zonelist cache is stale (more than
1681 * a second since last zap'd) then we zap it out (clear its bits.)
1682 *
1683 * We hold off even calling zlc_setup, until after we've checked the
1684 * first zone in the zonelist, on the theory that most allocations will
1685 * be satisfied from that first zone, so best to examine that zone as
1686 * quickly as we can.
1687 */
1688static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1689{
1690 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1691 nodemask_t *allowednodes; /* zonelist_cache approximation */
1692
1693 zlc = zonelist->zlcache_ptr;
1694 if (!zlc)
1695 return NULL;
1696
f05111f5 1697 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1698 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1699 zlc->last_full_zap = jiffies;
1700 }
1701
1702 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1703 &cpuset_current_mems_allowed :
4b0ef1fe 1704 &node_states[N_MEMORY];
9276b1bc
PJ
1705 return allowednodes;
1706}
1707
1708/*
1709 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1710 * if it is worth looking at further for free memory:
1711 * 1) Check that the zone isn't thought to be full (doesn't have its
1712 * bit set in the zonelist_cache fullzones BITMAP).
1713 * 2) Check that the zones node (obtained from the zonelist_cache
1714 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1715 * Return true (non-zero) if zone is worth looking at further, or
1716 * else return false (zero) if it is not.
1717 *
1718 * This check -ignores- the distinction between various watermarks,
1719 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1720 * found to be full for any variation of these watermarks, it will
1721 * be considered full for up to one second by all requests, unless
1722 * we are so low on memory on all allowed nodes that we are forced
1723 * into the second scan of the zonelist.
1724 *
1725 * In the second scan we ignore this zonelist cache and exactly
1726 * apply the watermarks to all zones, even it is slower to do so.
1727 * We are low on memory in the second scan, and should leave no stone
1728 * unturned looking for a free page.
1729 */
dd1a239f 1730static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1731 nodemask_t *allowednodes)
1732{
1733 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1734 int i; /* index of *z in zonelist zones */
1735 int n; /* node that zone *z is on */
1736
1737 zlc = zonelist->zlcache_ptr;
1738 if (!zlc)
1739 return 1;
1740
dd1a239f 1741 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1742 n = zlc->z_to_n[i];
1743
1744 /* This zone is worth trying if it is allowed but not full */
1745 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1746}
1747
1748/*
1749 * Given 'z' scanning a zonelist, set the corresponding bit in
1750 * zlc->fullzones, so that subsequent attempts to allocate a page
1751 * from that zone don't waste time re-examining it.
1752 */
dd1a239f 1753static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1754{
1755 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1756 int i; /* index of *z in zonelist zones */
1757
1758 zlc = zonelist->zlcache_ptr;
1759 if (!zlc)
1760 return;
1761
dd1a239f 1762 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1763
1764 set_bit(i, zlc->fullzones);
1765}
1766
76d3fbf8
MG
1767/*
1768 * clear all zones full, called after direct reclaim makes progress so that
1769 * a zone that was recently full is not skipped over for up to a second
1770 */
1771static void zlc_clear_zones_full(struct zonelist *zonelist)
1772{
1773 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1774
1775 zlc = zonelist->zlcache_ptr;
1776 if (!zlc)
1777 return;
1778
1779 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1780}
1781
957f822a
DR
1782static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1783{
1784 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1785}
1786
1787static void __paginginit init_zone_allows_reclaim(int nid)
1788{
1789 int i;
1790
1791 for_each_online_node(i)
6b187d02 1792 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1793 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1794 else
957f822a 1795 zone_reclaim_mode = 1;
957f822a
DR
1796}
1797
9276b1bc
PJ
1798#else /* CONFIG_NUMA */
1799
1800static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1801{
1802 return NULL;
1803}
1804
dd1a239f 1805static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1806 nodemask_t *allowednodes)
1807{
1808 return 1;
1809}
1810
dd1a239f 1811static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1812{
1813}
76d3fbf8
MG
1814
1815static void zlc_clear_zones_full(struct zonelist *zonelist)
1816{
1817}
957f822a
DR
1818
1819static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1820{
1821 return true;
1822}
1823
1824static inline void init_zone_allows_reclaim(int nid)
1825{
1826}
9276b1bc
PJ
1827#endif /* CONFIG_NUMA */
1828
7fb1d9fc 1829/*
0798e519 1830 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1831 * a page.
1832 */
1833static struct page *
19770b32 1834get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1835 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1836 struct zone *preferred_zone, int migratetype)
753ee728 1837{
dd1a239f 1838 struct zoneref *z;
7fb1d9fc 1839 struct page *page = NULL;
54a6eb5c 1840 int classzone_idx;
5117f45d 1841 struct zone *zone;
9276b1bc
PJ
1842 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1843 int zlc_active = 0; /* set if using zonelist_cache */
1844 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1845
19770b32 1846 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1847zonelist_scan:
7fb1d9fc 1848 /*
9276b1bc 1849 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1850 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1851 */
19770b32
MG
1852 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1853 high_zoneidx, nodemask) {
e5adfffc 1854 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1855 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1856 continue;
7fb1d9fc 1857 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1858 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1859 continue;
a756cf59
JW
1860 /*
1861 * When allocating a page cache page for writing, we
1862 * want to get it from a zone that is within its dirty
1863 * limit, such that no single zone holds more than its
1864 * proportional share of globally allowed dirty pages.
1865 * The dirty limits take into account the zone's
1866 * lowmem reserves and high watermark so that kswapd
1867 * should be able to balance it without having to
1868 * write pages from its LRU list.
1869 *
1870 * This may look like it could increase pressure on
1871 * lower zones by failing allocations in higher zones
1872 * before they are full. But the pages that do spill
1873 * over are limited as the lower zones are protected
1874 * by this very same mechanism. It should not become
1875 * a practical burden to them.
1876 *
1877 * XXX: For now, allow allocations to potentially
1878 * exceed the per-zone dirty limit in the slowpath
1879 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1880 * which is important when on a NUMA setup the allowed
1881 * zones are together not big enough to reach the
1882 * global limit. The proper fix for these situations
1883 * will require awareness of zones in the
1884 * dirty-throttling and the flusher threads.
1885 */
1886 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1887 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1888 goto this_zone_full;
7fb1d9fc 1889
41858966 1890 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1891 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1892 unsigned long mark;
fa5e084e
MG
1893 int ret;
1894
41858966 1895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1896 if (zone_watermark_ok(zone, order, mark,
1897 classzone_idx, alloc_flags))
1898 goto try_this_zone;
1899
e5adfffc
KS
1900 if (IS_ENABLED(CONFIG_NUMA) &&
1901 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1902 /*
1903 * we do zlc_setup if there are multiple nodes
1904 * and before considering the first zone allowed
1905 * by the cpuset.
1906 */
1907 allowednodes = zlc_setup(zonelist, alloc_flags);
1908 zlc_active = 1;
1909 did_zlc_setup = 1;
1910 }
1911
957f822a
DR
1912 if (zone_reclaim_mode == 0 ||
1913 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1914 goto this_zone_full;
1915
cd38b115
MG
1916 /*
1917 * As we may have just activated ZLC, check if the first
1918 * eligible zone has failed zone_reclaim recently.
1919 */
e5adfffc 1920 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1921 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1922 continue;
1923
fa5e084e
MG
1924 ret = zone_reclaim(zone, gfp_mask, order);
1925 switch (ret) {
1926 case ZONE_RECLAIM_NOSCAN:
1927 /* did not scan */
cd38b115 1928 continue;
fa5e084e
MG
1929 case ZONE_RECLAIM_FULL:
1930 /* scanned but unreclaimable */
cd38b115 1931 continue;
fa5e084e
MG
1932 default:
1933 /* did we reclaim enough */
1934 if (!zone_watermark_ok(zone, order, mark,
1935 classzone_idx, alloc_flags))
9276b1bc 1936 goto this_zone_full;
0798e519 1937 }
7fb1d9fc
RS
1938 }
1939
fa5e084e 1940try_this_zone:
3dd28266
MG
1941 page = buffered_rmqueue(preferred_zone, zone, order,
1942 gfp_mask, migratetype);
0798e519 1943 if (page)
7fb1d9fc 1944 break;
9276b1bc 1945this_zone_full:
e5adfffc 1946 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1947 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1948 }
9276b1bc 1949
e5adfffc 1950 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1951 /* Disable zlc cache for second zonelist scan */
1952 zlc_active = 0;
1953 goto zonelist_scan;
1954 }
b121186a
AS
1955
1956 if (page)
1957 /*
1958 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1959 * necessary to allocate the page. The expectation is
1960 * that the caller is taking steps that will free more
1961 * memory. The caller should avoid the page being used
1962 * for !PFMEMALLOC purposes.
1963 */
1964 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1965
7fb1d9fc 1966 return page;
753ee728
MH
1967}
1968
29423e77
DR
1969/*
1970 * Large machines with many possible nodes should not always dump per-node
1971 * meminfo in irq context.
1972 */
1973static inline bool should_suppress_show_mem(void)
1974{
1975 bool ret = false;
1976
1977#if NODES_SHIFT > 8
1978 ret = in_interrupt();
1979#endif
1980 return ret;
1981}
1982
a238ab5b
DH
1983static DEFINE_RATELIMIT_STATE(nopage_rs,
1984 DEFAULT_RATELIMIT_INTERVAL,
1985 DEFAULT_RATELIMIT_BURST);
1986
1987void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1988{
a238ab5b
DH
1989 unsigned int filter = SHOW_MEM_FILTER_NODES;
1990
c0a32fc5
SG
1991 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1992 debug_guardpage_minorder() > 0)
a238ab5b
DH
1993 return;
1994
1995 /*
1996 * This documents exceptions given to allocations in certain
1997 * contexts that are allowed to allocate outside current's set
1998 * of allowed nodes.
1999 */
2000 if (!(gfp_mask & __GFP_NOMEMALLOC))
2001 if (test_thread_flag(TIF_MEMDIE) ||
2002 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2003 filter &= ~SHOW_MEM_FILTER_NODES;
2004 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2005 filter &= ~SHOW_MEM_FILTER_NODES;
2006
2007 if (fmt) {
3ee9a4f0
JP
2008 struct va_format vaf;
2009 va_list args;
2010
a238ab5b 2011 va_start(args, fmt);
3ee9a4f0
JP
2012
2013 vaf.fmt = fmt;
2014 vaf.va = &args;
2015
2016 pr_warn("%pV", &vaf);
2017
a238ab5b
DH
2018 va_end(args);
2019 }
2020
3ee9a4f0
JP
2021 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2022 current->comm, order, gfp_mask);
a238ab5b
DH
2023
2024 dump_stack();
2025 if (!should_suppress_show_mem())
2026 show_mem(filter);
2027}
2028
11e33f6a
MG
2029static inline int
2030should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2031 unsigned long did_some_progress,
11e33f6a 2032 unsigned long pages_reclaimed)
1da177e4 2033{
11e33f6a
MG
2034 /* Do not loop if specifically requested */
2035 if (gfp_mask & __GFP_NORETRY)
2036 return 0;
1da177e4 2037
f90ac398
MG
2038 /* Always retry if specifically requested */
2039 if (gfp_mask & __GFP_NOFAIL)
2040 return 1;
2041
2042 /*
2043 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2044 * making forward progress without invoking OOM. Suspend also disables
2045 * storage devices so kswapd will not help. Bail if we are suspending.
2046 */
2047 if (!did_some_progress && pm_suspended_storage())
2048 return 0;
2049
11e33f6a
MG
2050 /*
2051 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2052 * means __GFP_NOFAIL, but that may not be true in other
2053 * implementations.
2054 */
2055 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2056 return 1;
2057
2058 /*
2059 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2060 * specified, then we retry until we no longer reclaim any pages
2061 * (above), or we've reclaimed an order of pages at least as
2062 * large as the allocation's order. In both cases, if the
2063 * allocation still fails, we stop retrying.
2064 */
2065 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2066 return 1;
cf40bd16 2067
11e33f6a
MG
2068 return 0;
2069}
933e312e 2070
11e33f6a
MG
2071static inline struct page *
2072__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2073 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2074 nodemask_t *nodemask, struct zone *preferred_zone,
2075 int migratetype)
11e33f6a
MG
2076{
2077 struct page *page;
2078
2079 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2080 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2081 schedule_timeout_uninterruptible(1);
1da177e4
LT
2082 return NULL;
2083 }
6b1de916 2084
11e33f6a
MG
2085 /*
2086 * Go through the zonelist yet one more time, keep very high watermark
2087 * here, this is only to catch a parallel oom killing, we must fail if
2088 * we're still under heavy pressure.
2089 */
2090 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2091 order, zonelist, high_zoneidx,
5117f45d 2092 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2093 preferred_zone, migratetype);
7fb1d9fc 2094 if (page)
11e33f6a
MG
2095 goto out;
2096
4365a567
KH
2097 if (!(gfp_mask & __GFP_NOFAIL)) {
2098 /* The OOM killer will not help higher order allocs */
2099 if (order > PAGE_ALLOC_COSTLY_ORDER)
2100 goto out;
03668b3c
DR
2101 /* The OOM killer does not needlessly kill tasks for lowmem */
2102 if (high_zoneidx < ZONE_NORMAL)
2103 goto out;
4365a567
KH
2104 /*
2105 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2106 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2107 * The caller should handle page allocation failure by itself if
2108 * it specifies __GFP_THISNODE.
2109 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2110 */
2111 if (gfp_mask & __GFP_THISNODE)
2112 goto out;
2113 }
11e33f6a 2114 /* Exhausted what can be done so it's blamo time */
08ab9b10 2115 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2116
2117out:
2118 clear_zonelist_oom(zonelist, gfp_mask);
2119 return page;
2120}
2121
56de7263
MG
2122#ifdef CONFIG_COMPACTION
2123/* Try memory compaction for high-order allocations before reclaim */
2124static struct page *
2125__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2126 struct zonelist *zonelist, enum zone_type high_zoneidx,
2127 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2128 int migratetype, bool sync_migration,
c67fe375 2129 bool *contended_compaction, bool *deferred_compaction,
66199712 2130 unsigned long *did_some_progress)
56de7263 2131{
66199712 2132 if (!order)
56de7263
MG
2133 return NULL;
2134
aff62249 2135 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2136 *deferred_compaction = true;
2137 return NULL;
2138 }
2139
c06b1fca 2140 current->flags |= PF_MEMALLOC;
56de7263 2141 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2142 nodemask, sync_migration,
8fb74b9f 2143 contended_compaction);
c06b1fca 2144 current->flags &= ~PF_MEMALLOC;
56de7263 2145
1fb3f8ca 2146 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2147 struct page *page;
2148
56de7263
MG
2149 /* Page migration frees to the PCP lists but we want merging */
2150 drain_pages(get_cpu());
2151 put_cpu();
2152
2153 page = get_page_from_freelist(gfp_mask, nodemask,
2154 order, zonelist, high_zoneidx,
cfd19c5a
MG
2155 alloc_flags & ~ALLOC_NO_WATERMARKS,
2156 preferred_zone, migratetype);
56de7263 2157 if (page) {
62997027 2158 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2159 preferred_zone->compact_considered = 0;
2160 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2161 if (order >= preferred_zone->compact_order_failed)
2162 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2163 count_vm_event(COMPACTSUCCESS);
2164 return page;
2165 }
2166
2167 /*
2168 * It's bad if compaction run occurs and fails.
2169 * The most likely reason is that pages exist,
2170 * but not enough to satisfy watermarks.
2171 */
2172 count_vm_event(COMPACTFAIL);
66199712
MG
2173
2174 /*
2175 * As async compaction considers a subset of pageblocks, only
2176 * defer if the failure was a sync compaction failure.
2177 */
2178 if (sync_migration)
aff62249 2179 defer_compaction(preferred_zone, order);
56de7263
MG
2180
2181 cond_resched();
2182 }
2183
2184 return NULL;
2185}
2186#else
2187static inline struct page *
2188__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2189 struct zonelist *zonelist, enum zone_type high_zoneidx,
2190 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2191 int migratetype, bool sync_migration,
c67fe375 2192 bool *contended_compaction, bool *deferred_compaction,
66199712 2193 unsigned long *did_some_progress)
56de7263
MG
2194{
2195 return NULL;
2196}
2197#endif /* CONFIG_COMPACTION */
2198
bba90710
MS
2199/* Perform direct synchronous page reclaim */
2200static int
2201__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2202 nodemask_t *nodemask)
11e33f6a 2203{
11e33f6a 2204 struct reclaim_state reclaim_state;
bba90710 2205 int progress;
11e33f6a
MG
2206
2207 cond_resched();
2208
2209 /* We now go into synchronous reclaim */
2210 cpuset_memory_pressure_bump();
c06b1fca 2211 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2212 lockdep_set_current_reclaim_state(gfp_mask);
2213 reclaim_state.reclaimed_slab = 0;
c06b1fca 2214 current->reclaim_state = &reclaim_state;
11e33f6a 2215
bba90710 2216 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2217
c06b1fca 2218 current->reclaim_state = NULL;
11e33f6a 2219 lockdep_clear_current_reclaim_state();
c06b1fca 2220 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2221
2222 cond_resched();
2223
bba90710
MS
2224 return progress;
2225}
2226
2227/* The really slow allocator path where we enter direct reclaim */
2228static inline struct page *
2229__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 int migratetype, unsigned long *did_some_progress)
2233{
2234 struct page *page = NULL;
2235 bool drained = false;
2236
2237 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2238 nodemask);
9ee493ce
MG
2239 if (unlikely(!(*did_some_progress)))
2240 return NULL;
11e33f6a 2241
76d3fbf8 2242 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2243 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2244 zlc_clear_zones_full(zonelist);
2245
9ee493ce
MG
2246retry:
2247 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2248 zonelist, high_zoneidx,
cfd19c5a
MG
2249 alloc_flags & ~ALLOC_NO_WATERMARKS,
2250 preferred_zone, migratetype);
9ee493ce
MG
2251
2252 /*
2253 * If an allocation failed after direct reclaim, it could be because
2254 * pages are pinned on the per-cpu lists. Drain them and try again
2255 */
2256 if (!page && !drained) {
2257 drain_all_pages();
2258 drained = true;
2259 goto retry;
2260 }
2261
11e33f6a
MG
2262 return page;
2263}
2264
1da177e4 2265/*
11e33f6a
MG
2266 * This is called in the allocator slow-path if the allocation request is of
2267 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2268 */
11e33f6a
MG
2269static inline struct page *
2270__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2271 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2272 nodemask_t *nodemask, struct zone *preferred_zone,
2273 int migratetype)
11e33f6a
MG
2274{
2275 struct page *page;
2276
2277 do {
2278 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2279 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2280 preferred_zone, migratetype);
11e33f6a
MG
2281
2282 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2283 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2284 } while (!page && (gfp_mask & __GFP_NOFAIL));
2285
2286 return page;
2287}
2288
2289static inline
2290void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2291 enum zone_type high_zoneidx,
2292 enum zone_type classzone_idx)
1da177e4 2293{
dd1a239f
MG
2294 struct zoneref *z;
2295 struct zone *zone;
1da177e4 2296
11e33f6a 2297 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2298 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2299}
cf40bd16 2300
341ce06f
PZ
2301static inline int
2302gfp_to_alloc_flags(gfp_t gfp_mask)
2303{
341ce06f
PZ
2304 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2305 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2306
a56f57ff 2307 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2308 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2309
341ce06f
PZ
2310 /*
2311 * The caller may dip into page reserves a bit more if the caller
2312 * cannot run direct reclaim, or if the caller has realtime scheduling
2313 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2314 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2315 */
e6223a3b 2316 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2317
341ce06f 2318 if (!wait) {
5c3240d9
AA
2319 /*
2320 * Not worth trying to allocate harder for
2321 * __GFP_NOMEMALLOC even if it can't schedule.
2322 */
2323 if (!(gfp_mask & __GFP_NOMEMALLOC))
2324 alloc_flags |= ALLOC_HARDER;
523b9458 2325 /*
341ce06f
PZ
2326 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2327 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2328 */
341ce06f 2329 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2330 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2331 alloc_flags |= ALLOC_HARDER;
2332
b37f1dd0
MG
2333 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2334 if (gfp_mask & __GFP_MEMALLOC)
2335 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2336 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2337 alloc_flags |= ALLOC_NO_WATERMARKS;
2338 else if (!in_interrupt() &&
2339 ((current->flags & PF_MEMALLOC) ||
2340 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2341 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2342 }
d95ea5d1
BZ
2343#ifdef CONFIG_CMA
2344 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2345 alloc_flags |= ALLOC_CMA;
2346#endif
341ce06f
PZ
2347 return alloc_flags;
2348}
2349
072bb0aa
MG
2350bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2351{
b37f1dd0 2352 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2353}
2354
11e33f6a
MG
2355static inline struct page *
2356__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2357 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2358 nodemask_t *nodemask, struct zone *preferred_zone,
2359 int migratetype)
11e33f6a
MG
2360{
2361 const gfp_t wait = gfp_mask & __GFP_WAIT;
2362 struct page *page = NULL;
2363 int alloc_flags;
2364 unsigned long pages_reclaimed = 0;
2365 unsigned long did_some_progress;
77f1fe6b 2366 bool sync_migration = false;
66199712 2367 bool deferred_compaction = false;
c67fe375 2368 bool contended_compaction = false;
1da177e4 2369
72807a74
MG
2370 /*
2371 * In the slowpath, we sanity check order to avoid ever trying to
2372 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2373 * be using allocators in order of preference for an area that is
2374 * too large.
2375 */
1fc28b70
MG
2376 if (order >= MAX_ORDER) {
2377 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2378 return NULL;
1fc28b70 2379 }
1da177e4 2380
952f3b51
CL
2381 /*
2382 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2383 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2384 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2385 * using a larger set of nodes after it has established that the
2386 * allowed per node queues are empty and that nodes are
2387 * over allocated.
2388 */
e5adfffc
KS
2389 if (IS_ENABLED(CONFIG_NUMA) &&
2390 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2391 goto nopage;
2392
cc4a6851 2393restart:
caf49191
LT
2394 if (!(gfp_mask & __GFP_NO_KSWAPD))
2395 wake_all_kswapd(order, zonelist, high_zoneidx,
2396 zone_idx(preferred_zone));
1da177e4 2397
9bf2229f 2398 /*
7fb1d9fc
RS
2399 * OK, we're below the kswapd watermark and have kicked background
2400 * reclaim. Now things get more complex, so set up alloc_flags according
2401 * to how we want to proceed.
9bf2229f 2402 */
341ce06f 2403 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2404
f33261d7
DR
2405 /*
2406 * Find the true preferred zone if the allocation is unconstrained by
2407 * cpusets.
2408 */
2409 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2410 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2411 &preferred_zone);
2412
cfa54a0f 2413rebalance:
341ce06f 2414 /* This is the last chance, in general, before the goto nopage. */
19770b32 2415 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2416 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2417 preferred_zone, migratetype);
7fb1d9fc
RS
2418 if (page)
2419 goto got_pg;
1da177e4 2420
11e33f6a 2421 /* Allocate without watermarks if the context allows */
341ce06f 2422 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2423 /*
2424 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2425 * the allocation is high priority and these type of
2426 * allocations are system rather than user orientated
2427 */
2428 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2429
341ce06f
PZ
2430 page = __alloc_pages_high_priority(gfp_mask, order,
2431 zonelist, high_zoneidx, nodemask,
2432 preferred_zone, migratetype);
cfd19c5a 2433 if (page) {
341ce06f 2434 goto got_pg;
cfd19c5a 2435 }
1da177e4
LT
2436 }
2437
2438 /* Atomic allocations - we can't balance anything */
2439 if (!wait)
2440 goto nopage;
2441
341ce06f 2442 /* Avoid recursion of direct reclaim */
c06b1fca 2443 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2444 goto nopage;
2445
6583bb64
DR
2446 /* Avoid allocations with no watermarks from looping endlessly */
2447 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2448 goto nopage;
2449
77f1fe6b
MG
2450 /*
2451 * Try direct compaction. The first pass is asynchronous. Subsequent
2452 * attempts after direct reclaim are synchronous
2453 */
56de7263
MG
2454 page = __alloc_pages_direct_compact(gfp_mask, order,
2455 zonelist, high_zoneidx,
2456 nodemask,
2457 alloc_flags, preferred_zone,
66199712 2458 migratetype, sync_migration,
c67fe375 2459 &contended_compaction,
66199712
MG
2460 &deferred_compaction,
2461 &did_some_progress);
56de7263
MG
2462 if (page)
2463 goto got_pg;
c6a140bf 2464 sync_migration = true;
56de7263 2465
31f8d42d
LT
2466 /*
2467 * If compaction is deferred for high-order allocations, it is because
2468 * sync compaction recently failed. In this is the case and the caller
2469 * requested a movable allocation that does not heavily disrupt the
2470 * system then fail the allocation instead of entering direct reclaim.
2471 */
2472 if ((deferred_compaction || contended_compaction) &&
caf49191 2473 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2474 goto nopage;
66199712 2475
11e33f6a
MG
2476 /* Try direct reclaim and then allocating */
2477 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2478 zonelist, high_zoneidx,
2479 nodemask,
5117f45d 2480 alloc_flags, preferred_zone,
3dd28266 2481 migratetype, &did_some_progress);
11e33f6a
MG
2482 if (page)
2483 goto got_pg;
1da177e4 2484
e33c3b5e 2485 /*
11e33f6a
MG
2486 * If we failed to make any progress reclaiming, then we are
2487 * running out of options and have to consider going OOM
e33c3b5e 2488 */
11e33f6a
MG
2489 if (!did_some_progress) {
2490 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2491 if (oom_killer_disabled)
2492 goto nopage;
29fd66d2
DR
2493 /* Coredumps can quickly deplete all memory reserves */
2494 if ((current->flags & PF_DUMPCORE) &&
2495 !(gfp_mask & __GFP_NOFAIL))
2496 goto nopage;
11e33f6a
MG
2497 page = __alloc_pages_may_oom(gfp_mask, order,
2498 zonelist, high_zoneidx,
3dd28266
MG
2499 nodemask, preferred_zone,
2500 migratetype);
11e33f6a
MG
2501 if (page)
2502 goto got_pg;
1da177e4 2503
03668b3c
DR
2504 if (!(gfp_mask & __GFP_NOFAIL)) {
2505 /*
2506 * The oom killer is not called for high-order
2507 * allocations that may fail, so if no progress
2508 * is being made, there are no other options and
2509 * retrying is unlikely to help.
2510 */
2511 if (order > PAGE_ALLOC_COSTLY_ORDER)
2512 goto nopage;
2513 /*
2514 * The oom killer is not called for lowmem
2515 * allocations to prevent needlessly killing
2516 * innocent tasks.
2517 */
2518 if (high_zoneidx < ZONE_NORMAL)
2519 goto nopage;
2520 }
e2c55dc8 2521
ff0ceb9d
DR
2522 goto restart;
2523 }
1da177e4
LT
2524 }
2525
11e33f6a 2526 /* Check if we should retry the allocation */
a41f24ea 2527 pages_reclaimed += did_some_progress;
f90ac398
MG
2528 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2529 pages_reclaimed)) {
11e33f6a 2530 /* Wait for some write requests to complete then retry */
0e093d99 2531 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2532 goto rebalance;
3e7d3449
MG
2533 } else {
2534 /*
2535 * High-order allocations do not necessarily loop after
2536 * direct reclaim and reclaim/compaction depends on compaction
2537 * being called after reclaim so call directly if necessary
2538 */
2539 page = __alloc_pages_direct_compact(gfp_mask, order,
2540 zonelist, high_zoneidx,
2541 nodemask,
2542 alloc_flags, preferred_zone,
66199712 2543 migratetype, sync_migration,
c67fe375 2544 &contended_compaction,
66199712
MG
2545 &deferred_compaction,
2546 &did_some_progress);
3e7d3449
MG
2547 if (page)
2548 goto got_pg;
1da177e4
LT
2549 }
2550
2551nopage:
a238ab5b 2552 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2553 return page;
1da177e4 2554got_pg:
b1eeab67
VN
2555 if (kmemcheck_enabled)
2556 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2557
072bb0aa 2558 return page;
1da177e4 2559}
11e33f6a
MG
2560
2561/*
2562 * This is the 'heart' of the zoned buddy allocator.
2563 */
2564struct page *
2565__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2566 struct zonelist *zonelist, nodemask_t *nodemask)
2567{
2568 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2569 struct zone *preferred_zone;
cc9a6c87 2570 struct page *page = NULL;
3dd28266 2571 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2572 unsigned int cpuset_mems_cookie;
d95ea5d1 2573 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2574 struct mem_cgroup *memcg = NULL;
11e33f6a 2575
dcce284a
BH
2576 gfp_mask &= gfp_allowed_mask;
2577
11e33f6a
MG
2578 lockdep_trace_alloc(gfp_mask);
2579
2580 might_sleep_if(gfp_mask & __GFP_WAIT);
2581
2582 if (should_fail_alloc_page(gfp_mask, order))
2583 return NULL;
2584
2585 /*
2586 * Check the zones suitable for the gfp_mask contain at least one
2587 * valid zone. It's possible to have an empty zonelist as a result
2588 * of GFP_THISNODE and a memoryless node
2589 */
2590 if (unlikely(!zonelist->_zonerefs->zone))
2591 return NULL;
2592
6a1a0d3b
GC
2593 /*
2594 * Will only have any effect when __GFP_KMEMCG is set. This is
2595 * verified in the (always inline) callee
2596 */
2597 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2598 return NULL;
2599
cc9a6c87
MG
2600retry_cpuset:
2601 cpuset_mems_cookie = get_mems_allowed();
2602
5117f45d 2603 /* The preferred zone is used for statistics later */
f33261d7
DR
2604 first_zones_zonelist(zonelist, high_zoneidx,
2605 nodemask ? : &cpuset_current_mems_allowed,
2606 &preferred_zone);
cc9a6c87
MG
2607 if (!preferred_zone)
2608 goto out;
5117f45d 2609
d95ea5d1
BZ
2610#ifdef CONFIG_CMA
2611 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2612 alloc_flags |= ALLOC_CMA;
2613#endif
5117f45d 2614 /* First allocation attempt */
11e33f6a 2615 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2616 zonelist, high_zoneidx, alloc_flags,
3dd28266 2617 preferred_zone, migratetype);
11e33f6a
MG
2618 if (unlikely(!page))
2619 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2620 zonelist, high_zoneidx, nodemask,
3dd28266 2621 preferred_zone, migratetype);
11e33f6a 2622
4b4f278c 2623 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2624
2625out:
2626 /*
2627 * When updating a task's mems_allowed, it is possible to race with
2628 * parallel threads in such a way that an allocation can fail while
2629 * the mask is being updated. If a page allocation is about to fail,
2630 * check if the cpuset changed during allocation and if so, retry.
2631 */
2632 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2633 goto retry_cpuset;
2634
6a1a0d3b
GC
2635 memcg_kmem_commit_charge(page, memcg, order);
2636
11e33f6a 2637 return page;
1da177e4 2638}
d239171e 2639EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2640
2641/*
2642 * Common helper functions.
2643 */
920c7a5d 2644unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2645{
945a1113
AM
2646 struct page *page;
2647
2648 /*
2649 * __get_free_pages() returns a 32-bit address, which cannot represent
2650 * a highmem page
2651 */
2652 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2653
1da177e4
LT
2654 page = alloc_pages(gfp_mask, order);
2655 if (!page)
2656 return 0;
2657 return (unsigned long) page_address(page);
2658}
1da177e4
LT
2659EXPORT_SYMBOL(__get_free_pages);
2660
920c7a5d 2661unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2662{
945a1113 2663 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2664}
1da177e4
LT
2665EXPORT_SYMBOL(get_zeroed_page);
2666
920c7a5d 2667void __free_pages(struct page *page, unsigned int order)
1da177e4 2668{
b5810039 2669 if (put_page_testzero(page)) {
1da177e4 2670 if (order == 0)
fc91668e 2671 free_hot_cold_page(page, 0);
1da177e4
LT
2672 else
2673 __free_pages_ok(page, order);
2674 }
2675}
2676
2677EXPORT_SYMBOL(__free_pages);
2678
920c7a5d 2679void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2680{
2681 if (addr != 0) {
725d704e 2682 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2683 __free_pages(virt_to_page((void *)addr), order);
2684 }
2685}
2686
2687EXPORT_SYMBOL(free_pages);
2688
6a1a0d3b
GC
2689/*
2690 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2691 * pages allocated with __GFP_KMEMCG.
2692 *
2693 * Those pages are accounted to a particular memcg, embedded in the
2694 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2695 * for that information only to find out that it is NULL for users who have no
2696 * interest in that whatsoever, we provide these functions.
2697 *
2698 * The caller knows better which flags it relies on.
2699 */
2700void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2701{
2702 memcg_kmem_uncharge_pages(page, order);
2703 __free_pages(page, order);
2704}
2705
2706void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2707{
2708 if (addr != 0) {
2709 VM_BUG_ON(!virt_addr_valid((void *)addr));
2710 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2711 }
2712}
2713
ee85c2e1
AK
2714static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2715{
2716 if (addr) {
2717 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2718 unsigned long used = addr + PAGE_ALIGN(size);
2719
2720 split_page(virt_to_page((void *)addr), order);
2721 while (used < alloc_end) {
2722 free_page(used);
2723 used += PAGE_SIZE;
2724 }
2725 }
2726 return (void *)addr;
2727}
2728
2be0ffe2
TT
2729/**
2730 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2731 * @size: the number of bytes to allocate
2732 * @gfp_mask: GFP flags for the allocation
2733 *
2734 * This function is similar to alloc_pages(), except that it allocates the
2735 * minimum number of pages to satisfy the request. alloc_pages() can only
2736 * allocate memory in power-of-two pages.
2737 *
2738 * This function is also limited by MAX_ORDER.
2739 *
2740 * Memory allocated by this function must be released by free_pages_exact().
2741 */
2742void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2743{
2744 unsigned int order = get_order(size);
2745 unsigned long addr;
2746
2747 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2748 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2749}
2750EXPORT_SYMBOL(alloc_pages_exact);
2751
ee85c2e1
AK
2752/**
2753 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2754 * pages on a node.
b5e6ab58 2755 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2756 * @size: the number of bytes to allocate
2757 * @gfp_mask: GFP flags for the allocation
2758 *
2759 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2760 * back.
2761 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2762 * but is not exact.
2763 */
2764void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2765{
2766 unsigned order = get_order(size);
2767 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2768 if (!p)
2769 return NULL;
2770 return make_alloc_exact((unsigned long)page_address(p), order, size);
2771}
2772EXPORT_SYMBOL(alloc_pages_exact_nid);
2773
2be0ffe2
TT
2774/**
2775 * free_pages_exact - release memory allocated via alloc_pages_exact()
2776 * @virt: the value returned by alloc_pages_exact.
2777 * @size: size of allocation, same value as passed to alloc_pages_exact().
2778 *
2779 * Release the memory allocated by a previous call to alloc_pages_exact.
2780 */
2781void free_pages_exact(void *virt, size_t size)
2782{
2783 unsigned long addr = (unsigned long)virt;
2784 unsigned long end = addr + PAGE_ALIGN(size);
2785
2786 while (addr < end) {
2787 free_page(addr);
2788 addr += PAGE_SIZE;
2789 }
2790}
2791EXPORT_SYMBOL(free_pages_exact);
2792
1da177e4
LT
2793static unsigned int nr_free_zone_pages(int offset)
2794{
dd1a239f 2795 struct zoneref *z;
54a6eb5c
MG
2796 struct zone *zone;
2797
e310fd43 2798 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2799 unsigned int sum = 0;
2800
0e88460d 2801 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2802
54a6eb5c 2803 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2804 unsigned long size = zone->present_pages;
41858966 2805 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2806 if (size > high)
2807 sum += size - high;
1da177e4
LT
2808 }
2809
2810 return sum;
2811}
2812
2813/*
2814 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2815 */
2816unsigned int nr_free_buffer_pages(void)
2817{
af4ca457 2818 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2819}
c2f1a551 2820EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2821
2822/*
2823 * Amount of free RAM allocatable within all zones
2824 */
2825unsigned int nr_free_pagecache_pages(void)
2826{
2a1e274a 2827 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2828}
08e0f6a9
CL
2829
2830static inline void show_node(struct zone *zone)
1da177e4 2831{
e5adfffc 2832 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2833 printk("Node %d ", zone_to_nid(zone));
1da177e4 2834}
1da177e4 2835
1da177e4
LT
2836void si_meminfo(struct sysinfo *val)
2837{
2838 val->totalram = totalram_pages;
2839 val->sharedram = 0;
d23ad423 2840 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2841 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2842 val->totalhigh = totalhigh_pages;
2843 val->freehigh = nr_free_highpages();
1da177e4
LT
2844 val->mem_unit = PAGE_SIZE;
2845}
2846
2847EXPORT_SYMBOL(si_meminfo);
2848
2849#ifdef CONFIG_NUMA
2850void si_meminfo_node(struct sysinfo *val, int nid)
2851{
2852 pg_data_t *pgdat = NODE_DATA(nid);
2853
2854 val->totalram = pgdat->node_present_pages;
d23ad423 2855 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2856#ifdef CONFIG_HIGHMEM
1da177e4 2857 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2858 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2859 NR_FREE_PAGES);
98d2b0eb
CL
2860#else
2861 val->totalhigh = 0;
2862 val->freehigh = 0;
2863#endif
1da177e4
LT
2864 val->mem_unit = PAGE_SIZE;
2865}
2866#endif
2867
ddd588b5 2868/*
7bf02ea2
DR
2869 * Determine whether the node should be displayed or not, depending on whether
2870 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2871 */
7bf02ea2 2872bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2873{
2874 bool ret = false;
cc9a6c87 2875 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2876
2877 if (!(flags & SHOW_MEM_FILTER_NODES))
2878 goto out;
2879
cc9a6c87
MG
2880 do {
2881 cpuset_mems_cookie = get_mems_allowed();
2882 ret = !node_isset(nid, cpuset_current_mems_allowed);
2883 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2884out:
2885 return ret;
2886}
2887
1da177e4
LT
2888#define K(x) ((x) << (PAGE_SHIFT-10))
2889
377e4f16
RV
2890static void show_migration_types(unsigned char type)
2891{
2892 static const char types[MIGRATE_TYPES] = {
2893 [MIGRATE_UNMOVABLE] = 'U',
2894 [MIGRATE_RECLAIMABLE] = 'E',
2895 [MIGRATE_MOVABLE] = 'M',
2896 [MIGRATE_RESERVE] = 'R',
2897#ifdef CONFIG_CMA
2898 [MIGRATE_CMA] = 'C',
2899#endif
2900 [MIGRATE_ISOLATE] = 'I',
2901 };
2902 char tmp[MIGRATE_TYPES + 1];
2903 char *p = tmp;
2904 int i;
2905
2906 for (i = 0; i < MIGRATE_TYPES; i++) {
2907 if (type & (1 << i))
2908 *p++ = types[i];
2909 }
2910
2911 *p = '\0';
2912 printk("(%s) ", tmp);
2913}
2914
1da177e4
LT
2915/*
2916 * Show free area list (used inside shift_scroll-lock stuff)
2917 * We also calculate the percentage fragmentation. We do this by counting the
2918 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2919 * Suppresses nodes that are not allowed by current's cpuset if
2920 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2921 */
7bf02ea2 2922void show_free_areas(unsigned int filter)
1da177e4 2923{
c7241913 2924 int cpu;
1da177e4
LT
2925 struct zone *zone;
2926
ee99c71c 2927 for_each_populated_zone(zone) {
7bf02ea2 2928 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2929 continue;
c7241913
JS
2930 show_node(zone);
2931 printk("%s per-cpu:\n", zone->name);
1da177e4 2932
6b482c67 2933 for_each_online_cpu(cpu) {
1da177e4
LT
2934 struct per_cpu_pageset *pageset;
2935
99dcc3e5 2936 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2937
3dfa5721
CL
2938 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2939 cpu, pageset->pcp.high,
2940 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2941 }
2942 }
2943
a731286d
KM
2944 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2945 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2946 " unevictable:%lu"
b76146ed 2947 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2948 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2949 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2950 " free_cma:%lu\n",
4f98a2fe 2951 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2952 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2953 global_page_state(NR_ISOLATED_ANON),
2954 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2955 global_page_state(NR_INACTIVE_FILE),
a731286d 2956 global_page_state(NR_ISOLATED_FILE),
7b854121 2957 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2958 global_page_state(NR_FILE_DIRTY),
ce866b34 2959 global_page_state(NR_WRITEBACK),
fd39fc85 2960 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2961 global_page_state(NR_FREE_PAGES),
3701b033
KM
2962 global_page_state(NR_SLAB_RECLAIMABLE),
2963 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2964 global_page_state(NR_FILE_MAPPED),
4b02108a 2965 global_page_state(NR_SHMEM),
a25700a5 2966 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2967 global_page_state(NR_BOUNCE),
2968 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2969
ee99c71c 2970 for_each_populated_zone(zone) {
1da177e4
LT
2971 int i;
2972
7bf02ea2 2973 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2974 continue;
1da177e4
LT
2975 show_node(zone);
2976 printk("%s"
2977 " free:%lukB"
2978 " min:%lukB"
2979 " low:%lukB"
2980 " high:%lukB"
4f98a2fe
RR
2981 " active_anon:%lukB"
2982 " inactive_anon:%lukB"
2983 " active_file:%lukB"
2984 " inactive_file:%lukB"
7b854121 2985 " unevictable:%lukB"
a731286d
KM
2986 " isolated(anon):%lukB"
2987 " isolated(file):%lukB"
1da177e4 2988 " present:%lukB"
9feedc9d 2989 " managed:%lukB"
4a0aa73f
KM
2990 " mlocked:%lukB"
2991 " dirty:%lukB"
2992 " writeback:%lukB"
2993 " mapped:%lukB"
4b02108a 2994 " shmem:%lukB"
4a0aa73f
KM
2995 " slab_reclaimable:%lukB"
2996 " slab_unreclaimable:%lukB"
c6a7f572 2997 " kernel_stack:%lukB"
4a0aa73f
KM
2998 " pagetables:%lukB"
2999 " unstable:%lukB"
3000 " bounce:%lukB"
d1ce749a 3001 " free_cma:%lukB"
4a0aa73f 3002 " writeback_tmp:%lukB"
1da177e4
LT
3003 " pages_scanned:%lu"
3004 " all_unreclaimable? %s"
3005 "\n",
3006 zone->name,
88f5acf8 3007 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3008 K(min_wmark_pages(zone)),
3009 K(low_wmark_pages(zone)),
3010 K(high_wmark_pages(zone)),
4f98a2fe
RR
3011 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3012 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3013 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3014 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3015 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3016 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3017 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3018 K(zone->present_pages),
9feedc9d 3019 K(zone->managed_pages),
4a0aa73f
KM
3020 K(zone_page_state(zone, NR_MLOCK)),
3021 K(zone_page_state(zone, NR_FILE_DIRTY)),
3022 K(zone_page_state(zone, NR_WRITEBACK)),
3023 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3024 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3025 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3026 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3027 zone_page_state(zone, NR_KERNEL_STACK) *
3028 THREAD_SIZE / 1024,
4a0aa73f
KM
3029 K(zone_page_state(zone, NR_PAGETABLE)),
3030 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3031 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3032 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3033 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3034 zone->pages_scanned,
93e4a89a 3035 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3036 );
3037 printk("lowmem_reserve[]:");
3038 for (i = 0; i < MAX_NR_ZONES; i++)
3039 printk(" %lu", zone->lowmem_reserve[i]);
3040 printk("\n");
3041 }
3042
ee99c71c 3043 for_each_populated_zone(zone) {
8f9de51a 3044 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3045 unsigned char types[MAX_ORDER];
1da177e4 3046
7bf02ea2 3047 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3048 continue;
1da177e4
LT
3049 show_node(zone);
3050 printk("%s: ", zone->name);
1da177e4
LT
3051
3052 spin_lock_irqsave(&zone->lock, flags);
3053 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3054 struct free_area *area = &zone->free_area[order];
3055 int type;
3056
3057 nr[order] = area->nr_free;
8f9de51a 3058 total += nr[order] << order;
377e4f16
RV
3059
3060 types[order] = 0;
3061 for (type = 0; type < MIGRATE_TYPES; type++) {
3062 if (!list_empty(&area->free_list[type]))
3063 types[order] |= 1 << type;
3064 }
1da177e4
LT
3065 }
3066 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3067 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3068 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3069 if (nr[order])
3070 show_migration_types(types[order]);
3071 }
1da177e4
LT
3072 printk("= %lukB\n", K(total));
3073 }
3074
e6f3602d
LW
3075 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3076
1da177e4
LT
3077 show_swap_cache_info();
3078}
3079
19770b32
MG
3080static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3081{
3082 zoneref->zone = zone;
3083 zoneref->zone_idx = zone_idx(zone);
3084}
3085
1da177e4
LT
3086/*
3087 * Builds allocation fallback zone lists.
1a93205b
CL
3088 *
3089 * Add all populated zones of a node to the zonelist.
1da177e4 3090 */
f0c0b2b8
KH
3091static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3092 int nr_zones, enum zone_type zone_type)
1da177e4 3093{
1a93205b
CL
3094 struct zone *zone;
3095
98d2b0eb 3096 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3097 zone_type++;
02a68a5e
CL
3098
3099 do {
2f6726e5 3100 zone_type--;
070f8032 3101 zone = pgdat->node_zones + zone_type;
1a93205b 3102 if (populated_zone(zone)) {
dd1a239f
MG
3103 zoneref_set_zone(zone,
3104 &zonelist->_zonerefs[nr_zones++]);
070f8032 3105 check_highest_zone(zone_type);
1da177e4 3106 }
02a68a5e 3107
2f6726e5 3108 } while (zone_type);
070f8032 3109 return nr_zones;
1da177e4
LT
3110}
3111
f0c0b2b8
KH
3112
3113/*
3114 * zonelist_order:
3115 * 0 = automatic detection of better ordering.
3116 * 1 = order by ([node] distance, -zonetype)
3117 * 2 = order by (-zonetype, [node] distance)
3118 *
3119 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3120 * the same zonelist. So only NUMA can configure this param.
3121 */
3122#define ZONELIST_ORDER_DEFAULT 0
3123#define ZONELIST_ORDER_NODE 1
3124#define ZONELIST_ORDER_ZONE 2
3125
3126/* zonelist order in the kernel.
3127 * set_zonelist_order() will set this to NODE or ZONE.
3128 */
3129static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3130static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3131
3132
1da177e4 3133#ifdef CONFIG_NUMA
f0c0b2b8
KH
3134/* The value user specified ....changed by config */
3135static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3136/* string for sysctl */
3137#define NUMA_ZONELIST_ORDER_LEN 16
3138char numa_zonelist_order[16] = "default";
3139
3140/*
3141 * interface for configure zonelist ordering.
3142 * command line option "numa_zonelist_order"
3143 * = "[dD]efault - default, automatic configuration.
3144 * = "[nN]ode - order by node locality, then by zone within node
3145 * = "[zZ]one - order by zone, then by locality within zone
3146 */
3147
3148static int __parse_numa_zonelist_order(char *s)
3149{
3150 if (*s == 'd' || *s == 'D') {
3151 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3152 } else if (*s == 'n' || *s == 'N') {
3153 user_zonelist_order = ZONELIST_ORDER_NODE;
3154 } else if (*s == 'z' || *s == 'Z') {
3155 user_zonelist_order = ZONELIST_ORDER_ZONE;
3156 } else {
3157 printk(KERN_WARNING
3158 "Ignoring invalid numa_zonelist_order value: "
3159 "%s\n", s);
3160 return -EINVAL;
3161 }
3162 return 0;
3163}
3164
3165static __init int setup_numa_zonelist_order(char *s)
3166{
ecb256f8
VL
3167 int ret;
3168
3169 if (!s)
3170 return 0;
3171
3172 ret = __parse_numa_zonelist_order(s);
3173 if (ret == 0)
3174 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3175
3176 return ret;
f0c0b2b8
KH
3177}
3178early_param("numa_zonelist_order", setup_numa_zonelist_order);
3179
3180/*
3181 * sysctl handler for numa_zonelist_order
3182 */
3183int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3184 void __user *buffer, size_t *length,
f0c0b2b8
KH
3185 loff_t *ppos)
3186{
3187 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3188 int ret;
443c6f14 3189 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3190
443c6f14 3191 mutex_lock(&zl_order_mutex);
f0c0b2b8 3192 if (write)
443c6f14 3193 strcpy(saved_string, (char*)table->data);
8d65af78 3194 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3195 if (ret)
443c6f14 3196 goto out;
f0c0b2b8
KH
3197 if (write) {
3198 int oldval = user_zonelist_order;
3199 if (__parse_numa_zonelist_order((char*)table->data)) {
3200 /*
3201 * bogus value. restore saved string
3202 */
3203 strncpy((char*)table->data, saved_string,
3204 NUMA_ZONELIST_ORDER_LEN);
3205 user_zonelist_order = oldval;
4eaf3f64
HL
3206 } else if (oldval != user_zonelist_order) {
3207 mutex_lock(&zonelists_mutex);
9adb62a5 3208 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3209 mutex_unlock(&zonelists_mutex);
3210 }
f0c0b2b8 3211 }
443c6f14
AK
3212out:
3213 mutex_unlock(&zl_order_mutex);
3214 return ret;
f0c0b2b8
KH
3215}
3216
3217
62bc62a8 3218#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3219static int node_load[MAX_NUMNODES];
3220
1da177e4 3221/**
4dc3b16b 3222 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3223 * @node: node whose fallback list we're appending
3224 * @used_node_mask: nodemask_t of already used nodes
3225 *
3226 * We use a number of factors to determine which is the next node that should
3227 * appear on a given node's fallback list. The node should not have appeared
3228 * already in @node's fallback list, and it should be the next closest node
3229 * according to the distance array (which contains arbitrary distance values
3230 * from each node to each node in the system), and should also prefer nodes
3231 * with no CPUs, since presumably they'll have very little allocation pressure
3232 * on them otherwise.
3233 * It returns -1 if no node is found.
3234 */
f0c0b2b8 3235static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3236{
4cf808eb 3237 int n, val;
1da177e4
LT
3238 int min_val = INT_MAX;
3239 int best_node = -1;
a70f7302 3240 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3241
4cf808eb
LT
3242 /* Use the local node if we haven't already */
3243 if (!node_isset(node, *used_node_mask)) {
3244 node_set(node, *used_node_mask);
3245 return node;
3246 }
1da177e4 3247
4b0ef1fe 3248 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3249
3250 /* Don't want a node to appear more than once */
3251 if (node_isset(n, *used_node_mask))
3252 continue;
3253
1da177e4
LT
3254 /* Use the distance array to find the distance */
3255 val = node_distance(node, n);
3256
4cf808eb
LT
3257 /* Penalize nodes under us ("prefer the next node") */
3258 val += (n < node);
3259
1da177e4 3260 /* Give preference to headless and unused nodes */
a70f7302
RR
3261 tmp = cpumask_of_node(n);
3262 if (!cpumask_empty(tmp))
1da177e4
LT
3263 val += PENALTY_FOR_NODE_WITH_CPUS;
3264
3265 /* Slight preference for less loaded node */
3266 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3267 val += node_load[n];
3268
3269 if (val < min_val) {
3270 min_val = val;
3271 best_node = n;
3272 }
3273 }
3274
3275 if (best_node >= 0)
3276 node_set(best_node, *used_node_mask);
3277
3278 return best_node;
3279}
3280
f0c0b2b8
KH
3281
3282/*
3283 * Build zonelists ordered by node and zones within node.
3284 * This results in maximum locality--normal zone overflows into local
3285 * DMA zone, if any--but risks exhausting DMA zone.
3286 */
3287static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3288{
f0c0b2b8 3289 int j;
1da177e4 3290 struct zonelist *zonelist;
f0c0b2b8 3291
54a6eb5c 3292 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3293 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3294 ;
3295 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3296 MAX_NR_ZONES - 1);
dd1a239f
MG
3297 zonelist->_zonerefs[j].zone = NULL;
3298 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3299}
3300
523b9458
CL
3301/*
3302 * Build gfp_thisnode zonelists
3303 */
3304static void build_thisnode_zonelists(pg_data_t *pgdat)
3305{
523b9458
CL
3306 int j;
3307 struct zonelist *zonelist;
3308
54a6eb5c
MG
3309 zonelist = &pgdat->node_zonelists[1];
3310 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3311 zonelist->_zonerefs[j].zone = NULL;
3312 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3313}
3314
f0c0b2b8
KH
3315/*
3316 * Build zonelists ordered by zone and nodes within zones.
3317 * This results in conserving DMA zone[s] until all Normal memory is
3318 * exhausted, but results in overflowing to remote node while memory
3319 * may still exist in local DMA zone.
3320 */
3321static int node_order[MAX_NUMNODES];
3322
3323static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3324{
f0c0b2b8
KH
3325 int pos, j, node;
3326 int zone_type; /* needs to be signed */
3327 struct zone *z;
3328 struct zonelist *zonelist;
3329
54a6eb5c
MG
3330 zonelist = &pgdat->node_zonelists[0];
3331 pos = 0;
3332 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3333 for (j = 0; j < nr_nodes; j++) {
3334 node = node_order[j];
3335 z = &NODE_DATA(node)->node_zones[zone_type];
3336 if (populated_zone(z)) {
dd1a239f
MG
3337 zoneref_set_zone(z,
3338 &zonelist->_zonerefs[pos++]);
54a6eb5c 3339 check_highest_zone(zone_type);
f0c0b2b8
KH
3340 }
3341 }
f0c0b2b8 3342 }
dd1a239f
MG
3343 zonelist->_zonerefs[pos].zone = NULL;
3344 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3345}
3346
3347static int default_zonelist_order(void)
3348{
3349 int nid, zone_type;
3350 unsigned long low_kmem_size,total_size;
3351 struct zone *z;
3352 int average_size;
3353 /*
88393161 3354 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3355 * If they are really small and used heavily, the system can fall
3356 * into OOM very easily.
e325c90f 3357 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3358 */
3359 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3360 low_kmem_size = 0;
3361 total_size = 0;
3362 for_each_online_node(nid) {
3363 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3364 z = &NODE_DATA(nid)->node_zones[zone_type];
3365 if (populated_zone(z)) {
3366 if (zone_type < ZONE_NORMAL)
3367 low_kmem_size += z->present_pages;
3368 total_size += z->present_pages;
e325c90f
DR
3369 } else if (zone_type == ZONE_NORMAL) {
3370 /*
3371 * If any node has only lowmem, then node order
3372 * is preferred to allow kernel allocations
3373 * locally; otherwise, they can easily infringe
3374 * on other nodes when there is an abundance of
3375 * lowmem available to allocate from.
3376 */
3377 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3378 }
3379 }
3380 }
3381 if (!low_kmem_size || /* there are no DMA area. */
3382 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3383 return ZONELIST_ORDER_NODE;
3384 /*
3385 * look into each node's config.
3386 * If there is a node whose DMA/DMA32 memory is very big area on
3387 * local memory, NODE_ORDER may be suitable.
3388 */
37b07e41 3389 average_size = total_size /
4b0ef1fe 3390 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3391 for_each_online_node(nid) {
3392 low_kmem_size = 0;
3393 total_size = 0;
3394 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3395 z = &NODE_DATA(nid)->node_zones[zone_type];
3396 if (populated_zone(z)) {
3397 if (zone_type < ZONE_NORMAL)
3398 low_kmem_size += z->present_pages;
3399 total_size += z->present_pages;
3400 }
3401 }
3402 if (low_kmem_size &&
3403 total_size > average_size && /* ignore small node */
3404 low_kmem_size > total_size * 70/100)
3405 return ZONELIST_ORDER_NODE;
3406 }
3407 return ZONELIST_ORDER_ZONE;
3408}
3409
3410static void set_zonelist_order(void)
3411{
3412 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3413 current_zonelist_order = default_zonelist_order();
3414 else
3415 current_zonelist_order = user_zonelist_order;
3416}
3417
3418static void build_zonelists(pg_data_t *pgdat)
3419{
3420 int j, node, load;
3421 enum zone_type i;
1da177e4 3422 nodemask_t used_mask;
f0c0b2b8
KH
3423 int local_node, prev_node;
3424 struct zonelist *zonelist;
3425 int order = current_zonelist_order;
1da177e4
LT
3426
3427 /* initialize zonelists */
523b9458 3428 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3429 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3430 zonelist->_zonerefs[0].zone = NULL;
3431 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3432 }
3433
3434 /* NUMA-aware ordering of nodes */
3435 local_node = pgdat->node_id;
62bc62a8 3436 load = nr_online_nodes;
1da177e4
LT
3437 prev_node = local_node;
3438 nodes_clear(used_mask);
f0c0b2b8 3439
f0c0b2b8
KH
3440 memset(node_order, 0, sizeof(node_order));
3441 j = 0;
3442
1da177e4
LT
3443 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3444 /*
3445 * We don't want to pressure a particular node.
3446 * So adding penalty to the first node in same
3447 * distance group to make it round-robin.
3448 */
957f822a
DR
3449 if (node_distance(local_node, node) !=
3450 node_distance(local_node, prev_node))
f0c0b2b8
KH
3451 node_load[node] = load;
3452
1da177e4
LT
3453 prev_node = node;
3454 load--;
f0c0b2b8
KH
3455 if (order == ZONELIST_ORDER_NODE)
3456 build_zonelists_in_node_order(pgdat, node);
3457 else
3458 node_order[j++] = node; /* remember order */
3459 }
1da177e4 3460
f0c0b2b8
KH
3461 if (order == ZONELIST_ORDER_ZONE) {
3462 /* calculate node order -- i.e., DMA last! */
3463 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3464 }
523b9458
CL
3465
3466 build_thisnode_zonelists(pgdat);
1da177e4
LT
3467}
3468
9276b1bc 3469/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3470static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3471{
54a6eb5c
MG
3472 struct zonelist *zonelist;
3473 struct zonelist_cache *zlc;
dd1a239f 3474 struct zoneref *z;
9276b1bc 3475
54a6eb5c
MG
3476 zonelist = &pgdat->node_zonelists[0];
3477 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3478 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3479 for (z = zonelist->_zonerefs; z->zone; z++)
3480 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3481}
3482
7aac7898
LS
3483#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3484/*
3485 * Return node id of node used for "local" allocations.
3486 * I.e., first node id of first zone in arg node's generic zonelist.
3487 * Used for initializing percpu 'numa_mem', which is used primarily
3488 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3489 */
3490int local_memory_node(int node)
3491{
3492 struct zone *zone;
3493
3494 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3495 gfp_zone(GFP_KERNEL),
3496 NULL,
3497 &zone);
3498 return zone->node;
3499}
3500#endif
f0c0b2b8 3501
1da177e4
LT
3502#else /* CONFIG_NUMA */
3503
f0c0b2b8
KH
3504static void set_zonelist_order(void)
3505{
3506 current_zonelist_order = ZONELIST_ORDER_ZONE;
3507}
3508
3509static void build_zonelists(pg_data_t *pgdat)
1da177e4 3510{
19655d34 3511 int node, local_node;
54a6eb5c
MG
3512 enum zone_type j;
3513 struct zonelist *zonelist;
1da177e4
LT
3514
3515 local_node = pgdat->node_id;
1da177e4 3516
54a6eb5c
MG
3517 zonelist = &pgdat->node_zonelists[0];
3518 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3519
54a6eb5c
MG
3520 /*
3521 * Now we build the zonelist so that it contains the zones
3522 * of all the other nodes.
3523 * We don't want to pressure a particular node, so when
3524 * building the zones for node N, we make sure that the
3525 * zones coming right after the local ones are those from
3526 * node N+1 (modulo N)
3527 */
3528 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3529 if (!node_online(node))
3530 continue;
3531 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3532 MAX_NR_ZONES - 1);
1da177e4 3533 }
54a6eb5c
MG
3534 for (node = 0; node < local_node; node++) {
3535 if (!node_online(node))
3536 continue;
3537 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3538 MAX_NR_ZONES - 1);
3539 }
3540
dd1a239f
MG
3541 zonelist->_zonerefs[j].zone = NULL;
3542 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3543}
3544
9276b1bc 3545/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3546static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3547{
54a6eb5c 3548 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3549}
3550
1da177e4
LT
3551#endif /* CONFIG_NUMA */
3552
99dcc3e5
CL
3553/*
3554 * Boot pageset table. One per cpu which is going to be used for all
3555 * zones and all nodes. The parameters will be set in such a way
3556 * that an item put on a list will immediately be handed over to
3557 * the buddy list. This is safe since pageset manipulation is done
3558 * with interrupts disabled.
3559 *
3560 * The boot_pagesets must be kept even after bootup is complete for
3561 * unused processors and/or zones. They do play a role for bootstrapping
3562 * hotplugged processors.
3563 *
3564 * zoneinfo_show() and maybe other functions do
3565 * not check if the processor is online before following the pageset pointer.
3566 * Other parts of the kernel may not check if the zone is available.
3567 */
3568static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3569static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3570static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3571
4eaf3f64
HL
3572/*
3573 * Global mutex to protect against size modification of zonelists
3574 * as well as to serialize pageset setup for the new populated zone.
3575 */
3576DEFINE_MUTEX(zonelists_mutex);
3577
9b1a4d38 3578/* return values int ....just for stop_machine() */
4ed7e022 3579static int __build_all_zonelists(void *data)
1da177e4 3580{
6811378e 3581 int nid;
99dcc3e5 3582 int cpu;
9adb62a5 3583 pg_data_t *self = data;
9276b1bc 3584
7f9cfb31
BL
3585#ifdef CONFIG_NUMA
3586 memset(node_load, 0, sizeof(node_load));
3587#endif
9adb62a5
JL
3588
3589 if (self && !node_online(self->node_id)) {
3590 build_zonelists(self);
3591 build_zonelist_cache(self);
3592 }
3593
9276b1bc 3594 for_each_online_node(nid) {
7ea1530a
CL
3595 pg_data_t *pgdat = NODE_DATA(nid);
3596
3597 build_zonelists(pgdat);
3598 build_zonelist_cache(pgdat);
9276b1bc 3599 }
99dcc3e5
CL
3600
3601 /*
3602 * Initialize the boot_pagesets that are going to be used
3603 * for bootstrapping processors. The real pagesets for
3604 * each zone will be allocated later when the per cpu
3605 * allocator is available.
3606 *
3607 * boot_pagesets are used also for bootstrapping offline
3608 * cpus if the system is already booted because the pagesets
3609 * are needed to initialize allocators on a specific cpu too.
3610 * F.e. the percpu allocator needs the page allocator which
3611 * needs the percpu allocator in order to allocate its pagesets
3612 * (a chicken-egg dilemma).
3613 */
7aac7898 3614 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3615 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3616
7aac7898
LS
3617#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3618 /*
3619 * We now know the "local memory node" for each node--
3620 * i.e., the node of the first zone in the generic zonelist.
3621 * Set up numa_mem percpu variable for on-line cpus. During
3622 * boot, only the boot cpu should be on-line; we'll init the
3623 * secondary cpus' numa_mem as they come on-line. During
3624 * node/memory hotplug, we'll fixup all on-line cpus.
3625 */
3626 if (cpu_online(cpu))
3627 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3628#endif
3629 }
3630
6811378e
YG
3631 return 0;
3632}
3633
4eaf3f64
HL
3634/*
3635 * Called with zonelists_mutex held always
3636 * unless system_state == SYSTEM_BOOTING.
3637 */
9adb62a5 3638void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3639{
f0c0b2b8
KH
3640 set_zonelist_order();
3641
6811378e 3642 if (system_state == SYSTEM_BOOTING) {
423b41d7 3643 __build_all_zonelists(NULL);
68ad8df4 3644 mminit_verify_zonelist();
6811378e
YG
3645 cpuset_init_current_mems_allowed();
3646 } else {
183ff22b 3647 /* we have to stop all cpus to guarantee there is no user
6811378e 3648 of zonelist */
e9959f0f 3649#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3650 if (zone)
3651 setup_zone_pageset(zone);
e9959f0f 3652#endif
9adb62a5 3653 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3654 /* cpuset refresh routine should be here */
3655 }
bd1e22b8 3656 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3657 /*
3658 * Disable grouping by mobility if the number of pages in the
3659 * system is too low to allow the mechanism to work. It would be
3660 * more accurate, but expensive to check per-zone. This check is
3661 * made on memory-hotadd so a system can start with mobility
3662 * disabled and enable it later
3663 */
d9c23400 3664 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3665 page_group_by_mobility_disabled = 1;
3666 else
3667 page_group_by_mobility_disabled = 0;
3668
3669 printk("Built %i zonelists in %s order, mobility grouping %s. "
3670 "Total pages: %ld\n",
62bc62a8 3671 nr_online_nodes,
f0c0b2b8 3672 zonelist_order_name[current_zonelist_order],
9ef9acb0 3673 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3674 vm_total_pages);
3675#ifdef CONFIG_NUMA
3676 printk("Policy zone: %s\n", zone_names[policy_zone]);
3677#endif
1da177e4
LT
3678}
3679
3680/*
3681 * Helper functions to size the waitqueue hash table.
3682 * Essentially these want to choose hash table sizes sufficiently
3683 * large so that collisions trying to wait on pages are rare.
3684 * But in fact, the number of active page waitqueues on typical
3685 * systems is ridiculously low, less than 200. So this is even
3686 * conservative, even though it seems large.
3687 *
3688 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3689 * waitqueues, i.e. the size of the waitq table given the number of pages.
3690 */
3691#define PAGES_PER_WAITQUEUE 256
3692
cca448fe 3693#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3694static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3695{
3696 unsigned long size = 1;
3697
3698 pages /= PAGES_PER_WAITQUEUE;
3699
3700 while (size < pages)
3701 size <<= 1;
3702
3703 /*
3704 * Once we have dozens or even hundreds of threads sleeping
3705 * on IO we've got bigger problems than wait queue collision.
3706 * Limit the size of the wait table to a reasonable size.
3707 */
3708 size = min(size, 4096UL);
3709
3710 return max(size, 4UL);
3711}
cca448fe
YG
3712#else
3713/*
3714 * A zone's size might be changed by hot-add, so it is not possible to determine
3715 * a suitable size for its wait_table. So we use the maximum size now.
3716 *
3717 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3718 *
3719 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3720 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3721 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3722 *
3723 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3724 * or more by the traditional way. (See above). It equals:
3725 *
3726 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3727 * ia64(16K page size) : = ( 8G + 4M)byte.
3728 * powerpc (64K page size) : = (32G +16M)byte.
3729 */
3730static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3731{
3732 return 4096UL;
3733}
3734#endif
1da177e4
LT
3735
3736/*
3737 * This is an integer logarithm so that shifts can be used later
3738 * to extract the more random high bits from the multiplicative
3739 * hash function before the remainder is taken.
3740 */
3741static inline unsigned long wait_table_bits(unsigned long size)
3742{
3743 return ffz(~size);
3744}
3745
3746#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3747
6d3163ce
AH
3748/*
3749 * Check if a pageblock contains reserved pages
3750 */
3751static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3752{
3753 unsigned long pfn;
3754
3755 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3756 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3757 return 1;
3758 }
3759 return 0;
3760}
3761
56fd56b8 3762/*
d9c23400 3763 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3764 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3765 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3766 * higher will lead to a bigger reserve which will get freed as contiguous
3767 * blocks as reclaim kicks in
3768 */
3769static void setup_zone_migrate_reserve(struct zone *zone)
3770{
6d3163ce 3771 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3772 struct page *page;
78986a67
MG
3773 unsigned long block_migratetype;
3774 int reserve;
56fd56b8 3775
d0215638
MH
3776 /*
3777 * Get the start pfn, end pfn and the number of blocks to reserve
3778 * We have to be careful to be aligned to pageblock_nr_pages to
3779 * make sure that we always check pfn_valid for the first page in
3780 * the block.
3781 */
56fd56b8
MG
3782 start_pfn = zone->zone_start_pfn;
3783 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3784 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3785 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3786 pageblock_order;
56fd56b8 3787
78986a67
MG
3788 /*
3789 * Reserve blocks are generally in place to help high-order atomic
3790 * allocations that are short-lived. A min_free_kbytes value that
3791 * would result in more than 2 reserve blocks for atomic allocations
3792 * is assumed to be in place to help anti-fragmentation for the
3793 * future allocation of hugepages at runtime.
3794 */
3795 reserve = min(2, reserve);
3796
d9c23400 3797 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3798 if (!pfn_valid(pfn))
3799 continue;
3800 page = pfn_to_page(pfn);
3801
344c790e
AL
3802 /* Watch out for overlapping nodes */
3803 if (page_to_nid(page) != zone_to_nid(zone))
3804 continue;
3805
56fd56b8
MG
3806 block_migratetype = get_pageblock_migratetype(page);
3807
938929f1
MG
3808 /* Only test what is necessary when the reserves are not met */
3809 if (reserve > 0) {
3810 /*
3811 * Blocks with reserved pages will never free, skip
3812 * them.
3813 */
3814 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3815 if (pageblock_is_reserved(pfn, block_end_pfn))
3816 continue;
56fd56b8 3817
938929f1
MG
3818 /* If this block is reserved, account for it */
3819 if (block_migratetype == MIGRATE_RESERVE) {
3820 reserve--;
3821 continue;
3822 }
3823
3824 /* Suitable for reserving if this block is movable */
3825 if (block_migratetype == MIGRATE_MOVABLE) {
3826 set_pageblock_migratetype(page,
3827 MIGRATE_RESERVE);
3828 move_freepages_block(zone, page,
3829 MIGRATE_RESERVE);
3830 reserve--;
3831 continue;
3832 }
56fd56b8
MG
3833 }
3834
3835 /*
3836 * If the reserve is met and this is a previous reserved block,
3837 * take it back
3838 */
3839 if (block_migratetype == MIGRATE_RESERVE) {
3840 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3841 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3842 }
3843 }
3844}
ac0e5b7a 3845
1da177e4
LT
3846/*
3847 * Initially all pages are reserved - free ones are freed
3848 * up by free_all_bootmem() once the early boot process is
3849 * done. Non-atomic initialization, single-pass.
3850 */
c09b4240 3851void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3852 unsigned long start_pfn, enum memmap_context context)
1da177e4 3853{
1da177e4 3854 struct page *page;
29751f69
AW
3855 unsigned long end_pfn = start_pfn + size;
3856 unsigned long pfn;
86051ca5 3857 struct zone *z;
1da177e4 3858
22b31eec
HD
3859 if (highest_memmap_pfn < end_pfn - 1)
3860 highest_memmap_pfn = end_pfn - 1;
3861
86051ca5 3862 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3863 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3864 /*
3865 * There can be holes in boot-time mem_map[]s
3866 * handed to this function. They do not
3867 * exist on hotplugged memory.
3868 */
3869 if (context == MEMMAP_EARLY) {
3870 if (!early_pfn_valid(pfn))
3871 continue;
3872 if (!early_pfn_in_nid(pfn, nid))
3873 continue;
3874 }
d41dee36
AW
3875 page = pfn_to_page(pfn);
3876 set_page_links(page, zone, nid, pfn);
708614e6 3877 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3878 init_page_count(page);
1da177e4 3879 reset_page_mapcount(page);
57e0a030 3880 reset_page_last_nid(page);
1da177e4 3881 SetPageReserved(page);
b2a0ac88
MG
3882 /*
3883 * Mark the block movable so that blocks are reserved for
3884 * movable at startup. This will force kernel allocations
3885 * to reserve their blocks rather than leaking throughout
3886 * the address space during boot when many long-lived
56fd56b8
MG
3887 * kernel allocations are made. Later some blocks near
3888 * the start are marked MIGRATE_RESERVE by
3889 * setup_zone_migrate_reserve()
86051ca5
KH
3890 *
3891 * bitmap is created for zone's valid pfn range. but memmap
3892 * can be created for invalid pages (for alignment)
3893 * check here not to call set_pageblock_migratetype() against
3894 * pfn out of zone.
b2a0ac88 3895 */
86051ca5
KH
3896 if ((z->zone_start_pfn <= pfn)
3897 && (pfn < z->zone_start_pfn + z->spanned_pages)
3898 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3899 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3900
1da177e4
LT
3901 INIT_LIST_HEAD(&page->lru);
3902#ifdef WANT_PAGE_VIRTUAL
3903 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3904 if (!is_highmem_idx(zone))
3212c6be 3905 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3906#endif
1da177e4
LT
3907 }
3908}
3909
1e548deb 3910static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3911{
b2a0ac88
MG
3912 int order, t;
3913 for_each_migratetype_order(order, t) {
3914 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3915 zone->free_area[order].nr_free = 0;
3916 }
3917}
3918
3919#ifndef __HAVE_ARCH_MEMMAP_INIT
3920#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3921 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3922#endif
3923
4ed7e022 3924static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3925{
3a6be87f 3926#ifdef CONFIG_MMU
e7c8d5c9
CL
3927 int batch;
3928
3929 /*
3930 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3931 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3932 *
3933 * OK, so we don't know how big the cache is. So guess.
3934 */
3935 batch = zone->present_pages / 1024;
ba56e91c
SR
3936 if (batch * PAGE_SIZE > 512 * 1024)
3937 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3938 batch /= 4; /* We effectively *= 4 below */
3939 if (batch < 1)
3940 batch = 1;
3941
3942 /*
0ceaacc9
NP
3943 * Clamp the batch to a 2^n - 1 value. Having a power
3944 * of 2 value was found to be more likely to have
3945 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3946 *
0ceaacc9
NP
3947 * For example if 2 tasks are alternately allocating
3948 * batches of pages, one task can end up with a lot
3949 * of pages of one half of the possible page colors
3950 * and the other with pages of the other colors.
e7c8d5c9 3951 */
9155203a 3952 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3953
e7c8d5c9 3954 return batch;
3a6be87f
DH
3955
3956#else
3957 /* The deferral and batching of frees should be suppressed under NOMMU
3958 * conditions.
3959 *
3960 * The problem is that NOMMU needs to be able to allocate large chunks
3961 * of contiguous memory as there's no hardware page translation to
3962 * assemble apparent contiguous memory from discontiguous pages.
3963 *
3964 * Queueing large contiguous runs of pages for batching, however,
3965 * causes the pages to actually be freed in smaller chunks. As there
3966 * can be a significant delay between the individual batches being
3967 * recycled, this leads to the once large chunks of space being
3968 * fragmented and becoming unavailable for high-order allocations.
3969 */
3970 return 0;
3971#endif
e7c8d5c9
CL
3972}
3973
b69a7288 3974static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3975{
3976 struct per_cpu_pages *pcp;
5f8dcc21 3977 int migratetype;
2caaad41 3978
1c6fe946
MD
3979 memset(p, 0, sizeof(*p));
3980
3dfa5721 3981 pcp = &p->pcp;
2caaad41 3982 pcp->count = 0;
2caaad41
CL
3983 pcp->high = 6 * batch;
3984 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3985 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3986 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3987}
3988
8ad4b1fb
RS
3989/*
3990 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3991 * to the value high for the pageset p.
3992 */
3993
3994static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3995 unsigned long high)
3996{
3997 struct per_cpu_pages *pcp;
3998
3dfa5721 3999 pcp = &p->pcp;
8ad4b1fb
RS
4000 pcp->high = high;
4001 pcp->batch = max(1UL, high/4);
4002 if ((high/4) > (PAGE_SHIFT * 8))
4003 pcp->batch = PAGE_SHIFT * 8;
4004}
4005
4ed7e022 4006static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4007{
4008 int cpu;
4009
4010 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4011
4012 for_each_possible_cpu(cpu) {
4013 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4014
4015 setup_pageset(pcp, zone_batchsize(zone));
4016
4017 if (percpu_pagelist_fraction)
4018 setup_pagelist_highmark(pcp,
4019 (zone->present_pages /
4020 percpu_pagelist_fraction));
4021 }
4022}
4023
2caaad41 4024/*
99dcc3e5
CL
4025 * Allocate per cpu pagesets and initialize them.
4026 * Before this call only boot pagesets were available.
e7c8d5c9 4027 */
99dcc3e5 4028void __init setup_per_cpu_pageset(void)
e7c8d5c9 4029{
99dcc3e5 4030 struct zone *zone;
e7c8d5c9 4031
319774e2
WF
4032 for_each_populated_zone(zone)
4033 setup_zone_pageset(zone);
e7c8d5c9
CL
4034}
4035
577a32f6 4036static noinline __init_refok
cca448fe 4037int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4038{
4039 int i;
4040 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4041 size_t alloc_size;
ed8ece2e
DH
4042
4043 /*
4044 * The per-page waitqueue mechanism uses hashed waitqueues
4045 * per zone.
4046 */
02b694de
YG
4047 zone->wait_table_hash_nr_entries =
4048 wait_table_hash_nr_entries(zone_size_pages);
4049 zone->wait_table_bits =
4050 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4051 alloc_size = zone->wait_table_hash_nr_entries
4052 * sizeof(wait_queue_head_t);
4053
cd94b9db 4054 if (!slab_is_available()) {
cca448fe 4055 zone->wait_table = (wait_queue_head_t *)
8f389a99 4056 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4057 } else {
4058 /*
4059 * This case means that a zone whose size was 0 gets new memory
4060 * via memory hot-add.
4061 * But it may be the case that a new node was hot-added. In
4062 * this case vmalloc() will not be able to use this new node's
4063 * memory - this wait_table must be initialized to use this new
4064 * node itself as well.
4065 * To use this new node's memory, further consideration will be
4066 * necessary.
4067 */
8691f3a7 4068 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4069 }
4070 if (!zone->wait_table)
4071 return -ENOMEM;
ed8ece2e 4072
02b694de 4073 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4074 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4075
4076 return 0;
ed8ece2e
DH
4077}
4078
c09b4240 4079static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4080{
99dcc3e5
CL
4081 /*
4082 * per cpu subsystem is not up at this point. The following code
4083 * relies on the ability of the linker to provide the
4084 * offset of a (static) per cpu variable into the per cpu area.
4085 */
4086 zone->pageset = &boot_pageset;
ed8ece2e 4087
f5335c0f 4088 if (zone->present_pages)
99dcc3e5
CL
4089 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4090 zone->name, zone->present_pages,
4091 zone_batchsize(zone));
ed8ece2e
DH
4092}
4093
4ed7e022 4094int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4095 unsigned long zone_start_pfn,
a2f3aa02
DH
4096 unsigned long size,
4097 enum memmap_context context)
ed8ece2e
DH
4098{
4099 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4100 int ret;
4101 ret = zone_wait_table_init(zone, size);
4102 if (ret)
4103 return ret;
ed8ece2e
DH
4104 pgdat->nr_zones = zone_idx(zone) + 1;
4105
ed8ece2e
DH
4106 zone->zone_start_pfn = zone_start_pfn;
4107
708614e6
MG
4108 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4109 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4110 pgdat->node_id,
4111 (unsigned long)zone_idx(zone),
4112 zone_start_pfn, (zone_start_pfn + size));
4113
1e548deb 4114 zone_init_free_lists(zone);
718127cc
YG
4115
4116 return 0;
ed8ece2e
DH
4117}
4118
0ee332c1 4119#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4120#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4121/*
4122 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4123 * Architectures may implement their own version but if add_active_range()
4124 * was used and there are no special requirements, this is a convenient
4125 * alternative
4126 */
f2dbcfa7 4127int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4128{
c13291a5
TH
4129 unsigned long start_pfn, end_pfn;
4130 int i, nid;
c713216d 4131
c13291a5 4132 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4133 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4134 return nid;
cc2559bc
KH
4135 /* This is a memory hole */
4136 return -1;
c713216d
MG
4137}
4138#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4139
f2dbcfa7
KH
4140int __meminit early_pfn_to_nid(unsigned long pfn)
4141{
cc2559bc
KH
4142 int nid;
4143
4144 nid = __early_pfn_to_nid(pfn);
4145 if (nid >= 0)
4146 return nid;
4147 /* just returns 0 */
4148 return 0;
f2dbcfa7
KH
4149}
4150
cc2559bc
KH
4151#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4152bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4153{
4154 int nid;
4155
4156 nid = __early_pfn_to_nid(pfn);
4157 if (nid >= 0 && nid != node)
4158 return false;
4159 return true;
4160}
4161#endif
f2dbcfa7 4162
c713216d
MG
4163/**
4164 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4165 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4166 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4167 *
4168 * If an architecture guarantees that all ranges registered with
4169 * add_active_ranges() contain no holes and may be freed, this
4170 * this function may be used instead of calling free_bootmem() manually.
4171 */
c13291a5 4172void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4173{
c13291a5
TH
4174 unsigned long start_pfn, end_pfn;
4175 int i, this_nid;
edbe7d23 4176
c13291a5
TH
4177 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4178 start_pfn = min(start_pfn, max_low_pfn);
4179 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4180
c13291a5
TH
4181 if (start_pfn < end_pfn)
4182 free_bootmem_node(NODE_DATA(this_nid),
4183 PFN_PHYS(start_pfn),
4184 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4185 }
edbe7d23 4186}
edbe7d23 4187
c713216d
MG
4188/**
4189 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4190 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4191 *
4192 * If an architecture guarantees that all ranges registered with
4193 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4194 * function may be used instead of calling memory_present() manually.
c713216d
MG
4195 */
4196void __init sparse_memory_present_with_active_regions(int nid)
4197{
c13291a5
TH
4198 unsigned long start_pfn, end_pfn;
4199 int i, this_nid;
c713216d 4200
c13291a5
TH
4201 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4202 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4203}
4204
4205/**
4206 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4207 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4208 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4209 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4210 *
4211 * It returns the start and end page frame of a node based on information
4212 * provided by an arch calling add_active_range(). If called for a node
4213 * with no available memory, a warning is printed and the start and end
88ca3b94 4214 * PFNs will be 0.
c713216d 4215 */
a3142c8e 4216void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4217 unsigned long *start_pfn, unsigned long *end_pfn)
4218{
c13291a5 4219 unsigned long this_start_pfn, this_end_pfn;
c713216d 4220 int i;
c13291a5 4221
c713216d
MG
4222 *start_pfn = -1UL;
4223 *end_pfn = 0;
4224
c13291a5
TH
4225 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4226 *start_pfn = min(*start_pfn, this_start_pfn);
4227 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4228 }
4229
633c0666 4230 if (*start_pfn == -1UL)
c713216d 4231 *start_pfn = 0;
c713216d
MG
4232}
4233
2a1e274a
MG
4234/*
4235 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4236 * assumption is made that zones within a node are ordered in monotonic
4237 * increasing memory addresses so that the "highest" populated zone is used
4238 */
b69a7288 4239static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4240{
4241 int zone_index;
4242 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4243 if (zone_index == ZONE_MOVABLE)
4244 continue;
4245
4246 if (arch_zone_highest_possible_pfn[zone_index] >
4247 arch_zone_lowest_possible_pfn[zone_index])
4248 break;
4249 }
4250
4251 VM_BUG_ON(zone_index == -1);
4252 movable_zone = zone_index;
4253}
4254
4255/*
4256 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4257 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4258 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4259 * in each node depending on the size of each node and how evenly kernelcore
4260 * is distributed. This helper function adjusts the zone ranges
4261 * provided by the architecture for a given node by using the end of the
4262 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4263 * zones within a node are in order of monotonic increases memory addresses
4264 */
b69a7288 4265static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4266 unsigned long zone_type,
4267 unsigned long node_start_pfn,
4268 unsigned long node_end_pfn,
4269 unsigned long *zone_start_pfn,
4270 unsigned long *zone_end_pfn)
4271{
4272 /* Only adjust if ZONE_MOVABLE is on this node */
4273 if (zone_movable_pfn[nid]) {
4274 /* Size ZONE_MOVABLE */
4275 if (zone_type == ZONE_MOVABLE) {
4276 *zone_start_pfn = zone_movable_pfn[nid];
4277 *zone_end_pfn = min(node_end_pfn,
4278 arch_zone_highest_possible_pfn[movable_zone]);
4279
4280 /* Adjust for ZONE_MOVABLE starting within this range */
4281 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4282 *zone_end_pfn > zone_movable_pfn[nid]) {
4283 *zone_end_pfn = zone_movable_pfn[nid];
4284
4285 /* Check if this whole range is within ZONE_MOVABLE */
4286 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4287 *zone_start_pfn = *zone_end_pfn;
4288 }
4289}
4290
c713216d
MG
4291/*
4292 * Return the number of pages a zone spans in a node, including holes
4293 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4294 */
6ea6e688 4295static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4296 unsigned long zone_type,
4297 unsigned long *ignored)
4298{
4299 unsigned long node_start_pfn, node_end_pfn;
4300 unsigned long zone_start_pfn, zone_end_pfn;
4301
4302 /* Get the start and end of the node and zone */
4303 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4304 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4305 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4306 adjust_zone_range_for_zone_movable(nid, zone_type,
4307 node_start_pfn, node_end_pfn,
4308 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4309
4310 /* Check that this node has pages within the zone's required range */
4311 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4312 return 0;
4313
4314 /* Move the zone boundaries inside the node if necessary */
4315 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4316 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4317
4318 /* Return the spanned pages */
4319 return zone_end_pfn - zone_start_pfn;
4320}
4321
4322/*
4323 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4324 * then all holes in the requested range will be accounted for.
c713216d 4325 */
32996250 4326unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4327 unsigned long range_start_pfn,
4328 unsigned long range_end_pfn)
4329{
96e907d1
TH
4330 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4331 unsigned long start_pfn, end_pfn;
4332 int i;
c713216d 4333
96e907d1
TH
4334 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4335 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4336 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4337 nr_absent -= end_pfn - start_pfn;
c713216d 4338 }
96e907d1 4339 return nr_absent;
c713216d
MG
4340}
4341
4342/**
4343 * absent_pages_in_range - Return number of page frames in holes within a range
4344 * @start_pfn: The start PFN to start searching for holes
4345 * @end_pfn: The end PFN to stop searching for holes
4346 *
88ca3b94 4347 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4348 */
4349unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4350 unsigned long end_pfn)
4351{
4352 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4353}
4354
4355/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4356static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4357 unsigned long zone_type,
4358 unsigned long *ignored)
4359{
96e907d1
TH
4360 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4361 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4362 unsigned long node_start_pfn, node_end_pfn;
4363 unsigned long zone_start_pfn, zone_end_pfn;
4364
4365 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4366 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4367 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4368
2a1e274a
MG
4369 adjust_zone_range_for_zone_movable(nid, zone_type,
4370 node_start_pfn, node_end_pfn,
4371 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4372 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4373}
0e0b864e 4374
0ee332c1 4375#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4376static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4377 unsigned long zone_type,
4378 unsigned long *zones_size)
4379{
4380 return zones_size[zone_type];
4381}
4382
6ea6e688 4383static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4384 unsigned long zone_type,
4385 unsigned long *zholes_size)
4386{
4387 if (!zholes_size)
4388 return 0;
4389
4390 return zholes_size[zone_type];
4391}
0e0b864e 4392
0ee332c1 4393#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4394
a3142c8e 4395static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4396 unsigned long *zones_size, unsigned long *zholes_size)
4397{
4398 unsigned long realtotalpages, totalpages = 0;
4399 enum zone_type i;
4400
4401 for (i = 0; i < MAX_NR_ZONES; i++)
4402 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4403 zones_size);
4404 pgdat->node_spanned_pages = totalpages;
4405
4406 realtotalpages = totalpages;
4407 for (i = 0; i < MAX_NR_ZONES; i++)
4408 realtotalpages -=
4409 zone_absent_pages_in_node(pgdat->node_id, i,
4410 zholes_size);
4411 pgdat->node_present_pages = realtotalpages;
4412 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4413 realtotalpages);
4414}
4415
835c134e
MG
4416#ifndef CONFIG_SPARSEMEM
4417/*
4418 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4419 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4420 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4421 * round what is now in bits to nearest long in bits, then return it in
4422 * bytes.
4423 */
7c45512d 4424static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4425{
4426 unsigned long usemapsize;
4427
7c45512d 4428 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4429 usemapsize = roundup(zonesize, pageblock_nr_pages);
4430 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4431 usemapsize *= NR_PAGEBLOCK_BITS;
4432 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4433
4434 return usemapsize / 8;
4435}
4436
4437static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4438 struct zone *zone,
4439 unsigned long zone_start_pfn,
4440 unsigned long zonesize)
835c134e 4441{
7c45512d 4442 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4443 zone->pageblock_flags = NULL;
58a01a45 4444 if (usemapsize)
8f389a99
YL
4445 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4446 usemapsize);
835c134e
MG
4447}
4448#else
7c45512d
LT
4449static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4450 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4451#endif /* CONFIG_SPARSEMEM */
4452
d9c23400 4453#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4454
d9c23400 4455/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4456void __init set_pageblock_order(void)
d9c23400 4457{
955c1cd7
AM
4458 unsigned int order;
4459
d9c23400
MG
4460 /* Check that pageblock_nr_pages has not already been setup */
4461 if (pageblock_order)
4462 return;
4463
955c1cd7
AM
4464 if (HPAGE_SHIFT > PAGE_SHIFT)
4465 order = HUGETLB_PAGE_ORDER;
4466 else
4467 order = MAX_ORDER - 1;
4468
d9c23400
MG
4469 /*
4470 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4471 * This value may be variable depending on boot parameters on IA64 and
4472 * powerpc.
d9c23400
MG
4473 */
4474 pageblock_order = order;
4475}
4476#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4477
ba72cb8c
MG
4478/*
4479 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4480 * is unused as pageblock_order is set at compile-time. See
4481 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4482 * the kernel config
ba72cb8c 4483 */
ca57df79 4484void __init set_pageblock_order(void)
ba72cb8c 4485{
ba72cb8c 4486}
d9c23400
MG
4487
4488#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4489
01cefaef
JL
4490static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4491 unsigned long present_pages)
4492{
4493 unsigned long pages = spanned_pages;
4494
4495 /*
4496 * Provide a more accurate estimation if there are holes within
4497 * the zone and SPARSEMEM is in use. If there are holes within the
4498 * zone, each populated memory region may cost us one or two extra
4499 * memmap pages due to alignment because memmap pages for each
4500 * populated regions may not naturally algined on page boundary.
4501 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4502 */
4503 if (spanned_pages > present_pages + (present_pages >> 4) &&
4504 IS_ENABLED(CONFIG_SPARSEMEM))
4505 pages = present_pages;
4506
4507 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4508}
4509
1da177e4
LT
4510/*
4511 * Set up the zone data structures:
4512 * - mark all pages reserved
4513 * - mark all memory queues empty
4514 * - clear the memory bitmaps
6527af5d
MK
4515 *
4516 * NOTE: pgdat should get zeroed by caller.
1da177e4 4517 */
b5a0e011 4518static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4519 unsigned long *zones_size, unsigned long *zholes_size)
4520{
2f1b6248 4521 enum zone_type j;
ed8ece2e 4522 int nid = pgdat->node_id;
1da177e4 4523 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4524 int ret;
1da177e4 4525
208d54e5 4526 pgdat_resize_init(pgdat);
8177a420
AA
4527#ifdef CONFIG_NUMA_BALANCING
4528 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4529 pgdat->numabalancing_migrate_nr_pages = 0;
4530 pgdat->numabalancing_migrate_next_window = jiffies;
4531#endif
1da177e4 4532 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4533 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4534 pgdat_page_cgroup_init(pgdat);
5f63b720 4535
1da177e4
LT
4536 for (j = 0; j < MAX_NR_ZONES; j++) {
4537 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4538 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4539
c713216d 4540 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4541 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4542 zholes_size);
1da177e4 4543
0e0b864e 4544 /*
9feedc9d 4545 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4546 * is used by this zone for memmap. This affects the watermark
4547 * and per-cpu initialisations
4548 */
01cefaef 4549 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4550 if (freesize >= memmap_pages) {
4551 freesize -= memmap_pages;
5594c8c8
YL
4552 if (memmap_pages)
4553 printk(KERN_DEBUG
4554 " %s zone: %lu pages used for memmap\n",
4555 zone_names[j], memmap_pages);
0e0b864e
MG
4556 } else
4557 printk(KERN_WARNING
9feedc9d
JL
4558 " %s zone: %lu pages exceeds freesize %lu\n",
4559 zone_names[j], memmap_pages, freesize);
0e0b864e 4560
6267276f 4561 /* Account for reserved pages */
9feedc9d
JL
4562 if (j == 0 && freesize > dma_reserve) {
4563 freesize -= dma_reserve;
d903ef9f 4564 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4565 zone_names[0], dma_reserve);
0e0b864e
MG
4566 }
4567
98d2b0eb 4568 if (!is_highmem_idx(j))
9feedc9d 4569 nr_kernel_pages += freesize;
01cefaef
JL
4570 /* Charge for highmem memmap if there are enough kernel pages */
4571 else if (nr_kernel_pages > memmap_pages * 2)
4572 nr_kernel_pages -= memmap_pages;
9feedc9d 4573 nr_all_pages += freesize;
1da177e4
LT
4574
4575 zone->spanned_pages = size;
9feedc9d
JL
4576 zone->present_pages = freesize;
4577 /*
4578 * Set an approximate value for lowmem here, it will be adjusted
4579 * when the bootmem allocator frees pages into the buddy system.
4580 * And all highmem pages will be managed by the buddy system.
4581 */
4582 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4583#ifdef CONFIG_NUMA
d5f541ed 4584 zone->node = nid;
9feedc9d 4585 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4586 / 100;
9feedc9d 4587 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4588#endif
1da177e4
LT
4589 zone->name = zone_names[j];
4590 spin_lock_init(&zone->lock);
4591 spin_lock_init(&zone->lru_lock);
bdc8cb98 4592 zone_seqlock_init(zone);
1da177e4 4593 zone->zone_pgdat = pgdat;
1da177e4 4594
ed8ece2e 4595 zone_pcp_init(zone);
bea8c150 4596 lruvec_init(&zone->lruvec);
1da177e4
LT
4597 if (!size)
4598 continue;
4599
955c1cd7 4600 set_pageblock_order();
7c45512d 4601 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4602 ret = init_currently_empty_zone(zone, zone_start_pfn,
4603 size, MEMMAP_EARLY);
718127cc 4604 BUG_ON(ret);
76cdd58e 4605 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4606 zone_start_pfn += size;
1da177e4
LT
4607 }
4608}
4609
577a32f6 4610static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4611{
1da177e4
LT
4612 /* Skip empty nodes */
4613 if (!pgdat->node_spanned_pages)
4614 return;
4615
d41dee36 4616#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4617 /* ia64 gets its own node_mem_map, before this, without bootmem */
4618 if (!pgdat->node_mem_map) {
e984bb43 4619 unsigned long size, start, end;
d41dee36
AW
4620 struct page *map;
4621
e984bb43
BP
4622 /*
4623 * The zone's endpoints aren't required to be MAX_ORDER
4624 * aligned but the node_mem_map endpoints must be in order
4625 * for the buddy allocator to function correctly.
4626 */
4627 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4628 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4629 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4630 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4631 map = alloc_remap(pgdat->node_id, size);
4632 if (!map)
8f389a99 4633 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4634 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4635 }
12d810c1 4636#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4637 /*
4638 * With no DISCONTIG, the global mem_map is just set as node 0's
4639 */
c713216d 4640 if (pgdat == NODE_DATA(0)) {
1da177e4 4641 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4642#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4643 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4644 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4645#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4646 }
1da177e4 4647#endif
d41dee36 4648#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4649}
4650
9109fb7b
JW
4651void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4652 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4653{
9109fb7b
JW
4654 pg_data_t *pgdat = NODE_DATA(nid);
4655
88fdf75d 4656 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4657 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4658
1da177e4
LT
4659 pgdat->node_id = nid;
4660 pgdat->node_start_pfn = node_start_pfn;
957f822a 4661 init_zone_allows_reclaim(nid);
c713216d 4662 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4663
4664 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4665#ifdef CONFIG_FLAT_NODE_MEM_MAP
4666 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4667 nid, (unsigned long)pgdat,
4668 (unsigned long)pgdat->node_mem_map);
4669#endif
1da177e4
LT
4670
4671 free_area_init_core(pgdat, zones_size, zholes_size);
4672}
4673
0ee332c1 4674#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4675
4676#if MAX_NUMNODES > 1
4677/*
4678 * Figure out the number of possible node ids.
4679 */
4680static void __init setup_nr_node_ids(void)
4681{
4682 unsigned int node;
4683 unsigned int highest = 0;
4684
4685 for_each_node_mask(node, node_possible_map)
4686 highest = node;
4687 nr_node_ids = highest + 1;
4688}
4689#else
4690static inline void setup_nr_node_ids(void)
4691{
4692}
4693#endif
4694
1e01979c
TH
4695/**
4696 * node_map_pfn_alignment - determine the maximum internode alignment
4697 *
4698 * This function should be called after node map is populated and sorted.
4699 * It calculates the maximum power of two alignment which can distinguish
4700 * all the nodes.
4701 *
4702 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4703 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4704 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4705 * shifted, 1GiB is enough and this function will indicate so.
4706 *
4707 * This is used to test whether pfn -> nid mapping of the chosen memory
4708 * model has fine enough granularity to avoid incorrect mapping for the
4709 * populated node map.
4710 *
4711 * Returns the determined alignment in pfn's. 0 if there is no alignment
4712 * requirement (single node).
4713 */
4714unsigned long __init node_map_pfn_alignment(void)
4715{
4716 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4717 unsigned long start, end, mask;
1e01979c 4718 int last_nid = -1;
c13291a5 4719 int i, nid;
1e01979c 4720
c13291a5 4721 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4722 if (!start || last_nid < 0 || last_nid == nid) {
4723 last_nid = nid;
4724 last_end = end;
4725 continue;
4726 }
4727
4728 /*
4729 * Start with a mask granular enough to pin-point to the
4730 * start pfn and tick off bits one-by-one until it becomes
4731 * too coarse to separate the current node from the last.
4732 */
4733 mask = ~((1 << __ffs(start)) - 1);
4734 while (mask && last_end <= (start & (mask << 1)))
4735 mask <<= 1;
4736
4737 /* accumulate all internode masks */
4738 accl_mask |= mask;
4739 }
4740
4741 /* convert mask to number of pages */
4742 return ~accl_mask + 1;
4743}
4744
a6af2bc3 4745/* Find the lowest pfn for a node */
b69a7288 4746static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4747{
a6af2bc3 4748 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4749 unsigned long start_pfn;
4750 int i;
1abbfb41 4751
c13291a5
TH
4752 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4753 min_pfn = min(min_pfn, start_pfn);
c713216d 4754
a6af2bc3
MG
4755 if (min_pfn == ULONG_MAX) {
4756 printk(KERN_WARNING
2bc0d261 4757 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4758 return 0;
4759 }
4760
4761 return min_pfn;
c713216d
MG
4762}
4763
4764/**
4765 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4766 *
4767 * It returns the minimum PFN based on information provided via
88ca3b94 4768 * add_active_range().
c713216d
MG
4769 */
4770unsigned long __init find_min_pfn_with_active_regions(void)
4771{
4772 return find_min_pfn_for_node(MAX_NUMNODES);
4773}
4774
37b07e41
LS
4775/*
4776 * early_calculate_totalpages()
4777 * Sum pages in active regions for movable zone.
4b0ef1fe 4778 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4779 */
484f51f8 4780static unsigned long __init early_calculate_totalpages(void)
7e63efef 4781{
7e63efef 4782 unsigned long totalpages = 0;
c13291a5
TH
4783 unsigned long start_pfn, end_pfn;
4784 int i, nid;
4785
4786 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4787 unsigned long pages = end_pfn - start_pfn;
7e63efef 4788
37b07e41
LS
4789 totalpages += pages;
4790 if (pages)
4b0ef1fe 4791 node_set_state(nid, N_MEMORY);
37b07e41
LS
4792 }
4793 return totalpages;
7e63efef
MG
4794}
4795
2a1e274a
MG
4796/*
4797 * Find the PFN the Movable zone begins in each node. Kernel memory
4798 * is spread evenly between nodes as long as the nodes have enough
4799 * memory. When they don't, some nodes will have more kernelcore than
4800 * others
4801 */
b224ef85 4802static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4803{
4804 int i, nid;
4805 unsigned long usable_startpfn;
4806 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4807 /* save the state before borrow the nodemask */
4b0ef1fe 4808 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4809 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4810 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4811
7e63efef
MG
4812 /*
4813 * If movablecore was specified, calculate what size of
4814 * kernelcore that corresponds so that memory usable for
4815 * any allocation type is evenly spread. If both kernelcore
4816 * and movablecore are specified, then the value of kernelcore
4817 * will be used for required_kernelcore if it's greater than
4818 * what movablecore would have allowed.
4819 */
4820 if (required_movablecore) {
7e63efef
MG
4821 unsigned long corepages;
4822
4823 /*
4824 * Round-up so that ZONE_MOVABLE is at least as large as what
4825 * was requested by the user
4826 */
4827 required_movablecore =
4828 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4829 corepages = totalpages - required_movablecore;
4830
4831 required_kernelcore = max(required_kernelcore, corepages);
4832 }
4833
2a1e274a
MG
4834 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4835 if (!required_kernelcore)
66918dcd 4836 goto out;
2a1e274a
MG
4837
4838 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4839 find_usable_zone_for_movable();
4840 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4841
4842restart:
4843 /* Spread kernelcore memory as evenly as possible throughout nodes */
4844 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4845 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4846 unsigned long start_pfn, end_pfn;
4847
2a1e274a
MG
4848 /*
4849 * Recalculate kernelcore_node if the division per node
4850 * now exceeds what is necessary to satisfy the requested
4851 * amount of memory for the kernel
4852 */
4853 if (required_kernelcore < kernelcore_node)
4854 kernelcore_node = required_kernelcore / usable_nodes;
4855
4856 /*
4857 * As the map is walked, we track how much memory is usable
4858 * by the kernel using kernelcore_remaining. When it is
4859 * 0, the rest of the node is usable by ZONE_MOVABLE
4860 */
4861 kernelcore_remaining = kernelcore_node;
4862
4863 /* Go through each range of PFNs within this node */
c13291a5 4864 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4865 unsigned long size_pages;
4866
c13291a5 4867 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4868 if (start_pfn >= end_pfn)
4869 continue;
4870
4871 /* Account for what is only usable for kernelcore */
4872 if (start_pfn < usable_startpfn) {
4873 unsigned long kernel_pages;
4874 kernel_pages = min(end_pfn, usable_startpfn)
4875 - start_pfn;
4876
4877 kernelcore_remaining -= min(kernel_pages,
4878 kernelcore_remaining);
4879 required_kernelcore -= min(kernel_pages,
4880 required_kernelcore);
4881
4882 /* Continue if range is now fully accounted */
4883 if (end_pfn <= usable_startpfn) {
4884
4885 /*
4886 * Push zone_movable_pfn to the end so
4887 * that if we have to rebalance
4888 * kernelcore across nodes, we will
4889 * not double account here
4890 */
4891 zone_movable_pfn[nid] = end_pfn;
4892 continue;
4893 }
4894 start_pfn = usable_startpfn;
4895 }
4896
4897 /*
4898 * The usable PFN range for ZONE_MOVABLE is from
4899 * start_pfn->end_pfn. Calculate size_pages as the
4900 * number of pages used as kernelcore
4901 */
4902 size_pages = end_pfn - start_pfn;
4903 if (size_pages > kernelcore_remaining)
4904 size_pages = kernelcore_remaining;
4905 zone_movable_pfn[nid] = start_pfn + size_pages;
4906
4907 /*
4908 * Some kernelcore has been met, update counts and
4909 * break if the kernelcore for this node has been
4910 * satisified
4911 */
4912 required_kernelcore -= min(required_kernelcore,
4913 size_pages);
4914 kernelcore_remaining -= size_pages;
4915 if (!kernelcore_remaining)
4916 break;
4917 }
4918 }
4919
4920 /*
4921 * If there is still required_kernelcore, we do another pass with one
4922 * less node in the count. This will push zone_movable_pfn[nid] further
4923 * along on the nodes that still have memory until kernelcore is
4924 * satisified
4925 */
4926 usable_nodes--;
4927 if (usable_nodes && required_kernelcore > usable_nodes)
4928 goto restart;
4929
4930 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4931 for (nid = 0; nid < MAX_NUMNODES; nid++)
4932 zone_movable_pfn[nid] =
4933 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4934
4935out:
4936 /* restore the node_state */
4b0ef1fe 4937 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
4938}
4939
4b0ef1fe
LJ
4940/* Any regular or high memory on that node ? */
4941static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 4942{
37b07e41
LS
4943 enum zone_type zone_type;
4944
4b0ef1fe
LJ
4945 if (N_MEMORY == N_NORMAL_MEMORY)
4946 return;
4947
4948 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 4949 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4950 if (zone->present_pages) {
4b0ef1fe
LJ
4951 node_set_state(nid, N_HIGH_MEMORY);
4952 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4953 zone_type <= ZONE_NORMAL)
4954 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
4955 break;
4956 }
37b07e41 4957 }
37b07e41
LS
4958}
4959
c713216d
MG
4960/**
4961 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4962 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4963 *
4964 * This will call free_area_init_node() for each active node in the system.
4965 * Using the page ranges provided by add_active_range(), the size of each
4966 * zone in each node and their holes is calculated. If the maximum PFN
4967 * between two adjacent zones match, it is assumed that the zone is empty.
4968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4970 * starts where the previous one ended. For example, ZONE_DMA32 starts
4971 * at arch_max_dma_pfn.
4972 */
4973void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4974{
c13291a5
TH
4975 unsigned long start_pfn, end_pfn;
4976 int i, nid;
a6af2bc3 4977
c713216d
MG
4978 /* Record where the zone boundaries are */
4979 memset(arch_zone_lowest_possible_pfn, 0,
4980 sizeof(arch_zone_lowest_possible_pfn));
4981 memset(arch_zone_highest_possible_pfn, 0,
4982 sizeof(arch_zone_highest_possible_pfn));
4983 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4984 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4985 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4986 if (i == ZONE_MOVABLE)
4987 continue;
c713216d
MG
4988 arch_zone_lowest_possible_pfn[i] =
4989 arch_zone_highest_possible_pfn[i-1];
4990 arch_zone_highest_possible_pfn[i] =
4991 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4992 }
2a1e274a
MG
4993 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4994 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4995
4996 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4997 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4998 find_zone_movable_pfns_for_nodes();
c713216d 4999
c713216d 5000 /* Print out the zone ranges */
a62e2f4f 5001 printk("Zone ranges:\n");
2a1e274a
MG
5002 for (i = 0; i < MAX_NR_ZONES; i++) {
5003 if (i == ZONE_MOVABLE)
5004 continue;
155cbfc8 5005 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5006 if (arch_zone_lowest_possible_pfn[i] ==
5007 arch_zone_highest_possible_pfn[i])
155cbfc8 5008 printk(KERN_CONT "empty\n");
72f0ba02 5009 else
a62e2f4f
BH
5010 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5011 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5012 (arch_zone_highest_possible_pfn[i]
5013 << PAGE_SHIFT) - 1);
2a1e274a
MG
5014 }
5015
5016 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5017 printk("Movable zone start for each node\n");
2a1e274a
MG
5018 for (i = 0; i < MAX_NUMNODES; i++) {
5019 if (zone_movable_pfn[i])
a62e2f4f
BH
5020 printk(" Node %d: %#010lx\n", i,
5021 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5022 }
c713216d 5023
f2d52fe5 5024 /* Print out the early node map */
a62e2f4f 5025 printk("Early memory node ranges\n");
c13291a5 5026 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5027 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5028 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5029
5030 /* Initialise every node */
708614e6 5031 mminit_verify_pageflags_layout();
8ef82866 5032 setup_nr_node_ids();
c713216d
MG
5033 for_each_online_node(nid) {
5034 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5035 free_area_init_node(nid, NULL,
c713216d 5036 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5037
5038 /* Any memory on that node */
5039 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5040 node_set_state(nid, N_MEMORY);
5041 check_for_memory(pgdat, nid);
c713216d
MG
5042 }
5043}
2a1e274a 5044
7e63efef 5045static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5046{
5047 unsigned long long coremem;
5048 if (!p)
5049 return -EINVAL;
5050
5051 coremem = memparse(p, &p);
7e63efef 5052 *core = coremem >> PAGE_SHIFT;
2a1e274a 5053
7e63efef 5054 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5055 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5056
5057 return 0;
5058}
ed7ed365 5059
7e63efef
MG
5060/*
5061 * kernelcore=size sets the amount of memory for use for allocations that
5062 * cannot be reclaimed or migrated.
5063 */
5064static int __init cmdline_parse_kernelcore(char *p)
5065{
5066 return cmdline_parse_core(p, &required_kernelcore);
5067}
5068
5069/*
5070 * movablecore=size sets the amount of memory for use for allocations that
5071 * can be reclaimed or migrated.
5072 */
5073static int __init cmdline_parse_movablecore(char *p)
5074{
5075 return cmdline_parse_core(p, &required_movablecore);
5076}
5077
ed7ed365 5078early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5079early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5080
0ee332c1 5081#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5082
0e0b864e 5083/**
88ca3b94
RD
5084 * set_dma_reserve - set the specified number of pages reserved in the first zone
5085 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5086 *
5087 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5088 * In the DMA zone, a significant percentage may be consumed by kernel image
5089 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5090 * function may optionally be used to account for unfreeable pages in the
5091 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5092 * smaller per-cpu batchsize.
0e0b864e
MG
5093 */
5094void __init set_dma_reserve(unsigned long new_dma_reserve)
5095{
5096 dma_reserve = new_dma_reserve;
5097}
5098
1da177e4
LT
5099void __init free_area_init(unsigned long *zones_size)
5100{
9109fb7b 5101 free_area_init_node(0, zones_size,
1da177e4
LT
5102 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5103}
1da177e4 5104
1da177e4
LT
5105static int page_alloc_cpu_notify(struct notifier_block *self,
5106 unsigned long action, void *hcpu)
5107{
5108 int cpu = (unsigned long)hcpu;
1da177e4 5109
8bb78442 5110 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5111 lru_add_drain_cpu(cpu);
9f8f2172
CL
5112 drain_pages(cpu);
5113
5114 /*
5115 * Spill the event counters of the dead processor
5116 * into the current processors event counters.
5117 * This artificially elevates the count of the current
5118 * processor.
5119 */
f8891e5e 5120 vm_events_fold_cpu(cpu);
9f8f2172
CL
5121
5122 /*
5123 * Zero the differential counters of the dead processor
5124 * so that the vm statistics are consistent.
5125 *
5126 * This is only okay since the processor is dead and cannot
5127 * race with what we are doing.
5128 */
2244b95a 5129 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5130 }
5131 return NOTIFY_OK;
5132}
1da177e4
LT
5133
5134void __init page_alloc_init(void)
5135{
5136 hotcpu_notifier(page_alloc_cpu_notify, 0);
5137}
5138
cb45b0e9
HA
5139/*
5140 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5141 * or min_free_kbytes changes.
5142 */
5143static void calculate_totalreserve_pages(void)
5144{
5145 struct pglist_data *pgdat;
5146 unsigned long reserve_pages = 0;
2f6726e5 5147 enum zone_type i, j;
cb45b0e9
HA
5148
5149 for_each_online_pgdat(pgdat) {
5150 for (i = 0; i < MAX_NR_ZONES; i++) {
5151 struct zone *zone = pgdat->node_zones + i;
5152 unsigned long max = 0;
5153
5154 /* Find valid and maximum lowmem_reserve in the zone */
5155 for (j = i; j < MAX_NR_ZONES; j++) {
5156 if (zone->lowmem_reserve[j] > max)
5157 max = zone->lowmem_reserve[j];
5158 }
5159
41858966
MG
5160 /* we treat the high watermark as reserved pages. */
5161 max += high_wmark_pages(zone);
cb45b0e9
HA
5162
5163 if (max > zone->present_pages)
5164 max = zone->present_pages;
5165 reserve_pages += max;
ab8fabd4
JW
5166 /*
5167 * Lowmem reserves are not available to
5168 * GFP_HIGHUSER page cache allocations and
5169 * kswapd tries to balance zones to their high
5170 * watermark. As a result, neither should be
5171 * regarded as dirtyable memory, to prevent a
5172 * situation where reclaim has to clean pages
5173 * in order to balance the zones.
5174 */
5175 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5176 }
5177 }
ab8fabd4 5178 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5179 totalreserve_pages = reserve_pages;
5180}
5181
1da177e4
LT
5182/*
5183 * setup_per_zone_lowmem_reserve - called whenever
5184 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5185 * has a correct pages reserved value, so an adequate number of
5186 * pages are left in the zone after a successful __alloc_pages().
5187 */
5188static void setup_per_zone_lowmem_reserve(void)
5189{
5190 struct pglist_data *pgdat;
2f6726e5 5191 enum zone_type j, idx;
1da177e4 5192
ec936fc5 5193 for_each_online_pgdat(pgdat) {
1da177e4
LT
5194 for (j = 0; j < MAX_NR_ZONES; j++) {
5195 struct zone *zone = pgdat->node_zones + j;
5196 unsigned long present_pages = zone->present_pages;
5197
5198 zone->lowmem_reserve[j] = 0;
5199
2f6726e5
CL
5200 idx = j;
5201 while (idx) {
1da177e4
LT
5202 struct zone *lower_zone;
5203
2f6726e5
CL
5204 idx--;
5205
1da177e4
LT
5206 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5207 sysctl_lowmem_reserve_ratio[idx] = 1;
5208
5209 lower_zone = pgdat->node_zones + idx;
5210 lower_zone->lowmem_reserve[j] = present_pages /
5211 sysctl_lowmem_reserve_ratio[idx];
5212 present_pages += lower_zone->present_pages;
5213 }
5214 }
5215 }
cb45b0e9
HA
5216
5217 /* update totalreserve_pages */
5218 calculate_totalreserve_pages();
1da177e4
LT
5219}
5220
cfd3da1e 5221static void __setup_per_zone_wmarks(void)
1da177e4
LT
5222{
5223 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5224 unsigned long lowmem_pages = 0;
5225 struct zone *zone;
5226 unsigned long flags;
5227
5228 /* Calculate total number of !ZONE_HIGHMEM pages */
5229 for_each_zone(zone) {
5230 if (!is_highmem(zone))
5231 lowmem_pages += zone->present_pages;
5232 }
5233
5234 for_each_zone(zone) {
ac924c60
AM
5235 u64 tmp;
5236
1125b4e3 5237 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5238 tmp = (u64)pages_min * zone->present_pages;
5239 do_div(tmp, lowmem_pages);
1da177e4
LT
5240 if (is_highmem(zone)) {
5241 /*
669ed175
NP
5242 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5243 * need highmem pages, so cap pages_min to a small
5244 * value here.
5245 *
41858966 5246 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5247 * deltas controls asynch page reclaim, and so should
5248 * not be capped for highmem.
1da177e4
LT
5249 */
5250 int min_pages;
5251
5252 min_pages = zone->present_pages / 1024;
5253 if (min_pages < SWAP_CLUSTER_MAX)
5254 min_pages = SWAP_CLUSTER_MAX;
5255 if (min_pages > 128)
5256 min_pages = 128;
41858966 5257 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5258 } else {
669ed175
NP
5259 /*
5260 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5261 * proportionate to the zone's size.
5262 */
41858966 5263 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5264 }
5265
41858966
MG
5266 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5267 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5268
56fd56b8 5269 setup_zone_migrate_reserve(zone);
1125b4e3 5270 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5271 }
cb45b0e9
HA
5272
5273 /* update totalreserve_pages */
5274 calculate_totalreserve_pages();
1da177e4
LT
5275}
5276
cfd3da1e
MG
5277/**
5278 * setup_per_zone_wmarks - called when min_free_kbytes changes
5279 * or when memory is hot-{added|removed}
5280 *
5281 * Ensures that the watermark[min,low,high] values for each zone are set
5282 * correctly with respect to min_free_kbytes.
5283 */
5284void setup_per_zone_wmarks(void)
5285{
5286 mutex_lock(&zonelists_mutex);
5287 __setup_per_zone_wmarks();
5288 mutex_unlock(&zonelists_mutex);
5289}
5290
55a4462a 5291/*
556adecb
RR
5292 * The inactive anon list should be small enough that the VM never has to
5293 * do too much work, but large enough that each inactive page has a chance
5294 * to be referenced again before it is swapped out.
5295 *
5296 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5297 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5298 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5299 * the anonymous pages are kept on the inactive list.
5300 *
5301 * total target max
5302 * memory ratio inactive anon
5303 * -------------------------------------
5304 * 10MB 1 5MB
5305 * 100MB 1 50MB
5306 * 1GB 3 250MB
5307 * 10GB 10 0.9GB
5308 * 100GB 31 3GB
5309 * 1TB 101 10GB
5310 * 10TB 320 32GB
5311 */
1b79acc9 5312static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5313{
96cb4df5 5314 unsigned int gb, ratio;
556adecb 5315
96cb4df5
MK
5316 /* Zone size in gigabytes */
5317 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5318 if (gb)
556adecb 5319 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5320 else
5321 ratio = 1;
556adecb 5322
96cb4df5
MK
5323 zone->inactive_ratio = ratio;
5324}
556adecb 5325
839a4fcc 5326static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5327{
5328 struct zone *zone;
5329
5330 for_each_zone(zone)
5331 calculate_zone_inactive_ratio(zone);
556adecb
RR
5332}
5333
1da177e4
LT
5334/*
5335 * Initialise min_free_kbytes.
5336 *
5337 * For small machines we want it small (128k min). For large machines
5338 * we want it large (64MB max). But it is not linear, because network
5339 * bandwidth does not increase linearly with machine size. We use
5340 *
5341 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5342 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5343 *
5344 * which yields
5345 *
5346 * 16MB: 512k
5347 * 32MB: 724k
5348 * 64MB: 1024k
5349 * 128MB: 1448k
5350 * 256MB: 2048k
5351 * 512MB: 2896k
5352 * 1024MB: 4096k
5353 * 2048MB: 5792k
5354 * 4096MB: 8192k
5355 * 8192MB: 11584k
5356 * 16384MB: 16384k
5357 */
1b79acc9 5358int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5359{
5360 unsigned long lowmem_kbytes;
5361
5362 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5363
5364 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5365 if (min_free_kbytes < 128)
5366 min_free_kbytes = 128;
5367 if (min_free_kbytes > 65536)
5368 min_free_kbytes = 65536;
bc75d33f 5369 setup_per_zone_wmarks();
a6cccdc3 5370 refresh_zone_stat_thresholds();
1da177e4 5371 setup_per_zone_lowmem_reserve();
556adecb 5372 setup_per_zone_inactive_ratio();
1da177e4
LT
5373 return 0;
5374}
bc75d33f 5375module_init(init_per_zone_wmark_min)
1da177e4
LT
5376
5377/*
5378 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5379 * that we can call two helper functions whenever min_free_kbytes
5380 * changes.
5381 */
5382int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5383 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5384{
8d65af78 5385 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5386 if (write)
bc75d33f 5387 setup_per_zone_wmarks();
1da177e4
LT
5388 return 0;
5389}
5390
9614634f
CL
5391#ifdef CONFIG_NUMA
5392int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5393 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5394{
5395 struct zone *zone;
5396 int rc;
5397
8d65af78 5398 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5399 if (rc)
5400 return rc;
5401
5402 for_each_zone(zone)
8417bba4 5403 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5404 sysctl_min_unmapped_ratio) / 100;
5405 return 0;
5406}
0ff38490
CL
5407
5408int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5409 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5410{
5411 struct zone *zone;
5412 int rc;
5413
8d65af78 5414 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5415 if (rc)
5416 return rc;
5417
5418 for_each_zone(zone)
5419 zone->min_slab_pages = (zone->present_pages *
5420 sysctl_min_slab_ratio) / 100;
5421 return 0;
5422}
9614634f
CL
5423#endif
5424
1da177e4
LT
5425/*
5426 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5427 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5428 * whenever sysctl_lowmem_reserve_ratio changes.
5429 *
5430 * The reserve ratio obviously has absolutely no relation with the
41858966 5431 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5432 * if in function of the boot time zone sizes.
5433 */
5434int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5435 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5436{
8d65af78 5437 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5438 setup_per_zone_lowmem_reserve();
5439 return 0;
5440}
5441
8ad4b1fb
RS
5442/*
5443 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5444 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5445 * can have before it gets flushed back to buddy allocator.
5446 */
5447
5448int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5449 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5450{
5451 struct zone *zone;
5452 unsigned int cpu;
5453 int ret;
5454
8d65af78 5455 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5456 if (!write || (ret < 0))
8ad4b1fb 5457 return ret;
364df0eb 5458 for_each_populated_zone(zone) {
99dcc3e5 5459 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5460 unsigned long high;
5461 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5462 setup_pagelist_highmark(
5463 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5464 }
5465 }
5466 return 0;
5467}
5468
f034b5d4 5469int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5470
5471#ifdef CONFIG_NUMA
5472static int __init set_hashdist(char *str)
5473{
5474 if (!str)
5475 return 0;
5476 hashdist = simple_strtoul(str, &str, 0);
5477 return 1;
5478}
5479__setup("hashdist=", set_hashdist);
5480#endif
5481
5482/*
5483 * allocate a large system hash table from bootmem
5484 * - it is assumed that the hash table must contain an exact power-of-2
5485 * quantity of entries
5486 * - limit is the number of hash buckets, not the total allocation size
5487 */
5488void *__init alloc_large_system_hash(const char *tablename,
5489 unsigned long bucketsize,
5490 unsigned long numentries,
5491 int scale,
5492 int flags,
5493 unsigned int *_hash_shift,
5494 unsigned int *_hash_mask,
31fe62b9
TB
5495 unsigned long low_limit,
5496 unsigned long high_limit)
1da177e4 5497{
31fe62b9 5498 unsigned long long max = high_limit;
1da177e4
LT
5499 unsigned long log2qty, size;
5500 void *table = NULL;
5501
5502 /* allow the kernel cmdline to have a say */
5503 if (!numentries) {
5504 /* round applicable memory size up to nearest megabyte */
04903664 5505 numentries = nr_kernel_pages;
1da177e4
LT
5506 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5507 numentries >>= 20 - PAGE_SHIFT;
5508 numentries <<= 20 - PAGE_SHIFT;
5509
5510 /* limit to 1 bucket per 2^scale bytes of low memory */
5511 if (scale > PAGE_SHIFT)
5512 numentries >>= (scale - PAGE_SHIFT);
5513 else
5514 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5515
5516 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5517 if (unlikely(flags & HASH_SMALL)) {
5518 /* Makes no sense without HASH_EARLY */
5519 WARN_ON(!(flags & HASH_EARLY));
5520 if (!(numentries >> *_hash_shift)) {
5521 numentries = 1UL << *_hash_shift;
5522 BUG_ON(!numentries);
5523 }
5524 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5525 numentries = PAGE_SIZE / bucketsize;
1da177e4 5526 }
6e692ed3 5527 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5528
5529 /* limit allocation size to 1/16 total memory by default */
5530 if (max == 0) {
5531 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5532 do_div(max, bucketsize);
5533 }
074b8517 5534 max = min(max, 0x80000000ULL);
1da177e4 5535
31fe62b9
TB
5536 if (numentries < low_limit)
5537 numentries = low_limit;
1da177e4
LT
5538 if (numentries > max)
5539 numentries = max;
5540
f0d1b0b3 5541 log2qty = ilog2(numentries);
1da177e4
LT
5542
5543 do {
5544 size = bucketsize << log2qty;
5545 if (flags & HASH_EARLY)
74768ed8 5546 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5547 else if (hashdist)
5548 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5549 else {
1037b83b
ED
5550 /*
5551 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5552 * some pages at the end of hash table which
5553 * alloc_pages_exact() automatically does
1037b83b 5554 */
264ef8a9 5555 if (get_order(size) < MAX_ORDER) {
a1dd268c 5556 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5557 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5558 }
1da177e4
LT
5559 }
5560 } while (!table && size > PAGE_SIZE && --log2qty);
5561
5562 if (!table)
5563 panic("Failed to allocate %s hash table\n", tablename);
5564
f241e660 5565 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5566 tablename,
f241e660 5567 (1UL << log2qty),
f0d1b0b3 5568 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5569 size);
5570
5571 if (_hash_shift)
5572 *_hash_shift = log2qty;
5573 if (_hash_mask)
5574 *_hash_mask = (1 << log2qty) - 1;
5575
5576 return table;
5577}
a117e66e 5578
835c134e
MG
5579/* Return a pointer to the bitmap storing bits affecting a block of pages */
5580static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5581 unsigned long pfn)
5582{
5583#ifdef CONFIG_SPARSEMEM
5584 return __pfn_to_section(pfn)->pageblock_flags;
5585#else
5586 return zone->pageblock_flags;
5587#endif /* CONFIG_SPARSEMEM */
5588}
5589
5590static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5591{
5592#ifdef CONFIG_SPARSEMEM
5593 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5594 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5595#else
c060f943 5596 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5597 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5598#endif /* CONFIG_SPARSEMEM */
5599}
5600
5601/**
d9c23400 5602 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5603 * @page: The page within the block of interest
5604 * @start_bitidx: The first bit of interest to retrieve
5605 * @end_bitidx: The last bit of interest
5606 * returns pageblock_bits flags
5607 */
5608unsigned long get_pageblock_flags_group(struct page *page,
5609 int start_bitidx, int end_bitidx)
5610{
5611 struct zone *zone;
5612 unsigned long *bitmap;
5613 unsigned long pfn, bitidx;
5614 unsigned long flags = 0;
5615 unsigned long value = 1;
5616
5617 zone = page_zone(page);
5618 pfn = page_to_pfn(page);
5619 bitmap = get_pageblock_bitmap(zone, pfn);
5620 bitidx = pfn_to_bitidx(zone, pfn);
5621
5622 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5623 if (test_bit(bitidx + start_bitidx, bitmap))
5624 flags |= value;
6220ec78 5625
835c134e
MG
5626 return flags;
5627}
5628
5629/**
d9c23400 5630 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5631 * @page: The page within the block of interest
5632 * @start_bitidx: The first bit of interest
5633 * @end_bitidx: The last bit of interest
5634 * @flags: The flags to set
5635 */
5636void set_pageblock_flags_group(struct page *page, unsigned long flags,
5637 int start_bitidx, int end_bitidx)
5638{
5639 struct zone *zone;
5640 unsigned long *bitmap;
5641 unsigned long pfn, bitidx;
5642 unsigned long value = 1;
5643
5644 zone = page_zone(page);
5645 pfn = page_to_pfn(page);
5646 bitmap = get_pageblock_bitmap(zone, pfn);
5647 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5648 VM_BUG_ON(pfn < zone->zone_start_pfn);
5649 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5650
5651 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5652 if (flags & value)
5653 __set_bit(bitidx + start_bitidx, bitmap);
5654 else
5655 __clear_bit(bitidx + start_bitidx, bitmap);
5656}
a5d76b54
KH
5657
5658/*
80934513
MK
5659 * This function checks whether pageblock includes unmovable pages or not.
5660 * If @count is not zero, it is okay to include less @count unmovable pages
5661 *
5662 * PageLRU check wihtout isolation or lru_lock could race so that
5663 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5664 * expect this function should be exact.
a5d76b54 5665 */
b023f468
WC
5666bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5667 bool skip_hwpoisoned_pages)
49ac8255
KH
5668{
5669 unsigned long pfn, iter, found;
47118af0
MN
5670 int mt;
5671
49ac8255
KH
5672 /*
5673 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5674 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5675 */
5676 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5677 return false;
47118af0
MN
5678 mt = get_pageblock_migratetype(page);
5679 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5680 return false;
49ac8255
KH
5681
5682 pfn = page_to_pfn(page);
5683 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5684 unsigned long check = pfn + iter;
5685
29723fcc 5686 if (!pfn_valid_within(check))
49ac8255 5687 continue;
29723fcc 5688
49ac8255 5689 page = pfn_to_page(check);
97d255c8
MK
5690 /*
5691 * We can't use page_count without pin a page
5692 * because another CPU can free compound page.
5693 * This check already skips compound tails of THP
5694 * because their page->_count is zero at all time.
5695 */
5696 if (!atomic_read(&page->_count)) {
49ac8255
KH
5697 if (PageBuddy(page))
5698 iter += (1 << page_order(page)) - 1;
5699 continue;
5700 }
97d255c8 5701
b023f468
WC
5702 /*
5703 * The HWPoisoned page may be not in buddy system, and
5704 * page_count() is not 0.
5705 */
5706 if (skip_hwpoisoned_pages && PageHWPoison(page))
5707 continue;
5708
49ac8255
KH
5709 if (!PageLRU(page))
5710 found++;
5711 /*
5712 * If there are RECLAIMABLE pages, we need to check it.
5713 * But now, memory offline itself doesn't call shrink_slab()
5714 * and it still to be fixed.
5715 */
5716 /*
5717 * If the page is not RAM, page_count()should be 0.
5718 * we don't need more check. This is an _used_ not-movable page.
5719 *
5720 * The problematic thing here is PG_reserved pages. PG_reserved
5721 * is set to both of a memory hole page and a _used_ kernel
5722 * page at boot.
5723 */
5724 if (found > count)
80934513 5725 return true;
49ac8255 5726 }
80934513 5727 return false;
49ac8255
KH
5728}
5729
5730bool is_pageblock_removable_nolock(struct page *page)
5731{
656a0706
MH
5732 struct zone *zone;
5733 unsigned long pfn;
687875fb
MH
5734
5735 /*
5736 * We have to be careful here because we are iterating over memory
5737 * sections which are not zone aware so we might end up outside of
5738 * the zone but still within the section.
656a0706
MH
5739 * We have to take care about the node as well. If the node is offline
5740 * its NODE_DATA will be NULL - see page_zone.
687875fb 5741 */
656a0706
MH
5742 if (!node_online(page_to_nid(page)))
5743 return false;
5744
5745 zone = page_zone(page);
5746 pfn = page_to_pfn(page);
5747 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5748 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5749 return false;
5750
b023f468 5751 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5752}
0c0e6195 5753
041d3a8c
MN
5754#ifdef CONFIG_CMA
5755
5756static unsigned long pfn_max_align_down(unsigned long pfn)
5757{
5758 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5759 pageblock_nr_pages) - 1);
5760}
5761
5762static unsigned long pfn_max_align_up(unsigned long pfn)
5763{
5764 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5765 pageblock_nr_pages));
5766}
5767
041d3a8c 5768/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5769static int __alloc_contig_migrate_range(struct compact_control *cc,
5770 unsigned long start, unsigned long end)
041d3a8c
MN
5771{
5772 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5773 unsigned long nr_reclaimed;
041d3a8c
MN
5774 unsigned long pfn = start;
5775 unsigned int tries = 0;
5776 int ret = 0;
5777
be49a6e1 5778 migrate_prep();
041d3a8c 5779
bb13ffeb 5780 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5781 if (fatal_signal_pending(current)) {
5782 ret = -EINTR;
5783 break;
5784 }
5785
bb13ffeb
MG
5786 if (list_empty(&cc->migratepages)) {
5787 cc->nr_migratepages = 0;
5788 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5789 pfn, end, true);
041d3a8c
MN
5790 if (!pfn) {
5791 ret = -EINTR;
5792 break;
5793 }
5794 tries = 0;
5795 } else if (++tries == 5) {
5796 ret = ret < 0 ? ret : -EBUSY;
5797 break;
5798 }
5799
beb51eaa
MK
5800 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5801 &cc->migratepages);
5802 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5803
bb13ffeb 5804 ret = migrate_pages(&cc->migratepages,
723a0644 5805 alloc_migrate_target,
7b2a2d4a
MG
5806 0, false, MIGRATE_SYNC,
5807 MR_CMA);
041d3a8c
MN
5808 }
5809
5733c7d1 5810 putback_movable_pages(&cc->migratepages);
041d3a8c
MN
5811 return ret > 0 ? 0 : ret;
5812}
5813
5814/**
5815 * alloc_contig_range() -- tries to allocate given range of pages
5816 * @start: start PFN to allocate
5817 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5818 * @migratetype: migratetype of the underlaying pageblocks (either
5819 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5820 * in range must have the same migratetype and it must
5821 * be either of the two.
041d3a8c
MN
5822 *
5823 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5824 * aligned, however it's the caller's responsibility to guarantee that
5825 * we are the only thread that changes migrate type of pageblocks the
5826 * pages fall in.
5827 *
5828 * The PFN range must belong to a single zone.
5829 *
5830 * Returns zero on success or negative error code. On success all
5831 * pages which PFN is in [start, end) are allocated for the caller and
5832 * need to be freed with free_contig_range().
5833 */
0815f3d8
MN
5834int alloc_contig_range(unsigned long start, unsigned long end,
5835 unsigned migratetype)
041d3a8c 5836{
041d3a8c
MN
5837 unsigned long outer_start, outer_end;
5838 int ret = 0, order;
5839
bb13ffeb
MG
5840 struct compact_control cc = {
5841 .nr_migratepages = 0,
5842 .order = -1,
5843 .zone = page_zone(pfn_to_page(start)),
5844 .sync = true,
5845 .ignore_skip_hint = true,
5846 };
5847 INIT_LIST_HEAD(&cc.migratepages);
5848
041d3a8c
MN
5849 /*
5850 * What we do here is we mark all pageblocks in range as
5851 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5852 * have different sizes, and due to the way page allocator
5853 * work, we align the range to biggest of the two pages so
5854 * that page allocator won't try to merge buddies from
5855 * different pageblocks and change MIGRATE_ISOLATE to some
5856 * other migration type.
5857 *
5858 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5859 * migrate the pages from an unaligned range (ie. pages that
5860 * we are interested in). This will put all the pages in
5861 * range back to page allocator as MIGRATE_ISOLATE.
5862 *
5863 * When this is done, we take the pages in range from page
5864 * allocator removing them from the buddy system. This way
5865 * page allocator will never consider using them.
5866 *
5867 * This lets us mark the pageblocks back as
5868 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5869 * aligned range but not in the unaligned, original range are
5870 * put back to page allocator so that buddy can use them.
5871 */
5872
5873 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
5874 pfn_max_align_up(end), migratetype,
5875 false);
041d3a8c 5876 if (ret)
86a595f9 5877 return ret;
041d3a8c 5878
bb13ffeb 5879 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5880 if (ret)
5881 goto done;
5882
5883 /*
5884 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5885 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5886 * more, all pages in [start, end) are free in page allocator.
5887 * What we are going to do is to allocate all pages from
5888 * [start, end) (that is remove them from page allocator).
5889 *
5890 * The only problem is that pages at the beginning and at the
5891 * end of interesting range may be not aligned with pages that
5892 * page allocator holds, ie. they can be part of higher order
5893 * pages. Because of this, we reserve the bigger range and
5894 * once this is done free the pages we are not interested in.
5895 *
5896 * We don't have to hold zone->lock here because the pages are
5897 * isolated thus they won't get removed from buddy.
5898 */
5899
5900 lru_add_drain_all();
5901 drain_all_pages();
5902
5903 order = 0;
5904 outer_start = start;
5905 while (!PageBuddy(pfn_to_page(outer_start))) {
5906 if (++order >= MAX_ORDER) {
5907 ret = -EBUSY;
5908 goto done;
5909 }
5910 outer_start &= ~0UL << order;
5911 }
5912
5913 /* Make sure the range is really isolated. */
b023f468 5914 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
5915 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5916 outer_start, end);
5917 ret = -EBUSY;
5918 goto done;
5919 }
5920
49f223a9
MS
5921
5922 /* Grab isolated pages from freelists. */
bb13ffeb 5923 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5924 if (!outer_end) {
5925 ret = -EBUSY;
5926 goto done;
5927 }
5928
5929 /* Free head and tail (if any) */
5930 if (start != outer_start)
5931 free_contig_range(outer_start, start - outer_start);
5932 if (end != outer_end)
5933 free_contig_range(end, outer_end - end);
5934
5935done:
5936 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5937 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5938 return ret;
5939}
5940
5941void free_contig_range(unsigned long pfn, unsigned nr_pages)
5942{
bcc2b02f
MS
5943 unsigned int count = 0;
5944
5945 for (; nr_pages--; pfn++) {
5946 struct page *page = pfn_to_page(pfn);
5947
5948 count += page_count(page) != 1;
5949 __free_page(page);
5950 }
5951 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
5952}
5953#endif
5954
4ed7e022
JL
5955#ifdef CONFIG_MEMORY_HOTPLUG
5956static int __meminit __zone_pcp_update(void *data)
5957{
5958 struct zone *zone = data;
5959 int cpu;
5960 unsigned long batch = zone_batchsize(zone), flags;
5961
5962 for_each_possible_cpu(cpu) {
5963 struct per_cpu_pageset *pset;
5964 struct per_cpu_pages *pcp;
5965
5966 pset = per_cpu_ptr(zone->pageset, cpu);
5967 pcp = &pset->pcp;
5968
5969 local_irq_save(flags);
5970 if (pcp->count > 0)
5971 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5972 drain_zonestat(zone, pset);
4ed7e022
JL
5973 setup_pageset(pset, batch);
5974 local_irq_restore(flags);
5975 }
5976 return 0;
5977}
5978
5979void __meminit zone_pcp_update(struct zone *zone)
5980{
5981 stop_machine(__zone_pcp_update, zone, NULL);
5982}
5983#endif
5984
340175b7
JL
5985void zone_pcp_reset(struct zone *zone)
5986{
5987 unsigned long flags;
5a883813
MK
5988 int cpu;
5989 struct per_cpu_pageset *pset;
340175b7
JL
5990
5991 /* avoid races with drain_pages() */
5992 local_irq_save(flags);
5993 if (zone->pageset != &boot_pageset) {
5a883813
MK
5994 for_each_online_cpu(cpu) {
5995 pset = per_cpu_ptr(zone->pageset, cpu);
5996 drain_zonestat(zone, pset);
5997 }
340175b7
JL
5998 free_percpu(zone->pageset);
5999 zone->pageset = &boot_pageset;
6000 }
6001 local_irq_restore(flags);
6002}
6003
6dcd73d7 6004#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6005/*
6006 * All pages in the range must be isolated before calling this.
6007 */
6008void
6009__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6010{
6011 struct page *page;
6012 struct zone *zone;
6013 int order, i;
6014 unsigned long pfn;
6015 unsigned long flags;
6016 /* find the first valid pfn */
6017 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6018 if (pfn_valid(pfn))
6019 break;
6020 if (pfn == end_pfn)
6021 return;
6022 zone = page_zone(pfn_to_page(pfn));
6023 spin_lock_irqsave(&zone->lock, flags);
6024 pfn = start_pfn;
6025 while (pfn < end_pfn) {
6026 if (!pfn_valid(pfn)) {
6027 pfn++;
6028 continue;
6029 }
6030 page = pfn_to_page(pfn);
b023f468
WC
6031 /*
6032 * The HWPoisoned page may be not in buddy system, and
6033 * page_count() is not 0.
6034 */
6035 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6036 pfn++;
6037 SetPageReserved(page);
6038 continue;
6039 }
6040
0c0e6195
KH
6041 BUG_ON(page_count(page));
6042 BUG_ON(!PageBuddy(page));
6043 order = page_order(page);
6044#ifdef CONFIG_DEBUG_VM
6045 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6046 pfn, 1 << order, end_pfn);
6047#endif
6048 list_del(&page->lru);
6049 rmv_page_order(page);
6050 zone->free_area[order].nr_free--;
0c0e6195
KH
6051 for (i = 0; i < (1 << order); i++)
6052 SetPageReserved((page+i));
6053 pfn += (1 << order);
6054 }
6055 spin_unlock_irqrestore(&zone->lock, flags);
6056}
6057#endif
8d22ba1b
WF
6058
6059#ifdef CONFIG_MEMORY_FAILURE
6060bool is_free_buddy_page(struct page *page)
6061{
6062 struct zone *zone = page_zone(page);
6063 unsigned long pfn = page_to_pfn(page);
6064 unsigned long flags;
6065 int order;
6066
6067 spin_lock_irqsave(&zone->lock, flags);
6068 for (order = 0; order < MAX_ORDER; order++) {
6069 struct page *page_head = page - (pfn & ((1 << order) - 1));
6070
6071 if (PageBuddy(page_head) && page_order(page_head) >= order)
6072 break;
6073 }
6074 spin_unlock_irqrestore(&zone->lock, flags);
6075
6076 return order < MAX_ORDER;
6077}
6078#endif
718a3821 6079
51300cef 6080static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6081 {1UL << PG_locked, "locked" },
6082 {1UL << PG_error, "error" },
6083 {1UL << PG_referenced, "referenced" },
6084 {1UL << PG_uptodate, "uptodate" },
6085 {1UL << PG_dirty, "dirty" },
6086 {1UL << PG_lru, "lru" },
6087 {1UL << PG_active, "active" },
6088 {1UL << PG_slab, "slab" },
6089 {1UL << PG_owner_priv_1, "owner_priv_1" },
6090 {1UL << PG_arch_1, "arch_1" },
6091 {1UL << PG_reserved, "reserved" },
6092 {1UL << PG_private, "private" },
6093 {1UL << PG_private_2, "private_2" },
6094 {1UL << PG_writeback, "writeback" },
6095#ifdef CONFIG_PAGEFLAGS_EXTENDED
6096 {1UL << PG_head, "head" },
6097 {1UL << PG_tail, "tail" },
6098#else
6099 {1UL << PG_compound, "compound" },
6100#endif
6101 {1UL << PG_swapcache, "swapcache" },
6102 {1UL << PG_mappedtodisk, "mappedtodisk" },
6103 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6104 {1UL << PG_swapbacked, "swapbacked" },
6105 {1UL << PG_unevictable, "unevictable" },
6106#ifdef CONFIG_MMU
6107 {1UL << PG_mlocked, "mlocked" },
6108#endif
6109#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6110 {1UL << PG_uncached, "uncached" },
6111#endif
6112#ifdef CONFIG_MEMORY_FAILURE
6113 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6114#endif
6115#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6116 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6117#endif
718a3821
WF
6118};
6119
6120static void dump_page_flags(unsigned long flags)
6121{
6122 const char *delim = "";
6123 unsigned long mask;
6124 int i;
6125
51300cef 6126 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6127
718a3821
WF
6128 printk(KERN_ALERT "page flags: %#lx(", flags);
6129
6130 /* remove zone id */
6131 flags &= (1UL << NR_PAGEFLAGS) - 1;
6132
51300cef 6133 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6134
6135 mask = pageflag_names[i].mask;
6136 if ((flags & mask) != mask)
6137 continue;
6138
6139 flags &= ~mask;
6140 printk("%s%s", delim, pageflag_names[i].name);
6141 delim = "|";
6142 }
6143
6144 /* check for left over flags */
6145 if (flags)
6146 printk("%s%#lx", delim, flags);
6147
6148 printk(")\n");
6149}
6150
6151void dump_page(struct page *page)
6152{
6153 printk(KERN_ALERT
6154 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6155 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6156 page->mapping, page->index);
6157 dump_page_flags(page->flags);
f212ad7c 6158 mem_cgroup_print_bad_page(page);
718a3821 6159}