]>
Commit | Line | Data |
---|---|---|
fbf59bc9 | 1 | /* |
88999a89 | 2 | * mm/percpu.c - percpu memory allocator |
fbf59bc9 TH |
3 | * |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | |
5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | |
6 | * | |
7 | * This file is released under the GPLv2. | |
8 | * | |
9 | * This is percpu allocator which can handle both static and dynamic | |
88999a89 TH |
10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
11 | * consisted of boot-time determined number of units and the first | |
12 | * chunk is used for static percpu variables in the kernel image | |
2f39e637 TH |
13 | * (special boot time alloc/init handling necessary as these areas |
14 | * need to be brought up before allocation services are running). | |
15 | * Unit grows as necessary and all units grow or shrink in unison. | |
88999a89 | 16 | * When a chunk is filled up, another chunk is allocated. |
fbf59bc9 TH |
17 | * |
18 | * c0 c1 c2 | |
19 | * ------------------- ------------------- ------------ | |
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | |
21 | * ------------------- ...... ------------------- .... ------------ | |
22 | * | |
23 | * Allocation is done in offset-size areas of single unit space. Ie, | |
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | |
2f39e637 TH |
25 | * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to |
26 | * cpus. On NUMA, the mapping can be non-linear and even sparse. | |
27 | * Percpu access can be done by configuring percpu base registers | |
28 | * according to cpu to unit mapping and pcpu_unit_size. | |
fbf59bc9 | 29 | * |
2f39e637 TH |
30 | * There are usually many small percpu allocations many of them being |
31 | * as small as 4 bytes. The allocator organizes chunks into lists | |
fbf59bc9 TH |
32 | * according to free size and tries to allocate from the fullest one. |
33 | * Each chunk keeps the maximum contiguous area size hint which is | |
4785879e | 34 | * guaranteed to be equal to or larger than the maximum contiguous |
fbf59bc9 TH |
35 | * area in the chunk. This helps the allocator not to iterate the |
36 | * chunk maps unnecessarily. | |
37 | * | |
38 | * Allocation state in each chunk is kept using an array of integers | |
39 | * on chunk->map. A positive value in the map represents a free | |
40 | * region and negative allocated. Allocation inside a chunk is done | |
41 | * by scanning this map sequentially and serving the first matching | |
42 | * entry. This is mostly copied from the percpu_modalloc() allocator. | |
e1b9aa3f CL |
43 | * Chunks can be determined from the address using the index field |
44 | * in the page struct. The index field contains a pointer to the chunk. | |
fbf59bc9 TH |
45 | * |
46 | * To use this allocator, arch code should do the followings. | |
47 | * | |
fbf59bc9 | 48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
e0100983 TH |
49 | * regular address to percpu pointer and back if they need to be |
50 | * different from the default | |
fbf59bc9 | 51 | * |
8d408b4b TH |
52 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
53 | * setup the first chunk containing the kernel static percpu area | |
fbf59bc9 TH |
54 | */ |
55 | ||
870d4b12 JP |
56 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
57 | ||
fbf59bc9 TH |
58 | #include <linux/bitmap.h> |
59 | #include <linux/bootmem.h> | |
fd1e8a1f | 60 | #include <linux/err.h> |
fbf59bc9 | 61 | #include <linux/list.h> |
a530b795 | 62 | #include <linux/log2.h> |
fbf59bc9 TH |
63 | #include <linux/mm.h> |
64 | #include <linux/module.h> | |
65 | #include <linux/mutex.h> | |
66 | #include <linux/percpu.h> | |
67 | #include <linux/pfn.h> | |
fbf59bc9 | 68 | #include <linux/slab.h> |
ccea34b5 | 69 | #include <linux/spinlock.h> |
fbf59bc9 | 70 | #include <linux/vmalloc.h> |
a56dbddf | 71 | #include <linux/workqueue.h> |
f528f0b8 | 72 | #include <linux/kmemleak.h> |
fbf59bc9 TH |
73 | |
74 | #include <asm/cacheflush.h> | |
e0100983 | 75 | #include <asm/sections.h> |
fbf59bc9 | 76 | #include <asm/tlbflush.h> |
3b034b0d | 77 | #include <asm/io.h> |
fbf59bc9 | 78 | |
fbf59bc9 TH |
79 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ |
80 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | |
9c824b6a TH |
81 | #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 |
82 | #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 | |
1a4d7607 TH |
83 | #define PCPU_EMPTY_POP_PAGES_LOW 2 |
84 | #define PCPU_EMPTY_POP_PAGES_HIGH 4 | |
fbf59bc9 | 85 | |
bbddff05 | 86 | #ifdef CONFIG_SMP |
e0100983 TH |
87 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
88 | #ifndef __addr_to_pcpu_ptr | |
89 | #define __addr_to_pcpu_ptr(addr) \ | |
43cf38eb TH |
90 | (void __percpu *)((unsigned long)(addr) - \ |
91 | (unsigned long)pcpu_base_addr + \ | |
92 | (unsigned long)__per_cpu_start) | |
e0100983 TH |
93 | #endif |
94 | #ifndef __pcpu_ptr_to_addr | |
95 | #define __pcpu_ptr_to_addr(ptr) \ | |
43cf38eb TH |
96 | (void __force *)((unsigned long)(ptr) + \ |
97 | (unsigned long)pcpu_base_addr - \ | |
98 | (unsigned long)__per_cpu_start) | |
e0100983 | 99 | #endif |
bbddff05 TH |
100 | #else /* CONFIG_SMP */ |
101 | /* on UP, it's always identity mapped */ | |
102 | #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) | |
103 | #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) | |
104 | #endif /* CONFIG_SMP */ | |
e0100983 | 105 | |
fbf59bc9 TH |
106 | struct pcpu_chunk { |
107 | struct list_head list; /* linked to pcpu_slot lists */ | |
fbf59bc9 TH |
108 | int free_size; /* free bytes in the chunk */ |
109 | int contig_hint; /* max contiguous size hint */ | |
bba174f5 | 110 | void *base_addr; /* base address of this chunk */ |
9c824b6a | 111 | |
723ad1d9 | 112 | int map_used; /* # of map entries used before the sentry */ |
fbf59bc9 TH |
113 | int map_alloc; /* # of map entries allocated */ |
114 | int *map; /* allocation map */ | |
9c824b6a TH |
115 | struct work_struct map_extend_work;/* async ->map[] extension */ |
116 | ||
88999a89 | 117 | void *data; /* chunk data */ |
3d331ad7 | 118 | int first_free; /* no free below this */ |
8d408b4b | 119 | bool immutable; /* no [de]population allowed */ |
b539b87f | 120 | int nr_populated; /* # of populated pages */ |
ce3141a2 | 121 | unsigned long populated[]; /* populated bitmap */ |
fbf59bc9 TH |
122 | }; |
123 | ||
40150d37 TH |
124 | static int pcpu_unit_pages __read_mostly; |
125 | static int pcpu_unit_size __read_mostly; | |
2f39e637 | 126 | static int pcpu_nr_units __read_mostly; |
6563297c | 127 | static int pcpu_atom_size __read_mostly; |
40150d37 TH |
128 | static int pcpu_nr_slots __read_mostly; |
129 | static size_t pcpu_chunk_struct_size __read_mostly; | |
fbf59bc9 | 130 | |
a855b84c TH |
131 | /* cpus with the lowest and highest unit addresses */ |
132 | static unsigned int pcpu_low_unit_cpu __read_mostly; | |
133 | static unsigned int pcpu_high_unit_cpu __read_mostly; | |
2f39e637 | 134 | |
fbf59bc9 | 135 | /* the address of the first chunk which starts with the kernel static area */ |
40150d37 | 136 | void *pcpu_base_addr __read_mostly; |
fbf59bc9 TH |
137 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
138 | ||
fb435d52 TH |
139 | static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ |
140 | const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ | |
2f39e637 | 141 | |
6563297c TH |
142 | /* group information, used for vm allocation */ |
143 | static int pcpu_nr_groups __read_mostly; | |
144 | static const unsigned long *pcpu_group_offsets __read_mostly; | |
145 | static const size_t *pcpu_group_sizes __read_mostly; | |
146 | ||
ae9e6bc9 TH |
147 | /* |
148 | * The first chunk which always exists. Note that unlike other | |
149 | * chunks, this one can be allocated and mapped in several different | |
150 | * ways and thus often doesn't live in the vmalloc area. | |
151 | */ | |
152 | static struct pcpu_chunk *pcpu_first_chunk; | |
153 | ||
154 | /* | |
155 | * Optional reserved chunk. This chunk reserves part of the first | |
156 | * chunk and serves it for reserved allocations. The amount of | |
157 | * reserved offset is in pcpu_reserved_chunk_limit. When reserved | |
158 | * area doesn't exist, the following variables contain NULL and 0 | |
159 | * respectively. | |
160 | */ | |
edcb4639 | 161 | static struct pcpu_chunk *pcpu_reserved_chunk; |
edcb4639 TH |
162 | static int pcpu_reserved_chunk_limit; |
163 | ||
b38d08f3 TH |
164 | static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ |
165 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */ | |
fbf59bc9 | 166 | |
40150d37 | 167 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ |
fbf59bc9 | 168 | |
b539b87f TH |
169 | /* |
170 | * The number of empty populated pages, protected by pcpu_lock. The | |
171 | * reserved chunk doesn't contribute to the count. | |
172 | */ | |
173 | static int pcpu_nr_empty_pop_pages; | |
174 | ||
1a4d7607 TH |
175 | /* |
176 | * Balance work is used to populate or destroy chunks asynchronously. We | |
177 | * try to keep the number of populated free pages between | |
178 | * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one | |
179 | * empty chunk. | |
180 | */ | |
fe6bd8c3 TH |
181 | static void pcpu_balance_workfn(struct work_struct *work); |
182 | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); | |
1a4d7607 TH |
183 | static bool pcpu_async_enabled __read_mostly; |
184 | static bool pcpu_atomic_alloc_failed; | |
185 | ||
186 | static void pcpu_schedule_balance_work(void) | |
187 | { | |
188 | if (pcpu_async_enabled) | |
189 | schedule_work(&pcpu_balance_work); | |
190 | } | |
a56dbddf | 191 | |
020ec653 TH |
192 | static bool pcpu_addr_in_first_chunk(void *addr) |
193 | { | |
194 | void *first_start = pcpu_first_chunk->base_addr; | |
195 | ||
196 | return addr >= first_start && addr < first_start + pcpu_unit_size; | |
197 | } | |
198 | ||
199 | static bool pcpu_addr_in_reserved_chunk(void *addr) | |
200 | { | |
201 | void *first_start = pcpu_first_chunk->base_addr; | |
202 | ||
203 | return addr >= first_start && | |
204 | addr < first_start + pcpu_reserved_chunk_limit; | |
205 | } | |
206 | ||
d9b55eeb | 207 | static int __pcpu_size_to_slot(int size) |
fbf59bc9 | 208 | { |
cae3aeb8 | 209 | int highbit = fls(size); /* size is in bytes */ |
fbf59bc9 TH |
210 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
211 | } | |
212 | ||
d9b55eeb TH |
213 | static int pcpu_size_to_slot(int size) |
214 | { | |
215 | if (size == pcpu_unit_size) | |
216 | return pcpu_nr_slots - 1; | |
217 | return __pcpu_size_to_slot(size); | |
218 | } | |
219 | ||
fbf59bc9 TH |
220 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
221 | { | |
222 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | |
223 | return 0; | |
224 | ||
225 | return pcpu_size_to_slot(chunk->free_size); | |
226 | } | |
227 | ||
88999a89 TH |
228 | /* set the pointer to a chunk in a page struct */ |
229 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | |
230 | { | |
231 | page->index = (unsigned long)pcpu; | |
232 | } | |
233 | ||
234 | /* obtain pointer to a chunk from a page struct */ | |
235 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |
236 | { | |
237 | return (struct pcpu_chunk *)page->index; | |
238 | } | |
239 | ||
240 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | |
fbf59bc9 | 241 | { |
2f39e637 | 242 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
fbf59bc9 TH |
243 | } |
244 | ||
9983b6f0 TH |
245 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
246 | unsigned int cpu, int page_idx) | |
fbf59bc9 | 247 | { |
bba174f5 | 248 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + |
fb435d52 | 249 | (page_idx << PAGE_SHIFT); |
fbf59bc9 TH |
250 | } |
251 | ||
88999a89 TH |
252 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, |
253 | int *rs, int *re, int end) | |
ce3141a2 TH |
254 | { |
255 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | |
256 | *re = find_next_bit(chunk->populated, end, *rs + 1); | |
257 | } | |
258 | ||
88999a89 TH |
259 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
260 | int *rs, int *re, int end) | |
ce3141a2 TH |
261 | { |
262 | *rs = find_next_bit(chunk->populated, end, *rs); | |
263 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | |
264 | } | |
265 | ||
266 | /* | |
267 | * (Un)populated page region iterators. Iterate over (un)populated | |
b595076a | 268 | * page regions between @start and @end in @chunk. @rs and @re should |
ce3141a2 TH |
269 | * be integer variables and will be set to start and end page index of |
270 | * the current region. | |
271 | */ | |
272 | #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ | |
273 | for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ | |
274 | (rs) < (re); \ | |
275 | (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) | |
276 | ||
277 | #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ | |
278 | for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ | |
279 | (rs) < (re); \ | |
280 | (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) | |
281 | ||
fbf59bc9 | 282 | /** |
90459ce0 | 283 | * pcpu_mem_zalloc - allocate memory |
1880d93b | 284 | * @size: bytes to allocate |
fbf59bc9 | 285 | * |
1880d93b | 286 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
90459ce0 | 287 | * kzalloc() is used; otherwise, vzalloc() is used. The returned |
1880d93b | 288 | * memory is always zeroed. |
fbf59bc9 | 289 | * |
ccea34b5 TH |
290 | * CONTEXT: |
291 | * Does GFP_KERNEL allocation. | |
292 | * | |
fbf59bc9 | 293 | * RETURNS: |
1880d93b | 294 | * Pointer to the allocated area on success, NULL on failure. |
fbf59bc9 | 295 | */ |
90459ce0 | 296 | static void *pcpu_mem_zalloc(size_t size) |
fbf59bc9 | 297 | { |
099a19d9 TH |
298 | if (WARN_ON_ONCE(!slab_is_available())) |
299 | return NULL; | |
300 | ||
1880d93b TH |
301 | if (size <= PAGE_SIZE) |
302 | return kzalloc(size, GFP_KERNEL); | |
7af4c093 JJ |
303 | else |
304 | return vzalloc(size); | |
1880d93b | 305 | } |
fbf59bc9 | 306 | |
1880d93b TH |
307 | /** |
308 | * pcpu_mem_free - free memory | |
309 | * @ptr: memory to free | |
1880d93b | 310 | * |
90459ce0 | 311 | * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). |
1880d93b | 312 | */ |
1d5cfdb0 | 313 | static void pcpu_mem_free(void *ptr) |
1880d93b | 314 | { |
1d5cfdb0 | 315 | kvfree(ptr); |
fbf59bc9 TH |
316 | } |
317 | ||
b539b87f TH |
318 | /** |
319 | * pcpu_count_occupied_pages - count the number of pages an area occupies | |
320 | * @chunk: chunk of interest | |
321 | * @i: index of the area in question | |
322 | * | |
323 | * Count the number of pages chunk's @i'th area occupies. When the area's | |
324 | * start and/or end address isn't aligned to page boundary, the straddled | |
325 | * page is included in the count iff the rest of the page is free. | |
326 | */ | |
327 | static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) | |
328 | { | |
329 | int off = chunk->map[i] & ~1; | |
330 | int end = chunk->map[i + 1] & ~1; | |
331 | ||
332 | if (!PAGE_ALIGNED(off) && i > 0) { | |
333 | int prev = chunk->map[i - 1]; | |
334 | ||
335 | if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) | |
336 | off = round_down(off, PAGE_SIZE); | |
337 | } | |
338 | ||
339 | if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { | |
340 | int next = chunk->map[i + 1]; | |
341 | int nend = chunk->map[i + 2] & ~1; | |
342 | ||
343 | if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) | |
344 | end = round_up(end, PAGE_SIZE); | |
345 | } | |
346 | ||
347 | return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); | |
348 | } | |
349 | ||
fbf59bc9 TH |
350 | /** |
351 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | |
352 | * @chunk: chunk of interest | |
353 | * @oslot: the previous slot it was on | |
354 | * | |
355 | * This function is called after an allocation or free changed @chunk. | |
356 | * New slot according to the changed state is determined and @chunk is | |
edcb4639 TH |
357 | * moved to the slot. Note that the reserved chunk is never put on |
358 | * chunk slots. | |
ccea34b5 TH |
359 | * |
360 | * CONTEXT: | |
361 | * pcpu_lock. | |
fbf59bc9 TH |
362 | */ |
363 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |
364 | { | |
365 | int nslot = pcpu_chunk_slot(chunk); | |
366 | ||
edcb4639 | 367 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { |
fbf59bc9 TH |
368 | if (oslot < nslot) |
369 | list_move(&chunk->list, &pcpu_slot[nslot]); | |
370 | else | |
371 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | |
372 | } | |
373 | } | |
374 | ||
9f7dcf22 | 375 | /** |
833af842 TH |
376 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
377 | * @chunk: chunk of interest | |
9c824b6a | 378 | * @is_atomic: the allocation context |
9f7dcf22 | 379 | * |
9c824b6a TH |
380 | * Determine whether area map of @chunk needs to be extended. If |
381 | * @is_atomic, only the amount necessary for a new allocation is | |
382 | * considered; however, async extension is scheduled if the left amount is | |
383 | * low. If !@is_atomic, it aims for more empty space. Combined, this | |
384 | * ensures that the map is likely to have enough available space to | |
385 | * accomodate atomic allocations which can't extend maps directly. | |
9f7dcf22 | 386 | * |
ccea34b5 | 387 | * CONTEXT: |
833af842 | 388 | * pcpu_lock. |
ccea34b5 | 389 | * |
9f7dcf22 | 390 | * RETURNS: |
833af842 TH |
391 | * New target map allocation length if extension is necessary, 0 |
392 | * otherwise. | |
9f7dcf22 | 393 | */ |
9c824b6a | 394 | static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) |
9f7dcf22 | 395 | { |
9c824b6a TH |
396 | int margin, new_alloc; |
397 | ||
398 | if (is_atomic) { | |
399 | margin = 3; | |
9f7dcf22 | 400 | |
9c824b6a | 401 | if (chunk->map_alloc < |
1a4d7607 TH |
402 | chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW && |
403 | pcpu_async_enabled) | |
9c824b6a TH |
404 | schedule_work(&chunk->map_extend_work); |
405 | } else { | |
406 | margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; | |
407 | } | |
408 | ||
409 | if (chunk->map_alloc >= chunk->map_used + margin) | |
9f7dcf22 TH |
410 | return 0; |
411 | ||
412 | new_alloc = PCPU_DFL_MAP_ALLOC; | |
9c824b6a | 413 | while (new_alloc < chunk->map_used + margin) |
9f7dcf22 TH |
414 | new_alloc *= 2; |
415 | ||
833af842 TH |
416 | return new_alloc; |
417 | } | |
418 | ||
419 | /** | |
420 | * pcpu_extend_area_map - extend area map of a chunk | |
421 | * @chunk: chunk of interest | |
422 | * @new_alloc: new target allocation length of the area map | |
423 | * | |
424 | * Extend area map of @chunk to have @new_alloc entries. | |
425 | * | |
426 | * CONTEXT: | |
427 | * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. | |
428 | * | |
429 | * RETURNS: | |
430 | * 0 on success, -errno on failure. | |
431 | */ | |
432 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) | |
433 | { | |
434 | int *old = NULL, *new = NULL; | |
435 | size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); | |
436 | unsigned long flags; | |
437 | ||
90459ce0 | 438 | new = pcpu_mem_zalloc(new_size); |
833af842 | 439 | if (!new) |
9f7dcf22 | 440 | return -ENOMEM; |
ccea34b5 | 441 | |
833af842 TH |
442 | /* acquire pcpu_lock and switch to new area map */ |
443 | spin_lock_irqsave(&pcpu_lock, flags); | |
444 | ||
445 | if (new_alloc <= chunk->map_alloc) | |
446 | goto out_unlock; | |
9f7dcf22 | 447 | |
833af842 | 448 | old_size = chunk->map_alloc * sizeof(chunk->map[0]); |
a002d148 HS |
449 | old = chunk->map; |
450 | ||
451 | memcpy(new, old, old_size); | |
9f7dcf22 | 452 | |
9f7dcf22 TH |
453 | chunk->map_alloc = new_alloc; |
454 | chunk->map = new; | |
833af842 TH |
455 | new = NULL; |
456 | ||
457 | out_unlock: | |
458 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
459 | ||
460 | /* | |
461 | * pcpu_mem_free() might end up calling vfree() which uses | |
462 | * IRQ-unsafe lock and thus can't be called under pcpu_lock. | |
463 | */ | |
1d5cfdb0 TH |
464 | pcpu_mem_free(old); |
465 | pcpu_mem_free(new); | |
833af842 | 466 | |
9f7dcf22 TH |
467 | return 0; |
468 | } | |
469 | ||
9c824b6a TH |
470 | static void pcpu_map_extend_workfn(struct work_struct *work) |
471 | { | |
472 | struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk, | |
473 | map_extend_work); | |
474 | int new_alloc; | |
475 | ||
476 | spin_lock_irq(&pcpu_lock); | |
477 | new_alloc = pcpu_need_to_extend(chunk, false); | |
478 | spin_unlock_irq(&pcpu_lock); | |
479 | ||
480 | if (new_alloc) | |
481 | pcpu_extend_area_map(chunk, new_alloc); | |
482 | } | |
483 | ||
a16037c8 TH |
484 | /** |
485 | * pcpu_fit_in_area - try to fit the requested allocation in a candidate area | |
486 | * @chunk: chunk the candidate area belongs to | |
487 | * @off: the offset to the start of the candidate area | |
488 | * @this_size: the size of the candidate area | |
489 | * @size: the size of the target allocation | |
490 | * @align: the alignment of the target allocation | |
491 | * @pop_only: only allocate from already populated region | |
492 | * | |
493 | * We're trying to allocate @size bytes aligned at @align. @chunk's area | |
494 | * at @off sized @this_size is a candidate. This function determines | |
495 | * whether the target allocation fits in the candidate area and returns the | |
496 | * number of bytes to pad after @off. If the target area doesn't fit, -1 | |
497 | * is returned. | |
498 | * | |
499 | * If @pop_only is %true, this function only considers the already | |
500 | * populated part of the candidate area. | |
501 | */ | |
502 | static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, | |
503 | int size, int align, bool pop_only) | |
504 | { | |
505 | int cand_off = off; | |
506 | ||
507 | while (true) { | |
508 | int head = ALIGN(cand_off, align) - off; | |
509 | int page_start, page_end, rs, re; | |
510 | ||
511 | if (this_size < head + size) | |
512 | return -1; | |
513 | ||
514 | if (!pop_only) | |
515 | return head; | |
516 | ||
517 | /* | |
518 | * If the first unpopulated page is beyond the end of the | |
519 | * allocation, the whole allocation is populated; | |
520 | * otherwise, retry from the end of the unpopulated area. | |
521 | */ | |
522 | page_start = PFN_DOWN(head + off); | |
523 | page_end = PFN_UP(head + off + size); | |
524 | ||
525 | rs = page_start; | |
526 | pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); | |
527 | if (rs >= page_end) | |
528 | return head; | |
529 | cand_off = re * PAGE_SIZE; | |
530 | } | |
531 | } | |
532 | ||
fbf59bc9 TH |
533 | /** |
534 | * pcpu_alloc_area - allocate area from a pcpu_chunk | |
535 | * @chunk: chunk of interest | |
cae3aeb8 | 536 | * @size: wanted size in bytes |
fbf59bc9 | 537 | * @align: wanted align |
a16037c8 | 538 | * @pop_only: allocate only from the populated area |
b539b87f | 539 | * @occ_pages_p: out param for the number of pages the area occupies |
fbf59bc9 TH |
540 | * |
541 | * Try to allocate @size bytes area aligned at @align from @chunk. | |
542 | * Note that this function only allocates the offset. It doesn't | |
543 | * populate or map the area. | |
544 | * | |
9f7dcf22 TH |
545 | * @chunk->map must have at least two free slots. |
546 | * | |
ccea34b5 TH |
547 | * CONTEXT: |
548 | * pcpu_lock. | |
549 | * | |
fbf59bc9 | 550 | * RETURNS: |
9f7dcf22 TH |
551 | * Allocated offset in @chunk on success, -1 if no matching area is |
552 | * found. | |
fbf59bc9 | 553 | */ |
a16037c8 | 554 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, |
b539b87f | 555 | bool pop_only, int *occ_pages_p) |
fbf59bc9 TH |
556 | { |
557 | int oslot = pcpu_chunk_slot(chunk); | |
558 | int max_contig = 0; | |
559 | int i, off; | |
3d331ad7 | 560 | bool seen_free = false; |
723ad1d9 | 561 | int *p; |
fbf59bc9 | 562 | |
3d331ad7 | 563 | for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { |
fbf59bc9 | 564 | int head, tail; |
723ad1d9 AV |
565 | int this_size; |
566 | ||
567 | off = *p; | |
568 | if (off & 1) | |
569 | continue; | |
fbf59bc9 | 570 | |
723ad1d9 | 571 | this_size = (p[1] & ~1) - off; |
a16037c8 TH |
572 | |
573 | head = pcpu_fit_in_area(chunk, off, this_size, size, align, | |
574 | pop_only); | |
575 | if (head < 0) { | |
3d331ad7 AV |
576 | if (!seen_free) { |
577 | chunk->first_free = i; | |
578 | seen_free = true; | |
579 | } | |
723ad1d9 | 580 | max_contig = max(this_size, max_contig); |
fbf59bc9 TH |
581 | continue; |
582 | } | |
583 | ||
584 | /* | |
585 | * If head is small or the previous block is free, | |
586 | * merge'em. Note that 'small' is defined as smaller | |
587 | * than sizeof(int), which is very small but isn't too | |
588 | * uncommon for percpu allocations. | |
589 | */ | |
723ad1d9 | 590 | if (head && (head < sizeof(int) || !(p[-1] & 1))) { |
21ddfd38 | 591 | *p = off += head; |
723ad1d9 | 592 | if (p[-1] & 1) |
fbf59bc9 | 593 | chunk->free_size -= head; |
21ddfd38 JZ |
594 | else |
595 | max_contig = max(*p - p[-1], max_contig); | |
723ad1d9 | 596 | this_size -= head; |
fbf59bc9 TH |
597 | head = 0; |
598 | } | |
599 | ||
600 | /* if tail is small, just keep it around */ | |
723ad1d9 AV |
601 | tail = this_size - head - size; |
602 | if (tail < sizeof(int)) { | |
fbf59bc9 | 603 | tail = 0; |
723ad1d9 AV |
604 | size = this_size - head; |
605 | } | |
fbf59bc9 TH |
606 | |
607 | /* split if warranted */ | |
608 | if (head || tail) { | |
706c16f2 AV |
609 | int nr_extra = !!head + !!tail; |
610 | ||
611 | /* insert new subblocks */ | |
723ad1d9 | 612 | memmove(p + nr_extra + 1, p + 1, |
706c16f2 AV |
613 | sizeof(chunk->map[0]) * (chunk->map_used - i)); |
614 | chunk->map_used += nr_extra; | |
615 | ||
fbf59bc9 | 616 | if (head) { |
3d331ad7 AV |
617 | if (!seen_free) { |
618 | chunk->first_free = i; | |
619 | seen_free = true; | |
620 | } | |
723ad1d9 AV |
621 | *++p = off += head; |
622 | ++i; | |
706c16f2 AV |
623 | max_contig = max(head, max_contig); |
624 | } | |
625 | if (tail) { | |
723ad1d9 | 626 | p[1] = off + size; |
706c16f2 | 627 | max_contig = max(tail, max_contig); |
fbf59bc9 | 628 | } |
fbf59bc9 TH |
629 | } |
630 | ||
3d331ad7 AV |
631 | if (!seen_free) |
632 | chunk->first_free = i + 1; | |
633 | ||
fbf59bc9 | 634 | /* update hint and mark allocated */ |
723ad1d9 | 635 | if (i + 1 == chunk->map_used) |
fbf59bc9 TH |
636 | chunk->contig_hint = max_contig; /* fully scanned */ |
637 | else | |
638 | chunk->contig_hint = max(chunk->contig_hint, | |
639 | max_contig); | |
640 | ||
723ad1d9 AV |
641 | chunk->free_size -= size; |
642 | *p |= 1; | |
fbf59bc9 | 643 | |
b539b87f | 644 | *occ_pages_p = pcpu_count_occupied_pages(chunk, i); |
fbf59bc9 TH |
645 | pcpu_chunk_relocate(chunk, oslot); |
646 | return off; | |
647 | } | |
648 | ||
649 | chunk->contig_hint = max_contig; /* fully scanned */ | |
650 | pcpu_chunk_relocate(chunk, oslot); | |
651 | ||
9f7dcf22 TH |
652 | /* tell the upper layer that this chunk has no matching area */ |
653 | return -1; | |
fbf59bc9 TH |
654 | } |
655 | ||
656 | /** | |
657 | * pcpu_free_area - free area to a pcpu_chunk | |
658 | * @chunk: chunk of interest | |
659 | * @freeme: offset of area to free | |
b539b87f | 660 | * @occ_pages_p: out param for the number of pages the area occupies |
fbf59bc9 TH |
661 | * |
662 | * Free area starting from @freeme to @chunk. Note that this function | |
663 | * only modifies the allocation map. It doesn't depopulate or unmap | |
664 | * the area. | |
ccea34b5 TH |
665 | * |
666 | * CONTEXT: | |
667 | * pcpu_lock. | |
fbf59bc9 | 668 | */ |
b539b87f TH |
669 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, |
670 | int *occ_pages_p) | |
fbf59bc9 TH |
671 | { |
672 | int oslot = pcpu_chunk_slot(chunk); | |
723ad1d9 AV |
673 | int off = 0; |
674 | unsigned i, j; | |
675 | int to_free = 0; | |
676 | int *p; | |
677 | ||
678 | freeme |= 1; /* we are searching for <given offset, in use> pair */ | |
679 | ||
680 | i = 0; | |
681 | j = chunk->map_used; | |
682 | while (i != j) { | |
683 | unsigned k = (i + j) / 2; | |
684 | off = chunk->map[k]; | |
685 | if (off < freeme) | |
686 | i = k + 1; | |
687 | else if (off > freeme) | |
688 | j = k; | |
689 | else | |
690 | i = j = k; | |
691 | } | |
fbf59bc9 | 692 | BUG_ON(off != freeme); |
fbf59bc9 | 693 | |
3d331ad7 AV |
694 | if (i < chunk->first_free) |
695 | chunk->first_free = i; | |
696 | ||
723ad1d9 AV |
697 | p = chunk->map + i; |
698 | *p = off &= ~1; | |
699 | chunk->free_size += (p[1] & ~1) - off; | |
fbf59bc9 | 700 | |
b539b87f TH |
701 | *occ_pages_p = pcpu_count_occupied_pages(chunk, i); |
702 | ||
723ad1d9 AV |
703 | /* merge with next? */ |
704 | if (!(p[1] & 1)) | |
705 | to_free++; | |
fbf59bc9 | 706 | /* merge with previous? */ |
723ad1d9 AV |
707 | if (i > 0 && !(p[-1] & 1)) { |
708 | to_free++; | |
fbf59bc9 | 709 | i--; |
723ad1d9 | 710 | p--; |
fbf59bc9 | 711 | } |
723ad1d9 AV |
712 | if (to_free) { |
713 | chunk->map_used -= to_free; | |
714 | memmove(p + 1, p + 1 + to_free, | |
715 | (chunk->map_used - i) * sizeof(chunk->map[0])); | |
fbf59bc9 TH |
716 | } |
717 | ||
723ad1d9 | 718 | chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); |
fbf59bc9 TH |
719 | pcpu_chunk_relocate(chunk, oslot); |
720 | } | |
721 | ||
6081089f TH |
722 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
723 | { | |
724 | struct pcpu_chunk *chunk; | |
725 | ||
90459ce0 | 726 | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); |
6081089f TH |
727 | if (!chunk) |
728 | return NULL; | |
729 | ||
90459ce0 BL |
730 | chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * |
731 | sizeof(chunk->map[0])); | |
6081089f | 732 | if (!chunk->map) { |
1d5cfdb0 | 733 | pcpu_mem_free(chunk); |
6081089f TH |
734 | return NULL; |
735 | } | |
736 | ||
737 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | |
723ad1d9 AV |
738 | chunk->map[0] = 0; |
739 | chunk->map[1] = pcpu_unit_size | 1; | |
740 | chunk->map_used = 1; | |
6081089f TH |
741 | |
742 | INIT_LIST_HEAD(&chunk->list); | |
9c824b6a | 743 | INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn); |
6081089f TH |
744 | chunk->free_size = pcpu_unit_size; |
745 | chunk->contig_hint = pcpu_unit_size; | |
746 | ||
747 | return chunk; | |
748 | } | |
749 | ||
750 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | |
751 | { | |
752 | if (!chunk) | |
753 | return; | |
1d5cfdb0 TH |
754 | pcpu_mem_free(chunk->map); |
755 | pcpu_mem_free(chunk); | |
6081089f TH |
756 | } |
757 | ||
b539b87f TH |
758 | /** |
759 | * pcpu_chunk_populated - post-population bookkeeping | |
760 | * @chunk: pcpu_chunk which got populated | |
761 | * @page_start: the start page | |
762 | * @page_end: the end page | |
763 | * | |
764 | * Pages in [@page_start,@page_end) have been populated to @chunk. Update | |
765 | * the bookkeeping information accordingly. Must be called after each | |
766 | * successful population. | |
767 | */ | |
768 | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, | |
769 | int page_start, int page_end) | |
770 | { | |
771 | int nr = page_end - page_start; | |
772 | ||
773 | lockdep_assert_held(&pcpu_lock); | |
774 | ||
775 | bitmap_set(chunk->populated, page_start, nr); | |
776 | chunk->nr_populated += nr; | |
777 | pcpu_nr_empty_pop_pages += nr; | |
778 | } | |
779 | ||
780 | /** | |
781 | * pcpu_chunk_depopulated - post-depopulation bookkeeping | |
782 | * @chunk: pcpu_chunk which got depopulated | |
783 | * @page_start: the start page | |
784 | * @page_end: the end page | |
785 | * | |
786 | * Pages in [@page_start,@page_end) have been depopulated from @chunk. | |
787 | * Update the bookkeeping information accordingly. Must be called after | |
788 | * each successful depopulation. | |
789 | */ | |
790 | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, | |
791 | int page_start, int page_end) | |
792 | { | |
793 | int nr = page_end - page_start; | |
794 | ||
795 | lockdep_assert_held(&pcpu_lock); | |
796 | ||
797 | bitmap_clear(chunk->populated, page_start, nr); | |
798 | chunk->nr_populated -= nr; | |
799 | pcpu_nr_empty_pop_pages -= nr; | |
800 | } | |
801 | ||
9f645532 TH |
802 | /* |
803 | * Chunk management implementation. | |
804 | * | |
805 | * To allow different implementations, chunk alloc/free and | |
806 | * [de]population are implemented in a separate file which is pulled | |
807 | * into this file and compiled together. The following functions | |
808 | * should be implemented. | |
809 | * | |
810 | * pcpu_populate_chunk - populate the specified range of a chunk | |
811 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk | |
812 | * pcpu_create_chunk - create a new chunk | |
813 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop | |
814 | * pcpu_addr_to_page - translate address to physical address | |
815 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | |
fbf59bc9 | 816 | */ |
9f645532 TH |
817 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
818 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); | |
819 | static struct pcpu_chunk *pcpu_create_chunk(void); | |
820 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); | |
821 | static struct page *pcpu_addr_to_page(void *addr); | |
822 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | |
fbf59bc9 | 823 | |
b0c9778b TH |
824 | #ifdef CONFIG_NEED_PER_CPU_KM |
825 | #include "percpu-km.c" | |
826 | #else | |
9f645532 | 827 | #include "percpu-vm.c" |
b0c9778b | 828 | #endif |
fbf59bc9 | 829 | |
88999a89 TH |
830 | /** |
831 | * pcpu_chunk_addr_search - determine chunk containing specified address | |
832 | * @addr: address for which the chunk needs to be determined. | |
833 | * | |
834 | * RETURNS: | |
835 | * The address of the found chunk. | |
836 | */ | |
837 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |
838 | { | |
839 | /* is it in the first chunk? */ | |
840 | if (pcpu_addr_in_first_chunk(addr)) { | |
841 | /* is it in the reserved area? */ | |
842 | if (pcpu_addr_in_reserved_chunk(addr)) | |
843 | return pcpu_reserved_chunk; | |
844 | return pcpu_first_chunk; | |
845 | } | |
846 | ||
847 | /* | |
848 | * The address is relative to unit0 which might be unused and | |
849 | * thus unmapped. Offset the address to the unit space of the | |
850 | * current processor before looking it up in the vmalloc | |
851 | * space. Note that any possible cpu id can be used here, so | |
852 | * there's no need to worry about preemption or cpu hotplug. | |
853 | */ | |
854 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | |
9f645532 | 855 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
88999a89 TH |
856 | } |
857 | ||
fbf59bc9 | 858 | /** |
edcb4639 | 859 | * pcpu_alloc - the percpu allocator |
cae3aeb8 | 860 | * @size: size of area to allocate in bytes |
fbf59bc9 | 861 | * @align: alignment of area (max PAGE_SIZE) |
edcb4639 | 862 | * @reserved: allocate from the reserved chunk if available |
5835d96e | 863 | * @gfp: allocation flags |
fbf59bc9 | 864 | * |
5835d96e TH |
865 | * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't |
866 | * contain %GFP_KERNEL, the allocation is atomic. | |
fbf59bc9 TH |
867 | * |
868 | * RETURNS: | |
869 | * Percpu pointer to the allocated area on success, NULL on failure. | |
870 | */ | |
5835d96e TH |
871 | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, |
872 | gfp_t gfp) | |
fbf59bc9 | 873 | { |
f2badb0c | 874 | static int warn_limit = 10; |
fbf59bc9 | 875 | struct pcpu_chunk *chunk; |
f2badb0c | 876 | const char *err; |
6ae833c7 | 877 | bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; |
b539b87f | 878 | int occ_pages = 0; |
b38d08f3 | 879 | int slot, off, new_alloc, cpu, ret; |
403a91b1 | 880 | unsigned long flags; |
f528f0b8 | 881 | void __percpu *ptr; |
fbf59bc9 | 882 | |
723ad1d9 AV |
883 | /* |
884 | * We want the lowest bit of offset available for in-use/free | |
2f69fa82 | 885 | * indicator, so force >= 16bit alignment and make size even. |
723ad1d9 AV |
886 | */ |
887 | if (unlikely(align < 2)) | |
888 | align = 2; | |
889 | ||
fb009e3a | 890 | size = ALIGN(size, 2); |
2f69fa82 | 891 | |
8d408b4b | 892 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { |
756a025f JP |
893 | WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n", |
894 | size, align); | |
fbf59bc9 TH |
895 | return NULL; |
896 | } | |
897 | ||
403a91b1 | 898 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 899 | |
edcb4639 TH |
900 | /* serve reserved allocations from the reserved chunk if available */ |
901 | if (reserved && pcpu_reserved_chunk) { | |
902 | chunk = pcpu_reserved_chunk; | |
833af842 TH |
903 | |
904 | if (size > chunk->contig_hint) { | |
905 | err = "alloc from reserved chunk failed"; | |
ccea34b5 | 906 | goto fail_unlock; |
f2badb0c | 907 | } |
833af842 | 908 | |
9c824b6a | 909 | while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { |
833af842 | 910 | spin_unlock_irqrestore(&pcpu_lock, flags); |
5835d96e TH |
911 | if (is_atomic || |
912 | pcpu_extend_area_map(chunk, new_alloc) < 0) { | |
833af842 | 913 | err = "failed to extend area map of reserved chunk"; |
b38d08f3 | 914 | goto fail; |
833af842 TH |
915 | } |
916 | spin_lock_irqsave(&pcpu_lock, flags); | |
917 | } | |
918 | ||
b539b87f TH |
919 | off = pcpu_alloc_area(chunk, size, align, is_atomic, |
920 | &occ_pages); | |
edcb4639 TH |
921 | if (off >= 0) |
922 | goto area_found; | |
833af842 | 923 | |
f2badb0c | 924 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 925 | goto fail_unlock; |
edcb4639 TH |
926 | } |
927 | ||
ccea34b5 | 928 | restart: |
edcb4639 | 929 | /* search through normal chunks */ |
fbf59bc9 TH |
930 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { |
931 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
932 | if (size > chunk->contig_hint) | |
933 | continue; | |
ccea34b5 | 934 | |
9c824b6a | 935 | new_alloc = pcpu_need_to_extend(chunk, is_atomic); |
833af842 | 936 | if (new_alloc) { |
5835d96e TH |
937 | if (is_atomic) |
938 | continue; | |
833af842 TH |
939 | spin_unlock_irqrestore(&pcpu_lock, flags); |
940 | if (pcpu_extend_area_map(chunk, | |
941 | new_alloc) < 0) { | |
942 | err = "failed to extend area map"; | |
b38d08f3 | 943 | goto fail; |
833af842 TH |
944 | } |
945 | spin_lock_irqsave(&pcpu_lock, flags); | |
946 | /* | |
947 | * pcpu_lock has been dropped, need to | |
948 | * restart cpu_slot list walking. | |
949 | */ | |
950 | goto restart; | |
ccea34b5 TH |
951 | } |
952 | ||
b539b87f TH |
953 | off = pcpu_alloc_area(chunk, size, align, is_atomic, |
954 | &occ_pages); | |
fbf59bc9 TH |
955 | if (off >= 0) |
956 | goto area_found; | |
fbf59bc9 TH |
957 | } |
958 | } | |
959 | ||
403a91b1 | 960 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 961 | |
b38d08f3 TH |
962 | /* |
963 | * No space left. Create a new chunk. We don't want multiple | |
964 | * tasks to create chunks simultaneously. Serialize and create iff | |
965 | * there's still no empty chunk after grabbing the mutex. | |
966 | */ | |
5835d96e TH |
967 | if (is_atomic) |
968 | goto fail; | |
969 | ||
b38d08f3 TH |
970 | mutex_lock(&pcpu_alloc_mutex); |
971 | ||
972 | if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { | |
973 | chunk = pcpu_create_chunk(); | |
974 | if (!chunk) { | |
23cb8981 | 975 | mutex_unlock(&pcpu_alloc_mutex); |
b38d08f3 TH |
976 | err = "failed to allocate new chunk"; |
977 | goto fail; | |
978 | } | |
979 | ||
980 | spin_lock_irqsave(&pcpu_lock, flags); | |
981 | pcpu_chunk_relocate(chunk, -1); | |
982 | } else { | |
983 | spin_lock_irqsave(&pcpu_lock, flags); | |
f2badb0c | 984 | } |
ccea34b5 | 985 | |
b38d08f3 | 986 | mutex_unlock(&pcpu_alloc_mutex); |
ccea34b5 | 987 | goto restart; |
fbf59bc9 TH |
988 | |
989 | area_found: | |
403a91b1 | 990 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 991 | |
dca49645 | 992 | /* populate if not all pages are already there */ |
5835d96e | 993 | if (!is_atomic) { |
e04d3208 | 994 | int page_start, page_end, rs, re; |
dca49645 | 995 | |
e04d3208 | 996 | mutex_lock(&pcpu_alloc_mutex); |
dca49645 | 997 | |
e04d3208 TH |
998 | page_start = PFN_DOWN(off); |
999 | page_end = PFN_UP(off + size); | |
b38d08f3 | 1000 | |
e04d3208 TH |
1001 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { |
1002 | WARN_ON(chunk->immutable); | |
1003 | ||
1004 | ret = pcpu_populate_chunk(chunk, rs, re); | |
1005 | ||
1006 | spin_lock_irqsave(&pcpu_lock, flags); | |
1007 | if (ret) { | |
1008 | mutex_unlock(&pcpu_alloc_mutex); | |
b539b87f | 1009 | pcpu_free_area(chunk, off, &occ_pages); |
e04d3208 TH |
1010 | err = "failed to populate"; |
1011 | goto fail_unlock; | |
1012 | } | |
b539b87f | 1013 | pcpu_chunk_populated(chunk, rs, re); |
e04d3208 | 1014 | spin_unlock_irqrestore(&pcpu_lock, flags); |
dca49645 | 1015 | } |
fbf59bc9 | 1016 | |
e04d3208 TH |
1017 | mutex_unlock(&pcpu_alloc_mutex); |
1018 | } | |
ccea34b5 | 1019 | |
b539b87f TH |
1020 | if (chunk != pcpu_reserved_chunk) |
1021 | pcpu_nr_empty_pop_pages -= occ_pages; | |
1022 | ||
1a4d7607 TH |
1023 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) |
1024 | pcpu_schedule_balance_work(); | |
1025 | ||
dca49645 TH |
1026 | /* clear the areas and return address relative to base address */ |
1027 | for_each_possible_cpu(cpu) | |
1028 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | |
1029 | ||
f528f0b8 | 1030 | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); |
8a8c35fa | 1031 | kmemleak_alloc_percpu(ptr, size, gfp); |
f528f0b8 | 1032 | return ptr; |
ccea34b5 TH |
1033 | |
1034 | fail_unlock: | |
403a91b1 | 1035 | spin_unlock_irqrestore(&pcpu_lock, flags); |
b38d08f3 | 1036 | fail: |
5835d96e | 1037 | if (!is_atomic && warn_limit) { |
870d4b12 | 1038 | pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", |
598d8091 | 1039 | size, align, is_atomic, err); |
f2badb0c TH |
1040 | dump_stack(); |
1041 | if (!--warn_limit) | |
870d4b12 | 1042 | pr_info("limit reached, disable warning\n"); |
f2badb0c | 1043 | } |
1a4d7607 TH |
1044 | if (is_atomic) { |
1045 | /* see the flag handling in pcpu_blance_workfn() */ | |
1046 | pcpu_atomic_alloc_failed = true; | |
1047 | pcpu_schedule_balance_work(); | |
1048 | } | |
ccea34b5 | 1049 | return NULL; |
fbf59bc9 | 1050 | } |
edcb4639 TH |
1051 | |
1052 | /** | |
5835d96e | 1053 | * __alloc_percpu_gfp - allocate dynamic percpu area |
edcb4639 TH |
1054 | * @size: size of area to allocate in bytes |
1055 | * @align: alignment of area (max PAGE_SIZE) | |
5835d96e | 1056 | * @gfp: allocation flags |
edcb4639 | 1057 | * |
5835d96e TH |
1058 | * Allocate zero-filled percpu area of @size bytes aligned at @align. If |
1059 | * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can | |
1060 | * be called from any context but is a lot more likely to fail. | |
ccea34b5 | 1061 | * |
edcb4639 TH |
1062 | * RETURNS: |
1063 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1064 | */ | |
5835d96e TH |
1065 | void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) |
1066 | { | |
1067 | return pcpu_alloc(size, align, false, gfp); | |
1068 | } | |
1069 | EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); | |
1070 | ||
1071 | /** | |
1072 | * __alloc_percpu - allocate dynamic percpu area | |
1073 | * @size: size of area to allocate in bytes | |
1074 | * @align: alignment of area (max PAGE_SIZE) | |
1075 | * | |
1076 | * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). | |
1077 | */ | |
43cf38eb | 1078 | void __percpu *__alloc_percpu(size_t size, size_t align) |
edcb4639 | 1079 | { |
5835d96e | 1080 | return pcpu_alloc(size, align, false, GFP_KERNEL); |
edcb4639 | 1081 | } |
fbf59bc9 TH |
1082 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
1083 | ||
edcb4639 TH |
1084 | /** |
1085 | * __alloc_reserved_percpu - allocate reserved percpu area | |
1086 | * @size: size of area to allocate in bytes | |
1087 | * @align: alignment of area (max PAGE_SIZE) | |
1088 | * | |
9329ba97 TH |
1089 | * Allocate zero-filled percpu area of @size bytes aligned at @align |
1090 | * from reserved percpu area if arch has set it up; otherwise, | |
1091 | * allocation is served from the same dynamic area. Might sleep. | |
1092 | * Might trigger writeouts. | |
edcb4639 | 1093 | * |
ccea34b5 TH |
1094 | * CONTEXT: |
1095 | * Does GFP_KERNEL allocation. | |
1096 | * | |
edcb4639 TH |
1097 | * RETURNS: |
1098 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1099 | */ | |
43cf38eb | 1100 | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) |
edcb4639 | 1101 | { |
5835d96e | 1102 | return pcpu_alloc(size, align, true, GFP_KERNEL); |
edcb4639 TH |
1103 | } |
1104 | ||
a56dbddf | 1105 | /** |
1a4d7607 | 1106 | * pcpu_balance_workfn - manage the amount of free chunks and populated pages |
a56dbddf TH |
1107 | * @work: unused |
1108 | * | |
1109 | * Reclaim all fully free chunks except for the first one. | |
1110 | */ | |
fe6bd8c3 | 1111 | static void pcpu_balance_workfn(struct work_struct *work) |
fbf59bc9 | 1112 | { |
fe6bd8c3 TH |
1113 | LIST_HEAD(to_free); |
1114 | struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; | |
a56dbddf | 1115 | struct pcpu_chunk *chunk, *next; |
1a4d7607 | 1116 | int slot, nr_to_pop, ret; |
a56dbddf | 1117 | |
1a4d7607 TH |
1118 | /* |
1119 | * There's no reason to keep around multiple unused chunks and VM | |
1120 | * areas can be scarce. Destroy all free chunks except for one. | |
1121 | */ | |
ccea34b5 TH |
1122 | mutex_lock(&pcpu_alloc_mutex); |
1123 | spin_lock_irq(&pcpu_lock); | |
a56dbddf | 1124 | |
fe6bd8c3 | 1125 | list_for_each_entry_safe(chunk, next, free_head, list) { |
a56dbddf TH |
1126 | WARN_ON(chunk->immutable); |
1127 | ||
1128 | /* spare the first one */ | |
fe6bd8c3 | 1129 | if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) |
a56dbddf TH |
1130 | continue; |
1131 | ||
fe6bd8c3 | 1132 | list_move(&chunk->list, &to_free); |
a56dbddf TH |
1133 | } |
1134 | ||
ccea34b5 | 1135 | spin_unlock_irq(&pcpu_lock); |
a56dbddf | 1136 | |
fe6bd8c3 | 1137 | list_for_each_entry_safe(chunk, next, &to_free, list) { |
a93ace48 | 1138 | int rs, re; |
dca49645 | 1139 | |
a93ace48 TH |
1140 | pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { |
1141 | pcpu_depopulate_chunk(chunk, rs, re); | |
b539b87f TH |
1142 | spin_lock_irq(&pcpu_lock); |
1143 | pcpu_chunk_depopulated(chunk, rs, re); | |
1144 | spin_unlock_irq(&pcpu_lock); | |
a93ace48 | 1145 | } |
6081089f | 1146 | pcpu_destroy_chunk(chunk); |
a56dbddf | 1147 | } |
971f3918 | 1148 | |
1a4d7607 TH |
1149 | /* |
1150 | * Ensure there are certain number of free populated pages for | |
1151 | * atomic allocs. Fill up from the most packed so that atomic | |
1152 | * allocs don't increase fragmentation. If atomic allocation | |
1153 | * failed previously, always populate the maximum amount. This | |
1154 | * should prevent atomic allocs larger than PAGE_SIZE from keeping | |
1155 | * failing indefinitely; however, large atomic allocs are not | |
1156 | * something we support properly and can be highly unreliable and | |
1157 | * inefficient. | |
1158 | */ | |
1159 | retry_pop: | |
1160 | if (pcpu_atomic_alloc_failed) { | |
1161 | nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; | |
1162 | /* best effort anyway, don't worry about synchronization */ | |
1163 | pcpu_atomic_alloc_failed = false; | |
1164 | } else { | |
1165 | nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - | |
1166 | pcpu_nr_empty_pop_pages, | |
1167 | 0, PCPU_EMPTY_POP_PAGES_HIGH); | |
1168 | } | |
1169 | ||
1170 | for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { | |
1171 | int nr_unpop = 0, rs, re; | |
1172 | ||
1173 | if (!nr_to_pop) | |
1174 | break; | |
1175 | ||
1176 | spin_lock_irq(&pcpu_lock); | |
1177 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
1178 | nr_unpop = pcpu_unit_pages - chunk->nr_populated; | |
1179 | if (nr_unpop) | |
1180 | break; | |
1181 | } | |
1182 | spin_unlock_irq(&pcpu_lock); | |
1183 | ||
1184 | if (!nr_unpop) | |
1185 | continue; | |
1186 | ||
1187 | /* @chunk can't go away while pcpu_alloc_mutex is held */ | |
1188 | pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { | |
1189 | int nr = min(re - rs, nr_to_pop); | |
1190 | ||
1191 | ret = pcpu_populate_chunk(chunk, rs, rs + nr); | |
1192 | if (!ret) { | |
1193 | nr_to_pop -= nr; | |
1194 | spin_lock_irq(&pcpu_lock); | |
1195 | pcpu_chunk_populated(chunk, rs, rs + nr); | |
1196 | spin_unlock_irq(&pcpu_lock); | |
1197 | } else { | |
1198 | nr_to_pop = 0; | |
1199 | } | |
1200 | ||
1201 | if (!nr_to_pop) | |
1202 | break; | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | if (nr_to_pop) { | |
1207 | /* ran out of chunks to populate, create a new one and retry */ | |
1208 | chunk = pcpu_create_chunk(); | |
1209 | if (chunk) { | |
1210 | spin_lock_irq(&pcpu_lock); | |
1211 | pcpu_chunk_relocate(chunk, -1); | |
1212 | spin_unlock_irq(&pcpu_lock); | |
1213 | goto retry_pop; | |
1214 | } | |
1215 | } | |
1216 | ||
971f3918 | 1217 | mutex_unlock(&pcpu_alloc_mutex); |
fbf59bc9 TH |
1218 | } |
1219 | ||
1220 | /** | |
1221 | * free_percpu - free percpu area | |
1222 | * @ptr: pointer to area to free | |
1223 | * | |
ccea34b5 TH |
1224 | * Free percpu area @ptr. |
1225 | * | |
1226 | * CONTEXT: | |
1227 | * Can be called from atomic context. | |
fbf59bc9 | 1228 | */ |
43cf38eb | 1229 | void free_percpu(void __percpu *ptr) |
fbf59bc9 | 1230 | { |
129182e5 | 1231 | void *addr; |
fbf59bc9 | 1232 | struct pcpu_chunk *chunk; |
ccea34b5 | 1233 | unsigned long flags; |
b539b87f | 1234 | int off, occ_pages; |
fbf59bc9 TH |
1235 | |
1236 | if (!ptr) | |
1237 | return; | |
1238 | ||
f528f0b8 CM |
1239 | kmemleak_free_percpu(ptr); |
1240 | ||
129182e5 AM |
1241 | addr = __pcpu_ptr_to_addr(ptr); |
1242 | ||
ccea34b5 | 1243 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 TH |
1244 | |
1245 | chunk = pcpu_chunk_addr_search(addr); | |
bba174f5 | 1246 | off = addr - chunk->base_addr; |
fbf59bc9 | 1247 | |
b539b87f TH |
1248 | pcpu_free_area(chunk, off, &occ_pages); |
1249 | ||
1250 | if (chunk != pcpu_reserved_chunk) | |
1251 | pcpu_nr_empty_pop_pages += occ_pages; | |
fbf59bc9 | 1252 | |
a56dbddf | 1253 | /* if there are more than one fully free chunks, wake up grim reaper */ |
fbf59bc9 TH |
1254 | if (chunk->free_size == pcpu_unit_size) { |
1255 | struct pcpu_chunk *pos; | |
1256 | ||
a56dbddf | 1257 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) |
fbf59bc9 | 1258 | if (pos != chunk) { |
1a4d7607 | 1259 | pcpu_schedule_balance_work(); |
fbf59bc9 TH |
1260 | break; |
1261 | } | |
1262 | } | |
1263 | ||
ccea34b5 | 1264 | spin_unlock_irqrestore(&pcpu_lock, flags); |
fbf59bc9 TH |
1265 | } |
1266 | EXPORT_SYMBOL_GPL(free_percpu); | |
1267 | ||
10fad5e4 TH |
1268 | /** |
1269 | * is_kernel_percpu_address - test whether address is from static percpu area | |
1270 | * @addr: address to test | |
1271 | * | |
1272 | * Test whether @addr belongs to in-kernel static percpu area. Module | |
1273 | * static percpu areas are not considered. For those, use | |
1274 | * is_module_percpu_address(). | |
1275 | * | |
1276 | * RETURNS: | |
1277 | * %true if @addr is from in-kernel static percpu area, %false otherwise. | |
1278 | */ | |
1279 | bool is_kernel_percpu_address(unsigned long addr) | |
1280 | { | |
bbddff05 | 1281 | #ifdef CONFIG_SMP |
10fad5e4 TH |
1282 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
1283 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | |
1284 | unsigned int cpu; | |
1285 | ||
1286 | for_each_possible_cpu(cpu) { | |
1287 | void *start = per_cpu_ptr(base, cpu); | |
1288 | ||
1289 | if ((void *)addr >= start && (void *)addr < start + static_size) | |
1290 | return true; | |
1291 | } | |
bbddff05 TH |
1292 | #endif |
1293 | /* on UP, can't distinguish from other static vars, always false */ | |
10fad5e4 TH |
1294 | return false; |
1295 | } | |
1296 | ||
3b034b0d VG |
1297 | /** |
1298 | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | |
1299 | * @addr: the address to be converted to physical address | |
1300 | * | |
1301 | * Given @addr which is dereferenceable address obtained via one of | |
1302 | * percpu access macros, this function translates it into its physical | |
1303 | * address. The caller is responsible for ensuring @addr stays valid | |
1304 | * until this function finishes. | |
1305 | * | |
67589c71 DY |
1306 | * percpu allocator has special setup for the first chunk, which currently |
1307 | * supports either embedding in linear address space or vmalloc mapping, | |
1308 | * and, from the second one, the backing allocator (currently either vm or | |
1309 | * km) provides translation. | |
1310 | * | |
bffc4375 | 1311 | * The addr can be translated simply without checking if it falls into the |
67589c71 DY |
1312 | * first chunk. But the current code reflects better how percpu allocator |
1313 | * actually works, and the verification can discover both bugs in percpu | |
1314 | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | |
1315 | * code. | |
1316 | * | |
3b034b0d VG |
1317 | * RETURNS: |
1318 | * The physical address for @addr. | |
1319 | */ | |
1320 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | |
1321 | { | |
9983b6f0 TH |
1322 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
1323 | bool in_first_chunk = false; | |
a855b84c | 1324 | unsigned long first_low, first_high; |
9983b6f0 TH |
1325 | unsigned int cpu; |
1326 | ||
1327 | /* | |
a855b84c | 1328 | * The following test on unit_low/high isn't strictly |
9983b6f0 TH |
1329 | * necessary but will speed up lookups of addresses which |
1330 | * aren't in the first chunk. | |
1331 | */ | |
a855b84c TH |
1332 | first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); |
1333 | first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, | |
1334 | pcpu_unit_pages); | |
1335 | if ((unsigned long)addr >= first_low && | |
1336 | (unsigned long)addr < first_high) { | |
9983b6f0 TH |
1337 | for_each_possible_cpu(cpu) { |
1338 | void *start = per_cpu_ptr(base, cpu); | |
1339 | ||
1340 | if (addr >= start && addr < start + pcpu_unit_size) { | |
1341 | in_first_chunk = true; | |
1342 | break; | |
1343 | } | |
1344 | } | |
1345 | } | |
1346 | ||
1347 | if (in_first_chunk) { | |
eac522ef | 1348 | if (!is_vmalloc_addr(addr)) |
020ec653 TH |
1349 | return __pa(addr); |
1350 | else | |
9f57bd4d ES |
1351 | return page_to_phys(vmalloc_to_page(addr)) + |
1352 | offset_in_page(addr); | |
020ec653 | 1353 | } else |
9f57bd4d ES |
1354 | return page_to_phys(pcpu_addr_to_page(addr)) + |
1355 | offset_in_page(addr); | |
3b034b0d VG |
1356 | } |
1357 | ||
fbf59bc9 | 1358 | /** |
fd1e8a1f TH |
1359 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
1360 | * @nr_groups: the number of groups | |
1361 | * @nr_units: the number of units | |
1362 | * | |
1363 | * Allocate ai which is large enough for @nr_groups groups containing | |
1364 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | |
1365 | * cpu_map array which is long enough for @nr_units and filled with | |
1366 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | |
1367 | * pointer of other groups. | |
1368 | * | |
1369 | * RETURNS: | |
1370 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | |
1371 | * failure. | |
1372 | */ | |
1373 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | |
1374 | int nr_units) | |
1375 | { | |
1376 | struct pcpu_alloc_info *ai; | |
1377 | size_t base_size, ai_size; | |
1378 | void *ptr; | |
1379 | int unit; | |
1380 | ||
1381 | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | |
1382 | __alignof__(ai->groups[0].cpu_map[0])); | |
1383 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | |
1384 | ||
999c17e3 | 1385 | ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); |
fd1e8a1f TH |
1386 | if (!ptr) |
1387 | return NULL; | |
1388 | ai = ptr; | |
1389 | ptr += base_size; | |
1390 | ||
1391 | ai->groups[0].cpu_map = ptr; | |
1392 | ||
1393 | for (unit = 0; unit < nr_units; unit++) | |
1394 | ai->groups[0].cpu_map[unit] = NR_CPUS; | |
1395 | ||
1396 | ai->nr_groups = nr_groups; | |
1397 | ai->__ai_size = PFN_ALIGN(ai_size); | |
1398 | ||
1399 | return ai; | |
1400 | } | |
1401 | ||
1402 | /** | |
1403 | * pcpu_free_alloc_info - free percpu allocation info | |
1404 | * @ai: pcpu_alloc_info to free | |
1405 | * | |
1406 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | |
1407 | */ | |
1408 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |
1409 | { | |
999c17e3 | 1410 | memblock_free_early(__pa(ai), ai->__ai_size); |
fd1e8a1f TH |
1411 | } |
1412 | ||
fd1e8a1f TH |
1413 | /** |
1414 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | |
1415 | * @lvl: loglevel | |
1416 | * @ai: allocation info to dump | |
1417 | * | |
1418 | * Print out information about @ai using loglevel @lvl. | |
1419 | */ | |
1420 | static void pcpu_dump_alloc_info(const char *lvl, | |
1421 | const struct pcpu_alloc_info *ai) | |
033e48fb | 1422 | { |
fd1e8a1f | 1423 | int group_width = 1, cpu_width = 1, width; |
033e48fb | 1424 | char empty_str[] = "--------"; |
fd1e8a1f TH |
1425 | int alloc = 0, alloc_end = 0; |
1426 | int group, v; | |
1427 | int upa, apl; /* units per alloc, allocs per line */ | |
1428 | ||
1429 | v = ai->nr_groups; | |
1430 | while (v /= 10) | |
1431 | group_width++; | |
033e48fb | 1432 | |
fd1e8a1f | 1433 | v = num_possible_cpus(); |
033e48fb | 1434 | while (v /= 10) |
fd1e8a1f TH |
1435 | cpu_width++; |
1436 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | |
033e48fb | 1437 | |
fd1e8a1f TH |
1438 | upa = ai->alloc_size / ai->unit_size; |
1439 | width = upa * (cpu_width + 1) + group_width + 3; | |
1440 | apl = rounddown_pow_of_two(max(60 / width, 1)); | |
033e48fb | 1441 | |
fd1e8a1f TH |
1442 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", |
1443 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | |
1444 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | |
033e48fb | 1445 | |
fd1e8a1f TH |
1446 | for (group = 0; group < ai->nr_groups; group++) { |
1447 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
1448 | int unit = 0, unit_end = 0; | |
1449 | ||
1450 | BUG_ON(gi->nr_units % upa); | |
1451 | for (alloc_end += gi->nr_units / upa; | |
1452 | alloc < alloc_end; alloc++) { | |
1453 | if (!(alloc % apl)) { | |
1170532b | 1454 | pr_cont("\n"); |
fd1e8a1f TH |
1455 | printk("%spcpu-alloc: ", lvl); |
1456 | } | |
1170532b | 1457 | pr_cont("[%0*d] ", group_width, group); |
fd1e8a1f TH |
1458 | |
1459 | for (unit_end += upa; unit < unit_end; unit++) | |
1460 | if (gi->cpu_map[unit] != NR_CPUS) | |
1170532b JP |
1461 | pr_cont("%0*d ", |
1462 | cpu_width, gi->cpu_map[unit]); | |
fd1e8a1f | 1463 | else |
1170532b | 1464 | pr_cont("%s ", empty_str); |
033e48fb | 1465 | } |
033e48fb | 1466 | } |
1170532b | 1467 | pr_cont("\n"); |
033e48fb | 1468 | } |
033e48fb | 1469 | |
fbf59bc9 | 1470 | /** |
8d408b4b | 1471 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
fd1e8a1f | 1472 | * @ai: pcpu_alloc_info describing how to percpu area is shaped |
38a6be52 | 1473 | * @base_addr: mapped address |
8d408b4b TH |
1474 | * |
1475 | * Initialize the first percpu chunk which contains the kernel static | |
1476 | * perpcu area. This function is to be called from arch percpu area | |
38a6be52 | 1477 | * setup path. |
8d408b4b | 1478 | * |
fd1e8a1f TH |
1479 | * @ai contains all information necessary to initialize the first |
1480 | * chunk and prime the dynamic percpu allocator. | |
1481 | * | |
1482 | * @ai->static_size is the size of static percpu area. | |
1483 | * | |
1484 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | |
edcb4639 TH |
1485 | * reserve after the static area in the first chunk. This reserves |
1486 | * the first chunk such that it's available only through reserved | |
1487 | * percpu allocation. This is primarily used to serve module percpu | |
1488 | * static areas on architectures where the addressing model has | |
1489 | * limited offset range for symbol relocations to guarantee module | |
1490 | * percpu symbols fall inside the relocatable range. | |
1491 | * | |
fd1e8a1f TH |
1492 | * @ai->dyn_size determines the number of bytes available for dynamic |
1493 | * allocation in the first chunk. The area between @ai->static_size + | |
1494 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | |
6074d5b0 | 1495 | * |
fd1e8a1f TH |
1496 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
1497 | * and equal to or larger than @ai->static_size + @ai->reserved_size + | |
1498 | * @ai->dyn_size. | |
8d408b4b | 1499 | * |
fd1e8a1f TH |
1500 | * @ai->atom_size is the allocation atom size and used as alignment |
1501 | * for vm areas. | |
8d408b4b | 1502 | * |
fd1e8a1f TH |
1503 | * @ai->alloc_size is the allocation size and always multiple of |
1504 | * @ai->atom_size. This is larger than @ai->atom_size if | |
1505 | * @ai->unit_size is larger than @ai->atom_size. | |
1506 | * | |
1507 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | |
1508 | * percpu areas. Units which should be colocated are put into the | |
1509 | * same group. Dynamic VM areas will be allocated according to these | |
1510 | * groupings. If @ai->nr_groups is zero, a single group containing | |
1511 | * all units is assumed. | |
8d408b4b | 1512 | * |
38a6be52 TH |
1513 | * The caller should have mapped the first chunk at @base_addr and |
1514 | * copied static data to each unit. | |
fbf59bc9 | 1515 | * |
edcb4639 TH |
1516 | * If the first chunk ends up with both reserved and dynamic areas, it |
1517 | * is served by two chunks - one to serve the core static and reserved | |
1518 | * areas and the other for the dynamic area. They share the same vm | |
1519 | * and page map but uses different area allocation map to stay away | |
1520 | * from each other. The latter chunk is circulated in the chunk slots | |
1521 | * and available for dynamic allocation like any other chunks. | |
1522 | * | |
fbf59bc9 | 1523 | * RETURNS: |
fb435d52 | 1524 | * 0 on success, -errno on failure. |
fbf59bc9 | 1525 | */ |
fb435d52 TH |
1526 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
1527 | void *base_addr) | |
fbf59bc9 | 1528 | { |
099a19d9 TH |
1529 | static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; |
1530 | static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; | |
fd1e8a1f TH |
1531 | size_t dyn_size = ai->dyn_size; |
1532 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; | |
edcb4639 | 1533 | struct pcpu_chunk *schunk, *dchunk = NULL; |
6563297c TH |
1534 | unsigned long *group_offsets; |
1535 | size_t *group_sizes; | |
fb435d52 | 1536 | unsigned long *unit_off; |
fbf59bc9 | 1537 | unsigned int cpu; |
fd1e8a1f TH |
1538 | int *unit_map; |
1539 | int group, unit, i; | |
fbf59bc9 | 1540 | |
635b75fc TH |
1541 | #define PCPU_SETUP_BUG_ON(cond) do { \ |
1542 | if (unlikely(cond)) { \ | |
870d4b12 JP |
1543 | pr_emerg("failed to initialize, %s\n", #cond); \ |
1544 | pr_emerg("cpu_possible_mask=%*pb\n", \ | |
807de073 | 1545 | cpumask_pr_args(cpu_possible_mask)); \ |
635b75fc TH |
1546 | pcpu_dump_alloc_info(KERN_EMERG, ai); \ |
1547 | BUG(); \ | |
1548 | } \ | |
1549 | } while (0) | |
1550 | ||
2f39e637 | 1551 | /* sanity checks */ |
635b75fc | 1552 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
bbddff05 | 1553 | #ifdef CONFIG_SMP |
635b75fc | 1554 | PCPU_SETUP_BUG_ON(!ai->static_size); |
f09f1243 | 1555 | PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); |
bbddff05 | 1556 | #endif |
635b75fc | 1557 | PCPU_SETUP_BUG_ON(!base_addr); |
f09f1243 | 1558 | PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); |
635b75fc | 1559 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
f09f1243 | 1560 | PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); |
635b75fc | 1561 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
099a19d9 | 1562 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); |
9f645532 | 1563 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
8d408b4b | 1564 | |
6563297c | 1565 | /* process group information and build config tables accordingly */ |
999c17e3 SS |
1566 | group_offsets = memblock_virt_alloc(ai->nr_groups * |
1567 | sizeof(group_offsets[0]), 0); | |
1568 | group_sizes = memblock_virt_alloc(ai->nr_groups * | |
1569 | sizeof(group_sizes[0]), 0); | |
1570 | unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); | |
1571 | unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); | |
2f39e637 | 1572 | |
fd1e8a1f | 1573 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
ffe0d5a5 | 1574 | unit_map[cpu] = UINT_MAX; |
a855b84c TH |
1575 | |
1576 | pcpu_low_unit_cpu = NR_CPUS; | |
1577 | pcpu_high_unit_cpu = NR_CPUS; | |
2f39e637 | 1578 | |
fd1e8a1f TH |
1579 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { |
1580 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
2f39e637 | 1581 | |
6563297c TH |
1582 | group_offsets[group] = gi->base_offset; |
1583 | group_sizes[group] = gi->nr_units * ai->unit_size; | |
1584 | ||
fd1e8a1f TH |
1585 | for (i = 0; i < gi->nr_units; i++) { |
1586 | cpu = gi->cpu_map[i]; | |
1587 | if (cpu == NR_CPUS) | |
1588 | continue; | |
8d408b4b | 1589 | |
9f295664 | 1590 | PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); |
635b75fc TH |
1591 | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); |
1592 | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | |
fbf59bc9 | 1593 | |
fd1e8a1f | 1594 | unit_map[cpu] = unit + i; |
fb435d52 TH |
1595 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
1596 | ||
a855b84c TH |
1597 | /* determine low/high unit_cpu */ |
1598 | if (pcpu_low_unit_cpu == NR_CPUS || | |
1599 | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | |
1600 | pcpu_low_unit_cpu = cpu; | |
1601 | if (pcpu_high_unit_cpu == NR_CPUS || | |
1602 | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | |
1603 | pcpu_high_unit_cpu = cpu; | |
fd1e8a1f | 1604 | } |
2f39e637 | 1605 | } |
fd1e8a1f TH |
1606 | pcpu_nr_units = unit; |
1607 | ||
1608 | for_each_possible_cpu(cpu) | |
635b75fc TH |
1609 | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); |
1610 | ||
1611 | /* we're done parsing the input, undefine BUG macro and dump config */ | |
1612 | #undef PCPU_SETUP_BUG_ON | |
bcbea798 | 1613 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
fd1e8a1f | 1614 | |
6563297c TH |
1615 | pcpu_nr_groups = ai->nr_groups; |
1616 | pcpu_group_offsets = group_offsets; | |
1617 | pcpu_group_sizes = group_sizes; | |
fd1e8a1f | 1618 | pcpu_unit_map = unit_map; |
fb435d52 | 1619 | pcpu_unit_offsets = unit_off; |
2f39e637 TH |
1620 | |
1621 | /* determine basic parameters */ | |
fd1e8a1f | 1622 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; |
d9b55eeb | 1623 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
6563297c | 1624 | pcpu_atom_size = ai->atom_size; |
ce3141a2 TH |
1625 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + |
1626 | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | |
cafe8816 | 1627 | |
d9b55eeb TH |
1628 | /* |
1629 | * Allocate chunk slots. The additional last slot is for | |
1630 | * empty chunks. | |
1631 | */ | |
1632 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | |
999c17e3 SS |
1633 | pcpu_slot = memblock_virt_alloc( |
1634 | pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); | |
fbf59bc9 TH |
1635 | for (i = 0; i < pcpu_nr_slots; i++) |
1636 | INIT_LIST_HEAD(&pcpu_slot[i]); | |
1637 | ||
edcb4639 TH |
1638 | /* |
1639 | * Initialize static chunk. If reserved_size is zero, the | |
1640 | * static chunk covers static area + dynamic allocation area | |
1641 | * in the first chunk. If reserved_size is not zero, it | |
1642 | * covers static area + reserved area (mostly used for module | |
1643 | * static percpu allocation). | |
1644 | */ | |
999c17e3 | 1645 | schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); |
2441d15c | 1646 | INIT_LIST_HEAD(&schunk->list); |
9c824b6a | 1647 | INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn); |
bba174f5 | 1648 | schunk->base_addr = base_addr; |
61ace7fa TH |
1649 | schunk->map = smap; |
1650 | schunk->map_alloc = ARRAY_SIZE(smap); | |
38a6be52 | 1651 | schunk->immutable = true; |
ce3141a2 | 1652 | bitmap_fill(schunk->populated, pcpu_unit_pages); |
b539b87f | 1653 | schunk->nr_populated = pcpu_unit_pages; |
edcb4639 | 1654 | |
fd1e8a1f TH |
1655 | if (ai->reserved_size) { |
1656 | schunk->free_size = ai->reserved_size; | |
ae9e6bc9 | 1657 | pcpu_reserved_chunk = schunk; |
fd1e8a1f | 1658 | pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; |
edcb4639 TH |
1659 | } else { |
1660 | schunk->free_size = dyn_size; | |
1661 | dyn_size = 0; /* dynamic area covered */ | |
1662 | } | |
2441d15c | 1663 | schunk->contig_hint = schunk->free_size; |
fbf59bc9 | 1664 | |
723ad1d9 AV |
1665 | schunk->map[0] = 1; |
1666 | schunk->map[1] = ai->static_size; | |
1667 | schunk->map_used = 1; | |
61ace7fa | 1668 | if (schunk->free_size) |
292c24a0 BH |
1669 | schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size; |
1670 | schunk->map[schunk->map_used] |= 1; | |
61ace7fa | 1671 | |
edcb4639 TH |
1672 | /* init dynamic chunk if necessary */ |
1673 | if (dyn_size) { | |
999c17e3 | 1674 | dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); |
edcb4639 | 1675 | INIT_LIST_HEAD(&dchunk->list); |
9c824b6a | 1676 | INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn); |
bba174f5 | 1677 | dchunk->base_addr = base_addr; |
edcb4639 TH |
1678 | dchunk->map = dmap; |
1679 | dchunk->map_alloc = ARRAY_SIZE(dmap); | |
38a6be52 | 1680 | dchunk->immutable = true; |
ce3141a2 | 1681 | bitmap_fill(dchunk->populated, pcpu_unit_pages); |
b539b87f | 1682 | dchunk->nr_populated = pcpu_unit_pages; |
edcb4639 TH |
1683 | |
1684 | dchunk->contig_hint = dchunk->free_size = dyn_size; | |
723ad1d9 AV |
1685 | dchunk->map[0] = 1; |
1686 | dchunk->map[1] = pcpu_reserved_chunk_limit; | |
1687 | dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; | |
1688 | dchunk->map_used = 2; | |
edcb4639 TH |
1689 | } |
1690 | ||
2441d15c | 1691 | /* link the first chunk in */ |
ae9e6bc9 | 1692 | pcpu_first_chunk = dchunk ?: schunk; |
b539b87f TH |
1693 | pcpu_nr_empty_pop_pages += |
1694 | pcpu_count_occupied_pages(pcpu_first_chunk, 1); | |
ae9e6bc9 | 1695 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
fbf59bc9 TH |
1696 | |
1697 | /* we're done */ | |
bba174f5 | 1698 | pcpu_base_addr = base_addr; |
fb435d52 | 1699 | return 0; |
fbf59bc9 | 1700 | } |
66c3a757 | 1701 | |
bbddff05 TH |
1702 | #ifdef CONFIG_SMP |
1703 | ||
17f3609c | 1704 | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { |
f58dc01b TH |
1705 | [PCPU_FC_AUTO] = "auto", |
1706 | [PCPU_FC_EMBED] = "embed", | |
1707 | [PCPU_FC_PAGE] = "page", | |
f58dc01b | 1708 | }; |
66c3a757 | 1709 | |
f58dc01b | 1710 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
66c3a757 | 1711 | |
f58dc01b TH |
1712 | static int __init percpu_alloc_setup(char *str) |
1713 | { | |
5479c78a CG |
1714 | if (!str) |
1715 | return -EINVAL; | |
1716 | ||
f58dc01b TH |
1717 | if (0) |
1718 | /* nada */; | |
1719 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | |
1720 | else if (!strcmp(str, "embed")) | |
1721 | pcpu_chosen_fc = PCPU_FC_EMBED; | |
1722 | #endif | |
1723 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
1724 | else if (!strcmp(str, "page")) | |
1725 | pcpu_chosen_fc = PCPU_FC_PAGE; | |
f58dc01b TH |
1726 | #endif |
1727 | else | |
870d4b12 | 1728 | pr_warn("unknown allocator %s specified\n", str); |
66c3a757 | 1729 | |
f58dc01b | 1730 | return 0; |
66c3a757 | 1731 | } |
f58dc01b | 1732 | early_param("percpu_alloc", percpu_alloc_setup); |
66c3a757 | 1733 | |
3c9a024f TH |
1734 | /* |
1735 | * pcpu_embed_first_chunk() is used by the generic percpu setup. | |
1736 | * Build it if needed by the arch config or the generic setup is going | |
1737 | * to be used. | |
1738 | */ | |
08fc4580 TH |
1739 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ |
1740 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | |
3c9a024f TH |
1741 | #define BUILD_EMBED_FIRST_CHUNK |
1742 | #endif | |
1743 | ||
1744 | /* build pcpu_page_first_chunk() iff needed by the arch config */ | |
1745 | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | |
1746 | #define BUILD_PAGE_FIRST_CHUNK | |
1747 | #endif | |
1748 | ||
1749 | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | |
1750 | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | |
1751 | /** | |
1752 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | |
1753 | * @reserved_size: the size of reserved percpu area in bytes | |
1754 | * @dyn_size: minimum free size for dynamic allocation in bytes | |
1755 | * @atom_size: allocation atom size | |
1756 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
1757 | * | |
1758 | * This function determines grouping of units, their mappings to cpus | |
1759 | * and other parameters considering needed percpu size, allocation | |
1760 | * atom size and distances between CPUs. | |
1761 | * | |
bffc4375 | 1762 | * Groups are always multiples of atom size and CPUs which are of |
3c9a024f TH |
1763 | * LOCAL_DISTANCE both ways are grouped together and share space for |
1764 | * units in the same group. The returned configuration is guaranteed | |
1765 | * to have CPUs on different nodes on different groups and >=75% usage | |
1766 | * of allocated virtual address space. | |
1767 | * | |
1768 | * RETURNS: | |
1769 | * On success, pointer to the new allocation_info is returned. On | |
1770 | * failure, ERR_PTR value is returned. | |
1771 | */ | |
1772 | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( | |
1773 | size_t reserved_size, size_t dyn_size, | |
1774 | size_t atom_size, | |
1775 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | |
1776 | { | |
1777 | static int group_map[NR_CPUS] __initdata; | |
1778 | static int group_cnt[NR_CPUS] __initdata; | |
1779 | const size_t static_size = __per_cpu_end - __per_cpu_start; | |
1780 | int nr_groups = 1, nr_units = 0; | |
1781 | size_t size_sum, min_unit_size, alloc_size; | |
1782 | int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ | |
1783 | int last_allocs, group, unit; | |
1784 | unsigned int cpu, tcpu; | |
1785 | struct pcpu_alloc_info *ai; | |
1786 | unsigned int *cpu_map; | |
1787 | ||
1788 | /* this function may be called multiple times */ | |
1789 | memset(group_map, 0, sizeof(group_map)); | |
1790 | memset(group_cnt, 0, sizeof(group_cnt)); | |
1791 | ||
1792 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | |
1793 | size_sum = PFN_ALIGN(static_size + reserved_size + | |
1794 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | |
1795 | dyn_size = size_sum - static_size - reserved_size; | |
1796 | ||
1797 | /* | |
1798 | * Determine min_unit_size, alloc_size and max_upa such that | |
1799 | * alloc_size is multiple of atom_size and is the smallest | |
25985edc | 1800 | * which can accommodate 4k aligned segments which are equal to |
3c9a024f TH |
1801 | * or larger than min_unit_size. |
1802 | */ | |
1803 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | |
1804 | ||
1805 | alloc_size = roundup(min_unit_size, atom_size); | |
1806 | upa = alloc_size / min_unit_size; | |
f09f1243 | 1807 | while (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
1808 | upa--; |
1809 | max_upa = upa; | |
1810 | ||
1811 | /* group cpus according to their proximity */ | |
1812 | for_each_possible_cpu(cpu) { | |
1813 | group = 0; | |
1814 | next_group: | |
1815 | for_each_possible_cpu(tcpu) { | |
1816 | if (cpu == tcpu) | |
1817 | break; | |
1818 | if (group_map[tcpu] == group && cpu_distance_fn && | |
1819 | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | |
1820 | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | |
1821 | group++; | |
1822 | nr_groups = max(nr_groups, group + 1); | |
1823 | goto next_group; | |
1824 | } | |
1825 | } | |
1826 | group_map[cpu] = group; | |
1827 | group_cnt[group]++; | |
1828 | } | |
1829 | ||
1830 | /* | |
1831 | * Expand unit size until address space usage goes over 75% | |
1832 | * and then as much as possible without using more address | |
1833 | * space. | |
1834 | */ | |
1835 | last_allocs = INT_MAX; | |
1836 | for (upa = max_upa; upa; upa--) { | |
1837 | int allocs = 0, wasted = 0; | |
1838 | ||
f09f1243 | 1839 | if (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
1840 | continue; |
1841 | ||
1842 | for (group = 0; group < nr_groups; group++) { | |
1843 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | |
1844 | allocs += this_allocs; | |
1845 | wasted += this_allocs * upa - group_cnt[group]; | |
1846 | } | |
1847 | ||
1848 | /* | |
1849 | * Don't accept if wastage is over 1/3. The | |
1850 | * greater-than comparison ensures upa==1 always | |
1851 | * passes the following check. | |
1852 | */ | |
1853 | if (wasted > num_possible_cpus() / 3) | |
1854 | continue; | |
1855 | ||
1856 | /* and then don't consume more memory */ | |
1857 | if (allocs > last_allocs) | |
1858 | break; | |
1859 | last_allocs = allocs; | |
1860 | best_upa = upa; | |
1861 | } | |
1862 | upa = best_upa; | |
1863 | ||
1864 | /* allocate and fill alloc_info */ | |
1865 | for (group = 0; group < nr_groups; group++) | |
1866 | nr_units += roundup(group_cnt[group], upa); | |
1867 | ||
1868 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | |
1869 | if (!ai) | |
1870 | return ERR_PTR(-ENOMEM); | |
1871 | cpu_map = ai->groups[0].cpu_map; | |
1872 | ||
1873 | for (group = 0; group < nr_groups; group++) { | |
1874 | ai->groups[group].cpu_map = cpu_map; | |
1875 | cpu_map += roundup(group_cnt[group], upa); | |
1876 | } | |
1877 | ||
1878 | ai->static_size = static_size; | |
1879 | ai->reserved_size = reserved_size; | |
1880 | ai->dyn_size = dyn_size; | |
1881 | ai->unit_size = alloc_size / upa; | |
1882 | ai->atom_size = atom_size; | |
1883 | ai->alloc_size = alloc_size; | |
1884 | ||
1885 | for (group = 0, unit = 0; group_cnt[group]; group++) { | |
1886 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1887 | ||
1888 | /* | |
1889 | * Initialize base_offset as if all groups are located | |
1890 | * back-to-back. The caller should update this to | |
1891 | * reflect actual allocation. | |
1892 | */ | |
1893 | gi->base_offset = unit * ai->unit_size; | |
1894 | ||
1895 | for_each_possible_cpu(cpu) | |
1896 | if (group_map[cpu] == group) | |
1897 | gi->cpu_map[gi->nr_units++] = cpu; | |
1898 | gi->nr_units = roundup(gi->nr_units, upa); | |
1899 | unit += gi->nr_units; | |
1900 | } | |
1901 | BUG_ON(unit != nr_units); | |
1902 | ||
1903 | return ai; | |
1904 | } | |
1905 | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | |
1906 | ||
1907 | #if defined(BUILD_EMBED_FIRST_CHUNK) | |
66c3a757 TH |
1908 | /** |
1909 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | |
66c3a757 | 1910 | * @reserved_size: the size of reserved percpu area in bytes |
4ba6ce25 | 1911 | * @dyn_size: minimum free size for dynamic allocation in bytes |
c8826dd5 TH |
1912 | * @atom_size: allocation atom size |
1913 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
1914 | * @alloc_fn: function to allocate percpu page | |
25985edc | 1915 | * @free_fn: function to free percpu page |
66c3a757 TH |
1916 | * |
1917 | * This is a helper to ease setting up embedded first percpu chunk and | |
1918 | * can be called where pcpu_setup_first_chunk() is expected. | |
1919 | * | |
1920 | * If this function is used to setup the first chunk, it is allocated | |
c8826dd5 TH |
1921 | * by calling @alloc_fn and used as-is without being mapped into |
1922 | * vmalloc area. Allocations are always whole multiples of @atom_size | |
1923 | * aligned to @atom_size. | |
1924 | * | |
1925 | * This enables the first chunk to piggy back on the linear physical | |
1926 | * mapping which often uses larger page size. Please note that this | |
1927 | * can result in very sparse cpu->unit mapping on NUMA machines thus | |
1928 | * requiring large vmalloc address space. Don't use this allocator if | |
1929 | * vmalloc space is not orders of magnitude larger than distances | |
1930 | * between node memory addresses (ie. 32bit NUMA machines). | |
66c3a757 | 1931 | * |
4ba6ce25 | 1932 | * @dyn_size specifies the minimum dynamic area size. |
66c3a757 TH |
1933 | * |
1934 | * If the needed size is smaller than the minimum or specified unit | |
c8826dd5 | 1935 | * size, the leftover is returned using @free_fn. |
66c3a757 TH |
1936 | * |
1937 | * RETURNS: | |
fb435d52 | 1938 | * 0 on success, -errno on failure. |
66c3a757 | 1939 | */ |
4ba6ce25 | 1940 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
c8826dd5 TH |
1941 | size_t atom_size, |
1942 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | |
1943 | pcpu_fc_alloc_fn_t alloc_fn, | |
1944 | pcpu_fc_free_fn_t free_fn) | |
66c3a757 | 1945 | { |
c8826dd5 TH |
1946 | void *base = (void *)ULONG_MAX; |
1947 | void **areas = NULL; | |
fd1e8a1f | 1948 | struct pcpu_alloc_info *ai; |
6ea529a2 | 1949 | size_t size_sum, areas_size, max_distance; |
c8826dd5 | 1950 | int group, i, rc; |
66c3a757 | 1951 | |
c8826dd5 TH |
1952 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, |
1953 | cpu_distance_fn); | |
fd1e8a1f TH |
1954 | if (IS_ERR(ai)) |
1955 | return PTR_ERR(ai); | |
66c3a757 | 1956 | |
fd1e8a1f | 1957 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
c8826dd5 | 1958 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); |
fa8a7094 | 1959 | |
999c17e3 | 1960 | areas = memblock_virt_alloc_nopanic(areas_size, 0); |
c8826dd5 | 1961 | if (!areas) { |
fb435d52 | 1962 | rc = -ENOMEM; |
c8826dd5 | 1963 | goto out_free; |
fa8a7094 | 1964 | } |
66c3a757 | 1965 | |
c8826dd5 TH |
1966 | /* allocate, copy and determine base address */ |
1967 | for (group = 0; group < ai->nr_groups; group++) { | |
1968 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1969 | unsigned int cpu = NR_CPUS; | |
1970 | void *ptr; | |
1971 | ||
1972 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | |
1973 | cpu = gi->cpu_map[i]; | |
1974 | BUG_ON(cpu == NR_CPUS); | |
1975 | ||
1976 | /* allocate space for the whole group */ | |
1977 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
1978 | if (!ptr) { | |
1979 | rc = -ENOMEM; | |
1980 | goto out_free_areas; | |
1981 | } | |
f528f0b8 CM |
1982 | /* kmemleak tracks the percpu allocations separately */ |
1983 | kmemleak_free(ptr); | |
c8826dd5 | 1984 | areas[group] = ptr; |
fd1e8a1f | 1985 | |
c8826dd5 | 1986 | base = min(ptr, base); |
42b64281 TH |
1987 | } |
1988 | ||
1989 | /* | |
1990 | * Copy data and free unused parts. This should happen after all | |
1991 | * allocations are complete; otherwise, we may end up with | |
1992 | * overlapping groups. | |
1993 | */ | |
1994 | for (group = 0; group < ai->nr_groups; group++) { | |
1995 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1996 | void *ptr = areas[group]; | |
c8826dd5 TH |
1997 | |
1998 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | |
1999 | if (gi->cpu_map[i] == NR_CPUS) { | |
2000 | /* unused unit, free whole */ | |
2001 | free_fn(ptr, ai->unit_size); | |
2002 | continue; | |
2003 | } | |
2004 | /* copy and return the unused part */ | |
2005 | memcpy(ptr, __per_cpu_load, ai->static_size); | |
2006 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | |
2007 | } | |
fa8a7094 | 2008 | } |
66c3a757 | 2009 | |
c8826dd5 | 2010 | /* base address is now known, determine group base offsets */ |
6ea529a2 TH |
2011 | max_distance = 0; |
2012 | for (group = 0; group < ai->nr_groups; group++) { | |
c8826dd5 | 2013 | ai->groups[group].base_offset = areas[group] - base; |
1a0c3298 TH |
2014 | max_distance = max_t(size_t, max_distance, |
2015 | ai->groups[group].base_offset); | |
6ea529a2 TH |
2016 | } |
2017 | max_distance += ai->unit_size; | |
2018 | ||
2019 | /* warn if maximum distance is further than 75% of vmalloc space */ | |
8a092171 | 2020 | if (max_distance > VMALLOC_TOTAL * 3 / 4) { |
870d4b12 | 2021 | pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n", |
598d8091 | 2022 | max_distance, VMALLOC_TOTAL); |
6ea529a2 TH |
2023 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK |
2024 | /* and fail if we have fallback */ | |
2025 | rc = -EINVAL; | |
2026 | goto out_free; | |
2027 | #endif | |
2028 | } | |
c8826dd5 | 2029 | |
870d4b12 | 2030 | pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", |
fd1e8a1f TH |
2031 | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, |
2032 | ai->dyn_size, ai->unit_size); | |
d4b95f80 | 2033 | |
fb435d52 | 2034 | rc = pcpu_setup_first_chunk(ai, base); |
c8826dd5 TH |
2035 | goto out_free; |
2036 | ||
2037 | out_free_areas: | |
2038 | for (group = 0; group < ai->nr_groups; group++) | |
f851c8d8 MH |
2039 | if (areas[group]) |
2040 | free_fn(areas[group], | |
2041 | ai->groups[group].nr_units * ai->unit_size); | |
c8826dd5 | 2042 | out_free: |
fd1e8a1f | 2043 | pcpu_free_alloc_info(ai); |
c8826dd5 | 2044 | if (areas) |
999c17e3 | 2045 | memblock_free_early(__pa(areas), areas_size); |
fb435d52 | 2046 | return rc; |
d4b95f80 | 2047 | } |
3c9a024f | 2048 | #endif /* BUILD_EMBED_FIRST_CHUNK */ |
d4b95f80 | 2049 | |
3c9a024f | 2050 | #ifdef BUILD_PAGE_FIRST_CHUNK |
d4b95f80 | 2051 | /** |
00ae4064 | 2052 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages |
d4b95f80 TH |
2053 | * @reserved_size: the size of reserved percpu area in bytes |
2054 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | |
25985edc | 2055 | * @free_fn: function to free percpu page, always called with PAGE_SIZE |
d4b95f80 TH |
2056 | * @populate_pte_fn: function to populate pte |
2057 | * | |
00ae4064 TH |
2058 | * This is a helper to ease setting up page-remapped first percpu |
2059 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | |
d4b95f80 TH |
2060 | * |
2061 | * This is the basic allocator. Static percpu area is allocated | |
2062 | * page-by-page into vmalloc area. | |
2063 | * | |
2064 | * RETURNS: | |
fb435d52 | 2065 | * 0 on success, -errno on failure. |
d4b95f80 | 2066 | */ |
fb435d52 TH |
2067 | int __init pcpu_page_first_chunk(size_t reserved_size, |
2068 | pcpu_fc_alloc_fn_t alloc_fn, | |
2069 | pcpu_fc_free_fn_t free_fn, | |
2070 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | |
d4b95f80 | 2071 | { |
8f05a6a6 | 2072 | static struct vm_struct vm; |
fd1e8a1f | 2073 | struct pcpu_alloc_info *ai; |
00ae4064 | 2074 | char psize_str[16]; |
ce3141a2 | 2075 | int unit_pages; |
d4b95f80 | 2076 | size_t pages_size; |
ce3141a2 | 2077 | struct page **pages; |
fb435d52 | 2078 | int unit, i, j, rc; |
d4b95f80 | 2079 | |
00ae4064 TH |
2080 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
2081 | ||
4ba6ce25 | 2082 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
fd1e8a1f TH |
2083 | if (IS_ERR(ai)) |
2084 | return PTR_ERR(ai); | |
2085 | BUG_ON(ai->nr_groups != 1); | |
2086 | BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); | |
2087 | ||
2088 | unit_pages = ai->unit_size >> PAGE_SHIFT; | |
d4b95f80 TH |
2089 | |
2090 | /* unaligned allocations can't be freed, round up to page size */ | |
fd1e8a1f TH |
2091 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * |
2092 | sizeof(pages[0])); | |
999c17e3 | 2093 | pages = memblock_virt_alloc(pages_size, 0); |
d4b95f80 | 2094 | |
8f05a6a6 | 2095 | /* allocate pages */ |
d4b95f80 | 2096 | j = 0; |
fd1e8a1f | 2097 | for (unit = 0; unit < num_possible_cpus(); unit++) |
ce3141a2 | 2098 | for (i = 0; i < unit_pages; i++) { |
fd1e8a1f | 2099 | unsigned int cpu = ai->groups[0].cpu_map[unit]; |
d4b95f80 TH |
2100 | void *ptr; |
2101 | ||
3cbc8565 | 2102 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); |
d4b95f80 | 2103 | if (!ptr) { |
870d4b12 | 2104 | pr_warn("failed to allocate %s page for cpu%u\n", |
598d8091 | 2105 | psize_str, cpu); |
d4b95f80 TH |
2106 | goto enomem; |
2107 | } | |
f528f0b8 CM |
2108 | /* kmemleak tracks the percpu allocations separately */ |
2109 | kmemleak_free(ptr); | |
ce3141a2 | 2110 | pages[j++] = virt_to_page(ptr); |
d4b95f80 TH |
2111 | } |
2112 | ||
8f05a6a6 TH |
2113 | /* allocate vm area, map the pages and copy static data */ |
2114 | vm.flags = VM_ALLOC; | |
fd1e8a1f | 2115 | vm.size = num_possible_cpus() * ai->unit_size; |
8f05a6a6 TH |
2116 | vm_area_register_early(&vm, PAGE_SIZE); |
2117 | ||
fd1e8a1f | 2118 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
1d9d3257 | 2119 | unsigned long unit_addr = |
fd1e8a1f | 2120 | (unsigned long)vm.addr + unit * ai->unit_size; |
8f05a6a6 | 2121 | |
ce3141a2 | 2122 | for (i = 0; i < unit_pages; i++) |
8f05a6a6 TH |
2123 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); |
2124 | ||
2125 | /* pte already populated, the following shouldn't fail */ | |
fb435d52 TH |
2126 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], |
2127 | unit_pages); | |
2128 | if (rc < 0) | |
2129 | panic("failed to map percpu area, err=%d\n", rc); | |
66c3a757 | 2130 | |
8f05a6a6 TH |
2131 | /* |
2132 | * FIXME: Archs with virtual cache should flush local | |
2133 | * cache for the linear mapping here - something | |
2134 | * equivalent to flush_cache_vmap() on the local cpu. | |
2135 | * flush_cache_vmap() can't be used as most supporting | |
2136 | * data structures are not set up yet. | |
2137 | */ | |
2138 | ||
2139 | /* copy static data */ | |
fd1e8a1f | 2140 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); |
66c3a757 TH |
2141 | } |
2142 | ||
2143 | /* we're ready, commit */ | |
870d4b12 | 2144 | pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", |
fd1e8a1f TH |
2145 | unit_pages, psize_str, vm.addr, ai->static_size, |
2146 | ai->reserved_size, ai->dyn_size); | |
d4b95f80 | 2147 | |
fb435d52 | 2148 | rc = pcpu_setup_first_chunk(ai, vm.addr); |
d4b95f80 TH |
2149 | goto out_free_ar; |
2150 | ||
2151 | enomem: | |
2152 | while (--j >= 0) | |
ce3141a2 | 2153 | free_fn(page_address(pages[j]), PAGE_SIZE); |
fb435d52 | 2154 | rc = -ENOMEM; |
d4b95f80 | 2155 | out_free_ar: |
999c17e3 | 2156 | memblock_free_early(__pa(pages), pages_size); |
fd1e8a1f | 2157 | pcpu_free_alloc_info(ai); |
fb435d52 | 2158 | return rc; |
d4b95f80 | 2159 | } |
3c9a024f | 2160 | #endif /* BUILD_PAGE_FIRST_CHUNK */ |
d4b95f80 | 2161 | |
bbddff05 | 2162 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA |
e74e3962 | 2163 | /* |
bbddff05 | 2164 | * Generic SMP percpu area setup. |
e74e3962 TH |
2165 | * |
2166 | * The embedding helper is used because its behavior closely resembles | |
2167 | * the original non-dynamic generic percpu area setup. This is | |
2168 | * important because many archs have addressing restrictions and might | |
2169 | * fail if the percpu area is located far away from the previous | |
2170 | * location. As an added bonus, in non-NUMA cases, embedding is | |
2171 | * generally a good idea TLB-wise because percpu area can piggy back | |
2172 | * on the physical linear memory mapping which uses large page | |
2173 | * mappings on applicable archs. | |
2174 | */ | |
e74e3962 TH |
2175 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
2176 | EXPORT_SYMBOL(__per_cpu_offset); | |
2177 | ||
c8826dd5 TH |
2178 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, |
2179 | size_t align) | |
2180 | { | |
999c17e3 SS |
2181 | return memblock_virt_alloc_from_nopanic( |
2182 | size, align, __pa(MAX_DMA_ADDRESS)); | |
c8826dd5 | 2183 | } |
66c3a757 | 2184 | |
c8826dd5 TH |
2185 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
2186 | { | |
999c17e3 | 2187 | memblock_free_early(__pa(ptr), size); |
c8826dd5 TH |
2188 | } |
2189 | ||
e74e3962 TH |
2190 | void __init setup_per_cpu_areas(void) |
2191 | { | |
e74e3962 TH |
2192 | unsigned long delta; |
2193 | unsigned int cpu; | |
fb435d52 | 2194 | int rc; |
e74e3962 TH |
2195 | |
2196 | /* | |
2197 | * Always reserve area for module percpu variables. That's | |
2198 | * what the legacy allocator did. | |
2199 | */ | |
fb435d52 | 2200 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
c8826dd5 TH |
2201 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, |
2202 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | |
fb435d52 | 2203 | if (rc < 0) |
bbddff05 | 2204 | panic("Failed to initialize percpu areas."); |
e74e3962 TH |
2205 | |
2206 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | |
2207 | for_each_possible_cpu(cpu) | |
fb435d52 | 2208 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
66c3a757 | 2209 | } |
bbddff05 TH |
2210 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
2211 | ||
2212 | #else /* CONFIG_SMP */ | |
2213 | ||
2214 | /* | |
2215 | * UP percpu area setup. | |
2216 | * | |
2217 | * UP always uses km-based percpu allocator with identity mapping. | |
2218 | * Static percpu variables are indistinguishable from the usual static | |
2219 | * variables and don't require any special preparation. | |
2220 | */ | |
2221 | void __init setup_per_cpu_areas(void) | |
2222 | { | |
2223 | const size_t unit_size = | |
2224 | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | |
2225 | PERCPU_DYNAMIC_RESERVE)); | |
2226 | struct pcpu_alloc_info *ai; | |
2227 | void *fc; | |
2228 | ||
2229 | ai = pcpu_alloc_alloc_info(1, 1); | |
999c17e3 SS |
2230 | fc = memblock_virt_alloc_from_nopanic(unit_size, |
2231 | PAGE_SIZE, | |
2232 | __pa(MAX_DMA_ADDRESS)); | |
bbddff05 TH |
2233 | if (!ai || !fc) |
2234 | panic("Failed to allocate memory for percpu areas."); | |
100d13c3 CM |
2235 | /* kmemleak tracks the percpu allocations separately */ |
2236 | kmemleak_free(fc); | |
bbddff05 TH |
2237 | |
2238 | ai->dyn_size = unit_size; | |
2239 | ai->unit_size = unit_size; | |
2240 | ai->atom_size = unit_size; | |
2241 | ai->alloc_size = unit_size; | |
2242 | ai->groups[0].nr_units = 1; | |
2243 | ai->groups[0].cpu_map[0] = 0; | |
2244 | ||
2245 | if (pcpu_setup_first_chunk(ai, fc) < 0) | |
2246 | panic("Failed to initialize percpu areas."); | |
2247 | } | |
2248 | ||
2249 | #endif /* CONFIG_SMP */ | |
099a19d9 TH |
2250 | |
2251 | /* | |
2252 | * First and reserved chunks are initialized with temporary allocation | |
2253 | * map in initdata so that they can be used before slab is online. | |
2254 | * This function is called after slab is brought up and replaces those | |
2255 | * with properly allocated maps. | |
2256 | */ | |
2257 | void __init percpu_init_late(void) | |
2258 | { | |
2259 | struct pcpu_chunk *target_chunks[] = | |
2260 | { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; | |
2261 | struct pcpu_chunk *chunk; | |
2262 | unsigned long flags; | |
2263 | int i; | |
2264 | ||
2265 | for (i = 0; (chunk = target_chunks[i]); i++) { | |
2266 | int *map; | |
2267 | const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); | |
2268 | ||
2269 | BUILD_BUG_ON(size > PAGE_SIZE); | |
2270 | ||
90459ce0 | 2271 | map = pcpu_mem_zalloc(size); |
099a19d9 TH |
2272 | BUG_ON(!map); |
2273 | ||
2274 | spin_lock_irqsave(&pcpu_lock, flags); | |
2275 | memcpy(map, chunk->map, size); | |
2276 | chunk->map = map; | |
2277 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
2278 | } | |
2279 | } | |
1a4d7607 TH |
2280 | |
2281 | /* | |
2282 | * Percpu allocator is initialized early during boot when neither slab or | |
2283 | * workqueue is available. Plug async management until everything is up | |
2284 | * and running. | |
2285 | */ | |
2286 | static int __init percpu_enable_async(void) | |
2287 | { | |
2288 | pcpu_async_enabled = true; | |
2289 | return 0; | |
2290 | } | |
2291 | subsys_initcall(percpu_enable_async); |