]>
Commit | Line | Data |
---|---|---|
fbf59bc9 | 1 | /* |
88999a89 | 2 | * mm/percpu.c - percpu memory allocator |
fbf59bc9 TH |
3 | * |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | |
5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | |
6 | * | |
7 | * This file is released under the GPLv2. | |
8 | * | |
9 | * This is percpu allocator which can handle both static and dynamic | |
88999a89 TH |
10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
11 | * consisted of boot-time determined number of units and the first | |
12 | * chunk is used for static percpu variables in the kernel image | |
2f39e637 TH |
13 | * (special boot time alloc/init handling necessary as these areas |
14 | * need to be brought up before allocation services are running). | |
15 | * Unit grows as necessary and all units grow or shrink in unison. | |
88999a89 | 16 | * When a chunk is filled up, another chunk is allocated. |
fbf59bc9 TH |
17 | * |
18 | * c0 c1 c2 | |
19 | * ------------------- ------------------- ------------ | |
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | |
21 | * ------------------- ...... ------------------- .... ------------ | |
22 | * | |
23 | * Allocation is done in offset-size areas of single unit space. Ie, | |
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | |
2f39e637 TH |
25 | * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to |
26 | * cpus. On NUMA, the mapping can be non-linear and even sparse. | |
27 | * Percpu access can be done by configuring percpu base registers | |
28 | * according to cpu to unit mapping and pcpu_unit_size. | |
fbf59bc9 | 29 | * |
2f39e637 TH |
30 | * There are usually many small percpu allocations many of them being |
31 | * as small as 4 bytes. The allocator organizes chunks into lists | |
fbf59bc9 TH |
32 | * according to free size and tries to allocate from the fullest one. |
33 | * Each chunk keeps the maximum contiguous area size hint which is | |
4785879e | 34 | * guaranteed to be equal to or larger than the maximum contiguous |
fbf59bc9 TH |
35 | * area in the chunk. This helps the allocator not to iterate the |
36 | * chunk maps unnecessarily. | |
37 | * | |
38 | * Allocation state in each chunk is kept using an array of integers | |
39 | * on chunk->map. A positive value in the map represents a free | |
40 | * region and negative allocated. Allocation inside a chunk is done | |
41 | * by scanning this map sequentially and serving the first matching | |
42 | * entry. This is mostly copied from the percpu_modalloc() allocator. | |
e1b9aa3f CL |
43 | * Chunks can be determined from the address using the index field |
44 | * in the page struct. The index field contains a pointer to the chunk. | |
fbf59bc9 TH |
45 | * |
46 | * To use this allocator, arch code should do the followings. | |
47 | * | |
fbf59bc9 | 48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
e0100983 TH |
49 | * regular address to percpu pointer and back if they need to be |
50 | * different from the default | |
fbf59bc9 | 51 | * |
8d408b4b TH |
52 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
53 | * setup the first chunk containing the kernel static percpu area | |
fbf59bc9 TH |
54 | */ |
55 | ||
870d4b12 JP |
56 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
57 | ||
fbf59bc9 TH |
58 | #include <linux/bitmap.h> |
59 | #include <linux/bootmem.h> | |
fd1e8a1f | 60 | #include <linux/err.h> |
fbf59bc9 | 61 | #include <linux/list.h> |
a530b795 | 62 | #include <linux/log2.h> |
fbf59bc9 TH |
63 | #include <linux/mm.h> |
64 | #include <linux/module.h> | |
65 | #include <linux/mutex.h> | |
66 | #include <linux/percpu.h> | |
67 | #include <linux/pfn.h> | |
fbf59bc9 | 68 | #include <linux/slab.h> |
ccea34b5 | 69 | #include <linux/spinlock.h> |
fbf59bc9 | 70 | #include <linux/vmalloc.h> |
a56dbddf | 71 | #include <linux/workqueue.h> |
f528f0b8 | 72 | #include <linux/kmemleak.h> |
fbf59bc9 TH |
73 | |
74 | #include <asm/cacheflush.h> | |
e0100983 | 75 | #include <asm/sections.h> |
fbf59bc9 | 76 | #include <asm/tlbflush.h> |
3b034b0d | 77 | #include <asm/io.h> |
fbf59bc9 | 78 | |
fbf59bc9 TH |
79 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ |
80 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | |
9c824b6a TH |
81 | #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 |
82 | #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 | |
1a4d7607 TH |
83 | #define PCPU_EMPTY_POP_PAGES_LOW 2 |
84 | #define PCPU_EMPTY_POP_PAGES_HIGH 4 | |
fbf59bc9 | 85 | |
bbddff05 | 86 | #ifdef CONFIG_SMP |
e0100983 TH |
87 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
88 | #ifndef __addr_to_pcpu_ptr | |
89 | #define __addr_to_pcpu_ptr(addr) \ | |
43cf38eb TH |
90 | (void __percpu *)((unsigned long)(addr) - \ |
91 | (unsigned long)pcpu_base_addr + \ | |
92 | (unsigned long)__per_cpu_start) | |
e0100983 TH |
93 | #endif |
94 | #ifndef __pcpu_ptr_to_addr | |
95 | #define __pcpu_ptr_to_addr(ptr) \ | |
43cf38eb TH |
96 | (void __force *)((unsigned long)(ptr) + \ |
97 | (unsigned long)pcpu_base_addr - \ | |
98 | (unsigned long)__per_cpu_start) | |
e0100983 | 99 | #endif |
bbddff05 TH |
100 | #else /* CONFIG_SMP */ |
101 | /* on UP, it's always identity mapped */ | |
102 | #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) | |
103 | #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) | |
104 | #endif /* CONFIG_SMP */ | |
e0100983 | 105 | |
fbf59bc9 TH |
106 | struct pcpu_chunk { |
107 | struct list_head list; /* linked to pcpu_slot lists */ | |
fbf59bc9 TH |
108 | int free_size; /* free bytes in the chunk */ |
109 | int contig_hint; /* max contiguous size hint */ | |
bba174f5 | 110 | void *base_addr; /* base address of this chunk */ |
9c824b6a | 111 | |
723ad1d9 | 112 | int map_used; /* # of map entries used before the sentry */ |
fbf59bc9 TH |
113 | int map_alloc; /* # of map entries allocated */ |
114 | int *map; /* allocation map */ | |
4f996e23 | 115 | struct list_head map_extend_list;/* on pcpu_map_extend_chunks */ |
9c824b6a | 116 | |
88999a89 | 117 | void *data; /* chunk data */ |
3d331ad7 | 118 | int first_free; /* no free below this */ |
8d408b4b | 119 | bool immutable; /* no [de]population allowed */ |
b539b87f | 120 | int nr_populated; /* # of populated pages */ |
ce3141a2 | 121 | unsigned long populated[]; /* populated bitmap */ |
fbf59bc9 TH |
122 | }; |
123 | ||
40150d37 TH |
124 | static int pcpu_unit_pages __read_mostly; |
125 | static int pcpu_unit_size __read_mostly; | |
2f39e637 | 126 | static int pcpu_nr_units __read_mostly; |
6563297c | 127 | static int pcpu_atom_size __read_mostly; |
40150d37 TH |
128 | static int pcpu_nr_slots __read_mostly; |
129 | static size_t pcpu_chunk_struct_size __read_mostly; | |
fbf59bc9 | 130 | |
a855b84c TH |
131 | /* cpus with the lowest and highest unit addresses */ |
132 | static unsigned int pcpu_low_unit_cpu __read_mostly; | |
133 | static unsigned int pcpu_high_unit_cpu __read_mostly; | |
2f39e637 | 134 | |
fbf59bc9 | 135 | /* the address of the first chunk which starts with the kernel static area */ |
40150d37 | 136 | void *pcpu_base_addr __read_mostly; |
fbf59bc9 TH |
137 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
138 | ||
fb435d52 TH |
139 | static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ |
140 | const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ | |
2f39e637 | 141 | |
6563297c TH |
142 | /* group information, used for vm allocation */ |
143 | static int pcpu_nr_groups __read_mostly; | |
144 | static const unsigned long *pcpu_group_offsets __read_mostly; | |
145 | static const size_t *pcpu_group_sizes __read_mostly; | |
146 | ||
ae9e6bc9 TH |
147 | /* |
148 | * The first chunk which always exists. Note that unlike other | |
149 | * chunks, this one can be allocated and mapped in several different | |
150 | * ways and thus often doesn't live in the vmalloc area. | |
151 | */ | |
152 | static struct pcpu_chunk *pcpu_first_chunk; | |
153 | ||
154 | /* | |
155 | * Optional reserved chunk. This chunk reserves part of the first | |
156 | * chunk and serves it for reserved allocations. The amount of | |
157 | * reserved offset is in pcpu_reserved_chunk_limit. When reserved | |
158 | * area doesn't exist, the following variables contain NULL and 0 | |
159 | * respectively. | |
160 | */ | |
edcb4639 | 161 | static struct pcpu_chunk *pcpu_reserved_chunk; |
edcb4639 TH |
162 | static int pcpu_reserved_chunk_limit; |
163 | ||
b38d08f3 | 164 | static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ |
6710e594 | 165 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ |
fbf59bc9 | 166 | |
40150d37 | 167 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ |
fbf59bc9 | 168 | |
4f996e23 TH |
169 | /* chunks which need their map areas extended, protected by pcpu_lock */ |
170 | static LIST_HEAD(pcpu_map_extend_chunks); | |
171 | ||
b539b87f TH |
172 | /* |
173 | * The number of empty populated pages, protected by pcpu_lock. The | |
174 | * reserved chunk doesn't contribute to the count. | |
175 | */ | |
176 | static int pcpu_nr_empty_pop_pages; | |
177 | ||
1a4d7607 TH |
178 | /* |
179 | * Balance work is used to populate or destroy chunks asynchronously. We | |
180 | * try to keep the number of populated free pages between | |
181 | * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one | |
182 | * empty chunk. | |
183 | */ | |
fe6bd8c3 TH |
184 | static void pcpu_balance_workfn(struct work_struct *work); |
185 | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); | |
1a4d7607 TH |
186 | static bool pcpu_async_enabled __read_mostly; |
187 | static bool pcpu_atomic_alloc_failed; | |
188 | ||
189 | static void pcpu_schedule_balance_work(void) | |
190 | { | |
191 | if (pcpu_async_enabled) | |
192 | schedule_work(&pcpu_balance_work); | |
193 | } | |
a56dbddf | 194 | |
020ec653 TH |
195 | static bool pcpu_addr_in_first_chunk(void *addr) |
196 | { | |
197 | void *first_start = pcpu_first_chunk->base_addr; | |
198 | ||
199 | return addr >= first_start && addr < first_start + pcpu_unit_size; | |
200 | } | |
201 | ||
202 | static bool pcpu_addr_in_reserved_chunk(void *addr) | |
203 | { | |
204 | void *first_start = pcpu_first_chunk->base_addr; | |
205 | ||
206 | return addr >= first_start && | |
207 | addr < first_start + pcpu_reserved_chunk_limit; | |
208 | } | |
209 | ||
d9b55eeb | 210 | static int __pcpu_size_to_slot(int size) |
fbf59bc9 | 211 | { |
cae3aeb8 | 212 | int highbit = fls(size); /* size is in bytes */ |
fbf59bc9 TH |
213 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
214 | } | |
215 | ||
d9b55eeb TH |
216 | static int pcpu_size_to_slot(int size) |
217 | { | |
218 | if (size == pcpu_unit_size) | |
219 | return pcpu_nr_slots - 1; | |
220 | return __pcpu_size_to_slot(size); | |
221 | } | |
222 | ||
fbf59bc9 TH |
223 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
224 | { | |
225 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | |
226 | return 0; | |
227 | ||
228 | return pcpu_size_to_slot(chunk->free_size); | |
229 | } | |
230 | ||
88999a89 TH |
231 | /* set the pointer to a chunk in a page struct */ |
232 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | |
233 | { | |
234 | page->index = (unsigned long)pcpu; | |
235 | } | |
236 | ||
237 | /* obtain pointer to a chunk from a page struct */ | |
238 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |
239 | { | |
240 | return (struct pcpu_chunk *)page->index; | |
241 | } | |
242 | ||
243 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | |
fbf59bc9 | 244 | { |
2f39e637 | 245 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
fbf59bc9 TH |
246 | } |
247 | ||
9983b6f0 TH |
248 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
249 | unsigned int cpu, int page_idx) | |
fbf59bc9 | 250 | { |
bba174f5 | 251 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + |
fb435d52 | 252 | (page_idx << PAGE_SHIFT); |
fbf59bc9 TH |
253 | } |
254 | ||
88999a89 TH |
255 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, |
256 | int *rs, int *re, int end) | |
ce3141a2 TH |
257 | { |
258 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | |
259 | *re = find_next_bit(chunk->populated, end, *rs + 1); | |
260 | } | |
261 | ||
88999a89 TH |
262 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
263 | int *rs, int *re, int end) | |
ce3141a2 TH |
264 | { |
265 | *rs = find_next_bit(chunk->populated, end, *rs); | |
266 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | |
267 | } | |
268 | ||
269 | /* | |
270 | * (Un)populated page region iterators. Iterate over (un)populated | |
b595076a | 271 | * page regions between @start and @end in @chunk. @rs and @re should |
ce3141a2 TH |
272 | * be integer variables and will be set to start and end page index of |
273 | * the current region. | |
274 | */ | |
275 | #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ | |
276 | for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ | |
277 | (rs) < (re); \ | |
278 | (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) | |
279 | ||
280 | #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ | |
281 | for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ | |
282 | (rs) < (re); \ | |
283 | (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) | |
284 | ||
fbf59bc9 | 285 | /** |
90459ce0 | 286 | * pcpu_mem_zalloc - allocate memory |
1880d93b | 287 | * @size: bytes to allocate |
fbf59bc9 | 288 | * |
1880d93b | 289 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
90459ce0 | 290 | * kzalloc() is used; otherwise, vzalloc() is used. The returned |
1880d93b | 291 | * memory is always zeroed. |
fbf59bc9 | 292 | * |
ccea34b5 TH |
293 | * CONTEXT: |
294 | * Does GFP_KERNEL allocation. | |
295 | * | |
fbf59bc9 | 296 | * RETURNS: |
1880d93b | 297 | * Pointer to the allocated area on success, NULL on failure. |
fbf59bc9 | 298 | */ |
90459ce0 | 299 | static void *pcpu_mem_zalloc(size_t size) |
fbf59bc9 | 300 | { |
099a19d9 TH |
301 | if (WARN_ON_ONCE(!slab_is_available())) |
302 | return NULL; | |
303 | ||
1880d93b TH |
304 | if (size <= PAGE_SIZE) |
305 | return kzalloc(size, GFP_KERNEL); | |
7af4c093 JJ |
306 | else |
307 | return vzalloc(size); | |
1880d93b | 308 | } |
fbf59bc9 | 309 | |
1880d93b TH |
310 | /** |
311 | * pcpu_mem_free - free memory | |
312 | * @ptr: memory to free | |
1880d93b | 313 | * |
90459ce0 | 314 | * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). |
1880d93b | 315 | */ |
1d5cfdb0 | 316 | static void pcpu_mem_free(void *ptr) |
1880d93b | 317 | { |
1d5cfdb0 | 318 | kvfree(ptr); |
fbf59bc9 TH |
319 | } |
320 | ||
b539b87f TH |
321 | /** |
322 | * pcpu_count_occupied_pages - count the number of pages an area occupies | |
323 | * @chunk: chunk of interest | |
324 | * @i: index of the area in question | |
325 | * | |
326 | * Count the number of pages chunk's @i'th area occupies. When the area's | |
327 | * start and/or end address isn't aligned to page boundary, the straddled | |
328 | * page is included in the count iff the rest of the page is free. | |
329 | */ | |
330 | static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) | |
331 | { | |
332 | int off = chunk->map[i] & ~1; | |
333 | int end = chunk->map[i + 1] & ~1; | |
334 | ||
335 | if (!PAGE_ALIGNED(off) && i > 0) { | |
336 | int prev = chunk->map[i - 1]; | |
337 | ||
338 | if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) | |
339 | off = round_down(off, PAGE_SIZE); | |
340 | } | |
341 | ||
342 | if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { | |
343 | int next = chunk->map[i + 1]; | |
344 | int nend = chunk->map[i + 2] & ~1; | |
345 | ||
346 | if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) | |
347 | end = round_up(end, PAGE_SIZE); | |
348 | } | |
349 | ||
350 | return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); | |
351 | } | |
352 | ||
fbf59bc9 TH |
353 | /** |
354 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | |
355 | * @chunk: chunk of interest | |
356 | * @oslot: the previous slot it was on | |
357 | * | |
358 | * This function is called after an allocation or free changed @chunk. | |
359 | * New slot according to the changed state is determined and @chunk is | |
edcb4639 TH |
360 | * moved to the slot. Note that the reserved chunk is never put on |
361 | * chunk slots. | |
ccea34b5 TH |
362 | * |
363 | * CONTEXT: | |
364 | * pcpu_lock. | |
fbf59bc9 TH |
365 | */ |
366 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |
367 | { | |
368 | int nslot = pcpu_chunk_slot(chunk); | |
369 | ||
edcb4639 | 370 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { |
fbf59bc9 TH |
371 | if (oslot < nslot) |
372 | list_move(&chunk->list, &pcpu_slot[nslot]); | |
373 | else | |
374 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | |
375 | } | |
376 | } | |
377 | ||
9f7dcf22 | 378 | /** |
833af842 TH |
379 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
380 | * @chunk: chunk of interest | |
9c824b6a | 381 | * @is_atomic: the allocation context |
9f7dcf22 | 382 | * |
9c824b6a TH |
383 | * Determine whether area map of @chunk needs to be extended. If |
384 | * @is_atomic, only the amount necessary for a new allocation is | |
385 | * considered; however, async extension is scheduled if the left amount is | |
386 | * low. If !@is_atomic, it aims for more empty space. Combined, this | |
387 | * ensures that the map is likely to have enough available space to | |
388 | * accomodate atomic allocations which can't extend maps directly. | |
9f7dcf22 | 389 | * |
ccea34b5 | 390 | * CONTEXT: |
833af842 | 391 | * pcpu_lock. |
ccea34b5 | 392 | * |
9f7dcf22 | 393 | * RETURNS: |
833af842 TH |
394 | * New target map allocation length if extension is necessary, 0 |
395 | * otherwise. | |
9f7dcf22 | 396 | */ |
9c824b6a | 397 | static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) |
9f7dcf22 | 398 | { |
9c824b6a TH |
399 | int margin, new_alloc; |
400 | ||
4f996e23 TH |
401 | lockdep_assert_held(&pcpu_lock); |
402 | ||
9c824b6a TH |
403 | if (is_atomic) { |
404 | margin = 3; | |
9f7dcf22 | 405 | |
9c824b6a | 406 | if (chunk->map_alloc < |
4f996e23 TH |
407 | chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) { |
408 | if (list_empty(&chunk->map_extend_list)) { | |
409 | list_add_tail(&chunk->map_extend_list, | |
410 | &pcpu_map_extend_chunks); | |
411 | pcpu_schedule_balance_work(); | |
412 | } | |
413 | } | |
9c824b6a TH |
414 | } else { |
415 | margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; | |
416 | } | |
417 | ||
418 | if (chunk->map_alloc >= chunk->map_used + margin) | |
9f7dcf22 TH |
419 | return 0; |
420 | ||
421 | new_alloc = PCPU_DFL_MAP_ALLOC; | |
9c824b6a | 422 | while (new_alloc < chunk->map_used + margin) |
9f7dcf22 TH |
423 | new_alloc *= 2; |
424 | ||
833af842 TH |
425 | return new_alloc; |
426 | } | |
427 | ||
428 | /** | |
429 | * pcpu_extend_area_map - extend area map of a chunk | |
430 | * @chunk: chunk of interest | |
431 | * @new_alloc: new target allocation length of the area map | |
432 | * | |
433 | * Extend area map of @chunk to have @new_alloc entries. | |
434 | * | |
435 | * CONTEXT: | |
436 | * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. | |
437 | * | |
438 | * RETURNS: | |
439 | * 0 on success, -errno on failure. | |
440 | */ | |
441 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) | |
442 | { | |
443 | int *old = NULL, *new = NULL; | |
444 | size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); | |
445 | unsigned long flags; | |
446 | ||
6710e594 TH |
447 | lockdep_assert_held(&pcpu_alloc_mutex); |
448 | ||
90459ce0 | 449 | new = pcpu_mem_zalloc(new_size); |
833af842 | 450 | if (!new) |
9f7dcf22 | 451 | return -ENOMEM; |
ccea34b5 | 452 | |
833af842 TH |
453 | /* acquire pcpu_lock and switch to new area map */ |
454 | spin_lock_irqsave(&pcpu_lock, flags); | |
455 | ||
456 | if (new_alloc <= chunk->map_alloc) | |
457 | goto out_unlock; | |
9f7dcf22 | 458 | |
833af842 | 459 | old_size = chunk->map_alloc * sizeof(chunk->map[0]); |
a002d148 HS |
460 | old = chunk->map; |
461 | ||
462 | memcpy(new, old, old_size); | |
9f7dcf22 | 463 | |
9f7dcf22 TH |
464 | chunk->map_alloc = new_alloc; |
465 | chunk->map = new; | |
833af842 TH |
466 | new = NULL; |
467 | ||
468 | out_unlock: | |
469 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
470 | ||
471 | /* | |
472 | * pcpu_mem_free() might end up calling vfree() which uses | |
473 | * IRQ-unsafe lock and thus can't be called under pcpu_lock. | |
474 | */ | |
1d5cfdb0 TH |
475 | pcpu_mem_free(old); |
476 | pcpu_mem_free(new); | |
833af842 | 477 | |
9f7dcf22 TH |
478 | return 0; |
479 | } | |
480 | ||
a16037c8 TH |
481 | /** |
482 | * pcpu_fit_in_area - try to fit the requested allocation in a candidate area | |
483 | * @chunk: chunk the candidate area belongs to | |
484 | * @off: the offset to the start of the candidate area | |
485 | * @this_size: the size of the candidate area | |
486 | * @size: the size of the target allocation | |
487 | * @align: the alignment of the target allocation | |
488 | * @pop_only: only allocate from already populated region | |
489 | * | |
490 | * We're trying to allocate @size bytes aligned at @align. @chunk's area | |
491 | * at @off sized @this_size is a candidate. This function determines | |
492 | * whether the target allocation fits in the candidate area and returns the | |
493 | * number of bytes to pad after @off. If the target area doesn't fit, -1 | |
494 | * is returned. | |
495 | * | |
496 | * If @pop_only is %true, this function only considers the already | |
497 | * populated part of the candidate area. | |
498 | */ | |
499 | static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, | |
500 | int size, int align, bool pop_only) | |
501 | { | |
502 | int cand_off = off; | |
503 | ||
504 | while (true) { | |
505 | int head = ALIGN(cand_off, align) - off; | |
506 | int page_start, page_end, rs, re; | |
507 | ||
508 | if (this_size < head + size) | |
509 | return -1; | |
510 | ||
511 | if (!pop_only) | |
512 | return head; | |
513 | ||
514 | /* | |
515 | * If the first unpopulated page is beyond the end of the | |
516 | * allocation, the whole allocation is populated; | |
517 | * otherwise, retry from the end of the unpopulated area. | |
518 | */ | |
519 | page_start = PFN_DOWN(head + off); | |
520 | page_end = PFN_UP(head + off + size); | |
521 | ||
522 | rs = page_start; | |
523 | pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); | |
524 | if (rs >= page_end) | |
525 | return head; | |
526 | cand_off = re * PAGE_SIZE; | |
527 | } | |
528 | } | |
529 | ||
fbf59bc9 TH |
530 | /** |
531 | * pcpu_alloc_area - allocate area from a pcpu_chunk | |
532 | * @chunk: chunk of interest | |
cae3aeb8 | 533 | * @size: wanted size in bytes |
fbf59bc9 | 534 | * @align: wanted align |
a16037c8 | 535 | * @pop_only: allocate only from the populated area |
b539b87f | 536 | * @occ_pages_p: out param for the number of pages the area occupies |
fbf59bc9 TH |
537 | * |
538 | * Try to allocate @size bytes area aligned at @align from @chunk. | |
539 | * Note that this function only allocates the offset. It doesn't | |
540 | * populate or map the area. | |
541 | * | |
9f7dcf22 TH |
542 | * @chunk->map must have at least two free slots. |
543 | * | |
ccea34b5 TH |
544 | * CONTEXT: |
545 | * pcpu_lock. | |
546 | * | |
fbf59bc9 | 547 | * RETURNS: |
9f7dcf22 TH |
548 | * Allocated offset in @chunk on success, -1 if no matching area is |
549 | * found. | |
fbf59bc9 | 550 | */ |
a16037c8 | 551 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, |
b539b87f | 552 | bool pop_only, int *occ_pages_p) |
fbf59bc9 TH |
553 | { |
554 | int oslot = pcpu_chunk_slot(chunk); | |
555 | int max_contig = 0; | |
556 | int i, off; | |
3d331ad7 | 557 | bool seen_free = false; |
723ad1d9 | 558 | int *p; |
fbf59bc9 | 559 | |
3d331ad7 | 560 | for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { |
fbf59bc9 | 561 | int head, tail; |
723ad1d9 AV |
562 | int this_size; |
563 | ||
564 | off = *p; | |
565 | if (off & 1) | |
566 | continue; | |
fbf59bc9 | 567 | |
723ad1d9 | 568 | this_size = (p[1] & ~1) - off; |
a16037c8 TH |
569 | |
570 | head = pcpu_fit_in_area(chunk, off, this_size, size, align, | |
571 | pop_only); | |
572 | if (head < 0) { | |
3d331ad7 AV |
573 | if (!seen_free) { |
574 | chunk->first_free = i; | |
575 | seen_free = true; | |
576 | } | |
723ad1d9 | 577 | max_contig = max(this_size, max_contig); |
fbf59bc9 TH |
578 | continue; |
579 | } | |
580 | ||
581 | /* | |
582 | * If head is small or the previous block is free, | |
583 | * merge'em. Note that 'small' is defined as smaller | |
584 | * than sizeof(int), which is very small but isn't too | |
585 | * uncommon for percpu allocations. | |
586 | */ | |
723ad1d9 | 587 | if (head && (head < sizeof(int) || !(p[-1] & 1))) { |
21ddfd38 | 588 | *p = off += head; |
723ad1d9 | 589 | if (p[-1] & 1) |
fbf59bc9 | 590 | chunk->free_size -= head; |
21ddfd38 JZ |
591 | else |
592 | max_contig = max(*p - p[-1], max_contig); | |
723ad1d9 | 593 | this_size -= head; |
fbf59bc9 TH |
594 | head = 0; |
595 | } | |
596 | ||
597 | /* if tail is small, just keep it around */ | |
723ad1d9 AV |
598 | tail = this_size - head - size; |
599 | if (tail < sizeof(int)) { | |
fbf59bc9 | 600 | tail = 0; |
723ad1d9 AV |
601 | size = this_size - head; |
602 | } | |
fbf59bc9 TH |
603 | |
604 | /* split if warranted */ | |
605 | if (head || tail) { | |
706c16f2 AV |
606 | int nr_extra = !!head + !!tail; |
607 | ||
608 | /* insert new subblocks */ | |
723ad1d9 | 609 | memmove(p + nr_extra + 1, p + 1, |
706c16f2 AV |
610 | sizeof(chunk->map[0]) * (chunk->map_used - i)); |
611 | chunk->map_used += nr_extra; | |
612 | ||
fbf59bc9 | 613 | if (head) { |
3d331ad7 AV |
614 | if (!seen_free) { |
615 | chunk->first_free = i; | |
616 | seen_free = true; | |
617 | } | |
723ad1d9 AV |
618 | *++p = off += head; |
619 | ++i; | |
706c16f2 AV |
620 | max_contig = max(head, max_contig); |
621 | } | |
622 | if (tail) { | |
723ad1d9 | 623 | p[1] = off + size; |
706c16f2 | 624 | max_contig = max(tail, max_contig); |
fbf59bc9 | 625 | } |
fbf59bc9 TH |
626 | } |
627 | ||
3d331ad7 AV |
628 | if (!seen_free) |
629 | chunk->first_free = i + 1; | |
630 | ||
fbf59bc9 | 631 | /* update hint and mark allocated */ |
723ad1d9 | 632 | if (i + 1 == chunk->map_used) |
fbf59bc9 TH |
633 | chunk->contig_hint = max_contig; /* fully scanned */ |
634 | else | |
635 | chunk->contig_hint = max(chunk->contig_hint, | |
636 | max_contig); | |
637 | ||
723ad1d9 AV |
638 | chunk->free_size -= size; |
639 | *p |= 1; | |
fbf59bc9 | 640 | |
b539b87f | 641 | *occ_pages_p = pcpu_count_occupied_pages(chunk, i); |
fbf59bc9 TH |
642 | pcpu_chunk_relocate(chunk, oslot); |
643 | return off; | |
644 | } | |
645 | ||
646 | chunk->contig_hint = max_contig; /* fully scanned */ | |
647 | pcpu_chunk_relocate(chunk, oslot); | |
648 | ||
9f7dcf22 TH |
649 | /* tell the upper layer that this chunk has no matching area */ |
650 | return -1; | |
fbf59bc9 TH |
651 | } |
652 | ||
653 | /** | |
654 | * pcpu_free_area - free area to a pcpu_chunk | |
655 | * @chunk: chunk of interest | |
656 | * @freeme: offset of area to free | |
b539b87f | 657 | * @occ_pages_p: out param for the number of pages the area occupies |
fbf59bc9 TH |
658 | * |
659 | * Free area starting from @freeme to @chunk. Note that this function | |
660 | * only modifies the allocation map. It doesn't depopulate or unmap | |
661 | * the area. | |
ccea34b5 TH |
662 | * |
663 | * CONTEXT: | |
664 | * pcpu_lock. | |
fbf59bc9 | 665 | */ |
b539b87f TH |
666 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, |
667 | int *occ_pages_p) | |
fbf59bc9 TH |
668 | { |
669 | int oslot = pcpu_chunk_slot(chunk); | |
723ad1d9 AV |
670 | int off = 0; |
671 | unsigned i, j; | |
672 | int to_free = 0; | |
673 | int *p; | |
674 | ||
675 | freeme |= 1; /* we are searching for <given offset, in use> pair */ | |
676 | ||
677 | i = 0; | |
678 | j = chunk->map_used; | |
679 | while (i != j) { | |
680 | unsigned k = (i + j) / 2; | |
681 | off = chunk->map[k]; | |
682 | if (off < freeme) | |
683 | i = k + 1; | |
684 | else if (off > freeme) | |
685 | j = k; | |
686 | else | |
687 | i = j = k; | |
688 | } | |
fbf59bc9 | 689 | BUG_ON(off != freeme); |
fbf59bc9 | 690 | |
3d331ad7 AV |
691 | if (i < chunk->first_free) |
692 | chunk->first_free = i; | |
693 | ||
723ad1d9 AV |
694 | p = chunk->map + i; |
695 | *p = off &= ~1; | |
696 | chunk->free_size += (p[1] & ~1) - off; | |
fbf59bc9 | 697 | |
b539b87f TH |
698 | *occ_pages_p = pcpu_count_occupied_pages(chunk, i); |
699 | ||
723ad1d9 AV |
700 | /* merge with next? */ |
701 | if (!(p[1] & 1)) | |
702 | to_free++; | |
fbf59bc9 | 703 | /* merge with previous? */ |
723ad1d9 AV |
704 | if (i > 0 && !(p[-1] & 1)) { |
705 | to_free++; | |
fbf59bc9 | 706 | i--; |
723ad1d9 | 707 | p--; |
fbf59bc9 | 708 | } |
723ad1d9 AV |
709 | if (to_free) { |
710 | chunk->map_used -= to_free; | |
711 | memmove(p + 1, p + 1 + to_free, | |
712 | (chunk->map_used - i) * sizeof(chunk->map[0])); | |
fbf59bc9 TH |
713 | } |
714 | ||
723ad1d9 | 715 | chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); |
fbf59bc9 TH |
716 | pcpu_chunk_relocate(chunk, oslot); |
717 | } | |
718 | ||
6081089f TH |
719 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
720 | { | |
721 | struct pcpu_chunk *chunk; | |
722 | ||
90459ce0 | 723 | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); |
6081089f TH |
724 | if (!chunk) |
725 | return NULL; | |
726 | ||
90459ce0 BL |
727 | chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * |
728 | sizeof(chunk->map[0])); | |
6081089f | 729 | if (!chunk->map) { |
1d5cfdb0 | 730 | pcpu_mem_free(chunk); |
6081089f TH |
731 | return NULL; |
732 | } | |
733 | ||
734 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | |
723ad1d9 AV |
735 | chunk->map[0] = 0; |
736 | chunk->map[1] = pcpu_unit_size | 1; | |
737 | chunk->map_used = 1; | |
6081089f TH |
738 | |
739 | INIT_LIST_HEAD(&chunk->list); | |
4f996e23 | 740 | INIT_LIST_HEAD(&chunk->map_extend_list); |
6081089f TH |
741 | chunk->free_size = pcpu_unit_size; |
742 | chunk->contig_hint = pcpu_unit_size; | |
743 | ||
744 | return chunk; | |
745 | } | |
746 | ||
747 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | |
748 | { | |
749 | if (!chunk) | |
750 | return; | |
1d5cfdb0 TH |
751 | pcpu_mem_free(chunk->map); |
752 | pcpu_mem_free(chunk); | |
6081089f TH |
753 | } |
754 | ||
b539b87f TH |
755 | /** |
756 | * pcpu_chunk_populated - post-population bookkeeping | |
757 | * @chunk: pcpu_chunk which got populated | |
758 | * @page_start: the start page | |
759 | * @page_end: the end page | |
760 | * | |
761 | * Pages in [@page_start,@page_end) have been populated to @chunk. Update | |
762 | * the bookkeeping information accordingly. Must be called after each | |
763 | * successful population. | |
764 | */ | |
765 | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, | |
766 | int page_start, int page_end) | |
767 | { | |
768 | int nr = page_end - page_start; | |
769 | ||
770 | lockdep_assert_held(&pcpu_lock); | |
771 | ||
772 | bitmap_set(chunk->populated, page_start, nr); | |
773 | chunk->nr_populated += nr; | |
774 | pcpu_nr_empty_pop_pages += nr; | |
775 | } | |
776 | ||
777 | /** | |
778 | * pcpu_chunk_depopulated - post-depopulation bookkeeping | |
779 | * @chunk: pcpu_chunk which got depopulated | |
780 | * @page_start: the start page | |
781 | * @page_end: the end page | |
782 | * | |
783 | * Pages in [@page_start,@page_end) have been depopulated from @chunk. | |
784 | * Update the bookkeeping information accordingly. Must be called after | |
785 | * each successful depopulation. | |
786 | */ | |
787 | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, | |
788 | int page_start, int page_end) | |
789 | { | |
790 | int nr = page_end - page_start; | |
791 | ||
792 | lockdep_assert_held(&pcpu_lock); | |
793 | ||
794 | bitmap_clear(chunk->populated, page_start, nr); | |
795 | chunk->nr_populated -= nr; | |
796 | pcpu_nr_empty_pop_pages -= nr; | |
797 | } | |
798 | ||
9f645532 TH |
799 | /* |
800 | * Chunk management implementation. | |
801 | * | |
802 | * To allow different implementations, chunk alloc/free and | |
803 | * [de]population are implemented in a separate file which is pulled | |
804 | * into this file and compiled together. The following functions | |
805 | * should be implemented. | |
806 | * | |
807 | * pcpu_populate_chunk - populate the specified range of a chunk | |
808 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk | |
809 | * pcpu_create_chunk - create a new chunk | |
810 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop | |
811 | * pcpu_addr_to_page - translate address to physical address | |
812 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | |
fbf59bc9 | 813 | */ |
9f645532 TH |
814 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
815 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); | |
816 | static struct pcpu_chunk *pcpu_create_chunk(void); | |
817 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); | |
818 | static struct page *pcpu_addr_to_page(void *addr); | |
819 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | |
fbf59bc9 | 820 | |
b0c9778b TH |
821 | #ifdef CONFIG_NEED_PER_CPU_KM |
822 | #include "percpu-km.c" | |
823 | #else | |
9f645532 | 824 | #include "percpu-vm.c" |
b0c9778b | 825 | #endif |
fbf59bc9 | 826 | |
88999a89 TH |
827 | /** |
828 | * pcpu_chunk_addr_search - determine chunk containing specified address | |
829 | * @addr: address for which the chunk needs to be determined. | |
830 | * | |
831 | * RETURNS: | |
832 | * The address of the found chunk. | |
833 | */ | |
834 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |
835 | { | |
836 | /* is it in the first chunk? */ | |
837 | if (pcpu_addr_in_first_chunk(addr)) { | |
838 | /* is it in the reserved area? */ | |
839 | if (pcpu_addr_in_reserved_chunk(addr)) | |
840 | return pcpu_reserved_chunk; | |
841 | return pcpu_first_chunk; | |
842 | } | |
843 | ||
844 | /* | |
845 | * The address is relative to unit0 which might be unused and | |
846 | * thus unmapped. Offset the address to the unit space of the | |
847 | * current processor before looking it up in the vmalloc | |
848 | * space. Note that any possible cpu id can be used here, so | |
849 | * there's no need to worry about preemption or cpu hotplug. | |
850 | */ | |
851 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | |
9f645532 | 852 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
88999a89 TH |
853 | } |
854 | ||
fbf59bc9 | 855 | /** |
edcb4639 | 856 | * pcpu_alloc - the percpu allocator |
cae3aeb8 | 857 | * @size: size of area to allocate in bytes |
fbf59bc9 | 858 | * @align: alignment of area (max PAGE_SIZE) |
edcb4639 | 859 | * @reserved: allocate from the reserved chunk if available |
5835d96e | 860 | * @gfp: allocation flags |
fbf59bc9 | 861 | * |
5835d96e TH |
862 | * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't |
863 | * contain %GFP_KERNEL, the allocation is atomic. | |
fbf59bc9 TH |
864 | * |
865 | * RETURNS: | |
866 | * Percpu pointer to the allocated area on success, NULL on failure. | |
867 | */ | |
5835d96e TH |
868 | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, |
869 | gfp_t gfp) | |
fbf59bc9 | 870 | { |
f2badb0c | 871 | static int warn_limit = 10; |
fbf59bc9 | 872 | struct pcpu_chunk *chunk; |
f2badb0c | 873 | const char *err; |
6ae833c7 | 874 | bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; |
b539b87f | 875 | int occ_pages = 0; |
b38d08f3 | 876 | int slot, off, new_alloc, cpu, ret; |
403a91b1 | 877 | unsigned long flags; |
f528f0b8 | 878 | void __percpu *ptr; |
fbf59bc9 | 879 | |
723ad1d9 AV |
880 | /* |
881 | * We want the lowest bit of offset available for in-use/free | |
2f69fa82 | 882 | * indicator, so force >= 16bit alignment and make size even. |
723ad1d9 AV |
883 | */ |
884 | if (unlikely(align < 2)) | |
885 | align = 2; | |
886 | ||
fb009e3a | 887 | size = ALIGN(size, 2); |
2f69fa82 | 888 | |
3ca45a46 | 889 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || |
890 | !is_power_of_2(align))) { | |
756a025f JP |
891 | WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n", |
892 | size, align); | |
fbf59bc9 TH |
893 | return NULL; |
894 | } | |
895 | ||
6710e594 TH |
896 | if (!is_atomic) |
897 | mutex_lock(&pcpu_alloc_mutex); | |
898 | ||
403a91b1 | 899 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 900 | |
edcb4639 TH |
901 | /* serve reserved allocations from the reserved chunk if available */ |
902 | if (reserved && pcpu_reserved_chunk) { | |
903 | chunk = pcpu_reserved_chunk; | |
833af842 TH |
904 | |
905 | if (size > chunk->contig_hint) { | |
906 | err = "alloc from reserved chunk failed"; | |
ccea34b5 | 907 | goto fail_unlock; |
f2badb0c | 908 | } |
833af842 | 909 | |
9c824b6a | 910 | while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { |
833af842 | 911 | spin_unlock_irqrestore(&pcpu_lock, flags); |
5835d96e TH |
912 | if (is_atomic || |
913 | pcpu_extend_area_map(chunk, new_alloc) < 0) { | |
833af842 | 914 | err = "failed to extend area map of reserved chunk"; |
b38d08f3 | 915 | goto fail; |
833af842 TH |
916 | } |
917 | spin_lock_irqsave(&pcpu_lock, flags); | |
918 | } | |
919 | ||
b539b87f TH |
920 | off = pcpu_alloc_area(chunk, size, align, is_atomic, |
921 | &occ_pages); | |
edcb4639 TH |
922 | if (off >= 0) |
923 | goto area_found; | |
833af842 | 924 | |
f2badb0c | 925 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 926 | goto fail_unlock; |
edcb4639 TH |
927 | } |
928 | ||
ccea34b5 | 929 | restart: |
edcb4639 | 930 | /* search through normal chunks */ |
fbf59bc9 TH |
931 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { |
932 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
933 | if (size > chunk->contig_hint) | |
934 | continue; | |
ccea34b5 | 935 | |
9c824b6a | 936 | new_alloc = pcpu_need_to_extend(chunk, is_atomic); |
833af842 | 937 | if (new_alloc) { |
5835d96e TH |
938 | if (is_atomic) |
939 | continue; | |
833af842 TH |
940 | spin_unlock_irqrestore(&pcpu_lock, flags); |
941 | if (pcpu_extend_area_map(chunk, | |
942 | new_alloc) < 0) { | |
943 | err = "failed to extend area map"; | |
b38d08f3 | 944 | goto fail; |
833af842 TH |
945 | } |
946 | spin_lock_irqsave(&pcpu_lock, flags); | |
947 | /* | |
948 | * pcpu_lock has been dropped, need to | |
949 | * restart cpu_slot list walking. | |
950 | */ | |
951 | goto restart; | |
ccea34b5 TH |
952 | } |
953 | ||
b539b87f TH |
954 | off = pcpu_alloc_area(chunk, size, align, is_atomic, |
955 | &occ_pages); | |
fbf59bc9 TH |
956 | if (off >= 0) |
957 | goto area_found; | |
fbf59bc9 TH |
958 | } |
959 | } | |
960 | ||
403a91b1 | 961 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 962 | |
b38d08f3 TH |
963 | /* |
964 | * No space left. Create a new chunk. We don't want multiple | |
965 | * tasks to create chunks simultaneously. Serialize and create iff | |
966 | * there's still no empty chunk after grabbing the mutex. | |
967 | */ | |
5835d96e TH |
968 | if (is_atomic) |
969 | goto fail; | |
970 | ||
b38d08f3 TH |
971 | if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { |
972 | chunk = pcpu_create_chunk(); | |
973 | if (!chunk) { | |
974 | err = "failed to allocate new chunk"; | |
975 | goto fail; | |
976 | } | |
977 | ||
978 | spin_lock_irqsave(&pcpu_lock, flags); | |
979 | pcpu_chunk_relocate(chunk, -1); | |
980 | } else { | |
981 | spin_lock_irqsave(&pcpu_lock, flags); | |
f2badb0c | 982 | } |
ccea34b5 | 983 | |
ccea34b5 | 984 | goto restart; |
fbf59bc9 TH |
985 | |
986 | area_found: | |
403a91b1 | 987 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 988 | |
dca49645 | 989 | /* populate if not all pages are already there */ |
5835d96e | 990 | if (!is_atomic) { |
e04d3208 | 991 | int page_start, page_end, rs, re; |
dca49645 | 992 | |
e04d3208 TH |
993 | page_start = PFN_DOWN(off); |
994 | page_end = PFN_UP(off + size); | |
b38d08f3 | 995 | |
e04d3208 TH |
996 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { |
997 | WARN_ON(chunk->immutable); | |
998 | ||
999 | ret = pcpu_populate_chunk(chunk, rs, re); | |
1000 | ||
1001 | spin_lock_irqsave(&pcpu_lock, flags); | |
1002 | if (ret) { | |
b539b87f | 1003 | pcpu_free_area(chunk, off, &occ_pages); |
e04d3208 TH |
1004 | err = "failed to populate"; |
1005 | goto fail_unlock; | |
1006 | } | |
b539b87f | 1007 | pcpu_chunk_populated(chunk, rs, re); |
e04d3208 | 1008 | spin_unlock_irqrestore(&pcpu_lock, flags); |
dca49645 | 1009 | } |
fbf59bc9 | 1010 | |
e04d3208 TH |
1011 | mutex_unlock(&pcpu_alloc_mutex); |
1012 | } | |
ccea34b5 | 1013 | |
73dbbfe1 TE |
1014 | if (chunk != pcpu_reserved_chunk) { |
1015 | spin_lock_irqsave(&pcpu_lock, flags); | |
b539b87f | 1016 | pcpu_nr_empty_pop_pages -= occ_pages; |
73dbbfe1 TE |
1017 | spin_unlock_irqrestore(&pcpu_lock, flags); |
1018 | } | |
b539b87f | 1019 | |
1a4d7607 TH |
1020 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) |
1021 | pcpu_schedule_balance_work(); | |
1022 | ||
dca49645 TH |
1023 | /* clear the areas and return address relative to base address */ |
1024 | for_each_possible_cpu(cpu) | |
1025 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | |
1026 | ||
f528f0b8 | 1027 | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); |
8a8c35fa | 1028 | kmemleak_alloc_percpu(ptr, size, gfp); |
f528f0b8 | 1029 | return ptr; |
ccea34b5 TH |
1030 | |
1031 | fail_unlock: | |
403a91b1 | 1032 | spin_unlock_irqrestore(&pcpu_lock, flags); |
b38d08f3 | 1033 | fail: |
5835d96e | 1034 | if (!is_atomic && warn_limit) { |
870d4b12 | 1035 | pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", |
598d8091 | 1036 | size, align, is_atomic, err); |
f2badb0c TH |
1037 | dump_stack(); |
1038 | if (!--warn_limit) | |
870d4b12 | 1039 | pr_info("limit reached, disable warning\n"); |
f2badb0c | 1040 | } |
1a4d7607 TH |
1041 | if (is_atomic) { |
1042 | /* see the flag handling in pcpu_blance_workfn() */ | |
1043 | pcpu_atomic_alloc_failed = true; | |
1044 | pcpu_schedule_balance_work(); | |
6710e594 TH |
1045 | } else { |
1046 | mutex_unlock(&pcpu_alloc_mutex); | |
1a4d7607 | 1047 | } |
ccea34b5 | 1048 | return NULL; |
fbf59bc9 | 1049 | } |
edcb4639 TH |
1050 | |
1051 | /** | |
5835d96e | 1052 | * __alloc_percpu_gfp - allocate dynamic percpu area |
edcb4639 TH |
1053 | * @size: size of area to allocate in bytes |
1054 | * @align: alignment of area (max PAGE_SIZE) | |
5835d96e | 1055 | * @gfp: allocation flags |
edcb4639 | 1056 | * |
5835d96e TH |
1057 | * Allocate zero-filled percpu area of @size bytes aligned at @align. If |
1058 | * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can | |
1059 | * be called from any context but is a lot more likely to fail. | |
ccea34b5 | 1060 | * |
edcb4639 TH |
1061 | * RETURNS: |
1062 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1063 | */ | |
5835d96e TH |
1064 | void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) |
1065 | { | |
1066 | return pcpu_alloc(size, align, false, gfp); | |
1067 | } | |
1068 | EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); | |
1069 | ||
1070 | /** | |
1071 | * __alloc_percpu - allocate dynamic percpu area | |
1072 | * @size: size of area to allocate in bytes | |
1073 | * @align: alignment of area (max PAGE_SIZE) | |
1074 | * | |
1075 | * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). | |
1076 | */ | |
43cf38eb | 1077 | void __percpu *__alloc_percpu(size_t size, size_t align) |
edcb4639 | 1078 | { |
5835d96e | 1079 | return pcpu_alloc(size, align, false, GFP_KERNEL); |
edcb4639 | 1080 | } |
fbf59bc9 TH |
1081 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
1082 | ||
edcb4639 TH |
1083 | /** |
1084 | * __alloc_reserved_percpu - allocate reserved percpu area | |
1085 | * @size: size of area to allocate in bytes | |
1086 | * @align: alignment of area (max PAGE_SIZE) | |
1087 | * | |
9329ba97 TH |
1088 | * Allocate zero-filled percpu area of @size bytes aligned at @align |
1089 | * from reserved percpu area if arch has set it up; otherwise, | |
1090 | * allocation is served from the same dynamic area. Might sleep. | |
1091 | * Might trigger writeouts. | |
edcb4639 | 1092 | * |
ccea34b5 TH |
1093 | * CONTEXT: |
1094 | * Does GFP_KERNEL allocation. | |
1095 | * | |
edcb4639 TH |
1096 | * RETURNS: |
1097 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1098 | */ | |
43cf38eb | 1099 | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) |
edcb4639 | 1100 | { |
5835d96e | 1101 | return pcpu_alloc(size, align, true, GFP_KERNEL); |
edcb4639 TH |
1102 | } |
1103 | ||
a56dbddf | 1104 | /** |
1a4d7607 | 1105 | * pcpu_balance_workfn - manage the amount of free chunks and populated pages |
a56dbddf TH |
1106 | * @work: unused |
1107 | * | |
1108 | * Reclaim all fully free chunks except for the first one. | |
1109 | */ | |
fe6bd8c3 | 1110 | static void pcpu_balance_workfn(struct work_struct *work) |
fbf59bc9 | 1111 | { |
fe6bd8c3 TH |
1112 | LIST_HEAD(to_free); |
1113 | struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; | |
a56dbddf | 1114 | struct pcpu_chunk *chunk, *next; |
1a4d7607 | 1115 | int slot, nr_to_pop, ret; |
a56dbddf | 1116 | |
1a4d7607 TH |
1117 | /* |
1118 | * There's no reason to keep around multiple unused chunks and VM | |
1119 | * areas can be scarce. Destroy all free chunks except for one. | |
1120 | */ | |
ccea34b5 TH |
1121 | mutex_lock(&pcpu_alloc_mutex); |
1122 | spin_lock_irq(&pcpu_lock); | |
a56dbddf | 1123 | |
fe6bd8c3 | 1124 | list_for_each_entry_safe(chunk, next, free_head, list) { |
a56dbddf TH |
1125 | WARN_ON(chunk->immutable); |
1126 | ||
1127 | /* spare the first one */ | |
fe6bd8c3 | 1128 | if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) |
a56dbddf TH |
1129 | continue; |
1130 | ||
4f996e23 | 1131 | list_del_init(&chunk->map_extend_list); |
fe6bd8c3 | 1132 | list_move(&chunk->list, &to_free); |
a56dbddf TH |
1133 | } |
1134 | ||
ccea34b5 | 1135 | spin_unlock_irq(&pcpu_lock); |
a56dbddf | 1136 | |
fe6bd8c3 | 1137 | list_for_each_entry_safe(chunk, next, &to_free, list) { |
a93ace48 | 1138 | int rs, re; |
dca49645 | 1139 | |
a93ace48 TH |
1140 | pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { |
1141 | pcpu_depopulate_chunk(chunk, rs, re); | |
b539b87f TH |
1142 | spin_lock_irq(&pcpu_lock); |
1143 | pcpu_chunk_depopulated(chunk, rs, re); | |
1144 | spin_unlock_irq(&pcpu_lock); | |
a93ace48 | 1145 | } |
6081089f | 1146 | pcpu_destroy_chunk(chunk); |
a56dbddf | 1147 | } |
971f3918 | 1148 | |
4f996e23 TH |
1149 | /* service chunks which requested async area map extension */ |
1150 | do { | |
1151 | int new_alloc = 0; | |
1152 | ||
1153 | spin_lock_irq(&pcpu_lock); | |
1154 | ||
1155 | chunk = list_first_entry_or_null(&pcpu_map_extend_chunks, | |
1156 | struct pcpu_chunk, map_extend_list); | |
1157 | if (chunk) { | |
1158 | list_del_init(&chunk->map_extend_list); | |
1159 | new_alloc = pcpu_need_to_extend(chunk, false); | |
1160 | } | |
1161 | ||
1162 | spin_unlock_irq(&pcpu_lock); | |
1163 | ||
1164 | if (new_alloc) | |
1165 | pcpu_extend_area_map(chunk, new_alloc); | |
1166 | } while (chunk); | |
1167 | ||
1a4d7607 TH |
1168 | /* |
1169 | * Ensure there are certain number of free populated pages for | |
1170 | * atomic allocs. Fill up from the most packed so that atomic | |
1171 | * allocs don't increase fragmentation. If atomic allocation | |
1172 | * failed previously, always populate the maximum amount. This | |
1173 | * should prevent atomic allocs larger than PAGE_SIZE from keeping | |
1174 | * failing indefinitely; however, large atomic allocs are not | |
1175 | * something we support properly and can be highly unreliable and | |
1176 | * inefficient. | |
1177 | */ | |
1178 | retry_pop: | |
1179 | if (pcpu_atomic_alloc_failed) { | |
1180 | nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; | |
1181 | /* best effort anyway, don't worry about synchronization */ | |
1182 | pcpu_atomic_alloc_failed = false; | |
1183 | } else { | |
1184 | nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - | |
1185 | pcpu_nr_empty_pop_pages, | |
1186 | 0, PCPU_EMPTY_POP_PAGES_HIGH); | |
1187 | } | |
1188 | ||
1189 | for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { | |
1190 | int nr_unpop = 0, rs, re; | |
1191 | ||
1192 | if (!nr_to_pop) | |
1193 | break; | |
1194 | ||
1195 | spin_lock_irq(&pcpu_lock); | |
1196 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
1197 | nr_unpop = pcpu_unit_pages - chunk->nr_populated; | |
1198 | if (nr_unpop) | |
1199 | break; | |
1200 | } | |
1201 | spin_unlock_irq(&pcpu_lock); | |
1202 | ||
1203 | if (!nr_unpop) | |
1204 | continue; | |
1205 | ||
1206 | /* @chunk can't go away while pcpu_alloc_mutex is held */ | |
1207 | pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { | |
1208 | int nr = min(re - rs, nr_to_pop); | |
1209 | ||
1210 | ret = pcpu_populate_chunk(chunk, rs, rs + nr); | |
1211 | if (!ret) { | |
1212 | nr_to_pop -= nr; | |
1213 | spin_lock_irq(&pcpu_lock); | |
1214 | pcpu_chunk_populated(chunk, rs, rs + nr); | |
1215 | spin_unlock_irq(&pcpu_lock); | |
1216 | } else { | |
1217 | nr_to_pop = 0; | |
1218 | } | |
1219 | ||
1220 | if (!nr_to_pop) | |
1221 | break; | |
1222 | } | |
1223 | } | |
1224 | ||
1225 | if (nr_to_pop) { | |
1226 | /* ran out of chunks to populate, create a new one and retry */ | |
1227 | chunk = pcpu_create_chunk(); | |
1228 | if (chunk) { | |
1229 | spin_lock_irq(&pcpu_lock); | |
1230 | pcpu_chunk_relocate(chunk, -1); | |
1231 | spin_unlock_irq(&pcpu_lock); | |
1232 | goto retry_pop; | |
1233 | } | |
1234 | } | |
1235 | ||
971f3918 | 1236 | mutex_unlock(&pcpu_alloc_mutex); |
fbf59bc9 TH |
1237 | } |
1238 | ||
1239 | /** | |
1240 | * free_percpu - free percpu area | |
1241 | * @ptr: pointer to area to free | |
1242 | * | |
ccea34b5 TH |
1243 | * Free percpu area @ptr. |
1244 | * | |
1245 | * CONTEXT: | |
1246 | * Can be called from atomic context. | |
fbf59bc9 | 1247 | */ |
43cf38eb | 1248 | void free_percpu(void __percpu *ptr) |
fbf59bc9 | 1249 | { |
129182e5 | 1250 | void *addr; |
fbf59bc9 | 1251 | struct pcpu_chunk *chunk; |
ccea34b5 | 1252 | unsigned long flags; |
b539b87f | 1253 | int off, occ_pages; |
fbf59bc9 TH |
1254 | |
1255 | if (!ptr) | |
1256 | return; | |
1257 | ||
f528f0b8 CM |
1258 | kmemleak_free_percpu(ptr); |
1259 | ||
129182e5 AM |
1260 | addr = __pcpu_ptr_to_addr(ptr); |
1261 | ||
ccea34b5 | 1262 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 TH |
1263 | |
1264 | chunk = pcpu_chunk_addr_search(addr); | |
bba174f5 | 1265 | off = addr - chunk->base_addr; |
fbf59bc9 | 1266 | |
b539b87f TH |
1267 | pcpu_free_area(chunk, off, &occ_pages); |
1268 | ||
1269 | if (chunk != pcpu_reserved_chunk) | |
1270 | pcpu_nr_empty_pop_pages += occ_pages; | |
fbf59bc9 | 1271 | |
a56dbddf | 1272 | /* if there are more than one fully free chunks, wake up grim reaper */ |
fbf59bc9 TH |
1273 | if (chunk->free_size == pcpu_unit_size) { |
1274 | struct pcpu_chunk *pos; | |
1275 | ||
a56dbddf | 1276 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) |
fbf59bc9 | 1277 | if (pos != chunk) { |
1a4d7607 | 1278 | pcpu_schedule_balance_work(); |
fbf59bc9 TH |
1279 | break; |
1280 | } | |
1281 | } | |
1282 | ||
ccea34b5 | 1283 | spin_unlock_irqrestore(&pcpu_lock, flags); |
fbf59bc9 TH |
1284 | } |
1285 | EXPORT_SYMBOL_GPL(free_percpu); | |
1286 | ||
10fad5e4 TH |
1287 | /** |
1288 | * is_kernel_percpu_address - test whether address is from static percpu area | |
1289 | * @addr: address to test | |
1290 | * | |
1291 | * Test whether @addr belongs to in-kernel static percpu area. Module | |
1292 | * static percpu areas are not considered. For those, use | |
1293 | * is_module_percpu_address(). | |
1294 | * | |
1295 | * RETURNS: | |
1296 | * %true if @addr is from in-kernel static percpu area, %false otherwise. | |
1297 | */ | |
1298 | bool is_kernel_percpu_address(unsigned long addr) | |
1299 | { | |
bbddff05 | 1300 | #ifdef CONFIG_SMP |
10fad5e4 TH |
1301 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
1302 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | |
1303 | unsigned int cpu; | |
1304 | ||
1305 | for_each_possible_cpu(cpu) { | |
1306 | void *start = per_cpu_ptr(base, cpu); | |
1307 | ||
1308 | if ((void *)addr >= start && (void *)addr < start + static_size) | |
1309 | return true; | |
1310 | } | |
bbddff05 TH |
1311 | #endif |
1312 | /* on UP, can't distinguish from other static vars, always false */ | |
10fad5e4 TH |
1313 | return false; |
1314 | } | |
1315 | ||
3b034b0d VG |
1316 | /** |
1317 | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | |
1318 | * @addr: the address to be converted to physical address | |
1319 | * | |
1320 | * Given @addr which is dereferenceable address obtained via one of | |
1321 | * percpu access macros, this function translates it into its physical | |
1322 | * address. The caller is responsible for ensuring @addr stays valid | |
1323 | * until this function finishes. | |
1324 | * | |
67589c71 DY |
1325 | * percpu allocator has special setup for the first chunk, which currently |
1326 | * supports either embedding in linear address space or vmalloc mapping, | |
1327 | * and, from the second one, the backing allocator (currently either vm or | |
1328 | * km) provides translation. | |
1329 | * | |
bffc4375 | 1330 | * The addr can be translated simply without checking if it falls into the |
67589c71 DY |
1331 | * first chunk. But the current code reflects better how percpu allocator |
1332 | * actually works, and the verification can discover both bugs in percpu | |
1333 | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | |
1334 | * code. | |
1335 | * | |
3b034b0d VG |
1336 | * RETURNS: |
1337 | * The physical address for @addr. | |
1338 | */ | |
1339 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | |
1340 | { | |
9983b6f0 TH |
1341 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
1342 | bool in_first_chunk = false; | |
a855b84c | 1343 | unsigned long first_low, first_high; |
9983b6f0 TH |
1344 | unsigned int cpu; |
1345 | ||
1346 | /* | |
a855b84c | 1347 | * The following test on unit_low/high isn't strictly |
9983b6f0 TH |
1348 | * necessary but will speed up lookups of addresses which |
1349 | * aren't in the first chunk. | |
1350 | */ | |
a855b84c TH |
1351 | first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); |
1352 | first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, | |
1353 | pcpu_unit_pages); | |
1354 | if ((unsigned long)addr >= first_low && | |
1355 | (unsigned long)addr < first_high) { | |
9983b6f0 TH |
1356 | for_each_possible_cpu(cpu) { |
1357 | void *start = per_cpu_ptr(base, cpu); | |
1358 | ||
1359 | if (addr >= start && addr < start + pcpu_unit_size) { | |
1360 | in_first_chunk = true; | |
1361 | break; | |
1362 | } | |
1363 | } | |
1364 | } | |
1365 | ||
1366 | if (in_first_chunk) { | |
eac522ef | 1367 | if (!is_vmalloc_addr(addr)) |
020ec653 TH |
1368 | return __pa(addr); |
1369 | else | |
9f57bd4d ES |
1370 | return page_to_phys(vmalloc_to_page(addr)) + |
1371 | offset_in_page(addr); | |
020ec653 | 1372 | } else |
9f57bd4d ES |
1373 | return page_to_phys(pcpu_addr_to_page(addr)) + |
1374 | offset_in_page(addr); | |
3b034b0d VG |
1375 | } |
1376 | ||
fbf59bc9 | 1377 | /** |
fd1e8a1f TH |
1378 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
1379 | * @nr_groups: the number of groups | |
1380 | * @nr_units: the number of units | |
1381 | * | |
1382 | * Allocate ai which is large enough for @nr_groups groups containing | |
1383 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | |
1384 | * cpu_map array which is long enough for @nr_units and filled with | |
1385 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | |
1386 | * pointer of other groups. | |
1387 | * | |
1388 | * RETURNS: | |
1389 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | |
1390 | * failure. | |
1391 | */ | |
1392 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | |
1393 | int nr_units) | |
1394 | { | |
1395 | struct pcpu_alloc_info *ai; | |
1396 | size_t base_size, ai_size; | |
1397 | void *ptr; | |
1398 | int unit; | |
1399 | ||
1400 | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | |
1401 | __alignof__(ai->groups[0].cpu_map[0])); | |
1402 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | |
1403 | ||
999c17e3 | 1404 | ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); |
fd1e8a1f TH |
1405 | if (!ptr) |
1406 | return NULL; | |
1407 | ai = ptr; | |
1408 | ptr += base_size; | |
1409 | ||
1410 | ai->groups[0].cpu_map = ptr; | |
1411 | ||
1412 | for (unit = 0; unit < nr_units; unit++) | |
1413 | ai->groups[0].cpu_map[unit] = NR_CPUS; | |
1414 | ||
1415 | ai->nr_groups = nr_groups; | |
1416 | ai->__ai_size = PFN_ALIGN(ai_size); | |
1417 | ||
1418 | return ai; | |
1419 | } | |
1420 | ||
1421 | /** | |
1422 | * pcpu_free_alloc_info - free percpu allocation info | |
1423 | * @ai: pcpu_alloc_info to free | |
1424 | * | |
1425 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | |
1426 | */ | |
1427 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |
1428 | { | |
999c17e3 | 1429 | memblock_free_early(__pa(ai), ai->__ai_size); |
fd1e8a1f TH |
1430 | } |
1431 | ||
fd1e8a1f TH |
1432 | /** |
1433 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | |
1434 | * @lvl: loglevel | |
1435 | * @ai: allocation info to dump | |
1436 | * | |
1437 | * Print out information about @ai using loglevel @lvl. | |
1438 | */ | |
1439 | static void pcpu_dump_alloc_info(const char *lvl, | |
1440 | const struct pcpu_alloc_info *ai) | |
033e48fb | 1441 | { |
fd1e8a1f | 1442 | int group_width = 1, cpu_width = 1, width; |
033e48fb | 1443 | char empty_str[] = "--------"; |
fd1e8a1f TH |
1444 | int alloc = 0, alloc_end = 0; |
1445 | int group, v; | |
1446 | int upa, apl; /* units per alloc, allocs per line */ | |
1447 | ||
1448 | v = ai->nr_groups; | |
1449 | while (v /= 10) | |
1450 | group_width++; | |
033e48fb | 1451 | |
fd1e8a1f | 1452 | v = num_possible_cpus(); |
033e48fb | 1453 | while (v /= 10) |
fd1e8a1f TH |
1454 | cpu_width++; |
1455 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | |
033e48fb | 1456 | |
fd1e8a1f TH |
1457 | upa = ai->alloc_size / ai->unit_size; |
1458 | width = upa * (cpu_width + 1) + group_width + 3; | |
1459 | apl = rounddown_pow_of_two(max(60 / width, 1)); | |
033e48fb | 1460 | |
fd1e8a1f TH |
1461 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", |
1462 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | |
1463 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | |
033e48fb | 1464 | |
fd1e8a1f TH |
1465 | for (group = 0; group < ai->nr_groups; group++) { |
1466 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
1467 | int unit = 0, unit_end = 0; | |
1468 | ||
1469 | BUG_ON(gi->nr_units % upa); | |
1470 | for (alloc_end += gi->nr_units / upa; | |
1471 | alloc < alloc_end; alloc++) { | |
1472 | if (!(alloc % apl)) { | |
1170532b | 1473 | pr_cont("\n"); |
fd1e8a1f TH |
1474 | printk("%spcpu-alloc: ", lvl); |
1475 | } | |
1170532b | 1476 | pr_cont("[%0*d] ", group_width, group); |
fd1e8a1f TH |
1477 | |
1478 | for (unit_end += upa; unit < unit_end; unit++) | |
1479 | if (gi->cpu_map[unit] != NR_CPUS) | |
1170532b JP |
1480 | pr_cont("%0*d ", |
1481 | cpu_width, gi->cpu_map[unit]); | |
fd1e8a1f | 1482 | else |
1170532b | 1483 | pr_cont("%s ", empty_str); |
033e48fb | 1484 | } |
033e48fb | 1485 | } |
1170532b | 1486 | pr_cont("\n"); |
033e48fb | 1487 | } |
033e48fb | 1488 | |
fbf59bc9 | 1489 | /** |
8d408b4b | 1490 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
fd1e8a1f | 1491 | * @ai: pcpu_alloc_info describing how to percpu area is shaped |
38a6be52 | 1492 | * @base_addr: mapped address |
8d408b4b TH |
1493 | * |
1494 | * Initialize the first percpu chunk which contains the kernel static | |
1495 | * perpcu area. This function is to be called from arch percpu area | |
38a6be52 | 1496 | * setup path. |
8d408b4b | 1497 | * |
fd1e8a1f TH |
1498 | * @ai contains all information necessary to initialize the first |
1499 | * chunk and prime the dynamic percpu allocator. | |
1500 | * | |
1501 | * @ai->static_size is the size of static percpu area. | |
1502 | * | |
1503 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | |
edcb4639 TH |
1504 | * reserve after the static area in the first chunk. This reserves |
1505 | * the first chunk such that it's available only through reserved | |
1506 | * percpu allocation. This is primarily used to serve module percpu | |
1507 | * static areas on architectures where the addressing model has | |
1508 | * limited offset range for symbol relocations to guarantee module | |
1509 | * percpu symbols fall inside the relocatable range. | |
1510 | * | |
fd1e8a1f TH |
1511 | * @ai->dyn_size determines the number of bytes available for dynamic |
1512 | * allocation in the first chunk. The area between @ai->static_size + | |
1513 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | |
6074d5b0 | 1514 | * |
fd1e8a1f TH |
1515 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
1516 | * and equal to or larger than @ai->static_size + @ai->reserved_size + | |
1517 | * @ai->dyn_size. | |
8d408b4b | 1518 | * |
fd1e8a1f TH |
1519 | * @ai->atom_size is the allocation atom size and used as alignment |
1520 | * for vm areas. | |
8d408b4b | 1521 | * |
fd1e8a1f TH |
1522 | * @ai->alloc_size is the allocation size and always multiple of |
1523 | * @ai->atom_size. This is larger than @ai->atom_size if | |
1524 | * @ai->unit_size is larger than @ai->atom_size. | |
1525 | * | |
1526 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | |
1527 | * percpu areas. Units which should be colocated are put into the | |
1528 | * same group. Dynamic VM areas will be allocated according to these | |
1529 | * groupings. If @ai->nr_groups is zero, a single group containing | |
1530 | * all units is assumed. | |
8d408b4b | 1531 | * |
38a6be52 TH |
1532 | * The caller should have mapped the first chunk at @base_addr and |
1533 | * copied static data to each unit. | |
fbf59bc9 | 1534 | * |
edcb4639 TH |
1535 | * If the first chunk ends up with both reserved and dynamic areas, it |
1536 | * is served by two chunks - one to serve the core static and reserved | |
1537 | * areas and the other for the dynamic area. They share the same vm | |
1538 | * and page map but uses different area allocation map to stay away | |
1539 | * from each other. The latter chunk is circulated in the chunk slots | |
1540 | * and available for dynamic allocation like any other chunks. | |
1541 | * | |
fbf59bc9 | 1542 | * RETURNS: |
fb435d52 | 1543 | * 0 on success, -errno on failure. |
fbf59bc9 | 1544 | */ |
fb435d52 TH |
1545 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
1546 | void *base_addr) | |
fbf59bc9 | 1547 | { |
099a19d9 TH |
1548 | static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; |
1549 | static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; | |
fd1e8a1f TH |
1550 | size_t dyn_size = ai->dyn_size; |
1551 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; | |
edcb4639 | 1552 | struct pcpu_chunk *schunk, *dchunk = NULL; |
6563297c TH |
1553 | unsigned long *group_offsets; |
1554 | size_t *group_sizes; | |
fb435d52 | 1555 | unsigned long *unit_off; |
fbf59bc9 | 1556 | unsigned int cpu; |
fd1e8a1f TH |
1557 | int *unit_map; |
1558 | int group, unit, i; | |
fbf59bc9 | 1559 | |
635b75fc TH |
1560 | #define PCPU_SETUP_BUG_ON(cond) do { \ |
1561 | if (unlikely(cond)) { \ | |
870d4b12 JP |
1562 | pr_emerg("failed to initialize, %s\n", #cond); \ |
1563 | pr_emerg("cpu_possible_mask=%*pb\n", \ | |
807de073 | 1564 | cpumask_pr_args(cpu_possible_mask)); \ |
635b75fc TH |
1565 | pcpu_dump_alloc_info(KERN_EMERG, ai); \ |
1566 | BUG(); \ | |
1567 | } \ | |
1568 | } while (0) | |
1569 | ||
2f39e637 | 1570 | /* sanity checks */ |
635b75fc | 1571 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
bbddff05 | 1572 | #ifdef CONFIG_SMP |
635b75fc | 1573 | PCPU_SETUP_BUG_ON(!ai->static_size); |
f09f1243 | 1574 | PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); |
bbddff05 | 1575 | #endif |
635b75fc | 1576 | PCPU_SETUP_BUG_ON(!base_addr); |
f09f1243 | 1577 | PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); |
635b75fc | 1578 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
f09f1243 | 1579 | PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); |
635b75fc | 1580 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
099a19d9 | 1581 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); |
9f645532 | 1582 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
8d408b4b | 1583 | |
6563297c | 1584 | /* process group information and build config tables accordingly */ |
999c17e3 SS |
1585 | group_offsets = memblock_virt_alloc(ai->nr_groups * |
1586 | sizeof(group_offsets[0]), 0); | |
1587 | group_sizes = memblock_virt_alloc(ai->nr_groups * | |
1588 | sizeof(group_sizes[0]), 0); | |
1589 | unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); | |
1590 | unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); | |
2f39e637 | 1591 | |
fd1e8a1f | 1592 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
ffe0d5a5 | 1593 | unit_map[cpu] = UINT_MAX; |
a855b84c TH |
1594 | |
1595 | pcpu_low_unit_cpu = NR_CPUS; | |
1596 | pcpu_high_unit_cpu = NR_CPUS; | |
2f39e637 | 1597 | |
fd1e8a1f TH |
1598 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { |
1599 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
2f39e637 | 1600 | |
6563297c TH |
1601 | group_offsets[group] = gi->base_offset; |
1602 | group_sizes[group] = gi->nr_units * ai->unit_size; | |
1603 | ||
fd1e8a1f TH |
1604 | for (i = 0; i < gi->nr_units; i++) { |
1605 | cpu = gi->cpu_map[i]; | |
1606 | if (cpu == NR_CPUS) | |
1607 | continue; | |
8d408b4b | 1608 | |
9f295664 | 1609 | PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); |
635b75fc TH |
1610 | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); |
1611 | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | |
fbf59bc9 | 1612 | |
fd1e8a1f | 1613 | unit_map[cpu] = unit + i; |
fb435d52 TH |
1614 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
1615 | ||
a855b84c TH |
1616 | /* determine low/high unit_cpu */ |
1617 | if (pcpu_low_unit_cpu == NR_CPUS || | |
1618 | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | |
1619 | pcpu_low_unit_cpu = cpu; | |
1620 | if (pcpu_high_unit_cpu == NR_CPUS || | |
1621 | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | |
1622 | pcpu_high_unit_cpu = cpu; | |
fd1e8a1f | 1623 | } |
2f39e637 | 1624 | } |
fd1e8a1f TH |
1625 | pcpu_nr_units = unit; |
1626 | ||
1627 | for_each_possible_cpu(cpu) | |
635b75fc TH |
1628 | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); |
1629 | ||
1630 | /* we're done parsing the input, undefine BUG macro and dump config */ | |
1631 | #undef PCPU_SETUP_BUG_ON | |
bcbea798 | 1632 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
fd1e8a1f | 1633 | |
6563297c TH |
1634 | pcpu_nr_groups = ai->nr_groups; |
1635 | pcpu_group_offsets = group_offsets; | |
1636 | pcpu_group_sizes = group_sizes; | |
fd1e8a1f | 1637 | pcpu_unit_map = unit_map; |
fb435d52 | 1638 | pcpu_unit_offsets = unit_off; |
2f39e637 TH |
1639 | |
1640 | /* determine basic parameters */ | |
fd1e8a1f | 1641 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; |
d9b55eeb | 1642 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
6563297c | 1643 | pcpu_atom_size = ai->atom_size; |
ce3141a2 TH |
1644 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + |
1645 | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | |
cafe8816 | 1646 | |
d9b55eeb TH |
1647 | /* |
1648 | * Allocate chunk slots. The additional last slot is for | |
1649 | * empty chunks. | |
1650 | */ | |
1651 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | |
999c17e3 SS |
1652 | pcpu_slot = memblock_virt_alloc( |
1653 | pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); | |
fbf59bc9 TH |
1654 | for (i = 0; i < pcpu_nr_slots; i++) |
1655 | INIT_LIST_HEAD(&pcpu_slot[i]); | |
1656 | ||
edcb4639 TH |
1657 | /* |
1658 | * Initialize static chunk. If reserved_size is zero, the | |
1659 | * static chunk covers static area + dynamic allocation area | |
1660 | * in the first chunk. If reserved_size is not zero, it | |
1661 | * covers static area + reserved area (mostly used for module | |
1662 | * static percpu allocation). | |
1663 | */ | |
999c17e3 | 1664 | schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); |
2441d15c | 1665 | INIT_LIST_HEAD(&schunk->list); |
4f996e23 | 1666 | INIT_LIST_HEAD(&schunk->map_extend_list); |
bba174f5 | 1667 | schunk->base_addr = base_addr; |
61ace7fa TH |
1668 | schunk->map = smap; |
1669 | schunk->map_alloc = ARRAY_SIZE(smap); | |
38a6be52 | 1670 | schunk->immutable = true; |
ce3141a2 | 1671 | bitmap_fill(schunk->populated, pcpu_unit_pages); |
b539b87f | 1672 | schunk->nr_populated = pcpu_unit_pages; |
edcb4639 | 1673 | |
fd1e8a1f TH |
1674 | if (ai->reserved_size) { |
1675 | schunk->free_size = ai->reserved_size; | |
ae9e6bc9 | 1676 | pcpu_reserved_chunk = schunk; |
fd1e8a1f | 1677 | pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; |
edcb4639 TH |
1678 | } else { |
1679 | schunk->free_size = dyn_size; | |
1680 | dyn_size = 0; /* dynamic area covered */ | |
1681 | } | |
2441d15c | 1682 | schunk->contig_hint = schunk->free_size; |
fbf59bc9 | 1683 | |
723ad1d9 AV |
1684 | schunk->map[0] = 1; |
1685 | schunk->map[1] = ai->static_size; | |
1686 | schunk->map_used = 1; | |
61ace7fa | 1687 | if (schunk->free_size) |
292c24a0 BH |
1688 | schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size; |
1689 | schunk->map[schunk->map_used] |= 1; | |
61ace7fa | 1690 | |
edcb4639 TH |
1691 | /* init dynamic chunk if necessary */ |
1692 | if (dyn_size) { | |
999c17e3 | 1693 | dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); |
edcb4639 | 1694 | INIT_LIST_HEAD(&dchunk->list); |
4f996e23 | 1695 | INIT_LIST_HEAD(&dchunk->map_extend_list); |
bba174f5 | 1696 | dchunk->base_addr = base_addr; |
edcb4639 TH |
1697 | dchunk->map = dmap; |
1698 | dchunk->map_alloc = ARRAY_SIZE(dmap); | |
38a6be52 | 1699 | dchunk->immutable = true; |
ce3141a2 | 1700 | bitmap_fill(dchunk->populated, pcpu_unit_pages); |
b539b87f | 1701 | dchunk->nr_populated = pcpu_unit_pages; |
edcb4639 TH |
1702 | |
1703 | dchunk->contig_hint = dchunk->free_size = dyn_size; | |
723ad1d9 AV |
1704 | dchunk->map[0] = 1; |
1705 | dchunk->map[1] = pcpu_reserved_chunk_limit; | |
1706 | dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; | |
1707 | dchunk->map_used = 2; | |
edcb4639 TH |
1708 | } |
1709 | ||
2441d15c | 1710 | /* link the first chunk in */ |
ae9e6bc9 | 1711 | pcpu_first_chunk = dchunk ?: schunk; |
b539b87f TH |
1712 | pcpu_nr_empty_pop_pages += |
1713 | pcpu_count_occupied_pages(pcpu_first_chunk, 1); | |
ae9e6bc9 | 1714 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
fbf59bc9 TH |
1715 | |
1716 | /* we're done */ | |
bba174f5 | 1717 | pcpu_base_addr = base_addr; |
fb435d52 | 1718 | return 0; |
fbf59bc9 | 1719 | } |
66c3a757 | 1720 | |
bbddff05 TH |
1721 | #ifdef CONFIG_SMP |
1722 | ||
17f3609c | 1723 | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { |
f58dc01b TH |
1724 | [PCPU_FC_AUTO] = "auto", |
1725 | [PCPU_FC_EMBED] = "embed", | |
1726 | [PCPU_FC_PAGE] = "page", | |
f58dc01b | 1727 | }; |
66c3a757 | 1728 | |
f58dc01b | 1729 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
66c3a757 | 1730 | |
f58dc01b TH |
1731 | static int __init percpu_alloc_setup(char *str) |
1732 | { | |
5479c78a CG |
1733 | if (!str) |
1734 | return -EINVAL; | |
1735 | ||
f58dc01b TH |
1736 | if (0) |
1737 | /* nada */; | |
1738 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | |
1739 | else if (!strcmp(str, "embed")) | |
1740 | pcpu_chosen_fc = PCPU_FC_EMBED; | |
1741 | #endif | |
1742 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
1743 | else if (!strcmp(str, "page")) | |
1744 | pcpu_chosen_fc = PCPU_FC_PAGE; | |
f58dc01b TH |
1745 | #endif |
1746 | else | |
870d4b12 | 1747 | pr_warn("unknown allocator %s specified\n", str); |
66c3a757 | 1748 | |
f58dc01b | 1749 | return 0; |
66c3a757 | 1750 | } |
f58dc01b | 1751 | early_param("percpu_alloc", percpu_alloc_setup); |
66c3a757 | 1752 | |
3c9a024f TH |
1753 | /* |
1754 | * pcpu_embed_first_chunk() is used by the generic percpu setup. | |
1755 | * Build it if needed by the arch config or the generic setup is going | |
1756 | * to be used. | |
1757 | */ | |
08fc4580 TH |
1758 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ |
1759 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | |
3c9a024f TH |
1760 | #define BUILD_EMBED_FIRST_CHUNK |
1761 | #endif | |
1762 | ||
1763 | /* build pcpu_page_first_chunk() iff needed by the arch config */ | |
1764 | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | |
1765 | #define BUILD_PAGE_FIRST_CHUNK | |
1766 | #endif | |
1767 | ||
1768 | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | |
1769 | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | |
1770 | /** | |
1771 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | |
1772 | * @reserved_size: the size of reserved percpu area in bytes | |
1773 | * @dyn_size: minimum free size for dynamic allocation in bytes | |
1774 | * @atom_size: allocation atom size | |
1775 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
1776 | * | |
1777 | * This function determines grouping of units, their mappings to cpus | |
1778 | * and other parameters considering needed percpu size, allocation | |
1779 | * atom size and distances between CPUs. | |
1780 | * | |
bffc4375 | 1781 | * Groups are always multiples of atom size and CPUs which are of |
3c9a024f TH |
1782 | * LOCAL_DISTANCE both ways are grouped together and share space for |
1783 | * units in the same group. The returned configuration is guaranteed | |
1784 | * to have CPUs on different nodes on different groups and >=75% usage | |
1785 | * of allocated virtual address space. | |
1786 | * | |
1787 | * RETURNS: | |
1788 | * On success, pointer to the new allocation_info is returned. On | |
1789 | * failure, ERR_PTR value is returned. | |
1790 | */ | |
1791 | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( | |
1792 | size_t reserved_size, size_t dyn_size, | |
1793 | size_t atom_size, | |
1794 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | |
1795 | { | |
1796 | static int group_map[NR_CPUS] __initdata; | |
1797 | static int group_cnt[NR_CPUS] __initdata; | |
1798 | const size_t static_size = __per_cpu_end - __per_cpu_start; | |
1799 | int nr_groups = 1, nr_units = 0; | |
1800 | size_t size_sum, min_unit_size, alloc_size; | |
1801 | int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ | |
1802 | int last_allocs, group, unit; | |
1803 | unsigned int cpu, tcpu; | |
1804 | struct pcpu_alloc_info *ai; | |
1805 | unsigned int *cpu_map; | |
1806 | ||
1807 | /* this function may be called multiple times */ | |
1808 | memset(group_map, 0, sizeof(group_map)); | |
1809 | memset(group_cnt, 0, sizeof(group_cnt)); | |
1810 | ||
1811 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | |
1812 | size_sum = PFN_ALIGN(static_size + reserved_size + | |
1813 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | |
1814 | dyn_size = size_sum - static_size - reserved_size; | |
1815 | ||
1816 | /* | |
1817 | * Determine min_unit_size, alloc_size and max_upa such that | |
1818 | * alloc_size is multiple of atom_size and is the smallest | |
25985edc | 1819 | * which can accommodate 4k aligned segments which are equal to |
3c9a024f TH |
1820 | * or larger than min_unit_size. |
1821 | */ | |
1822 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | |
1823 | ||
1824 | alloc_size = roundup(min_unit_size, atom_size); | |
1825 | upa = alloc_size / min_unit_size; | |
f09f1243 | 1826 | while (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
1827 | upa--; |
1828 | max_upa = upa; | |
1829 | ||
1830 | /* group cpus according to their proximity */ | |
1831 | for_each_possible_cpu(cpu) { | |
1832 | group = 0; | |
1833 | next_group: | |
1834 | for_each_possible_cpu(tcpu) { | |
1835 | if (cpu == tcpu) | |
1836 | break; | |
1837 | if (group_map[tcpu] == group && cpu_distance_fn && | |
1838 | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | |
1839 | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | |
1840 | group++; | |
1841 | nr_groups = max(nr_groups, group + 1); | |
1842 | goto next_group; | |
1843 | } | |
1844 | } | |
1845 | group_map[cpu] = group; | |
1846 | group_cnt[group]++; | |
1847 | } | |
1848 | ||
1849 | /* | |
1850 | * Expand unit size until address space usage goes over 75% | |
1851 | * and then as much as possible without using more address | |
1852 | * space. | |
1853 | */ | |
1854 | last_allocs = INT_MAX; | |
1855 | for (upa = max_upa; upa; upa--) { | |
1856 | int allocs = 0, wasted = 0; | |
1857 | ||
f09f1243 | 1858 | if (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
1859 | continue; |
1860 | ||
1861 | for (group = 0; group < nr_groups; group++) { | |
1862 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | |
1863 | allocs += this_allocs; | |
1864 | wasted += this_allocs * upa - group_cnt[group]; | |
1865 | } | |
1866 | ||
1867 | /* | |
1868 | * Don't accept if wastage is over 1/3. The | |
1869 | * greater-than comparison ensures upa==1 always | |
1870 | * passes the following check. | |
1871 | */ | |
1872 | if (wasted > num_possible_cpus() / 3) | |
1873 | continue; | |
1874 | ||
1875 | /* and then don't consume more memory */ | |
1876 | if (allocs > last_allocs) | |
1877 | break; | |
1878 | last_allocs = allocs; | |
1879 | best_upa = upa; | |
1880 | } | |
1881 | upa = best_upa; | |
1882 | ||
1883 | /* allocate and fill alloc_info */ | |
1884 | for (group = 0; group < nr_groups; group++) | |
1885 | nr_units += roundup(group_cnt[group], upa); | |
1886 | ||
1887 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | |
1888 | if (!ai) | |
1889 | return ERR_PTR(-ENOMEM); | |
1890 | cpu_map = ai->groups[0].cpu_map; | |
1891 | ||
1892 | for (group = 0; group < nr_groups; group++) { | |
1893 | ai->groups[group].cpu_map = cpu_map; | |
1894 | cpu_map += roundup(group_cnt[group], upa); | |
1895 | } | |
1896 | ||
1897 | ai->static_size = static_size; | |
1898 | ai->reserved_size = reserved_size; | |
1899 | ai->dyn_size = dyn_size; | |
1900 | ai->unit_size = alloc_size / upa; | |
1901 | ai->atom_size = atom_size; | |
1902 | ai->alloc_size = alloc_size; | |
1903 | ||
1904 | for (group = 0, unit = 0; group_cnt[group]; group++) { | |
1905 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1906 | ||
1907 | /* | |
1908 | * Initialize base_offset as if all groups are located | |
1909 | * back-to-back. The caller should update this to | |
1910 | * reflect actual allocation. | |
1911 | */ | |
1912 | gi->base_offset = unit * ai->unit_size; | |
1913 | ||
1914 | for_each_possible_cpu(cpu) | |
1915 | if (group_map[cpu] == group) | |
1916 | gi->cpu_map[gi->nr_units++] = cpu; | |
1917 | gi->nr_units = roundup(gi->nr_units, upa); | |
1918 | unit += gi->nr_units; | |
1919 | } | |
1920 | BUG_ON(unit != nr_units); | |
1921 | ||
1922 | return ai; | |
1923 | } | |
1924 | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | |
1925 | ||
1926 | #if defined(BUILD_EMBED_FIRST_CHUNK) | |
66c3a757 TH |
1927 | /** |
1928 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | |
66c3a757 | 1929 | * @reserved_size: the size of reserved percpu area in bytes |
4ba6ce25 | 1930 | * @dyn_size: minimum free size for dynamic allocation in bytes |
c8826dd5 TH |
1931 | * @atom_size: allocation atom size |
1932 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
1933 | * @alloc_fn: function to allocate percpu page | |
25985edc | 1934 | * @free_fn: function to free percpu page |
66c3a757 TH |
1935 | * |
1936 | * This is a helper to ease setting up embedded first percpu chunk and | |
1937 | * can be called where pcpu_setup_first_chunk() is expected. | |
1938 | * | |
1939 | * If this function is used to setup the first chunk, it is allocated | |
c8826dd5 TH |
1940 | * by calling @alloc_fn and used as-is without being mapped into |
1941 | * vmalloc area. Allocations are always whole multiples of @atom_size | |
1942 | * aligned to @atom_size. | |
1943 | * | |
1944 | * This enables the first chunk to piggy back on the linear physical | |
1945 | * mapping which often uses larger page size. Please note that this | |
1946 | * can result in very sparse cpu->unit mapping on NUMA machines thus | |
1947 | * requiring large vmalloc address space. Don't use this allocator if | |
1948 | * vmalloc space is not orders of magnitude larger than distances | |
1949 | * between node memory addresses (ie. 32bit NUMA machines). | |
66c3a757 | 1950 | * |
4ba6ce25 | 1951 | * @dyn_size specifies the minimum dynamic area size. |
66c3a757 TH |
1952 | * |
1953 | * If the needed size is smaller than the minimum or specified unit | |
c8826dd5 | 1954 | * size, the leftover is returned using @free_fn. |
66c3a757 TH |
1955 | * |
1956 | * RETURNS: | |
fb435d52 | 1957 | * 0 on success, -errno on failure. |
66c3a757 | 1958 | */ |
4ba6ce25 | 1959 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
c8826dd5 TH |
1960 | size_t atom_size, |
1961 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | |
1962 | pcpu_fc_alloc_fn_t alloc_fn, | |
1963 | pcpu_fc_free_fn_t free_fn) | |
66c3a757 | 1964 | { |
c8826dd5 TH |
1965 | void *base = (void *)ULONG_MAX; |
1966 | void **areas = NULL; | |
fd1e8a1f | 1967 | struct pcpu_alloc_info *ai; |
93c76b6b | 1968 | size_t size_sum, areas_size; |
1969 | unsigned long max_distance; | |
9b739662 | 1970 | int group, i, highest_group, rc; |
66c3a757 | 1971 | |
c8826dd5 TH |
1972 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, |
1973 | cpu_distance_fn); | |
fd1e8a1f TH |
1974 | if (IS_ERR(ai)) |
1975 | return PTR_ERR(ai); | |
66c3a757 | 1976 | |
fd1e8a1f | 1977 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
c8826dd5 | 1978 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); |
fa8a7094 | 1979 | |
999c17e3 | 1980 | areas = memblock_virt_alloc_nopanic(areas_size, 0); |
c8826dd5 | 1981 | if (!areas) { |
fb435d52 | 1982 | rc = -ENOMEM; |
c8826dd5 | 1983 | goto out_free; |
fa8a7094 | 1984 | } |
66c3a757 | 1985 | |
9b739662 | 1986 | /* allocate, copy and determine base address & max_distance */ |
1987 | highest_group = 0; | |
c8826dd5 TH |
1988 | for (group = 0; group < ai->nr_groups; group++) { |
1989 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1990 | unsigned int cpu = NR_CPUS; | |
1991 | void *ptr; | |
1992 | ||
1993 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | |
1994 | cpu = gi->cpu_map[i]; | |
1995 | BUG_ON(cpu == NR_CPUS); | |
1996 | ||
1997 | /* allocate space for the whole group */ | |
1998 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
1999 | if (!ptr) { | |
2000 | rc = -ENOMEM; | |
2001 | goto out_free_areas; | |
2002 | } | |
f528f0b8 CM |
2003 | /* kmemleak tracks the percpu allocations separately */ |
2004 | kmemleak_free(ptr); | |
c8826dd5 | 2005 | areas[group] = ptr; |
fd1e8a1f | 2006 | |
c8826dd5 | 2007 | base = min(ptr, base); |
9b739662 | 2008 | if (ptr > areas[highest_group]) |
2009 | highest_group = group; | |
2010 | } | |
2011 | max_distance = areas[highest_group] - base; | |
2012 | max_distance += ai->unit_size * ai->groups[highest_group].nr_units; | |
2013 | ||
2014 | /* warn if maximum distance is further than 75% of vmalloc space */ | |
2015 | if (max_distance > VMALLOC_TOTAL * 3 / 4) { | |
2016 | pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", | |
2017 | max_distance, VMALLOC_TOTAL); | |
2018 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
2019 | /* and fail if we have fallback */ | |
2020 | rc = -EINVAL; | |
2021 | goto out_free_areas; | |
2022 | #endif | |
42b64281 TH |
2023 | } |
2024 | ||
2025 | /* | |
2026 | * Copy data and free unused parts. This should happen after all | |
2027 | * allocations are complete; otherwise, we may end up with | |
2028 | * overlapping groups. | |
2029 | */ | |
2030 | for (group = 0; group < ai->nr_groups; group++) { | |
2031 | struct pcpu_group_info *gi = &ai->groups[group]; | |
2032 | void *ptr = areas[group]; | |
c8826dd5 TH |
2033 | |
2034 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | |
2035 | if (gi->cpu_map[i] == NR_CPUS) { | |
2036 | /* unused unit, free whole */ | |
2037 | free_fn(ptr, ai->unit_size); | |
2038 | continue; | |
2039 | } | |
2040 | /* copy and return the unused part */ | |
2041 | memcpy(ptr, __per_cpu_load, ai->static_size); | |
2042 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | |
2043 | } | |
fa8a7094 | 2044 | } |
66c3a757 | 2045 | |
c8826dd5 | 2046 | /* base address is now known, determine group base offsets */ |
6ea529a2 | 2047 | for (group = 0; group < ai->nr_groups; group++) { |
c8826dd5 | 2048 | ai->groups[group].base_offset = areas[group] - base; |
6ea529a2 | 2049 | } |
c8826dd5 | 2050 | |
870d4b12 | 2051 | pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", |
fd1e8a1f TH |
2052 | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, |
2053 | ai->dyn_size, ai->unit_size); | |
d4b95f80 | 2054 | |
fb435d52 | 2055 | rc = pcpu_setup_first_chunk(ai, base); |
c8826dd5 TH |
2056 | goto out_free; |
2057 | ||
2058 | out_free_areas: | |
2059 | for (group = 0; group < ai->nr_groups; group++) | |
f851c8d8 MH |
2060 | if (areas[group]) |
2061 | free_fn(areas[group], | |
2062 | ai->groups[group].nr_units * ai->unit_size); | |
c8826dd5 | 2063 | out_free: |
fd1e8a1f | 2064 | pcpu_free_alloc_info(ai); |
c8826dd5 | 2065 | if (areas) |
999c17e3 | 2066 | memblock_free_early(__pa(areas), areas_size); |
fb435d52 | 2067 | return rc; |
d4b95f80 | 2068 | } |
3c9a024f | 2069 | #endif /* BUILD_EMBED_FIRST_CHUNK */ |
d4b95f80 | 2070 | |
3c9a024f | 2071 | #ifdef BUILD_PAGE_FIRST_CHUNK |
d4b95f80 | 2072 | /** |
00ae4064 | 2073 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages |
d4b95f80 TH |
2074 | * @reserved_size: the size of reserved percpu area in bytes |
2075 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | |
25985edc | 2076 | * @free_fn: function to free percpu page, always called with PAGE_SIZE |
d4b95f80 TH |
2077 | * @populate_pte_fn: function to populate pte |
2078 | * | |
00ae4064 TH |
2079 | * This is a helper to ease setting up page-remapped first percpu |
2080 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | |
d4b95f80 TH |
2081 | * |
2082 | * This is the basic allocator. Static percpu area is allocated | |
2083 | * page-by-page into vmalloc area. | |
2084 | * | |
2085 | * RETURNS: | |
fb435d52 | 2086 | * 0 on success, -errno on failure. |
d4b95f80 | 2087 | */ |
fb435d52 TH |
2088 | int __init pcpu_page_first_chunk(size_t reserved_size, |
2089 | pcpu_fc_alloc_fn_t alloc_fn, | |
2090 | pcpu_fc_free_fn_t free_fn, | |
2091 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | |
d4b95f80 | 2092 | { |
8f05a6a6 | 2093 | static struct vm_struct vm; |
fd1e8a1f | 2094 | struct pcpu_alloc_info *ai; |
00ae4064 | 2095 | char psize_str[16]; |
ce3141a2 | 2096 | int unit_pages; |
d4b95f80 | 2097 | size_t pages_size; |
ce3141a2 | 2098 | struct page **pages; |
fb435d52 | 2099 | int unit, i, j, rc; |
8f606604 | 2100 | int upa; |
2101 | int nr_g0_units; | |
d4b95f80 | 2102 | |
00ae4064 TH |
2103 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
2104 | ||
4ba6ce25 | 2105 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
fd1e8a1f TH |
2106 | if (IS_ERR(ai)) |
2107 | return PTR_ERR(ai); | |
2108 | BUG_ON(ai->nr_groups != 1); | |
8f606604 | 2109 | upa = ai->alloc_size/ai->unit_size; |
2110 | nr_g0_units = roundup(num_possible_cpus(), upa); | |
2111 | if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) { | |
2112 | pcpu_free_alloc_info(ai); | |
2113 | return -EINVAL; | |
2114 | } | |
fd1e8a1f TH |
2115 | |
2116 | unit_pages = ai->unit_size >> PAGE_SHIFT; | |
d4b95f80 TH |
2117 | |
2118 | /* unaligned allocations can't be freed, round up to page size */ | |
fd1e8a1f TH |
2119 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * |
2120 | sizeof(pages[0])); | |
999c17e3 | 2121 | pages = memblock_virt_alloc(pages_size, 0); |
d4b95f80 | 2122 | |
8f05a6a6 | 2123 | /* allocate pages */ |
d4b95f80 | 2124 | j = 0; |
8f606604 | 2125 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
2126 | unsigned int cpu = ai->groups[0].cpu_map[unit]; | |
ce3141a2 | 2127 | for (i = 0; i < unit_pages; i++) { |
d4b95f80 TH |
2128 | void *ptr; |
2129 | ||
3cbc8565 | 2130 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); |
d4b95f80 | 2131 | if (!ptr) { |
870d4b12 | 2132 | pr_warn("failed to allocate %s page for cpu%u\n", |
8f606604 | 2133 | psize_str, cpu); |
d4b95f80 TH |
2134 | goto enomem; |
2135 | } | |
f528f0b8 CM |
2136 | /* kmemleak tracks the percpu allocations separately */ |
2137 | kmemleak_free(ptr); | |
ce3141a2 | 2138 | pages[j++] = virt_to_page(ptr); |
d4b95f80 | 2139 | } |
8f606604 | 2140 | } |
d4b95f80 | 2141 | |
8f05a6a6 TH |
2142 | /* allocate vm area, map the pages and copy static data */ |
2143 | vm.flags = VM_ALLOC; | |
fd1e8a1f | 2144 | vm.size = num_possible_cpus() * ai->unit_size; |
8f05a6a6 TH |
2145 | vm_area_register_early(&vm, PAGE_SIZE); |
2146 | ||
fd1e8a1f | 2147 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
1d9d3257 | 2148 | unsigned long unit_addr = |
fd1e8a1f | 2149 | (unsigned long)vm.addr + unit * ai->unit_size; |
8f05a6a6 | 2150 | |
ce3141a2 | 2151 | for (i = 0; i < unit_pages; i++) |
8f05a6a6 TH |
2152 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); |
2153 | ||
2154 | /* pte already populated, the following shouldn't fail */ | |
fb435d52 TH |
2155 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], |
2156 | unit_pages); | |
2157 | if (rc < 0) | |
2158 | panic("failed to map percpu area, err=%d\n", rc); | |
66c3a757 | 2159 | |
8f05a6a6 TH |
2160 | /* |
2161 | * FIXME: Archs with virtual cache should flush local | |
2162 | * cache for the linear mapping here - something | |
2163 | * equivalent to flush_cache_vmap() on the local cpu. | |
2164 | * flush_cache_vmap() can't be used as most supporting | |
2165 | * data structures are not set up yet. | |
2166 | */ | |
2167 | ||
2168 | /* copy static data */ | |
fd1e8a1f | 2169 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); |
66c3a757 TH |
2170 | } |
2171 | ||
2172 | /* we're ready, commit */ | |
870d4b12 | 2173 | pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", |
fd1e8a1f TH |
2174 | unit_pages, psize_str, vm.addr, ai->static_size, |
2175 | ai->reserved_size, ai->dyn_size); | |
d4b95f80 | 2176 | |
fb435d52 | 2177 | rc = pcpu_setup_first_chunk(ai, vm.addr); |
d4b95f80 TH |
2178 | goto out_free_ar; |
2179 | ||
2180 | enomem: | |
2181 | while (--j >= 0) | |
ce3141a2 | 2182 | free_fn(page_address(pages[j]), PAGE_SIZE); |
fb435d52 | 2183 | rc = -ENOMEM; |
d4b95f80 | 2184 | out_free_ar: |
999c17e3 | 2185 | memblock_free_early(__pa(pages), pages_size); |
fd1e8a1f | 2186 | pcpu_free_alloc_info(ai); |
fb435d52 | 2187 | return rc; |
d4b95f80 | 2188 | } |
3c9a024f | 2189 | #endif /* BUILD_PAGE_FIRST_CHUNK */ |
d4b95f80 | 2190 | |
bbddff05 | 2191 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA |
e74e3962 | 2192 | /* |
bbddff05 | 2193 | * Generic SMP percpu area setup. |
e74e3962 TH |
2194 | * |
2195 | * The embedding helper is used because its behavior closely resembles | |
2196 | * the original non-dynamic generic percpu area setup. This is | |
2197 | * important because many archs have addressing restrictions and might | |
2198 | * fail if the percpu area is located far away from the previous | |
2199 | * location. As an added bonus, in non-NUMA cases, embedding is | |
2200 | * generally a good idea TLB-wise because percpu area can piggy back | |
2201 | * on the physical linear memory mapping which uses large page | |
2202 | * mappings on applicable archs. | |
2203 | */ | |
e74e3962 TH |
2204 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
2205 | EXPORT_SYMBOL(__per_cpu_offset); | |
2206 | ||
c8826dd5 TH |
2207 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, |
2208 | size_t align) | |
2209 | { | |
999c17e3 SS |
2210 | return memblock_virt_alloc_from_nopanic( |
2211 | size, align, __pa(MAX_DMA_ADDRESS)); | |
c8826dd5 | 2212 | } |
66c3a757 | 2213 | |
c8826dd5 TH |
2214 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
2215 | { | |
999c17e3 | 2216 | memblock_free_early(__pa(ptr), size); |
c8826dd5 TH |
2217 | } |
2218 | ||
e74e3962 TH |
2219 | void __init setup_per_cpu_areas(void) |
2220 | { | |
e74e3962 TH |
2221 | unsigned long delta; |
2222 | unsigned int cpu; | |
fb435d52 | 2223 | int rc; |
e74e3962 TH |
2224 | |
2225 | /* | |
2226 | * Always reserve area for module percpu variables. That's | |
2227 | * what the legacy allocator did. | |
2228 | */ | |
fb435d52 | 2229 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
c8826dd5 TH |
2230 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, |
2231 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | |
fb435d52 | 2232 | if (rc < 0) |
bbddff05 | 2233 | panic("Failed to initialize percpu areas."); |
e74e3962 TH |
2234 | |
2235 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | |
2236 | for_each_possible_cpu(cpu) | |
fb435d52 | 2237 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
66c3a757 | 2238 | } |
bbddff05 TH |
2239 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
2240 | ||
2241 | #else /* CONFIG_SMP */ | |
2242 | ||
2243 | /* | |
2244 | * UP percpu area setup. | |
2245 | * | |
2246 | * UP always uses km-based percpu allocator with identity mapping. | |
2247 | * Static percpu variables are indistinguishable from the usual static | |
2248 | * variables and don't require any special preparation. | |
2249 | */ | |
2250 | void __init setup_per_cpu_areas(void) | |
2251 | { | |
2252 | const size_t unit_size = | |
2253 | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | |
2254 | PERCPU_DYNAMIC_RESERVE)); | |
2255 | struct pcpu_alloc_info *ai; | |
2256 | void *fc; | |
2257 | ||
2258 | ai = pcpu_alloc_alloc_info(1, 1); | |
999c17e3 SS |
2259 | fc = memblock_virt_alloc_from_nopanic(unit_size, |
2260 | PAGE_SIZE, | |
2261 | __pa(MAX_DMA_ADDRESS)); | |
bbddff05 TH |
2262 | if (!ai || !fc) |
2263 | panic("Failed to allocate memory for percpu areas."); | |
100d13c3 CM |
2264 | /* kmemleak tracks the percpu allocations separately */ |
2265 | kmemleak_free(fc); | |
bbddff05 TH |
2266 | |
2267 | ai->dyn_size = unit_size; | |
2268 | ai->unit_size = unit_size; | |
2269 | ai->atom_size = unit_size; | |
2270 | ai->alloc_size = unit_size; | |
2271 | ai->groups[0].nr_units = 1; | |
2272 | ai->groups[0].cpu_map[0] = 0; | |
2273 | ||
2274 | if (pcpu_setup_first_chunk(ai, fc) < 0) | |
2275 | panic("Failed to initialize percpu areas."); | |
2276 | } | |
2277 | ||
2278 | #endif /* CONFIG_SMP */ | |
099a19d9 TH |
2279 | |
2280 | /* | |
2281 | * First and reserved chunks are initialized with temporary allocation | |
2282 | * map in initdata so that they can be used before slab is online. | |
2283 | * This function is called after slab is brought up and replaces those | |
2284 | * with properly allocated maps. | |
2285 | */ | |
2286 | void __init percpu_init_late(void) | |
2287 | { | |
2288 | struct pcpu_chunk *target_chunks[] = | |
2289 | { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; | |
2290 | struct pcpu_chunk *chunk; | |
2291 | unsigned long flags; | |
2292 | int i; | |
2293 | ||
2294 | for (i = 0; (chunk = target_chunks[i]); i++) { | |
2295 | int *map; | |
2296 | const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); | |
2297 | ||
2298 | BUILD_BUG_ON(size > PAGE_SIZE); | |
2299 | ||
90459ce0 | 2300 | map = pcpu_mem_zalloc(size); |
099a19d9 TH |
2301 | BUG_ON(!map); |
2302 | ||
2303 | spin_lock_irqsave(&pcpu_lock, flags); | |
2304 | memcpy(map, chunk->map, size); | |
2305 | chunk->map = map; | |
2306 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
2307 | } | |
2308 | } | |
1a4d7607 TH |
2309 | |
2310 | /* | |
2311 | * Percpu allocator is initialized early during boot when neither slab or | |
2312 | * workqueue is available. Plug async management until everything is up | |
2313 | * and running. | |
2314 | */ | |
2315 | static int __init percpu_enable_async(void) | |
2316 | { | |
2317 | pcpu_async_enabled = true; | |
2318 | return 0; | |
2319 | } | |
2320 | subsys_initcall(percpu_enable_async); |