]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/percpu.c
percpu: make pcpu_block_md generic
[mirror_ubuntu-hirsute-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
5e81ee3e
DZF
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
9c015162 10 * This file is released under the GPLv2 license.
fbf59bc9 11 *
9c015162
DZF
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
fbf59bc9
TH
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
9c015162
DZF
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
5e81ee3e 31 * are not online yet. In short, the first chunk is structured like so:
9c015162
DZF
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
fbf59bc9 39 *
5e81ee3e
DZF
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
9c015162 54 *
4091fb95 55 * To use this allocator, arch code should do the following:
fbf59bc9 56 *
fbf59bc9 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
fbf59bc9 60 *
8d408b4b
TH
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
63 */
64
870d4b12
JP
65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
fbf59bc9 67#include <linux/bitmap.h>
57c8a661 68#include <linux/memblock.h>
fd1e8a1f 69#include <linux/err.h>
ca460b3c 70#include <linux/lcm.h>
fbf59bc9 71#include <linux/list.h>
a530b795 72#include <linux/log2.h>
fbf59bc9
TH
73#include <linux/mm.h>
74#include <linux/module.h>
75#include <linux/mutex.h>
76#include <linux/percpu.h>
77#include <linux/pfn.h>
fbf59bc9 78#include <linux/slab.h>
ccea34b5 79#include <linux/spinlock.h>
fbf59bc9 80#include <linux/vmalloc.h>
a56dbddf 81#include <linux/workqueue.h>
f528f0b8 82#include <linux/kmemleak.h>
71546d10 83#include <linux/sched.h>
fbf59bc9
TH
84
85#include <asm/cacheflush.h>
e0100983 86#include <asm/sections.h>
fbf59bc9 87#include <asm/tlbflush.h>
3b034b0d 88#include <asm/io.h>
fbf59bc9 89
df95e795
DZ
90#define CREATE_TRACE_POINTS
91#include <trace/events/percpu.h>
92
8fa3ed80
DZ
93#include "percpu-internal.h"
94
40064aec
DZF
95/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96#define PCPU_SLOT_BASE_SHIFT 5
8744d859
DZ
97/* chunks in slots below this are subject to being sidelined on failed alloc */
98#define PCPU_SLOT_FAIL_THRESHOLD 3
40064aec 99
1a4d7607
TH
100#define PCPU_EMPTY_POP_PAGES_LOW 2
101#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 102
bbddff05 103#ifdef CONFIG_SMP
e0100983
TH
104/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105#ifndef __addr_to_pcpu_ptr
106#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
107 (void __percpu *)((unsigned long)(addr) - \
108 (unsigned long)pcpu_base_addr + \
109 (unsigned long)__per_cpu_start)
e0100983
TH
110#endif
111#ifndef __pcpu_ptr_to_addr
112#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
113 (void __force *)((unsigned long)(ptr) + \
114 (unsigned long)pcpu_base_addr - \
115 (unsigned long)__per_cpu_start)
e0100983 116#endif
bbddff05
TH
117#else /* CONFIG_SMP */
118/* on UP, it's always identity mapped */
119#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
120#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
121#endif /* CONFIG_SMP */
e0100983 122
1328710b
DM
123static int pcpu_unit_pages __ro_after_init;
124static int pcpu_unit_size __ro_after_init;
125static int pcpu_nr_units __ro_after_init;
126static int pcpu_atom_size __ro_after_init;
8fa3ed80 127int pcpu_nr_slots __ro_after_init;
1328710b 128static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 129
a855b84c 130/* cpus with the lowest and highest unit addresses */
1328710b
DM
131static unsigned int pcpu_low_unit_cpu __ro_after_init;
132static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 133
fbf59bc9 134/* the address of the first chunk which starts with the kernel static area */
1328710b 135void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
136EXPORT_SYMBOL_GPL(pcpu_base_addr);
137
1328710b
DM
138static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
139const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 140
6563297c 141/* group information, used for vm allocation */
1328710b
DM
142static int pcpu_nr_groups __ro_after_init;
143static const unsigned long *pcpu_group_offsets __ro_after_init;
144static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 145
ae9e6bc9
TH
146/*
147 * The first chunk which always exists. Note that unlike other
148 * chunks, this one can be allocated and mapped in several different
149 * ways and thus often doesn't live in the vmalloc area.
150 */
8fa3ed80 151struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
152
153/*
154 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
155 * chunk and serves it for reserved allocations. When the reserved
156 * region doesn't exist, the following variable is NULL.
ae9e6bc9 157 */
8fa3ed80 158struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 159
8fa3ed80 160DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 161static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 162
8fa3ed80 163struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 164
4f996e23
TH
165/* chunks which need their map areas extended, protected by pcpu_lock */
166static LIST_HEAD(pcpu_map_extend_chunks);
167
b539b87f
TH
168/*
169 * The number of empty populated pages, protected by pcpu_lock. The
170 * reserved chunk doesn't contribute to the count.
171 */
6b9b6f39 172int pcpu_nr_empty_pop_pages;
b539b87f 173
7e8a6304
DZF
174/*
175 * The number of populated pages in use by the allocator, protected by
176 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
177 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178 * and increments/decrements this count by 1).
179 */
180static unsigned long pcpu_nr_populated;
181
1a4d7607
TH
182/*
183 * Balance work is used to populate or destroy chunks asynchronously. We
184 * try to keep the number of populated free pages between
185 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
186 * empty chunk.
187 */
fe6bd8c3
TH
188static void pcpu_balance_workfn(struct work_struct *work);
189static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
190static bool pcpu_async_enabled __read_mostly;
191static bool pcpu_atomic_alloc_failed;
192
193static void pcpu_schedule_balance_work(void)
194{
195 if (pcpu_async_enabled)
196 schedule_work(&pcpu_balance_work);
197}
a56dbddf 198
c0ebfdc3 199/**
560f2c23
DZF
200 * pcpu_addr_in_chunk - check if the address is served from this chunk
201 * @chunk: chunk of interest
202 * @addr: percpu address
c0ebfdc3
DZF
203 *
204 * RETURNS:
560f2c23 205 * True if the address is served from this chunk.
c0ebfdc3 206 */
560f2c23 207static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 208{
c0ebfdc3
DZF
209 void *start_addr, *end_addr;
210
560f2c23 211 if (!chunk)
c0ebfdc3 212 return false;
020ec653 213
560f2c23
DZF
214 start_addr = chunk->base_addr + chunk->start_offset;
215 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
216 chunk->end_offset;
c0ebfdc3
DZF
217
218 return addr >= start_addr && addr < end_addr;
020ec653
TH
219}
220
d9b55eeb 221static int __pcpu_size_to_slot(int size)
fbf59bc9 222{
cae3aeb8 223 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
224 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
225}
226
d9b55eeb
TH
227static int pcpu_size_to_slot(int size)
228{
229 if (size == pcpu_unit_size)
230 return pcpu_nr_slots - 1;
231 return __pcpu_size_to_slot(size);
232}
233
fbf59bc9
TH
234static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
235{
40064aec 236 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
fbf59bc9
TH
237 return 0;
238
3e54097b 239 return pcpu_size_to_slot(chunk->contig_bits * PCPU_MIN_ALLOC_SIZE);
fbf59bc9
TH
240}
241
88999a89
TH
242/* set the pointer to a chunk in a page struct */
243static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
244{
245 page->index = (unsigned long)pcpu;
246}
247
248/* obtain pointer to a chunk from a page struct */
249static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
250{
251 return (struct pcpu_chunk *)page->index;
252}
253
254static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 255{
2f39e637 256 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
257}
258
c0ebfdc3
DZF
259static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
260{
261 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
262}
263
9983b6f0
TH
264static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
265 unsigned int cpu, int page_idx)
fbf59bc9 266{
c0ebfdc3
DZF
267 return (unsigned long)chunk->base_addr +
268 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
269}
270
91e914c5 271static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 272{
91e914c5
DZF
273 *rs = find_next_zero_bit(bitmap, end, *rs);
274 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
275}
276
91e914c5 277static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 278{
91e914c5
DZF
279 *rs = find_next_bit(bitmap, end, *rs);
280 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
281}
282
283/*
91e914c5
DZF
284 * Bitmap region iterators. Iterates over the bitmap between
285 * [@start, @end) in @chunk. @rs and @re should be integer variables
286 * and will be set to start and end index of the current free region.
ce3141a2 287 */
91e914c5
DZF
288#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
289 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
290 (rs) < (re); \
291 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 292
91e914c5
DZF
293#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
294 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
295 (rs) < (re); \
296 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 297
ca460b3c
DZF
298/*
299 * The following are helper functions to help access bitmaps and convert
300 * between bitmap offsets to address offsets.
301 */
302static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
303{
304 return chunk->alloc_map +
305 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
306}
307
308static unsigned long pcpu_off_to_block_index(int off)
309{
310 return off / PCPU_BITMAP_BLOCK_BITS;
311}
312
313static unsigned long pcpu_off_to_block_off(int off)
314{
315 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
316}
317
b185cd0d
DZF
318static unsigned long pcpu_block_off_to_off(int index, int off)
319{
320 return index * PCPU_BITMAP_BLOCK_BITS + off;
321}
322
382b88e9
DZ
323/*
324 * pcpu_next_hint - determine which hint to use
325 * @block: block of interest
326 * @alloc_bits: size of allocation
327 *
328 * This determines if we should scan based on the scan_hint or first_free.
329 * In general, we want to scan from first_free to fulfill allocations by
330 * first fit. However, if we know a scan_hint at position scan_hint_start
331 * cannot fulfill an allocation, we can begin scanning from there knowing
332 * the contig_hint will be our fallback.
333 */
334static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
335{
336 /*
337 * The three conditions below determine if we can skip past the
338 * scan_hint. First, does the scan hint exist. Second, is the
339 * contig_hint after the scan_hint (possibly not true iff
340 * contig_hint == scan_hint). Third, is the allocation request
341 * larger than the scan_hint.
342 */
343 if (block->scan_hint &&
344 block->contig_hint_start > block->scan_hint_start &&
345 alloc_bits > block->scan_hint)
346 return block->scan_hint_start + block->scan_hint;
347
348 return block->first_free;
349}
350
525ca84d
DZF
351/**
352 * pcpu_next_md_free_region - finds the next hint free area
353 * @chunk: chunk of interest
354 * @bit_off: chunk offset
355 * @bits: size of free area
356 *
357 * Helper function for pcpu_for_each_md_free_region. It checks
358 * block->contig_hint and performs aggregation across blocks to find the
359 * next hint. It modifies bit_off and bits in-place to be consumed in the
360 * loop.
361 */
362static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
363 int *bits)
364{
365 int i = pcpu_off_to_block_index(*bit_off);
366 int block_off = pcpu_off_to_block_off(*bit_off);
367 struct pcpu_block_md *block;
368
369 *bits = 0;
370 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
371 block++, i++) {
372 /* handles contig area across blocks */
373 if (*bits) {
374 *bits += block->left_free;
375 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
376 continue;
377 return;
378 }
379
380 /*
381 * This checks three things. First is there a contig_hint to
382 * check. Second, have we checked this hint before by
383 * comparing the block_off. Third, is this the same as the
384 * right contig hint. In the last case, it spills over into
385 * the next block and should be handled by the contig area
386 * across blocks code.
387 */
388 *bits = block->contig_hint;
389 if (*bits && block->contig_hint_start >= block_off &&
390 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
391 *bit_off = pcpu_block_off_to_off(i,
392 block->contig_hint_start);
393 return;
394 }
1fa4df3e
DZ
395 /* reset to satisfy the second predicate above */
396 block_off = 0;
525ca84d
DZF
397
398 *bits = block->right_free;
399 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
400 }
401}
402
b4c2116c
DZF
403/**
404 * pcpu_next_fit_region - finds fit areas for a given allocation request
405 * @chunk: chunk of interest
406 * @alloc_bits: size of allocation
407 * @align: alignment of area (max PAGE_SIZE)
408 * @bit_off: chunk offset
409 * @bits: size of free area
410 *
411 * Finds the next free region that is viable for use with a given size and
412 * alignment. This only returns if there is a valid area to be used for this
413 * allocation. block->first_free is returned if the allocation request fits
414 * within the block to see if the request can be fulfilled prior to the contig
415 * hint.
416 */
417static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
418 int align, int *bit_off, int *bits)
419{
420 int i = pcpu_off_to_block_index(*bit_off);
421 int block_off = pcpu_off_to_block_off(*bit_off);
422 struct pcpu_block_md *block;
423
424 *bits = 0;
425 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
426 block++, i++) {
427 /* handles contig area across blocks */
428 if (*bits) {
429 *bits += block->left_free;
430 if (*bits >= alloc_bits)
431 return;
432 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
433 continue;
434 }
435
436 /* check block->contig_hint */
437 *bits = ALIGN(block->contig_hint_start, align) -
438 block->contig_hint_start;
439 /*
440 * This uses the block offset to determine if this has been
441 * checked in the prior iteration.
442 */
443 if (block->contig_hint &&
444 block->contig_hint_start >= block_off &&
445 block->contig_hint >= *bits + alloc_bits) {
382b88e9
DZ
446 int start = pcpu_next_hint(block, alloc_bits);
447
b4c2116c 448 *bits += alloc_bits + block->contig_hint_start -
382b88e9
DZ
449 start;
450 *bit_off = pcpu_block_off_to_off(i, start);
b4c2116c
DZF
451 return;
452 }
1fa4df3e
DZ
453 /* reset to satisfy the second predicate above */
454 block_off = 0;
b4c2116c
DZF
455
456 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
457 align);
458 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
459 *bit_off = pcpu_block_off_to_off(i, *bit_off);
460 if (*bits >= alloc_bits)
461 return;
462 }
463
464 /* no valid offsets were found - fail condition */
465 *bit_off = pcpu_chunk_map_bits(chunk);
466}
467
525ca84d
DZF
468/*
469 * Metadata free area iterators. These perform aggregation of free areas
470 * based on the metadata blocks and return the offset @bit_off and size in
b4c2116c
DZF
471 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
472 * a fit is found for the allocation request.
525ca84d
DZF
473 */
474#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
475 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
476 (bit_off) < pcpu_chunk_map_bits((chunk)); \
477 (bit_off) += (bits) + 1, \
478 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
479
b4c2116c
DZF
480#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
481 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
482 &(bits)); \
483 (bit_off) < pcpu_chunk_map_bits((chunk)); \
484 (bit_off) += (bits), \
485 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
486 &(bits)))
487
fbf59bc9 488/**
90459ce0 489 * pcpu_mem_zalloc - allocate memory
1880d93b 490 * @size: bytes to allocate
47504ee0 491 * @gfp: allocation flags
fbf59bc9 492 *
1880d93b 493 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
47504ee0
DZ
494 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
495 * This is to facilitate passing through whitelisted flags. The
496 * returned memory is always zeroed.
fbf59bc9
TH
497 *
498 * RETURNS:
1880d93b 499 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 500 */
47504ee0 501static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
fbf59bc9 502{
099a19d9
TH
503 if (WARN_ON_ONCE(!slab_is_available()))
504 return NULL;
505
1880d93b 506 if (size <= PAGE_SIZE)
554fef1c 507 return kzalloc(size, gfp);
7af4c093 508 else
554fef1c 509 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
1880d93b 510}
fbf59bc9 511
1880d93b
TH
512/**
513 * pcpu_mem_free - free memory
514 * @ptr: memory to free
1880d93b 515 *
90459ce0 516 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 517 */
1d5cfdb0 518static void pcpu_mem_free(void *ptr)
1880d93b 519{
1d5cfdb0 520 kvfree(ptr);
fbf59bc9
TH
521}
522
8744d859
DZ
523static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
524 bool move_front)
525{
526 if (chunk != pcpu_reserved_chunk) {
527 if (move_front)
528 list_move(&chunk->list, &pcpu_slot[slot]);
529 else
530 list_move_tail(&chunk->list, &pcpu_slot[slot]);
531 }
532}
533
534static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
535{
536 __pcpu_chunk_move(chunk, slot, true);
537}
538
fbf59bc9
TH
539/**
540 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
541 * @chunk: chunk of interest
542 * @oslot: the previous slot it was on
543 *
544 * This function is called after an allocation or free changed @chunk.
545 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
546 * moved to the slot. Note that the reserved chunk is never put on
547 * chunk slots.
ccea34b5
TH
548 *
549 * CONTEXT:
550 * pcpu_lock.
fbf59bc9
TH
551 */
552static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
553{
554 int nslot = pcpu_chunk_slot(chunk);
555
8744d859
DZ
556 if (oslot != nslot)
557 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
fbf59bc9
TH
558}
559
b239f7da
DZ
560/*
561 * pcpu_update_empty_pages - update empty page counters
833af842 562 * @chunk: chunk of interest
b239f7da 563 * @nr: nr of empty pages
9f7dcf22 564 *
b239f7da
DZ
565 * This is used to keep track of the empty pages now based on the premise
566 * a md_block covers a page. The hint update functions recognize if a block
567 * is made full or broken to calculate deltas for keeping track of free pages.
9f7dcf22 568 */
b239f7da 569static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
9f7dcf22 570{
b239f7da
DZ
571 chunk->nr_empty_pop_pages += nr;
572 if (chunk != pcpu_reserved_chunk)
573 pcpu_nr_empty_pop_pages += nr;
833af842
TH
574}
575
d9f3a01e
DZ
576/*
577 * pcpu_region_overlap - determines if two regions overlap
578 * @a: start of first region, inclusive
579 * @b: end of first region, exclusive
580 * @x: start of second region, inclusive
581 * @y: end of second region, exclusive
582 *
583 * This is used to determine if the hint region [a, b) overlaps with the
584 * allocated region [x, y).
585 */
586static inline bool pcpu_region_overlap(int a, int b, int x, int y)
587{
588 return (a < y) && (x < b);
589}
590
833af842 591/**
40064aec 592 * pcpu_chunk_update - updates the chunk metadata given a free area
833af842 593 * @chunk: chunk of interest
40064aec
DZF
594 * @bit_off: chunk offset
595 * @bits: size of free area
833af842 596 *
13f96637 597 * This updates the chunk's contig hint and starting offset given a free area.
268625a6 598 * Choose the best starting offset if the contig hint is equal.
40064aec
DZF
599 */
600static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
601{
13f96637
DZF
602 if (bits > chunk->contig_bits) {
603 chunk->contig_bits_start = bit_off;
40064aec 604 chunk->contig_bits = bits;
268625a6
DZF
605 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
606 (!bit_off ||
607 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
608 /* use the start with the best alignment */
609 chunk->contig_bits_start = bit_off;
13f96637 610 }
40064aec
DZF
611}
612
613/**
614 * pcpu_chunk_refresh_hint - updates metadata about a chunk
615 * @chunk: chunk of interest
833af842 616 *
525ca84d
DZF
617 * Iterates over the metadata blocks to find the largest contig area.
618 * It also counts the populated pages and uses the delta to update the
619 * global count.
833af842 620 *
40064aec
DZF
621 * Updates:
622 * chunk->contig_bits
13f96637 623 * chunk->contig_bits_start
833af842 624 */
40064aec 625static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
833af842 626{
b239f7da 627 int bit_off, bits;
833af842 628
40064aec
DZF
629 /* clear metadata */
630 chunk->contig_bits = 0;
6710e594 631
525ca84d 632 bit_off = chunk->first_bit;
b239f7da 633 bits = 0;
525ca84d
DZF
634 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
635 pcpu_chunk_update(chunk, bit_off, bits);
40064aec 636 }
40064aec 637}
9f7dcf22 638
ca460b3c
DZF
639/**
640 * pcpu_block_update - updates a block given a free area
641 * @block: block of interest
642 * @start: start offset in block
643 * @end: end offset in block
644 *
645 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
646 * expected to be the entirety of the free area within a block. Chooses
647 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
648 */
649static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
650{
651 int contig = end - start;
652
653 block->first_free = min(block->first_free, start);
654 if (start == 0)
655 block->left_free = contig;
656
047924c9 657 if (end == block->nr_bits)
ca460b3c
DZF
658 block->right_free = contig;
659
660 if (contig > block->contig_hint) {
382b88e9
DZ
661 /* promote the old contig_hint to be the new scan_hint */
662 if (start > block->contig_hint_start) {
663 if (block->contig_hint > block->scan_hint) {
664 block->scan_hint_start =
665 block->contig_hint_start;
666 block->scan_hint = block->contig_hint;
667 } else if (start < block->scan_hint_start) {
668 /*
669 * The old contig_hint == scan_hint. But, the
670 * new contig is larger so hold the invariant
671 * scan_hint_start < contig_hint_start.
672 */
673 block->scan_hint = 0;
674 }
675 } else {
676 block->scan_hint = 0;
677 }
ca460b3c
DZF
678 block->contig_hint_start = start;
679 block->contig_hint = contig;
382b88e9
DZ
680 } else if (contig == block->contig_hint) {
681 if (block->contig_hint_start &&
682 (!start ||
683 __ffs(start) > __ffs(block->contig_hint_start))) {
684 /* start has a better alignment so use it */
685 block->contig_hint_start = start;
686 if (start < block->scan_hint_start &&
687 block->contig_hint > block->scan_hint)
688 block->scan_hint = 0;
689 } else if (start > block->scan_hint_start ||
690 block->contig_hint > block->scan_hint) {
691 /*
692 * Knowing contig == contig_hint, update the scan_hint
693 * if it is farther than or larger than the current
694 * scan_hint.
695 */
696 block->scan_hint_start = start;
697 block->scan_hint = contig;
698 }
699 } else {
700 /*
701 * The region is smaller than the contig_hint. So only update
702 * the scan_hint if it is larger than or equal and farther than
703 * the current scan_hint.
704 */
705 if ((start < block->contig_hint_start &&
706 (contig > block->scan_hint ||
707 (contig == block->scan_hint &&
708 start > block->scan_hint_start)))) {
709 block->scan_hint_start = start;
710 block->scan_hint = contig;
711 }
ca460b3c
DZF
712 }
713}
714
b89462a9
DZ
715/*
716 * pcpu_block_update_scan - update a block given a free area from a scan
717 * @chunk: chunk of interest
718 * @bit_off: chunk offset
719 * @bits: size of free area
720 *
721 * Finding the final allocation spot first goes through pcpu_find_block_fit()
722 * to find a block that can hold the allocation and then pcpu_alloc_area()
723 * where a scan is used. When allocations require specific alignments,
724 * we can inadvertently create holes which will not be seen in the alloc
725 * or free paths.
726 *
727 * This takes a given free area hole and updates a block as it may change the
728 * scan_hint. We need to scan backwards to ensure we don't miss free bits
729 * from alignment.
730 */
731static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
732 int bits)
733{
734 int s_off = pcpu_off_to_block_off(bit_off);
735 int e_off = s_off + bits;
736 int s_index, l_bit;
737 struct pcpu_block_md *block;
738
739 if (e_off > PCPU_BITMAP_BLOCK_BITS)
740 return;
741
742 s_index = pcpu_off_to_block_index(bit_off);
743 block = chunk->md_blocks + s_index;
744
745 /* scan backwards in case of alignment skipping free bits */
746 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
747 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
748
749 pcpu_block_update(block, s_off, e_off);
750}
751
ca460b3c
DZF
752/**
753 * pcpu_block_refresh_hint
754 * @chunk: chunk of interest
755 * @index: index of the metadata block
756 *
757 * Scans over the block beginning at first_free and updates the block
758 * metadata accordingly.
759 */
760static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
761{
762 struct pcpu_block_md *block = chunk->md_blocks + index;
763 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
da3afdd5
DZ
764 int rs, re, start; /* region start, region end */
765
766 /* promote scan_hint to contig_hint */
767 if (block->scan_hint) {
768 start = block->scan_hint_start + block->scan_hint;
769 block->contig_hint_start = block->scan_hint_start;
770 block->contig_hint = block->scan_hint;
771 block->scan_hint = 0;
772 } else {
773 start = block->first_free;
774 block->contig_hint = 0;
775 }
ca460b3c 776
da3afdd5 777 block->right_free = 0;
ca460b3c
DZF
778
779 /* iterate over free areas and update the contig hints */
da3afdd5 780 pcpu_for_each_unpop_region(alloc_map, rs, re, start,
ca460b3c
DZF
781 PCPU_BITMAP_BLOCK_BITS) {
782 pcpu_block_update(block, rs, re);
783 }
784}
785
786/**
787 * pcpu_block_update_hint_alloc - update hint on allocation path
788 * @chunk: chunk of interest
789 * @bit_off: chunk offset
790 * @bits: size of request
fc304334
DZF
791 *
792 * Updates metadata for the allocation path. The metadata only has to be
793 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
794 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
795 */
796static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
797 int bits)
798{
b239f7da 799 int nr_empty_pages = 0;
ca460b3c
DZF
800 struct pcpu_block_md *s_block, *e_block, *block;
801 int s_index, e_index; /* block indexes of the freed allocation */
802 int s_off, e_off; /* block offsets of the freed allocation */
803
804 /*
805 * Calculate per block offsets.
806 * The calculation uses an inclusive range, but the resulting offsets
807 * are [start, end). e_index always points to the last block in the
808 * range.
809 */
810 s_index = pcpu_off_to_block_index(bit_off);
811 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
812 s_off = pcpu_off_to_block_off(bit_off);
813 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
814
815 s_block = chunk->md_blocks + s_index;
816 e_block = chunk->md_blocks + e_index;
817
818 /*
819 * Update s_block.
fc304334
DZF
820 * block->first_free must be updated if the allocation takes its place.
821 * If the allocation breaks the contig_hint, a scan is required to
822 * restore this hint.
ca460b3c 823 */
b239f7da
DZ
824 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
825 nr_empty_pages++;
826
fc304334
DZF
827 if (s_off == s_block->first_free)
828 s_block->first_free = find_next_zero_bit(
829 pcpu_index_alloc_map(chunk, s_index),
830 PCPU_BITMAP_BLOCK_BITS,
831 s_off + bits);
832
382b88e9
DZ
833 if (pcpu_region_overlap(s_block->scan_hint_start,
834 s_block->scan_hint_start + s_block->scan_hint,
835 s_off,
836 s_off + bits))
837 s_block->scan_hint = 0;
838
d9f3a01e
DZ
839 if (pcpu_region_overlap(s_block->contig_hint_start,
840 s_block->contig_hint_start +
841 s_block->contig_hint,
842 s_off,
843 s_off + bits)) {
fc304334 844 /* block contig hint is broken - scan to fix it */
da3afdd5
DZ
845 if (!s_off)
846 s_block->left_free = 0;
fc304334
DZF
847 pcpu_block_refresh_hint(chunk, s_index);
848 } else {
849 /* update left and right contig manually */
850 s_block->left_free = min(s_block->left_free, s_off);
851 if (s_index == e_index)
852 s_block->right_free = min_t(int, s_block->right_free,
853 PCPU_BITMAP_BLOCK_BITS - e_off);
854 else
855 s_block->right_free = 0;
856 }
ca460b3c
DZF
857
858 /*
859 * Update e_block.
860 */
861 if (s_index != e_index) {
b239f7da
DZ
862 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
863 nr_empty_pages++;
864
fc304334
DZF
865 /*
866 * When the allocation is across blocks, the end is along
867 * the left part of the e_block.
868 */
869 e_block->first_free = find_next_zero_bit(
870 pcpu_index_alloc_map(chunk, e_index),
871 PCPU_BITMAP_BLOCK_BITS, e_off);
872
873 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
874 /* reset the block */
875 e_block++;
876 } else {
382b88e9
DZ
877 if (e_off > e_block->scan_hint_start)
878 e_block->scan_hint = 0;
879
da3afdd5 880 e_block->left_free = 0;
fc304334
DZF
881 if (e_off > e_block->contig_hint_start) {
882 /* contig hint is broken - scan to fix it */
883 pcpu_block_refresh_hint(chunk, e_index);
884 } else {
fc304334
DZF
885 e_block->right_free =
886 min_t(int, e_block->right_free,
887 PCPU_BITMAP_BLOCK_BITS - e_off);
888 }
889 }
ca460b3c
DZF
890
891 /* update in-between md_blocks */
b239f7da 892 nr_empty_pages += (e_index - s_index - 1);
ca460b3c 893 for (block = s_block + 1; block < e_block; block++) {
382b88e9 894 block->scan_hint = 0;
ca460b3c
DZF
895 block->contig_hint = 0;
896 block->left_free = 0;
897 block->right_free = 0;
898 }
899 }
900
b239f7da
DZ
901 if (nr_empty_pages)
902 pcpu_update_empty_pages(chunk, -nr_empty_pages);
903
fc304334
DZF
904 /*
905 * The only time a full chunk scan is required is if the chunk
906 * contig hint is broken. Otherwise, it means a smaller space
907 * was used and therefore the chunk contig hint is still correct.
908 */
d9f3a01e
DZ
909 if (pcpu_region_overlap(chunk->contig_bits_start,
910 chunk->contig_bits_start + chunk->contig_bits,
911 bit_off,
912 bit_off + bits))
fc304334 913 pcpu_chunk_refresh_hint(chunk);
ca460b3c
DZF
914}
915
916/**
917 * pcpu_block_update_hint_free - updates the block hints on the free path
918 * @chunk: chunk of interest
919 * @bit_off: chunk offset
920 * @bits: size of request
b185cd0d
DZF
921 *
922 * Updates metadata for the allocation path. This avoids a blind block
923 * refresh by making use of the block contig hints. If this fails, it scans
924 * forward and backward to determine the extent of the free area. This is
925 * capped at the boundary of blocks.
926 *
927 * A chunk update is triggered if a page becomes free, a block becomes free,
928 * or the free spans across blocks. This tradeoff is to minimize iterating
929 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
930 * may be off by up to a page, but it will never be more than the available
931 * space. If the contig hint is contained in one block, it will be accurate.
ca460b3c
DZF
932 */
933static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
934 int bits)
935{
b239f7da 936 int nr_empty_pages = 0;
ca460b3c
DZF
937 struct pcpu_block_md *s_block, *e_block, *block;
938 int s_index, e_index; /* block indexes of the freed allocation */
939 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 940 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
941
942 /*
943 * Calculate per block offsets.
944 * The calculation uses an inclusive range, but the resulting offsets
945 * are [start, end). e_index always points to the last block in the
946 * range.
947 */
948 s_index = pcpu_off_to_block_index(bit_off);
949 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
950 s_off = pcpu_off_to_block_off(bit_off);
951 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
952
953 s_block = chunk->md_blocks + s_index;
954 e_block = chunk->md_blocks + e_index;
955
b185cd0d
DZF
956 /*
957 * Check if the freed area aligns with the block->contig_hint.
958 * If it does, then the scan to find the beginning/end of the
959 * larger free area can be avoided.
960 *
961 * start and end refer to beginning and end of the free area
962 * within each their respective blocks. This is not necessarily
963 * the entire free area as it may span blocks past the beginning
964 * or end of the block.
965 */
966 start = s_off;
967 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
968 start = s_block->contig_hint_start;
969 } else {
970 /*
971 * Scan backwards to find the extent of the free area.
972 * find_last_bit returns the starting bit, so if the start bit
973 * is returned, that means there was no last bit and the
974 * remainder of the chunk is free.
975 */
976 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
977 start);
978 start = (start == l_bit) ? 0 : l_bit + 1;
979 }
980
981 end = e_off;
982 if (e_off == e_block->contig_hint_start)
983 end = e_block->contig_hint_start + e_block->contig_hint;
984 else
985 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
986 PCPU_BITMAP_BLOCK_BITS, end);
987
ca460b3c 988 /* update s_block */
b185cd0d 989 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
b239f7da
DZ
990 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
991 nr_empty_pages++;
b185cd0d 992 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
993
994 /* freeing in the same block */
995 if (s_index != e_index) {
996 /* update e_block */
b239f7da
DZ
997 if (end == PCPU_BITMAP_BLOCK_BITS)
998 nr_empty_pages++;
b185cd0d 999 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
1000
1001 /* reset md_blocks in the middle */
b239f7da 1002 nr_empty_pages += (e_index - s_index - 1);
ca460b3c
DZF
1003 for (block = s_block + 1; block < e_block; block++) {
1004 block->first_free = 0;
382b88e9 1005 block->scan_hint = 0;
ca460b3c
DZF
1006 block->contig_hint_start = 0;
1007 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1008 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1009 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1010 }
1011 }
1012
b239f7da
DZ
1013 if (nr_empty_pages)
1014 pcpu_update_empty_pages(chunk, nr_empty_pages);
1015
b185cd0d 1016 /*
b239f7da
DZ
1017 * Refresh chunk metadata when the free makes a block free or spans
1018 * across blocks. The contig_hint may be off by up to a page, but if
1019 * the contig_hint is contained in a block, it will be accurate with
1020 * the else condition below.
b185cd0d 1021 */
b239f7da 1022 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
b185cd0d
DZF
1023 pcpu_chunk_refresh_hint(chunk);
1024 else
1025 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
8e5a2b98 1026 end - start);
ca460b3c
DZF
1027}
1028
40064aec
DZF
1029/**
1030 * pcpu_is_populated - determines if the region is populated
1031 * @chunk: chunk of interest
1032 * @bit_off: chunk offset
1033 * @bits: size of area
1034 * @next_off: return value for the next offset to start searching
1035 *
1036 * For atomic allocations, check if the backing pages are populated.
1037 *
1038 * RETURNS:
1039 * Bool if the backing pages are populated.
1040 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1041 */
1042static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1043 int *next_off)
1044{
1045 int page_start, page_end, rs, re;
833af842 1046
40064aec
DZF
1047 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1048 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 1049
40064aec
DZF
1050 rs = page_start;
1051 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
1052 if (rs >= page_end)
1053 return true;
833af842 1054
40064aec
DZF
1055 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1056 return false;
9f7dcf22
TH
1057}
1058
a16037c8 1059/**
40064aec
DZF
1060 * pcpu_find_block_fit - finds the block index to start searching
1061 * @chunk: chunk of interest
1062 * @alloc_bits: size of request in allocation units
1063 * @align: alignment of area (max PAGE_SIZE bytes)
1064 * @pop_only: use populated regions only
1065 *
b4c2116c
DZF
1066 * Given a chunk and an allocation spec, find the offset to begin searching
1067 * for a free region. This iterates over the bitmap metadata blocks to
1068 * find an offset that will be guaranteed to fit the requirements. It is
1069 * not quite first fit as if the allocation does not fit in the contig hint
1070 * of a block or chunk, it is skipped. This errs on the side of caution
1071 * to prevent excess iteration. Poor alignment can cause the allocator to
1072 * skip over blocks and chunks that have valid free areas.
1073 *
40064aec
DZF
1074 * RETURNS:
1075 * The offset in the bitmap to begin searching.
1076 * -1 if no offset is found.
a16037c8 1077 */
40064aec
DZF
1078static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1079 size_t align, bool pop_only)
a16037c8 1080{
b4c2116c 1081 int bit_off, bits, next_off;
a16037c8 1082
13f96637
DZF
1083 /*
1084 * Check to see if the allocation can fit in the chunk's contig hint.
1085 * This is an optimization to prevent scanning by assuming if it
1086 * cannot fit in the global hint, there is memory pressure and creating
1087 * a new chunk would happen soon.
1088 */
1089 bit_off = ALIGN(chunk->contig_bits_start, align) -
1090 chunk->contig_bits_start;
1091 if (bit_off + alloc_bits > chunk->contig_bits)
1092 return -1;
1093
b4c2116c
DZF
1094 bit_off = chunk->first_bit;
1095 bits = 0;
1096 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
40064aec 1097 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
b4c2116c 1098 &next_off))
40064aec 1099 break;
a16037c8 1100
b4c2116c 1101 bit_off = next_off;
40064aec 1102 bits = 0;
a16037c8 1103 }
40064aec
DZF
1104
1105 if (bit_off == pcpu_chunk_map_bits(chunk))
1106 return -1;
1107
1108 return bit_off;
a16037c8
TH
1109}
1110
b89462a9
DZ
1111/*
1112 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1113 * @map: the address to base the search on
1114 * @size: the bitmap size in bits
1115 * @start: the bitnumber to start searching at
1116 * @nr: the number of zeroed bits we're looking for
1117 * @align_mask: alignment mask for zero area
1118 * @largest_off: offset of the largest area skipped
1119 * @largest_bits: size of the largest area skipped
1120 *
1121 * The @align_mask should be one less than a power of 2.
1122 *
1123 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1124 * the largest area that was skipped. This is imperfect, but in general is
1125 * good enough. The largest remembered region is the largest failed region
1126 * seen. This does not include anything we possibly skipped due to alignment.
1127 * pcpu_block_update_scan() does scan backwards to try and recover what was
1128 * lost to alignment. While this can cause scanning to miss earlier possible
1129 * free areas, smaller allocations will eventually fill those holes.
1130 */
1131static unsigned long pcpu_find_zero_area(unsigned long *map,
1132 unsigned long size,
1133 unsigned long start,
1134 unsigned long nr,
1135 unsigned long align_mask,
1136 unsigned long *largest_off,
1137 unsigned long *largest_bits)
1138{
1139 unsigned long index, end, i, area_off, area_bits;
1140again:
1141 index = find_next_zero_bit(map, size, start);
1142
1143 /* Align allocation */
1144 index = __ALIGN_MASK(index, align_mask);
1145 area_off = index;
1146
1147 end = index + nr;
1148 if (end > size)
1149 return end;
1150 i = find_next_bit(map, end, index);
1151 if (i < end) {
1152 area_bits = i - area_off;
1153 /* remember largest unused area with best alignment */
1154 if (area_bits > *largest_bits ||
1155 (area_bits == *largest_bits && *largest_off &&
1156 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1157 *largest_off = area_off;
1158 *largest_bits = area_bits;
1159 }
1160
1161 start = i + 1;
1162 goto again;
1163 }
1164 return index;
1165}
1166
fbf59bc9 1167/**
40064aec 1168 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 1169 * @chunk: chunk of interest
40064aec
DZF
1170 * @alloc_bits: size of request in allocation units
1171 * @align: alignment of area (max PAGE_SIZE)
1172 * @start: bit_off to start searching
9f7dcf22 1173 *
40064aec 1174 * This function takes in a @start offset to begin searching to fit an
b4c2116c
DZF
1175 * allocation of @alloc_bits with alignment @align. It needs to scan
1176 * the allocation map because if it fits within the block's contig hint,
1177 * @start will be block->first_free. This is an attempt to fill the
1178 * allocation prior to breaking the contig hint. The allocation and
1179 * boundary maps are updated accordingly if it confirms a valid
1180 * free area.
ccea34b5 1181 *
fbf59bc9 1182 * RETURNS:
40064aec
DZF
1183 * Allocated addr offset in @chunk on success.
1184 * -1 if no matching area is found.
fbf59bc9 1185 */
40064aec
DZF
1186static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1187 size_t align, int start)
fbf59bc9 1188{
40064aec 1189 size_t align_mask = (align) ? (align - 1) : 0;
b89462a9 1190 unsigned long area_off = 0, area_bits = 0;
40064aec 1191 int bit_off, end, oslot;
a16037c8 1192
40064aec 1193 lockdep_assert_held(&pcpu_lock);
fbf59bc9 1194
40064aec 1195 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1196
40064aec
DZF
1197 /*
1198 * Search to find a fit.
1199 */
8c43004a
DZ
1200 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1201 pcpu_chunk_map_bits(chunk));
b89462a9
DZ
1202 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1203 align_mask, &area_off, &area_bits);
40064aec
DZF
1204 if (bit_off >= end)
1205 return -1;
fbf59bc9 1206
b89462a9
DZ
1207 if (area_bits)
1208 pcpu_block_update_scan(chunk, area_off, area_bits);
1209
40064aec
DZF
1210 /* update alloc map */
1211 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 1212
40064aec
DZF
1213 /* update boundary map */
1214 set_bit(bit_off, chunk->bound_map);
1215 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1216 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 1217
40064aec 1218 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 1219
86b442fb
DZF
1220 /* update first free bit */
1221 if (bit_off == chunk->first_bit)
1222 chunk->first_bit = find_next_zero_bit(
1223 chunk->alloc_map,
1224 pcpu_chunk_map_bits(chunk),
1225 bit_off + alloc_bits);
1226
ca460b3c 1227 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 1228
fbf59bc9
TH
1229 pcpu_chunk_relocate(chunk, oslot);
1230
40064aec 1231 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
1232}
1233
1234/**
40064aec 1235 * pcpu_free_area - frees the corresponding offset
fbf59bc9 1236 * @chunk: chunk of interest
40064aec 1237 * @off: addr offset into chunk
ccea34b5 1238 *
40064aec
DZF
1239 * This function determines the size of an allocation to free using
1240 * the boundary bitmap and clears the allocation map.
fbf59bc9 1241 */
40064aec 1242static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 1243{
40064aec 1244 int bit_off, bits, end, oslot;
723ad1d9 1245
5ccd30e4 1246 lockdep_assert_held(&pcpu_lock);
30a5b536 1247 pcpu_stats_area_dealloc(chunk);
5ccd30e4 1248
40064aec 1249 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1250
40064aec 1251 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 1252
40064aec
DZF
1253 /* find end index */
1254 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1255 bit_off + 1);
1256 bits = end - bit_off;
1257 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 1258
40064aec
DZF
1259 /* update metadata */
1260 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
b539b87f 1261
86b442fb
DZF
1262 /* update first free bit */
1263 chunk->first_bit = min(chunk->first_bit, bit_off);
1264
ca460b3c 1265 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 1266
fbf59bc9
TH
1267 pcpu_chunk_relocate(chunk, oslot);
1268}
1269
047924c9
DZ
1270static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1271{
1272 block->scan_hint = 0;
1273 block->contig_hint = nr_bits;
1274 block->left_free = nr_bits;
1275 block->right_free = nr_bits;
1276 block->first_free = 0;
1277 block->nr_bits = nr_bits;
1278}
1279
ca460b3c
DZF
1280static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1281{
1282 struct pcpu_block_md *md_block;
1283
1284 for (md_block = chunk->md_blocks;
1285 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
047924c9
DZ
1286 md_block++)
1287 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
ca460b3c
DZF
1288}
1289
40064aec
DZF
1290/**
1291 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1292 * @tmp_addr: the start of the region served
1293 * @map_size: size of the region served
1294 *
1295 * This is responsible for creating the chunks that serve the first chunk. The
1296 * base_addr is page aligned down of @tmp_addr while the region end is page
1297 * aligned up. Offsets are kept track of to determine the region served. All
1298 * this is done to appease the bitmap allocator in avoiding partial blocks.
1299 *
1300 * RETURNS:
1301 * Chunk serving the region at @tmp_addr of @map_size.
1302 */
c0ebfdc3 1303static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 1304 int map_size)
10edf5b0
DZF
1305{
1306 struct pcpu_chunk *chunk;
ca460b3c 1307 unsigned long aligned_addr, lcm_align;
40064aec 1308 int start_offset, offset_bits, region_size, region_bits;
f655f405 1309 size_t alloc_size;
c0ebfdc3
DZF
1310
1311 /* region calculations */
1312 aligned_addr = tmp_addr & PAGE_MASK;
1313
1314 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1315
ca460b3c
DZF
1316 /*
1317 * Align the end of the region with the LCM of PAGE_SIZE and
1318 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1319 * the other.
1320 */
1321 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1322 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1323
c0ebfdc3 1324 /* allocate chunk */
f655f405
MR
1325 alloc_size = sizeof(struct pcpu_chunk) +
1326 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1327 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1328 if (!chunk)
1329 panic("%s: Failed to allocate %zu bytes\n", __func__,
1330 alloc_size);
c0ebfdc3 1331
10edf5b0 1332 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1333
1334 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1335 chunk->start_offset = start_offset;
6b9d7c8e 1336 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1337
8ab16c43 1338 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1339 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1340
f655f405
MR
1341 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1342 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1343 if (!chunk->alloc_map)
1344 panic("%s: Failed to allocate %zu bytes\n", __func__,
1345 alloc_size);
1346
1347 alloc_size =
1348 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1349 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1350 if (!chunk->bound_map)
1351 panic("%s: Failed to allocate %zu bytes\n", __func__,
1352 alloc_size);
1353
1354 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1355 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1356 if (!chunk->md_blocks)
1357 panic("%s: Failed to allocate %zu bytes\n", __func__,
1358 alloc_size);
1359
ca460b3c 1360 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1361
1362 /* manage populated page bitmap */
1363 chunk->immutable = true;
8ab16c43
DZF
1364 bitmap_fill(chunk->populated, chunk->nr_pages);
1365 chunk->nr_populated = chunk->nr_pages;
b239f7da 1366 chunk->nr_empty_pop_pages = chunk->nr_pages;
10edf5b0 1367
40064aec
DZF
1368 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1369 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1370
1371 if (chunk->start_offset) {
1372 /* hide the beginning of the bitmap */
40064aec
DZF
1373 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1374 bitmap_set(chunk->alloc_map, 0, offset_bits);
1375 set_bit(0, chunk->bound_map);
1376 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1377
86b442fb
DZF
1378 chunk->first_bit = offset_bits;
1379
ca460b3c 1380 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1381 }
1382
6b9d7c8e
DZF
1383 if (chunk->end_offset) {
1384 /* hide the end of the bitmap */
40064aec
DZF
1385 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1386 bitmap_set(chunk->alloc_map,
1387 pcpu_chunk_map_bits(chunk) - offset_bits,
1388 offset_bits);
1389 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1390 chunk->bound_map);
1391 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1392
ca460b3c
DZF
1393 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1394 - offset_bits, offset_bits);
1395 }
40064aec 1396
10edf5b0
DZF
1397 return chunk;
1398}
1399
47504ee0 1400static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
6081089f
TH
1401{
1402 struct pcpu_chunk *chunk;
40064aec 1403 int region_bits;
6081089f 1404
47504ee0 1405 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
6081089f
TH
1406 if (!chunk)
1407 return NULL;
1408
40064aec
DZF
1409 INIT_LIST_HEAD(&chunk->list);
1410 chunk->nr_pages = pcpu_unit_pages;
1411 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1412
40064aec 1413 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
47504ee0 1414 sizeof(chunk->alloc_map[0]), gfp);
40064aec
DZF
1415 if (!chunk->alloc_map)
1416 goto alloc_map_fail;
6081089f 1417
40064aec 1418 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
47504ee0 1419 sizeof(chunk->bound_map[0]), gfp);
40064aec
DZF
1420 if (!chunk->bound_map)
1421 goto bound_map_fail;
6081089f 1422
ca460b3c 1423 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
47504ee0 1424 sizeof(chunk->md_blocks[0]), gfp);
ca460b3c
DZF
1425 if (!chunk->md_blocks)
1426 goto md_blocks_fail;
1427
1428 pcpu_init_md_blocks(chunk);
1429
40064aec
DZF
1430 /* init metadata */
1431 chunk->contig_bits = region_bits;
1432 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1433
6081089f 1434 return chunk;
40064aec 1435
ca460b3c
DZF
1436md_blocks_fail:
1437 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1438bound_map_fail:
1439 pcpu_mem_free(chunk->alloc_map);
1440alloc_map_fail:
1441 pcpu_mem_free(chunk);
1442
1443 return NULL;
6081089f
TH
1444}
1445
1446static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1447{
1448 if (!chunk)
1449 return;
6685b357 1450 pcpu_mem_free(chunk->md_blocks);
40064aec
DZF
1451 pcpu_mem_free(chunk->bound_map);
1452 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1453 pcpu_mem_free(chunk);
6081089f
TH
1454}
1455
b539b87f
TH
1456/**
1457 * pcpu_chunk_populated - post-population bookkeeping
1458 * @chunk: pcpu_chunk which got populated
1459 * @page_start: the start page
1460 * @page_end: the end page
1461 *
1462 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1463 * the bookkeeping information accordingly. Must be called after each
1464 * successful population.
40064aec
DZF
1465 *
1466 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1467 * is to serve an allocation in that area.
b539b87f 1468 */
40064aec 1469static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
b239f7da 1470 int page_end)
b539b87f
TH
1471{
1472 int nr = page_end - page_start;
1473
1474 lockdep_assert_held(&pcpu_lock);
1475
1476 bitmap_set(chunk->populated, page_start, nr);
1477 chunk->nr_populated += nr;
7e8a6304 1478 pcpu_nr_populated += nr;
40064aec 1479
b239f7da 1480 pcpu_update_empty_pages(chunk, nr);
b539b87f
TH
1481}
1482
1483/**
1484 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1485 * @chunk: pcpu_chunk which got depopulated
1486 * @page_start: the start page
1487 * @page_end: the end page
1488 *
1489 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1490 * Update the bookkeeping information accordingly. Must be called after
1491 * each successful depopulation.
1492 */
1493static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1494 int page_start, int page_end)
1495{
1496 int nr = page_end - page_start;
1497
1498 lockdep_assert_held(&pcpu_lock);
1499
1500 bitmap_clear(chunk->populated, page_start, nr);
1501 chunk->nr_populated -= nr;
7e8a6304 1502 pcpu_nr_populated -= nr;
b239f7da
DZ
1503
1504 pcpu_update_empty_pages(chunk, -nr);
b539b87f
TH
1505}
1506
9f645532
TH
1507/*
1508 * Chunk management implementation.
1509 *
1510 * To allow different implementations, chunk alloc/free and
1511 * [de]population are implemented in a separate file which is pulled
1512 * into this file and compiled together. The following functions
1513 * should be implemented.
1514 *
1515 * pcpu_populate_chunk - populate the specified range of a chunk
1516 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1517 * pcpu_create_chunk - create a new chunk
1518 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1519 * pcpu_addr_to_page - translate address to physical address
1520 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1521 */
15d9f3d1 1522static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
47504ee0 1523 int page_start, int page_end, gfp_t gfp);
15d9f3d1
DZ
1524static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1525 int page_start, int page_end);
47504ee0 1526static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
9f645532
TH
1527static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1528static struct page *pcpu_addr_to_page(void *addr);
1529static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1530
b0c9778b
TH
1531#ifdef CONFIG_NEED_PER_CPU_KM
1532#include "percpu-km.c"
1533#else
9f645532 1534#include "percpu-vm.c"
b0c9778b 1535#endif
fbf59bc9 1536
88999a89
TH
1537/**
1538 * pcpu_chunk_addr_search - determine chunk containing specified address
1539 * @addr: address for which the chunk needs to be determined.
1540 *
c0ebfdc3
DZF
1541 * This is an internal function that handles all but static allocations.
1542 * Static percpu address values should never be passed into the allocator.
1543 *
88999a89
TH
1544 * RETURNS:
1545 * The address of the found chunk.
1546 */
1547static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1548{
c0ebfdc3 1549 /* is it in the dynamic region (first chunk)? */
560f2c23 1550 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1551 return pcpu_first_chunk;
c0ebfdc3
DZF
1552
1553 /* is it in the reserved region? */
560f2c23 1554 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1555 return pcpu_reserved_chunk;
88999a89
TH
1556
1557 /*
1558 * The address is relative to unit0 which might be unused and
1559 * thus unmapped. Offset the address to the unit space of the
1560 * current processor before looking it up in the vmalloc
1561 * space. Note that any possible cpu id can be used here, so
1562 * there's no need to worry about preemption or cpu hotplug.
1563 */
1564 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1565 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1566}
1567
fbf59bc9 1568/**
edcb4639 1569 * pcpu_alloc - the percpu allocator
cae3aeb8 1570 * @size: size of area to allocate in bytes
fbf59bc9 1571 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1572 * @reserved: allocate from the reserved chunk if available
5835d96e 1573 * @gfp: allocation flags
fbf59bc9 1574 *
5835d96e 1575 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
0ea7eeec
DB
1576 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1577 * then no warning will be triggered on invalid or failed allocation
1578 * requests.
fbf59bc9
TH
1579 *
1580 * RETURNS:
1581 * Percpu pointer to the allocated area on success, NULL on failure.
1582 */
5835d96e
TH
1583static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1584 gfp_t gfp)
fbf59bc9 1585{
554fef1c
DZ
1586 /* whitelisted flags that can be passed to the backing allocators */
1587 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
0ea7eeec
DB
1588 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1589 bool do_warn = !(gfp & __GFP_NOWARN);
f2badb0c 1590 static int warn_limit = 10;
8744d859 1591 struct pcpu_chunk *chunk, *next;
f2badb0c 1592 const char *err;
40064aec 1593 int slot, off, cpu, ret;
403a91b1 1594 unsigned long flags;
f528f0b8 1595 void __percpu *ptr;
40064aec 1596 size_t bits, bit_align;
fbf59bc9 1597
723ad1d9 1598 /*
40064aec
DZF
1599 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1600 * therefore alignment must be a minimum of that many bytes.
1601 * An allocation may have internal fragmentation from rounding up
1602 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1603 */
d2f3c384
DZF
1604 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1605 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1606
d2f3c384 1607 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1608 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1609 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1610
3ca45a46 1611 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1612 !is_power_of_2(align))) {
0ea7eeec 1613 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
756a025f 1614 size, align);
fbf59bc9
TH
1615 return NULL;
1616 }
1617
f52ba1fe
KT
1618 if (!is_atomic) {
1619 /*
1620 * pcpu_balance_workfn() allocates memory under this mutex,
1621 * and it may wait for memory reclaim. Allow current task
1622 * to become OOM victim, in case of memory pressure.
1623 */
1624 if (gfp & __GFP_NOFAIL)
1625 mutex_lock(&pcpu_alloc_mutex);
1626 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1627 return NULL;
1628 }
6710e594 1629
403a91b1 1630 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1631
edcb4639
TH
1632 /* serve reserved allocations from the reserved chunk if available */
1633 if (reserved && pcpu_reserved_chunk) {
1634 chunk = pcpu_reserved_chunk;
833af842 1635
40064aec
DZF
1636 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1637 if (off < 0) {
833af842 1638 err = "alloc from reserved chunk failed";
ccea34b5 1639 goto fail_unlock;
f2badb0c 1640 }
833af842 1641
40064aec 1642 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1643 if (off >= 0)
1644 goto area_found;
833af842 1645
f2badb0c 1646 err = "alloc from reserved chunk failed";
ccea34b5 1647 goto fail_unlock;
edcb4639
TH
1648 }
1649
ccea34b5 1650restart:
edcb4639 1651 /* search through normal chunks */
fbf59bc9 1652 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
8744d859 1653 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
40064aec
DZF
1654 off = pcpu_find_block_fit(chunk, bits, bit_align,
1655 is_atomic);
8744d859
DZ
1656 if (off < 0) {
1657 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1658 pcpu_chunk_move(chunk, 0);
fbf59bc9 1659 continue;
8744d859 1660 }
ccea34b5 1661
40064aec 1662 off = pcpu_alloc_area(chunk, bits, bit_align, off);
fbf59bc9
TH
1663 if (off >= 0)
1664 goto area_found;
40064aec 1665
fbf59bc9
TH
1666 }
1667 }
1668
403a91b1 1669 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1670
b38d08f3
TH
1671 /*
1672 * No space left. Create a new chunk. We don't want multiple
1673 * tasks to create chunks simultaneously. Serialize and create iff
1674 * there's still no empty chunk after grabbing the mutex.
1675 */
11df02bf
DZ
1676 if (is_atomic) {
1677 err = "atomic alloc failed, no space left";
5835d96e 1678 goto fail;
11df02bf 1679 }
5835d96e 1680
b38d08f3 1681 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
554fef1c 1682 chunk = pcpu_create_chunk(pcpu_gfp);
b38d08f3
TH
1683 if (!chunk) {
1684 err = "failed to allocate new chunk";
1685 goto fail;
1686 }
1687
1688 spin_lock_irqsave(&pcpu_lock, flags);
1689 pcpu_chunk_relocate(chunk, -1);
1690 } else {
1691 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1692 }
ccea34b5 1693
ccea34b5 1694 goto restart;
fbf59bc9
TH
1695
1696area_found:
30a5b536 1697 pcpu_stats_area_alloc(chunk, size);
403a91b1 1698 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1699
dca49645 1700 /* populate if not all pages are already there */
5835d96e 1701 if (!is_atomic) {
e04d3208 1702 int page_start, page_end, rs, re;
dca49645 1703
e04d3208
TH
1704 page_start = PFN_DOWN(off);
1705 page_end = PFN_UP(off + size);
b38d08f3 1706
91e914c5
DZF
1707 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1708 page_start, page_end) {
e04d3208
TH
1709 WARN_ON(chunk->immutable);
1710
554fef1c 1711 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
e04d3208
TH
1712
1713 spin_lock_irqsave(&pcpu_lock, flags);
1714 if (ret) {
40064aec 1715 pcpu_free_area(chunk, off);
e04d3208
TH
1716 err = "failed to populate";
1717 goto fail_unlock;
1718 }
b239f7da 1719 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1720 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1721 }
fbf59bc9 1722
e04d3208
TH
1723 mutex_unlock(&pcpu_alloc_mutex);
1724 }
ccea34b5 1725
1a4d7607
TH
1726 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1727 pcpu_schedule_balance_work();
1728
dca49645
TH
1729 /* clear the areas and return address relative to base address */
1730 for_each_possible_cpu(cpu)
1731 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1732
f528f0b8 1733 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1734 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1735
1736 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1737 chunk->base_addr, off, ptr);
1738
f528f0b8 1739 return ptr;
ccea34b5
TH
1740
1741fail_unlock:
403a91b1 1742 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1743fail:
df95e795
DZ
1744 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1745
0ea7eeec 1746 if (!is_atomic && do_warn && warn_limit) {
870d4b12 1747 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1748 size, align, is_atomic, err);
f2badb0c
TH
1749 dump_stack();
1750 if (!--warn_limit)
870d4b12 1751 pr_info("limit reached, disable warning\n");
f2badb0c 1752 }
1a4d7607
TH
1753 if (is_atomic) {
1754 /* see the flag handling in pcpu_blance_workfn() */
1755 pcpu_atomic_alloc_failed = true;
1756 pcpu_schedule_balance_work();
6710e594
TH
1757 } else {
1758 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1759 }
ccea34b5 1760 return NULL;
fbf59bc9 1761}
edcb4639
TH
1762
1763/**
5835d96e 1764 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1765 * @size: size of area to allocate in bytes
1766 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1767 * @gfp: allocation flags
edcb4639 1768 *
5835d96e
TH
1769 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1770 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
0ea7eeec
DB
1771 * be called from any context but is a lot more likely to fail. If @gfp
1772 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1773 * allocation requests.
ccea34b5 1774 *
edcb4639
TH
1775 * RETURNS:
1776 * Percpu pointer to the allocated area on success, NULL on failure.
1777 */
5835d96e
TH
1778void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1779{
1780 return pcpu_alloc(size, align, false, gfp);
1781}
1782EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1783
1784/**
1785 * __alloc_percpu - allocate dynamic percpu area
1786 * @size: size of area to allocate in bytes
1787 * @align: alignment of area (max PAGE_SIZE)
1788 *
1789 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1790 */
43cf38eb 1791void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1792{
5835d96e 1793 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1794}
fbf59bc9
TH
1795EXPORT_SYMBOL_GPL(__alloc_percpu);
1796
edcb4639
TH
1797/**
1798 * __alloc_reserved_percpu - allocate reserved percpu area
1799 * @size: size of area to allocate in bytes
1800 * @align: alignment of area (max PAGE_SIZE)
1801 *
9329ba97
TH
1802 * Allocate zero-filled percpu area of @size bytes aligned at @align
1803 * from reserved percpu area if arch has set it up; otherwise,
1804 * allocation is served from the same dynamic area. Might sleep.
1805 * Might trigger writeouts.
edcb4639 1806 *
ccea34b5
TH
1807 * CONTEXT:
1808 * Does GFP_KERNEL allocation.
1809 *
edcb4639
TH
1810 * RETURNS:
1811 * Percpu pointer to the allocated area on success, NULL on failure.
1812 */
43cf38eb 1813void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1814{
5835d96e 1815 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1816}
1817
a56dbddf 1818/**
1a4d7607 1819 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1820 * @work: unused
1821 *
47504ee0
DZ
1822 * Reclaim all fully free chunks except for the first one. This is also
1823 * responsible for maintaining the pool of empty populated pages. However,
1824 * it is possible that this is called when physical memory is scarce causing
1825 * OOM killer to be triggered. We should avoid doing so until an actual
1826 * allocation causes the failure as it is possible that requests can be
1827 * serviced from already backed regions.
a56dbddf 1828 */
fe6bd8c3 1829static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1830{
47504ee0 1831 /* gfp flags passed to underlying allocators */
554fef1c 1832 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
fe6bd8c3
TH
1833 LIST_HEAD(to_free);
1834 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1835 struct pcpu_chunk *chunk, *next;
1a4d7607 1836 int slot, nr_to_pop, ret;
a56dbddf 1837
1a4d7607
TH
1838 /*
1839 * There's no reason to keep around multiple unused chunks and VM
1840 * areas can be scarce. Destroy all free chunks except for one.
1841 */
ccea34b5
TH
1842 mutex_lock(&pcpu_alloc_mutex);
1843 spin_lock_irq(&pcpu_lock);
a56dbddf 1844
fe6bd8c3 1845 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1846 WARN_ON(chunk->immutable);
1847
1848 /* spare the first one */
fe6bd8c3 1849 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1850 continue;
1851
fe6bd8c3 1852 list_move(&chunk->list, &to_free);
a56dbddf
TH
1853 }
1854
ccea34b5 1855 spin_unlock_irq(&pcpu_lock);
a56dbddf 1856
fe6bd8c3 1857 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1858 int rs, re;
dca49645 1859
91e914c5
DZF
1860 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1861 chunk->nr_pages) {
a93ace48 1862 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1863 spin_lock_irq(&pcpu_lock);
1864 pcpu_chunk_depopulated(chunk, rs, re);
1865 spin_unlock_irq(&pcpu_lock);
a93ace48 1866 }
6081089f 1867 pcpu_destroy_chunk(chunk);
accd4f36 1868 cond_resched();
a56dbddf 1869 }
971f3918 1870
1a4d7607
TH
1871 /*
1872 * Ensure there are certain number of free populated pages for
1873 * atomic allocs. Fill up from the most packed so that atomic
1874 * allocs don't increase fragmentation. If atomic allocation
1875 * failed previously, always populate the maximum amount. This
1876 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1877 * failing indefinitely; however, large atomic allocs are not
1878 * something we support properly and can be highly unreliable and
1879 * inefficient.
1880 */
1881retry_pop:
1882 if (pcpu_atomic_alloc_failed) {
1883 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1884 /* best effort anyway, don't worry about synchronization */
1885 pcpu_atomic_alloc_failed = false;
1886 } else {
1887 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1888 pcpu_nr_empty_pop_pages,
1889 0, PCPU_EMPTY_POP_PAGES_HIGH);
1890 }
1891
1892 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1893 int nr_unpop = 0, rs, re;
1894
1895 if (!nr_to_pop)
1896 break;
1897
1898 spin_lock_irq(&pcpu_lock);
1899 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1900 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1901 if (nr_unpop)
1902 break;
1903 }
1904 spin_unlock_irq(&pcpu_lock);
1905
1906 if (!nr_unpop)
1907 continue;
1908
1909 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1910 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1911 chunk->nr_pages) {
1a4d7607
TH
1912 int nr = min(re - rs, nr_to_pop);
1913
47504ee0 1914 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1a4d7607
TH
1915 if (!ret) {
1916 nr_to_pop -= nr;
1917 spin_lock_irq(&pcpu_lock);
b239f7da 1918 pcpu_chunk_populated(chunk, rs, rs + nr);
1a4d7607
TH
1919 spin_unlock_irq(&pcpu_lock);
1920 } else {
1921 nr_to_pop = 0;
1922 }
1923
1924 if (!nr_to_pop)
1925 break;
1926 }
1927 }
1928
1929 if (nr_to_pop) {
1930 /* ran out of chunks to populate, create a new one and retry */
47504ee0 1931 chunk = pcpu_create_chunk(gfp);
1a4d7607
TH
1932 if (chunk) {
1933 spin_lock_irq(&pcpu_lock);
1934 pcpu_chunk_relocate(chunk, -1);
1935 spin_unlock_irq(&pcpu_lock);
1936 goto retry_pop;
1937 }
1938 }
1939
971f3918 1940 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1941}
1942
1943/**
1944 * free_percpu - free percpu area
1945 * @ptr: pointer to area to free
1946 *
ccea34b5
TH
1947 * Free percpu area @ptr.
1948 *
1949 * CONTEXT:
1950 * Can be called from atomic context.
fbf59bc9 1951 */
43cf38eb 1952void free_percpu(void __percpu *ptr)
fbf59bc9 1953{
129182e5 1954 void *addr;
fbf59bc9 1955 struct pcpu_chunk *chunk;
ccea34b5 1956 unsigned long flags;
40064aec 1957 int off;
fbf59bc9
TH
1958
1959 if (!ptr)
1960 return;
1961
f528f0b8
CM
1962 kmemleak_free_percpu(ptr);
1963
129182e5
AM
1964 addr = __pcpu_ptr_to_addr(ptr);
1965
ccea34b5 1966 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1967
1968 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1969 off = addr - chunk->base_addr;
fbf59bc9 1970
40064aec 1971 pcpu_free_area(chunk, off);
fbf59bc9 1972
a56dbddf 1973 /* if there are more than one fully free chunks, wake up grim reaper */
40064aec 1974 if (chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
1975 struct pcpu_chunk *pos;
1976
a56dbddf 1977 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1978 if (pos != chunk) {
1a4d7607 1979 pcpu_schedule_balance_work();
fbf59bc9
TH
1980 break;
1981 }
1982 }
1983
df95e795
DZ
1984 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1985
ccea34b5 1986 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1987}
1988EXPORT_SYMBOL_GPL(free_percpu);
1989
383776fa 1990bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1991{
bbddff05 1992#ifdef CONFIG_SMP
10fad5e4
TH
1993 const size_t static_size = __per_cpu_end - __per_cpu_start;
1994 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1995 unsigned int cpu;
1996
1997 for_each_possible_cpu(cpu) {
1998 void *start = per_cpu_ptr(base, cpu);
383776fa 1999 void *va = (void *)addr;
10fad5e4 2000
383776fa 2001 if (va >= start && va < start + static_size) {
8ce371f9 2002 if (can_addr) {
383776fa 2003 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
2004 *can_addr += (unsigned long)
2005 per_cpu_ptr(base, get_boot_cpu_id());
2006 }
10fad5e4 2007 return true;
383776fa
TG
2008 }
2009 }
bbddff05
TH
2010#endif
2011 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
2012 return false;
2013}
2014
383776fa
TG
2015/**
2016 * is_kernel_percpu_address - test whether address is from static percpu area
2017 * @addr: address to test
2018 *
2019 * Test whether @addr belongs to in-kernel static percpu area. Module
2020 * static percpu areas are not considered. For those, use
2021 * is_module_percpu_address().
2022 *
2023 * RETURNS:
2024 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2025 */
2026bool is_kernel_percpu_address(unsigned long addr)
2027{
2028 return __is_kernel_percpu_address(addr, NULL);
2029}
2030
3b034b0d
VG
2031/**
2032 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2033 * @addr: the address to be converted to physical address
2034 *
2035 * Given @addr which is dereferenceable address obtained via one of
2036 * percpu access macros, this function translates it into its physical
2037 * address. The caller is responsible for ensuring @addr stays valid
2038 * until this function finishes.
2039 *
67589c71
DY
2040 * percpu allocator has special setup for the first chunk, which currently
2041 * supports either embedding in linear address space or vmalloc mapping,
2042 * and, from the second one, the backing allocator (currently either vm or
2043 * km) provides translation.
2044 *
bffc4375 2045 * The addr can be translated simply without checking if it falls into the
67589c71
DY
2046 * first chunk. But the current code reflects better how percpu allocator
2047 * actually works, and the verification can discover both bugs in percpu
2048 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2049 * code.
2050 *
3b034b0d
VG
2051 * RETURNS:
2052 * The physical address for @addr.
2053 */
2054phys_addr_t per_cpu_ptr_to_phys(void *addr)
2055{
9983b6f0
TH
2056 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2057 bool in_first_chunk = false;
a855b84c 2058 unsigned long first_low, first_high;
9983b6f0
TH
2059 unsigned int cpu;
2060
2061 /*
a855b84c 2062 * The following test on unit_low/high isn't strictly
9983b6f0
TH
2063 * necessary but will speed up lookups of addresses which
2064 * aren't in the first chunk.
c0ebfdc3
DZF
2065 *
2066 * The address check is against full chunk sizes. pcpu_base_addr
2067 * points to the beginning of the first chunk including the
2068 * static region. Assumes good intent as the first chunk may
2069 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 2070 */
c0ebfdc3
DZF
2071 first_low = (unsigned long)pcpu_base_addr +
2072 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2073 first_high = (unsigned long)pcpu_base_addr +
2074 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
2075 if ((unsigned long)addr >= first_low &&
2076 (unsigned long)addr < first_high) {
9983b6f0
TH
2077 for_each_possible_cpu(cpu) {
2078 void *start = per_cpu_ptr(base, cpu);
2079
2080 if (addr >= start && addr < start + pcpu_unit_size) {
2081 in_first_chunk = true;
2082 break;
2083 }
2084 }
2085 }
2086
2087 if (in_first_chunk) {
eac522ef 2088 if (!is_vmalloc_addr(addr))
020ec653
TH
2089 return __pa(addr);
2090 else
9f57bd4d
ES
2091 return page_to_phys(vmalloc_to_page(addr)) +
2092 offset_in_page(addr);
020ec653 2093 } else
9f57bd4d
ES
2094 return page_to_phys(pcpu_addr_to_page(addr)) +
2095 offset_in_page(addr);
3b034b0d
VG
2096}
2097
fbf59bc9 2098/**
fd1e8a1f
TH
2099 * pcpu_alloc_alloc_info - allocate percpu allocation info
2100 * @nr_groups: the number of groups
2101 * @nr_units: the number of units
2102 *
2103 * Allocate ai which is large enough for @nr_groups groups containing
2104 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2105 * cpu_map array which is long enough for @nr_units and filled with
2106 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2107 * pointer of other groups.
2108 *
2109 * RETURNS:
2110 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2111 * failure.
2112 */
2113struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2114 int nr_units)
2115{
2116 struct pcpu_alloc_info *ai;
2117 size_t base_size, ai_size;
2118 void *ptr;
2119 int unit;
2120
2121 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
2122 __alignof__(ai->groups[0].cpu_map[0]));
2123 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2124
26fb3dae 2125 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
fd1e8a1f
TH
2126 if (!ptr)
2127 return NULL;
2128 ai = ptr;
2129 ptr += base_size;
2130
2131 ai->groups[0].cpu_map = ptr;
2132
2133 for (unit = 0; unit < nr_units; unit++)
2134 ai->groups[0].cpu_map[unit] = NR_CPUS;
2135
2136 ai->nr_groups = nr_groups;
2137 ai->__ai_size = PFN_ALIGN(ai_size);
2138
2139 return ai;
2140}
2141
2142/**
2143 * pcpu_free_alloc_info - free percpu allocation info
2144 * @ai: pcpu_alloc_info to free
2145 *
2146 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2147 */
2148void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2149{
999c17e3 2150 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
2151}
2152
fd1e8a1f
TH
2153/**
2154 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2155 * @lvl: loglevel
2156 * @ai: allocation info to dump
2157 *
2158 * Print out information about @ai using loglevel @lvl.
2159 */
2160static void pcpu_dump_alloc_info(const char *lvl,
2161 const struct pcpu_alloc_info *ai)
033e48fb 2162{
fd1e8a1f 2163 int group_width = 1, cpu_width = 1, width;
033e48fb 2164 char empty_str[] = "--------";
fd1e8a1f
TH
2165 int alloc = 0, alloc_end = 0;
2166 int group, v;
2167 int upa, apl; /* units per alloc, allocs per line */
2168
2169 v = ai->nr_groups;
2170 while (v /= 10)
2171 group_width++;
033e48fb 2172
fd1e8a1f 2173 v = num_possible_cpus();
033e48fb 2174 while (v /= 10)
fd1e8a1f
TH
2175 cpu_width++;
2176 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 2177
fd1e8a1f
TH
2178 upa = ai->alloc_size / ai->unit_size;
2179 width = upa * (cpu_width + 1) + group_width + 3;
2180 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 2181
fd1e8a1f
TH
2182 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2183 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2184 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 2185
fd1e8a1f
TH
2186 for (group = 0; group < ai->nr_groups; group++) {
2187 const struct pcpu_group_info *gi = &ai->groups[group];
2188 int unit = 0, unit_end = 0;
2189
2190 BUG_ON(gi->nr_units % upa);
2191 for (alloc_end += gi->nr_units / upa;
2192 alloc < alloc_end; alloc++) {
2193 if (!(alloc % apl)) {
1170532b 2194 pr_cont("\n");
fd1e8a1f
TH
2195 printk("%spcpu-alloc: ", lvl);
2196 }
1170532b 2197 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
2198
2199 for (unit_end += upa; unit < unit_end; unit++)
2200 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
2201 pr_cont("%0*d ",
2202 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 2203 else
1170532b 2204 pr_cont("%s ", empty_str);
033e48fb 2205 }
033e48fb 2206 }
1170532b 2207 pr_cont("\n");
033e48fb 2208}
033e48fb 2209
fbf59bc9 2210/**
8d408b4b 2211 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 2212 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 2213 * @base_addr: mapped address
8d408b4b
TH
2214 *
2215 * Initialize the first percpu chunk which contains the kernel static
2216 * perpcu area. This function is to be called from arch percpu area
38a6be52 2217 * setup path.
8d408b4b 2218 *
fd1e8a1f
TH
2219 * @ai contains all information necessary to initialize the first
2220 * chunk and prime the dynamic percpu allocator.
2221 *
2222 * @ai->static_size is the size of static percpu area.
2223 *
2224 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
2225 * reserve after the static area in the first chunk. This reserves
2226 * the first chunk such that it's available only through reserved
2227 * percpu allocation. This is primarily used to serve module percpu
2228 * static areas on architectures where the addressing model has
2229 * limited offset range for symbol relocations to guarantee module
2230 * percpu symbols fall inside the relocatable range.
2231 *
fd1e8a1f
TH
2232 * @ai->dyn_size determines the number of bytes available for dynamic
2233 * allocation in the first chunk. The area between @ai->static_size +
2234 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 2235 *
fd1e8a1f
TH
2236 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2237 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2238 * @ai->dyn_size.
8d408b4b 2239 *
fd1e8a1f
TH
2240 * @ai->atom_size is the allocation atom size and used as alignment
2241 * for vm areas.
8d408b4b 2242 *
fd1e8a1f
TH
2243 * @ai->alloc_size is the allocation size and always multiple of
2244 * @ai->atom_size. This is larger than @ai->atom_size if
2245 * @ai->unit_size is larger than @ai->atom_size.
2246 *
2247 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2248 * percpu areas. Units which should be colocated are put into the
2249 * same group. Dynamic VM areas will be allocated according to these
2250 * groupings. If @ai->nr_groups is zero, a single group containing
2251 * all units is assumed.
8d408b4b 2252 *
38a6be52
TH
2253 * The caller should have mapped the first chunk at @base_addr and
2254 * copied static data to each unit.
fbf59bc9 2255 *
c0ebfdc3
DZF
2256 * The first chunk will always contain a static and a dynamic region.
2257 * However, the static region is not managed by any chunk. If the first
2258 * chunk also contains a reserved region, it is served by two chunks -
2259 * one for the reserved region and one for the dynamic region. They
2260 * share the same vm, but use offset regions in the area allocation map.
2261 * The chunk serving the dynamic region is circulated in the chunk slots
2262 * and available for dynamic allocation like any other chunk.
edcb4639 2263 *
fbf59bc9 2264 * RETURNS:
fb435d52 2265 * 0 on success, -errno on failure.
fbf59bc9 2266 */
fb435d52
TH
2267int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2268 void *base_addr)
fbf59bc9 2269{
b9c39442 2270 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 2271 size_t static_size, dyn_size;
0c4169c3 2272 struct pcpu_chunk *chunk;
6563297c
TH
2273 unsigned long *group_offsets;
2274 size_t *group_sizes;
fb435d52 2275 unsigned long *unit_off;
fbf59bc9 2276 unsigned int cpu;
fd1e8a1f
TH
2277 int *unit_map;
2278 int group, unit, i;
c0ebfdc3
DZF
2279 int map_size;
2280 unsigned long tmp_addr;
f655f405 2281 size_t alloc_size;
fbf59bc9 2282
635b75fc
TH
2283#define PCPU_SETUP_BUG_ON(cond) do { \
2284 if (unlikely(cond)) { \
870d4b12
JP
2285 pr_emerg("failed to initialize, %s\n", #cond); \
2286 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 2287 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
2288 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2289 BUG(); \
2290 } \
2291} while (0)
2292
2f39e637 2293 /* sanity checks */
635b75fc 2294 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 2295#ifdef CONFIG_SMP
635b75fc 2296 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 2297 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 2298#endif
635b75fc 2299 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 2300 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 2301 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 2302 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 2303 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 2304 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 2305 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 2306 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 2307 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
2308 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2309 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 2310 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 2311
6563297c 2312 /* process group information and build config tables accordingly */
f655f405
MR
2313 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2314 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2315 if (!group_offsets)
2316 panic("%s: Failed to allocate %zu bytes\n", __func__,
2317 alloc_size);
2318
2319 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2320 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2321 if (!group_sizes)
2322 panic("%s: Failed to allocate %zu bytes\n", __func__,
2323 alloc_size);
2324
2325 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2326 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2327 if (!unit_map)
2328 panic("%s: Failed to allocate %zu bytes\n", __func__,
2329 alloc_size);
2330
2331 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2332 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2333 if (!unit_off)
2334 panic("%s: Failed to allocate %zu bytes\n", __func__,
2335 alloc_size);
2f39e637 2336
fd1e8a1f 2337 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 2338 unit_map[cpu] = UINT_MAX;
a855b84c
TH
2339
2340 pcpu_low_unit_cpu = NR_CPUS;
2341 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 2342
fd1e8a1f
TH
2343 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2344 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 2345
6563297c
TH
2346 group_offsets[group] = gi->base_offset;
2347 group_sizes[group] = gi->nr_units * ai->unit_size;
2348
fd1e8a1f
TH
2349 for (i = 0; i < gi->nr_units; i++) {
2350 cpu = gi->cpu_map[i];
2351 if (cpu == NR_CPUS)
2352 continue;
8d408b4b 2353
9f295664 2354 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
2355 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2356 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 2357
fd1e8a1f 2358 unit_map[cpu] = unit + i;
fb435d52
TH
2359 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2360
a855b84c
TH
2361 /* determine low/high unit_cpu */
2362 if (pcpu_low_unit_cpu == NR_CPUS ||
2363 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2364 pcpu_low_unit_cpu = cpu;
2365 if (pcpu_high_unit_cpu == NR_CPUS ||
2366 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2367 pcpu_high_unit_cpu = cpu;
fd1e8a1f 2368 }
2f39e637 2369 }
fd1e8a1f
TH
2370 pcpu_nr_units = unit;
2371
2372 for_each_possible_cpu(cpu)
635b75fc
TH
2373 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2374
2375 /* we're done parsing the input, undefine BUG macro and dump config */
2376#undef PCPU_SETUP_BUG_ON
bcbea798 2377 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2378
6563297c
TH
2379 pcpu_nr_groups = ai->nr_groups;
2380 pcpu_group_offsets = group_offsets;
2381 pcpu_group_sizes = group_sizes;
fd1e8a1f 2382 pcpu_unit_map = unit_map;
fb435d52 2383 pcpu_unit_offsets = unit_off;
2f39e637
TH
2384
2385 /* determine basic parameters */
fd1e8a1f 2386 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2387 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2388 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
2389 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2390 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 2391
30a5b536
DZ
2392 pcpu_stats_save_ai(ai);
2393
d9b55eeb
TH
2394 /*
2395 * Allocate chunk slots. The additional last slot is for
2396 * empty chunks.
2397 */
2398 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
7e1c4e27
MR
2399 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2400 SMP_CACHE_BYTES);
f655f405
MR
2401 if (!pcpu_slot)
2402 panic("%s: Failed to allocate %zu bytes\n", __func__,
2403 pcpu_nr_slots * sizeof(pcpu_slot[0]));
fbf59bc9
TH
2404 for (i = 0; i < pcpu_nr_slots; i++)
2405 INIT_LIST_HEAD(&pcpu_slot[i]);
2406
d2f3c384
DZF
2407 /*
2408 * The end of the static region needs to be aligned with the
2409 * minimum allocation size as this offsets the reserved and
2410 * dynamic region. The first chunk ends page aligned by
2411 * expanding the dynamic region, therefore the dynamic region
2412 * can be shrunk to compensate while still staying above the
2413 * configured sizes.
2414 */
2415 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2416 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2417
edcb4639 2418 /*
c0ebfdc3
DZF
2419 * Initialize first chunk.
2420 * If the reserved_size is non-zero, this initializes the reserved
2421 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2422 * and the dynamic region is initialized here. The first chunk,
2423 * pcpu_first_chunk, will always point to the chunk that serves
2424 * the dynamic region.
edcb4639 2425 */
d2f3c384
DZF
2426 tmp_addr = (unsigned long)base_addr + static_size;
2427 map_size = ai->reserved_size ?: dyn_size;
40064aec 2428 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2429
edcb4639 2430 /* init dynamic chunk if necessary */
b9c39442 2431 if (ai->reserved_size) {
0c4169c3 2432 pcpu_reserved_chunk = chunk;
b9c39442 2433
d2f3c384 2434 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2435 ai->reserved_size;
d2f3c384 2436 map_size = dyn_size;
40064aec 2437 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2438 }
2439
2441d15c 2440 /* link the first chunk in */
0c4169c3 2441 pcpu_first_chunk = chunk;
0cecf50c 2442 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2443 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2444
7e8a6304
DZF
2445 /* include all regions of the first chunk */
2446 pcpu_nr_populated += PFN_DOWN(size_sum);
2447
30a5b536 2448 pcpu_stats_chunk_alloc();
df95e795 2449 trace_percpu_create_chunk(base_addr);
30a5b536 2450
fbf59bc9 2451 /* we're done */
bba174f5 2452 pcpu_base_addr = base_addr;
fb435d52 2453 return 0;
fbf59bc9 2454}
66c3a757 2455
bbddff05
TH
2456#ifdef CONFIG_SMP
2457
17f3609c 2458const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2459 [PCPU_FC_AUTO] = "auto",
2460 [PCPU_FC_EMBED] = "embed",
2461 [PCPU_FC_PAGE] = "page",
f58dc01b 2462};
66c3a757 2463
f58dc01b 2464enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2465
f58dc01b
TH
2466static int __init percpu_alloc_setup(char *str)
2467{
5479c78a
CG
2468 if (!str)
2469 return -EINVAL;
2470
f58dc01b
TH
2471 if (0)
2472 /* nada */;
2473#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2474 else if (!strcmp(str, "embed"))
2475 pcpu_chosen_fc = PCPU_FC_EMBED;
2476#endif
2477#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2478 else if (!strcmp(str, "page"))
2479 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2480#endif
2481 else
870d4b12 2482 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2483
f58dc01b 2484 return 0;
66c3a757 2485}
f58dc01b 2486early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2487
3c9a024f
TH
2488/*
2489 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2490 * Build it if needed by the arch config or the generic setup is going
2491 * to be used.
2492 */
08fc4580
TH
2493#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2494 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2495#define BUILD_EMBED_FIRST_CHUNK
2496#endif
2497
2498/* build pcpu_page_first_chunk() iff needed by the arch config */
2499#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2500#define BUILD_PAGE_FIRST_CHUNK
2501#endif
2502
2503/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2504#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2505/**
2506 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2507 * @reserved_size: the size of reserved percpu area in bytes
2508 * @dyn_size: minimum free size for dynamic allocation in bytes
2509 * @atom_size: allocation atom size
2510 * @cpu_distance_fn: callback to determine distance between cpus, optional
2511 *
2512 * This function determines grouping of units, their mappings to cpus
2513 * and other parameters considering needed percpu size, allocation
2514 * atom size and distances between CPUs.
2515 *
bffc4375 2516 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2517 * LOCAL_DISTANCE both ways are grouped together and share space for
2518 * units in the same group. The returned configuration is guaranteed
2519 * to have CPUs on different nodes on different groups and >=75% usage
2520 * of allocated virtual address space.
2521 *
2522 * RETURNS:
2523 * On success, pointer to the new allocation_info is returned. On
2524 * failure, ERR_PTR value is returned.
2525 */
2526static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2527 size_t reserved_size, size_t dyn_size,
2528 size_t atom_size,
2529 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2530{
2531 static int group_map[NR_CPUS] __initdata;
2532 static int group_cnt[NR_CPUS] __initdata;
2533 const size_t static_size = __per_cpu_end - __per_cpu_start;
2534 int nr_groups = 1, nr_units = 0;
2535 size_t size_sum, min_unit_size, alloc_size;
2536 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2537 int last_allocs, group, unit;
2538 unsigned int cpu, tcpu;
2539 struct pcpu_alloc_info *ai;
2540 unsigned int *cpu_map;
2541
2542 /* this function may be called multiple times */
2543 memset(group_map, 0, sizeof(group_map));
2544 memset(group_cnt, 0, sizeof(group_cnt));
2545
2546 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2547 size_sum = PFN_ALIGN(static_size + reserved_size +
2548 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2549 dyn_size = size_sum - static_size - reserved_size;
2550
2551 /*
2552 * Determine min_unit_size, alloc_size and max_upa such that
2553 * alloc_size is multiple of atom_size and is the smallest
25985edc 2554 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2555 * or larger than min_unit_size.
2556 */
2557 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2558
9c015162 2559 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2560 alloc_size = roundup(min_unit_size, atom_size);
2561 upa = alloc_size / min_unit_size;
f09f1243 2562 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2563 upa--;
2564 max_upa = upa;
2565
2566 /* group cpus according to their proximity */
2567 for_each_possible_cpu(cpu) {
2568 group = 0;
2569 next_group:
2570 for_each_possible_cpu(tcpu) {
2571 if (cpu == tcpu)
2572 break;
2573 if (group_map[tcpu] == group && cpu_distance_fn &&
2574 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2575 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2576 group++;
2577 nr_groups = max(nr_groups, group + 1);
2578 goto next_group;
2579 }
2580 }
2581 group_map[cpu] = group;
2582 group_cnt[group]++;
2583 }
2584
2585 /*
9c015162
DZF
2586 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2587 * Expand the unit_size until we use >= 75% of the units allocated.
2588 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2589 */
2590 last_allocs = INT_MAX;
2591 for (upa = max_upa; upa; upa--) {
2592 int allocs = 0, wasted = 0;
2593
f09f1243 2594 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2595 continue;
2596
2597 for (group = 0; group < nr_groups; group++) {
2598 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2599 allocs += this_allocs;
2600 wasted += this_allocs * upa - group_cnt[group];
2601 }
2602
2603 /*
2604 * Don't accept if wastage is over 1/3. The
2605 * greater-than comparison ensures upa==1 always
2606 * passes the following check.
2607 */
2608 if (wasted > num_possible_cpus() / 3)
2609 continue;
2610
2611 /* and then don't consume more memory */
2612 if (allocs > last_allocs)
2613 break;
2614 last_allocs = allocs;
2615 best_upa = upa;
2616 }
2617 upa = best_upa;
2618
2619 /* allocate and fill alloc_info */
2620 for (group = 0; group < nr_groups; group++)
2621 nr_units += roundup(group_cnt[group], upa);
2622
2623 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2624 if (!ai)
2625 return ERR_PTR(-ENOMEM);
2626 cpu_map = ai->groups[0].cpu_map;
2627
2628 for (group = 0; group < nr_groups; group++) {
2629 ai->groups[group].cpu_map = cpu_map;
2630 cpu_map += roundup(group_cnt[group], upa);
2631 }
2632
2633 ai->static_size = static_size;
2634 ai->reserved_size = reserved_size;
2635 ai->dyn_size = dyn_size;
2636 ai->unit_size = alloc_size / upa;
2637 ai->atom_size = atom_size;
2638 ai->alloc_size = alloc_size;
2639
2de7852f 2640 for (group = 0, unit = 0; group < nr_groups; group++) {
3c9a024f
TH
2641 struct pcpu_group_info *gi = &ai->groups[group];
2642
2643 /*
2644 * Initialize base_offset as if all groups are located
2645 * back-to-back. The caller should update this to
2646 * reflect actual allocation.
2647 */
2648 gi->base_offset = unit * ai->unit_size;
2649
2650 for_each_possible_cpu(cpu)
2651 if (group_map[cpu] == group)
2652 gi->cpu_map[gi->nr_units++] = cpu;
2653 gi->nr_units = roundup(gi->nr_units, upa);
2654 unit += gi->nr_units;
2655 }
2656 BUG_ON(unit != nr_units);
2657
2658 return ai;
2659}
2660#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2661
2662#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2663/**
2664 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2665 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2666 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2667 * @atom_size: allocation atom size
2668 * @cpu_distance_fn: callback to determine distance between cpus, optional
2669 * @alloc_fn: function to allocate percpu page
25985edc 2670 * @free_fn: function to free percpu page
66c3a757
TH
2671 *
2672 * This is a helper to ease setting up embedded first percpu chunk and
2673 * can be called where pcpu_setup_first_chunk() is expected.
2674 *
2675 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2676 * by calling @alloc_fn and used as-is without being mapped into
2677 * vmalloc area. Allocations are always whole multiples of @atom_size
2678 * aligned to @atom_size.
2679 *
2680 * This enables the first chunk to piggy back on the linear physical
2681 * mapping which often uses larger page size. Please note that this
2682 * can result in very sparse cpu->unit mapping on NUMA machines thus
2683 * requiring large vmalloc address space. Don't use this allocator if
2684 * vmalloc space is not orders of magnitude larger than distances
2685 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2686 *
4ba6ce25 2687 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2688 *
2689 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2690 * size, the leftover is returned using @free_fn.
66c3a757
TH
2691 *
2692 * RETURNS:
fb435d52 2693 * 0 on success, -errno on failure.
66c3a757 2694 */
4ba6ce25 2695int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2696 size_t atom_size,
2697 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2698 pcpu_fc_alloc_fn_t alloc_fn,
2699 pcpu_fc_free_fn_t free_fn)
66c3a757 2700{
c8826dd5
TH
2701 void *base = (void *)ULONG_MAX;
2702 void **areas = NULL;
fd1e8a1f 2703 struct pcpu_alloc_info *ai;
93c76b6b 2704 size_t size_sum, areas_size;
2705 unsigned long max_distance;
9b739662 2706 int group, i, highest_group, rc;
66c3a757 2707
c8826dd5
TH
2708 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2709 cpu_distance_fn);
fd1e8a1f
TH
2710 if (IS_ERR(ai))
2711 return PTR_ERR(ai);
66c3a757 2712
fd1e8a1f 2713 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2714 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2715
26fb3dae 2716 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
c8826dd5 2717 if (!areas) {
fb435d52 2718 rc = -ENOMEM;
c8826dd5 2719 goto out_free;
fa8a7094 2720 }
66c3a757 2721
9b739662 2722 /* allocate, copy and determine base address & max_distance */
2723 highest_group = 0;
c8826dd5
TH
2724 for (group = 0; group < ai->nr_groups; group++) {
2725 struct pcpu_group_info *gi = &ai->groups[group];
2726 unsigned int cpu = NR_CPUS;
2727 void *ptr;
2728
2729 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2730 cpu = gi->cpu_map[i];
2731 BUG_ON(cpu == NR_CPUS);
2732
2733 /* allocate space for the whole group */
2734 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2735 if (!ptr) {
2736 rc = -ENOMEM;
2737 goto out_free_areas;
2738 }
f528f0b8
CM
2739 /* kmemleak tracks the percpu allocations separately */
2740 kmemleak_free(ptr);
c8826dd5 2741 areas[group] = ptr;
fd1e8a1f 2742
c8826dd5 2743 base = min(ptr, base);
9b739662 2744 if (ptr > areas[highest_group])
2745 highest_group = group;
2746 }
2747 max_distance = areas[highest_group] - base;
2748 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2749
2750 /* warn if maximum distance is further than 75% of vmalloc space */
2751 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2752 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2753 max_distance, VMALLOC_TOTAL);
2754#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2755 /* and fail if we have fallback */
2756 rc = -EINVAL;
2757 goto out_free_areas;
2758#endif
42b64281
TH
2759 }
2760
2761 /*
2762 * Copy data and free unused parts. This should happen after all
2763 * allocations are complete; otherwise, we may end up with
2764 * overlapping groups.
2765 */
2766 for (group = 0; group < ai->nr_groups; group++) {
2767 struct pcpu_group_info *gi = &ai->groups[group];
2768 void *ptr = areas[group];
c8826dd5
TH
2769
2770 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2771 if (gi->cpu_map[i] == NR_CPUS) {
2772 /* unused unit, free whole */
2773 free_fn(ptr, ai->unit_size);
2774 continue;
2775 }
2776 /* copy and return the unused part */
2777 memcpy(ptr, __per_cpu_load, ai->static_size);
2778 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2779 }
fa8a7094 2780 }
66c3a757 2781
c8826dd5 2782 /* base address is now known, determine group base offsets */
6ea529a2 2783 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2784 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2785 }
c8826dd5 2786
870d4b12 2787 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2788 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2789 ai->dyn_size, ai->unit_size);
d4b95f80 2790
fb435d52 2791 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2792 goto out_free;
2793
2794out_free_areas:
2795 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2796 if (areas[group])
2797 free_fn(areas[group],
2798 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2799out_free:
fd1e8a1f 2800 pcpu_free_alloc_info(ai);
c8826dd5 2801 if (areas)
999c17e3 2802 memblock_free_early(__pa(areas), areas_size);
fb435d52 2803 return rc;
d4b95f80 2804}
3c9a024f 2805#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2806
3c9a024f 2807#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2808/**
00ae4064 2809 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2810 * @reserved_size: the size of reserved percpu area in bytes
2811 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2812 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2813 * @populate_pte_fn: function to populate pte
2814 *
00ae4064
TH
2815 * This is a helper to ease setting up page-remapped first percpu
2816 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2817 *
2818 * This is the basic allocator. Static percpu area is allocated
2819 * page-by-page into vmalloc area.
2820 *
2821 * RETURNS:
fb435d52 2822 * 0 on success, -errno on failure.
d4b95f80 2823 */
fb435d52
TH
2824int __init pcpu_page_first_chunk(size_t reserved_size,
2825 pcpu_fc_alloc_fn_t alloc_fn,
2826 pcpu_fc_free_fn_t free_fn,
2827 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2828{
8f05a6a6 2829 static struct vm_struct vm;
fd1e8a1f 2830 struct pcpu_alloc_info *ai;
00ae4064 2831 char psize_str[16];
ce3141a2 2832 int unit_pages;
d4b95f80 2833 size_t pages_size;
ce3141a2 2834 struct page **pages;
fb435d52 2835 int unit, i, j, rc;
8f606604 2836 int upa;
2837 int nr_g0_units;
d4b95f80 2838
00ae4064
TH
2839 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2840
4ba6ce25 2841 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2842 if (IS_ERR(ai))
2843 return PTR_ERR(ai);
2844 BUG_ON(ai->nr_groups != 1);
8f606604 2845 upa = ai->alloc_size/ai->unit_size;
2846 nr_g0_units = roundup(num_possible_cpus(), upa);
0b59c25f 2847 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
8f606604 2848 pcpu_free_alloc_info(ai);
2849 return -EINVAL;
2850 }
fd1e8a1f
TH
2851
2852 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2853
2854 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2855 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2856 sizeof(pages[0]));
7e1c4e27 2857 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
f655f405
MR
2858 if (!pages)
2859 panic("%s: Failed to allocate %zu bytes\n", __func__,
2860 pages_size);
d4b95f80 2861
8f05a6a6 2862 /* allocate pages */
d4b95f80 2863 j = 0;
8f606604 2864 for (unit = 0; unit < num_possible_cpus(); unit++) {
2865 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2866 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2867 void *ptr;
2868
3cbc8565 2869 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2870 if (!ptr) {
870d4b12 2871 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2872 psize_str, cpu);
d4b95f80
TH
2873 goto enomem;
2874 }
f528f0b8
CM
2875 /* kmemleak tracks the percpu allocations separately */
2876 kmemleak_free(ptr);
ce3141a2 2877 pages[j++] = virt_to_page(ptr);
d4b95f80 2878 }
8f606604 2879 }
d4b95f80 2880
8f05a6a6
TH
2881 /* allocate vm area, map the pages and copy static data */
2882 vm.flags = VM_ALLOC;
fd1e8a1f 2883 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2884 vm_area_register_early(&vm, PAGE_SIZE);
2885
fd1e8a1f 2886 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2887 unsigned long unit_addr =
fd1e8a1f 2888 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2889
ce3141a2 2890 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2891 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2892
2893 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2894 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2895 unit_pages);
2896 if (rc < 0)
2897 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2898
8f05a6a6
TH
2899 /*
2900 * FIXME: Archs with virtual cache should flush local
2901 * cache for the linear mapping here - something
2902 * equivalent to flush_cache_vmap() on the local cpu.
2903 * flush_cache_vmap() can't be used as most supporting
2904 * data structures are not set up yet.
2905 */
2906
2907 /* copy static data */
fd1e8a1f 2908 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2909 }
2910
2911 /* we're ready, commit */
870d4b12 2912 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2913 unit_pages, psize_str, vm.addr, ai->static_size,
2914 ai->reserved_size, ai->dyn_size);
d4b95f80 2915
fb435d52 2916 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2917 goto out_free_ar;
2918
2919enomem:
2920 while (--j >= 0)
ce3141a2 2921 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2922 rc = -ENOMEM;
d4b95f80 2923out_free_ar:
999c17e3 2924 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2925 pcpu_free_alloc_info(ai);
fb435d52 2926 return rc;
d4b95f80 2927}
3c9a024f 2928#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2929
bbddff05 2930#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2931/*
bbddff05 2932 * Generic SMP percpu area setup.
e74e3962
TH
2933 *
2934 * The embedding helper is used because its behavior closely resembles
2935 * the original non-dynamic generic percpu area setup. This is
2936 * important because many archs have addressing restrictions and might
2937 * fail if the percpu area is located far away from the previous
2938 * location. As an added bonus, in non-NUMA cases, embedding is
2939 * generally a good idea TLB-wise because percpu area can piggy back
2940 * on the physical linear memory mapping which uses large page
2941 * mappings on applicable archs.
2942 */
e74e3962
TH
2943unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2944EXPORT_SYMBOL(__per_cpu_offset);
2945
c8826dd5
TH
2946static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2947 size_t align)
2948{
26fb3dae 2949 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2950}
66c3a757 2951
c8826dd5
TH
2952static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2953{
999c17e3 2954 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2955}
2956
e74e3962
TH
2957void __init setup_per_cpu_areas(void)
2958{
e74e3962
TH
2959 unsigned long delta;
2960 unsigned int cpu;
fb435d52 2961 int rc;
e74e3962
TH
2962
2963 /*
2964 * Always reserve area for module percpu variables. That's
2965 * what the legacy allocator did.
2966 */
fb435d52 2967 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2968 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2969 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2970 if (rc < 0)
bbddff05 2971 panic("Failed to initialize percpu areas.");
e74e3962
TH
2972
2973 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2974 for_each_possible_cpu(cpu)
fb435d52 2975 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2976}
bbddff05
TH
2977#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2978
2979#else /* CONFIG_SMP */
2980
2981/*
2982 * UP percpu area setup.
2983 *
2984 * UP always uses km-based percpu allocator with identity mapping.
2985 * Static percpu variables are indistinguishable from the usual static
2986 * variables and don't require any special preparation.
2987 */
2988void __init setup_per_cpu_areas(void)
2989{
2990 const size_t unit_size =
2991 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2992 PERCPU_DYNAMIC_RESERVE));
2993 struct pcpu_alloc_info *ai;
2994 void *fc;
2995
2996 ai = pcpu_alloc_alloc_info(1, 1);
26fb3dae 2997 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2998 if (!ai || !fc)
2999 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
3000 /* kmemleak tracks the percpu allocations separately */
3001 kmemleak_free(fc);
bbddff05
TH
3002
3003 ai->dyn_size = unit_size;
3004 ai->unit_size = unit_size;
3005 ai->atom_size = unit_size;
3006 ai->alloc_size = unit_size;
3007 ai->groups[0].nr_units = 1;
3008 ai->groups[0].cpu_map[0] = 0;
3009
3010 if (pcpu_setup_first_chunk(ai, fc) < 0)
3011 panic("Failed to initialize percpu areas.");
438a5061 3012 pcpu_free_alloc_info(ai);
bbddff05
TH
3013}
3014
3015#endif /* CONFIG_SMP */
099a19d9 3016
7e8a6304
DZF
3017/*
3018 * pcpu_nr_pages - calculate total number of populated backing pages
3019 *
3020 * This reflects the number of pages populated to back chunks. Metadata is
3021 * excluded in the number exposed in meminfo as the number of backing pages
3022 * scales with the number of cpus and can quickly outweigh the memory used for
3023 * metadata. It also keeps this calculation nice and simple.
3024 *
3025 * RETURNS:
3026 * Total number of populated backing pages in use by the allocator.
3027 */
3028unsigned long pcpu_nr_pages(void)
3029{
3030 return pcpu_nr_populated * pcpu_nr_units;
3031}
3032
1a4d7607
TH
3033/*
3034 * Percpu allocator is initialized early during boot when neither slab or
3035 * workqueue is available. Plug async management until everything is up
3036 * and running.
3037 */
3038static int __init percpu_enable_async(void)
3039{
3040 pcpu_async_enabled = true;
3041 return 0;
3042}
3043subsys_initcall(percpu_enable_async);