]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/percpu.c
percpu: unify allocation of schunk and dchunk
[mirror_ubuntu-jammy-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
fbf59bc9 66#include <linux/list.h>
a530b795 67#include <linux/log2.h>
fbf59bc9
TH
68#include <linux/mm.h>
69#include <linux/module.h>
70#include <linux/mutex.h>
71#include <linux/percpu.h>
72#include <linux/pfn.h>
fbf59bc9 73#include <linux/slab.h>
ccea34b5 74#include <linux/spinlock.h>
fbf59bc9 75#include <linux/vmalloc.h>
a56dbddf 76#include <linux/workqueue.h>
f528f0b8 77#include <linux/kmemleak.h>
fbf59bc9
TH
78
79#include <asm/cacheflush.h>
e0100983 80#include <asm/sections.h>
fbf59bc9 81#include <asm/tlbflush.h>
3b034b0d 82#include <asm/io.h>
fbf59bc9 83
df95e795
DZ
84#define CREATE_TRACE_POINTS
85#include <trace/events/percpu.h>
86
8fa3ed80
DZ
87#include "percpu-internal.h"
88
fbf59bc9
TH
89#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
90#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
91#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
92#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
020ec653
TH
184static bool pcpu_addr_in_first_chunk(void *addr)
185{
186 void *first_start = pcpu_first_chunk->base_addr;
187
188 return addr >= first_start && addr < first_start + pcpu_unit_size;
189}
190
191static bool pcpu_addr_in_reserved_chunk(void *addr)
192{
193 void *first_start = pcpu_first_chunk->base_addr;
194
195 return addr >= first_start &&
e2266705 196 addr < first_start + pcpu_first_chunk->start_offset;
020ec653
TH
197}
198
d9b55eeb 199static int __pcpu_size_to_slot(int size)
fbf59bc9 200{
cae3aeb8 201 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
202 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
203}
204
d9b55eeb
TH
205static int pcpu_size_to_slot(int size)
206{
207 if (size == pcpu_unit_size)
208 return pcpu_nr_slots - 1;
209 return __pcpu_size_to_slot(size);
210}
211
fbf59bc9
TH
212static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
213{
214 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
215 return 0;
216
217 return pcpu_size_to_slot(chunk->free_size);
218}
219
88999a89
TH
220/* set the pointer to a chunk in a page struct */
221static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
222{
223 page->index = (unsigned long)pcpu;
224}
225
226/* obtain pointer to a chunk from a page struct */
227static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
228{
229 return (struct pcpu_chunk *)page->index;
230}
231
232static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 233{
2f39e637 234 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
235}
236
9983b6f0
TH
237static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
238 unsigned int cpu, int page_idx)
fbf59bc9 239{
bba174f5 240 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 241 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
242}
243
88999a89
TH
244static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
245 int *rs, int *re, int end)
ce3141a2
TH
246{
247 *rs = find_next_zero_bit(chunk->populated, end, *rs);
248 *re = find_next_bit(chunk->populated, end, *rs + 1);
249}
250
88999a89
TH
251static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
252 int *rs, int *re, int end)
ce3141a2
TH
253{
254 *rs = find_next_bit(chunk->populated, end, *rs);
255 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
256}
257
258/*
259 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 260 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
261 * be integer variables and will be set to start and end page index of
262 * the current region.
263 */
264#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
265 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
266 (rs) < (re); \
267 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
268
269#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
270 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
271 (rs) < (re); \
272 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
273
fbf59bc9 274/**
90459ce0 275 * pcpu_mem_zalloc - allocate memory
1880d93b 276 * @size: bytes to allocate
fbf59bc9 277 *
1880d93b 278 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 279 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 280 * memory is always zeroed.
fbf59bc9 281 *
ccea34b5
TH
282 * CONTEXT:
283 * Does GFP_KERNEL allocation.
284 *
fbf59bc9 285 * RETURNS:
1880d93b 286 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 287 */
90459ce0 288static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 289{
099a19d9
TH
290 if (WARN_ON_ONCE(!slab_is_available()))
291 return NULL;
292
1880d93b
TH
293 if (size <= PAGE_SIZE)
294 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
295 else
296 return vzalloc(size);
1880d93b 297}
fbf59bc9 298
1880d93b
TH
299/**
300 * pcpu_mem_free - free memory
301 * @ptr: memory to free
1880d93b 302 *
90459ce0 303 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 304 */
1d5cfdb0 305static void pcpu_mem_free(void *ptr)
1880d93b 306{
1d5cfdb0 307 kvfree(ptr);
fbf59bc9
TH
308}
309
b539b87f
TH
310/**
311 * pcpu_count_occupied_pages - count the number of pages an area occupies
312 * @chunk: chunk of interest
313 * @i: index of the area in question
314 *
315 * Count the number of pages chunk's @i'th area occupies. When the area's
316 * start and/or end address isn't aligned to page boundary, the straddled
317 * page is included in the count iff the rest of the page is free.
318 */
319static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
320{
321 int off = chunk->map[i] & ~1;
322 int end = chunk->map[i + 1] & ~1;
323
324 if (!PAGE_ALIGNED(off) && i > 0) {
325 int prev = chunk->map[i - 1];
326
327 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
328 off = round_down(off, PAGE_SIZE);
329 }
330
331 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
332 int next = chunk->map[i + 1];
333 int nend = chunk->map[i + 2] & ~1;
334
335 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
336 end = round_up(end, PAGE_SIZE);
337 }
338
339 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
340}
341
fbf59bc9
TH
342/**
343 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
344 * @chunk: chunk of interest
345 * @oslot: the previous slot it was on
346 *
347 * This function is called after an allocation or free changed @chunk.
348 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
349 * moved to the slot. Note that the reserved chunk is never put on
350 * chunk slots.
ccea34b5
TH
351 *
352 * CONTEXT:
353 * pcpu_lock.
fbf59bc9
TH
354 */
355static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
356{
357 int nslot = pcpu_chunk_slot(chunk);
358
edcb4639 359 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
360 if (oslot < nslot)
361 list_move(&chunk->list, &pcpu_slot[nslot]);
362 else
363 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
364 }
365}
366
9f7dcf22 367/**
833af842
TH
368 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
369 * @chunk: chunk of interest
9c824b6a 370 * @is_atomic: the allocation context
9f7dcf22 371 *
9c824b6a
TH
372 * Determine whether area map of @chunk needs to be extended. If
373 * @is_atomic, only the amount necessary for a new allocation is
374 * considered; however, async extension is scheduled if the left amount is
375 * low. If !@is_atomic, it aims for more empty space. Combined, this
376 * ensures that the map is likely to have enough available space to
377 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 378 *
ccea34b5 379 * CONTEXT:
833af842 380 * pcpu_lock.
ccea34b5 381 *
9f7dcf22 382 * RETURNS:
833af842
TH
383 * New target map allocation length if extension is necessary, 0
384 * otherwise.
9f7dcf22 385 */
9c824b6a 386static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 387{
9c824b6a
TH
388 int margin, new_alloc;
389
4f996e23
TH
390 lockdep_assert_held(&pcpu_lock);
391
9c824b6a
TH
392 if (is_atomic) {
393 margin = 3;
9f7dcf22 394
9c824b6a 395 if (chunk->map_alloc <
4f996e23
TH
396 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
397 if (list_empty(&chunk->map_extend_list)) {
398 list_add_tail(&chunk->map_extend_list,
399 &pcpu_map_extend_chunks);
400 pcpu_schedule_balance_work();
401 }
402 }
9c824b6a
TH
403 } else {
404 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
405 }
406
407 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
408 return 0;
409
410 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 411 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
412 new_alloc *= 2;
413
833af842
TH
414 return new_alloc;
415}
416
417/**
418 * pcpu_extend_area_map - extend area map of a chunk
419 * @chunk: chunk of interest
420 * @new_alloc: new target allocation length of the area map
421 *
422 * Extend area map of @chunk to have @new_alloc entries.
423 *
424 * CONTEXT:
425 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
426 *
427 * RETURNS:
428 * 0 on success, -errno on failure.
429 */
430static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
431{
432 int *old = NULL, *new = NULL;
433 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
434 unsigned long flags;
435
6710e594
TH
436 lockdep_assert_held(&pcpu_alloc_mutex);
437
90459ce0 438 new = pcpu_mem_zalloc(new_size);
833af842 439 if (!new)
9f7dcf22 440 return -ENOMEM;
ccea34b5 441
833af842
TH
442 /* acquire pcpu_lock and switch to new area map */
443 spin_lock_irqsave(&pcpu_lock, flags);
444
445 if (new_alloc <= chunk->map_alloc)
446 goto out_unlock;
9f7dcf22 447
833af842 448 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
449 old = chunk->map;
450
451 memcpy(new, old, old_size);
9f7dcf22 452
9f7dcf22
TH
453 chunk->map_alloc = new_alloc;
454 chunk->map = new;
833af842
TH
455 new = NULL;
456
457out_unlock:
458 spin_unlock_irqrestore(&pcpu_lock, flags);
459
460 /*
461 * pcpu_mem_free() might end up calling vfree() which uses
462 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
463 */
1d5cfdb0
TH
464 pcpu_mem_free(old);
465 pcpu_mem_free(new);
833af842 466
9f7dcf22
TH
467 return 0;
468}
469
a16037c8
TH
470/**
471 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
472 * @chunk: chunk the candidate area belongs to
473 * @off: the offset to the start of the candidate area
474 * @this_size: the size of the candidate area
475 * @size: the size of the target allocation
476 * @align: the alignment of the target allocation
477 * @pop_only: only allocate from already populated region
478 *
479 * We're trying to allocate @size bytes aligned at @align. @chunk's area
480 * at @off sized @this_size is a candidate. This function determines
481 * whether the target allocation fits in the candidate area and returns the
482 * number of bytes to pad after @off. If the target area doesn't fit, -1
483 * is returned.
484 *
485 * If @pop_only is %true, this function only considers the already
486 * populated part of the candidate area.
487 */
488static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
489 int size, int align, bool pop_only)
490{
491 int cand_off = off;
492
493 while (true) {
494 int head = ALIGN(cand_off, align) - off;
495 int page_start, page_end, rs, re;
496
497 if (this_size < head + size)
498 return -1;
499
500 if (!pop_only)
501 return head;
502
503 /*
504 * If the first unpopulated page is beyond the end of the
505 * allocation, the whole allocation is populated;
506 * otherwise, retry from the end of the unpopulated area.
507 */
508 page_start = PFN_DOWN(head + off);
509 page_end = PFN_UP(head + off + size);
510
511 rs = page_start;
512 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
513 if (rs >= page_end)
514 return head;
515 cand_off = re * PAGE_SIZE;
516 }
517}
518
fbf59bc9
TH
519/**
520 * pcpu_alloc_area - allocate area from a pcpu_chunk
521 * @chunk: chunk of interest
cae3aeb8 522 * @size: wanted size in bytes
fbf59bc9 523 * @align: wanted align
a16037c8 524 * @pop_only: allocate only from the populated area
b539b87f 525 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
526 *
527 * Try to allocate @size bytes area aligned at @align from @chunk.
528 * Note that this function only allocates the offset. It doesn't
529 * populate or map the area.
530 *
9f7dcf22
TH
531 * @chunk->map must have at least two free slots.
532 *
ccea34b5
TH
533 * CONTEXT:
534 * pcpu_lock.
535 *
fbf59bc9 536 * RETURNS:
9f7dcf22
TH
537 * Allocated offset in @chunk on success, -1 if no matching area is
538 * found.
fbf59bc9 539 */
a16037c8 540static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 541 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
542{
543 int oslot = pcpu_chunk_slot(chunk);
544 int max_contig = 0;
545 int i, off;
3d331ad7 546 bool seen_free = false;
723ad1d9 547 int *p;
fbf59bc9 548
3d331ad7 549 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 550 int head, tail;
723ad1d9
AV
551 int this_size;
552
553 off = *p;
554 if (off & 1)
555 continue;
fbf59bc9 556
723ad1d9 557 this_size = (p[1] & ~1) - off;
a16037c8
TH
558
559 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
560 pop_only);
561 if (head < 0) {
3d331ad7
AV
562 if (!seen_free) {
563 chunk->first_free = i;
564 seen_free = true;
565 }
723ad1d9 566 max_contig = max(this_size, max_contig);
fbf59bc9
TH
567 continue;
568 }
569
570 /*
571 * If head is small or the previous block is free,
572 * merge'em. Note that 'small' is defined as smaller
573 * than sizeof(int), which is very small but isn't too
574 * uncommon for percpu allocations.
575 */
723ad1d9 576 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 577 *p = off += head;
723ad1d9 578 if (p[-1] & 1)
fbf59bc9 579 chunk->free_size -= head;
21ddfd38
JZ
580 else
581 max_contig = max(*p - p[-1], max_contig);
723ad1d9 582 this_size -= head;
fbf59bc9
TH
583 head = 0;
584 }
585
586 /* if tail is small, just keep it around */
723ad1d9
AV
587 tail = this_size - head - size;
588 if (tail < sizeof(int)) {
fbf59bc9 589 tail = 0;
723ad1d9
AV
590 size = this_size - head;
591 }
fbf59bc9
TH
592
593 /* split if warranted */
594 if (head || tail) {
706c16f2
AV
595 int nr_extra = !!head + !!tail;
596
597 /* insert new subblocks */
723ad1d9 598 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
599 sizeof(chunk->map[0]) * (chunk->map_used - i));
600 chunk->map_used += nr_extra;
601
fbf59bc9 602 if (head) {
3d331ad7
AV
603 if (!seen_free) {
604 chunk->first_free = i;
605 seen_free = true;
606 }
723ad1d9
AV
607 *++p = off += head;
608 ++i;
706c16f2
AV
609 max_contig = max(head, max_contig);
610 }
611 if (tail) {
723ad1d9 612 p[1] = off + size;
706c16f2 613 max_contig = max(tail, max_contig);
fbf59bc9 614 }
fbf59bc9
TH
615 }
616
3d331ad7
AV
617 if (!seen_free)
618 chunk->first_free = i + 1;
619
fbf59bc9 620 /* update hint and mark allocated */
723ad1d9 621 if (i + 1 == chunk->map_used)
fbf59bc9
TH
622 chunk->contig_hint = max_contig; /* fully scanned */
623 else
624 chunk->contig_hint = max(chunk->contig_hint,
625 max_contig);
626
723ad1d9
AV
627 chunk->free_size -= size;
628 *p |= 1;
fbf59bc9 629
b539b87f 630 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
631 pcpu_chunk_relocate(chunk, oslot);
632 return off;
633 }
634
635 chunk->contig_hint = max_contig; /* fully scanned */
636 pcpu_chunk_relocate(chunk, oslot);
637
9f7dcf22
TH
638 /* tell the upper layer that this chunk has no matching area */
639 return -1;
fbf59bc9
TH
640}
641
642/**
643 * pcpu_free_area - free area to a pcpu_chunk
644 * @chunk: chunk of interest
645 * @freeme: offset of area to free
b539b87f 646 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
647 *
648 * Free area starting from @freeme to @chunk. Note that this function
649 * only modifies the allocation map. It doesn't depopulate or unmap
650 * the area.
ccea34b5
TH
651 *
652 * CONTEXT:
653 * pcpu_lock.
fbf59bc9 654 */
b539b87f
TH
655static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
656 int *occ_pages_p)
fbf59bc9
TH
657{
658 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
659 int off = 0;
660 unsigned i, j;
661 int to_free = 0;
662 int *p;
663
5ccd30e4 664 lockdep_assert_held(&pcpu_lock);
30a5b536 665 pcpu_stats_area_dealloc(chunk);
5ccd30e4 666
723ad1d9
AV
667 freeme |= 1; /* we are searching for <given offset, in use> pair */
668
669 i = 0;
670 j = chunk->map_used;
671 while (i != j) {
672 unsigned k = (i + j) / 2;
673 off = chunk->map[k];
674 if (off < freeme)
675 i = k + 1;
676 else if (off > freeme)
677 j = k;
678 else
679 i = j = k;
680 }
fbf59bc9 681 BUG_ON(off != freeme);
fbf59bc9 682
3d331ad7
AV
683 if (i < chunk->first_free)
684 chunk->first_free = i;
685
723ad1d9
AV
686 p = chunk->map + i;
687 *p = off &= ~1;
688 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 689
b539b87f
TH
690 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
691
723ad1d9
AV
692 /* merge with next? */
693 if (!(p[1] & 1))
694 to_free++;
fbf59bc9 695 /* merge with previous? */
723ad1d9
AV
696 if (i > 0 && !(p[-1] & 1)) {
697 to_free++;
fbf59bc9 698 i--;
723ad1d9 699 p--;
fbf59bc9 700 }
723ad1d9
AV
701 if (to_free) {
702 chunk->map_used -= to_free;
703 memmove(p + 1, p + 1 + to_free,
704 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
705 }
706
723ad1d9 707 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
708 pcpu_chunk_relocate(chunk, oslot);
709}
710
10edf5b0
DZF
711static struct pcpu_chunk * __init pcpu_alloc_first_chunk(void *base_addr,
712 int start_offset,
713 int map_size,
714 int *map,
715 int init_map_size)
716{
717 struct pcpu_chunk *chunk;
718
719 chunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
720 INIT_LIST_HEAD(&chunk->list);
721 INIT_LIST_HEAD(&chunk->map_extend_list);
722 chunk->base_addr = base_addr;
723 chunk->start_offset = start_offset;
724 chunk->map = map;
725 chunk->map_alloc = init_map_size;
726
727 /* manage populated page bitmap */
728 chunk->immutable = true;
729 bitmap_fill(chunk->populated, pcpu_unit_pages);
730 chunk->nr_populated = pcpu_unit_pages;
731
732 chunk->contig_hint = chunk->free_size = map_size;
733 chunk->map[0] = 1;
734 chunk->map[1] = chunk->start_offset;
735 chunk->map[2] = (chunk->start_offset + chunk->free_size) | 1;
736 chunk->map_used = 2;
737
738 return chunk;
739}
740
6081089f
TH
741static struct pcpu_chunk *pcpu_alloc_chunk(void)
742{
743 struct pcpu_chunk *chunk;
744
90459ce0 745 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
746 if (!chunk)
747 return NULL;
748
90459ce0
BL
749 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
750 sizeof(chunk->map[0]));
6081089f 751 if (!chunk->map) {
1d5cfdb0 752 pcpu_mem_free(chunk);
6081089f
TH
753 return NULL;
754 }
755
756 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
757 chunk->map[0] = 0;
758 chunk->map[1] = pcpu_unit_size | 1;
759 chunk->map_used = 1;
6081089f
TH
760
761 INIT_LIST_HEAD(&chunk->list);
4f996e23 762 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
763 chunk->free_size = pcpu_unit_size;
764 chunk->contig_hint = pcpu_unit_size;
765
766 return chunk;
767}
768
769static void pcpu_free_chunk(struct pcpu_chunk *chunk)
770{
771 if (!chunk)
772 return;
1d5cfdb0
TH
773 pcpu_mem_free(chunk->map);
774 pcpu_mem_free(chunk);
6081089f
TH
775}
776
b539b87f
TH
777/**
778 * pcpu_chunk_populated - post-population bookkeeping
779 * @chunk: pcpu_chunk which got populated
780 * @page_start: the start page
781 * @page_end: the end page
782 *
783 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
784 * the bookkeeping information accordingly. Must be called after each
785 * successful population.
786 */
787static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
788 int page_start, int page_end)
789{
790 int nr = page_end - page_start;
791
792 lockdep_assert_held(&pcpu_lock);
793
794 bitmap_set(chunk->populated, page_start, nr);
795 chunk->nr_populated += nr;
796 pcpu_nr_empty_pop_pages += nr;
797}
798
799/**
800 * pcpu_chunk_depopulated - post-depopulation bookkeeping
801 * @chunk: pcpu_chunk which got depopulated
802 * @page_start: the start page
803 * @page_end: the end page
804 *
805 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
806 * Update the bookkeeping information accordingly. Must be called after
807 * each successful depopulation.
808 */
809static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
810 int page_start, int page_end)
811{
812 int nr = page_end - page_start;
813
814 lockdep_assert_held(&pcpu_lock);
815
816 bitmap_clear(chunk->populated, page_start, nr);
817 chunk->nr_populated -= nr;
818 pcpu_nr_empty_pop_pages -= nr;
819}
820
9f645532
TH
821/*
822 * Chunk management implementation.
823 *
824 * To allow different implementations, chunk alloc/free and
825 * [de]population are implemented in a separate file which is pulled
826 * into this file and compiled together. The following functions
827 * should be implemented.
828 *
829 * pcpu_populate_chunk - populate the specified range of a chunk
830 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
831 * pcpu_create_chunk - create a new chunk
832 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
833 * pcpu_addr_to_page - translate address to physical address
834 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 835 */
9f645532
TH
836static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
837static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
838static struct pcpu_chunk *pcpu_create_chunk(void);
839static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
840static struct page *pcpu_addr_to_page(void *addr);
841static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 842
b0c9778b
TH
843#ifdef CONFIG_NEED_PER_CPU_KM
844#include "percpu-km.c"
845#else
9f645532 846#include "percpu-vm.c"
b0c9778b 847#endif
fbf59bc9 848
88999a89
TH
849/**
850 * pcpu_chunk_addr_search - determine chunk containing specified address
851 * @addr: address for which the chunk needs to be determined.
852 *
853 * RETURNS:
854 * The address of the found chunk.
855 */
856static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
857{
858 /* is it in the first chunk? */
859 if (pcpu_addr_in_first_chunk(addr)) {
860 /* is it in the reserved area? */
861 if (pcpu_addr_in_reserved_chunk(addr))
862 return pcpu_reserved_chunk;
863 return pcpu_first_chunk;
864 }
865
866 /*
867 * The address is relative to unit0 which might be unused and
868 * thus unmapped. Offset the address to the unit space of the
869 * current processor before looking it up in the vmalloc
870 * space. Note that any possible cpu id can be used here, so
871 * there's no need to worry about preemption or cpu hotplug.
872 */
873 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 874 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
875}
876
fbf59bc9 877/**
edcb4639 878 * pcpu_alloc - the percpu allocator
cae3aeb8 879 * @size: size of area to allocate in bytes
fbf59bc9 880 * @align: alignment of area (max PAGE_SIZE)
edcb4639 881 * @reserved: allocate from the reserved chunk if available
5835d96e 882 * @gfp: allocation flags
fbf59bc9 883 *
5835d96e
TH
884 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
885 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
886 *
887 * RETURNS:
888 * Percpu pointer to the allocated area on success, NULL on failure.
889 */
5835d96e
TH
890static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
891 gfp_t gfp)
fbf59bc9 892{
f2badb0c 893 static int warn_limit = 10;
fbf59bc9 894 struct pcpu_chunk *chunk;
f2badb0c 895 const char *err;
6ae833c7 896 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 897 int occ_pages = 0;
b38d08f3 898 int slot, off, new_alloc, cpu, ret;
403a91b1 899 unsigned long flags;
f528f0b8 900 void __percpu *ptr;
fbf59bc9 901
723ad1d9
AV
902 /*
903 * We want the lowest bit of offset available for in-use/free
2f69fa82 904 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
905 */
906 if (unlikely(align < 2))
907 align = 2;
908
fb009e3a 909 size = ALIGN(size, 2);
2f69fa82 910
3ca45a46 911 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
912 !is_power_of_2(align))) {
756a025f
JP
913 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
914 size, align);
fbf59bc9
TH
915 return NULL;
916 }
917
6710e594
TH
918 if (!is_atomic)
919 mutex_lock(&pcpu_alloc_mutex);
920
403a91b1 921 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 922
edcb4639
TH
923 /* serve reserved allocations from the reserved chunk if available */
924 if (reserved && pcpu_reserved_chunk) {
925 chunk = pcpu_reserved_chunk;
833af842
TH
926
927 if (size > chunk->contig_hint) {
928 err = "alloc from reserved chunk failed";
ccea34b5 929 goto fail_unlock;
f2badb0c 930 }
833af842 931
9c824b6a 932 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 933 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
934 if (is_atomic ||
935 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 936 err = "failed to extend area map of reserved chunk";
b38d08f3 937 goto fail;
833af842
TH
938 }
939 spin_lock_irqsave(&pcpu_lock, flags);
940 }
941
b539b87f
TH
942 off = pcpu_alloc_area(chunk, size, align, is_atomic,
943 &occ_pages);
edcb4639
TH
944 if (off >= 0)
945 goto area_found;
833af842 946
f2badb0c 947 err = "alloc from reserved chunk failed";
ccea34b5 948 goto fail_unlock;
edcb4639
TH
949 }
950
ccea34b5 951restart:
edcb4639 952 /* search through normal chunks */
fbf59bc9
TH
953 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
954 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
955 if (size > chunk->contig_hint)
956 continue;
ccea34b5 957
9c824b6a 958 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 959 if (new_alloc) {
5835d96e
TH
960 if (is_atomic)
961 continue;
833af842
TH
962 spin_unlock_irqrestore(&pcpu_lock, flags);
963 if (pcpu_extend_area_map(chunk,
964 new_alloc) < 0) {
965 err = "failed to extend area map";
b38d08f3 966 goto fail;
833af842
TH
967 }
968 spin_lock_irqsave(&pcpu_lock, flags);
969 /*
970 * pcpu_lock has been dropped, need to
971 * restart cpu_slot list walking.
972 */
973 goto restart;
ccea34b5
TH
974 }
975
b539b87f
TH
976 off = pcpu_alloc_area(chunk, size, align, is_atomic,
977 &occ_pages);
fbf59bc9
TH
978 if (off >= 0)
979 goto area_found;
fbf59bc9
TH
980 }
981 }
982
403a91b1 983 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 984
b38d08f3
TH
985 /*
986 * No space left. Create a new chunk. We don't want multiple
987 * tasks to create chunks simultaneously. Serialize and create iff
988 * there's still no empty chunk after grabbing the mutex.
989 */
11df02bf
DZ
990 if (is_atomic) {
991 err = "atomic alloc failed, no space left";
5835d96e 992 goto fail;
11df02bf 993 }
5835d96e 994
b38d08f3
TH
995 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
996 chunk = pcpu_create_chunk();
997 if (!chunk) {
998 err = "failed to allocate new chunk";
999 goto fail;
1000 }
1001
1002 spin_lock_irqsave(&pcpu_lock, flags);
1003 pcpu_chunk_relocate(chunk, -1);
1004 } else {
1005 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1006 }
ccea34b5 1007
ccea34b5 1008 goto restart;
fbf59bc9
TH
1009
1010area_found:
30a5b536 1011 pcpu_stats_area_alloc(chunk, size);
403a91b1 1012 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1013
dca49645 1014 /* populate if not all pages are already there */
5835d96e 1015 if (!is_atomic) {
e04d3208 1016 int page_start, page_end, rs, re;
dca49645 1017
e04d3208
TH
1018 page_start = PFN_DOWN(off);
1019 page_end = PFN_UP(off + size);
b38d08f3 1020
e04d3208
TH
1021 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1022 WARN_ON(chunk->immutable);
1023
1024 ret = pcpu_populate_chunk(chunk, rs, re);
1025
1026 spin_lock_irqsave(&pcpu_lock, flags);
1027 if (ret) {
b539b87f 1028 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1029 err = "failed to populate";
1030 goto fail_unlock;
1031 }
b539b87f 1032 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1033 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1034 }
fbf59bc9 1035
e04d3208
TH
1036 mutex_unlock(&pcpu_alloc_mutex);
1037 }
ccea34b5 1038
320661b0
TE
1039 if (chunk != pcpu_reserved_chunk) {
1040 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1041 pcpu_nr_empty_pop_pages -= occ_pages;
320661b0
TE
1042 spin_unlock_irqrestore(&pcpu_lock, flags);
1043 }
b539b87f 1044
1a4d7607
TH
1045 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1046 pcpu_schedule_balance_work();
1047
dca49645
TH
1048 /* clear the areas and return address relative to base address */
1049 for_each_possible_cpu(cpu)
1050 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1051
f528f0b8 1052 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1053 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1054
1055 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1056 chunk->base_addr, off, ptr);
1057
f528f0b8 1058 return ptr;
ccea34b5
TH
1059
1060fail_unlock:
403a91b1 1061 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1062fail:
df95e795
DZ
1063 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1064
5835d96e 1065 if (!is_atomic && warn_limit) {
870d4b12 1066 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1067 size, align, is_atomic, err);
f2badb0c
TH
1068 dump_stack();
1069 if (!--warn_limit)
870d4b12 1070 pr_info("limit reached, disable warning\n");
f2badb0c 1071 }
1a4d7607
TH
1072 if (is_atomic) {
1073 /* see the flag handling in pcpu_blance_workfn() */
1074 pcpu_atomic_alloc_failed = true;
1075 pcpu_schedule_balance_work();
6710e594
TH
1076 } else {
1077 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1078 }
ccea34b5 1079 return NULL;
fbf59bc9 1080}
edcb4639
TH
1081
1082/**
5835d96e 1083 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1084 * @size: size of area to allocate in bytes
1085 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1086 * @gfp: allocation flags
edcb4639 1087 *
5835d96e
TH
1088 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1089 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1090 * be called from any context but is a lot more likely to fail.
ccea34b5 1091 *
edcb4639
TH
1092 * RETURNS:
1093 * Percpu pointer to the allocated area on success, NULL on failure.
1094 */
5835d96e
TH
1095void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1096{
1097 return pcpu_alloc(size, align, false, gfp);
1098}
1099EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1100
1101/**
1102 * __alloc_percpu - allocate dynamic percpu area
1103 * @size: size of area to allocate in bytes
1104 * @align: alignment of area (max PAGE_SIZE)
1105 *
1106 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1107 */
43cf38eb 1108void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1109{
5835d96e 1110 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1111}
fbf59bc9
TH
1112EXPORT_SYMBOL_GPL(__alloc_percpu);
1113
edcb4639
TH
1114/**
1115 * __alloc_reserved_percpu - allocate reserved percpu area
1116 * @size: size of area to allocate in bytes
1117 * @align: alignment of area (max PAGE_SIZE)
1118 *
9329ba97
TH
1119 * Allocate zero-filled percpu area of @size bytes aligned at @align
1120 * from reserved percpu area if arch has set it up; otherwise,
1121 * allocation is served from the same dynamic area. Might sleep.
1122 * Might trigger writeouts.
edcb4639 1123 *
ccea34b5
TH
1124 * CONTEXT:
1125 * Does GFP_KERNEL allocation.
1126 *
edcb4639
TH
1127 * RETURNS:
1128 * Percpu pointer to the allocated area on success, NULL on failure.
1129 */
43cf38eb 1130void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1131{
5835d96e 1132 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1133}
1134
a56dbddf 1135/**
1a4d7607 1136 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1137 * @work: unused
1138 *
1139 * Reclaim all fully free chunks except for the first one.
1140 */
fe6bd8c3 1141static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1142{
fe6bd8c3
TH
1143 LIST_HEAD(to_free);
1144 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1145 struct pcpu_chunk *chunk, *next;
1a4d7607 1146 int slot, nr_to_pop, ret;
a56dbddf 1147
1a4d7607
TH
1148 /*
1149 * There's no reason to keep around multiple unused chunks and VM
1150 * areas can be scarce. Destroy all free chunks except for one.
1151 */
ccea34b5
TH
1152 mutex_lock(&pcpu_alloc_mutex);
1153 spin_lock_irq(&pcpu_lock);
a56dbddf 1154
fe6bd8c3 1155 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1156 WARN_ON(chunk->immutable);
1157
1158 /* spare the first one */
fe6bd8c3 1159 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1160 continue;
1161
4f996e23 1162 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1163 list_move(&chunk->list, &to_free);
a56dbddf
TH
1164 }
1165
ccea34b5 1166 spin_unlock_irq(&pcpu_lock);
a56dbddf 1167
fe6bd8c3 1168 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1169 int rs, re;
dca49645 1170
a93ace48
TH
1171 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1172 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1173 spin_lock_irq(&pcpu_lock);
1174 pcpu_chunk_depopulated(chunk, rs, re);
1175 spin_unlock_irq(&pcpu_lock);
a93ace48 1176 }
6081089f 1177 pcpu_destroy_chunk(chunk);
a56dbddf 1178 }
971f3918 1179
4f996e23
TH
1180 /* service chunks which requested async area map extension */
1181 do {
1182 int new_alloc = 0;
1183
1184 spin_lock_irq(&pcpu_lock);
1185
1186 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1187 struct pcpu_chunk, map_extend_list);
1188 if (chunk) {
1189 list_del_init(&chunk->map_extend_list);
1190 new_alloc = pcpu_need_to_extend(chunk, false);
1191 }
1192
1193 spin_unlock_irq(&pcpu_lock);
1194
1195 if (new_alloc)
1196 pcpu_extend_area_map(chunk, new_alloc);
1197 } while (chunk);
1198
1a4d7607
TH
1199 /*
1200 * Ensure there are certain number of free populated pages for
1201 * atomic allocs. Fill up from the most packed so that atomic
1202 * allocs don't increase fragmentation. If atomic allocation
1203 * failed previously, always populate the maximum amount. This
1204 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1205 * failing indefinitely; however, large atomic allocs are not
1206 * something we support properly and can be highly unreliable and
1207 * inefficient.
1208 */
1209retry_pop:
1210 if (pcpu_atomic_alloc_failed) {
1211 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1212 /* best effort anyway, don't worry about synchronization */
1213 pcpu_atomic_alloc_failed = false;
1214 } else {
1215 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1216 pcpu_nr_empty_pop_pages,
1217 0, PCPU_EMPTY_POP_PAGES_HIGH);
1218 }
1219
1220 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1221 int nr_unpop = 0, rs, re;
1222
1223 if (!nr_to_pop)
1224 break;
1225
1226 spin_lock_irq(&pcpu_lock);
1227 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1228 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1229 if (nr_unpop)
1230 break;
1231 }
1232 spin_unlock_irq(&pcpu_lock);
1233
1234 if (!nr_unpop)
1235 continue;
1236
1237 /* @chunk can't go away while pcpu_alloc_mutex is held */
1238 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1239 int nr = min(re - rs, nr_to_pop);
1240
1241 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1242 if (!ret) {
1243 nr_to_pop -= nr;
1244 spin_lock_irq(&pcpu_lock);
1245 pcpu_chunk_populated(chunk, rs, rs + nr);
1246 spin_unlock_irq(&pcpu_lock);
1247 } else {
1248 nr_to_pop = 0;
1249 }
1250
1251 if (!nr_to_pop)
1252 break;
1253 }
1254 }
1255
1256 if (nr_to_pop) {
1257 /* ran out of chunks to populate, create a new one and retry */
1258 chunk = pcpu_create_chunk();
1259 if (chunk) {
1260 spin_lock_irq(&pcpu_lock);
1261 pcpu_chunk_relocate(chunk, -1);
1262 spin_unlock_irq(&pcpu_lock);
1263 goto retry_pop;
1264 }
1265 }
1266
971f3918 1267 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1268}
1269
1270/**
1271 * free_percpu - free percpu area
1272 * @ptr: pointer to area to free
1273 *
ccea34b5
TH
1274 * Free percpu area @ptr.
1275 *
1276 * CONTEXT:
1277 * Can be called from atomic context.
fbf59bc9 1278 */
43cf38eb 1279void free_percpu(void __percpu *ptr)
fbf59bc9 1280{
129182e5 1281 void *addr;
fbf59bc9 1282 struct pcpu_chunk *chunk;
ccea34b5 1283 unsigned long flags;
b539b87f 1284 int off, occ_pages;
fbf59bc9
TH
1285
1286 if (!ptr)
1287 return;
1288
f528f0b8
CM
1289 kmemleak_free_percpu(ptr);
1290
129182e5
AM
1291 addr = __pcpu_ptr_to_addr(ptr);
1292
ccea34b5 1293 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1294
1295 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1296 off = addr - chunk->base_addr;
fbf59bc9 1297
b539b87f
TH
1298 pcpu_free_area(chunk, off, &occ_pages);
1299
1300 if (chunk != pcpu_reserved_chunk)
1301 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1302
a56dbddf 1303 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1304 if (chunk->free_size == pcpu_unit_size) {
1305 struct pcpu_chunk *pos;
1306
a56dbddf 1307 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1308 if (pos != chunk) {
1a4d7607 1309 pcpu_schedule_balance_work();
fbf59bc9
TH
1310 break;
1311 }
1312 }
1313
df95e795
DZ
1314 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1315
ccea34b5 1316 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1317}
1318EXPORT_SYMBOL_GPL(free_percpu);
1319
383776fa 1320bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1321{
bbddff05 1322#ifdef CONFIG_SMP
10fad5e4
TH
1323 const size_t static_size = __per_cpu_end - __per_cpu_start;
1324 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1325 unsigned int cpu;
1326
1327 for_each_possible_cpu(cpu) {
1328 void *start = per_cpu_ptr(base, cpu);
383776fa 1329 void *va = (void *)addr;
10fad5e4 1330
383776fa 1331 if (va >= start && va < start + static_size) {
8ce371f9 1332 if (can_addr) {
383776fa 1333 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1334 *can_addr += (unsigned long)
1335 per_cpu_ptr(base, get_boot_cpu_id());
1336 }
10fad5e4 1337 return true;
383776fa
TG
1338 }
1339 }
bbddff05
TH
1340#endif
1341 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1342 return false;
1343}
1344
383776fa
TG
1345/**
1346 * is_kernel_percpu_address - test whether address is from static percpu area
1347 * @addr: address to test
1348 *
1349 * Test whether @addr belongs to in-kernel static percpu area. Module
1350 * static percpu areas are not considered. For those, use
1351 * is_module_percpu_address().
1352 *
1353 * RETURNS:
1354 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1355 */
1356bool is_kernel_percpu_address(unsigned long addr)
1357{
1358 return __is_kernel_percpu_address(addr, NULL);
1359}
1360
3b034b0d
VG
1361/**
1362 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1363 * @addr: the address to be converted to physical address
1364 *
1365 * Given @addr which is dereferenceable address obtained via one of
1366 * percpu access macros, this function translates it into its physical
1367 * address. The caller is responsible for ensuring @addr stays valid
1368 * until this function finishes.
1369 *
67589c71
DY
1370 * percpu allocator has special setup for the first chunk, which currently
1371 * supports either embedding in linear address space or vmalloc mapping,
1372 * and, from the second one, the backing allocator (currently either vm or
1373 * km) provides translation.
1374 *
bffc4375 1375 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1376 * first chunk. But the current code reflects better how percpu allocator
1377 * actually works, and the verification can discover both bugs in percpu
1378 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1379 * code.
1380 *
3b034b0d
VG
1381 * RETURNS:
1382 * The physical address for @addr.
1383 */
1384phys_addr_t per_cpu_ptr_to_phys(void *addr)
1385{
9983b6f0
TH
1386 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1387 bool in_first_chunk = false;
a855b84c 1388 unsigned long first_low, first_high;
9983b6f0
TH
1389 unsigned int cpu;
1390
1391 /*
a855b84c 1392 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1393 * necessary but will speed up lookups of addresses which
1394 * aren't in the first chunk.
1395 */
a855b84c
TH
1396 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1397 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1398 pcpu_unit_pages);
1399 if ((unsigned long)addr >= first_low &&
1400 (unsigned long)addr < first_high) {
9983b6f0
TH
1401 for_each_possible_cpu(cpu) {
1402 void *start = per_cpu_ptr(base, cpu);
1403
1404 if (addr >= start && addr < start + pcpu_unit_size) {
1405 in_first_chunk = true;
1406 break;
1407 }
1408 }
1409 }
1410
1411 if (in_first_chunk) {
eac522ef 1412 if (!is_vmalloc_addr(addr))
020ec653
TH
1413 return __pa(addr);
1414 else
9f57bd4d
ES
1415 return page_to_phys(vmalloc_to_page(addr)) +
1416 offset_in_page(addr);
020ec653 1417 } else
9f57bd4d
ES
1418 return page_to_phys(pcpu_addr_to_page(addr)) +
1419 offset_in_page(addr);
3b034b0d
VG
1420}
1421
fbf59bc9 1422/**
fd1e8a1f
TH
1423 * pcpu_alloc_alloc_info - allocate percpu allocation info
1424 * @nr_groups: the number of groups
1425 * @nr_units: the number of units
1426 *
1427 * Allocate ai which is large enough for @nr_groups groups containing
1428 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1429 * cpu_map array which is long enough for @nr_units and filled with
1430 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1431 * pointer of other groups.
1432 *
1433 * RETURNS:
1434 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1435 * failure.
1436 */
1437struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1438 int nr_units)
1439{
1440 struct pcpu_alloc_info *ai;
1441 size_t base_size, ai_size;
1442 void *ptr;
1443 int unit;
1444
1445 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1446 __alignof__(ai->groups[0].cpu_map[0]));
1447 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1448
999c17e3 1449 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1450 if (!ptr)
1451 return NULL;
1452 ai = ptr;
1453 ptr += base_size;
1454
1455 ai->groups[0].cpu_map = ptr;
1456
1457 for (unit = 0; unit < nr_units; unit++)
1458 ai->groups[0].cpu_map[unit] = NR_CPUS;
1459
1460 ai->nr_groups = nr_groups;
1461 ai->__ai_size = PFN_ALIGN(ai_size);
1462
1463 return ai;
1464}
1465
1466/**
1467 * pcpu_free_alloc_info - free percpu allocation info
1468 * @ai: pcpu_alloc_info to free
1469 *
1470 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1471 */
1472void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1473{
999c17e3 1474 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1475}
1476
fd1e8a1f
TH
1477/**
1478 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1479 * @lvl: loglevel
1480 * @ai: allocation info to dump
1481 *
1482 * Print out information about @ai using loglevel @lvl.
1483 */
1484static void pcpu_dump_alloc_info(const char *lvl,
1485 const struct pcpu_alloc_info *ai)
033e48fb 1486{
fd1e8a1f 1487 int group_width = 1, cpu_width = 1, width;
033e48fb 1488 char empty_str[] = "--------";
fd1e8a1f
TH
1489 int alloc = 0, alloc_end = 0;
1490 int group, v;
1491 int upa, apl; /* units per alloc, allocs per line */
1492
1493 v = ai->nr_groups;
1494 while (v /= 10)
1495 group_width++;
033e48fb 1496
fd1e8a1f 1497 v = num_possible_cpus();
033e48fb 1498 while (v /= 10)
fd1e8a1f
TH
1499 cpu_width++;
1500 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1501
fd1e8a1f
TH
1502 upa = ai->alloc_size / ai->unit_size;
1503 width = upa * (cpu_width + 1) + group_width + 3;
1504 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1505
fd1e8a1f
TH
1506 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1507 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1508 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1509
fd1e8a1f
TH
1510 for (group = 0; group < ai->nr_groups; group++) {
1511 const struct pcpu_group_info *gi = &ai->groups[group];
1512 int unit = 0, unit_end = 0;
1513
1514 BUG_ON(gi->nr_units % upa);
1515 for (alloc_end += gi->nr_units / upa;
1516 alloc < alloc_end; alloc++) {
1517 if (!(alloc % apl)) {
1170532b 1518 pr_cont("\n");
fd1e8a1f
TH
1519 printk("%spcpu-alloc: ", lvl);
1520 }
1170532b 1521 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1522
1523 for (unit_end += upa; unit < unit_end; unit++)
1524 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1525 pr_cont("%0*d ",
1526 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1527 else
1170532b 1528 pr_cont("%s ", empty_str);
033e48fb 1529 }
033e48fb 1530 }
1170532b 1531 pr_cont("\n");
033e48fb 1532}
033e48fb 1533
fbf59bc9 1534/**
8d408b4b 1535 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1536 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1537 * @base_addr: mapped address
8d408b4b
TH
1538 *
1539 * Initialize the first percpu chunk which contains the kernel static
1540 * perpcu area. This function is to be called from arch percpu area
38a6be52 1541 * setup path.
8d408b4b 1542 *
fd1e8a1f
TH
1543 * @ai contains all information necessary to initialize the first
1544 * chunk and prime the dynamic percpu allocator.
1545 *
1546 * @ai->static_size is the size of static percpu area.
1547 *
1548 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1549 * reserve after the static area in the first chunk. This reserves
1550 * the first chunk such that it's available only through reserved
1551 * percpu allocation. This is primarily used to serve module percpu
1552 * static areas on architectures where the addressing model has
1553 * limited offset range for symbol relocations to guarantee module
1554 * percpu symbols fall inside the relocatable range.
1555 *
fd1e8a1f
TH
1556 * @ai->dyn_size determines the number of bytes available for dynamic
1557 * allocation in the first chunk. The area between @ai->static_size +
1558 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1559 *
fd1e8a1f
TH
1560 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1561 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1562 * @ai->dyn_size.
8d408b4b 1563 *
fd1e8a1f
TH
1564 * @ai->atom_size is the allocation atom size and used as alignment
1565 * for vm areas.
8d408b4b 1566 *
fd1e8a1f
TH
1567 * @ai->alloc_size is the allocation size and always multiple of
1568 * @ai->atom_size. This is larger than @ai->atom_size if
1569 * @ai->unit_size is larger than @ai->atom_size.
1570 *
1571 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1572 * percpu areas. Units which should be colocated are put into the
1573 * same group. Dynamic VM areas will be allocated according to these
1574 * groupings. If @ai->nr_groups is zero, a single group containing
1575 * all units is assumed.
8d408b4b 1576 *
38a6be52
TH
1577 * The caller should have mapped the first chunk at @base_addr and
1578 * copied static data to each unit.
fbf59bc9 1579 *
edcb4639
TH
1580 * If the first chunk ends up with both reserved and dynamic areas, it
1581 * is served by two chunks - one to serve the core static and reserved
1582 * areas and the other for the dynamic area. They share the same vm
1583 * and page map but uses different area allocation map to stay away
1584 * from each other. The latter chunk is circulated in the chunk slots
1585 * and available for dynamic allocation like any other chunks.
1586 *
fbf59bc9 1587 * RETURNS:
fb435d52 1588 * 0 on success, -errno on failure.
fbf59bc9 1589 */
fb435d52
TH
1590int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1591 void *base_addr)
fbf59bc9 1592{
099a19d9
TH
1593 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1594 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
b9c39442 1595 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
edcb4639 1596 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1597 unsigned long *group_offsets;
1598 size_t *group_sizes;
fb435d52 1599 unsigned long *unit_off;
fbf59bc9 1600 unsigned int cpu;
fd1e8a1f
TH
1601 int *unit_map;
1602 int group, unit, i;
10edf5b0 1603 int map_size, start_offset;
fbf59bc9 1604
635b75fc
TH
1605#define PCPU_SETUP_BUG_ON(cond) do { \
1606 if (unlikely(cond)) { \
870d4b12
JP
1607 pr_emerg("failed to initialize, %s\n", #cond); \
1608 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1609 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1610 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1611 BUG(); \
1612 } \
1613} while (0)
1614
2f39e637 1615 /* sanity checks */
635b75fc 1616 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1617#ifdef CONFIG_SMP
635b75fc 1618 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1619 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1620#endif
635b75fc 1621 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1622 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1623 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1624 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1625 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1626 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1627 PCPU_SETUP_BUG_ON(!ai->dyn_size);
9f645532 1628 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1629
6563297c 1630 /* process group information and build config tables accordingly */
999c17e3
SS
1631 group_offsets = memblock_virt_alloc(ai->nr_groups *
1632 sizeof(group_offsets[0]), 0);
1633 group_sizes = memblock_virt_alloc(ai->nr_groups *
1634 sizeof(group_sizes[0]), 0);
1635 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1636 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1637
fd1e8a1f 1638 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1639 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1640
1641 pcpu_low_unit_cpu = NR_CPUS;
1642 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1643
fd1e8a1f
TH
1644 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1645 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1646
6563297c
TH
1647 group_offsets[group] = gi->base_offset;
1648 group_sizes[group] = gi->nr_units * ai->unit_size;
1649
fd1e8a1f
TH
1650 for (i = 0; i < gi->nr_units; i++) {
1651 cpu = gi->cpu_map[i];
1652 if (cpu == NR_CPUS)
1653 continue;
8d408b4b 1654
9f295664 1655 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1656 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1657 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1658
fd1e8a1f 1659 unit_map[cpu] = unit + i;
fb435d52
TH
1660 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1661
a855b84c
TH
1662 /* determine low/high unit_cpu */
1663 if (pcpu_low_unit_cpu == NR_CPUS ||
1664 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1665 pcpu_low_unit_cpu = cpu;
1666 if (pcpu_high_unit_cpu == NR_CPUS ||
1667 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1668 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1669 }
2f39e637 1670 }
fd1e8a1f
TH
1671 pcpu_nr_units = unit;
1672
1673 for_each_possible_cpu(cpu)
635b75fc
TH
1674 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1675
1676 /* we're done parsing the input, undefine BUG macro and dump config */
1677#undef PCPU_SETUP_BUG_ON
bcbea798 1678 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1679
6563297c
TH
1680 pcpu_nr_groups = ai->nr_groups;
1681 pcpu_group_offsets = group_offsets;
1682 pcpu_group_sizes = group_sizes;
fd1e8a1f 1683 pcpu_unit_map = unit_map;
fb435d52 1684 pcpu_unit_offsets = unit_off;
2f39e637
TH
1685
1686 /* determine basic parameters */
fd1e8a1f 1687 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1688 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1689 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1690 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1691 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1692
30a5b536
DZ
1693 pcpu_stats_save_ai(ai);
1694
d9b55eeb
TH
1695 /*
1696 * Allocate chunk slots. The additional last slot is for
1697 * empty chunks.
1698 */
1699 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1700 pcpu_slot = memblock_virt_alloc(
1701 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1702 for (i = 0; i < pcpu_nr_slots; i++)
1703 INIT_LIST_HEAD(&pcpu_slot[i]);
1704
edcb4639
TH
1705 /*
1706 * Initialize static chunk. If reserved_size is zero, the
1707 * static chunk covers static area + dynamic allocation area
1708 * in the first chunk. If reserved_size is not zero, it
1709 * covers static area + reserved area (mostly used for module
1710 * static percpu allocation).
1711 */
10edf5b0
DZF
1712 start_offset = ai->static_size;
1713 map_size = ai->reserved_size ?: ai->dyn_size;
1714 schunk = pcpu_alloc_first_chunk(base_addr, start_offset, map_size,
1715 smap, ARRAY_SIZE(smap));
61ace7fa 1716
edcb4639 1717 /* init dynamic chunk if necessary */
b9c39442
DZF
1718 if (ai->reserved_size) {
1719 pcpu_reserved_chunk = schunk;
1720
10edf5b0
DZF
1721 start_offset = ai->static_size + ai->reserved_size;
1722 map_size = ai->dyn_size;
1723 dchunk = pcpu_alloc_first_chunk(base_addr, start_offset,
1724 map_size, dmap,
1725 ARRAY_SIZE(dmap));
edcb4639
TH
1726 }
1727
2441d15c 1728 /* link the first chunk in */
ae9e6bc9 1729 pcpu_first_chunk = dchunk ?: schunk;
e2266705 1730 i = (pcpu_first_chunk->start_offset) ? 1 : 0;
b539b87f 1731 pcpu_nr_empty_pop_pages +=
e2266705 1732 pcpu_count_occupied_pages(pcpu_first_chunk, i);
ae9e6bc9 1733 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1734
30a5b536 1735 pcpu_stats_chunk_alloc();
df95e795 1736 trace_percpu_create_chunk(base_addr);
30a5b536 1737
fbf59bc9 1738 /* we're done */
bba174f5 1739 pcpu_base_addr = base_addr;
fb435d52 1740 return 0;
fbf59bc9 1741}
66c3a757 1742
bbddff05
TH
1743#ifdef CONFIG_SMP
1744
17f3609c 1745const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1746 [PCPU_FC_AUTO] = "auto",
1747 [PCPU_FC_EMBED] = "embed",
1748 [PCPU_FC_PAGE] = "page",
f58dc01b 1749};
66c3a757 1750
f58dc01b 1751enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1752
f58dc01b
TH
1753static int __init percpu_alloc_setup(char *str)
1754{
5479c78a
CG
1755 if (!str)
1756 return -EINVAL;
1757
f58dc01b
TH
1758 if (0)
1759 /* nada */;
1760#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1761 else if (!strcmp(str, "embed"))
1762 pcpu_chosen_fc = PCPU_FC_EMBED;
1763#endif
1764#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1765 else if (!strcmp(str, "page"))
1766 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1767#endif
1768 else
870d4b12 1769 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1770
f58dc01b 1771 return 0;
66c3a757 1772}
f58dc01b 1773early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1774
3c9a024f
TH
1775/*
1776 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1777 * Build it if needed by the arch config or the generic setup is going
1778 * to be used.
1779 */
08fc4580
TH
1780#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1781 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1782#define BUILD_EMBED_FIRST_CHUNK
1783#endif
1784
1785/* build pcpu_page_first_chunk() iff needed by the arch config */
1786#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1787#define BUILD_PAGE_FIRST_CHUNK
1788#endif
1789
1790/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1791#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1792/**
1793 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1794 * @reserved_size: the size of reserved percpu area in bytes
1795 * @dyn_size: minimum free size for dynamic allocation in bytes
1796 * @atom_size: allocation atom size
1797 * @cpu_distance_fn: callback to determine distance between cpus, optional
1798 *
1799 * This function determines grouping of units, their mappings to cpus
1800 * and other parameters considering needed percpu size, allocation
1801 * atom size and distances between CPUs.
1802 *
bffc4375 1803 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1804 * LOCAL_DISTANCE both ways are grouped together and share space for
1805 * units in the same group. The returned configuration is guaranteed
1806 * to have CPUs on different nodes on different groups and >=75% usage
1807 * of allocated virtual address space.
1808 *
1809 * RETURNS:
1810 * On success, pointer to the new allocation_info is returned. On
1811 * failure, ERR_PTR value is returned.
1812 */
1813static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1814 size_t reserved_size, size_t dyn_size,
1815 size_t atom_size,
1816 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1817{
1818 static int group_map[NR_CPUS] __initdata;
1819 static int group_cnt[NR_CPUS] __initdata;
1820 const size_t static_size = __per_cpu_end - __per_cpu_start;
1821 int nr_groups = 1, nr_units = 0;
1822 size_t size_sum, min_unit_size, alloc_size;
1823 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1824 int last_allocs, group, unit;
1825 unsigned int cpu, tcpu;
1826 struct pcpu_alloc_info *ai;
1827 unsigned int *cpu_map;
1828
1829 /* this function may be called multiple times */
1830 memset(group_map, 0, sizeof(group_map));
1831 memset(group_cnt, 0, sizeof(group_cnt));
1832
1833 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1834 size_sum = PFN_ALIGN(static_size + reserved_size +
1835 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1836 dyn_size = size_sum - static_size - reserved_size;
1837
1838 /*
1839 * Determine min_unit_size, alloc_size and max_upa such that
1840 * alloc_size is multiple of atom_size and is the smallest
25985edc 1841 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1842 * or larger than min_unit_size.
1843 */
1844 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1845
9c015162 1846 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1847 alloc_size = roundup(min_unit_size, atom_size);
1848 upa = alloc_size / min_unit_size;
f09f1243 1849 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1850 upa--;
1851 max_upa = upa;
1852
1853 /* group cpus according to their proximity */
1854 for_each_possible_cpu(cpu) {
1855 group = 0;
1856 next_group:
1857 for_each_possible_cpu(tcpu) {
1858 if (cpu == tcpu)
1859 break;
1860 if (group_map[tcpu] == group && cpu_distance_fn &&
1861 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1862 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1863 group++;
1864 nr_groups = max(nr_groups, group + 1);
1865 goto next_group;
1866 }
1867 }
1868 group_map[cpu] = group;
1869 group_cnt[group]++;
1870 }
1871
1872 /*
9c015162
DZF
1873 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1874 * Expand the unit_size until we use >= 75% of the units allocated.
1875 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
1876 */
1877 last_allocs = INT_MAX;
1878 for (upa = max_upa; upa; upa--) {
1879 int allocs = 0, wasted = 0;
1880
f09f1243 1881 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1882 continue;
1883
1884 for (group = 0; group < nr_groups; group++) {
1885 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1886 allocs += this_allocs;
1887 wasted += this_allocs * upa - group_cnt[group];
1888 }
1889
1890 /*
1891 * Don't accept if wastage is over 1/3. The
1892 * greater-than comparison ensures upa==1 always
1893 * passes the following check.
1894 */
1895 if (wasted > num_possible_cpus() / 3)
1896 continue;
1897
1898 /* and then don't consume more memory */
1899 if (allocs > last_allocs)
1900 break;
1901 last_allocs = allocs;
1902 best_upa = upa;
1903 }
1904 upa = best_upa;
1905
1906 /* allocate and fill alloc_info */
1907 for (group = 0; group < nr_groups; group++)
1908 nr_units += roundup(group_cnt[group], upa);
1909
1910 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1911 if (!ai)
1912 return ERR_PTR(-ENOMEM);
1913 cpu_map = ai->groups[0].cpu_map;
1914
1915 for (group = 0; group < nr_groups; group++) {
1916 ai->groups[group].cpu_map = cpu_map;
1917 cpu_map += roundup(group_cnt[group], upa);
1918 }
1919
1920 ai->static_size = static_size;
1921 ai->reserved_size = reserved_size;
1922 ai->dyn_size = dyn_size;
1923 ai->unit_size = alloc_size / upa;
1924 ai->atom_size = atom_size;
1925 ai->alloc_size = alloc_size;
1926
1927 for (group = 0, unit = 0; group_cnt[group]; group++) {
1928 struct pcpu_group_info *gi = &ai->groups[group];
1929
1930 /*
1931 * Initialize base_offset as if all groups are located
1932 * back-to-back. The caller should update this to
1933 * reflect actual allocation.
1934 */
1935 gi->base_offset = unit * ai->unit_size;
1936
1937 for_each_possible_cpu(cpu)
1938 if (group_map[cpu] == group)
1939 gi->cpu_map[gi->nr_units++] = cpu;
1940 gi->nr_units = roundup(gi->nr_units, upa);
1941 unit += gi->nr_units;
1942 }
1943 BUG_ON(unit != nr_units);
1944
1945 return ai;
1946}
1947#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1948
1949#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1950/**
1951 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1952 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1953 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1954 * @atom_size: allocation atom size
1955 * @cpu_distance_fn: callback to determine distance between cpus, optional
1956 * @alloc_fn: function to allocate percpu page
25985edc 1957 * @free_fn: function to free percpu page
66c3a757
TH
1958 *
1959 * This is a helper to ease setting up embedded first percpu chunk and
1960 * can be called where pcpu_setup_first_chunk() is expected.
1961 *
1962 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1963 * by calling @alloc_fn and used as-is without being mapped into
1964 * vmalloc area. Allocations are always whole multiples of @atom_size
1965 * aligned to @atom_size.
1966 *
1967 * This enables the first chunk to piggy back on the linear physical
1968 * mapping which often uses larger page size. Please note that this
1969 * can result in very sparse cpu->unit mapping on NUMA machines thus
1970 * requiring large vmalloc address space. Don't use this allocator if
1971 * vmalloc space is not orders of magnitude larger than distances
1972 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1973 *
4ba6ce25 1974 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1975 *
1976 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1977 * size, the leftover is returned using @free_fn.
66c3a757
TH
1978 *
1979 * RETURNS:
fb435d52 1980 * 0 on success, -errno on failure.
66c3a757 1981 */
4ba6ce25 1982int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1983 size_t atom_size,
1984 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1985 pcpu_fc_alloc_fn_t alloc_fn,
1986 pcpu_fc_free_fn_t free_fn)
66c3a757 1987{
c8826dd5
TH
1988 void *base = (void *)ULONG_MAX;
1989 void **areas = NULL;
fd1e8a1f 1990 struct pcpu_alloc_info *ai;
93c76b6b 1991 size_t size_sum, areas_size;
1992 unsigned long max_distance;
9b739662 1993 int group, i, highest_group, rc;
66c3a757 1994
c8826dd5
TH
1995 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1996 cpu_distance_fn);
fd1e8a1f
TH
1997 if (IS_ERR(ai))
1998 return PTR_ERR(ai);
66c3a757 1999
fd1e8a1f 2000 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2001 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2002
999c17e3 2003 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2004 if (!areas) {
fb435d52 2005 rc = -ENOMEM;
c8826dd5 2006 goto out_free;
fa8a7094 2007 }
66c3a757 2008
9b739662 2009 /* allocate, copy and determine base address & max_distance */
2010 highest_group = 0;
c8826dd5
TH
2011 for (group = 0; group < ai->nr_groups; group++) {
2012 struct pcpu_group_info *gi = &ai->groups[group];
2013 unsigned int cpu = NR_CPUS;
2014 void *ptr;
2015
2016 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2017 cpu = gi->cpu_map[i];
2018 BUG_ON(cpu == NR_CPUS);
2019
2020 /* allocate space for the whole group */
2021 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2022 if (!ptr) {
2023 rc = -ENOMEM;
2024 goto out_free_areas;
2025 }
f528f0b8
CM
2026 /* kmemleak tracks the percpu allocations separately */
2027 kmemleak_free(ptr);
c8826dd5 2028 areas[group] = ptr;
fd1e8a1f 2029
c8826dd5 2030 base = min(ptr, base);
9b739662 2031 if (ptr > areas[highest_group])
2032 highest_group = group;
2033 }
2034 max_distance = areas[highest_group] - base;
2035 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2036
2037 /* warn if maximum distance is further than 75% of vmalloc space */
2038 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2039 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2040 max_distance, VMALLOC_TOTAL);
2041#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2042 /* and fail if we have fallback */
2043 rc = -EINVAL;
2044 goto out_free_areas;
2045#endif
42b64281
TH
2046 }
2047
2048 /*
2049 * Copy data and free unused parts. This should happen after all
2050 * allocations are complete; otherwise, we may end up with
2051 * overlapping groups.
2052 */
2053 for (group = 0; group < ai->nr_groups; group++) {
2054 struct pcpu_group_info *gi = &ai->groups[group];
2055 void *ptr = areas[group];
c8826dd5
TH
2056
2057 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2058 if (gi->cpu_map[i] == NR_CPUS) {
2059 /* unused unit, free whole */
2060 free_fn(ptr, ai->unit_size);
2061 continue;
2062 }
2063 /* copy and return the unused part */
2064 memcpy(ptr, __per_cpu_load, ai->static_size);
2065 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2066 }
fa8a7094 2067 }
66c3a757 2068
c8826dd5 2069 /* base address is now known, determine group base offsets */
6ea529a2 2070 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2071 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2072 }
c8826dd5 2073
870d4b12 2074 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2075 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2076 ai->dyn_size, ai->unit_size);
d4b95f80 2077
fb435d52 2078 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2079 goto out_free;
2080
2081out_free_areas:
2082 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2083 if (areas[group])
2084 free_fn(areas[group],
2085 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2086out_free:
fd1e8a1f 2087 pcpu_free_alloc_info(ai);
c8826dd5 2088 if (areas)
999c17e3 2089 memblock_free_early(__pa(areas), areas_size);
fb435d52 2090 return rc;
d4b95f80 2091}
3c9a024f 2092#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2093
3c9a024f 2094#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2095/**
00ae4064 2096 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2097 * @reserved_size: the size of reserved percpu area in bytes
2098 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2099 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2100 * @populate_pte_fn: function to populate pte
2101 *
00ae4064
TH
2102 * This is a helper to ease setting up page-remapped first percpu
2103 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2104 *
2105 * This is the basic allocator. Static percpu area is allocated
2106 * page-by-page into vmalloc area.
2107 *
2108 * RETURNS:
fb435d52 2109 * 0 on success, -errno on failure.
d4b95f80 2110 */
fb435d52
TH
2111int __init pcpu_page_first_chunk(size_t reserved_size,
2112 pcpu_fc_alloc_fn_t alloc_fn,
2113 pcpu_fc_free_fn_t free_fn,
2114 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2115{
8f05a6a6 2116 static struct vm_struct vm;
fd1e8a1f 2117 struct pcpu_alloc_info *ai;
00ae4064 2118 char psize_str[16];
ce3141a2 2119 int unit_pages;
d4b95f80 2120 size_t pages_size;
ce3141a2 2121 struct page **pages;
fb435d52 2122 int unit, i, j, rc;
8f606604 2123 int upa;
2124 int nr_g0_units;
d4b95f80 2125
00ae4064
TH
2126 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2127
4ba6ce25 2128 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2129 if (IS_ERR(ai))
2130 return PTR_ERR(ai);
2131 BUG_ON(ai->nr_groups != 1);
8f606604 2132 upa = ai->alloc_size/ai->unit_size;
2133 nr_g0_units = roundup(num_possible_cpus(), upa);
2134 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2135 pcpu_free_alloc_info(ai);
2136 return -EINVAL;
2137 }
fd1e8a1f
TH
2138
2139 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2140
2141 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2142 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2143 sizeof(pages[0]));
999c17e3 2144 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2145
8f05a6a6 2146 /* allocate pages */
d4b95f80 2147 j = 0;
8f606604 2148 for (unit = 0; unit < num_possible_cpus(); unit++) {
2149 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2150 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2151 void *ptr;
2152
3cbc8565 2153 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2154 if (!ptr) {
870d4b12 2155 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2156 psize_str, cpu);
d4b95f80
TH
2157 goto enomem;
2158 }
f528f0b8
CM
2159 /* kmemleak tracks the percpu allocations separately */
2160 kmemleak_free(ptr);
ce3141a2 2161 pages[j++] = virt_to_page(ptr);
d4b95f80 2162 }
8f606604 2163 }
d4b95f80 2164
8f05a6a6
TH
2165 /* allocate vm area, map the pages and copy static data */
2166 vm.flags = VM_ALLOC;
fd1e8a1f 2167 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2168 vm_area_register_early(&vm, PAGE_SIZE);
2169
fd1e8a1f 2170 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2171 unsigned long unit_addr =
fd1e8a1f 2172 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2173
ce3141a2 2174 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2175 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2176
2177 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2178 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2179 unit_pages);
2180 if (rc < 0)
2181 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2182
8f05a6a6
TH
2183 /*
2184 * FIXME: Archs with virtual cache should flush local
2185 * cache for the linear mapping here - something
2186 * equivalent to flush_cache_vmap() on the local cpu.
2187 * flush_cache_vmap() can't be used as most supporting
2188 * data structures are not set up yet.
2189 */
2190
2191 /* copy static data */
fd1e8a1f 2192 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2193 }
2194
2195 /* we're ready, commit */
870d4b12 2196 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2197 unit_pages, psize_str, vm.addr, ai->static_size,
2198 ai->reserved_size, ai->dyn_size);
d4b95f80 2199
fb435d52 2200 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2201 goto out_free_ar;
2202
2203enomem:
2204 while (--j >= 0)
ce3141a2 2205 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2206 rc = -ENOMEM;
d4b95f80 2207out_free_ar:
999c17e3 2208 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2209 pcpu_free_alloc_info(ai);
fb435d52 2210 return rc;
d4b95f80 2211}
3c9a024f 2212#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2213
bbddff05 2214#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2215/*
bbddff05 2216 * Generic SMP percpu area setup.
e74e3962
TH
2217 *
2218 * The embedding helper is used because its behavior closely resembles
2219 * the original non-dynamic generic percpu area setup. This is
2220 * important because many archs have addressing restrictions and might
2221 * fail if the percpu area is located far away from the previous
2222 * location. As an added bonus, in non-NUMA cases, embedding is
2223 * generally a good idea TLB-wise because percpu area can piggy back
2224 * on the physical linear memory mapping which uses large page
2225 * mappings on applicable archs.
2226 */
e74e3962
TH
2227unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2228EXPORT_SYMBOL(__per_cpu_offset);
2229
c8826dd5
TH
2230static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2231 size_t align)
2232{
999c17e3
SS
2233 return memblock_virt_alloc_from_nopanic(
2234 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2235}
66c3a757 2236
c8826dd5
TH
2237static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2238{
999c17e3 2239 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2240}
2241
e74e3962
TH
2242void __init setup_per_cpu_areas(void)
2243{
e74e3962
TH
2244 unsigned long delta;
2245 unsigned int cpu;
fb435d52 2246 int rc;
e74e3962
TH
2247
2248 /*
2249 * Always reserve area for module percpu variables. That's
2250 * what the legacy allocator did.
2251 */
fb435d52 2252 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2253 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2254 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2255 if (rc < 0)
bbddff05 2256 panic("Failed to initialize percpu areas.");
e74e3962
TH
2257
2258 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2259 for_each_possible_cpu(cpu)
fb435d52 2260 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2261}
bbddff05
TH
2262#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2263
2264#else /* CONFIG_SMP */
2265
2266/*
2267 * UP percpu area setup.
2268 *
2269 * UP always uses km-based percpu allocator with identity mapping.
2270 * Static percpu variables are indistinguishable from the usual static
2271 * variables and don't require any special preparation.
2272 */
2273void __init setup_per_cpu_areas(void)
2274{
2275 const size_t unit_size =
2276 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2277 PERCPU_DYNAMIC_RESERVE));
2278 struct pcpu_alloc_info *ai;
2279 void *fc;
2280
2281 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2282 fc = memblock_virt_alloc_from_nopanic(unit_size,
2283 PAGE_SIZE,
2284 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2285 if (!ai || !fc)
2286 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2287 /* kmemleak tracks the percpu allocations separately */
2288 kmemleak_free(fc);
bbddff05
TH
2289
2290 ai->dyn_size = unit_size;
2291 ai->unit_size = unit_size;
2292 ai->atom_size = unit_size;
2293 ai->alloc_size = unit_size;
2294 ai->groups[0].nr_units = 1;
2295 ai->groups[0].cpu_map[0] = 0;
2296
2297 if (pcpu_setup_first_chunk(ai, fc) < 0)
2298 panic("Failed to initialize percpu areas.");
2299}
2300
2301#endif /* CONFIG_SMP */
099a19d9
TH
2302
2303/*
2304 * First and reserved chunks are initialized with temporary allocation
2305 * map in initdata so that they can be used before slab is online.
2306 * This function is called after slab is brought up and replaces those
2307 * with properly allocated maps.
2308 */
2309void __init percpu_init_late(void)
2310{
2311 struct pcpu_chunk *target_chunks[] =
2312 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2313 struct pcpu_chunk *chunk;
2314 unsigned long flags;
2315 int i;
2316
2317 for (i = 0; (chunk = target_chunks[i]); i++) {
2318 int *map;
2319 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2320
2321 BUILD_BUG_ON(size > PAGE_SIZE);
2322
90459ce0 2323 map = pcpu_mem_zalloc(size);
099a19d9
TH
2324 BUG_ON(!map);
2325
2326 spin_lock_irqsave(&pcpu_lock, flags);
2327 memcpy(map, chunk->map, size);
2328 chunk->map = map;
2329 spin_unlock_irqrestore(&pcpu_lock, flags);
2330 }
2331}
1a4d7607
TH
2332
2333/*
2334 * Percpu allocator is initialized early during boot when neither slab or
2335 * workqueue is available. Plug async management until everything is up
2336 * and running.
2337 */
2338static int __init percpu_enable_async(void)
2339{
2340 pcpu_async_enabled = true;
2341 return 0;
2342}
2343subsys_initcall(percpu_enable_async);