]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: keep track of the best offset for contig hints
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
ca460b3c 66#include <linux/lcm.h>
fbf59bc9 67#include <linux/list.h>
a530b795 68#include <linux/log2.h>
fbf59bc9
TH
69#include <linux/mm.h>
70#include <linux/module.h>
71#include <linux/mutex.h>
72#include <linux/percpu.h>
73#include <linux/pfn.h>
fbf59bc9 74#include <linux/slab.h>
ccea34b5 75#include <linux/spinlock.h>
fbf59bc9 76#include <linux/vmalloc.h>
a56dbddf 77#include <linux/workqueue.h>
f528f0b8 78#include <linux/kmemleak.h>
fbf59bc9
TH
79
80#include <asm/cacheflush.h>
e0100983 81#include <asm/sections.h>
fbf59bc9 82#include <asm/tlbflush.h>
3b034b0d 83#include <asm/io.h>
fbf59bc9 84
df95e795
DZ
85#define CREATE_TRACE_POINTS
86#include <trace/events/percpu.h>
87
8fa3ed80
DZ
88#include "percpu-internal.h"
89
40064aec
DZF
90/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
91#define PCPU_SLOT_BASE_SHIFT 5
92
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3 184/**
560f2c23
DZF
185 * pcpu_addr_in_chunk - check if the address is served from this chunk
186 * @chunk: chunk of interest
187 * @addr: percpu address
c0ebfdc3
DZF
188 *
189 * RETURNS:
560f2c23 190 * True if the address is served from this chunk.
c0ebfdc3 191 */
560f2c23 192static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 193{
c0ebfdc3
DZF
194 void *start_addr, *end_addr;
195
560f2c23 196 if (!chunk)
c0ebfdc3 197 return false;
020ec653 198
560f2c23
DZF
199 start_addr = chunk->base_addr + chunk->start_offset;
200 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
201 chunk->end_offset;
c0ebfdc3
DZF
202
203 return addr >= start_addr && addr < end_addr;
020ec653
TH
204}
205
d9b55eeb 206static int __pcpu_size_to_slot(int size)
fbf59bc9 207{
cae3aeb8 208 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
209 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
210}
211
d9b55eeb
TH
212static int pcpu_size_to_slot(int size)
213{
214 if (size == pcpu_unit_size)
215 return pcpu_nr_slots - 1;
216 return __pcpu_size_to_slot(size);
217}
218
fbf59bc9
TH
219static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
220{
40064aec 221 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
fbf59bc9
TH
222 return 0;
223
40064aec 224 return pcpu_size_to_slot(chunk->free_bytes);
fbf59bc9
TH
225}
226
88999a89
TH
227/* set the pointer to a chunk in a page struct */
228static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
229{
230 page->index = (unsigned long)pcpu;
231}
232
233/* obtain pointer to a chunk from a page struct */
234static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
235{
236 return (struct pcpu_chunk *)page->index;
237}
238
239static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 240{
2f39e637 241 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
242}
243
c0ebfdc3
DZF
244static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
247}
248
9983b6f0
TH
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
fbf59bc9 251{
c0ebfdc3
DZF
252 return (unsigned long)chunk->base_addr +
253 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
254}
255
91e914c5 256static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 257{
91e914c5
DZF
258 *rs = find_next_zero_bit(bitmap, end, *rs);
259 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
260}
261
91e914c5 262static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 263{
91e914c5
DZF
264 *rs = find_next_bit(bitmap, end, *rs);
265 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
266}
267
268/*
91e914c5
DZF
269 * Bitmap region iterators. Iterates over the bitmap between
270 * [@start, @end) in @chunk. @rs and @re should be integer variables
271 * and will be set to start and end index of the current free region.
ce3141a2 272 */
91e914c5
DZF
273#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
274 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
275 (rs) < (re); \
276 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 277
91e914c5
DZF
278#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 282
ca460b3c
DZF
283/*
284 * The following are helper functions to help access bitmaps and convert
285 * between bitmap offsets to address offsets.
286 */
287static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
288{
289 return chunk->alloc_map +
290 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
291}
292
293static unsigned long pcpu_off_to_block_index(int off)
294{
295 return off / PCPU_BITMAP_BLOCK_BITS;
296}
297
298static unsigned long pcpu_off_to_block_off(int off)
299{
300 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
301}
302
fbf59bc9 303/**
90459ce0 304 * pcpu_mem_zalloc - allocate memory
1880d93b 305 * @size: bytes to allocate
fbf59bc9 306 *
1880d93b 307 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 308 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 309 * memory is always zeroed.
fbf59bc9 310 *
ccea34b5
TH
311 * CONTEXT:
312 * Does GFP_KERNEL allocation.
313 *
fbf59bc9 314 * RETURNS:
1880d93b 315 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 316 */
90459ce0 317static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 318{
099a19d9
TH
319 if (WARN_ON_ONCE(!slab_is_available()))
320 return NULL;
321
1880d93b
TH
322 if (size <= PAGE_SIZE)
323 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
324 else
325 return vzalloc(size);
1880d93b 326}
fbf59bc9 327
1880d93b
TH
328/**
329 * pcpu_mem_free - free memory
330 * @ptr: memory to free
1880d93b 331 *
90459ce0 332 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 333 */
1d5cfdb0 334static void pcpu_mem_free(void *ptr)
1880d93b 335{
1d5cfdb0 336 kvfree(ptr);
fbf59bc9
TH
337}
338
339/**
340 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
341 * @chunk: chunk of interest
342 * @oslot: the previous slot it was on
343 *
344 * This function is called after an allocation or free changed @chunk.
345 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
346 * moved to the slot. Note that the reserved chunk is never put on
347 * chunk slots.
ccea34b5
TH
348 *
349 * CONTEXT:
350 * pcpu_lock.
fbf59bc9
TH
351 */
352static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
353{
354 int nslot = pcpu_chunk_slot(chunk);
355
edcb4639 356 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
357 if (oslot < nslot)
358 list_move(&chunk->list, &pcpu_slot[nslot]);
359 else
360 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
361 }
362}
363
9f7dcf22 364/**
40064aec 365 * pcpu_cnt_pop_pages- counts populated backing pages in range
833af842 366 * @chunk: chunk of interest
40064aec
DZF
367 * @bit_off: start offset
368 * @bits: size of area to check
9f7dcf22 369 *
40064aec
DZF
370 * Calculates the number of populated pages in the region
371 * [page_start, page_end). This keeps track of how many empty populated
372 * pages are available and decide if async work should be scheduled.
ccea34b5 373 *
9f7dcf22 374 * RETURNS:
40064aec 375 * The nr of populated pages.
9f7dcf22 376 */
40064aec
DZF
377static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
378 int bits)
9f7dcf22 379{
40064aec
DZF
380 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
381 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
4f996e23 382
40064aec 383 if (page_start >= page_end)
9f7dcf22
TH
384 return 0;
385
40064aec
DZF
386 /*
387 * bitmap_weight counts the number of bits set in a bitmap up to
388 * the specified number of bits. This is counting the populated
389 * pages up to page_end and then subtracting the populated pages
390 * up to page_start to count the populated pages in
391 * [page_start, page_end).
392 */
393 return bitmap_weight(chunk->populated, page_end) -
394 bitmap_weight(chunk->populated, page_start);
833af842
TH
395}
396
397/**
40064aec 398 * pcpu_chunk_update - updates the chunk metadata given a free area
833af842 399 * @chunk: chunk of interest
40064aec
DZF
400 * @bit_off: chunk offset
401 * @bits: size of free area
833af842 402 *
13f96637 403 * This updates the chunk's contig hint and starting offset given a free area.
268625a6 404 * Choose the best starting offset if the contig hint is equal.
40064aec
DZF
405 */
406static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
407{
13f96637
DZF
408 if (bits > chunk->contig_bits) {
409 chunk->contig_bits_start = bit_off;
40064aec 410 chunk->contig_bits = bits;
268625a6
DZF
411 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
412 (!bit_off ||
413 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
414 /* use the start with the best alignment */
415 chunk->contig_bits_start = bit_off;
13f96637 416 }
40064aec
DZF
417}
418
419/**
420 * pcpu_chunk_refresh_hint - updates metadata about a chunk
421 * @chunk: chunk of interest
833af842 422 *
40064aec 423 * Iterates over the chunk to find the largest free area.
833af842 424 *
40064aec
DZF
425 * Updates:
426 * chunk->contig_bits
13f96637 427 * chunk->contig_bits_start
40064aec 428 * nr_empty_pop_pages
833af842 429 */
40064aec 430static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
833af842 431{
40064aec
DZF
432 int bits, nr_empty_pop_pages;
433 int rs, re; /* region start, region end */
833af842 434
40064aec
DZF
435 /* clear metadata */
436 chunk->contig_bits = 0;
6710e594 437
40064aec 438 bits = nr_empty_pop_pages = 0;
86b442fb 439 pcpu_for_each_unpop_region(chunk->alloc_map, rs, re, chunk->first_bit,
40064aec
DZF
440 pcpu_chunk_map_bits(chunk)) {
441 bits = re - rs;
ccea34b5 442
40064aec 443 pcpu_chunk_update(chunk, rs, bits);
833af842 444
40064aec
DZF
445 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, rs, bits);
446 }
9f7dcf22 447
40064aec
DZF
448 /*
449 * Keep track of nr_empty_pop_pages.
450 *
451 * The chunk maintains the previous number of free pages it held,
452 * so the delta is used to update the global counter. The reserved
453 * chunk is not part of the free page count as they are populated
454 * at init and are special to serving reserved allocations.
455 */
456 if (chunk != pcpu_reserved_chunk)
457 pcpu_nr_empty_pop_pages +=
458 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
a002d148 459
40064aec
DZF
460 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
461}
9f7dcf22 462
ca460b3c
DZF
463/**
464 * pcpu_block_update - updates a block given a free area
465 * @block: block of interest
466 * @start: start offset in block
467 * @end: end offset in block
468 *
469 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
470 * expected to be the entirety of the free area within a block. Chooses
471 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
472 */
473static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
474{
475 int contig = end - start;
476
477 block->first_free = min(block->first_free, start);
478 if (start == 0)
479 block->left_free = contig;
480
481 if (end == PCPU_BITMAP_BLOCK_BITS)
482 block->right_free = contig;
483
484 if (contig > block->contig_hint) {
485 block->contig_hint_start = start;
486 block->contig_hint = contig;
268625a6
DZF
487 } else if (block->contig_hint_start && contig == block->contig_hint &&
488 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
489 /* use the start with the best alignment */
490 block->contig_hint_start = start;
ca460b3c
DZF
491 }
492}
493
494/**
495 * pcpu_block_refresh_hint
496 * @chunk: chunk of interest
497 * @index: index of the metadata block
498 *
499 * Scans over the block beginning at first_free and updates the block
500 * metadata accordingly.
501 */
502static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
503{
504 struct pcpu_block_md *block = chunk->md_blocks + index;
505 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
506 int rs, re; /* region start, region end */
507
508 /* clear hints */
509 block->contig_hint = 0;
510 block->left_free = block->right_free = 0;
511
512 /* iterate over free areas and update the contig hints */
513 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
514 PCPU_BITMAP_BLOCK_BITS) {
515 pcpu_block_update(block, rs, re);
516 }
517}
518
519/**
520 * pcpu_block_update_hint_alloc - update hint on allocation path
521 * @chunk: chunk of interest
522 * @bit_off: chunk offset
523 * @bits: size of request
524 */
525static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
526 int bits)
527{
528 struct pcpu_block_md *s_block, *e_block, *block;
529 int s_index, e_index; /* block indexes of the freed allocation */
530 int s_off, e_off; /* block offsets of the freed allocation */
531
532 /*
533 * Calculate per block offsets.
534 * The calculation uses an inclusive range, but the resulting offsets
535 * are [start, end). e_index always points to the last block in the
536 * range.
537 */
538 s_index = pcpu_off_to_block_index(bit_off);
539 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
540 s_off = pcpu_off_to_block_off(bit_off);
541 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
542
543 s_block = chunk->md_blocks + s_index;
544 e_block = chunk->md_blocks + e_index;
545
546 /*
547 * Update s_block.
548 */
549 pcpu_block_refresh_hint(chunk, s_index);
550
551 /*
552 * Update e_block.
553 */
554 if (s_index != e_index) {
555 pcpu_block_refresh_hint(chunk, e_index);
556
557 /* update in-between md_blocks */
558 for (block = s_block + 1; block < e_block; block++) {
559 block->contig_hint = 0;
560 block->left_free = 0;
561 block->right_free = 0;
562 }
563 }
564
565 pcpu_chunk_refresh_hint(chunk);
566}
567
568/**
569 * pcpu_block_update_hint_free - updates the block hints on the free path
570 * @chunk: chunk of interest
571 * @bit_off: chunk offset
572 * @bits: size of request
573 */
574static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
575 int bits)
576{
577 struct pcpu_block_md *s_block, *e_block, *block;
578 int s_index, e_index; /* block indexes of the freed allocation */
579 int s_off, e_off; /* block offsets of the freed allocation */
580
581 /*
582 * Calculate per block offsets.
583 * The calculation uses an inclusive range, but the resulting offsets
584 * are [start, end). e_index always points to the last block in the
585 * range.
586 */
587 s_index = pcpu_off_to_block_index(bit_off);
588 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
589 s_off = pcpu_off_to_block_off(bit_off);
590 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
591
592 s_block = chunk->md_blocks + s_index;
593 e_block = chunk->md_blocks + e_index;
594
595 /* update s_block */
596 pcpu_block_refresh_hint(chunk, s_index);
597
598 /* freeing in the same block */
599 if (s_index != e_index) {
600 /* update e_block */
601 pcpu_block_refresh_hint(chunk, e_index);
602
603 /* reset md_blocks in the middle */
604 for (block = s_block + 1; block < e_block; block++) {
605 block->first_free = 0;
606 block->contig_hint_start = 0;
607 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
608 block->left_free = PCPU_BITMAP_BLOCK_BITS;
609 block->right_free = PCPU_BITMAP_BLOCK_BITS;
610 }
611 }
612
613 pcpu_chunk_refresh_hint(chunk);
614}
615
40064aec
DZF
616/**
617 * pcpu_is_populated - determines if the region is populated
618 * @chunk: chunk of interest
619 * @bit_off: chunk offset
620 * @bits: size of area
621 * @next_off: return value for the next offset to start searching
622 *
623 * For atomic allocations, check if the backing pages are populated.
624 *
625 * RETURNS:
626 * Bool if the backing pages are populated.
627 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
628 */
629static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
630 int *next_off)
631{
632 int page_start, page_end, rs, re;
833af842 633
40064aec
DZF
634 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
635 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 636
40064aec
DZF
637 rs = page_start;
638 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
639 if (rs >= page_end)
640 return true;
833af842 641
40064aec
DZF
642 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
643 return false;
9f7dcf22
TH
644}
645
a16037c8 646/**
40064aec
DZF
647 * pcpu_find_block_fit - finds the block index to start searching
648 * @chunk: chunk of interest
649 * @alloc_bits: size of request in allocation units
650 * @align: alignment of area (max PAGE_SIZE bytes)
651 * @pop_only: use populated regions only
652 *
653 * RETURNS:
654 * The offset in the bitmap to begin searching.
655 * -1 if no offset is found.
a16037c8 656 */
40064aec
DZF
657static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
658 size_t align, bool pop_only)
a16037c8 659{
40064aec
DZF
660 int bit_off, bits;
661 int re; /* region end */
a16037c8 662
13f96637
DZF
663 /*
664 * Check to see if the allocation can fit in the chunk's contig hint.
665 * This is an optimization to prevent scanning by assuming if it
666 * cannot fit in the global hint, there is memory pressure and creating
667 * a new chunk would happen soon.
668 */
669 bit_off = ALIGN(chunk->contig_bits_start, align) -
670 chunk->contig_bits_start;
671 if (bit_off + alloc_bits > chunk->contig_bits)
672 return -1;
673
86b442fb
DZF
674 pcpu_for_each_unpop_region(chunk->alloc_map, bit_off, re,
675 chunk->first_bit,
40064aec
DZF
676 pcpu_chunk_map_bits(chunk)) {
677 bits = re - bit_off;
a16037c8 678
40064aec
DZF
679 /* check alignment */
680 bits -= ALIGN(bit_off, align) - bit_off;
681 bit_off = ALIGN(bit_off, align);
682 if (bits < alloc_bits)
683 continue;
a16037c8 684
40064aec
DZF
685 bits = alloc_bits;
686 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
687 &bit_off))
688 break;
a16037c8 689
40064aec 690 bits = 0;
a16037c8 691 }
40064aec
DZF
692
693 if (bit_off == pcpu_chunk_map_bits(chunk))
694 return -1;
695
696 return bit_off;
a16037c8
TH
697}
698
fbf59bc9 699/**
40064aec 700 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 701 * @chunk: chunk of interest
40064aec
DZF
702 * @alloc_bits: size of request in allocation units
703 * @align: alignment of area (max PAGE_SIZE)
704 * @start: bit_off to start searching
9f7dcf22 705 *
40064aec
DZF
706 * This function takes in a @start offset to begin searching to fit an
707 * allocation of @alloc_bits with alignment @align. If it confirms a
708 * valid free area, it then updates the allocation and boundary maps
709 * accordingly.
ccea34b5 710 *
fbf59bc9 711 * RETURNS:
40064aec
DZF
712 * Allocated addr offset in @chunk on success.
713 * -1 if no matching area is found.
fbf59bc9 714 */
40064aec
DZF
715static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
716 size_t align, int start)
fbf59bc9 717{
40064aec
DZF
718 size_t align_mask = (align) ? (align - 1) : 0;
719 int bit_off, end, oslot;
a16037c8 720
40064aec 721 lockdep_assert_held(&pcpu_lock);
fbf59bc9 722
40064aec 723 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 724
40064aec
DZF
725 /*
726 * Search to find a fit.
727 */
728 end = start + alloc_bits;
729 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
730 alloc_bits, align_mask);
731 if (bit_off >= end)
732 return -1;
fbf59bc9 733
40064aec
DZF
734 /* update alloc map */
735 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 736
40064aec
DZF
737 /* update boundary map */
738 set_bit(bit_off, chunk->bound_map);
739 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
740 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 741
40064aec 742 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 743
86b442fb
DZF
744 /* update first free bit */
745 if (bit_off == chunk->first_bit)
746 chunk->first_bit = find_next_zero_bit(
747 chunk->alloc_map,
748 pcpu_chunk_map_bits(chunk),
749 bit_off + alloc_bits);
750
ca460b3c 751 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 752
fbf59bc9
TH
753 pcpu_chunk_relocate(chunk, oslot);
754
40064aec 755 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
756}
757
758/**
40064aec 759 * pcpu_free_area - frees the corresponding offset
fbf59bc9 760 * @chunk: chunk of interest
40064aec 761 * @off: addr offset into chunk
ccea34b5 762 *
40064aec
DZF
763 * This function determines the size of an allocation to free using
764 * the boundary bitmap and clears the allocation map.
fbf59bc9 765 */
40064aec 766static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 767{
40064aec 768 int bit_off, bits, end, oslot;
723ad1d9 769
5ccd30e4 770 lockdep_assert_held(&pcpu_lock);
30a5b536 771 pcpu_stats_area_dealloc(chunk);
5ccd30e4 772
40064aec 773 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 774
40064aec 775 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 776
40064aec
DZF
777 /* find end index */
778 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
779 bit_off + 1);
780 bits = end - bit_off;
781 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 782
40064aec
DZF
783 /* update metadata */
784 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
b539b87f 785
86b442fb
DZF
786 /* update first free bit */
787 chunk->first_bit = min(chunk->first_bit, bit_off);
788
ca460b3c 789 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 790
fbf59bc9
TH
791 pcpu_chunk_relocate(chunk, oslot);
792}
793
ca460b3c
DZF
794static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
795{
796 struct pcpu_block_md *md_block;
797
798 for (md_block = chunk->md_blocks;
799 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
800 md_block++) {
801 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
802 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
803 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
804 }
805}
806
40064aec
DZF
807/**
808 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
809 * @tmp_addr: the start of the region served
810 * @map_size: size of the region served
811 *
812 * This is responsible for creating the chunks that serve the first chunk. The
813 * base_addr is page aligned down of @tmp_addr while the region end is page
814 * aligned up. Offsets are kept track of to determine the region served. All
815 * this is done to appease the bitmap allocator in avoiding partial blocks.
816 *
817 * RETURNS:
818 * Chunk serving the region at @tmp_addr of @map_size.
819 */
c0ebfdc3 820static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 821 int map_size)
10edf5b0
DZF
822{
823 struct pcpu_chunk *chunk;
ca460b3c 824 unsigned long aligned_addr, lcm_align;
40064aec 825 int start_offset, offset_bits, region_size, region_bits;
c0ebfdc3
DZF
826
827 /* region calculations */
828 aligned_addr = tmp_addr & PAGE_MASK;
829
830 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 831
ca460b3c
DZF
832 /*
833 * Align the end of the region with the LCM of PAGE_SIZE and
834 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
835 * the other.
836 */
837 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
838 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 839
c0ebfdc3 840 /* allocate chunk */
8ab16c43
DZF
841 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
842 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
843 0);
c0ebfdc3 844
10edf5b0 845 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
846
847 chunk->base_addr = (void *)aligned_addr;
10edf5b0 848 chunk->start_offset = start_offset;
6b9d7c8e 849 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 850
8ab16c43 851 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 852 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 853
ca460b3c
DZF
854 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
855 sizeof(chunk->alloc_map[0]), 0);
856 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
857 sizeof(chunk->bound_map[0]), 0);
858 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
859 sizeof(chunk->md_blocks[0]), 0);
860 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
861
862 /* manage populated page bitmap */
863 chunk->immutable = true;
8ab16c43
DZF
864 bitmap_fill(chunk->populated, chunk->nr_pages);
865 chunk->nr_populated = chunk->nr_pages;
40064aec
DZF
866 chunk->nr_empty_pop_pages =
867 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
868 map_size / PCPU_MIN_ALLOC_SIZE);
10edf5b0 869
40064aec
DZF
870 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
871 chunk->free_bytes = map_size;
c0ebfdc3
DZF
872
873 if (chunk->start_offset) {
874 /* hide the beginning of the bitmap */
40064aec
DZF
875 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
876 bitmap_set(chunk->alloc_map, 0, offset_bits);
877 set_bit(0, chunk->bound_map);
878 set_bit(offset_bits, chunk->bound_map);
ca460b3c 879
86b442fb
DZF
880 chunk->first_bit = offset_bits;
881
ca460b3c 882 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
883 }
884
6b9d7c8e
DZF
885 if (chunk->end_offset) {
886 /* hide the end of the bitmap */
40064aec
DZF
887 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
888 bitmap_set(chunk->alloc_map,
889 pcpu_chunk_map_bits(chunk) - offset_bits,
890 offset_bits);
891 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
892 chunk->bound_map);
893 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 894
ca460b3c
DZF
895 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
896 - offset_bits, offset_bits);
897 }
40064aec 898
10edf5b0
DZF
899 return chunk;
900}
901
6081089f
TH
902static struct pcpu_chunk *pcpu_alloc_chunk(void)
903{
904 struct pcpu_chunk *chunk;
40064aec 905 int region_bits;
6081089f 906
90459ce0 907 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
908 if (!chunk)
909 return NULL;
910
40064aec
DZF
911 INIT_LIST_HEAD(&chunk->list);
912 chunk->nr_pages = pcpu_unit_pages;
913 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 914
40064aec
DZF
915 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
916 sizeof(chunk->alloc_map[0]));
917 if (!chunk->alloc_map)
918 goto alloc_map_fail;
6081089f 919
40064aec
DZF
920 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
921 sizeof(chunk->bound_map[0]));
922 if (!chunk->bound_map)
923 goto bound_map_fail;
6081089f 924
ca460b3c
DZF
925 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
926 sizeof(chunk->md_blocks[0]));
927 if (!chunk->md_blocks)
928 goto md_blocks_fail;
929
930 pcpu_init_md_blocks(chunk);
931
40064aec
DZF
932 /* init metadata */
933 chunk->contig_bits = region_bits;
934 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 935
6081089f 936 return chunk;
40064aec 937
ca460b3c
DZF
938md_blocks_fail:
939 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
940bound_map_fail:
941 pcpu_mem_free(chunk->alloc_map);
942alloc_map_fail:
943 pcpu_mem_free(chunk);
944
945 return NULL;
6081089f
TH
946}
947
948static void pcpu_free_chunk(struct pcpu_chunk *chunk)
949{
950 if (!chunk)
951 return;
40064aec
DZF
952 pcpu_mem_free(chunk->bound_map);
953 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 954 pcpu_mem_free(chunk);
6081089f
TH
955}
956
b539b87f
TH
957/**
958 * pcpu_chunk_populated - post-population bookkeeping
959 * @chunk: pcpu_chunk which got populated
960 * @page_start: the start page
961 * @page_end: the end page
40064aec 962 * @for_alloc: if this is to populate for allocation
b539b87f
TH
963 *
964 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
965 * the bookkeeping information accordingly. Must be called after each
966 * successful population.
40064aec
DZF
967 *
968 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
969 * is to serve an allocation in that area.
b539b87f 970 */
40064aec
DZF
971static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
972 int page_end, bool for_alloc)
b539b87f
TH
973{
974 int nr = page_end - page_start;
975
976 lockdep_assert_held(&pcpu_lock);
977
978 bitmap_set(chunk->populated, page_start, nr);
979 chunk->nr_populated += nr;
40064aec
DZF
980
981 if (!for_alloc) {
982 chunk->nr_empty_pop_pages += nr;
983 pcpu_nr_empty_pop_pages += nr;
984 }
b539b87f
TH
985}
986
987/**
988 * pcpu_chunk_depopulated - post-depopulation bookkeeping
989 * @chunk: pcpu_chunk which got depopulated
990 * @page_start: the start page
991 * @page_end: the end page
992 *
993 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
994 * Update the bookkeeping information accordingly. Must be called after
995 * each successful depopulation.
996 */
997static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
998 int page_start, int page_end)
999{
1000 int nr = page_end - page_start;
1001
1002 lockdep_assert_held(&pcpu_lock);
1003
1004 bitmap_clear(chunk->populated, page_start, nr);
1005 chunk->nr_populated -= nr;
0cecf50c 1006 chunk->nr_empty_pop_pages -= nr;
b539b87f
TH
1007 pcpu_nr_empty_pop_pages -= nr;
1008}
1009
9f645532
TH
1010/*
1011 * Chunk management implementation.
1012 *
1013 * To allow different implementations, chunk alloc/free and
1014 * [de]population are implemented in a separate file which is pulled
1015 * into this file and compiled together. The following functions
1016 * should be implemented.
1017 *
1018 * pcpu_populate_chunk - populate the specified range of a chunk
1019 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1020 * pcpu_create_chunk - create a new chunk
1021 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1022 * pcpu_addr_to_page - translate address to physical address
1023 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1024 */
9f645532
TH
1025static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
1026static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1027static struct pcpu_chunk *pcpu_create_chunk(void);
1028static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1029static struct page *pcpu_addr_to_page(void *addr);
1030static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1031
b0c9778b
TH
1032#ifdef CONFIG_NEED_PER_CPU_KM
1033#include "percpu-km.c"
1034#else
9f645532 1035#include "percpu-vm.c"
b0c9778b 1036#endif
fbf59bc9 1037
88999a89
TH
1038/**
1039 * pcpu_chunk_addr_search - determine chunk containing specified address
1040 * @addr: address for which the chunk needs to be determined.
1041 *
c0ebfdc3
DZF
1042 * This is an internal function that handles all but static allocations.
1043 * Static percpu address values should never be passed into the allocator.
1044 *
88999a89
TH
1045 * RETURNS:
1046 * The address of the found chunk.
1047 */
1048static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1049{
c0ebfdc3 1050 /* is it in the dynamic region (first chunk)? */
560f2c23 1051 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1052 return pcpu_first_chunk;
c0ebfdc3
DZF
1053
1054 /* is it in the reserved region? */
560f2c23 1055 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1056 return pcpu_reserved_chunk;
88999a89
TH
1057
1058 /*
1059 * The address is relative to unit0 which might be unused and
1060 * thus unmapped. Offset the address to the unit space of the
1061 * current processor before looking it up in the vmalloc
1062 * space. Note that any possible cpu id can be used here, so
1063 * there's no need to worry about preemption or cpu hotplug.
1064 */
1065 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1066 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1067}
1068
fbf59bc9 1069/**
edcb4639 1070 * pcpu_alloc - the percpu allocator
cae3aeb8 1071 * @size: size of area to allocate in bytes
fbf59bc9 1072 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1073 * @reserved: allocate from the reserved chunk if available
5835d96e 1074 * @gfp: allocation flags
fbf59bc9 1075 *
5835d96e
TH
1076 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1077 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
1078 *
1079 * RETURNS:
1080 * Percpu pointer to the allocated area on success, NULL on failure.
1081 */
5835d96e
TH
1082static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1083 gfp_t gfp)
fbf59bc9 1084{
f2badb0c 1085 static int warn_limit = 10;
fbf59bc9 1086 struct pcpu_chunk *chunk;
f2badb0c 1087 const char *err;
6ae833c7 1088 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
40064aec 1089 int slot, off, cpu, ret;
403a91b1 1090 unsigned long flags;
f528f0b8 1091 void __percpu *ptr;
40064aec 1092 size_t bits, bit_align;
fbf59bc9 1093
723ad1d9 1094 /*
40064aec
DZF
1095 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1096 * therefore alignment must be a minimum of that many bytes.
1097 * An allocation may have internal fragmentation from rounding up
1098 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1099 */
d2f3c384
DZF
1100 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1101 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1102
d2f3c384 1103 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1104 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1105 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1106
3ca45a46 1107 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1108 !is_power_of_2(align))) {
756a025f
JP
1109 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1110 size, align);
fbf59bc9
TH
1111 return NULL;
1112 }
1113
6710e594
TH
1114 if (!is_atomic)
1115 mutex_lock(&pcpu_alloc_mutex);
1116
403a91b1 1117 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1118
edcb4639
TH
1119 /* serve reserved allocations from the reserved chunk if available */
1120 if (reserved && pcpu_reserved_chunk) {
1121 chunk = pcpu_reserved_chunk;
833af842 1122
40064aec
DZF
1123 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1124 if (off < 0) {
833af842 1125 err = "alloc from reserved chunk failed";
ccea34b5 1126 goto fail_unlock;
f2badb0c 1127 }
833af842 1128
40064aec 1129 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1130 if (off >= 0)
1131 goto area_found;
833af842 1132
f2badb0c 1133 err = "alloc from reserved chunk failed";
ccea34b5 1134 goto fail_unlock;
edcb4639
TH
1135 }
1136
ccea34b5 1137restart:
edcb4639 1138 /* search through normal chunks */
fbf59bc9
TH
1139 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1140 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
40064aec
DZF
1141 off = pcpu_find_block_fit(chunk, bits, bit_align,
1142 is_atomic);
1143 if (off < 0)
fbf59bc9 1144 continue;
ccea34b5 1145
40064aec 1146 off = pcpu_alloc_area(chunk, bits, bit_align, off);
fbf59bc9
TH
1147 if (off >= 0)
1148 goto area_found;
40064aec 1149
fbf59bc9
TH
1150 }
1151 }
1152
403a91b1 1153 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1154
b38d08f3
TH
1155 /*
1156 * No space left. Create a new chunk. We don't want multiple
1157 * tasks to create chunks simultaneously. Serialize and create iff
1158 * there's still no empty chunk after grabbing the mutex.
1159 */
11df02bf
DZ
1160 if (is_atomic) {
1161 err = "atomic alloc failed, no space left";
5835d96e 1162 goto fail;
11df02bf 1163 }
5835d96e 1164
b38d08f3
TH
1165 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1166 chunk = pcpu_create_chunk();
1167 if (!chunk) {
1168 err = "failed to allocate new chunk";
1169 goto fail;
1170 }
1171
1172 spin_lock_irqsave(&pcpu_lock, flags);
1173 pcpu_chunk_relocate(chunk, -1);
1174 } else {
1175 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1176 }
ccea34b5 1177
ccea34b5 1178 goto restart;
fbf59bc9
TH
1179
1180area_found:
30a5b536 1181 pcpu_stats_area_alloc(chunk, size);
403a91b1 1182 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1183
dca49645 1184 /* populate if not all pages are already there */
5835d96e 1185 if (!is_atomic) {
e04d3208 1186 int page_start, page_end, rs, re;
dca49645 1187
e04d3208
TH
1188 page_start = PFN_DOWN(off);
1189 page_end = PFN_UP(off + size);
b38d08f3 1190
91e914c5
DZF
1191 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1192 page_start, page_end) {
e04d3208
TH
1193 WARN_ON(chunk->immutable);
1194
1195 ret = pcpu_populate_chunk(chunk, rs, re);
1196
1197 spin_lock_irqsave(&pcpu_lock, flags);
1198 if (ret) {
40064aec 1199 pcpu_free_area(chunk, off);
e04d3208
TH
1200 err = "failed to populate";
1201 goto fail_unlock;
1202 }
40064aec 1203 pcpu_chunk_populated(chunk, rs, re, true);
e04d3208 1204 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1205 }
fbf59bc9 1206
e04d3208
TH
1207 mutex_unlock(&pcpu_alloc_mutex);
1208 }
ccea34b5 1209
1a4d7607
TH
1210 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1211 pcpu_schedule_balance_work();
1212
dca49645
TH
1213 /* clear the areas and return address relative to base address */
1214 for_each_possible_cpu(cpu)
1215 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1216
f528f0b8 1217 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1218 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1219
1220 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1221 chunk->base_addr, off, ptr);
1222
f528f0b8 1223 return ptr;
ccea34b5
TH
1224
1225fail_unlock:
403a91b1 1226 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1227fail:
df95e795
DZ
1228 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1229
5835d96e 1230 if (!is_atomic && warn_limit) {
870d4b12 1231 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1232 size, align, is_atomic, err);
f2badb0c
TH
1233 dump_stack();
1234 if (!--warn_limit)
870d4b12 1235 pr_info("limit reached, disable warning\n");
f2badb0c 1236 }
1a4d7607
TH
1237 if (is_atomic) {
1238 /* see the flag handling in pcpu_blance_workfn() */
1239 pcpu_atomic_alloc_failed = true;
1240 pcpu_schedule_balance_work();
6710e594
TH
1241 } else {
1242 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1243 }
ccea34b5 1244 return NULL;
fbf59bc9 1245}
edcb4639
TH
1246
1247/**
5835d96e 1248 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1249 * @size: size of area to allocate in bytes
1250 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1251 * @gfp: allocation flags
edcb4639 1252 *
5835d96e
TH
1253 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1254 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1255 * be called from any context but is a lot more likely to fail.
ccea34b5 1256 *
edcb4639
TH
1257 * RETURNS:
1258 * Percpu pointer to the allocated area on success, NULL on failure.
1259 */
5835d96e
TH
1260void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1261{
1262 return pcpu_alloc(size, align, false, gfp);
1263}
1264EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1265
1266/**
1267 * __alloc_percpu - allocate dynamic percpu area
1268 * @size: size of area to allocate in bytes
1269 * @align: alignment of area (max PAGE_SIZE)
1270 *
1271 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1272 */
43cf38eb 1273void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1274{
5835d96e 1275 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1276}
fbf59bc9
TH
1277EXPORT_SYMBOL_GPL(__alloc_percpu);
1278
edcb4639
TH
1279/**
1280 * __alloc_reserved_percpu - allocate reserved percpu area
1281 * @size: size of area to allocate in bytes
1282 * @align: alignment of area (max PAGE_SIZE)
1283 *
9329ba97
TH
1284 * Allocate zero-filled percpu area of @size bytes aligned at @align
1285 * from reserved percpu area if arch has set it up; otherwise,
1286 * allocation is served from the same dynamic area. Might sleep.
1287 * Might trigger writeouts.
edcb4639 1288 *
ccea34b5
TH
1289 * CONTEXT:
1290 * Does GFP_KERNEL allocation.
1291 *
edcb4639
TH
1292 * RETURNS:
1293 * Percpu pointer to the allocated area on success, NULL on failure.
1294 */
43cf38eb 1295void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1296{
5835d96e 1297 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1298}
1299
a56dbddf 1300/**
1a4d7607 1301 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1302 * @work: unused
1303 *
1304 * Reclaim all fully free chunks except for the first one.
1305 */
fe6bd8c3 1306static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1307{
fe6bd8c3
TH
1308 LIST_HEAD(to_free);
1309 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1310 struct pcpu_chunk *chunk, *next;
1a4d7607 1311 int slot, nr_to_pop, ret;
a56dbddf 1312
1a4d7607
TH
1313 /*
1314 * There's no reason to keep around multiple unused chunks and VM
1315 * areas can be scarce. Destroy all free chunks except for one.
1316 */
ccea34b5
TH
1317 mutex_lock(&pcpu_alloc_mutex);
1318 spin_lock_irq(&pcpu_lock);
a56dbddf 1319
fe6bd8c3 1320 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1321 WARN_ON(chunk->immutable);
1322
1323 /* spare the first one */
fe6bd8c3 1324 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1325 continue;
1326
fe6bd8c3 1327 list_move(&chunk->list, &to_free);
a56dbddf
TH
1328 }
1329
ccea34b5 1330 spin_unlock_irq(&pcpu_lock);
a56dbddf 1331
fe6bd8c3 1332 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1333 int rs, re;
dca49645 1334
91e914c5
DZF
1335 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1336 chunk->nr_pages) {
a93ace48 1337 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1338 spin_lock_irq(&pcpu_lock);
1339 pcpu_chunk_depopulated(chunk, rs, re);
1340 spin_unlock_irq(&pcpu_lock);
a93ace48 1341 }
6081089f 1342 pcpu_destroy_chunk(chunk);
a56dbddf 1343 }
971f3918 1344
1a4d7607
TH
1345 /*
1346 * Ensure there are certain number of free populated pages for
1347 * atomic allocs. Fill up from the most packed so that atomic
1348 * allocs don't increase fragmentation. If atomic allocation
1349 * failed previously, always populate the maximum amount. This
1350 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1351 * failing indefinitely; however, large atomic allocs are not
1352 * something we support properly and can be highly unreliable and
1353 * inefficient.
1354 */
1355retry_pop:
1356 if (pcpu_atomic_alloc_failed) {
1357 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1358 /* best effort anyway, don't worry about synchronization */
1359 pcpu_atomic_alloc_failed = false;
1360 } else {
1361 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1362 pcpu_nr_empty_pop_pages,
1363 0, PCPU_EMPTY_POP_PAGES_HIGH);
1364 }
1365
1366 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1367 int nr_unpop = 0, rs, re;
1368
1369 if (!nr_to_pop)
1370 break;
1371
1372 spin_lock_irq(&pcpu_lock);
1373 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1374 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1375 if (nr_unpop)
1376 break;
1377 }
1378 spin_unlock_irq(&pcpu_lock);
1379
1380 if (!nr_unpop)
1381 continue;
1382
1383 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1384 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1385 chunk->nr_pages) {
1a4d7607
TH
1386 int nr = min(re - rs, nr_to_pop);
1387
1388 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1389 if (!ret) {
1390 nr_to_pop -= nr;
1391 spin_lock_irq(&pcpu_lock);
40064aec 1392 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1a4d7607
TH
1393 spin_unlock_irq(&pcpu_lock);
1394 } else {
1395 nr_to_pop = 0;
1396 }
1397
1398 if (!nr_to_pop)
1399 break;
1400 }
1401 }
1402
1403 if (nr_to_pop) {
1404 /* ran out of chunks to populate, create a new one and retry */
1405 chunk = pcpu_create_chunk();
1406 if (chunk) {
1407 spin_lock_irq(&pcpu_lock);
1408 pcpu_chunk_relocate(chunk, -1);
1409 spin_unlock_irq(&pcpu_lock);
1410 goto retry_pop;
1411 }
1412 }
1413
971f3918 1414 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1415}
1416
1417/**
1418 * free_percpu - free percpu area
1419 * @ptr: pointer to area to free
1420 *
ccea34b5
TH
1421 * Free percpu area @ptr.
1422 *
1423 * CONTEXT:
1424 * Can be called from atomic context.
fbf59bc9 1425 */
43cf38eb 1426void free_percpu(void __percpu *ptr)
fbf59bc9 1427{
129182e5 1428 void *addr;
fbf59bc9 1429 struct pcpu_chunk *chunk;
ccea34b5 1430 unsigned long flags;
40064aec 1431 int off;
fbf59bc9
TH
1432
1433 if (!ptr)
1434 return;
1435
f528f0b8
CM
1436 kmemleak_free_percpu(ptr);
1437
129182e5
AM
1438 addr = __pcpu_ptr_to_addr(ptr);
1439
ccea34b5 1440 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1441
1442 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1443 off = addr - chunk->base_addr;
fbf59bc9 1444
40064aec 1445 pcpu_free_area(chunk, off);
fbf59bc9 1446
a56dbddf 1447 /* if there are more than one fully free chunks, wake up grim reaper */
40064aec 1448 if (chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
1449 struct pcpu_chunk *pos;
1450
a56dbddf 1451 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1452 if (pos != chunk) {
1a4d7607 1453 pcpu_schedule_balance_work();
fbf59bc9
TH
1454 break;
1455 }
1456 }
1457
df95e795
DZ
1458 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1459
ccea34b5 1460 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1461}
1462EXPORT_SYMBOL_GPL(free_percpu);
1463
383776fa 1464bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1465{
bbddff05 1466#ifdef CONFIG_SMP
10fad5e4
TH
1467 const size_t static_size = __per_cpu_end - __per_cpu_start;
1468 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1469 unsigned int cpu;
1470
1471 for_each_possible_cpu(cpu) {
1472 void *start = per_cpu_ptr(base, cpu);
383776fa 1473 void *va = (void *)addr;
10fad5e4 1474
383776fa 1475 if (va >= start && va < start + static_size) {
8ce371f9 1476 if (can_addr) {
383776fa 1477 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1478 *can_addr += (unsigned long)
1479 per_cpu_ptr(base, get_boot_cpu_id());
1480 }
10fad5e4 1481 return true;
383776fa
TG
1482 }
1483 }
bbddff05
TH
1484#endif
1485 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1486 return false;
1487}
1488
383776fa
TG
1489/**
1490 * is_kernel_percpu_address - test whether address is from static percpu area
1491 * @addr: address to test
1492 *
1493 * Test whether @addr belongs to in-kernel static percpu area. Module
1494 * static percpu areas are not considered. For those, use
1495 * is_module_percpu_address().
1496 *
1497 * RETURNS:
1498 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1499 */
1500bool is_kernel_percpu_address(unsigned long addr)
1501{
1502 return __is_kernel_percpu_address(addr, NULL);
1503}
1504
3b034b0d
VG
1505/**
1506 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1507 * @addr: the address to be converted to physical address
1508 *
1509 * Given @addr which is dereferenceable address obtained via one of
1510 * percpu access macros, this function translates it into its physical
1511 * address. The caller is responsible for ensuring @addr stays valid
1512 * until this function finishes.
1513 *
67589c71
DY
1514 * percpu allocator has special setup for the first chunk, which currently
1515 * supports either embedding in linear address space or vmalloc mapping,
1516 * and, from the second one, the backing allocator (currently either vm or
1517 * km) provides translation.
1518 *
bffc4375 1519 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1520 * first chunk. But the current code reflects better how percpu allocator
1521 * actually works, and the verification can discover both bugs in percpu
1522 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1523 * code.
1524 *
3b034b0d
VG
1525 * RETURNS:
1526 * The physical address for @addr.
1527 */
1528phys_addr_t per_cpu_ptr_to_phys(void *addr)
1529{
9983b6f0
TH
1530 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1531 bool in_first_chunk = false;
a855b84c 1532 unsigned long first_low, first_high;
9983b6f0
TH
1533 unsigned int cpu;
1534
1535 /*
a855b84c 1536 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1537 * necessary but will speed up lookups of addresses which
1538 * aren't in the first chunk.
c0ebfdc3
DZF
1539 *
1540 * The address check is against full chunk sizes. pcpu_base_addr
1541 * points to the beginning of the first chunk including the
1542 * static region. Assumes good intent as the first chunk may
1543 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1544 */
c0ebfdc3
DZF
1545 first_low = (unsigned long)pcpu_base_addr +
1546 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1547 first_high = (unsigned long)pcpu_base_addr +
1548 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1549 if ((unsigned long)addr >= first_low &&
1550 (unsigned long)addr < first_high) {
9983b6f0
TH
1551 for_each_possible_cpu(cpu) {
1552 void *start = per_cpu_ptr(base, cpu);
1553
1554 if (addr >= start && addr < start + pcpu_unit_size) {
1555 in_first_chunk = true;
1556 break;
1557 }
1558 }
1559 }
1560
1561 if (in_first_chunk) {
eac522ef 1562 if (!is_vmalloc_addr(addr))
020ec653
TH
1563 return __pa(addr);
1564 else
9f57bd4d
ES
1565 return page_to_phys(vmalloc_to_page(addr)) +
1566 offset_in_page(addr);
020ec653 1567 } else
9f57bd4d
ES
1568 return page_to_phys(pcpu_addr_to_page(addr)) +
1569 offset_in_page(addr);
3b034b0d
VG
1570}
1571
fbf59bc9 1572/**
fd1e8a1f
TH
1573 * pcpu_alloc_alloc_info - allocate percpu allocation info
1574 * @nr_groups: the number of groups
1575 * @nr_units: the number of units
1576 *
1577 * Allocate ai which is large enough for @nr_groups groups containing
1578 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1579 * cpu_map array which is long enough for @nr_units and filled with
1580 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1581 * pointer of other groups.
1582 *
1583 * RETURNS:
1584 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1585 * failure.
1586 */
1587struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1588 int nr_units)
1589{
1590 struct pcpu_alloc_info *ai;
1591 size_t base_size, ai_size;
1592 void *ptr;
1593 int unit;
1594
1595 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1596 __alignof__(ai->groups[0].cpu_map[0]));
1597 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1598
999c17e3 1599 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1600 if (!ptr)
1601 return NULL;
1602 ai = ptr;
1603 ptr += base_size;
1604
1605 ai->groups[0].cpu_map = ptr;
1606
1607 for (unit = 0; unit < nr_units; unit++)
1608 ai->groups[0].cpu_map[unit] = NR_CPUS;
1609
1610 ai->nr_groups = nr_groups;
1611 ai->__ai_size = PFN_ALIGN(ai_size);
1612
1613 return ai;
1614}
1615
1616/**
1617 * pcpu_free_alloc_info - free percpu allocation info
1618 * @ai: pcpu_alloc_info to free
1619 *
1620 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1621 */
1622void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1623{
999c17e3 1624 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1625}
1626
fd1e8a1f
TH
1627/**
1628 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1629 * @lvl: loglevel
1630 * @ai: allocation info to dump
1631 *
1632 * Print out information about @ai using loglevel @lvl.
1633 */
1634static void pcpu_dump_alloc_info(const char *lvl,
1635 const struct pcpu_alloc_info *ai)
033e48fb 1636{
fd1e8a1f 1637 int group_width = 1, cpu_width = 1, width;
033e48fb 1638 char empty_str[] = "--------";
fd1e8a1f
TH
1639 int alloc = 0, alloc_end = 0;
1640 int group, v;
1641 int upa, apl; /* units per alloc, allocs per line */
1642
1643 v = ai->nr_groups;
1644 while (v /= 10)
1645 group_width++;
033e48fb 1646
fd1e8a1f 1647 v = num_possible_cpus();
033e48fb 1648 while (v /= 10)
fd1e8a1f
TH
1649 cpu_width++;
1650 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1651
fd1e8a1f
TH
1652 upa = ai->alloc_size / ai->unit_size;
1653 width = upa * (cpu_width + 1) + group_width + 3;
1654 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1655
fd1e8a1f
TH
1656 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1657 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1658 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1659
fd1e8a1f
TH
1660 for (group = 0; group < ai->nr_groups; group++) {
1661 const struct pcpu_group_info *gi = &ai->groups[group];
1662 int unit = 0, unit_end = 0;
1663
1664 BUG_ON(gi->nr_units % upa);
1665 for (alloc_end += gi->nr_units / upa;
1666 alloc < alloc_end; alloc++) {
1667 if (!(alloc % apl)) {
1170532b 1668 pr_cont("\n");
fd1e8a1f
TH
1669 printk("%spcpu-alloc: ", lvl);
1670 }
1170532b 1671 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1672
1673 for (unit_end += upa; unit < unit_end; unit++)
1674 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1675 pr_cont("%0*d ",
1676 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1677 else
1170532b 1678 pr_cont("%s ", empty_str);
033e48fb 1679 }
033e48fb 1680 }
1170532b 1681 pr_cont("\n");
033e48fb 1682}
033e48fb 1683
fbf59bc9 1684/**
8d408b4b 1685 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1686 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1687 * @base_addr: mapped address
8d408b4b
TH
1688 *
1689 * Initialize the first percpu chunk which contains the kernel static
1690 * perpcu area. This function is to be called from arch percpu area
38a6be52 1691 * setup path.
8d408b4b 1692 *
fd1e8a1f
TH
1693 * @ai contains all information necessary to initialize the first
1694 * chunk and prime the dynamic percpu allocator.
1695 *
1696 * @ai->static_size is the size of static percpu area.
1697 *
1698 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1699 * reserve after the static area in the first chunk. This reserves
1700 * the first chunk such that it's available only through reserved
1701 * percpu allocation. This is primarily used to serve module percpu
1702 * static areas on architectures where the addressing model has
1703 * limited offset range for symbol relocations to guarantee module
1704 * percpu symbols fall inside the relocatable range.
1705 *
fd1e8a1f
TH
1706 * @ai->dyn_size determines the number of bytes available for dynamic
1707 * allocation in the first chunk. The area between @ai->static_size +
1708 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1709 *
fd1e8a1f
TH
1710 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1711 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1712 * @ai->dyn_size.
8d408b4b 1713 *
fd1e8a1f
TH
1714 * @ai->atom_size is the allocation atom size and used as alignment
1715 * for vm areas.
8d408b4b 1716 *
fd1e8a1f
TH
1717 * @ai->alloc_size is the allocation size and always multiple of
1718 * @ai->atom_size. This is larger than @ai->atom_size if
1719 * @ai->unit_size is larger than @ai->atom_size.
1720 *
1721 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1722 * percpu areas. Units which should be colocated are put into the
1723 * same group. Dynamic VM areas will be allocated according to these
1724 * groupings. If @ai->nr_groups is zero, a single group containing
1725 * all units is assumed.
8d408b4b 1726 *
38a6be52
TH
1727 * The caller should have mapped the first chunk at @base_addr and
1728 * copied static data to each unit.
fbf59bc9 1729 *
c0ebfdc3
DZF
1730 * The first chunk will always contain a static and a dynamic region.
1731 * However, the static region is not managed by any chunk. If the first
1732 * chunk also contains a reserved region, it is served by two chunks -
1733 * one for the reserved region and one for the dynamic region. They
1734 * share the same vm, but use offset regions in the area allocation map.
1735 * The chunk serving the dynamic region is circulated in the chunk slots
1736 * and available for dynamic allocation like any other chunk.
edcb4639 1737 *
fbf59bc9 1738 * RETURNS:
fb435d52 1739 * 0 on success, -errno on failure.
fbf59bc9 1740 */
fb435d52
TH
1741int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1742 void *base_addr)
fbf59bc9 1743{
b9c39442 1744 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 1745 size_t static_size, dyn_size;
0c4169c3 1746 struct pcpu_chunk *chunk;
6563297c
TH
1747 unsigned long *group_offsets;
1748 size_t *group_sizes;
fb435d52 1749 unsigned long *unit_off;
fbf59bc9 1750 unsigned int cpu;
fd1e8a1f
TH
1751 int *unit_map;
1752 int group, unit, i;
c0ebfdc3
DZF
1753 int map_size;
1754 unsigned long tmp_addr;
fbf59bc9 1755
635b75fc
TH
1756#define PCPU_SETUP_BUG_ON(cond) do { \
1757 if (unlikely(cond)) { \
870d4b12
JP
1758 pr_emerg("failed to initialize, %s\n", #cond); \
1759 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1760 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1761 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1762 BUG(); \
1763 } \
1764} while (0)
1765
2f39e637 1766 /* sanity checks */
635b75fc 1767 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1768#ifdef CONFIG_SMP
635b75fc 1769 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1770 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1771#endif
635b75fc 1772 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1773 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1774 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1775 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1776 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 1777 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 1778 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1779 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 1780 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
1781 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
1782 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 1783 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1784
6563297c 1785 /* process group information and build config tables accordingly */
999c17e3
SS
1786 group_offsets = memblock_virt_alloc(ai->nr_groups *
1787 sizeof(group_offsets[0]), 0);
1788 group_sizes = memblock_virt_alloc(ai->nr_groups *
1789 sizeof(group_sizes[0]), 0);
1790 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1791 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1792
fd1e8a1f 1793 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1794 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1795
1796 pcpu_low_unit_cpu = NR_CPUS;
1797 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1798
fd1e8a1f
TH
1799 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1800 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1801
6563297c
TH
1802 group_offsets[group] = gi->base_offset;
1803 group_sizes[group] = gi->nr_units * ai->unit_size;
1804
fd1e8a1f
TH
1805 for (i = 0; i < gi->nr_units; i++) {
1806 cpu = gi->cpu_map[i];
1807 if (cpu == NR_CPUS)
1808 continue;
8d408b4b 1809
9f295664 1810 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1811 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1812 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1813
fd1e8a1f 1814 unit_map[cpu] = unit + i;
fb435d52
TH
1815 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1816
a855b84c
TH
1817 /* determine low/high unit_cpu */
1818 if (pcpu_low_unit_cpu == NR_CPUS ||
1819 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1820 pcpu_low_unit_cpu = cpu;
1821 if (pcpu_high_unit_cpu == NR_CPUS ||
1822 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1823 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1824 }
2f39e637 1825 }
fd1e8a1f
TH
1826 pcpu_nr_units = unit;
1827
1828 for_each_possible_cpu(cpu)
635b75fc
TH
1829 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1830
1831 /* we're done parsing the input, undefine BUG macro and dump config */
1832#undef PCPU_SETUP_BUG_ON
bcbea798 1833 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1834
6563297c
TH
1835 pcpu_nr_groups = ai->nr_groups;
1836 pcpu_group_offsets = group_offsets;
1837 pcpu_group_sizes = group_sizes;
fd1e8a1f 1838 pcpu_unit_map = unit_map;
fb435d52 1839 pcpu_unit_offsets = unit_off;
2f39e637
TH
1840
1841 /* determine basic parameters */
fd1e8a1f 1842 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1843 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1844 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1845 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1846 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1847
30a5b536
DZ
1848 pcpu_stats_save_ai(ai);
1849
d9b55eeb
TH
1850 /*
1851 * Allocate chunk slots. The additional last slot is for
1852 * empty chunks.
1853 */
1854 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1855 pcpu_slot = memblock_virt_alloc(
1856 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1857 for (i = 0; i < pcpu_nr_slots; i++)
1858 INIT_LIST_HEAD(&pcpu_slot[i]);
1859
d2f3c384
DZF
1860 /*
1861 * The end of the static region needs to be aligned with the
1862 * minimum allocation size as this offsets the reserved and
1863 * dynamic region. The first chunk ends page aligned by
1864 * expanding the dynamic region, therefore the dynamic region
1865 * can be shrunk to compensate while still staying above the
1866 * configured sizes.
1867 */
1868 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
1869 dyn_size = ai->dyn_size - (static_size - ai->static_size);
1870
edcb4639 1871 /*
c0ebfdc3
DZF
1872 * Initialize first chunk.
1873 * If the reserved_size is non-zero, this initializes the reserved
1874 * chunk. If the reserved_size is zero, the reserved chunk is NULL
1875 * and the dynamic region is initialized here. The first chunk,
1876 * pcpu_first_chunk, will always point to the chunk that serves
1877 * the dynamic region.
edcb4639 1878 */
d2f3c384
DZF
1879 tmp_addr = (unsigned long)base_addr + static_size;
1880 map_size = ai->reserved_size ?: dyn_size;
40064aec 1881 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 1882
edcb4639 1883 /* init dynamic chunk if necessary */
b9c39442 1884 if (ai->reserved_size) {
0c4169c3 1885 pcpu_reserved_chunk = chunk;
b9c39442 1886
d2f3c384 1887 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 1888 ai->reserved_size;
d2f3c384 1889 map_size = dyn_size;
40064aec 1890 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
1891 }
1892
2441d15c 1893 /* link the first chunk in */
0c4169c3 1894 pcpu_first_chunk = chunk;
0cecf50c 1895 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 1896 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1897
30a5b536 1898 pcpu_stats_chunk_alloc();
df95e795 1899 trace_percpu_create_chunk(base_addr);
30a5b536 1900
fbf59bc9 1901 /* we're done */
bba174f5 1902 pcpu_base_addr = base_addr;
fb435d52 1903 return 0;
fbf59bc9 1904}
66c3a757 1905
bbddff05
TH
1906#ifdef CONFIG_SMP
1907
17f3609c 1908const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1909 [PCPU_FC_AUTO] = "auto",
1910 [PCPU_FC_EMBED] = "embed",
1911 [PCPU_FC_PAGE] = "page",
f58dc01b 1912};
66c3a757 1913
f58dc01b 1914enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1915
f58dc01b
TH
1916static int __init percpu_alloc_setup(char *str)
1917{
5479c78a
CG
1918 if (!str)
1919 return -EINVAL;
1920
f58dc01b
TH
1921 if (0)
1922 /* nada */;
1923#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1924 else if (!strcmp(str, "embed"))
1925 pcpu_chosen_fc = PCPU_FC_EMBED;
1926#endif
1927#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1928 else if (!strcmp(str, "page"))
1929 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1930#endif
1931 else
870d4b12 1932 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1933
f58dc01b 1934 return 0;
66c3a757 1935}
f58dc01b 1936early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1937
3c9a024f
TH
1938/*
1939 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1940 * Build it if needed by the arch config or the generic setup is going
1941 * to be used.
1942 */
08fc4580
TH
1943#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1944 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1945#define BUILD_EMBED_FIRST_CHUNK
1946#endif
1947
1948/* build pcpu_page_first_chunk() iff needed by the arch config */
1949#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1950#define BUILD_PAGE_FIRST_CHUNK
1951#endif
1952
1953/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1954#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1955/**
1956 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1957 * @reserved_size: the size of reserved percpu area in bytes
1958 * @dyn_size: minimum free size for dynamic allocation in bytes
1959 * @atom_size: allocation atom size
1960 * @cpu_distance_fn: callback to determine distance between cpus, optional
1961 *
1962 * This function determines grouping of units, their mappings to cpus
1963 * and other parameters considering needed percpu size, allocation
1964 * atom size and distances between CPUs.
1965 *
bffc4375 1966 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1967 * LOCAL_DISTANCE both ways are grouped together and share space for
1968 * units in the same group. The returned configuration is guaranteed
1969 * to have CPUs on different nodes on different groups and >=75% usage
1970 * of allocated virtual address space.
1971 *
1972 * RETURNS:
1973 * On success, pointer to the new allocation_info is returned. On
1974 * failure, ERR_PTR value is returned.
1975 */
1976static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1977 size_t reserved_size, size_t dyn_size,
1978 size_t atom_size,
1979 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1980{
1981 static int group_map[NR_CPUS] __initdata;
1982 static int group_cnt[NR_CPUS] __initdata;
1983 const size_t static_size = __per_cpu_end - __per_cpu_start;
1984 int nr_groups = 1, nr_units = 0;
1985 size_t size_sum, min_unit_size, alloc_size;
1986 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1987 int last_allocs, group, unit;
1988 unsigned int cpu, tcpu;
1989 struct pcpu_alloc_info *ai;
1990 unsigned int *cpu_map;
1991
1992 /* this function may be called multiple times */
1993 memset(group_map, 0, sizeof(group_map));
1994 memset(group_cnt, 0, sizeof(group_cnt));
1995
1996 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1997 size_sum = PFN_ALIGN(static_size + reserved_size +
1998 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1999 dyn_size = size_sum - static_size - reserved_size;
2000
2001 /*
2002 * Determine min_unit_size, alloc_size and max_upa such that
2003 * alloc_size is multiple of atom_size and is the smallest
25985edc 2004 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2005 * or larger than min_unit_size.
2006 */
2007 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2008
9c015162 2009 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2010 alloc_size = roundup(min_unit_size, atom_size);
2011 upa = alloc_size / min_unit_size;
f09f1243 2012 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2013 upa--;
2014 max_upa = upa;
2015
2016 /* group cpus according to their proximity */
2017 for_each_possible_cpu(cpu) {
2018 group = 0;
2019 next_group:
2020 for_each_possible_cpu(tcpu) {
2021 if (cpu == tcpu)
2022 break;
2023 if (group_map[tcpu] == group && cpu_distance_fn &&
2024 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2025 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2026 group++;
2027 nr_groups = max(nr_groups, group + 1);
2028 goto next_group;
2029 }
2030 }
2031 group_map[cpu] = group;
2032 group_cnt[group]++;
2033 }
2034
2035 /*
9c015162
DZF
2036 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2037 * Expand the unit_size until we use >= 75% of the units allocated.
2038 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2039 */
2040 last_allocs = INT_MAX;
2041 for (upa = max_upa; upa; upa--) {
2042 int allocs = 0, wasted = 0;
2043
f09f1243 2044 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2045 continue;
2046
2047 for (group = 0; group < nr_groups; group++) {
2048 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2049 allocs += this_allocs;
2050 wasted += this_allocs * upa - group_cnt[group];
2051 }
2052
2053 /*
2054 * Don't accept if wastage is over 1/3. The
2055 * greater-than comparison ensures upa==1 always
2056 * passes the following check.
2057 */
2058 if (wasted > num_possible_cpus() / 3)
2059 continue;
2060
2061 /* and then don't consume more memory */
2062 if (allocs > last_allocs)
2063 break;
2064 last_allocs = allocs;
2065 best_upa = upa;
2066 }
2067 upa = best_upa;
2068
2069 /* allocate and fill alloc_info */
2070 for (group = 0; group < nr_groups; group++)
2071 nr_units += roundup(group_cnt[group], upa);
2072
2073 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2074 if (!ai)
2075 return ERR_PTR(-ENOMEM);
2076 cpu_map = ai->groups[0].cpu_map;
2077
2078 for (group = 0; group < nr_groups; group++) {
2079 ai->groups[group].cpu_map = cpu_map;
2080 cpu_map += roundup(group_cnt[group], upa);
2081 }
2082
2083 ai->static_size = static_size;
2084 ai->reserved_size = reserved_size;
2085 ai->dyn_size = dyn_size;
2086 ai->unit_size = alloc_size / upa;
2087 ai->atom_size = atom_size;
2088 ai->alloc_size = alloc_size;
2089
2090 for (group = 0, unit = 0; group_cnt[group]; group++) {
2091 struct pcpu_group_info *gi = &ai->groups[group];
2092
2093 /*
2094 * Initialize base_offset as if all groups are located
2095 * back-to-back. The caller should update this to
2096 * reflect actual allocation.
2097 */
2098 gi->base_offset = unit * ai->unit_size;
2099
2100 for_each_possible_cpu(cpu)
2101 if (group_map[cpu] == group)
2102 gi->cpu_map[gi->nr_units++] = cpu;
2103 gi->nr_units = roundup(gi->nr_units, upa);
2104 unit += gi->nr_units;
2105 }
2106 BUG_ON(unit != nr_units);
2107
2108 return ai;
2109}
2110#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2111
2112#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2113/**
2114 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2115 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2116 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2117 * @atom_size: allocation atom size
2118 * @cpu_distance_fn: callback to determine distance between cpus, optional
2119 * @alloc_fn: function to allocate percpu page
25985edc 2120 * @free_fn: function to free percpu page
66c3a757
TH
2121 *
2122 * This is a helper to ease setting up embedded first percpu chunk and
2123 * can be called where pcpu_setup_first_chunk() is expected.
2124 *
2125 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2126 * by calling @alloc_fn and used as-is without being mapped into
2127 * vmalloc area. Allocations are always whole multiples of @atom_size
2128 * aligned to @atom_size.
2129 *
2130 * This enables the first chunk to piggy back on the linear physical
2131 * mapping which often uses larger page size. Please note that this
2132 * can result in very sparse cpu->unit mapping on NUMA machines thus
2133 * requiring large vmalloc address space. Don't use this allocator if
2134 * vmalloc space is not orders of magnitude larger than distances
2135 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2136 *
4ba6ce25 2137 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2138 *
2139 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2140 * size, the leftover is returned using @free_fn.
66c3a757
TH
2141 *
2142 * RETURNS:
fb435d52 2143 * 0 on success, -errno on failure.
66c3a757 2144 */
4ba6ce25 2145int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2146 size_t atom_size,
2147 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2148 pcpu_fc_alloc_fn_t alloc_fn,
2149 pcpu_fc_free_fn_t free_fn)
66c3a757 2150{
c8826dd5
TH
2151 void *base = (void *)ULONG_MAX;
2152 void **areas = NULL;
fd1e8a1f 2153 struct pcpu_alloc_info *ai;
93c76b6b 2154 size_t size_sum, areas_size;
2155 unsigned long max_distance;
9b739662 2156 int group, i, highest_group, rc;
66c3a757 2157
c8826dd5
TH
2158 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2159 cpu_distance_fn);
fd1e8a1f
TH
2160 if (IS_ERR(ai))
2161 return PTR_ERR(ai);
66c3a757 2162
fd1e8a1f 2163 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2164 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2165
999c17e3 2166 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2167 if (!areas) {
fb435d52 2168 rc = -ENOMEM;
c8826dd5 2169 goto out_free;
fa8a7094 2170 }
66c3a757 2171
9b739662 2172 /* allocate, copy and determine base address & max_distance */
2173 highest_group = 0;
c8826dd5
TH
2174 for (group = 0; group < ai->nr_groups; group++) {
2175 struct pcpu_group_info *gi = &ai->groups[group];
2176 unsigned int cpu = NR_CPUS;
2177 void *ptr;
2178
2179 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2180 cpu = gi->cpu_map[i];
2181 BUG_ON(cpu == NR_CPUS);
2182
2183 /* allocate space for the whole group */
2184 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2185 if (!ptr) {
2186 rc = -ENOMEM;
2187 goto out_free_areas;
2188 }
f528f0b8
CM
2189 /* kmemleak tracks the percpu allocations separately */
2190 kmemleak_free(ptr);
c8826dd5 2191 areas[group] = ptr;
fd1e8a1f 2192
c8826dd5 2193 base = min(ptr, base);
9b739662 2194 if (ptr > areas[highest_group])
2195 highest_group = group;
2196 }
2197 max_distance = areas[highest_group] - base;
2198 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2199
2200 /* warn if maximum distance is further than 75% of vmalloc space */
2201 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2202 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2203 max_distance, VMALLOC_TOTAL);
2204#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2205 /* and fail if we have fallback */
2206 rc = -EINVAL;
2207 goto out_free_areas;
2208#endif
42b64281
TH
2209 }
2210
2211 /*
2212 * Copy data and free unused parts. This should happen after all
2213 * allocations are complete; otherwise, we may end up with
2214 * overlapping groups.
2215 */
2216 for (group = 0; group < ai->nr_groups; group++) {
2217 struct pcpu_group_info *gi = &ai->groups[group];
2218 void *ptr = areas[group];
c8826dd5
TH
2219
2220 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2221 if (gi->cpu_map[i] == NR_CPUS) {
2222 /* unused unit, free whole */
2223 free_fn(ptr, ai->unit_size);
2224 continue;
2225 }
2226 /* copy and return the unused part */
2227 memcpy(ptr, __per_cpu_load, ai->static_size);
2228 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2229 }
fa8a7094 2230 }
66c3a757 2231
c8826dd5 2232 /* base address is now known, determine group base offsets */
6ea529a2 2233 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2234 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2235 }
c8826dd5 2236
870d4b12 2237 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2238 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2239 ai->dyn_size, ai->unit_size);
d4b95f80 2240
fb435d52 2241 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2242 goto out_free;
2243
2244out_free_areas:
2245 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2246 if (areas[group])
2247 free_fn(areas[group],
2248 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2249out_free:
fd1e8a1f 2250 pcpu_free_alloc_info(ai);
c8826dd5 2251 if (areas)
999c17e3 2252 memblock_free_early(__pa(areas), areas_size);
fb435d52 2253 return rc;
d4b95f80 2254}
3c9a024f 2255#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2256
3c9a024f 2257#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2258/**
00ae4064 2259 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2260 * @reserved_size: the size of reserved percpu area in bytes
2261 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2262 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2263 * @populate_pte_fn: function to populate pte
2264 *
00ae4064
TH
2265 * This is a helper to ease setting up page-remapped first percpu
2266 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2267 *
2268 * This is the basic allocator. Static percpu area is allocated
2269 * page-by-page into vmalloc area.
2270 *
2271 * RETURNS:
fb435d52 2272 * 0 on success, -errno on failure.
d4b95f80 2273 */
fb435d52
TH
2274int __init pcpu_page_first_chunk(size_t reserved_size,
2275 pcpu_fc_alloc_fn_t alloc_fn,
2276 pcpu_fc_free_fn_t free_fn,
2277 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2278{
8f05a6a6 2279 static struct vm_struct vm;
fd1e8a1f 2280 struct pcpu_alloc_info *ai;
00ae4064 2281 char psize_str[16];
ce3141a2 2282 int unit_pages;
d4b95f80 2283 size_t pages_size;
ce3141a2 2284 struct page **pages;
fb435d52 2285 int unit, i, j, rc;
8f606604 2286 int upa;
2287 int nr_g0_units;
d4b95f80 2288
00ae4064
TH
2289 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2290
4ba6ce25 2291 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2292 if (IS_ERR(ai))
2293 return PTR_ERR(ai);
2294 BUG_ON(ai->nr_groups != 1);
8f606604 2295 upa = ai->alloc_size/ai->unit_size;
2296 nr_g0_units = roundup(num_possible_cpus(), upa);
2297 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2298 pcpu_free_alloc_info(ai);
2299 return -EINVAL;
2300 }
fd1e8a1f
TH
2301
2302 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2303
2304 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2305 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2306 sizeof(pages[0]));
999c17e3 2307 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2308
8f05a6a6 2309 /* allocate pages */
d4b95f80 2310 j = 0;
8f606604 2311 for (unit = 0; unit < num_possible_cpus(); unit++) {
2312 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2313 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2314 void *ptr;
2315
3cbc8565 2316 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2317 if (!ptr) {
870d4b12 2318 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2319 psize_str, cpu);
d4b95f80
TH
2320 goto enomem;
2321 }
f528f0b8
CM
2322 /* kmemleak tracks the percpu allocations separately */
2323 kmemleak_free(ptr);
ce3141a2 2324 pages[j++] = virt_to_page(ptr);
d4b95f80 2325 }
8f606604 2326 }
d4b95f80 2327
8f05a6a6
TH
2328 /* allocate vm area, map the pages and copy static data */
2329 vm.flags = VM_ALLOC;
fd1e8a1f 2330 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2331 vm_area_register_early(&vm, PAGE_SIZE);
2332
fd1e8a1f 2333 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2334 unsigned long unit_addr =
fd1e8a1f 2335 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2336
ce3141a2 2337 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2338 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2339
2340 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2341 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2342 unit_pages);
2343 if (rc < 0)
2344 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2345
8f05a6a6
TH
2346 /*
2347 * FIXME: Archs with virtual cache should flush local
2348 * cache for the linear mapping here - something
2349 * equivalent to flush_cache_vmap() on the local cpu.
2350 * flush_cache_vmap() can't be used as most supporting
2351 * data structures are not set up yet.
2352 */
2353
2354 /* copy static data */
fd1e8a1f 2355 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2356 }
2357
2358 /* we're ready, commit */
870d4b12 2359 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2360 unit_pages, psize_str, vm.addr, ai->static_size,
2361 ai->reserved_size, ai->dyn_size);
d4b95f80 2362
fb435d52 2363 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2364 goto out_free_ar;
2365
2366enomem:
2367 while (--j >= 0)
ce3141a2 2368 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2369 rc = -ENOMEM;
d4b95f80 2370out_free_ar:
999c17e3 2371 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2372 pcpu_free_alloc_info(ai);
fb435d52 2373 return rc;
d4b95f80 2374}
3c9a024f 2375#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2376
bbddff05 2377#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2378/*
bbddff05 2379 * Generic SMP percpu area setup.
e74e3962
TH
2380 *
2381 * The embedding helper is used because its behavior closely resembles
2382 * the original non-dynamic generic percpu area setup. This is
2383 * important because many archs have addressing restrictions and might
2384 * fail if the percpu area is located far away from the previous
2385 * location. As an added bonus, in non-NUMA cases, embedding is
2386 * generally a good idea TLB-wise because percpu area can piggy back
2387 * on the physical linear memory mapping which uses large page
2388 * mappings on applicable archs.
2389 */
e74e3962
TH
2390unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2391EXPORT_SYMBOL(__per_cpu_offset);
2392
c8826dd5
TH
2393static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2394 size_t align)
2395{
999c17e3
SS
2396 return memblock_virt_alloc_from_nopanic(
2397 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2398}
66c3a757 2399
c8826dd5
TH
2400static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2401{
999c17e3 2402 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2403}
2404
e74e3962
TH
2405void __init setup_per_cpu_areas(void)
2406{
e74e3962
TH
2407 unsigned long delta;
2408 unsigned int cpu;
fb435d52 2409 int rc;
e74e3962
TH
2410
2411 /*
2412 * Always reserve area for module percpu variables. That's
2413 * what the legacy allocator did.
2414 */
fb435d52 2415 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2416 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2417 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2418 if (rc < 0)
bbddff05 2419 panic("Failed to initialize percpu areas.");
e74e3962
TH
2420
2421 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2422 for_each_possible_cpu(cpu)
fb435d52 2423 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2424}
bbddff05
TH
2425#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2426
2427#else /* CONFIG_SMP */
2428
2429/*
2430 * UP percpu area setup.
2431 *
2432 * UP always uses km-based percpu allocator with identity mapping.
2433 * Static percpu variables are indistinguishable from the usual static
2434 * variables and don't require any special preparation.
2435 */
2436void __init setup_per_cpu_areas(void)
2437{
2438 const size_t unit_size =
2439 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2440 PERCPU_DYNAMIC_RESERVE));
2441 struct pcpu_alloc_info *ai;
2442 void *fc;
2443
2444 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2445 fc = memblock_virt_alloc_from_nopanic(unit_size,
2446 PAGE_SIZE,
2447 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2448 if (!ai || !fc)
2449 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2450 /* kmemleak tracks the percpu allocations separately */
2451 kmemleak_free(fc);
bbddff05
TH
2452
2453 ai->dyn_size = unit_size;
2454 ai->unit_size = unit_size;
2455 ai->atom_size = unit_size;
2456 ai->alloc_size = unit_size;
2457 ai->groups[0].nr_units = 1;
2458 ai->groups[0].cpu_map[0] = 0;
2459
2460 if (pcpu_setup_first_chunk(ai, fc) < 0)
2461 panic("Failed to initialize percpu areas.");
2462}
2463
2464#endif /* CONFIG_SMP */
099a19d9 2465
1a4d7607
TH
2466/*
2467 * Percpu allocator is initialized early during boot when neither slab or
2468 * workqueue is available. Plug async management until everything is up
2469 * and running.
2470 */
2471static int __init percpu_enable_async(void)
2472{
2473 pcpu_async_enabled = true;
2474 return 0;
2475}
2476subsys_initcall(percpu_enable_async);