]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/percpu.c
percpu: allocation size should be even
[mirror_ubuntu-zesty-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
bbddff05 80#ifdef CONFIG_SMP
e0100983
TH
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
e0100983
TH
87#endif
88#ifndef __pcpu_ptr_to_addr
89#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
e0100983 93#endif
bbddff05
TH
94#else /* CONFIG_SMP */
95/* on UP, it's always identity mapped */
96#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98#endif /* CONFIG_SMP */
e0100983 99
fbf59bc9
TH
100struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */
bba174f5 104 void *base_addr; /* base address of this chunk */
723ad1d9 105 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */
88999a89 108 void *data; /* chunk data */
3d331ad7 109 int first_free; /* no free below this */
8d408b4b 110 bool immutable; /* no [de]population allowed */
ce3141a2 111 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
112};
113
40150d37
TH
114static int pcpu_unit_pages __read_mostly;
115static int pcpu_unit_size __read_mostly;
2f39e637 116static int pcpu_nr_units __read_mostly;
6563297c 117static int pcpu_atom_size __read_mostly;
40150d37
TH
118static int pcpu_nr_slots __read_mostly;
119static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 120
a855b84c
TH
121/* cpus with the lowest and highest unit addresses */
122static unsigned int pcpu_low_unit_cpu __read_mostly;
123static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 124
fbf59bc9 125/* the address of the first chunk which starts with the kernel static area */
40150d37 126void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
127EXPORT_SYMBOL_GPL(pcpu_base_addr);
128
fb435d52
TH
129static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
130const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 131
6563297c
TH
132/* group information, used for vm allocation */
133static int pcpu_nr_groups __read_mostly;
134static const unsigned long *pcpu_group_offsets __read_mostly;
135static const size_t *pcpu_group_sizes __read_mostly;
136
ae9e6bc9
TH
137/*
138 * The first chunk which always exists. Note that unlike other
139 * chunks, this one can be allocated and mapped in several different
140 * ways and thus often doesn't live in the vmalloc area.
141 */
142static struct pcpu_chunk *pcpu_first_chunk;
143
144/*
145 * Optional reserved chunk. This chunk reserves part of the first
146 * chunk and serves it for reserved allocations. The amount of
147 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
148 * area doesn't exist, the following variables contain NULL and 0
149 * respectively.
150 */
edcb4639 151static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
152static int pcpu_reserved_chunk_limit;
153
fbf59bc9 154/*
ccea34b5
TH
155 * Synchronization rules.
156 *
157 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
158 * protects allocation/reclaim paths, chunks, populated bitmap and
159 * vmalloc mapping. The latter is a spinlock and protects the index
160 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
161 *
162 * During allocation, pcpu_alloc_mutex is kept locked all the time and
163 * pcpu_lock is grabbed and released as necessary. All actual memory
403a91b1
JK
164 * allocations are done using GFP_KERNEL with pcpu_lock released. In
165 * general, percpu memory can't be allocated with irq off but
166 * irqsave/restore are still used in alloc path so that it can be used
167 * from early init path - sched_init() specifically.
ccea34b5
TH
168 *
169 * Free path accesses and alters only the index data structures, so it
170 * can be safely called from atomic context. When memory needs to be
171 * returned to the system, free path schedules reclaim_work which
172 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
173 * reclaimed, release both locks and frees the chunks. Note that it's
174 * necessary to grab both locks to remove a chunk from circulation as
175 * allocation path might be referencing the chunk with only
176 * pcpu_alloc_mutex locked.
fbf59bc9 177 */
ccea34b5
TH
178static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
179static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 180
40150d37 181static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 182
a56dbddf
TH
183/* reclaim work to release fully free chunks, scheduled from free path */
184static void pcpu_reclaim(struct work_struct *work);
185static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
186
020ec653
TH
187static bool pcpu_addr_in_first_chunk(void *addr)
188{
189 void *first_start = pcpu_first_chunk->base_addr;
190
191 return addr >= first_start && addr < first_start + pcpu_unit_size;
192}
193
194static bool pcpu_addr_in_reserved_chunk(void *addr)
195{
196 void *first_start = pcpu_first_chunk->base_addr;
197
198 return addr >= first_start &&
199 addr < first_start + pcpu_reserved_chunk_limit;
200}
201
d9b55eeb 202static int __pcpu_size_to_slot(int size)
fbf59bc9 203{
cae3aeb8 204 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
205 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
206}
207
d9b55eeb
TH
208static int pcpu_size_to_slot(int size)
209{
210 if (size == pcpu_unit_size)
211 return pcpu_nr_slots - 1;
212 return __pcpu_size_to_slot(size);
213}
214
fbf59bc9
TH
215static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
216{
217 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
218 return 0;
219
220 return pcpu_size_to_slot(chunk->free_size);
221}
222
88999a89
TH
223/* set the pointer to a chunk in a page struct */
224static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
225{
226 page->index = (unsigned long)pcpu;
227}
228
229/* obtain pointer to a chunk from a page struct */
230static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
231{
232 return (struct pcpu_chunk *)page->index;
233}
234
235static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 236{
2f39e637 237 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
238}
239
9983b6f0
TH
240static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
241 unsigned int cpu, int page_idx)
fbf59bc9 242{
bba174f5 243 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 244 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
245}
246
88999a89
TH
247static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
248 int *rs, int *re, int end)
ce3141a2
TH
249{
250 *rs = find_next_zero_bit(chunk->populated, end, *rs);
251 *re = find_next_bit(chunk->populated, end, *rs + 1);
252}
253
88999a89
TH
254static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
255 int *rs, int *re, int end)
ce3141a2
TH
256{
257 *rs = find_next_bit(chunk->populated, end, *rs);
258 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
259}
260
261/*
262 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 263 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
264 * be integer variables and will be set to start and end page index of
265 * the current region.
266 */
267#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
271
272#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276
fbf59bc9 277/**
90459ce0 278 * pcpu_mem_zalloc - allocate memory
1880d93b 279 * @size: bytes to allocate
fbf59bc9 280 *
1880d93b 281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 282 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 283 * memory is always zeroed.
fbf59bc9 284 *
ccea34b5
TH
285 * CONTEXT:
286 * Does GFP_KERNEL allocation.
287 *
fbf59bc9 288 * RETURNS:
1880d93b 289 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 290 */
90459ce0 291static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 292{
099a19d9
TH
293 if (WARN_ON_ONCE(!slab_is_available()))
294 return NULL;
295
1880d93b
TH
296 if (size <= PAGE_SIZE)
297 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
298 else
299 return vzalloc(size);
1880d93b 300}
fbf59bc9 301
1880d93b
TH
302/**
303 * pcpu_mem_free - free memory
304 * @ptr: memory to free
305 * @size: size of the area
306 *
90459ce0 307 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
308 */
309static void pcpu_mem_free(void *ptr, size_t size)
310{
fbf59bc9 311 if (size <= PAGE_SIZE)
1880d93b 312 kfree(ptr);
fbf59bc9 313 else
1880d93b 314 vfree(ptr);
fbf59bc9
TH
315}
316
317/**
318 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
319 * @chunk: chunk of interest
320 * @oslot: the previous slot it was on
321 *
322 * This function is called after an allocation or free changed @chunk.
323 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
324 * moved to the slot. Note that the reserved chunk is never put on
325 * chunk slots.
ccea34b5
TH
326 *
327 * CONTEXT:
328 * pcpu_lock.
fbf59bc9
TH
329 */
330static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
331{
332 int nslot = pcpu_chunk_slot(chunk);
333
edcb4639 334 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
335 if (oslot < nslot)
336 list_move(&chunk->list, &pcpu_slot[nslot]);
337 else
338 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
339 }
340}
341
9f7dcf22 342/**
833af842
TH
343 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
344 * @chunk: chunk of interest
9f7dcf22 345 *
833af842 346 * Determine whether area map of @chunk needs to be extended to
25985edc 347 * accommodate a new allocation.
9f7dcf22 348 *
ccea34b5 349 * CONTEXT:
833af842 350 * pcpu_lock.
ccea34b5 351 *
9f7dcf22 352 * RETURNS:
833af842
TH
353 * New target map allocation length if extension is necessary, 0
354 * otherwise.
9f7dcf22 355 */
833af842 356static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
357{
358 int new_alloc;
9f7dcf22 359
723ad1d9 360 if (chunk->map_alloc >= chunk->map_used + 3)
9f7dcf22
TH
361 return 0;
362
363 new_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9 364 while (new_alloc < chunk->map_used + 3)
9f7dcf22
TH
365 new_alloc *= 2;
366
833af842
TH
367 return new_alloc;
368}
369
370/**
371 * pcpu_extend_area_map - extend area map of a chunk
372 * @chunk: chunk of interest
373 * @new_alloc: new target allocation length of the area map
374 *
375 * Extend area map of @chunk to have @new_alloc entries.
376 *
377 * CONTEXT:
378 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
379 *
380 * RETURNS:
381 * 0 on success, -errno on failure.
382 */
383static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
384{
385 int *old = NULL, *new = NULL;
386 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
387 unsigned long flags;
388
90459ce0 389 new = pcpu_mem_zalloc(new_size);
833af842 390 if (!new)
9f7dcf22 391 return -ENOMEM;
ccea34b5 392
833af842
TH
393 /* acquire pcpu_lock and switch to new area map */
394 spin_lock_irqsave(&pcpu_lock, flags);
395
396 if (new_alloc <= chunk->map_alloc)
397 goto out_unlock;
9f7dcf22 398
833af842 399 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
400 old = chunk->map;
401
402 memcpy(new, old, old_size);
9f7dcf22 403
9f7dcf22
TH
404 chunk->map_alloc = new_alloc;
405 chunk->map = new;
833af842
TH
406 new = NULL;
407
408out_unlock:
409 spin_unlock_irqrestore(&pcpu_lock, flags);
410
411 /*
412 * pcpu_mem_free() might end up calling vfree() which uses
413 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
414 */
415 pcpu_mem_free(old, old_size);
416 pcpu_mem_free(new, new_size);
417
9f7dcf22
TH
418 return 0;
419}
420
fbf59bc9
TH
421/**
422 * pcpu_alloc_area - allocate area from a pcpu_chunk
423 * @chunk: chunk of interest
cae3aeb8 424 * @size: wanted size in bytes
fbf59bc9
TH
425 * @align: wanted align
426 *
427 * Try to allocate @size bytes area aligned at @align from @chunk.
428 * Note that this function only allocates the offset. It doesn't
429 * populate or map the area.
430 *
9f7dcf22
TH
431 * @chunk->map must have at least two free slots.
432 *
ccea34b5
TH
433 * CONTEXT:
434 * pcpu_lock.
435 *
fbf59bc9 436 * RETURNS:
9f7dcf22
TH
437 * Allocated offset in @chunk on success, -1 if no matching area is
438 * found.
fbf59bc9
TH
439 */
440static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
441{
442 int oslot = pcpu_chunk_slot(chunk);
443 int max_contig = 0;
444 int i, off;
3d331ad7 445 bool seen_free = false;
723ad1d9 446 int *p;
fbf59bc9 447
3d331ad7 448 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 449 int head, tail;
723ad1d9
AV
450 int this_size;
451
452 off = *p;
453 if (off & 1)
454 continue;
fbf59bc9
TH
455
456 /* extra for alignment requirement */
457 head = ALIGN(off, align) - off;
fbf59bc9 458
723ad1d9
AV
459 this_size = (p[1] & ~1) - off;
460 if (this_size < head + size) {
3d331ad7
AV
461 if (!seen_free) {
462 chunk->first_free = i;
463 seen_free = true;
464 }
723ad1d9 465 max_contig = max(this_size, max_contig);
fbf59bc9
TH
466 continue;
467 }
468
469 /*
470 * If head is small or the previous block is free,
471 * merge'em. Note that 'small' is defined as smaller
472 * than sizeof(int), which is very small but isn't too
473 * uncommon for percpu allocations.
474 */
723ad1d9
AV
475 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
476 if (p[-1] & 1)
fbf59bc9 477 chunk->free_size -= head;
723ad1d9
AV
478 *p = off += head;
479 this_size -= head;
fbf59bc9
TH
480 head = 0;
481 }
482
483 /* if tail is small, just keep it around */
723ad1d9
AV
484 tail = this_size - head - size;
485 if (tail < sizeof(int)) {
fbf59bc9 486 tail = 0;
723ad1d9
AV
487 size = this_size - head;
488 }
fbf59bc9
TH
489
490 /* split if warranted */
491 if (head || tail) {
706c16f2
AV
492 int nr_extra = !!head + !!tail;
493
494 /* insert new subblocks */
723ad1d9 495 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
496 sizeof(chunk->map[0]) * (chunk->map_used - i));
497 chunk->map_used += nr_extra;
498
fbf59bc9 499 if (head) {
3d331ad7
AV
500 if (!seen_free) {
501 chunk->first_free = i;
502 seen_free = true;
503 }
723ad1d9
AV
504 *++p = off += head;
505 ++i;
706c16f2
AV
506 max_contig = max(head, max_contig);
507 }
508 if (tail) {
723ad1d9 509 p[1] = off + size;
706c16f2 510 max_contig = max(tail, max_contig);
fbf59bc9 511 }
fbf59bc9
TH
512 }
513
3d331ad7
AV
514 if (!seen_free)
515 chunk->first_free = i + 1;
516
fbf59bc9 517 /* update hint and mark allocated */
723ad1d9 518 if (i + 1 == chunk->map_used)
fbf59bc9
TH
519 chunk->contig_hint = max_contig; /* fully scanned */
520 else
521 chunk->contig_hint = max(chunk->contig_hint,
522 max_contig);
523
723ad1d9
AV
524 chunk->free_size -= size;
525 *p |= 1;
fbf59bc9
TH
526
527 pcpu_chunk_relocate(chunk, oslot);
528 return off;
529 }
530
531 chunk->contig_hint = max_contig; /* fully scanned */
532 pcpu_chunk_relocate(chunk, oslot);
533
9f7dcf22
TH
534 /* tell the upper layer that this chunk has no matching area */
535 return -1;
fbf59bc9
TH
536}
537
538/**
539 * pcpu_free_area - free area to a pcpu_chunk
540 * @chunk: chunk of interest
541 * @freeme: offset of area to free
542 *
543 * Free area starting from @freeme to @chunk. Note that this function
544 * only modifies the allocation map. It doesn't depopulate or unmap
545 * the area.
ccea34b5
TH
546 *
547 * CONTEXT:
548 * pcpu_lock.
fbf59bc9
TH
549 */
550static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
551{
552 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
553 int off = 0;
554 unsigned i, j;
555 int to_free = 0;
556 int *p;
557
558 freeme |= 1; /* we are searching for <given offset, in use> pair */
559
560 i = 0;
561 j = chunk->map_used;
562 while (i != j) {
563 unsigned k = (i + j) / 2;
564 off = chunk->map[k];
565 if (off < freeme)
566 i = k + 1;
567 else if (off > freeme)
568 j = k;
569 else
570 i = j = k;
571 }
fbf59bc9 572 BUG_ON(off != freeme);
fbf59bc9 573
3d331ad7
AV
574 if (i < chunk->first_free)
575 chunk->first_free = i;
576
723ad1d9
AV
577 p = chunk->map + i;
578 *p = off &= ~1;
579 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 580
723ad1d9
AV
581 /* merge with next? */
582 if (!(p[1] & 1))
583 to_free++;
fbf59bc9 584 /* merge with previous? */
723ad1d9
AV
585 if (i > 0 && !(p[-1] & 1)) {
586 to_free++;
fbf59bc9 587 i--;
723ad1d9 588 p--;
fbf59bc9 589 }
723ad1d9
AV
590 if (to_free) {
591 chunk->map_used -= to_free;
592 memmove(p + 1, p + 1 + to_free,
593 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
594 }
595
723ad1d9 596 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
597 pcpu_chunk_relocate(chunk, oslot);
598}
599
6081089f
TH
600static struct pcpu_chunk *pcpu_alloc_chunk(void)
601{
602 struct pcpu_chunk *chunk;
603
90459ce0 604 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
605 if (!chunk)
606 return NULL;
607
90459ce0
BL
608 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
609 sizeof(chunk->map[0]));
6081089f
TH
610 if (!chunk->map) {
611 kfree(chunk);
612 return NULL;
613 }
614
615 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
616 chunk->map[0] = 0;
617 chunk->map[1] = pcpu_unit_size | 1;
618 chunk->map_used = 1;
6081089f
TH
619
620 INIT_LIST_HEAD(&chunk->list);
621 chunk->free_size = pcpu_unit_size;
622 chunk->contig_hint = pcpu_unit_size;
623
624 return chunk;
625}
626
627static void pcpu_free_chunk(struct pcpu_chunk *chunk)
628{
629 if (!chunk)
630 return;
631 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 632 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
633}
634
9f645532
TH
635/*
636 * Chunk management implementation.
637 *
638 * To allow different implementations, chunk alloc/free and
639 * [de]population are implemented in a separate file which is pulled
640 * into this file and compiled together. The following functions
641 * should be implemented.
642 *
643 * pcpu_populate_chunk - populate the specified range of a chunk
644 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
645 * pcpu_create_chunk - create a new chunk
646 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
647 * pcpu_addr_to_page - translate address to physical address
648 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 649 */
9f645532
TH
650static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
651static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
652static struct pcpu_chunk *pcpu_create_chunk(void);
653static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
654static struct page *pcpu_addr_to_page(void *addr);
655static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 656
b0c9778b
TH
657#ifdef CONFIG_NEED_PER_CPU_KM
658#include "percpu-km.c"
659#else
9f645532 660#include "percpu-vm.c"
b0c9778b 661#endif
fbf59bc9 662
88999a89
TH
663/**
664 * pcpu_chunk_addr_search - determine chunk containing specified address
665 * @addr: address for which the chunk needs to be determined.
666 *
667 * RETURNS:
668 * The address of the found chunk.
669 */
670static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
671{
672 /* is it in the first chunk? */
673 if (pcpu_addr_in_first_chunk(addr)) {
674 /* is it in the reserved area? */
675 if (pcpu_addr_in_reserved_chunk(addr))
676 return pcpu_reserved_chunk;
677 return pcpu_first_chunk;
678 }
679
680 /*
681 * The address is relative to unit0 which might be unused and
682 * thus unmapped. Offset the address to the unit space of the
683 * current processor before looking it up in the vmalloc
684 * space. Note that any possible cpu id can be used here, so
685 * there's no need to worry about preemption or cpu hotplug.
686 */
687 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 688 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
689}
690
fbf59bc9 691/**
edcb4639 692 * pcpu_alloc - the percpu allocator
cae3aeb8 693 * @size: size of area to allocate in bytes
fbf59bc9 694 * @align: alignment of area (max PAGE_SIZE)
edcb4639 695 * @reserved: allocate from the reserved chunk if available
fbf59bc9 696 *
ccea34b5
TH
697 * Allocate percpu area of @size bytes aligned at @align.
698 *
699 * CONTEXT:
700 * Does GFP_KERNEL allocation.
fbf59bc9
TH
701 *
702 * RETURNS:
703 * Percpu pointer to the allocated area on success, NULL on failure.
704 */
43cf38eb 705static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 706{
f2badb0c 707 static int warn_limit = 10;
fbf59bc9 708 struct pcpu_chunk *chunk;
f2badb0c 709 const char *err;
833af842 710 int slot, off, new_alloc;
403a91b1 711 unsigned long flags;
f528f0b8 712 void __percpu *ptr;
fbf59bc9 713
723ad1d9
AV
714 /*
715 * We want the lowest bit of offset available for in-use/free
2f69fa82 716 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
717 */
718 if (unlikely(align < 2))
719 align = 2;
720
2f69fa82
AV
721 if (unlikely(size & 1))
722 size++;
723
8d408b4b 724 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
725 WARN(true, "illegal size (%zu) or align (%zu) for "
726 "percpu allocation\n", size, align);
727 return NULL;
728 }
729
ccea34b5 730 mutex_lock(&pcpu_alloc_mutex);
403a91b1 731 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 732
edcb4639
TH
733 /* serve reserved allocations from the reserved chunk if available */
734 if (reserved && pcpu_reserved_chunk) {
735 chunk = pcpu_reserved_chunk;
833af842
TH
736
737 if (size > chunk->contig_hint) {
738 err = "alloc from reserved chunk failed";
ccea34b5 739 goto fail_unlock;
f2badb0c 740 }
833af842
TH
741
742 while ((new_alloc = pcpu_need_to_extend(chunk))) {
743 spin_unlock_irqrestore(&pcpu_lock, flags);
744 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
745 err = "failed to extend area map of reserved chunk";
746 goto fail_unlock_mutex;
747 }
748 spin_lock_irqsave(&pcpu_lock, flags);
749 }
750
edcb4639
TH
751 off = pcpu_alloc_area(chunk, size, align);
752 if (off >= 0)
753 goto area_found;
833af842 754
f2badb0c 755 err = "alloc from reserved chunk failed";
ccea34b5 756 goto fail_unlock;
edcb4639
TH
757 }
758
ccea34b5 759restart:
edcb4639 760 /* search through normal chunks */
fbf59bc9
TH
761 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
762 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
763 if (size > chunk->contig_hint)
764 continue;
ccea34b5 765
833af842
TH
766 new_alloc = pcpu_need_to_extend(chunk);
767 if (new_alloc) {
768 spin_unlock_irqrestore(&pcpu_lock, flags);
769 if (pcpu_extend_area_map(chunk,
770 new_alloc) < 0) {
771 err = "failed to extend area map";
772 goto fail_unlock_mutex;
773 }
774 spin_lock_irqsave(&pcpu_lock, flags);
775 /*
776 * pcpu_lock has been dropped, need to
777 * restart cpu_slot list walking.
778 */
779 goto restart;
ccea34b5
TH
780 }
781
fbf59bc9
TH
782 off = pcpu_alloc_area(chunk, size, align);
783 if (off >= 0)
784 goto area_found;
fbf59bc9
TH
785 }
786 }
787
788 /* hmmm... no space left, create a new chunk */
403a91b1 789 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 790
6081089f 791 chunk = pcpu_create_chunk();
f2badb0c
TH
792 if (!chunk) {
793 err = "failed to allocate new chunk";
ccea34b5 794 goto fail_unlock_mutex;
f2badb0c 795 }
ccea34b5 796
403a91b1 797 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 798 pcpu_chunk_relocate(chunk, -1);
ccea34b5 799 goto restart;
fbf59bc9
TH
800
801area_found:
403a91b1 802 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 803
fbf59bc9
TH
804 /* populate, map and clear the area */
805 if (pcpu_populate_chunk(chunk, off, size)) {
403a91b1 806 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 807 pcpu_free_area(chunk, off);
f2badb0c 808 err = "failed to populate";
ccea34b5 809 goto fail_unlock;
fbf59bc9
TH
810 }
811
ccea34b5
TH
812 mutex_unlock(&pcpu_alloc_mutex);
813
bba174f5 814 /* return address relative to base address */
f528f0b8
CM
815 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
816 kmemleak_alloc_percpu(ptr, size);
817 return ptr;
ccea34b5
TH
818
819fail_unlock:
403a91b1 820 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5
TH
821fail_unlock_mutex:
822 mutex_unlock(&pcpu_alloc_mutex);
f2badb0c
TH
823 if (warn_limit) {
824 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
825 "%s\n", size, align, err);
826 dump_stack();
827 if (!--warn_limit)
828 pr_info("PERCPU: limit reached, disable warning\n");
829 }
ccea34b5 830 return NULL;
fbf59bc9 831}
edcb4639
TH
832
833/**
834 * __alloc_percpu - allocate dynamic percpu area
835 * @size: size of area to allocate in bytes
836 * @align: alignment of area (max PAGE_SIZE)
837 *
9329ba97
TH
838 * Allocate zero-filled percpu area of @size bytes aligned at @align.
839 * Might sleep. Might trigger writeouts.
edcb4639 840 *
ccea34b5
TH
841 * CONTEXT:
842 * Does GFP_KERNEL allocation.
843 *
edcb4639
TH
844 * RETURNS:
845 * Percpu pointer to the allocated area on success, NULL on failure.
846 */
43cf38eb 847void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
848{
849 return pcpu_alloc(size, align, false);
850}
fbf59bc9
TH
851EXPORT_SYMBOL_GPL(__alloc_percpu);
852
edcb4639
TH
853/**
854 * __alloc_reserved_percpu - allocate reserved percpu area
855 * @size: size of area to allocate in bytes
856 * @align: alignment of area (max PAGE_SIZE)
857 *
9329ba97
TH
858 * Allocate zero-filled percpu area of @size bytes aligned at @align
859 * from reserved percpu area if arch has set it up; otherwise,
860 * allocation is served from the same dynamic area. Might sleep.
861 * Might trigger writeouts.
edcb4639 862 *
ccea34b5
TH
863 * CONTEXT:
864 * Does GFP_KERNEL allocation.
865 *
edcb4639
TH
866 * RETURNS:
867 * Percpu pointer to the allocated area on success, NULL on failure.
868 */
43cf38eb 869void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
870{
871 return pcpu_alloc(size, align, true);
872}
873
a56dbddf
TH
874/**
875 * pcpu_reclaim - reclaim fully free chunks, workqueue function
876 * @work: unused
877 *
878 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
879 *
880 * CONTEXT:
881 * workqueue context.
a56dbddf
TH
882 */
883static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 884{
a56dbddf
TH
885 LIST_HEAD(todo);
886 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
887 struct pcpu_chunk *chunk, *next;
888
ccea34b5
TH
889 mutex_lock(&pcpu_alloc_mutex);
890 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
891
892 list_for_each_entry_safe(chunk, next, head, list) {
893 WARN_ON(chunk->immutable);
894
895 /* spare the first one */
896 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
897 continue;
898
a56dbddf
TH
899 list_move(&chunk->list, &todo);
900 }
901
ccea34b5 902 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
903
904 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 905 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
6081089f 906 pcpu_destroy_chunk(chunk);
a56dbddf 907 }
971f3918
TH
908
909 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
910}
911
912/**
913 * free_percpu - free percpu area
914 * @ptr: pointer to area to free
915 *
ccea34b5
TH
916 * Free percpu area @ptr.
917 *
918 * CONTEXT:
919 * Can be called from atomic context.
fbf59bc9 920 */
43cf38eb 921void free_percpu(void __percpu *ptr)
fbf59bc9 922{
129182e5 923 void *addr;
fbf59bc9 924 struct pcpu_chunk *chunk;
ccea34b5 925 unsigned long flags;
fbf59bc9
TH
926 int off;
927
928 if (!ptr)
929 return;
930
f528f0b8
CM
931 kmemleak_free_percpu(ptr);
932
129182e5
AM
933 addr = __pcpu_ptr_to_addr(ptr);
934
ccea34b5 935 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
936
937 chunk = pcpu_chunk_addr_search(addr);
bba174f5 938 off = addr - chunk->base_addr;
fbf59bc9
TH
939
940 pcpu_free_area(chunk, off);
941
a56dbddf 942 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
943 if (chunk->free_size == pcpu_unit_size) {
944 struct pcpu_chunk *pos;
945
a56dbddf 946 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 947 if (pos != chunk) {
a56dbddf 948 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
949 break;
950 }
951 }
952
ccea34b5 953 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
954}
955EXPORT_SYMBOL_GPL(free_percpu);
956
10fad5e4
TH
957/**
958 * is_kernel_percpu_address - test whether address is from static percpu area
959 * @addr: address to test
960 *
961 * Test whether @addr belongs to in-kernel static percpu area. Module
962 * static percpu areas are not considered. For those, use
963 * is_module_percpu_address().
964 *
965 * RETURNS:
966 * %true if @addr is from in-kernel static percpu area, %false otherwise.
967 */
968bool is_kernel_percpu_address(unsigned long addr)
969{
bbddff05 970#ifdef CONFIG_SMP
10fad5e4
TH
971 const size_t static_size = __per_cpu_end - __per_cpu_start;
972 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
973 unsigned int cpu;
974
975 for_each_possible_cpu(cpu) {
976 void *start = per_cpu_ptr(base, cpu);
977
978 if ((void *)addr >= start && (void *)addr < start + static_size)
979 return true;
980 }
bbddff05
TH
981#endif
982 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
983 return false;
984}
985
3b034b0d
VG
986/**
987 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
988 * @addr: the address to be converted to physical address
989 *
990 * Given @addr which is dereferenceable address obtained via one of
991 * percpu access macros, this function translates it into its physical
992 * address. The caller is responsible for ensuring @addr stays valid
993 * until this function finishes.
994 *
67589c71
DY
995 * percpu allocator has special setup for the first chunk, which currently
996 * supports either embedding in linear address space or vmalloc mapping,
997 * and, from the second one, the backing allocator (currently either vm or
998 * km) provides translation.
999 *
1000 * The addr can be tranlated simply without checking if it falls into the
1001 * first chunk. But the current code reflects better how percpu allocator
1002 * actually works, and the verification can discover both bugs in percpu
1003 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1004 * code.
1005 *
3b034b0d
VG
1006 * RETURNS:
1007 * The physical address for @addr.
1008 */
1009phys_addr_t per_cpu_ptr_to_phys(void *addr)
1010{
9983b6f0
TH
1011 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1012 bool in_first_chunk = false;
a855b84c 1013 unsigned long first_low, first_high;
9983b6f0
TH
1014 unsigned int cpu;
1015
1016 /*
a855b84c 1017 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1018 * necessary but will speed up lookups of addresses which
1019 * aren't in the first chunk.
1020 */
a855b84c
TH
1021 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1022 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1023 pcpu_unit_pages);
1024 if ((unsigned long)addr >= first_low &&
1025 (unsigned long)addr < first_high) {
9983b6f0
TH
1026 for_each_possible_cpu(cpu) {
1027 void *start = per_cpu_ptr(base, cpu);
1028
1029 if (addr >= start && addr < start + pcpu_unit_size) {
1030 in_first_chunk = true;
1031 break;
1032 }
1033 }
1034 }
1035
1036 if (in_first_chunk) {
eac522ef 1037 if (!is_vmalloc_addr(addr))
020ec653
TH
1038 return __pa(addr);
1039 else
9f57bd4d
ES
1040 return page_to_phys(vmalloc_to_page(addr)) +
1041 offset_in_page(addr);
020ec653 1042 } else
9f57bd4d
ES
1043 return page_to_phys(pcpu_addr_to_page(addr)) +
1044 offset_in_page(addr);
3b034b0d
VG
1045}
1046
fbf59bc9 1047/**
fd1e8a1f
TH
1048 * pcpu_alloc_alloc_info - allocate percpu allocation info
1049 * @nr_groups: the number of groups
1050 * @nr_units: the number of units
1051 *
1052 * Allocate ai which is large enough for @nr_groups groups containing
1053 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1054 * cpu_map array which is long enough for @nr_units and filled with
1055 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1056 * pointer of other groups.
1057 *
1058 * RETURNS:
1059 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1060 * failure.
1061 */
1062struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1063 int nr_units)
1064{
1065 struct pcpu_alloc_info *ai;
1066 size_t base_size, ai_size;
1067 void *ptr;
1068 int unit;
1069
1070 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1071 __alignof__(ai->groups[0].cpu_map[0]));
1072 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1073
999c17e3 1074 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1075 if (!ptr)
1076 return NULL;
1077 ai = ptr;
1078 ptr += base_size;
1079
1080 ai->groups[0].cpu_map = ptr;
1081
1082 for (unit = 0; unit < nr_units; unit++)
1083 ai->groups[0].cpu_map[unit] = NR_CPUS;
1084
1085 ai->nr_groups = nr_groups;
1086 ai->__ai_size = PFN_ALIGN(ai_size);
1087
1088 return ai;
1089}
1090
1091/**
1092 * pcpu_free_alloc_info - free percpu allocation info
1093 * @ai: pcpu_alloc_info to free
1094 *
1095 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1096 */
1097void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1098{
999c17e3 1099 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1100}
1101
fd1e8a1f
TH
1102/**
1103 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1104 * @lvl: loglevel
1105 * @ai: allocation info to dump
1106 *
1107 * Print out information about @ai using loglevel @lvl.
1108 */
1109static void pcpu_dump_alloc_info(const char *lvl,
1110 const struct pcpu_alloc_info *ai)
033e48fb 1111{
fd1e8a1f 1112 int group_width = 1, cpu_width = 1, width;
033e48fb 1113 char empty_str[] = "--------";
fd1e8a1f
TH
1114 int alloc = 0, alloc_end = 0;
1115 int group, v;
1116 int upa, apl; /* units per alloc, allocs per line */
1117
1118 v = ai->nr_groups;
1119 while (v /= 10)
1120 group_width++;
033e48fb 1121
fd1e8a1f 1122 v = num_possible_cpus();
033e48fb 1123 while (v /= 10)
fd1e8a1f
TH
1124 cpu_width++;
1125 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1126
fd1e8a1f
TH
1127 upa = ai->alloc_size / ai->unit_size;
1128 width = upa * (cpu_width + 1) + group_width + 3;
1129 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1130
fd1e8a1f
TH
1131 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1132 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1133 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1134
fd1e8a1f
TH
1135 for (group = 0; group < ai->nr_groups; group++) {
1136 const struct pcpu_group_info *gi = &ai->groups[group];
1137 int unit = 0, unit_end = 0;
1138
1139 BUG_ON(gi->nr_units % upa);
1140 for (alloc_end += gi->nr_units / upa;
1141 alloc < alloc_end; alloc++) {
1142 if (!(alloc % apl)) {
cb129820 1143 printk(KERN_CONT "\n");
fd1e8a1f
TH
1144 printk("%spcpu-alloc: ", lvl);
1145 }
cb129820 1146 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1147
1148 for (unit_end += upa; unit < unit_end; unit++)
1149 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1150 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1151 gi->cpu_map[unit]);
1152 else
cb129820 1153 printk(KERN_CONT "%s ", empty_str);
033e48fb 1154 }
033e48fb 1155 }
cb129820 1156 printk(KERN_CONT "\n");
033e48fb 1157}
033e48fb 1158
fbf59bc9 1159/**
8d408b4b 1160 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1161 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1162 * @base_addr: mapped address
8d408b4b
TH
1163 *
1164 * Initialize the first percpu chunk which contains the kernel static
1165 * perpcu area. This function is to be called from arch percpu area
38a6be52 1166 * setup path.
8d408b4b 1167 *
fd1e8a1f
TH
1168 * @ai contains all information necessary to initialize the first
1169 * chunk and prime the dynamic percpu allocator.
1170 *
1171 * @ai->static_size is the size of static percpu area.
1172 *
1173 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1174 * reserve after the static area in the first chunk. This reserves
1175 * the first chunk such that it's available only through reserved
1176 * percpu allocation. This is primarily used to serve module percpu
1177 * static areas on architectures where the addressing model has
1178 * limited offset range for symbol relocations to guarantee module
1179 * percpu symbols fall inside the relocatable range.
1180 *
fd1e8a1f
TH
1181 * @ai->dyn_size determines the number of bytes available for dynamic
1182 * allocation in the first chunk. The area between @ai->static_size +
1183 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1184 *
fd1e8a1f
TH
1185 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1186 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1187 * @ai->dyn_size.
8d408b4b 1188 *
fd1e8a1f
TH
1189 * @ai->atom_size is the allocation atom size and used as alignment
1190 * for vm areas.
8d408b4b 1191 *
fd1e8a1f
TH
1192 * @ai->alloc_size is the allocation size and always multiple of
1193 * @ai->atom_size. This is larger than @ai->atom_size if
1194 * @ai->unit_size is larger than @ai->atom_size.
1195 *
1196 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1197 * percpu areas. Units which should be colocated are put into the
1198 * same group. Dynamic VM areas will be allocated according to these
1199 * groupings. If @ai->nr_groups is zero, a single group containing
1200 * all units is assumed.
8d408b4b 1201 *
38a6be52
TH
1202 * The caller should have mapped the first chunk at @base_addr and
1203 * copied static data to each unit.
fbf59bc9 1204 *
edcb4639
TH
1205 * If the first chunk ends up with both reserved and dynamic areas, it
1206 * is served by two chunks - one to serve the core static and reserved
1207 * areas and the other for the dynamic area. They share the same vm
1208 * and page map but uses different area allocation map to stay away
1209 * from each other. The latter chunk is circulated in the chunk slots
1210 * and available for dynamic allocation like any other chunks.
1211 *
fbf59bc9 1212 * RETURNS:
fb435d52 1213 * 0 on success, -errno on failure.
fbf59bc9 1214 */
fb435d52
TH
1215int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1216 void *base_addr)
fbf59bc9 1217{
635b75fc 1218 static char cpus_buf[4096] __initdata;
099a19d9
TH
1219 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1220 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1221 size_t dyn_size = ai->dyn_size;
1222 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1223 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1224 unsigned long *group_offsets;
1225 size_t *group_sizes;
fb435d52 1226 unsigned long *unit_off;
fbf59bc9 1227 unsigned int cpu;
fd1e8a1f
TH
1228 int *unit_map;
1229 int group, unit, i;
fbf59bc9 1230
635b75fc
TH
1231 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1232
1233#define PCPU_SETUP_BUG_ON(cond) do { \
1234 if (unlikely(cond)) { \
1235 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1236 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1237 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1238 BUG(); \
1239 } \
1240} while (0)
1241
2f39e637 1242 /* sanity checks */
635b75fc 1243 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1244#ifdef CONFIG_SMP
635b75fc 1245 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1246 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1247#endif
635b75fc 1248 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1249 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1250 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1251 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1252 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1253 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1254 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1255
6563297c 1256 /* process group information and build config tables accordingly */
999c17e3
SS
1257 group_offsets = memblock_virt_alloc(ai->nr_groups *
1258 sizeof(group_offsets[0]), 0);
1259 group_sizes = memblock_virt_alloc(ai->nr_groups *
1260 sizeof(group_sizes[0]), 0);
1261 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1262 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1263
fd1e8a1f 1264 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1265 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1266
1267 pcpu_low_unit_cpu = NR_CPUS;
1268 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1269
fd1e8a1f
TH
1270 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1271 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1272
6563297c
TH
1273 group_offsets[group] = gi->base_offset;
1274 group_sizes[group] = gi->nr_units * ai->unit_size;
1275
fd1e8a1f
TH
1276 for (i = 0; i < gi->nr_units; i++) {
1277 cpu = gi->cpu_map[i];
1278 if (cpu == NR_CPUS)
1279 continue;
8d408b4b 1280
635b75fc
TH
1281 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1282 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1283 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1284
fd1e8a1f 1285 unit_map[cpu] = unit + i;
fb435d52
TH
1286 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1287
a855b84c
TH
1288 /* determine low/high unit_cpu */
1289 if (pcpu_low_unit_cpu == NR_CPUS ||
1290 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1291 pcpu_low_unit_cpu = cpu;
1292 if (pcpu_high_unit_cpu == NR_CPUS ||
1293 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1294 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1295 }
2f39e637 1296 }
fd1e8a1f
TH
1297 pcpu_nr_units = unit;
1298
1299 for_each_possible_cpu(cpu)
635b75fc
TH
1300 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1301
1302 /* we're done parsing the input, undefine BUG macro and dump config */
1303#undef PCPU_SETUP_BUG_ON
bcbea798 1304 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1305
6563297c
TH
1306 pcpu_nr_groups = ai->nr_groups;
1307 pcpu_group_offsets = group_offsets;
1308 pcpu_group_sizes = group_sizes;
fd1e8a1f 1309 pcpu_unit_map = unit_map;
fb435d52 1310 pcpu_unit_offsets = unit_off;
2f39e637
TH
1311
1312 /* determine basic parameters */
fd1e8a1f 1313 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1314 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1315 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1316 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1317 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1318
d9b55eeb
TH
1319 /*
1320 * Allocate chunk slots. The additional last slot is for
1321 * empty chunks.
1322 */
1323 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1324 pcpu_slot = memblock_virt_alloc(
1325 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1326 for (i = 0; i < pcpu_nr_slots; i++)
1327 INIT_LIST_HEAD(&pcpu_slot[i]);
1328
edcb4639
TH
1329 /*
1330 * Initialize static chunk. If reserved_size is zero, the
1331 * static chunk covers static area + dynamic allocation area
1332 * in the first chunk. If reserved_size is not zero, it
1333 * covers static area + reserved area (mostly used for module
1334 * static percpu allocation).
1335 */
999c17e3 1336 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1337 INIT_LIST_HEAD(&schunk->list);
bba174f5 1338 schunk->base_addr = base_addr;
61ace7fa
TH
1339 schunk->map = smap;
1340 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1341 schunk->immutable = true;
ce3141a2 1342 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1343
fd1e8a1f
TH
1344 if (ai->reserved_size) {
1345 schunk->free_size = ai->reserved_size;
ae9e6bc9 1346 pcpu_reserved_chunk = schunk;
fd1e8a1f 1347 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1348 } else {
1349 schunk->free_size = dyn_size;
1350 dyn_size = 0; /* dynamic area covered */
1351 }
2441d15c 1352 schunk->contig_hint = schunk->free_size;
fbf59bc9 1353
723ad1d9
AV
1354 schunk->map[0] = 1;
1355 schunk->map[1] = ai->static_size;
1356 schunk->map_used = 1;
61ace7fa 1357 if (schunk->free_size)
723ad1d9
AV
1358 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1359 else
1360 schunk->map[1] |= 1;
61ace7fa 1361
edcb4639
TH
1362 /* init dynamic chunk if necessary */
1363 if (dyn_size) {
999c17e3 1364 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1365 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1366 dchunk->base_addr = base_addr;
edcb4639
TH
1367 dchunk->map = dmap;
1368 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1369 dchunk->immutable = true;
ce3141a2 1370 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1371
1372 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1373 dchunk->map[0] = 1;
1374 dchunk->map[1] = pcpu_reserved_chunk_limit;
1375 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1376 dchunk->map_used = 2;
edcb4639
TH
1377 }
1378
2441d15c 1379 /* link the first chunk in */
ae9e6bc9
TH
1380 pcpu_first_chunk = dchunk ?: schunk;
1381 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1382
1383 /* we're done */
bba174f5 1384 pcpu_base_addr = base_addr;
fb435d52 1385 return 0;
fbf59bc9 1386}
66c3a757 1387
bbddff05
TH
1388#ifdef CONFIG_SMP
1389
17f3609c 1390const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1391 [PCPU_FC_AUTO] = "auto",
1392 [PCPU_FC_EMBED] = "embed",
1393 [PCPU_FC_PAGE] = "page",
f58dc01b 1394};
66c3a757 1395
f58dc01b 1396enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1397
f58dc01b
TH
1398static int __init percpu_alloc_setup(char *str)
1399{
5479c78a
CG
1400 if (!str)
1401 return -EINVAL;
1402
f58dc01b
TH
1403 if (0)
1404 /* nada */;
1405#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1406 else if (!strcmp(str, "embed"))
1407 pcpu_chosen_fc = PCPU_FC_EMBED;
1408#endif
1409#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1410 else if (!strcmp(str, "page"))
1411 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1412#endif
1413 else
1414 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1415
f58dc01b 1416 return 0;
66c3a757 1417}
f58dc01b 1418early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1419
3c9a024f
TH
1420/*
1421 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1422 * Build it if needed by the arch config or the generic setup is going
1423 * to be used.
1424 */
08fc4580
TH
1425#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1426 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1427#define BUILD_EMBED_FIRST_CHUNK
1428#endif
1429
1430/* build pcpu_page_first_chunk() iff needed by the arch config */
1431#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1432#define BUILD_PAGE_FIRST_CHUNK
1433#endif
1434
1435/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1436#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1437/**
1438 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1439 * @reserved_size: the size of reserved percpu area in bytes
1440 * @dyn_size: minimum free size for dynamic allocation in bytes
1441 * @atom_size: allocation atom size
1442 * @cpu_distance_fn: callback to determine distance between cpus, optional
1443 *
1444 * This function determines grouping of units, their mappings to cpus
1445 * and other parameters considering needed percpu size, allocation
1446 * atom size and distances between CPUs.
1447 *
1448 * Groups are always mutliples of atom size and CPUs which are of
1449 * LOCAL_DISTANCE both ways are grouped together and share space for
1450 * units in the same group. The returned configuration is guaranteed
1451 * to have CPUs on different nodes on different groups and >=75% usage
1452 * of allocated virtual address space.
1453 *
1454 * RETURNS:
1455 * On success, pointer to the new allocation_info is returned. On
1456 * failure, ERR_PTR value is returned.
1457 */
1458static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1459 size_t reserved_size, size_t dyn_size,
1460 size_t atom_size,
1461 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1462{
1463 static int group_map[NR_CPUS] __initdata;
1464 static int group_cnt[NR_CPUS] __initdata;
1465 const size_t static_size = __per_cpu_end - __per_cpu_start;
1466 int nr_groups = 1, nr_units = 0;
1467 size_t size_sum, min_unit_size, alloc_size;
1468 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1469 int last_allocs, group, unit;
1470 unsigned int cpu, tcpu;
1471 struct pcpu_alloc_info *ai;
1472 unsigned int *cpu_map;
1473
1474 /* this function may be called multiple times */
1475 memset(group_map, 0, sizeof(group_map));
1476 memset(group_cnt, 0, sizeof(group_cnt));
1477
1478 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1479 size_sum = PFN_ALIGN(static_size + reserved_size +
1480 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1481 dyn_size = size_sum - static_size - reserved_size;
1482
1483 /*
1484 * Determine min_unit_size, alloc_size and max_upa such that
1485 * alloc_size is multiple of atom_size and is the smallest
25985edc 1486 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1487 * or larger than min_unit_size.
1488 */
1489 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1490
1491 alloc_size = roundup(min_unit_size, atom_size);
1492 upa = alloc_size / min_unit_size;
1493 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1494 upa--;
1495 max_upa = upa;
1496
1497 /* group cpus according to their proximity */
1498 for_each_possible_cpu(cpu) {
1499 group = 0;
1500 next_group:
1501 for_each_possible_cpu(tcpu) {
1502 if (cpu == tcpu)
1503 break;
1504 if (group_map[tcpu] == group && cpu_distance_fn &&
1505 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1506 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1507 group++;
1508 nr_groups = max(nr_groups, group + 1);
1509 goto next_group;
1510 }
1511 }
1512 group_map[cpu] = group;
1513 group_cnt[group]++;
1514 }
1515
1516 /*
1517 * Expand unit size until address space usage goes over 75%
1518 * and then as much as possible without using more address
1519 * space.
1520 */
1521 last_allocs = INT_MAX;
1522 for (upa = max_upa; upa; upa--) {
1523 int allocs = 0, wasted = 0;
1524
1525 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1526 continue;
1527
1528 for (group = 0; group < nr_groups; group++) {
1529 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1530 allocs += this_allocs;
1531 wasted += this_allocs * upa - group_cnt[group];
1532 }
1533
1534 /*
1535 * Don't accept if wastage is over 1/3. The
1536 * greater-than comparison ensures upa==1 always
1537 * passes the following check.
1538 */
1539 if (wasted > num_possible_cpus() / 3)
1540 continue;
1541
1542 /* and then don't consume more memory */
1543 if (allocs > last_allocs)
1544 break;
1545 last_allocs = allocs;
1546 best_upa = upa;
1547 }
1548 upa = best_upa;
1549
1550 /* allocate and fill alloc_info */
1551 for (group = 0; group < nr_groups; group++)
1552 nr_units += roundup(group_cnt[group], upa);
1553
1554 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1555 if (!ai)
1556 return ERR_PTR(-ENOMEM);
1557 cpu_map = ai->groups[0].cpu_map;
1558
1559 for (group = 0; group < nr_groups; group++) {
1560 ai->groups[group].cpu_map = cpu_map;
1561 cpu_map += roundup(group_cnt[group], upa);
1562 }
1563
1564 ai->static_size = static_size;
1565 ai->reserved_size = reserved_size;
1566 ai->dyn_size = dyn_size;
1567 ai->unit_size = alloc_size / upa;
1568 ai->atom_size = atom_size;
1569 ai->alloc_size = alloc_size;
1570
1571 for (group = 0, unit = 0; group_cnt[group]; group++) {
1572 struct pcpu_group_info *gi = &ai->groups[group];
1573
1574 /*
1575 * Initialize base_offset as if all groups are located
1576 * back-to-back. The caller should update this to
1577 * reflect actual allocation.
1578 */
1579 gi->base_offset = unit * ai->unit_size;
1580
1581 for_each_possible_cpu(cpu)
1582 if (group_map[cpu] == group)
1583 gi->cpu_map[gi->nr_units++] = cpu;
1584 gi->nr_units = roundup(gi->nr_units, upa);
1585 unit += gi->nr_units;
1586 }
1587 BUG_ON(unit != nr_units);
1588
1589 return ai;
1590}
1591#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1592
1593#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1594/**
1595 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1596 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1597 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1598 * @atom_size: allocation atom size
1599 * @cpu_distance_fn: callback to determine distance between cpus, optional
1600 * @alloc_fn: function to allocate percpu page
25985edc 1601 * @free_fn: function to free percpu page
66c3a757
TH
1602 *
1603 * This is a helper to ease setting up embedded first percpu chunk and
1604 * can be called where pcpu_setup_first_chunk() is expected.
1605 *
1606 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1607 * by calling @alloc_fn and used as-is without being mapped into
1608 * vmalloc area. Allocations are always whole multiples of @atom_size
1609 * aligned to @atom_size.
1610 *
1611 * This enables the first chunk to piggy back on the linear physical
1612 * mapping which often uses larger page size. Please note that this
1613 * can result in very sparse cpu->unit mapping on NUMA machines thus
1614 * requiring large vmalloc address space. Don't use this allocator if
1615 * vmalloc space is not orders of magnitude larger than distances
1616 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1617 *
4ba6ce25 1618 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1619 *
1620 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1621 * size, the leftover is returned using @free_fn.
66c3a757
TH
1622 *
1623 * RETURNS:
fb435d52 1624 * 0 on success, -errno on failure.
66c3a757 1625 */
4ba6ce25 1626int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1627 size_t atom_size,
1628 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1629 pcpu_fc_alloc_fn_t alloc_fn,
1630 pcpu_fc_free_fn_t free_fn)
66c3a757 1631{
c8826dd5
TH
1632 void *base = (void *)ULONG_MAX;
1633 void **areas = NULL;
fd1e8a1f 1634 struct pcpu_alloc_info *ai;
6ea529a2 1635 size_t size_sum, areas_size, max_distance;
c8826dd5 1636 int group, i, rc;
66c3a757 1637
c8826dd5
TH
1638 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1639 cpu_distance_fn);
fd1e8a1f
TH
1640 if (IS_ERR(ai))
1641 return PTR_ERR(ai);
66c3a757 1642
fd1e8a1f 1643 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1644 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1645
999c17e3 1646 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1647 if (!areas) {
fb435d52 1648 rc = -ENOMEM;
c8826dd5 1649 goto out_free;
fa8a7094 1650 }
66c3a757 1651
c8826dd5
TH
1652 /* allocate, copy and determine base address */
1653 for (group = 0; group < ai->nr_groups; group++) {
1654 struct pcpu_group_info *gi = &ai->groups[group];
1655 unsigned int cpu = NR_CPUS;
1656 void *ptr;
1657
1658 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1659 cpu = gi->cpu_map[i];
1660 BUG_ON(cpu == NR_CPUS);
1661
1662 /* allocate space for the whole group */
1663 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1664 if (!ptr) {
1665 rc = -ENOMEM;
1666 goto out_free_areas;
1667 }
f528f0b8
CM
1668 /* kmemleak tracks the percpu allocations separately */
1669 kmemleak_free(ptr);
c8826dd5 1670 areas[group] = ptr;
fd1e8a1f 1671
c8826dd5 1672 base = min(ptr, base);
42b64281
TH
1673 }
1674
1675 /*
1676 * Copy data and free unused parts. This should happen after all
1677 * allocations are complete; otherwise, we may end up with
1678 * overlapping groups.
1679 */
1680 for (group = 0; group < ai->nr_groups; group++) {
1681 struct pcpu_group_info *gi = &ai->groups[group];
1682 void *ptr = areas[group];
c8826dd5
TH
1683
1684 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1685 if (gi->cpu_map[i] == NR_CPUS) {
1686 /* unused unit, free whole */
1687 free_fn(ptr, ai->unit_size);
1688 continue;
1689 }
1690 /* copy and return the unused part */
1691 memcpy(ptr, __per_cpu_load, ai->static_size);
1692 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1693 }
fa8a7094 1694 }
66c3a757 1695
c8826dd5 1696 /* base address is now known, determine group base offsets */
6ea529a2
TH
1697 max_distance = 0;
1698 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1699 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1700 max_distance = max_t(size_t, max_distance,
1701 ai->groups[group].base_offset);
6ea529a2
TH
1702 }
1703 max_distance += ai->unit_size;
1704
1705 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 1706 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 1707 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 1708 "space 0x%lx\n", max_distance,
8a092171 1709 VMALLOC_TOTAL);
6ea529a2
TH
1710#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1711 /* and fail if we have fallback */
1712 rc = -EINVAL;
1713 goto out_free;
1714#endif
1715 }
c8826dd5 1716
004018e2 1717 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1718 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1719 ai->dyn_size, ai->unit_size);
d4b95f80 1720
fb435d52 1721 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1722 goto out_free;
1723
1724out_free_areas:
1725 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
1726 if (areas[group])
1727 free_fn(areas[group],
1728 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 1729out_free:
fd1e8a1f 1730 pcpu_free_alloc_info(ai);
c8826dd5 1731 if (areas)
999c17e3 1732 memblock_free_early(__pa(areas), areas_size);
fb435d52 1733 return rc;
d4b95f80 1734}
3c9a024f 1735#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1736
3c9a024f 1737#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1738/**
00ae4064 1739 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1740 * @reserved_size: the size of reserved percpu area in bytes
1741 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1742 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1743 * @populate_pte_fn: function to populate pte
1744 *
00ae4064
TH
1745 * This is a helper to ease setting up page-remapped first percpu
1746 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1747 *
1748 * This is the basic allocator. Static percpu area is allocated
1749 * page-by-page into vmalloc area.
1750 *
1751 * RETURNS:
fb435d52 1752 * 0 on success, -errno on failure.
d4b95f80 1753 */
fb435d52
TH
1754int __init pcpu_page_first_chunk(size_t reserved_size,
1755 pcpu_fc_alloc_fn_t alloc_fn,
1756 pcpu_fc_free_fn_t free_fn,
1757 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1758{
8f05a6a6 1759 static struct vm_struct vm;
fd1e8a1f 1760 struct pcpu_alloc_info *ai;
00ae4064 1761 char psize_str[16];
ce3141a2 1762 int unit_pages;
d4b95f80 1763 size_t pages_size;
ce3141a2 1764 struct page **pages;
fb435d52 1765 int unit, i, j, rc;
d4b95f80 1766
00ae4064
TH
1767 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1768
4ba6ce25 1769 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1770 if (IS_ERR(ai))
1771 return PTR_ERR(ai);
1772 BUG_ON(ai->nr_groups != 1);
1773 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1774
1775 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1776
1777 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1778 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1779 sizeof(pages[0]));
999c17e3 1780 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 1781
8f05a6a6 1782 /* allocate pages */
d4b95f80 1783 j = 0;
fd1e8a1f 1784 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1785 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1786 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1787 void *ptr;
1788
3cbc8565 1789 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1790 if (!ptr) {
00ae4064
TH
1791 pr_warning("PERCPU: failed to allocate %s page "
1792 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1793 goto enomem;
1794 }
f528f0b8
CM
1795 /* kmemleak tracks the percpu allocations separately */
1796 kmemleak_free(ptr);
ce3141a2 1797 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1798 }
1799
8f05a6a6
TH
1800 /* allocate vm area, map the pages and copy static data */
1801 vm.flags = VM_ALLOC;
fd1e8a1f 1802 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1803 vm_area_register_early(&vm, PAGE_SIZE);
1804
fd1e8a1f 1805 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1806 unsigned long unit_addr =
fd1e8a1f 1807 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1808
ce3141a2 1809 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1810 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1811
1812 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1813 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1814 unit_pages);
1815 if (rc < 0)
1816 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1817
8f05a6a6
TH
1818 /*
1819 * FIXME: Archs with virtual cache should flush local
1820 * cache for the linear mapping here - something
1821 * equivalent to flush_cache_vmap() on the local cpu.
1822 * flush_cache_vmap() can't be used as most supporting
1823 * data structures are not set up yet.
1824 */
1825
1826 /* copy static data */
fd1e8a1f 1827 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1828 }
1829
1830 /* we're ready, commit */
1d9d3257 1831 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1832 unit_pages, psize_str, vm.addr, ai->static_size,
1833 ai->reserved_size, ai->dyn_size);
d4b95f80 1834
fb435d52 1835 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1836 goto out_free_ar;
1837
1838enomem:
1839 while (--j >= 0)
ce3141a2 1840 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1841 rc = -ENOMEM;
d4b95f80 1842out_free_ar:
999c17e3 1843 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 1844 pcpu_free_alloc_info(ai);
fb435d52 1845 return rc;
d4b95f80 1846}
3c9a024f 1847#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1848
bbddff05 1849#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1850/*
bbddff05 1851 * Generic SMP percpu area setup.
e74e3962
TH
1852 *
1853 * The embedding helper is used because its behavior closely resembles
1854 * the original non-dynamic generic percpu area setup. This is
1855 * important because many archs have addressing restrictions and might
1856 * fail if the percpu area is located far away from the previous
1857 * location. As an added bonus, in non-NUMA cases, embedding is
1858 * generally a good idea TLB-wise because percpu area can piggy back
1859 * on the physical linear memory mapping which uses large page
1860 * mappings on applicable archs.
1861 */
e74e3962
TH
1862unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1863EXPORT_SYMBOL(__per_cpu_offset);
1864
c8826dd5
TH
1865static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1866 size_t align)
1867{
999c17e3
SS
1868 return memblock_virt_alloc_from_nopanic(
1869 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 1870}
66c3a757 1871
c8826dd5
TH
1872static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1873{
999c17e3 1874 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
1875}
1876
e74e3962
TH
1877void __init setup_per_cpu_areas(void)
1878{
e74e3962
TH
1879 unsigned long delta;
1880 unsigned int cpu;
fb435d52 1881 int rc;
e74e3962
TH
1882
1883 /*
1884 * Always reserve area for module percpu variables. That's
1885 * what the legacy allocator did.
1886 */
fb435d52 1887 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
1888 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1889 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 1890 if (rc < 0)
bbddff05 1891 panic("Failed to initialize percpu areas.");
e74e3962
TH
1892
1893 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1894 for_each_possible_cpu(cpu)
fb435d52 1895 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 1896}
bbddff05
TH
1897#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1898
1899#else /* CONFIG_SMP */
1900
1901/*
1902 * UP percpu area setup.
1903 *
1904 * UP always uses km-based percpu allocator with identity mapping.
1905 * Static percpu variables are indistinguishable from the usual static
1906 * variables and don't require any special preparation.
1907 */
1908void __init setup_per_cpu_areas(void)
1909{
1910 const size_t unit_size =
1911 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1912 PERCPU_DYNAMIC_RESERVE));
1913 struct pcpu_alloc_info *ai;
1914 void *fc;
1915
1916 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
1917 fc = memblock_virt_alloc_from_nopanic(unit_size,
1918 PAGE_SIZE,
1919 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
1920 if (!ai || !fc)
1921 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
1922 /* kmemleak tracks the percpu allocations separately */
1923 kmemleak_free(fc);
bbddff05
TH
1924
1925 ai->dyn_size = unit_size;
1926 ai->unit_size = unit_size;
1927 ai->atom_size = unit_size;
1928 ai->alloc_size = unit_size;
1929 ai->groups[0].nr_units = 1;
1930 ai->groups[0].cpu_map[0] = 0;
1931
1932 if (pcpu_setup_first_chunk(ai, fc) < 0)
1933 panic("Failed to initialize percpu areas.");
1934}
1935
1936#endif /* CONFIG_SMP */
099a19d9
TH
1937
1938/*
1939 * First and reserved chunks are initialized with temporary allocation
1940 * map in initdata so that they can be used before slab is online.
1941 * This function is called after slab is brought up and replaces those
1942 * with properly allocated maps.
1943 */
1944void __init percpu_init_late(void)
1945{
1946 struct pcpu_chunk *target_chunks[] =
1947 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1948 struct pcpu_chunk *chunk;
1949 unsigned long flags;
1950 int i;
1951
1952 for (i = 0; (chunk = target_chunks[i]); i++) {
1953 int *map;
1954 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1955
1956 BUILD_BUG_ON(size > PAGE_SIZE);
1957
90459ce0 1958 map = pcpu_mem_zalloc(size);
099a19d9
TH
1959 BUG_ON(!map);
1960
1961 spin_lock_irqsave(&pcpu_lock, flags);
1962 memcpy(map, chunk->map, size);
1963 chunk->map = map;
1964 spin_unlock_irqrestore(&pcpu_lock, flags);
1965 }
1966}