]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/percpu.c
percpu: speed alloc_pcpu_area() up
[mirror_ubuntu-zesty-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
bbddff05 80#ifdef CONFIG_SMP
e0100983
TH
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
e0100983
TH
87#endif
88#ifndef __pcpu_ptr_to_addr
89#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
e0100983 93#endif
bbddff05
TH
94#else /* CONFIG_SMP */
95/* on UP, it's always identity mapped */
96#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98#endif /* CONFIG_SMP */
e0100983 99
fbf59bc9
TH
100struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */
bba174f5 104 void *base_addr; /* base address of this chunk */
723ad1d9 105 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */
88999a89 108 void *data; /* chunk data */
3d331ad7 109 int first_free; /* no free below this */
8d408b4b 110 bool immutable; /* no [de]population allowed */
ce3141a2 111 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
112};
113
40150d37
TH
114static int pcpu_unit_pages __read_mostly;
115static int pcpu_unit_size __read_mostly;
2f39e637 116static int pcpu_nr_units __read_mostly;
6563297c 117static int pcpu_atom_size __read_mostly;
40150d37
TH
118static int pcpu_nr_slots __read_mostly;
119static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 120
a855b84c
TH
121/* cpus with the lowest and highest unit addresses */
122static unsigned int pcpu_low_unit_cpu __read_mostly;
123static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 124
fbf59bc9 125/* the address of the first chunk which starts with the kernel static area */
40150d37 126void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
127EXPORT_SYMBOL_GPL(pcpu_base_addr);
128
fb435d52
TH
129static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
130const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 131
6563297c
TH
132/* group information, used for vm allocation */
133static int pcpu_nr_groups __read_mostly;
134static const unsigned long *pcpu_group_offsets __read_mostly;
135static const size_t *pcpu_group_sizes __read_mostly;
136
ae9e6bc9
TH
137/*
138 * The first chunk which always exists. Note that unlike other
139 * chunks, this one can be allocated and mapped in several different
140 * ways and thus often doesn't live in the vmalloc area.
141 */
142static struct pcpu_chunk *pcpu_first_chunk;
143
144/*
145 * Optional reserved chunk. This chunk reserves part of the first
146 * chunk and serves it for reserved allocations. The amount of
147 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
148 * area doesn't exist, the following variables contain NULL and 0
149 * respectively.
150 */
edcb4639 151static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
152static int pcpu_reserved_chunk_limit;
153
fbf59bc9 154/*
ccea34b5
TH
155 * Synchronization rules.
156 *
157 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
158 * protects allocation/reclaim paths, chunks, populated bitmap and
159 * vmalloc mapping. The latter is a spinlock and protects the index
160 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
161 *
162 * During allocation, pcpu_alloc_mutex is kept locked all the time and
163 * pcpu_lock is grabbed and released as necessary. All actual memory
403a91b1
JK
164 * allocations are done using GFP_KERNEL with pcpu_lock released. In
165 * general, percpu memory can't be allocated with irq off but
166 * irqsave/restore are still used in alloc path so that it can be used
167 * from early init path - sched_init() specifically.
ccea34b5
TH
168 *
169 * Free path accesses and alters only the index data structures, so it
170 * can be safely called from atomic context. When memory needs to be
171 * returned to the system, free path schedules reclaim_work which
172 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
173 * reclaimed, release both locks and frees the chunks. Note that it's
174 * necessary to grab both locks to remove a chunk from circulation as
175 * allocation path might be referencing the chunk with only
176 * pcpu_alloc_mutex locked.
fbf59bc9 177 */
ccea34b5
TH
178static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
179static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 180
40150d37 181static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 182
a56dbddf
TH
183/* reclaim work to release fully free chunks, scheduled from free path */
184static void pcpu_reclaim(struct work_struct *work);
185static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
186
020ec653
TH
187static bool pcpu_addr_in_first_chunk(void *addr)
188{
189 void *first_start = pcpu_first_chunk->base_addr;
190
191 return addr >= first_start && addr < first_start + pcpu_unit_size;
192}
193
194static bool pcpu_addr_in_reserved_chunk(void *addr)
195{
196 void *first_start = pcpu_first_chunk->base_addr;
197
198 return addr >= first_start &&
199 addr < first_start + pcpu_reserved_chunk_limit;
200}
201
d9b55eeb 202static int __pcpu_size_to_slot(int size)
fbf59bc9 203{
cae3aeb8 204 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
205 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
206}
207
d9b55eeb
TH
208static int pcpu_size_to_slot(int size)
209{
210 if (size == pcpu_unit_size)
211 return pcpu_nr_slots - 1;
212 return __pcpu_size_to_slot(size);
213}
214
fbf59bc9
TH
215static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
216{
217 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
218 return 0;
219
220 return pcpu_size_to_slot(chunk->free_size);
221}
222
88999a89
TH
223/* set the pointer to a chunk in a page struct */
224static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
225{
226 page->index = (unsigned long)pcpu;
227}
228
229/* obtain pointer to a chunk from a page struct */
230static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
231{
232 return (struct pcpu_chunk *)page->index;
233}
234
235static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 236{
2f39e637 237 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
238}
239
9983b6f0
TH
240static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
241 unsigned int cpu, int page_idx)
fbf59bc9 242{
bba174f5 243 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 244 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
245}
246
88999a89
TH
247static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
248 int *rs, int *re, int end)
ce3141a2
TH
249{
250 *rs = find_next_zero_bit(chunk->populated, end, *rs);
251 *re = find_next_bit(chunk->populated, end, *rs + 1);
252}
253
88999a89
TH
254static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
255 int *rs, int *re, int end)
ce3141a2
TH
256{
257 *rs = find_next_bit(chunk->populated, end, *rs);
258 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
259}
260
261/*
262 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 263 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
264 * be integer variables and will be set to start and end page index of
265 * the current region.
266 */
267#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
271
272#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276
fbf59bc9 277/**
90459ce0 278 * pcpu_mem_zalloc - allocate memory
1880d93b 279 * @size: bytes to allocate
fbf59bc9 280 *
1880d93b 281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 282 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 283 * memory is always zeroed.
fbf59bc9 284 *
ccea34b5
TH
285 * CONTEXT:
286 * Does GFP_KERNEL allocation.
287 *
fbf59bc9 288 * RETURNS:
1880d93b 289 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 290 */
90459ce0 291static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 292{
099a19d9
TH
293 if (WARN_ON_ONCE(!slab_is_available()))
294 return NULL;
295
1880d93b
TH
296 if (size <= PAGE_SIZE)
297 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
298 else
299 return vzalloc(size);
1880d93b 300}
fbf59bc9 301
1880d93b
TH
302/**
303 * pcpu_mem_free - free memory
304 * @ptr: memory to free
305 * @size: size of the area
306 *
90459ce0 307 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
308 */
309static void pcpu_mem_free(void *ptr, size_t size)
310{
fbf59bc9 311 if (size <= PAGE_SIZE)
1880d93b 312 kfree(ptr);
fbf59bc9 313 else
1880d93b 314 vfree(ptr);
fbf59bc9
TH
315}
316
317/**
318 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
319 * @chunk: chunk of interest
320 * @oslot: the previous slot it was on
321 *
322 * This function is called after an allocation or free changed @chunk.
323 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
324 * moved to the slot. Note that the reserved chunk is never put on
325 * chunk slots.
ccea34b5
TH
326 *
327 * CONTEXT:
328 * pcpu_lock.
fbf59bc9
TH
329 */
330static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
331{
332 int nslot = pcpu_chunk_slot(chunk);
333
edcb4639 334 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
335 if (oslot < nslot)
336 list_move(&chunk->list, &pcpu_slot[nslot]);
337 else
338 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
339 }
340}
341
9f7dcf22 342/**
833af842
TH
343 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
344 * @chunk: chunk of interest
9f7dcf22 345 *
833af842 346 * Determine whether area map of @chunk needs to be extended to
25985edc 347 * accommodate a new allocation.
9f7dcf22 348 *
ccea34b5 349 * CONTEXT:
833af842 350 * pcpu_lock.
ccea34b5 351 *
9f7dcf22 352 * RETURNS:
833af842
TH
353 * New target map allocation length if extension is necessary, 0
354 * otherwise.
9f7dcf22 355 */
833af842 356static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
357{
358 int new_alloc;
9f7dcf22 359
723ad1d9 360 if (chunk->map_alloc >= chunk->map_used + 3)
9f7dcf22
TH
361 return 0;
362
363 new_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9 364 while (new_alloc < chunk->map_used + 3)
9f7dcf22
TH
365 new_alloc *= 2;
366
833af842
TH
367 return new_alloc;
368}
369
370/**
371 * pcpu_extend_area_map - extend area map of a chunk
372 * @chunk: chunk of interest
373 * @new_alloc: new target allocation length of the area map
374 *
375 * Extend area map of @chunk to have @new_alloc entries.
376 *
377 * CONTEXT:
378 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
379 *
380 * RETURNS:
381 * 0 on success, -errno on failure.
382 */
383static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
384{
385 int *old = NULL, *new = NULL;
386 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
387 unsigned long flags;
388
90459ce0 389 new = pcpu_mem_zalloc(new_size);
833af842 390 if (!new)
9f7dcf22 391 return -ENOMEM;
ccea34b5 392
833af842
TH
393 /* acquire pcpu_lock and switch to new area map */
394 spin_lock_irqsave(&pcpu_lock, flags);
395
396 if (new_alloc <= chunk->map_alloc)
397 goto out_unlock;
9f7dcf22 398
833af842 399 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
400 old = chunk->map;
401
402 memcpy(new, old, old_size);
9f7dcf22 403
9f7dcf22
TH
404 chunk->map_alloc = new_alloc;
405 chunk->map = new;
833af842
TH
406 new = NULL;
407
408out_unlock:
409 spin_unlock_irqrestore(&pcpu_lock, flags);
410
411 /*
412 * pcpu_mem_free() might end up calling vfree() which uses
413 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
414 */
415 pcpu_mem_free(old, old_size);
416 pcpu_mem_free(new, new_size);
417
9f7dcf22
TH
418 return 0;
419}
420
fbf59bc9
TH
421/**
422 * pcpu_alloc_area - allocate area from a pcpu_chunk
423 * @chunk: chunk of interest
cae3aeb8 424 * @size: wanted size in bytes
fbf59bc9
TH
425 * @align: wanted align
426 *
427 * Try to allocate @size bytes area aligned at @align from @chunk.
428 * Note that this function only allocates the offset. It doesn't
429 * populate or map the area.
430 *
9f7dcf22
TH
431 * @chunk->map must have at least two free slots.
432 *
ccea34b5
TH
433 * CONTEXT:
434 * pcpu_lock.
435 *
fbf59bc9 436 * RETURNS:
9f7dcf22
TH
437 * Allocated offset in @chunk on success, -1 if no matching area is
438 * found.
fbf59bc9
TH
439 */
440static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
441{
442 int oslot = pcpu_chunk_slot(chunk);
443 int max_contig = 0;
444 int i, off;
3d331ad7 445 bool seen_free = false;
723ad1d9 446 int *p;
fbf59bc9 447
3d331ad7 448 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 449 int head, tail;
723ad1d9
AV
450 int this_size;
451
452 off = *p;
453 if (off & 1)
454 continue;
fbf59bc9
TH
455
456 /* extra for alignment requirement */
457 head = ALIGN(off, align) - off;
fbf59bc9 458
723ad1d9
AV
459 this_size = (p[1] & ~1) - off;
460 if (this_size < head + size) {
3d331ad7
AV
461 if (!seen_free) {
462 chunk->first_free = i;
463 seen_free = true;
464 }
723ad1d9 465 max_contig = max(this_size, max_contig);
fbf59bc9
TH
466 continue;
467 }
468
469 /*
470 * If head is small or the previous block is free,
471 * merge'em. Note that 'small' is defined as smaller
472 * than sizeof(int), which is very small but isn't too
473 * uncommon for percpu allocations.
474 */
723ad1d9
AV
475 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
476 if (p[-1] & 1)
fbf59bc9 477 chunk->free_size -= head;
723ad1d9
AV
478 *p = off += head;
479 this_size -= head;
fbf59bc9
TH
480 head = 0;
481 }
482
483 /* if tail is small, just keep it around */
723ad1d9
AV
484 tail = this_size - head - size;
485 if (tail < sizeof(int)) {
fbf59bc9 486 tail = 0;
723ad1d9
AV
487 size = this_size - head;
488 }
fbf59bc9
TH
489
490 /* split if warranted */
491 if (head || tail) {
706c16f2
AV
492 int nr_extra = !!head + !!tail;
493
494 /* insert new subblocks */
723ad1d9 495 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
496 sizeof(chunk->map[0]) * (chunk->map_used - i));
497 chunk->map_used += nr_extra;
498
fbf59bc9 499 if (head) {
3d331ad7
AV
500 if (!seen_free) {
501 chunk->first_free = i;
502 seen_free = true;
503 }
723ad1d9
AV
504 *++p = off += head;
505 ++i;
706c16f2
AV
506 max_contig = max(head, max_contig);
507 }
508 if (tail) {
723ad1d9 509 p[1] = off + size;
706c16f2 510 max_contig = max(tail, max_contig);
fbf59bc9 511 }
fbf59bc9
TH
512 }
513
3d331ad7
AV
514 if (!seen_free)
515 chunk->first_free = i + 1;
516
fbf59bc9 517 /* update hint and mark allocated */
723ad1d9 518 if (i + 1 == chunk->map_used)
fbf59bc9
TH
519 chunk->contig_hint = max_contig; /* fully scanned */
520 else
521 chunk->contig_hint = max(chunk->contig_hint,
522 max_contig);
523
723ad1d9
AV
524 chunk->free_size -= size;
525 *p |= 1;
fbf59bc9
TH
526
527 pcpu_chunk_relocate(chunk, oslot);
528 return off;
529 }
530
531 chunk->contig_hint = max_contig; /* fully scanned */
532 pcpu_chunk_relocate(chunk, oslot);
533
9f7dcf22
TH
534 /* tell the upper layer that this chunk has no matching area */
535 return -1;
fbf59bc9
TH
536}
537
538/**
539 * pcpu_free_area - free area to a pcpu_chunk
540 * @chunk: chunk of interest
541 * @freeme: offset of area to free
542 *
543 * Free area starting from @freeme to @chunk. Note that this function
544 * only modifies the allocation map. It doesn't depopulate or unmap
545 * the area.
ccea34b5
TH
546 *
547 * CONTEXT:
548 * pcpu_lock.
fbf59bc9
TH
549 */
550static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
551{
552 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
553 int off = 0;
554 unsigned i, j;
555 int to_free = 0;
556 int *p;
557
558 freeme |= 1; /* we are searching for <given offset, in use> pair */
559
560 i = 0;
561 j = chunk->map_used;
562 while (i != j) {
563 unsigned k = (i + j) / 2;
564 off = chunk->map[k];
565 if (off < freeme)
566 i = k + 1;
567 else if (off > freeme)
568 j = k;
569 else
570 i = j = k;
571 }
fbf59bc9 572 BUG_ON(off != freeme);
fbf59bc9 573
3d331ad7
AV
574 if (i < chunk->first_free)
575 chunk->first_free = i;
576
723ad1d9
AV
577 p = chunk->map + i;
578 *p = off &= ~1;
579 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 580
723ad1d9
AV
581 /* merge with next? */
582 if (!(p[1] & 1))
583 to_free++;
fbf59bc9 584 /* merge with previous? */
723ad1d9
AV
585 if (i > 0 && !(p[-1] & 1)) {
586 to_free++;
fbf59bc9 587 i--;
723ad1d9 588 p--;
fbf59bc9 589 }
723ad1d9
AV
590 if (to_free) {
591 chunk->map_used -= to_free;
592 memmove(p + 1, p + 1 + to_free,
593 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
594 }
595
723ad1d9 596 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
597 pcpu_chunk_relocate(chunk, oslot);
598}
599
6081089f
TH
600static struct pcpu_chunk *pcpu_alloc_chunk(void)
601{
602 struct pcpu_chunk *chunk;
603
90459ce0 604 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
605 if (!chunk)
606 return NULL;
607
90459ce0
BL
608 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
609 sizeof(chunk->map[0]));
6081089f
TH
610 if (!chunk->map) {
611 kfree(chunk);
612 return NULL;
613 }
614
615 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
616 chunk->map[0] = 0;
617 chunk->map[1] = pcpu_unit_size | 1;
618 chunk->map_used = 1;
6081089f
TH
619
620 INIT_LIST_HEAD(&chunk->list);
621 chunk->free_size = pcpu_unit_size;
622 chunk->contig_hint = pcpu_unit_size;
623
624 return chunk;
625}
626
627static void pcpu_free_chunk(struct pcpu_chunk *chunk)
628{
629 if (!chunk)
630 return;
631 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 632 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
633}
634
9f645532
TH
635/*
636 * Chunk management implementation.
637 *
638 * To allow different implementations, chunk alloc/free and
639 * [de]population are implemented in a separate file which is pulled
640 * into this file and compiled together. The following functions
641 * should be implemented.
642 *
643 * pcpu_populate_chunk - populate the specified range of a chunk
644 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
645 * pcpu_create_chunk - create a new chunk
646 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
647 * pcpu_addr_to_page - translate address to physical address
648 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 649 */
9f645532
TH
650static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
651static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
652static struct pcpu_chunk *pcpu_create_chunk(void);
653static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
654static struct page *pcpu_addr_to_page(void *addr);
655static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 656
b0c9778b
TH
657#ifdef CONFIG_NEED_PER_CPU_KM
658#include "percpu-km.c"
659#else
9f645532 660#include "percpu-vm.c"
b0c9778b 661#endif
fbf59bc9 662
88999a89
TH
663/**
664 * pcpu_chunk_addr_search - determine chunk containing specified address
665 * @addr: address for which the chunk needs to be determined.
666 *
667 * RETURNS:
668 * The address of the found chunk.
669 */
670static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
671{
672 /* is it in the first chunk? */
673 if (pcpu_addr_in_first_chunk(addr)) {
674 /* is it in the reserved area? */
675 if (pcpu_addr_in_reserved_chunk(addr))
676 return pcpu_reserved_chunk;
677 return pcpu_first_chunk;
678 }
679
680 /*
681 * The address is relative to unit0 which might be unused and
682 * thus unmapped. Offset the address to the unit space of the
683 * current processor before looking it up in the vmalloc
684 * space. Note that any possible cpu id can be used here, so
685 * there's no need to worry about preemption or cpu hotplug.
686 */
687 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 688 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
689}
690
fbf59bc9 691/**
edcb4639 692 * pcpu_alloc - the percpu allocator
cae3aeb8 693 * @size: size of area to allocate in bytes
fbf59bc9 694 * @align: alignment of area (max PAGE_SIZE)
edcb4639 695 * @reserved: allocate from the reserved chunk if available
fbf59bc9 696 *
ccea34b5
TH
697 * Allocate percpu area of @size bytes aligned at @align.
698 *
699 * CONTEXT:
700 * Does GFP_KERNEL allocation.
fbf59bc9
TH
701 *
702 * RETURNS:
703 * Percpu pointer to the allocated area on success, NULL on failure.
704 */
43cf38eb 705static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 706{
f2badb0c 707 static int warn_limit = 10;
fbf59bc9 708 struct pcpu_chunk *chunk;
f2badb0c 709 const char *err;
833af842 710 int slot, off, new_alloc;
403a91b1 711 unsigned long flags;
f528f0b8 712 void __percpu *ptr;
fbf59bc9 713
723ad1d9
AV
714 /*
715 * We want the lowest bit of offset available for in-use/free
716 * indicator.
717 */
718 if (unlikely(align < 2))
719 align = 2;
720
8d408b4b 721 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
722 WARN(true, "illegal size (%zu) or align (%zu) for "
723 "percpu allocation\n", size, align);
724 return NULL;
725 }
726
ccea34b5 727 mutex_lock(&pcpu_alloc_mutex);
403a91b1 728 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 729
edcb4639
TH
730 /* serve reserved allocations from the reserved chunk if available */
731 if (reserved && pcpu_reserved_chunk) {
732 chunk = pcpu_reserved_chunk;
833af842
TH
733
734 if (size > chunk->contig_hint) {
735 err = "alloc from reserved chunk failed";
ccea34b5 736 goto fail_unlock;
f2badb0c 737 }
833af842
TH
738
739 while ((new_alloc = pcpu_need_to_extend(chunk))) {
740 spin_unlock_irqrestore(&pcpu_lock, flags);
741 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
742 err = "failed to extend area map of reserved chunk";
743 goto fail_unlock_mutex;
744 }
745 spin_lock_irqsave(&pcpu_lock, flags);
746 }
747
edcb4639
TH
748 off = pcpu_alloc_area(chunk, size, align);
749 if (off >= 0)
750 goto area_found;
833af842 751
f2badb0c 752 err = "alloc from reserved chunk failed";
ccea34b5 753 goto fail_unlock;
edcb4639
TH
754 }
755
ccea34b5 756restart:
edcb4639 757 /* search through normal chunks */
fbf59bc9
TH
758 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
759 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
760 if (size > chunk->contig_hint)
761 continue;
ccea34b5 762
833af842
TH
763 new_alloc = pcpu_need_to_extend(chunk);
764 if (new_alloc) {
765 spin_unlock_irqrestore(&pcpu_lock, flags);
766 if (pcpu_extend_area_map(chunk,
767 new_alloc) < 0) {
768 err = "failed to extend area map";
769 goto fail_unlock_mutex;
770 }
771 spin_lock_irqsave(&pcpu_lock, flags);
772 /*
773 * pcpu_lock has been dropped, need to
774 * restart cpu_slot list walking.
775 */
776 goto restart;
ccea34b5
TH
777 }
778
fbf59bc9
TH
779 off = pcpu_alloc_area(chunk, size, align);
780 if (off >= 0)
781 goto area_found;
fbf59bc9
TH
782 }
783 }
784
785 /* hmmm... no space left, create a new chunk */
403a91b1 786 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 787
6081089f 788 chunk = pcpu_create_chunk();
f2badb0c
TH
789 if (!chunk) {
790 err = "failed to allocate new chunk";
ccea34b5 791 goto fail_unlock_mutex;
f2badb0c 792 }
ccea34b5 793
403a91b1 794 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 795 pcpu_chunk_relocate(chunk, -1);
ccea34b5 796 goto restart;
fbf59bc9
TH
797
798area_found:
403a91b1 799 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 800
fbf59bc9
TH
801 /* populate, map and clear the area */
802 if (pcpu_populate_chunk(chunk, off, size)) {
403a91b1 803 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 804 pcpu_free_area(chunk, off);
f2badb0c 805 err = "failed to populate";
ccea34b5 806 goto fail_unlock;
fbf59bc9
TH
807 }
808
ccea34b5
TH
809 mutex_unlock(&pcpu_alloc_mutex);
810
bba174f5 811 /* return address relative to base address */
f528f0b8
CM
812 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
813 kmemleak_alloc_percpu(ptr, size);
814 return ptr;
ccea34b5
TH
815
816fail_unlock:
403a91b1 817 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5
TH
818fail_unlock_mutex:
819 mutex_unlock(&pcpu_alloc_mutex);
f2badb0c
TH
820 if (warn_limit) {
821 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
822 "%s\n", size, align, err);
823 dump_stack();
824 if (!--warn_limit)
825 pr_info("PERCPU: limit reached, disable warning\n");
826 }
ccea34b5 827 return NULL;
fbf59bc9 828}
edcb4639
TH
829
830/**
831 * __alloc_percpu - allocate dynamic percpu area
832 * @size: size of area to allocate in bytes
833 * @align: alignment of area (max PAGE_SIZE)
834 *
9329ba97
TH
835 * Allocate zero-filled percpu area of @size bytes aligned at @align.
836 * Might sleep. Might trigger writeouts.
edcb4639 837 *
ccea34b5
TH
838 * CONTEXT:
839 * Does GFP_KERNEL allocation.
840 *
edcb4639
TH
841 * RETURNS:
842 * Percpu pointer to the allocated area on success, NULL on failure.
843 */
43cf38eb 844void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
845{
846 return pcpu_alloc(size, align, false);
847}
fbf59bc9
TH
848EXPORT_SYMBOL_GPL(__alloc_percpu);
849
edcb4639
TH
850/**
851 * __alloc_reserved_percpu - allocate reserved percpu area
852 * @size: size of area to allocate in bytes
853 * @align: alignment of area (max PAGE_SIZE)
854 *
9329ba97
TH
855 * Allocate zero-filled percpu area of @size bytes aligned at @align
856 * from reserved percpu area if arch has set it up; otherwise,
857 * allocation is served from the same dynamic area. Might sleep.
858 * Might trigger writeouts.
edcb4639 859 *
ccea34b5
TH
860 * CONTEXT:
861 * Does GFP_KERNEL allocation.
862 *
edcb4639
TH
863 * RETURNS:
864 * Percpu pointer to the allocated area on success, NULL on failure.
865 */
43cf38eb 866void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
867{
868 return pcpu_alloc(size, align, true);
869}
870
a56dbddf
TH
871/**
872 * pcpu_reclaim - reclaim fully free chunks, workqueue function
873 * @work: unused
874 *
875 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
876 *
877 * CONTEXT:
878 * workqueue context.
a56dbddf
TH
879 */
880static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 881{
a56dbddf
TH
882 LIST_HEAD(todo);
883 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
884 struct pcpu_chunk *chunk, *next;
885
ccea34b5
TH
886 mutex_lock(&pcpu_alloc_mutex);
887 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
888
889 list_for_each_entry_safe(chunk, next, head, list) {
890 WARN_ON(chunk->immutable);
891
892 /* spare the first one */
893 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
894 continue;
895
a56dbddf
TH
896 list_move(&chunk->list, &todo);
897 }
898
ccea34b5 899 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
900
901 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 902 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
6081089f 903 pcpu_destroy_chunk(chunk);
a56dbddf 904 }
971f3918
TH
905
906 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
907}
908
909/**
910 * free_percpu - free percpu area
911 * @ptr: pointer to area to free
912 *
ccea34b5
TH
913 * Free percpu area @ptr.
914 *
915 * CONTEXT:
916 * Can be called from atomic context.
fbf59bc9 917 */
43cf38eb 918void free_percpu(void __percpu *ptr)
fbf59bc9 919{
129182e5 920 void *addr;
fbf59bc9 921 struct pcpu_chunk *chunk;
ccea34b5 922 unsigned long flags;
fbf59bc9
TH
923 int off;
924
925 if (!ptr)
926 return;
927
f528f0b8
CM
928 kmemleak_free_percpu(ptr);
929
129182e5
AM
930 addr = __pcpu_ptr_to_addr(ptr);
931
ccea34b5 932 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
933
934 chunk = pcpu_chunk_addr_search(addr);
bba174f5 935 off = addr - chunk->base_addr;
fbf59bc9
TH
936
937 pcpu_free_area(chunk, off);
938
a56dbddf 939 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
940 if (chunk->free_size == pcpu_unit_size) {
941 struct pcpu_chunk *pos;
942
a56dbddf 943 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 944 if (pos != chunk) {
a56dbddf 945 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
946 break;
947 }
948 }
949
ccea34b5 950 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
951}
952EXPORT_SYMBOL_GPL(free_percpu);
953
10fad5e4
TH
954/**
955 * is_kernel_percpu_address - test whether address is from static percpu area
956 * @addr: address to test
957 *
958 * Test whether @addr belongs to in-kernel static percpu area. Module
959 * static percpu areas are not considered. For those, use
960 * is_module_percpu_address().
961 *
962 * RETURNS:
963 * %true if @addr is from in-kernel static percpu area, %false otherwise.
964 */
965bool is_kernel_percpu_address(unsigned long addr)
966{
bbddff05 967#ifdef CONFIG_SMP
10fad5e4
TH
968 const size_t static_size = __per_cpu_end - __per_cpu_start;
969 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
970 unsigned int cpu;
971
972 for_each_possible_cpu(cpu) {
973 void *start = per_cpu_ptr(base, cpu);
974
975 if ((void *)addr >= start && (void *)addr < start + static_size)
976 return true;
977 }
bbddff05
TH
978#endif
979 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
980 return false;
981}
982
3b034b0d
VG
983/**
984 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
985 * @addr: the address to be converted to physical address
986 *
987 * Given @addr which is dereferenceable address obtained via one of
988 * percpu access macros, this function translates it into its physical
989 * address. The caller is responsible for ensuring @addr stays valid
990 * until this function finishes.
991 *
67589c71
DY
992 * percpu allocator has special setup for the first chunk, which currently
993 * supports either embedding in linear address space or vmalloc mapping,
994 * and, from the second one, the backing allocator (currently either vm or
995 * km) provides translation.
996 *
997 * The addr can be tranlated simply without checking if it falls into the
998 * first chunk. But the current code reflects better how percpu allocator
999 * actually works, and the verification can discover both bugs in percpu
1000 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1001 * code.
1002 *
3b034b0d
VG
1003 * RETURNS:
1004 * The physical address for @addr.
1005 */
1006phys_addr_t per_cpu_ptr_to_phys(void *addr)
1007{
9983b6f0
TH
1008 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1009 bool in_first_chunk = false;
a855b84c 1010 unsigned long first_low, first_high;
9983b6f0
TH
1011 unsigned int cpu;
1012
1013 /*
a855b84c 1014 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1015 * necessary but will speed up lookups of addresses which
1016 * aren't in the first chunk.
1017 */
a855b84c
TH
1018 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1019 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1020 pcpu_unit_pages);
1021 if ((unsigned long)addr >= first_low &&
1022 (unsigned long)addr < first_high) {
9983b6f0
TH
1023 for_each_possible_cpu(cpu) {
1024 void *start = per_cpu_ptr(base, cpu);
1025
1026 if (addr >= start && addr < start + pcpu_unit_size) {
1027 in_first_chunk = true;
1028 break;
1029 }
1030 }
1031 }
1032
1033 if (in_first_chunk) {
eac522ef 1034 if (!is_vmalloc_addr(addr))
020ec653
TH
1035 return __pa(addr);
1036 else
9f57bd4d
ES
1037 return page_to_phys(vmalloc_to_page(addr)) +
1038 offset_in_page(addr);
020ec653 1039 } else
9f57bd4d
ES
1040 return page_to_phys(pcpu_addr_to_page(addr)) +
1041 offset_in_page(addr);
3b034b0d
VG
1042}
1043
fbf59bc9 1044/**
fd1e8a1f
TH
1045 * pcpu_alloc_alloc_info - allocate percpu allocation info
1046 * @nr_groups: the number of groups
1047 * @nr_units: the number of units
1048 *
1049 * Allocate ai which is large enough for @nr_groups groups containing
1050 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1051 * cpu_map array which is long enough for @nr_units and filled with
1052 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1053 * pointer of other groups.
1054 *
1055 * RETURNS:
1056 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1057 * failure.
1058 */
1059struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1060 int nr_units)
1061{
1062 struct pcpu_alloc_info *ai;
1063 size_t base_size, ai_size;
1064 void *ptr;
1065 int unit;
1066
1067 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1068 __alignof__(ai->groups[0].cpu_map[0]));
1069 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1070
999c17e3 1071 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1072 if (!ptr)
1073 return NULL;
1074 ai = ptr;
1075 ptr += base_size;
1076
1077 ai->groups[0].cpu_map = ptr;
1078
1079 for (unit = 0; unit < nr_units; unit++)
1080 ai->groups[0].cpu_map[unit] = NR_CPUS;
1081
1082 ai->nr_groups = nr_groups;
1083 ai->__ai_size = PFN_ALIGN(ai_size);
1084
1085 return ai;
1086}
1087
1088/**
1089 * pcpu_free_alloc_info - free percpu allocation info
1090 * @ai: pcpu_alloc_info to free
1091 *
1092 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1093 */
1094void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1095{
999c17e3 1096 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1097}
1098
fd1e8a1f
TH
1099/**
1100 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1101 * @lvl: loglevel
1102 * @ai: allocation info to dump
1103 *
1104 * Print out information about @ai using loglevel @lvl.
1105 */
1106static void pcpu_dump_alloc_info(const char *lvl,
1107 const struct pcpu_alloc_info *ai)
033e48fb 1108{
fd1e8a1f 1109 int group_width = 1, cpu_width = 1, width;
033e48fb 1110 char empty_str[] = "--------";
fd1e8a1f
TH
1111 int alloc = 0, alloc_end = 0;
1112 int group, v;
1113 int upa, apl; /* units per alloc, allocs per line */
1114
1115 v = ai->nr_groups;
1116 while (v /= 10)
1117 group_width++;
033e48fb 1118
fd1e8a1f 1119 v = num_possible_cpus();
033e48fb 1120 while (v /= 10)
fd1e8a1f
TH
1121 cpu_width++;
1122 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1123
fd1e8a1f
TH
1124 upa = ai->alloc_size / ai->unit_size;
1125 width = upa * (cpu_width + 1) + group_width + 3;
1126 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1127
fd1e8a1f
TH
1128 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1129 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1130 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1131
fd1e8a1f
TH
1132 for (group = 0; group < ai->nr_groups; group++) {
1133 const struct pcpu_group_info *gi = &ai->groups[group];
1134 int unit = 0, unit_end = 0;
1135
1136 BUG_ON(gi->nr_units % upa);
1137 for (alloc_end += gi->nr_units / upa;
1138 alloc < alloc_end; alloc++) {
1139 if (!(alloc % apl)) {
cb129820 1140 printk(KERN_CONT "\n");
fd1e8a1f
TH
1141 printk("%spcpu-alloc: ", lvl);
1142 }
cb129820 1143 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1144
1145 for (unit_end += upa; unit < unit_end; unit++)
1146 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1147 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1148 gi->cpu_map[unit]);
1149 else
cb129820 1150 printk(KERN_CONT "%s ", empty_str);
033e48fb 1151 }
033e48fb 1152 }
cb129820 1153 printk(KERN_CONT "\n");
033e48fb 1154}
033e48fb 1155
fbf59bc9 1156/**
8d408b4b 1157 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1158 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1159 * @base_addr: mapped address
8d408b4b
TH
1160 *
1161 * Initialize the first percpu chunk which contains the kernel static
1162 * perpcu area. This function is to be called from arch percpu area
38a6be52 1163 * setup path.
8d408b4b 1164 *
fd1e8a1f
TH
1165 * @ai contains all information necessary to initialize the first
1166 * chunk and prime the dynamic percpu allocator.
1167 *
1168 * @ai->static_size is the size of static percpu area.
1169 *
1170 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1171 * reserve after the static area in the first chunk. This reserves
1172 * the first chunk such that it's available only through reserved
1173 * percpu allocation. This is primarily used to serve module percpu
1174 * static areas on architectures where the addressing model has
1175 * limited offset range for symbol relocations to guarantee module
1176 * percpu symbols fall inside the relocatable range.
1177 *
fd1e8a1f
TH
1178 * @ai->dyn_size determines the number of bytes available for dynamic
1179 * allocation in the first chunk. The area between @ai->static_size +
1180 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1181 *
fd1e8a1f
TH
1182 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1183 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1184 * @ai->dyn_size.
8d408b4b 1185 *
fd1e8a1f
TH
1186 * @ai->atom_size is the allocation atom size and used as alignment
1187 * for vm areas.
8d408b4b 1188 *
fd1e8a1f
TH
1189 * @ai->alloc_size is the allocation size and always multiple of
1190 * @ai->atom_size. This is larger than @ai->atom_size if
1191 * @ai->unit_size is larger than @ai->atom_size.
1192 *
1193 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1194 * percpu areas. Units which should be colocated are put into the
1195 * same group. Dynamic VM areas will be allocated according to these
1196 * groupings. If @ai->nr_groups is zero, a single group containing
1197 * all units is assumed.
8d408b4b 1198 *
38a6be52
TH
1199 * The caller should have mapped the first chunk at @base_addr and
1200 * copied static data to each unit.
fbf59bc9 1201 *
edcb4639
TH
1202 * If the first chunk ends up with both reserved and dynamic areas, it
1203 * is served by two chunks - one to serve the core static and reserved
1204 * areas and the other for the dynamic area. They share the same vm
1205 * and page map but uses different area allocation map to stay away
1206 * from each other. The latter chunk is circulated in the chunk slots
1207 * and available for dynamic allocation like any other chunks.
1208 *
fbf59bc9 1209 * RETURNS:
fb435d52 1210 * 0 on success, -errno on failure.
fbf59bc9 1211 */
fb435d52
TH
1212int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1213 void *base_addr)
fbf59bc9 1214{
635b75fc 1215 static char cpus_buf[4096] __initdata;
099a19d9
TH
1216 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1217 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1218 size_t dyn_size = ai->dyn_size;
1219 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1220 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1221 unsigned long *group_offsets;
1222 size_t *group_sizes;
fb435d52 1223 unsigned long *unit_off;
fbf59bc9 1224 unsigned int cpu;
fd1e8a1f
TH
1225 int *unit_map;
1226 int group, unit, i;
fbf59bc9 1227
635b75fc
TH
1228 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1229
1230#define PCPU_SETUP_BUG_ON(cond) do { \
1231 if (unlikely(cond)) { \
1232 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1233 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1234 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1235 BUG(); \
1236 } \
1237} while (0)
1238
2f39e637 1239 /* sanity checks */
635b75fc 1240 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1241#ifdef CONFIG_SMP
635b75fc 1242 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1243 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1244#endif
635b75fc 1245 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1246 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1247 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1248 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1249 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1250 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1251 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1252
6563297c 1253 /* process group information and build config tables accordingly */
999c17e3
SS
1254 group_offsets = memblock_virt_alloc(ai->nr_groups *
1255 sizeof(group_offsets[0]), 0);
1256 group_sizes = memblock_virt_alloc(ai->nr_groups *
1257 sizeof(group_sizes[0]), 0);
1258 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1259 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1260
fd1e8a1f 1261 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1262 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1263
1264 pcpu_low_unit_cpu = NR_CPUS;
1265 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1266
fd1e8a1f
TH
1267 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1268 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1269
6563297c
TH
1270 group_offsets[group] = gi->base_offset;
1271 group_sizes[group] = gi->nr_units * ai->unit_size;
1272
fd1e8a1f
TH
1273 for (i = 0; i < gi->nr_units; i++) {
1274 cpu = gi->cpu_map[i];
1275 if (cpu == NR_CPUS)
1276 continue;
8d408b4b 1277
635b75fc
TH
1278 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1279 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1280 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1281
fd1e8a1f 1282 unit_map[cpu] = unit + i;
fb435d52
TH
1283 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1284
a855b84c
TH
1285 /* determine low/high unit_cpu */
1286 if (pcpu_low_unit_cpu == NR_CPUS ||
1287 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1288 pcpu_low_unit_cpu = cpu;
1289 if (pcpu_high_unit_cpu == NR_CPUS ||
1290 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1291 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1292 }
2f39e637 1293 }
fd1e8a1f
TH
1294 pcpu_nr_units = unit;
1295
1296 for_each_possible_cpu(cpu)
635b75fc
TH
1297 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1298
1299 /* we're done parsing the input, undefine BUG macro and dump config */
1300#undef PCPU_SETUP_BUG_ON
bcbea798 1301 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1302
6563297c
TH
1303 pcpu_nr_groups = ai->nr_groups;
1304 pcpu_group_offsets = group_offsets;
1305 pcpu_group_sizes = group_sizes;
fd1e8a1f 1306 pcpu_unit_map = unit_map;
fb435d52 1307 pcpu_unit_offsets = unit_off;
2f39e637
TH
1308
1309 /* determine basic parameters */
fd1e8a1f 1310 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1311 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1312 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1313 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1314 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1315
d9b55eeb
TH
1316 /*
1317 * Allocate chunk slots. The additional last slot is for
1318 * empty chunks.
1319 */
1320 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1321 pcpu_slot = memblock_virt_alloc(
1322 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1323 for (i = 0; i < pcpu_nr_slots; i++)
1324 INIT_LIST_HEAD(&pcpu_slot[i]);
1325
edcb4639
TH
1326 /*
1327 * Initialize static chunk. If reserved_size is zero, the
1328 * static chunk covers static area + dynamic allocation area
1329 * in the first chunk. If reserved_size is not zero, it
1330 * covers static area + reserved area (mostly used for module
1331 * static percpu allocation).
1332 */
999c17e3 1333 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1334 INIT_LIST_HEAD(&schunk->list);
bba174f5 1335 schunk->base_addr = base_addr;
61ace7fa
TH
1336 schunk->map = smap;
1337 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1338 schunk->immutable = true;
ce3141a2 1339 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1340
fd1e8a1f
TH
1341 if (ai->reserved_size) {
1342 schunk->free_size = ai->reserved_size;
ae9e6bc9 1343 pcpu_reserved_chunk = schunk;
fd1e8a1f 1344 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1345 } else {
1346 schunk->free_size = dyn_size;
1347 dyn_size = 0; /* dynamic area covered */
1348 }
2441d15c 1349 schunk->contig_hint = schunk->free_size;
fbf59bc9 1350
723ad1d9
AV
1351 schunk->map[0] = 1;
1352 schunk->map[1] = ai->static_size;
1353 schunk->map_used = 1;
61ace7fa 1354 if (schunk->free_size)
723ad1d9
AV
1355 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1356 else
1357 schunk->map[1] |= 1;
61ace7fa 1358
edcb4639
TH
1359 /* init dynamic chunk if necessary */
1360 if (dyn_size) {
999c17e3 1361 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1362 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1363 dchunk->base_addr = base_addr;
edcb4639
TH
1364 dchunk->map = dmap;
1365 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1366 dchunk->immutable = true;
ce3141a2 1367 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1368
1369 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1370 dchunk->map[0] = 1;
1371 dchunk->map[1] = pcpu_reserved_chunk_limit;
1372 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1373 dchunk->map_used = 2;
edcb4639
TH
1374 }
1375
2441d15c 1376 /* link the first chunk in */
ae9e6bc9
TH
1377 pcpu_first_chunk = dchunk ?: schunk;
1378 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1379
1380 /* we're done */
bba174f5 1381 pcpu_base_addr = base_addr;
fb435d52 1382 return 0;
fbf59bc9 1383}
66c3a757 1384
bbddff05
TH
1385#ifdef CONFIG_SMP
1386
17f3609c 1387const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1388 [PCPU_FC_AUTO] = "auto",
1389 [PCPU_FC_EMBED] = "embed",
1390 [PCPU_FC_PAGE] = "page",
f58dc01b 1391};
66c3a757 1392
f58dc01b 1393enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1394
f58dc01b
TH
1395static int __init percpu_alloc_setup(char *str)
1396{
5479c78a
CG
1397 if (!str)
1398 return -EINVAL;
1399
f58dc01b
TH
1400 if (0)
1401 /* nada */;
1402#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1403 else if (!strcmp(str, "embed"))
1404 pcpu_chosen_fc = PCPU_FC_EMBED;
1405#endif
1406#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1407 else if (!strcmp(str, "page"))
1408 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1409#endif
1410 else
1411 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1412
f58dc01b 1413 return 0;
66c3a757 1414}
f58dc01b 1415early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1416
3c9a024f
TH
1417/*
1418 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1419 * Build it if needed by the arch config or the generic setup is going
1420 * to be used.
1421 */
08fc4580
TH
1422#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1423 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1424#define BUILD_EMBED_FIRST_CHUNK
1425#endif
1426
1427/* build pcpu_page_first_chunk() iff needed by the arch config */
1428#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1429#define BUILD_PAGE_FIRST_CHUNK
1430#endif
1431
1432/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1433#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1434/**
1435 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1436 * @reserved_size: the size of reserved percpu area in bytes
1437 * @dyn_size: minimum free size for dynamic allocation in bytes
1438 * @atom_size: allocation atom size
1439 * @cpu_distance_fn: callback to determine distance between cpus, optional
1440 *
1441 * This function determines grouping of units, their mappings to cpus
1442 * and other parameters considering needed percpu size, allocation
1443 * atom size and distances between CPUs.
1444 *
1445 * Groups are always mutliples of atom size and CPUs which are of
1446 * LOCAL_DISTANCE both ways are grouped together and share space for
1447 * units in the same group. The returned configuration is guaranteed
1448 * to have CPUs on different nodes on different groups and >=75% usage
1449 * of allocated virtual address space.
1450 *
1451 * RETURNS:
1452 * On success, pointer to the new allocation_info is returned. On
1453 * failure, ERR_PTR value is returned.
1454 */
1455static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1456 size_t reserved_size, size_t dyn_size,
1457 size_t atom_size,
1458 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1459{
1460 static int group_map[NR_CPUS] __initdata;
1461 static int group_cnt[NR_CPUS] __initdata;
1462 const size_t static_size = __per_cpu_end - __per_cpu_start;
1463 int nr_groups = 1, nr_units = 0;
1464 size_t size_sum, min_unit_size, alloc_size;
1465 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1466 int last_allocs, group, unit;
1467 unsigned int cpu, tcpu;
1468 struct pcpu_alloc_info *ai;
1469 unsigned int *cpu_map;
1470
1471 /* this function may be called multiple times */
1472 memset(group_map, 0, sizeof(group_map));
1473 memset(group_cnt, 0, sizeof(group_cnt));
1474
1475 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1476 size_sum = PFN_ALIGN(static_size + reserved_size +
1477 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1478 dyn_size = size_sum - static_size - reserved_size;
1479
1480 /*
1481 * Determine min_unit_size, alloc_size and max_upa such that
1482 * alloc_size is multiple of atom_size and is the smallest
25985edc 1483 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1484 * or larger than min_unit_size.
1485 */
1486 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1487
1488 alloc_size = roundup(min_unit_size, atom_size);
1489 upa = alloc_size / min_unit_size;
1490 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1491 upa--;
1492 max_upa = upa;
1493
1494 /* group cpus according to their proximity */
1495 for_each_possible_cpu(cpu) {
1496 group = 0;
1497 next_group:
1498 for_each_possible_cpu(tcpu) {
1499 if (cpu == tcpu)
1500 break;
1501 if (group_map[tcpu] == group && cpu_distance_fn &&
1502 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1503 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1504 group++;
1505 nr_groups = max(nr_groups, group + 1);
1506 goto next_group;
1507 }
1508 }
1509 group_map[cpu] = group;
1510 group_cnt[group]++;
1511 }
1512
1513 /*
1514 * Expand unit size until address space usage goes over 75%
1515 * and then as much as possible without using more address
1516 * space.
1517 */
1518 last_allocs = INT_MAX;
1519 for (upa = max_upa; upa; upa--) {
1520 int allocs = 0, wasted = 0;
1521
1522 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1523 continue;
1524
1525 for (group = 0; group < nr_groups; group++) {
1526 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1527 allocs += this_allocs;
1528 wasted += this_allocs * upa - group_cnt[group];
1529 }
1530
1531 /*
1532 * Don't accept if wastage is over 1/3. The
1533 * greater-than comparison ensures upa==1 always
1534 * passes the following check.
1535 */
1536 if (wasted > num_possible_cpus() / 3)
1537 continue;
1538
1539 /* and then don't consume more memory */
1540 if (allocs > last_allocs)
1541 break;
1542 last_allocs = allocs;
1543 best_upa = upa;
1544 }
1545 upa = best_upa;
1546
1547 /* allocate and fill alloc_info */
1548 for (group = 0; group < nr_groups; group++)
1549 nr_units += roundup(group_cnt[group], upa);
1550
1551 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1552 if (!ai)
1553 return ERR_PTR(-ENOMEM);
1554 cpu_map = ai->groups[0].cpu_map;
1555
1556 for (group = 0; group < nr_groups; group++) {
1557 ai->groups[group].cpu_map = cpu_map;
1558 cpu_map += roundup(group_cnt[group], upa);
1559 }
1560
1561 ai->static_size = static_size;
1562 ai->reserved_size = reserved_size;
1563 ai->dyn_size = dyn_size;
1564 ai->unit_size = alloc_size / upa;
1565 ai->atom_size = atom_size;
1566 ai->alloc_size = alloc_size;
1567
1568 for (group = 0, unit = 0; group_cnt[group]; group++) {
1569 struct pcpu_group_info *gi = &ai->groups[group];
1570
1571 /*
1572 * Initialize base_offset as if all groups are located
1573 * back-to-back. The caller should update this to
1574 * reflect actual allocation.
1575 */
1576 gi->base_offset = unit * ai->unit_size;
1577
1578 for_each_possible_cpu(cpu)
1579 if (group_map[cpu] == group)
1580 gi->cpu_map[gi->nr_units++] = cpu;
1581 gi->nr_units = roundup(gi->nr_units, upa);
1582 unit += gi->nr_units;
1583 }
1584 BUG_ON(unit != nr_units);
1585
1586 return ai;
1587}
1588#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1589
1590#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1591/**
1592 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1593 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1594 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1595 * @atom_size: allocation atom size
1596 * @cpu_distance_fn: callback to determine distance between cpus, optional
1597 * @alloc_fn: function to allocate percpu page
25985edc 1598 * @free_fn: function to free percpu page
66c3a757
TH
1599 *
1600 * This is a helper to ease setting up embedded first percpu chunk and
1601 * can be called where pcpu_setup_first_chunk() is expected.
1602 *
1603 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1604 * by calling @alloc_fn and used as-is without being mapped into
1605 * vmalloc area. Allocations are always whole multiples of @atom_size
1606 * aligned to @atom_size.
1607 *
1608 * This enables the first chunk to piggy back on the linear physical
1609 * mapping which often uses larger page size. Please note that this
1610 * can result in very sparse cpu->unit mapping on NUMA machines thus
1611 * requiring large vmalloc address space. Don't use this allocator if
1612 * vmalloc space is not orders of magnitude larger than distances
1613 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1614 *
4ba6ce25 1615 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1616 *
1617 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1618 * size, the leftover is returned using @free_fn.
66c3a757
TH
1619 *
1620 * RETURNS:
fb435d52 1621 * 0 on success, -errno on failure.
66c3a757 1622 */
4ba6ce25 1623int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1624 size_t atom_size,
1625 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1626 pcpu_fc_alloc_fn_t alloc_fn,
1627 pcpu_fc_free_fn_t free_fn)
66c3a757 1628{
c8826dd5
TH
1629 void *base = (void *)ULONG_MAX;
1630 void **areas = NULL;
fd1e8a1f 1631 struct pcpu_alloc_info *ai;
6ea529a2 1632 size_t size_sum, areas_size, max_distance;
c8826dd5 1633 int group, i, rc;
66c3a757 1634
c8826dd5
TH
1635 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1636 cpu_distance_fn);
fd1e8a1f
TH
1637 if (IS_ERR(ai))
1638 return PTR_ERR(ai);
66c3a757 1639
fd1e8a1f 1640 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1641 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1642
999c17e3 1643 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1644 if (!areas) {
fb435d52 1645 rc = -ENOMEM;
c8826dd5 1646 goto out_free;
fa8a7094 1647 }
66c3a757 1648
c8826dd5
TH
1649 /* allocate, copy and determine base address */
1650 for (group = 0; group < ai->nr_groups; group++) {
1651 struct pcpu_group_info *gi = &ai->groups[group];
1652 unsigned int cpu = NR_CPUS;
1653 void *ptr;
1654
1655 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1656 cpu = gi->cpu_map[i];
1657 BUG_ON(cpu == NR_CPUS);
1658
1659 /* allocate space for the whole group */
1660 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1661 if (!ptr) {
1662 rc = -ENOMEM;
1663 goto out_free_areas;
1664 }
f528f0b8
CM
1665 /* kmemleak tracks the percpu allocations separately */
1666 kmemleak_free(ptr);
c8826dd5 1667 areas[group] = ptr;
fd1e8a1f 1668
c8826dd5 1669 base = min(ptr, base);
42b64281
TH
1670 }
1671
1672 /*
1673 * Copy data and free unused parts. This should happen after all
1674 * allocations are complete; otherwise, we may end up with
1675 * overlapping groups.
1676 */
1677 for (group = 0; group < ai->nr_groups; group++) {
1678 struct pcpu_group_info *gi = &ai->groups[group];
1679 void *ptr = areas[group];
c8826dd5
TH
1680
1681 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1682 if (gi->cpu_map[i] == NR_CPUS) {
1683 /* unused unit, free whole */
1684 free_fn(ptr, ai->unit_size);
1685 continue;
1686 }
1687 /* copy and return the unused part */
1688 memcpy(ptr, __per_cpu_load, ai->static_size);
1689 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1690 }
fa8a7094 1691 }
66c3a757 1692
c8826dd5 1693 /* base address is now known, determine group base offsets */
6ea529a2
TH
1694 max_distance = 0;
1695 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1696 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1697 max_distance = max_t(size_t, max_distance,
1698 ai->groups[group].base_offset);
6ea529a2
TH
1699 }
1700 max_distance += ai->unit_size;
1701
1702 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 1703 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 1704 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 1705 "space 0x%lx\n", max_distance,
8a092171 1706 VMALLOC_TOTAL);
6ea529a2
TH
1707#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1708 /* and fail if we have fallback */
1709 rc = -EINVAL;
1710 goto out_free;
1711#endif
1712 }
c8826dd5 1713
004018e2 1714 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1715 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1716 ai->dyn_size, ai->unit_size);
d4b95f80 1717
fb435d52 1718 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1719 goto out_free;
1720
1721out_free_areas:
1722 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
1723 if (areas[group])
1724 free_fn(areas[group],
1725 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 1726out_free:
fd1e8a1f 1727 pcpu_free_alloc_info(ai);
c8826dd5 1728 if (areas)
999c17e3 1729 memblock_free_early(__pa(areas), areas_size);
fb435d52 1730 return rc;
d4b95f80 1731}
3c9a024f 1732#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1733
3c9a024f 1734#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1735/**
00ae4064 1736 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1737 * @reserved_size: the size of reserved percpu area in bytes
1738 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1739 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1740 * @populate_pte_fn: function to populate pte
1741 *
00ae4064
TH
1742 * This is a helper to ease setting up page-remapped first percpu
1743 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1744 *
1745 * This is the basic allocator. Static percpu area is allocated
1746 * page-by-page into vmalloc area.
1747 *
1748 * RETURNS:
fb435d52 1749 * 0 on success, -errno on failure.
d4b95f80 1750 */
fb435d52
TH
1751int __init pcpu_page_first_chunk(size_t reserved_size,
1752 pcpu_fc_alloc_fn_t alloc_fn,
1753 pcpu_fc_free_fn_t free_fn,
1754 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1755{
8f05a6a6 1756 static struct vm_struct vm;
fd1e8a1f 1757 struct pcpu_alloc_info *ai;
00ae4064 1758 char psize_str[16];
ce3141a2 1759 int unit_pages;
d4b95f80 1760 size_t pages_size;
ce3141a2 1761 struct page **pages;
fb435d52 1762 int unit, i, j, rc;
d4b95f80 1763
00ae4064
TH
1764 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1765
4ba6ce25 1766 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1767 if (IS_ERR(ai))
1768 return PTR_ERR(ai);
1769 BUG_ON(ai->nr_groups != 1);
1770 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1771
1772 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1773
1774 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1775 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1776 sizeof(pages[0]));
999c17e3 1777 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 1778
8f05a6a6 1779 /* allocate pages */
d4b95f80 1780 j = 0;
fd1e8a1f 1781 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1782 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1783 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1784 void *ptr;
1785
3cbc8565 1786 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1787 if (!ptr) {
00ae4064
TH
1788 pr_warning("PERCPU: failed to allocate %s page "
1789 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1790 goto enomem;
1791 }
f528f0b8
CM
1792 /* kmemleak tracks the percpu allocations separately */
1793 kmemleak_free(ptr);
ce3141a2 1794 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1795 }
1796
8f05a6a6
TH
1797 /* allocate vm area, map the pages and copy static data */
1798 vm.flags = VM_ALLOC;
fd1e8a1f 1799 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1800 vm_area_register_early(&vm, PAGE_SIZE);
1801
fd1e8a1f 1802 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1803 unsigned long unit_addr =
fd1e8a1f 1804 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1805
ce3141a2 1806 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1807 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1808
1809 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1810 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1811 unit_pages);
1812 if (rc < 0)
1813 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1814
8f05a6a6
TH
1815 /*
1816 * FIXME: Archs with virtual cache should flush local
1817 * cache for the linear mapping here - something
1818 * equivalent to flush_cache_vmap() on the local cpu.
1819 * flush_cache_vmap() can't be used as most supporting
1820 * data structures are not set up yet.
1821 */
1822
1823 /* copy static data */
fd1e8a1f 1824 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1825 }
1826
1827 /* we're ready, commit */
1d9d3257 1828 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1829 unit_pages, psize_str, vm.addr, ai->static_size,
1830 ai->reserved_size, ai->dyn_size);
d4b95f80 1831
fb435d52 1832 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1833 goto out_free_ar;
1834
1835enomem:
1836 while (--j >= 0)
ce3141a2 1837 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1838 rc = -ENOMEM;
d4b95f80 1839out_free_ar:
999c17e3 1840 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 1841 pcpu_free_alloc_info(ai);
fb435d52 1842 return rc;
d4b95f80 1843}
3c9a024f 1844#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1845
bbddff05 1846#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1847/*
bbddff05 1848 * Generic SMP percpu area setup.
e74e3962
TH
1849 *
1850 * The embedding helper is used because its behavior closely resembles
1851 * the original non-dynamic generic percpu area setup. This is
1852 * important because many archs have addressing restrictions and might
1853 * fail if the percpu area is located far away from the previous
1854 * location. As an added bonus, in non-NUMA cases, embedding is
1855 * generally a good idea TLB-wise because percpu area can piggy back
1856 * on the physical linear memory mapping which uses large page
1857 * mappings on applicable archs.
1858 */
e74e3962
TH
1859unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1860EXPORT_SYMBOL(__per_cpu_offset);
1861
c8826dd5
TH
1862static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1863 size_t align)
1864{
999c17e3
SS
1865 return memblock_virt_alloc_from_nopanic(
1866 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 1867}
66c3a757 1868
c8826dd5
TH
1869static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1870{
999c17e3 1871 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
1872}
1873
e74e3962
TH
1874void __init setup_per_cpu_areas(void)
1875{
e74e3962
TH
1876 unsigned long delta;
1877 unsigned int cpu;
fb435d52 1878 int rc;
e74e3962
TH
1879
1880 /*
1881 * Always reserve area for module percpu variables. That's
1882 * what the legacy allocator did.
1883 */
fb435d52 1884 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
1885 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1886 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 1887 if (rc < 0)
bbddff05 1888 panic("Failed to initialize percpu areas.");
e74e3962
TH
1889
1890 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1891 for_each_possible_cpu(cpu)
fb435d52 1892 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 1893}
bbddff05
TH
1894#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1895
1896#else /* CONFIG_SMP */
1897
1898/*
1899 * UP percpu area setup.
1900 *
1901 * UP always uses km-based percpu allocator with identity mapping.
1902 * Static percpu variables are indistinguishable from the usual static
1903 * variables and don't require any special preparation.
1904 */
1905void __init setup_per_cpu_areas(void)
1906{
1907 const size_t unit_size =
1908 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1909 PERCPU_DYNAMIC_RESERVE));
1910 struct pcpu_alloc_info *ai;
1911 void *fc;
1912
1913 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
1914 fc = memblock_virt_alloc_from_nopanic(unit_size,
1915 PAGE_SIZE,
1916 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
1917 if (!ai || !fc)
1918 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
1919 /* kmemleak tracks the percpu allocations separately */
1920 kmemleak_free(fc);
bbddff05
TH
1921
1922 ai->dyn_size = unit_size;
1923 ai->unit_size = unit_size;
1924 ai->atom_size = unit_size;
1925 ai->alloc_size = unit_size;
1926 ai->groups[0].nr_units = 1;
1927 ai->groups[0].cpu_map[0] = 0;
1928
1929 if (pcpu_setup_first_chunk(ai, fc) < 0)
1930 panic("Failed to initialize percpu areas.");
1931}
1932
1933#endif /* CONFIG_SMP */
099a19d9
TH
1934
1935/*
1936 * First and reserved chunks are initialized with temporary allocation
1937 * map in initdata so that they can be used before slab is online.
1938 * This function is called after slab is brought up and replaces those
1939 * with properly allocated maps.
1940 */
1941void __init percpu_init_late(void)
1942{
1943 struct pcpu_chunk *target_chunks[] =
1944 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1945 struct pcpu_chunk *chunk;
1946 unsigned long flags;
1947 int i;
1948
1949 for (i = 0; (chunk = target_chunks[i]); i++) {
1950 int *map;
1951 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1952
1953 BUILD_BUG_ON(size > PAGE_SIZE);
1954
90459ce0 1955 map = pcpu_mem_zalloc(size);
099a19d9
TH
1956 BUG_ON(!map);
1957
1958 spin_lock_irqsave(&pcpu_lock, flags);
1959 memcpy(map, chunk->map, size);
1960 chunk->map = map;
1961 spin_unlock_irqrestore(&pcpu_lock, flags);
1962 }
1963}