]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/percpu.c
percpu: initialize best_upa variable
[mirror_ubuntu-jammy-kernel.git] / mm / percpu.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
fbf59bc9 2/*
88999a89 3 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
5e81ee3e 8 * Copyright (C) 2017 Facebook Inc.
bfacd38f 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
5e81ee3e 10 *
9c015162
DZF
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
fbf59bc9
TH
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
9c015162
DZF
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
5e81ee3e 30 * are not online yet. In short, the first chunk is structured like so:
9c015162
DZF
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
fbf59bc9 38 *
5e81ee3e 39 * The allocator organizes chunks into lists according to free size and
3c7be18a
RG
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
44 *
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
5e81ee3e
DZF
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
52 *
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
9c015162 58 *
4091fb95 59 * To use this allocator, arch code should do the following:
fbf59bc9 60 *
fbf59bc9 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
fbf59bc9 64 *
8d408b4b
TH
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
67 */
68
870d4b12
JP
69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
fbf59bc9 71#include <linux/bitmap.h>
d7d29ac7 72#include <linux/cpumask.h>
57c8a661 73#include <linux/memblock.h>
fd1e8a1f 74#include <linux/err.h>
ca460b3c 75#include <linux/lcm.h>
fbf59bc9 76#include <linux/list.h>
a530b795 77#include <linux/log2.h>
fbf59bc9
TH
78#include <linux/mm.h>
79#include <linux/module.h>
80#include <linux/mutex.h>
81#include <linux/percpu.h>
82#include <linux/pfn.h>
fbf59bc9 83#include <linux/slab.h>
ccea34b5 84#include <linux/spinlock.h>
fbf59bc9 85#include <linux/vmalloc.h>
a56dbddf 86#include <linux/workqueue.h>
f528f0b8 87#include <linux/kmemleak.h>
71546d10 88#include <linux/sched.h>
28307d93 89#include <linux/sched/mm.h>
3c7be18a 90#include <linux/memcontrol.h>
fbf59bc9
TH
91
92#include <asm/cacheflush.h>
e0100983 93#include <asm/sections.h>
fbf59bc9 94#include <asm/tlbflush.h>
3b034b0d 95#include <asm/io.h>
fbf59bc9 96
df95e795
DZ
97#define CREATE_TRACE_POINTS
98#include <trace/events/percpu.h>
99
8fa3ed80
DZ
100#include "percpu-internal.h"
101
ac9380f6
RG
102/*
103 * The slots are sorted by the size of the biggest continuous free area.
104 * 1-31 bytes share the same slot.
105 */
40064aec 106#define PCPU_SLOT_BASE_SHIFT 5
8744d859
DZ
107/* chunks in slots below this are subject to being sidelined on failed alloc */
108#define PCPU_SLOT_FAIL_THRESHOLD 3
40064aec 109
1a4d7607
TH
110#define PCPU_EMPTY_POP_PAGES_LOW 2
111#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 112
bbddff05 113#ifdef CONFIG_SMP
e0100983
TH
114/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
115#ifndef __addr_to_pcpu_ptr
116#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
117 (void __percpu *)((unsigned long)(addr) - \
118 (unsigned long)pcpu_base_addr + \
119 (unsigned long)__per_cpu_start)
e0100983
TH
120#endif
121#ifndef __pcpu_ptr_to_addr
122#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
123 (void __force *)((unsigned long)(ptr) + \
124 (unsigned long)pcpu_base_addr - \
125 (unsigned long)__per_cpu_start)
e0100983 126#endif
bbddff05
TH
127#else /* CONFIG_SMP */
128/* on UP, it's always identity mapped */
129#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
130#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
131#endif /* CONFIG_SMP */
e0100983 132
1328710b
DM
133static int pcpu_unit_pages __ro_after_init;
134static int pcpu_unit_size __ro_after_init;
135static int pcpu_nr_units __ro_after_init;
136static int pcpu_atom_size __ro_after_init;
8fa3ed80 137int pcpu_nr_slots __ro_after_init;
8d55ba5d 138static int pcpu_free_slot __ro_after_init;
f1833241
RG
139int pcpu_sidelined_slot __ro_after_init;
140int pcpu_to_depopulate_slot __ro_after_init;
1328710b 141static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 142
a855b84c 143/* cpus with the lowest and highest unit addresses */
1328710b
DM
144static unsigned int pcpu_low_unit_cpu __ro_after_init;
145static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 146
fbf59bc9 147/* the address of the first chunk which starts with the kernel static area */
1328710b 148void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
149EXPORT_SYMBOL_GPL(pcpu_base_addr);
150
1328710b
DM
151static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
152const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 153
6563297c 154/* group information, used for vm allocation */
1328710b
DM
155static int pcpu_nr_groups __ro_after_init;
156static const unsigned long *pcpu_group_offsets __ro_after_init;
157static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 158
ae9e6bc9
TH
159/*
160 * The first chunk which always exists. Note that unlike other
161 * chunks, this one can be allocated and mapped in several different
162 * ways and thus often doesn't live in the vmalloc area.
163 */
8fa3ed80 164struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
165
166/*
167 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
168 * chunk and serves it for reserved allocations. When the reserved
169 * region doesn't exist, the following variable is NULL.
ae9e6bc9 170 */
8fa3ed80 171struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 172
8fa3ed80 173DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 174static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 175
3c7be18a 176struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
fbf59bc9 177
4f996e23
TH
178/* chunks which need their map areas extended, protected by pcpu_lock */
179static LIST_HEAD(pcpu_map_extend_chunks);
180
b539b87f 181/*
faf65dde 182 * The number of empty populated pages, protected by pcpu_lock.
0760fa3d 183 * The reserved chunk doesn't contribute to the count.
b539b87f 184 */
faf65dde 185int pcpu_nr_empty_pop_pages;
b539b87f 186
7e8a6304
DZF
187/*
188 * The number of populated pages in use by the allocator, protected by
189 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
190 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
191 * and increments/decrements this count by 1).
192 */
193static unsigned long pcpu_nr_populated;
194
1a4d7607
TH
195/*
196 * Balance work is used to populate or destroy chunks asynchronously. We
197 * try to keep the number of populated free pages between
198 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
199 * empty chunk.
200 */
fe6bd8c3
TH
201static void pcpu_balance_workfn(struct work_struct *work);
202static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
203static bool pcpu_async_enabled __read_mostly;
204static bool pcpu_atomic_alloc_failed;
205
206static void pcpu_schedule_balance_work(void)
207{
208 if (pcpu_async_enabled)
209 schedule_work(&pcpu_balance_work);
210}
a56dbddf 211
c0ebfdc3 212/**
560f2c23
DZF
213 * pcpu_addr_in_chunk - check if the address is served from this chunk
214 * @chunk: chunk of interest
215 * @addr: percpu address
c0ebfdc3
DZF
216 *
217 * RETURNS:
560f2c23 218 * True if the address is served from this chunk.
c0ebfdc3 219 */
560f2c23 220static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 221{
c0ebfdc3
DZF
222 void *start_addr, *end_addr;
223
560f2c23 224 if (!chunk)
c0ebfdc3 225 return false;
020ec653 226
560f2c23
DZF
227 start_addr = chunk->base_addr + chunk->start_offset;
228 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
229 chunk->end_offset;
c0ebfdc3
DZF
230
231 return addr >= start_addr && addr < end_addr;
020ec653
TH
232}
233
d9b55eeb 234static int __pcpu_size_to_slot(int size)
fbf59bc9 235{
cae3aeb8 236 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
237 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
238}
239
d9b55eeb
TH
240static int pcpu_size_to_slot(int size)
241{
242 if (size == pcpu_unit_size)
1c29a3ce 243 return pcpu_free_slot;
d9b55eeb
TH
244 return __pcpu_size_to_slot(size);
245}
246
fbf59bc9
TH
247static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
248{
92c14cab
DZ
249 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
250
251 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
252 chunk_md->contig_hint == 0)
fbf59bc9
TH
253 return 0;
254
92c14cab 255 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
fbf59bc9
TH
256}
257
88999a89
TH
258/* set the pointer to a chunk in a page struct */
259static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
260{
261 page->index = (unsigned long)pcpu;
262}
263
264/* obtain pointer to a chunk from a page struct */
265static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
266{
267 return (struct pcpu_chunk *)page->index;
268}
269
270static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 271{
2f39e637 272 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
273}
274
c0ebfdc3
DZF
275static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
276{
277 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
278}
279
9983b6f0
TH
280static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
281 unsigned int cpu, int page_idx)
fbf59bc9 282{
c0ebfdc3
DZF
283 return (unsigned long)chunk->base_addr +
284 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
285}
286
ca460b3c
DZF
287/*
288 * The following are helper functions to help access bitmaps and convert
289 * between bitmap offsets to address offsets.
290 */
291static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
292{
293 return chunk->alloc_map +
294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
295}
296
297static unsigned long pcpu_off_to_block_index(int off)
298{
299 return off / PCPU_BITMAP_BLOCK_BITS;
300}
301
302static unsigned long pcpu_off_to_block_off(int off)
303{
304 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
305}
306
b185cd0d
DZF
307static unsigned long pcpu_block_off_to_off(int index, int off)
308{
309 return index * PCPU_BITMAP_BLOCK_BITS + off;
310}
311
8ea2e1e3
RG
312/**
313 * pcpu_check_block_hint - check against the contig hint
314 * @block: block of interest
315 * @bits: size of allocation
316 * @align: alignment of area (max PAGE_SIZE)
317 *
318 * Check to see if the allocation can fit in the block's contig hint.
319 * Note, a chunk uses the same hints as a block so this can also check against
320 * the chunk's contig hint.
321 */
322static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
323 size_t align)
324{
325 int bit_off = ALIGN(block->contig_hint_start, align) -
326 block->contig_hint_start;
327
328 return bit_off + bits <= block->contig_hint;
329}
330
382b88e9
DZ
331/*
332 * pcpu_next_hint - determine which hint to use
333 * @block: block of interest
334 * @alloc_bits: size of allocation
335 *
336 * This determines if we should scan based on the scan_hint or first_free.
337 * In general, we want to scan from first_free to fulfill allocations by
338 * first fit. However, if we know a scan_hint at position scan_hint_start
339 * cannot fulfill an allocation, we can begin scanning from there knowing
340 * the contig_hint will be our fallback.
341 */
342static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
343{
344 /*
345 * The three conditions below determine if we can skip past the
346 * scan_hint. First, does the scan hint exist. Second, is the
347 * contig_hint after the scan_hint (possibly not true iff
348 * contig_hint == scan_hint). Third, is the allocation request
349 * larger than the scan_hint.
350 */
351 if (block->scan_hint &&
352 block->contig_hint_start > block->scan_hint_start &&
353 alloc_bits > block->scan_hint)
354 return block->scan_hint_start + block->scan_hint;
355
356 return block->first_free;
357}
358
525ca84d
DZF
359/**
360 * pcpu_next_md_free_region - finds the next hint free area
361 * @chunk: chunk of interest
362 * @bit_off: chunk offset
363 * @bits: size of free area
364 *
365 * Helper function for pcpu_for_each_md_free_region. It checks
366 * block->contig_hint and performs aggregation across blocks to find the
367 * next hint. It modifies bit_off and bits in-place to be consumed in the
368 * loop.
369 */
370static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
371 int *bits)
372{
373 int i = pcpu_off_to_block_index(*bit_off);
374 int block_off = pcpu_off_to_block_off(*bit_off);
375 struct pcpu_block_md *block;
376
377 *bits = 0;
378 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
379 block++, i++) {
380 /* handles contig area across blocks */
381 if (*bits) {
382 *bits += block->left_free;
383 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
384 continue;
385 return;
386 }
387
388 /*
389 * This checks three things. First is there a contig_hint to
390 * check. Second, have we checked this hint before by
391 * comparing the block_off. Third, is this the same as the
392 * right contig hint. In the last case, it spills over into
393 * the next block and should be handled by the contig area
394 * across blocks code.
395 */
396 *bits = block->contig_hint;
397 if (*bits && block->contig_hint_start >= block_off &&
398 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
399 *bit_off = pcpu_block_off_to_off(i,
400 block->contig_hint_start);
401 return;
402 }
1fa4df3e
DZ
403 /* reset to satisfy the second predicate above */
404 block_off = 0;
525ca84d
DZF
405
406 *bits = block->right_free;
407 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
408 }
409}
410
b4c2116c
DZF
411/**
412 * pcpu_next_fit_region - finds fit areas for a given allocation request
413 * @chunk: chunk of interest
414 * @alloc_bits: size of allocation
415 * @align: alignment of area (max PAGE_SIZE)
416 * @bit_off: chunk offset
417 * @bits: size of free area
418 *
419 * Finds the next free region that is viable for use with a given size and
420 * alignment. This only returns if there is a valid area to be used for this
421 * allocation. block->first_free is returned if the allocation request fits
422 * within the block to see if the request can be fulfilled prior to the contig
423 * hint.
424 */
425static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
426 int align, int *bit_off, int *bits)
427{
428 int i = pcpu_off_to_block_index(*bit_off);
429 int block_off = pcpu_off_to_block_off(*bit_off);
430 struct pcpu_block_md *block;
431
432 *bits = 0;
433 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
434 block++, i++) {
435 /* handles contig area across blocks */
436 if (*bits) {
437 *bits += block->left_free;
438 if (*bits >= alloc_bits)
439 return;
440 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
441 continue;
442 }
443
444 /* check block->contig_hint */
445 *bits = ALIGN(block->contig_hint_start, align) -
446 block->contig_hint_start;
447 /*
448 * This uses the block offset to determine if this has been
449 * checked in the prior iteration.
450 */
451 if (block->contig_hint &&
452 block->contig_hint_start >= block_off &&
453 block->contig_hint >= *bits + alloc_bits) {
382b88e9
DZ
454 int start = pcpu_next_hint(block, alloc_bits);
455
b4c2116c 456 *bits += alloc_bits + block->contig_hint_start -
382b88e9
DZ
457 start;
458 *bit_off = pcpu_block_off_to_off(i, start);
b4c2116c
DZF
459 return;
460 }
1fa4df3e
DZ
461 /* reset to satisfy the second predicate above */
462 block_off = 0;
b4c2116c
DZF
463
464 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
465 align);
466 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
467 *bit_off = pcpu_block_off_to_off(i, *bit_off);
468 if (*bits >= alloc_bits)
469 return;
470 }
471
472 /* no valid offsets were found - fail condition */
473 *bit_off = pcpu_chunk_map_bits(chunk);
474}
475
525ca84d
DZF
476/*
477 * Metadata free area iterators. These perform aggregation of free areas
478 * based on the metadata blocks and return the offset @bit_off and size in
b4c2116c
DZF
479 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
480 * a fit is found for the allocation request.
525ca84d
DZF
481 */
482#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
483 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
484 (bit_off) < pcpu_chunk_map_bits((chunk)); \
485 (bit_off) += (bits) + 1, \
486 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
487
b4c2116c
DZF
488#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
489 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
490 &(bits)); \
491 (bit_off) < pcpu_chunk_map_bits((chunk)); \
492 (bit_off) += (bits), \
493 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
494 &(bits)))
495
fbf59bc9 496/**
90459ce0 497 * pcpu_mem_zalloc - allocate memory
1880d93b 498 * @size: bytes to allocate
47504ee0 499 * @gfp: allocation flags
fbf59bc9 500 *
1880d93b 501 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
47504ee0
DZ
502 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
503 * This is to facilitate passing through whitelisted flags. The
504 * returned memory is always zeroed.
fbf59bc9
TH
505 *
506 * RETURNS:
1880d93b 507 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 508 */
47504ee0 509static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
fbf59bc9 510{
099a19d9
TH
511 if (WARN_ON_ONCE(!slab_is_available()))
512 return NULL;
513
1880d93b 514 if (size <= PAGE_SIZE)
554fef1c 515 return kzalloc(size, gfp);
7af4c093 516 else
88dca4ca 517 return __vmalloc(size, gfp | __GFP_ZERO);
1880d93b 518}
fbf59bc9 519
1880d93b
TH
520/**
521 * pcpu_mem_free - free memory
522 * @ptr: memory to free
1880d93b 523 *
90459ce0 524 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 525 */
1d5cfdb0 526static void pcpu_mem_free(void *ptr)
1880d93b 527{
1d5cfdb0 528 kvfree(ptr);
fbf59bc9
TH
529}
530
8744d859
DZ
531static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
532 bool move_front)
533{
534 if (chunk != pcpu_reserved_chunk) {
535 if (move_front)
faf65dde 536 list_move(&chunk->list, &pcpu_chunk_lists[slot]);
8744d859 537 else
faf65dde 538 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
8744d859
DZ
539 }
540}
541
542static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
543{
544 __pcpu_chunk_move(chunk, slot, true);
545}
546
fbf59bc9
TH
547/**
548 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
549 * @chunk: chunk of interest
550 * @oslot: the previous slot it was on
551 *
552 * This function is called after an allocation or free changed @chunk.
553 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
554 * moved to the slot. Note that the reserved chunk is never put on
555 * chunk slots.
ccea34b5
TH
556 *
557 * CONTEXT:
558 * pcpu_lock.
fbf59bc9
TH
559 */
560static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
561{
562 int nslot = pcpu_chunk_slot(chunk);
563
f1833241
RG
564 /* leave isolated chunks in-place */
565 if (chunk->isolated)
566 return;
567
8744d859
DZ
568 if (oslot != nslot)
569 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
833af842
TH
570}
571
f1833241
RG
572static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
573{
f1833241
RG
574 lockdep_assert_held(&pcpu_lock);
575
576 if (!chunk->isolated) {
577 chunk->isolated = true;
faf65dde 578 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
f1833241 579 }
faf65dde 580 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
f1833241
RG
581}
582
583static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
584{
f1833241
RG
585 lockdep_assert_held(&pcpu_lock);
586
587 if (chunk->isolated) {
588 chunk->isolated = false;
faf65dde 589 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
f1833241
RG
590 pcpu_chunk_relocate(chunk, -1);
591 }
592}
593
b239f7da
DZ
594/*
595 * pcpu_update_empty_pages - update empty page counters
833af842 596 * @chunk: chunk of interest
b239f7da 597 * @nr: nr of empty pages
833af842 598 *
b239f7da
DZ
599 * This is used to keep track of the empty pages now based on the premise
600 * a md_block covers a page. The hint update functions recognize if a block
601 * is made full or broken to calculate deltas for keeping track of free pages.
40064aec 602 */
b239f7da 603static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
40064aec 604{
b239f7da 605 chunk->nr_empty_pop_pages += nr;
f1833241 606 if (chunk != pcpu_reserved_chunk && !chunk->isolated)
faf65dde 607 pcpu_nr_empty_pop_pages += nr;
40064aec
DZF
608}
609
d9f3a01e
DZ
610/*
611 * pcpu_region_overlap - determines if two regions overlap
612 * @a: start of first region, inclusive
613 * @b: end of first region, exclusive
614 * @x: start of second region, inclusive
615 * @y: end of second region, exclusive
833af842 616 *
d9f3a01e
DZ
617 * This is used to determine if the hint region [a, b) overlaps with the
618 * allocated region [x, y).
833af842 619 */
d9f3a01e 620static inline bool pcpu_region_overlap(int a, int b, int x, int y)
833af842 621{
d9f3a01e 622 return (a < y) && (x < b);
40064aec 623}
9f7dcf22 624
ca460b3c
DZF
625/**
626 * pcpu_block_update - updates a block given a free area
627 * @block: block of interest
628 * @start: start offset in block
629 * @end: end offset in block
630 *
631 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
632 * expected to be the entirety of the free area within a block. Chooses
633 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
634 */
635static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
636{
637 int contig = end - start;
638
639 block->first_free = min(block->first_free, start);
640 if (start == 0)
641 block->left_free = contig;
642
047924c9 643 if (end == block->nr_bits)
ca460b3c
DZF
644 block->right_free = contig;
645
646 if (contig > block->contig_hint) {
382b88e9
DZ
647 /* promote the old contig_hint to be the new scan_hint */
648 if (start > block->contig_hint_start) {
649 if (block->contig_hint > block->scan_hint) {
650 block->scan_hint_start =
651 block->contig_hint_start;
652 block->scan_hint = block->contig_hint;
653 } else if (start < block->scan_hint_start) {
654 /*
655 * The old contig_hint == scan_hint. But, the
656 * new contig is larger so hold the invariant
657 * scan_hint_start < contig_hint_start.
658 */
659 block->scan_hint = 0;
660 }
661 } else {
662 block->scan_hint = 0;
663 }
ca460b3c
DZF
664 block->contig_hint_start = start;
665 block->contig_hint = contig;
382b88e9
DZ
666 } else if (contig == block->contig_hint) {
667 if (block->contig_hint_start &&
668 (!start ||
669 __ffs(start) > __ffs(block->contig_hint_start))) {
670 /* start has a better alignment so use it */
671 block->contig_hint_start = start;
672 if (start < block->scan_hint_start &&
673 block->contig_hint > block->scan_hint)
674 block->scan_hint = 0;
675 } else if (start > block->scan_hint_start ||
676 block->contig_hint > block->scan_hint) {
677 /*
678 * Knowing contig == contig_hint, update the scan_hint
679 * if it is farther than or larger than the current
680 * scan_hint.
681 */
682 block->scan_hint_start = start;
683 block->scan_hint = contig;
684 }
685 } else {
686 /*
687 * The region is smaller than the contig_hint. So only update
688 * the scan_hint if it is larger than or equal and farther than
689 * the current scan_hint.
690 */
691 if ((start < block->contig_hint_start &&
692 (contig > block->scan_hint ||
693 (contig == block->scan_hint &&
694 start > block->scan_hint_start)))) {
695 block->scan_hint_start = start;
696 block->scan_hint = contig;
697 }
ca460b3c
DZF
698 }
699}
700
b89462a9
DZ
701/*
702 * pcpu_block_update_scan - update a block given a free area from a scan
703 * @chunk: chunk of interest
704 * @bit_off: chunk offset
705 * @bits: size of free area
706 *
707 * Finding the final allocation spot first goes through pcpu_find_block_fit()
708 * to find a block that can hold the allocation and then pcpu_alloc_area()
709 * where a scan is used. When allocations require specific alignments,
710 * we can inadvertently create holes which will not be seen in the alloc
711 * or free paths.
712 *
713 * This takes a given free area hole and updates a block as it may change the
714 * scan_hint. We need to scan backwards to ensure we don't miss free bits
715 * from alignment.
716 */
717static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
718 int bits)
719{
720 int s_off = pcpu_off_to_block_off(bit_off);
721 int e_off = s_off + bits;
722 int s_index, l_bit;
723 struct pcpu_block_md *block;
724
725 if (e_off > PCPU_BITMAP_BLOCK_BITS)
726 return;
727
728 s_index = pcpu_off_to_block_index(bit_off);
729 block = chunk->md_blocks + s_index;
730
731 /* scan backwards in case of alignment skipping free bits */
732 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
733 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
734
735 pcpu_block_update(block, s_off, e_off);
736}
737
92c14cab
DZ
738/**
739 * pcpu_chunk_refresh_hint - updates metadata about a chunk
740 * @chunk: chunk of interest
d33d9f3d 741 * @full_scan: if we should scan from the beginning
92c14cab
DZ
742 *
743 * Iterates over the metadata blocks to find the largest contig area.
d33d9f3d
DZ
744 * A full scan can be avoided on the allocation path as this is triggered
745 * if we broke the contig_hint. In doing so, the scan_hint will be before
746 * the contig_hint or after if the scan_hint == contig_hint. This cannot
747 * be prevented on freeing as we want to find the largest area possibly
748 * spanning blocks.
92c14cab 749 */
d33d9f3d 750static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
92c14cab
DZ
751{
752 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
753 int bit_off, bits;
754
d33d9f3d
DZ
755 /* promote scan_hint to contig_hint */
756 if (!full_scan && chunk_md->scan_hint) {
757 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
758 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
759 chunk_md->contig_hint = chunk_md->scan_hint;
760 chunk_md->scan_hint = 0;
761 } else {
762 bit_off = chunk_md->first_free;
763 chunk_md->contig_hint = 0;
764 }
92c14cab 765
92c14cab 766 bits = 0;
e837dfde 767 pcpu_for_each_md_free_region(chunk, bit_off, bits)
92c14cab 768 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
ca460b3c
DZF
769}
770
771/**
772 * pcpu_block_refresh_hint
773 * @chunk: chunk of interest
774 * @index: index of the metadata block
775 *
776 * Scans over the block beginning at first_free and updates the block
777 * metadata accordingly.
778 */
779static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
780{
781 struct pcpu_block_md *block = chunk->md_blocks + index;
782 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
e837dfde 783 unsigned int rs, re, start; /* region start, region end */
da3afdd5
DZ
784
785 /* promote scan_hint to contig_hint */
786 if (block->scan_hint) {
787 start = block->scan_hint_start + block->scan_hint;
788 block->contig_hint_start = block->scan_hint_start;
789 block->contig_hint = block->scan_hint;
790 block->scan_hint = 0;
791 } else {
792 start = block->first_free;
793 block->contig_hint = 0;
794 }
ca460b3c 795
da3afdd5 796 block->right_free = 0;
ca460b3c
DZF
797
798 /* iterate over free areas and update the contig hints */
e837dfde
DZ
799 bitmap_for_each_clear_region(alloc_map, rs, re, start,
800 PCPU_BITMAP_BLOCK_BITS)
ca460b3c 801 pcpu_block_update(block, rs, re);
ca460b3c
DZF
802}
803
804/**
805 * pcpu_block_update_hint_alloc - update hint on allocation path
806 * @chunk: chunk of interest
807 * @bit_off: chunk offset
808 * @bits: size of request
fc304334
DZF
809 *
810 * Updates metadata for the allocation path. The metadata only has to be
811 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
812 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
813 */
814static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
815 int bits)
816{
92c14cab 817 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
b239f7da 818 int nr_empty_pages = 0;
ca460b3c
DZF
819 struct pcpu_block_md *s_block, *e_block, *block;
820 int s_index, e_index; /* block indexes of the freed allocation */
821 int s_off, e_off; /* block offsets of the freed allocation */
822
823 /*
824 * Calculate per block offsets.
825 * The calculation uses an inclusive range, but the resulting offsets
826 * are [start, end). e_index always points to the last block in the
827 * range.
828 */
829 s_index = pcpu_off_to_block_index(bit_off);
830 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
831 s_off = pcpu_off_to_block_off(bit_off);
832 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
833
834 s_block = chunk->md_blocks + s_index;
835 e_block = chunk->md_blocks + e_index;
836
837 /*
838 * Update s_block.
fc304334
DZF
839 * block->first_free must be updated if the allocation takes its place.
840 * If the allocation breaks the contig_hint, a scan is required to
841 * restore this hint.
ca460b3c 842 */
b239f7da
DZ
843 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
844 nr_empty_pages++;
845
fc304334
DZF
846 if (s_off == s_block->first_free)
847 s_block->first_free = find_next_zero_bit(
848 pcpu_index_alloc_map(chunk, s_index),
849 PCPU_BITMAP_BLOCK_BITS,
850 s_off + bits);
851
382b88e9
DZ
852 if (pcpu_region_overlap(s_block->scan_hint_start,
853 s_block->scan_hint_start + s_block->scan_hint,
854 s_off,
855 s_off + bits))
856 s_block->scan_hint = 0;
857
d9f3a01e
DZ
858 if (pcpu_region_overlap(s_block->contig_hint_start,
859 s_block->contig_hint_start +
860 s_block->contig_hint,
861 s_off,
862 s_off + bits)) {
fc304334 863 /* block contig hint is broken - scan to fix it */
da3afdd5
DZ
864 if (!s_off)
865 s_block->left_free = 0;
fc304334
DZF
866 pcpu_block_refresh_hint(chunk, s_index);
867 } else {
868 /* update left and right contig manually */
869 s_block->left_free = min(s_block->left_free, s_off);
870 if (s_index == e_index)
871 s_block->right_free = min_t(int, s_block->right_free,
872 PCPU_BITMAP_BLOCK_BITS - e_off);
873 else
874 s_block->right_free = 0;
875 }
ca460b3c
DZF
876
877 /*
878 * Update e_block.
879 */
880 if (s_index != e_index) {
b239f7da
DZ
881 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
882 nr_empty_pages++;
883
fc304334
DZF
884 /*
885 * When the allocation is across blocks, the end is along
886 * the left part of the e_block.
887 */
888 e_block->first_free = find_next_zero_bit(
889 pcpu_index_alloc_map(chunk, e_index),
890 PCPU_BITMAP_BLOCK_BITS, e_off);
891
892 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
893 /* reset the block */
894 e_block++;
895 } else {
382b88e9
DZ
896 if (e_off > e_block->scan_hint_start)
897 e_block->scan_hint = 0;
898
da3afdd5 899 e_block->left_free = 0;
fc304334
DZF
900 if (e_off > e_block->contig_hint_start) {
901 /* contig hint is broken - scan to fix it */
902 pcpu_block_refresh_hint(chunk, e_index);
903 } else {
fc304334
DZF
904 e_block->right_free =
905 min_t(int, e_block->right_free,
906 PCPU_BITMAP_BLOCK_BITS - e_off);
907 }
908 }
ca460b3c
DZF
909
910 /* update in-between md_blocks */
b239f7da 911 nr_empty_pages += (e_index - s_index - 1);
ca460b3c 912 for (block = s_block + 1; block < e_block; block++) {
382b88e9 913 block->scan_hint = 0;
ca460b3c
DZF
914 block->contig_hint = 0;
915 block->left_free = 0;
916 block->right_free = 0;
917 }
918 }
919
b239f7da
DZ
920 if (nr_empty_pages)
921 pcpu_update_empty_pages(chunk, -nr_empty_pages);
922
d33d9f3d
DZ
923 if (pcpu_region_overlap(chunk_md->scan_hint_start,
924 chunk_md->scan_hint_start +
925 chunk_md->scan_hint,
926 bit_off,
927 bit_off + bits))
928 chunk_md->scan_hint = 0;
929
fc304334
DZF
930 /*
931 * The only time a full chunk scan is required is if the chunk
932 * contig hint is broken. Otherwise, it means a smaller space
933 * was used and therefore the chunk contig hint is still correct.
934 */
92c14cab
DZ
935 if (pcpu_region_overlap(chunk_md->contig_hint_start,
936 chunk_md->contig_hint_start +
937 chunk_md->contig_hint,
d9f3a01e
DZ
938 bit_off,
939 bit_off + bits))
d33d9f3d 940 pcpu_chunk_refresh_hint(chunk, false);
ca460b3c
DZF
941}
942
943/**
944 * pcpu_block_update_hint_free - updates the block hints on the free path
945 * @chunk: chunk of interest
946 * @bit_off: chunk offset
947 * @bits: size of request
b185cd0d
DZF
948 *
949 * Updates metadata for the allocation path. This avoids a blind block
950 * refresh by making use of the block contig hints. If this fails, it scans
951 * forward and backward to determine the extent of the free area. This is
952 * capped at the boundary of blocks.
953 *
954 * A chunk update is triggered if a page becomes free, a block becomes free,
955 * or the free spans across blocks. This tradeoff is to minimize iterating
92c14cab
DZ
956 * over the block metadata to update chunk_md->contig_hint.
957 * chunk_md->contig_hint may be off by up to a page, but it will never be more
958 * than the available space. If the contig hint is contained in one block, it
959 * will be accurate.
ca460b3c
DZF
960 */
961static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
962 int bits)
963{
b239f7da 964 int nr_empty_pages = 0;
ca460b3c
DZF
965 struct pcpu_block_md *s_block, *e_block, *block;
966 int s_index, e_index; /* block indexes of the freed allocation */
967 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 968 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
969
970 /*
971 * Calculate per block offsets.
972 * The calculation uses an inclusive range, but the resulting offsets
973 * are [start, end). e_index always points to the last block in the
974 * range.
975 */
976 s_index = pcpu_off_to_block_index(bit_off);
977 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
978 s_off = pcpu_off_to_block_off(bit_off);
979 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
980
981 s_block = chunk->md_blocks + s_index;
982 e_block = chunk->md_blocks + e_index;
983
b185cd0d
DZF
984 /*
985 * Check if the freed area aligns with the block->contig_hint.
986 * If it does, then the scan to find the beginning/end of the
987 * larger free area can be avoided.
988 *
989 * start and end refer to beginning and end of the free area
990 * within each their respective blocks. This is not necessarily
991 * the entire free area as it may span blocks past the beginning
992 * or end of the block.
993 */
994 start = s_off;
995 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
996 start = s_block->contig_hint_start;
997 } else {
998 /*
999 * Scan backwards to find the extent of the free area.
1000 * find_last_bit returns the starting bit, so if the start bit
1001 * is returned, that means there was no last bit and the
1002 * remainder of the chunk is free.
1003 */
1004 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1005 start);
1006 start = (start == l_bit) ? 0 : l_bit + 1;
1007 }
1008
1009 end = e_off;
1010 if (e_off == e_block->contig_hint_start)
1011 end = e_block->contig_hint_start + e_block->contig_hint;
1012 else
1013 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1014 PCPU_BITMAP_BLOCK_BITS, end);
1015
ca460b3c 1016 /* update s_block */
b185cd0d 1017 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
b239f7da
DZ
1018 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1019 nr_empty_pages++;
b185cd0d 1020 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
1021
1022 /* freeing in the same block */
1023 if (s_index != e_index) {
1024 /* update e_block */
b239f7da
DZ
1025 if (end == PCPU_BITMAP_BLOCK_BITS)
1026 nr_empty_pages++;
b185cd0d 1027 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
1028
1029 /* reset md_blocks in the middle */
b239f7da 1030 nr_empty_pages += (e_index - s_index - 1);
ca460b3c
DZF
1031 for (block = s_block + 1; block < e_block; block++) {
1032 block->first_free = 0;
382b88e9 1033 block->scan_hint = 0;
ca460b3c
DZF
1034 block->contig_hint_start = 0;
1035 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1036 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1037 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1038 }
1039 }
1040
b239f7da
DZ
1041 if (nr_empty_pages)
1042 pcpu_update_empty_pages(chunk, nr_empty_pages);
1043
b185cd0d 1044 /*
b239f7da
DZ
1045 * Refresh chunk metadata when the free makes a block free or spans
1046 * across blocks. The contig_hint may be off by up to a page, but if
1047 * the contig_hint is contained in a block, it will be accurate with
1048 * the else condition below.
b185cd0d 1049 */
b239f7da 1050 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
d33d9f3d 1051 pcpu_chunk_refresh_hint(chunk, true);
b185cd0d 1052 else
92c14cab
DZ
1053 pcpu_block_update(&chunk->chunk_md,
1054 pcpu_block_off_to_off(s_index, start),
1055 end);
ca460b3c
DZF
1056}
1057
40064aec
DZF
1058/**
1059 * pcpu_is_populated - determines if the region is populated
1060 * @chunk: chunk of interest
1061 * @bit_off: chunk offset
1062 * @bits: size of area
1063 * @next_off: return value for the next offset to start searching
1064 *
1065 * For atomic allocations, check if the backing pages are populated.
1066 *
1067 * RETURNS:
1068 * Bool if the backing pages are populated.
1069 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1070 */
1071static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1072 int *next_off)
1073{
e837dfde 1074 unsigned int page_start, page_end, rs, re;
833af842 1075
40064aec
DZF
1076 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1077 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 1078
40064aec 1079 rs = page_start;
e837dfde 1080 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
40064aec
DZF
1081 if (rs >= page_end)
1082 return true;
833af842 1083
40064aec
DZF
1084 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1085 return false;
9f7dcf22
TH
1086}
1087
a16037c8 1088/**
40064aec
DZF
1089 * pcpu_find_block_fit - finds the block index to start searching
1090 * @chunk: chunk of interest
1091 * @alloc_bits: size of request in allocation units
1092 * @align: alignment of area (max PAGE_SIZE bytes)
1093 * @pop_only: use populated regions only
1094 *
b4c2116c
DZF
1095 * Given a chunk and an allocation spec, find the offset to begin searching
1096 * for a free region. This iterates over the bitmap metadata blocks to
1097 * find an offset that will be guaranteed to fit the requirements. It is
1098 * not quite first fit as if the allocation does not fit in the contig hint
1099 * of a block or chunk, it is skipped. This errs on the side of caution
1100 * to prevent excess iteration. Poor alignment can cause the allocator to
1101 * skip over blocks and chunks that have valid free areas.
1102 *
40064aec
DZF
1103 * RETURNS:
1104 * The offset in the bitmap to begin searching.
1105 * -1 if no offset is found.
a16037c8 1106 */
40064aec
DZF
1107static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1108 size_t align, bool pop_only)
a16037c8 1109{
92c14cab 1110 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
b4c2116c 1111 int bit_off, bits, next_off;
a16037c8 1112
13f96637 1113 /*
8ea2e1e3
RG
1114 * This is an optimization to prevent scanning by assuming if the
1115 * allocation cannot fit in the global hint, there is memory pressure
1116 * and creating a new chunk would happen soon.
13f96637 1117 */
8ea2e1e3 1118 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
13f96637
DZF
1119 return -1;
1120
d33d9f3d 1121 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
b4c2116c
DZF
1122 bits = 0;
1123 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
40064aec 1124 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
b4c2116c 1125 &next_off))
40064aec 1126 break;
a16037c8 1127
b4c2116c 1128 bit_off = next_off;
40064aec 1129 bits = 0;
a16037c8 1130 }
40064aec
DZF
1131
1132 if (bit_off == pcpu_chunk_map_bits(chunk))
1133 return -1;
1134
1135 return bit_off;
a16037c8
TH
1136}
1137
b89462a9
DZ
1138/*
1139 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1140 * @map: the address to base the search on
1141 * @size: the bitmap size in bits
1142 * @start: the bitnumber to start searching at
1143 * @nr: the number of zeroed bits we're looking for
1144 * @align_mask: alignment mask for zero area
1145 * @largest_off: offset of the largest area skipped
1146 * @largest_bits: size of the largest area skipped
1147 *
1148 * The @align_mask should be one less than a power of 2.
1149 *
1150 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1151 * the largest area that was skipped. This is imperfect, but in general is
1152 * good enough. The largest remembered region is the largest failed region
1153 * seen. This does not include anything we possibly skipped due to alignment.
1154 * pcpu_block_update_scan() does scan backwards to try and recover what was
1155 * lost to alignment. While this can cause scanning to miss earlier possible
1156 * free areas, smaller allocations will eventually fill those holes.
1157 */
1158static unsigned long pcpu_find_zero_area(unsigned long *map,
1159 unsigned long size,
1160 unsigned long start,
1161 unsigned long nr,
1162 unsigned long align_mask,
1163 unsigned long *largest_off,
1164 unsigned long *largest_bits)
1165{
1166 unsigned long index, end, i, area_off, area_bits;
1167again:
1168 index = find_next_zero_bit(map, size, start);
1169
1170 /* Align allocation */
1171 index = __ALIGN_MASK(index, align_mask);
1172 area_off = index;
1173
1174 end = index + nr;
1175 if (end > size)
1176 return end;
1177 i = find_next_bit(map, end, index);
1178 if (i < end) {
1179 area_bits = i - area_off;
1180 /* remember largest unused area with best alignment */
1181 if (area_bits > *largest_bits ||
1182 (area_bits == *largest_bits && *largest_off &&
1183 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1184 *largest_off = area_off;
1185 *largest_bits = area_bits;
1186 }
1187
1188 start = i + 1;
1189 goto again;
1190 }
1191 return index;
1192}
1193
fbf59bc9 1194/**
40064aec 1195 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 1196 * @chunk: chunk of interest
40064aec
DZF
1197 * @alloc_bits: size of request in allocation units
1198 * @align: alignment of area (max PAGE_SIZE)
1199 * @start: bit_off to start searching
9f7dcf22 1200 *
40064aec 1201 * This function takes in a @start offset to begin searching to fit an
b4c2116c
DZF
1202 * allocation of @alloc_bits with alignment @align. It needs to scan
1203 * the allocation map because if it fits within the block's contig hint,
1204 * @start will be block->first_free. This is an attempt to fill the
1205 * allocation prior to breaking the contig hint. The allocation and
1206 * boundary maps are updated accordingly if it confirms a valid
1207 * free area.
ccea34b5 1208 *
fbf59bc9 1209 * RETURNS:
40064aec
DZF
1210 * Allocated addr offset in @chunk on success.
1211 * -1 if no matching area is found.
fbf59bc9 1212 */
40064aec
DZF
1213static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1214 size_t align, int start)
fbf59bc9 1215{
92c14cab 1216 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
40064aec 1217 size_t align_mask = (align) ? (align - 1) : 0;
b89462a9 1218 unsigned long area_off = 0, area_bits = 0;
40064aec 1219 int bit_off, end, oslot;
a16037c8 1220
40064aec 1221 lockdep_assert_held(&pcpu_lock);
fbf59bc9 1222
40064aec 1223 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1224
40064aec
DZF
1225 /*
1226 * Search to find a fit.
1227 */
8c43004a
DZ
1228 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1229 pcpu_chunk_map_bits(chunk));
b89462a9
DZ
1230 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1231 align_mask, &area_off, &area_bits);
40064aec
DZF
1232 if (bit_off >= end)
1233 return -1;
fbf59bc9 1234
b89462a9
DZ
1235 if (area_bits)
1236 pcpu_block_update_scan(chunk, area_off, area_bits);
1237
40064aec
DZF
1238 /* update alloc map */
1239 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 1240
40064aec
DZF
1241 /* update boundary map */
1242 set_bit(bit_off, chunk->bound_map);
1243 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1244 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 1245
40064aec 1246 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 1247
86b442fb 1248 /* update first free bit */
92c14cab
DZ
1249 if (bit_off == chunk_md->first_free)
1250 chunk_md->first_free = find_next_zero_bit(
86b442fb
DZF
1251 chunk->alloc_map,
1252 pcpu_chunk_map_bits(chunk),
1253 bit_off + alloc_bits);
1254
ca460b3c 1255 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 1256
fbf59bc9
TH
1257 pcpu_chunk_relocate(chunk, oslot);
1258
40064aec 1259 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
1260}
1261
1262/**
40064aec 1263 * pcpu_free_area - frees the corresponding offset
fbf59bc9 1264 * @chunk: chunk of interest
40064aec 1265 * @off: addr offset into chunk
ccea34b5 1266 *
40064aec
DZF
1267 * This function determines the size of an allocation to free using
1268 * the boundary bitmap and clears the allocation map.
5b32af91
RG
1269 *
1270 * RETURNS:
1271 * Number of freed bytes.
fbf59bc9 1272 */
5b32af91 1273static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 1274{
92c14cab 1275 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
5b32af91 1276 int bit_off, bits, end, oslot, freed;
723ad1d9 1277
5ccd30e4 1278 lockdep_assert_held(&pcpu_lock);
30a5b536 1279 pcpu_stats_area_dealloc(chunk);
5ccd30e4 1280
40064aec 1281 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1282
40064aec 1283 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 1284
40064aec
DZF
1285 /* find end index */
1286 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1287 bit_off + 1);
1288 bits = end - bit_off;
1289 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 1290
5b32af91
RG
1291 freed = bits * PCPU_MIN_ALLOC_SIZE;
1292
40064aec 1293 /* update metadata */
5b32af91 1294 chunk->free_bytes += freed;
b539b87f 1295
86b442fb 1296 /* update first free bit */
92c14cab 1297 chunk_md->first_free = min(chunk_md->first_free, bit_off);
86b442fb 1298
ca460b3c 1299 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 1300
fbf59bc9 1301 pcpu_chunk_relocate(chunk, oslot);
5b32af91
RG
1302
1303 return freed;
fbf59bc9
TH
1304}
1305
047924c9
DZ
1306static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1307{
1308 block->scan_hint = 0;
1309 block->contig_hint = nr_bits;
1310 block->left_free = nr_bits;
1311 block->right_free = nr_bits;
1312 block->first_free = 0;
1313 block->nr_bits = nr_bits;
1314}
1315
ca460b3c
DZF
1316static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1317{
1318 struct pcpu_block_md *md_block;
1319
92c14cab
DZ
1320 /* init the chunk's block */
1321 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1322
ca460b3c
DZF
1323 for (md_block = chunk->md_blocks;
1324 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
047924c9
DZ
1325 md_block++)
1326 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
ca460b3c
DZF
1327}
1328
40064aec
DZF
1329/**
1330 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1331 * @tmp_addr: the start of the region served
1332 * @map_size: size of the region served
1333 *
1334 * This is responsible for creating the chunks that serve the first chunk. The
1335 * base_addr is page aligned down of @tmp_addr while the region end is page
1336 * aligned up. Offsets are kept track of to determine the region served. All
1337 * this is done to appease the bitmap allocator in avoiding partial blocks.
1338 *
1339 * RETURNS:
1340 * Chunk serving the region at @tmp_addr of @map_size.
1341 */
c0ebfdc3 1342static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 1343 int map_size)
10edf5b0
DZF
1344{
1345 struct pcpu_chunk *chunk;
ca460b3c 1346 unsigned long aligned_addr, lcm_align;
40064aec 1347 int start_offset, offset_bits, region_size, region_bits;
f655f405 1348 size_t alloc_size;
c0ebfdc3
DZF
1349
1350 /* region calculations */
1351 aligned_addr = tmp_addr & PAGE_MASK;
1352
1353 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1354
ca460b3c
DZF
1355 /*
1356 * Align the end of the region with the LCM of PAGE_SIZE and
1357 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1358 * the other.
1359 */
1360 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1361 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1362
c0ebfdc3 1363 /* allocate chunk */
61cf93d3
DZ
1364 alloc_size = struct_size(chunk, populated,
1365 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
f655f405
MR
1366 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1367 if (!chunk)
1368 panic("%s: Failed to allocate %zu bytes\n", __func__,
1369 alloc_size);
c0ebfdc3 1370
10edf5b0 1371 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1372
1373 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1374 chunk->start_offset = start_offset;
6b9d7c8e 1375 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1376
8ab16c43 1377 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1378 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1379
f655f405
MR
1380 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1381 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1382 if (!chunk->alloc_map)
1383 panic("%s: Failed to allocate %zu bytes\n", __func__,
1384 alloc_size);
1385
1386 alloc_size =
1387 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1388 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1389 if (!chunk->bound_map)
1390 panic("%s: Failed to allocate %zu bytes\n", __func__,
1391 alloc_size);
1392
1393 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1394 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1395 if (!chunk->md_blocks)
1396 panic("%s: Failed to allocate %zu bytes\n", __func__,
1397 alloc_size);
1398
3c7be18a 1399#ifdef CONFIG_MEMCG_KMEM
faf65dde 1400 /* first chunk is free to use */
3c7be18a
RG
1401 chunk->obj_cgroups = NULL;
1402#endif
ca460b3c 1403 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1404
1405 /* manage populated page bitmap */
1406 chunk->immutable = true;
8ab16c43
DZF
1407 bitmap_fill(chunk->populated, chunk->nr_pages);
1408 chunk->nr_populated = chunk->nr_pages;
b239f7da 1409 chunk->nr_empty_pop_pages = chunk->nr_pages;
10edf5b0 1410
40064aec 1411 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1412
1413 if (chunk->start_offset) {
1414 /* hide the beginning of the bitmap */
40064aec
DZF
1415 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1416 bitmap_set(chunk->alloc_map, 0, offset_bits);
1417 set_bit(0, chunk->bound_map);
1418 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1419
92c14cab 1420 chunk->chunk_md.first_free = offset_bits;
86b442fb 1421
ca460b3c 1422 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1423 }
1424
6b9d7c8e
DZF
1425 if (chunk->end_offset) {
1426 /* hide the end of the bitmap */
40064aec
DZF
1427 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1428 bitmap_set(chunk->alloc_map,
1429 pcpu_chunk_map_bits(chunk) - offset_bits,
1430 offset_bits);
1431 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1432 chunk->bound_map);
1433 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1434
ca460b3c
DZF
1435 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1436 - offset_bits, offset_bits);
1437 }
40064aec 1438
10edf5b0
DZF
1439 return chunk;
1440}
1441
faf65dde 1442static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
6081089f
TH
1443{
1444 struct pcpu_chunk *chunk;
40064aec 1445 int region_bits;
6081089f 1446
47504ee0 1447 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
6081089f
TH
1448 if (!chunk)
1449 return NULL;
1450
40064aec
DZF
1451 INIT_LIST_HEAD(&chunk->list);
1452 chunk->nr_pages = pcpu_unit_pages;
1453 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1454
40064aec 1455 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
47504ee0 1456 sizeof(chunk->alloc_map[0]), gfp);
40064aec
DZF
1457 if (!chunk->alloc_map)
1458 goto alloc_map_fail;
6081089f 1459
40064aec 1460 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
47504ee0 1461 sizeof(chunk->bound_map[0]), gfp);
40064aec
DZF
1462 if (!chunk->bound_map)
1463 goto bound_map_fail;
6081089f 1464
ca460b3c 1465 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
47504ee0 1466 sizeof(chunk->md_blocks[0]), gfp);
ca460b3c
DZF
1467 if (!chunk->md_blocks)
1468 goto md_blocks_fail;
1469
3c7be18a 1470#ifdef CONFIG_MEMCG_KMEM
faf65dde 1471 if (!mem_cgroup_kmem_disabled()) {
3c7be18a
RG
1472 chunk->obj_cgroups =
1473 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1474 sizeof(struct obj_cgroup *), gfp);
1475 if (!chunk->obj_cgroups)
1476 goto objcg_fail;
1477 }
1478#endif
1479
ca460b3c
DZF
1480 pcpu_init_md_blocks(chunk);
1481
40064aec 1482 /* init metadata */
40064aec 1483 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1484
6081089f 1485 return chunk;
40064aec 1486
3c7be18a
RG
1487#ifdef CONFIG_MEMCG_KMEM
1488objcg_fail:
1489 pcpu_mem_free(chunk->md_blocks);
1490#endif
ca460b3c
DZF
1491md_blocks_fail:
1492 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1493bound_map_fail:
1494 pcpu_mem_free(chunk->alloc_map);
1495alloc_map_fail:
1496 pcpu_mem_free(chunk);
1497
1498 return NULL;
6081089f
TH
1499}
1500
1501static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1502{
1503 if (!chunk)
1504 return;
3c7be18a
RG
1505#ifdef CONFIG_MEMCG_KMEM
1506 pcpu_mem_free(chunk->obj_cgroups);
1507#endif
6685b357 1508 pcpu_mem_free(chunk->md_blocks);
40064aec
DZF
1509 pcpu_mem_free(chunk->bound_map);
1510 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1511 pcpu_mem_free(chunk);
6081089f
TH
1512}
1513
b539b87f
TH
1514/**
1515 * pcpu_chunk_populated - post-population bookkeeping
1516 * @chunk: pcpu_chunk which got populated
1517 * @page_start: the start page
1518 * @page_end: the end page
1519 *
1520 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1521 * the bookkeeping information accordingly. Must be called after each
1522 * successful population.
40064aec
DZF
1523 *
1524 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1525 * is to serve an allocation in that area.
b539b87f 1526 */
40064aec 1527static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
b239f7da 1528 int page_end)
b539b87f
TH
1529{
1530 int nr = page_end - page_start;
1531
1532 lockdep_assert_held(&pcpu_lock);
1533
1534 bitmap_set(chunk->populated, page_start, nr);
1535 chunk->nr_populated += nr;
7e8a6304 1536 pcpu_nr_populated += nr;
40064aec 1537
b239f7da 1538 pcpu_update_empty_pages(chunk, nr);
b539b87f
TH
1539}
1540
1541/**
1542 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1543 * @chunk: pcpu_chunk which got depopulated
1544 * @page_start: the start page
1545 * @page_end: the end page
1546 *
1547 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1548 * Update the bookkeeping information accordingly. Must be called after
1549 * each successful depopulation.
1550 */
1551static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1552 int page_start, int page_end)
1553{
1554 int nr = page_end - page_start;
1555
1556 lockdep_assert_held(&pcpu_lock);
1557
1558 bitmap_clear(chunk->populated, page_start, nr);
1559 chunk->nr_populated -= nr;
7e8a6304 1560 pcpu_nr_populated -= nr;
b239f7da
DZ
1561
1562 pcpu_update_empty_pages(chunk, -nr);
b539b87f
TH
1563}
1564
9f645532
TH
1565/*
1566 * Chunk management implementation.
1567 *
1568 * To allow different implementations, chunk alloc/free and
1569 * [de]population are implemented in a separate file which is pulled
1570 * into this file and compiled together. The following functions
1571 * should be implemented.
1572 *
1573 * pcpu_populate_chunk - populate the specified range of a chunk
1574 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1575 * pcpu_create_chunk - create a new chunk
1576 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1577 * pcpu_addr_to_page - translate address to physical address
1578 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1579 */
15d9f3d1 1580static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
47504ee0 1581 int page_start, int page_end, gfp_t gfp);
15d9f3d1
DZ
1582static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1583 int page_start, int page_end);
faf65dde 1584static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
9f645532
TH
1585static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1586static struct page *pcpu_addr_to_page(void *addr);
1587static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1588
b0c9778b
TH
1589#ifdef CONFIG_NEED_PER_CPU_KM
1590#include "percpu-km.c"
1591#else
9f645532 1592#include "percpu-vm.c"
b0c9778b 1593#endif
fbf59bc9 1594
88999a89
TH
1595/**
1596 * pcpu_chunk_addr_search - determine chunk containing specified address
1597 * @addr: address for which the chunk needs to be determined.
1598 *
c0ebfdc3
DZF
1599 * This is an internal function that handles all but static allocations.
1600 * Static percpu address values should never be passed into the allocator.
1601 *
88999a89
TH
1602 * RETURNS:
1603 * The address of the found chunk.
1604 */
1605static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1606{
c0ebfdc3 1607 /* is it in the dynamic region (first chunk)? */
560f2c23 1608 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1609 return pcpu_first_chunk;
c0ebfdc3
DZF
1610
1611 /* is it in the reserved region? */
560f2c23 1612 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1613 return pcpu_reserved_chunk;
88999a89
TH
1614
1615 /*
1616 * The address is relative to unit0 which might be unused and
1617 * thus unmapped. Offset the address to the unit space of the
1618 * current processor before looking it up in the vmalloc
1619 * space. Note that any possible cpu id can be used here, so
1620 * there's no need to worry about preemption or cpu hotplug.
1621 */
1622 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1623 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1624}
1625
3c7be18a 1626#ifdef CONFIG_MEMCG_KMEM
faf65dde
RG
1627static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1628 struct obj_cgroup **objcgp)
3c7be18a
RG
1629{
1630 struct obj_cgroup *objcg;
1631
279c3393 1632 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
faf65dde 1633 return true;
3c7be18a
RG
1634
1635 objcg = get_obj_cgroup_from_current();
1636 if (!objcg)
faf65dde 1637 return true;
3c7be18a
RG
1638
1639 if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1640 obj_cgroup_put(objcg);
faf65dde 1641 return false;
3c7be18a
RG
1642 }
1643
1644 *objcgp = objcg;
faf65dde 1645 return true;
3c7be18a
RG
1646}
1647
1648static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1649 struct pcpu_chunk *chunk, int off,
1650 size_t size)
1651{
1652 if (!objcg)
1653 return;
1654
faf65dde 1655 if (likely(chunk && chunk->obj_cgroups)) {
3c7be18a 1656 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
772616b0
RG
1657
1658 rcu_read_lock();
1659 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1660 size * num_possible_cpus());
1661 rcu_read_unlock();
3c7be18a
RG
1662 } else {
1663 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1664 obj_cgroup_put(objcg);
1665 }
1666}
1667
1668static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1669{
1670 struct obj_cgroup *objcg;
1671
faf65dde 1672 if (unlikely(!chunk->obj_cgroups))
3c7be18a
RG
1673 return;
1674
1675 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
faf65dde
RG
1676 if (!objcg)
1677 return;
3c7be18a
RG
1678 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1679
1680 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1681
772616b0
RG
1682 rcu_read_lock();
1683 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1684 -(size * num_possible_cpus()));
1685 rcu_read_unlock();
1686
3c7be18a
RG
1687 obj_cgroup_put(objcg);
1688}
1689
1690#else /* CONFIG_MEMCG_KMEM */
faf65dde 1691static bool
3c7be18a
RG
1692pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1693{
faf65dde 1694 return true;
3c7be18a
RG
1695}
1696
1697static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1698 struct pcpu_chunk *chunk, int off,
1699 size_t size)
1700{
1701}
1702
1703static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1704{
1705}
1706#endif /* CONFIG_MEMCG_KMEM */
1707
fbf59bc9 1708/**
edcb4639 1709 * pcpu_alloc - the percpu allocator
cae3aeb8 1710 * @size: size of area to allocate in bytes
fbf59bc9 1711 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1712 * @reserved: allocate from the reserved chunk if available
5835d96e 1713 * @gfp: allocation flags
fbf59bc9 1714 *
5835d96e 1715 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
0ea7eeec
DB
1716 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1717 * then no warning will be triggered on invalid or failed allocation
1718 * requests.
fbf59bc9
TH
1719 *
1720 * RETURNS:
1721 * Percpu pointer to the allocated area on success, NULL on failure.
1722 */
5835d96e
TH
1723static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1724 gfp_t gfp)
fbf59bc9 1725{
28307d93
FM
1726 gfp_t pcpu_gfp;
1727 bool is_atomic;
1728 bool do_warn;
3c7be18a 1729 struct obj_cgroup *objcg = NULL;
f2badb0c 1730 static int warn_limit = 10;
8744d859 1731 struct pcpu_chunk *chunk, *next;
f2badb0c 1732 const char *err;
40064aec 1733 int slot, off, cpu, ret;
403a91b1 1734 unsigned long flags;
f528f0b8 1735 void __percpu *ptr;
40064aec 1736 size_t bits, bit_align;
fbf59bc9 1737
28307d93
FM
1738 gfp = current_gfp_context(gfp);
1739 /* whitelisted flags that can be passed to the backing allocators */
1740 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1741 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1742 do_warn = !(gfp & __GFP_NOWARN);
1743
723ad1d9 1744 /*
40064aec
DZF
1745 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1746 * therefore alignment must be a minimum of that many bytes.
1747 * An allocation may have internal fragmentation from rounding up
1748 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1749 */
d2f3c384
DZF
1750 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1751 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1752
d2f3c384 1753 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1754 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1755 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1756
3ca45a46 1757 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1758 !is_power_of_2(align))) {
0ea7eeec 1759 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
756a025f 1760 size, align);
fbf59bc9
TH
1761 return NULL;
1762 }
1763
faf65dde 1764 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
3c7be18a 1765 return NULL;
3c7be18a 1766
f52ba1fe
KT
1767 if (!is_atomic) {
1768 /*
1769 * pcpu_balance_workfn() allocates memory under this mutex,
1770 * and it may wait for memory reclaim. Allow current task
1771 * to become OOM victim, in case of memory pressure.
1772 */
3c7be18a 1773 if (gfp & __GFP_NOFAIL) {
f52ba1fe 1774 mutex_lock(&pcpu_alloc_mutex);
3c7be18a
RG
1775 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1776 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
f52ba1fe 1777 return NULL;
3c7be18a 1778 }
f52ba1fe 1779 }
6710e594 1780
403a91b1 1781 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1782
edcb4639
TH
1783 /* serve reserved allocations from the reserved chunk if available */
1784 if (reserved && pcpu_reserved_chunk) {
1785 chunk = pcpu_reserved_chunk;
833af842 1786
40064aec
DZF
1787 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1788 if (off < 0) {
833af842 1789 err = "alloc from reserved chunk failed";
ccea34b5 1790 goto fail_unlock;
f2badb0c 1791 }
833af842 1792
40064aec 1793 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1794 if (off >= 0)
1795 goto area_found;
833af842 1796
f2badb0c 1797 err = "alloc from reserved chunk failed";
ccea34b5 1798 goto fail_unlock;
edcb4639
TH
1799 }
1800
ccea34b5 1801restart:
edcb4639 1802 /* search through normal chunks */
f1833241 1803 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
faf65dde
RG
1804 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1805 list) {
40064aec
DZF
1806 off = pcpu_find_block_fit(chunk, bits, bit_align,
1807 is_atomic);
8744d859
DZ
1808 if (off < 0) {
1809 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1810 pcpu_chunk_move(chunk, 0);
fbf59bc9 1811 continue;
8744d859 1812 }
ccea34b5 1813
40064aec 1814 off = pcpu_alloc_area(chunk, bits, bit_align, off);
f1833241
RG
1815 if (off >= 0) {
1816 pcpu_reintegrate_chunk(chunk);
fbf59bc9 1817 goto area_found;
f1833241 1818 }
fbf59bc9
TH
1819 }
1820 }
1821
403a91b1 1822 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1823
b38d08f3
TH
1824 /*
1825 * No space left. Create a new chunk. We don't want multiple
1826 * tasks to create chunks simultaneously. Serialize and create iff
1827 * there's still no empty chunk after grabbing the mutex.
1828 */
11df02bf
DZ
1829 if (is_atomic) {
1830 err = "atomic alloc failed, no space left";
5835d96e 1831 goto fail;
11df02bf 1832 }
5835d96e 1833
faf65dde
RG
1834 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1835 chunk = pcpu_create_chunk(pcpu_gfp);
b38d08f3
TH
1836 if (!chunk) {
1837 err = "failed to allocate new chunk";
1838 goto fail;
1839 }
1840
1841 spin_lock_irqsave(&pcpu_lock, flags);
1842 pcpu_chunk_relocate(chunk, -1);
1843 } else {
1844 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1845 }
ccea34b5 1846
ccea34b5 1847 goto restart;
fbf59bc9
TH
1848
1849area_found:
30a5b536 1850 pcpu_stats_area_alloc(chunk, size);
403a91b1 1851 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1852
dca49645 1853 /* populate if not all pages are already there */
5835d96e 1854 if (!is_atomic) {
e837dfde 1855 unsigned int page_start, page_end, rs, re;
dca49645 1856
e04d3208
TH
1857 page_start = PFN_DOWN(off);
1858 page_end = PFN_UP(off + size);
b38d08f3 1859
e837dfde
DZ
1860 bitmap_for_each_clear_region(chunk->populated, rs, re,
1861 page_start, page_end) {
e04d3208
TH
1862 WARN_ON(chunk->immutable);
1863
554fef1c 1864 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
e04d3208
TH
1865
1866 spin_lock_irqsave(&pcpu_lock, flags);
1867 if (ret) {
40064aec 1868 pcpu_free_area(chunk, off);
e04d3208
TH
1869 err = "failed to populate";
1870 goto fail_unlock;
1871 }
b239f7da 1872 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1873 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1874 }
fbf59bc9 1875
e04d3208
TH
1876 mutex_unlock(&pcpu_alloc_mutex);
1877 }
ccea34b5 1878
faf65dde 1879 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1a4d7607
TH
1880 pcpu_schedule_balance_work();
1881
dca49645
TH
1882 /* clear the areas and return address relative to base address */
1883 for_each_possible_cpu(cpu)
1884 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1885
f528f0b8 1886 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1887 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1888
1889 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1890 chunk->base_addr, off, ptr);
1891
3c7be18a
RG
1892 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1893
f528f0b8 1894 return ptr;
ccea34b5
TH
1895
1896fail_unlock:
403a91b1 1897 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1898fail:
df95e795
DZ
1899 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1900
0ea7eeec 1901 if (!is_atomic && do_warn && warn_limit) {
870d4b12 1902 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1903 size, align, is_atomic, err);
f2badb0c
TH
1904 dump_stack();
1905 if (!--warn_limit)
870d4b12 1906 pr_info("limit reached, disable warning\n");
f2badb0c 1907 }
1a4d7607
TH
1908 if (is_atomic) {
1909 /* see the flag handling in pcpu_blance_workfn() */
1910 pcpu_atomic_alloc_failed = true;
1911 pcpu_schedule_balance_work();
6710e594
TH
1912 } else {
1913 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1914 }
3c7be18a
RG
1915
1916 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1917
ccea34b5 1918 return NULL;
fbf59bc9 1919}
edcb4639
TH
1920
1921/**
5835d96e 1922 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1923 * @size: size of area to allocate in bytes
1924 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1925 * @gfp: allocation flags
edcb4639 1926 *
5835d96e
TH
1927 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1928 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
0ea7eeec
DB
1929 * be called from any context but is a lot more likely to fail. If @gfp
1930 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1931 * allocation requests.
ccea34b5 1932 *
edcb4639
TH
1933 * RETURNS:
1934 * Percpu pointer to the allocated area on success, NULL on failure.
1935 */
5835d96e
TH
1936void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1937{
1938 return pcpu_alloc(size, align, false, gfp);
1939}
1940EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1941
1942/**
1943 * __alloc_percpu - allocate dynamic percpu area
1944 * @size: size of area to allocate in bytes
1945 * @align: alignment of area (max PAGE_SIZE)
1946 *
1947 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1948 */
43cf38eb 1949void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1950{
5835d96e 1951 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1952}
fbf59bc9
TH
1953EXPORT_SYMBOL_GPL(__alloc_percpu);
1954
edcb4639
TH
1955/**
1956 * __alloc_reserved_percpu - allocate reserved percpu area
1957 * @size: size of area to allocate in bytes
1958 * @align: alignment of area (max PAGE_SIZE)
1959 *
9329ba97
TH
1960 * Allocate zero-filled percpu area of @size bytes aligned at @align
1961 * from reserved percpu area if arch has set it up; otherwise,
1962 * allocation is served from the same dynamic area. Might sleep.
1963 * Might trigger writeouts.
edcb4639 1964 *
ccea34b5
TH
1965 * CONTEXT:
1966 * Does GFP_KERNEL allocation.
1967 *
edcb4639
TH
1968 * RETURNS:
1969 * Percpu pointer to the allocated area on success, NULL on failure.
1970 */
43cf38eb 1971void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1972{
5835d96e 1973 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1974}
1975
a56dbddf 1976/**
67c2669d 1977 * pcpu_balance_free - manage the amount of free chunks
f1833241 1978 * @empty_only: free chunks only if there are no populated pages
a56dbddf 1979 *
f1833241
RG
1980 * If empty_only is %false, reclaim all fully free chunks regardless of the
1981 * number of populated pages. Otherwise, only reclaim chunks that have no
1982 * populated pages.
a56dbddf 1983 */
faf65dde 1984static void pcpu_balance_free(bool empty_only)
fbf59bc9 1985{
fe6bd8c3 1986 LIST_HEAD(to_free);
faf65dde 1987 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
a56dbddf
TH
1988 struct pcpu_chunk *chunk, *next;
1989
1a4d7607
TH
1990 /*
1991 * There's no reason to keep around multiple unused chunks and VM
1992 * areas can be scarce. Destroy all free chunks except for one.
1993 */
ccea34b5 1994 spin_lock_irq(&pcpu_lock);
a56dbddf 1995
fe6bd8c3 1996 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1997 WARN_ON(chunk->immutable);
1998
1999 /* spare the first one */
fe6bd8c3 2000 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
2001 continue;
2002
f1833241
RG
2003 if (!empty_only || chunk->nr_empty_pop_pages == 0)
2004 list_move(&chunk->list, &to_free);
a56dbddf
TH
2005 }
2006
ccea34b5 2007 spin_unlock_irq(&pcpu_lock);
a56dbddf 2008
fe6bd8c3 2009 list_for_each_entry_safe(chunk, next, &to_free, list) {
e837dfde 2010 unsigned int rs, re;
dca49645 2011
e837dfde
DZ
2012 bitmap_for_each_set_region(chunk->populated, rs, re, 0,
2013 chunk->nr_pages) {
a93ace48 2014 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
2015 spin_lock_irq(&pcpu_lock);
2016 pcpu_chunk_depopulated(chunk, rs, re);
2017 spin_unlock_irq(&pcpu_lock);
a93ace48 2018 }
6081089f 2019 pcpu_destroy_chunk(chunk);
accd4f36 2020 cond_resched();
a56dbddf 2021 }
67c2669d
RG
2022}
2023
2024/**
2025 * pcpu_balance_populated - manage the amount of populated pages
67c2669d
RG
2026 *
2027 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2028 * It is possible that this is called when physical memory is scarce causing
2029 * OOM killer to be triggered. We should avoid doing so until an actual
2030 * allocation causes the failure as it is possible that requests can be
2031 * serviced from already backed regions.
2032 */
faf65dde 2033static void pcpu_balance_populated(void)
67c2669d
RG
2034{
2035 /* gfp flags passed to underlying allocators */
2036 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
67c2669d
RG
2037 struct pcpu_chunk *chunk;
2038 int slot, nr_to_pop, ret;
971f3918 2039
1a4d7607
TH
2040 /*
2041 * Ensure there are certain number of free populated pages for
2042 * atomic allocs. Fill up from the most packed so that atomic
2043 * allocs don't increase fragmentation. If atomic allocation
2044 * failed previously, always populate the maximum amount. This
2045 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2046 * failing indefinitely; however, large atomic allocs are not
2047 * something we support properly and can be highly unreliable and
2048 * inefficient.
2049 */
2050retry_pop:
2051 if (pcpu_atomic_alloc_failed) {
2052 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2053 /* best effort anyway, don't worry about synchronization */
2054 pcpu_atomic_alloc_failed = false;
2055 } else {
2056 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
faf65dde 2057 pcpu_nr_empty_pop_pages,
1a4d7607
TH
2058 0, PCPU_EMPTY_POP_PAGES_HIGH);
2059 }
2060
1c29a3ce 2061 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
e837dfde 2062 unsigned int nr_unpop = 0, rs, re;
1a4d7607
TH
2063
2064 if (!nr_to_pop)
2065 break;
2066
2067 spin_lock_irq(&pcpu_lock);
faf65dde 2068 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
8ab16c43 2069 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
2070 if (nr_unpop)
2071 break;
2072 }
2073 spin_unlock_irq(&pcpu_lock);
2074
2075 if (!nr_unpop)
2076 continue;
2077
2078 /* @chunk can't go away while pcpu_alloc_mutex is held */
e837dfde
DZ
2079 bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2080 chunk->nr_pages) {
2081 int nr = min_t(int, re - rs, nr_to_pop);
1a4d7607 2082
47504ee0 2083 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1a4d7607
TH
2084 if (!ret) {
2085 nr_to_pop -= nr;
2086 spin_lock_irq(&pcpu_lock);
b239f7da 2087 pcpu_chunk_populated(chunk, rs, rs + nr);
1a4d7607
TH
2088 spin_unlock_irq(&pcpu_lock);
2089 } else {
2090 nr_to_pop = 0;
2091 }
2092
2093 if (!nr_to_pop)
2094 break;
2095 }
2096 }
2097
2098 if (nr_to_pop) {
2099 /* ran out of chunks to populate, create a new one and retry */
faf65dde 2100 chunk = pcpu_create_chunk(gfp);
1a4d7607
TH
2101 if (chunk) {
2102 spin_lock_irq(&pcpu_lock);
2103 pcpu_chunk_relocate(chunk, -1);
2104 spin_unlock_irq(&pcpu_lock);
2105 goto retry_pop;
2106 }
2107 }
fbf59bc9
TH
2108}
2109
f1833241
RG
2110/**
2111 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
f1833241
RG
2112 *
2113 * Scan over chunks in the depopulate list and try to release unused populated
2114 * pages back to the system. Depopulated chunks are sidelined to prevent
2115 * repopulating these pages unless required. Fully free chunks are reintegrated
2116 * and freed accordingly (1 is kept around). If we drop below the empty
2117 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2118 * Each chunk is scanned in the reverse order to keep populated pages close to
2119 * the beginning of the chunk.
2120 */
faf65dde 2121static void pcpu_reclaim_populated(void)
f1833241 2122{
f1833241
RG
2123 struct pcpu_chunk *chunk;
2124 struct pcpu_block_md *block;
2125 int i, end;
2126
2127 spin_lock_irq(&pcpu_lock);
2128
2129restart:
2130 /*
2131 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2132 * longer discoverable to allocations whom may populate pages. The only
2133 * other accessor is the free path which only returns area back to the
2134 * allocator not touching the populated bitmap.
2135 */
faf65dde
RG
2136 while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) {
2137 chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot],
f1833241
RG
2138 struct pcpu_chunk, list);
2139 WARN_ON(chunk->immutable);
2140
2141 /*
2142 * Scan chunk's pages in the reverse order to keep populated
2143 * pages close to the beginning of the chunk.
2144 */
2145 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2146 /* no more work to do */
2147 if (chunk->nr_empty_pop_pages == 0)
2148 break;
2149
2150 /* reintegrate chunk to prevent atomic alloc failures */
faf65dde 2151 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
f1833241
RG
2152 pcpu_reintegrate_chunk(chunk);
2153 goto restart;
2154 }
2155
2156 /*
2157 * If the page is empty and populated, start or
2158 * extend the (i, end) range. If i == 0, decrease
2159 * i and perform the depopulation to cover the last
2160 * (first) page in the chunk.
2161 */
2162 block = chunk->md_blocks + i;
2163 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2164 test_bit(i, chunk->populated)) {
2165 if (end == -1)
2166 end = i;
2167 if (i > 0)
2168 continue;
2169 i--;
2170 }
2171
2172 /* depopulate if there is an active range */
2173 if (end == -1)
2174 continue;
2175
2176 spin_unlock_irq(&pcpu_lock);
2177 pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2178 cond_resched();
2179 spin_lock_irq(&pcpu_lock);
2180
2181 pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2182
2183 /* reset the range and continue */
2184 end = -1;
2185 }
2186
2187 if (chunk->free_bytes == pcpu_unit_size)
2188 pcpu_reintegrate_chunk(chunk);
2189 else
2190 list_move(&chunk->list,
faf65dde 2191 &pcpu_chunk_lists[pcpu_sidelined_slot]);
f1833241
RG
2192 }
2193
2194 spin_unlock_irq(&pcpu_lock);
2195}
2196
3c7be18a
RG
2197/**
2198 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2199 * @work: unused
2200 *
f1833241
RG
2201 * For each chunk type, manage the number of fully free chunks and the number of
2202 * populated pages. An important thing to consider is when pages are freed and
2203 * how they contribute to the global counts.
3c7be18a
RG
2204 */
2205static void pcpu_balance_workfn(struct work_struct *work)
2206{
f1833241
RG
2207 /*
2208 * pcpu_balance_free() is called twice because the first time we may
2209 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2210 * to grow other chunks. This then gives pcpu_reclaim_populated() time
2211 * to move fully free chunks to the active list to be freed if
2212 * appropriate.
2213 */
faf65dde
RG
2214 mutex_lock(&pcpu_alloc_mutex);
2215 pcpu_balance_free(false);
2216 pcpu_reclaim_populated();
2217 pcpu_balance_populated();
2218 pcpu_balance_free(true);
2219 mutex_unlock(&pcpu_alloc_mutex);
3c7be18a
RG
2220}
2221
fbf59bc9
TH
2222/**
2223 * free_percpu - free percpu area
2224 * @ptr: pointer to area to free
2225 *
ccea34b5
TH
2226 * Free percpu area @ptr.
2227 *
2228 * CONTEXT:
2229 * Can be called from atomic context.
fbf59bc9 2230 */
43cf38eb 2231void free_percpu(void __percpu *ptr)
fbf59bc9 2232{
129182e5 2233 void *addr;
fbf59bc9 2234 struct pcpu_chunk *chunk;
ccea34b5 2235 unsigned long flags;
3c7be18a 2236 int size, off;
198790d9 2237 bool need_balance = false;
fbf59bc9
TH
2238
2239 if (!ptr)
2240 return;
2241
f528f0b8
CM
2242 kmemleak_free_percpu(ptr);
2243
129182e5
AM
2244 addr = __pcpu_ptr_to_addr(ptr);
2245
ccea34b5 2246 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
2247
2248 chunk = pcpu_chunk_addr_search(addr);
bba174f5 2249 off = addr - chunk->base_addr;
fbf59bc9 2250
3c7be18a
RG
2251 size = pcpu_free_area(chunk, off);
2252
3c7be18a 2253 pcpu_memcg_free_hook(chunk, off, size);
fbf59bc9 2254
f1833241
RG
2255 /*
2256 * If there are more than one fully free chunks, wake up grim reaper.
2257 * If the chunk is isolated, it may be in the process of being
2258 * reclaimed. Let reclaim manage cleaning up of that chunk.
2259 */
2260 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
2261 struct pcpu_chunk *pos;
2262
faf65dde 2263 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
fbf59bc9 2264 if (pos != chunk) {
198790d9 2265 need_balance = true;
fbf59bc9
TH
2266 break;
2267 }
f1833241
RG
2268 } else if (pcpu_should_reclaim_chunk(chunk)) {
2269 pcpu_isolate_chunk(chunk);
2270 need_balance = true;
fbf59bc9
TH
2271 }
2272
df95e795
DZ
2273 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2274
ccea34b5 2275 spin_unlock_irqrestore(&pcpu_lock, flags);
198790d9
JS
2276
2277 if (need_balance)
2278 pcpu_schedule_balance_work();
fbf59bc9
TH
2279}
2280EXPORT_SYMBOL_GPL(free_percpu);
2281
383776fa 2282bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 2283{
bbddff05 2284#ifdef CONFIG_SMP
10fad5e4
TH
2285 const size_t static_size = __per_cpu_end - __per_cpu_start;
2286 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2287 unsigned int cpu;
2288
2289 for_each_possible_cpu(cpu) {
2290 void *start = per_cpu_ptr(base, cpu);
383776fa 2291 void *va = (void *)addr;
10fad5e4 2292
383776fa 2293 if (va >= start && va < start + static_size) {
8ce371f9 2294 if (can_addr) {
383776fa 2295 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
2296 *can_addr += (unsigned long)
2297 per_cpu_ptr(base, get_boot_cpu_id());
2298 }
10fad5e4 2299 return true;
383776fa
TG
2300 }
2301 }
bbddff05
TH
2302#endif
2303 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
2304 return false;
2305}
2306
383776fa
TG
2307/**
2308 * is_kernel_percpu_address - test whether address is from static percpu area
2309 * @addr: address to test
2310 *
2311 * Test whether @addr belongs to in-kernel static percpu area. Module
2312 * static percpu areas are not considered. For those, use
2313 * is_module_percpu_address().
2314 *
2315 * RETURNS:
2316 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2317 */
2318bool is_kernel_percpu_address(unsigned long addr)
2319{
2320 return __is_kernel_percpu_address(addr, NULL);
2321}
2322
3b034b0d
VG
2323/**
2324 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2325 * @addr: the address to be converted to physical address
2326 *
2327 * Given @addr which is dereferenceable address obtained via one of
2328 * percpu access macros, this function translates it into its physical
2329 * address. The caller is responsible for ensuring @addr stays valid
2330 * until this function finishes.
2331 *
67589c71
DY
2332 * percpu allocator has special setup for the first chunk, which currently
2333 * supports either embedding in linear address space or vmalloc mapping,
2334 * and, from the second one, the backing allocator (currently either vm or
2335 * km) provides translation.
2336 *
bffc4375 2337 * The addr can be translated simply without checking if it falls into the
67589c71
DY
2338 * first chunk. But the current code reflects better how percpu allocator
2339 * actually works, and the verification can discover both bugs in percpu
2340 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2341 * code.
2342 *
3b034b0d
VG
2343 * RETURNS:
2344 * The physical address for @addr.
2345 */
2346phys_addr_t per_cpu_ptr_to_phys(void *addr)
2347{
9983b6f0
TH
2348 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2349 bool in_first_chunk = false;
a855b84c 2350 unsigned long first_low, first_high;
9983b6f0
TH
2351 unsigned int cpu;
2352
2353 /*
a855b84c 2354 * The following test on unit_low/high isn't strictly
9983b6f0
TH
2355 * necessary but will speed up lookups of addresses which
2356 * aren't in the first chunk.
c0ebfdc3
DZF
2357 *
2358 * The address check is against full chunk sizes. pcpu_base_addr
2359 * points to the beginning of the first chunk including the
2360 * static region. Assumes good intent as the first chunk may
2361 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 2362 */
c0ebfdc3
DZF
2363 first_low = (unsigned long)pcpu_base_addr +
2364 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2365 first_high = (unsigned long)pcpu_base_addr +
2366 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
2367 if ((unsigned long)addr >= first_low &&
2368 (unsigned long)addr < first_high) {
9983b6f0
TH
2369 for_each_possible_cpu(cpu) {
2370 void *start = per_cpu_ptr(base, cpu);
2371
2372 if (addr >= start && addr < start + pcpu_unit_size) {
2373 in_first_chunk = true;
2374 break;
2375 }
2376 }
2377 }
2378
2379 if (in_first_chunk) {
eac522ef 2380 if (!is_vmalloc_addr(addr))
020ec653
TH
2381 return __pa(addr);
2382 else
9f57bd4d
ES
2383 return page_to_phys(vmalloc_to_page(addr)) +
2384 offset_in_page(addr);
020ec653 2385 } else
9f57bd4d
ES
2386 return page_to_phys(pcpu_addr_to_page(addr)) +
2387 offset_in_page(addr);
3b034b0d
VG
2388}
2389
fbf59bc9 2390/**
fd1e8a1f
TH
2391 * pcpu_alloc_alloc_info - allocate percpu allocation info
2392 * @nr_groups: the number of groups
2393 * @nr_units: the number of units
2394 *
2395 * Allocate ai which is large enough for @nr_groups groups containing
2396 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2397 * cpu_map array which is long enough for @nr_units and filled with
2398 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2399 * pointer of other groups.
2400 *
2401 * RETURNS:
2402 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2403 * failure.
2404 */
2405struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2406 int nr_units)
2407{
2408 struct pcpu_alloc_info *ai;
2409 size_t base_size, ai_size;
2410 void *ptr;
2411 int unit;
2412
14d37612 2413 base_size = ALIGN(struct_size(ai, groups, nr_groups),
fd1e8a1f
TH
2414 __alignof__(ai->groups[0].cpu_map[0]));
2415 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2416
26fb3dae 2417 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
fd1e8a1f
TH
2418 if (!ptr)
2419 return NULL;
2420 ai = ptr;
2421 ptr += base_size;
2422
2423 ai->groups[0].cpu_map = ptr;
2424
2425 for (unit = 0; unit < nr_units; unit++)
2426 ai->groups[0].cpu_map[unit] = NR_CPUS;
2427
2428 ai->nr_groups = nr_groups;
2429 ai->__ai_size = PFN_ALIGN(ai_size);
2430
2431 return ai;
2432}
2433
2434/**
2435 * pcpu_free_alloc_info - free percpu allocation info
2436 * @ai: pcpu_alloc_info to free
2437 *
2438 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2439 */
2440void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2441{
999c17e3 2442 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
2443}
2444
fd1e8a1f
TH
2445/**
2446 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2447 * @lvl: loglevel
2448 * @ai: allocation info to dump
2449 *
2450 * Print out information about @ai using loglevel @lvl.
2451 */
2452static void pcpu_dump_alloc_info(const char *lvl,
2453 const struct pcpu_alloc_info *ai)
033e48fb 2454{
fd1e8a1f 2455 int group_width = 1, cpu_width = 1, width;
033e48fb 2456 char empty_str[] = "--------";
fd1e8a1f
TH
2457 int alloc = 0, alloc_end = 0;
2458 int group, v;
2459 int upa, apl; /* units per alloc, allocs per line */
2460
2461 v = ai->nr_groups;
2462 while (v /= 10)
2463 group_width++;
033e48fb 2464
fd1e8a1f 2465 v = num_possible_cpus();
033e48fb 2466 while (v /= 10)
fd1e8a1f
TH
2467 cpu_width++;
2468 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 2469
fd1e8a1f
TH
2470 upa = ai->alloc_size / ai->unit_size;
2471 width = upa * (cpu_width + 1) + group_width + 3;
2472 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 2473
fd1e8a1f
TH
2474 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2475 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2476 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 2477
fd1e8a1f
TH
2478 for (group = 0; group < ai->nr_groups; group++) {
2479 const struct pcpu_group_info *gi = &ai->groups[group];
2480 int unit = 0, unit_end = 0;
2481
2482 BUG_ON(gi->nr_units % upa);
2483 for (alloc_end += gi->nr_units / upa;
2484 alloc < alloc_end; alloc++) {
2485 if (!(alloc % apl)) {
1170532b 2486 pr_cont("\n");
fd1e8a1f
TH
2487 printk("%spcpu-alloc: ", lvl);
2488 }
1170532b 2489 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
2490
2491 for (unit_end += upa; unit < unit_end; unit++)
2492 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
2493 pr_cont("%0*d ",
2494 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 2495 else
1170532b 2496 pr_cont("%s ", empty_str);
033e48fb 2497 }
033e48fb 2498 }
1170532b 2499 pr_cont("\n");
033e48fb 2500}
033e48fb 2501
fbf59bc9 2502/**
8d408b4b 2503 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 2504 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 2505 * @base_addr: mapped address
8d408b4b
TH
2506 *
2507 * Initialize the first percpu chunk which contains the kernel static
69ab285b 2508 * percpu area. This function is to be called from arch percpu area
38a6be52 2509 * setup path.
8d408b4b 2510 *
fd1e8a1f
TH
2511 * @ai contains all information necessary to initialize the first
2512 * chunk and prime the dynamic percpu allocator.
2513 *
2514 * @ai->static_size is the size of static percpu area.
2515 *
2516 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
2517 * reserve after the static area in the first chunk. This reserves
2518 * the first chunk such that it's available only through reserved
2519 * percpu allocation. This is primarily used to serve module percpu
2520 * static areas on architectures where the addressing model has
2521 * limited offset range for symbol relocations to guarantee module
2522 * percpu symbols fall inside the relocatable range.
2523 *
fd1e8a1f
TH
2524 * @ai->dyn_size determines the number of bytes available for dynamic
2525 * allocation in the first chunk. The area between @ai->static_size +
2526 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 2527 *
fd1e8a1f
TH
2528 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2529 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2530 * @ai->dyn_size.
8d408b4b 2531 *
fd1e8a1f
TH
2532 * @ai->atom_size is the allocation atom size and used as alignment
2533 * for vm areas.
8d408b4b 2534 *
fd1e8a1f
TH
2535 * @ai->alloc_size is the allocation size and always multiple of
2536 * @ai->atom_size. This is larger than @ai->atom_size if
2537 * @ai->unit_size is larger than @ai->atom_size.
2538 *
2539 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2540 * percpu areas. Units which should be colocated are put into the
2541 * same group. Dynamic VM areas will be allocated according to these
2542 * groupings. If @ai->nr_groups is zero, a single group containing
2543 * all units is assumed.
8d408b4b 2544 *
38a6be52
TH
2545 * The caller should have mapped the first chunk at @base_addr and
2546 * copied static data to each unit.
fbf59bc9 2547 *
c0ebfdc3
DZF
2548 * The first chunk will always contain a static and a dynamic region.
2549 * However, the static region is not managed by any chunk. If the first
2550 * chunk also contains a reserved region, it is served by two chunks -
2551 * one for the reserved region and one for the dynamic region. They
2552 * share the same vm, but use offset regions in the area allocation map.
2553 * The chunk serving the dynamic region is circulated in the chunk slots
2554 * and available for dynamic allocation like any other chunk.
fbf59bc9 2555 */
163fa234
KW
2556void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2557 void *base_addr)
fbf59bc9 2558{
b9c39442 2559 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 2560 size_t static_size, dyn_size;
0c4169c3 2561 struct pcpu_chunk *chunk;
6563297c
TH
2562 unsigned long *group_offsets;
2563 size_t *group_sizes;
fb435d52 2564 unsigned long *unit_off;
fbf59bc9 2565 unsigned int cpu;
fd1e8a1f
TH
2566 int *unit_map;
2567 int group, unit, i;
c0ebfdc3
DZF
2568 int map_size;
2569 unsigned long tmp_addr;
f655f405 2570 size_t alloc_size;
fbf59bc9 2571
635b75fc
TH
2572#define PCPU_SETUP_BUG_ON(cond) do { \
2573 if (unlikely(cond)) { \
870d4b12
JP
2574 pr_emerg("failed to initialize, %s\n", #cond); \
2575 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 2576 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
2577 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2578 BUG(); \
2579 } \
2580} while (0)
2581
2f39e637 2582 /* sanity checks */
635b75fc 2583 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 2584#ifdef CONFIG_SMP
635b75fc 2585 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 2586 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 2587#endif
635b75fc 2588 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 2589 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 2590 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 2591 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 2592 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 2593 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 2594 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 2595 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 2596 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
2597 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2598 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 2599 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 2600
6563297c 2601 /* process group information and build config tables accordingly */
f655f405
MR
2602 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2603 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2604 if (!group_offsets)
2605 panic("%s: Failed to allocate %zu bytes\n", __func__,
2606 alloc_size);
2607
2608 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2609 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2610 if (!group_sizes)
2611 panic("%s: Failed to allocate %zu bytes\n", __func__,
2612 alloc_size);
2613
2614 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2615 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2616 if (!unit_map)
2617 panic("%s: Failed to allocate %zu bytes\n", __func__,
2618 alloc_size);
2619
2620 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2621 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2622 if (!unit_off)
2623 panic("%s: Failed to allocate %zu bytes\n", __func__,
2624 alloc_size);
2f39e637 2625
fd1e8a1f 2626 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 2627 unit_map[cpu] = UINT_MAX;
a855b84c
TH
2628
2629 pcpu_low_unit_cpu = NR_CPUS;
2630 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 2631
fd1e8a1f
TH
2632 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2633 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 2634
6563297c
TH
2635 group_offsets[group] = gi->base_offset;
2636 group_sizes[group] = gi->nr_units * ai->unit_size;
2637
fd1e8a1f
TH
2638 for (i = 0; i < gi->nr_units; i++) {
2639 cpu = gi->cpu_map[i];
2640 if (cpu == NR_CPUS)
2641 continue;
8d408b4b 2642
9f295664 2643 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
2644 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2645 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 2646
fd1e8a1f 2647 unit_map[cpu] = unit + i;
fb435d52
TH
2648 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2649
a855b84c
TH
2650 /* determine low/high unit_cpu */
2651 if (pcpu_low_unit_cpu == NR_CPUS ||
2652 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2653 pcpu_low_unit_cpu = cpu;
2654 if (pcpu_high_unit_cpu == NR_CPUS ||
2655 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2656 pcpu_high_unit_cpu = cpu;
fd1e8a1f 2657 }
2f39e637 2658 }
fd1e8a1f
TH
2659 pcpu_nr_units = unit;
2660
2661 for_each_possible_cpu(cpu)
635b75fc
TH
2662 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2663
2664 /* we're done parsing the input, undefine BUG macro and dump config */
2665#undef PCPU_SETUP_BUG_ON
bcbea798 2666 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2667
6563297c
TH
2668 pcpu_nr_groups = ai->nr_groups;
2669 pcpu_group_offsets = group_offsets;
2670 pcpu_group_sizes = group_sizes;
fd1e8a1f 2671 pcpu_unit_map = unit_map;
fb435d52 2672 pcpu_unit_offsets = unit_off;
2f39e637
TH
2673
2674 /* determine basic parameters */
fd1e8a1f 2675 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2676 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2677 pcpu_atom_size = ai->atom_size;
61cf93d3
DZ
2678 pcpu_chunk_struct_size = struct_size(chunk, populated,
2679 BITS_TO_LONGS(pcpu_unit_pages));
cafe8816 2680
30a5b536
DZ
2681 pcpu_stats_save_ai(ai);
2682
d9b55eeb 2683 /*
f1833241
RG
2684 * Allocate chunk slots. The slots after the active slots are:
2685 * sidelined_slot - isolated, depopulated chunks
2686 * free_slot - fully free chunks
2687 * to_depopulate_slot - isolated, chunks to depopulate
d9b55eeb 2688 */
f1833241
RG
2689 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2690 pcpu_free_slot = pcpu_sidelined_slot + 1;
2691 pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2692 pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
3c7be18a 2693 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
faf65dde 2694 sizeof(pcpu_chunk_lists[0]),
3c7be18a
RG
2695 SMP_CACHE_BYTES);
2696 if (!pcpu_chunk_lists)
f655f405 2697 panic("%s: Failed to allocate %zu bytes\n", __func__,
faf65dde 2698 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
3c7be18a 2699
faf65dde
RG
2700 for (i = 0; i < pcpu_nr_slots; i++)
2701 INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
fbf59bc9 2702
d2f3c384
DZF
2703 /*
2704 * The end of the static region needs to be aligned with the
2705 * minimum allocation size as this offsets the reserved and
2706 * dynamic region. The first chunk ends page aligned by
2707 * expanding the dynamic region, therefore the dynamic region
2708 * can be shrunk to compensate while still staying above the
2709 * configured sizes.
2710 */
2711 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2712 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2713
edcb4639 2714 /*
c0ebfdc3
DZF
2715 * Initialize first chunk.
2716 * If the reserved_size is non-zero, this initializes the reserved
2717 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2718 * and the dynamic region is initialized here. The first chunk,
2719 * pcpu_first_chunk, will always point to the chunk that serves
2720 * the dynamic region.
edcb4639 2721 */
d2f3c384
DZF
2722 tmp_addr = (unsigned long)base_addr + static_size;
2723 map_size = ai->reserved_size ?: dyn_size;
40064aec 2724 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2725
edcb4639 2726 /* init dynamic chunk if necessary */
b9c39442 2727 if (ai->reserved_size) {
0c4169c3 2728 pcpu_reserved_chunk = chunk;
b9c39442 2729
d2f3c384 2730 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2731 ai->reserved_size;
d2f3c384 2732 map_size = dyn_size;
40064aec 2733 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2734 }
2735
2441d15c 2736 /* link the first chunk in */
0c4169c3 2737 pcpu_first_chunk = chunk;
faf65dde 2738 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2739 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2740
7e8a6304
DZF
2741 /* include all regions of the first chunk */
2742 pcpu_nr_populated += PFN_DOWN(size_sum);
2743
30a5b536 2744 pcpu_stats_chunk_alloc();
df95e795 2745 trace_percpu_create_chunk(base_addr);
30a5b536 2746
fbf59bc9 2747 /* we're done */
bba174f5 2748 pcpu_base_addr = base_addr;
fbf59bc9 2749}
66c3a757 2750
bbddff05
TH
2751#ifdef CONFIG_SMP
2752
17f3609c 2753const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2754 [PCPU_FC_AUTO] = "auto",
2755 [PCPU_FC_EMBED] = "embed",
2756 [PCPU_FC_PAGE] = "page",
f58dc01b 2757};
66c3a757 2758
f58dc01b 2759enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2760
f58dc01b
TH
2761static int __init percpu_alloc_setup(char *str)
2762{
5479c78a
CG
2763 if (!str)
2764 return -EINVAL;
2765
f58dc01b
TH
2766 if (0)
2767 /* nada */;
2768#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2769 else if (!strcmp(str, "embed"))
2770 pcpu_chosen_fc = PCPU_FC_EMBED;
2771#endif
2772#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2773 else if (!strcmp(str, "page"))
2774 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2775#endif
2776 else
870d4b12 2777 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2778
f58dc01b 2779 return 0;
66c3a757 2780}
f58dc01b 2781early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2782
3c9a024f
TH
2783/*
2784 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2785 * Build it if needed by the arch config or the generic setup is going
2786 * to be used.
2787 */
08fc4580
TH
2788#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2789 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2790#define BUILD_EMBED_FIRST_CHUNK
2791#endif
2792
2793/* build pcpu_page_first_chunk() iff needed by the arch config */
2794#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2795#define BUILD_PAGE_FIRST_CHUNK
2796#endif
2797
2798/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2799#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2800/**
2801 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2802 * @reserved_size: the size of reserved percpu area in bytes
2803 * @dyn_size: minimum free size for dynamic allocation in bytes
2804 * @atom_size: allocation atom size
2805 * @cpu_distance_fn: callback to determine distance between cpus, optional
2806 *
2807 * This function determines grouping of units, their mappings to cpus
2808 * and other parameters considering needed percpu size, allocation
2809 * atom size and distances between CPUs.
2810 *
bffc4375 2811 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2812 * LOCAL_DISTANCE both ways are grouped together and share space for
2813 * units in the same group. The returned configuration is guaranteed
2814 * to have CPUs on different nodes on different groups and >=75% usage
2815 * of allocated virtual address space.
2816 *
2817 * RETURNS:
2818 * On success, pointer to the new allocation_info is returned. On
2819 * failure, ERR_PTR value is returned.
2820 */
258e0815 2821static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
3c9a024f
TH
2822 size_t reserved_size, size_t dyn_size,
2823 size_t atom_size,
2824 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2825{
2826 static int group_map[NR_CPUS] __initdata;
2827 static int group_cnt[NR_CPUS] __initdata;
d7d29ac7 2828 static struct cpumask mask __initdata;
3c9a024f
TH
2829 const size_t static_size = __per_cpu_end - __per_cpu_start;
2830 int nr_groups = 1, nr_units = 0;
2831 size_t size_sum, min_unit_size, alloc_size;
3f649ab7 2832 int upa, max_upa, best_upa; /* units_per_alloc */
3c9a024f
TH
2833 int last_allocs, group, unit;
2834 unsigned int cpu, tcpu;
2835 struct pcpu_alloc_info *ai;
2836 unsigned int *cpu_map;
2837
2838 /* this function may be called multiple times */
2839 memset(group_map, 0, sizeof(group_map));
2840 memset(group_cnt, 0, sizeof(group_cnt));
d7d29ac7 2841 cpumask_clear(&mask);
3c9a024f
TH
2842
2843 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2844 size_sum = PFN_ALIGN(static_size + reserved_size +
2845 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2846 dyn_size = size_sum - static_size - reserved_size;
2847
2848 /*
2849 * Determine min_unit_size, alloc_size and max_upa such that
2850 * alloc_size is multiple of atom_size and is the smallest
25985edc 2851 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2852 * or larger than min_unit_size.
2853 */
2854 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2855
9c015162 2856 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2857 alloc_size = roundup(min_unit_size, atom_size);
2858 upa = alloc_size / min_unit_size;
f09f1243 2859 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2860 upa--;
2861 max_upa = upa;
2862
d7d29ac7
WY
2863 cpumask_copy(&mask, cpu_possible_mask);
2864
3c9a024f 2865 /* group cpus according to their proximity */
d7d29ac7
WY
2866 for (group = 0; !cpumask_empty(&mask); group++) {
2867 /* pop the group's first cpu */
2868 cpu = cpumask_first(&mask);
3c9a024f
TH
2869 group_map[cpu] = group;
2870 group_cnt[group]++;
d7d29ac7
WY
2871 cpumask_clear_cpu(cpu, &mask);
2872
2873 for_each_cpu(tcpu, &mask) {
2874 if (!cpu_distance_fn ||
2875 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2876 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2877 group_map[tcpu] = group;
2878 group_cnt[group]++;
2879 cpumask_clear_cpu(tcpu, &mask);
2880 }
2881 }
3c9a024f 2882 }
d7d29ac7 2883 nr_groups = group;
3c9a024f
TH
2884
2885 /*
9c015162
DZF
2886 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2887 * Expand the unit_size until we use >= 75% of the units allocated.
2888 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2889 */
2890 last_allocs = INT_MAX;
4829c791 2891 best_upa = 0;
3c9a024f
TH
2892 for (upa = max_upa; upa; upa--) {
2893 int allocs = 0, wasted = 0;
2894
f09f1243 2895 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2896 continue;
2897
2898 for (group = 0; group < nr_groups; group++) {
2899 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2900 allocs += this_allocs;
2901 wasted += this_allocs * upa - group_cnt[group];
2902 }
2903
2904 /*
2905 * Don't accept if wastage is over 1/3. The
2906 * greater-than comparison ensures upa==1 always
2907 * passes the following check.
2908 */
2909 if (wasted > num_possible_cpus() / 3)
2910 continue;
2911
2912 /* and then don't consume more memory */
2913 if (allocs > last_allocs)
2914 break;
2915 last_allocs = allocs;
2916 best_upa = upa;
2917 }
4829c791 2918 BUG_ON(!best_upa);
3c9a024f
TH
2919 upa = best_upa;
2920
2921 /* allocate and fill alloc_info */
2922 for (group = 0; group < nr_groups; group++)
2923 nr_units += roundup(group_cnt[group], upa);
2924
2925 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2926 if (!ai)
2927 return ERR_PTR(-ENOMEM);
2928 cpu_map = ai->groups[0].cpu_map;
2929
2930 for (group = 0; group < nr_groups; group++) {
2931 ai->groups[group].cpu_map = cpu_map;
2932 cpu_map += roundup(group_cnt[group], upa);
2933 }
2934
2935 ai->static_size = static_size;
2936 ai->reserved_size = reserved_size;
2937 ai->dyn_size = dyn_size;
2938 ai->unit_size = alloc_size / upa;
2939 ai->atom_size = atom_size;
2940 ai->alloc_size = alloc_size;
2941
2de7852f 2942 for (group = 0, unit = 0; group < nr_groups; group++) {
3c9a024f
TH
2943 struct pcpu_group_info *gi = &ai->groups[group];
2944
2945 /*
2946 * Initialize base_offset as if all groups are located
2947 * back-to-back. The caller should update this to
2948 * reflect actual allocation.
2949 */
2950 gi->base_offset = unit * ai->unit_size;
2951
2952 for_each_possible_cpu(cpu)
2953 if (group_map[cpu] == group)
2954 gi->cpu_map[gi->nr_units++] = cpu;
2955 gi->nr_units = roundup(gi->nr_units, upa);
2956 unit += gi->nr_units;
2957 }
2958 BUG_ON(unit != nr_units);
2959
2960 return ai;
2961}
2962#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2963
2964#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2965/**
2966 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2967 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2968 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2969 * @atom_size: allocation atom size
2970 * @cpu_distance_fn: callback to determine distance between cpus, optional
2971 * @alloc_fn: function to allocate percpu page
25985edc 2972 * @free_fn: function to free percpu page
66c3a757
TH
2973 *
2974 * This is a helper to ease setting up embedded first percpu chunk and
2975 * can be called where pcpu_setup_first_chunk() is expected.
2976 *
2977 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2978 * by calling @alloc_fn and used as-is without being mapped into
2979 * vmalloc area. Allocations are always whole multiples of @atom_size
2980 * aligned to @atom_size.
2981 *
2982 * This enables the first chunk to piggy back on the linear physical
2983 * mapping which often uses larger page size. Please note that this
2984 * can result in very sparse cpu->unit mapping on NUMA machines thus
2985 * requiring large vmalloc address space. Don't use this allocator if
2986 * vmalloc space is not orders of magnitude larger than distances
2987 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2988 *
4ba6ce25 2989 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2990 *
2991 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2992 * size, the leftover is returned using @free_fn.
66c3a757
TH
2993 *
2994 * RETURNS:
fb435d52 2995 * 0 on success, -errno on failure.
66c3a757 2996 */
4ba6ce25 2997int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2998 size_t atom_size,
2999 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3000 pcpu_fc_alloc_fn_t alloc_fn,
3001 pcpu_fc_free_fn_t free_fn)
66c3a757 3002{
c8826dd5
TH
3003 void *base = (void *)ULONG_MAX;
3004 void **areas = NULL;
fd1e8a1f 3005 struct pcpu_alloc_info *ai;
93c76b6b 3006 size_t size_sum, areas_size;
3007 unsigned long max_distance;
163fa234 3008 int group, i, highest_group, rc = 0;
66c3a757 3009
c8826dd5
TH
3010 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3011 cpu_distance_fn);
fd1e8a1f
TH
3012 if (IS_ERR(ai))
3013 return PTR_ERR(ai);
66c3a757 3014
fd1e8a1f 3015 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 3016 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 3017
26fb3dae 3018 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
c8826dd5 3019 if (!areas) {
fb435d52 3020 rc = -ENOMEM;
c8826dd5 3021 goto out_free;
fa8a7094 3022 }
66c3a757 3023
9b739662 3024 /* allocate, copy and determine base address & max_distance */
3025 highest_group = 0;
c8826dd5
TH
3026 for (group = 0; group < ai->nr_groups; group++) {
3027 struct pcpu_group_info *gi = &ai->groups[group];
3028 unsigned int cpu = NR_CPUS;
3029 void *ptr;
3030
3031 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3032 cpu = gi->cpu_map[i];
3033 BUG_ON(cpu == NR_CPUS);
3034
3035 /* allocate space for the whole group */
3036 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
3037 if (!ptr) {
3038 rc = -ENOMEM;
3039 goto out_free_areas;
3040 }
f528f0b8
CM
3041 /* kmemleak tracks the percpu allocations separately */
3042 kmemleak_free(ptr);
c8826dd5 3043 areas[group] = ptr;
fd1e8a1f 3044
c8826dd5 3045 base = min(ptr, base);
9b739662 3046 if (ptr > areas[highest_group])
3047 highest_group = group;
3048 }
3049 max_distance = areas[highest_group] - base;
3050 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3051
3052 /* warn if maximum distance is further than 75% of vmalloc space */
3053 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3054 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3055 max_distance, VMALLOC_TOTAL);
3056#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3057 /* and fail if we have fallback */
3058 rc = -EINVAL;
3059 goto out_free_areas;
3060#endif
42b64281
TH
3061 }
3062
3063 /*
3064 * Copy data and free unused parts. This should happen after all
3065 * allocations are complete; otherwise, we may end up with
3066 * overlapping groups.
3067 */
3068 for (group = 0; group < ai->nr_groups; group++) {
3069 struct pcpu_group_info *gi = &ai->groups[group];
3070 void *ptr = areas[group];
c8826dd5
TH
3071
3072 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3073 if (gi->cpu_map[i] == NR_CPUS) {
3074 /* unused unit, free whole */
3075 free_fn(ptr, ai->unit_size);
3076 continue;
3077 }
3078 /* copy and return the unused part */
3079 memcpy(ptr, __per_cpu_load, ai->static_size);
3080 free_fn(ptr + size_sum, ai->unit_size - size_sum);
3081 }
fa8a7094 3082 }
66c3a757 3083
c8826dd5 3084 /* base address is now known, determine group base offsets */
6ea529a2 3085 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 3086 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 3087 }
c8826dd5 3088
00206a69
MC
3089 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3090 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
fd1e8a1f 3091 ai->dyn_size, ai->unit_size);
d4b95f80 3092
163fa234 3093 pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
3094 goto out_free;
3095
3096out_free_areas:
3097 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
3098 if (areas[group])
3099 free_fn(areas[group],
3100 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 3101out_free:
fd1e8a1f 3102 pcpu_free_alloc_info(ai);
c8826dd5 3103 if (areas)
999c17e3 3104 memblock_free_early(__pa(areas), areas_size);
fb435d52 3105 return rc;
d4b95f80 3106}
3c9a024f 3107#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 3108
3c9a024f 3109#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 3110/**
00ae4064 3111 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
3112 * @reserved_size: the size of reserved percpu area in bytes
3113 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 3114 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
3115 * @populate_pte_fn: function to populate pte
3116 *
00ae4064
TH
3117 * This is a helper to ease setting up page-remapped first percpu
3118 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
3119 *
3120 * This is the basic allocator. Static percpu area is allocated
3121 * page-by-page into vmalloc area.
3122 *
3123 * RETURNS:
fb435d52 3124 * 0 on success, -errno on failure.
d4b95f80 3125 */
fb435d52
TH
3126int __init pcpu_page_first_chunk(size_t reserved_size,
3127 pcpu_fc_alloc_fn_t alloc_fn,
3128 pcpu_fc_free_fn_t free_fn,
3129 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 3130{
8f05a6a6 3131 static struct vm_struct vm;
fd1e8a1f 3132 struct pcpu_alloc_info *ai;
00ae4064 3133 char psize_str[16];
ce3141a2 3134 int unit_pages;
d4b95f80 3135 size_t pages_size;
ce3141a2 3136 struct page **pages;
163fa234 3137 int unit, i, j, rc = 0;
8f606604 3138 int upa;
3139 int nr_g0_units;
d4b95f80 3140
00ae4064
TH
3141 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3142
4ba6ce25 3143 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
3144 if (IS_ERR(ai))
3145 return PTR_ERR(ai);
3146 BUG_ON(ai->nr_groups != 1);
8f606604 3147 upa = ai->alloc_size/ai->unit_size;
3148 nr_g0_units = roundup(num_possible_cpus(), upa);
0b59c25f 3149 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
8f606604 3150 pcpu_free_alloc_info(ai);
3151 return -EINVAL;
3152 }
fd1e8a1f
TH
3153
3154 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
3155
3156 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
3157 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3158 sizeof(pages[0]));
7e1c4e27 3159 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
f655f405
MR
3160 if (!pages)
3161 panic("%s: Failed to allocate %zu bytes\n", __func__,
3162 pages_size);
d4b95f80 3163
8f05a6a6 3164 /* allocate pages */
d4b95f80 3165 j = 0;
8f606604 3166 for (unit = 0; unit < num_possible_cpus(); unit++) {
3167 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 3168 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
3169 void *ptr;
3170
3cbc8565 3171 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 3172 if (!ptr) {
870d4b12 3173 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 3174 psize_str, cpu);
d4b95f80
TH
3175 goto enomem;
3176 }
f528f0b8
CM
3177 /* kmemleak tracks the percpu allocations separately */
3178 kmemleak_free(ptr);
ce3141a2 3179 pages[j++] = virt_to_page(ptr);
d4b95f80 3180 }
8f606604 3181 }
d4b95f80 3182
8f05a6a6
TH
3183 /* allocate vm area, map the pages and copy static data */
3184 vm.flags = VM_ALLOC;
fd1e8a1f 3185 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
3186 vm_area_register_early(&vm, PAGE_SIZE);
3187
fd1e8a1f 3188 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 3189 unsigned long unit_addr =
fd1e8a1f 3190 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 3191
ce3141a2 3192 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
3193 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3194
3195 /* pte already populated, the following shouldn't fail */
fb435d52
TH
3196 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3197 unit_pages);
3198 if (rc < 0)
3199 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 3200
8f05a6a6
TH
3201 /*
3202 * FIXME: Archs with virtual cache should flush local
3203 * cache for the linear mapping here - something
3204 * equivalent to flush_cache_vmap() on the local cpu.
3205 * flush_cache_vmap() can't be used as most supporting
3206 * data structures are not set up yet.
3207 */
3208
3209 /* copy static data */
fd1e8a1f 3210 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
3211 }
3212
3213 /* we're ready, commit */
00206a69
MC
3214 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3215 unit_pages, psize_str, ai->static_size,
fd1e8a1f 3216 ai->reserved_size, ai->dyn_size);
d4b95f80 3217
163fa234 3218 pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
3219 goto out_free_ar;
3220
3221enomem:
3222 while (--j >= 0)
ce3141a2 3223 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 3224 rc = -ENOMEM;
d4b95f80 3225out_free_ar:
999c17e3 3226 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 3227 pcpu_free_alloc_info(ai);
fb435d52 3228 return rc;
d4b95f80 3229}
3c9a024f 3230#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 3231
bbddff05 3232#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 3233/*
bbddff05 3234 * Generic SMP percpu area setup.
e74e3962
TH
3235 *
3236 * The embedding helper is used because its behavior closely resembles
3237 * the original non-dynamic generic percpu area setup. This is
3238 * important because many archs have addressing restrictions and might
3239 * fail if the percpu area is located far away from the previous
3240 * location. As an added bonus, in non-NUMA cases, embedding is
3241 * generally a good idea TLB-wise because percpu area can piggy back
3242 * on the physical linear memory mapping which uses large page
3243 * mappings on applicable archs.
3244 */
e74e3962
TH
3245unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3246EXPORT_SYMBOL(__per_cpu_offset);
3247
c8826dd5
TH
3248static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3249 size_t align)
3250{
26fb3dae 3251 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 3252}
66c3a757 3253
c8826dd5
TH
3254static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3255{
999c17e3 3256 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
3257}
3258
e74e3962
TH
3259void __init setup_per_cpu_areas(void)
3260{
e74e3962
TH
3261 unsigned long delta;
3262 unsigned int cpu;
fb435d52 3263 int rc;
e74e3962
TH
3264
3265 /*
3266 * Always reserve area for module percpu variables. That's
3267 * what the legacy allocator did.
3268 */
fb435d52 3269 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
3270 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3271 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 3272 if (rc < 0)
bbddff05 3273 panic("Failed to initialize percpu areas.");
e74e3962
TH
3274
3275 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3276 for_each_possible_cpu(cpu)
fb435d52 3277 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 3278}
bbddff05
TH
3279#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3280
3281#else /* CONFIG_SMP */
3282
3283/*
3284 * UP percpu area setup.
3285 *
3286 * UP always uses km-based percpu allocator with identity mapping.
3287 * Static percpu variables are indistinguishable from the usual static
3288 * variables and don't require any special preparation.
3289 */
3290void __init setup_per_cpu_areas(void)
3291{
3292 const size_t unit_size =
3293 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3294 PERCPU_DYNAMIC_RESERVE));
3295 struct pcpu_alloc_info *ai;
3296 void *fc;
3297
3298 ai = pcpu_alloc_alloc_info(1, 1);
26fb3dae 3299 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
bbddff05
TH
3300 if (!ai || !fc)
3301 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
3302 /* kmemleak tracks the percpu allocations separately */
3303 kmemleak_free(fc);
bbddff05
TH
3304
3305 ai->dyn_size = unit_size;
3306 ai->unit_size = unit_size;
3307 ai->atom_size = unit_size;
3308 ai->alloc_size = unit_size;
3309 ai->groups[0].nr_units = 1;
3310 ai->groups[0].cpu_map[0] = 0;
3311
163fa234 3312 pcpu_setup_first_chunk(ai, fc);
438a5061 3313 pcpu_free_alloc_info(ai);
bbddff05
TH
3314}
3315
3316#endif /* CONFIG_SMP */
099a19d9 3317
7e8a6304
DZF
3318/*
3319 * pcpu_nr_pages - calculate total number of populated backing pages
3320 *
3321 * This reflects the number of pages populated to back chunks. Metadata is
3322 * excluded in the number exposed in meminfo as the number of backing pages
3323 * scales with the number of cpus and can quickly outweigh the memory used for
3324 * metadata. It also keeps this calculation nice and simple.
3325 *
3326 * RETURNS:
3327 * Total number of populated backing pages in use by the allocator.
3328 */
3329unsigned long pcpu_nr_pages(void)
3330{
3331 return pcpu_nr_populated * pcpu_nr_units;
3332}
3333
1a4d7607
TH
3334/*
3335 * Percpu allocator is initialized early during boot when neither slab or
3336 * workqueue is available. Plug async management until everything is up
3337 * and running.
3338 */
3339static int __init percpu_enable_async(void)
3340{
3341 pcpu_async_enabled = true;
3342 return 0;
3343}
3344subsys_initcall(percpu_enable_async);