]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/percpu.c
percpu: use metadata blocks to update the chunk contig hint
[mirror_ubuntu-hirsute-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
ca460b3c 66#include <linux/lcm.h>
fbf59bc9 67#include <linux/list.h>
a530b795 68#include <linux/log2.h>
fbf59bc9
TH
69#include <linux/mm.h>
70#include <linux/module.h>
71#include <linux/mutex.h>
72#include <linux/percpu.h>
73#include <linux/pfn.h>
fbf59bc9 74#include <linux/slab.h>
ccea34b5 75#include <linux/spinlock.h>
fbf59bc9 76#include <linux/vmalloc.h>
a56dbddf 77#include <linux/workqueue.h>
f528f0b8 78#include <linux/kmemleak.h>
fbf59bc9
TH
79
80#include <asm/cacheflush.h>
e0100983 81#include <asm/sections.h>
fbf59bc9 82#include <asm/tlbflush.h>
3b034b0d 83#include <asm/io.h>
fbf59bc9 84
df95e795
DZ
85#define CREATE_TRACE_POINTS
86#include <trace/events/percpu.h>
87
8fa3ed80
DZ
88#include "percpu-internal.h"
89
40064aec
DZF
90/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
91#define PCPU_SLOT_BASE_SHIFT 5
92
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3 184/**
560f2c23
DZF
185 * pcpu_addr_in_chunk - check if the address is served from this chunk
186 * @chunk: chunk of interest
187 * @addr: percpu address
c0ebfdc3
DZF
188 *
189 * RETURNS:
560f2c23 190 * True if the address is served from this chunk.
c0ebfdc3 191 */
560f2c23 192static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 193{
c0ebfdc3
DZF
194 void *start_addr, *end_addr;
195
560f2c23 196 if (!chunk)
c0ebfdc3 197 return false;
020ec653 198
560f2c23
DZF
199 start_addr = chunk->base_addr + chunk->start_offset;
200 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
201 chunk->end_offset;
c0ebfdc3
DZF
202
203 return addr >= start_addr && addr < end_addr;
020ec653
TH
204}
205
d9b55eeb 206static int __pcpu_size_to_slot(int size)
fbf59bc9 207{
cae3aeb8 208 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
209 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
210}
211
d9b55eeb
TH
212static int pcpu_size_to_slot(int size)
213{
214 if (size == pcpu_unit_size)
215 return pcpu_nr_slots - 1;
216 return __pcpu_size_to_slot(size);
217}
218
fbf59bc9
TH
219static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
220{
40064aec 221 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
fbf59bc9
TH
222 return 0;
223
40064aec 224 return pcpu_size_to_slot(chunk->free_bytes);
fbf59bc9
TH
225}
226
88999a89
TH
227/* set the pointer to a chunk in a page struct */
228static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
229{
230 page->index = (unsigned long)pcpu;
231}
232
233/* obtain pointer to a chunk from a page struct */
234static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
235{
236 return (struct pcpu_chunk *)page->index;
237}
238
239static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 240{
2f39e637 241 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
242}
243
c0ebfdc3
DZF
244static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
247}
248
9983b6f0
TH
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
fbf59bc9 251{
c0ebfdc3
DZF
252 return (unsigned long)chunk->base_addr +
253 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
254}
255
91e914c5 256static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 257{
91e914c5
DZF
258 *rs = find_next_zero_bit(bitmap, end, *rs);
259 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
260}
261
91e914c5 262static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 263{
91e914c5
DZF
264 *rs = find_next_bit(bitmap, end, *rs);
265 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
266}
267
268/*
91e914c5
DZF
269 * Bitmap region iterators. Iterates over the bitmap between
270 * [@start, @end) in @chunk. @rs and @re should be integer variables
271 * and will be set to start and end index of the current free region.
ce3141a2 272 */
91e914c5
DZF
273#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
274 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
275 (rs) < (re); \
276 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 277
91e914c5
DZF
278#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 282
ca460b3c
DZF
283/*
284 * The following are helper functions to help access bitmaps and convert
285 * between bitmap offsets to address offsets.
286 */
287static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
288{
289 return chunk->alloc_map +
290 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
291}
292
293static unsigned long pcpu_off_to_block_index(int off)
294{
295 return off / PCPU_BITMAP_BLOCK_BITS;
296}
297
298static unsigned long pcpu_off_to_block_off(int off)
299{
300 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
301}
302
b185cd0d
DZF
303static unsigned long pcpu_block_off_to_off(int index, int off)
304{
305 return index * PCPU_BITMAP_BLOCK_BITS + off;
306}
307
525ca84d
DZF
308/**
309 * pcpu_next_md_free_region - finds the next hint free area
310 * @chunk: chunk of interest
311 * @bit_off: chunk offset
312 * @bits: size of free area
313 *
314 * Helper function for pcpu_for_each_md_free_region. It checks
315 * block->contig_hint and performs aggregation across blocks to find the
316 * next hint. It modifies bit_off and bits in-place to be consumed in the
317 * loop.
318 */
319static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
320 int *bits)
321{
322 int i = pcpu_off_to_block_index(*bit_off);
323 int block_off = pcpu_off_to_block_off(*bit_off);
324 struct pcpu_block_md *block;
325
326 *bits = 0;
327 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
328 block++, i++) {
329 /* handles contig area across blocks */
330 if (*bits) {
331 *bits += block->left_free;
332 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
333 continue;
334 return;
335 }
336
337 /*
338 * This checks three things. First is there a contig_hint to
339 * check. Second, have we checked this hint before by
340 * comparing the block_off. Third, is this the same as the
341 * right contig hint. In the last case, it spills over into
342 * the next block and should be handled by the contig area
343 * across blocks code.
344 */
345 *bits = block->contig_hint;
346 if (*bits && block->contig_hint_start >= block_off &&
347 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
348 *bit_off = pcpu_block_off_to_off(i,
349 block->contig_hint_start);
350 return;
351 }
352
353 *bits = block->right_free;
354 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
355 }
356}
357
358/*
359 * Metadata free area iterators. These perform aggregation of free areas
360 * based on the metadata blocks and return the offset @bit_off and size in
361 * bits of the free area @bits.
362 */
363#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
364 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
365 (bit_off) < pcpu_chunk_map_bits((chunk)); \
366 (bit_off) += (bits) + 1, \
367 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
368
fbf59bc9 369/**
90459ce0 370 * pcpu_mem_zalloc - allocate memory
1880d93b 371 * @size: bytes to allocate
fbf59bc9 372 *
1880d93b 373 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 374 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 375 * memory is always zeroed.
fbf59bc9 376 *
ccea34b5
TH
377 * CONTEXT:
378 * Does GFP_KERNEL allocation.
379 *
fbf59bc9 380 * RETURNS:
1880d93b 381 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 382 */
90459ce0 383static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 384{
099a19d9
TH
385 if (WARN_ON_ONCE(!slab_is_available()))
386 return NULL;
387
1880d93b
TH
388 if (size <= PAGE_SIZE)
389 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
390 else
391 return vzalloc(size);
1880d93b 392}
fbf59bc9 393
1880d93b
TH
394/**
395 * pcpu_mem_free - free memory
396 * @ptr: memory to free
1880d93b 397 *
90459ce0 398 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 399 */
1d5cfdb0 400static void pcpu_mem_free(void *ptr)
1880d93b 401{
1d5cfdb0 402 kvfree(ptr);
fbf59bc9
TH
403}
404
405/**
406 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
407 * @chunk: chunk of interest
408 * @oslot: the previous slot it was on
409 *
410 * This function is called after an allocation or free changed @chunk.
411 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
412 * moved to the slot. Note that the reserved chunk is never put on
413 * chunk slots.
ccea34b5
TH
414 *
415 * CONTEXT:
416 * pcpu_lock.
fbf59bc9
TH
417 */
418static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
419{
420 int nslot = pcpu_chunk_slot(chunk);
421
edcb4639 422 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
423 if (oslot < nslot)
424 list_move(&chunk->list, &pcpu_slot[nslot]);
425 else
426 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
427 }
428}
429
9f7dcf22 430/**
40064aec 431 * pcpu_cnt_pop_pages- counts populated backing pages in range
833af842 432 * @chunk: chunk of interest
40064aec
DZF
433 * @bit_off: start offset
434 * @bits: size of area to check
9f7dcf22 435 *
40064aec
DZF
436 * Calculates the number of populated pages in the region
437 * [page_start, page_end). This keeps track of how many empty populated
438 * pages are available and decide if async work should be scheduled.
ccea34b5 439 *
9f7dcf22 440 * RETURNS:
40064aec 441 * The nr of populated pages.
9f7dcf22 442 */
40064aec
DZF
443static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
444 int bits)
9f7dcf22 445{
40064aec
DZF
446 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
447 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
4f996e23 448
40064aec 449 if (page_start >= page_end)
9f7dcf22
TH
450 return 0;
451
40064aec
DZF
452 /*
453 * bitmap_weight counts the number of bits set in a bitmap up to
454 * the specified number of bits. This is counting the populated
455 * pages up to page_end and then subtracting the populated pages
456 * up to page_start to count the populated pages in
457 * [page_start, page_end).
458 */
459 return bitmap_weight(chunk->populated, page_end) -
460 bitmap_weight(chunk->populated, page_start);
833af842
TH
461}
462
463/**
40064aec 464 * pcpu_chunk_update - updates the chunk metadata given a free area
833af842 465 * @chunk: chunk of interest
40064aec
DZF
466 * @bit_off: chunk offset
467 * @bits: size of free area
833af842 468 *
13f96637 469 * This updates the chunk's contig hint and starting offset given a free area.
268625a6 470 * Choose the best starting offset if the contig hint is equal.
40064aec
DZF
471 */
472static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
473{
13f96637
DZF
474 if (bits > chunk->contig_bits) {
475 chunk->contig_bits_start = bit_off;
40064aec 476 chunk->contig_bits = bits;
268625a6
DZF
477 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
478 (!bit_off ||
479 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
480 /* use the start with the best alignment */
481 chunk->contig_bits_start = bit_off;
13f96637 482 }
40064aec
DZF
483}
484
485/**
486 * pcpu_chunk_refresh_hint - updates metadata about a chunk
487 * @chunk: chunk of interest
833af842 488 *
525ca84d
DZF
489 * Iterates over the metadata blocks to find the largest contig area.
490 * It also counts the populated pages and uses the delta to update the
491 * global count.
833af842 492 *
40064aec
DZF
493 * Updates:
494 * chunk->contig_bits
13f96637 495 * chunk->contig_bits_start
525ca84d 496 * nr_empty_pop_pages (chunk and global)
833af842 497 */
40064aec 498static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
833af842 499{
525ca84d 500 int bit_off, bits, nr_empty_pop_pages;
833af842 501
40064aec
DZF
502 /* clear metadata */
503 chunk->contig_bits = 0;
6710e594 504
525ca84d 505 bit_off = chunk->first_bit;
40064aec 506 bits = nr_empty_pop_pages = 0;
525ca84d
DZF
507 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
508 pcpu_chunk_update(chunk, bit_off, bits);
833af842 509
525ca84d 510 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
40064aec 511 }
9f7dcf22 512
40064aec
DZF
513 /*
514 * Keep track of nr_empty_pop_pages.
515 *
516 * The chunk maintains the previous number of free pages it held,
517 * so the delta is used to update the global counter. The reserved
518 * chunk is not part of the free page count as they are populated
519 * at init and are special to serving reserved allocations.
520 */
521 if (chunk != pcpu_reserved_chunk)
522 pcpu_nr_empty_pop_pages +=
523 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
a002d148 524
40064aec
DZF
525 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
526}
9f7dcf22 527
ca460b3c
DZF
528/**
529 * pcpu_block_update - updates a block given a free area
530 * @block: block of interest
531 * @start: start offset in block
532 * @end: end offset in block
533 *
534 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
535 * expected to be the entirety of the free area within a block. Chooses
536 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
537 */
538static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
539{
540 int contig = end - start;
541
542 block->first_free = min(block->first_free, start);
543 if (start == 0)
544 block->left_free = contig;
545
546 if (end == PCPU_BITMAP_BLOCK_BITS)
547 block->right_free = contig;
548
549 if (contig > block->contig_hint) {
550 block->contig_hint_start = start;
551 block->contig_hint = contig;
268625a6
DZF
552 } else if (block->contig_hint_start && contig == block->contig_hint &&
553 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
554 /* use the start with the best alignment */
555 block->contig_hint_start = start;
ca460b3c
DZF
556 }
557}
558
559/**
560 * pcpu_block_refresh_hint
561 * @chunk: chunk of interest
562 * @index: index of the metadata block
563 *
564 * Scans over the block beginning at first_free and updates the block
565 * metadata accordingly.
566 */
567static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
568{
569 struct pcpu_block_md *block = chunk->md_blocks + index;
570 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
571 int rs, re; /* region start, region end */
572
573 /* clear hints */
574 block->contig_hint = 0;
575 block->left_free = block->right_free = 0;
576
577 /* iterate over free areas and update the contig hints */
578 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
579 PCPU_BITMAP_BLOCK_BITS) {
580 pcpu_block_update(block, rs, re);
581 }
582}
583
584/**
585 * pcpu_block_update_hint_alloc - update hint on allocation path
586 * @chunk: chunk of interest
587 * @bit_off: chunk offset
588 * @bits: size of request
fc304334
DZF
589 *
590 * Updates metadata for the allocation path. The metadata only has to be
591 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
592 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
593 */
594static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
595 int bits)
596{
597 struct pcpu_block_md *s_block, *e_block, *block;
598 int s_index, e_index; /* block indexes of the freed allocation */
599 int s_off, e_off; /* block offsets of the freed allocation */
600
601 /*
602 * Calculate per block offsets.
603 * The calculation uses an inclusive range, but the resulting offsets
604 * are [start, end). e_index always points to the last block in the
605 * range.
606 */
607 s_index = pcpu_off_to_block_index(bit_off);
608 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
609 s_off = pcpu_off_to_block_off(bit_off);
610 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
611
612 s_block = chunk->md_blocks + s_index;
613 e_block = chunk->md_blocks + e_index;
614
615 /*
616 * Update s_block.
fc304334
DZF
617 * block->first_free must be updated if the allocation takes its place.
618 * If the allocation breaks the contig_hint, a scan is required to
619 * restore this hint.
ca460b3c 620 */
fc304334
DZF
621 if (s_off == s_block->first_free)
622 s_block->first_free = find_next_zero_bit(
623 pcpu_index_alloc_map(chunk, s_index),
624 PCPU_BITMAP_BLOCK_BITS,
625 s_off + bits);
626
627 if (s_off >= s_block->contig_hint_start &&
628 s_off < s_block->contig_hint_start + s_block->contig_hint) {
629 /* block contig hint is broken - scan to fix it */
630 pcpu_block_refresh_hint(chunk, s_index);
631 } else {
632 /* update left and right contig manually */
633 s_block->left_free = min(s_block->left_free, s_off);
634 if (s_index == e_index)
635 s_block->right_free = min_t(int, s_block->right_free,
636 PCPU_BITMAP_BLOCK_BITS - e_off);
637 else
638 s_block->right_free = 0;
639 }
ca460b3c
DZF
640
641 /*
642 * Update e_block.
643 */
644 if (s_index != e_index) {
fc304334
DZF
645 /*
646 * When the allocation is across blocks, the end is along
647 * the left part of the e_block.
648 */
649 e_block->first_free = find_next_zero_bit(
650 pcpu_index_alloc_map(chunk, e_index),
651 PCPU_BITMAP_BLOCK_BITS, e_off);
652
653 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
654 /* reset the block */
655 e_block++;
656 } else {
657 if (e_off > e_block->contig_hint_start) {
658 /* contig hint is broken - scan to fix it */
659 pcpu_block_refresh_hint(chunk, e_index);
660 } else {
661 e_block->left_free = 0;
662 e_block->right_free =
663 min_t(int, e_block->right_free,
664 PCPU_BITMAP_BLOCK_BITS - e_off);
665 }
666 }
ca460b3c
DZF
667
668 /* update in-between md_blocks */
669 for (block = s_block + 1; block < e_block; block++) {
670 block->contig_hint = 0;
671 block->left_free = 0;
672 block->right_free = 0;
673 }
674 }
675
fc304334
DZF
676 /*
677 * The only time a full chunk scan is required is if the chunk
678 * contig hint is broken. Otherwise, it means a smaller space
679 * was used and therefore the chunk contig hint is still correct.
680 */
681 if (bit_off >= chunk->contig_bits_start &&
682 bit_off < chunk->contig_bits_start + chunk->contig_bits)
683 pcpu_chunk_refresh_hint(chunk);
ca460b3c
DZF
684}
685
686/**
687 * pcpu_block_update_hint_free - updates the block hints on the free path
688 * @chunk: chunk of interest
689 * @bit_off: chunk offset
690 * @bits: size of request
b185cd0d
DZF
691 *
692 * Updates metadata for the allocation path. This avoids a blind block
693 * refresh by making use of the block contig hints. If this fails, it scans
694 * forward and backward to determine the extent of the free area. This is
695 * capped at the boundary of blocks.
696 *
697 * A chunk update is triggered if a page becomes free, a block becomes free,
698 * or the free spans across blocks. This tradeoff is to minimize iterating
699 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
700 * may be off by up to a page, but it will never be more than the available
701 * space. If the contig hint is contained in one block, it will be accurate.
ca460b3c
DZF
702 */
703static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
704 int bits)
705{
706 struct pcpu_block_md *s_block, *e_block, *block;
707 int s_index, e_index; /* block indexes of the freed allocation */
708 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 709 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
710
711 /*
712 * Calculate per block offsets.
713 * The calculation uses an inclusive range, but the resulting offsets
714 * are [start, end). e_index always points to the last block in the
715 * range.
716 */
717 s_index = pcpu_off_to_block_index(bit_off);
718 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
719 s_off = pcpu_off_to_block_off(bit_off);
720 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
721
722 s_block = chunk->md_blocks + s_index;
723 e_block = chunk->md_blocks + e_index;
724
b185cd0d
DZF
725 /*
726 * Check if the freed area aligns with the block->contig_hint.
727 * If it does, then the scan to find the beginning/end of the
728 * larger free area can be avoided.
729 *
730 * start and end refer to beginning and end of the free area
731 * within each their respective blocks. This is not necessarily
732 * the entire free area as it may span blocks past the beginning
733 * or end of the block.
734 */
735 start = s_off;
736 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
737 start = s_block->contig_hint_start;
738 } else {
739 /*
740 * Scan backwards to find the extent of the free area.
741 * find_last_bit returns the starting bit, so if the start bit
742 * is returned, that means there was no last bit and the
743 * remainder of the chunk is free.
744 */
745 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
746 start);
747 start = (start == l_bit) ? 0 : l_bit + 1;
748 }
749
750 end = e_off;
751 if (e_off == e_block->contig_hint_start)
752 end = e_block->contig_hint_start + e_block->contig_hint;
753 else
754 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
755 PCPU_BITMAP_BLOCK_BITS, end);
756
ca460b3c 757 /* update s_block */
b185cd0d
DZF
758 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
759 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
760
761 /* freeing in the same block */
762 if (s_index != e_index) {
763 /* update e_block */
b185cd0d 764 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
765
766 /* reset md_blocks in the middle */
767 for (block = s_block + 1; block < e_block; block++) {
768 block->first_free = 0;
769 block->contig_hint_start = 0;
770 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
771 block->left_free = PCPU_BITMAP_BLOCK_BITS;
772 block->right_free = PCPU_BITMAP_BLOCK_BITS;
773 }
774 }
775
b185cd0d
DZF
776 /*
777 * Refresh chunk metadata when the free makes a page free, a block
778 * free, or spans across blocks. The contig hint may be off by up to
779 * a page, but if the hint is contained in a block, it will be accurate
780 * with the else condition below.
781 */
782 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
783 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
784 s_index != e_index)
785 pcpu_chunk_refresh_hint(chunk);
786 else
787 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
788 s_block->contig_hint);
ca460b3c
DZF
789}
790
40064aec
DZF
791/**
792 * pcpu_is_populated - determines if the region is populated
793 * @chunk: chunk of interest
794 * @bit_off: chunk offset
795 * @bits: size of area
796 * @next_off: return value for the next offset to start searching
797 *
798 * For atomic allocations, check if the backing pages are populated.
799 *
800 * RETURNS:
801 * Bool if the backing pages are populated.
802 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
803 */
804static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
805 int *next_off)
806{
807 int page_start, page_end, rs, re;
833af842 808
40064aec
DZF
809 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
810 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 811
40064aec
DZF
812 rs = page_start;
813 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
814 if (rs >= page_end)
815 return true;
833af842 816
40064aec
DZF
817 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
818 return false;
9f7dcf22
TH
819}
820
a16037c8 821/**
40064aec
DZF
822 * pcpu_find_block_fit - finds the block index to start searching
823 * @chunk: chunk of interest
824 * @alloc_bits: size of request in allocation units
825 * @align: alignment of area (max PAGE_SIZE bytes)
826 * @pop_only: use populated regions only
827 *
828 * RETURNS:
829 * The offset in the bitmap to begin searching.
830 * -1 if no offset is found.
a16037c8 831 */
40064aec
DZF
832static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
833 size_t align, bool pop_only)
a16037c8 834{
40064aec
DZF
835 int bit_off, bits;
836 int re; /* region end */
a16037c8 837
13f96637
DZF
838 /*
839 * Check to see if the allocation can fit in the chunk's contig hint.
840 * This is an optimization to prevent scanning by assuming if it
841 * cannot fit in the global hint, there is memory pressure and creating
842 * a new chunk would happen soon.
843 */
844 bit_off = ALIGN(chunk->contig_bits_start, align) -
845 chunk->contig_bits_start;
846 if (bit_off + alloc_bits > chunk->contig_bits)
847 return -1;
848
86b442fb
DZF
849 pcpu_for_each_unpop_region(chunk->alloc_map, bit_off, re,
850 chunk->first_bit,
40064aec
DZF
851 pcpu_chunk_map_bits(chunk)) {
852 bits = re - bit_off;
a16037c8 853
40064aec
DZF
854 /* check alignment */
855 bits -= ALIGN(bit_off, align) - bit_off;
856 bit_off = ALIGN(bit_off, align);
857 if (bits < alloc_bits)
858 continue;
a16037c8 859
40064aec
DZF
860 bits = alloc_bits;
861 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
862 &bit_off))
863 break;
a16037c8 864
40064aec 865 bits = 0;
a16037c8 866 }
40064aec
DZF
867
868 if (bit_off == pcpu_chunk_map_bits(chunk))
869 return -1;
870
871 return bit_off;
a16037c8
TH
872}
873
fbf59bc9 874/**
40064aec 875 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 876 * @chunk: chunk of interest
40064aec
DZF
877 * @alloc_bits: size of request in allocation units
878 * @align: alignment of area (max PAGE_SIZE)
879 * @start: bit_off to start searching
9f7dcf22 880 *
40064aec
DZF
881 * This function takes in a @start offset to begin searching to fit an
882 * allocation of @alloc_bits with alignment @align. If it confirms a
883 * valid free area, it then updates the allocation and boundary maps
884 * accordingly.
ccea34b5 885 *
fbf59bc9 886 * RETURNS:
40064aec
DZF
887 * Allocated addr offset in @chunk on success.
888 * -1 if no matching area is found.
fbf59bc9 889 */
40064aec
DZF
890static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
891 size_t align, int start)
fbf59bc9 892{
40064aec
DZF
893 size_t align_mask = (align) ? (align - 1) : 0;
894 int bit_off, end, oslot;
a16037c8 895
40064aec 896 lockdep_assert_held(&pcpu_lock);
fbf59bc9 897
40064aec 898 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 899
40064aec
DZF
900 /*
901 * Search to find a fit.
902 */
903 end = start + alloc_bits;
904 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
905 alloc_bits, align_mask);
906 if (bit_off >= end)
907 return -1;
fbf59bc9 908
40064aec
DZF
909 /* update alloc map */
910 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 911
40064aec
DZF
912 /* update boundary map */
913 set_bit(bit_off, chunk->bound_map);
914 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
915 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 916
40064aec 917 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 918
86b442fb
DZF
919 /* update first free bit */
920 if (bit_off == chunk->first_bit)
921 chunk->first_bit = find_next_zero_bit(
922 chunk->alloc_map,
923 pcpu_chunk_map_bits(chunk),
924 bit_off + alloc_bits);
925
ca460b3c 926 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 927
fbf59bc9
TH
928 pcpu_chunk_relocate(chunk, oslot);
929
40064aec 930 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
931}
932
933/**
40064aec 934 * pcpu_free_area - frees the corresponding offset
fbf59bc9 935 * @chunk: chunk of interest
40064aec 936 * @off: addr offset into chunk
ccea34b5 937 *
40064aec
DZF
938 * This function determines the size of an allocation to free using
939 * the boundary bitmap and clears the allocation map.
fbf59bc9 940 */
40064aec 941static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 942{
40064aec 943 int bit_off, bits, end, oslot;
723ad1d9 944
5ccd30e4 945 lockdep_assert_held(&pcpu_lock);
30a5b536 946 pcpu_stats_area_dealloc(chunk);
5ccd30e4 947
40064aec 948 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 949
40064aec 950 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 951
40064aec
DZF
952 /* find end index */
953 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
954 bit_off + 1);
955 bits = end - bit_off;
956 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 957
40064aec
DZF
958 /* update metadata */
959 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
b539b87f 960
86b442fb
DZF
961 /* update first free bit */
962 chunk->first_bit = min(chunk->first_bit, bit_off);
963
ca460b3c 964 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 965
fbf59bc9
TH
966 pcpu_chunk_relocate(chunk, oslot);
967}
968
ca460b3c
DZF
969static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
970{
971 struct pcpu_block_md *md_block;
972
973 for (md_block = chunk->md_blocks;
974 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
975 md_block++) {
976 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
977 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
978 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
979 }
980}
981
40064aec
DZF
982/**
983 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
984 * @tmp_addr: the start of the region served
985 * @map_size: size of the region served
986 *
987 * This is responsible for creating the chunks that serve the first chunk. The
988 * base_addr is page aligned down of @tmp_addr while the region end is page
989 * aligned up. Offsets are kept track of to determine the region served. All
990 * this is done to appease the bitmap allocator in avoiding partial blocks.
991 *
992 * RETURNS:
993 * Chunk serving the region at @tmp_addr of @map_size.
994 */
c0ebfdc3 995static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 996 int map_size)
10edf5b0
DZF
997{
998 struct pcpu_chunk *chunk;
ca460b3c 999 unsigned long aligned_addr, lcm_align;
40064aec 1000 int start_offset, offset_bits, region_size, region_bits;
c0ebfdc3
DZF
1001
1002 /* region calculations */
1003 aligned_addr = tmp_addr & PAGE_MASK;
1004
1005 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1006
ca460b3c
DZF
1007 /*
1008 * Align the end of the region with the LCM of PAGE_SIZE and
1009 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1010 * the other.
1011 */
1012 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1013 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1014
c0ebfdc3 1015 /* allocate chunk */
8ab16c43
DZF
1016 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1017 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1018 0);
c0ebfdc3 1019
10edf5b0 1020 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1021
1022 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1023 chunk->start_offset = start_offset;
6b9d7c8e 1024 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1025
8ab16c43 1026 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1027 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1028
ca460b3c
DZF
1029 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1030 sizeof(chunk->alloc_map[0]), 0);
1031 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1032 sizeof(chunk->bound_map[0]), 0);
1033 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1034 sizeof(chunk->md_blocks[0]), 0);
1035 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1036
1037 /* manage populated page bitmap */
1038 chunk->immutable = true;
8ab16c43
DZF
1039 bitmap_fill(chunk->populated, chunk->nr_pages);
1040 chunk->nr_populated = chunk->nr_pages;
40064aec
DZF
1041 chunk->nr_empty_pop_pages =
1042 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1043 map_size / PCPU_MIN_ALLOC_SIZE);
10edf5b0 1044
40064aec
DZF
1045 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1046 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1047
1048 if (chunk->start_offset) {
1049 /* hide the beginning of the bitmap */
40064aec
DZF
1050 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1051 bitmap_set(chunk->alloc_map, 0, offset_bits);
1052 set_bit(0, chunk->bound_map);
1053 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1054
86b442fb
DZF
1055 chunk->first_bit = offset_bits;
1056
ca460b3c 1057 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1058 }
1059
6b9d7c8e
DZF
1060 if (chunk->end_offset) {
1061 /* hide the end of the bitmap */
40064aec
DZF
1062 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1063 bitmap_set(chunk->alloc_map,
1064 pcpu_chunk_map_bits(chunk) - offset_bits,
1065 offset_bits);
1066 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1067 chunk->bound_map);
1068 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1069
ca460b3c
DZF
1070 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1071 - offset_bits, offset_bits);
1072 }
40064aec 1073
10edf5b0
DZF
1074 return chunk;
1075}
1076
6081089f
TH
1077static struct pcpu_chunk *pcpu_alloc_chunk(void)
1078{
1079 struct pcpu_chunk *chunk;
40064aec 1080 int region_bits;
6081089f 1081
90459ce0 1082 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
1083 if (!chunk)
1084 return NULL;
1085
40064aec
DZF
1086 INIT_LIST_HEAD(&chunk->list);
1087 chunk->nr_pages = pcpu_unit_pages;
1088 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1089
40064aec
DZF
1090 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1091 sizeof(chunk->alloc_map[0]));
1092 if (!chunk->alloc_map)
1093 goto alloc_map_fail;
6081089f 1094
40064aec
DZF
1095 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1096 sizeof(chunk->bound_map[0]));
1097 if (!chunk->bound_map)
1098 goto bound_map_fail;
6081089f 1099
ca460b3c
DZF
1100 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1101 sizeof(chunk->md_blocks[0]));
1102 if (!chunk->md_blocks)
1103 goto md_blocks_fail;
1104
1105 pcpu_init_md_blocks(chunk);
1106
40064aec
DZF
1107 /* init metadata */
1108 chunk->contig_bits = region_bits;
1109 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1110
6081089f 1111 return chunk;
40064aec 1112
ca460b3c
DZF
1113md_blocks_fail:
1114 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1115bound_map_fail:
1116 pcpu_mem_free(chunk->alloc_map);
1117alloc_map_fail:
1118 pcpu_mem_free(chunk);
1119
1120 return NULL;
6081089f
TH
1121}
1122
1123static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1124{
1125 if (!chunk)
1126 return;
40064aec
DZF
1127 pcpu_mem_free(chunk->bound_map);
1128 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1129 pcpu_mem_free(chunk);
6081089f
TH
1130}
1131
b539b87f
TH
1132/**
1133 * pcpu_chunk_populated - post-population bookkeeping
1134 * @chunk: pcpu_chunk which got populated
1135 * @page_start: the start page
1136 * @page_end: the end page
40064aec 1137 * @for_alloc: if this is to populate for allocation
b539b87f
TH
1138 *
1139 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1140 * the bookkeeping information accordingly. Must be called after each
1141 * successful population.
40064aec
DZF
1142 *
1143 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1144 * is to serve an allocation in that area.
b539b87f 1145 */
40064aec
DZF
1146static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1147 int page_end, bool for_alloc)
b539b87f
TH
1148{
1149 int nr = page_end - page_start;
1150
1151 lockdep_assert_held(&pcpu_lock);
1152
1153 bitmap_set(chunk->populated, page_start, nr);
1154 chunk->nr_populated += nr;
40064aec
DZF
1155
1156 if (!for_alloc) {
1157 chunk->nr_empty_pop_pages += nr;
1158 pcpu_nr_empty_pop_pages += nr;
1159 }
b539b87f
TH
1160}
1161
1162/**
1163 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1164 * @chunk: pcpu_chunk which got depopulated
1165 * @page_start: the start page
1166 * @page_end: the end page
1167 *
1168 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1169 * Update the bookkeeping information accordingly. Must be called after
1170 * each successful depopulation.
1171 */
1172static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1173 int page_start, int page_end)
1174{
1175 int nr = page_end - page_start;
1176
1177 lockdep_assert_held(&pcpu_lock);
1178
1179 bitmap_clear(chunk->populated, page_start, nr);
1180 chunk->nr_populated -= nr;
0cecf50c 1181 chunk->nr_empty_pop_pages -= nr;
b539b87f
TH
1182 pcpu_nr_empty_pop_pages -= nr;
1183}
1184
9f645532
TH
1185/*
1186 * Chunk management implementation.
1187 *
1188 * To allow different implementations, chunk alloc/free and
1189 * [de]population are implemented in a separate file which is pulled
1190 * into this file and compiled together. The following functions
1191 * should be implemented.
1192 *
1193 * pcpu_populate_chunk - populate the specified range of a chunk
1194 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1195 * pcpu_create_chunk - create a new chunk
1196 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1197 * pcpu_addr_to_page - translate address to physical address
1198 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1199 */
9f645532
TH
1200static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
1201static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1202static struct pcpu_chunk *pcpu_create_chunk(void);
1203static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1204static struct page *pcpu_addr_to_page(void *addr);
1205static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1206
b0c9778b
TH
1207#ifdef CONFIG_NEED_PER_CPU_KM
1208#include "percpu-km.c"
1209#else
9f645532 1210#include "percpu-vm.c"
b0c9778b 1211#endif
fbf59bc9 1212
88999a89
TH
1213/**
1214 * pcpu_chunk_addr_search - determine chunk containing specified address
1215 * @addr: address for which the chunk needs to be determined.
1216 *
c0ebfdc3
DZF
1217 * This is an internal function that handles all but static allocations.
1218 * Static percpu address values should never be passed into the allocator.
1219 *
88999a89
TH
1220 * RETURNS:
1221 * The address of the found chunk.
1222 */
1223static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1224{
c0ebfdc3 1225 /* is it in the dynamic region (first chunk)? */
560f2c23 1226 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1227 return pcpu_first_chunk;
c0ebfdc3
DZF
1228
1229 /* is it in the reserved region? */
560f2c23 1230 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1231 return pcpu_reserved_chunk;
88999a89
TH
1232
1233 /*
1234 * The address is relative to unit0 which might be unused and
1235 * thus unmapped. Offset the address to the unit space of the
1236 * current processor before looking it up in the vmalloc
1237 * space. Note that any possible cpu id can be used here, so
1238 * there's no need to worry about preemption or cpu hotplug.
1239 */
1240 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1241 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1242}
1243
fbf59bc9 1244/**
edcb4639 1245 * pcpu_alloc - the percpu allocator
cae3aeb8 1246 * @size: size of area to allocate in bytes
fbf59bc9 1247 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1248 * @reserved: allocate from the reserved chunk if available
5835d96e 1249 * @gfp: allocation flags
fbf59bc9 1250 *
5835d96e
TH
1251 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1252 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
1253 *
1254 * RETURNS:
1255 * Percpu pointer to the allocated area on success, NULL on failure.
1256 */
5835d96e
TH
1257static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1258 gfp_t gfp)
fbf59bc9 1259{
f2badb0c 1260 static int warn_limit = 10;
fbf59bc9 1261 struct pcpu_chunk *chunk;
f2badb0c 1262 const char *err;
6ae833c7 1263 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
40064aec 1264 int slot, off, cpu, ret;
403a91b1 1265 unsigned long flags;
f528f0b8 1266 void __percpu *ptr;
40064aec 1267 size_t bits, bit_align;
fbf59bc9 1268
723ad1d9 1269 /*
40064aec
DZF
1270 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1271 * therefore alignment must be a minimum of that many bytes.
1272 * An allocation may have internal fragmentation from rounding up
1273 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1274 */
d2f3c384
DZF
1275 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1276 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1277
d2f3c384 1278 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1279 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1280 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1281
3ca45a46 1282 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1283 !is_power_of_2(align))) {
756a025f
JP
1284 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1285 size, align);
fbf59bc9
TH
1286 return NULL;
1287 }
1288
6710e594
TH
1289 if (!is_atomic)
1290 mutex_lock(&pcpu_alloc_mutex);
1291
403a91b1 1292 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1293
edcb4639
TH
1294 /* serve reserved allocations from the reserved chunk if available */
1295 if (reserved && pcpu_reserved_chunk) {
1296 chunk = pcpu_reserved_chunk;
833af842 1297
40064aec
DZF
1298 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1299 if (off < 0) {
833af842 1300 err = "alloc from reserved chunk failed";
ccea34b5 1301 goto fail_unlock;
f2badb0c 1302 }
833af842 1303
40064aec 1304 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1305 if (off >= 0)
1306 goto area_found;
833af842 1307
f2badb0c 1308 err = "alloc from reserved chunk failed";
ccea34b5 1309 goto fail_unlock;
edcb4639
TH
1310 }
1311
ccea34b5 1312restart:
edcb4639 1313 /* search through normal chunks */
fbf59bc9
TH
1314 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1315 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
40064aec
DZF
1316 off = pcpu_find_block_fit(chunk, bits, bit_align,
1317 is_atomic);
1318 if (off < 0)
fbf59bc9 1319 continue;
ccea34b5 1320
40064aec 1321 off = pcpu_alloc_area(chunk, bits, bit_align, off);
fbf59bc9
TH
1322 if (off >= 0)
1323 goto area_found;
40064aec 1324
fbf59bc9
TH
1325 }
1326 }
1327
403a91b1 1328 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1329
b38d08f3
TH
1330 /*
1331 * No space left. Create a new chunk. We don't want multiple
1332 * tasks to create chunks simultaneously. Serialize and create iff
1333 * there's still no empty chunk after grabbing the mutex.
1334 */
11df02bf
DZ
1335 if (is_atomic) {
1336 err = "atomic alloc failed, no space left";
5835d96e 1337 goto fail;
11df02bf 1338 }
5835d96e 1339
b38d08f3
TH
1340 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1341 chunk = pcpu_create_chunk();
1342 if (!chunk) {
1343 err = "failed to allocate new chunk";
1344 goto fail;
1345 }
1346
1347 spin_lock_irqsave(&pcpu_lock, flags);
1348 pcpu_chunk_relocate(chunk, -1);
1349 } else {
1350 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1351 }
ccea34b5 1352
ccea34b5 1353 goto restart;
fbf59bc9
TH
1354
1355area_found:
30a5b536 1356 pcpu_stats_area_alloc(chunk, size);
403a91b1 1357 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1358
dca49645 1359 /* populate if not all pages are already there */
5835d96e 1360 if (!is_atomic) {
e04d3208 1361 int page_start, page_end, rs, re;
dca49645 1362
e04d3208
TH
1363 page_start = PFN_DOWN(off);
1364 page_end = PFN_UP(off + size);
b38d08f3 1365
91e914c5
DZF
1366 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1367 page_start, page_end) {
e04d3208
TH
1368 WARN_ON(chunk->immutable);
1369
1370 ret = pcpu_populate_chunk(chunk, rs, re);
1371
1372 spin_lock_irqsave(&pcpu_lock, flags);
1373 if (ret) {
40064aec 1374 pcpu_free_area(chunk, off);
e04d3208
TH
1375 err = "failed to populate";
1376 goto fail_unlock;
1377 }
40064aec 1378 pcpu_chunk_populated(chunk, rs, re, true);
e04d3208 1379 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1380 }
fbf59bc9 1381
e04d3208
TH
1382 mutex_unlock(&pcpu_alloc_mutex);
1383 }
ccea34b5 1384
1a4d7607
TH
1385 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1386 pcpu_schedule_balance_work();
1387
dca49645
TH
1388 /* clear the areas and return address relative to base address */
1389 for_each_possible_cpu(cpu)
1390 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1391
f528f0b8 1392 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1393 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1394
1395 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1396 chunk->base_addr, off, ptr);
1397
f528f0b8 1398 return ptr;
ccea34b5
TH
1399
1400fail_unlock:
403a91b1 1401 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1402fail:
df95e795
DZ
1403 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1404
5835d96e 1405 if (!is_atomic && warn_limit) {
870d4b12 1406 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1407 size, align, is_atomic, err);
f2badb0c
TH
1408 dump_stack();
1409 if (!--warn_limit)
870d4b12 1410 pr_info("limit reached, disable warning\n");
f2badb0c 1411 }
1a4d7607
TH
1412 if (is_atomic) {
1413 /* see the flag handling in pcpu_blance_workfn() */
1414 pcpu_atomic_alloc_failed = true;
1415 pcpu_schedule_balance_work();
6710e594
TH
1416 } else {
1417 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1418 }
ccea34b5 1419 return NULL;
fbf59bc9 1420}
edcb4639
TH
1421
1422/**
5835d96e 1423 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1424 * @size: size of area to allocate in bytes
1425 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1426 * @gfp: allocation flags
edcb4639 1427 *
5835d96e
TH
1428 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1429 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1430 * be called from any context but is a lot more likely to fail.
ccea34b5 1431 *
edcb4639
TH
1432 * RETURNS:
1433 * Percpu pointer to the allocated area on success, NULL on failure.
1434 */
5835d96e
TH
1435void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1436{
1437 return pcpu_alloc(size, align, false, gfp);
1438}
1439EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1440
1441/**
1442 * __alloc_percpu - allocate dynamic percpu area
1443 * @size: size of area to allocate in bytes
1444 * @align: alignment of area (max PAGE_SIZE)
1445 *
1446 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1447 */
43cf38eb 1448void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1449{
5835d96e 1450 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1451}
fbf59bc9
TH
1452EXPORT_SYMBOL_GPL(__alloc_percpu);
1453
edcb4639
TH
1454/**
1455 * __alloc_reserved_percpu - allocate reserved percpu area
1456 * @size: size of area to allocate in bytes
1457 * @align: alignment of area (max PAGE_SIZE)
1458 *
9329ba97
TH
1459 * Allocate zero-filled percpu area of @size bytes aligned at @align
1460 * from reserved percpu area if arch has set it up; otherwise,
1461 * allocation is served from the same dynamic area. Might sleep.
1462 * Might trigger writeouts.
edcb4639 1463 *
ccea34b5
TH
1464 * CONTEXT:
1465 * Does GFP_KERNEL allocation.
1466 *
edcb4639
TH
1467 * RETURNS:
1468 * Percpu pointer to the allocated area on success, NULL on failure.
1469 */
43cf38eb 1470void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1471{
5835d96e 1472 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1473}
1474
a56dbddf 1475/**
1a4d7607 1476 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1477 * @work: unused
1478 *
1479 * Reclaim all fully free chunks except for the first one.
1480 */
fe6bd8c3 1481static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1482{
fe6bd8c3
TH
1483 LIST_HEAD(to_free);
1484 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1485 struct pcpu_chunk *chunk, *next;
1a4d7607 1486 int slot, nr_to_pop, ret;
a56dbddf 1487
1a4d7607
TH
1488 /*
1489 * There's no reason to keep around multiple unused chunks and VM
1490 * areas can be scarce. Destroy all free chunks except for one.
1491 */
ccea34b5
TH
1492 mutex_lock(&pcpu_alloc_mutex);
1493 spin_lock_irq(&pcpu_lock);
a56dbddf 1494
fe6bd8c3 1495 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1496 WARN_ON(chunk->immutable);
1497
1498 /* spare the first one */
fe6bd8c3 1499 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1500 continue;
1501
fe6bd8c3 1502 list_move(&chunk->list, &to_free);
a56dbddf
TH
1503 }
1504
ccea34b5 1505 spin_unlock_irq(&pcpu_lock);
a56dbddf 1506
fe6bd8c3 1507 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1508 int rs, re;
dca49645 1509
91e914c5
DZF
1510 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1511 chunk->nr_pages) {
a93ace48 1512 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1513 spin_lock_irq(&pcpu_lock);
1514 pcpu_chunk_depopulated(chunk, rs, re);
1515 spin_unlock_irq(&pcpu_lock);
a93ace48 1516 }
6081089f 1517 pcpu_destroy_chunk(chunk);
a56dbddf 1518 }
971f3918 1519
1a4d7607
TH
1520 /*
1521 * Ensure there are certain number of free populated pages for
1522 * atomic allocs. Fill up from the most packed so that atomic
1523 * allocs don't increase fragmentation. If atomic allocation
1524 * failed previously, always populate the maximum amount. This
1525 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1526 * failing indefinitely; however, large atomic allocs are not
1527 * something we support properly and can be highly unreliable and
1528 * inefficient.
1529 */
1530retry_pop:
1531 if (pcpu_atomic_alloc_failed) {
1532 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1533 /* best effort anyway, don't worry about synchronization */
1534 pcpu_atomic_alloc_failed = false;
1535 } else {
1536 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1537 pcpu_nr_empty_pop_pages,
1538 0, PCPU_EMPTY_POP_PAGES_HIGH);
1539 }
1540
1541 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1542 int nr_unpop = 0, rs, re;
1543
1544 if (!nr_to_pop)
1545 break;
1546
1547 spin_lock_irq(&pcpu_lock);
1548 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1549 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1550 if (nr_unpop)
1551 break;
1552 }
1553 spin_unlock_irq(&pcpu_lock);
1554
1555 if (!nr_unpop)
1556 continue;
1557
1558 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1559 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1560 chunk->nr_pages) {
1a4d7607
TH
1561 int nr = min(re - rs, nr_to_pop);
1562
1563 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1564 if (!ret) {
1565 nr_to_pop -= nr;
1566 spin_lock_irq(&pcpu_lock);
40064aec 1567 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1a4d7607
TH
1568 spin_unlock_irq(&pcpu_lock);
1569 } else {
1570 nr_to_pop = 0;
1571 }
1572
1573 if (!nr_to_pop)
1574 break;
1575 }
1576 }
1577
1578 if (nr_to_pop) {
1579 /* ran out of chunks to populate, create a new one and retry */
1580 chunk = pcpu_create_chunk();
1581 if (chunk) {
1582 spin_lock_irq(&pcpu_lock);
1583 pcpu_chunk_relocate(chunk, -1);
1584 spin_unlock_irq(&pcpu_lock);
1585 goto retry_pop;
1586 }
1587 }
1588
971f3918 1589 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1590}
1591
1592/**
1593 * free_percpu - free percpu area
1594 * @ptr: pointer to area to free
1595 *
ccea34b5
TH
1596 * Free percpu area @ptr.
1597 *
1598 * CONTEXT:
1599 * Can be called from atomic context.
fbf59bc9 1600 */
43cf38eb 1601void free_percpu(void __percpu *ptr)
fbf59bc9 1602{
129182e5 1603 void *addr;
fbf59bc9 1604 struct pcpu_chunk *chunk;
ccea34b5 1605 unsigned long flags;
40064aec 1606 int off;
fbf59bc9
TH
1607
1608 if (!ptr)
1609 return;
1610
f528f0b8
CM
1611 kmemleak_free_percpu(ptr);
1612
129182e5
AM
1613 addr = __pcpu_ptr_to_addr(ptr);
1614
ccea34b5 1615 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1616
1617 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1618 off = addr - chunk->base_addr;
fbf59bc9 1619
40064aec 1620 pcpu_free_area(chunk, off);
fbf59bc9 1621
a56dbddf 1622 /* if there are more than one fully free chunks, wake up grim reaper */
40064aec 1623 if (chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
1624 struct pcpu_chunk *pos;
1625
a56dbddf 1626 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1627 if (pos != chunk) {
1a4d7607 1628 pcpu_schedule_balance_work();
fbf59bc9
TH
1629 break;
1630 }
1631 }
1632
df95e795
DZ
1633 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1634
ccea34b5 1635 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1636}
1637EXPORT_SYMBOL_GPL(free_percpu);
1638
383776fa 1639bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1640{
bbddff05 1641#ifdef CONFIG_SMP
10fad5e4
TH
1642 const size_t static_size = __per_cpu_end - __per_cpu_start;
1643 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1644 unsigned int cpu;
1645
1646 for_each_possible_cpu(cpu) {
1647 void *start = per_cpu_ptr(base, cpu);
383776fa 1648 void *va = (void *)addr;
10fad5e4 1649
383776fa 1650 if (va >= start && va < start + static_size) {
8ce371f9 1651 if (can_addr) {
383776fa 1652 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1653 *can_addr += (unsigned long)
1654 per_cpu_ptr(base, get_boot_cpu_id());
1655 }
10fad5e4 1656 return true;
383776fa
TG
1657 }
1658 }
bbddff05
TH
1659#endif
1660 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1661 return false;
1662}
1663
383776fa
TG
1664/**
1665 * is_kernel_percpu_address - test whether address is from static percpu area
1666 * @addr: address to test
1667 *
1668 * Test whether @addr belongs to in-kernel static percpu area. Module
1669 * static percpu areas are not considered. For those, use
1670 * is_module_percpu_address().
1671 *
1672 * RETURNS:
1673 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1674 */
1675bool is_kernel_percpu_address(unsigned long addr)
1676{
1677 return __is_kernel_percpu_address(addr, NULL);
1678}
1679
3b034b0d
VG
1680/**
1681 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1682 * @addr: the address to be converted to physical address
1683 *
1684 * Given @addr which is dereferenceable address obtained via one of
1685 * percpu access macros, this function translates it into its physical
1686 * address. The caller is responsible for ensuring @addr stays valid
1687 * until this function finishes.
1688 *
67589c71
DY
1689 * percpu allocator has special setup for the first chunk, which currently
1690 * supports either embedding in linear address space or vmalloc mapping,
1691 * and, from the second one, the backing allocator (currently either vm or
1692 * km) provides translation.
1693 *
bffc4375 1694 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1695 * first chunk. But the current code reflects better how percpu allocator
1696 * actually works, and the verification can discover both bugs in percpu
1697 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1698 * code.
1699 *
3b034b0d
VG
1700 * RETURNS:
1701 * The physical address for @addr.
1702 */
1703phys_addr_t per_cpu_ptr_to_phys(void *addr)
1704{
9983b6f0
TH
1705 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1706 bool in_first_chunk = false;
a855b84c 1707 unsigned long first_low, first_high;
9983b6f0
TH
1708 unsigned int cpu;
1709
1710 /*
a855b84c 1711 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1712 * necessary but will speed up lookups of addresses which
1713 * aren't in the first chunk.
c0ebfdc3
DZF
1714 *
1715 * The address check is against full chunk sizes. pcpu_base_addr
1716 * points to the beginning of the first chunk including the
1717 * static region. Assumes good intent as the first chunk may
1718 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1719 */
c0ebfdc3
DZF
1720 first_low = (unsigned long)pcpu_base_addr +
1721 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1722 first_high = (unsigned long)pcpu_base_addr +
1723 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1724 if ((unsigned long)addr >= first_low &&
1725 (unsigned long)addr < first_high) {
9983b6f0
TH
1726 for_each_possible_cpu(cpu) {
1727 void *start = per_cpu_ptr(base, cpu);
1728
1729 if (addr >= start && addr < start + pcpu_unit_size) {
1730 in_first_chunk = true;
1731 break;
1732 }
1733 }
1734 }
1735
1736 if (in_first_chunk) {
eac522ef 1737 if (!is_vmalloc_addr(addr))
020ec653
TH
1738 return __pa(addr);
1739 else
9f57bd4d
ES
1740 return page_to_phys(vmalloc_to_page(addr)) +
1741 offset_in_page(addr);
020ec653 1742 } else
9f57bd4d
ES
1743 return page_to_phys(pcpu_addr_to_page(addr)) +
1744 offset_in_page(addr);
3b034b0d
VG
1745}
1746
fbf59bc9 1747/**
fd1e8a1f
TH
1748 * pcpu_alloc_alloc_info - allocate percpu allocation info
1749 * @nr_groups: the number of groups
1750 * @nr_units: the number of units
1751 *
1752 * Allocate ai which is large enough for @nr_groups groups containing
1753 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1754 * cpu_map array which is long enough for @nr_units and filled with
1755 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1756 * pointer of other groups.
1757 *
1758 * RETURNS:
1759 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1760 * failure.
1761 */
1762struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1763 int nr_units)
1764{
1765 struct pcpu_alloc_info *ai;
1766 size_t base_size, ai_size;
1767 void *ptr;
1768 int unit;
1769
1770 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1771 __alignof__(ai->groups[0].cpu_map[0]));
1772 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1773
999c17e3 1774 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1775 if (!ptr)
1776 return NULL;
1777 ai = ptr;
1778 ptr += base_size;
1779
1780 ai->groups[0].cpu_map = ptr;
1781
1782 for (unit = 0; unit < nr_units; unit++)
1783 ai->groups[0].cpu_map[unit] = NR_CPUS;
1784
1785 ai->nr_groups = nr_groups;
1786 ai->__ai_size = PFN_ALIGN(ai_size);
1787
1788 return ai;
1789}
1790
1791/**
1792 * pcpu_free_alloc_info - free percpu allocation info
1793 * @ai: pcpu_alloc_info to free
1794 *
1795 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1796 */
1797void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1798{
999c17e3 1799 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1800}
1801
fd1e8a1f
TH
1802/**
1803 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1804 * @lvl: loglevel
1805 * @ai: allocation info to dump
1806 *
1807 * Print out information about @ai using loglevel @lvl.
1808 */
1809static void pcpu_dump_alloc_info(const char *lvl,
1810 const struct pcpu_alloc_info *ai)
033e48fb 1811{
fd1e8a1f 1812 int group_width = 1, cpu_width = 1, width;
033e48fb 1813 char empty_str[] = "--------";
fd1e8a1f
TH
1814 int alloc = 0, alloc_end = 0;
1815 int group, v;
1816 int upa, apl; /* units per alloc, allocs per line */
1817
1818 v = ai->nr_groups;
1819 while (v /= 10)
1820 group_width++;
033e48fb 1821
fd1e8a1f 1822 v = num_possible_cpus();
033e48fb 1823 while (v /= 10)
fd1e8a1f
TH
1824 cpu_width++;
1825 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1826
fd1e8a1f
TH
1827 upa = ai->alloc_size / ai->unit_size;
1828 width = upa * (cpu_width + 1) + group_width + 3;
1829 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1830
fd1e8a1f
TH
1831 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1832 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1833 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1834
fd1e8a1f
TH
1835 for (group = 0; group < ai->nr_groups; group++) {
1836 const struct pcpu_group_info *gi = &ai->groups[group];
1837 int unit = 0, unit_end = 0;
1838
1839 BUG_ON(gi->nr_units % upa);
1840 for (alloc_end += gi->nr_units / upa;
1841 alloc < alloc_end; alloc++) {
1842 if (!(alloc % apl)) {
1170532b 1843 pr_cont("\n");
fd1e8a1f
TH
1844 printk("%spcpu-alloc: ", lvl);
1845 }
1170532b 1846 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1847
1848 for (unit_end += upa; unit < unit_end; unit++)
1849 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1850 pr_cont("%0*d ",
1851 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1852 else
1170532b 1853 pr_cont("%s ", empty_str);
033e48fb 1854 }
033e48fb 1855 }
1170532b 1856 pr_cont("\n");
033e48fb 1857}
033e48fb 1858
fbf59bc9 1859/**
8d408b4b 1860 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1861 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1862 * @base_addr: mapped address
8d408b4b
TH
1863 *
1864 * Initialize the first percpu chunk which contains the kernel static
1865 * perpcu area. This function is to be called from arch percpu area
38a6be52 1866 * setup path.
8d408b4b 1867 *
fd1e8a1f
TH
1868 * @ai contains all information necessary to initialize the first
1869 * chunk and prime the dynamic percpu allocator.
1870 *
1871 * @ai->static_size is the size of static percpu area.
1872 *
1873 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1874 * reserve after the static area in the first chunk. This reserves
1875 * the first chunk such that it's available only through reserved
1876 * percpu allocation. This is primarily used to serve module percpu
1877 * static areas on architectures where the addressing model has
1878 * limited offset range for symbol relocations to guarantee module
1879 * percpu symbols fall inside the relocatable range.
1880 *
fd1e8a1f
TH
1881 * @ai->dyn_size determines the number of bytes available for dynamic
1882 * allocation in the first chunk. The area between @ai->static_size +
1883 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1884 *
fd1e8a1f
TH
1885 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1886 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1887 * @ai->dyn_size.
8d408b4b 1888 *
fd1e8a1f
TH
1889 * @ai->atom_size is the allocation atom size and used as alignment
1890 * for vm areas.
8d408b4b 1891 *
fd1e8a1f
TH
1892 * @ai->alloc_size is the allocation size and always multiple of
1893 * @ai->atom_size. This is larger than @ai->atom_size if
1894 * @ai->unit_size is larger than @ai->atom_size.
1895 *
1896 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1897 * percpu areas. Units which should be colocated are put into the
1898 * same group. Dynamic VM areas will be allocated according to these
1899 * groupings. If @ai->nr_groups is zero, a single group containing
1900 * all units is assumed.
8d408b4b 1901 *
38a6be52
TH
1902 * The caller should have mapped the first chunk at @base_addr and
1903 * copied static data to each unit.
fbf59bc9 1904 *
c0ebfdc3
DZF
1905 * The first chunk will always contain a static and a dynamic region.
1906 * However, the static region is not managed by any chunk. If the first
1907 * chunk also contains a reserved region, it is served by two chunks -
1908 * one for the reserved region and one for the dynamic region. They
1909 * share the same vm, but use offset regions in the area allocation map.
1910 * The chunk serving the dynamic region is circulated in the chunk slots
1911 * and available for dynamic allocation like any other chunk.
edcb4639 1912 *
fbf59bc9 1913 * RETURNS:
fb435d52 1914 * 0 on success, -errno on failure.
fbf59bc9 1915 */
fb435d52
TH
1916int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1917 void *base_addr)
fbf59bc9 1918{
b9c39442 1919 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 1920 size_t static_size, dyn_size;
0c4169c3 1921 struct pcpu_chunk *chunk;
6563297c
TH
1922 unsigned long *group_offsets;
1923 size_t *group_sizes;
fb435d52 1924 unsigned long *unit_off;
fbf59bc9 1925 unsigned int cpu;
fd1e8a1f
TH
1926 int *unit_map;
1927 int group, unit, i;
c0ebfdc3
DZF
1928 int map_size;
1929 unsigned long tmp_addr;
fbf59bc9 1930
635b75fc
TH
1931#define PCPU_SETUP_BUG_ON(cond) do { \
1932 if (unlikely(cond)) { \
870d4b12
JP
1933 pr_emerg("failed to initialize, %s\n", #cond); \
1934 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1935 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1936 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1937 BUG(); \
1938 } \
1939} while (0)
1940
2f39e637 1941 /* sanity checks */
635b75fc 1942 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1943#ifdef CONFIG_SMP
635b75fc 1944 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1945 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1946#endif
635b75fc 1947 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1948 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1949 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1950 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1951 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 1952 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 1953 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1954 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 1955 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
1956 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
1957 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 1958 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1959
6563297c 1960 /* process group information and build config tables accordingly */
999c17e3
SS
1961 group_offsets = memblock_virt_alloc(ai->nr_groups *
1962 sizeof(group_offsets[0]), 0);
1963 group_sizes = memblock_virt_alloc(ai->nr_groups *
1964 sizeof(group_sizes[0]), 0);
1965 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1966 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1967
fd1e8a1f 1968 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1969 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1970
1971 pcpu_low_unit_cpu = NR_CPUS;
1972 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1973
fd1e8a1f
TH
1974 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1975 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1976
6563297c
TH
1977 group_offsets[group] = gi->base_offset;
1978 group_sizes[group] = gi->nr_units * ai->unit_size;
1979
fd1e8a1f
TH
1980 for (i = 0; i < gi->nr_units; i++) {
1981 cpu = gi->cpu_map[i];
1982 if (cpu == NR_CPUS)
1983 continue;
8d408b4b 1984
9f295664 1985 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1986 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1987 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1988
fd1e8a1f 1989 unit_map[cpu] = unit + i;
fb435d52
TH
1990 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1991
a855b84c
TH
1992 /* determine low/high unit_cpu */
1993 if (pcpu_low_unit_cpu == NR_CPUS ||
1994 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1995 pcpu_low_unit_cpu = cpu;
1996 if (pcpu_high_unit_cpu == NR_CPUS ||
1997 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1998 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1999 }
2f39e637 2000 }
fd1e8a1f
TH
2001 pcpu_nr_units = unit;
2002
2003 for_each_possible_cpu(cpu)
635b75fc
TH
2004 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2005
2006 /* we're done parsing the input, undefine BUG macro and dump config */
2007#undef PCPU_SETUP_BUG_ON
bcbea798 2008 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2009
6563297c
TH
2010 pcpu_nr_groups = ai->nr_groups;
2011 pcpu_group_offsets = group_offsets;
2012 pcpu_group_sizes = group_sizes;
fd1e8a1f 2013 pcpu_unit_map = unit_map;
fb435d52 2014 pcpu_unit_offsets = unit_off;
2f39e637
TH
2015
2016 /* determine basic parameters */
fd1e8a1f 2017 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2018 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2019 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
2020 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2021 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 2022
30a5b536
DZ
2023 pcpu_stats_save_ai(ai);
2024
d9b55eeb
TH
2025 /*
2026 * Allocate chunk slots. The additional last slot is for
2027 * empty chunks.
2028 */
2029 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
2030 pcpu_slot = memblock_virt_alloc(
2031 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
2032 for (i = 0; i < pcpu_nr_slots; i++)
2033 INIT_LIST_HEAD(&pcpu_slot[i]);
2034
d2f3c384
DZF
2035 /*
2036 * The end of the static region needs to be aligned with the
2037 * minimum allocation size as this offsets the reserved and
2038 * dynamic region. The first chunk ends page aligned by
2039 * expanding the dynamic region, therefore the dynamic region
2040 * can be shrunk to compensate while still staying above the
2041 * configured sizes.
2042 */
2043 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2044 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2045
edcb4639 2046 /*
c0ebfdc3
DZF
2047 * Initialize first chunk.
2048 * If the reserved_size is non-zero, this initializes the reserved
2049 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2050 * and the dynamic region is initialized here. The first chunk,
2051 * pcpu_first_chunk, will always point to the chunk that serves
2052 * the dynamic region.
edcb4639 2053 */
d2f3c384
DZF
2054 tmp_addr = (unsigned long)base_addr + static_size;
2055 map_size = ai->reserved_size ?: dyn_size;
40064aec 2056 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2057
edcb4639 2058 /* init dynamic chunk if necessary */
b9c39442 2059 if (ai->reserved_size) {
0c4169c3 2060 pcpu_reserved_chunk = chunk;
b9c39442 2061
d2f3c384 2062 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2063 ai->reserved_size;
d2f3c384 2064 map_size = dyn_size;
40064aec 2065 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2066 }
2067
2441d15c 2068 /* link the first chunk in */
0c4169c3 2069 pcpu_first_chunk = chunk;
0cecf50c 2070 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2071 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2072
30a5b536 2073 pcpu_stats_chunk_alloc();
df95e795 2074 trace_percpu_create_chunk(base_addr);
30a5b536 2075
fbf59bc9 2076 /* we're done */
bba174f5 2077 pcpu_base_addr = base_addr;
fb435d52 2078 return 0;
fbf59bc9 2079}
66c3a757 2080
bbddff05
TH
2081#ifdef CONFIG_SMP
2082
17f3609c 2083const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2084 [PCPU_FC_AUTO] = "auto",
2085 [PCPU_FC_EMBED] = "embed",
2086 [PCPU_FC_PAGE] = "page",
f58dc01b 2087};
66c3a757 2088
f58dc01b 2089enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2090
f58dc01b
TH
2091static int __init percpu_alloc_setup(char *str)
2092{
5479c78a
CG
2093 if (!str)
2094 return -EINVAL;
2095
f58dc01b
TH
2096 if (0)
2097 /* nada */;
2098#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2099 else if (!strcmp(str, "embed"))
2100 pcpu_chosen_fc = PCPU_FC_EMBED;
2101#endif
2102#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2103 else if (!strcmp(str, "page"))
2104 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2105#endif
2106 else
870d4b12 2107 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2108
f58dc01b 2109 return 0;
66c3a757 2110}
f58dc01b 2111early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2112
3c9a024f
TH
2113/*
2114 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2115 * Build it if needed by the arch config or the generic setup is going
2116 * to be used.
2117 */
08fc4580
TH
2118#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2119 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2120#define BUILD_EMBED_FIRST_CHUNK
2121#endif
2122
2123/* build pcpu_page_first_chunk() iff needed by the arch config */
2124#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2125#define BUILD_PAGE_FIRST_CHUNK
2126#endif
2127
2128/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2129#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2130/**
2131 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2132 * @reserved_size: the size of reserved percpu area in bytes
2133 * @dyn_size: minimum free size for dynamic allocation in bytes
2134 * @atom_size: allocation atom size
2135 * @cpu_distance_fn: callback to determine distance between cpus, optional
2136 *
2137 * This function determines grouping of units, their mappings to cpus
2138 * and other parameters considering needed percpu size, allocation
2139 * atom size and distances between CPUs.
2140 *
bffc4375 2141 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2142 * LOCAL_DISTANCE both ways are grouped together and share space for
2143 * units in the same group. The returned configuration is guaranteed
2144 * to have CPUs on different nodes on different groups and >=75% usage
2145 * of allocated virtual address space.
2146 *
2147 * RETURNS:
2148 * On success, pointer to the new allocation_info is returned. On
2149 * failure, ERR_PTR value is returned.
2150 */
2151static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2152 size_t reserved_size, size_t dyn_size,
2153 size_t atom_size,
2154 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2155{
2156 static int group_map[NR_CPUS] __initdata;
2157 static int group_cnt[NR_CPUS] __initdata;
2158 const size_t static_size = __per_cpu_end - __per_cpu_start;
2159 int nr_groups = 1, nr_units = 0;
2160 size_t size_sum, min_unit_size, alloc_size;
2161 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2162 int last_allocs, group, unit;
2163 unsigned int cpu, tcpu;
2164 struct pcpu_alloc_info *ai;
2165 unsigned int *cpu_map;
2166
2167 /* this function may be called multiple times */
2168 memset(group_map, 0, sizeof(group_map));
2169 memset(group_cnt, 0, sizeof(group_cnt));
2170
2171 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2172 size_sum = PFN_ALIGN(static_size + reserved_size +
2173 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2174 dyn_size = size_sum - static_size - reserved_size;
2175
2176 /*
2177 * Determine min_unit_size, alloc_size and max_upa such that
2178 * alloc_size is multiple of atom_size and is the smallest
25985edc 2179 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2180 * or larger than min_unit_size.
2181 */
2182 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2183
9c015162 2184 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2185 alloc_size = roundup(min_unit_size, atom_size);
2186 upa = alloc_size / min_unit_size;
f09f1243 2187 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2188 upa--;
2189 max_upa = upa;
2190
2191 /* group cpus according to their proximity */
2192 for_each_possible_cpu(cpu) {
2193 group = 0;
2194 next_group:
2195 for_each_possible_cpu(tcpu) {
2196 if (cpu == tcpu)
2197 break;
2198 if (group_map[tcpu] == group && cpu_distance_fn &&
2199 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2200 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2201 group++;
2202 nr_groups = max(nr_groups, group + 1);
2203 goto next_group;
2204 }
2205 }
2206 group_map[cpu] = group;
2207 group_cnt[group]++;
2208 }
2209
2210 /*
9c015162
DZF
2211 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2212 * Expand the unit_size until we use >= 75% of the units allocated.
2213 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2214 */
2215 last_allocs = INT_MAX;
2216 for (upa = max_upa; upa; upa--) {
2217 int allocs = 0, wasted = 0;
2218
f09f1243 2219 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2220 continue;
2221
2222 for (group = 0; group < nr_groups; group++) {
2223 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2224 allocs += this_allocs;
2225 wasted += this_allocs * upa - group_cnt[group];
2226 }
2227
2228 /*
2229 * Don't accept if wastage is over 1/3. The
2230 * greater-than comparison ensures upa==1 always
2231 * passes the following check.
2232 */
2233 if (wasted > num_possible_cpus() / 3)
2234 continue;
2235
2236 /* and then don't consume more memory */
2237 if (allocs > last_allocs)
2238 break;
2239 last_allocs = allocs;
2240 best_upa = upa;
2241 }
2242 upa = best_upa;
2243
2244 /* allocate and fill alloc_info */
2245 for (group = 0; group < nr_groups; group++)
2246 nr_units += roundup(group_cnt[group], upa);
2247
2248 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2249 if (!ai)
2250 return ERR_PTR(-ENOMEM);
2251 cpu_map = ai->groups[0].cpu_map;
2252
2253 for (group = 0; group < nr_groups; group++) {
2254 ai->groups[group].cpu_map = cpu_map;
2255 cpu_map += roundup(group_cnt[group], upa);
2256 }
2257
2258 ai->static_size = static_size;
2259 ai->reserved_size = reserved_size;
2260 ai->dyn_size = dyn_size;
2261 ai->unit_size = alloc_size / upa;
2262 ai->atom_size = atom_size;
2263 ai->alloc_size = alloc_size;
2264
2265 for (group = 0, unit = 0; group_cnt[group]; group++) {
2266 struct pcpu_group_info *gi = &ai->groups[group];
2267
2268 /*
2269 * Initialize base_offset as if all groups are located
2270 * back-to-back. The caller should update this to
2271 * reflect actual allocation.
2272 */
2273 gi->base_offset = unit * ai->unit_size;
2274
2275 for_each_possible_cpu(cpu)
2276 if (group_map[cpu] == group)
2277 gi->cpu_map[gi->nr_units++] = cpu;
2278 gi->nr_units = roundup(gi->nr_units, upa);
2279 unit += gi->nr_units;
2280 }
2281 BUG_ON(unit != nr_units);
2282
2283 return ai;
2284}
2285#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2286
2287#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2288/**
2289 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2290 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2291 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2292 * @atom_size: allocation atom size
2293 * @cpu_distance_fn: callback to determine distance between cpus, optional
2294 * @alloc_fn: function to allocate percpu page
25985edc 2295 * @free_fn: function to free percpu page
66c3a757
TH
2296 *
2297 * This is a helper to ease setting up embedded first percpu chunk and
2298 * can be called where pcpu_setup_first_chunk() is expected.
2299 *
2300 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2301 * by calling @alloc_fn and used as-is without being mapped into
2302 * vmalloc area. Allocations are always whole multiples of @atom_size
2303 * aligned to @atom_size.
2304 *
2305 * This enables the first chunk to piggy back on the linear physical
2306 * mapping which often uses larger page size. Please note that this
2307 * can result in very sparse cpu->unit mapping on NUMA machines thus
2308 * requiring large vmalloc address space. Don't use this allocator if
2309 * vmalloc space is not orders of magnitude larger than distances
2310 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2311 *
4ba6ce25 2312 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2313 *
2314 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2315 * size, the leftover is returned using @free_fn.
66c3a757
TH
2316 *
2317 * RETURNS:
fb435d52 2318 * 0 on success, -errno on failure.
66c3a757 2319 */
4ba6ce25 2320int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2321 size_t atom_size,
2322 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2323 pcpu_fc_alloc_fn_t alloc_fn,
2324 pcpu_fc_free_fn_t free_fn)
66c3a757 2325{
c8826dd5
TH
2326 void *base = (void *)ULONG_MAX;
2327 void **areas = NULL;
fd1e8a1f 2328 struct pcpu_alloc_info *ai;
93c76b6b 2329 size_t size_sum, areas_size;
2330 unsigned long max_distance;
9b739662 2331 int group, i, highest_group, rc;
66c3a757 2332
c8826dd5
TH
2333 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2334 cpu_distance_fn);
fd1e8a1f
TH
2335 if (IS_ERR(ai))
2336 return PTR_ERR(ai);
66c3a757 2337
fd1e8a1f 2338 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2339 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2340
999c17e3 2341 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2342 if (!areas) {
fb435d52 2343 rc = -ENOMEM;
c8826dd5 2344 goto out_free;
fa8a7094 2345 }
66c3a757 2346
9b739662 2347 /* allocate, copy and determine base address & max_distance */
2348 highest_group = 0;
c8826dd5
TH
2349 for (group = 0; group < ai->nr_groups; group++) {
2350 struct pcpu_group_info *gi = &ai->groups[group];
2351 unsigned int cpu = NR_CPUS;
2352 void *ptr;
2353
2354 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2355 cpu = gi->cpu_map[i];
2356 BUG_ON(cpu == NR_CPUS);
2357
2358 /* allocate space for the whole group */
2359 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2360 if (!ptr) {
2361 rc = -ENOMEM;
2362 goto out_free_areas;
2363 }
f528f0b8
CM
2364 /* kmemleak tracks the percpu allocations separately */
2365 kmemleak_free(ptr);
c8826dd5 2366 areas[group] = ptr;
fd1e8a1f 2367
c8826dd5 2368 base = min(ptr, base);
9b739662 2369 if (ptr > areas[highest_group])
2370 highest_group = group;
2371 }
2372 max_distance = areas[highest_group] - base;
2373 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2374
2375 /* warn if maximum distance is further than 75% of vmalloc space */
2376 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2377 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2378 max_distance, VMALLOC_TOTAL);
2379#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2380 /* and fail if we have fallback */
2381 rc = -EINVAL;
2382 goto out_free_areas;
2383#endif
42b64281
TH
2384 }
2385
2386 /*
2387 * Copy data and free unused parts. This should happen after all
2388 * allocations are complete; otherwise, we may end up with
2389 * overlapping groups.
2390 */
2391 for (group = 0; group < ai->nr_groups; group++) {
2392 struct pcpu_group_info *gi = &ai->groups[group];
2393 void *ptr = areas[group];
c8826dd5
TH
2394
2395 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2396 if (gi->cpu_map[i] == NR_CPUS) {
2397 /* unused unit, free whole */
2398 free_fn(ptr, ai->unit_size);
2399 continue;
2400 }
2401 /* copy and return the unused part */
2402 memcpy(ptr, __per_cpu_load, ai->static_size);
2403 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2404 }
fa8a7094 2405 }
66c3a757 2406
c8826dd5 2407 /* base address is now known, determine group base offsets */
6ea529a2 2408 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2409 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2410 }
c8826dd5 2411
870d4b12 2412 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2413 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2414 ai->dyn_size, ai->unit_size);
d4b95f80 2415
fb435d52 2416 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2417 goto out_free;
2418
2419out_free_areas:
2420 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2421 if (areas[group])
2422 free_fn(areas[group],
2423 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2424out_free:
fd1e8a1f 2425 pcpu_free_alloc_info(ai);
c8826dd5 2426 if (areas)
999c17e3 2427 memblock_free_early(__pa(areas), areas_size);
fb435d52 2428 return rc;
d4b95f80 2429}
3c9a024f 2430#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2431
3c9a024f 2432#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2433/**
00ae4064 2434 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2435 * @reserved_size: the size of reserved percpu area in bytes
2436 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2437 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2438 * @populate_pte_fn: function to populate pte
2439 *
00ae4064
TH
2440 * This is a helper to ease setting up page-remapped first percpu
2441 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2442 *
2443 * This is the basic allocator. Static percpu area is allocated
2444 * page-by-page into vmalloc area.
2445 *
2446 * RETURNS:
fb435d52 2447 * 0 on success, -errno on failure.
d4b95f80 2448 */
fb435d52
TH
2449int __init pcpu_page_first_chunk(size_t reserved_size,
2450 pcpu_fc_alloc_fn_t alloc_fn,
2451 pcpu_fc_free_fn_t free_fn,
2452 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2453{
8f05a6a6 2454 static struct vm_struct vm;
fd1e8a1f 2455 struct pcpu_alloc_info *ai;
00ae4064 2456 char psize_str[16];
ce3141a2 2457 int unit_pages;
d4b95f80 2458 size_t pages_size;
ce3141a2 2459 struct page **pages;
fb435d52 2460 int unit, i, j, rc;
8f606604 2461 int upa;
2462 int nr_g0_units;
d4b95f80 2463
00ae4064
TH
2464 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2465
4ba6ce25 2466 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2467 if (IS_ERR(ai))
2468 return PTR_ERR(ai);
2469 BUG_ON(ai->nr_groups != 1);
8f606604 2470 upa = ai->alloc_size/ai->unit_size;
2471 nr_g0_units = roundup(num_possible_cpus(), upa);
2472 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2473 pcpu_free_alloc_info(ai);
2474 return -EINVAL;
2475 }
fd1e8a1f
TH
2476
2477 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2478
2479 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2480 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2481 sizeof(pages[0]));
999c17e3 2482 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2483
8f05a6a6 2484 /* allocate pages */
d4b95f80 2485 j = 0;
8f606604 2486 for (unit = 0; unit < num_possible_cpus(); unit++) {
2487 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2488 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2489 void *ptr;
2490
3cbc8565 2491 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2492 if (!ptr) {
870d4b12 2493 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2494 psize_str, cpu);
d4b95f80
TH
2495 goto enomem;
2496 }
f528f0b8
CM
2497 /* kmemleak tracks the percpu allocations separately */
2498 kmemleak_free(ptr);
ce3141a2 2499 pages[j++] = virt_to_page(ptr);
d4b95f80 2500 }
8f606604 2501 }
d4b95f80 2502
8f05a6a6
TH
2503 /* allocate vm area, map the pages and copy static data */
2504 vm.flags = VM_ALLOC;
fd1e8a1f 2505 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2506 vm_area_register_early(&vm, PAGE_SIZE);
2507
fd1e8a1f 2508 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2509 unsigned long unit_addr =
fd1e8a1f 2510 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2511
ce3141a2 2512 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2513 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2514
2515 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2516 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2517 unit_pages);
2518 if (rc < 0)
2519 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2520
8f05a6a6
TH
2521 /*
2522 * FIXME: Archs with virtual cache should flush local
2523 * cache for the linear mapping here - something
2524 * equivalent to flush_cache_vmap() on the local cpu.
2525 * flush_cache_vmap() can't be used as most supporting
2526 * data structures are not set up yet.
2527 */
2528
2529 /* copy static data */
fd1e8a1f 2530 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2531 }
2532
2533 /* we're ready, commit */
870d4b12 2534 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2535 unit_pages, psize_str, vm.addr, ai->static_size,
2536 ai->reserved_size, ai->dyn_size);
d4b95f80 2537
fb435d52 2538 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2539 goto out_free_ar;
2540
2541enomem:
2542 while (--j >= 0)
ce3141a2 2543 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2544 rc = -ENOMEM;
d4b95f80 2545out_free_ar:
999c17e3 2546 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2547 pcpu_free_alloc_info(ai);
fb435d52 2548 return rc;
d4b95f80 2549}
3c9a024f 2550#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2551
bbddff05 2552#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2553/*
bbddff05 2554 * Generic SMP percpu area setup.
e74e3962
TH
2555 *
2556 * The embedding helper is used because its behavior closely resembles
2557 * the original non-dynamic generic percpu area setup. This is
2558 * important because many archs have addressing restrictions and might
2559 * fail if the percpu area is located far away from the previous
2560 * location. As an added bonus, in non-NUMA cases, embedding is
2561 * generally a good idea TLB-wise because percpu area can piggy back
2562 * on the physical linear memory mapping which uses large page
2563 * mappings on applicable archs.
2564 */
e74e3962
TH
2565unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2566EXPORT_SYMBOL(__per_cpu_offset);
2567
c8826dd5
TH
2568static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2569 size_t align)
2570{
999c17e3
SS
2571 return memblock_virt_alloc_from_nopanic(
2572 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2573}
66c3a757 2574
c8826dd5
TH
2575static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2576{
999c17e3 2577 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2578}
2579
e74e3962
TH
2580void __init setup_per_cpu_areas(void)
2581{
e74e3962
TH
2582 unsigned long delta;
2583 unsigned int cpu;
fb435d52 2584 int rc;
e74e3962
TH
2585
2586 /*
2587 * Always reserve area for module percpu variables. That's
2588 * what the legacy allocator did.
2589 */
fb435d52 2590 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2591 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2592 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2593 if (rc < 0)
bbddff05 2594 panic("Failed to initialize percpu areas.");
e74e3962
TH
2595
2596 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2597 for_each_possible_cpu(cpu)
fb435d52 2598 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2599}
bbddff05
TH
2600#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2601
2602#else /* CONFIG_SMP */
2603
2604/*
2605 * UP percpu area setup.
2606 *
2607 * UP always uses km-based percpu allocator with identity mapping.
2608 * Static percpu variables are indistinguishable from the usual static
2609 * variables and don't require any special preparation.
2610 */
2611void __init setup_per_cpu_areas(void)
2612{
2613 const size_t unit_size =
2614 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2615 PERCPU_DYNAMIC_RESERVE));
2616 struct pcpu_alloc_info *ai;
2617 void *fc;
2618
2619 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2620 fc = memblock_virt_alloc_from_nopanic(unit_size,
2621 PAGE_SIZE,
2622 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2623 if (!ai || !fc)
2624 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2625 /* kmemleak tracks the percpu allocations separately */
2626 kmemleak_free(fc);
bbddff05
TH
2627
2628 ai->dyn_size = unit_size;
2629 ai->unit_size = unit_size;
2630 ai->atom_size = unit_size;
2631 ai->alloc_size = unit_size;
2632 ai->groups[0].nr_units = 1;
2633 ai->groups[0].cpu_map[0] = 0;
2634
2635 if (pcpu_setup_first_chunk(ai, fc) < 0)
2636 panic("Failed to initialize percpu areas.");
2637}
2638
2639#endif /* CONFIG_SMP */
099a19d9 2640
1a4d7607
TH
2641/*
2642 * Percpu allocator is initialized early during boot when neither slab or
2643 * workqueue is available. Plug async management until everything is up
2644 * and running.
2645 */
2646static int __init percpu_enable_async(void)
2647{
2648 pcpu_async_enabled = true;
2649 return 0;
2650}
2651subsys_initcall(percpu_enable_async);