]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: combine percpu address checks
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
fbf59bc9 66#include <linux/list.h>
a530b795 67#include <linux/log2.h>
fbf59bc9
TH
68#include <linux/mm.h>
69#include <linux/module.h>
70#include <linux/mutex.h>
71#include <linux/percpu.h>
72#include <linux/pfn.h>
fbf59bc9 73#include <linux/slab.h>
ccea34b5 74#include <linux/spinlock.h>
fbf59bc9 75#include <linux/vmalloc.h>
a56dbddf 76#include <linux/workqueue.h>
f528f0b8 77#include <linux/kmemleak.h>
fbf59bc9
TH
78
79#include <asm/cacheflush.h>
e0100983 80#include <asm/sections.h>
fbf59bc9 81#include <asm/tlbflush.h>
3b034b0d 82#include <asm/io.h>
fbf59bc9 83
df95e795
DZ
84#define CREATE_TRACE_POINTS
85#include <trace/events/percpu.h>
86
8fa3ed80
DZ
87#include "percpu-internal.h"
88
fbf59bc9
TH
89#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
90#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
91#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
92#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3 184/**
560f2c23
DZF
185 * pcpu_addr_in_chunk - check if the address is served from this chunk
186 * @chunk: chunk of interest
187 * @addr: percpu address
c0ebfdc3
DZF
188 *
189 * RETURNS:
560f2c23 190 * True if the address is served from this chunk.
c0ebfdc3 191 */
560f2c23 192static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 193{
c0ebfdc3
DZF
194 void *start_addr, *end_addr;
195
560f2c23 196 if (!chunk)
c0ebfdc3 197 return false;
020ec653 198
560f2c23
DZF
199 start_addr = chunk->base_addr + chunk->start_offset;
200 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
201 chunk->end_offset;
c0ebfdc3
DZF
202
203 return addr >= start_addr && addr < end_addr;
020ec653
TH
204}
205
d9b55eeb 206static int __pcpu_size_to_slot(int size)
fbf59bc9 207{
cae3aeb8 208 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
209 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
210}
211
d9b55eeb
TH
212static int pcpu_size_to_slot(int size)
213{
214 if (size == pcpu_unit_size)
215 return pcpu_nr_slots - 1;
216 return __pcpu_size_to_slot(size);
217}
218
fbf59bc9
TH
219static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
220{
221 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
222 return 0;
223
224 return pcpu_size_to_slot(chunk->free_size);
225}
226
88999a89
TH
227/* set the pointer to a chunk in a page struct */
228static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
229{
230 page->index = (unsigned long)pcpu;
231}
232
233/* obtain pointer to a chunk from a page struct */
234static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
235{
236 return (struct pcpu_chunk *)page->index;
237}
238
239static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 240{
2f39e637 241 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
242}
243
c0ebfdc3
DZF
244static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
247}
248
9983b6f0
TH
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
fbf59bc9 251{
c0ebfdc3
DZF
252 return (unsigned long)chunk->base_addr +
253 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
254}
255
88999a89
TH
256static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
257 int *rs, int *re, int end)
ce3141a2
TH
258{
259 *rs = find_next_zero_bit(chunk->populated, end, *rs);
260 *re = find_next_bit(chunk->populated, end, *rs + 1);
261}
262
88999a89
TH
263static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
264 int *rs, int *re, int end)
ce3141a2
TH
265{
266 *rs = find_next_bit(chunk->populated, end, *rs);
267 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
268}
269
270/*
271 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 272 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
273 * be integer variables and will be set to start and end page index of
274 * the current region.
275 */
276#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
277 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
278 (rs) < (re); \
279 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
280
281#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
282 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
283 (rs) < (re); \
284 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
285
fbf59bc9 286/**
90459ce0 287 * pcpu_mem_zalloc - allocate memory
1880d93b 288 * @size: bytes to allocate
fbf59bc9 289 *
1880d93b 290 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 291 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 292 * memory is always zeroed.
fbf59bc9 293 *
ccea34b5
TH
294 * CONTEXT:
295 * Does GFP_KERNEL allocation.
296 *
fbf59bc9 297 * RETURNS:
1880d93b 298 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 299 */
90459ce0 300static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 301{
099a19d9
TH
302 if (WARN_ON_ONCE(!slab_is_available()))
303 return NULL;
304
1880d93b
TH
305 if (size <= PAGE_SIZE)
306 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
307 else
308 return vzalloc(size);
1880d93b 309}
fbf59bc9 310
1880d93b
TH
311/**
312 * pcpu_mem_free - free memory
313 * @ptr: memory to free
1880d93b 314 *
90459ce0 315 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 316 */
1d5cfdb0 317static void pcpu_mem_free(void *ptr)
1880d93b 318{
1d5cfdb0 319 kvfree(ptr);
fbf59bc9
TH
320}
321
b539b87f
TH
322/**
323 * pcpu_count_occupied_pages - count the number of pages an area occupies
324 * @chunk: chunk of interest
325 * @i: index of the area in question
326 *
327 * Count the number of pages chunk's @i'th area occupies. When the area's
328 * start and/or end address isn't aligned to page boundary, the straddled
329 * page is included in the count iff the rest of the page is free.
330 */
331static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
332{
333 int off = chunk->map[i] & ~1;
334 int end = chunk->map[i + 1] & ~1;
335
336 if (!PAGE_ALIGNED(off) && i > 0) {
337 int prev = chunk->map[i - 1];
338
339 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
340 off = round_down(off, PAGE_SIZE);
341 }
342
343 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
344 int next = chunk->map[i + 1];
345 int nend = chunk->map[i + 2] & ~1;
346
347 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
348 end = round_up(end, PAGE_SIZE);
349 }
350
351 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
352}
353
fbf59bc9
TH
354/**
355 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
356 * @chunk: chunk of interest
357 * @oslot: the previous slot it was on
358 *
359 * This function is called after an allocation or free changed @chunk.
360 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
361 * moved to the slot. Note that the reserved chunk is never put on
362 * chunk slots.
ccea34b5
TH
363 *
364 * CONTEXT:
365 * pcpu_lock.
fbf59bc9
TH
366 */
367static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
368{
369 int nslot = pcpu_chunk_slot(chunk);
370
edcb4639 371 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
372 if (oslot < nslot)
373 list_move(&chunk->list, &pcpu_slot[nslot]);
374 else
375 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
376 }
377}
378
9f7dcf22 379/**
833af842
TH
380 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
381 * @chunk: chunk of interest
9c824b6a 382 * @is_atomic: the allocation context
9f7dcf22 383 *
9c824b6a
TH
384 * Determine whether area map of @chunk needs to be extended. If
385 * @is_atomic, only the amount necessary for a new allocation is
386 * considered; however, async extension is scheduled if the left amount is
387 * low. If !@is_atomic, it aims for more empty space. Combined, this
388 * ensures that the map is likely to have enough available space to
389 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 390 *
ccea34b5 391 * CONTEXT:
833af842 392 * pcpu_lock.
ccea34b5 393 *
9f7dcf22 394 * RETURNS:
833af842
TH
395 * New target map allocation length if extension is necessary, 0
396 * otherwise.
9f7dcf22 397 */
9c824b6a 398static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 399{
9c824b6a
TH
400 int margin, new_alloc;
401
4f996e23
TH
402 lockdep_assert_held(&pcpu_lock);
403
9c824b6a
TH
404 if (is_atomic) {
405 margin = 3;
9f7dcf22 406
9c824b6a 407 if (chunk->map_alloc <
4f996e23
TH
408 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
409 if (list_empty(&chunk->map_extend_list)) {
410 list_add_tail(&chunk->map_extend_list,
411 &pcpu_map_extend_chunks);
412 pcpu_schedule_balance_work();
413 }
414 }
9c824b6a
TH
415 } else {
416 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
417 }
418
419 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
420 return 0;
421
422 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 423 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
424 new_alloc *= 2;
425
833af842
TH
426 return new_alloc;
427}
428
429/**
430 * pcpu_extend_area_map - extend area map of a chunk
431 * @chunk: chunk of interest
432 * @new_alloc: new target allocation length of the area map
433 *
434 * Extend area map of @chunk to have @new_alloc entries.
435 *
436 * CONTEXT:
437 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
438 *
439 * RETURNS:
440 * 0 on success, -errno on failure.
441 */
442static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
443{
444 int *old = NULL, *new = NULL;
445 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
446 unsigned long flags;
447
6710e594
TH
448 lockdep_assert_held(&pcpu_alloc_mutex);
449
90459ce0 450 new = pcpu_mem_zalloc(new_size);
833af842 451 if (!new)
9f7dcf22 452 return -ENOMEM;
ccea34b5 453
833af842
TH
454 /* acquire pcpu_lock and switch to new area map */
455 spin_lock_irqsave(&pcpu_lock, flags);
456
457 if (new_alloc <= chunk->map_alloc)
458 goto out_unlock;
9f7dcf22 459
833af842 460 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
461 old = chunk->map;
462
463 memcpy(new, old, old_size);
9f7dcf22 464
9f7dcf22
TH
465 chunk->map_alloc = new_alloc;
466 chunk->map = new;
833af842
TH
467 new = NULL;
468
469out_unlock:
470 spin_unlock_irqrestore(&pcpu_lock, flags);
471
472 /*
473 * pcpu_mem_free() might end up calling vfree() which uses
474 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
475 */
1d5cfdb0
TH
476 pcpu_mem_free(old);
477 pcpu_mem_free(new);
833af842 478
9f7dcf22
TH
479 return 0;
480}
481
a16037c8
TH
482/**
483 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
484 * @chunk: chunk the candidate area belongs to
485 * @off: the offset to the start of the candidate area
486 * @this_size: the size of the candidate area
487 * @size: the size of the target allocation
488 * @align: the alignment of the target allocation
489 * @pop_only: only allocate from already populated region
490 *
491 * We're trying to allocate @size bytes aligned at @align. @chunk's area
492 * at @off sized @this_size is a candidate. This function determines
493 * whether the target allocation fits in the candidate area and returns the
494 * number of bytes to pad after @off. If the target area doesn't fit, -1
495 * is returned.
496 *
497 * If @pop_only is %true, this function only considers the already
498 * populated part of the candidate area.
499 */
500static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
501 int size, int align, bool pop_only)
502{
503 int cand_off = off;
504
505 while (true) {
506 int head = ALIGN(cand_off, align) - off;
507 int page_start, page_end, rs, re;
508
509 if (this_size < head + size)
510 return -1;
511
512 if (!pop_only)
513 return head;
514
515 /*
516 * If the first unpopulated page is beyond the end of the
517 * allocation, the whole allocation is populated;
518 * otherwise, retry from the end of the unpopulated area.
519 */
520 page_start = PFN_DOWN(head + off);
521 page_end = PFN_UP(head + off + size);
522
523 rs = page_start;
524 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
525 if (rs >= page_end)
526 return head;
527 cand_off = re * PAGE_SIZE;
528 }
529}
530
fbf59bc9
TH
531/**
532 * pcpu_alloc_area - allocate area from a pcpu_chunk
533 * @chunk: chunk of interest
cae3aeb8 534 * @size: wanted size in bytes
fbf59bc9 535 * @align: wanted align
a16037c8 536 * @pop_only: allocate only from the populated area
b539b87f 537 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
538 *
539 * Try to allocate @size bytes area aligned at @align from @chunk.
540 * Note that this function only allocates the offset. It doesn't
541 * populate or map the area.
542 *
9f7dcf22
TH
543 * @chunk->map must have at least two free slots.
544 *
ccea34b5
TH
545 * CONTEXT:
546 * pcpu_lock.
547 *
fbf59bc9 548 * RETURNS:
9f7dcf22
TH
549 * Allocated offset in @chunk on success, -1 if no matching area is
550 * found.
fbf59bc9 551 */
a16037c8 552static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 553 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
554{
555 int oslot = pcpu_chunk_slot(chunk);
556 int max_contig = 0;
557 int i, off;
3d331ad7 558 bool seen_free = false;
723ad1d9 559 int *p;
fbf59bc9 560
3d331ad7 561 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 562 int head, tail;
723ad1d9
AV
563 int this_size;
564
565 off = *p;
566 if (off & 1)
567 continue;
fbf59bc9 568
723ad1d9 569 this_size = (p[1] & ~1) - off;
a16037c8
TH
570
571 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
572 pop_only);
573 if (head < 0) {
3d331ad7
AV
574 if (!seen_free) {
575 chunk->first_free = i;
576 seen_free = true;
577 }
723ad1d9 578 max_contig = max(this_size, max_contig);
fbf59bc9
TH
579 continue;
580 }
581
582 /*
583 * If head is small or the previous block is free,
584 * merge'em. Note that 'small' is defined as smaller
585 * than sizeof(int), which is very small but isn't too
586 * uncommon for percpu allocations.
587 */
723ad1d9 588 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 589 *p = off += head;
723ad1d9 590 if (p[-1] & 1)
fbf59bc9 591 chunk->free_size -= head;
21ddfd38
JZ
592 else
593 max_contig = max(*p - p[-1], max_contig);
723ad1d9 594 this_size -= head;
fbf59bc9
TH
595 head = 0;
596 }
597
598 /* if tail is small, just keep it around */
723ad1d9
AV
599 tail = this_size - head - size;
600 if (tail < sizeof(int)) {
fbf59bc9 601 tail = 0;
723ad1d9
AV
602 size = this_size - head;
603 }
fbf59bc9
TH
604
605 /* split if warranted */
606 if (head || tail) {
706c16f2
AV
607 int nr_extra = !!head + !!tail;
608
609 /* insert new subblocks */
723ad1d9 610 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
611 sizeof(chunk->map[0]) * (chunk->map_used - i));
612 chunk->map_used += nr_extra;
613
fbf59bc9 614 if (head) {
3d331ad7
AV
615 if (!seen_free) {
616 chunk->first_free = i;
617 seen_free = true;
618 }
723ad1d9
AV
619 *++p = off += head;
620 ++i;
706c16f2
AV
621 max_contig = max(head, max_contig);
622 }
623 if (tail) {
723ad1d9 624 p[1] = off + size;
706c16f2 625 max_contig = max(tail, max_contig);
fbf59bc9 626 }
fbf59bc9
TH
627 }
628
3d331ad7
AV
629 if (!seen_free)
630 chunk->first_free = i + 1;
631
fbf59bc9 632 /* update hint and mark allocated */
723ad1d9 633 if (i + 1 == chunk->map_used)
fbf59bc9
TH
634 chunk->contig_hint = max_contig; /* fully scanned */
635 else
636 chunk->contig_hint = max(chunk->contig_hint,
637 max_contig);
638
723ad1d9
AV
639 chunk->free_size -= size;
640 *p |= 1;
fbf59bc9 641
b539b87f 642 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
643 pcpu_chunk_relocate(chunk, oslot);
644 return off;
645 }
646
647 chunk->contig_hint = max_contig; /* fully scanned */
648 pcpu_chunk_relocate(chunk, oslot);
649
9f7dcf22
TH
650 /* tell the upper layer that this chunk has no matching area */
651 return -1;
fbf59bc9
TH
652}
653
654/**
655 * pcpu_free_area - free area to a pcpu_chunk
656 * @chunk: chunk of interest
657 * @freeme: offset of area to free
b539b87f 658 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
659 *
660 * Free area starting from @freeme to @chunk. Note that this function
661 * only modifies the allocation map. It doesn't depopulate or unmap
662 * the area.
ccea34b5
TH
663 *
664 * CONTEXT:
665 * pcpu_lock.
fbf59bc9 666 */
b539b87f
TH
667static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
668 int *occ_pages_p)
fbf59bc9
TH
669{
670 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
671 int off = 0;
672 unsigned i, j;
673 int to_free = 0;
674 int *p;
675
5ccd30e4 676 lockdep_assert_held(&pcpu_lock);
30a5b536 677 pcpu_stats_area_dealloc(chunk);
5ccd30e4 678
723ad1d9
AV
679 freeme |= 1; /* we are searching for <given offset, in use> pair */
680
681 i = 0;
682 j = chunk->map_used;
683 while (i != j) {
684 unsigned k = (i + j) / 2;
685 off = chunk->map[k];
686 if (off < freeme)
687 i = k + 1;
688 else if (off > freeme)
689 j = k;
690 else
691 i = j = k;
692 }
fbf59bc9 693 BUG_ON(off != freeme);
fbf59bc9 694
3d331ad7
AV
695 if (i < chunk->first_free)
696 chunk->first_free = i;
697
723ad1d9
AV
698 p = chunk->map + i;
699 *p = off &= ~1;
700 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 701
b539b87f
TH
702 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
703
723ad1d9
AV
704 /* merge with next? */
705 if (!(p[1] & 1))
706 to_free++;
fbf59bc9 707 /* merge with previous? */
723ad1d9
AV
708 if (i > 0 && !(p[-1] & 1)) {
709 to_free++;
fbf59bc9 710 i--;
723ad1d9 711 p--;
fbf59bc9 712 }
723ad1d9
AV
713 if (to_free) {
714 chunk->map_used -= to_free;
715 memmove(p + 1, p + 1 + to_free,
716 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
717 }
718
723ad1d9 719 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
720 pcpu_chunk_relocate(chunk, oslot);
721}
722
c0ebfdc3 723static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
10edf5b0
DZF
724 int map_size,
725 int *map,
726 int init_map_size)
727{
728 struct pcpu_chunk *chunk;
c0ebfdc3
DZF
729 unsigned long aligned_addr;
730 int start_offset, region_size;
731
732 /* region calculations */
733 aligned_addr = tmp_addr & PAGE_MASK;
734
735 start_offset = tmp_addr - aligned_addr;
6b9d7c8e
DZF
736
737 region_size = PFN_ALIGN(start_offset + map_size);
10edf5b0 738
c0ebfdc3 739 /* allocate chunk */
10edf5b0 740 chunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
c0ebfdc3 741
10edf5b0
DZF
742 INIT_LIST_HEAD(&chunk->list);
743 INIT_LIST_HEAD(&chunk->map_extend_list);
c0ebfdc3
DZF
744
745 chunk->base_addr = (void *)aligned_addr;
10edf5b0 746 chunk->start_offset = start_offset;
6b9d7c8e 747 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3
DZF
748
749 chunk->nr_pages = pcpu_unit_pages;
750
10edf5b0
DZF
751 chunk->map = map;
752 chunk->map_alloc = init_map_size;
753
754 /* manage populated page bitmap */
755 chunk->immutable = true;
756 bitmap_fill(chunk->populated, pcpu_unit_pages);
757 chunk->nr_populated = pcpu_unit_pages;
758
759 chunk->contig_hint = chunk->free_size = map_size;
c0ebfdc3
DZF
760
761 if (chunk->start_offset) {
762 /* hide the beginning of the bitmap */
763 chunk->map[0] = 1;
764 chunk->map[1] = chunk->start_offset;
765 chunk->map_used = 1;
766 }
767
768 /* set chunk's free region */
769 chunk->map[++chunk->map_used] =
770 (chunk->start_offset + chunk->free_size) | 1;
10edf5b0 771
6b9d7c8e
DZF
772 if (chunk->end_offset) {
773 /* hide the end of the bitmap */
774 chunk->map[++chunk->map_used] = region_size | 1;
775 }
776
10edf5b0
DZF
777 return chunk;
778}
779
6081089f
TH
780static struct pcpu_chunk *pcpu_alloc_chunk(void)
781{
782 struct pcpu_chunk *chunk;
783
90459ce0 784 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
785 if (!chunk)
786 return NULL;
787
90459ce0
BL
788 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
789 sizeof(chunk->map[0]));
6081089f 790 if (!chunk->map) {
1d5cfdb0 791 pcpu_mem_free(chunk);
6081089f
TH
792 return NULL;
793 }
794
795 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
796 chunk->map[0] = 0;
797 chunk->map[1] = pcpu_unit_size | 1;
798 chunk->map_used = 1;
6081089f
TH
799
800 INIT_LIST_HEAD(&chunk->list);
4f996e23 801 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
802 chunk->free_size = pcpu_unit_size;
803 chunk->contig_hint = pcpu_unit_size;
804
c0ebfdc3
DZF
805 chunk->nr_pages = pcpu_unit_pages;
806
6081089f
TH
807 return chunk;
808}
809
810static void pcpu_free_chunk(struct pcpu_chunk *chunk)
811{
812 if (!chunk)
813 return;
1d5cfdb0
TH
814 pcpu_mem_free(chunk->map);
815 pcpu_mem_free(chunk);
6081089f
TH
816}
817
b539b87f
TH
818/**
819 * pcpu_chunk_populated - post-population bookkeeping
820 * @chunk: pcpu_chunk which got populated
821 * @page_start: the start page
822 * @page_end: the end page
823 *
824 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
825 * the bookkeeping information accordingly. Must be called after each
826 * successful population.
827 */
828static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
829 int page_start, int page_end)
830{
831 int nr = page_end - page_start;
832
833 lockdep_assert_held(&pcpu_lock);
834
835 bitmap_set(chunk->populated, page_start, nr);
836 chunk->nr_populated += nr;
837 pcpu_nr_empty_pop_pages += nr;
838}
839
840/**
841 * pcpu_chunk_depopulated - post-depopulation bookkeeping
842 * @chunk: pcpu_chunk which got depopulated
843 * @page_start: the start page
844 * @page_end: the end page
845 *
846 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
847 * Update the bookkeeping information accordingly. Must be called after
848 * each successful depopulation.
849 */
850static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
851 int page_start, int page_end)
852{
853 int nr = page_end - page_start;
854
855 lockdep_assert_held(&pcpu_lock);
856
857 bitmap_clear(chunk->populated, page_start, nr);
858 chunk->nr_populated -= nr;
859 pcpu_nr_empty_pop_pages -= nr;
860}
861
9f645532
TH
862/*
863 * Chunk management implementation.
864 *
865 * To allow different implementations, chunk alloc/free and
866 * [de]population are implemented in a separate file which is pulled
867 * into this file and compiled together. The following functions
868 * should be implemented.
869 *
870 * pcpu_populate_chunk - populate the specified range of a chunk
871 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
872 * pcpu_create_chunk - create a new chunk
873 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
874 * pcpu_addr_to_page - translate address to physical address
875 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 876 */
9f645532
TH
877static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
878static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
879static struct pcpu_chunk *pcpu_create_chunk(void);
880static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
881static struct page *pcpu_addr_to_page(void *addr);
882static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 883
b0c9778b
TH
884#ifdef CONFIG_NEED_PER_CPU_KM
885#include "percpu-km.c"
886#else
9f645532 887#include "percpu-vm.c"
b0c9778b 888#endif
fbf59bc9 889
88999a89
TH
890/**
891 * pcpu_chunk_addr_search - determine chunk containing specified address
892 * @addr: address for which the chunk needs to be determined.
893 *
c0ebfdc3
DZF
894 * This is an internal function that handles all but static allocations.
895 * Static percpu address values should never be passed into the allocator.
896 *
88999a89
TH
897 * RETURNS:
898 * The address of the found chunk.
899 */
900static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
901{
c0ebfdc3 902 /* is it in the dynamic region (first chunk)? */
560f2c23 903 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 904 return pcpu_first_chunk;
c0ebfdc3
DZF
905
906 /* is it in the reserved region? */
560f2c23 907 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 908 return pcpu_reserved_chunk;
88999a89
TH
909
910 /*
911 * The address is relative to unit0 which might be unused and
912 * thus unmapped. Offset the address to the unit space of the
913 * current processor before looking it up in the vmalloc
914 * space. Note that any possible cpu id can be used here, so
915 * there's no need to worry about preemption or cpu hotplug.
916 */
917 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 918 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
919}
920
fbf59bc9 921/**
edcb4639 922 * pcpu_alloc - the percpu allocator
cae3aeb8 923 * @size: size of area to allocate in bytes
fbf59bc9 924 * @align: alignment of area (max PAGE_SIZE)
edcb4639 925 * @reserved: allocate from the reserved chunk if available
5835d96e 926 * @gfp: allocation flags
fbf59bc9 927 *
5835d96e
TH
928 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
929 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
930 *
931 * RETURNS:
932 * Percpu pointer to the allocated area on success, NULL on failure.
933 */
5835d96e
TH
934static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
935 gfp_t gfp)
fbf59bc9 936{
f2badb0c 937 static int warn_limit = 10;
fbf59bc9 938 struct pcpu_chunk *chunk;
f2badb0c 939 const char *err;
6ae833c7 940 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 941 int occ_pages = 0;
b38d08f3 942 int slot, off, new_alloc, cpu, ret;
403a91b1 943 unsigned long flags;
f528f0b8 944 void __percpu *ptr;
fbf59bc9 945
723ad1d9
AV
946 /*
947 * We want the lowest bit of offset available for in-use/free
2f69fa82 948 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
949 */
950 if (unlikely(align < 2))
951 align = 2;
952
fb009e3a 953 size = ALIGN(size, 2);
2f69fa82 954
3ca45a46 955 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
956 !is_power_of_2(align))) {
756a025f
JP
957 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
958 size, align);
fbf59bc9
TH
959 return NULL;
960 }
961
6710e594
TH
962 if (!is_atomic)
963 mutex_lock(&pcpu_alloc_mutex);
964
403a91b1 965 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 966
edcb4639
TH
967 /* serve reserved allocations from the reserved chunk if available */
968 if (reserved && pcpu_reserved_chunk) {
969 chunk = pcpu_reserved_chunk;
833af842
TH
970
971 if (size > chunk->contig_hint) {
972 err = "alloc from reserved chunk failed";
ccea34b5 973 goto fail_unlock;
f2badb0c 974 }
833af842 975
9c824b6a 976 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 977 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
978 if (is_atomic ||
979 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 980 err = "failed to extend area map of reserved chunk";
b38d08f3 981 goto fail;
833af842
TH
982 }
983 spin_lock_irqsave(&pcpu_lock, flags);
984 }
985
b539b87f
TH
986 off = pcpu_alloc_area(chunk, size, align, is_atomic,
987 &occ_pages);
edcb4639
TH
988 if (off >= 0)
989 goto area_found;
833af842 990
f2badb0c 991 err = "alloc from reserved chunk failed";
ccea34b5 992 goto fail_unlock;
edcb4639
TH
993 }
994
ccea34b5 995restart:
edcb4639 996 /* search through normal chunks */
fbf59bc9
TH
997 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
998 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
999 if (size > chunk->contig_hint)
1000 continue;
ccea34b5 1001
9c824b6a 1002 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 1003 if (new_alloc) {
5835d96e
TH
1004 if (is_atomic)
1005 continue;
833af842
TH
1006 spin_unlock_irqrestore(&pcpu_lock, flags);
1007 if (pcpu_extend_area_map(chunk,
1008 new_alloc) < 0) {
1009 err = "failed to extend area map";
b38d08f3 1010 goto fail;
833af842
TH
1011 }
1012 spin_lock_irqsave(&pcpu_lock, flags);
1013 /*
1014 * pcpu_lock has been dropped, need to
1015 * restart cpu_slot list walking.
1016 */
1017 goto restart;
ccea34b5
TH
1018 }
1019
b539b87f
TH
1020 off = pcpu_alloc_area(chunk, size, align, is_atomic,
1021 &occ_pages);
fbf59bc9
TH
1022 if (off >= 0)
1023 goto area_found;
fbf59bc9
TH
1024 }
1025 }
1026
403a91b1 1027 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1028
b38d08f3
TH
1029 /*
1030 * No space left. Create a new chunk. We don't want multiple
1031 * tasks to create chunks simultaneously. Serialize and create iff
1032 * there's still no empty chunk after grabbing the mutex.
1033 */
11df02bf
DZ
1034 if (is_atomic) {
1035 err = "atomic alloc failed, no space left";
5835d96e 1036 goto fail;
11df02bf 1037 }
5835d96e 1038
b38d08f3
TH
1039 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1040 chunk = pcpu_create_chunk();
1041 if (!chunk) {
1042 err = "failed to allocate new chunk";
1043 goto fail;
1044 }
1045
1046 spin_lock_irqsave(&pcpu_lock, flags);
1047 pcpu_chunk_relocate(chunk, -1);
1048 } else {
1049 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1050 }
ccea34b5 1051
ccea34b5 1052 goto restart;
fbf59bc9
TH
1053
1054area_found:
30a5b536 1055 pcpu_stats_area_alloc(chunk, size);
403a91b1 1056 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1057
dca49645 1058 /* populate if not all pages are already there */
5835d96e 1059 if (!is_atomic) {
e04d3208 1060 int page_start, page_end, rs, re;
dca49645 1061
e04d3208
TH
1062 page_start = PFN_DOWN(off);
1063 page_end = PFN_UP(off + size);
b38d08f3 1064
e04d3208
TH
1065 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1066 WARN_ON(chunk->immutable);
1067
1068 ret = pcpu_populate_chunk(chunk, rs, re);
1069
1070 spin_lock_irqsave(&pcpu_lock, flags);
1071 if (ret) {
b539b87f 1072 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1073 err = "failed to populate";
1074 goto fail_unlock;
1075 }
b539b87f 1076 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1077 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1078 }
fbf59bc9 1079
e04d3208
TH
1080 mutex_unlock(&pcpu_alloc_mutex);
1081 }
ccea34b5 1082
320661b0
TE
1083 if (chunk != pcpu_reserved_chunk) {
1084 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1085 pcpu_nr_empty_pop_pages -= occ_pages;
320661b0
TE
1086 spin_unlock_irqrestore(&pcpu_lock, flags);
1087 }
b539b87f 1088
1a4d7607
TH
1089 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1090 pcpu_schedule_balance_work();
1091
dca49645
TH
1092 /* clear the areas and return address relative to base address */
1093 for_each_possible_cpu(cpu)
1094 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1095
f528f0b8 1096 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1097 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1098
1099 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1100 chunk->base_addr, off, ptr);
1101
f528f0b8 1102 return ptr;
ccea34b5
TH
1103
1104fail_unlock:
403a91b1 1105 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1106fail:
df95e795
DZ
1107 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1108
5835d96e 1109 if (!is_atomic && warn_limit) {
870d4b12 1110 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1111 size, align, is_atomic, err);
f2badb0c
TH
1112 dump_stack();
1113 if (!--warn_limit)
870d4b12 1114 pr_info("limit reached, disable warning\n");
f2badb0c 1115 }
1a4d7607
TH
1116 if (is_atomic) {
1117 /* see the flag handling in pcpu_blance_workfn() */
1118 pcpu_atomic_alloc_failed = true;
1119 pcpu_schedule_balance_work();
6710e594
TH
1120 } else {
1121 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1122 }
ccea34b5 1123 return NULL;
fbf59bc9 1124}
edcb4639
TH
1125
1126/**
5835d96e 1127 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1128 * @size: size of area to allocate in bytes
1129 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1130 * @gfp: allocation flags
edcb4639 1131 *
5835d96e
TH
1132 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1133 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1134 * be called from any context but is a lot more likely to fail.
ccea34b5 1135 *
edcb4639
TH
1136 * RETURNS:
1137 * Percpu pointer to the allocated area on success, NULL on failure.
1138 */
5835d96e
TH
1139void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1140{
1141 return pcpu_alloc(size, align, false, gfp);
1142}
1143EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1144
1145/**
1146 * __alloc_percpu - allocate dynamic percpu area
1147 * @size: size of area to allocate in bytes
1148 * @align: alignment of area (max PAGE_SIZE)
1149 *
1150 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1151 */
43cf38eb 1152void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1153{
5835d96e 1154 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1155}
fbf59bc9
TH
1156EXPORT_SYMBOL_GPL(__alloc_percpu);
1157
edcb4639
TH
1158/**
1159 * __alloc_reserved_percpu - allocate reserved percpu area
1160 * @size: size of area to allocate in bytes
1161 * @align: alignment of area (max PAGE_SIZE)
1162 *
9329ba97
TH
1163 * Allocate zero-filled percpu area of @size bytes aligned at @align
1164 * from reserved percpu area if arch has set it up; otherwise,
1165 * allocation is served from the same dynamic area. Might sleep.
1166 * Might trigger writeouts.
edcb4639 1167 *
ccea34b5
TH
1168 * CONTEXT:
1169 * Does GFP_KERNEL allocation.
1170 *
edcb4639
TH
1171 * RETURNS:
1172 * Percpu pointer to the allocated area on success, NULL on failure.
1173 */
43cf38eb 1174void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1175{
5835d96e 1176 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1177}
1178
a56dbddf 1179/**
1a4d7607 1180 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1181 * @work: unused
1182 *
1183 * Reclaim all fully free chunks except for the first one.
1184 */
fe6bd8c3 1185static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1186{
fe6bd8c3
TH
1187 LIST_HEAD(to_free);
1188 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1189 struct pcpu_chunk *chunk, *next;
1a4d7607 1190 int slot, nr_to_pop, ret;
a56dbddf 1191
1a4d7607
TH
1192 /*
1193 * There's no reason to keep around multiple unused chunks and VM
1194 * areas can be scarce. Destroy all free chunks except for one.
1195 */
ccea34b5
TH
1196 mutex_lock(&pcpu_alloc_mutex);
1197 spin_lock_irq(&pcpu_lock);
a56dbddf 1198
fe6bd8c3 1199 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1200 WARN_ON(chunk->immutable);
1201
1202 /* spare the first one */
fe6bd8c3 1203 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1204 continue;
1205
4f996e23 1206 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1207 list_move(&chunk->list, &to_free);
a56dbddf
TH
1208 }
1209
ccea34b5 1210 spin_unlock_irq(&pcpu_lock);
a56dbddf 1211
fe6bd8c3 1212 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1213 int rs, re;
dca49645 1214
a93ace48
TH
1215 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1216 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1217 spin_lock_irq(&pcpu_lock);
1218 pcpu_chunk_depopulated(chunk, rs, re);
1219 spin_unlock_irq(&pcpu_lock);
a93ace48 1220 }
6081089f 1221 pcpu_destroy_chunk(chunk);
a56dbddf 1222 }
971f3918 1223
4f996e23
TH
1224 /* service chunks which requested async area map extension */
1225 do {
1226 int new_alloc = 0;
1227
1228 spin_lock_irq(&pcpu_lock);
1229
1230 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1231 struct pcpu_chunk, map_extend_list);
1232 if (chunk) {
1233 list_del_init(&chunk->map_extend_list);
1234 new_alloc = pcpu_need_to_extend(chunk, false);
1235 }
1236
1237 spin_unlock_irq(&pcpu_lock);
1238
1239 if (new_alloc)
1240 pcpu_extend_area_map(chunk, new_alloc);
1241 } while (chunk);
1242
1a4d7607
TH
1243 /*
1244 * Ensure there are certain number of free populated pages for
1245 * atomic allocs. Fill up from the most packed so that atomic
1246 * allocs don't increase fragmentation. If atomic allocation
1247 * failed previously, always populate the maximum amount. This
1248 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1249 * failing indefinitely; however, large atomic allocs are not
1250 * something we support properly and can be highly unreliable and
1251 * inefficient.
1252 */
1253retry_pop:
1254 if (pcpu_atomic_alloc_failed) {
1255 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1256 /* best effort anyway, don't worry about synchronization */
1257 pcpu_atomic_alloc_failed = false;
1258 } else {
1259 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1260 pcpu_nr_empty_pop_pages,
1261 0, PCPU_EMPTY_POP_PAGES_HIGH);
1262 }
1263
1264 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1265 int nr_unpop = 0, rs, re;
1266
1267 if (!nr_to_pop)
1268 break;
1269
1270 spin_lock_irq(&pcpu_lock);
1271 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1272 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1273 if (nr_unpop)
1274 break;
1275 }
1276 spin_unlock_irq(&pcpu_lock);
1277
1278 if (!nr_unpop)
1279 continue;
1280
1281 /* @chunk can't go away while pcpu_alloc_mutex is held */
1282 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1283 int nr = min(re - rs, nr_to_pop);
1284
1285 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1286 if (!ret) {
1287 nr_to_pop -= nr;
1288 spin_lock_irq(&pcpu_lock);
1289 pcpu_chunk_populated(chunk, rs, rs + nr);
1290 spin_unlock_irq(&pcpu_lock);
1291 } else {
1292 nr_to_pop = 0;
1293 }
1294
1295 if (!nr_to_pop)
1296 break;
1297 }
1298 }
1299
1300 if (nr_to_pop) {
1301 /* ran out of chunks to populate, create a new one and retry */
1302 chunk = pcpu_create_chunk();
1303 if (chunk) {
1304 spin_lock_irq(&pcpu_lock);
1305 pcpu_chunk_relocate(chunk, -1);
1306 spin_unlock_irq(&pcpu_lock);
1307 goto retry_pop;
1308 }
1309 }
1310
971f3918 1311 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1312}
1313
1314/**
1315 * free_percpu - free percpu area
1316 * @ptr: pointer to area to free
1317 *
ccea34b5
TH
1318 * Free percpu area @ptr.
1319 *
1320 * CONTEXT:
1321 * Can be called from atomic context.
fbf59bc9 1322 */
43cf38eb 1323void free_percpu(void __percpu *ptr)
fbf59bc9 1324{
129182e5 1325 void *addr;
fbf59bc9 1326 struct pcpu_chunk *chunk;
ccea34b5 1327 unsigned long flags;
b539b87f 1328 int off, occ_pages;
fbf59bc9
TH
1329
1330 if (!ptr)
1331 return;
1332
f528f0b8
CM
1333 kmemleak_free_percpu(ptr);
1334
129182e5
AM
1335 addr = __pcpu_ptr_to_addr(ptr);
1336
ccea34b5 1337 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1338
1339 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1340 off = addr - chunk->base_addr;
fbf59bc9 1341
b539b87f
TH
1342 pcpu_free_area(chunk, off, &occ_pages);
1343
1344 if (chunk != pcpu_reserved_chunk)
1345 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1346
a56dbddf 1347 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1348 if (chunk->free_size == pcpu_unit_size) {
1349 struct pcpu_chunk *pos;
1350
a56dbddf 1351 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1352 if (pos != chunk) {
1a4d7607 1353 pcpu_schedule_balance_work();
fbf59bc9
TH
1354 break;
1355 }
1356 }
1357
df95e795
DZ
1358 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1359
ccea34b5 1360 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1361}
1362EXPORT_SYMBOL_GPL(free_percpu);
1363
383776fa 1364bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1365{
bbddff05 1366#ifdef CONFIG_SMP
10fad5e4
TH
1367 const size_t static_size = __per_cpu_end - __per_cpu_start;
1368 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1369 unsigned int cpu;
1370
1371 for_each_possible_cpu(cpu) {
1372 void *start = per_cpu_ptr(base, cpu);
383776fa 1373 void *va = (void *)addr;
10fad5e4 1374
383776fa 1375 if (va >= start && va < start + static_size) {
8ce371f9 1376 if (can_addr) {
383776fa 1377 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1378 *can_addr += (unsigned long)
1379 per_cpu_ptr(base, get_boot_cpu_id());
1380 }
10fad5e4 1381 return true;
383776fa
TG
1382 }
1383 }
bbddff05
TH
1384#endif
1385 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1386 return false;
1387}
1388
383776fa
TG
1389/**
1390 * is_kernel_percpu_address - test whether address is from static percpu area
1391 * @addr: address to test
1392 *
1393 * Test whether @addr belongs to in-kernel static percpu area. Module
1394 * static percpu areas are not considered. For those, use
1395 * is_module_percpu_address().
1396 *
1397 * RETURNS:
1398 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1399 */
1400bool is_kernel_percpu_address(unsigned long addr)
1401{
1402 return __is_kernel_percpu_address(addr, NULL);
1403}
1404
3b034b0d
VG
1405/**
1406 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1407 * @addr: the address to be converted to physical address
1408 *
1409 * Given @addr which is dereferenceable address obtained via one of
1410 * percpu access macros, this function translates it into its physical
1411 * address. The caller is responsible for ensuring @addr stays valid
1412 * until this function finishes.
1413 *
67589c71
DY
1414 * percpu allocator has special setup for the first chunk, which currently
1415 * supports either embedding in linear address space or vmalloc mapping,
1416 * and, from the second one, the backing allocator (currently either vm or
1417 * km) provides translation.
1418 *
bffc4375 1419 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1420 * first chunk. But the current code reflects better how percpu allocator
1421 * actually works, and the verification can discover both bugs in percpu
1422 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1423 * code.
1424 *
3b034b0d
VG
1425 * RETURNS:
1426 * The physical address for @addr.
1427 */
1428phys_addr_t per_cpu_ptr_to_phys(void *addr)
1429{
9983b6f0
TH
1430 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1431 bool in_first_chunk = false;
a855b84c 1432 unsigned long first_low, first_high;
9983b6f0
TH
1433 unsigned int cpu;
1434
1435 /*
a855b84c 1436 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1437 * necessary but will speed up lookups of addresses which
1438 * aren't in the first chunk.
c0ebfdc3
DZF
1439 *
1440 * The address check is against full chunk sizes. pcpu_base_addr
1441 * points to the beginning of the first chunk including the
1442 * static region. Assumes good intent as the first chunk may
1443 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1444 */
c0ebfdc3
DZF
1445 first_low = (unsigned long)pcpu_base_addr +
1446 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1447 first_high = (unsigned long)pcpu_base_addr +
1448 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1449 if ((unsigned long)addr >= first_low &&
1450 (unsigned long)addr < first_high) {
9983b6f0
TH
1451 for_each_possible_cpu(cpu) {
1452 void *start = per_cpu_ptr(base, cpu);
1453
1454 if (addr >= start && addr < start + pcpu_unit_size) {
1455 in_first_chunk = true;
1456 break;
1457 }
1458 }
1459 }
1460
1461 if (in_first_chunk) {
eac522ef 1462 if (!is_vmalloc_addr(addr))
020ec653
TH
1463 return __pa(addr);
1464 else
9f57bd4d
ES
1465 return page_to_phys(vmalloc_to_page(addr)) +
1466 offset_in_page(addr);
020ec653 1467 } else
9f57bd4d
ES
1468 return page_to_phys(pcpu_addr_to_page(addr)) +
1469 offset_in_page(addr);
3b034b0d
VG
1470}
1471
fbf59bc9 1472/**
fd1e8a1f
TH
1473 * pcpu_alloc_alloc_info - allocate percpu allocation info
1474 * @nr_groups: the number of groups
1475 * @nr_units: the number of units
1476 *
1477 * Allocate ai which is large enough for @nr_groups groups containing
1478 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1479 * cpu_map array which is long enough for @nr_units and filled with
1480 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1481 * pointer of other groups.
1482 *
1483 * RETURNS:
1484 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1485 * failure.
1486 */
1487struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1488 int nr_units)
1489{
1490 struct pcpu_alloc_info *ai;
1491 size_t base_size, ai_size;
1492 void *ptr;
1493 int unit;
1494
1495 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1496 __alignof__(ai->groups[0].cpu_map[0]));
1497 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1498
999c17e3 1499 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1500 if (!ptr)
1501 return NULL;
1502 ai = ptr;
1503 ptr += base_size;
1504
1505 ai->groups[0].cpu_map = ptr;
1506
1507 for (unit = 0; unit < nr_units; unit++)
1508 ai->groups[0].cpu_map[unit] = NR_CPUS;
1509
1510 ai->nr_groups = nr_groups;
1511 ai->__ai_size = PFN_ALIGN(ai_size);
1512
1513 return ai;
1514}
1515
1516/**
1517 * pcpu_free_alloc_info - free percpu allocation info
1518 * @ai: pcpu_alloc_info to free
1519 *
1520 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1521 */
1522void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1523{
999c17e3 1524 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1525}
1526
fd1e8a1f
TH
1527/**
1528 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1529 * @lvl: loglevel
1530 * @ai: allocation info to dump
1531 *
1532 * Print out information about @ai using loglevel @lvl.
1533 */
1534static void pcpu_dump_alloc_info(const char *lvl,
1535 const struct pcpu_alloc_info *ai)
033e48fb 1536{
fd1e8a1f 1537 int group_width = 1, cpu_width = 1, width;
033e48fb 1538 char empty_str[] = "--------";
fd1e8a1f
TH
1539 int alloc = 0, alloc_end = 0;
1540 int group, v;
1541 int upa, apl; /* units per alloc, allocs per line */
1542
1543 v = ai->nr_groups;
1544 while (v /= 10)
1545 group_width++;
033e48fb 1546
fd1e8a1f 1547 v = num_possible_cpus();
033e48fb 1548 while (v /= 10)
fd1e8a1f
TH
1549 cpu_width++;
1550 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1551
fd1e8a1f
TH
1552 upa = ai->alloc_size / ai->unit_size;
1553 width = upa * (cpu_width + 1) + group_width + 3;
1554 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1555
fd1e8a1f
TH
1556 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1557 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1558 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1559
fd1e8a1f
TH
1560 for (group = 0; group < ai->nr_groups; group++) {
1561 const struct pcpu_group_info *gi = &ai->groups[group];
1562 int unit = 0, unit_end = 0;
1563
1564 BUG_ON(gi->nr_units % upa);
1565 for (alloc_end += gi->nr_units / upa;
1566 alloc < alloc_end; alloc++) {
1567 if (!(alloc % apl)) {
1170532b 1568 pr_cont("\n");
fd1e8a1f
TH
1569 printk("%spcpu-alloc: ", lvl);
1570 }
1170532b 1571 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1572
1573 for (unit_end += upa; unit < unit_end; unit++)
1574 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1575 pr_cont("%0*d ",
1576 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1577 else
1170532b 1578 pr_cont("%s ", empty_str);
033e48fb 1579 }
033e48fb 1580 }
1170532b 1581 pr_cont("\n");
033e48fb 1582}
033e48fb 1583
fbf59bc9 1584/**
8d408b4b 1585 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1586 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1587 * @base_addr: mapped address
8d408b4b
TH
1588 *
1589 * Initialize the first percpu chunk which contains the kernel static
1590 * perpcu area. This function is to be called from arch percpu area
38a6be52 1591 * setup path.
8d408b4b 1592 *
fd1e8a1f
TH
1593 * @ai contains all information necessary to initialize the first
1594 * chunk and prime the dynamic percpu allocator.
1595 *
1596 * @ai->static_size is the size of static percpu area.
1597 *
1598 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1599 * reserve after the static area in the first chunk. This reserves
1600 * the first chunk such that it's available only through reserved
1601 * percpu allocation. This is primarily used to serve module percpu
1602 * static areas on architectures where the addressing model has
1603 * limited offset range for symbol relocations to guarantee module
1604 * percpu symbols fall inside the relocatable range.
1605 *
fd1e8a1f
TH
1606 * @ai->dyn_size determines the number of bytes available for dynamic
1607 * allocation in the first chunk. The area between @ai->static_size +
1608 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1609 *
fd1e8a1f
TH
1610 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1611 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1612 * @ai->dyn_size.
8d408b4b 1613 *
fd1e8a1f
TH
1614 * @ai->atom_size is the allocation atom size and used as alignment
1615 * for vm areas.
8d408b4b 1616 *
fd1e8a1f
TH
1617 * @ai->alloc_size is the allocation size and always multiple of
1618 * @ai->atom_size. This is larger than @ai->atom_size if
1619 * @ai->unit_size is larger than @ai->atom_size.
1620 *
1621 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1622 * percpu areas. Units which should be colocated are put into the
1623 * same group. Dynamic VM areas will be allocated according to these
1624 * groupings. If @ai->nr_groups is zero, a single group containing
1625 * all units is assumed.
8d408b4b 1626 *
38a6be52
TH
1627 * The caller should have mapped the first chunk at @base_addr and
1628 * copied static data to each unit.
fbf59bc9 1629 *
c0ebfdc3
DZF
1630 * The first chunk will always contain a static and a dynamic region.
1631 * However, the static region is not managed by any chunk. If the first
1632 * chunk also contains a reserved region, it is served by two chunks -
1633 * one for the reserved region and one for the dynamic region. They
1634 * share the same vm, but use offset regions in the area allocation map.
1635 * The chunk serving the dynamic region is circulated in the chunk slots
1636 * and available for dynamic allocation like any other chunk.
edcb4639 1637 *
fbf59bc9 1638 * RETURNS:
fb435d52 1639 * 0 on success, -errno on failure.
fbf59bc9 1640 */
fb435d52
TH
1641int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1642 void *base_addr)
fbf59bc9 1643{
099a19d9
TH
1644 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1645 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
b9c39442 1646 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
0c4169c3 1647 struct pcpu_chunk *chunk;
6563297c
TH
1648 unsigned long *group_offsets;
1649 size_t *group_sizes;
fb435d52 1650 unsigned long *unit_off;
fbf59bc9 1651 unsigned int cpu;
fd1e8a1f
TH
1652 int *unit_map;
1653 int group, unit, i;
c0ebfdc3
DZF
1654 int map_size;
1655 unsigned long tmp_addr;
fbf59bc9 1656
635b75fc
TH
1657#define PCPU_SETUP_BUG_ON(cond) do { \
1658 if (unlikely(cond)) { \
870d4b12
JP
1659 pr_emerg("failed to initialize, %s\n", #cond); \
1660 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1661 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1662 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1663 BUG(); \
1664 } \
1665} while (0)
1666
2f39e637 1667 /* sanity checks */
635b75fc 1668 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1669#ifdef CONFIG_SMP
635b75fc 1670 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1671 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1672#endif
635b75fc 1673 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1674 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1675 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1676 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1677 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1678 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1679 PCPU_SETUP_BUG_ON(!ai->dyn_size);
9f645532 1680 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1681
6563297c 1682 /* process group information and build config tables accordingly */
999c17e3
SS
1683 group_offsets = memblock_virt_alloc(ai->nr_groups *
1684 sizeof(group_offsets[0]), 0);
1685 group_sizes = memblock_virt_alloc(ai->nr_groups *
1686 sizeof(group_sizes[0]), 0);
1687 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1688 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1689
fd1e8a1f 1690 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1691 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1692
1693 pcpu_low_unit_cpu = NR_CPUS;
1694 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1695
fd1e8a1f
TH
1696 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1697 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1698
6563297c
TH
1699 group_offsets[group] = gi->base_offset;
1700 group_sizes[group] = gi->nr_units * ai->unit_size;
1701
fd1e8a1f
TH
1702 for (i = 0; i < gi->nr_units; i++) {
1703 cpu = gi->cpu_map[i];
1704 if (cpu == NR_CPUS)
1705 continue;
8d408b4b 1706
9f295664 1707 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1708 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1709 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1710
fd1e8a1f 1711 unit_map[cpu] = unit + i;
fb435d52
TH
1712 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1713
a855b84c
TH
1714 /* determine low/high unit_cpu */
1715 if (pcpu_low_unit_cpu == NR_CPUS ||
1716 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1717 pcpu_low_unit_cpu = cpu;
1718 if (pcpu_high_unit_cpu == NR_CPUS ||
1719 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1720 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1721 }
2f39e637 1722 }
fd1e8a1f
TH
1723 pcpu_nr_units = unit;
1724
1725 for_each_possible_cpu(cpu)
635b75fc
TH
1726 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1727
1728 /* we're done parsing the input, undefine BUG macro and dump config */
1729#undef PCPU_SETUP_BUG_ON
bcbea798 1730 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1731
6563297c
TH
1732 pcpu_nr_groups = ai->nr_groups;
1733 pcpu_group_offsets = group_offsets;
1734 pcpu_group_sizes = group_sizes;
fd1e8a1f 1735 pcpu_unit_map = unit_map;
fb435d52 1736 pcpu_unit_offsets = unit_off;
2f39e637
TH
1737
1738 /* determine basic parameters */
fd1e8a1f 1739 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1740 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1741 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1742 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1743 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1744
30a5b536
DZ
1745 pcpu_stats_save_ai(ai);
1746
d9b55eeb
TH
1747 /*
1748 * Allocate chunk slots. The additional last slot is for
1749 * empty chunks.
1750 */
1751 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1752 pcpu_slot = memblock_virt_alloc(
1753 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1754 for (i = 0; i < pcpu_nr_slots; i++)
1755 INIT_LIST_HEAD(&pcpu_slot[i]);
1756
edcb4639 1757 /*
c0ebfdc3
DZF
1758 * Initialize first chunk.
1759 * If the reserved_size is non-zero, this initializes the reserved
1760 * chunk. If the reserved_size is zero, the reserved chunk is NULL
1761 * and the dynamic region is initialized here. The first chunk,
1762 * pcpu_first_chunk, will always point to the chunk that serves
1763 * the dynamic region.
edcb4639 1764 */
c0ebfdc3 1765 tmp_addr = (unsigned long)base_addr + ai->static_size;
10edf5b0 1766 map_size = ai->reserved_size ?: ai->dyn_size;
c0ebfdc3 1767 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, smap,
0c4169c3 1768 ARRAY_SIZE(smap));
61ace7fa 1769
edcb4639 1770 /* init dynamic chunk if necessary */
b9c39442 1771 if (ai->reserved_size) {
0c4169c3 1772 pcpu_reserved_chunk = chunk;
b9c39442 1773
c0ebfdc3
DZF
1774 tmp_addr = (unsigned long)base_addr + ai->static_size +
1775 ai->reserved_size;
10edf5b0 1776 map_size = ai->dyn_size;
c0ebfdc3 1777 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, dmap,
0c4169c3 1778 ARRAY_SIZE(dmap));
edcb4639
TH
1779 }
1780
2441d15c 1781 /* link the first chunk in */
0c4169c3 1782 pcpu_first_chunk = chunk;
e2266705 1783 i = (pcpu_first_chunk->start_offset) ? 1 : 0;
b539b87f 1784 pcpu_nr_empty_pop_pages +=
e2266705 1785 pcpu_count_occupied_pages(pcpu_first_chunk, i);
ae9e6bc9 1786 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1787
30a5b536 1788 pcpu_stats_chunk_alloc();
df95e795 1789 trace_percpu_create_chunk(base_addr);
30a5b536 1790
fbf59bc9 1791 /* we're done */
bba174f5 1792 pcpu_base_addr = base_addr;
fb435d52 1793 return 0;
fbf59bc9 1794}
66c3a757 1795
bbddff05
TH
1796#ifdef CONFIG_SMP
1797
17f3609c 1798const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1799 [PCPU_FC_AUTO] = "auto",
1800 [PCPU_FC_EMBED] = "embed",
1801 [PCPU_FC_PAGE] = "page",
f58dc01b 1802};
66c3a757 1803
f58dc01b 1804enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1805
f58dc01b
TH
1806static int __init percpu_alloc_setup(char *str)
1807{
5479c78a
CG
1808 if (!str)
1809 return -EINVAL;
1810
f58dc01b
TH
1811 if (0)
1812 /* nada */;
1813#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1814 else if (!strcmp(str, "embed"))
1815 pcpu_chosen_fc = PCPU_FC_EMBED;
1816#endif
1817#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1818 else if (!strcmp(str, "page"))
1819 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1820#endif
1821 else
870d4b12 1822 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1823
f58dc01b 1824 return 0;
66c3a757 1825}
f58dc01b 1826early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1827
3c9a024f
TH
1828/*
1829 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1830 * Build it if needed by the arch config or the generic setup is going
1831 * to be used.
1832 */
08fc4580
TH
1833#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1834 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1835#define BUILD_EMBED_FIRST_CHUNK
1836#endif
1837
1838/* build pcpu_page_first_chunk() iff needed by the arch config */
1839#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1840#define BUILD_PAGE_FIRST_CHUNK
1841#endif
1842
1843/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1844#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1845/**
1846 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1847 * @reserved_size: the size of reserved percpu area in bytes
1848 * @dyn_size: minimum free size for dynamic allocation in bytes
1849 * @atom_size: allocation atom size
1850 * @cpu_distance_fn: callback to determine distance between cpus, optional
1851 *
1852 * This function determines grouping of units, their mappings to cpus
1853 * and other parameters considering needed percpu size, allocation
1854 * atom size and distances between CPUs.
1855 *
bffc4375 1856 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1857 * LOCAL_DISTANCE both ways are grouped together and share space for
1858 * units in the same group. The returned configuration is guaranteed
1859 * to have CPUs on different nodes on different groups and >=75% usage
1860 * of allocated virtual address space.
1861 *
1862 * RETURNS:
1863 * On success, pointer to the new allocation_info is returned. On
1864 * failure, ERR_PTR value is returned.
1865 */
1866static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1867 size_t reserved_size, size_t dyn_size,
1868 size_t atom_size,
1869 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1870{
1871 static int group_map[NR_CPUS] __initdata;
1872 static int group_cnt[NR_CPUS] __initdata;
1873 const size_t static_size = __per_cpu_end - __per_cpu_start;
1874 int nr_groups = 1, nr_units = 0;
1875 size_t size_sum, min_unit_size, alloc_size;
1876 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1877 int last_allocs, group, unit;
1878 unsigned int cpu, tcpu;
1879 struct pcpu_alloc_info *ai;
1880 unsigned int *cpu_map;
1881
1882 /* this function may be called multiple times */
1883 memset(group_map, 0, sizeof(group_map));
1884 memset(group_cnt, 0, sizeof(group_cnt));
1885
1886 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1887 size_sum = PFN_ALIGN(static_size + reserved_size +
1888 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1889 dyn_size = size_sum - static_size - reserved_size;
1890
1891 /*
1892 * Determine min_unit_size, alloc_size and max_upa such that
1893 * alloc_size is multiple of atom_size and is the smallest
25985edc 1894 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1895 * or larger than min_unit_size.
1896 */
1897 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1898
9c015162 1899 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1900 alloc_size = roundup(min_unit_size, atom_size);
1901 upa = alloc_size / min_unit_size;
f09f1243 1902 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1903 upa--;
1904 max_upa = upa;
1905
1906 /* group cpus according to their proximity */
1907 for_each_possible_cpu(cpu) {
1908 group = 0;
1909 next_group:
1910 for_each_possible_cpu(tcpu) {
1911 if (cpu == tcpu)
1912 break;
1913 if (group_map[tcpu] == group && cpu_distance_fn &&
1914 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1915 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1916 group++;
1917 nr_groups = max(nr_groups, group + 1);
1918 goto next_group;
1919 }
1920 }
1921 group_map[cpu] = group;
1922 group_cnt[group]++;
1923 }
1924
1925 /*
9c015162
DZF
1926 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1927 * Expand the unit_size until we use >= 75% of the units allocated.
1928 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
1929 */
1930 last_allocs = INT_MAX;
1931 for (upa = max_upa; upa; upa--) {
1932 int allocs = 0, wasted = 0;
1933
f09f1243 1934 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1935 continue;
1936
1937 for (group = 0; group < nr_groups; group++) {
1938 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1939 allocs += this_allocs;
1940 wasted += this_allocs * upa - group_cnt[group];
1941 }
1942
1943 /*
1944 * Don't accept if wastage is over 1/3. The
1945 * greater-than comparison ensures upa==1 always
1946 * passes the following check.
1947 */
1948 if (wasted > num_possible_cpus() / 3)
1949 continue;
1950
1951 /* and then don't consume more memory */
1952 if (allocs > last_allocs)
1953 break;
1954 last_allocs = allocs;
1955 best_upa = upa;
1956 }
1957 upa = best_upa;
1958
1959 /* allocate and fill alloc_info */
1960 for (group = 0; group < nr_groups; group++)
1961 nr_units += roundup(group_cnt[group], upa);
1962
1963 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1964 if (!ai)
1965 return ERR_PTR(-ENOMEM);
1966 cpu_map = ai->groups[0].cpu_map;
1967
1968 for (group = 0; group < nr_groups; group++) {
1969 ai->groups[group].cpu_map = cpu_map;
1970 cpu_map += roundup(group_cnt[group], upa);
1971 }
1972
1973 ai->static_size = static_size;
1974 ai->reserved_size = reserved_size;
1975 ai->dyn_size = dyn_size;
1976 ai->unit_size = alloc_size / upa;
1977 ai->atom_size = atom_size;
1978 ai->alloc_size = alloc_size;
1979
1980 for (group = 0, unit = 0; group_cnt[group]; group++) {
1981 struct pcpu_group_info *gi = &ai->groups[group];
1982
1983 /*
1984 * Initialize base_offset as if all groups are located
1985 * back-to-back. The caller should update this to
1986 * reflect actual allocation.
1987 */
1988 gi->base_offset = unit * ai->unit_size;
1989
1990 for_each_possible_cpu(cpu)
1991 if (group_map[cpu] == group)
1992 gi->cpu_map[gi->nr_units++] = cpu;
1993 gi->nr_units = roundup(gi->nr_units, upa);
1994 unit += gi->nr_units;
1995 }
1996 BUG_ON(unit != nr_units);
1997
1998 return ai;
1999}
2000#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2001
2002#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2003/**
2004 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2005 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2006 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2007 * @atom_size: allocation atom size
2008 * @cpu_distance_fn: callback to determine distance between cpus, optional
2009 * @alloc_fn: function to allocate percpu page
25985edc 2010 * @free_fn: function to free percpu page
66c3a757
TH
2011 *
2012 * This is a helper to ease setting up embedded first percpu chunk and
2013 * can be called where pcpu_setup_first_chunk() is expected.
2014 *
2015 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2016 * by calling @alloc_fn and used as-is without being mapped into
2017 * vmalloc area. Allocations are always whole multiples of @atom_size
2018 * aligned to @atom_size.
2019 *
2020 * This enables the first chunk to piggy back on the linear physical
2021 * mapping which often uses larger page size. Please note that this
2022 * can result in very sparse cpu->unit mapping on NUMA machines thus
2023 * requiring large vmalloc address space. Don't use this allocator if
2024 * vmalloc space is not orders of magnitude larger than distances
2025 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2026 *
4ba6ce25 2027 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2028 *
2029 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2030 * size, the leftover is returned using @free_fn.
66c3a757
TH
2031 *
2032 * RETURNS:
fb435d52 2033 * 0 on success, -errno on failure.
66c3a757 2034 */
4ba6ce25 2035int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2036 size_t atom_size,
2037 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2038 pcpu_fc_alloc_fn_t alloc_fn,
2039 pcpu_fc_free_fn_t free_fn)
66c3a757 2040{
c8826dd5
TH
2041 void *base = (void *)ULONG_MAX;
2042 void **areas = NULL;
fd1e8a1f 2043 struct pcpu_alloc_info *ai;
93c76b6b 2044 size_t size_sum, areas_size;
2045 unsigned long max_distance;
9b739662 2046 int group, i, highest_group, rc;
66c3a757 2047
c8826dd5
TH
2048 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2049 cpu_distance_fn);
fd1e8a1f
TH
2050 if (IS_ERR(ai))
2051 return PTR_ERR(ai);
66c3a757 2052
fd1e8a1f 2053 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2054 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2055
999c17e3 2056 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2057 if (!areas) {
fb435d52 2058 rc = -ENOMEM;
c8826dd5 2059 goto out_free;
fa8a7094 2060 }
66c3a757 2061
9b739662 2062 /* allocate, copy and determine base address & max_distance */
2063 highest_group = 0;
c8826dd5
TH
2064 for (group = 0; group < ai->nr_groups; group++) {
2065 struct pcpu_group_info *gi = &ai->groups[group];
2066 unsigned int cpu = NR_CPUS;
2067 void *ptr;
2068
2069 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2070 cpu = gi->cpu_map[i];
2071 BUG_ON(cpu == NR_CPUS);
2072
2073 /* allocate space for the whole group */
2074 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2075 if (!ptr) {
2076 rc = -ENOMEM;
2077 goto out_free_areas;
2078 }
f528f0b8
CM
2079 /* kmemleak tracks the percpu allocations separately */
2080 kmemleak_free(ptr);
c8826dd5 2081 areas[group] = ptr;
fd1e8a1f 2082
c8826dd5 2083 base = min(ptr, base);
9b739662 2084 if (ptr > areas[highest_group])
2085 highest_group = group;
2086 }
2087 max_distance = areas[highest_group] - base;
2088 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2089
2090 /* warn if maximum distance is further than 75% of vmalloc space */
2091 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2092 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2093 max_distance, VMALLOC_TOTAL);
2094#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2095 /* and fail if we have fallback */
2096 rc = -EINVAL;
2097 goto out_free_areas;
2098#endif
42b64281
TH
2099 }
2100
2101 /*
2102 * Copy data and free unused parts. This should happen after all
2103 * allocations are complete; otherwise, we may end up with
2104 * overlapping groups.
2105 */
2106 for (group = 0; group < ai->nr_groups; group++) {
2107 struct pcpu_group_info *gi = &ai->groups[group];
2108 void *ptr = areas[group];
c8826dd5
TH
2109
2110 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2111 if (gi->cpu_map[i] == NR_CPUS) {
2112 /* unused unit, free whole */
2113 free_fn(ptr, ai->unit_size);
2114 continue;
2115 }
2116 /* copy and return the unused part */
2117 memcpy(ptr, __per_cpu_load, ai->static_size);
2118 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2119 }
fa8a7094 2120 }
66c3a757 2121
c8826dd5 2122 /* base address is now known, determine group base offsets */
6ea529a2 2123 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2124 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2125 }
c8826dd5 2126
870d4b12 2127 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2128 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2129 ai->dyn_size, ai->unit_size);
d4b95f80 2130
fb435d52 2131 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2132 goto out_free;
2133
2134out_free_areas:
2135 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2136 if (areas[group])
2137 free_fn(areas[group],
2138 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2139out_free:
fd1e8a1f 2140 pcpu_free_alloc_info(ai);
c8826dd5 2141 if (areas)
999c17e3 2142 memblock_free_early(__pa(areas), areas_size);
fb435d52 2143 return rc;
d4b95f80 2144}
3c9a024f 2145#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2146
3c9a024f 2147#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2148/**
00ae4064 2149 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2150 * @reserved_size: the size of reserved percpu area in bytes
2151 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2152 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2153 * @populate_pte_fn: function to populate pte
2154 *
00ae4064
TH
2155 * This is a helper to ease setting up page-remapped first percpu
2156 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2157 *
2158 * This is the basic allocator. Static percpu area is allocated
2159 * page-by-page into vmalloc area.
2160 *
2161 * RETURNS:
fb435d52 2162 * 0 on success, -errno on failure.
d4b95f80 2163 */
fb435d52
TH
2164int __init pcpu_page_first_chunk(size_t reserved_size,
2165 pcpu_fc_alloc_fn_t alloc_fn,
2166 pcpu_fc_free_fn_t free_fn,
2167 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2168{
8f05a6a6 2169 static struct vm_struct vm;
fd1e8a1f 2170 struct pcpu_alloc_info *ai;
00ae4064 2171 char psize_str[16];
ce3141a2 2172 int unit_pages;
d4b95f80 2173 size_t pages_size;
ce3141a2 2174 struct page **pages;
fb435d52 2175 int unit, i, j, rc;
8f606604 2176 int upa;
2177 int nr_g0_units;
d4b95f80 2178
00ae4064
TH
2179 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2180
4ba6ce25 2181 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2182 if (IS_ERR(ai))
2183 return PTR_ERR(ai);
2184 BUG_ON(ai->nr_groups != 1);
8f606604 2185 upa = ai->alloc_size/ai->unit_size;
2186 nr_g0_units = roundup(num_possible_cpus(), upa);
2187 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2188 pcpu_free_alloc_info(ai);
2189 return -EINVAL;
2190 }
fd1e8a1f
TH
2191
2192 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2193
2194 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2195 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2196 sizeof(pages[0]));
999c17e3 2197 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2198
8f05a6a6 2199 /* allocate pages */
d4b95f80 2200 j = 0;
8f606604 2201 for (unit = 0; unit < num_possible_cpus(); unit++) {
2202 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2203 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2204 void *ptr;
2205
3cbc8565 2206 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2207 if (!ptr) {
870d4b12 2208 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2209 psize_str, cpu);
d4b95f80
TH
2210 goto enomem;
2211 }
f528f0b8
CM
2212 /* kmemleak tracks the percpu allocations separately */
2213 kmemleak_free(ptr);
ce3141a2 2214 pages[j++] = virt_to_page(ptr);
d4b95f80 2215 }
8f606604 2216 }
d4b95f80 2217
8f05a6a6
TH
2218 /* allocate vm area, map the pages and copy static data */
2219 vm.flags = VM_ALLOC;
fd1e8a1f 2220 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2221 vm_area_register_early(&vm, PAGE_SIZE);
2222
fd1e8a1f 2223 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2224 unsigned long unit_addr =
fd1e8a1f 2225 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2226
ce3141a2 2227 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2228 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2229
2230 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2231 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2232 unit_pages);
2233 if (rc < 0)
2234 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2235
8f05a6a6
TH
2236 /*
2237 * FIXME: Archs with virtual cache should flush local
2238 * cache for the linear mapping here - something
2239 * equivalent to flush_cache_vmap() on the local cpu.
2240 * flush_cache_vmap() can't be used as most supporting
2241 * data structures are not set up yet.
2242 */
2243
2244 /* copy static data */
fd1e8a1f 2245 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2246 }
2247
2248 /* we're ready, commit */
870d4b12 2249 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2250 unit_pages, psize_str, vm.addr, ai->static_size,
2251 ai->reserved_size, ai->dyn_size);
d4b95f80 2252
fb435d52 2253 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2254 goto out_free_ar;
2255
2256enomem:
2257 while (--j >= 0)
ce3141a2 2258 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2259 rc = -ENOMEM;
d4b95f80 2260out_free_ar:
999c17e3 2261 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2262 pcpu_free_alloc_info(ai);
fb435d52 2263 return rc;
d4b95f80 2264}
3c9a024f 2265#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2266
bbddff05 2267#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2268/*
bbddff05 2269 * Generic SMP percpu area setup.
e74e3962
TH
2270 *
2271 * The embedding helper is used because its behavior closely resembles
2272 * the original non-dynamic generic percpu area setup. This is
2273 * important because many archs have addressing restrictions and might
2274 * fail if the percpu area is located far away from the previous
2275 * location. As an added bonus, in non-NUMA cases, embedding is
2276 * generally a good idea TLB-wise because percpu area can piggy back
2277 * on the physical linear memory mapping which uses large page
2278 * mappings on applicable archs.
2279 */
e74e3962
TH
2280unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2281EXPORT_SYMBOL(__per_cpu_offset);
2282
c8826dd5
TH
2283static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2284 size_t align)
2285{
999c17e3
SS
2286 return memblock_virt_alloc_from_nopanic(
2287 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2288}
66c3a757 2289
c8826dd5
TH
2290static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2291{
999c17e3 2292 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2293}
2294
e74e3962
TH
2295void __init setup_per_cpu_areas(void)
2296{
e74e3962
TH
2297 unsigned long delta;
2298 unsigned int cpu;
fb435d52 2299 int rc;
e74e3962
TH
2300
2301 /*
2302 * Always reserve area for module percpu variables. That's
2303 * what the legacy allocator did.
2304 */
fb435d52 2305 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2306 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2307 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2308 if (rc < 0)
bbddff05 2309 panic("Failed to initialize percpu areas.");
e74e3962
TH
2310
2311 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2312 for_each_possible_cpu(cpu)
fb435d52 2313 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2314}
bbddff05
TH
2315#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2316
2317#else /* CONFIG_SMP */
2318
2319/*
2320 * UP percpu area setup.
2321 *
2322 * UP always uses km-based percpu allocator with identity mapping.
2323 * Static percpu variables are indistinguishable from the usual static
2324 * variables and don't require any special preparation.
2325 */
2326void __init setup_per_cpu_areas(void)
2327{
2328 const size_t unit_size =
2329 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2330 PERCPU_DYNAMIC_RESERVE));
2331 struct pcpu_alloc_info *ai;
2332 void *fc;
2333
2334 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2335 fc = memblock_virt_alloc_from_nopanic(unit_size,
2336 PAGE_SIZE,
2337 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2338 if (!ai || !fc)
2339 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2340 /* kmemleak tracks the percpu allocations separately */
2341 kmemleak_free(fc);
bbddff05
TH
2342
2343 ai->dyn_size = unit_size;
2344 ai->unit_size = unit_size;
2345 ai->atom_size = unit_size;
2346 ai->alloc_size = unit_size;
2347 ai->groups[0].nr_units = 1;
2348 ai->groups[0].cpu_map[0] = 0;
2349
2350 if (pcpu_setup_first_chunk(ai, fc) < 0)
2351 panic("Failed to initialize percpu areas.");
2352}
2353
2354#endif /* CONFIG_SMP */
099a19d9
TH
2355
2356/*
2357 * First and reserved chunks are initialized with temporary allocation
2358 * map in initdata so that they can be used before slab is online.
2359 * This function is called after slab is brought up and replaces those
2360 * with properly allocated maps.
2361 */
2362void __init percpu_init_late(void)
2363{
2364 struct pcpu_chunk *target_chunks[] =
2365 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2366 struct pcpu_chunk *chunk;
2367 unsigned long flags;
2368 int i;
2369
2370 for (i = 0; (chunk = target_chunks[i]); i++) {
2371 int *map;
2372 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2373
2374 BUILD_BUG_ON(size > PAGE_SIZE);
2375
90459ce0 2376 map = pcpu_mem_zalloc(size);
099a19d9
TH
2377 BUG_ON(!map);
2378
2379 spin_lock_irqsave(&pcpu_lock, flags);
2380 memcpy(map, chunk->map, size);
2381 chunk->map = map;
2382 spin_unlock_irqrestore(&pcpu_lock, flags);
2383 }
2384}
1a4d7607
TH
2385
2386/*
2387 * Percpu allocator is initialized early during boot when neither slab or
2388 * workqueue is available. Plug async management until everything is up
2389 * and running.
2390 */
2391static int __init percpu_enable_async(void)
2392{
2393 pcpu_async_enabled = true;
2394 return 0;
2395}
2396subsys_initcall(percpu_enable_async);