]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: store offsets instead of lengths in ->map[]
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
bbddff05 80#ifdef CONFIG_SMP
e0100983
TH
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
e0100983
TH
87#endif
88#ifndef __pcpu_ptr_to_addr
89#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
e0100983 93#endif
bbddff05
TH
94#else /* CONFIG_SMP */
95/* on UP, it's always identity mapped */
96#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98#endif /* CONFIG_SMP */
e0100983 99
fbf59bc9
TH
100struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */
bba174f5 104 void *base_addr; /* base address of this chunk */
723ad1d9 105 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */
88999a89 108 void *data; /* chunk data */
8d408b4b 109 bool immutable; /* no [de]population allowed */
ce3141a2 110 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
111};
112
40150d37
TH
113static int pcpu_unit_pages __read_mostly;
114static int pcpu_unit_size __read_mostly;
2f39e637 115static int pcpu_nr_units __read_mostly;
6563297c 116static int pcpu_atom_size __read_mostly;
40150d37
TH
117static int pcpu_nr_slots __read_mostly;
118static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 119
a855b84c
TH
120/* cpus with the lowest and highest unit addresses */
121static unsigned int pcpu_low_unit_cpu __read_mostly;
122static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 123
fbf59bc9 124/* the address of the first chunk which starts with the kernel static area */
40150d37 125void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
126EXPORT_SYMBOL_GPL(pcpu_base_addr);
127
fb435d52
TH
128static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
129const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 130
6563297c
TH
131/* group information, used for vm allocation */
132static int pcpu_nr_groups __read_mostly;
133static const unsigned long *pcpu_group_offsets __read_mostly;
134static const size_t *pcpu_group_sizes __read_mostly;
135
ae9e6bc9
TH
136/*
137 * The first chunk which always exists. Note that unlike other
138 * chunks, this one can be allocated and mapped in several different
139 * ways and thus often doesn't live in the vmalloc area.
140 */
141static struct pcpu_chunk *pcpu_first_chunk;
142
143/*
144 * Optional reserved chunk. This chunk reserves part of the first
145 * chunk and serves it for reserved allocations. The amount of
146 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
147 * area doesn't exist, the following variables contain NULL and 0
148 * respectively.
149 */
edcb4639 150static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
151static int pcpu_reserved_chunk_limit;
152
fbf59bc9 153/*
ccea34b5
TH
154 * Synchronization rules.
155 *
156 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
157 * protects allocation/reclaim paths, chunks, populated bitmap and
158 * vmalloc mapping. The latter is a spinlock and protects the index
159 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
160 *
161 * During allocation, pcpu_alloc_mutex is kept locked all the time and
162 * pcpu_lock is grabbed and released as necessary. All actual memory
403a91b1
JK
163 * allocations are done using GFP_KERNEL with pcpu_lock released. In
164 * general, percpu memory can't be allocated with irq off but
165 * irqsave/restore are still used in alloc path so that it can be used
166 * from early init path - sched_init() specifically.
ccea34b5
TH
167 *
168 * Free path accesses and alters only the index data structures, so it
169 * can be safely called from atomic context. When memory needs to be
170 * returned to the system, free path schedules reclaim_work which
171 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
172 * reclaimed, release both locks and frees the chunks. Note that it's
173 * necessary to grab both locks to remove a chunk from circulation as
174 * allocation path might be referencing the chunk with only
175 * pcpu_alloc_mutex locked.
fbf59bc9 176 */
ccea34b5
TH
177static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
178static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 179
40150d37 180static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 181
a56dbddf
TH
182/* reclaim work to release fully free chunks, scheduled from free path */
183static void pcpu_reclaim(struct work_struct *work);
184static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
185
020ec653
TH
186static bool pcpu_addr_in_first_chunk(void *addr)
187{
188 void *first_start = pcpu_first_chunk->base_addr;
189
190 return addr >= first_start && addr < first_start + pcpu_unit_size;
191}
192
193static bool pcpu_addr_in_reserved_chunk(void *addr)
194{
195 void *first_start = pcpu_first_chunk->base_addr;
196
197 return addr >= first_start &&
198 addr < first_start + pcpu_reserved_chunk_limit;
199}
200
d9b55eeb 201static int __pcpu_size_to_slot(int size)
fbf59bc9 202{
cae3aeb8 203 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
204 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
205}
206
d9b55eeb
TH
207static int pcpu_size_to_slot(int size)
208{
209 if (size == pcpu_unit_size)
210 return pcpu_nr_slots - 1;
211 return __pcpu_size_to_slot(size);
212}
213
fbf59bc9
TH
214static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
215{
216 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
217 return 0;
218
219 return pcpu_size_to_slot(chunk->free_size);
220}
221
88999a89
TH
222/* set the pointer to a chunk in a page struct */
223static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224{
225 page->index = (unsigned long)pcpu;
226}
227
228/* obtain pointer to a chunk from a page struct */
229static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230{
231 return (struct pcpu_chunk *)page->index;
232}
233
234static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 235{
2f39e637 236 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
237}
238
9983b6f0
TH
239static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
240 unsigned int cpu, int page_idx)
fbf59bc9 241{
bba174f5 242 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 243 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
244}
245
88999a89
TH
246static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
247 int *rs, int *re, int end)
ce3141a2
TH
248{
249 *rs = find_next_zero_bit(chunk->populated, end, *rs);
250 *re = find_next_bit(chunk->populated, end, *rs + 1);
251}
252
88999a89
TH
253static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
254 int *rs, int *re, int end)
ce3141a2
TH
255{
256 *rs = find_next_bit(chunk->populated, end, *rs);
257 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
258}
259
260/*
261 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 262 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
263 * be integer variables and will be set to start and end page index of
264 * the current region.
265 */
266#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
267 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
268 (rs) < (re); \
269 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
270
271#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
272 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
273 (rs) < (re); \
274 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
275
fbf59bc9 276/**
90459ce0 277 * pcpu_mem_zalloc - allocate memory
1880d93b 278 * @size: bytes to allocate
fbf59bc9 279 *
1880d93b 280 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 281 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 282 * memory is always zeroed.
fbf59bc9 283 *
ccea34b5
TH
284 * CONTEXT:
285 * Does GFP_KERNEL allocation.
286 *
fbf59bc9 287 * RETURNS:
1880d93b 288 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 289 */
90459ce0 290static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 291{
099a19d9
TH
292 if (WARN_ON_ONCE(!slab_is_available()))
293 return NULL;
294
1880d93b
TH
295 if (size <= PAGE_SIZE)
296 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
297 else
298 return vzalloc(size);
1880d93b 299}
fbf59bc9 300
1880d93b
TH
301/**
302 * pcpu_mem_free - free memory
303 * @ptr: memory to free
304 * @size: size of the area
305 *
90459ce0 306 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
307 */
308static void pcpu_mem_free(void *ptr, size_t size)
309{
fbf59bc9 310 if (size <= PAGE_SIZE)
1880d93b 311 kfree(ptr);
fbf59bc9 312 else
1880d93b 313 vfree(ptr);
fbf59bc9
TH
314}
315
316/**
317 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
318 * @chunk: chunk of interest
319 * @oslot: the previous slot it was on
320 *
321 * This function is called after an allocation or free changed @chunk.
322 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
323 * moved to the slot. Note that the reserved chunk is never put on
324 * chunk slots.
ccea34b5
TH
325 *
326 * CONTEXT:
327 * pcpu_lock.
fbf59bc9
TH
328 */
329static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
330{
331 int nslot = pcpu_chunk_slot(chunk);
332
edcb4639 333 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
334 if (oslot < nslot)
335 list_move(&chunk->list, &pcpu_slot[nslot]);
336 else
337 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
338 }
339}
340
9f7dcf22 341/**
833af842
TH
342 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
343 * @chunk: chunk of interest
9f7dcf22 344 *
833af842 345 * Determine whether area map of @chunk needs to be extended to
25985edc 346 * accommodate a new allocation.
9f7dcf22 347 *
ccea34b5 348 * CONTEXT:
833af842 349 * pcpu_lock.
ccea34b5 350 *
9f7dcf22 351 * RETURNS:
833af842
TH
352 * New target map allocation length if extension is necessary, 0
353 * otherwise.
9f7dcf22 354 */
833af842 355static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
356{
357 int new_alloc;
9f7dcf22 358
723ad1d9 359 if (chunk->map_alloc >= chunk->map_used + 3)
9f7dcf22
TH
360 return 0;
361
362 new_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9 363 while (new_alloc < chunk->map_used + 3)
9f7dcf22
TH
364 new_alloc *= 2;
365
833af842
TH
366 return new_alloc;
367}
368
369/**
370 * pcpu_extend_area_map - extend area map of a chunk
371 * @chunk: chunk of interest
372 * @new_alloc: new target allocation length of the area map
373 *
374 * Extend area map of @chunk to have @new_alloc entries.
375 *
376 * CONTEXT:
377 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
378 *
379 * RETURNS:
380 * 0 on success, -errno on failure.
381 */
382static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
383{
384 int *old = NULL, *new = NULL;
385 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
386 unsigned long flags;
387
90459ce0 388 new = pcpu_mem_zalloc(new_size);
833af842 389 if (!new)
9f7dcf22 390 return -ENOMEM;
ccea34b5 391
833af842
TH
392 /* acquire pcpu_lock and switch to new area map */
393 spin_lock_irqsave(&pcpu_lock, flags);
394
395 if (new_alloc <= chunk->map_alloc)
396 goto out_unlock;
9f7dcf22 397
833af842 398 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
399 old = chunk->map;
400
401 memcpy(new, old, old_size);
9f7dcf22 402
9f7dcf22
TH
403 chunk->map_alloc = new_alloc;
404 chunk->map = new;
833af842
TH
405 new = NULL;
406
407out_unlock:
408 spin_unlock_irqrestore(&pcpu_lock, flags);
409
410 /*
411 * pcpu_mem_free() might end up calling vfree() which uses
412 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
413 */
414 pcpu_mem_free(old, old_size);
415 pcpu_mem_free(new, new_size);
416
9f7dcf22
TH
417 return 0;
418}
419
fbf59bc9
TH
420/**
421 * pcpu_alloc_area - allocate area from a pcpu_chunk
422 * @chunk: chunk of interest
cae3aeb8 423 * @size: wanted size in bytes
fbf59bc9
TH
424 * @align: wanted align
425 *
426 * Try to allocate @size bytes area aligned at @align from @chunk.
427 * Note that this function only allocates the offset. It doesn't
428 * populate or map the area.
429 *
9f7dcf22
TH
430 * @chunk->map must have at least two free slots.
431 *
ccea34b5
TH
432 * CONTEXT:
433 * pcpu_lock.
434 *
fbf59bc9 435 * RETURNS:
9f7dcf22
TH
436 * Allocated offset in @chunk on success, -1 if no matching area is
437 * found.
fbf59bc9
TH
438 */
439static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
440{
441 int oslot = pcpu_chunk_slot(chunk);
442 int max_contig = 0;
443 int i, off;
723ad1d9 444 int *p;
fbf59bc9 445
723ad1d9 446 for (i = 0, p = chunk->map; i < chunk->map_used; i++, p++) {
fbf59bc9 447 int head, tail;
723ad1d9
AV
448 int this_size;
449
450 off = *p;
451 if (off & 1)
452 continue;
fbf59bc9
TH
453
454 /* extra for alignment requirement */
455 head = ALIGN(off, align) - off;
fbf59bc9 456
723ad1d9
AV
457 this_size = (p[1] & ~1) - off;
458 if (this_size < head + size) {
459 max_contig = max(this_size, max_contig);
fbf59bc9
TH
460 continue;
461 }
462
463 /*
464 * If head is small or the previous block is free,
465 * merge'em. Note that 'small' is defined as smaller
466 * than sizeof(int), which is very small but isn't too
467 * uncommon for percpu allocations.
468 */
723ad1d9
AV
469 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
470 if (p[-1] & 1)
fbf59bc9 471 chunk->free_size -= head;
723ad1d9
AV
472 *p = off += head;
473 this_size -= head;
fbf59bc9
TH
474 head = 0;
475 }
476
477 /* if tail is small, just keep it around */
723ad1d9
AV
478 tail = this_size - head - size;
479 if (tail < sizeof(int)) {
fbf59bc9 480 tail = 0;
723ad1d9
AV
481 size = this_size - head;
482 }
fbf59bc9
TH
483
484 /* split if warranted */
485 if (head || tail) {
706c16f2
AV
486 int nr_extra = !!head + !!tail;
487
488 /* insert new subblocks */
723ad1d9 489 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
490 sizeof(chunk->map[0]) * (chunk->map_used - i));
491 chunk->map_used += nr_extra;
492
fbf59bc9 493 if (head) {
723ad1d9
AV
494 *++p = off += head;
495 ++i;
706c16f2
AV
496 max_contig = max(head, max_contig);
497 }
498 if (tail) {
723ad1d9 499 p[1] = off + size;
706c16f2 500 max_contig = max(tail, max_contig);
fbf59bc9 501 }
fbf59bc9
TH
502 }
503
504 /* update hint and mark allocated */
723ad1d9 505 if (i + 1 == chunk->map_used)
fbf59bc9
TH
506 chunk->contig_hint = max_contig; /* fully scanned */
507 else
508 chunk->contig_hint = max(chunk->contig_hint,
509 max_contig);
510
723ad1d9
AV
511 chunk->free_size -= size;
512 *p |= 1;
fbf59bc9
TH
513
514 pcpu_chunk_relocate(chunk, oslot);
515 return off;
516 }
517
518 chunk->contig_hint = max_contig; /* fully scanned */
519 pcpu_chunk_relocate(chunk, oslot);
520
9f7dcf22
TH
521 /* tell the upper layer that this chunk has no matching area */
522 return -1;
fbf59bc9
TH
523}
524
525/**
526 * pcpu_free_area - free area to a pcpu_chunk
527 * @chunk: chunk of interest
528 * @freeme: offset of area to free
529 *
530 * Free area starting from @freeme to @chunk. Note that this function
531 * only modifies the allocation map. It doesn't depopulate or unmap
532 * the area.
ccea34b5
TH
533 *
534 * CONTEXT:
535 * pcpu_lock.
fbf59bc9
TH
536 */
537static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
538{
539 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
540 int off = 0;
541 unsigned i, j;
542 int to_free = 0;
543 int *p;
544
545 freeme |= 1; /* we are searching for <given offset, in use> pair */
546
547 i = 0;
548 j = chunk->map_used;
549 while (i != j) {
550 unsigned k = (i + j) / 2;
551 off = chunk->map[k];
552 if (off < freeme)
553 i = k + 1;
554 else if (off > freeme)
555 j = k;
556 else
557 i = j = k;
558 }
fbf59bc9 559 BUG_ON(off != freeme);
fbf59bc9 560
723ad1d9
AV
561 p = chunk->map + i;
562 *p = off &= ~1;
563 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 564
723ad1d9
AV
565 /* merge with next? */
566 if (!(p[1] & 1))
567 to_free++;
fbf59bc9 568 /* merge with previous? */
723ad1d9
AV
569 if (i > 0 && !(p[-1] & 1)) {
570 to_free++;
fbf59bc9 571 i--;
723ad1d9 572 p--;
fbf59bc9 573 }
723ad1d9
AV
574 if (to_free) {
575 chunk->map_used -= to_free;
576 memmove(p + 1, p + 1 + to_free,
577 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
578 }
579
723ad1d9 580 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
581 pcpu_chunk_relocate(chunk, oslot);
582}
583
6081089f
TH
584static struct pcpu_chunk *pcpu_alloc_chunk(void)
585{
586 struct pcpu_chunk *chunk;
587
90459ce0 588 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
589 if (!chunk)
590 return NULL;
591
90459ce0
BL
592 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
593 sizeof(chunk->map[0]));
6081089f
TH
594 if (!chunk->map) {
595 kfree(chunk);
596 return NULL;
597 }
598
599 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
600 chunk->map[0] = 0;
601 chunk->map[1] = pcpu_unit_size | 1;
602 chunk->map_used = 1;
6081089f
TH
603
604 INIT_LIST_HEAD(&chunk->list);
605 chunk->free_size = pcpu_unit_size;
606 chunk->contig_hint = pcpu_unit_size;
607
608 return chunk;
609}
610
611static void pcpu_free_chunk(struct pcpu_chunk *chunk)
612{
613 if (!chunk)
614 return;
615 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 616 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
617}
618
9f645532
TH
619/*
620 * Chunk management implementation.
621 *
622 * To allow different implementations, chunk alloc/free and
623 * [de]population are implemented in a separate file which is pulled
624 * into this file and compiled together. The following functions
625 * should be implemented.
626 *
627 * pcpu_populate_chunk - populate the specified range of a chunk
628 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
629 * pcpu_create_chunk - create a new chunk
630 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
631 * pcpu_addr_to_page - translate address to physical address
632 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 633 */
9f645532
TH
634static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
635static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
636static struct pcpu_chunk *pcpu_create_chunk(void);
637static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
638static struct page *pcpu_addr_to_page(void *addr);
639static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 640
b0c9778b
TH
641#ifdef CONFIG_NEED_PER_CPU_KM
642#include "percpu-km.c"
643#else
9f645532 644#include "percpu-vm.c"
b0c9778b 645#endif
fbf59bc9 646
88999a89
TH
647/**
648 * pcpu_chunk_addr_search - determine chunk containing specified address
649 * @addr: address for which the chunk needs to be determined.
650 *
651 * RETURNS:
652 * The address of the found chunk.
653 */
654static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
655{
656 /* is it in the first chunk? */
657 if (pcpu_addr_in_first_chunk(addr)) {
658 /* is it in the reserved area? */
659 if (pcpu_addr_in_reserved_chunk(addr))
660 return pcpu_reserved_chunk;
661 return pcpu_first_chunk;
662 }
663
664 /*
665 * The address is relative to unit0 which might be unused and
666 * thus unmapped. Offset the address to the unit space of the
667 * current processor before looking it up in the vmalloc
668 * space. Note that any possible cpu id can be used here, so
669 * there's no need to worry about preemption or cpu hotplug.
670 */
671 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 672 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
673}
674
fbf59bc9 675/**
edcb4639 676 * pcpu_alloc - the percpu allocator
cae3aeb8 677 * @size: size of area to allocate in bytes
fbf59bc9 678 * @align: alignment of area (max PAGE_SIZE)
edcb4639 679 * @reserved: allocate from the reserved chunk if available
fbf59bc9 680 *
ccea34b5
TH
681 * Allocate percpu area of @size bytes aligned at @align.
682 *
683 * CONTEXT:
684 * Does GFP_KERNEL allocation.
fbf59bc9
TH
685 *
686 * RETURNS:
687 * Percpu pointer to the allocated area on success, NULL on failure.
688 */
43cf38eb 689static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 690{
f2badb0c 691 static int warn_limit = 10;
fbf59bc9 692 struct pcpu_chunk *chunk;
f2badb0c 693 const char *err;
833af842 694 int slot, off, new_alloc;
403a91b1 695 unsigned long flags;
f528f0b8 696 void __percpu *ptr;
fbf59bc9 697
723ad1d9
AV
698 /*
699 * We want the lowest bit of offset available for in-use/free
700 * indicator.
701 */
702 if (unlikely(align < 2))
703 align = 2;
704
8d408b4b 705 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
706 WARN(true, "illegal size (%zu) or align (%zu) for "
707 "percpu allocation\n", size, align);
708 return NULL;
709 }
710
ccea34b5 711 mutex_lock(&pcpu_alloc_mutex);
403a91b1 712 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 713
edcb4639
TH
714 /* serve reserved allocations from the reserved chunk if available */
715 if (reserved && pcpu_reserved_chunk) {
716 chunk = pcpu_reserved_chunk;
833af842
TH
717
718 if (size > chunk->contig_hint) {
719 err = "alloc from reserved chunk failed";
ccea34b5 720 goto fail_unlock;
f2badb0c 721 }
833af842
TH
722
723 while ((new_alloc = pcpu_need_to_extend(chunk))) {
724 spin_unlock_irqrestore(&pcpu_lock, flags);
725 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
726 err = "failed to extend area map of reserved chunk";
727 goto fail_unlock_mutex;
728 }
729 spin_lock_irqsave(&pcpu_lock, flags);
730 }
731
edcb4639
TH
732 off = pcpu_alloc_area(chunk, size, align);
733 if (off >= 0)
734 goto area_found;
833af842 735
f2badb0c 736 err = "alloc from reserved chunk failed";
ccea34b5 737 goto fail_unlock;
edcb4639
TH
738 }
739
ccea34b5 740restart:
edcb4639 741 /* search through normal chunks */
fbf59bc9
TH
742 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
743 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
744 if (size > chunk->contig_hint)
745 continue;
ccea34b5 746
833af842
TH
747 new_alloc = pcpu_need_to_extend(chunk);
748 if (new_alloc) {
749 spin_unlock_irqrestore(&pcpu_lock, flags);
750 if (pcpu_extend_area_map(chunk,
751 new_alloc) < 0) {
752 err = "failed to extend area map";
753 goto fail_unlock_mutex;
754 }
755 spin_lock_irqsave(&pcpu_lock, flags);
756 /*
757 * pcpu_lock has been dropped, need to
758 * restart cpu_slot list walking.
759 */
760 goto restart;
ccea34b5
TH
761 }
762
fbf59bc9
TH
763 off = pcpu_alloc_area(chunk, size, align);
764 if (off >= 0)
765 goto area_found;
fbf59bc9
TH
766 }
767 }
768
769 /* hmmm... no space left, create a new chunk */
403a91b1 770 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 771
6081089f 772 chunk = pcpu_create_chunk();
f2badb0c
TH
773 if (!chunk) {
774 err = "failed to allocate new chunk";
ccea34b5 775 goto fail_unlock_mutex;
f2badb0c 776 }
ccea34b5 777
403a91b1 778 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 779 pcpu_chunk_relocate(chunk, -1);
ccea34b5 780 goto restart;
fbf59bc9
TH
781
782area_found:
403a91b1 783 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 784
fbf59bc9
TH
785 /* populate, map and clear the area */
786 if (pcpu_populate_chunk(chunk, off, size)) {
403a91b1 787 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 788 pcpu_free_area(chunk, off);
f2badb0c 789 err = "failed to populate";
ccea34b5 790 goto fail_unlock;
fbf59bc9
TH
791 }
792
ccea34b5
TH
793 mutex_unlock(&pcpu_alloc_mutex);
794
bba174f5 795 /* return address relative to base address */
f528f0b8
CM
796 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
797 kmemleak_alloc_percpu(ptr, size);
798 return ptr;
ccea34b5
TH
799
800fail_unlock:
403a91b1 801 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5
TH
802fail_unlock_mutex:
803 mutex_unlock(&pcpu_alloc_mutex);
f2badb0c
TH
804 if (warn_limit) {
805 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
806 "%s\n", size, align, err);
807 dump_stack();
808 if (!--warn_limit)
809 pr_info("PERCPU: limit reached, disable warning\n");
810 }
ccea34b5 811 return NULL;
fbf59bc9 812}
edcb4639
TH
813
814/**
815 * __alloc_percpu - allocate dynamic percpu area
816 * @size: size of area to allocate in bytes
817 * @align: alignment of area (max PAGE_SIZE)
818 *
9329ba97
TH
819 * Allocate zero-filled percpu area of @size bytes aligned at @align.
820 * Might sleep. Might trigger writeouts.
edcb4639 821 *
ccea34b5
TH
822 * CONTEXT:
823 * Does GFP_KERNEL allocation.
824 *
edcb4639
TH
825 * RETURNS:
826 * Percpu pointer to the allocated area on success, NULL on failure.
827 */
43cf38eb 828void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
829{
830 return pcpu_alloc(size, align, false);
831}
fbf59bc9
TH
832EXPORT_SYMBOL_GPL(__alloc_percpu);
833
edcb4639
TH
834/**
835 * __alloc_reserved_percpu - allocate reserved percpu area
836 * @size: size of area to allocate in bytes
837 * @align: alignment of area (max PAGE_SIZE)
838 *
9329ba97
TH
839 * Allocate zero-filled percpu area of @size bytes aligned at @align
840 * from reserved percpu area if arch has set it up; otherwise,
841 * allocation is served from the same dynamic area. Might sleep.
842 * Might trigger writeouts.
edcb4639 843 *
ccea34b5
TH
844 * CONTEXT:
845 * Does GFP_KERNEL allocation.
846 *
edcb4639
TH
847 * RETURNS:
848 * Percpu pointer to the allocated area on success, NULL on failure.
849 */
43cf38eb 850void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
851{
852 return pcpu_alloc(size, align, true);
853}
854
a56dbddf
TH
855/**
856 * pcpu_reclaim - reclaim fully free chunks, workqueue function
857 * @work: unused
858 *
859 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
860 *
861 * CONTEXT:
862 * workqueue context.
a56dbddf
TH
863 */
864static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 865{
a56dbddf
TH
866 LIST_HEAD(todo);
867 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
868 struct pcpu_chunk *chunk, *next;
869
ccea34b5
TH
870 mutex_lock(&pcpu_alloc_mutex);
871 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
872
873 list_for_each_entry_safe(chunk, next, head, list) {
874 WARN_ON(chunk->immutable);
875
876 /* spare the first one */
877 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
878 continue;
879
a56dbddf
TH
880 list_move(&chunk->list, &todo);
881 }
882
ccea34b5 883 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
884
885 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 886 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
6081089f 887 pcpu_destroy_chunk(chunk);
a56dbddf 888 }
971f3918
TH
889
890 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
891}
892
893/**
894 * free_percpu - free percpu area
895 * @ptr: pointer to area to free
896 *
ccea34b5
TH
897 * Free percpu area @ptr.
898 *
899 * CONTEXT:
900 * Can be called from atomic context.
fbf59bc9 901 */
43cf38eb 902void free_percpu(void __percpu *ptr)
fbf59bc9 903{
129182e5 904 void *addr;
fbf59bc9 905 struct pcpu_chunk *chunk;
ccea34b5 906 unsigned long flags;
fbf59bc9
TH
907 int off;
908
909 if (!ptr)
910 return;
911
f528f0b8
CM
912 kmemleak_free_percpu(ptr);
913
129182e5
AM
914 addr = __pcpu_ptr_to_addr(ptr);
915
ccea34b5 916 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
917
918 chunk = pcpu_chunk_addr_search(addr);
bba174f5 919 off = addr - chunk->base_addr;
fbf59bc9
TH
920
921 pcpu_free_area(chunk, off);
922
a56dbddf 923 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
924 if (chunk->free_size == pcpu_unit_size) {
925 struct pcpu_chunk *pos;
926
a56dbddf 927 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 928 if (pos != chunk) {
a56dbddf 929 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
930 break;
931 }
932 }
933
ccea34b5 934 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
935}
936EXPORT_SYMBOL_GPL(free_percpu);
937
10fad5e4
TH
938/**
939 * is_kernel_percpu_address - test whether address is from static percpu area
940 * @addr: address to test
941 *
942 * Test whether @addr belongs to in-kernel static percpu area. Module
943 * static percpu areas are not considered. For those, use
944 * is_module_percpu_address().
945 *
946 * RETURNS:
947 * %true if @addr is from in-kernel static percpu area, %false otherwise.
948 */
949bool is_kernel_percpu_address(unsigned long addr)
950{
bbddff05 951#ifdef CONFIG_SMP
10fad5e4
TH
952 const size_t static_size = __per_cpu_end - __per_cpu_start;
953 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
954 unsigned int cpu;
955
956 for_each_possible_cpu(cpu) {
957 void *start = per_cpu_ptr(base, cpu);
958
959 if ((void *)addr >= start && (void *)addr < start + static_size)
960 return true;
961 }
bbddff05
TH
962#endif
963 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
964 return false;
965}
966
3b034b0d
VG
967/**
968 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
969 * @addr: the address to be converted to physical address
970 *
971 * Given @addr which is dereferenceable address obtained via one of
972 * percpu access macros, this function translates it into its physical
973 * address. The caller is responsible for ensuring @addr stays valid
974 * until this function finishes.
975 *
67589c71
DY
976 * percpu allocator has special setup for the first chunk, which currently
977 * supports either embedding in linear address space or vmalloc mapping,
978 * and, from the second one, the backing allocator (currently either vm or
979 * km) provides translation.
980 *
981 * The addr can be tranlated simply without checking if it falls into the
982 * first chunk. But the current code reflects better how percpu allocator
983 * actually works, and the verification can discover both bugs in percpu
984 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
985 * code.
986 *
3b034b0d
VG
987 * RETURNS:
988 * The physical address for @addr.
989 */
990phys_addr_t per_cpu_ptr_to_phys(void *addr)
991{
9983b6f0
TH
992 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
993 bool in_first_chunk = false;
a855b84c 994 unsigned long first_low, first_high;
9983b6f0
TH
995 unsigned int cpu;
996
997 /*
a855b84c 998 * The following test on unit_low/high isn't strictly
9983b6f0
TH
999 * necessary but will speed up lookups of addresses which
1000 * aren't in the first chunk.
1001 */
a855b84c
TH
1002 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1003 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1004 pcpu_unit_pages);
1005 if ((unsigned long)addr >= first_low &&
1006 (unsigned long)addr < first_high) {
9983b6f0
TH
1007 for_each_possible_cpu(cpu) {
1008 void *start = per_cpu_ptr(base, cpu);
1009
1010 if (addr >= start && addr < start + pcpu_unit_size) {
1011 in_first_chunk = true;
1012 break;
1013 }
1014 }
1015 }
1016
1017 if (in_first_chunk) {
eac522ef 1018 if (!is_vmalloc_addr(addr))
020ec653
TH
1019 return __pa(addr);
1020 else
9f57bd4d
ES
1021 return page_to_phys(vmalloc_to_page(addr)) +
1022 offset_in_page(addr);
020ec653 1023 } else
9f57bd4d
ES
1024 return page_to_phys(pcpu_addr_to_page(addr)) +
1025 offset_in_page(addr);
3b034b0d
VG
1026}
1027
fbf59bc9 1028/**
fd1e8a1f
TH
1029 * pcpu_alloc_alloc_info - allocate percpu allocation info
1030 * @nr_groups: the number of groups
1031 * @nr_units: the number of units
1032 *
1033 * Allocate ai which is large enough for @nr_groups groups containing
1034 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1035 * cpu_map array which is long enough for @nr_units and filled with
1036 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1037 * pointer of other groups.
1038 *
1039 * RETURNS:
1040 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1041 * failure.
1042 */
1043struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1044 int nr_units)
1045{
1046 struct pcpu_alloc_info *ai;
1047 size_t base_size, ai_size;
1048 void *ptr;
1049 int unit;
1050
1051 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1052 __alignof__(ai->groups[0].cpu_map[0]));
1053 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1054
999c17e3 1055 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1056 if (!ptr)
1057 return NULL;
1058 ai = ptr;
1059 ptr += base_size;
1060
1061 ai->groups[0].cpu_map = ptr;
1062
1063 for (unit = 0; unit < nr_units; unit++)
1064 ai->groups[0].cpu_map[unit] = NR_CPUS;
1065
1066 ai->nr_groups = nr_groups;
1067 ai->__ai_size = PFN_ALIGN(ai_size);
1068
1069 return ai;
1070}
1071
1072/**
1073 * pcpu_free_alloc_info - free percpu allocation info
1074 * @ai: pcpu_alloc_info to free
1075 *
1076 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1077 */
1078void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1079{
999c17e3 1080 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1081}
1082
fd1e8a1f
TH
1083/**
1084 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1085 * @lvl: loglevel
1086 * @ai: allocation info to dump
1087 *
1088 * Print out information about @ai using loglevel @lvl.
1089 */
1090static void pcpu_dump_alloc_info(const char *lvl,
1091 const struct pcpu_alloc_info *ai)
033e48fb 1092{
fd1e8a1f 1093 int group_width = 1, cpu_width = 1, width;
033e48fb 1094 char empty_str[] = "--------";
fd1e8a1f
TH
1095 int alloc = 0, alloc_end = 0;
1096 int group, v;
1097 int upa, apl; /* units per alloc, allocs per line */
1098
1099 v = ai->nr_groups;
1100 while (v /= 10)
1101 group_width++;
033e48fb 1102
fd1e8a1f 1103 v = num_possible_cpus();
033e48fb 1104 while (v /= 10)
fd1e8a1f
TH
1105 cpu_width++;
1106 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1107
fd1e8a1f
TH
1108 upa = ai->alloc_size / ai->unit_size;
1109 width = upa * (cpu_width + 1) + group_width + 3;
1110 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1111
fd1e8a1f
TH
1112 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1113 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1114 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1115
fd1e8a1f
TH
1116 for (group = 0; group < ai->nr_groups; group++) {
1117 const struct pcpu_group_info *gi = &ai->groups[group];
1118 int unit = 0, unit_end = 0;
1119
1120 BUG_ON(gi->nr_units % upa);
1121 for (alloc_end += gi->nr_units / upa;
1122 alloc < alloc_end; alloc++) {
1123 if (!(alloc % apl)) {
cb129820 1124 printk(KERN_CONT "\n");
fd1e8a1f
TH
1125 printk("%spcpu-alloc: ", lvl);
1126 }
cb129820 1127 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1128
1129 for (unit_end += upa; unit < unit_end; unit++)
1130 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1131 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1132 gi->cpu_map[unit]);
1133 else
cb129820 1134 printk(KERN_CONT "%s ", empty_str);
033e48fb 1135 }
033e48fb 1136 }
cb129820 1137 printk(KERN_CONT "\n");
033e48fb 1138}
033e48fb 1139
fbf59bc9 1140/**
8d408b4b 1141 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1142 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1143 * @base_addr: mapped address
8d408b4b
TH
1144 *
1145 * Initialize the first percpu chunk which contains the kernel static
1146 * perpcu area. This function is to be called from arch percpu area
38a6be52 1147 * setup path.
8d408b4b 1148 *
fd1e8a1f
TH
1149 * @ai contains all information necessary to initialize the first
1150 * chunk and prime the dynamic percpu allocator.
1151 *
1152 * @ai->static_size is the size of static percpu area.
1153 *
1154 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1155 * reserve after the static area in the first chunk. This reserves
1156 * the first chunk such that it's available only through reserved
1157 * percpu allocation. This is primarily used to serve module percpu
1158 * static areas on architectures where the addressing model has
1159 * limited offset range for symbol relocations to guarantee module
1160 * percpu symbols fall inside the relocatable range.
1161 *
fd1e8a1f
TH
1162 * @ai->dyn_size determines the number of bytes available for dynamic
1163 * allocation in the first chunk. The area between @ai->static_size +
1164 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1165 *
fd1e8a1f
TH
1166 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1167 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1168 * @ai->dyn_size.
8d408b4b 1169 *
fd1e8a1f
TH
1170 * @ai->atom_size is the allocation atom size and used as alignment
1171 * for vm areas.
8d408b4b 1172 *
fd1e8a1f
TH
1173 * @ai->alloc_size is the allocation size and always multiple of
1174 * @ai->atom_size. This is larger than @ai->atom_size if
1175 * @ai->unit_size is larger than @ai->atom_size.
1176 *
1177 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1178 * percpu areas. Units which should be colocated are put into the
1179 * same group. Dynamic VM areas will be allocated according to these
1180 * groupings. If @ai->nr_groups is zero, a single group containing
1181 * all units is assumed.
8d408b4b 1182 *
38a6be52
TH
1183 * The caller should have mapped the first chunk at @base_addr and
1184 * copied static data to each unit.
fbf59bc9 1185 *
edcb4639
TH
1186 * If the first chunk ends up with both reserved and dynamic areas, it
1187 * is served by two chunks - one to serve the core static and reserved
1188 * areas and the other for the dynamic area. They share the same vm
1189 * and page map but uses different area allocation map to stay away
1190 * from each other. The latter chunk is circulated in the chunk slots
1191 * and available for dynamic allocation like any other chunks.
1192 *
fbf59bc9 1193 * RETURNS:
fb435d52 1194 * 0 on success, -errno on failure.
fbf59bc9 1195 */
fb435d52
TH
1196int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1197 void *base_addr)
fbf59bc9 1198{
635b75fc 1199 static char cpus_buf[4096] __initdata;
099a19d9
TH
1200 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1201 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1202 size_t dyn_size = ai->dyn_size;
1203 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1204 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1205 unsigned long *group_offsets;
1206 size_t *group_sizes;
fb435d52 1207 unsigned long *unit_off;
fbf59bc9 1208 unsigned int cpu;
fd1e8a1f
TH
1209 int *unit_map;
1210 int group, unit, i;
fbf59bc9 1211
635b75fc
TH
1212 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1213
1214#define PCPU_SETUP_BUG_ON(cond) do { \
1215 if (unlikely(cond)) { \
1216 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1217 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1218 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1219 BUG(); \
1220 } \
1221} while (0)
1222
2f39e637 1223 /* sanity checks */
635b75fc 1224 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1225#ifdef CONFIG_SMP
635b75fc 1226 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1227 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1228#endif
635b75fc 1229 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1230 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1231 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1232 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1233 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1234 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1235 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1236
6563297c 1237 /* process group information and build config tables accordingly */
999c17e3
SS
1238 group_offsets = memblock_virt_alloc(ai->nr_groups *
1239 sizeof(group_offsets[0]), 0);
1240 group_sizes = memblock_virt_alloc(ai->nr_groups *
1241 sizeof(group_sizes[0]), 0);
1242 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1243 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1244
fd1e8a1f 1245 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1246 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1247
1248 pcpu_low_unit_cpu = NR_CPUS;
1249 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1250
fd1e8a1f
TH
1251 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1252 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1253
6563297c
TH
1254 group_offsets[group] = gi->base_offset;
1255 group_sizes[group] = gi->nr_units * ai->unit_size;
1256
fd1e8a1f
TH
1257 for (i = 0; i < gi->nr_units; i++) {
1258 cpu = gi->cpu_map[i];
1259 if (cpu == NR_CPUS)
1260 continue;
8d408b4b 1261
635b75fc
TH
1262 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1263 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1264 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1265
fd1e8a1f 1266 unit_map[cpu] = unit + i;
fb435d52
TH
1267 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1268
a855b84c
TH
1269 /* determine low/high unit_cpu */
1270 if (pcpu_low_unit_cpu == NR_CPUS ||
1271 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1272 pcpu_low_unit_cpu = cpu;
1273 if (pcpu_high_unit_cpu == NR_CPUS ||
1274 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1275 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1276 }
2f39e637 1277 }
fd1e8a1f
TH
1278 pcpu_nr_units = unit;
1279
1280 for_each_possible_cpu(cpu)
635b75fc
TH
1281 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1282
1283 /* we're done parsing the input, undefine BUG macro and dump config */
1284#undef PCPU_SETUP_BUG_ON
bcbea798 1285 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1286
6563297c
TH
1287 pcpu_nr_groups = ai->nr_groups;
1288 pcpu_group_offsets = group_offsets;
1289 pcpu_group_sizes = group_sizes;
fd1e8a1f 1290 pcpu_unit_map = unit_map;
fb435d52 1291 pcpu_unit_offsets = unit_off;
2f39e637
TH
1292
1293 /* determine basic parameters */
fd1e8a1f 1294 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1295 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1296 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1297 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1298 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1299
d9b55eeb
TH
1300 /*
1301 * Allocate chunk slots. The additional last slot is for
1302 * empty chunks.
1303 */
1304 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1305 pcpu_slot = memblock_virt_alloc(
1306 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1307 for (i = 0; i < pcpu_nr_slots; i++)
1308 INIT_LIST_HEAD(&pcpu_slot[i]);
1309
edcb4639
TH
1310 /*
1311 * Initialize static chunk. If reserved_size is zero, the
1312 * static chunk covers static area + dynamic allocation area
1313 * in the first chunk. If reserved_size is not zero, it
1314 * covers static area + reserved area (mostly used for module
1315 * static percpu allocation).
1316 */
999c17e3 1317 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1318 INIT_LIST_HEAD(&schunk->list);
bba174f5 1319 schunk->base_addr = base_addr;
61ace7fa
TH
1320 schunk->map = smap;
1321 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1322 schunk->immutable = true;
ce3141a2 1323 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1324
fd1e8a1f
TH
1325 if (ai->reserved_size) {
1326 schunk->free_size = ai->reserved_size;
ae9e6bc9 1327 pcpu_reserved_chunk = schunk;
fd1e8a1f 1328 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1329 } else {
1330 schunk->free_size = dyn_size;
1331 dyn_size = 0; /* dynamic area covered */
1332 }
2441d15c 1333 schunk->contig_hint = schunk->free_size;
fbf59bc9 1334
723ad1d9
AV
1335 schunk->map[0] = 1;
1336 schunk->map[1] = ai->static_size;
1337 schunk->map_used = 1;
61ace7fa 1338 if (schunk->free_size)
723ad1d9
AV
1339 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1340 else
1341 schunk->map[1] |= 1;
61ace7fa 1342
edcb4639
TH
1343 /* init dynamic chunk if necessary */
1344 if (dyn_size) {
999c17e3 1345 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1346 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1347 dchunk->base_addr = base_addr;
edcb4639
TH
1348 dchunk->map = dmap;
1349 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1350 dchunk->immutable = true;
ce3141a2 1351 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1352
1353 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1354 dchunk->map[0] = 1;
1355 dchunk->map[1] = pcpu_reserved_chunk_limit;
1356 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1357 dchunk->map_used = 2;
edcb4639
TH
1358 }
1359
2441d15c 1360 /* link the first chunk in */
ae9e6bc9
TH
1361 pcpu_first_chunk = dchunk ?: schunk;
1362 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1363
1364 /* we're done */
bba174f5 1365 pcpu_base_addr = base_addr;
fb435d52 1366 return 0;
fbf59bc9 1367}
66c3a757 1368
bbddff05
TH
1369#ifdef CONFIG_SMP
1370
17f3609c 1371const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1372 [PCPU_FC_AUTO] = "auto",
1373 [PCPU_FC_EMBED] = "embed",
1374 [PCPU_FC_PAGE] = "page",
f58dc01b 1375};
66c3a757 1376
f58dc01b 1377enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1378
f58dc01b
TH
1379static int __init percpu_alloc_setup(char *str)
1380{
5479c78a
CG
1381 if (!str)
1382 return -EINVAL;
1383
f58dc01b
TH
1384 if (0)
1385 /* nada */;
1386#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1387 else if (!strcmp(str, "embed"))
1388 pcpu_chosen_fc = PCPU_FC_EMBED;
1389#endif
1390#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1391 else if (!strcmp(str, "page"))
1392 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1393#endif
1394 else
1395 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1396
f58dc01b 1397 return 0;
66c3a757 1398}
f58dc01b 1399early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1400
3c9a024f
TH
1401/*
1402 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1403 * Build it if needed by the arch config or the generic setup is going
1404 * to be used.
1405 */
08fc4580
TH
1406#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1407 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1408#define BUILD_EMBED_FIRST_CHUNK
1409#endif
1410
1411/* build pcpu_page_first_chunk() iff needed by the arch config */
1412#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1413#define BUILD_PAGE_FIRST_CHUNK
1414#endif
1415
1416/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1417#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1418/**
1419 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1420 * @reserved_size: the size of reserved percpu area in bytes
1421 * @dyn_size: minimum free size for dynamic allocation in bytes
1422 * @atom_size: allocation atom size
1423 * @cpu_distance_fn: callback to determine distance between cpus, optional
1424 *
1425 * This function determines grouping of units, their mappings to cpus
1426 * and other parameters considering needed percpu size, allocation
1427 * atom size and distances between CPUs.
1428 *
1429 * Groups are always mutliples of atom size and CPUs which are of
1430 * LOCAL_DISTANCE both ways are grouped together and share space for
1431 * units in the same group. The returned configuration is guaranteed
1432 * to have CPUs on different nodes on different groups and >=75% usage
1433 * of allocated virtual address space.
1434 *
1435 * RETURNS:
1436 * On success, pointer to the new allocation_info is returned. On
1437 * failure, ERR_PTR value is returned.
1438 */
1439static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1440 size_t reserved_size, size_t dyn_size,
1441 size_t atom_size,
1442 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1443{
1444 static int group_map[NR_CPUS] __initdata;
1445 static int group_cnt[NR_CPUS] __initdata;
1446 const size_t static_size = __per_cpu_end - __per_cpu_start;
1447 int nr_groups = 1, nr_units = 0;
1448 size_t size_sum, min_unit_size, alloc_size;
1449 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1450 int last_allocs, group, unit;
1451 unsigned int cpu, tcpu;
1452 struct pcpu_alloc_info *ai;
1453 unsigned int *cpu_map;
1454
1455 /* this function may be called multiple times */
1456 memset(group_map, 0, sizeof(group_map));
1457 memset(group_cnt, 0, sizeof(group_cnt));
1458
1459 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1460 size_sum = PFN_ALIGN(static_size + reserved_size +
1461 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1462 dyn_size = size_sum - static_size - reserved_size;
1463
1464 /*
1465 * Determine min_unit_size, alloc_size and max_upa such that
1466 * alloc_size is multiple of atom_size and is the smallest
25985edc 1467 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1468 * or larger than min_unit_size.
1469 */
1470 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1471
1472 alloc_size = roundup(min_unit_size, atom_size);
1473 upa = alloc_size / min_unit_size;
1474 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1475 upa--;
1476 max_upa = upa;
1477
1478 /* group cpus according to their proximity */
1479 for_each_possible_cpu(cpu) {
1480 group = 0;
1481 next_group:
1482 for_each_possible_cpu(tcpu) {
1483 if (cpu == tcpu)
1484 break;
1485 if (group_map[tcpu] == group && cpu_distance_fn &&
1486 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1487 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1488 group++;
1489 nr_groups = max(nr_groups, group + 1);
1490 goto next_group;
1491 }
1492 }
1493 group_map[cpu] = group;
1494 group_cnt[group]++;
1495 }
1496
1497 /*
1498 * Expand unit size until address space usage goes over 75%
1499 * and then as much as possible without using more address
1500 * space.
1501 */
1502 last_allocs = INT_MAX;
1503 for (upa = max_upa; upa; upa--) {
1504 int allocs = 0, wasted = 0;
1505
1506 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1507 continue;
1508
1509 for (group = 0; group < nr_groups; group++) {
1510 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1511 allocs += this_allocs;
1512 wasted += this_allocs * upa - group_cnt[group];
1513 }
1514
1515 /*
1516 * Don't accept if wastage is over 1/3. The
1517 * greater-than comparison ensures upa==1 always
1518 * passes the following check.
1519 */
1520 if (wasted > num_possible_cpus() / 3)
1521 continue;
1522
1523 /* and then don't consume more memory */
1524 if (allocs > last_allocs)
1525 break;
1526 last_allocs = allocs;
1527 best_upa = upa;
1528 }
1529 upa = best_upa;
1530
1531 /* allocate and fill alloc_info */
1532 for (group = 0; group < nr_groups; group++)
1533 nr_units += roundup(group_cnt[group], upa);
1534
1535 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1536 if (!ai)
1537 return ERR_PTR(-ENOMEM);
1538 cpu_map = ai->groups[0].cpu_map;
1539
1540 for (group = 0; group < nr_groups; group++) {
1541 ai->groups[group].cpu_map = cpu_map;
1542 cpu_map += roundup(group_cnt[group], upa);
1543 }
1544
1545 ai->static_size = static_size;
1546 ai->reserved_size = reserved_size;
1547 ai->dyn_size = dyn_size;
1548 ai->unit_size = alloc_size / upa;
1549 ai->atom_size = atom_size;
1550 ai->alloc_size = alloc_size;
1551
1552 for (group = 0, unit = 0; group_cnt[group]; group++) {
1553 struct pcpu_group_info *gi = &ai->groups[group];
1554
1555 /*
1556 * Initialize base_offset as if all groups are located
1557 * back-to-back. The caller should update this to
1558 * reflect actual allocation.
1559 */
1560 gi->base_offset = unit * ai->unit_size;
1561
1562 for_each_possible_cpu(cpu)
1563 if (group_map[cpu] == group)
1564 gi->cpu_map[gi->nr_units++] = cpu;
1565 gi->nr_units = roundup(gi->nr_units, upa);
1566 unit += gi->nr_units;
1567 }
1568 BUG_ON(unit != nr_units);
1569
1570 return ai;
1571}
1572#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1573
1574#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1575/**
1576 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1577 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1578 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1579 * @atom_size: allocation atom size
1580 * @cpu_distance_fn: callback to determine distance between cpus, optional
1581 * @alloc_fn: function to allocate percpu page
25985edc 1582 * @free_fn: function to free percpu page
66c3a757
TH
1583 *
1584 * This is a helper to ease setting up embedded first percpu chunk and
1585 * can be called where pcpu_setup_first_chunk() is expected.
1586 *
1587 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1588 * by calling @alloc_fn and used as-is without being mapped into
1589 * vmalloc area. Allocations are always whole multiples of @atom_size
1590 * aligned to @atom_size.
1591 *
1592 * This enables the first chunk to piggy back on the linear physical
1593 * mapping which often uses larger page size. Please note that this
1594 * can result in very sparse cpu->unit mapping on NUMA machines thus
1595 * requiring large vmalloc address space. Don't use this allocator if
1596 * vmalloc space is not orders of magnitude larger than distances
1597 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1598 *
4ba6ce25 1599 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1600 *
1601 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1602 * size, the leftover is returned using @free_fn.
66c3a757
TH
1603 *
1604 * RETURNS:
fb435d52 1605 * 0 on success, -errno on failure.
66c3a757 1606 */
4ba6ce25 1607int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1608 size_t atom_size,
1609 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1610 pcpu_fc_alloc_fn_t alloc_fn,
1611 pcpu_fc_free_fn_t free_fn)
66c3a757 1612{
c8826dd5
TH
1613 void *base = (void *)ULONG_MAX;
1614 void **areas = NULL;
fd1e8a1f 1615 struct pcpu_alloc_info *ai;
6ea529a2 1616 size_t size_sum, areas_size, max_distance;
c8826dd5 1617 int group, i, rc;
66c3a757 1618
c8826dd5
TH
1619 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1620 cpu_distance_fn);
fd1e8a1f
TH
1621 if (IS_ERR(ai))
1622 return PTR_ERR(ai);
66c3a757 1623
fd1e8a1f 1624 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1625 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1626
999c17e3 1627 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1628 if (!areas) {
fb435d52 1629 rc = -ENOMEM;
c8826dd5 1630 goto out_free;
fa8a7094 1631 }
66c3a757 1632
c8826dd5
TH
1633 /* allocate, copy and determine base address */
1634 for (group = 0; group < ai->nr_groups; group++) {
1635 struct pcpu_group_info *gi = &ai->groups[group];
1636 unsigned int cpu = NR_CPUS;
1637 void *ptr;
1638
1639 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1640 cpu = gi->cpu_map[i];
1641 BUG_ON(cpu == NR_CPUS);
1642
1643 /* allocate space for the whole group */
1644 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1645 if (!ptr) {
1646 rc = -ENOMEM;
1647 goto out_free_areas;
1648 }
f528f0b8
CM
1649 /* kmemleak tracks the percpu allocations separately */
1650 kmemleak_free(ptr);
c8826dd5 1651 areas[group] = ptr;
fd1e8a1f 1652
c8826dd5 1653 base = min(ptr, base);
42b64281
TH
1654 }
1655
1656 /*
1657 * Copy data and free unused parts. This should happen after all
1658 * allocations are complete; otherwise, we may end up with
1659 * overlapping groups.
1660 */
1661 for (group = 0; group < ai->nr_groups; group++) {
1662 struct pcpu_group_info *gi = &ai->groups[group];
1663 void *ptr = areas[group];
c8826dd5
TH
1664
1665 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1666 if (gi->cpu_map[i] == NR_CPUS) {
1667 /* unused unit, free whole */
1668 free_fn(ptr, ai->unit_size);
1669 continue;
1670 }
1671 /* copy and return the unused part */
1672 memcpy(ptr, __per_cpu_load, ai->static_size);
1673 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1674 }
fa8a7094 1675 }
66c3a757 1676
c8826dd5 1677 /* base address is now known, determine group base offsets */
6ea529a2
TH
1678 max_distance = 0;
1679 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1680 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1681 max_distance = max_t(size_t, max_distance,
1682 ai->groups[group].base_offset);
6ea529a2
TH
1683 }
1684 max_distance += ai->unit_size;
1685
1686 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 1687 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 1688 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 1689 "space 0x%lx\n", max_distance,
8a092171 1690 VMALLOC_TOTAL);
6ea529a2
TH
1691#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1692 /* and fail if we have fallback */
1693 rc = -EINVAL;
1694 goto out_free;
1695#endif
1696 }
c8826dd5 1697
004018e2 1698 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1699 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1700 ai->dyn_size, ai->unit_size);
d4b95f80 1701
fb435d52 1702 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1703 goto out_free;
1704
1705out_free_areas:
1706 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
1707 if (areas[group])
1708 free_fn(areas[group],
1709 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 1710out_free:
fd1e8a1f 1711 pcpu_free_alloc_info(ai);
c8826dd5 1712 if (areas)
999c17e3 1713 memblock_free_early(__pa(areas), areas_size);
fb435d52 1714 return rc;
d4b95f80 1715}
3c9a024f 1716#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1717
3c9a024f 1718#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1719/**
00ae4064 1720 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1721 * @reserved_size: the size of reserved percpu area in bytes
1722 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1723 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1724 * @populate_pte_fn: function to populate pte
1725 *
00ae4064
TH
1726 * This is a helper to ease setting up page-remapped first percpu
1727 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1728 *
1729 * This is the basic allocator. Static percpu area is allocated
1730 * page-by-page into vmalloc area.
1731 *
1732 * RETURNS:
fb435d52 1733 * 0 on success, -errno on failure.
d4b95f80 1734 */
fb435d52
TH
1735int __init pcpu_page_first_chunk(size_t reserved_size,
1736 pcpu_fc_alloc_fn_t alloc_fn,
1737 pcpu_fc_free_fn_t free_fn,
1738 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1739{
8f05a6a6 1740 static struct vm_struct vm;
fd1e8a1f 1741 struct pcpu_alloc_info *ai;
00ae4064 1742 char psize_str[16];
ce3141a2 1743 int unit_pages;
d4b95f80 1744 size_t pages_size;
ce3141a2 1745 struct page **pages;
fb435d52 1746 int unit, i, j, rc;
d4b95f80 1747
00ae4064
TH
1748 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1749
4ba6ce25 1750 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1751 if (IS_ERR(ai))
1752 return PTR_ERR(ai);
1753 BUG_ON(ai->nr_groups != 1);
1754 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1755
1756 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1757
1758 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1759 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1760 sizeof(pages[0]));
999c17e3 1761 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 1762
8f05a6a6 1763 /* allocate pages */
d4b95f80 1764 j = 0;
fd1e8a1f 1765 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1766 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1767 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1768 void *ptr;
1769
3cbc8565 1770 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1771 if (!ptr) {
00ae4064
TH
1772 pr_warning("PERCPU: failed to allocate %s page "
1773 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1774 goto enomem;
1775 }
f528f0b8
CM
1776 /* kmemleak tracks the percpu allocations separately */
1777 kmemleak_free(ptr);
ce3141a2 1778 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1779 }
1780
8f05a6a6
TH
1781 /* allocate vm area, map the pages and copy static data */
1782 vm.flags = VM_ALLOC;
fd1e8a1f 1783 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1784 vm_area_register_early(&vm, PAGE_SIZE);
1785
fd1e8a1f 1786 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1787 unsigned long unit_addr =
fd1e8a1f 1788 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1789
ce3141a2 1790 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1791 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1792
1793 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1794 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1795 unit_pages);
1796 if (rc < 0)
1797 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1798
8f05a6a6
TH
1799 /*
1800 * FIXME: Archs with virtual cache should flush local
1801 * cache for the linear mapping here - something
1802 * equivalent to flush_cache_vmap() on the local cpu.
1803 * flush_cache_vmap() can't be used as most supporting
1804 * data structures are not set up yet.
1805 */
1806
1807 /* copy static data */
fd1e8a1f 1808 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1809 }
1810
1811 /* we're ready, commit */
1d9d3257 1812 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1813 unit_pages, psize_str, vm.addr, ai->static_size,
1814 ai->reserved_size, ai->dyn_size);
d4b95f80 1815
fb435d52 1816 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1817 goto out_free_ar;
1818
1819enomem:
1820 while (--j >= 0)
ce3141a2 1821 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1822 rc = -ENOMEM;
d4b95f80 1823out_free_ar:
999c17e3 1824 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 1825 pcpu_free_alloc_info(ai);
fb435d52 1826 return rc;
d4b95f80 1827}
3c9a024f 1828#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1829
bbddff05 1830#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1831/*
bbddff05 1832 * Generic SMP percpu area setup.
e74e3962
TH
1833 *
1834 * The embedding helper is used because its behavior closely resembles
1835 * the original non-dynamic generic percpu area setup. This is
1836 * important because many archs have addressing restrictions and might
1837 * fail if the percpu area is located far away from the previous
1838 * location. As an added bonus, in non-NUMA cases, embedding is
1839 * generally a good idea TLB-wise because percpu area can piggy back
1840 * on the physical linear memory mapping which uses large page
1841 * mappings on applicable archs.
1842 */
e74e3962
TH
1843unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1844EXPORT_SYMBOL(__per_cpu_offset);
1845
c8826dd5
TH
1846static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1847 size_t align)
1848{
999c17e3
SS
1849 return memblock_virt_alloc_from_nopanic(
1850 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 1851}
66c3a757 1852
c8826dd5
TH
1853static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1854{
999c17e3 1855 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
1856}
1857
e74e3962
TH
1858void __init setup_per_cpu_areas(void)
1859{
e74e3962
TH
1860 unsigned long delta;
1861 unsigned int cpu;
fb435d52 1862 int rc;
e74e3962
TH
1863
1864 /*
1865 * Always reserve area for module percpu variables. That's
1866 * what the legacy allocator did.
1867 */
fb435d52 1868 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
1869 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1870 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 1871 if (rc < 0)
bbddff05 1872 panic("Failed to initialize percpu areas.");
e74e3962
TH
1873
1874 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1875 for_each_possible_cpu(cpu)
fb435d52 1876 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 1877}
bbddff05
TH
1878#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1879
1880#else /* CONFIG_SMP */
1881
1882/*
1883 * UP percpu area setup.
1884 *
1885 * UP always uses km-based percpu allocator with identity mapping.
1886 * Static percpu variables are indistinguishable from the usual static
1887 * variables and don't require any special preparation.
1888 */
1889void __init setup_per_cpu_areas(void)
1890{
1891 const size_t unit_size =
1892 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1893 PERCPU_DYNAMIC_RESERVE));
1894 struct pcpu_alloc_info *ai;
1895 void *fc;
1896
1897 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
1898 fc = memblock_virt_alloc_from_nopanic(unit_size,
1899 PAGE_SIZE,
1900 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
1901 if (!ai || !fc)
1902 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
1903 /* kmemleak tracks the percpu allocations separately */
1904 kmemleak_free(fc);
bbddff05
TH
1905
1906 ai->dyn_size = unit_size;
1907 ai->unit_size = unit_size;
1908 ai->atom_size = unit_size;
1909 ai->alloc_size = unit_size;
1910 ai->groups[0].nr_units = 1;
1911 ai->groups[0].cpu_map[0] = 0;
1912
1913 if (pcpu_setup_first_chunk(ai, fc) < 0)
1914 panic("Failed to initialize percpu areas.");
1915}
1916
1917#endif /* CONFIG_SMP */
099a19d9
TH
1918
1919/*
1920 * First and reserved chunks are initialized with temporary allocation
1921 * map in initdata so that they can be used before slab is online.
1922 * This function is called after slab is brought up and replaces those
1923 * with properly allocated maps.
1924 */
1925void __init percpu_init_late(void)
1926{
1927 struct pcpu_chunk *target_chunks[] =
1928 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1929 struct pcpu_chunk *chunk;
1930 unsigned long flags;
1931 int i;
1932
1933 for (i = 0; (chunk = target_chunks[i]); i++) {
1934 int *map;
1935 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1936
1937 BUILD_BUG_ON(size > PAGE_SIZE);
1938
90459ce0 1939 map = pcpu_mem_zalloc(size);
099a19d9
TH
1940 BUG_ON(!map);
1941
1942 spin_lock_irqsave(&pcpu_lock, flags);
1943 memcpy(map, chunk->map, size);
1944 chunk->map = map;
1945 spin_unlock_irqrestore(&pcpu_lock, flags);
1946 }
1947}