]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/percpu.c
percpu: generalize bitmap (un)populated iterators
[mirror_ubuntu-jammy-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
fbf59bc9 66#include <linux/list.h>
a530b795 67#include <linux/log2.h>
fbf59bc9
TH
68#include <linux/mm.h>
69#include <linux/module.h>
70#include <linux/mutex.h>
71#include <linux/percpu.h>
72#include <linux/pfn.h>
fbf59bc9 73#include <linux/slab.h>
ccea34b5 74#include <linux/spinlock.h>
fbf59bc9 75#include <linux/vmalloc.h>
a56dbddf 76#include <linux/workqueue.h>
f528f0b8 77#include <linux/kmemleak.h>
fbf59bc9
TH
78
79#include <asm/cacheflush.h>
e0100983 80#include <asm/sections.h>
fbf59bc9 81#include <asm/tlbflush.h>
3b034b0d 82#include <asm/io.h>
fbf59bc9 83
df95e795
DZ
84#define CREATE_TRACE_POINTS
85#include <trace/events/percpu.h>
86
8fa3ed80
DZ
87#include "percpu-internal.h"
88
fbf59bc9
TH
89#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
90#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
91#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
92#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3 184/**
560f2c23
DZF
185 * pcpu_addr_in_chunk - check if the address is served from this chunk
186 * @chunk: chunk of interest
187 * @addr: percpu address
c0ebfdc3
DZF
188 *
189 * RETURNS:
560f2c23 190 * True if the address is served from this chunk.
c0ebfdc3 191 */
560f2c23 192static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 193{
c0ebfdc3
DZF
194 void *start_addr, *end_addr;
195
560f2c23 196 if (!chunk)
c0ebfdc3 197 return false;
020ec653 198
560f2c23
DZF
199 start_addr = chunk->base_addr + chunk->start_offset;
200 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
201 chunk->end_offset;
c0ebfdc3
DZF
202
203 return addr >= start_addr && addr < end_addr;
020ec653
TH
204}
205
d9b55eeb 206static int __pcpu_size_to_slot(int size)
fbf59bc9 207{
cae3aeb8 208 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
209 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
210}
211
d9b55eeb
TH
212static int pcpu_size_to_slot(int size)
213{
214 if (size == pcpu_unit_size)
215 return pcpu_nr_slots - 1;
216 return __pcpu_size_to_slot(size);
217}
218
fbf59bc9
TH
219static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
220{
221 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
222 return 0;
223
224 return pcpu_size_to_slot(chunk->free_size);
225}
226
88999a89
TH
227/* set the pointer to a chunk in a page struct */
228static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
229{
230 page->index = (unsigned long)pcpu;
231}
232
233/* obtain pointer to a chunk from a page struct */
234static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
235{
236 return (struct pcpu_chunk *)page->index;
237}
238
239static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 240{
2f39e637 241 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
242}
243
c0ebfdc3
DZF
244static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
247}
248
9983b6f0
TH
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
fbf59bc9 251{
c0ebfdc3
DZF
252 return (unsigned long)chunk->base_addr +
253 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
254}
255
91e914c5 256static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 257{
91e914c5
DZF
258 *rs = find_next_zero_bit(bitmap, end, *rs);
259 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
260}
261
91e914c5 262static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 263{
91e914c5
DZF
264 *rs = find_next_bit(bitmap, end, *rs);
265 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
266}
267
268/*
91e914c5
DZF
269 * Bitmap region iterators. Iterates over the bitmap between
270 * [@start, @end) in @chunk. @rs and @re should be integer variables
271 * and will be set to start and end index of the current free region.
ce3141a2 272 */
91e914c5
DZF
273#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
274 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
275 (rs) < (re); \
276 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 277
91e914c5
DZF
278#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 282
fbf59bc9 283/**
90459ce0 284 * pcpu_mem_zalloc - allocate memory
1880d93b 285 * @size: bytes to allocate
fbf59bc9 286 *
1880d93b 287 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 288 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 289 * memory is always zeroed.
fbf59bc9 290 *
ccea34b5
TH
291 * CONTEXT:
292 * Does GFP_KERNEL allocation.
293 *
fbf59bc9 294 * RETURNS:
1880d93b 295 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 296 */
90459ce0 297static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 298{
099a19d9
TH
299 if (WARN_ON_ONCE(!slab_is_available()))
300 return NULL;
301
1880d93b
TH
302 if (size <= PAGE_SIZE)
303 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
304 else
305 return vzalloc(size);
1880d93b 306}
fbf59bc9 307
1880d93b
TH
308/**
309 * pcpu_mem_free - free memory
310 * @ptr: memory to free
1880d93b 311 *
90459ce0 312 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 313 */
1d5cfdb0 314static void pcpu_mem_free(void *ptr)
1880d93b 315{
1d5cfdb0 316 kvfree(ptr);
fbf59bc9
TH
317}
318
b539b87f
TH
319/**
320 * pcpu_count_occupied_pages - count the number of pages an area occupies
321 * @chunk: chunk of interest
322 * @i: index of the area in question
323 *
324 * Count the number of pages chunk's @i'th area occupies. When the area's
325 * start and/or end address isn't aligned to page boundary, the straddled
326 * page is included in the count iff the rest of the page is free.
327 */
328static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
329{
330 int off = chunk->map[i] & ~1;
331 int end = chunk->map[i + 1] & ~1;
332
333 if (!PAGE_ALIGNED(off) && i > 0) {
334 int prev = chunk->map[i - 1];
335
336 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
337 off = round_down(off, PAGE_SIZE);
338 }
339
340 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
341 int next = chunk->map[i + 1];
342 int nend = chunk->map[i + 2] & ~1;
343
344 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
345 end = round_up(end, PAGE_SIZE);
346 }
347
348 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
349}
350
fbf59bc9
TH
351/**
352 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
353 * @chunk: chunk of interest
354 * @oslot: the previous slot it was on
355 *
356 * This function is called after an allocation or free changed @chunk.
357 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
358 * moved to the slot. Note that the reserved chunk is never put on
359 * chunk slots.
ccea34b5
TH
360 *
361 * CONTEXT:
362 * pcpu_lock.
fbf59bc9
TH
363 */
364static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
365{
366 int nslot = pcpu_chunk_slot(chunk);
367
edcb4639 368 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
369 if (oslot < nslot)
370 list_move(&chunk->list, &pcpu_slot[nslot]);
371 else
372 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
373 }
374}
375
9f7dcf22 376/**
833af842
TH
377 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
378 * @chunk: chunk of interest
9c824b6a 379 * @is_atomic: the allocation context
9f7dcf22 380 *
9c824b6a
TH
381 * Determine whether area map of @chunk needs to be extended. If
382 * @is_atomic, only the amount necessary for a new allocation is
383 * considered; however, async extension is scheduled if the left amount is
384 * low. If !@is_atomic, it aims for more empty space. Combined, this
385 * ensures that the map is likely to have enough available space to
386 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 387 *
ccea34b5 388 * CONTEXT:
833af842 389 * pcpu_lock.
ccea34b5 390 *
9f7dcf22 391 * RETURNS:
833af842
TH
392 * New target map allocation length if extension is necessary, 0
393 * otherwise.
9f7dcf22 394 */
9c824b6a 395static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 396{
9c824b6a
TH
397 int margin, new_alloc;
398
4f996e23
TH
399 lockdep_assert_held(&pcpu_lock);
400
9c824b6a
TH
401 if (is_atomic) {
402 margin = 3;
9f7dcf22 403
9c824b6a 404 if (chunk->map_alloc <
4f996e23
TH
405 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
406 if (list_empty(&chunk->map_extend_list)) {
407 list_add_tail(&chunk->map_extend_list,
408 &pcpu_map_extend_chunks);
409 pcpu_schedule_balance_work();
410 }
411 }
9c824b6a
TH
412 } else {
413 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
414 }
415
416 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
417 return 0;
418
419 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 420 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
421 new_alloc *= 2;
422
833af842
TH
423 return new_alloc;
424}
425
426/**
427 * pcpu_extend_area_map - extend area map of a chunk
428 * @chunk: chunk of interest
429 * @new_alloc: new target allocation length of the area map
430 *
431 * Extend area map of @chunk to have @new_alloc entries.
432 *
433 * CONTEXT:
434 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
435 *
436 * RETURNS:
437 * 0 on success, -errno on failure.
438 */
439static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
440{
441 int *old = NULL, *new = NULL;
442 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
443 unsigned long flags;
444
6710e594
TH
445 lockdep_assert_held(&pcpu_alloc_mutex);
446
90459ce0 447 new = pcpu_mem_zalloc(new_size);
833af842 448 if (!new)
9f7dcf22 449 return -ENOMEM;
ccea34b5 450
833af842
TH
451 /* acquire pcpu_lock and switch to new area map */
452 spin_lock_irqsave(&pcpu_lock, flags);
453
454 if (new_alloc <= chunk->map_alloc)
455 goto out_unlock;
9f7dcf22 456
833af842 457 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
458 old = chunk->map;
459
460 memcpy(new, old, old_size);
9f7dcf22 461
9f7dcf22
TH
462 chunk->map_alloc = new_alloc;
463 chunk->map = new;
833af842
TH
464 new = NULL;
465
466out_unlock:
467 spin_unlock_irqrestore(&pcpu_lock, flags);
468
469 /*
470 * pcpu_mem_free() might end up calling vfree() which uses
471 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
472 */
1d5cfdb0
TH
473 pcpu_mem_free(old);
474 pcpu_mem_free(new);
833af842 475
9f7dcf22
TH
476 return 0;
477}
478
a16037c8
TH
479/**
480 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
481 * @chunk: chunk the candidate area belongs to
482 * @off: the offset to the start of the candidate area
483 * @this_size: the size of the candidate area
484 * @size: the size of the target allocation
485 * @align: the alignment of the target allocation
486 * @pop_only: only allocate from already populated region
487 *
488 * We're trying to allocate @size bytes aligned at @align. @chunk's area
489 * at @off sized @this_size is a candidate. This function determines
490 * whether the target allocation fits in the candidate area and returns the
491 * number of bytes to pad after @off. If the target area doesn't fit, -1
492 * is returned.
493 *
494 * If @pop_only is %true, this function only considers the already
495 * populated part of the candidate area.
496 */
497static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
498 int size, int align, bool pop_only)
499{
500 int cand_off = off;
501
502 while (true) {
503 int head = ALIGN(cand_off, align) - off;
504 int page_start, page_end, rs, re;
505
506 if (this_size < head + size)
507 return -1;
508
509 if (!pop_only)
510 return head;
511
512 /*
513 * If the first unpopulated page is beyond the end of the
514 * allocation, the whole allocation is populated;
515 * otherwise, retry from the end of the unpopulated area.
516 */
517 page_start = PFN_DOWN(head + off);
518 page_end = PFN_UP(head + off + size);
519
520 rs = page_start;
91e914c5
DZF
521 pcpu_next_unpop(chunk->populated, &rs, &re,
522 PFN_UP(off + this_size));
a16037c8
TH
523 if (rs >= page_end)
524 return head;
525 cand_off = re * PAGE_SIZE;
526 }
527}
528
fbf59bc9
TH
529/**
530 * pcpu_alloc_area - allocate area from a pcpu_chunk
531 * @chunk: chunk of interest
cae3aeb8 532 * @size: wanted size in bytes
fbf59bc9 533 * @align: wanted align
a16037c8 534 * @pop_only: allocate only from the populated area
b539b87f 535 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
536 *
537 * Try to allocate @size bytes area aligned at @align from @chunk.
538 * Note that this function only allocates the offset. It doesn't
539 * populate or map the area.
540 *
9f7dcf22
TH
541 * @chunk->map must have at least two free slots.
542 *
ccea34b5
TH
543 * CONTEXT:
544 * pcpu_lock.
545 *
fbf59bc9 546 * RETURNS:
9f7dcf22
TH
547 * Allocated offset in @chunk on success, -1 if no matching area is
548 * found.
fbf59bc9 549 */
a16037c8 550static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 551 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
552{
553 int oslot = pcpu_chunk_slot(chunk);
554 int max_contig = 0;
555 int i, off;
3d331ad7 556 bool seen_free = false;
723ad1d9 557 int *p;
fbf59bc9 558
3d331ad7 559 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 560 int head, tail;
723ad1d9
AV
561 int this_size;
562
563 off = *p;
564 if (off & 1)
565 continue;
fbf59bc9 566
723ad1d9 567 this_size = (p[1] & ~1) - off;
a16037c8
TH
568
569 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
570 pop_only);
571 if (head < 0) {
3d331ad7
AV
572 if (!seen_free) {
573 chunk->first_free = i;
574 seen_free = true;
575 }
723ad1d9 576 max_contig = max(this_size, max_contig);
fbf59bc9
TH
577 continue;
578 }
579
580 /*
581 * If head is small or the previous block is free,
582 * merge'em. Note that 'small' is defined as smaller
583 * than sizeof(int), which is very small but isn't too
584 * uncommon for percpu allocations.
585 */
723ad1d9 586 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 587 *p = off += head;
723ad1d9 588 if (p[-1] & 1)
fbf59bc9 589 chunk->free_size -= head;
21ddfd38
JZ
590 else
591 max_contig = max(*p - p[-1], max_contig);
723ad1d9 592 this_size -= head;
fbf59bc9
TH
593 head = 0;
594 }
595
596 /* if tail is small, just keep it around */
723ad1d9
AV
597 tail = this_size - head - size;
598 if (tail < sizeof(int)) {
fbf59bc9 599 tail = 0;
723ad1d9
AV
600 size = this_size - head;
601 }
fbf59bc9
TH
602
603 /* split if warranted */
604 if (head || tail) {
706c16f2
AV
605 int nr_extra = !!head + !!tail;
606
607 /* insert new subblocks */
723ad1d9 608 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
609 sizeof(chunk->map[0]) * (chunk->map_used - i));
610 chunk->map_used += nr_extra;
611
fbf59bc9 612 if (head) {
3d331ad7
AV
613 if (!seen_free) {
614 chunk->first_free = i;
615 seen_free = true;
616 }
723ad1d9
AV
617 *++p = off += head;
618 ++i;
706c16f2
AV
619 max_contig = max(head, max_contig);
620 }
621 if (tail) {
723ad1d9 622 p[1] = off + size;
706c16f2 623 max_contig = max(tail, max_contig);
fbf59bc9 624 }
fbf59bc9
TH
625 }
626
3d331ad7
AV
627 if (!seen_free)
628 chunk->first_free = i + 1;
629
fbf59bc9 630 /* update hint and mark allocated */
723ad1d9 631 if (i + 1 == chunk->map_used)
fbf59bc9
TH
632 chunk->contig_hint = max_contig; /* fully scanned */
633 else
634 chunk->contig_hint = max(chunk->contig_hint,
635 max_contig);
636
723ad1d9
AV
637 chunk->free_size -= size;
638 *p |= 1;
fbf59bc9 639
b539b87f 640 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
641 pcpu_chunk_relocate(chunk, oslot);
642 return off;
643 }
644
645 chunk->contig_hint = max_contig; /* fully scanned */
646 pcpu_chunk_relocate(chunk, oslot);
647
9f7dcf22
TH
648 /* tell the upper layer that this chunk has no matching area */
649 return -1;
fbf59bc9
TH
650}
651
652/**
653 * pcpu_free_area - free area to a pcpu_chunk
654 * @chunk: chunk of interest
655 * @freeme: offset of area to free
b539b87f 656 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
657 *
658 * Free area starting from @freeme to @chunk. Note that this function
659 * only modifies the allocation map. It doesn't depopulate or unmap
660 * the area.
ccea34b5
TH
661 *
662 * CONTEXT:
663 * pcpu_lock.
fbf59bc9 664 */
b539b87f
TH
665static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
666 int *occ_pages_p)
fbf59bc9
TH
667{
668 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
669 int off = 0;
670 unsigned i, j;
671 int to_free = 0;
672 int *p;
673
5ccd30e4 674 lockdep_assert_held(&pcpu_lock);
30a5b536 675 pcpu_stats_area_dealloc(chunk);
5ccd30e4 676
723ad1d9
AV
677 freeme |= 1; /* we are searching for <given offset, in use> pair */
678
679 i = 0;
680 j = chunk->map_used;
681 while (i != j) {
682 unsigned k = (i + j) / 2;
683 off = chunk->map[k];
684 if (off < freeme)
685 i = k + 1;
686 else if (off > freeme)
687 j = k;
688 else
689 i = j = k;
690 }
fbf59bc9 691 BUG_ON(off != freeme);
fbf59bc9 692
3d331ad7
AV
693 if (i < chunk->first_free)
694 chunk->first_free = i;
695
723ad1d9
AV
696 p = chunk->map + i;
697 *p = off &= ~1;
698 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 699
b539b87f
TH
700 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
701
723ad1d9
AV
702 /* merge with next? */
703 if (!(p[1] & 1))
704 to_free++;
fbf59bc9 705 /* merge with previous? */
723ad1d9
AV
706 if (i > 0 && !(p[-1] & 1)) {
707 to_free++;
fbf59bc9 708 i--;
723ad1d9 709 p--;
fbf59bc9 710 }
723ad1d9
AV
711 if (to_free) {
712 chunk->map_used -= to_free;
713 memmove(p + 1, p + 1 + to_free,
714 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
715 }
716
723ad1d9 717 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
718 pcpu_chunk_relocate(chunk, oslot);
719}
720
c0ebfdc3 721static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
10edf5b0
DZF
722 int map_size,
723 int *map,
724 int init_map_size)
725{
726 struct pcpu_chunk *chunk;
c0ebfdc3
DZF
727 unsigned long aligned_addr;
728 int start_offset, region_size;
729
730 /* region calculations */
731 aligned_addr = tmp_addr & PAGE_MASK;
732
733 start_offset = tmp_addr - aligned_addr;
6b9d7c8e
DZF
734
735 region_size = PFN_ALIGN(start_offset + map_size);
10edf5b0 736
c0ebfdc3 737 /* allocate chunk */
8ab16c43
DZF
738 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
739 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
740 0);
c0ebfdc3 741
10edf5b0
DZF
742 INIT_LIST_HEAD(&chunk->list);
743 INIT_LIST_HEAD(&chunk->map_extend_list);
c0ebfdc3
DZF
744
745 chunk->base_addr = (void *)aligned_addr;
10edf5b0 746 chunk->start_offset = start_offset;
6b9d7c8e 747 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 748
8ab16c43 749 chunk->nr_pages = region_size >> PAGE_SHIFT;
c0ebfdc3 750
10edf5b0
DZF
751 chunk->map = map;
752 chunk->map_alloc = init_map_size;
753
754 /* manage populated page bitmap */
755 chunk->immutable = true;
8ab16c43
DZF
756 bitmap_fill(chunk->populated, chunk->nr_pages);
757 chunk->nr_populated = chunk->nr_pages;
0cecf50c 758 chunk->nr_empty_pop_pages = chunk->nr_pages;
10edf5b0
DZF
759
760 chunk->contig_hint = chunk->free_size = map_size;
c0ebfdc3
DZF
761
762 if (chunk->start_offset) {
763 /* hide the beginning of the bitmap */
0cecf50c
DZF
764 chunk->nr_empty_pop_pages--;
765
c0ebfdc3
DZF
766 chunk->map[0] = 1;
767 chunk->map[1] = chunk->start_offset;
768 chunk->map_used = 1;
769 }
770
771 /* set chunk's free region */
772 chunk->map[++chunk->map_used] =
773 (chunk->start_offset + chunk->free_size) | 1;
10edf5b0 774
6b9d7c8e
DZF
775 if (chunk->end_offset) {
776 /* hide the end of the bitmap */
0cecf50c
DZF
777 chunk->nr_empty_pop_pages--;
778
6b9d7c8e
DZF
779 chunk->map[++chunk->map_used] = region_size | 1;
780 }
781
10edf5b0
DZF
782 return chunk;
783}
784
6081089f
TH
785static struct pcpu_chunk *pcpu_alloc_chunk(void)
786{
787 struct pcpu_chunk *chunk;
788
90459ce0 789 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
790 if (!chunk)
791 return NULL;
792
90459ce0
BL
793 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
794 sizeof(chunk->map[0]));
6081089f 795 if (!chunk->map) {
1d5cfdb0 796 pcpu_mem_free(chunk);
6081089f
TH
797 return NULL;
798 }
799
800 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
801 chunk->map[0] = 0;
802 chunk->map[1] = pcpu_unit_size | 1;
803 chunk->map_used = 1;
6081089f
TH
804
805 INIT_LIST_HEAD(&chunk->list);
4f996e23 806 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
807 chunk->free_size = pcpu_unit_size;
808 chunk->contig_hint = pcpu_unit_size;
809
c0ebfdc3
DZF
810 chunk->nr_pages = pcpu_unit_pages;
811
6081089f
TH
812 return chunk;
813}
814
815static void pcpu_free_chunk(struct pcpu_chunk *chunk)
816{
817 if (!chunk)
818 return;
1d5cfdb0
TH
819 pcpu_mem_free(chunk->map);
820 pcpu_mem_free(chunk);
6081089f
TH
821}
822
b539b87f
TH
823/**
824 * pcpu_chunk_populated - post-population bookkeeping
825 * @chunk: pcpu_chunk which got populated
826 * @page_start: the start page
827 * @page_end: the end page
828 *
829 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
830 * the bookkeeping information accordingly. Must be called after each
831 * successful population.
832 */
833static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
834 int page_start, int page_end)
835{
836 int nr = page_end - page_start;
837
838 lockdep_assert_held(&pcpu_lock);
839
840 bitmap_set(chunk->populated, page_start, nr);
841 chunk->nr_populated += nr;
0cecf50c 842 chunk->nr_empty_pop_pages += nr;
b539b87f
TH
843 pcpu_nr_empty_pop_pages += nr;
844}
845
846/**
847 * pcpu_chunk_depopulated - post-depopulation bookkeeping
848 * @chunk: pcpu_chunk which got depopulated
849 * @page_start: the start page
850 * @page_end: the end page
851 *
852 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
853 * Update the bookkeeping information accordingly. Must be called after
854 * each successful depopulation.
855 */
856static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
857 int page_start, int page_end)
858{
859 int nr = page_end - page_start;
860
861 lockdep_assert_held(&pcpu_lock);
862
863 bitmap_clear(chunk->populated, page_start, nr);
864 chunk->nr_populated -= nr;
0cecf50c 865 chunk->nr_empty_pop_pages -= nr;
b539b87f
TH
866 pcpu_nr_empty_pop_pages -= nr;
867}
868
9f645532
TH
869/*
870 * Chunk management implementation.
871 *
872 * To allow different implementations, chunk alloc/free and
873 * [de]population are implemented in a separate file which is pulled
874 * into this file and compiled together. The following functions
875 * should be implemented.
876 *
877 * pcpu_populate_chunk - populate the specified range of a chunk
878 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
879 * pcpu_create_chunk - create a new chunk
880 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
881 * pcpu_addr_to_page - translate address to physical address
882 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 883 */
9f645532
TH
884static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
885static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
886static struct pcpu_chunk *pcpu_create_chunk(void);
887static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
888static struct page *pcpu_addr_to_page(void *addr);
889static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 890
b0c9778b
TH
891#ifdef CONFIG_NEED_PER_CPU_KM
892#include "percpu-km.c"
893#else
9f645532 894#include "percpu-vm.c"
b0c9778b 895#endif
fbf59bc9 896
88999a89
TH
897/**
898 * pcpu_chunk_addr_search - determine chunk containing specified address
899 * @addr: address for which the chunk needs to be determined.
900 *
c0ebfdc3
DZF
901 * This is an internal function that handles all but static allocations.
902 * Static percpu address values should never be passed into the allocator.
903 *
88999a89
TH
904 * RETURNS:
905 * The address of the found chunk.
906 */
907static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
908{
c0ebfdc3 909 /* is it in the dynamic region (first chunk)? */
560f2c23 910 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 911 return pcpu_first_chunk;
c0ebfdc3
DZF
912
913 /* is it in the reserved region? */
560f2c23 914 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 915 return pcpu_reserved_chunk;
88999a89
TH
916
917 /*
918 * The address is relative to unit0 which might be unused and
919 * thus unmapped. Offset the address to the unit space of the
920 * current processor before looking it up in the vmalloc
921 * space. Note that any possible cpu id can be used here, so
922 * there's no need to worry about preemption or cpu hotplug.
923 */
924 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 925 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
926}
927
fbf59bc9 928/**
edcb4639 929 * pcpu_alloc - the percpu allocator
cae3aeb8 930 * @size: size of area to allocate in bytes
fbf59bc9 931 * @align: alignment of area (max PAGE_SIZE)
edcb4639 932 * @reserved: allocate from the reserved chunk if available
5835d96e 933 * @gfp: allocation flags
fbf59bc9 934 *
5835d96e
TH
935 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
936 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
937 *
938 * RETURNS:
939 * Percpu pointer to the allocated area on success, NULL on failure.
940 */
5835d96e
TH
941static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
942 gfp_t gfp)
fbf59bc9 943{
f2badb0c 944 static int warn_limit = 10;
fbf59bc9 945 struct pcpu_chunk *chunk;
f2badb0c 946 const char *err;
6ae833c7 947 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 948 int occ_pages = 0;
b38d08f3 949 int slot, off, new_alloc, cpu, ret;
403a91b1 950 unsigned long flags;
f528f0b8 951 void __percpu *ptr;
fbf59bc9 952
723ad1d9
AV
953 /*
954 * We want the lowest bit of offset available for in-use/free
2f69fa82 955 * indicator, so force >= 16bit alignment and make size even.
723ad1d9 956 */
d2f3c384
DZF
957 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
958 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 959
d2f3c384 960 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
2f69fa82 961
3ca45a46 962 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
963 !is_power_of_2(align))) {
756a025f
JP
964 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
965 size, align);
fbf59bc9
TH
966 return NULL;
967 }
968
6710e594
TH
969 if (!is_atomic)
970 mutex_lock(&pcpu_alloc_mutex);
971
403a91b1 972 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 973
edcb4639
TH
974 /* serve reserved allocations from the reserved chunk if available */
975 if (reserved && pcpu_reserved_chunk) {
976 chunk = pcpu_reserved_chunk;
833af842
TH
977
978 if (size > chunk->contig_hint) {
979 err = "alloc from reserved chunk failed";
ccea34b5 980 goto fail_unlock;
f2badb0c 981 }
833af842 982
9c824b6a 983 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 984 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
985 if (is_atomic ||
986 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 987 err = "failed to extend area map of reserved chunk";
b38d08f3 988 goto fail;
833af842
TH
989 }
990 spin_lock_irqsave(&pcpu_lock, flags);
991 }
992
b539b87f
TH
993 off = pcpu_alloc_area(chunk, size, align, is_atomic,
994 &occ_pages);
edcb4639
TH
995 if (off >= 0)
996 goto area_found;
833af842 997
f2badb0c 998 err = "alloc from reserved chunk failed";
ccea34b5 999 goto fail_unlock;
edcb4639
TH
1000 }
1001
ccea34b5 1002restart:
edcb4639 1003 /* search through normal chunks */
fbf59bc9
TH
1004 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1005 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1006 if (size > chunk->contig_hint)
1007 continue;
ccea34b5 1008
9c824b6a 1009 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 1010 if (new_alloc) {
5835d96e
TH
1011 if (is_atomic)
1012 continue;
833af842
TH
1013 spin_unlock_irqrestore(&pcpu_lock, flags);
1014 if (pcpu_extend_area_map(chunk,
1015 new_alloc) < 0) {
1016 err = "failed to extend area map";
b38d08f3 1017 goto fail;
833af842
TH
1018 }
1019 spin_lock_irqsave(&pcpu_lock, flags);
1020 /*
1021 * pcpu_lock has been dropped, need to
1022 * restart cpu_slot list walking.
1023 */
1024 goto restart;
ccea34b5
TH
1025 }
1026
b539b87f
TH
1027 off = pcpu_alloc_area(chunk, size, align, is_atomic,
1028 &occ_pages);
fbf59bc9
TH
1029 if (off >= 0)
1030 goto area_found;
fbf59bc9
TH
1031 }
1032 }
1033
403a91b1 1034 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1035
b38d08f3
TH
1036 /*
1037 * No space left. Create a new chunk. We don't want multiple
1038 * tasks to create chunks simultaneously. Serialize and create iff
1039 * there's still no empty chunk after grabbing the mutex.
1040 */
11df02bf
DZ
1041 if (is_atomic) {
1042 err = "atomic alloc failed, no space left";
5835d96e 1043 goto fail;
11df02bf 1044 }
5835d96e 1045
b38d08f3
TH
1046 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1047 chunk = pcpu_create_chunk();
1048 if (!chunk) {
1049 err = "failed to allocate new chunk";
1050 goto fail;
1051 }
1052
1053 spin_lock_irqsave(&pcpu_lock, flags);
1054 pcpu_chunk_relocate(chunk, -1);
1055 } else {
1056 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1057 }
ccea34b5 1058
ccea34b5 1059 goto restart;
fbf59bc9
TH
1060
1061area_found:
30a5b536 1062 pcpu_stats_area_alloc(chunk, size);
403a91b1 1063 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1064
dca49645 1065 /* populate if not all pages are already there */
5835d96e 1066 if (!is_atomic) {
e04d3208 1067 int page_start, page_end, rs, re;
dca49645 1068
e04d3208
TH
1069 page_start = PFN_DOWN(off);
1070 page_end = PFN_UP(off + size);
b38d08f3 1071
91e914c5
DZF
1072 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1073 page_start, page_end) {
e04d3208
TH
1074 WARN_ON(chunk->immutable);
1075
1076 ret = pcpu_populate_chunk(chunk, rs, re);
1077
1078 spin_lock_irqsave(&pcpu_lock, flags);
1079 if (ret) {
b539b87f 1080 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1081 err = "failed to populate";
1082 goto fail_unlock;
1083 }
b539b87f 1084 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1085 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1086 }
fbf59bc9 1087
e04d3208
TH
1088 mutex_unlock(&pcpu_alloc_mutex);
1089 }
ccea34b5 1090
320661b0
TE
1091 if (chunk != pcpu_reserved_chunk) {
1092 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1093 pcpu_nr_empty_pop_pages -= occ_pages;
320661b0
TE
1094 spin_unlock_irqrestore(&pcpu_lock, flags);
1095 }
b539b87f 1096
1a4d7607
TH
1097 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1098 pcpu_schedule_balance_work();
1099
dca49645
TH
1100 /* clear the areas and return address relative to base address */
1101 for_each_possible_cpu(cpu)
1102 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1103
f528f0b8 1104 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1105 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1106
1107 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1108 chunk->base_addr, off, ptr);
1109
f528f0b8 1110 return ptr;
ccea34b5
TH
1111
1112fail_unlock:
403a91b1 1113 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1114fail:
df95e795
DZ
1115 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1116
5835d96e 1117 if (!is_atomic && warn_limit) {
870d4b12 1118 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1119 size, align, is_atomic, err);
f2badb0c
TH
1120 dump_stack();
1121 if (!--warn_limit)
870d4b12 1122 pr_info("limit reached, disable warning\n");
f2badb0c 1123 }
1a4d7607
TH
1124 if (is_atomic) {
1125 /* see the flag handling in pcpu_blance_workfn() */
1126 pcpu_atomic_alloc_failed = true;
1127 pcpu_schedule_balance_work();
6710e594
TH
1128 } else {
1129 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1130 }
ccea34b5 1131 return NULL;
fbf59bc9 1132}
edcb4639
TH
1133
1134/**
5835d96e 1135 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1136 * @size: size of area to allocate in bytes
1137 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1138 * @gfp: allocation flags
edcb4639 1139 *
5835d96e
TH
1140 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1141 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1142 * be called from any context but is a lot more likely to fail.
ccea34b5 1143 *
edcb4639
TH
1144 * RETURNS:
1145 * Percpu pointer to the allocated area on success, NULL on failure.
1146 */
5835d96e
TH
1147void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1148{
1149 return pcpu_alloc(size, align, false, gfp);
1150}
1151EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1152
1153/**
1154 * __alloc_percpu - allocate dynamic percpu area
1155 * @size: size of area to allocate in bytes
1156 * @align: alignment of area (max PAGE_SIZE)
1157 *
1158 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1159 */
43cf38eb 1160void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1161{
5835d96e 1162 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1163}
fbf59bc9
TH
1164EXPORT_SYMBOL_GPL(__alloc_percpu);
1165
edcb4639
TH
1166/**
1167 * __alloc_reserved_percpu - allocate reserved percpu area
1168 * @size: size of area to allocate in bytes
1169 * @align: alignment of area (max PAGE_SIZE)
1170 *
9329ba97
TH
1171 * Allocate zero-filled percpu area of @size bytes aligned at @align
1172 * from reserved percpu area if arch has set it up; otherwise,
1173 * allocation is served from the same dynamic area. Might sleep.
1174 * Might trigger writeouts.
edcb4639 1175 *
ccea34b5
TH
1176 * CONTEXT:
1177 * Does GFP_KERNEL allocation.
1178 *
edcb4639
TH
1179 * RETURNS:
1180 * Percpu pointer to the allocated area on success, NULL on failure.
1181 */
43cf38eb 1182void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1183{
5835d96e 1184 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1185}
1186
a56dbddf 1187/**
1a4d7607 1188 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1189 * @work: unused
1190 *
1191 * Reclaim all fully free chunks except for the first one.
1192 */
fe6bd8c3 1193static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1194{
fe6bd8c3
TH
1195 LIST_HEAD(to_free);
1196 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1197 struct pcpu_chunk *chunk, *next;
1a4d7607 1198 int slot, nr_to_pop, ret;
a56dbddf 1199
1a4d7607
TH
1200 /*
1201 * There's no reason to keep around multiple unused chunks and VM
1202 * areas can be scarce. Destroy all free chunks except for one.
1203 */
ccea34b5
TH
1204 mutex_lock(&pcpu_alloc_mutex);
1205 spin_lock_irq(&pcpu_lock);
a56dbddf 1206
fe6bd8c3 1207 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1208 WARN_ON(chunk->immutable);
1209
1210 /* spare the first one */
fe6bd8c3 1211 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1212 continue;
1213
4f996e23 1214 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1215 list_move(&chunk->list, &to_free);
a56dbddf
TH
1216 }
1217
ccea34b5 1218 spin_unlock_irq(&pcpu_lock);
a56dbddf 1219
fe6bd8c3 1220 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1221 int rs, re;
dca49645 1222
91e914c5
DZF
1223 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1224 chunk->nr_pages) {
a93ace48 1225 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1226 spin_lock_irq(&pcpu_lock);
1227 pcpu_chunk_depopulated(chunk, rs, re);
1228 spin_unlock_irq(&pcpu_lock);
a93ace48 1229 }
6081089f 1230 pcpu_destroy_chunk(chunk);
a56dbddf 1231 }
971f3918 1232
4f996e23
TH
1233 /* service chunks which requested async area map extension */
1234 do {
1235 int new_alloc = 0;
1236
1237 spin_lock_irq(&pcpu_lock);
1238
1239 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1240 struct pcpu_chunk, map_extend_list);
1241 if (chunk) {
1242 list_del_init(&chunk->map_extend_list);
1243 new_alloc = pcpu_need_to_extend(chunk, false);
1244 }
1245
1246 spin_unlock_irq(&pcpu_lock);
1247
1248 if (new_alloc)
1249 pcpu_extend_area_map(chunk, new_alloc);
1250 } while (chunk);
1251
1a4d7607
TH
1252 /*
1253 * Ensure there are certain number of free populated pages for
1254 * atomic allocs. Fill up from the most packed so that atomic
1255 * allocs don't increase fragmentation. If atomic allocation
1256 * failed previously, always populate the maximum amount. This
1257 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1258 * failing indefinitely; however, large atomic allocs are not
1259 * something we support properly and can be highly unreliable and
1260 * inefficient.
1261 */
1262retry_pop:
1263 if (pcpu_atomic_alloc_failed) {
1264 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1265 /* best effort anyway, don't worry about synchronization */
1266 pcpu_atomic_alloc_failed = false;
1267 } else {
1268 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1269 pcpu_nr_empty_pop_pages,
1270 0, PCPU_EMPTY_POP_PAGES_HIGH);
1271 }
1272
1273 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1274 int nr_unpop = 0, rs, re;
1275
1276 if (!nr_to_pop)
1277 break;
1278
1279 spin_lock_irq(&pcpu_lock);
1280 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1281 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1282 if (nr_unpop)
1283 break;
1284 }
1285 spin_unlock_irq(&pcpu_lock);
1286
1287 if (!nr_unpop)
1288 continue;
1289
1290 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1291 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1292 chunk->nr_pages) {
1a4d7607
TH
1293 int nr = min(re - rs, nr_to_pop);
1294
1295 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1296 if (!ret) {
1297 nr_to_pop -= nr;
1298 spin_lock_irq(&pcpu_lock);
1299 pcpu_chunk_populated(chunk, rs, rs + nr);
1300 spin_unlock_irq(&pcpu_lock);
1301 } else {
1302 nr_to_pop = 0;
1303 }
1304
1305 if (!nr_to_pop)
1306 break;
1307 }
1308 }
1309
1310 if (nr_to_pop) {
1311 /* ran out of chunks to populate, create a new one and retry */
1312 chunk = pcpu_create_chunk();
1313 if (chunk) {
1314 spin_lock_irq(&pcpu_lock);
1315 pcpu_chunk_relocate(chunk, -1);
1316 spin_unlock_irq(&pcpu_lock);
1317 goto retry_pop;
1318 }
1319 }
1320
971f3918 1321 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1322}
1323
1324/**
1325 * free_percpu - free percpu area
1326 * @ptr: pointer to area to free
1327 *
ccea34b5
TH
1328 * Free percpu area @ptr.
1329 *
1330 * CONTEXT:
1331 * Can be called from atomic context.
fbf59bc9 1332 */
43cf38eb 1333void free_percpu(void __percpu *ptr)
fbf59bc9 1334{
129182e5 1335 void *addr;
fbf59bc9 1336 struct pcpu_chunk *chunk;
ccea34b5 1337 unsigned long flags;
b539b87f 1338 int off, occ_pages;
fbf59bc9
TH
1339
1340 if (!ptr)
1341 return;
1342
f528f0b8
CM
1343 kmemleak_free_percpu(ptr);
1344
129182e5
AM
1345 addr = __pcpu_ptr_to_addr(ptr);
1346
ccea34b5 1347 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1348
1349 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1350 off = addr - chunk->base_addr;
fbf59bc9 1351
b539b87f
TH
1352 pcpu_free_area(chunk, off, &occ_pages);
1353
1354 if (chunk != pcpu_reserved_chunk)
1355 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1356
a56dbddf 1357 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1358 if (chunk->free_size == pcpu_unit_size) {
1359 struct pcpu_chunk *pos;
1360
a56dbddf 1361 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1362 if (pos != chunk) {
1a4d7607 1363 pcpu_schedule_balance_work();
fbf59bc9
TH
1364 break;
1365 }
1366 }
1367
df95e795
DZ
1368 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1369
ccea34b5 1370 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1371}
1372EXPORT_SYMBOL_GPL(free_percpu);
1373
383776fa 1374bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1375{
bbddff05 1376#ifdef CONFIG_SMP
10fad5e4
TH
1377 const size_t static_size = __per_cpu_end - __per_cpu_start;
1378 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1379 unsigned int cpu;
1380
1381 for_each_possible_cpu(cpu) {
1382 void *start = per_cpu_ptr(base, cpu);
383776fa 1383 void *va = (void *)addr;
10fad5e4 1384
383776fa 1385 if (va >= start && va < start + static_size) {
8ce371f9 1386 if (can_addr) {
383776fa 1387 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1388 *can_addr += (unsigned long)
1389 per_cpu_ptr(base, get_boot_cpu_id());
1390 }
10fad5e4 1391 return true;
383776fa
TG
1392 }
1393 }
bbddff05
TH
1394#endif
1395 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1396 return false;
1397}
1398
383776fa
TG
1399/**
1400 * is_kernel_percpu_address - test whether address is from static percpu area
1401 * @addr: address to test
1402 *
1403 * Test whether @addr belongs to in-kernel static percpu area. Module
1404 * static percpu areas are not considered. For those, use
1405 * is_module_percpu_address().
1406 *
1407 * RETURNS:
1408 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1409 */
1410bool is_kernel_percpu_address(unsigned long addr)
1411{
1412 return __is_kernel_percpu_address(addr, NULL);
1413}
1414
3b034b0d
VG
1415/**
1416 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1417 * @addr: the address to be converted to physical address
1418 *
1419 * Given @addr which is dereferenceable address obtained via one of
1420 * percpu access macros, this function translates it into its physical
1421 * address. The caller is responsible for ensuring @addr stays valid
1422 * until this function finishes.
1423 *
67589c71
DY
1424 * percpu allocator has special setup for the first chunk, which currently
1425 * supports either embedding in linear address space or vmalloc mapping,
1426 * and, from the second one, the backing allocator (currently either vm or
1427 * km) provides translation.
1428 *
bffc4375 1429 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1430 * first chunk. But the current code reflects better how percpu allocator
1431 * actually works, and the verification can discover both bugs in percpu
1432 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1433 * code.
1434 *
3b034b0d
VG
1435 * RETURNS:
1436 * The physical address for @addr.
1437 */
1438phys_addr_t per_cpu_ptr_to_phys(void *addr)
1439{
9983b6f0
TH
1440 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1441 bool in_first_chunk = false;
a855b84c 1442 unsigned long first_low, first_high;
9983b6f0
TH
1443 unsigned int cpu;
1444
1445 /*
a855b84c 1446 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1447 * necessary but will speed up lookups of addresses which
1448 * aren't in the first chunk.
c0ebfdc3
DZF
1449 *
1450 * The address check is against full chunk sizes. pcpu_base_addr
1451 * points to the beginning of the first chunk including the
1452 * static region. Assumes good intent as the first chunk may
1453 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1454 */
c0ebfdc3
DZF
1455 first_low = (unsigned long)pcpu_base_addr +
1456 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1457 first_high = (unsigned long)pcpu_base_addr +
1458 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1459 if ((unsigned long)addr >= first_low &&
1460 (unsigned long)addr < first_high) {
9983b6f0
TH
1461 for_each_possible_cpu(cpu) {
1462 void *start = per_cpu_ptr(base, cpu);
1463
1464 if (addr >= start && addr < start + pcpu_unit_size) {
1465 in_first_chunk = true;
1466 break;
1467 }
1468 }
1469 }
1470
1471 if (in_first_chunk) {
eac522ef 1472 if (!is_vmalloc_addr(addr))
020ec653
TH
1473 return __pa(addr);
1474 else
9f57bd4d
ES
1475 return page_to_phys(vmalloc_to_page(addr)) +
1476 offset_in_page(addr);
020ec653 1477 } else
9f57bd4d
ES
1478 return page_to_phys(pcpu_addr_to_page(addr)) +
1479 offset_in_page(addr);
3b034b0d
VG
1480}
1481
fbf59bc9 1482/**
fd1e8a1f
TH
1483 * pcpu_alloc_alloc_info - allocate percpu allocation info
1484 * @nr_groups: the number of groups
1485 * @nr_units: the number of units
1486 *
1487 * Allocate ai which is large enough for @nr_groups groups containing
1488 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1489 * cpu_map array which is long enough for @nr_units and filled with
1490 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1491 * pointer of other groups.
1492 *
1493 * RETURNS:
1494 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1495 * failure.
1496 */
1497struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1498 int nr_units)
1499{
1500 struct pcpu_alloc_info *ai;
1501 size_t base_size, ai_size;
1502 void *ptr;
1503 int unit;
1504
1505 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1506 __alignof__(ai->groups[0].cpu_map[0]));
1507 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1508
999c17e3 1509 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1510 if (!ptr)
1511 return NULL;
1512 ai = ptr;
1513 ptr += base_size;
1514
1515 ai->groups[0].cpu_map = ptr;
1516
1517 for (unit = 0; unit < nr_units; unit++)
1518 ai->groups[0].cpu_map[unit] = NR_CPUS;
1519
1520 ai->nr_groups = nr_groups;
1521 ai->__ai_size = PFN_ALIGN(ai_size);
1522
1523 return ai;
1524}
1525
1526/**
1527 * pcpu_free_alloc_info - free percpu allocation info
1528 * @ai: pcpu_alloc_info to free
1529 *
1530 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1531 */
1532void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1533{
999c17e3 1534 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1535}
1536
fd1e8a1f
TH
1537/**
1538 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1539 * @lvl: loglevel
1540 * @ai: allocation info to dump
1541 *
1542 * Print out information about @ai using loglevel @lvl.
1543 */
1544static void pcpu_dump_alloc_info(const char *lvl,
1545 const struct pcpu_alloc_info *ai)
033e48fb 1546{
fd1e8a1f 1547 int group_width = 1, cpu_width = 1, width;
033e48fb 1548 char empty_str[] = "--------";
fd1e8a1f
TH
1549 int alloc = 0, alloc_end = 0;
1550 int group, v;
1551 int upa, apl; /* units per alloc, allocs per line */
1552
1553 v = ai->nr_groups;
1554 while (v /= 10)
1555 group_width++;
033e48fb 1556
fd1e8a1f 1557 v = num_possible_cpus();
033e48fb 1558 while (v /= 10)
fd1e8a1f
TH
1559 cpu_width++;
1560 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1561
fd1e8a1f
TH
1562 upa = ai->alloc_size / ai->unit_size;
1563 width = upa * (cpu_width + 1) + group_width + 3;
1564 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1565
fd1e8a1f
TH
1566 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1567 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1568 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1569
fd1e8a1f
TH
1570 for (group = 0; group < ai->nr_groups; group++) {
1571 const struct pcpu_group_info *gi = &ai->groups[group];
1572 int unit = 0, unit_end = 0;
1573
1574 BUG_ON(gi->nr_units % upa);
1575 for (alloc_end += gi->nr_units / upa;
1576 alloc < alloc_end; alloc++) {
1577 if (!(alloc % apl)) {
1170532b 1578 pr_cont("\n");
fd1e8a1f
TH
1579 printk("%spcpu-alloc: ", lvl);
1580 }
1170532b 1581 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1582
1583 for (unit_end += upa; unit < unit_end; unit++)
1584 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1585 pr_cont("%0*d ",
1586 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1587 else
1170532b 1588 pr_cont("%s ", empty_str);
033e48fb 1589 }
033e48fb 1590 }
1170532b 1591 pr_cont("\n");
033e48fb 1592}
033e48fb 1593
fbf59bc9 1594/**
8d408b4b 1595 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1596 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1597 * @base_addr: mapped address
8d408b4b
TH
1598 *
1599 * Initialize the first percpu chunk which contains the kernel static
1600 * perpcu area. This function is to be called from arch percpu area
38a6be52 1601 * setup path.
8d408b4b 1602 *
fd1e8a1f
TH
1603 * @ai contains all information necessary to initialize the first
1604 * chunk and prime the dynamic percpu allocator.
1605 *
1606 * @ai->static_size is the size of static percpu area.
1607 *
1608 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1609 * reserve after the static area in the first chunk. This reserves
1610 * the first chunk such that it's available only through reserved
1611 * percpu allocation. This is primarily used to serve module percpu
1612 * static areas on architectures where the addressing model has
1613 * limited offset range for symbol relocations to guarantee module
1614 * percpu symbols fall inside the relocatable range.
1615 *
fd1e8a1f
TH
1616 * @ai->dyn_size determines the number of bytes available for dynamic
1617 * allocation in the first chunk. The area between @ai->static_size +
1618 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1619 *
fd1e8a1f
TH
1620 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1621 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1622 * @ai->dyn_size.
8d408b4b 1623 *
fd1e8a1f
TH
1624 * @ai->atom_size is the allocation atom size and used as alignment
1625 * for vm areas.
8d408b4b 1626 *
fd1e8a1f
TH
1627 * @ai->alloc_size is the allocation size and always multiple of
1628 * @ai->atom_size. This is larger than @ai->atom_size if
1629 * @ai->unit_size is larger than @ai->atom_size.
1630 *
1631 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1632 * percpu areas. Units which should be colocated are put into the
1633 * same group. Dynamic VM areas will be allocated according to these
1634 * groupings. If @ai->nr_groups is zero, a single group containing
1635 * all units is assumed.
8d408b4b 1636 *
38a6be52
TH
1637 * The caller should have mapped the first chunk at @base_addr and
1638 * copied static data to each unit.
fbf59bc9 1639 *
c0ebfdc3
DZF
1640 * The first chunk will always contain a static and a dynamic region.
1641 * However, the static region is not managed by any chunk. If the first
1642 * chunk also contains a reserved region, it is served by two chunks -
1643 * one for the reserved region and one for the dynamic region. They
1644 * share the same vm, but use offset regions in the area allocation map.
1645 * The chunk serving the dynamic region is circulated in the chunk slots
1646 * and available for dynamic allocation like any other chunk.
edcb4639 1647 *
fbf59bc9 1648 * RETURNS:
fb435d52 1649 * 0 on success, -errno on failure.
fbf59bc9 1650 */
fb435d52
TH
1651int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1652 void *base_addr)
fbf59bc9 1653{
099a19d9
TH
1654 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1655 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
b9c39442 1656 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 1657 size_t static_size, dyn_size;
0c4169c3 1658 struct pcpu_chunk *chunk;
6563297c
TH
1659 unsigned long *group_offsets;
1660 size_t *group_sizes;
fb435d52 1661 unsigned long *unit_off;
fbf59bc9 1662 unsigned int cpu;
fd1e8a1f
TH
1663 int *unit_map;
1664 int group, unit, i;
c0ebfdc3
DZF
1665 int map_size;
1666 unsigned long tmp_addr;
fbf59bc9 1667
635b75fc
TH
1668#define PCPU_SETUP_BUG_ON(cond) do { \
1669 if (unlikely(cond)) { \
870d4b12
JP
1670 pr_emerg("failed to initialize, %s\n", #cond); \
1671 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1672 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1673 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1674 BUG(); \
1675 } \
1676} while (0)
1677
2f39e637 1678 /* sanity checks */
635b75fc 1679 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1680#ifdef CONFIG_SMP
635b75fc 1681 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1682 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1683#endif
635b75fc 1684 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1685 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1686 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1687 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1688 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1689 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1690 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 1691 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
9f645532 1692 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1693
6563297c 1694 /* process group information and build config tables accordingly */
999c17e3
SS
1695 group_offsets = memblock_virt_alloc(ai->nr_groups *
1696 sizeof(group_offsets[0]), 0);
1697 group_sizes = memblock_virt_alloc(ai->nr_groups *
1698 sizeof(group_sizes[0]), 0);
1699 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1700 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1701
fd1e8a1f 1702 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1703 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1704
1705 pcpu_low_unit_cpu = NR_CPUS;
1706 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1707
fd1e8a1f
TH
1708 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1709 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1710
6563297c
TH
1711 group_offsets[group] = gi->base_offset;
1712 group_sizes[group] = gi->nr_units * ai->unit_size;
1713
fd1e8a1f
TH
1714 for (i = 0; i < gi->nr_units; i++) {
1715 cpu = gi->cpu_map[i];
1716 if (cpu == NR_CPUS)
1717 continue;
8d408b4b 1718
9f295664 1719 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1720 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1721 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1722
fd1e8a1f 1723 unit_map[cpu] = unit + i;
fb435d52
TH
1724 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1725
a855b84c
TH
1726 /* determine low/high unit_cpu */
1727 if (pcpu_low_unit_cpu == NR_CPUS ||
1728 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1729 pcpu_low_unit_cpu = cpu;
1730 if (pcpu_high_unit_cpu == NR_CPUS ||
1731 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1732 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1733 }
2f39e637 1734 }
fd1e8a1f
TH
1735 pcpu_nr_units = unit;
1736
1737 for_each_possible_cpu(cpu)
635b75fc
TH
1738 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1739
1740 /* we're done parsing the input, undefine BUG macro and dump config */
1741#undef PCPU_SETUP_BUG_ON
bcbea798 1742 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1743
6563297c
TH
1744 pcpu_nr_groups = ai->nr_groups;
1745 pcpu_group_offsets = group_offsets;
1746 pcpu_group_sizes = group_sizes;
fd1e8a1f 1747 pcpu_unit_map = unit_map;
fb435d52 1748 pcpu_unit_offsets = unit_off;
2f39e637
TH
1749
1750 /* determine basic parameters */
fd1e8a1f 1751 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1752 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1753 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1754 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1755 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1756
30a5b536
DZ
1757 pcpu_stats_save_ai(ai);
1758
d9b55eeb
TH
1759 /*
1760 * Allocate chunk slots. The additional last slot is for
1761 * empty chunks.
1762 */
1763 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1764 pcpu_slot = memblock_virt_alloc(
1765 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1766 for (i = 0; i < pcpu_nr_slots; i++)
1767 INIT_LIST_HEAD(&pcpu_slot[i]);
1768
d2f3c384
DZF
1769 /*
1770 * The end of the static region needs to be aligned with the
1771 * minimum allocation size as this offsets the reserved and
1772 * dynamic region. The first chunk ends page aligned by
1773 * expanding the dynamic region, therefore the dynamic region
1774 * can be shrunk to compensate while still staying above the
1775 * configured sizes.
1776 */
1777 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
1778 dyn_size = ai->dyn_size - (static_size - ai->static_size);
1779
edcb4639 1780 /*
c0ebfdc3
DZF
1781 * Initialize first chunk.
1782 * If the reserved_size is non-zero, this initializes the reserved
1783 * chunk. If the reserved_size is zero, the reserved chunk is NULL
1784 * and the dynamic region is initialized here. The first chunk,
1785 * pcpu_first_chunk, will always point to the chunk that serves
1786 * the dynamic region.
edcb4639 1787 */
d2f3c384
DZF
1788 tmp_addr = (unsigned long)base_addr + static_size;
1789 map_size = ai->reserved_size ?: dyn_size;
c0ebfdc3 1790 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, smap,
0c4169c3 1791 ARRAY_SIZE(smap));
61ace7fa 1792
edcb4639 1793 /* init dynamic chunk if necessary */
b9c39442 1794 if (ai->reserved_size) {
0c4169c3 1795 pcpu_reserved_chunk = chunk;
b9c39442 1796
d2f3c384 1797 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 1798 ai->reserved_size;
d2f3c384 1799 map_size = dyn_size;
c0ebfdc3 1800 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, dmap,
0c4169c3 1801 ARRAY_SIZE(dmap));
edcb4639
TH
1802 }
1803
2441d15c 1804 /* link the first chunk in */
0c4169c3 1805 pcpu_first_chunk = chunk;
0cecf50c 1806 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 1807 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1808
30a5b536 1809 pcpu_stats_chunk_alloc();
df95e795 1810 trace_percpu_create_chunk(base_addr);
30a5b536 1811
fbf59bc9 1812 /* we're done */
bba174f5 1813 pcpu_base_addr = base_addr;
fb435d52 1814 return 0;
fbf59bc9 1815}
66c3a757 1816
bbddff05
TH
1817#ifdef CONFIG_SMP
1818
17f3609c 1819const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1820 [PCPU_FC_AUTO] = "auto",
1821 [PCPU_FC_EMBED] = "embed",
1822 [PCPU_FC_PAGE] = "page",
f58dc01b 1823};
66c3a757 1824
f58dc01b 1825enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1826
f58dc01b
TH
1827static int __init percpu_alloc_setup(char *str)
1828{
5479c78a
CG
1829 if (!str)
1830 return -EINVAL;
1831
f58dc01b
TH
1832 if (0)
1833 /* nada */;
1834#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1835 else if (!strcmp(str, "embed"))
1836 pcpu_chosen_fc = PCPU_FC_EMBED;
1837#endif
1838#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1839 else if (!strcmp(str, "page"))
1840 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1841#endif
1842 else
870d4b12 1843 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1844
f58dc01b 1845 return 0;
66c3a757 1846}
f58dc01b 1847early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1848
3c9a024f
TH
1849/*
1850 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1851 * Build it if needed by the arch config or the generic setup is going
1852 * to be used.
1853 */
08fc4580
TH
1854#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1855 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1856#define BUILD_EMBED_FIRST_CHUNK
1857#endif
1858
1859/* build pcpu_page_first_chunk() iff needed by the arch config */
1860#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1861#define BUILD_PAGE_FIRST_CHUNK
1862#endif
1863
1864/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1865#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1866/**
1867 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1868 * @reserved_size: the size of reserved percpu area in bytes
1869 * @dyn_size: minimum free size for dynamic allocation in bytes
1870 * @atom_size: allocation atom size
1871 * @cpu_distance_fn: callback to determine distance between cpus, optional
1872 *
1873 * This function determines grouping of units, their mappings to cpus
1874 * and other parameters considering needed percpu size, allocation
1875 * atom size and distances between CPUs.
1876 *
bffc4375 1877 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1878 * LOCAL_DISTANCE both ways are grouped together and share space for
1879 * units in the same group. The returned configuration is guaranteed
1880 * to have CPUs on different nodes on different groups and >=75% usage
1881 * of allocated virtual address space.
1882 *
1883 * RETURNS:
1884 * On success, pointer to the new allocation_info is returned. On
1885 * failure, ERR_PTR value is returned.
1886 */
1887static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1888 size_t reserved_size, size_t dyn_size,
1889 size_t atom_size,
1890 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1891{
1892 static int group_map[NR_CPUS] __initdata;
1893 static int group_cnt[NR_CPUS] __initdata;
1894 const size_t static_size = __per_cpu_end - __per_cpu_start;
1895 int nr_groups = 1, nr_units = 0;
1896 size_t size_sum, min_unit_size, alloc_size;
1897 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1898 int last_allocs, group, unit;
1899 unsigned int cpu, tcpu;
1900 struct pcpu_alloc_info *ai;
1901 unsigned int *cpu_map;
1902
1903 /* this function may be called multiple times */
1904 memset(group_map, 0, sizeof(group_map));
1905 memset(group_cnt, 0, sizeof(group_cnt));
1906
1907 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1908 size_sum = PFN_ALIGN(static_size + reserved_size +
1909 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1910 dyn_size = size_sum - static_size - reserved_size;
1911
1912 /*
1913 * Determine min_unit_size, alloc_size and max_upa such that
1914 * alloc_size is multiple of atom_size and is the smallest
25985edc 1915 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1916 * or larger than min_unit_size.
1917 */
1918 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1919
9c015162 1920 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1921 alloc_size = roundup(min_unit_size, atom_size);
1922 upa = alloc_size / min_unit_size;
f09f1243 1923 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1924 upa--;
1925 max_upa = upa;
1926
1927 /* group cpus according to their proximity */
1928 for_each_possible_cpu(cpu) {
1929 group = 0;
1930 next_group:
1931 for_each_possible_cpu(tcpu) {
1932 if (cpu == tcpu)
1933 break;
1934 if (group_map[tcpu] == group && cpu_distance_fn &&
1935 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1936 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1937 group++;
1938 nr_groups = max(nr_groups, group + 1);
1939 goto next_group;
1940 }
1941 }
1942 group_map[cpu] = group;
1943 group_cnt[group]++;
1944 }
1945
1946 /*
9c015162
DZF
1947 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1948 * Expand the unit_size until we use >= 75% of the units allocated.
1949 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
1950 */
1951 last_allocs = INT_MAX;
1952 for (upa = max_upa; upa; upa--) {
1953 int allocs = 0, wasted = 0;
1954
f09f1243 1955 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1956 continue;
1957
1958 for (group = 0; group < nr_groups; group++) {
1959 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1960 allocs += this_allocs;
1961 wasted += this_allocs * upa - group_cnt[group];
1962 }
1963
1964 /*
1965 * Don't accept if wastage is over 1/3. The
1966 * greater-than comparison ensures upa==1 always
1967 * passes the following check.
1968 */
1969 if (wasted > num_possible_cpus() / 3)
1970 continue;
1971
1972 /* and then don't consume more memory */
1973 if (allocs > last_allocs)
1974 break;
1975 last_allocs = allocs;
1976 best_upa = upa;
1977 }
1978 upa = best_upa;
1979
1980 /* allocate and fill alloc_info */
1981 for (group = 0; group < nr_groups; group++)
1982 nr_units += roundup(group_cnt[group], upa);
1983
1984 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1985 if (!ai)
1986 return ERR_PTR(-ENOMEM);
1987 cpu_map = ai->groups[0].cpu_map;
1988
1989 for (group = 0; group < nr_groups; group++) {
1990 ai->groups[group].cpu_map = cpu_map;
1991 cpu_map += roundup(group_cnt[group], upa);
1992 }
1993
1994 ai->static_size = static_size;
1995 ai->reserved_size = reserved_size;
1996 ai->dyn_size = dyn_size;
1997 ai->unit_size = alloc_size / upa;
1998 ai->atom_size = atom_size;
1999 ai->alloc_size = alloc_size;
2000
2001 for (group = 0, unit = 0; group_cnt[group]; group++) {
2002 struct pcpu_group_info *gi = &ai->groups[group];
2003
2004 /*
2005 * Initialize base_offset as if all groups are located
2006 * back-to-back. The caller should update this to
2007 * reflect actual allocation.
2008 */
2009 gi->base_offset = unit * ai->unit_size;
2010
2011 for_each_possible_cpu(cpu)
2012 if (group_map[cpu] == group)
2013 gi->cpu_map[gi->nr_units++] = cpu;
2014 gi->nr_units = roundup(gi->nr_units, upa);
2015 unit += gi->nr_units;
2016 }
2017 BUG_ON(unit != nr_units);
2018
2019 return ai;
2020}
2021#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2022
2023#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2024/**
2025 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2026 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2027 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2028 * @atom_size: allocation atom size
2029 * @cpu_distance_fn: callback to determine distance between cpus, optional
2030 * @alloc_fn: function to allocate percpu page
25985edc 2031 * @free_fn: function to free percpu page
66c3a757
TH
2032 *
2033 * This is a helper to ease setting up embedded first percpu chunk and
2034 * can be called where pcpu_setup_first_chunk() is expected.
2035 *
2036 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2037 * by calling @alloc_fn and used as-is without being mapped into
2038 * vmalloc area. Allocations are always whole multiples of @atom_size
2039 * aligned to @atom_size.
2040 *
2041 * This enables the first chunk to piggy back on the linear physical
2042 * mapping which often uses larger page size. Please note that this
2043 * can result in very sparse cpu->unit mapping on NUMA machines thus
2044 * requiring large vmalloc address space. Don't use this allocator if
2045 * vmalloc space is not orders of magnitude larger than distances
2046 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2047 *
4ba6ce25 2048 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2049 *
2050 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2051 * size, the leftover is returned using @free_fn.
66c3a757
TH
2052 *
2053 * RETURNS:
fb435d52 2054 * 0 on success, -errno on failure.
66c3a757 2055 */
4ba6ce25 2056int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2057 size_t atom_size,
2058 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2059 pcpu_fc_alloc_fn_t alloc_fn,
2060 pcpu_fc_free_fn_t free_fn)
66c3a757 2061{
c8826dd5
TH
2062 void *base = (void *)ULONG_MAX;
2063 void **areas = NULL;
fd1e8a1f 2064 struct pcpu_alloc_info *ai;
93c76b6b 2065 size_t size_sum, areas_size;
2066 unsigned long max_distance;
9b739662 2067 int group, i, highest_group, rc;
66c3a757 2068
c8826dd5
TH
2069 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2070 cpu_distance_fn);
fd1e8a1f
TH
2071 if (IS_ERR(ai))
2072 return PTR_ERR(ai);
66c3a757 2073
fd1e8a1f 2074 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2075 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2076
999c17e3 2077 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2078 if (!areas) {
fb435d52 2079 rc = -ENOMEM;
c8826dd5 2080 goto out_free;
fa8a7094 2081 }
66c3a757 2082
9b739662 2083 /* allocate, copy and determine base address & max_distance */
2084 highest_group = 0;
c8826dd5
TH
2085 for (group = 0; group < ai->nr_groups; group++) {
2086 struct pcpu_group_info *gi = &ai->groups[group];
2087 unsigned int cpu = NR_CPUS;
2088 void *ptr;
2089
2090 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2091 cpu = gi->cpu_map[i];
2092 BUG_ON(cpu == NR_CPUS);
2093
2094 /* allocate space for the whole group */
2095 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2096 if (!ptr) {
2097 rc = -ENOMEM;
2098 goto out_free_areas;
2099 }
f528f0b8
CM
2100 /* kmemleak tracks the percpu allocations separately */
2101 kmemleak_free(ptr);
c8826dd5 2102 areas[group] = ptr;
fd1e8a1f 2103
c8826dd5 2104 base = min(ptr, base);
9b739662 2105 if (ptr > areas[highest_group])
2106 highest_group = group;
2107 }
2108 max_distance = areas[highest_group] - base;
2109 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2110
2111 /* warn if maximum distance is further than 75% of vmalloc space */
2112 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2113 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2114 max_distance, VMALLOC_TOTAL);
2115#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2116 /* and fail if we have fallback */
2117 rc = -EINVAL;
2118 goto out_free_areas;
2119#endif
42b64281
TH
2120 }
2121
2122 /*
2123 * Copy data and free unused parts. This should happen after all
2124 * allocations are complete; otherwise, we may end up with
2125 * overlapping groups.
2126 */
2127 for (group = 0; group < ai->nr_groups; group++) {
2128 struct pcpu_group_info *gi = &ai->groups[group];
2129 void *ptr = areas[group];
c8826dd5
TH
2130
2131 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2132 if (gi->cpu_map[i] == NR_CPUS) {
2133 /* unused unit, free whole */
2134 free_fn(ptr, ai->unit_size);
2135 continue;
2136 }
2137 /* copy and return the unused part */
2138 memcpy(ptr, __per_cpu_load, ai->static_size);
2139 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2140 }
fa8a7094 2141 }
66c3a757 2142
c8826dd5 2143 /* base address is now known, determine group base offsets */
6ea529a2 2144 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2145 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2146 }
c8826dd5 2147
870d4b12 2148 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2149 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2150 ai->dyn_size, ai->unit_size);
d4b95f80 2151
fb435d52 2152 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2153 goto out_free;
2154
2155out_free_areas:
2156 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2157 if (areas[group])
2158 free_fn(areas[group],
2159 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2160out_free:
fd1e8a1f 2161 pcpu_free_alloc_info(ai);
c8826dd5 2162 if (areas)
999c17e3 2163 memblock_free_early(__pa(areas), areas_size);
fb435d52 2164 return rc;
d4b95f80 2165}
3c9a024f 2166#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2167
3c9a024f 2168#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2169/**
00ae4064 2170 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2171 * @reserved_size: the size of reserved percpu area in bytes
2172 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2173 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2174 * @populate_pte_fn: function to populate pte
2175 *
00ae4064
TH
2176 * This is a helper to ease setting up page-remapped first percpu
2177 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2178 *
2179 * This is the basic allocator. Static percpu area is allocated
2180 * page-by-page into vmalloc area.
2181 *
2182 * RETURNS:
fb435d52 2183 * 0 on success, -errno on failure.
d4b95f80 2184 */
fb435d52
TH
2185int __init pcpu_page_first_chunk(size_t reserved_size,
2186 pcpu_fc_alloc_fn_t alloc_fn,
2187 pcpu_fc_free_fn_t free_fn,
2188 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2189{
8f05a6a6 2190 static struct vm_struct vm;
fd1e8a1f 2191 struct pcpu_alloc_info *ai;
00ae4064 2192 char psize_str[16];
ce3141a2 2193 int unit_pages;
d4b95f80 2194 size_t pages_size;
ce3141a2 2195 struct page **pages;
fb435d52 2196 int unit, i, j, rc;
8f606604 2197 int upa;
2198 int nr_g0_units;
d4b95f80 2199
00ae4064
TH
2200 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2201
4ba6ce25 2202 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2203 if (IS_ERR(ai))
2204 return PTR_ERR(ai);
2205 BUG_ON(ai->nr_groups != 1);
8f606604 2206 upa = ai->alloc_size/ai->unit_size;
2207 nr_g0_units = roundup(num_possible_cpus(), upa);
2208 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2209 pcpu_free_alloc_info(ai);
2210 return -EINVAL;
2211 }
fd1e8a1f
TH
2212
2213 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2214
2215 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2216 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2217 sizeof(pages[0]));
999c17e3 2218 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2219
8f05a6a6 2220 /* allocate pages */
d4b95f80 2221 j = 0;
8f606604 2222 for (unit = 0; unit < num_possible_cpus(); unit++) {
2223 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2224 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2225 void *ptr;
2226
3cbc8565 2227 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2228 if (!ptr) {
870d4b12 2229 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2230 psize_str, cpu);
d4b95f80
TH
2231 goto enomem;
2232 }
f528f0b8
CM
2233 /* kmemleak tracks the percpu allocations separately */
2234 kmemleak_free(ptr);
ce3141a2 2235 pages[j++] = virt_to_page(ptr);
d4b95f80 2236 }
8f606604 2237 }
d4b95f80 2238
8f05a6a6
TH
2239 /* allocate vm area, map the pages and copy static data */
2240 vm.flags = VM_ALLOC;
fd1e8a1f 2241 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2242 vm_area_register_early(&vm, PAGE_SIZE);
2243
fd1e8a1f 2244 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2245 unsigned long unit_addr =
fd1e8a1f 2246 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2247
ce3141a2 2248 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2249 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2250
2251 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2252 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2253 unit_pages);
2254 if (rc < 0)
2255 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2256
8f05a6a6
TH
2257 /*
2258 * FIXME: Archs with virtual cache should flush local
2259 * cache for the linear mapping here - something
2260 * equivalent to flush_cache_vmap() on the local cpu.
2261 * flush_cache_vmap() can't be used as most supporting
2262 * data structures are not set up yet.
2263 */
2264
2265 /* copy static data */
fd1e8a1f 2266 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2267 }
2268
2269 /* we're ready, commit */
870d4b12 2270 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2271 unit_pages, psize_str, vm.addr, ai->static_size,
2272 ai->reserved_size, ai->dyn_size);
d4b95f80 2273
fb435d52 2274 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2275 goto out_free_ar;
2276
2277enomem:
2278 while (--j >= 0)
ce3141a2 2279 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2280 rc = -ENOMEM;
d4b95f80 2281out_free_ar:
999c17e3 2282 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2283 pcpu_free_alloc_info(ai);
fb435d52 2284 return rc;
d4b95f80 2285}
3c9a024f 2286#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2287
bbddff05 2288#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2289/*
bbddff05 2290 * Generic SMP percpu area setup.
e74e3962
TH
2291 *
2292 * The embedding helper is used because its behavior closely resembles
2293 * the original non-dynamic generic percpu area setup. This is
2294 * important because many archs have addressing restrictions and might
2295 * fail if the percpu area is located far away from the previous
2296 * location. As an added bonus, in non-NUMA cases, embedding is
2297 * generally a good idea TLB-wise because percpu area can piggy back
2298 * on the physical linear memory mapping which uses large page
2299 * mappings on applicable archs.
2300 */
e74e3962
TH
2301unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2302EXPORT_SYMBOL(__per_cpu_offset);
2303
c8826dd5
TH
2304static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2305 size_t align)
2306{
999c17e3
SS
2307 return memblock_virt_alloc_from_nopanic(
2308 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2309}
66c3a757 2310
c8826dd5
TH
2311static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2312{
999c17e3 2313 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2314}
2315
e74e3962
TH
2316void __init setup_per_cpu_areas(void)
2317{
e74e3962
TH
2318 unsigned long delta;
2319 unsigned int cpu;
fb435d52 2320 int rc;
e74e3962
TH
2321
2322 /*
2323 * Always reserve area for module percpu variables. That's
2324 * what the legacy allocator did.
2325 */
fb435d52 2326 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2327 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2328 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2329 if (rc < 0)
bbddff05 2330 panic("Failed to initialize percpu areas.");
e74e3962
TH
2331
2332 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2333 for_each_possible_cpu(cpu)
fb435d52 2334 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2335}
bbddff05
TH
2336#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2337
2338#else /* CONFIG_SMP */
2339
2340/*
2341 * UP percpu area setup.
2342 *
2343 * UP always uses km-based percpu allocator with identity mapping.
2344 * Static percpu variables are indistinguishable from the usual static
2345 * variables and don't require any special preparation.
2346 */
2347void __init setup_per_cpu_areas(void)
2348{
2349 const size_t unit_size =
2350 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2351 PERCPU_DYNAMIC_RESERVE));
2352 struct pcpu_alloc_info *ai;
2353 void *fc;
2354
2355 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2356 fc = memblock_virt_alloc_from_nopanic(unit_size,
2357 PAGE_SIZE,
2358 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2359 if (!ai || !fc)
2360 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2361 /* kmemleak tracks the percpu allocations separately */
2362 kmemleak_free(fc);
bbddff05
TH
2363
2364 ai->dyn_size = unit_size;
2365 ai->unit_size = unit_size;
2366 ai->atom_size = unit_size;
2367 ai->alloc_size = unit_size;
2368 ai->groups[0].nr_units = 1;
2369 ai->groups[0].cpu_map[0] = 0;
2370
2371 if (pcpu_setup_first_chunk(ai, fc) < 0)
2372 panic("Failed to initialize percpu areas.");
2373}
2374
2375#endif /* CONFIG_SMP */
099a19d9
TH
2376
2377/*
2378 * First and reserved chunks are initialized with temporary allocation
2379 * map in initdata so that they can be used before slab is online.
2380 * This function is called after slab is brought up and replaces those
2381 * with properly allocated maps.
2382 */
2383void __init percpu_init_late(void)
2384{
2385 struct pcpu_chunk *target_chunks[] =
2386 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2387 struct pcpu_chunk *chunk;
2388 unsigned long flags;
2389 int i;
2390
2391 for (i = 0; (chunk = target_chunks[i]); i++) {
2392 int *map;
2393 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2394
2395 BUILD_BUG_ON(size > PAGE_SIZE);
2396
90459ce0 2397 map = pcpu_mem_zalloc(size);
099a19d9
TH
2398 BUG_ON(!map);
2399
2400 spin_lock_irqsave(&pcpu_lock, flags);
2401 memcpy(map, chunk->map, size);
2402 chunk->map = map;
2403 spin_unlock_irqrestore(&pcpu_lock, flags);
2404 }
2405}
1a4d7607
TH
2406
2407/*
2408 * Percpu allocator is initialized early during boot when neither slab or
2409 * workqueue is available. Plug async management until everything is up
2410 * and running.
2411 */
2412static int __init percpu_enable_async(void)
2413{
2414 pcpu_async_enabled = true;
2415 return 0;
2416}
2417subsys_initcall(percpu_enable_async);