]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: make sure chunk->map array has available space
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
79#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
80#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
fbf59bc9 81
bbddff05 82#ifdef CONFIG_SMP
e0100983
TH
83/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
84#ifndef __addr_to_pcpu_ptr
85#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
86 (void __percpu *)((unsigned long)(addr) - \
87 (unsigned long)pcpu_base_addr + \
88 (unsigned long)__per_cpu_start)
e0100983
TH
89#endif
90#ifndef __pcpu_ptr_to_addr
91#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
92 (void __force *)((unsigned long)(ptr) + \
93 (unsigned long)pcpu_base_addr - \
94 (unsigned long)__per_cpu_start)
e0100983 95#endif
bbddff05
TH
96#else /* CONFIG_SMP */
97/* on UP, it's always identity mapped */
98#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
99#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
100#endif /* CONFIG_SMP */
e0100983 101
fbf59bc9
TH
102struct pcpu_chunk {
103 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
104 int free_size; /* free bytes in the chunk */
105 int contig_hint; /* max contiguous size hint */
bba174f5 106 void *base_addr; /* base address of this chunk */
9c824b6a 107
723ad1d9 108 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
109 int map_alloc; /* # of map entries allocated */
110 int *map; /* allocation map */
9c824b6a
TH
111 struct work_struct map_extend_work;/* async ->map[] extension */
112
88999a89 113 void *data; /* chunk data */
3d331ad7 114 int first_free; /* no free below this */
8d408b4b 115 bool immutable; /* no [de]population allowed */
ce3141a2 116 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
117};
118
40150d37
TH
119static int pcpu_unit_pages __read_mostly;
120static int pcpu_unit_size __read_mostly;
2f39e637 121static int pcpu_nr_units __read_mostly;
6563297c 122static int pcpu_atom_size __read_mostly;
40150d37
TH
123static int pcpu_nr_slots __read_mostly;
124static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 125
a855b84c
TH
126/* cpus with the lowest and highest unit addresses */
127static unsigned int pcpu_low_unit_cpu __read_mostly;
128static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 129
fbf59bc9 130/* the address of the first chunk which starts with the kernel static area */
40150d37 131void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
132EXPORT_SYMBOL_GPL(pcpu_base_addr);
133
fb435d52
TH
134static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
135const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 136
6563297c
TH
137/* group information, used for vm allocation */
138static int pcpu_nr_groups __read_mostly;
139static const unsigned long *pcpu_group_offsets __read_mostly;
140static const size_t *pcpu_group_sizes __read_mostly;
141
ae9e6bc9
TH
142/*
143 * The first chunk which always exists. Note that unlike other
144 * chunks, this one can be allocated and mapped in several different
145 * ways and thus often doesn't live in the vmalloc area.
146 */
147static struct pcpu_chunk *pcpu_first_chunk;
148
149/*
150 * Optional reserved chunk. This chunk reserves part of the first
151 * chunk and serves it for reserved allocations. The amount of
152 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
153 * area doesn't exist, the following variables contain NULL and 0
154 * respectively.
155 */
edcb4639 156static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
157static int pcpu_reserved_chunk_limit;
158
b38d08f3
TH
159static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
160static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
fbf59bc9 161
40150d37 162static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 163
a56dbddf
TH
164/* reclaim work to release fully free chunks, scheduled from free path */
165static void pcpu_reclaim(struct work_struct *work);
166static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
167
020ec653
TH
168static bool pcpu_addr_in_first_chunk(void *addr)
169{
170 void *first_start = pcpu_first_chunk->base_addr;
171
172 return addr >= first_start && addr < first_start + pcpu_unit_size;
173}
174
175static bool pcpu_addr_in_reserved_chunk(void *addr)
176{
177 void *first_start = pcpu_first_chunk->base_addr;
178
179 return addr >= first_start &&
180 addr < first_start + pcpu_reserved_chunk_limit;
181}
182
d9b55eeb 183static int __pcpu_size_to_slot(int size)
fbf59bc9 184{
cae3aeb8 185 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
186 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
187}
188
d9b55eeb
TH
189static int pcpu_size_to_slot(int size)
190{
191 if (size == pcpu_unit_size)
192 return pcpu_nr_slots - 1;
193 return __pcpu_size_to_slot(size);
194}
195
fbf59bc9
TH
196static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
197{
198 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
199 return 0;
200
201 return pcpu_size_to_slot(chunk->free_size);
202}
203
88999a89
TH
204/* set the pointer to a chunk in a page struct */
205static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
206{
207 page->index = (unsigned long)pcpu;
208}
209
210/* obtain pointer to a chunk from a page struct */
211static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
212{
213 return (struct pcpu_chunk *)page->index;
214}
215
216static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 217{
2f39e637 218 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
219}
220
9983b6f0
TH
221static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
222 unsigned int cpu, int page_idx)
fbf59bc9 223{
bba174f5 224 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 225 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
226}
227
88999a89
TH
228static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
229 int *rs, int *re, int end)
ce3141a2
TH
230{
231 *rs = find_next_zero_bit(chunk->populated, end, *rs);
232 *re = find_next_bit(chunk->populated, end, *rs + 1);
233}
234
88999a89
TH
235static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
236 int *rs, int *re, int end)
ce3141a2
TH
237{
238 *rs = find_next_bit(chunk->populated, end, *rs);
239 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
240}
241
242/*
243 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 244 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
245 * be integer variables and will be set to start and end page index of
246 * the current region.
247 */
248#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
249 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
250 (rs) < (re); \
251 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
252
253#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
254 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
255 (rs) < (re); \
256 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
257
fbf59bc9 258/**
90459ce0 259 * pcpu_mem_zalloc - allocate memory
1880d93b 260 * @size: bytes to allocate
fbf59bc9 261 *
1880d93b 262 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 263 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 264 * memory is always zeroed.
fbf59bc9 265 *
ccea34b5
TH
266 * CONTEXT:
267 * Does GFP_KERNEL allocation.
268 *
fbf59bc9 269 * RETURNS:
1880d93b 270 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 271 */
90459ce0 272static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 273{
099a19d9
TH
274 if (WARN_ON_ONCE(!slab_is_available()))
275 return NULL;
276
1880d93b
TH
277 if (size <= PAGE_SIZE)
278 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
279 else
280 return vzalloc(size);
1880d93b 281}
fbf59bc9 282
1880d93b
TH
283/**
284 * pcpu_mem_free - free memory
285 * @ptr: memory to free
286 * @size: size of the area
287 *
90459ce0 288 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
289 */
290static void pcpu_mem_free(void *ptr, size_t size)
291{
fbf59bc9 292 if (size <= PAGE_SIZE)
1880d93b 293 kfree(ptr);
fbf59bc9 294 else
1880d93b 295 vfree(ptr);
fbf59bc9
TH
296}
297
298/**
299 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
300 * @chunk: chunk of interest
301 * @oslot: the previous slot it was on
302 *
303 * This function is called after an allocation or free changed @chunk.
304 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
305 * moved to the slot. Note that the reserved chunk is never put on
306 * chunk slots.
ccea34b5
TH
307 *
308 * CONTEXT:
309 * pcpu_lock.
fbf59bc9
TH
310 */
311static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
312{
313 int nslot = pcpu_chunk_slot(chunk);
314
edcb4639 315 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
316 if (oslot < nslot)
317 list_move(&chunk->list, &pcpu_slot[nslot]);
318 else
319 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
320 }
321}
322
9f7dcf22 323/**
833af842
TH
324 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
325 * @chunk: chunk of interest
9c824b6a 326 * @is_atomic: the allocation context
9f7dcf22 327 *
9c824b6a
TH
328 * Determine whether area map of @chunk needs to be extended. If
329 * @is_atomic, only the amount necessary for a new allocation is
330 * considered; however, async extension is scheduled if the left amount is
331 * low. If !@is_atomic, it aims for more empty space. Combined, this
332 * ensures that the map is likely to have enough available space to
333 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 334 *
ccea34b5 335 * CONTEXT:
833af842 336 * pcpu_lock.
ccea34b5 337 *
9f7dcf22 338 * RETURNS:
833af842
TH
339 * New target map allocation length if extension is necessary, 0
340 * otherwise.
9f7dcf22 341 */
9c824b6a 342static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 343{
9c824b6a
TH
344 int margin, new_alloc;
345
346 if (is_atomic) {
347 margin = 3;
9f7dcf22 348
9c824b6a
TH
349 if (chunk->map_alloc <
350 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW)
351 schedule_work(&chunk->map_extend_work);
352 } else {
353 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
354 }
355
356 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
357 return 0;
358
359 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 360 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
361 new_alloc *= 2;
362
833af842
TH
363 return new_alloc;
364}
365
366/**
367 * pcpu_extend_area_map - extend area map of a chunk
368 * @chunk: chunk of interest
369 * @new_alloc: new target allocation length of the area map
370 *
371 * Extend area map of @chunk to have @new_alloc entries.
372 *
373 * CONTEXT:
374 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
375 *
376 * RETURNS:
377 * 0 on success, -errno on failure.
378 */
379static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
380{
381 int *old = NULL, *new = NULL;
382 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
383 unsigned long flags;
384
90459ce0 385 new = pcpu_mem_zalloc(new_size);
833af842 386 if (!new)
9f7dcf22 387 return -ENOMEM;
ccea34b5 388
833af842
TH
389 /* acquire pcpu_lock and switch to new area map */
390 spin_lock_irqsave(&pcpu_lock, flags);
391
392 if (new_alloc <= chunk->map_alloc)
393 goto out_unlock;
9f7dcf22 394
833af842 395 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
396 old = chunk->map;
397
398 memcpy(new, old, old_size);
9f7dcf22 399
9f7dcf22
TH
400 chunk->map_alloc = new_alloc;
401 chunk->map = new;
833af842
TH
402 new = NULL;
403
404out_unlock:
405 spin_unlock_irqrestore(&pcpu_lock, flags);
406
407 /*
408 * pcpu_mem_free() might end up calling vfree() which uses
409 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
410 */
411 pcpu_mem_free(old, old_size);
412 pcpu_mem_free(new, new_size);
413
9f7dcf22
TH
414 return 0;
415}
416
9c824b6a
TH
417static void pcpu_map_extend_workfn(struct work_struct *work)
418{
419 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
420 map_extend_work);
421 int new_alloc;
422
423 spin_lock_irq(&pcpu_lock);
424 new_alloc = pcpu_need_to_extend(chunk, false);
425 spin_unlock_irq(&pcpu_lock);
426
427 if (new_alloc)
428 pcpu_extend_area_map(chunk, new_alloc);
429}
430
a16037c8
TH
431/**
432 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
433 * @chunk: chunk the candidate area belongs to
434 * @off: the offset to the start of the candidate area
435 * @this_size: the size of the candidate area
436 * @size: the size of the target allocation
437 * @align: the alignment of the target allocation
438 * @pop_only: only allocate from already populated region
439 *
440 * We're trying to allocate @size bytes aligned at @align. @chunk's area
441 * at @off sized @this_size is a candidate. This function determines
442 * whether the target allocation fits in the candidate area and returns the
443 * number of bytes to pad after @off. If the target area doesn't fit, -1
444 * is returned.
445 *
446 * If @pop_only is %true, this function only considers the already
447 * populated part of the candidate area.
448 */
449static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
450 int size, int align, bool pop_only)
451{
452 int cand_off = off;
453
454 while (true) {
455 int head = ALIGN(cand_off, align) - off;
456 int page_start, page_end, rs, re;
457
458 if (this_size < head + size)
459 return -1;
460
461 if (!pop_only)
462 return head;
463
464 /*
465 * If the first unpopulated page is beyond the end of the
466 * allocation, the whole allocation is populated;
467 * otherwise, retry from the end of the unpopulated area.
468 */
469 page_start = PFN_DOWN(head + off);
470 page_end = PFN_UP(head + off + size);
471
472 rs = page_start;
473 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
474 if (rs >= page_end)
475 return head;
476 cand_off = re * PAGE_SIZE;
477 }
478}
479
fbf59bc9
TH
480/**
481 * pcpu_alloc_area - allocate area from a pcpu_chunk
482 * @chunk: chunk of interest
cae3aeb8 483 * @size: wanted size in bytes
fbf59bc9 484 * @align: wanted align
a16037c8 485 * @pop_only: allocate only from the populated area
fbf59bc9
TH
486 *
487 * Try to allocate @size bytes area aligned at @align from @chunk.
488 * Note that this function only allocates the offset. It doesn't
489 * populate or map the area.
490 *
9f7dcf22
TH
491 * @chunk->map must have at least two free slots.
492 *
ccea34b5
TH
493 * CONTEXT:
494 * pcpu_lock.
495 *
fbf59bc9 496 * RETURNS:
9f7dcf22
TH
497 * Allocated offset in @chunk on success, -1 if no matching area is
498 * found.
fbf59bc9 499 */
a16037c8
TH
500static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
501 bool pop_only)
fbf59bc9
TH
502{
503 int oslot = pcpu_chunk_slot(chunk);
504 int max_contig = 0;
505 int i, off;
3d331ad7 506 bool seen_free = false;
723ad1d9 507 int *p;
fbf59bc9 508
3d331ad7 509 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 510 int head, tail;
723ad1d9
AV
511 int this_size;
512
513 off = *p;
514 if (off & 1)
515 continue;
fbf59bc9 516
723ad1d9 517 this_size = (p[1] & ~1) - off;
a16037c8
TH
518
519 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
520 pop_only);
521 if (head < 0) {
3d331ad7
AV
522 if (!seen_free) {
523 chunk->first_free = i;
524 seen_free = true;
525 }
723ad1d9 526 max_contig = max(this_size, max_contig);
fbf59bc9
TH
527 continue;
528 }
529
530 /*
531 * If head is small or the previous block is free,
532 * merge'em. Note that 'small' is defined as smaller
533 * than sizeof(int), which is very small but isn't too
534 * uncommon for percpu allocations.
535 */
723ad1d9 536 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 537 *p = off += head;
723ad1d9 538 if (p[-1] & 1)
fbf59bc9 539 chunk->free_size -= head;
21ddfd38
JZ
540 else
541 max_contig = max(*p - p[-1], max_contig);
723ad1d9 542 this_size -= head;
fbf59bc9
TH
543 head = 0;
544 }
545
546 /* if tail is small, just keep it around */
723ad1d9
AV
547 tail = this_size - head - size;
548 if (tail < sizeof(int)) {
fbf59bc9 549 tail = 0;
723ad1d9
AV
550 size = this_size - head;
551 }
fbf59bc9
TH
552
553 /* split if warranted */
554 if (head || tail) {
706c16f2
AV
555 int nr_extra = !!head + !!tail;
556
557 /* insert new subblocks */
723ad1d9 558 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
559 sizeof(chunk->map[0]) * (chunk->map_used - i));
560 chunk->map_used += nr_extra;
561
fbf59bc9 562 if (head) {
3d331ad7
AV
563 if (!seen_free) {
564 chunk->first_free = i;
565 seen_free = true;
566 }
723ad1d9
AV
567 *++p = off += head;
568 ++i;
706c16f2
AV
569 max_contig = max(head, max_contig);
570 }
571 if (tail) {
723ad1d9 572 p[1] = off + size;
706c16f2 573 max_contig = max(tail, max_contig);
fbf59bc9 574 }
fbf59bc9
TH
575 }
576
3d331ad7
AV
577 if (!seen_free)
578 chunk->first_free = i + 1;
579
fbf59bc9 580 /* update hint and mark allocated */
723ad1d9 581 if (i + 1 == chunk->map_used)
fbf59bc9
TH
582 chunk->contig_hint = max_contig; /* fully scanned */
583 else
584 chunk->contig_hint = max(chunk->contig_hint,
585 max_contig);
586
723ad1d9
AV
587 chunk->free_size -= size;
588 *p |= 1;
fbf59bc9
TH
589
590 pcpu_chunk_relocate(chunk, oslot);
591 return off;
592 }
593
594 chunk->contig_hint = max_contig; /* fully scanned */
595 pcpu_chunk_relocate(chunk, oslot);
596
9f7dcf22
TH
597 /* tell the upper layer that this chunk has no matching area */
598 return -1;
fbf59bc9
TH
599}
600
601/**
602 * pcpu_free_area - free area to a pcpu_chunk
603 * @chunk: chunk of interest
604 * @freeme: offset of area to free
605 *
606 * Free area starting from @freeme to @chunk. Note that this function
607 * only modifies the allocation map. It doesn't depopulate or unmap
608 * the area.
ccea34b5
TH
609 *
610 * CONTEXT:
611 * pcpu_lock.
fbf59bc9
TH
612 */
613static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
614{
615 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
616 int off = 0;
617 unsigned i, j;
618 int to_free = 0;
619 int *p;
620
621 freeme |= 1; /* we are searching for <given offset, in use> pair */
622
623 i = 0;
624 j = chunk->map_used;
625 while (i != j) {
626 unsigned k = (i + j) / 2;
627 off = chunk->map[k];
628 if (off < freeme)
629 i = k + 1;
630 else if (off > freeme)
631 j = k;
632 else
633 i = j = k;
634 }
fbf59bc9 635 BUG_ON(off != freeme);
fbf59bc9 636
3d331ad7
AV
637 if (i < chunk->first_free)
638 chunk->first_free = i;
639
723ad1d9
AV
640 p = chunk->map + i;
641 *p = off &= ~1;
642 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 643
723ad1d9
AV
644 /* merge with next? */
645 if (!(p[1] & 1))
646 to_free++;
fbf59bc9 647 /* merge with previous? */
723ad1d9
AV
648 if (i > 0 && !(p[-1] & 1)) {
649 to_free++;
fbf59bc9 650 i--;
723ad1d9 651 p--;
fbf59bc9 652 }
723ad1d9
AV
653 if (to_free) {
654 chunk->map_used -= to_free;
655 memmove(p + 1, p + 1 + to_free,
656 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
657 }
658
723ad1d9 659 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
660 pcpu_chunk_relocate(chunk, oslot);
661}
662
6081089f
TH
663static struct pcpu_chunk *pcpu_alloc_chunk(void)
664{
665 struct pcpu_chunk *chunk;
666
90459ce0 667 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
668 if (!chunk)
669 return NULL;
670
90459ce0
BL
671 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
672 sizeof(chunk->map[0]));
6081089f 673 if (!chunk->map) {
5a838c3b 674 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
675 return NULL;
676 }
677
678 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
679 chunk->map[0] = 0;
680 chunk->map[1] = pcpu_unit_size | 1;
681 chunk->map_used = 1;
6081089f
TH
682
683 INIT_LIST_HEAD(&chunk->list);
9c824b6a 684 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
6081089f
TH
685 chunk->free_size = pcpu_unit_size;
686 chunk->contig_hint = pcpu_unit_size;
687
688 return chunk;
689}
690
691static void pcpu_free_chunk(struct pcpu_chunk *chunk)
692{
693 if (!chunk)
694 return;
695 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 696 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
697}
698
9f645532
TH
699/*
700 * Chunk management implementation.
701 *
702 * To allow different implementations, chunk alloc/free and
703 * [de]population are implemented in a separate file which is pulled
704 * into this file and compiled together. The following functions
705 * should be implemented.
706 *
707 * pcpu_populate_chunk - populate the specified range of a chunk
708 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
709 * pcpu_create_chunk - create a new chunk
710 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
711 * pcpu_addr_to_page - translate address to physical address
712 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 713 */
9f645532
TH
714static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
715static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
716static struct pcpu_chunk *pcpu_create_chunk(void);
717static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
718static struct page *pcpu_addr_to_page(void *addr);
719static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 720
b0c9778b
TH
721#ifdef CONFIG_NEED_PER_CPU_KM
722#include "percpu-km.c"
723#else
9f645532 724#include "percpu-vm.c"
b0c9778b 725#endif
fbf59bc9 726
88999a89
TH
727/**
728 * pcpu_chunk_addr_search - determine chunk containing specified address
729 * @addr: address for which the chunk needs to be determined.
730 *
731 * RETURNS:
732 * The address of the found chunk.
733 */
734static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
735{
736 /* is it in the first chunk? */
737 if (pcpu_addr_in_first_chunk(addr)) {
738 /* is it in the reserved area? */
739 if (pcpu_addr_in_reserved_chunk(addr))
740 return pcpu_reserved_chunk;
741 return pcpu_first_chunk;
742 }
743
744 /*
745 * The address is relative to unit0 which might be unused and
746 * thus unmapped. Offset the address to the unit space of the
747 * current processor before looking it up in the vmalloc
748 * space. Note that any possible cpu id can be used here, so
749 * there's no need to worry about preemption or cpu hotplug.
750 */
751 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 752 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
753}
754
fbf59bc9 755/**
edcb4639 756 * pcpu_alloc - the percpu allocator
cae3aeb8 757 * @size: size of area to allocate in bytes
fbf59bc9 758 * @align: alignment of area (max PAGE_SIZE)
edcb4639 759 * @reserved: allocate from the reserved chunk if available
5835d96e 760 * @gfp: allocation flags
fbf59bc9 761 *
5835d96e
TH
762 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
763 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
764 *
765 * RETURNS:
766 * Percpu pointer to the allocated area on success, NULL on failure.
767 */
5835d96e
TH
768static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
769 gfp_t gfp)
fbf59bc9 770{
f2badb0c 771 static int warn_limit = 10;
fbf59bc9 772 struct pcpu_chunk *chunk;
f2badb0c 773 const char *err;
5835d96e 774 bool is_atomic = !(gfp & GFP_KERNEL);
b38d08f3 775 int slot, off, new_alloc, cpu, ret;
403a91b1 776 unsigned long flags;
f528f0b8 777 void __percpu *ptr;
fbf59bc9 778
723ad1d9
AV
779 /*
780 * We want the lowest bit of offset available for in-use/free
2f69fa82 781 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
782 */
783 if (unlikely(align < 2))
784 align = 2;
785
fb009e3a 786 size = ALIGN(size, 2);
2f69fa82 787
8d408b4b 788 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
789 WARN(true, "illegal size (%zu) or align (%zu) for "
790 "percpu allocation\n", size, align);
791 return NULL;
792 }
793
403a91b1 794 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 795
edcb4639
TH
796 /* serve reserved allocations from the reserved chunk if available */
797 if (reserved && pcpu_reserved_chunk) {
798 chunk = pcpu_reserved_chunk;
833af842
TH
799
800 if (size > chunk->contig_hint) {
801 err = "alloc from reserved chunk failed";
ccea34b5 802 goto fail_unlock;
f2badb0c 803 }
833af842 804
9c824b6a 805 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 806 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
807 if (is_atomic ||
808 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 809 err = "failed to extend area map of reserved chunk";
b38d08f3 810 goto fail;
833af842
TH
811 }
812 spin_lock_irqsave(&pcpu_lock, flags);
813 }
814
5835d96e 815 off = pcpu_alloc_area(chunk, size, align, is_atomic);
edcb4639
TH
816 if (off >= 0)
817 goto area_found;
833af842 818
f2badb0c 819 err = "alloc from reserved chunk failed";
ccea34b5 820 goto fail_unlock;
edcb4639
TH
821 }
822
ccea34b5 823restart:
edcb4639 824 /* search through normal chunks */
fbf59bc9
TH
825 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
826 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
827 if (size > chunk->contig_hint)
828 continue;
ccea34b5 829
9c824b6a 830 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 831 if (new_alloc) {
5835d96e
TH
832 if (is_atomic)
833 continue;
833af842
TH
834 spin_unlock_irqrestore(&pcpu_lock, flags);
835 if (pcpu_extend_area_map(chunk,
836 new_alloc) < 0) {
837 err = "failed to extend area map";
b38d08f3 838 goto fail;
833af842
TH
839 }
840 spin_lock_irqsave(&pcpu_lock, flags);
841 /*
842 * pcpu_lock has been dropped, need to
843 * restart cpu_slot list walking.
844 */
845 goto restart;
ccea34b5
TH
846 }
847
5835d96e 848 off = pcpu_alloc_area(chunk, size, align, is_atomic);
fbf59bc9
TH
849 if (off >= 0)
850 goto area_found;
fbf59bc9
TH
851 }
852 }
853
403a91b1 854 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 855
b38d08f3
TH
856 /*
857 * No space left. Create a new chunk. We don't want multiple
858 * tasks to create chunks simultaneously. Serialize and create iff
859 * there's still no empty chunk after grabbing the mutex.
860 */
5835d96e
TH
861 if (is_atomic)
862 goto fail;
863
b38d08f3
TH
864 mutex_lock(&pcpu_alloc_mutex);
865
866 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
867 chunk = pcpu_create_chunk();
868 if (!chunk) {
869 err = "failed to allocate new chunk";
870 goto fail;
871 }
872
873 spin_lock_irqsave(&pcpu_lock, flags);
874 pcpu_chunk_relocate(chunk, -1);
875 } else {
876 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 877 }
ccea34b5 878
b38d08f3 879 mutex_unlock(&pcpu_alloc_mutex);
ccea34b5 880 goto restart;
fbf59bc9
TH
881
882area_found:
403a91b1 883 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 884
dca49645 885 /* populate if not all pages are already there */
5835d96e 886 if (!is_atomic) {
e04d3208 887 int page_start, page_end, rs, re;
dca49645 888
e04d3208 889 mutex_lock(&pcpu_alloc_mutex);
dca49645 890
e04d3208
TH
891 page_start = PFN_DOWN(off);
892 page_end = PFN_UP(off + size);
b38d08f3 893
e04d3208
TH
894 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
895 WARN_ON(chunk->immutable);
896
897 ret = pcpu_populate_chunk(chunk, rs, re);
898
899 spin_lock_irqsave(&pcpu_lock, flags);
900 if (ret) {
901 mutex_unlock(&pcpu_alloc_mutex);
902 pcpu_free_area(chunk, off);
903 err = "failed to populate";
904 goto fail_unlock;
905 }
906 bitmap_set(chunk->populated, rs, re - rs);
907 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 908 }
fbf59bc9 909
e04d3208
TH
910 mutex_unlock(&pcpu_alloc_mutex);
911 }
ccea34b5 912
dca49645
TH
913 /* clear the areas and return address relative to base address */
914 for_each_possible_cpu(cpu)
915 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
916
f528f0b8
CM
917 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
918 kmemleak_alloc_percpu(ptr, size);
919 return ptr;
ccea34b5
TH
920
921fail_unlock:
403a91b1 922 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 923fail:
5835d96e
TH
924 if (!is_atomic && warn_limit) {
925 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
926 size, align, is_atomic, err);
f2badb0c
TH
927 dump_stack();
928 if (!--warn_limit)
929 pr_info("PERCPU: limit reached, disable warning\n");
930 }
ccea34b5 931 return NULL;
fbf59bc9 932}
edcb4639
TH
933
934/**
5835d96e 935 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
936 * @size: size of area to allocate in bytes
937 * @align: alignment of area (max PAGE_SIZE)
5835d96e 938 * @gfp: allocation flags
edcb4639 939 *
5835d96e
TH
940 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
941 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
942 * be called from any context but is a lot more likely to fail.
ccea34b5 943 *
edcb4639
TH
944 * RETURNS:
945 * Percpu pointer to the allocated area on success, NULL on failure.
946 */
5835d96e
TH
947void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
948{
949 return pcpu_alloc(size, align, false, gfp);
950}
951EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
952
953/**
954 * __alloc_percpu - allocate dynamic percpu area
955 * @size: size of area to allocate in bytes
956 * @align: alignment of area (max PAGE_SIZE)
957 *
958 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
959 */
43cf38eb 960void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 961{
5835d96e 962 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 963}
fbf59bc9
TH
964EXPORT_SYMBOL_GPL(__alloc_percpu);
965
edcb4639
TH
966/**
967 * __alloc_reserved_percpu - allocate reserved percpu area
968 * @size: size of area to allocate in bytes
969 * @align: alignment of area (max PAGE_SIZE)
970 *
9329ba97
TH
971 * Allocate zero-filled percpu area of @size bytes aligned at @align
972 * from reserved percpu area if arch has set it up; otherwise,
973 * allocation is served from the same dynamic area. Might sleep.
974 * Might trigger writeouts.
edcb4639 975 *
ccea34b5
TH
976 * CONTEXT:
977 * Does GFP_KERNEL allocation.
978 *
edcb4639
TH
979 * RETURNS:
980 * Percpu pointer to the allocated area on success, NULL on failure.
981 */
43cf38eb 982void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 983{
5835d96e 984 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
985}
986
a56dbddf
TH
987/**
988 * pcpu_reclaim - reclaim fully free chunks, workqueue function
989 * @work: unused
990 *
991 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
992 *
993 * CONTEXT:
994 * workqueue context.
a56dbddf
TH
995 */
996static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 997{
a56dbddf
TH
998 LIST_HEAD(todo);
999 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1000 struct pcpu_chunk *chunk, *next;
1001
ccea34b5
TH
1002 mutex_lock(&pcpu_alloc_mutex);
1003 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
1004
1005 list_for_each_entry_safe(chunk, next, head, list) {
1006 WARN_ON(chunk->immutable);
1007
1008 /* spare the first one */
1009 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1010 continue;
1011
a56dbddf
TH
1012 list_move(&chunk->list, &todo);
1013 }
1014
ccea34b5 1015 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
1016
1017 list_for_each_entry_safe(chunk, next, &todo, list) {
a93ace48 1018 int rs, re;
dca49645 1019
a93ace48
TH
1020 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1021 pcpu_depopulate_chunk(chunk, rs, re);
1022 bitmap_clear(chunk->populated, rs, re - rs);
1023 }
6081089f 1024 pcpu_destroy_chunk(chunk);
a56dbddf 1025 }
971f3918
TH
1026
1027 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1028}
1029
1030/**
1031 * free_percpu - free percpu area
1032 * @ptr: pointer to area to free
1033 *
ccea34b5
TH
1034 * Free percpu area @ptr.
1035 *
1036 * CONTEXT:
1037 * Can be called from atomic context.
fbf59bc9 1038 */
43cf38eb 1039void free_percpu(void __percpu *ptr)
fbf59bc9 1040{
129182e5 1041 void *addr;
fbf59bc9 1042 struct pcpu_chunk *chunk;
ccea34b5 1043 unsigned long flags;
fbf59bc9
TH
1044 int off;
1045
1046 if (!ptr)
1047 return;
1048
f528f0b8
CM
1049 kmemleak_free_percpu(ptr);
1050
129182e5
AM
1051 addr = __pcpu_ptr_to_addr(ptr);
1052
ccea34b5 1053 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1054
1055 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1056 off = addr - chunk->base_addr;
fbf59bc9
TH
1057
1058 pcpu_free_area(chunk, off);
1059
a56dbddf 1060 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1061 if (chunk->free_size == pcpu_unit_size) {
1062 struct pcpu_chunk *pos;
1063
a56dbddf 1064 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1065 if (pos != chunk) {
a56dbddf 1066 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1067 break;
1068 }
1069 }
1070
ccea34b5 1071 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1072}
1073EXPORT_SYMBOL_GPL(free_percpu);
1074
10fad5e4
TH
1075/**
1076 * is_kernel_percpu_address - test whether address is from static percpu area
1077 * @addr: address to test
1078 *
1079 * Test whether @addr belongs to in-kernel static percpu area. Module
1080 * static percpu areas are not considered. For those, use
1081 * is_module_percpu_address().
1082 *
1083 * RETURNS:
1084 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1085 */
1086bool is_kernel_percpu_address(unsigned long addr)
1087{
bbddff05 1088#ifdef CONFIG_SMP
10fad5e4
TH
1089 const size_t static_size = __per_cpu_end - __per_cpu_start;
1090 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1091 unsigned int cpu;
1092
1093 for_each_possible_cpu(cpu) {
1094 void *start = per_cpu_ptr(base, cpu);
1095
1096 if ((void *)addr >= start && (void *)addr < start + static_size)
1097 return true;
1098 }
bbddff05
TH
1099#endif
1100 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1101 return false;
1102}
1103
3b034b0d
VG
1104/**
1105 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1106 * @addr: the address to be converted to physical address
1107 *
1108 * Given @addr which is dereferenceable address obtained via one of
1109 * percpu access macros, this function translates it into its physical
1110 * address. The caller is responsible for ensuring @addr stays valid
1111 * until this function finishes.
1112 *
67589c71
DY
1113 * percpu allocator has special setup for the first chunk, which currently
1114 * supports either embedding in linear address space or vmalloc mapping,
1115 * and, from the second one, the backing allocator (currently either vm or
1116 * km) provides translation.
1117 *
1118 * The addr can be tranlated simply without checking if it falls into the
1119 * first chunk. But the current code reflects better how percpu allocator
1120 * actually works, and the verification can discover both bugs in percpu
1121 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1122 * code.
1123 *
3b034b0d
VG
1124 * RETURNS:
1125 * The physical address for @addr.
1126 */
1127phys_addr_t per_cpu_ptr_to_phys(void *addr)
1128{
9983b6f0
TH
1129 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1130 bool in_first_chunk = false;
a855b84c 1131 unsigned long first_low, first_high;
9983b6f0
TH
1132 unsigned int cpu;
1133
1134 /*
a855b84c 1135 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1136 * necessary but will speed up lookups of addresses which
1137 * aren't in the first chunk.
1138 */
a855b84c
TH
1139 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1140 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1141 pcpu_unit_pages);
1142 if ((unsigned long)addr >= first_low &&
1143 (unsigned long)addr < first_high) {
9983b6f0
TH
1144 for_each_possible_cpu(cpu) {
1145 void *start = per_cpu_ptr(base, cpu);
1146
1147 if (addr >= start && addr < start + pcpu_unit_size) {
1148 in_first_chunk = true;
1149 break;
1150 }
1151 }
1152 }
1153
1154 if (in_first_chunk) {
eac522ef 1155 if (!is_vmalloc_addr(addr))
020ec653
TH
1156 return __pa(addr);
1157 else
9f57bd4d
ES
1158 return page_to_phys(vmalloc_to_page(addr)) +
1159 offset_in_page(addr);
020ec653 1160 } else
9f57bd4d
ES
1161 return page_to_phys(pcpu_addr_to_page(addr)) +
1162 offset_in_page(addr);
3b034b0d
VG
1163}
1164
fbf59bc9 1165/**
fd1e8a1f
TH
1166 * pcpu_alloc_alloc_info - allocate percpu allocation info
1167 * @nr_groups: the number of groups
1168 * @nr_units: the number of units
1169 *
1170 * Allocate ai which is large enough for @nr_groups groups containing
1171 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1172 * cpu_map array which is long enough for @nr_units and filled with
1173 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1174 * pointer of other groups.
1175 *
1176 * RETURNS:
1177 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1178 * failure.
1179 */
1180struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1181 int nr_units)
1182{
1183 struct pcpu_alloc_info *ai;
1184 size_t base_size, ai_size;
1185 void *ptr;
1186 int unit;
1187
1188 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1189 __alignof__(ai->groups[0].cpu_map[0]));
1190 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1191
999c17e3 1192 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1193 if (!ptr)
1194 return NULL;
1195 ai = ptr;
1196 ptr += base_size;
1197
1198 ai->groups[0].cpu_map = ptr;
1199
1200 for (unit = 0; unit < nr_units; unit++)
1201 ai->groups[0].cpu_map[unit] = NR_CPUS;
1202
1203 ai->nr_groups = nr_groups;
1204 ai->__ai_size = PFN_ALIGN(ai_size);
1205
1206 return ai;
1207}
1208
1209/**
1210 * pcpu_free_alloc_info - free percpu allocation info
1211 * @ai: pcpu_alloc_info to free
1212 *
1213 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1214 */
1215void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1216{
999c17e3 1217 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1218}
1219
fd1e8a1f
TH
1220/**
1221 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1222 * @lvl: loglevel
1223 * @ai: allocation info to dump
1224 *
1225 * Print out information about @ai using loglevel @lvl.
1226 */
1227static void pcpu_dump_alloc_info(const char *lvl,
1228 const struct pcpu_alloc_info *ai)
033e48fb 1229{
fd1e8a1f 1230 int group_width = 1, cpu_width = 1, width;
033e48fb 1231 char empty_str[] = "--------";
fd1e8a1f
TH
1232 int alloc = 0, alloc_end = 0;
1233 int group, v;
1234 int upa, apl; /* units per alloc, allocs per line */
1235
1236 v = ai->nr_groups;
1237 while (v /= 10)
1238 group_width++;
033e48fb 1239
fd1e8a1f 1240 v = num_possible_cpus();
033e48fb 1241 while (v /= 10)
fd1e8a1f
TH
1242 cpu_width++;
1243 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1244
fd1e8a1f
TH
1245 upa = ai->alloc_size / ai->unit_size;
1246 width = upa * (cpu_width + 1) + group_width + 3;
1247 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1248
fd1e8a1f
TH
1249 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1250 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1251 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1252
fd1e8a1f
TH
1253 for (group = 0; group < ai->nr_groups; group++) {
1254 const struct pcpu_group_info *gi = &ai->groups[group];
1255 int unit = 0, unit_end = 0;
1256
1257 BUG_ON(gi->nr_units % upa);
1258 for (alloc_end += gi->nr_units / upa;
1259 alloc < alloc_end; alloc++) {
1260 if (!(alloc % apl)) {
cb129820 1261 printk(KERN_CONT "\n");
fd1e8a1f
TH
1262 printk("%spcpu-alloc: ", lvl);
1263 }
cb129820 1264 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1265
1266 for (unit_end += upa; unit < unit_end; unit++)
1267 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1268 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1269 gi->cpu_map[unit]);
1270 else
cb129820 1271 printk(KERN_CONT "%s ", empty_str);
033e48fb 1272 }
033e48fb 1273 }
cb129820 1274 printk(KERN_CONT "\n");
033e48fb 1275}
033e48fb 1276
fbf59bc9 1277/**
8d408b4b 1278 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1279 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1280 * @base_addr: mapped address
8d408b4b
TH
1281 *
1282 * Initialize the first percpu chunk which contains the kernel static
1283 * perpcu area. This function is to be called from arch percpu area
38a6be52 1284 * setup path.
8d408b4b 1285 *
fd1e8a1f
TH
1286 * @ai contains all information necessary to initialize the first
1287 * chunk and prime the dynamic percpu allocator.
1288 *
1289 * @ai->static_size is the size of static percpu area.
1290 *
1291 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1292 * reserve after the static area in the first chunk. This reserves
1293 * the first chunk such that it's available only through reserved
1294 * percpu allocation. This is primarily used to serve module percpu
1295 * static areas on architectures where the addressing model has
1296 * limited offset range for symbol relocations to guarantee module
1297 * percpu symbols fall inside the relocatable range.
1298 *
fd1e8a1f
TH
1299 * @ai->dyn_size determines the number of bytes available for dynamic
1300 * allocation in the first chunk. The area between @ai->static_size +
1301 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1302 *
fd1e8a1f
TH
1303 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1304 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1305 * @ai->dyn_size.
8d408b4b 1306 *
fd1e8a1f
TH
1307 * @ai->atom_size is the allocation atom size and used as alignment
1308 * for vm areas.
8d408b4b 1309 *
fd1e8a1f
TH
1310 * @ai->alloc_size is the allocation size and always multiple of
1311 * @ai->atom_size. This is larger than @ai->atom_size if
1312 * @ai->unit_size is larger than @ai->atom_size.
1313 *
1314 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1315 * percpu areas. Units which should be colocated are put into the
1316 * same group. Dynamic VM areas will be allocated according to these
1317 * groupings. If @ai->nr_groups is zero, a single group containing
1318 * all units is assumed.
8d408b4b 1319 *
38a6be52
TH
1320 * The caller should have mapped the first chunk at @base_addr and
1321 * copied static data to each unit.
fbf59bc9 1322 *
edcb4639
TH
1323 * If the first chunk ends up with both reserved and dynamic areas, it
1324 * is served by two chunks - one to serve the core static and reserved
1325 * areas and the other for the dynamic area. They share the same vm
1326 * and page map but uses different area allocation map to stay away
1327 * from each other. The latter chunk is circulated in the chunk slots
1328 * and available for dynamic allocation like any other chunks.
1329 *
fbf59bc9 1330 * RETURNS:
fb435d52 1331 * 0 on success, -errno on failure.
fbf59bc9 1332 */
fb435d52
TH
1333int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1334 void *base_addr)
fbf59bc9 1335{
635b75fc 1336 static char cpus_buf[4096] __initdata;
099a19d9
TH
1337 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1338 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1339 size_t dyn_size = ai->dyn_size;
1340 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1341 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1342 unsigned long *group_offsets;
1343 size_t *group_sizes;
fb435d52 1344 unsigned long *unit_off;
fbf59bc9 1345 unsigned int cpu;
fd1e8a1f
TH
1346 int *unit_map;
1347 int group, unit, i;
fbf59bc9 1348
635b75fc
TH
1349 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1350
1351#define PCPU_SETUP_BUG_ON(cond) do { \
1352 if (unlikely(cond)) { \
1353 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1354 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1355 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1356 BUG(); \
1357 } \
1358} while (0)
1359
2f39e637 1360 /* sanity checks */
635b75fc 1361 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1362#ifdef CONFIG_SMP
635b75fc 1363 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1364 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1365#endif
635b75fc 1366 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1367 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1368 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1369 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1370 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1371 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1372 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1373
6563297c 1374 /* process group information and build config tables accordingly */
999c17e3
SS
1375 group_offsets = memblock_virt_alloc(ai->nr_groups *
1376 sizeof(group_offsets[0]), 0);
1377 group_sizes = memblock_virt_alloc(ai->nr_groups *
1378 sizeof(group_sizes[0]), 0);
1379 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1380 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1381
fd1e8a1f 1382 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1383 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1384
1385 pcpu_low_unit_cpu = NR_CPUS;
1386 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1387
fd1e8a1f
TH
1388 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1389 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1390
6563297c
TH
1391 group_offsets[group] = gi->base_offset;
1392 group_sizes[group] = gi->nr_units * ai->unit_size;
1393
fd1e8a1f
TH
1394 for (i = 0; i < gi->nr_units; i++) {
1395 cpu = gi->cpu_map[i];
1396 if (cpu == NR_CPUS)
1397 continue;
8d408b4b 1398
635b75fc
TH
1399 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1400 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1401 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1402
fd1e8a1f 1403 unit_map[cpu] = unit + i;
fb435d52
TH
1404 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1405
a855b84c
TH
1406 /* determine low/high unit_cpu */
1407 if (pcpu_low_unit_cpu == NR_CPUS ||
1408 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1409 pcpu_low_unit_cpu = cpu;
1410 if (pcpu_high_unit_cpu == NR_CPUS ||
1411 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1412 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1413 }
2f39e637 1414 }
fd1e8a1f
TH
1415 pcpu_nr_units = unit;
1416
1417 for_each_possible_cpu(cpu)
635b75fc
TH
1418 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1419
1420 /* we're done parsing the input, undefine BUG macro and dump config */
1421#undef PCPU_SETUP_BUG_ON
bcbea798 1422 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1423
6563297c
TH
1424 pcpu_nr_groups = ai->nr_groups;
1425 pcpu_group_offsets = group_offsets;
1426 pcpu_group_sizes = group_sizes;
fd1e8a1f 1427 pcpu_unit_map = unit_map;
fb435d52 1428 pcpu_unit_offsets = unit_off;
2f39e637
TH
1429
1430 /* determine basic parameters */
fd1e8a1f 1431 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1432 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1433 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1434 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1435 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1436
d9b55eeb
TH
1437 /*
1438 * Allocate chunk slots. The additional last slot is for
1439 * empty chunks.
1440 */
1441 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1442 pcpu_slot = memblock_virt_alloc(
1443 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1444 for (i = 0; i < pcpu_nr_slots; i++)
1445 INIT_LIST_HEAD(&pcpu_slot[i]);
1446
edcb4639
TH
1447 /*
1448 * Initialize static chunk. If reserved_size is zero, the
1449 * static chunk covers static area + dynamic allocation area
1450 * in the first chunk. If reserved_size is not zero, it
1451 * covers static area + reserved area (mostly used for module
1452 * static percpu allocation).
1453 */
999c17e3 1454 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1455 INIT_LIST_HEAD(&schunk->list);
9c824b6a 1456 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
bba174f5 1457 schunk->base_addr = base_addr;
61ace7fa
TH
1458 schunk->map = smap;
1459 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1460 schunk->immutable = true;
ce3141a2 1461 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1462
fd1e8a1f
TH
1463 if (ai->reserved_size) {
1464 schunk->free_size = ai->reserved_size;
ae9e6bc9 1465 pcpu_reserved_chunk = schunk;
fd1e8a1f 1466 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1467 } else {
1468 schunk->free_size = dyn_size;
1469 dyn_size = 0; /* dynamic area covered */
1470 }
2441d15c 1471 schunk->contig_hint = schunk->free_size;
fbf59bc9 1472
723ad1d9
AV
1473 schunk->map[0] = 1;
1474 schunk->map[1] = ai->static_size;
1475 schunk->map_used = 1;
61ace7fa 1476 if (schunk->free_size)
723ad1d9
AV
1477 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1478 else
1479 schunk->map[1] |= 1;
61ace7fa 1480
edcb4639
TH
1481 /* init dynamic chunk if necessary */
1482 if (dyn_size) {
999c17e3 1483 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1484 INIT_LIST_HEAD(&dchunk->list);
9c824b6a 1485 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
bba174f5 1486 dchunk->base_addr = base_addr;
edcb4639
TH
1487 dchunk->map = dmap;
1488 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1489 dchunk->immutable = true;
ce3141a2 1490 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1491
1492 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1493 dchunk->map[0] = 1;
1494 dchunk->map[1] = pcpu_reserved_chunk_limit;
1495 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1496 dchunk->map_used = 2;
edcb4639
TH
1497 }
1498
2441d15c 1499 /* link the first chunk in */
ae9e6bc9
TH
1500 pcpu_first_chunk = dchunk ?: schunk;
1501 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1502
1503 /* we're done */
bba174f5 1504 pcpu_base_addr = base_addr;
fb435d52 1505 return 0;
fbf59bc9 1506}
66c3a757 1507
bbddff05
TH
1508#ifdef CONFIG_SMP
1509
17f3609c 1510const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1511 [PCPU_FC_AUTO] = "auto",
1512 [PCPU_FC_EMBED] = "embed",
1513 [PCPU_FC_PAGE] = "page",
f58dc01b 1514};
66c3a757 1515
f58dc01b 1516enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1517
f58dc01b
TH
1518static int __init percpu_alloc_setup(char *str)
1519{
5479c78a
CG
1520 if (!str)
1521 return -EINVAL;
1522
f58dc01b
TH
1523 if (0)
1524 /* nada */;
1525#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1526 else if (!strcmp(str, "embed"))
1527 pcpu_chosen_fc = PCPU_FC_EMBED;
1528#endif
1529#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1530 else if (!strcmp(str, "page"))
1531 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1532#endif
1533 else
1534 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1535
f58dc01b 1536 return 0;
66c3a757 1537}
f58dc01b 1538early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1539
3c9a024f
TH
1540/*
1541 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1542 * Build it if needed by the arch config or the generic setup is going
1543 * to be used.
1544 */
08fc4580
TH
1545#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1546 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1547#define BUILD_EMBED_FIRST_CHUNK
1548#endif
1549
1550/* build pcpu_page_first_chunk() iff needed by the arch config */
1551#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1552#define BUILD_PAGE_FIRST_CHUNK
1553#endif
1554
1555/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1556#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1557/**
1558 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1559 * @reserved_size: the size of reserved percpu area in bytes
1560 * @dyn_size: minimum free size for dynamic allocation in bytes
1561 * @atom_size: allocation atom size
1562 * @cpu_distance_fn: callback to determine distance between cpus, optional
1563 *
1564 * This function determines grouping of units, their mappings to cpus
1565 * and other parameters considering needed percpu size, allocation
1566 * atom size and distances between CPUs.
1567 *
1568 * Groups are always mutliples of atom size and CPUs which are of
1569 * LOCAL_DISTANCE both ways are grouped together and share space for
1570 * units in the same group. The returned configuration is guaranteed
1571 * to have CPUs on different nodes on different groups and >=75% usage
1572 * of allocated virtual address space.
1573 *
1574 * RETURNS:
1575 * On success, pointer to the new allocation_info is returned. On
1576 * failure, ERR_PTR value is returned.
1577 */
1578static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1579 size_t reserved_size, size_t dyn_size,
1580 size_t atom_size,
1581 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1582{
1583 static int group_map[NR_CPUS] __initdata;
1584 static int group_cnt[NR_CPUS] __initdata;
1585 const size_t static_size = __per_cpu_end - __per_cpu_start;
1586 int nr_groups = 1, nr_units = 0;
1587 size_t size_sum, min_unit_size, alloc_size;
1588 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1589 int last_allocs, group, unit;
1590 unsigned int cpu, tcpu;
1591 struct pcpu_alloc_info *ai;
1592 unsigned int *cpu_map;
1593
1594 /* this function may be called multiple times */
1595 memset(group_map, 0, sizeof(group_map));
1596 memset(group_cnt, 0, sizeof(group_cnt));
1597
1598 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1599 size_sum = PFN_ALIGN(static_size + reserved_size +
1600 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1601 dyn_size = size_sum - static_size - reserved_size;
1602
1603 /*
1604 * Determine min_unit_size, alloc_size and max_upa such that
1605 * alloc_size is multiple of atom_size and is the smallest
25985edc 1606 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1607 * or larger than min_unit_size.
1608 */
1609 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1610
1611 alloc_size = roundup(min_unit_size, atom_size);
1612 upa = alloc_size / min_unit_size;
1613 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1614 upa--;
1615 max_upa = upa;
1616
1617 /* group cpus according to their proximity */
1618 for_each_possible_cpu(cpu) {
1619 group = 0;
1620 next_group:
1621 for_each_possible_cpu(tcpu) {
1622 if (cpu == tcpu)
1623 break;
1624 if (group_map[tcpu] == group && cpu_distance_fn &&
1625 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1626 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1627 group++;
1628 nr_groups = max(nr_groups, group + 1);
1629 goto next_group;
1630 }
1631 }
1632 group_map[cpu] = group;
1633 group_cnt[group]++;
1634 }
1635
1636 /*
1637 * Expand unit size until address space usage goes over 75%
1638 * and then as much as possible without using more address
1639 * space.
1640 */
1641 last_allocs = INT_MAX;
1642 for (upa = max_upa; upa; upa--) {
1643 int allocs = 0, wasted = 0;
1644
1645 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1646 continue;
1647
1648 for (group = 0; group < nr_groups; group++) {
1649 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1650 allocs += this_allocs;
1651 wasted += this_allocs * upa - group_cnt[group];
1652 }
1653
1654 /*
1655 * Don't accept if wastage is over 1/3. The
1656 * greater-than comparison ensures upa==1 always
1657 * passes the following check.
1658 */
1659 if (wasted > num_possible_cpus() / 3)
1660 continue;
1661
1662 /* and then don't consume more memory */
1663 if (allocs > last_allocs)
1664 break;
1665 last_allocs = allocs;
1666 best_upa = upa;
1667 }
1668 upa = best_upa;
1669
1670 /* allocate and fill alloc_info */
1671 for (group = 0; group < nr_groups; group++)
1672 nr_units += roundup(group_cnt[group], upa);
1673
1674 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1675 if (!ai)
1676 return ERR_PTR(-ENOMEM);
1677 cpu_map = ai->groups[0].cpu_map;
1678
1679 for (group = 0; group < nr_groups; group++) {
1680 ai->groups[group].cpu_map = cpu_map;
1681 cpu_map += roundup(group_cnt[group], upa);
1682 }
1683
1684 ai->static_size = static_size;
1685 ai->reserved_size = reserved_size;
1686 ai->dyn_size = dyn_size;
1687 ai->unit_size = alloc_size / upa;
1688 ai->atom_size = atom_size;
1689 ai->alloc_size = alloc_size;
1690
1691 for (group = 0, unit = 0; group_cnt[group]; group++) {
1692 struct pcpu_group_info *gi = &ai->groups[group];
1693
1694 /*
1695 * Initialize base_offset as if all groups are located
1696 * back-to-back. The caller should update this to
1697 * reflect actual allocation.
1698 */
1699 gi->base_offset = unit * ai->unit_size;
1700
1701 for_each_possible_cpu(cpu)
1702 if (group_map[cpu] == group)
1703 gi->cpu_map[gi->nr_units++] = cpu;
1704 gi->nr_units = roundup(gi->nr_units, upa);
1705 unit += gi->nr_units;
1706 }
1707 BUG_ON(unit != nr_units);
1708
1709 return ai;
1710}
1711#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1712
1713#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1714/**
1715 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1716 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1717 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1718 * @atom_size: allocation atom size
1719 * @cpu_distance_fn: callback to determine distance between cpus, optional
1720 * @alloc_fn: function to allocate percpu page
25985edc 1721 * @free_fn: function to free percpu page
66c3a757
TH
1722 *
1723 * This is a helper to ease setting up embedded first percpu chunk and
1724 * can be called where pcpu_setup_first_chunk() is expected.
1725 *
1726 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1727 * by calling @alloc_fn and used as-is without being mapped into
1728 * vmalloc area. Allocations are always whole multiples of @atom_size
1729 * aligned to @atom_size.
1730 *
1731 * This enables the first chunk to piggy back on the linear physical
1732 * mapping which often uses larger page size. Please note that this
1733 * can result in very sparse cpu->unit mapping on NUMA machines thus
1734 * requiring large vmalloc address space. Don't use this allocator if
1735 * vmalloc space is not orders of magnitude larger than distances
1736 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1737 *
4ba6ce25 1738 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1739 *
1740 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1741 * size, the leftover is returned using @free_fn.
66c3a757
TH
1742 *
1743 * RETURNS:
fb435d52 1744 * 0 on success, -errno on failure.
66c3a757 1745 */
4ba6ce25 1746int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1747 size_t atom_size,
1748 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1749 pcpu_fc_alloc_fn_t alloc_fn,
1750 pcpu_fc_free_fn_t free_fn)
66c3a757 1751{
c8826dd5
TH
1752 void *base = (void *)ULONG_MAX;
1753 void **areas = NULL;
fd1e8a1f 1754 struct pcpu_alloc_info *ai;
6ea529a2 1755 size_t size_sum, areas_size, max_distance;
c8826dd5 1756 int group, i, rc;
66c3a757 1757
c8826dd5
TH
1758 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1759 cpu_distance_fn);
fd1e8a1f
TH
1760 if (IS_ERR(ai))
1761 return PTR_ERR(ai);
66c3a757 1762
fd1e8a1f 1763 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1764 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1765
999c17e3 1766 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1767 if (!areas) {
fb435d52 1768 rc = -ENOMEM;
c8826dd5 1769 goto out_free;
fa8a7094 1770 }
66c3a757 1771
c8826dd5
TH
1772 /* allocate, copy and determine base address */
1773 for (group = 0; group < ai->nr_groups; group++) {
1774 struct pcpu_group_info *gi = &ai->groups[group];
1775 unsigned int cpu = NR_CPUS;
1776 void *ptr;
1777
1778 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1779 cpu = gi->cpu_map[i];
1780 BUG_ON(cpu == NR_CPUS);
1781
1782 /* allocate space for the whole group */
1783 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1784 if (!ptr) {
1785 rc = -ENOMEM;
1786 goto out_free_areas;
1787 }
f528f0b8
CM
1788 /* kmemleak tracks the percpu allocations separately */
1789 kmemleak_free(ptr);
c8826dd5 1790 areas[group] = ptr;
fd1e8a1f 1791
c8826dd5 1792 base = min(ptr, base);
42b64281
TH
1793 }
1794
1795 /*
1796 * Copy data and free unused parts. This should happen after all
1797 * allocations are complete; otherwise, we may end up with
1798 * overlapping groups.
1799 */
1800 for (group = 0; group < ai->nr_groups; group++) {
1801 struct pcpu_group_info *gi = &ai->groups[group];
1802 void *ptr = areas[group];
c8826dd5
TH
1803
1804 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1805 if (gi->cpu_map[i] == NR_CPUS) {
1806 /* unused unit, free whole */
1807 free_fn(ptr, ai->unit_size);
1808 continue;
1809 }
1810 /* copy and return the unused part */
1811 memcpy(ptr, __per_cpu_load, ai->static_size);
1812 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1813 }
fa8a7094 1814 }
66c3a757 1815
c8826dd5 1816 /* base address is now known, determine group base offsets */
6ea529a2
TH
1817 max_distance = 0;
1818 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1819 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1820 max_distance = max_t(size_t, max_distance,
1821 ai->groups[group].base_offset);
6ea529a2
TH
1822 }
1823 max_distance += ai->unit_size;
1824
1825 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 1826 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 1827 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 1828 "space 0x%lx\n", max_distance,
8a092171 1829 VMALLOC_TOTAL);
6ea529a2
TH
1830#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1831 /* and fail if we have fallback */
1832 rc = -EINVAL;
1833 goto out_free;
1834#endif
1835 }
c8826dd5 1836
004018e2 1837 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1838 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1839 ai->dyn_size, ai->unit_size);
d4b95f80 1840
fb435d52 1841 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1842 goto out_free;
1843
1844out_free_areas:
1845 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
1846 if (areas[group])
1847 free_fn(areas[group],
1848 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 1849out_free:
fd1e8a1f 1850 pcpu_free_alloc_info(ai);
c8826dd5 1851 if (areas)
999c17e3 1852 memblock_free_early(__pa(areas), areas_size);
fb435d52 1853 return rc;
d4b95f80 1854}
3c9a024f 1855#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1856
3c9a024f 1857#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1858/**
00ae4064 1859 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1860 * @reserved_size: the size of reserved percpu area in bytes
1861 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1862 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1863 * @populate_pte_fn: function to populate pte
1864 *
00ae4064
TH
1865 * This is a helper to ease setting up page-remapped first percpu
1866 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1867 *
1868 * This is the basic allocator. Static percpu area is allocated
1869 * page-by-page into vmalloc area.
1870 *
1871 * RETURNS:
fb435d52 1872 * 0 on success, -errno on failure.
d4b95f80 1873 */
fb435d52
TH
1874int __init pcpu_page_first_chunk(size_t reserved_size,
1875 pcpu_fc_alloc_fn_t alloc_fn,
1876 pcpu_fc_free_fn_t free_fn,
1877 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1878{
8f05a6a6 1879 static struct vm_struct vm;
fd1e8a1f 1880 struct pcpu_alloc_info *ai;
00ae4064 1881 char psize_str[16];
ce3141a2 1882 int unit_pages;
d4b95f80 1883 size_t pages_size;
ce3141a2 1884 struct page **pages;
fb435d52 1885 int unit, i, j, rc;
d4b95f80 1886
00ae4064
TH
1887 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1888
4ba6ce25 1889 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1890 if (IS_ERR(ai))
1891 return PTR_ERR(ai);
1892 BUG_ON(ai->nr_groups != 1);
1893 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1894
1895 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1896
1897 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1898 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1899 sizeof(pages[0]));
999c17e3 1900 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 1901
8f05a6a6 1902 /* allocate pages */
d4b95f80 1903 j = 0;
fd1e8a1f 1904 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1905 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1906 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1907 void *ptr;
1908
3cbc8565 1909 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1910 if (!ptr) {
00ae4064
TH
1911 pr_warning("PERCPU: failed to allocate %s page "
1912 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1913 goto enomem;
1914 }
f528f0b8
CM
1915 /* kmemleak tracks the percpu allocations separately */
1916 kmemleak_free(ptr);
ce3141a2 1917 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1918 }
1919
8f05a6a6
TH
1920 /* allocate vm area, map the pages and copy static data */
1921 vm.flags = VM_ALLOC;
fd1e8a1f 1922 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1923 vm_area_register_early(&vm, PAGE_SIZE);
1924
fd1e8a1f 1925 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1926 unsigned long unit_addr =
fd1e8a1f 1927 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1928
ce3141a2 1929 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1930 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1931
1932 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1933 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1934 unit_pages);
1935 if (rc < 0)
1936 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1937
8f05a6a6
TH
1938 /*
1939 * FIXME: Archs with virtual cache should flush local
1940 * cache for the linear mapping here - something
1941 * equivalent to flush_cache_vmap() on the local cpu.
1942 * flush_cache_vmap() can't be used as most supporting
1943 * data structures are not set up yet.
1944 */
1945
1946 /* copy static data */
fd1e8a1f 1947 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1948 }
1949
1950 /* we're ready, commit */
1d9d3257 1951 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1952 unit_pages, psize_str, vm.addr, ai->static_size,
1953 ai->reserved_size, ai->dyn_size);
d4b95f80 1954
fb435d52 1955 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1956 goto out_free_ar;
1957
1958enomem:
1959 while (--j >= 0)
ce3141a2 1960 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1961 rc = -ENOMEM;
d4b95f80 1962out_free_ar:
999c17e3 1963 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 1964 pcpu_free_alloc_info(ai);
fb435d52 1965 return rc;
d4b95f80 1966}
3c9a024f 1967#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1968
bbddff05 1969#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1970/*
bbddff05 1971 * Generic SMP percpu area setup.
e74e3962
TH
1972 *
1973 * The embedding helper is used because its behavior closely resembles
1974 * the original non-dynamic generic percpu area setup. This is
1975 * important because many archs have addressing restrictions and might
1976 * fail if the percpu area is located far away from the previous
1977 * location. As an added bonus, in non-NUMA cases, embedding is
1978 * generally a good idea TLB-wise because percpu area can piggy back
1979 * on the physical linear memory mapping which uses large page
1980 * mappings on applicable archs.
1981 */
e74e3962
TH
1982unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1983EXPORT_SYMBOL(__per_cpu_offset);
1984
c8826dd5
TH
1985static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1986 size_t align)
1987{
999c17e3
SS
1988 return memblock_virt_alloc_from_nopanic(
1989 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 1990}
66c3a757 1991
c8826dd5
TH
1992static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1993{
999c17e3 1994 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
1995}
1996
e74e3962
TH
1997void __init setup_per_cpu_areas(void)
1998{
e74e3962
TH
1999 unsigned long delta;
2000 unsigned int cpu;
fb435d52 2001 int rc;
e74e3962
TH
2002
2003 /*
2004 * Always reserve area for module percpu variables. That's
2005 * what the legacy allocator did.
2006 */
fb435d52 2007 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2008 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2009 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2010 if (rc < 0)
bbddff05 2011 panic("Failed to initialize percpu areas.");
e74e3962
TH
2012
2013 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2014 for_each_possible_cpu(cpu)
fb435d52 2015 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2016}
bbddff05
TH
2017#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2018
2019#else /* CONFIG_SMP */
2020
2021/*
2022 * UP percpu area setup.
2023 *
2024 * UP always uses km-based percpu allocator with identity mapping.
2025 * Static percpu variables are indistinguishable from the usual static
2026 * variables and don't require any special preparation.
2027 */
2028void __init setup_per_cpu_areas(void)
2029{
2030 const size_t unit_size =
2031 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2032 PERCPU_DYNAMIC_RESERVE));
2033 struct pcpu_alloc_info *ai;
2034 void *fc;
2035
2036 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2037 fc = memblock_virt_alloc_from_nopanic(unit_size,
2038 PAGE_SIZE,
2039 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2040 if (!ai || !fc)
2041 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2042 /* kmemleak tracks the percpu allocations separately */
2043 kmemleak_free(fc);
bbddff05
TH
2044
2045 ai->dyn_size = unit_size;
2046 ai->unit_size = unit_size;
2047 ai->atom_size = unit_size;
2048 ai->alloc_size = unit_size;
2049 ai->groups[0].nr_units = 1;
2050 ai->groups[0].cpu_map[0] = 0;
2051
2052 if (pcpu_setup_first_chunk(ai, fc) < 0)
2053 panic("Failed to initialize percpu areas.");
3189eddb
HL
2054
2055 pcpu_free_alloc_info(ai);
bbddff05
TH
2056}
2057
2058#endif /* CONFIG_SMP */
099a19d9
TH
2059
2060/*
2061 * First and reserved chunks are initialized with temporary allocation
2062 * map in initdata so that they can be used before slab is online.
2063 * This function is called after slab is brought up and replaces those
2064 * with properly allocated maps.
2065 */
2066void __init percpu_init_late(void)
2067{
2068 struct pcpu_chunk *target_chunks[] =
2069 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2070 struct pcpu_chunk *chunk;
2071 unsigned long flags;
2072 int i;
2073
2074 for (i = 0; (chunk = target_chunks[i]); i++) {
2075 int *map;
2076 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2077
2078 BUILD_BUG_ON(size > PAGE_SIZE);
2079
90459ce0 2080 map = pcpu_mem_zalloc(size);
099a19d9
TH
2081 BUG_ON(!map);
2082
2083 spin_lock_irqsave(&pcpu_lock, flags);
2084 memcpy(map, chunk->map, size);
2085 chunk->map = map;
2086 spin_unlock_irqrestore(&pcpu_lock, flags);
2087 }
2088}