]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/percpu.c
percpu: restructure locking
[mirror_ubuntu-artful-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
bbddff05 80#ifdef CONFIG_SMP
e0100983
TH
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
e0100983
TH
87#endif
88#ifndef __pcpu_ptr_to_addr
89#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
e0100983 93#endif
bbddff05
TH
94#else /* CONFIG_SMP */
95/* on UP, it's always identity mapped */
96#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98#endif /* CONFIG_SMP */
e0100983 99
fbf59bc9
TH
100struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */
bba174f5 104 void *base_addr; /* base address of this chunk */
723ad1d9 105 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */
88999a89 108 void *data; /* chunk data */
3d331ad7 109 int first_free; /* no free below this */
8d408b4b 110 bool immutable; /* no [de]population allowed */
ce3141a2 111 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
112};
113
40150d37
TH
114static int pcpu_unit_pages __read_mostly;
115static int pcpu_unit_size __read_mostly;
2f39e637 116static int pcpu_nr_units __read_mostly;
6563297c 117static int pcpu_atom_size __read_mostly;
40150d37
TH
118static int pcpu_nr_slots __read_mostly;
119static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 120
a855b84c
TH
121/* cpus with the lowest and highest unit addresses */
122static unsigned int pcpu_low_unit_cpu __read_mostly;
123static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 124
fbf59bc9 125/* the address of the first chunk which starts with the kernel static area */
40150d37 126void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
127EXPORT_SYMBOL_GPL(pcpu_base_addr);
128
fb435d52
TH
129static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
130const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 131
6563297c
TH
132/* group information, used for vm allocation */
133static int pcpu_nr_groups __read_mostly;
134static const unsigned long *pcpu_group_offsets __read_mostly;
135static const size_t *pcpu_group_sizes __read_mostly;
136
ae9e6bc9
TH
137/*
138 * The first chunk which always exists. Note that unlike other
139 * chunks, this one can be allocated and mapped in several different
140 * ways and thus often doesn't live in the vmalloc area.
141 */
142static struct pcpu_chunk *pcpu_first_chunk;
143
144/*
145 * Optional reserved chunk. This chunk reserves part of the first
146 * chunk and serves it for reserved allocations. The amount of
147 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
148 * area doesn't exist, the following variables contain NULL and 0
149 * respectively.
150 */
edcb4639 151static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
152static int pcpu_reserved_chunk_limit;
153
fbf59bc9 154/*
b38d08f3
TH
155 * Free path accesses and alters only the index data structures and can be
156 * safely called from atomic context. When memory needs to be returned to
157 * the system, free path schedules reclaim_work.
fbf59bc9 158 */
b38d08f3
TH
159static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
160static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
fbf59bc9 161
40150d37 162static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 163
a56dbddf
TH
164/* reclaim work to release fully free chunks, scheduled from free path */
165static void pcpu_reclaim(struct work_struct *work);
166static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
167
020ec653
TH
168static bool pcpu_addr_in_first_chunk(void *addr)
169{
170 void *first_start = pcpu_first_chunk->base_addr;
171
172 return addr >= first_start && addr < first_start + pcpu_unit_size;
173}
174
175static bool pcpu_addr_in_reserved_chunk(void *addr)
176{
177 void *first_start = pcpu_first_chunk->base_addr;
178
179 return addr >= first_start &&
180 addr < first_start + pcpu_reserved_chunk_limit;
181}
182
d9b55eeb 183static int __pcpu_size_to_slot(int size)
fbf59bc9 184{
cae3aeb8 185 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
186 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
187}
188
d9b55eeb
TH
189static int pcpu_size_to_slot(int size)
190{
191 if (size == pcpu_unit_size)
192 return pcpu_nr_slots - 1;
193 return __pcpu_size_to_slot(size);
194}
195
fbf59bc9
TH
196static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
197{
198 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
199 return 0;
200
201 return pcpu_size_to_slot(chunk->free_size);
202}
203
88999a89
TH
204/* set the pointer to a chunk in a page struct */
205static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
206{
207 page->index = (unsigned long)pcpu;
208}
209
210/* obtain pointer to a chunk from a page struct */
211static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
212{
213 return (struct pcpu_chunk *)page->index;
214}
215
216static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 217{
2f39e637 218 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
219}
220
9983b6f0
TH
221static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
222 unsigned int cpu, int page_idx)
fbf59bc9 223{
bba174f5 224 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 225 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
226}
227
88999a89
TH
228static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
229 int *rs, int *re, int end)
ce3141a2
TH
230{
231 *rs = find_next_zero_bit(chunk->populated, end, *rs);
232 *re = find_next_bit(chunk->populated, end, *rs + 1);
233}
234
88999a89
TH
235static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
236 int *rs, int *re, int end)
ce3141a2
TH
237{
238 *rs = find_next_bit(chunk->populated, end, *rs);
239 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
240}
241
242/*
243 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 244 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
245 * be integer variables and will be set to start and end page index of
246 * the current region.
247 */
248#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
249 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
250 (rs) < (re); \
251 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
252
253#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
254 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
255 (rs) < (re); \
256 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
257
fbf59bc9 258/**
90459ce0 259 * pcpu_mem_zalloc - allocate memory
1880d93b 260 * @size: bytes to allocate
fbf59bc9 261 *
1880d93b 262 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 263 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 264 * memory is always zeroed.
fbf59bc9 265 *
ccea34b5
TH
266 * CONTEXT:
267 * Does GFP_KERNEL allocation.
268 *
fbf59bc9 269 * RETURNS:
1880d93b 270 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 271 */
90459ce0 272static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 273{
099a19d9
TH
274 if (WARN_ON_ONCE(!slab_is_available()))
275 return NULL;
276
1880d93b
TH
277 if (size <= PAGE_SIZE)
278 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
279 else
280 return vzalloc(size);
1880d93b 281}
fbf59bc9 282
1880d93b
TH
283/**
284 * pcpu_mem_free - free memory
285 * @ptr: memory to free
286 * @size: size of the area
287 *
90459ce0 288 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
289 */
290static void pcpu_mem_free(void *ptr, size_t size)
291{
fbf59bc9 292 if (size <= PAGE_SIZE)
1880d93b 293 kfree(ptr);
fbf59bc9 294 else
1880d93b 295 vfree(ptr);
fbf59bc9
TH
296}
297
298/**
299 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
300 * @chunk: chunk of interest
301 * @oslot: the previous slot it was on
302 *
303 * This function is called after an allocation or free changed @chunk.
304 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
305 * moved to the slot. Note that the reserved chunk is never put on
306 * chunk slots.
ccea34b5
TH
307 *
308 * CONTEXT:
309 * pcpu_lock.
fbf59bc9
TH
310 */
311static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
312{
313 int nslot = pcpu_chunk_slot(chunk);
314
edcb4639 315 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
316 if (oslot < nslot)
317 list_move(&chunk->list, &pcpu_slot[nslot]);
318 else
319 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
320 }
321}
322
9f7dcf22 323/**
833af842
TH
324 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
325 * @chunk: chunk of interest
9f7dcf22 326 *
833af842 327 * Determine whether area map of @chunk needs to be extended to
25985edc 328 * accommodate a new allocation.
9f7dcf22 329 *
ccea34b5 330 * CONTEXT:
833af842 331 * pcpu_lock.
ccea34b5 332 *
9f7dcf22 333 * RETURNS:
833af842
TH
334 * New target map allocation length if extension is necessary, 0
335 * otherwise.
9f7dcf22 336 */
833af842 337static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
338{
339 int new_alloc;
9f7dcf22 340
723ad1d9 341 if (chunk->map_alloc >= chunk->map_used + 3)
9f7dcf22
TH
342 return 0;
343
344 new_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9 345 while (new_alloc < chunk->map_used + 3)
9f7dcf22
TH
346 new_alloc *= 2;
347
833af842
TH
348 return new_alloc;
349}
350
351/**
352 * pcpu_extend_area_map - extend area map of a chunk
353 * @chunk: chunk of interest
354 * @new_alloc: new target allocation length of the area map
355 *
356 * Extend area map of @chunk to have @new_alloc entries.
357 *
358 * CONTEXT:
359 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
360 *
361 * RETURNS:
362 * 0 on success, -errno on failure.
363 */
364static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
365{
366 int *old = NULL, *new = NULL;
367 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
368 unsigned long flags;
369
90459ce0 370 new = pcpu_mem_zalloc(new_size);
833af842 371 if (!new)
9f7dcf22 372 return -ENOMEM;
ccea34b5 373
833af842
TH
374 /* acquire pcpu_lock and switch to new area map */
375 spin_lock_irqsave(&pcpu_lock, flags);
376
377 if (new_alloc <= chunk->map_alloc)
378 goto out_unlock;
9f7dcf22 379
833af842 380 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
381 old = chunk->map;
382
383 memcpy(new, old, old_size);
9f7dcf22 384
9f7dcf22
TH
385 chunk->map_alloc = new_alloc;
386 chunk->map = new;
833af842
TH
387 new = NULL;
388
389out_unlock:
390 spin_unlock_irqrestore(&pcpu_lock, flags);
391
392 /*
393 * pcpu_mem_free() might end up calling vfree() which uses
394 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
395 */
396 pcpu_mem_free(old, old_size);
397 pcpu_mem_free(new, new_size);
398
9f7dcf22
TH
399 return 0;
400}
401
fbf59bc9
TH
402/**
403 * pcpu_alloc_area - allocate area from a pcpu_chunk
404 * @chunk: chunk of interest
cae3aeb8 405 * @size: wanted size in bytes
fbf59bc9
TH
406 * @align: wanted align
407 *
408 * Try to allocate @size bytes area aligned at @align from @chunk.
409 * Note that this function only allocates the offset. It doesn't
410 * populate or map the area.
411 *
9f7dcf22
TH
412 * @chunk->map must have at least two free slots.
413 *
ccea34b5
TH
414 * CONTEXT:
415 * pcpu_lock.
416 *
fbf59bc9 417 * RETURNS:
9f7dcf22
TH
418 * Allocated offset in @chunk on success, -1 if no matching area is
419 * found.
fbf59bc9
TH
420 */
421static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
422{
423 int oslot = pcpu_chunk_slot(chunk);
424 int max_contig = 0;
425 int i, off;
3d331ad7 426 bool seen_free = false;
723ad1d9 427 int *p;
fbf59bc9 428
3d331ad7 429 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 430 int head, tail;
723ad1d9
AV
431 int this_size;
432
433 off = *p;
434 if (off & 1)
435 continue;
fbf59bc9
TH
436
437 /* extra for alignment requirement */
438 head = ALIGN(off, align) - off;
fbf59bc9 439
723ad1d9
AV
440 this_size = (p[1] & ~1) - off;
441 if (this_size < head + size) {
3d331ad7
AV
442 if (!seen_free) {
443 chunk->first_free = i;
444 seen_free = true;
445 }
723ad1d9 446 max_contig = max(this_size, max_contig);
fbf59bc9
TH
447 continue;
448 }
449
450 /*
451 * If head is small or the previous block is free,
452 * merge'em. Note that 'small' is defined as smaller
453 * than sizeof(int), which is very small but isn't too
454 * uncommon for percpu allocations.
455 */
723ad1d9 456 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 457 *p = off += head;
723ad1d9 458 if (p[-1] & 1)
fbf59bc9 459 chunk->free_size -= head;
21ddfd38
JZ
460 else
461 max_contig = max(*p - p[-1], max_contig);
723ad1d9 462 this_size -= head;
fbf59bc9
TH
463 head = 0;
464 }
465
466 /* if tail is small, just keep it around */
723ad1d9
AV
467 tail = this_size - head - size;
468 if (tail < sizeof(int)) {
fbf59bc9 469 tail = 0;
723ad1d9
AV
470 size = this_size - head;
471 }
fbf59bc9
TH
472
473 /* split if warranted */
474 if (head || tail) {
706c16f2
AV
475 int nr_extra = !!head + !!tail;
476
477 /* insert new subblocks */
723ad1d9 478 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
479 sizeof(chunk->map[0]) * (chunk->map_used - i));
480 chunk->map_used += nr_extra;
481
fbf59bc9 482 if (head) {
3d331ad7
AV
483 if (!seen_free) {
484 chunk->first_free = i;
485 seen_free = true;
486 }
723ad1d9
AV
487 *++p = off += head;
488 ++i;
706c16f2
AV
489 max_contig = max(head, max_contig);
490 }
491 if (tail) {
723ad1d9 492 p[1] = off + size;
706c16f2 493 max_contig = max(tail, max_contig);
fbf59bc9 494 }
fbf59bc9
TH
495 }
496
3d331ad7
AV
497 if (!seen_free)
498 chunk->first_free = i + 1;
499
fbf59bc9 500 /* update hint and mark allocated */
723ad1d9 501 if (i + 1 == chunk->map_used)
fbf59bc9
TH
502 chunk->contig_hint = max_contig; /* fully scanned */
503 else
504 chunk->contig_hint = max(chunk->contig_hint,
505 max_contig);
506
723ad1d9
AV
507 chunk->free_size -= size;
508 *p |= 1;
fbf59bc9
TH
509
510 pcpu_chunk_relocate(chunk, oslot);
511 return off;
512 }
513
514 chunk->contig_hint = max_contig; /* fully scanned */
515 pcpu_chunk_relocate(chunk, oslot);
516
9f7dcf22
TH
517 /* tell the upper layer that this chunk has no matching area */
518 return -1;
fbf59bc9
TH
519}
520
521/**
522 * pcpu_free_area - free area to a pcpu_chunk
523 * @chunk: chunk of interest
524 * @freeme: offset of area to free
525 *
526 * Free area starting from @freeme to @chunk. Note that this function
527 * only modifies the allocation map. It doesn't depopulate or unmap
528 * the area.
ccea34b5
TH
529 *
530 * CONTEXT:
531 * pcpu_lock.
fbf59bc9
TH
532 */
533static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
534{
535 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
536 int off = 0;
537 unsigned i, j;
538 int to_free = 0;
539 int *p;
540
541 freeme |= 1; /* we are searching for <given offset, in use> pair */
542
543 i = 0;
544 j = chunk->map_used;
545 while (i != j) {
546 unsigned k = (i + j) / 2;
547 off = chunk->map[k];
548 if (off < freeme)
549 i = k + 1;
550 else if (off > freeme)
551 j = k;
552 else
553 i = j = k;
554 }
fbf59bc9 555 BUG_ON(off != freeme);
fbf59bc9 556
3d331ad7
AV
557 if (i < chunk->first_free)
558 chunk->first_free = i;
559
723ad1d9
AV
560 p = chunk->map + i;
561 *p = off &= ~1;
562 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 563
723ad1d9
AV
564 /* merge with next? */
565 if (!(p[1] & 1))
566 to_free++;
fbf59bc9 567 /* merge with previous? */
723ad1d9
AV
568 if (i > 0 && !(p[-1] & 1)) {
569 to_free++;
fbf59bc9 570 i--;
723ad1d9 571 p--;
fbf59bc9 572 }
723ad1d9
AV
573 if (to_free) {
574 chunk->map_used -= to_free;
575 memmove(p + 1, p + 1 + to_free,
576 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
577 }
578
723ad1d9 579 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
580 pcpu_chunk_relocate(chunk, oslot);
581}
582
6081089f
TH
583static struct pcpu_chunk *pcpu_alloc_chunk(void)
584{
585 struct pcpu_chunk *chunk;
586
90459ce0 587 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
588 if (!chunk)
589 return NULL;
590
90459ce0
BL
591 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
592 sizeof(chunk->map[0]));
6081089f 593 if (!chunk->map) {
5a838c3b 594 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
595 return NULL;
596 }
597
598 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
599 chunk->map[0] = 0;
600 chunk->map[1] = pcpu_unit_size | 1;
601 chunk->map_used = 1;
6081089f
TH
602
603 INIT_LIST_HEAD(&chunk->list);
604 chunk->free_size = pcpu_unit_size;
605 chunk->contig_hint = pcpu_unit_size;
606
607 return chunk;
608}
609
610static void pcpu_free_chunk(struct pcpu_chunk *chunk)
611{
612 if (!chunk)
613 return;
614 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 615 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
616}
617
9f645532
TH
618/*
619 * Chunk management implementation.
620 *
621 * To allow different implementations, chunk alloc/free and
622 * [de]population are implemented in a separate file which is pulled
623 * into this file and compiled together. The following functions
624 * should be implemented.
625 *
626 * pcpu_populate_chunk - populate the specified range of a chunk
627 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
628 * pcpu_create_chunk - create a new chunk
629 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
630 * pcpu_addr_to_page - translate address to physical address
631 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 632 */
9f645532
TH
633static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
634static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
635static struct pcpu_chunk *pcpu_create_chunk(void);
636static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
637static struct page *pcpu_addr_to_page(void *addr);
638static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 639
b0c9778b
TH
640#ifdef CONFIG_NEED_PER_CPU_KM
641#include "percpu-km.c"
642#else
9f645532 643#include "percpu-vm.c"
b0c9778b 644#endif
fbf59bc9 645
88999a89
TH
646/**
647 * pcpu_chunk_addr_search - determine chunk containing specified address
648 * @addr: address for which the chunk needs to be determined.
649 *
650 * RETURNS:
651 * The address of the found chunk.
652 */
653static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
654{
655 /* is it in the first chunk? */
656 if (pcpu_addr_in_first_chunk(addr)) {
657 /* is it in the reserved area? */
658 if (pcpu_addr_in_reserved_chunk(addr))
659 return pcpu_reserved_chunk;
660 return pcpu_first_chunk;
661 }
662
663 /*
664 * The address is relative to unit0 which might be unused and
665 * thus unmapped. Offset the address to the unit space of the
666 * current processor before looking it up in the vmalloc
667 * space. Note that any possible cpu id can be used here, so
668 * there's no need to worry about preemption or cpu hotplug.
669 */
670 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 671 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
672}
673
fbf59bc9 674/**
edcb4639 675 * pcpu_alloc - the percpu allocator
cae3aeb8 676 * @size: size of area to allocate in bytes
fbf59bc9 677 * @align: alignment of area (max PAGE_SIZE)
edcb4639 678 * @reserved: allocate from the reserved chunk if available
fbf59bc9 679 *
ccea34b5
TH
680 * Allocate percpu area of @size bytes aligned at @align.
681 *
682 * CONTEXT:
683 * Does GFP_KERNEL allocation.
fbf59bc9
TH
684 *
685 * RETURNS:
686 * Percpu pointer to the allocated area on success, NULL on failure.
687 */
43cf38eb 688static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 689{
f2badb0c 690 static int warn_limit = 10;
fbf59bc9 691 struct pcpu_chunk *chunk;
f2badb0c 692 const char *err;
b38d08f3 693 int slot, off, new_alloc, cpu, ret;
dca49645 694 int page_start, page_end, rs, re;
403a91b1 695 unsigned long flags;
f528f0b8 696 void __percpu *ptr;
fbf59bc9 697
723ad1d9
AV
698 /*
699 * We want the lowest bit of offset available for in-use/free
2f69fa82 700 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
701 */
702 if (unlikely(align < 2))
703 align = 2;
704
fb009e3a 705 size = ALIGN(size, 2);
2f69fa82 706
8d408b4b 707 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
708 WARN(true, "illegal size (%zu) or align (%zu) for "
709 "percpu allocation\n", size, align);
710 return NULL;
711 }
712
403a91b1 713 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 714
edcb4639
TH
715 /* serve reserved allocations from the reserved chunk if available */
716 if (reserved && pcpu_reserved_chunk) {
717 chunk = pcpu_reserved_chunk;
833af842
TH
718
719 if (size > chunk->contig_hint) {
720 err = "alloc from reserved chunk failed";
ccea34b5 721 goto fail_unlock;
f2badb0c 722 }
833af842
TH
723
724 while ((new_alloc = pcpu_need_to_extend(chunk))) {
725 spin_unlock_irqrestore(&pcpu_lock, flags);
726 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
727 err = "failed to extend area map of reserved chunk";
b38d08f3 728 goto fail;
833af842
TH
729 }
730 spin_lock_irqsave(&pcpu_lock, flags);
731 }
732
edcb4639
TH
733 off = pcpu_alloc_area(chunk, size, align);
734 if (off >= 0)
735 goto area_found;
833af842 736
f2badb0c 737 err = "alloc from reserved chunk failed";
ccea34b5 738 goto fail_unlock;
edcb4639
TH
739 }
740
ccea34b5 741restart:
edcb4639 742 /* search through normal chunks */
fbf59bc9
TH
743 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
744 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
745 if (size > chunk->contig_hint)
746 continue;
ccea34b5 747
833af842
TH
748 new_alloc = pcpu_need_to_extend(chunk);
749 if (new_alloc) {
750 spin_unlock_irqrestore(&pcpu_lock, flags);
751 if (pcpu_extend_area_map(chunk,
752 new_alloc) < 0) {
753 err = "failed to extend area map";
b38d08f3 754 goto fail;
833af842
TH
755 }
756 spin_lock_irqsave(&pcpu_lock, flags);
757 /*
758 * pcpu_lock has been dropped, need to
759 * restart cpu_slot list walking.
760 */
761 goto restart;
ccea34b5
TH
762 }
763
fbf59bc9
TH
764 off = pcpu_alloc_area(chunk, size, align);
765 if (off >= 0)
766 goto area_found;
fbf59bc9
TH
767 }
768 }
769
403a91b1 770 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 771
b38d08f3
TH
772 /*
773 * No space left. Create a new chunk. We don't want multiple
774 * tasks to create chunks simultaneously. Serialize and create iff
775 * there's still no empty chunk after grabbing the mutex.
776 */
777 mutex_lock(&pcpu_alloc_mutex);
778
779 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
780 chunk = pcpu_create_chunk();
781 if (!chunk) {
782 err = "failed to allocate new chunk";
783 goto fail;
784 }
785
786 spin_lock_irqsave(&pcpu_lock, flags);
787 pcpu_chunk_relocate(chunk, -1);
788 } else {
789 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 790 }
ccea34b5 791
b38d08f3 792 mutex_unlock(&pcpu_alloc_mutex);
ccea34b5 793 goto restart;
fbf59bc9
TH
794
795area_found:
403a91b1 796 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 797
dca49645 798 /* populate if not all pages are already there */
b38d08f3 799 mutex_lock(&pcpu_alloc_mutex);
dca49645
TH
800 page_start = PFN_DOWN(off);
801 page_end = PFN_UP(off + size);
802
a93ace48 803 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
dca49645
TH
804 WARN_ON(chunk->immutable);
805
b38d08f3
TH
806 ret = pcpu_populate_chunk(chunk, rs, re);
807
808 spin_lock_irqsave(&pcpu_lock, flags);
809 if (ret) {
810 mutex_unlock(&pcpu_alloc_mutex);
dca49645
TH
811 pcpu_free_area(chunk, off);
812 err = "failed to populate";
813 goto fail_unlock;
814 }
a93ace48 815 bitmap_set(chunk->populated, rs, re - rs);
b38d08f3 816 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
817 }
818
ccea34b5
TH
819 mutex_unlock(&pcpu_alloc_mutex);
820
dca49645
TH
821 /* clear the areas and return address relative to base address */
822 for_each_possible_cpu(cpu)
823 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
824
f528f0b8
CM
825 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
826 kmemleak_alloc_percpu(ptr, size);
827 return ptr;
ccea34b5
TH
828
829fail_unlock:
403a91b1 830 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 831fail:
f2badb0c
TH
832 if (warn_limit) {
833 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
834 "%s\n", size, align, err);
835 dump_stack();
836 if (!--warn_limit)
837 pr_info("PERCPU: limit reached, disable warning\n");
838 }
ccea34b5 839 return NULL;
fbf59bc9 840}
edcb4639
TH
841
842/**
843 * __alloc_percpu - allocate dynamic percpu area
844 * @size: size of area to allocate in bytes
845 * @align: alignment of area (max PAGE_SIZE)
846 *
9329ba97
TH
847 * Allocate zero-filled percpu area of @size bytes aligned at @align.
848 * Might sleep. Might trigger writeouts.
edcb4639 849 *
ccea34b5
TH
850 * CONTEXT:
851 * Does GFP_KERNEL allocation.
852 *
edcb4639
TH
853 * RETURNS:
854 * Percpu pointer to the allocated area on success, NULL on failure.
855 */
43cf38eb 856void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
857{
858 return pcpu_alloc(size, align, false);
859}
fbf59bc9
TH
860EXPORT_SYMBOL_GPL(__alloc_percpu);
861
edcb4639
TH
862/**
863 * __alloc_reserved_percpu - allocate reserved percpu area
864 * @size: size of area to allocate in bytes
865 * @align: alignment of area (max PAGE_SIZE)
866 *
9329ba97
TH
867 * Allocate zero-filled percpu area of @size bytes aligned at @align
868 * from reserved percpu area if arch has set it up; otherwise,
869 * allocation is served from the same dynamic area. Might sleep.
870 * Might trigger writeouts.
edcb4639 871 *
ccea34b5
TH
872 * CONTEXT:
873 * Does GFP_KERNEL allocation.
874 *
edcb4639
TH
875 * RETURNS:
876 * Percpu pointer to the allocated area on success, NULL on failure.
877 */
43cf38eb 878void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
879{
880 return pcpu_alloc(size, align, true);
881}
882
a56dbddf
TH
883/**
884 * pcpu_reclaim - reclaim fully free chunks, workqueue function
885 * @work: unused
886 *
887 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
888 *
889 * CONTEXT:
890 * workqueue context.
a56dbddf
TH
891 */
892static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 893{
a56dbddf
TH
894 LIST_HEAD(todo);
895 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
896 struct pcpu_chunk *chunk, *next;
897
ccea34b5
TH
898 mutex_lock(&pcpu_alloc_mutex);
899 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
900
901 list_for_each_entry_safe(chunk, next, head, list) {
902 WARN_ON(chunk->immutable);
903
904 /* spare the first one */
905 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
906 continue;
907
a56dbddf
TH
908 list_move(&chunk->list, &todo);
909 }
910
ccea34b5 911 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
912
913 list_for_each_entry_safe(chunk, next, &todo, list) {
a93ace48 914 int rs, re;
dca49645 915
a93ace48
TH
916 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
917 pcpu_depopulate_chunk(chunk, rs, re);
918 bitmap_clear(chunk->populated, rs, re - rs);
919 }
6081089f 920 pcpu_destroy_chunk(chunk);
a56dbddf 921 }
971f3918
TH
922
923 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
924}
925
926/**
927 * free_percpu - free percpu area
928 * @ptr: pointer to area to free
929 *
ccea34b5
TH
930 * Free percpu area @ptr.
931 *
932 * CONTEXT:
933 * Can be called from atomic context.
fbf59bc9 934 */
43cf38eb 935void free_percpu(void __percpu *ptr)
fbf59bc9 936{
129182e5 937 void *addr;
fbf59bc9 938 struct pcpu_chunk *chunk;
ccea34b5 939 unsigned long flags;
fbf59bc9
TH
940 int off;
941
942 if (!ptr)
943 return;
944
f528f0b8
CM
945 kmemleak_free_percpu(ptr);
946
129182e5
AM
947 addr = __pcpu_ptr_to_addr(ptr);
948
ccea34b5 949 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
950
951 chunk = pcpu_chunk_addr_search(addr);
bba174f5 952 off = addr - chunk->base_addr;
fbf59bc9
TH
953
954 pcpu_free_area(chunk, off);
955
a56dbddf 956 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
957 if (chunk->free_size == pcpu_unit_size) {
958 struct pcpu_chunk *pos;
959
a56dbddf 960 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 961 if (pos != chunk) {
a56dbddf 962 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
963 break;
964 }
965 }
966
ccea34b5 967 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
968}
969EXPORT_SYMBOL_GPL(free_percpu);
970
10fad5e4
TH
971/**
972 * is_kernel_percpu_address - test whether address is from static percpu area
973 * @addr: address to test
974 *
975 * Test whether @addr belongs to in-kernel static percpu area. Module
976 * static percpu areas are not considered. For those, use
977 * is_module_percpu_address().
978 *
979 * RETURNS:
980 * %true if @addr is from in-kernel static percpu area, %false otherwise.
981 */
982bool is_kernel_percpu_address(unsigned long addr)
983{
bbddff05 984#ifdef CONFIG_SMP
10fad5e4
TH
985 const size_t static_size = __per_cpu_end - __per_cpu_start;
986 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
987 unsigned int cpu;
988
989 for_each_possible_cpu(cpu) {
990 void *start = per_cpu_ptr(base, cpu);
991
992 if ((void *)addr >= start && (void *)addr < start + static_size)
993 return true;
994 }
bbddff05
TH
995#endif
996 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
997 return false;
998}
999
3b034b0d
VG
1000/**
1001 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1002 * @addr: the address to be converted to physical address
1003 *
1004 * Given @addr which is dereferenceable address obtained via one of
1005 * percpu access macros, this function translates it into its physical
1006 * address. The caller is responsible for ensuring @addr stays valid
1007 * until this function finishes.
1008 *
67589c71
DY
1009 * percpu allocator has special setup for the first chunk, which currently
1010 * supports either embedding in linear address space or vmalloc mapping,
1011 * and, from the second one, the backing allocator (currently either vm or
1012 * km) provides translation.
1013 *
1014 * The addr can be tranlated simply without checking if it falls into the
1015 * first chunk. But the current code reflects better how percpu allocator
1016 * actually works, and the verification can discover both bugs in percpu
1017 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1018 * code.
1019 *
3b034b0d
VG
1020 * RETURNS:
1021 * The physical address for @addr.
1022 */
1023phys_addr_t per_cpu_ptr_to_phys(void *addr)
1024{
9983b6f0
TH
1025 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1026 bool in_first_chunk = false;
a855b84c 1027 unsigned long first_low, first_high;
9983b6f0
TH
1028 unsigned int cpu;
1029
1030 /*
a855b84c 1031 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1032 * necessary but will speed up lookups of addresses which
1033 * aren't in the first chunk.
1034 */
a855b84c
TH
1035 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1036 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1037 pcpu_unit_pages);
1038 if ((unsigned long)addr >= first_low &&
1039 (unsigned long)addr < first_high) {
9983b6f0
TH
1040 for_each_possible_cpu(cpu) {
1041 void *start = per_cpu_ptr(base, cpu);
1042
1043 if (addr >= start && addr < start + pcpu_unit_size) {
1044 in_first_chunk = true;
1045 break;
1046 }
1047 }
1048 }
1049
1050 if (in_first_chunk) {
eac522ef 1051 if (!is_vmalloc_addr(addr))
020ec653
TH
1052 return __pa(addr);
1053 else
9f57bd4d
ES
1054 return page_to_phys(vmalloc_to_page(addr)) +
1055 offset_in_page(addr);
020ec653 1056 } else
9f57bd4d
ES
1057 return page_to_phys(pcpu_addr_to_page(addr)) +
1058 offset_in_page(addr);
3b034b0d
VG
1059}
1060
fbf59bc9 1061/**
fd1e8a1f
TH
1062 * pcpu_alloc_alloc_info - allocate percpu allocation info
1063 * @nr_groups: the number of groups
1064 * @nr_units: the number of units
1065 *
1066 * Allocate ai which is large enough for @nr_groups groups containing
1067 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1068 * cpu_map array which is long enough for @nr_units and filled with
1069 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1070 * pointer of other groups.
1071 *
1072 * RETURNS:
1073 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1074 * failure.
1075 */
1076struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1077 int nr_units)
1078{
1079 struct pcpu_alloc_info *ai;
1080 size_t base_size, ai_size;
1081 void *ptr;
1082 int unit;
1083
1084 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1085 __alignof__(ai->groups[0].cpu_map[0]));
1086 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1087
999c17e3 1088 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1089 if (!ptr)
1090 return NULL;
1091 ai = ptr;
1092 ptr += base_size;
1093
1094 ai->groups[0].cpu_map = ptr;
1095
1096 for (unit = 0; unit < nr_units; unit++)
1097 ai->groups[0].cpu_map[unit] = NR_CPUS;
1098
1099 ai->nr_groups = nr_groups;
1100 ai->__ai_size = PFN_ALIGN(ai_size);
1101
1102 return ai;
1103}
1104
1105/**
1106 * pcpu_free_alloc_info - free percpu allocation info
1107 * @ai: pcpu_alloc_info to free
1108 *
1109 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1110 */
1111void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1112{
999c17e3 1113 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1114}
1115
fd1e8a1f
TH
1116/**
1117 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1118 * @lvl: loglevel
1119 * @ai: allocation info to dump
1120 *
1121 * Print out information about @ai using loglevel @lvl.
1122 */
1123static void pcpu_dump_alloc_info(const char *lvl,
1124 const struct pcpu_alloc_info *ai)
033e48fb 1125{
fd1e8a1f 1126 int group_width = 1, cpu_width = 1, width;
033e48fb 1127 char empty_str[] = "--------";
fd1e8a1f
TH
1128 int alloc = 0, alloc_end = 0;
1129 int group, v;
1130 int upa, apl; /* units per alloc, allocs per line */
1131
1132 v = ai->nr_groups;
1133 while (v /= 10)
1134 group_width++;
033e48fb 1135
fd1e8a1f 1136 v = num_possible_cpus();
033e48fb 1137 while (v /= 10)
fd1e8a1f
TH
1138 cpu_width++;
1139 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1140
fd1e8a1f
TH
1141 upa = ai->alloc_size / ai->unit_size;
1142 width = upa * (cpu_width + 1) + group_width + 3;
1143 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1144
fd1e8a1f
TH
1145 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1146 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1147 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1148
fd1e8a1f
TH
1149 for (group = 0; group < ai->nr_groups; group++) {
1150 const struct pcpu_group_info *gi = &ai->groups[group];
1151 int unit = 0, unit_end = 0;
1152
1153 BUG_ON(gi->nr_units % upa);
1154 for (alloc_end += gi->nr_units / upa;
1155 alloc < alloc_end; alloc++) {
1156 if (!(alloc % apl)) {
cb129820 1157 printk(KERN_CONT "\n");
fd1e8a1f
TH
1158 printk("%spcpu-alloc: ", lvl);
1159 }
cb129820 1160 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1161
1162 for (unit_end += upa; unit < unit_end; unit++)
1163 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1164 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1165 gi->cpu_map[unit]);
1166 else
cb129820 1167 printk(KERN_CONT "%s ", empty_str);
033e48fb 1168 }
033e48fb 1169 }
cb129820 1170 printk(KERN_CONT "\n");
033e48fb 1171}
033e48fb 1172
fbf59bc9 1173/**
8d408b4b 1174 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1175 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1176 * @base_addr: mapped address
8d408b4b
TH
1177 *
1178 * Initialize the first percpu chunk which contains the kernel static
1179 * perpcu area. This function is to be called from arch percpu area
38a6be52 1180 * setup path.
8d408b4b 1181 *
fd1e8a1f
TH
1182 * @ai contains all information necessary to initialize the first
1183 * chunk and prime the dynamic percpu allocator.
1184 *
1185 * @ai->static_size is the size of static percpu area.
1186 *
1187 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1188 * reserve after the static area in the first chunk. This reserves
1189 * the first chunk such that it's available only through reserved
1190 * percpu allocation. This is primarily used to serve module percpu
1191 * static areas on architectures where the addressing model has
1192 * limited offset range for symbol relocations to guarantee module
1193 * percpu symbols fall inside the relocatable range.
1194 *
fd1e8a1f
TH
1195 * @ai->dyn_size determines the number of bytes available for dynamic
1196 * allocation in the first chunk. The area between @ai->static_size +
1197 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1198 *
fd1e8a1f
TH
1199 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1200 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1201 * @ai->dyn_size.
8d408b4b 1202 *
fd1e8a1f
TH
1203 * @ai->atom_size is the allocation atom size and used as alignment
1204 * for vm areas.
8d408b4b 1205 *
fd1e8a1f
TH
1206 * @ai->alloc_size is the allocation size and always multiple of
1207 * @ai->atom_size. This is larger than @ai->atom_size if
1208 * @ai->unit_size is larger than @ai->atom_size.
1209 *
1210 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1211 * percpu areas. Units which should be colocated are put into the
1212 * same group. Dynamic VM areas will be allocated according to these
1213 * groupings. If @ai->nr_groups is zero, a single group containing
1214 * all units is assumed.
8d408b4b 1215 *
38a6be52
TH
1216 * The caller should have mapped the first chunk at @base_addr and
1217 * copied static data to each unit.
fbf59bc9 1218 *
edcb4639
TH
1219 * If the first chunk ends up with both reserved and dynamic areas, it
1220 * is served by two chunks - one to serve the core static and reserved
1221 * areas and the other for the dynamic area. They share the same vm
1222 * and page map but uses different area allocation map to stay away
1223 * from each other. The latter chunk is circulated in the chunk slots
1224 * and available for dynamic allocation like any other chunks.
1225 *
fbf59bc9 1226 * RETURNS:
fb435d52 1227 * 0 on success, -errno on failure.
fbf59bc9 1228 */
fb435d52
TH
1229int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1230 void *base_addr)
fbf59bc9 1231{
635b75fc 1232 static char cpus_buf[4096] __initdata;
099a19d9
TH
1233 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1234 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1235 size_t dyn_size = ai->dyn_size;
1236 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1237 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1238 unsigned long *group_offsets;
1239 size_t *group_sizes;
fb435d52 1240 unsigned long *unit_off;
fbf59bc9 1241 unsigned int cpu;
fd1e8a1f
TH
1242 int *unit_map;
1243 int group, unit, i;
fbf59bc9 1244
635b75fc
TH
1245 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1246
1247#define PCPU_SETUP_BUG_ON(cond) do { \
1248 if (unlikely(cond)) { \
1249 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1250 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1251 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1252 BUG(); \
1253 } \
1254} while (0)
1255
2f39e637 1256 /* sanity checks */
635b75fc 1257 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1258#ifdef CONFIG_SMP
635b75fc 1259 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1260 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1261#endif
635b75fc 1262 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1263 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1264 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1265 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1266 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1267 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1268 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1269
6563297c 1270 /* process group information and build config tables accordingly */
999c17e3
SS
1271 group_offsets = memblock_virt_alloc(ai->nr_groups *
1272 sizeof(group_offsets[0]), 0);
1273 group_sizes = memblock_virt_alloc(ai->nr_groups *
1274 sizeof(group_sizes[0]), 0);
1275 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1276 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1277
fd1e8a1f 1278 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1279 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1280
1281 pcpu_low_unit_cpu = NR_CPUS;
1282 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1283
fd1e8a1f
TH
1284 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1285 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1286
6563297c
TH
1287 group_offsets[group] = gi->base_offset;
1288 group_sizes[group] = gi->nr_units * ai->unit_size;
1289
fd1e8a1f
TH
1290 for (i = 0; i < gi->nr_units; i++) {
1291 cpu = gi->cpu_map[i];
1292 if (cpu == NR_CPUS)
1293 continue;
8d408b4b 1294
635b75fc
TH
1295 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1296 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1297 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1298
fd1e8a1f 1299 unit_map[cpu] = unit + i;
fb435d52
TH
1300 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1301
a855b84c
TH
1302 /* determine low/high unit_cpu */
1303 if (pcpu_low_unit_cpu == NR_CPUS ||
1304 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1305 pcpu_low_unit_cpu = cpu;
1306 if (pcpu_high_unit_cpu == NR_CPUS ||
1307 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1308 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1309 }
2f39e637 1310 }
fd1e8a1f
TH
1311 pcpu_nr_units = unit;
1312
1313 for_each_possible_cpu(cpu)
635b75fc
TH
1314 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1315
1316 /* we're done parsing the input, undefine BUG macro and dump config */
1317#undef PCPU_SETUP_BUG_ON
bcbea798 1318 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1319
6563297c
TH
1320 pcpu_nr_groups = ai->nr_groups;
1321 pcpu_group_offsets = group_offsets;
1322 pcpu_group_sizes = group_sizes;
fd1e8a1f 1323 pcpu_unit_map = unit_map;
fb435d52 1324 pcpu_unit_offsets = unit_off;
2f39e637
TH
1325
1326 /* determine basic parameters */
fd1e8a1f 1327 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1328 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1329 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1330 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1331 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1332
d9b55eeb
TH
1333 /*
1334 * Allocate chunk slots. The additional last slot is for
1335 * empty chunks.
1336 */
1337 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1338 pcpu_slot = memblock_virt_alloc(
1339 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1340 for (i = 0; i < pcpu_nr_slots; i++)
1341 INIT_LIST_HEAD(&pcpu_slot[i]);
1342
edcb4639
TH
1343 /*
1344 * Initialize static chunk. If reserved_size is zero, the
1345 * static chunk covers static area + dynamic allocation area
1346 * in the first chunk. If reserved_size is not zero, it
1347 * covers static area + reserved area (mostly used for module
1348 * static percpu allocation).
1349 */
999c17e3 1350 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1351 INIT_LIST_HEAD(&schunk->list);
bba174f5 1352 schunk->base_addr = base_addr;
61ace7fa
TH
1353 schunk->map = smap;
1354 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1355 schunk->immutable = true;
ce3141a2 1356 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1357
fd1e8a1f
TH
1358 if (ai->reserved_size) {
1359 schunk->free_size = ai->reserved_size;
ae9e6bc9 1360 pcpu_reserved_chunk = schunk;
fd1e8a1f 1361 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1362 } else {
1363 schunk->free_size = dyn_size;
1364 dyn_size = 0; /* dynamic area covered */
1365 }
2441d15c 1366 schunk->contig_hint = schunk->free_size;
fbf59bc9 1367
723ad1d9
AV
1368 schunk->map[0] = 1;
1369 schunk->map[1] = ai->static_size;
1370 schunk->map_used = 1;
61ace7fa 1371 if (schunk->free_size)
723ad1d9
AV
1372 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1373 else
1374 schunk->map[1] |= 1;
61ace7fa 1375
edcb4639
TH
1376 /* init dynamic chunk if necessary */
1377 if (dyn_size) {
999c17e3 1378 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1379 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1380 dchunk->base_addr = base_addr;
edcb4639
TH
1381 dchunk->map = dmap;
1382 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1383 dchunk->immutable = true;
ce3141a2 1384 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1385
1386 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1387 dchunk->map[0] = 1;
1388 dchunk->map[1] = pcpu_reserved_chunk_limit;
1389 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1390 dchunk->map_used = 2;
edcb4639
TH
1391 }
1392
2441d15c 1393 /* link the first chunk in */
ae9e6bc9
TH
1394 pcpu_first_chunk = dchunk ?: schunk;
1395 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1396
1397 /* we're done */
bba174f5 1398 pcpu_base_addr = base_addr;
fb435d52 1399 return 0;
fbf59bc9 1400}
66c3a757 1401
bbddff05
TH
1402#ifdef CONFIG_SMP
1403
17f3609c 1404const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1405 [PCPU_FC_AUTO] = "auto",
1406 [PCPU_FC_EMBED] = "embed",
1407 [PCPU_FC_PAGE] = "page",
f58dc01b 1408};
66c3a757 1409
f58dc01b 1410enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1411
f58dc01b
TH
1412static int __init percpu_alloc_setup(char *str)
1413{
5479c78a
CG
1414 if (!str)
1415 return -EINVAL;
1416
f58dc01b
TH
1417 if (0)
1418 /* nada */;
1419#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1420 else if (!strcmp(str, "embed"))
1421 pcpu_chosen_fc = PCPU_FC_EMBED;
1422#endif
1423#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1424 else if (!strcmp(str, "page"))
1425 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1426#endif
1427 else
1428 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1429
f58dc01b 1430 return 0;
66c3a757 1431}
f58dc01b 1432early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1433
3c9a024f
TH
1434/*
1435 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1436 * Build it if needed by the arch config or the generic setup is going
1437 * to be used.
1438 */
08fc4580
TH
1439#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1440 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1441#define BUILD_EMBED_FIRST_CHUNK
1442#endif
1443
1444/* build pcpu_page_first_chunk() iff needed by the arch config */
1445#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1446#define BUILD_PAGE_FIRST_CHUNK
1447#endif
1448
1449/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1450#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1451/**
1452 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1453 * @reserved_size: the size of reserved percpu area in bytes
1454 * @dyn_size: minimum free size for dynamic allocation in bytes
1455 * @atom_size: allocation atom size
1456 * @cpu_distance_fn: callback to determine distance between cpus, optional
1457 *
1458 * This function determines grouping of units, their mappings to cpus
1459 * and other parameters considering needed percpu size, allocation
1460 * atom size and distances between CPUs.
1461 *
1462 * Groups are always mutliples of atom size and CPUs which are of
1463 * LOCAL_DISTANCE both ways are grouped together and share space for
1464 * units in the same group. The returned configuration is guaranteed
1465 * to have CPUs on different nodes on different groups and >=75% usage
1466 * of allocated virtual address space.
1467 *
1468 * RETURNS:
1469 * On success, pointer to the new allocation_info is returned. On
1470 * failure, ERR_PTR value is returned.
1471 */
1472static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1473 size_t reserved_size, size_t dyn_size,
1474 size_t atom_size,
1475 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1476{
1477 static int group_map[NR_CPUS] __initdata;
1478 static int group_cnt[NR_CPUS] __initdata;
1479 const size_t static_size = __per_cpu_end - __per_cpu_start;
1480 int nr_groups = 1, nr_units = 0;
1481 size_t size_sum, min_unit_size, alloc_size;
1482 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1483 int last_allocs, group, unit;
1484 unsigned int cpu, tcpu;
1485 struct pcpu_alloc_info *ai;
1486 unsigned int *cpu_map;
1487
1488 /* this function may be called multiple times */
1489 memset(group_map, 0, sizeof(group_map));
1490 memset(group_cnt, 0, sizeof(group_cnt));
1491
1492 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1493 size_sum = PFN_ALIGN(static_size + reserved_size +
1494 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1495 dyn_size = size_sum - static_size - reserved_size;
1496
1497 /*
1498 * Determine min_unit_size, alloc_size and max_upa such that
1499 * alloc_size is multiple of atom_size and is the smallest
25985edc 1500 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1501 * or larger than min_unit_size.
1502 */
1503 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1504
1505 alloc_size = roundup(min_unit_size, atom_size);
1506 upa = alloc_size / min_unit_size;
1507 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1508 upa--;
1509 max_upa = upa;
1510
1511 /* group cpus according to their proximity */
1512 for_each_possible_cpu(cpu) {
1513 group = 0;
1514 next_group:
1515 for_each_possible_cpu(tcpu) {
1516 if (cpu == tcpu)
1517 break;
1518 if (group_map[tcpu] == group && cpu_distance_fn &&
1519 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1520 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1521 group++;
1522 nr_groups = max(nr_groups, group + 1);
1523 goto next_group;
1524 }
1525 }
1526 group_map[cpu] = group;
1527 group_cnt[group]++;
1528 }
1529
1530 /*
1531 * Expand unit size until address space usage goes over 75%
1532 * and then as much as possible without using more address
1533 * space.
1534 */
1535 last_allocs = INT_MAX;
1536 for (upa = max_upa; upa; upa--) {
1537 int allocs = 0, wasted = 0;
1538
1539 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1540 continue;
1541
1542 for (group = 0; group < nr_groups; group++) {
1543 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1544 allocs += this_allocs;
1545 wasted += this_allocs * upa - group_cnt[group];
1546 }
1547
1548 /*
1549 * Don't accept if wastage is over 1/3. The
1550 * greater-than comparison ensures upa==1 always
1551 * passes the following check.
1552 */
1553 if (wasted > num_possible_cpus() / 3)
1554 continue;
1555
1556 /* and then don't consume more memory */
1557 if (allocs > last_allocs)
1558 break;
1559 last_allocs = allocs;
1560 best_upa = upa;
1561 }
1562 upa = best_upa;
1563
1564 /* allocate and fill alloc_info */
1565 for (group = 0; group < nr_groups; group++)
1566 nr_units += roundup(group_cnt[group], upa);
1567
1568 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1569 if (!ai)
1570 return ERR_PTR(-ENOMEM);
1571 cpu_map = ai->groups[0].cpu_map;
1572
1573 for (group = 0; group < nr_groups; group++) {
1574 ai->groups[group].cpu_map = cpu_map;
1575 cpu_map += roundup(group_cnt[group], upa);
1576 }
1577
1578 ai->static_size = static_size;
1579 ai->reserved_size = reserved_size;
1580 ai->dyn_size = dyn_size;
1581 ai->unit_size = alloc_size / upa;
1582 ai->atom_size = atom_size;
1583 ai->alloc_size = alloc_size;
1584
1585 for (group = 0, unit = 0; group_cnt[group]; group++) {
1586 struct pcpu_group_info *gi = &ai->groups[group];
1587
1588 /*
1589 * Initialize base_offset as if all groups are located
1590 * back-to-back. The caller should update this to
1591 * reflect actual allocation.
1592 */
1593 gi->base_offset = unit * ai->unit_size;
1594
1595 for_each_possible_cpu(cpu)
1596 if (group_map[cpu] == group)
1597 gi->cpu_map[gi->nr_units++] = cpu;
1598 gi->nr_units = roundup(gi->nr_units, upa);
1599 unit += gi->nr_units;
1600 }
1601 BUG_ON(unit != nr_units);
1602
1603 return ai;
1604}
1605#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1606
1607#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1608/**
1609 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1610 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1611 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1612 * @atom_size: allocation atom size
1613 * @cpu_distance_fn: callback to determine distance between cpus, optional
1614 * @alloc_fn: function to allocate percpu page
25985edc 1615 * @free_fn: function to free percpu page
66c3a757
TH
1616 *
1617 * This is a helper to ease setting up embedded first percpu chunk and
1618 * can be called where pcpu_setup_first_chunk() is expected.
1619 *
1620 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1621 * by calling @alloc_fn and used as-is without being mapped into
1622 * vmalloc area. Allocations are always whole multiples of @atom_size
1623 * aligned to @atom_size.
1624 *
1625 * This enables the first chunk to piggy back on the linear physical
1626 * mapping which often uses larger page size. Please note that this
1627 * can result in very sparse cpu->unit mapping on NUMA machines thus
1628 * requiring large vmalloc address space. Don't use this allocator if
1629 * vmalloc space is not orders of magnitude larger than distances
1630 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1631 *
4ba6ce25 1632 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1633 *
1634 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1635 * size, the leftover is returned using @free_fn.
66c3a757
TH
1636 *
1637 * RETURNS:
fb435d52 1638 * 0 on success, -errno on failure.
66c3a757 1639 */
4ba6ce25 1640int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1641 size_t atom_size,
1642 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1643 pcpu_fc_alloc_fn_t alloc_fn,
1644 pcpu_fc_free_fn_t free_fn)
66c3a757 1645{
c8826dd5
TH
1646 void *base = (void *)ULONG_MAX;
1647 void **areas = NULL;
fd1e8a1f 1648 struct pcpu_alloc_info *ai;
6ea529a2 1649 size_t size_sum, areas_size, max_distance;
c8826dd5 1650 int group, i, rc;
66c3a757 1651
c8826dd5
TH
1652 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1653 cpu_distance_fn);
fd1e8a1f
TH
1654 if (IS_ERR(ai))
1655 return PTR_ERR(ai);
66c3a757 1656
fd1e8a1f 1657 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1658 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1659
999c17e3 1660 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1661 if (!areas) {
fb435d52 1662 rc = -ENOMEM;
c8826dd5 1663 goto out_free;
fa8a7094 1664 }
66c3a757 1665
c8826dd5
TH
1666 /* allocate, copy and determine base address */
1667 for (group = 0; group < ai->nr_groups; group++) {
1668 struct pcpu_group_info *gi = &ai->groups[group];
1669 unsigned int cpu = NR_CPUS;
1670 void *ptr;
1671
1672 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1673 cpu = gi->cpu_map[i];
1674 BUG_ON(cpu == NR_CPUS);
1675
1676 /* allocate space for the whole group */
1677 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1678 if (!ptr) {
1679 rc = -ENOMEM;
1680 goto out_free_areas;
1681 }
f528f0b8
CM
1682 /* kmemleak tracks the percpu allocations separately */
1683 kmemleak_free(ptr);
c8826dd5 1684 areas[group] = ptr;
fd1e8a1f 1685
c8826dd5 1686 base = min(ptr, base);
42b64281
TH
1687 }
1688
1689 /*
1690 * Copy data and free unused parts. This should happen after all
1691 * allocations are complete; otherwise, we may end up with
1692 * overlapping groups.
1693 */
1694 for (group = 0; group < ai->nr_groups; group++) {
1695 struct pcpu_group_info *gi = &ai->groups[group];
1696 void *ptr = areas[group];
c8826dd5
TH
1697
1698 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1699 if (gi->cpu_map[i] == NR_CPUS) {
1700 /* unused unit, free whole */
1701 free_fn(ptr, ai->unit_size);
1702 continue;
1703 }
1704 /* copy and return the unused part */
1705 memcpy(ptr, __per_cpu_load, ai->static_size);
1706 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1707 }
fa8a7094 1708 }
66c3a757 1709
c8826dd5 1710 /* base address is now known, determine group base offsets */
6ea529a2
TH
1711 max_distance = 0;
1712 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1713 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1714 max_distance = max_t(size_t, max_distance,
1715 ai->groups[group].base_offset);
6ea529a2
TH
1716 }
1717 max_distance += ai->unit_size;
1718
1719 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 1720 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 1721 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 1722 "space 0x%lx\n", max_distance,
8a092171 1723 VMALLOC_TOTAL);
6ea529a2
TH
1724#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1725 /* and fail if we have fallback */
1726 rc = -EINVAL;
1727 goto out_free;
1728#endif
1729 }
c8826dd5 1730
004018e2 1731 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1732 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1733 ai->dyn_size, ai->unit_size);
d4b95f80 1734
fb435d52 1735 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1736 goto out_free;
1737
1738out_free_areas:
1739 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
1740 if (areas[group])
1741 free_fn(areas[group],
1742 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 1743out_free:
fd1e8a1f 1744 pcpu_free_alloc_info(ai);
c8826dd5 1745 if (areas)
999c17e3 1746 memblock_free_early(__pa(areas), areas_size);
fb435d52 1747 return rc;
d4b95f80 1748}
3c9a024f 1749#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1750
3c9a024f 1751#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1752/**
00ae4064 1753 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1754 * @reserved_size: the size of reserved percpu area in bytes
1755 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1756 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1757 * @populate_pte_fn: function to populate pte
1758 *
00ae4064
TH
1759 * This is a helper to ease setting up page-remapped first percpu
1760 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1761 *
1762 * This is the basic allocator. Static percpu area is allocated
1763 * page-by-page into vmalloc area.
1764 *
1765 * RETURNS:
fb435d52 1766 * 0 on success, -errno on failure.
d4b95f80 1767 */
fb435d52
TH
1768int __init pcpu_page_first_chunk(size_t reserved_size,
1769 pcpu_fc_alloc_fn_t alloc_fn,
1770 pcpu_fc_free_fn_t free_fn,
1771 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1772{
8f05a6a6 1773 static struct vm_struct vm;
fd1e8a1f 1774 struct pcpu_alloc_info *ai;
00ae4064 1775 char psize_str[16];
ce3141a2 1776 int unit_pages;
d4b95f80 1777 size_t pages_size;
ce3141a2 1778 struct page **pages;
fb435d52 1779 int unit, i, j, rc;
d4b95f80 1780
00ae4064
TH
1781 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1782
4ba6ce25 1783 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1784 if (IS_ERR(ai))
1785 return PTR_ERR(ai);
1786 BUG_ON(ai->nr_groups != 1);
1787 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1788
1789 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1790
1791 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1792 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1793 sizeof(pages[0]));
999c17e3 1794 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 1795
8f05a6a6 1796 /* allocate pages */
d4b95f80 1797 j = 0;
fd1e8a1f 1798 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1799 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1800 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1801 void *ptr;
1802
3cbc8565 1803 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1804 if (!ptr) {
00ae4064
TH
1805 pr_warning("PERCPU: failed to allocate %s page "
1806 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1807 goto enomem;
1808 }
f528f0b8
CM
1809 /* kmemleak tracks the percpu allocations separately */
1810 kmemleak_free(ptr);
ce3141a2 1811 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1812 }
1813
8f05a6a6
TH
1814 /* allocate vm area, map the pages and copy static data */
1815 vm.flags = VM_ALLOC;
fd1e8a1f 1816 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1817 vm_area_register_early(&vm, PAGE_SIZE);
1818
fd1e8a1f 1819 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1820 unsigned long unit_addr =
fd1e8a1f 1821 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1822
ce3141a2 1823 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1824 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1825
1826 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1827 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1828 unit_pages);
1829 if (rc < 0)
1830 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1831
8f05a6a6
TH
1832 /*
1833 * FIXME: Archs with virtual cache should flush local
1834 * cache for the linear mapping here - something
1835 * equivalent to flush_cache_vmap() on the local cpu.
1836 * flush_cache_vmap() can't be used as most supporting
1837 * data structures are not set up yet.
1838 */
1839
1840 /* copy static data */
fd1e8a1f 1841 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1842 }
1843
1844 /* we're ready, commit */
1d9d3257 1845 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1846 unit_pages, psize_str, vm.addr, ai->static_size,
1847 ai->reserved_size, ai->dyn_size);
d4b95f80 1848
fb435d52 1849 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1850 goto out_free_ar;
1851
1852enomem:
1853 while (--j >= 0)
ce3141a2 1854 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1855 rc = -ENOMEM;
d4b95f80 1856out_free_ar:
999c17e3 1857 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 1858 pcpu_free_alloc_info(ai);
fb435d52 1859 return rc;
d4b95f80 1860}
3c9a024f 1861#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1862
bbddff05 1863#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1864/*
bbddff05 1865 * Generic SMP percpu area setup.
e74e3962
TH
1866 *
1867 * The embedding helper is used because its behavior closely resembles
1868 * the original non-dynamic generic percpu area setup. This is
1869 * important because many archs have addressing restrictions and might
1870 * fail if the percpu area is located far away from the previous
1871 * location. As an added bonus, in non-NUMA cases, embedding is
1872 * generally a good idea TLB-wise because percpu area can piggy back
1873 * on the physical linear memory mapping which uses large page
1874 * mappings on applicable archs.
1875 */
e74e3962
TH
1876unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1877EXPORT_SYMBOL(__per_cpu_offset);
1878
c8826dd5
TH
1879static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1880 size_t align)
1881{
999c17e3
SS
1882 return memblock_virt_alloc_from_nopanic(
1883 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 1884}
66c3a757 1885
c8826dd5
TH
1886static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1887{
999c17e3 1888 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
1889}
1890
e74e3962
TH
1891void __init setup_per_cpu_areas(void)
1892{
e74e3962
TH
1893 unsigned long delta;
1894 unsigned int cpu;
fb435d52 1895 int rc;
e74e3962
TH
1896
1897 /*
1898 * Always reserve area for module percpu variables. That's
1899 * what the legacy allocator did.
1900 */
fb435d52 1901 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
1902 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1903 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 1904 if (rc < 0)
bbddff05 1905 panic("Failed to initialize percpu areas.");
e74e3962
TH
1906
1907 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1908 for_each_possible_cpu(cpu)
fb435d52 1909 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 1910}
bbddff05
TH
1911#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1912
1913#else /* CONFIG_SMP */
1914
1915/*
1916 * UP percpu area setup.
1917 *
1918 * UP always uses km-based percpu allocator with identity mapping.
1919 * Static percpu variables are indistinguishable from the usual static
1920 * variables and don't require any special preparation.
1921 */
1922void __init setup_per_cpu_areas(void)
1923{
1924 const size_t unit_size =
1925 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1926 PERCPU_DYNAMIC_RESERVE));
1927 struct pcpu_alloc_info *ai;
1928 void *fc;
1929
1930 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
1931 fc = memblock_virt_alloc_from_nopanic(unit_size,
1932 PAGE_SIZE,
1933 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
1934 if (!ai || !fc)
1935 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
1936 /* kmemleak tracks the percpu allocations separately */
1937 kmemleak_free(fc);
bbddff05
TH
1938
1939 ai->dyn_size = unit_size;
1940 ai->unit_size = unit_size;
1941 ai->atom_size = unit_size;
1942 ai->alloc_size = unit_size;
1943 ai->groups[0].nr_units = 1;
1944 ai->groups[0].cpu_map[0] = 0;
1945
1946 if (pcpu_setup_first_chunk(ai, fc) < 0)
1947 panic("Failed to initialize percpu areas.");
3189eddb
HL
1948
1949 pcpu_free_alloc_info(ai);
bbddff05
TH
1950}
1951
1952#endif /* CONFIG_SMP */
099a19d9
TH
1953
1954/*
1955 * First and reserved chunks are initialized with temporary allocation
1956 * map in initdata so that they can be used before slab is online.
1957 * This function is called after slab is brought up and replaces those
1958 * with properly allocated maps.
1959 */
1960void __init percpu_init_late(void)
1961{
1962 struct pcpu_chunk *target_chunks[] =
1963 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1964 struct pcpu_chunk *chunk;
1965 unsigned long flags;
1966 int i;
1967
1968 for (i = 0; (chunk = target_chunks[i]); i++) {
1969 int *map;
1970 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1971
1972 BUILD_BUG_ON(size > PAGE_SIZE);
1973
90459ce0 1974 map = pcpu_mem_zalloc(size);
099a19d9
TH
1975 BUG_ON(!map);
1976
1977 spin_lock_irqsave(&pcpu_lock, flags);
1978 memcpy(map, chunk->map, size);
1979 chunk->map = map;
1980 spin_unlock_irqrestore(&pcpu_lock, flags);
1981 }
1982}