]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/percpu.c
percpu: update pcpu_find_block_fit to use an iterator
[mirror_ubuntu-jammy-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
ca460b3c 66#include <linux/lcm.h>
fbf59bc9 67#include <linux/list.h>
a530b795 68#include <linux/log2.h>
fbf59bc9
TH
69#include <linux/mm.h>
70#include <linux/module.h>
71#include <linux/mutex.h>
72#include <linux/percpu.h>
73#include <linux/pfn.h>
fbf59bc9 74#include <linux/slab.h>
ccea34b5 75#include <linux/spinlock.h>
fbf59bc9 76#include <linux/vmalloc.h>
a56dbddf 77#include <linux/workqueue.h>
f528f0b8 78#include <linux/kmemleak.h>
fbf59bc9
TH
79
80#include <asm/cacheflush.h>
e0100983 81#include <asm/sections.h>
fbf59bc9 82#include <asm/tlbflush.h>
3b034b0d 83#include <asm/io.h>
fbf59bc9 84
df95e795
DZ
85#define CREATE_TRACE_POINTS
86#include <trace/events/percpu.h>
87
8fa3ed80
DZ
88#include "percpu-internal.h"
89
40064aec
DZF
90/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
91#define PCPU_SLOT_BASE_SHIFT 5
92
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3 184/**
560f2c23
DZF
185 * pcpu_addr_in_chunk - check if the address is served from this chunk
186 * @chunk: chunk of interest
187 * @addr: percpu address
c0ebfdc3
DZF
188 *
189 * RETURNS:
560f2c23 190 * True if the address is served from this chunk.
c0ebfdc3 191 */
560f2c23 192static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 193{
c0ebfdc3
DZF
194 void *start_addr, *end_addr;
195
560f2c23 196 if (!chunk)
c0ebfdc3 197 return false;
020ec653 198
560f2c23
DZF
199 start_addr = chunk->base_addr + chunk->start_offset;
200 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
201 chunk->end_offset;
c0ebfdc3
DZF
202
203 return addr >= start_addr && addr < end_addr;
020ec653
TH
204}
205
d9b55eeb 206static int __pcpu_size_to_slot(int size)
fbf59bc9 207{
cae3aeb8 208 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
209 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
210}
211
d9b55eeb
TH
212static int pcpu_size_to_slot(int size)
213{
214 if (size == pcpu_unit_size)
215 return pcpu_nr_slots - 1;
216 return __pcpu_size_to_slot(size);
217}
218
fbf59bc9
TH
219static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
220{
40064aec 221 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
fbf59bc9
TH
222 return 0;
223
40064aec 224 return pcpu_size_to_slot(chunk->free_bytes);
fbf59bc9
TH
225}
226
88999a89
TH
227/* set the pointer to a chunk in a page struct */
228static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
229{
230 page->index = (unsigned long)pcpu;
231}
232
233/* obtain pointer to a chunk from a page struct */
234static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
235{
236 return (struct pcpu_chunk *)page->index;
237}
238
239static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 240{
2f39e637 241 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
242}
243
c0ebfdc3
DZF
244static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
247}
248
9983b6f0
TH
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
fbf59bc9 251{
c0ebfdc3
DZF
252 return (unsigned long)chunk->base_addr +
253 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
254}
255
91e914c5 256static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 257{
91e914c5
DZF
258 *rs = find_next_zero_bit(bitmap, end, *rs);
259 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
260}
261
91e914c5 262static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 263{
91e914c5
DZF
264 *rs = find_next_bit(bitmap, end, *rs);
265 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
266}
267
268/*
91e914c5
DZF
269 * Bitmap region iterators. Iterates over the bitmap between
270 * [@start, @end) in @chunk. @rs and @re should be integer variables
271 * and will be set to start and end index of the current free region.
ce3141a2 272 */
91e914c5
DZF
273#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
274 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
275 (rs) < (re); \
276 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 277
91e914c5
DZF
278#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 282
ca460b3c
DZF
283/*
284 * The following are helper functions to help access bitmaps and convert
285 * between bitmap offsets to address offsets.
286 */
287static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
288{
289 return chunk->alloc_map +
290 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
291}
292
293static unsigned long pcpu_off_to_block_index(int off)
294{
295 return off / PCPU_BITMAP_BLOCK_BITS;
296}
297
298static unsigned long pcpu_off_to_block_off(int off)
299{
300 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
301}
302
b185cd0d
DZF
303static unsigned long pcpu_block_off_to_off(int index, int off)
304{
305 return index * PCPU_BITMAP_BLOCK_BITS + off;
306}
307
525ca84d
DZF
308/**
309 * pcpu_next_md_free_region - finds the next hint free area
310 * @chunk: chunk of interest
311 * @bit_off: chunk offset
312 * @bits: size of free area
313 *
314 * Helper function for pcpu_for_each_md_free_region. It checks
315 * block->contig_hint and performs aggregation across blocks to find the
316 * next hint. It modifies bit_off and bits in-place to be consumed in the
317 * loop.
318 */
319static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
320 int *bits)
321{
322 int i = pcpu_off_to_block_index(*bit_off);
323 int block_off = pcpu_off_to_block_off(*bit_off);
324 struct pcpu_block_md *block;
325
326 *bits = 0;
327 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
328 block++, i++) {
329 /* handles contig area across blocks */
330 if (*bits) {
331 *bits += block->left_free;
332 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
333 continue;
334 return;
335 }
336
337 /*
338 * This checks three things. First is there a contig_hint to
339 * check. Second, have we checked this hint before by
340 * comparing the block_off. Third, is this the same as the
341 * right contig hint. In the last case, it spills over into
342 * the next block and should be handled by the contig area
343 * across blocks code.
344 */
345 *bits = block->contig_hint;
346 if (*bits && block->contig_hint_start >= block_off &&
347 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
348 *bit_off = pcpu_block_off_to_off(i,
349 block->contig_hint_start);
350 return;
351 }
352
353 *bits = block->right_free;
354 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
355 }
356}
357
b4c2116c
DZF
358/**
359 * pcpu_next_fit_region - finds fit areas for a given allocation request
360 * @chunk: chunk of interest
361 * @alloc_bits: size of allocation
362 * @align: alignment of area (max PAGE_SIZE)
363 * @bit_off: chunk offset
364 * @bits: size of free area
365 *
366 * Finds the next free region that is viable for use with a given size and
367 * alignment. This only returns if there is a valid area to be used for this
368 * allocation. block->first_free is returned if the allocation request fits
369 * within the block to see if the request can be fulfilled prior to the contig
370 * hint.
371 */
372static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
373 int align, int *bit_off, int *bits)
374{
375 int i = pcpu_off_to_block_index(*bit_off);
376 int block_off = pcpu_off_to_block_off(*bit_off);
377 struct pcpu_block_md *block;
378
379 *bits = 0;
380 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
381 block++, i++) {
382 /* handles contig area across blocks */
383 if (*bits) {
384 *bits += block->left_free;
385 if (*bits >= alloc_bits)
386 return;
387 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
388 continue;
389 }
390
391 /* check block->contig_hint */
392 *bits = ALIGN(block->contig_hint_start, align) -
393 block->contig_hint_start;
394 /*
395 * This uses the block offset to determine if this has been
396 * checked in the prior iteration.
397 */
398 if (block->contig_hint &&
399 block->contig_hint_start >= block_off &&
400 block->contig_hint >= *bits + alloc_bits) {
401 *bits += alloc_bits + block->contig_hint_start -
402 block->first_free;
403 *bit_off = pcpu_block_off_to_off(i, block->first_free);
404 return;
405 }
406
407 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
408 align);
409 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
410 *bit_off = pcpu_block_off_to_off(i, *bit_off);
411 if (*bits >= alloc_bits)
412 return;
413 }
414
415 /* no valid offsets were found - fail condition */
416 *bit_off = pcpu_chunk_map_bits(chunk);
417}
418
525ca84d
DZF
419/*
420 * Metadata free area iterators. These perform aggregation of free areas
421 * based on the metadata blocks and return the offset @bit_off and size in
b4c2116c
DZF
422 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
423 * a fit is found for the allocation request.
525ca84d
DZF
424 */
425#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
426 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
427 (bit_off) < pcpu_chunk_map_bits((chunk)); \
428 (bit_off) += (bits) + 1, \
429 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
430
b4c2116c
DZF
431#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
432 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
433 &(bits)); \
434 (bit_off) < pcpu_chunk_map_bits((chunk)); \
435 (bit_off) += (bits), \
436 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
437 &(bits)))
438
fbf59bc9 439/**
90459ce0 440 * pcpu_mem_zalloc - allocate memory
1880d93b 441 * @size: bytes to allocate
fbf59bc9 442 *
1880d93b 443 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 444 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 445 * memory is always zeroed.
fbf59bc9 446 *
ccea34b5
TH
447 * CONTEXT:
448 * Does GFP_KERNEL allocation.
449 *
fbf59bc9 450 * RETURNS:
1880d93b 451 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 452 */
90459ce0 453static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 454{
099a19d9
TH
455 if (WARN_ON_ONCE(!slab_is_available()))
456 return NULL;
457
1880d93b
TH
458 if (size <= PAGE_SIZE)
459 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
460 else
461 return vzalloc(size);
1880d93b 462}
fbf59bc9 463
1880d93b
TH
464/**
465 * pcpu_mem_free - free memory
466 * @ptr: memory to free
1880d93b 467 *
90459ce0 468 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 469 */
1d5cfdb0 470static void pcpu_mem_free(void *ptr)
1880d93b 471{
1d5cfdb0 472 kvfree(ptr);
fbf59bc9
TH
473}
474
475/**
476 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
477 * @chunk: chunk of interest
478 * @oslot: the previous slot it was on
479 *
480 * This function is called after an allocation or free changed @chunk.
481 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
482 * moved to the slot. Note that the reserved chunk is never put on
483 * chunk slots.
ccea34b5
TH
484 *
485 * CONTEXT:
486 * pcpu_lock.
fbf59bc9
TH
487 */
488static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
489{
490 int nslot = pcpu_chunk_slot(chunk);
491
edcb4639 492 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
493 if (oslot < nslot)
494 list_move(&chunk->list, &pcpu_slot[nslot]);
495 else
496 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
497 }
498}
499
9f7dcf22 500/**
40064aec 501 * pcpu_cnt_pop_pages- counts populated backing pages in range
833af842 502 * @chunk: chunk of interest
40064aec
DZF
503 * @bit_off: start offset
504 * @bits: size of area to check
9f7dcf22 505 *
40064aec
DZF
506 * Calculates the number of populated pages in the region
507 * [page_start, page_end). This keeps track of how many empty populated
508 * pages are available and decide if async work should be scheduled.
ccea34b5 509 *
9f7dcf22 510 * RETURNS:
40064aec 511 * The nr of populated pages.
9f7dcf22 512 */
40064aec
DZF
513static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
514 int bits)
9f7dcf22 515{
40064aec
DZF
516 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
517 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
4f996e23 518
40064aec 519 if (page_start >= page_end)
9f7dcf22
TH
520 return 0;
521
40064aec
DZF
522 /*
523 * bitmap_weight counts the number of bits set in a bitmap up to
524 * the specified number of bits. This is counting the populated
525 * pages up to page_end and then subtracting the populated pages
526 * up to page_start to count the populated pages in
527 * [page_start, page_end).
528 */
529 return bitmap_weight(chunk->populated, page_end) -
530 bitmap_weight(chunk->populated, page_start);
833af842
TH
531}
532
533/**
40064aec 534 * pcpu_chunk_update - updates the chunk metadata given a free area
833af842 535 * @chunk: chunk of interest
40064aec
DZF
536 * @bit_off: chunk offset
537 * @bits: size of free area
833af842 538 *
13f96637 539 * This updates the chunk's contig hint and starting offset given a free area.
268625a6 540 * Choose the best starting offset if the contig hint is equal.
40064aec
DZF
541 */
542static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
543{
13f96637
DZF
544 if (bits > chunk->contig_bits) {
545 chunk->contig_bits_start = bit_off;
40064aec 546 chunk->contig_bits = bits;
268625a6
DZF
547 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
548 (!bit_off ||
549 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
550 /* use the start with the best alignment */
551 chunk->contig_bits_start = bit_off;
13f96637 552 }
40064aec
DZF
553}
554
555/**
556 * pcpu_chunk_refresh_hint - updates metadata about a chunk
557 * @chunk: chunk of interest
833af842 558 *
525ca84d
DZF
559 * Iterates over the metadata blocks to find the largest contig area.
560 * It also counts the populated pages and uses the delta to update the
561 * global count.
833af842 562 *
40064aec
DZF
563 * Updates:
564 * chunk->contig_bits
13f96637 565 * chunk->contig_bits_start
525ca84d 566 * nr_empty_pop_pages (chunk and global)
833af842 567 */
40064aec 568static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
833af842 569{
525ca84d 570 int bit_off, bits, nr_empty_pop_pages;
833af842 571
40064aec
DZF
572 /* clear metadata */
573 chunk->contig_bits = 0;
6710e594 574
525ca84d 575 bit_off = chunk->first_bit;
40064aec 576 bits = nr_empty_pop_pages = 0;
525ca84d
DZF
577 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
578 pcpu_chunk_update(chunk, bit_off, bits);
833af842 579
525ca84d 580 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
40064aec 581 }
9f7dcf22 582
40064aec
DZF
583 /*
584 * Keep track of nr_empty_pop_pages.
585 *
586 * The chunk maintains the previous number of free pages it held,
587 * so the delta is used to update the global counter. The reserved
588 * chunk is not part of the free page count as they are populated
589 * at init and are special to serving reserved allocations.
590 */
591 if (chunk != pcpu_reserved_chunk)
592 pcpu_nr_empty_pop_pages +=
593 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
a002d148 594
40064aec
DZF
595 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
596}
9f7dcf22 597
ca460b3c
DZF
598/**
599 * pcpu_block_update - updates a block given a free area
600 * @block: block of interest
601 * @start: start offset in block
602 * @end: end offset in block
603 *
604 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
605 * expected to be the entirety of the free area within a block. Chooses
606 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
607 */
608static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
609{
610 int contig = end - start;
611
612 block->first_free = min(block->first_free, start);
613 if (start == 0)
614 block->left_free = contig;
615
616 if (end == PCPU_BITMAP_BLOCK_BITS)
617 block->right_free = contig;
618
619 if (contig > block->contig_hint) {
620 block->contig_hint_start = start;
621 block->contig_hint = contig;
268625a6
DZF
622 } else if (block->contig_hint_start && contig == block->contig_hint &&
623 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
624 /* use the start with the best alignment */
625 block->contig_hint_start = start;
ca460b3c
DZF
626 }
627}
628
629/**
630 * pcpu_block_refresh_hint
631 * @chunk: chunk of interest
632 * @index: index of the metadata block
633 *
634 * Scans over the block beginning at first_free and updates the block
635 * metadata accordingly.
636 */
637static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
638{
639 struct pcpu_block_md *block = chunk->md_blocks + index;
640 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
641 int rs, re; /* region start, region end */
642
643 /* clear hints */
644 block->contig_hint = 0;
645 block->left_free = block->right_free = 0;
646
647 /* iterate over free areas and update the contig hints */
648 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
649 PCPU_BITMAP_BLOCK_BITS) {
650 pcpu_block_update(block, rs, re);
651 }
652}
653
654/**
655 * pcpu_block_update_hint_alloc - update hint on allocation path
656 * @chunk: chunk of interest
657 * @bit_off: chunk offset
658 * @bits: size of request
fc304334
DZF
659 *
660 * Updates metadata for the allocation path. The metadata only has to be
661 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
662 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
663 */
664static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
665 int bits)
666{
667 struct pcpu_block_md *s_block, *e_block, *block;
668 int s_index, e_index; /* block indexes of the freed allocation */
669 int s_off, e_off; /* block offsets of the freed allocation */
670
671 /*
672 * Calculate per block offsets.
673 * The calculation uses an inclusive range, but the resulting offsets
674 * are [start, end). e_index always points to the last block in the
675 * range.
676 */
677 s_index = pcpu_off_to_block_index(bit_off);
678 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
679 s_off = pcpu_off_to_block_off(bit_off);
680 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
681
682 s_block = chunk->md_blocks + s_index;
683 e_block = chunk->md_blocks + e_index;
684
685 /*
686 * Update s_block.
fc304334
DZF
687 * block->first_free must be updated if the allocation takes its place.
688 * If the allocation breaks the contig_hint, a scan is required to
689 * restore this hint.
ca460b3c 690 */
fc304334
DZF
691 if (s_off == s_block->first_free)
692 s_block->first_free = find_next_zero_bit(
693 pcpu_index_alloc_map(chunk, s_index),
694 PCPU_BITMAP_BLOCK_BITS,
695 s_off + bits);
696
697 if (s_off >= s_block->contig_hint_start &&
698 s_off < s_block->contig_hint_start + s_block->contig_hint) {
699 /* block contig hint is broken - scan to fix it */
700 pcpu_block_refresh_hint(chunk, s_index);
701 } else {
702 /* update left and right contig manually */
703 s_block->left_free = min(s_block->left_free, s_off);
704 if (s_index == e_index)
705 s_block->right_free = min_t(int, s_block->right_free,
706 PCPU_BITMAP_BLOCK_BITS - e_off);
707 else
708 s_block->right_free = 0;
709 }
ca460b3c
DZF
710
711 /*
712 * Update e_block.
713 */
714 if (s_index != e_index) {
fc304334
DZF
715 /*
716 * When the allocation is across blocks, the end is along
717 * the left part of the e_block.
718 */
719 e_block->first_free = find_next_zero_bit(
720 pcpu_index_alloc_map(chunk, e_index),
721 PCPU_BITMAP_BLOCK_BITS, e_off);
722
723 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
724 /* reset the block */
725 e_block++;
726 } else {
727 if (e_off > e_block->contig_hint_start) {
728 /* contig hint is broken - scan to fix it */
729 pcpu_block_refresh_hint(chunk, e_index);
730 } else {
731 e_block->left_free = 0;
732 e_block->right_free =
733 min_t(int, e_block->right_free,
734 PCPU_BITMAP_BLOCK_BITS - e_off);
735 }
736 }
ca460b3c
DZF
737
738 /* update in-between md_blocks */
739 for (block = s_block + 1; block < e_block; block++) {
740 block->contig_hint = 0;
741 block->left_free = 0;
742 block->right_free = 0;
743 }
744 }
745
fc304334
DZF
746 /*
747 * The only time a full chunk scan is required is if the chunk
748 * contig hint is broken. Otherwise, it means a smaller space
749 * was used and therefore the chunk contig hint is still correct.
750 */
751 if (bit_off >= chunk->contig_bits_start &&
752 bit_off < chunk->contig_bits_start + chunk->contig_bits)
753 pcpu_chunk_refresh_hint(chunk);
ca460b3c
DZF
754}
755
756/**
757 * pcpu_block_update_hint_free - updates the block hints on the free path
758 * @chunk: chunk of interest
759 * @bit_off: chunk offset
760 * @bits: size of request
b185cd0d
DZF
761 *
762 * Updates metadata for the allocation path. This avoids a blind block
763 * refresh by making use of the block contig hints. If this fails, it scans
764 * forward and backward to determine the extent of the free area. This is
765 * capped at the boundary of blocks.
766 *
767 * A chunk update is triggered if a page becomes free, a block becomes free,
768 * or the free spans across blocks. This tradeoff is to minimize iterating
769 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
770 * may be off by up to a page, but it will never be more than the available
771 * space. If the contig hint is contained in one block, it will be accurate.
ca460b3c
DZF
772 */
773static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
774 int bits)
775{
776 struct pcpu_block_md *s_block, *e_block, *block;
777 int s_index, e_index; /* block indexes of the freed allocation */
778 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 779 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
780
781 /*
782 * Calculate per block offsets.
783 * The calculation uses an inclusive range, but the resulting offsets
784 * are [start, end). e_index always points to the last block in the
785 * range.
786 */
787 s_index = pcpu_off_to_block_index(bit_off);
788 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
789 s_off = pcpu_off_to_block_off(bit_off);
790 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
791
792 s_block = chunk->md_blocks + s_index;
793 e_block = chunk->md_blocks + e_index;
794
b185cd0d
DZF
795 /*
796 * Check if the freed area aligns with the block->contig_hint.
797 * If it does, then the scan to find the beginning/end of the
798 * larger free area can be avoided.
799 *
800 * start and end refer to beginning and end of the free area
801 * within each their respective blocks. This is not necessarily
802 * the entire free area as it may span blocks past the beginning
803 * or end of the block.
804 */
805 start = s_off;
806 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
807 start = s_block->contig_hint_start;
808 } else {
809 /*
810 * Scan backwards to find the extent of the free area.
811 * find_last_bit returns the starting bit, so if the start bit
812 * is returned, that means there was no last bit and the
813 * remainder of the chunk is free.
814 */
815 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
816 start);
817 start = (start == l_bit) ? 0 : l_bit + 1;
818 }
819
820 end = e_off;
821 if (e_off == e_block->contig_hint_start)
822 end = e_block->contig_hint_start + e_block->contig_hint;
823 else
824 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
825 PCPU_BITMAP_BLOCK_BITS, end);
826
ca460b3c 827 /* update s_block */
b185cd0d
DZF
828 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
829 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
830
831 /* freeing in the same block */
832 if (s_index != e_index) {
833 /* update e_block */
b185cd0d 834 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
835
836 /* reset md_blocks in the middle */
837 for (block = s_block + 1; block < e_block; block++) {
838 block->first_free = 0;
839 block->contig_hint_start = 0;
840 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
841 block->left_free = PCPU_BITMAP_BLOCK_BITS;
842 block->right_free = PCPU_BITMAP_BLOCK_BITS;
843 }
844 }
845
b185cd0d
DZF
846 /*
847 * Refresh chunk metadata when the free makes a page free, a block
848 * free, or spans across blocks. The contig hint may be off by up to
849 * a page, but if the hint is contained in a block, it will be accurate
850 * with the else condition below.
851 */
852 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
853 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
854 s_index != e_index)
855 pcpu_chunk_refresh_hint(chunk);
856 else
857 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
858 s_block->contig_hint);
ca460b3c
DZF
859}
860
40064aec
DZF
861/**
862 * pcpu_is_populated - determines if the region is populated
863 * @chunk: chunk of interest
864 * @bit_off: chunk offset
865 * @bits: size of area
866 * @next_off: return value for the next offset to start searching
867 *
868 * For atomic allocations, check if the backing pages are populated.
869 *
870 * RETURNS:
871 * Bool if the backing pages are populated.
872 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
873 */
874static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
875 int *next_off)
876{
877 int page_start, page_end, rs, re;
833af842 878
40064aec
DZF
879 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
880 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 881
40064aec
DZF
882 rs = page_start;
883 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
884 if (rs >= page_end)
885 return true;
833af842 886
40064aec
DZF
887 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
888 return false;
9f7dcf22
TH
889}
890
a16037c8 891/**
40064aec
DZF
892 * pcpu_find_block_fit - finds the block index to start searching
893 * @chunk: chunk of interest
894 * @alloc_bits: size of request in allocation units
895 * @align: alignment of area (max PAGE_SIZE bytes)
896 * @pop_only: use populated regions only
897 *
b4c2116c
DZF
898 * Given a chunk and an allocation spec, find the offset to begin searching
899 * for a free region. This iterates over the bitmap metadata blocks to
900 * find an offset that will be guaranteed to fit the requirements. It is
901 * not quite first fit as if the allocation does not fit in the contig hint
902 * of a block or chunk, it is skipped. This errs on the side of caution
903 * to prevent excess iteration. Poor alignment can cause the allocator to
904 * skip over blocks and chunks that have valid free areas.
905 *
40064aec
DZF
906 * RETURNS:
907 * The offset in the bitmap to begin searching.
908 * -1 if no offset is found.
a16037c8 909 */
40064aec
DZF
910static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
911 size_t align, bool pop_only)
a16037c8 912{
b4c2116c 913 int bit_off, bits, next_off;
a16037c8 914
13f96637
DZF
915 /*
916 * Check to see if the allocation can fit in the chunk's contig hint.
917 * This is an optimization to prevent scanning by assuming if it
918 * cannot fit in the global hint, there is memory pressure and creating
919 * a new chunk would happen soon.
920 */
921 bit_off = ALIGN(chunk->contig_bits_start, align) -
922 chunk->contig_bits_start;
923 if (bit_off + alloc_bits > chunk->contig_bits)
924 return -1;
925
b4c2116c
DZF
926 bit_off = chunk->first_bit;
927 bits = 0;
928 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
40064aec 929 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
b4c2116c 930 &next_off))
40064aec 931 break;
a16037c8 932
b4c2116c 933 bit_off = next_off;
40064aec 934 bits = 0;
a16037c8 935 }
40064aec
DZF
936
937 if (bit_off == pcpu_chunk_map_bits(chunk))
938 return -1;
939
940 return bit_off;
a16037c8
TH
941}
942
fbf59bc9 943/**
40064aec 944 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 945 * @chunk: chunk of interest
40064aec
DZF
946 * @alloc_bits: size of request in allocation units
947 * @align: alignment of area (max PAGE_SIZE)
948 * @start: bit_off to start searching
9f7dcf22 949 *
40064aec 950 * This function takes in a @start offset to begin searching to fit an
b4c2116c
DZF
951 * allocation of @alloc_bits with alignment @align. It needs to scan
952 * the allocation map because if it fits within the block's contig hint,
953 * @start will be block->first_free. This is an attempt to fill the
954 * allocation prior to breaking the contig hint. The allocation and
955 * boundary maps are updated accordingly if it confirms a valid
956 * free area.
ccea34b5 957 *
fbf59bc9 958 * RETURNS:
40064aec
DZF
959 * Allocated addr offset in @chunk on success.
960 * -1 if no matching area is found.
fbf59bc9 961 */
40064aec
DZF
962static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
963 size_t align, int start)
fbf59bc9 964{
40064aec
DZF
965 size_t align_mask = (align) ? (align - 1) : 0;
966 int bit_off, end, oslot;
a16037c8 967
40064aec 968 lockdep_assert_held(&pcpu_lock);
fbf59bc9 969
40064aec 970 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 971
40064aec
DZF
972 /*
973 * Search to find a fit.
974 */
b4c2116c 975 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
40064aec
DZF
976 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
977 alloc_bits, align_mask);
978 if (bit_off >= end)
979 return -1;
fbf59bc9 980
40064aec
DZF
981 /* update alloc map */
982 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 983
40064aec
DZF
984 /* update boundary map */
985 set_bit(bit_off, chunk->bound_map);
986 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
987 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 988
40064aec 989 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 990
86b442fb
DZF
991 /* update first free bit */
992 if (bit_off == chunk->first_bit)
993 chunk->first_bit = find_next_zero_bit(
994 chunk->alloc_map,
995 pcpu_chunk_map_bits(chunk),
996 bit_off + alloc_bits);
997
ca460b3c 998 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 999
fbf59bc9
TH
1000 pcpu_chunk_relocate(chunk, oslot);
1001
40064aec 1002 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
1003}
1004
1005/**
40064aec 1006 * pcpu_free_area - frees the corresponding offset
fbf59bc9 1007 * @chunk: chunk of interest
40064aec 1008 * @off: addr offset into chunk
ccea34b5 1009 *
40064aec
DZF
1010 * This function determines the size of an allocation to free using
1011 * the boundary bitmap and clears the allocation map.
fbf59bc9 1012 */
40064aec 1013static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 1014{
40064aec 1015 int bit_off, bits, end, oslot;
723ad1d9 1016
5ccd30e4 1017 lockdep_assert_held(&pcpu_lock);
30a5b536 1018 pcpu_stats_area_dealloc(chunk);
5ccd30e4 1019
40064aec 1020 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1021
40064aec 1022 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 1023
40064aec
DZF
1024 /* find end index */
1025 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1026 bit_off + 1);
1027 bits = end - bit_off;
1028 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 1029
40064aec
DZF
1030 /* update metadata */
1031 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
b539b87f 1032
86b442fb
DZF
1033 /* update first free bit */
1034 chunk->first_bit = min(chunk->first_bit, bit_off);
1035
ca460b3c 1036 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 1037
fbf59bc9
TH
1038 pcpu_chunk_relocate(chunk, oslot);
1039}
1040
ca460b3c
DZF
1041static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1042{
1043 struct pcpu_block_md *md_block;
1044
1045 for (md_block = chunk->md_blocks;
1046 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1047 md_block++) {
1048 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1049 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1050 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1051 }
1052}
1053
40064aec
DZF
1054/**
1055 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1056 * @tmp_addr: the start of the region served
1057 * @map_size: size of the region served
1058 *
1059 * This is responsible for creating the chunks that serve the first chunk. The
1060 * base_addr is page aligned down of @tmp_addr while the region end is page
1061 * aligned up. Offsets are kept track of to determine the region served. All
1062 * this is done to appease the bitmap allocator in avoiding partial blocks.
1063 *
1064 * RETURNS:
1065 * Chunk serving the region at @tmp_addr of @map_size.
1066 */
c0ebfdc3 1067static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 1068 int map_size)
10edf5b0
DZF
1069{
1070 struct pcpu_chunk *chunk;
ca460b3c 1071 unsigned long aligned_addr, lcm_align;
40064aec 1072 int start_offset, offset_bits, region_size, region_bits;
c0ebfdc3
DZF
1073
1074 /* region calculations */
1075 aligned_addr = tmp_addr & PAGE_MASK;
1076
1077 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1078
ca460b3c
DZF
1079 /*
1080 * Align the end of the region with the LCM of PAGE_SIZE and
1081 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1082 * the other.
1083 */
1084 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1085 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1086
c0ebfdc3 1087 /* allocate chunk */
8ab16c43
DZF
1088 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1089 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1090 0);
c0ebfdc3 1091
10edf5b0 1092 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1093
1094 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1095 chunk->start_offset = start_offset;
6b9d7c8e 1096 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1097
8ab16c43 1098 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1099 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1100
ca460b3c
DZF
1101 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1102 sizeof(chunk->alloc_map[0]), 0);
1103 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1104 sizeof(chunk->bound_map[0]), 0);
1105 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1106 sizeof(chunk->md_blocks[0]), 0);
1107 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1108
1109 /* manage populated page bitmap */
1110 chunk->immutable = true;
8ab16c43
DZF
1111 bitmap_fill(chunk->populated, chunk->nr_pages);
1112 chunk->nr_populated = chunk->nr_pages;
40064aec
DZF
1113 chunk->nr_empty_pop_pages =
1114 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1115 map_size / PCPU_MIN_ALLOC_SIZE);
10edf5b0 1116
40064aec
DZF
1117 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1118 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1119
1120 if (chunk->start_offset) {
1121 /* hide the beginning of the bitmap */
40064aec
DZF
1122 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1123 bitmap_set(chunk->alloc_map, 0, offset_bits);
1124 set_bit(0, chunk->bound_map);
1125 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1126
86b442fb
DZF
1127 chunk->first_bit = offset_bits;
1128
ca460b3c 1129 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1130 }
1131
6b9d7c8e
DZF
1132 if (chunk->end_offset) {
1133 /* hide the end of the bitmap */
40064aec
DZF
1134 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1135 bitmap_set(chunk->alloc_map,
1136 pcpu_chunk_map_bits(chunk) - offset_bits,
1137 offset_bits);
1138 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1139 chunk->bound_map);
1140 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1141
ca460b3c
DZF
1142 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1143 - offset_bits, offset_bits);
1144 }
40064aec 1145
10edf5b0
DZF
1146 return chunk;
1147}
1148
6081089f
TH
1149static struct pcpu_chunk *pcpu_alloc_chunk(void)
1150{
1151 struct pcpu_chunk *chunk;
40064aec 1152 int region_bits;
6081089f 1153
90459ce0 1154 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
1155 if (!chunk)
1156 return NULL;
1157
40064aec
DZF
1158 INIT_LIST_HEAD(&chunk->list);
1159 chunk->nr_pages = pcpu_unit_pages;
1160 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1161
40064aec
DZF
1162 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1163 sizeof(chunk->alloc_map[0]));
1164 if (!chunk->alloc_map)
1165 goto alloc_map_fail;
6081089f 1166
40064aec
DZF
1167 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1168 sizeof(chunk->bound_map[0]));
1169 if (!chunk->bound_map)
1170 goto bound_map_fail;
6081089f 1171
ca460b3c
DZF
1172 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1173 sizeof(chunk->md_blocks[0]));
1174 if (!chunk->md_blocks)
1175 goto md_blocks_fail;
1176
1177 pcpu_init_md_blocks(chunk);
1178
40064aec
DZF
1179 /* init metadata */
1180 chunk->contig_bits = region_bits;
1181 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1182
6081089f 1183 return chunk;
40064aec 1184
ca460b3c
DZF
1185md_blocks_fail:
1186 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1187bound_map_fail:
1188 pcpu_mem_free(chunk->alloc_map);
1189alloc_map_fail:
1190 pcpu_mem_free(chunk);
1191
1192 return NULL;
6081089f
TH
1193}
1194
1195static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1196{
1197 if (!chunk)
1198 return;
40064aec
DZF
1199 pcpu_mem_free(chunk->bound_map);
1200 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1201 pcpu_mem_free(chunk);
6081089f
TH
1202}
1203
b539b87f
TH
1204/**
1205 * pcpu_chunk_populated - post-population bookkeeping
1206 * @chunk: pcpu_chunk which got populated
1207 * @page_start: the start page
1208 * @page_end: the end page
40064aec 1209 * @for_alloc: if this is to populate for allocation
b539b87f
TH
1210 *
1211 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1212 * the bookkeeping information accordingly. Must be called after each
1213 * successful population.
40064aec
DZF
1214 *
1215 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1216 * is to serve an allocation in that area.
b539b87f 1217 */
40064aec
DZF
1218static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1219 int page_end, bool for_alloc)
b539b87f
TH
1220{
1221 int nr = page_end - page_start;
1222
1223 lockdep_assert_held(&pcpu_lock);
1224
1225 bitmap_set(chunk->populated, page_start, nr);
1226 chunk->nr_populated += nr;
40064aec
DZF
1227
1228 if (!for_alloc) {
1229 chunk->nr_empty_pop_pages += nr;
1230 pcpu_nr_empty_pop_pages += nr;
1231 }
b539b87f
TH
1232}
1233
1234/**
1235 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1236 * @chunk: pcpu_chunk which got depopulated
1237 * @page_start: the start page
1238 * @page_end: the end page
1239 *
1240 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1241 * Update the bookkeeping information accordingly. Must be called after
1242 * each successful depopulation.
1243 */
1244static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1245 int page_start, int page_end)
1246{
1247 int nr = page_end - page_start;
1248
1249 lockdep_assert_held(&pcpu_lock);
1250
1251 bitmap_clear(chunk->populated, page_start, nr);
1252 chunk->nr_populated -= nr;
0cecf50c 1253 chunk->nr_empty_pop_pages -= nr;
b539b87f
TH
1254 pcpu_nr_empty_pop_pages -= nr;
1255}
1256
9f645532
TH
1257/*
1258 * Chunk management implementation.
1259 *
1260 * To allow different implementations, chunk alloc/free and
1261 * [de]population are implemented in a separate file which is pulled
1262 * into this file and compiled together. The following functions
1263 * should be implemented.
1264 *
1265 * pcpu_populate_chunk - populate the specified range of a chunk
1266 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1267 * pcpu_create_chunk - create a new chunk
1268 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1269 * pcpu_addr_to_page - translate address to physical address
1270 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1271 */
9f645532
TH
1272static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
1273static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1274static struct pcpu_chunk *pcpu_create_chunk(void);
1275static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1276static struct page *pcpu_addr_to_page(void *addr);
1277static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1278
b0c9778b
TH
1279#ifdef CONFIG_NEED_PER_CPU_KM
1280#include "percpu-km.c"
1281#else
9f645532 1282#include "percpu-vm.c"
b0c9778b 1283#endif
fbf59bc9 1284
88999a89
TH
1285/**
1286 * pcpu_chunk_addr_search - determine chunk containing specified address
1287 * @addr: address for which the chunk needs to be determined.
1288 *
c0ebfdc3
DZF
1289 * This is an internal function that handles all but static allocations.
1290 * Static percpu address values should never be passed into the allocator.
1291 *
88999a89
TH
1292 * RETURNS:
1293 * The address of the found chunk.
1294 */
1295static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1296{
c0ebfdc3 1297 /* is it in the dynamic region (first chunk)? */
560f2c23 1298 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1299 return pcpu_first_chunk;
c0ebfdc3
DZF
1300
1301 /* is it in the reserved region? */
560f2c23 1302 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1303 return pcpu_reserved_chunk;
88999a89
TH
1304
1305 /*
1306 * The address is relative to unit0 which might be unused and
1307 * thus unmapped. Offset the address to the unit space of the
1308 * current processor before looking it up in the vmalloc
1309 * space. Note that any possible cpu id can be used here, so
1310 * there's no need to worry about preemption or cpu hotplug.
1311 */
1312 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1313 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1314}
1315
fbf59bc9 1316/**
edcb4639 1317 * pcpu_alloc - the percpu allocator
cae3aeb8 1318 * @size: size of area to allocate in bytes
fbf59bc9 1319 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1320 * @reserved: allocate from the reserved chunk if available
5835d96e 1321 * @gfp: allocation flags
fbf59bc9 1322 *
5835d96e
TH
1323 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1324 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
1325 *
1326 * RETURNS:
1327 * Percpu pointer to the allocated area on success, NULL on failure.
1328 */
5835d96e
TH
1329static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1330 gfp_t gfp)
fbf59bc9 1331{
f2badb0c 1332 static int warn_limit = 10;
fbf59bc9 1333 struct pcpu_chunk *chunk;
f2badb0c 1334 const char *err;
6ae833c7 1335 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
40064aec 1336 int slot, off, cpu, ret;
403a91b1 1337 unsigned long flags;
f528f0b8 1338 void __percpu *ptr;
40064aec 1339 size_t bits, bit_align;
fbf59bc9 1340
723ad1d9 1341 /*
40064aec
DZF
1342 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1343 * therefore alignment must be a minimum of that many bytes.
1344 * An allocation may have internal fragmentation from rounding up
1345 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1346 */
d2f3c384
DZF
1347 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1348 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1349
d2f3c384 1350 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1351 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1352 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1353
3ca45a46 1354 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1355 !is_power_of_2(align))) {
756a025f
JP
1356 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1357 size, align);
fbf59bc9
TH
1358 return NULL;
1359 }
1360
6710e594
TH
1361 if (!is_atomic)
1362 mutex_lock(&pcpu_alloc_mutex);
1363
403a91b1 1364 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1365
edcb4639
TH
1366 /* serve reserved allocations from the reserved chunk if available */
1367 if (reserved && pcpu_reserved_chunk) {
1368 chunk = pcpu_reserved_chunk;
833af842 1369
40064aec
DZF
1370 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1371 if (off < 0) {
833af842 1372 err = "alloc from reserved chunk failed";
ccea34b5 1373 goto fail_unlock;
f2badb0c 1374 }
833af842 1375
40064aec 1376 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1377 if (off >= 0)
1378 goto area_found;
833af842 1379
f2badb0c 1380 err = "alloc from reserved chunk failed";
ccea34b5 1381 goto fail_unlock;
edcb4639
TH
1382 }
1383
ccea34b5 1384restart:
edcb4639 1385 /* search through normal chunks */
fbf59bc9
TH
1386 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1387 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
40064aec
DZF
1388 off = pcpu_find_block_fit(chunk, bits, bit_align,
1389 is_atomic);
1390 if (off < 0)
fbf59bc9 1391 continue;
ccea34b5 1392
40064aec 1393 off = pcpu_alloc_area(chunk, bits, bit_align, off);
fbf59bc9
TH
1394 if (off >= 0)
1395 goto area_found;
40064aec 1396
fbf59bc9
TH
1397 }
1398 }
1399
403a91b1 1400 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1401
b38d08f3
TH
1402 /*
1403 * No space left. Create a new chunk. We don't want multiple
1404 * tasks to create chunks simultaneously. Serialize and create iff
1405 * there's still no empty chunk after grabbing the mutex.
1406 */
11df02bf
DZ
1407 if (is_atomic) {
1408 err = "atomic alloc failed, no space left";
5835d96e 1409 goto fail;
11df02bf 1410 }
5835d96e 1411
b38d08f3
TH
1412 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1413 chunk = pcpu_create_chunk();
1414 if (!chunk) {
1415 err = "failed to allocate new chunk";
1416 goto fail;
1417 }
1418
1419 spin_lock_irqsave(&pcpu_lock, flags);
1420 pcpu_chunk_relocate(chunk, -1);
1421 } else {
1422 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1423 }
ccea34b5 1424
ccea34b5 1425 goto restart;
fbf59bc9
TH
1426
1427area_found:
30a5b536 1428 pcpu_stats_area_alloc(chunk, size);
403a91b1 1429 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1430
dca49645 1431 /* populate if not all pages are already there */
5835d96e 1432 if (!is_atomic) {
e04d3208 1433 int page_start, page_end, rs, re;
dca49645 1434
e04d3208
TH
1435 page_start = PFN_DOWN(off);
1436 page_end = PFN_UP(off + size);
b38d08f3 1437
91e914c5
DZF
1438 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1439 page_start, page_end) {
e04d3208
TH
1440 WARN_ON(chunk->immutable);
1441
1442 ret = pcpu_populate_chunk(chunk, rs, re);
1443
1444 spin_lock_irqsave(&pcpu_lock, flags);
1445 if (ret) {
40064aec 1446 pcpu_free_area(chunk, off);
e04d3208
TH
1447 err = "failed to populate";
1448 goto fail_unlock;
1449 }
40064aec 1450 pcpu_chunk_populated(chunk, rs, re, true);
e04d3208 1451 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1452 }
fbf59bc9 1453
e04d3208
TH
1454 mutex_unlock(&pcpu_alloc_mutex);
1455 }
ccea34b5 1456
1a4d7607
TH
1457 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1458 pcpu_schedule_balance_work();
1459
dca49645
TH
1460 /* clear the areas and return address relative to base address */
1461 for_each_possible_cpu(cpu)
1462 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1463
f528f0b8 1464 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1465 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1466
1467 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1468 chunk->base_addr, off, ptr);
1469
f528f0b8 1470 return ptr;
ccea34b5
TH
1471
1472fail_unlock:
403a91b1 1473 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1474fail:
df95e795
DZ
1475 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1476
5835d96e 1477 if (!is_atomic && warn_limit) {
870d4b12 1478 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1479 size, align, is_atomic, err);
f2badb0c
TH
1480 dump_stack();
1481 if (!--warn_limit)
870d4b12 1482 pr_info("limit reached, disable warning\n");
f2badb0c 1483 }
1a4d7607
TH
1484 if (is_atomic) {
1485 /* see the flag handling in pcpu_blance_workfn() */
1486 pcpu_atomic_alloc_failed = true;
1487 pcpu_schedule_balance_work();
6710e594
TH
1488 } else {
1489 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1490 }
ccea34b5 1491 return NULL;
fbf59bc9 1492}
edcb4639
TH
1493
1494/**
5835d96e 1495 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1496 * @size: size of area to allocate in bytes
1497 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1498 * @gfp: allocation flags
edcb4639 1499 *
5835d96e
TH
1500 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1501 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1502 * be called from any context but is a lot more likely to fail.
ccea34b5 1503 *
edcb4639
TH
1504 * RETURNS:
1505 * Percpu pointer to the allocated area on success, NULL on failure.
1506 */
5835d96e
TH
1507void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1508{
1509 return pcpu_alloc(size, align, false, gfp);
1510}
1511EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1512
1513/**
1514 * __alloc_percpu - allocate dynamic percpu area
1515 * @size: size of area to allocate in bytes
1516 * @align: alignment of area (max PAGE_SIZE)
1517 *
1518 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1519 */
43cf38eb 1520void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1521{
5835d96e 1522 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1523}
fbf59bc9
TH
1524EXPORT_SYMBOL_GPL(__alloc_percpu);
1525
edcb4639
TH
1526/**
1527 * __alloc_reserved_percpu - allocate reserved percpu area
1528 * @size: size of area to allocate in bytes
1529 * @align: alignment of area (max PAGE_SIZE)
1530 *
9329ba97
TH
1531 * Allocate zero-filled percpu area of @size bytes aligned at @align
1532 * from reserved percpu area if arch has set it up; otherwise,
1533 * allocation is served from the same dynamic area. Might sleep.
1534 * Might trigger writeouts.
edcb4639 1535 *
ccea34b5
TH
1536 * CONTEXT:
1537 * Does GFP_KERNEL allocation.
1538 *
edcb4639
TH
1539 * RETURNS:
1540 * Percpu pointer to the allocated area on success, NULL on failure.
1541 */
43cf38eb 1542void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1543{
5835d96e 1544 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1545}
1546
a56dbddf 1547/**
1a4d7607 1548 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1549 * @work: unused
1550 *
1551 * Reclaim all fully free chunks except for the first one.
1552 */
fe6bd8c3 1553static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1554{
fe6bd8c3
TH
1555 LIST_HEAD(to_free);
1556 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1557 struct pcpu_chunk *chunk, *next;
1a4d7607 1558 int slot, nr_to_pop, ret;
a56dbddf 1559
1a4d7607
TH
1560 /*
1561 * There's no reason to keep around multiple unused chunks and VM
1562 * areas can be scarce. Destroy all free chunks except for one.
1563 */
ccea34b5
TH
1564 mutex_lock(&pcpu_alloc_mutex);
1565 spin_lock_irq(&pcpu_lock);
a56dbddf 1566
fe6bd8c3 1567 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1568 WARN_ON(chunk->immutable);
1569
1570 /* spare the first one */
fe6bd8c3 1571 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1572 continue;
1573
fe6bd8c3 1574 list_move(&chunk->list, &to_free);
a56dbddf
TH
1575 }
1576
ccea34b5 1577 spin_unlock_irq(&pcpu_lock);
a56dbddf 1578
fe6bd8c3 1579 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1580 int rs, re;
dca49645 1581
91e914c5
DZF
1582 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1583 chunk->nr_pages) {
a93ace48 1584 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1585 spin_lock_irq(&pcpu_lock);
1586 pcpu_chunk_depopulated(chunk, rs, re);
1587 spin_unlock_irq(&pcpu_lock);
a93ace48 1588 }
6081089f 1589 pcpu_destroy_chunk(chunk);
a56dbddf 1590 }
971f3918 1591
1a4d7607
TH
1592 /*
1593 * Ensure there are certain number of free populated pages for
1594 * atomic allocs. Fill up from the most packed so that atomic
1595 * allocs don't increase fragmentation. If atomic allocation
1596 * failed previously, always populate the maximum amount. This
1597 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1598 * failing indefinitely; however, large atomic allocs are not
1599 * something we support properly and can be highly unreliable and
1600 * inefficient.
1601 */
1602retry_pop:
1603 if (pcpu_atomic_alloc_failed) {
1604 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1605 /* best effort anyway, don't worry about synchronization */
1606 pcpu_atomic_alloc_failed = false;
1607 } else {
1608 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1609 pcpu_nr_empty_pop_pages,
1610 0, PCPU_EMPTY_POP_PAGES_HIGH);
1611 }
1612
1613 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1614 int nr_unpop = 0, rs, re;
1615
1616 if (!nr_to_pop)
1617 break;
1618
1619 spin_lock_irq(&pcpu_lock);
1620 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1621 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1622 if (nr_unpop)
1623 break;
1624 }
1625 spin_unlock_irq(&pcpu_lock);
1626
1627 if (!nr_unpop)
1628 continue;
1629
1630 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1631 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1632 chunk->nr_pages) {
1a4d7607
TH
1633 int nr = min(re - rs, nr_to_pop);
1634
1635 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1636 if (!ret) {
1637 nr_to_pop -= nr;
1638 spin_lock_irq(&pcpu_lock);
40064aec 1639 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1a4d7607
TH
1640 spin_unlock_irq(&pcpu_lock);
1641 } else {
1642 nr_to_pop = 0;
1643 }
1644
1645 if (!nr_to_pop)
1646 break;
1647 }
1648 }
1649
1650 if (nr_to_pop) {
1651 /* ran out of chunks to populate, create a new one and retry */
1652 chunk = pcpu_create_chunk();
1653 if (chunk) {
1654 spin_lock_irq(&pcpu_lock);
1655 pcpu_chunk_relocate(chunk, -1);
1656 spin_unlock_irq(&pcpu_lock);
1657 goto retry_pop;
1658 }
1659 }
1660
971f3918 1661 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1662}
1663
1664/**
1665 * free_percpu - free percpu area
1666 * @ptr: pointer to area to free
1667 *
ccea34b5
TH
1668 * Free percpu area @ptr.
1669 *
1670 * CONTEXT:
1671 * Can be called from atomic context.
fbf59bc9 1672 */
43cf38eb 1673void free_percpu(void __percpu *ptr)
fbf59bc9 1674{
129182e5 1675 void *addr;
fbf59bc9 1676 struct pcpu_chunk *chunk;
ccea34b5 1677 unsigned long flags;
40064aec 1678 int off;
fbf59bc9
TH
1679
1680 if (!ptr)
1681 return;
1682
f528f0b8
CM
1683 kmemleak_free_percpu(ptr);
1684
129182e5
AM
1685 addr = __pcpu_ptr_to_addr(ptr);
1686
ccea34b5 1687 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1688
1689 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1690 off = addr - chunk->base_addr;
fbf59bc9 1691
40064aec 1692 pcpu_free_area(chunk, off);
fbf59bc9 1693
a56dbddf 1694 /* if there are more than one fully free chunks, wake up grim reaper */
40064aec 1695 if (chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
1696 struct pcpu_chunk *pos;
1697
a56dbddf 1698 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1699 if (pos != chunk) {
1a4d7607 1700 pcpu_schedule_balance_work();
fbf59bc9
TH
1701 break;
1702 }
1703 }
1704
df95e795
DZ
1705 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1706
ccea34b5 1707 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1708}
1709EXPORT_SYMBOL_GPL(free_percpu);
1710
383776fa 1711bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1712{
bbddff05 1713#ifdef CONFIG_SMP
10fad5e4
TH
1714 const size_t static_size = __per_cpu_end - __per_cpu_start;
1715 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1716 unsigned int cpu;
1717
1718 for_each_possible_cpu(cpu) {
1719 void *start = per_cpu_ptr(base, cpu);
383776fa 1720 void *va = (void *)addr;
10fad5e4 1721
383776fa 1722 if (va >= start && va < start + static_size) {
8ce371f9 1723 if (can_addr) {
383776fa 1724 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1725 *can_addr += (unsigned long)
1726 per_cpu_ptr(base, get_boot_cpu_id());
1727 }
10fad5e4 1728 return true;
383776fa
TG
1729 }
1730 }
bbddff05
TH
1731#endif
1732 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1733 return false;
1734}
1735
383776fa
TG
1736/**
1737 * is_kernel_percpu_address - test whether address is from static percpu area
1738 * @addr: address to test
1739 *
1740 * Test whether @addr belongs to in-kernel static percpu area. Module
1741 * static percpu areas are not considered. For those, use
1742 * is_module_percpu_address().
1743 *
1744 * RETURNS:
1745 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1746 */
1747bool is_kernel_percpu_address(unsigned long addr)
1748{
1749 return __is_kernel_percpu_address(addr, NULL);
1750}
1751
3b034b0d
VG
1752/**
1753 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1754 * @addr: the address to be converted to physical address
1755 *
1756 * Given @addr which is dereferenceable address obtained via one of
1757 * percpu access macros, this function translates it into its physical
1758 * address. The caller is responsible for ensuring @addr stays valid
1759 * until this function finishes.
1760 *
67589c71
DY
1761 * percpu allocator has special setup for the first chunk, which currently
1762 * supports either embedding in linear address space or vmalloc mapping,
1763 * and, from the second one, the backing allocator (currently either vm or
1764 * km) provides translation.
1765 *
bffc4375 1766 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1767 * first chunk. But the current code reflects better how percpu allocator
1768 * actually works, and the verification can discover both bugs in percpu
1769 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1770 * code.
1771 *
3b034b0d
VG
1772 * RETURNS:
1773 * The physical address for @addr.
1774 */
1775phys_addr_t per_cpu_ptr_to_phys(void *addr)
1776{
9983b6f0
TH
1777 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1778 bool in_first_chunk = false;
a855b84c 1779 unsigned long first_low, first_high;
9983b6f0
TH
1780 unsigned int cpu;
1781
1782 /*
a855b84c 1783 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1784 * necessary but will speed up lookups of addresses which
1785 * aren't in the first chunk.
c0ebfdc3
DZF
1786 *
1787 * The address check is against full chunk sizes. pcpu_base_addr
1788 * points to the beginning of the first chunk including the
1789 * static region. Assumes good intent as the first chunk may
1790 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1791 */
c0ebfdc3
DZF
1792 first_low = (unsigned long)pcpu_base_addr +
1793 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1794 first_high = (unsigned long)pcpu_base_addr +
1795 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1796 if ((unsigned long)addr >= first_low &&
1797 (unsigned long)addr < first_high) {
9983b6f0
TH
1798 for_each_possible_cpu(cpu) {
1799 void *start = per_cpu_ptr(base, cpu);
1800
1801 if (addr >= start && addr < start + pcpu_unit_size) {
1802 in_first_chunk = true;
1803 break;
1804 }
1805 }
1806 }
1807
1808 if (in_first_chunk) {
eac522ef 1809 if (!is_vmalloc_addr(addr))
020ec653
TH
1810 return __pa(addr);
1811 else
9f57bd4d
ES
1812 return page_to_phys(vmalloc_to_page(addr)) +
1813 offset_in_page(addr);
020ec653 1814 } else
9f57bd4d
ES
1815 return page_to_phys(pcpu_addr_to_page(addr)) +
1816 offset_in_page(addr);
3b034b0d
VG
1817}
1818
fbf59bc9 1819/**
fd1e8a1f
TH
1820 * pcpu_alloc_alloc_info - allocate percpu allocation info
1821 * @nr_groups: the number of groups
1822 * @nr_units: the number of units
1823 *
1824 * Allocate ai which is large enough for @nr_groups groups containing
1825 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1826 * cpu_map array which is long enough for @nr_units and filled with
1827 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1828 * pointer of other groups.
1829 *
1830 * RETURNS:
1831 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1832 * failure.
1833 */
1834struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1835 int nr_units)
1836{
1837 struct pcpu_alloc_info *ai;
1838 size_t base_size, ai_size;
1839 void *ptr;
1840 int unit;
1841
1842 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1843 __alignof__(ai->groups[0].cpu_map[0]));
1844 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1845
999c17e3 1846 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1847 if (!ptr)
1848 return NULL;
1849 ai = ptr;
1850 ptr += base_size;
1851
1852 ai->groups[0].cpu_map = ptr;
1853
1854 for (unit = 0; unit < nr_units; unit++)
1855 ai->groups[0].cpu_map[unit] = NR_CPUS;
1856
1857 ai->nr_groups = nr_groups;
1858 ai->__ai_size = PFN_ALIGN(ai_size);
1859
1860 return ai;
1861}
1862
1863/**
1864 * pcpu_free_alloc_info - free percpu allocation info
1865 * @ai: pcpu_alloc_info to free
1866 *
1867 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1868 */
1869void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1870{
999c17e3 1871 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1872}
1873
fd1e8a1f
TH
1874/**
1875 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1876 * @lvl: loglevel
1877 * @ai: allocation info to dump
1878 *
1879 * Print out information about @ai using loglevel @lvl.
1880 */
1881static void pcpu_dump_alloc_info(const char *lvl,
1882 const struct pcpu_alloc_info *ai)
033e48fb 1883{
fd1e8a1f 1884 int group_width = 1, cpu_width = 1, width;
033e48fb 1885 char empty_str[] = "--------";
fd1e8a1f
TH
1886 int alloc = 0, alloc_end = 0;
1887 int group, v;
1888 int upa, apl; /* units per alloc, allocs per line */
1889
1890 v = ai->nr_groups;
1891 while (v /= 10)
1892 group_width++;
033e48fb 1893
fd1e8a1f 1894 v = num_possible_cpus();
033e48fb 1895 while (v /= 10)
fd1e8a1f
TH
1896 cpu_width++;
1897 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1898
fd1e8a1f
TH
1899 upa = ai->alloc_size / ai->unit_size;
1900 width = upa * (cpu_width + 1) + group_width + 3;
1901 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1902
fd1e8a1f
TH
1903 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1904 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1905 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1906
fd1e8a1f
TH
1907 for (group = 0; group < ai->nr_groups; group++) {
1908 const struct pcpu_group_info *gi = &ai->groups[group];
1909 int unit = 0, unit_end = 0;
1910
1911 BUG_ON(gi->nr_units % upa);
1912 for (alloc_end += gi->nr_units / upa;
1913 alloc < alloc_end; alloc++) {
1914 if (!(alloc % apl)) {
1170532b 1915 pr_cont("\n");
fd1e8a1f
TH
1916 printk("%spcpu-alloc: ", lvl);
1917 }
1170532b 1918 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1919
1920 for (unit_end += upa; unit < unit_end; unit++)
1921 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1922 pr_cont("%0*d ",
1923 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1924 else
1170532b 1925 pr_cont("%s ", empty_str);
033e48fb 1926 }
033e48fb 1927 }
1170532b 1928 pr_cont("\n");
033e48fb 1929}
033e48fb 1930
fbf59bc9 1931/**
8d408b4b 1932 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1933 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1934 * @base_addr: mapped address
8d408b4b
TH
1935 *
1936 * Initialize the first percpu chunk which contains the kernel static
1937 * perpcu area. This function is to be called from arch percpu area
38a6be52 1938 * setup path.
8d408b4b 1939 *
fd1e8a1f
TH
1940 * @ai contains all information necessary to initialize the first
1941 * chunk and prime the dynamic percpu allocator.
1942 *
1943 * @ai->static_size is the size of static percpu area.
1944 *
1945 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1946 * reserve after the static area in the first chunk. This reserves
1947 * the first chunk such that it's available only through reserved
1948 * percpu allocation. This is primarily used to serve module percpu
1949 * static areas on architectures where the addressing model has
1950 * limited offset range for symbol relocations to guarantee module
1951 * percpu symbols fall inside the relocatable range.
1952 *
fd1e8a1f
TH
1953 * @ai->dyn_size determines the number of bytes available for dynamic
1954 * allocation in the first chunk. The area between @ai->static_size +
1955 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1956 *
fd1e8a1f
TH
1957 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1958 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1959 * @ai->dyn_size.
8d408b4b 1960 *
fd1e8a1f
TH
1961 * @ai->atom_size is the allocation atom size and used as alignment
1962 * for vm areas.
8d408b4b 1963 *
fd1e8a1f
TH
1964 * @ai->alloc_size is the allocation size and always multiple of
1965 * @ai->atom_size. This is larger than @ai->atom_size if
1966 * @ai->unit_size is larger than @ai->atom_size.
1967 *
1968 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1969 * percpu areas. Units which should be colocated are put into the
1970 * same group. Dynamic VM areas will be allocated according to these
1971 * groupings. If @ai->nr_groups is zero, a single group containing
1972 * all units is assumed.
8d408b4b 1973 *
38a6be52
TH
1974 * The caller should have mapped the first chunk at @base_addr and
1975 * copied static data to each unit.
fbf59bc9 1976 *
c0ebfdc3
DZF
1977 * The first chunk will always contain a static and a dynamic region.
1978 * However, the static region is not managed by any chunk. If the first
1979 * chunk also contains a reserved region, it is served by two chunks -
1980 * one for the reserved region and one for the dynamic region. They
1981 * share the same vm, but use offset regions in the area allocation map.
1982 * The chunk serving the dynamic region is circulated in the chunk slots
1983 * and available for dynamic allocation like any other chunk.
edcb4639 1984 *
fbf59bc9 1985 * RETURNS:
fb435d52 1986 * 0 on success, -errno on failure.
fbf59bc9 1987 */
fb435d52
TH
1988int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1989 void *base_addr)
fbf59bc9 1990{
b9c39442 1991 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 1992 size_t static_size, dyn_size;
0c4169c3 1993 struct pcpu_chunk *chunk;
6563297c
TH
1994 unsigned long *group_offsets;
1995 size_t *group_sizes;
fb435d52 1996 unsigned long *unit_off;
fbf59bc9 1997 unsigned int cpu;
fd1e8a1f
TH
1998 int *unit_map;
1999 int group, unit, i;
c0ebfdc3
DZF
2000 int map_size;
2001 unsigned long tmp_addr;
fbf59bc9 2002
635b75fc
TH
2003#define PCPU_SETUP_BUG_ON(cond) do { \
2004 if (unlikely(cond)) { \
870d4b12
JP
2005 pr_emerg("failed to initialize, %s\n", #cond); \
2006 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 2007 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
2008 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2009 BUG(); \
2010 } \
2011} while (0)
2012
2f39e637 2013 /* sanity checks */
635b75fc 2014 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 2015#ifdef CONFIG_SMP
635b75fc 2016 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 2017 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 2018#endif
635b75fc 2019 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 2020 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 2021 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 2022 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 2023 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 2024 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 2025 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 2026 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 2027 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
2028 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2029 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 2030 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 2031
6563297c 2032 /* process group information and build config tables accordingly */
999c17e3
SS
2033 group_offsets = memblock_virt_alloc(ai->nr_groups *
2034 sizeof(group_offsets[0]), 0);
2035 group_sizes = memblock_virt_alloc(ai->nr_groups *
2036 sizeof(group_sizes[0]), 0);
2037 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2038 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 2039
fd1e8a1f 2040 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 2041 unit_map[cpu] = UINT_MAX;
a855b84c
TH
2042
2043 pcpu_low_unit_cpu = NR_CPUS;
2044 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 2045
fd1e8a1f
TH
2046 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2047 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 2048
6563297c
TH
2049 group_offsets[group] = gi->base_offset;
2050 group_sizes[group] = gi->nr_units * ai->unit_size;
2051
fd1e8a1f
TH
2052 for (i = 0; i < gi->nr_units; i++) {
2053 cpu = gi->cpu_map[i];
2054 if (cpu == NR_CPUS)
2055 continue;
8d408b4b 2056
9f295664 2057 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
2058 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2059 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 2060
fd1e8a1f 2061 unit_map[cpu] = unit + i;
fb435d52
TH
2062 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2063
a855b84c
TH
2064 /* determine low/high unit_cpu */
2065 if (pcpu_low_unit_cpu == NR_CPUS ||
2066 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2067 pcpu_low_unit_cpu = cpu;
2068 if (pcpu_high_unit_cpu == NR_CPUS ||
2069 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2070 pcpu_high_unit_cpu = cpu;
fd1e8a1f 2071 }
2f39e637 2072 }
fd1e8a1f
TH
2073 pcpu_nr_units = unit;
2074
2075 for_each_possible_cpu(cpu)
635b75fc
TH
2076 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2077
2078 /* we're done parsing the input, undefine BUG macro and dump config */
2079#undef PCPU_SETUP_BUG_ON
bcbea798 2080 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2081
6563297c
TH
2082 pcpu_nr_groups = ai->nr_groups;
2083 pcpu_group_offsets = group_offsets;
2084 pcpu_group_sizes = group_sizes;
fd1e8a1f 2085 pcpu_unit_map = unit_map;
fb435d52 2086 pcpu_unit_offsets = unit_off;
2f39e637
TH
2087
2088 /* determine basic parameters */
fd1e8a1f 2089 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2090 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2091 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
2092 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2093 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 2094
30a5b536
DZ
2095 pcpu_stats_save_ai(ai);
2096
d9b55eeb
TH
2097 /*
2098 * Allocate chunk slots. The additional last slot is for
2099 * empty chunks.
2100 */
2101 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
2102 pcpu_slot = memblock_virt_alloc(
2103 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
2104 for (i = 0; i < pcpu_nr_slots; i++)
2105 INIT_LIST_HEAD(&pcpu_slot[i]);
2106
d2f3c384
DZF
2107 /*
2108 * The end of the static region needs to be aligned with the
2109 * minimum allocation size as this offsets the reserved and
2110 * dynamic region. The first chunk ends page aligned by
2111 * expanding the dynamic region, therefore the dynamic region
2112 * can be shrunk to compensate while still staying above the
2113 * configured sizes.
2114 */
2115 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2116 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2117
edcb4639 2118 /*
c0ebfdc3
DZF
2119 * Initialize first chunk.
2120 * If the reserved_size is non-zero, this initializes the reserved
2121 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2122 * and the dynamic region is initialized here. The first chunk,
2123 * pcpu_first_chunk, will always point to the chunk that serves
2124 * the dynamic region.
edcb4639 2125 */
d2f3c384
DZF
2126 tmp_addr = (unsigned long)base_addr + static_size;
2127 map_size = ai->reserved_size ?: dyn_size;
40064aec 2128 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2129
edcb4639 2130 /* init dynamic chunk if necessary */
b9c39442 2131 if (ai->reserved_size) {
0c4169c3 2132 pcpu_reserved_chunk = chunk;
b9c39442 2133
d2f3c384 2134 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2135 ai->reserved_size;
d2f3c384 2136 map_size = dyn_size;
40064aec 2137 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2138 }
2139
2441d15c 2140 /* link the first chunk in */
0c4169c3 2141 pcpu_first_chunk = chunk;
0cecf50c 2142 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2143 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2144
30a5b536 2145 pcpu_stats_chunk_alloc();
df95e795 2146 trace_percpu_create_chunk(base_addr);
30a5b536 2147
fbf59bc9 2148 /* we're done */
bba174f5 2149 pcpu_base_addr = base_addr;
fb435d52 2150 return 0;
fbf59bc9 2151}
66c3a757 2152
bbddff05
TH
2153#ifdef CONFIG_SMP
2154
17f3609c 2155const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2156 [PCPU_FC_AUTO] = "auto",
2157 [PCPU_FC_EMBED] = "embed",
2158 [PCPU_FC_PAGE] = "page",
f58dc01b 2159};
66c3a757 2160
f58dc01b 2161enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2162
f58dc01b
TH
2163static int __init percpu_alloc_setup(char *str)
2164{
5479c78a
CG
2165 if (!str)
2166 return -EINVAL;
2167
f58dc01b
TH
2168 if (0)
2169 /* nada */;
2170#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2171 else if (!strcmp(str, "embed"))
2172 pcpu_chosen_fc = PCPU_FC_EMBED;
2173#endif
2174#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2175 else if (!strcmp(str, "page"))
2176 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2177#endif
2178 else
870d4b12 2179 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2180
f58dc01b 2181 return 0;
66c3a757 2182}
f58dc01b 2183early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2184
3c9a024f
TH
2185/*
2186 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2187 * Build it if needed by the arch config or the generic setup is going
2188 * to be used.
2189 */
08fc4580
TH
2190#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2191 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2192#define BUILD_EMBED_FIRST_CHUNK
2193#endif
2194
2195/* build pcpu_page_first_chunk() iff needed by the arch config */
2196#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2197#define BUILD_PAGE_FIRST_CHUNK
2198#endif
2199
2200/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2201#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2202/**
2203 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2204 * @reserved_size: the size of reserved percpu area in bytes
2205 * @dyn_size: minimum free size for dynamic allocation in bytes
2206 * @atom_size: allocation atom size
2207 * @cpu_distance_fn: callback to determine distance between cpus, optional
2208 *
2209 * This function determines grouping of units, their mappings to cpus
2210 * and other parameters considering needed percpu size, allocation
2211 * atom size and distances between CPUs.
2212 *
bffc4375 2213 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2214 * LOCAL_DISTANCE both ways are grouped together and share space for
2215 * units in the same group. The returned configuration is guaranteed
2216 * to have CPUs on different nodes on different groups and >=75% usage
2217 * of allocated virtual address space.
2218 *
2219 * RETURNS:
2220 * On success, pointer to the new allocation_info is returned. On
2221 * failure, ERR_PTR value is returned.
2222 */
2223static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2224 size_t reserved_size, size_t dyn_size,
2225 size_t atom_size,
2226 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2227{
2228 static int group_map[NR_CPUS] __initdata;
2229 static int group_cnt[NR_CPUS] __initdata;
2230 const size_t static_size = __per_cpu_end - __per_cpu_start;
2231 int nr_groups = 1, nr_units = 0;
2232 size_t size_sum, min_unit_size, alloc_size;
2233 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2234 int last_allocs, group, unit;
2235 unsigned int cpu, tcpu;
2236 struct pcpu_alloc_info *ai;
2237 unsigned int *cpu_map;
2238
2239 /* this function may be called multiple times */
2240 memset(group_map, 0, sizeof(group_map));
2241 memset(group_cnt, 0, sizeof(group_cnt));
2242
2243 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2244 size_sum = PFN_ALIGN(static_size + reserved_size +
2245 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2246 dyn_size = size_sum - static_size - reserved_size;
2247
2248 /*
2249 * Determine min_unit_size, alloc_size and max_upa such that
2250 * alloc_size is multiple of atom_size and is the smallest
25985edc 2251 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2252 * or larger than min_unit_size.
2253 */
2254 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2255
9c015162 2256 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2257 alloc_size = roundup(min_unit_size, atom_size);
2258 upa = alloc_size / min_unit_size;
f09f1243 2259 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2260 upa--;
2261 max_upa = upa;
2262
2263 /* group cpus according to their proximity */
2264 for_each_possible_cpu(cpu) {
2265 group = 0;
2266 next_group:
2267 for_each_possible_cpu(tcpu) {
2268 if (cpu == tcpu)
2269 break;
2270 if (group_map[tcpu] == group && cpu_distance_fn &&
2271 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2272 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2273 group++;
2274 nr_groups = max(nr_groups, group + 1);
2275 goto next_group;
2276 }
2277 }
2278 group_map[cpu] = group;
2279 group_cnt[group]++;
2280 }
2281
2282 /*
9c015162
DZF
2283 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2284 * Expand the unit_size until we use >= 75% of the units allocated.
2285 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2286 */
2287 last_allocs = INT_MAX;
2288 for (upa = max_upa; upa; upa--) {
2289 int allocs = 0, wasted = 0;
2290
f09f1243 2291 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2292 continue;
2293
2294 for (group = 0; group < nr_groups; group++) {
2295 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2296 allocs += this_allocs;
2297 wasted += this_allocs * upa - group_cnt[group];
2298 }
2299
2300 /*
2301 * Don't accept if wastage is over 1/3. The
2302 * greater-than comparison ensures upa==1 always
2303 * passes the following check.
2304 */
2305 if (wasted > num_possible_cpus() / 3)
2306 continue;
2307
2308 /* and then don't consume more memory */
2309 if (allocs > last_allocs)
2310 break;
2311 last_allocs = allocs;
2312 best_upa = upa;
2313 }
2314 upa = best_upa;
2315
2316 /* allocate and fill alloc_info */
2317 for (group = 0; group < nr_groups; group++)
2318 nr_units += roundup(group_cnt[group], upa);
2319
2320 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2321 if (!ai)
2322 return ERR_PTR(-ENOMEM);
2323 cpu_map = ai->groups[0].cpu_map;
2324
2325 for (group = 0; group < nr_groups; group++) {
2326 ai->groups[group].cpu_map = cpu_map;
2327 cpu_map += roundup(group_cnt[group], upa);
2328 }
2329
2330 ai->static_size = static_size;
2331 ai->reserved_size = reserved_size;
2332 ai->dyn_size = dyn_size;
2333 ai->unit_size = alloc_size / upa;
2334 ai->atom_size = atom_size;
2335 ai->alloc_size = alloc_size;
2336
2337 for (group = 0, unit = 0; group_cnt[group]; group++) {
2338 struct pcpu_group_info *gi = &ai->groups[group];
2339
2340 /*
2341 * Initialize base_offset as if all groups are located
2342 * back-to-back. The caller should update this to
2343 * reflect actual allocation.
2344 */
2345 gi->base_offset = unit * ai->unit_size;
2346
2347 for_each_possible_cpu(cpu)
2348 if (group_map[cpu] == group)
2349 gi->cpu_map[gi->nr_units++] = cpu;
2350 gi->nr_units = roundup(gi->nr_units, upa);
2351 unit += gi->nr_units;
2352 }
2353 BUG_ON(unit != nr_units);
2354
2355 return ai;
2356}
2357#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2358
2359#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2360/**
2361 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2362 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2363 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2364 * @atom_size: allocation atom size
2365 * @cpu_distance_fn: callback to determine distance between cpus, optional
2366 * @alloc_fn: function to allocate percpu page
25985edc 2367 * @free_fn: function to free percpu page
66c3a757
TH
2368 *
2369 * This is a helper to ease setting up embedded first percpu chunk and
2370 * can be called where pcpu_setup_first_chunk() is expected.
2371 *
2372 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2373 * by calling @alloc_fn and used as-is without being mapped into
2374 * vmalloc area. Allocations are always whole multiples of @atom_size
2375 * aligned to @atom_size.
2376 *
2377 * This enables the first chunk to piggy back on the linear physical
2378 * mapping which often uses larger page size. Please note that this
2379 * can result in very sparse cpu->unit mapping on NUMA machines thus
2380 * requiring large vmalloc address space. Don't use this allocator if
2381 * vmalloc space is not orders of magnitude larger than distances
2382 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2383 *
4ba6ce25 2384 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2385 *
2386 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2387 * size, the leftover is returned using @free_fn.
66c3a757
TH
2388 *
2389 * RETURNS:
fb435d52 2390 * 0 on success, -errno on failure.
66c3a757 2391 */
4ba6ce25 2392int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2393 size_t atom_size,
2394 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2395 pcpu_fc_alloc_fn_t alloc_fn,
2396 pcpu_fc_free_fn_t free_fn)
66c3a757 2397{
c8826dd5
TH
2398 void *base = (void *)ULONG_MAX;
2399 void **areas = NULL;
fd1e8a1f 2400 struct pcpu_alloc_info *ai;
93c76b6b 2401 size_t size_sum, areas_size;
2402 unsigned long max_distance;
9b739662 2403 int group, i, highest_group, rc;
66c3a757 2404
c8826dd5
TH
2405 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2406 cpu_distance_fn);
fd1e8a1f
TH
2407 if (IS_ERR(ai))
2408 return PTR_ERR(ai);
66c3a757 2409
fd1e8a1f 2410 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2411 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2412
999c17e3 2413 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2414 if (!areas) {
fb435d52 2415 rc = -ENOMEM;
c8826dd5 2416 goto out_free;
fa8a7094 2417 }
66c3a757 2418
9b739662 2419 /* allocate, copy and determine base address & max_distance */
2420 highest_group = 0;
c8826dd5
TH
2421 for (group = 0; group < ai->nr_groups; group++) {
2422 struct pcpu_group_info *gi = &ai->groups[group];
2423 unsigned int cpu = NR_CPUS;
2424 void *ptr;
2425
2426 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2427 cpu = gi->cpu_map[i];
2428 BUG_ON(cpu == NR_CPUS);
2429
2430 /* allocate space for the whole group */
2431 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2432 if (!ptr) {
2433 rc = -ENOMEM;
2434 goto out_free_areas;
2435 }
f528f0b8
CM
2436 /* kmemleak tracks the percpu allocations separately */
2437 kmemleak_free(ptr);
c8826dd5 2438 areas[group] = ptr;
fd1e8a1f 2439
c8826dd5 2440 base = min(ptr, base);
9b739662 2441 if (ptr > areas[highest_group])
2442 highest_group = group;
2443 }
2444 max_distance = areas[highest_group] - base;
2445 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2446
2447 /* warn if maximum distance is further than 75% of vmalloc space */
2448 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2449 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2450 max_distance, VMALLOC_TOTAL);
2451#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2452 /* and fail if we have fallback */
2453 rc = -EINVAL;
2454 goto out_free_areas;
2455#endif
42b64281
TH
2456 }
2457
2458 /*
2459 * Copy data and free unused parts. This should happen after all
2460 * allocations are complete; otherwise, we may end up with
2461 * overlapping groups.
2462 */
2463 for (group = 0; group < ai->nr_groups; group++) {
2464 struct pcpu_group_info *gi = &ai->groups[group];
2465 void *ptr = areas[group];
c8826dd5
TH
2466
2467 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2468 if (gi->cpu_map[i] == NR_CPUS) {
2469 /* unused unit, free whole */
2470 free_fn(ptr, ai->unit_size);
2471 continue;
2472 }
2473 /* copy and return the unused part */
2474 memcpy(ptr, __per_cpu_load, ai->static_size);
2475 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2476 }
fa8a7094 2477 }
66c3a757 2478
c8826dd5 2479 /* base address is now known, determine group base offsets */
6ea529a2 2480 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2481 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2482 }
c8826dd5 2483
870d4b12 2484 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2485 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2486 ai->dyn_size, ai->unit_size);
d4b95f80 2487
fb435d52 2488 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2489 goto out_free;
2490
2491out_free_areas:
2492 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2493 if (areas[group])
2494 free_fn(areas[group],
2495 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2496out_free:
fd1e8a1f 2497 pcpu_free_alloc_info(ai);
c8826dd5 2498 if (areas)
999c17e3 2499 memblock_free_early(__pa(areas), areas_size);
fb435d52 2500 return rc;
d4b95f80 2501}
3c9a024f 2502#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2503
3c9a024f 2504#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2505/**
00ae4064 2506 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2507 * @reserved_size: the size of reserved percpu area in bytes
2508 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2509 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2510 * @populate_pte_fn: function to populate pte
2511 *
00ae4064
TH
2512 * This is a helper to ease setting up page-remapped first percpu
2513 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2514 *
2515 * This is the basic allocator. Static percpu area is allocated
2516 * page-by-page into vmalloc area.
2517 *
2518 * RETURNS:
fb435d52 2519 * 0 on success, -errno on failure.
d4b95f80 2520 */
fb435d52
TH
2521int __init pcpu_page_first_chunk(size_t reserved_size,
2522 pcpu_fc_alloc_fn_t alloc_fn,
2523 pcpu_fc_free_fn_t free_fn,
2524 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2525{
8f05a6a6 2526 static struct vm_struct vm;
fd1e8a1f 2527 struct pcpu_alloc_info *ai;
00ae4064 2528 char psize_str[16];
ce3141a2 2529 int unit_pages;
d4b95f80 2530 size_t pages_size;
ce3141a2 2531 struct page **pages;
fb435d52 2532 int unit, i, j, rc;
8f606604 2533 int upa;
2534 int nr_g0_units;
d4b95f80 2535
00ae4064
TH
2536 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2537
4ba6ce25 2538 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2539 if (IS_ERR(ai))
2540 return PTR_ERR(ai);
2541 BUG_ON(ai->nr_groups != 1);
8f606604 2542 upa = ai->alloc_size/ai->unit_size;
2543 nr_g0_units = roundup(num_possible_cpus(), upa);
2544 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2545 pcpu_free_alloc_info(ai);
2546 return -EINVAL;
2547 }
fd1e8a1f
TH
2548
2549 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2550
2551 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2552 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2553 sizeof(pages[0]));
999c17e3 2554 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2555
8f05a6a6 2556 /* allocate pages */
d4b95f80 2557 j = 0;
8f606604 2558 for (unit = 0; unit < num_possible_cpus(); unit++) {
2559 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2560 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2561 void *ptr;
2562
3cbc8565 2563 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2564 if (!ptr) {
870d4b12 2565 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2566 psize_str, cpu);
d4b95f80
TH
2567 goto enomem;
2568 }
f528f0b8
CM
2569 /* kmemleak tracks the percpu allocations separately */
2570 kmemleak_free(ptr);
ce3141a2 2571 pages[j++] = virt_to_page(ptr);
d4b95f80 2572 }
8f606604 2573 }
d4b95f80 2574
8f05a6a6
TH
2575 /* allocate vm area, map the pages and copy static data */
2576 vm.flags = VM_ALLOC;
fd1e8a1f 2577 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2578 vm_area_register_early(&vm, PAGE_SIZE);
2579
fd1e8a1f 2580 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2581 unsigned long unit_addr =
fd1e8a1f 2582 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2583
ce3141a2 2584 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2585 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2586
2587 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2588 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2589 unit_pages);
2590 if (rc < 0)
2591 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2592
8f05a6a6
TH
2593 /*
2594 * FIXME: Archs with virtual cache should flush local
2595 * cache for the linear mapping here - something
2596 * equivalent to flush_cache_vmap() on the local cpu.
2597 * flush_cache_vmap() can't be used as most supporting
2598 * data structures are not set up yet.
2599 */
2600
2601 /* copy static data */
fd1e8a1f 2602 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2603 }
2604
2605 /* we're ready, commit */
870d4b12 2606 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2607 unit_pages, psize_str, vm.addr, ai->static_size,
2608 ai->reserved_size, ai->dyn_size);
d4b95f80 2609
fb435d52 2610 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2611 goto out_free_ar;
2612
2613enomem:
2614 while (--j >= 0)
ce3141a2 2615 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2616 rc = -ENOMEM;
d4b95f80 2617out_free_ar:
999c17e3 2618 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2619 pcpu_free_alloc_info(ai);
fb435d52 2620 return rc;
d4b95f80 2621}
3c9a024f 2622#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2623
bbddff05 2624#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2625/*
bbddff05 2626 * Generic SMP percpu area setup.
e74e3962
TH
2627 *
2628 * The embedding helper is used because its behavior closely resembles
2629 * the original non-dynamic generic percpu area setup. This is
2630 * important because many archs have addressing restrictions and might
2631 * fail if the percpu area is located far away from the previous
2632 * location. As an added bonus, in non-NUMA cases, embedding is
2633 * generally a good idea TLB-wise because percpu area can piggy back
2634 * on the physical linear memory mapping which uses large page
2635 * mappings on applicable archs.
2636 */
e74e3962
TH
2637unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2638EXPORT_SYMBOL(__per_cpu_offset);
2639
c8826dd5
TH
2640static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2641 size_t align)
2642{
999c17e3
SS
2643 return memblock_virt_alloc_from_nopanic(
2644 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2645}
66c3a757 2646
c8826dd5
TH
2647static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2648{
999c17e3 2649 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2650}
2651
e74e3962
TH
2652void __init setup_per_cpu_areas(void)
2653{
e74e3962
TH
2654 unsigned long delta;
2655 unsigned int cpu;
fb435d52 2656 int rc;
e74e3962
TH
2657
2658 /*
2659 * Always reserve area for module percpu variables. That's
2660 * what the legacy allocator did.
2661 */
fb435d52 2662 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2663 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2664 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2665 if (rc < 0)
bbddff05 2666 panic("Failed to initialize percpu areas.");
e74e3962
TH
2667
2668 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2669 for_each_possible_cpu(cpu)
fb435d52 2670 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2671}
bbddff05
TH
2672#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2673
2674#else /* CONFIG_SMP */
2675
2676/*
2677 * UP percpu area setup.
2678 *
2679 * UP always uses km-based percpu allocator with identity mapping.
2680 * Static percpu variables are indistinguishable from the usual static
2681 * variables and don't require any special preparation.
2682 */
2683void __init setup_per_cpu_areas(void)
2684{
2685 const size_t unit_size =
2686 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2687 PERCPU_DYNAMIC_RESERVE));
2688 struct pcpu_alloc_info *ai;
2689 void *fc;
2690
2691 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2692 fc = memblock_virt_alloc_from_nopanic(unit_size,
2693 PAGE_SIZE,
2694 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2695 if (!ai || !fc)
2696 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2697 /* kmemleak tracks the percpu allocations separately */
2698 kmemleak_free(fc);
bbddff05
TH
2699
2700 ai->dyn_size = unit_size;
2701 ai->unit_size = unit_size;
2702 ai->atom_size = unit_size;
2703 ai->alloc_size = unit_size;
2704 ai->groups[0].nr_units = 1;
2705 ai->groups[0].cpu_map[0] = 0;
2706
2707 if (pcpu_setup_first_chunk(ai, fc) < 0)
2708 panic("Failed to initialize percpu areas.");
2709}
2710
2711#endif /* CONFIG_SMP */
099a19d9 2712
1a4d7607
TH
2713/*
2714 * Percpu allocator is initialized early during boot when neither slab or
2715 * workqueue is available. Plug async management until everything is up
2716 * and running.
2717 */
2718static int __init percpu_enable_async(void)
2719{
2720 pcpu_async_enabled = true;
2721 return 0;
2722}
2723subsys_initcall(percpu_enable_async);