]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: setup_first_chunk remove dyn_size and consolidate logic
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
fbf59bc9 66#include <linux/list.h>
a530b795 67#include <linux/log2.h>
fbf59bc9
TH
68#include <linux/mm.h>
69#include <linux/module.h>
70#include <linux/mutex.h>
71#include <linux/percpu.h>
72#include <linux/pfn.h>
fbf59bc9 73#include <linux/slab.h>
ccea34b5 74#include <linux/spinlock.h>
fbf59bc9 75#include <linux/vmalloc.h>
a56dbddf 76#include <linux/workqueue.h>
f528f0b8 77#include <linux/kmemleak.h>
fbf59bc9
TH
78
79#include <asm/cacheflush.h>
e0100983 80#include <asm/sections.h>
fbf59bc9 81#include <asm/tlbflush.h>
3b034b0d 82#include <asm/io.h>
fbf59bc9 83
df95e795
DZ
84#define CREATE_TRACE_POINTS
85#include <trace/events/percpu.h>
86
8fa3ed80
DZ
87#include "percpu-internal.h"
88
fbf59bc9
TH
89#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
90#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
91#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
92#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
020ec653
TH
184static bool pcpu_addr_in_first_chunk(void *addr)
185{
186 void *first_start = pcpu_first_chunk->base_addr;
187
188 return addr >= first_start && addr < first_start + pcpu_unit_size;
189}
190
191static bool pcpu_addr_in_reserved_chunk(void *addr)
192{
193 void *first_start = pcpu_first_chunk->base_addr;
194
195 return addr >= first_start &&
e2266705 196 addr < first_start + pcpu_first_chunk->start_offset;
020ec653
TH
197}
198
d9b55eeb 199static int __pcpu_size_to_slot(int size)
fbf59bc9 200{
cae3aeb8 201 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
202 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
203}
204
d9b55eeb
TH
205static int pcpu_size_to_slot(int size)
206{
207 if (size == pcpu_unit_size)
208 return pcpu_nr_slots - 1;
209 return __pcpu_size_to_slot(size);
210}
211
fbf59bc9
TH
212static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
213{
214 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
215 return 0;
216
217 return pcpu_size_to_slot(chunk->free_size);
218}
219
88999a89
TH
220/* set the pointer to a chunk in a page struct */
221static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
222{
223 page->index = (unsigned long)pcpu;
224}
225
226/* obtain pointer to a chunk from a page struct */
227static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
228{
229 return (struct pcpu_chunk *)page->index;
230}
231
232static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 233{
2f39e637 234 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
235}
236
9983b6f0
TH
237static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
238 unsigned int cpu, int page_idx)
fbf59bc9 239{
bba174f5 240 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 241 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
242}
243
88999a89
TH
244static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
245 int *rs, int *re, int end)
ce3141a2
TH
246{
247 *rs = find_next_zero_bit(chunk->populated, end, *rs);
248 *re = find_next_bit(chunk->populated, end, *rs + 1);
249}
250
88999a89
TH
251static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
252 int *rs, int *re, int end)
ce3141a2
TH
253{
254 *rs = find_next_bit(chunk->populated, end, *rs);
255 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
256}
257
258/*
259 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 260 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
261 * be integer variables and will be set to start and end page index of
262 * the current region.
263 */
264#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
265 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
266 (rs) < (re); \
267 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
268
269#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
270 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
271 (rs) < (re); \
272 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
273
fbf59bc9 274/**
90459ce0 275 * pcpu_mem_zalloc - allocate memory
1880d93b 276 * @size: bytes to allocate
fbf59bc9 277 *
1880d93b 278 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 279 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 280 * memory is always zeroed.
fbf59bc9 281 *
ccea34b5
TH
282 * CONTEXT:
283 * Does GFP_KERNEL allocation.
284 *
fbf59bc9 285 * RETURNS:
1880d93b 286 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 287 */
90459ce0 288static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 289{
099a19d9
TH
290 if (WARN_ON_ONCE(!slab_is_available()))
291 return NULL;
292
1880d93b
TH
293 if (size <= PAGE_SIZE)
294 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
295 else
296 return vzalloc(size);
1880d93b 297}
fbf59bc9 298
1880d93b
TH
299/**
300 * pcpu_mem_free - free memory
301 * @ptr: memory to free
1880d93b 302 *
90459ce0 303 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 304 */
1d5cfdb0 305static void pcpu_mem_free(void *ptr)
1880d93b 306{
1d5cfdb0 307 kvfree(ptr);
fbf59bc9
TH
308}
309
b539b87f
TH
310/**
311 * pcpu_count_occupied_pages - count the number of pages an area occupies
312 * @chunk: chunk of interest
313 * @i: index of the area in question
314 *
315 * Count the number of pages chunk's @i'th area occupies. When the area's
316 * start and/or end address isn't aligned to page boundary, the straddled
317 * page is included in the count iff the rest of the page is free.
318 */
319static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
320{
321 int off = chunk->map[i] & ~1;
322 int end = chunk->map[i + 1] & ~1;
323
324 if (!PAGE_ALIGNED(off) && i > 0) {
325 int prev = chunk->map[i - 1];
326
327 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
328 off = round_down(off, PAGE_SIZE);
329 }
330
331 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
332 int next = chunk->map[i + 1];
333 int nend = chunk->map[i + 2] & ~1;
334
335 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
336 end = round_up(end, PAGE_SIZE);
337 }
338
339 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
340}
341
fbf59bc9
TH
342/**
343 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
344 * @chunk: chunk of interest
345 * @oslot: the previous slot it was on
346 *
347 * This function is called after an allocation or free changed @chunk.
348 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
349 * moved to the slot. Note that the reserved chunk is never put on
350 * chunk slots.
ccea34b5
TH
351 *
352 * CONTEXT:
353 * pcpu_lock.
fbf59bc9
TH
354 */
355static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
356{
357 int nslot = pcpu_chunk_slot(chunk);
358
edcb4639 359 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
360 if (oslot < nslot)
361 list_move(&chunk->list, &pcpu_slot[nslot]);
362 else
363 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
364 }
365}
366
9f7dcf22 367/**
833af842
TH
368 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
369 * @chunk: chunk of interest
9c824b6a 370 * @is_atomic: the allocation context
9f7dcf22 371 *
9c824b6a
TH
372 * Determine whether area map of @chunk needs to be extended. If
373 * @is_atomic, only the amount necessary for a new allocation is
374 * considered; however, async extension is scheduled if the left amount is
375 * low. If !@is_atomic, it aims for more empty space. Combined, this
376 * ensures that the map is likely to have enough available space to
377 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 378 *
ccea34b5 379 * CONTEXT:
833af842 380 * pcpu_lock.
ccea34b5 381 *
9f7dcf22 382 * RETURNS:
833af842
TH
383 * New target map allocation length if extension is necessary, 0
384 * otherwise.
9f7dcf22 385 */
9c824b6a 386static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 387{
9c824b6a
TH
388 int margin, new_alloc;
389
4f996e23
TH
390 lockdep_assert_held(&pcpu_lock);
391
9c824b6a
TH
392 if (is_atomic) {
393 margin = 3;
9f7dcf22 394
9c824b6a 395 if (chunk->map_alloc <
4f996e23
TH
396 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
397 if (list_empty(&chunk->map_extend_list)) {
398 list_add_tail(&chunk->map_extend_list,
399 &pcpu_map_extend_chunks);
400 pcpu_schedule_balance_work();
401 }
402 }
9c824b6a
TH
403 } else {
404 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
405 }
406
407 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
408 return 0;
409
410 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 411 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
412 new_alloc *= 2;
413
833af842
TH
414 return new_alloc;
415}
416
417/**
418 * pcpu_extend_area_map - extend area map of a chunk
419 * @chunk: chunk of interest
420 * @new_alloc: new target allocation length of the area map
421 *
422 * Extend area map of @chunk to have @new_alloc entries.
423 *
424 * CONTEXT:
425 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
426 *
427 * RETURNS:
428 * 0 on success, -errno on failure.
429 */
430static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
431{
432 int *old = NULL, *new = NULL;
433 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
434 unsigned long flags;
435
6710e594
TH
436 lockdep_assert_held(&pcpu_alloc_mutex);
437
90459ce0 438 new = pcpu_mem_zalloc(new_size);
833af842 439 if (!new)
9f7dcf22 440 return -ENOMEM;
ccea34b5 441
833af842
TH
442 /* acquire pcpu_lock and switch to new area map */
443 spin_lock_irqsave(&pcpu_lock, flags);
444
445 if (new_alloc <= chunk->map_alloc)
446 goto out_unlock;
9f7dcf22 447
833af842 448 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
449 old = chunk->map;
450
451 memcpy(new, old, old_size);
9f7dcf22 452
9f7dcf22
TH
453 chunk->map_alloc = new_alloc;
454 chunk->map = new;
833af842
TH
455 new = NULL;
456
457out_unlock:
458 spin_unlock_irqrestore(&pcpu_lock, flags);
459
460 /*
461 * pcpu_mem_free() might end up calling vfree() which uses
462 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
463 */
1d5cfdb0
TH
464 pcpu_mem_free(old);
465 pcpu_mem_free(new);
833af842 466
9f7dcf22
TH
467 return 0;
468}
469
a16037c8
TH
470/**
471 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
472 * @chunk: chunk the candidate area belongs to
473 * @off: the offset to the start of the candidate area
474 * @this_size: the size of the candidate area
475 * @size: the size of the target allocation
476 * @align: the alignment of the target allocation
477 * @pop_only: only allocate from already populated region
478 *
479 * We're trying to allocate @size bytes aligned at @align. @chunk's area
480 * at @off sized @this_size is a candidate. This function determines
481 * whether the target allocation fits in the candidate area and returns the
482 * number of bytes to pad after @off. If the target area doesn't fit, -1
483 * is returned.
484 *
485 * If @pop_only is %true, this function only considers the already
486 * populated part of the candidate area.
487 */
488static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
489 int size, int align, bool pop_only)
490{
491 int cand_off = off;
492
493 while (true) {
494 int head = ALIGN(cand_off, align) - off;
495 int page_start, page_end, rs, re;
496
497 if (this_size < head + size)
498 return -1;
499
500 if (!pop_only)
501 return head;
502
503 /*
504 * If the first unpopulated page is beyond the end of the
505 * allocation, the whole allocation is populated;
506 * otherwise, retry from the end of the unpopulated area.
507 */
508 page_start = PFN_DOWN(head + off);
509 page_end = PFN_UP(head + off + size);
510
511 rs = page_start;
512 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
513 if (rs >= page_end)
514 return head;
515 cand_off = re * PAGE_SIZE;
516 }
517}
518
fbf59bc9
TH
519/**
520 * pcpu_alloc_area - allocate area from a pcpu_chunk
521 * @chunk: chunk of interest
cae3aeb8 522 * @size: wanted size in bytes
fbf59bc9 523 * @align: wanted align
a16037c8 524 * @pop_only: allocate only from the populated area
b539b87f 525 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
526 *
527 * Try to allocate @size bytes area aligned at @align from @chunk.
528 * Note that this function only allocates the offset. It doesn't
529 * populate or map the area.
530 *
9f7dcf22
TH
531 * @chunk->map must have at least two free slots.
532 *
ccea34b5
TH
533 * CONTEXT:
534 * pcpu_lock.
535 *
fbf59bc9 536 * RETURNS:
9f7dcf22
TH
537 * Allocated offset in @chunk on success, -1 if no matching area is
538 * found.
fbf59bc9 539 */
a16037c8 540static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 541 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
542{
543 int oslot = pcpu_chunk_slot(chunk);
544 int max_contig = 0;
545 int i, off;
3d331ad7 546 bool seen_free = false;
723ad1d9 547 int *p;
fbf59bc9 548
3d331ad7 549 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 550 int head, tail;
723ad1d9
AV
551 int this_size;
552
553 off = *p;
554 if (off & 1)
555 continue;
fbf59bc9 556
723ad1d9 557 this_size = (p[1] & ~1) - off;
a16037c8
TH
558
559 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
560 pop_only);
561 if (head < 0) {
3d331ad7
AV
562 if (!seen_free) {
563 chunk->first_free = i;
564 seen_free = true;
565 }
723ad1d9 566 max_contig = max(this_size, max_contig);
fbf59bc9
TH
567 continue;
568 }
569
570 /*
571 * If head is small or the previous block is free,
572 * merge'em. Note that 'small' is defined as smaller
573 * than sizeof(int), which is very small but isn't too
574 * uncommon for percpu allocations.
575 */
723ad1d9 576 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 577 *p = off += head;
723ad1d9 578 if (p[-1] & 1)
fbf59bc9 579 chunk->free_size -= head;
21ddfd38
JZ
580 else
581 max_contig = max(*p - p[-1], max_contig);
723ad1d9 582 this_size -= head;
fbf59bc9
TH
583 head = 0;
584 }
585
586 /* if tail is small, just keep it around */
723ad1d9
AV
587 tail = this_size - head - size;
588 if (tail < sizeof(int)) {
fbf59bc9 589 tail = 0;
723ad1d9
AV
590 size = this_size - head;
591 }
fbf59bc9
TH
592
593 /* split if warranted */
594 if (head || tail) {
706c16f2
AV
595 int nr_extra = !!head + !!tail;
596
597 /* insert new subblocks */
723ad1d9 598 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
599 sizeof(chunk->map[0]) * (chunk->map_used - i));
600 chunk->map_used += nr_extra;
601
fbf59bc9 602 if (head) {
3d331ad7
AV
603 if (!seen_free) {
604 chunk->first_free = i;
605 seen_free = true;
606 }
723ad1d9
AV
607 *++p = off += head;
608 ++i;
706c16f2
AV
609 max_contig = max(head, max_contig);
610 }
611 if (tail) {
723ad1d9 612 p[1] = off + size;
706c16f2 613 max_contig = max(tail, max_contig);
fbf59bc9 614 }
fbf59bc9
TH
615 }
616
3d331ad7
AV
617 if (!seen_free)
618 chunk->first_free = i + 1;
619
fbf59bc9 620 /* update hint and mark allocated */
723ad1d9 621 if (i + 1 == chunk->map_used)
fbf59bc9
TH
622 chunk->contig_hint = max_contig; /* fully scanned */
623 else
624 chunk->contig_hint = max(chunk->contig_hint,
625 max_contig);
626
723ad1d9
AV
627 chunk->free_size -= size;
628 *p |= 1;
fbf59bc9 629
b539b87f 630 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
631 pcpu_chunk_relocate(chunk, oslot);
632 return off;
633 }
634
635 chunk->contig_hint = max_contig; /* fully scanned */
636 pcpu_chunk_relocate(chunk, oslot);
637
9f7dcf22
TH
638 /* tell the upper layer that this chunk has no matching area */
639 return -1;
fbf59bc9
TH
640}
641
642/**
643 * pcpu_free_area - free area to a pcpu_chunk
644 * @chunk: chunk of interest
645 * @freeme: offset of area to free
b539b87f 646 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
647 *
648 * Free area starting from @freeme to @chunk. Note that this function
649 * only modifies the allocation map. It doesn't depopulate or unmap
650 * the area.
ccea34b5
TH
651 *
652 * CONTEXT:
653 * pcpu_lock.
fbf59bc9 654 */
b539b87f
TH
655static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
656 int *occ_pages_p)
fbf59bc9
TH
657{
658 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
659 int off = 0;
660 unsigned i, j;
661 int to_free = 0;
662 int *p;
663
5ccd30e4 664 lockdep_assert_held(&pcpu_lock);
30a5b536 665 pcpu_stats_area_dealloc(chunk);
5ccd30e4 666
723ad1d9
AV
667 freeme |= 1; /* we are searching for <given offset, in use> pair */
668
669 i = 0;
670 j = chunk->map_used;
671 while (i != j) {
672 unsigned k = (i + j) / 2;
673 off = chunk->map[k];
674 if (off < freeme)
675 i = k + 1;
676 else if (off > freeme)
677 j = k;
678 else
679 i = j = k;
680 }
fbf59bc9 681 BUG_ON(off != freeme);
fbf59bc9 682
3d331ad7
AV
683 if (i < chunk->first_free)
684 chunk->first_free = i;
685
723ad1d9
AV
686 p = chunk->map + i;
687 *p = off &= ~1;
688 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 689
b539b87f
TH
690 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
691
723ad1d9
AV
692 /* merge with next? */
693 if (!(p[1] & 1))
694 to_free++;
fbf59bc9 695 /* merge with previous? */
723ad1d9
AV
696 if (i > 0 && !(p[-1] & 1)) {
697 to_free++;
fbf59bc9 698 i--;
723ad1d9 699 p--;
fbf59bc9 700 }
723ad1d9
AV
701 if (to_free) {
702 chunk->map_used -= to_free;
703 memmove(p + 1, p + 1 + to_free,
704 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
705 }
706
723ad1d9 707 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
708 pcpu_chunk_relocate(chunk, oslot);
709}
710
6081089f
TH
711static struct pcpu_chunk *pcpu_alloc_chunk(void)
712{
713 struct pcpu_chunk *chunk;
714
90459ce0 715 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
716 if (!chunk)
717 return NULL;
718
90459ce0
BL
719 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
720 sizeof(chunk->map[0]));
6081089f 721 if (!chunk->map) {
1d5cfdb0 722 pcpu_mem_free(chunk);
6081089f
TH
723 return NULL;
724 }
725
726 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
727 chunk->map[0] = 0;
728 chunk->map[1] = pcpu_unit_size | 1;
729 chunk->map_used = 1;
6081089f
TH
730
731 INIT_LIST_HEAD(&chunk->list);
4f996e23 732 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
733 chunk->free_size = pcpu_unit_size;
734 chunk->contig_hint = pcpu_unit_size;
735
736 return chunk;
737}
738
739static void pcpu_free_chunk(struct pcpu_chunk *chunk)
740{
741 if (!chunk)
742 return;
1d5cfdb0
TH
743 pcpu_mem_free(chunk->map);
744 pcpu_mem_free(chunk);
6081089f
TH
745}
746
b539b87f
TH
747/**
748 * pcpu_chunk_populated - post-population bookkeeping
749 * @chunk: pcpu_chunk which got populated
750 * @page_start: the start page
751 * @page_end: the end page
752 *
753 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
754 * the bookkeeping information accordingly. Must be called after each
755 * successful population.
756 */
757static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
758 int page_start, int page_end)
759{
760 int nr = page_end - page_start;
761
762 lockdep_assert_held(&pcpu_lock);
763
764 bitmap_set(chunk->populated, page_start, nr);
765 chunk->nr_populated += nr;
766 pcpu_nr_empty_pop_pages += nr;
767}
768
769/**
770 * pcpu_chunk_depopulated - post-depopulation bookkeeping
771 * @chunk: pcpu_chunk which got depopulated
772 * @page_start: the start page
773 * @page_end: the end page
774 *
775 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
776 * Update the bookkeeping information accordingly. Must be called after
777 * each successful depopulation.
778 */
779static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
780 int page_start, int page_end)
781{
782 int nr = page_end - page_start;
783
784 lockdep_assert_held(&pcpu_lock);
785
786 bitmap_clear(chunk->populated, page_start, nr);
787 chunk->nr_populated -= nr;
788 pcpu_nr_empty_pop_pages -= nr;
789}
790
9f645532
TH
791/*
792 * Chunk management implementation.
793 *
794 * To allow different implementations, chunk alloc/free and
795 * [de]population are implemented in a separate file which is pulled
796 * into this file and compiled together. The following functions
797 * should be implemented.
798 *
799 * pcpu_populate_chunk - populate the specified range of a chunk
800 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
801 * pcpu_create_chunk - create a new chunk
802 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
803 * pcpu_addr_to_page - translate address to physical address
804 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 805 */
9f645532
TH
806static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
807static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
808static struct pcpu_chunk *pcpu_create_chunk(void);
809static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
810static struct page *pcpu_addr_to_page(void *addr);
811static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 812
b0c9778b
TH
813#ifdef CONFIG_NEED_PER_CPU_KM
814#include "percpu-km.c"
815#else
9f645532 816#include "percpu-vm.c"
b0c9778b 817#endif
fbf59bc9 818
88999a89
TH
819/**
820 * pcpu_chunk_addr_search - determine chunk containing specified address
821 * @addr: address for which the chunk needs to be determined.
822 *
823 * RETURNS:
824 * The address of the found chunk.
825 */
826static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
827{
828 /* is it in the first chunk? */
829 if (pcpu_addr_in_first_chunk(addr)) {
830 /* is it in the reserved area? */
831 if (pcpu_addr_in_reserved_chunk(addr))
832 return pcpu_reserved_chunk;
833 return pcpu_first_chunk;
834 }
835
836 /*
837 * The address is relative to unit0 which might be unused and
838 * thus unmapped. Offset the address to the unit space of the
839 * current processor before looking it up in the vmalloc
840 * space. Note that any possible cpu id can be used here, so
841 * there's no need to worry about preemption or cpu hotplug.
842 */
843 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 844 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
845}
846
fbf59bc9 847/**
edcb4639 848 * pcpu_alloc - the percpu allocator
cae3aeb8 849 * @size: size of area to allocate in bytes
fbf59bc9 850 * @align: alignment of area (max PAGE_SIZE)
edcb4639 851 * @reserved: allocate from the reserved chunk if available
5835d96e 852 * @gfp: allocation flags
fbf59bc9 853 *
5835d96e
TH
854 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
855 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
856 *
857 * RETURNS:
858 * Percpu pointer to the allocated area on success, NULL on failure.
859 */
5835d96e
TH
860static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
861 gfp_t gfp)
fbf59bc9 862{
f2badb0c 863 static int warn_limit = 10;
fbf59bc9 864 struct pcpu_chunk *chunk;
f2badb0c 865 const char *err;
6ae833c7 866 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 867 int occ_pages = 0;
b38d08f3 868 int slot, off, new_alloc, cpu, ret;
403a91b1 869 unsigned long flags;
f528f0b8 870 void __percpu *ptr;
fbf59bc9 871
723ad1d9
AV
872 /*
873 * We want the lowest bit of offset available for in-use/free
2f69fa82 874 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
875 */
876 if (unlikely(align < 2))
877 align = 2;
878
fb009e3a 879 size = ALIGN(size, 2);
2f69fa82 880
3ca45a46 881 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
882 !is_power_of_2(align))) {
756a025f
JP
883 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
884 size, align);
fbf59bc9
TH
885 return NULL;
886 }
887
6710e594
TH
888 if (!is_atomic)
889 mutex_lock(&pcpu_alloc_mutex);
890
403a91b1 891 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 892
edcb4639
TH
893 /* serve reserved allocations from the reserved chunk if available */
894 if (reserved && pcpu_reserved_chunk) {
895 chunk = pcpu_reserved_chunk;
833af842
TH
896
897 if (size > chunk->contig_hint) {
898 err = "alloc from reserved chunk failed";
ccea34b5 899 goto fail_unlock;
f2badb0c 900 }
833af842 901
9c824b6a 902 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 903 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
904 if (is_atomic ||
905 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 906 err = "failed to extend area map of reserved chunk";
b38d08f3 907 goto fail;
833af842
TH
908 }
909 spin_lock_irqsave(&pcpu_lock, flags);
910 }
911
b539b87f
TH
912 off = pcpu_alloc_area(chunk, size, align, is_atomic,
913 &occ_pages);
edcb4639
TH
914 if (off >= 0)
915 goto area_found;
833af842 916
f2badb0c 917 err = "alloc from reserved chunk failed";
ccea34b5 918 goto fail_unlock;
edcb4639
TH
919 }
920
ccea34b5 921restart:
edcb4639 922 /* search through normal chunks */
fbf59bc9
TH
923 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
924 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
925 if (size > chunk->contig_hint)
926 continue;
ccea34b5 927
9c824b6a 928 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 929 if (new_alloc) {
5835d96e
TH
930 if (is_atomic)
931 continue;
833af842
TH
932 spin_unlock_irqrestore(&pcpu_lock, flags);
933 if (pcpu_extend_area_map(chunk,
934 new_alloc) < 0) {
935 err = "failed to extend area map";
b38d08f3 936 goto fail;
833af842
TH
937 }
938 spin_lock_irqsave(&pcpu_lock, flags);
939 /*
940 * pcpu_lock has been dropped, need to
941 * restart cpu_slot list walking.
942 */
943 goto restart;
ccea34b5
TH
944 }
945
b539b87f
TH
946 off = pcpu_alloc_area(chunk, size, align, is_atomic,
947 &occ_pages);
fbf59bc9
TH
948 if (off >= 0)
949 goto area_found;
fbf59bc9
TH
950 }
951 }
952
403a91b1 953 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 954
b38d08f3
TH
955 /*
956 * No space left. Create a new chunk. We don't want multiple
957 * tasks to create chunks simultaneously. Serialize and create iff
958 * there's still no empty chunk after grabbing the mutex.
959 */
11df02bf
DZ
960 if (is_atomic) {
961 err = "atomic alloc failed, no space left";
5835d96e 962 goto fail;
11df02bf 963 }
5835d96e 964
b38d08f3
TH
965 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
966 chunk = pcpu_create_chunk();
967 if (!chunk) {
968 err = "failed to allocate new chunk";
969 goto fail;
970 }
971
972 spin_lock_irqsave(&pcpu_lock, flags);
973 pcpu_chunk_relocate(chunk, -1);
974 } else {
975 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 976 }
ccea34b5 977
ccea34b5 978 goto restart;
fbf59bc9
TH
979
980area_found:
30a5b536 981 pcpu_stats_area_alloc(chunk, size);
403a91b1 982 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 983
dca49645 984 /* populate if not all pages are already there */
5835d96e 985 if (!is_atomic) {
e04d3208 986 int page_start, page_end, rs, re;
dca49645 987
e04d3208
TH
988 page_start = PFN_DOWN(off);
989 page_end = PFN_UP(off + size);
b38d08f3 990
e04d3208
TH
991 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
992 WARN_ON(chunk->immutable);
993
994 ret = pcpu_populate_chunk(chunk, rs, re);
995
996 spin_lock_irqsave(&pcpu_lock, flags);
997 if (ret) {
b539b87f 998 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
999 err = "failed to populate";
1000 goto fail_unlock;
1001 }
b539b87f 1002 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1003 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1004 }
fbf59bc9 1005
e04d3208
TH
1006 mutex_unlock(&pcpu_alloc_mutex);
1007 }
ccea34b5 1008
320661b0
TE
1009 if (chunk != pcpu_reserved_chunk) {
1010 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1011 pcpu_nr_empty_pop_pages -= occ_pages;
320661b0
TE
1012 spin_unlock_irqrestore(&pcpu_lock, flags);
1013 }
b539b87f 1014
1a4d7607
TH
1015 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1016 pcpu_schedule_balance_work();
1017
dca49645
TH
1018 /* clear the areas and return address relative to base address */
1019 for_each_possible_cpu(cpu)
1020 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1021
f528f0b8 1022 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1023 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1024
1025 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1026 chunk->base_addr, off, ptr);
1027
f528f0b8 1028 return ptr;
ccea34b5
TH
1029
1030fail_unlock:
403a91b1 1031 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1032fail:
df95e795
DZ
1033 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1034
5835d96e 1035 if (!is_atomic && warn_limit) {
870d4b12 1036 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1037 size, align, is_atomic, err);
f2badb0c
TH
1038 dump_stack();
1039 if (!--warn_limit)
870d4b12 1040 pr_info("limit reached, disable warning\n");
f2badb0c 1041 }
1a4d7607
TH
1042 if (is_atomic) {
1043 /* see the flag handling in pcpu_blance_workfn() */
1044 pcpu_atomic_alloc_failed = true;
1045 pcpu_schedule_balance_work();
6710e594
TH
1046 } else {
1047 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1048 }
ccea34b5 1049 return NULL;
fbf59bc9 1050}
edcb4639
TH
1051
1052/**
5835d96e 1053 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1054 * @size: size of area to allocate in bytes
1055 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1056 * @gfp: allocation flags
edcb4639 1057 *
5835d96e
TH
1058 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1059 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1060 * be called from any context but is a lot more likely to fail.
ccea34b5 1061 *
edcb4639
TH
1062 * RETURNS:
1063 * Percpu pointer to the allocated area on success, NULL on failure.
1064 */
5835d96e
TH
1065void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1066{
1067 return pcpu_alloc(size, align, false, gfp);
1068}
1069EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1070
1071/**
1072 * __alloc_percpu - allocate dynamic percpu area
1073 * @size: size of area to allocate in bytes
1074 * @align: alignment of area (max PAGE_SIZE)
1075 *
1076 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1077 */
43cf38eb 1078void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1079{
5835d96e 1080 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1081}
fbf59bc9
TH
1082EXPORT_SYMBOL_GPL(__alloc_percpu);
1083
edcb4639
TH
1084/**
1085 * __alloc_reserved_percpu - allocate reserved percpu area
1086 * @size: size of area to allocate in bytes
1087 * @align: alignment of area (max PAGE_SIZE)
1088 *
9329ba97
TH
1089 * Allocate zero-filled percpu area of @size bytes aligned at @align
1090 * from reserved percpu area if arch has set it up; otherwise,
1091 * allocation is served from the same dynamic area. Might sleep.
1092 * Might trigger writeouts.
edcb4639 1093 *
ccea34b5
TH
1094 * CONTEXT:
1095 * Does GFP_KERNEL allocation.
1096 *
edcb4639
TH
1097 * RETURNS:
1098 * Percpu pointer to the allocated area on success, NULL on failure.
1099 */
43cf38eb 1100void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1101{
5835d96e 1102 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1103}
1104
a56dbddf 1105/**
1a4d7607 1106 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1107 * @work: unused
1108 *
1109 * Reclaim all fully free chunks except for the first one.
1110 */
fe6bd8c3 1111static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1112{
fe6bd8c3
TH
1113 LIST_HEAD(to_free);
1114 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1115 struct pcpu_chunk *chunk, *next;
1a4d7607 1116 int slot, nr_to_pop, ret;
a56dbddf 1117
1a4d7607
TH
1118 /*
1119 * There's no reason to keep around multiple unused chunks and VM
1120 * areas can be scarce. Destroy all free chunks except for one.
1121 */
ccea34b5
TH
1122 mutex_lock(&pcpu_alloc_mutex);
1123 spin_lock_irq(&pcpu_lock);
a56dbddf 1124
fe6bd8c3 1125 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1126 WARN_ON(chunk->immutable);
1127
1128 /* spare the first one */
fe6bd8c3 1129 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1130 continue;
1131
4f996e23 1132 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1133 list_move(&chunk->list, &to_free);
a56dbddf
TH
1134 }
1135
ccea34b5 1136 spin_unlock_irq(&pcpu_lock);
a56dbddf 1137
fe6bd8c3 1138 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1139 int rs, re;
dca49645 1140
a93ace48
TH
1141 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1142 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1143 spin_lock_irq(&pcpu_lock);
1144 pcpu_chunk_depopulated(chunk, rs, re);
1145 spin_unlock_irq(&pcpu_lock);
a93ace48 1146 }
6081089f 1147 pcpu_destroy_chunk(chunk);
a56dbddf 1148 }
971f3918 1149
4f996e23
TH
1150 /* service chunks which requested async area map extension */
1151 do {
1152 int new_alloc = 0;
1153
1154 spin_lock_irq(&pcpu_lock);
1155
1156 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1157 struct pcpu_chunk, map_extend_list);
1158 if (chunk) {
1159 list_del_init(&chunk->map_extend_list);
1160 new_alloc = pcpu_need_to_extend(chunk, false);
1161 }
1162
1163 spin_unlock_irq(&pcpu_lock);
1164
1165 if (new_alloc)
1166 pcpu_extend_area_map(chunk, new_alloc);
1167 } while (chunk);
1168
1a4d7607
TH
1169 /*
1170 * Ensure there are certain number of free populated pages for
1171 * atomic allocs. Fill up from the most packed so that atomic
1172 * allocs don't increase fragmentation. If atomic allocation
1173 * failed previously, always populate the maximum amount. This
1174 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1175 * failing indefinitely; however, large atomic allocs are not
1176 * something we support properly and can be highly unreliable and
1177 * inefficient.
1178 */
1179retry_pop:
1180 if (pcpu_atomic_alloc_failed) {
1181 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1182 /* best effort anyway, don't worry about synchronization */
1183 pcpu_atomic_alloc_failed = false;
1184 } else {
1185 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1186 pcpu_nr_empty_pop_pages,
1187 0, PCPU_EMPTY_POP_PAGES_HIGH);
1188 }
1189
1190 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1191 int nr_unpop = 0, rs, re;
1192
1193 if (!nr_to_pop)
1194 break;
1195
1196 spin_lock_irq(&pcpu_lock);
1197 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1198 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1199 if (nr_unpop)
1200 break;
1201 }
1202 spin_unlock_irq(&pcpu_lock);
1203
1204 if (!nr_unpop)
1205 continue;
1206
1207 /* @chunk can't go away while pcpu_alloc_mutex is held */
1208 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1209 int nr = min(re - rs, nr_to_pop);
1210
1211 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1212 if (!ret) {
1213 nr_to_pop -= nr;
1214 spin_lock_irq(&pcpu_lock);
1215 pcpu_chunk_populated(chunk, rs, rs + nr);
1216 spin_unlock_irq(&pcpu_lock);
1217 } else {
1218 nr_to_pop = 0;
1219 }
1220
1221 if (!nr_to_pop)
1222 break;
1223 }
1224 }
1225
1226 if (nr_to_pop) {
1227 /* ran out of chunks to populate, create a new one and retry */
1228 chunk = pcpu_create_chunk();
1229 if (chunk) {
1230 spin_lock_irq(&pcpu_lock);
1231 pcpu_chunk_relocate(chunk, -1);
1232 spin_unlock_irq(&pcpu_lock);
1233 goto retry_pop;
1234 }
1235 }
1236
971f3918 1237 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1238}
1239
1240/**
1241 * free_percpu - free percpu area
1242 * @ptr: pointer to area to free
1243 *
ccea34b5
TH
1244 * Free percpu area @ptr.
1245 *
1246 * CONTEXT:
1247 * Can be called from atomic context.
fbf59bc9 1248 */
43cf38eb 1249void free_percpu(void __percpu *ptr)
fbf59bc9 1250{
129182e5 1251 void *addr;
fbf59bc9 1252 struct pcpu_chunk *chunk;
ccea34b5 1253 unsigned long flags;
b539b87f 1254 int off, occ_pages;
fbf59bc9
TH
1255
1256 if (!ptr)
1257 return;
1258
f528f0b8
CM
1259 kmemleak_free_percpu(ptr);
1260
129182e5
AM
1261 addr = __pcpu_ptr_to_addr(ptr);
1262
ccea34b5 1263 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1264
1265 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1266 off = addr - chunk->base_addr;
fbf59bc9 1267
b539b87f
TH
1268 pcpu_free_area(chunk, off, &occ_pages);
1269
1270 if (chunk != pcpu_reserved_chunk)
1271 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1272
a56dbddf 1273 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1274 if (chunk->free_size == pcpu_unit_size) {
1275 struct pcpu_chunk *pos;
1276
a56dbddf 1277 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1278 if (pos != chunk) {
1a4d7607 1279 pcpu_schedule_balance_work();
fbf59bc9
TH
1280 break;
1281 }
1282 }
1283
df95e795
DZ
1284 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1285
ccea34b5 1286 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1287}
1288EXPORT_SYMBOL_GPL(free_percpu);
1289
383776fa 1290bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1291{
bbddff05 1292#ifdef CONFIG_SMP
10fad5e4
TH
1293 const size_t static_size = __per_cpu_end - __per_cpu_start;
1294 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1295 unsigned int cpu;
1296
1297 for_each_possible_cpu(cpu) {
1298 void *start = per_cpu_ptr(base, cpu);
383776fa 1299 void *va = (void *)addr;
10fad5e4 1300
383776fa 1301 if (va >= start && va < start + static_size) {
8ce371f9 1302 if (can_addr) {
383776fa 1303 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1304 *can_addr += (unsigned long)
1305 per_cpu_ptr(base, get_boot_cpu_id());
1306 }
10fad5e4 1307 return true;
383776fa
TG
1308 }
1309 }
bbddff05
TH
1310#endif
1311 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1312 return false;
1313}
1314
383776fa
TG
1315/**
1316 * is_kernel_percpu_address - test whether address is from static percpu area
1317 * @addr: address to test
1318 *
1319 * Test whether @addr belongs to in-kernel static percpu area. Module
1320 * static percpu areas are not considered. For those, use
1321 * is_module_percpu_address().
1322 *
1323 * RETURNS:
1324 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1325 */
1326bool is_kernel_percpu_address(unsigned long addr)
1327{
1328 return __is_kernel_percpu_address(addr, NULL);
1329}
1330
3b034b0d
VG
1331/**
1332 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1333 * @addr: the address to be converted to physical address
1334 *
1335 * Given @addr which is dereferenceable address obtained via one of
1336 * percpu access macros, this function translates it into its physical
1337 * address. The caller is responsible for ensuring @addr stays valid
1338 * until this function finishes.
1339 *
67589c71
DY
1340 * percpu allocator has special setup for the first chunk, which currently
1341 * supports either embedding in linear address space or vmalloc mapping,
1342 * and, from the second one, the backing allocator (currently either vm or
1343 * km) provides translation.
1344 *
bffc4375 1345 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1346 * first chunk. But the current code reflects better how percpu allocator
1347 * actually works, and the verification can discover both bugs in percpu
1348 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1349 * code.
1350 *
3b034b0d
VG
1351 * RETURNS:
1352 * The physical address for @addr.
1353 */
1354phys_addr_t per_cpu_ptr_to_phys(void *addr)
1355{
9983b6f0
TH
1356 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1357 bool in_first_chunk = false;
a855b84c 1358 unsigned long first_low, first_high;
9983b6f0
TH
1359 unsigned int cpu;
1360
1361 /*
a855b84c 1362 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1363 * necessary but will speed up lookups of addresses which
1364 * aren't in the first chunk.
1365 */
a855b84c
TH
1366 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1367 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1368 pcpu_unit_pages);
1369 if ((unsigned long)addr >= first_low &&
1370 (unsigned long)addr < first_high) {
9983b6f0
TH
1371 for_each_possible_cpu(cpu) {
1372 void *start = per_cpu_ptr(base, cpu);
1373
1374 if (addr >= start && addr < start + pcpu_unit_size) {
1375 in_first_chunk = true;
1376 break;
1377 }
1378 }
1379 }
1380
1381 if (in_first_chunk) {
eac522ef 1382 if (!is_vmalloc_addr(addr))
020ec653
TH
1383 return __pa(addr);
1384 else
9f57bd4d
ES
1385 return page_to_phys(vmalloc_to_page(addr)) +
1386 offset_in_page(addr);
020ec653 1387 } else
9f57bd4d
ES
1388 return page_to_phys(pcpu_addr_to_page(addr)) +
1389 offset_in_page(addr);
3b034b0d
VG
1390}
1391
fbf59bc9 1392/**
fd1e8a1f
TH
1393 * pcpu_alloc_alloc_info - allocate percpu allocation info
1394 * @nr_groups: the number of groups
1395 * @nr_units: the number of units
1396 *
1397 * Allocate ai which is large enough for @nr_groups groups containing
1398 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1399 * cpu_map array which is long enough for @nr_units and filled with
1400 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1401 * pointer of other groups.
1402 *
1403 * RETURNS:
1404 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1405 * failure.
1406 */
1407struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1408 int nr_units)
1409{
1410 struct pcpu_alloc_info *ai;
1411 size_t base_size, ai_size;
1412 void *ptr;
1413 int unit;
1414
1415 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1416 __alignof__(ai->groups[0].cpu_map[0]));
1417 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1418
999c17e3 1419 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1420 if (!ptr)
1421 return NULL;
1422 ai = ptr;
1423 ptr += base_size;
1424
1425 ai->groups[0].cpu_map = ptr;
1426
1427 for (unit = 0; unit < nr_units; unit++)
1428 ai->groups[0].cpu_map[unit] = NR_CPUS;
1429
1430 ai->nr_groups = nr_groups;
1431 ai->__ai_size = PFN_ALIGN(ai_size);
1432
1433 return ai;
1434}
1435
1436/**
1437 * pcpu_free_alloc_info - free percpu allocation info
1438 * @ai: pcpu_alloc_info to free
1439 *
1440 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1441 */
1442void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1443{
999c17e3 1444 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1445}
1446
fd1e8a1f
TH
1447/**
1448 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1449 * @lvl: loglevel
1450 * @ai: allocation info to dump
1451 *
1452 * Print out information about @ai using loglevel @lvl.
1453 */
1454static void pcpu_dump_alloc_info(const char *lvl,
1455 const struct pcpu_alloc_info *ai)
033e48fb 1456{
fd1e8a1f 1457 int group_width = 1, cpu_width = 1, width;
033e48fb 1458 char empty_str[] = "--------";
fd1e8a1f
TH
1459 int alloc = 0, alloc_end = 0;
1460 int group, v;
1461 int upa, apl; /* units per alloc, allocs per line */
1462
1463 v = ai->nr_groups;
1464 while (v /= 10)
1465 group_width++;
033e48fb 1466
fd1e8a1f 1467 v = num_possible_cpus();
033e48fb 1468 while (v /= 10)
fd1e8a1f
TH
1469 cpu_width++;
1470 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1471
fd1e8a1f
TH
1472 upa = ai->alloc_size / ai->unit_size;
1473 width = upa * (cpu_width + 1) + group_width + 3;
1474 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1475
fd1e8a1f
TH
1476 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1477 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1478 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1479
fd1e8a1f
TH
1480 for (group = 0; group < ai->nr_groups; group++) {
1481 const struct pcpu_group_info *gi = &ai->groups[group];
1482 int unit = 0, unit_end = 0;
1483
1484 BUG_ON(gi->nr_units % upa);
1485 for (alloc_end += gi->nr_units / upa;
1486 alloc < alloc_end; alloc++) {
1487 if (!(alloc % apl)) {
1170532b 1488 pr_cont("\n");
fd1e8a1f
TH
1489 printk("%spcpu-alloc: ", lvl);
1490 }
1170532b 1491 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1492
1493 for (unit_end += upa; unit < unit_end; unit++)
1494 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1495 pr_cont("%0*d ",
1496 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1497 else
1170532b 1498 pr_cont("%s ", empty_str);
033e48fb 1499 }
033e48fb 1500 }
1170532b 1501 pr_cont("\n");
033e48fb 1502}
033e48fb 1503
fbf59bc9 1504/**
8d408b4b 1505 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1506 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1507 * @base_addr: mapped address
8d408b4b
TH
1508 *
1509 * Initialize the first percpu chunk which contains the kernel static
1510 * perpcu area. This function is to be called from arch percpu area
38a6be52 1511 * setup path.
8d408b4b 1512 *
fd1e8a1f
TH
1513 * @ai contains all information necessary to initialize the first
1514 * chunk and prime the dynamic percpu allocator.
1515 *
1516 * @ai->static_size is the size of static percpu area.
1517 *
1518 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1519 * reserve after the static area in the first chunk. This reserves
1520 * the first chunk such that it's available only through reserved
1521 * percpu allocation. This is primarily used to serve module percpu
1522 * static areas on architectures where the addressing model has
1523 * limited offset range for symbol relocations to guarantee module
1524 * percpu symbols fall inside the relocatable range.
1525 *
fd1e8a1f
TH
1526 * @ai->dyn_size determines the number of bytes available for dynamic
1527 * allocation in the first chunk. The area between @ai->static_size +
1528 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1529 *
fd1e8a1f
TH
1530 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1531 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1532 * @ai->dyn_size.
8d408b4b 1533 *
fd1e8a1f
TH
1534 * @ai->atom_size is the allocation atom size and used as alignment
1535 * for vm areas.
8d408b4b 1536 *
fd1e8a1f
TH
1537 * @ai->alloc_size is the allocation size and always multiple of
1538 * @ai->atom_size. This is larger than @ai->atom_size if
1539 * @ai->unit_size is larger than @ai->atom_size.
1540 *
1541 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1542 * percpu areas. Units which should be colocated are put into the
1543 * same group. Dynamic VM areas will be allocated according to these
1544 * groupings. If @ai->nr_groups is zero, a single group containing
1545 * all units is assumed.
8d408b4b 1546 *
38a6be52
TH
1547 * The caller should have mapped the first chunk at @base_addr and
1548 * copied static data to each unit.
fbf59bc9 1549 *
edcb4639
TH
1550 * If the first chunk ends up with both reserved and dynamic areas, it
1551 * is served by two chunks - one to serve the core static and reserved
1552 * areas and the other for the dynamic area. They share the same vm
1553 * and page map but uses different area allocation map to stay away
1554 * from each other. The latter chunk is circulated in the chunk slots
1555 * and available for dynamic allocation like any other chunks.
1556 *
fbf59bc9 1557 * RETURNS:
fb435d52 1558 * 0 on success, -errno on failure.
fbf59bc9 1559 */
fb435d52
TH
1560int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1561 void *base_addr)
fbf59bc9 1562{
099a19d9
TH
1563 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1564 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
b9c39442 1565 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
edcb4639 1566 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1567 unsigned long *group_offsets;
1568 size_t *group_sizes;
fb435d52 1569 unsigned long *unit_off;
fbf59bc9 1570 unsigned int cpu;
fd1e8a1f
TH
1571 int *unit_map;
1572 int group, unit, i;
fbf59bc9 1573
635b75fc
TH
1574#define PCPU_SETUP_BUG_ON(cond) do { \
1575 if (unlikely(cond)) { \
870d4b12
JP
1576 pr_emerg("failed to initialize, %s\n", #cond); \
1577 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1578 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1579 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1580 BUG(); \
1581 } \
1582} while (0)
1583
2f39e637 1584 /* sanity checks */
635b75fc 1585 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1586#ifdef CONFIG_SMP
635b75fc 1587 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1588 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1589#endif
635b75fc 1590 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1591 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1592 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1593 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1594 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1595 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1596 PCPU_SETUP_BUG_ON(!ai->dyn_size);
9f645532 1597 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1598
6563297c 1599 /* process group information and build config tables accordingly */
999c17e3
SS
1600 group_offsets = memblock_virt_alloc(ai->nr_groups *
1601 sizeof(group_offsets[0]), 0);
1602 group_sizes = memblock_virt_alloc(ai->nr_groups *
1603 sizeof(group_sizes[0]), 0);
1604 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1605 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1606
fd1e8a1f 1607 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1608 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1609
1610 pcpu_low_unit_cpu = NR_CPUS;
1611 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1612
fd1e8a1f
TH
1613 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1614 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1615
6563297c
TH
1616 group_offsets[group] = gi->base_offset;
1617 group_sizes[group] = gi->nr_units * ai->unit_size;
1618
fd1e8a1f
TH
1619 for (i = 0; i < gi->nr_units; i++) {
1620 cpu = gi->cpu_map[i];
1621 if (cpu == NR_CPUS)
1622 continue;
8d408b4b 1623
9f295664 1624 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1625 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1626 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1627
fd1e8a1f 1628 unit_map[cpu] = unit + i;
fb435d52
TH
1629 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1630
a855b84c
TH
1631 /* determine low/high unit_cpu */
1632 if (pcpu_low_unit_cpu == NR_CPUS ||
1633 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1634 pcpu_low_unit_cpu = cpu;
1635 if (pcpu_high_unit_cpu == NR_CPUS ||
1636 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1637 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1638 }
2f39e637 1639 }
fd1e8a1f
TH
1640 pcpu_nr_units = unit;
1641
1642 for_each_possible_cpu(cpu)
635b75fc
TH
1643 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1644
1645 /* we're done parsing the input, undefine BUG macro and dump config */
1646#undef PCPU_SETUP_BUG_ON
bcbea798 1647 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1648
6563297c
TH
1649 pcpu_nr_groups = ai->nr_groups;
1650 pcpu_group_offsets = group_offsets;
1651 pcpu_group_sizes = group_sizes;
fd1e8a1f 1652 pcpu_unit_map = unit_map;
fb435d52 1653 pcpu_unit_offsets = unit_off;
2f39e637
TH
1654
1655 /* determine basic parameters */
fd1e8a1f 1656 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1657 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1658 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1659 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1660 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1661
30a5b536
DZ
1662 pcpu_stats_save_ai(ai);
1663
d9b55eeb
TH
1664 /*
1665 * Allocate chunk slots. The additional last slot is for
1666 * empty chunks.
1667 */
1668 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1669 pcpu_slot = memblock_virt_alloc(
1670 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1671 for (i = 0; i < pcpu_nr_slots; i++)
1672 INIT_LIST_HEAD(&pcpu_slot[i]);
1673
edcb4639
TH
1674 /*
1675 * Initialize static chunk. If reserved_size is zero, the
1676 * static chunk covers static area + dynamic allocation area
1677 * in the first chunk. If reserved_size is not zero, it
1678 * covers static area + reserved area (mostly used for module
1679 * static percpu allocation).
1680 */
999c17e3 1681 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1682 INIT_LIST_HEAD(&schunk->list);
4f996e23 1683 INIT_LIST_HEAD(&schunk->map_extend_list);
bba174f5 1684 schunk->base_addr = base_addr;
e2266705 1685 schunk->start_offset = ai->static_size;
61ace7fa
TH
1686 schunk->map = smap;
1687 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1688 schunk->immutable = true;
ce3141a2 1689 bitmap_fill(schunk->populated, pcpu_unit_pages);
b539b87f 1690 schunk->nr_populated = pcpu_unit_pages;
edcb4639 1691
b9c39442 1692 schunk->free_size = ai->reserved_size ?: ai->dyn_size;
fb29a2cc 1693 schunk->contig_hint = schunk->free_size;
723ad1d9 1694 schunk->map[0] = 1;
e2266705 1695 schunk->map[1] = schunk->start_offset;
fb29a2cc
DZF
1696 schunk->map[2] = (ai->static_size + schunk->free_size) | 1;
1697 schunk->map_used = 2;
61ace7fa 1698
edcb4639 1699 /* init dynamic chunk if necessary */
b9c39442
DZF
1700 if (ai->reserved_size) {
1701 pcpu_reserved_chunk = schunk;
1702
999c17e3 1703 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1704 INIT_LIST_HEAD(&dchunk->list);
4f996e23 1705 INIT_LIST_HEAD(&dchunk->map_extend_list);
bba174f5 1706 dchunk->base_addr = base_addr;
e2266705 1707 dchunk->start_offset = ai->static_size + ai->reserved_size;
edcb4639
TH
1708 dchunk->map = dmap;
1709 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1710 dchunk->immutable = true;
ce3141a2 1711 bitmap_fill(dchunk->populated, pcpu_unit_pages);
b539b87f 1712 dchunk->nr_populated = pcpu_unit_pages;
edcb4639 1713
b9c39442 1714 dchunk->contig_hint = dchunk->free_size = ai->dyn_size;
723ad1d9 1715 dchunk->map[0] = 1;
e2266705
DZF
1716 dchunk->map[1] = dchunk->start_offset;
1717 dchunk->map[2] = (dchunk->start_offset + dchunk->free_size) | 1;
723ad1d9 1718 dchunk->map_used = 2;
edcb4639
TH
1719 }
1720
2441d15c 1721 /* link the first chunk in */
ae9e6bc9 1722 pcpu_first_chunk = dchunk ?: schunk;
e2266705 1723 i = (pcpu_first_chunk->start_offset) ? 1 : 0;
b539b87f 1724 pcpu_nr_empty_pop_pages +=
e2266705 1725 pcpu_count_occupied_pages(pcpu_first_chunk, i);
ae9e6bc9 1726 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1727
30a5b536 1728 pcpu_stats_chunk_alloc();
df95e795 1729 trace_percpu_create_chunk(base_addr);
30a5b536 1730
fbf59bc9 1731 /* we're done */
bba174f5 1732 pcpu_base_addr = base_addr;
fb435d52 1733 return 0;
fbf59bc9 1734}
66c3a757 1735
bbddff05
TH
1736#ifdef CONFIG_SMP
1737
17f3609c 1738const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1739 [PCPU_FC_AUTO] = "auto",
1740 [PCPU_FC_EMBED] = "embed",
1741 [PCPU_FC_PAGE] = "page",
f58dc01b 1742};
66c3a757 1743
f58dc01b 1744enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1745
f58dc01b
TH
1746static int __init percpu_alloc_setup(char *str)
1747{
5479c78a
CG
1748 if (!str)
1749 return -EINVAL;
1750
f58dc01b
TH
1751 if (0)
1752 /* nada */;
1753#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1754 else if (!strcmp(str, "embed"))
1755 pcpu_chosen_fc = PCPU_FC_EMBED;
1756#endif
1757#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1758 else if (!strcmp(str, "page"))
1759 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1760#endif
1761 else
870d4b12 1762 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1763
f58dc01b 1764 return 0;
66c3a757 1765}
f58dc01b 1766early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1767
3c9a024f
TH
1768/*
1769 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1770 * Build it if needed by the arch config or the generic setup is going
1771 * to be used.
1772 */
08fc4580
TH
1773#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1774 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1775#define BUILD_EMBED_FIRST_CHUNK
1776#endif
1777
1778/* build pcpu_page_first_chunk() iff needed by the arch config */
1779#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1780#define BUILD_PAGE_FIRST_CHUNK
1781#endif
1782
1783/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1784#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1785/**
1786 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1787 * @reserved_size: the size of reserved percpu area in bytes
1788 * @dyn_size: minimum free size for dynamic allocation in bytes
1789 * @atom_size: allocation atom size
1790 * @cpu_distance_fn: callback to determine distance between cpus, optional
1791 *
1792 * This function determines grouping of units, their mappings to cpus
1793 * and other parameters considering needed percpu size, allocation
1794 * atom size and distances between CPUs.
1795 *
bffc4375 1796 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1797 * LOCAL_DISTANCE both ways are grouped together and share space for
1798 * units in the same group. The returned configuration is guaranteed
1799 * to have CPUs on different nodes on different groups and >=75% usage
1800 * of allocated virtual address space.
1801 *
1802 * RETURNS:
1803 * On success, pointer to the new allocation_info is returned. On
1804 * failure, ERR_PTR value is returned.
1805 */
1806static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1807 size_t reserved_size, size_t dyn_size,
1808 size_t atom_size,
1809 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1810{
1811 static int group_map[NR_CPUS] __initdata;
1812 static int group_cnt[NR_CPUS] __initdata;
1813 const size_t static_size = __per_cpu_end - __per_cpu_start;
1814 int nr_groups = 1, nr_units = 0;
1815 size_t size_sum, min_unit_size, alloc_size;
1816 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1817 int last_allocs, group, unit;
1818 unsigned int cpu, tcpu;
1819 struct pcpu_alloc_info *ai;
1820 unsigned int *cpu_map;
1821
1822 /* this function may be called multiple times */
1823 memset(group_map, 0, sizeof(group_map));
1824 memset(group_cnt, 0, sizeof(group_cnt));
1825
1826 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1827 size_sum = PFN_ALIGN(static_size + reserved_size +
1828 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1829 dyn_size = size_sum - static_size - reserved_size;
1830
1831 /*
1832 * Determine min_unit_size, alloc_size and max_upa such that
1833 * alloc_size is multiple of atom_size and is the smallest
25985edc 1834 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1835 * or larger than min_unit_size.
1836 */
1837 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1838
9c015162 1839 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1840 alloc_size = roundup(min_unit_size, atom_size);
1841 upa = alloc_size / min_unit_size;
f09f1243 1842 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1843 upa--;
1844 max_upa = upa;
1845
1846 /* group cpus according to their proximity */
1847 for_each_possible_cpu(cpu) {
1848 group = 0;
1849 next_group:
1850 for_each_possible_cpu(tcpu) {
1851 if (cpu == tcpu)
1852 break;
1853 if (group_map[tcpu] == group && cpu_distance_fn &&
1854 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1855 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1856 group++;
1857 nr_groups = max(nr_groups, group + 1);
1858 goto next_group;
1859 }
1860 }
1861 group_map[cpu] = group;
1862 group_cnt[group]++;
1863 }
1864
1865 /*
9c015162
DZF
1866 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1867 * Expand the unit_size until we use >= 75% of the units allocated.
1868 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
1869 */
1870 last_allocs = INT_MAX;
1871 for (upa = max_upa; upa; upa--) {
1872 int allocs = 0, wasted = 0;
1873
f09f1243 1874 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1875 continue;
1876
1877 for (group = 0; group < nr_groups; group++) {
1878 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1879 allocs += this_allocs;
1880 wasted += this_allocs * upa - group_cnt[group];
1881 }
1882
1883 /*
1884 * Don't accept if wastage is over 1/3. The
1885 * greater-than comparison ensures upa==1 always
1886 * passes the following check.
1887 */
1888 if (wasted > num_possible_cpus() / 3)
1889 continue;
1890
1891 /* and then don't consume more memory */
1892 if (allocs > last_allocs)
1893 break;
1894 last_allocs = allocs;
1895 best_upa = upa;
1896 }
1897 upa = best_upa;
1898
1899 /* allocate and fill alloc_info */
1900 for (group = 0; group < nr_groups; group++)
1901 nr_units += roundup(group_cnt[group], upa);
1902
1903 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1904 if (!ai)
1905 return ERR_PTR(-ENOMEM);
1906 cpu_map = ai->groups[0].cpu_map;
1907
1908 for (group = 0; group < nr_groups; group++) {
1909 ai->groups[group].cpu_map = cpu_map;
1910 cpu_map += roundup(group_cnt[group], upa);
1911 }
1912
1913 ai->static_size = static_size;
1914 ai->reserved_size = reserved_size;
1915 ai->dyn_size = dyn_size;
1916 ai->unit_size = alloc_size / upa;
1917 ai->atom_size = atom_size;
1918 ai->alloc_size = alloc_size;
1919
1920 for (group = 0, unit = 0; group_cnt[group]; group++) {
1921 struct pcpu_group_info *gi = &ai->groups[group];
1922
1923 /*
1924 * Initialize base_offset as if all groups are located
1925 * back-to-back. The caller should update this to
1926 * reflect actual allocation.
1927 */
1928 gi->base_offset = unit * ai->unit_size;
1929
1930 for_each_possible_cpu(cpu)
1931 if (group_map[cpu] == group)
1932 gi->cpu_map[gi->nr_units++] = cpu;
1933 gi->nr_units = roundup(gi->nr_units, upa);
1934 unit += gi->nr_units;
1935 }
1936 BUG_ON(unit != nr_units);
1937
1938 return ai;
1939}
1940#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1941
1942#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1943/**
1944 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1945 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1946 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1947 * @atom_size: allocation atom size
1948 * @cpu_distance_fn: callback to determine distance between cpus, optional
1949 * @alloc_fn: function to allocate percpu page
25985edc 1950 * @free_fn: function to free percpu page
66c3a757
TH
1951 *
1952 * This is a helper to ease setting up embedded first percpu chunk and
1953 * can be called where pcpu_setup_first_chunk() is expected.
1954 *
1955 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1956 * by calling @alloc_fn and used as-is without being mapped into
1957 * vmalloc area. Allocations are always whole multiples of @atom_size
1958 * aligned to @atom_size.
1959 *
1960 * This enables the first chunk to piggy back on the linear physical
1961 * mapping which often uses larger page size. Please note that this
1962 * can result in very sparse cpu->unit mapping on NUMA machines thus
1963 * requiring large vmalloc address space. Don't use this allocator if
1964 * vmalloc space is not orders of magnitude larger than distances
1965 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1966 *
4ba6ce25 1967 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1968 *
1969 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1970 * size, the leftover is returned using @free_fn.
66c3a757
TH
1971 *
1972 * RETURNS:
fb435d52 1973 * 0 on success, -errno on failure.
66c3a757 1974 */
4ba6ce25 1975int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1976 size_t atom_size,
1977 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1978 pcpu_fc_alloc_fn_t alloc_fn,
1979 pcpu_fc_free_fn_t free_fn)
66c3a757 1980{
c8826dd5
TH
1981 void *base = (void *)ULONG_MAX;
1982 void **areas = NULL;
fd1e8a1f 1983 struct pcpu_alloc_info *ai;
93c76b6b 1984 size_t size_sum, areas_size;
1985 unsigned long max_distance;
9b739662 1986 int group, i, highest_group, rc;
66c3a757 1987
c8826dd5
TH
1988 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1989 cpu_distance_fn);
fd1e8a1f
TH
1990 if (IS_ERR(ai))
1991 return PTR_ERR(ai);
66c3a757 1992
fd1e8a1f 1993 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1994 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1995
999c17e3 1996 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1997 if (!areas) {
fb435d52 1998 rc = -ENOMEM;
c8826dd5 1999 goto out_free;
fa8a7094 2000 }
66c3a757 2001
9b739662 2002 /* allocate, copy and determine base address & max_distance */
2003 highest_group = 0;
c8826dd5
TH
2004 for (group = 0; group < ai->nr_groups; group++) {
2005 struct pcpu_group_info *gi = &ai->groups[group];
2006 unsigned int cpu = NR_CPUS;
2007 void *ptr;
2008
2009 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2010 cpu = gi->cpu_map[i];
2011 BUG_ON(cpu == NR_CPUS);
2012
2013 /* allocate space for the whole group */
2014 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2015 if (!ptr) {
2016 rc = -ENOMEM;
2017 goto out_free_areas;
2018 }
f528f0b8
CM
2019 /* kmemleak tracks the percpu allocations separately */
2020 kmemleak_free(ptr);
c8826dd5 2021 areas[group] = ptr;
fd1e8a1f 2022
c8826dd5 2023 base = min(ptr, base);
9b739662 2024 if (ptr > areas[highest_group])
2025 highest_group = group;
2026 }
2027 max_distance = areas[highest_group] - base;
2028 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2029
2030 /* warn if maximum distance is further than 75% of vmalloc space */
2031 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2032 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2033 max_distance, VMALLOC_TOTAL);
2034#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2035 /* and fail if we have fallback */
2036 rc = -EINVAL;
2037 goto out_free_areas;
2038#endif
42b64281
TH
2039 }
2040
2041 /*
2042 * Copy data and free unused parts. This should happen after all
2043 * allocations are complete; otherwise, we may end up with
2044 * overlapping groups.
2045 */
2046 for (group = 0; group < ai->nr_groups; group++) {
2047 struct pcpu_group_info *gi = &ai->groups[group];
2048 void *ptr = areas[group];
c8826dd5
TH
2049
2050 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2051 if (gi->cpu_map[i] == NR_CPUS) {
2052 /* unused unit, free whole */
2053 free_fn(ptr, ai->unit_size);
2054 continue;
2055 }
2056 /* copy and return the unused part */
2057 memcpy(ptr, __per_cpu_load, ai->static_size);
2058 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2059 }
fa8a7094 2060 }
66c3a757 2061
c8826dd5 2062 /* base address is now known, determine group base offsets */
6ea529a2 2063 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2064 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2065 }
c8826dd5 2066
870d4b12 2067 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2068 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2069 ai->dyn_size, ai->unit_size);
d4b95f80 2070
fb435d52 2071 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2072 goto out_free;
2073
2074out_free_areas:
2075 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2076 if (areas[group])
2077 free_fn(areas[group],
2078 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2079out_free:
fd1e8a1f 2080 pcpu_free_alloc_info(ai);
c8826dd5 2081 if (areas)
999c17e3 2082 memblock_free_early(__pa(areas), areas_size);
fb435d52 2083 return rc;
d4b95f80 2084}
3c9a024f 2085#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2086
3c9a024f 2087#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2088/**
00ae4064 2089 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2090 * @reserved_size: the size of reserved percpu area in bytes
2091 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2092 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2093 * @populate_pte_fn: function to populate pte
2094 *
00ae4064
TH
2095 * This is a helper to ease setting up page-remapped first percpu
2096 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2097 *
2098 * This is the basic allocator. Static percpu area is allocated
2099 * page-by-page into vmalloc area.
2100 *
2101 * RETURNS:
fb435d52 2102 * 0 on success, -errno on failure.
d4b95f80 2103 */
fb435d52
TH
2104int __init pcpu_page_first_chunk(size_t reserved_size,
2105 pcpu_fc_alloc_fn_t alloc_fn,
2106 pcpu_fc_free_fn_t free_fn,
2107 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2108{
8f05a6a6 2109 static struct vm_struct vm;
fd1e8a1f 2110 struct pcpu_alloc_info *ai;
00ae4064 2111 char psize_str[16];
ce3141a2 2112 int unit_pages;
d4b95f80 2113 size_t pages_size;
ce3141a2 2114 struct page **pages;
fb435d52 2115 int unit, i, j, rc;
8f606604 2116 int upa;
2117 int nr_g0_units;
d4b95f80 2118
00ae4064
TH
2119 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2120
4ba6ce25 2121 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2122 if (IS_ERR(ai))
2123 return PTR_ERR(ai);
2124 BUG_ON(ai->nr_groups != 1);
8f606604 2125 upa = ai->alloc_size/ai->unit_size;
2126 nr_g0_units = roundup(num_possible_cpus(), upa);
2127 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2128 pcpu_free_alloc_info(ai);
2129 return -EINVAL;
2130 }
fd1e8a1f
TH
2131
2132 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2133
2134 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2135 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2136 sizeof(pages[0]));
999c17e3 2137 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2138
8f05a6a6 2139 /* allocate pages */
d4b95f80 2140 j = 0;
8f606604 2141 for (unit = 0; unit < num_possible_cpus(); unit++) {
2142 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2143 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2144 void *ptr;
2145
3cbc8565 2146 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2147 if (!ptr) {
870d4b12 2148 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2149 psize_str, cpu);
d4b95f80
TH
2150 goto enomem;
2151 }
f528f0b8
CM
2152 /* kmemleak tracks the percpu allocations separately */
2153 kmemleak_free(ptr);
ce3141a2 2154 pages[j++] = virt_to_page(ptr);
d4b95f80 2155 }
8f606604 2156 }
d4b95f80 2157
8f05a6a6
TH
2158 /* allocate vm area, map the pages and copy static data */
2159 vm.flags = VM_ALLOC;
fd1e8a1f 2160 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2161 vm_area_register_early(&vm, PAGE_SIZE);
2162
fd1e8a1f 2163 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2164 unsigned long unit_addr =
fd1e8a1f 2165 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2166
ce3141a2 2167 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2168 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2169
2170 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2171 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2172 unit_pages);
2173 if (rc < 0)
2174 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2175
8f05a6a6
TH
2176 /*
2177 * FIXME: Archs with virtual cache should flush local
2178 * cache for the linear mapping here - something
2179 * equivalent to flush_cache_vmap() on the local cpu.
2180 * flush_cache_vmap() can't be used as most supporting
2181 * data structures are not set up yet.
2182 */
2183
2184 /* copy static data */
fd1e8a1f 2185 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2186 }
2187
2188 /* we're ready, commit */
870d4b12 2189 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2190 unit_pages, psize_str, vm.addr, ai->static_size,
2191 ai->reserved_size, ai->dyn_size);
d4b95f80 2192
fb435d52 2193 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2194 goto out_free_ar;
2195
2196enomem:
2197 while (--j >= 0)
ce3141a2 2198 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2199 rc = -ENOMEM;
d4b95f80 2200out_free_ar:
999c17e3 2201 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2202 pcpu_free_alloc_info(ai);
fb435d52 2203 return rc;
d4b95f80 2204}
3c9a024f 2205#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2206
bbddff05 2207#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2208/*
bbddff05 2209 * Generic SMP percpu area setup.
e74e3962
TH
2210 *
2211 * The embedding helper is used because its behavior closely resembles
2212 * the original non-dynamic generic percpu area setup. This is
2213 * important because many archs have addressing restrictions and might
2214 * fail if the percpu area is located far away from the previous
2215 * location. As an added bonus, in non-NUMA cases, embedding is
2216 * generally a good idea TLB-wise because percpu area can piggy back
2217 * on the physical linear memory mapping which uses large page
2218 * mappings on applicable archs.
2219 */
e74e3962
TH
2220unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2221EXPORT_SYMBOL(__per_cpu_offset);
2222
c8826dd5
TH
2223static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2224 size_t align)
2225{
999c17e3
SS
2226 return memblock_virt_alloc_from_nopanic(
2227 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2228}
66c3a757 2229
c8826dd5
TH
2230static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2231{
999c17e3 2232 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2233}
2234
e74e3962
TH
2235void __init setup_per_cpu_areas(void)
2236{
e74e3962
TH
2237 unsigned long delta;
2238 unsigned int cpu;
fb435d52 2239 int rc;
e74e3962
TH
2240
2241 /*
2242 * Always reserve area for module percpu variables. That's
2243 * what the legacy allocator did.
2244 */
fb435d52 2245 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2246 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2247 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2248 if (rc < 0)
bbddff05 2249 panic("Failed to initialize percpu areas.");
e74e3962
TH
2250
2251 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2252 for_each_possible_cpu(cpu)
fb435d52 2253 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2254}
bbddff05
TH
2255#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2256
2257#else /* CONFIG_SMP */
2258
2259/*
2260 * UP percpu area setup.
2261 *
2262 * UP always uses km-based percpu allocator with identity mapping.
2263 * Static percpu variables are indistinguishable from the usual static
2264 * variables and don't require any special preparation.
2265 */
2266void __init setup_per_cpu_areas(void)
2267{
2268 const size_t unit_size =
2269 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2270 PERCPU_DYNAMIC_RESERVE));
2271 struct pcpu_alloc_info *ai;
2272 void *fc;
2273
2274 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2275 fc = memblock_virt_alloc_from_nopanic(unit_size,
2276 PAGE_SIZE,
2277 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2278 if (!ai || !fc)
2279 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2280 /* kmemleak tracks the percpu allocations separately */
2281 kmemleak_free(fc);
bbddff05
TH
2282
2283 ai->dyn_size = unit_size;
2284 ai->unit_size = unit_size;
2285 ai->atom_size = unit_size;
2286 ai->alloc_size = unit_size;
2287 ai->groups[0].nr_units = 1;
2288 ai->groups[0].cpu_map[0] = 0;
2289
2290 if (pcpu_setup_first_chunk(ai, fc) < 0)
2291 panic("Failed to initialize percpu areas.");
2292}
2293
2294#endif /* CONFIG_SMP */
099a19d9
TH
2295
2296/*
2297 * First and reserved chunks are initialized with temporary allocation
2298 * map in initdata so that they can be used before slab is online.
2299 * This function is called after slab is brought up and replaces those
2300 * with properly allocated maps.
2301 */
2302void __init percpu_init_late(void)
2303{
2304 struct pcpu_chunk *target_chunks[] =
2305 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2306 struct pcpu_chunk *chunk;
2307 unsigned long flags;
2308 int i;
2309
2310 for (i = 0; (chunk = target_chunks[i]); i++) {
2311 int *map;
2312 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2313
2314 BUILD_BUG_ON(size > PAGE_SIZE);
2315
90459ce0 2316 map = pcpu_mem_zalloc(size);
099a19d9
TH
2317 BUG_ON(!map);
2318
2319 spin_lock_irqsave(&pcpu_lock, flags);
2320 memcpy(map, chunk->map, size);
2321 chunk->map = map;
2322 spin_unlock_irqrestore(&pcpu_lock, flags);
2323 }
2324}
1a4d7607
TH
2325
2326/*
2327 * Percpu allocator is initialized early during boot when neither slab or
2328 * workqueue is available. Plug async management until everything is up
2329 * and running.
2330 */
2331static int __init percpu_enable_async(void)
2332{
2333 pcpu_async_enabled = true;
2334 return 0;
2335}
2336subsys_initcall(percpu_enable_async);