]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: introduce bitmap metadata blocks
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
ca460b3c 66#include <linux/lcm.h>
fbf59bc9 67#include <linux/list.h>
a530b795 68#include <linux/log2.h>
fbf59bc9
TH
69#include <linux/mm.h>
70#include <linux/module.h>
71#include <linux/mutex.h>
72#include <linux/percpu.h>
73#include <linux/pfn.h>
fbf59bc9 74#include <linux/slab.h>
ccea34b5 75#include <linux/spinlock.h>
fbf59bc9 76#include <linux/vmalloc.h>
a56dbddf 77#include <linux/workqueue.h>
f528f0b8 78#include <linux/kmemleak.h>
fbf59bc9
TH
79
80#include <asm/cacheflush.h>
e0100983 81#include <asm/sections.h>
fbf59bc9 82#include <asm/tlbflush.h>
3b034b0d 83#include <asm/io.h>
fbf59bc9 84
df95e795
DZ
85#define CREATE_TRACE_POINTS
86#include <trace/events/percpu.h>
87
8fa3ed80
DZ
88#include "percpu-internal.h"
89
40064aec
DZF
90/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
91#define PCPU_SLOT_BASE_SHIFT 5
92
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3 184/**
560f2c23
DZF
185 * pcpu_addr_in_chunk - check if the address is served from this chunk
186 * @chunk: chunk of interest
187 * @addr: percpu address
c0ebfdc3
DZF
188 *
189 * RETURNS:
560f2c23 190 * True if the address is served from this chunk.
c0ebfdc3 191 */
560f2c23 192static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 193{
c0ebfdc3
DZF
194 void *start_addr, *end_addr;
195
560f2c23 196 if (!chunk)
c0ebfdc3 197 return false;
020ec653 198
560f2c23
DZF
199 start_addr = chunk->base_addr + chunk->start_offset;
200 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
201 chunk->end_offset;
c0ebfdc3
DZF
202
203 return addr >= start_addr && addr < end_addr;
020ec653
TH
204}
205
d9b55eeb 206static int __pcpu_size_to_slot(int size)
fbf59bc9 207{
cae3aeb8 208 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
209 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
210}
211
d9b55eeb
TH
212static int pcpu_size_to_slot(int size)
213{
214 if (size == pcpu_unit_size)
215 return pcpu_nr_slots - 1;
216 return __pcpu_size_to_slot(size);
217}
218
fbf59bc9
TH
219static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
220{
40064aec 221 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
fbf59bc9
TH
222 return 0;
223
40064aec 224 return pcpu_size_to_slot(chunk->free_bytes);
fbf59bc9
TH
225}
226
88999a89
TH
227/* set the pointer to a chunk in a page struct */
228static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
229{
230 page->index = (unsigned long)pcpu;
231}
232
233/* obtain pointer to a chunk from a page struct */
234static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
235{
236 return (struct pcpu_chunk *)page->index;
237}
238
239static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 240{
2f39e637 241 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
242}
243
c0ebfdc3
DZF
244static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
247}
248
9983b6f0
TH
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
fbf59bc9 251{
c0ebfdc3
DZF
252 return (unsigned long)chunk->base_addr +
253 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
254}
255
91e914c5 256static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 257{
91e914c5
DZF
258 *rs = find_next_zero_bit(bitmap, end, *rs);
259 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
260}
261
91e914c5 262static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 263{
91e914c5
DZF
264 *rs = find_next_bit(bitmap, end, *rs);
265 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
266}
267
268/*
91e914c5
DZF
269 * Bitmap region iterators. Iterates over the bitmap between
270 * [@start, @end) in @chunk. @rs and @re should be integer variables
271 * and will be set to start and end index of the current free region.
ce3141a2 272 */
91e914c5
DZF
273#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
274 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
275 (rs) < (re); \
276 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 277
91e914c5
DZF
278#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 282
ca460b3c
DZF
283/*
284 * The following are helper functions to help access bitmaps and convert
285 * between bitmap offsets to address offsets.
286 */
287static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
288{
289 return chunk->alloc_map +
290 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
291}
292
293static unsigned long pcpu_off_to_block_index(int off)
294{
295 return off / PCPU_BITMAP_BLOCK_BITS;
296}
297
298static unsigned long pcpu_off_to_block_off(int off)
299{
300 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
301}
302
fbf59bc9 303/**
90459ce0 304 * pcpu_mem_zalloc - allocate memory
1880d93b 305 * @size: bytes to allocate
fbf59bc9 306 *
1880d93b 307 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 308 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 309 * memory is always zeroed.
fbf59bc9 310 *
ccea34b5
TH
311 * CONTEXT:
312 * Does GFP_KERNEL allocation.
313 *
fbf59bc9 314 * RETURNS:
1880d93b 315 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 316 */
90459ce0 317static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 318{
099a19d9
TH
319 if (WARN_ON_ONCE(!slab_is_available()))
320 return NULL;
321
1880d93b
TH
322 if (size <= PAGE_SIZE)
323 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
324 else
325 return vzalloc(size);
1880d93b 326}
fbf59bc9 327
1880d93b
TH
328/**
329 * pcpu_mem_free - free memory
330 * @ptr: memory to free
1880d93b 331 *
90459ce0 332 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 333 */
1d5cfdb0 334static void pcpu_mem_free(void *ptr)
1880d93b 335{
1d5cfdb0 336 kvfree(ptr);
fbf59bc9
TH
337}
338
339/**
340 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
341 * @chunk: chunk of interest
342 * @oslot: the previous slot it was on
343 *
344 * This function is called after an allocation or free changed @chunk.
345 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
346 * moved to the slot. Note that the reserved chunk is never put on
347 * chunk slots.
ccea34b5
TH
348 *
349 * CONTEXT:
350 * pcpu_lock.
fbf59bc9
TH
351 */
352static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
353{
354 int nslot = pcpu_chunk_slot(chunk);
355
edcb4639 356 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
357 if (oslot < nslot)
358 list_move(&chunk->list, &pcpu_slot[nslot]);
359 else
360 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
361 }
362}
363
9f7dcf22 364/**
40064aec 365 * pcpu_cnt_pop_pages- counts populated backing pages in range
833af842 366 * @chunk: chunk of interest
40064aec
DZF
367 * @bit_off: start offset
368 * @bits: size of area to check
9f7dcf22 369 *
40064aec
DZF
370 * Calculates the number of populated pages in the region
371 * [page_start, page_end). This keeps track of how many empty populated
372 * pages are available and decide if async work should be scheduled.
ccea34b5 373 *
9f7dcf22 374 * RETURNS:
40064aec 375 * The nr of populated pages.
9f7dcf22 376 */
40064aec
DZF
377static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
378 int bits)
9f7dcf22 379{
40064aec
DZF
380 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
381 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
4f996e23 382
40064aec 383 if (page_start >= page_end)
9f7dcf22
TH
384 return 0;
385
40064aec
DZF
386 /*
387 * bitmap_weight counts the number of bits set in a bitmap up to
388 * the specified number of bits. This is counting the populated
389 * pages up to page_end and then subtracting the populated pages
390 * up to page_start to count the populated pages in
391 * [page_start, page_end).
392 */
393 return bitmap_weight(chunk->populated, page_end) -
394 bitmap_weight(chunk->populated, page_start);
833af842
TH
395}
396
397/**
40064aec 398 * pcpu_chunk_update - updates the chunk metadata given a free area
833af842 399 * @chunk: chunk of interest
40064aec
DZF
400 * @bit_off: chunk offset
401 * @bits: size of free area
833af842 402 *
40064aec
DZF
403 * This updates the chunk's contig hint given a free area.
404 */
405static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
406{
407 if (bits > chunk->contig_bits)
408 chunk->contig_bits = bits;
409}
410
411/**
412 * pcpu_chunk_refresh_hint - updates metadata about a chunk
413 * @chunk: chunk of interest
833af842 414 *
40064aec 415 * Iterates over the chunk to find the largest free area.
833af842 416 *
40064aec
DZF
417 * Updates:
418 * chunk->contig_bits
419 * nr_empty_pop_pages
833af842 420 */
40064aec 421static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
833af842 422{
40064aec
DZF
423 int bits, nr_empty_pop_pages;
424 int rs, re; /* region start, region end */
833af842 425
40064aec
DZF
426 /* clear metadata */
427 chunk->contig_bits = 0;
6710e594 428
40064aec
DZF
429 bits = nr_empty_pop_pages = 0;
430 pcpu_for_each_unpop_region(chunk->alloc_map, rs, re, 0,
431 pcpu_chunk_map_bits(chunk)) {
432 bits = re - rs;
ccea34b5 433
40064aec 434 pcpu_chunk_update(chunk, rs, bits);
833af842 435
40064aec
DZF
436 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, rs, bits);
437 }
9f7dcf22 438
40064aec
DZF
439 /*
440 * Keep track of nr_empty_pop_pages.
441 *
442 * The chunk maintains the previous number of free pages it held,
443 * so the delta is used to update the global counter. The reserved
444 * chunk is not part of the free page count as they are populated
445 * at init and are special to serving reserved allocations.
446 */
447 if (chunk != pcpu_reserved_chunk)
448 pcpu_nr_empty_pop_pages +=
449 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
a002d148 450
40064aec
DZF
451 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
452}
9f7dcf22 453
ca460b3c
DZF
454/**
455 * pcpu_block_update - updates a block given a free area
456 * @block: block of interest
457 * @start: start offset in block
458 * @end: end offset in block
459 *
460 * Updates a block given a known free area. The region [start, end) is
461 * expected to be the entirety of the free area within a block.
462 */
463static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
464{
465 int contig = end - start;
466
467 block->first_free = min(block->first_free, start);
468 if (start == 0)
469 block->left_free = contig;
470
471 if (end == PCPU_BITMAP_BLOCK_BITS)
472 block->right_free = contig;
473
474 if (contig > block->contig_hint) {
475 block->contig_hint_start = start;
476 block->contig_hint = contig;
477 }
478}
479
480/**
481 * pcpu_block_refresh_hint
482 * @chunk: chunk of interest
483 * @index: index of the metadata block
484 *
485 * Scans over the block beginning at first_free and updates the block
486 * metadata accordingly.
487 */
488static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
489{
490 struct pcpu_block_md *block = chunk->md_blocks + index;
491 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
492 int rs, re; /* region start, region end */
493
494 /* clear hints */
495 block->contig_hint = 0;
496 block->left_free = block->right_free = 0;
497
498 /* iterate over free areas and update the contig hints */
499 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
500 PCPU_BITMAP_BLOCK_BITS) {
501 pcpu_block_update(block, rs, re);
502 }
503}
504
505/**
506 * pcpu_block_update_hint_alloc - update hint on allocation path
507 * @chunk: chunk of interest
508 * @bit_off: chunk offset
509 * @bits: size of request
510 */
511static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
512 int bits)
513{
514 struct pcpu_block_md *s_block, *e_block, *block;
515 int s_index, e_index; /* block indexes of the freed allocation */
516 int s_off, e_off; /* block offsets of the freed allocation */
517
518 /*
519 * Calculate per block offsets.
520 * The calculation uses an inclusive range, but the resulting offsets
521 * are [start, end). e_index always points to the last block in the
522 * range.
523 */
524 s_index = pcpu_off_to_block_index(bit_off);
525 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
526 s_off = pcpu_off_to_block_off(bit_off);
527 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
528
529 s_block = chunk->md_blocks + s_index;
530 e_block = chunk->md_blocks + e_index;
531
532 /*
533 * Update s_block.
534 */
535 pcpu_block_refresh_hint(chunk, s_index);
536
537 /*
538 * Update e_block.
539 */
540 if (s_index != e_index) {
541 pcpu_block_refresh_hint(chunk, e_index);
542
543 /* update in-between md_blocks */
544 for (block = s_block + 1; block < e_block; block++) {
545 block->contig_hint = 0;
546 block->left_free = 0;
547 block->right_free = 0;
548 }
549 }
550
551 pcpu_chunk_refresh_hint(chunk);
552}
553
554/**
555 * pcpu_block_update_hint_free - updates the block hints on the free path
556 * @chunk: chunk of interest
557 * @bit_off: chunk offset
558 * @bits: size of request
559 */
560static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
561 int bits)
562{
563 struct pcpu_block_md *s_block, *e_block, *block;
564 int s_index, e_index; /* block indexes of the freed allocation */
565 int s_off, e_off; /* block offsets of the freed allocation */
566
567 /*
568 * Calculate per block offsets.
569 * The calculation uses an inclusive range, but the resulting offsets
570 * are [start, end). e_index always points to the last block in the
571 * range.
572 */
573 s_index = pcpu_off_to_block_index(bit_off);
574 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
575 s_off = pcpu_off_to_block_off(bit_off);
576 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
577
578 s_block = chunk->md_blocks + s_index;
579 e_block = chunk->md_blocks + e_index;
580
581 /* update s_block */
582 pcpu_block_refresh_hint(chunk, s_index);
583
584 /* freeing in the same block */
585 if (s_index != e_index) {
586 /* update e_block */
587 pcpu_block_refresh_hint(chunk, e_index);
588
589 /* reset md_blocks in the middle */
590 for (block = s_block + 1; block < e_block; block++) {
591 block->first_free = 0;
592 block->contig_hint_start = 0;
593 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
594 block->left_free = PCPU_BITMAP_BLOCK_BITS;
595 block->right_free = PCPU_BITMAP_BLOCK_BITS;
596 }
597 }
598
599 pcpu_chunk_refresh_hint(chunk);
600}
601
40064aec
DZF
602/**
603 * pcpu_is_populated - determines if the region is populated
604 * @chunk: chunk of interest
605 * @bit_off: chunk offset
606 * @bits: size of area
607 * @next_off: return value for the next offset to start searching
608 *
609 * For atomic allocations, check if the backing pages are populated.
610 *
611 * RETURNS:
612 * Bool if the backing pages are populated.
613 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
614 */
615static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
616 int *next_off)
617{
618 int page_start, page_end, rs, re;
833af842 619
40064aec
DZF
620 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
621 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 622
40064aec
DZF
623 rs = page_start;
624 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
625 if (rs >= page_end)
626 return true;
833af842 627
40064aec
DZF
628 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
629 return false;
9f7dcf22
TH
630}
631
a16037c8 632/**
40064aec
DZF
633 * pcpu_find_block_fit - finds the block index to start searching
634 * @chunk: chunk of interest
635 * @alloc_bits: size of request in allocation units
636 * @align: alignment of area (max PAGE_SIZE bytes)
637 * @pop_only: use populated regions only
638 *
639 * RETURNS:
640 * The offset in the bitmap to begin searching.
641 * -1 if no offset is found.
a16037c8 642 */
40064aec
DZF
643static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
644 size_t align, bool pop_only)
a16037c8 645{
40064aec
DZF
646 int bit_off, bits;
647 int re; /* region end */
a16037c8 648
40064aec
DZF
649 pcpu_for_each_unpop_region(chunk->alloc_map, bit_off, re, 0,
650 pcpu_chunk_map_bits(chunk)) {
651 bits = re - bit_off;
a16037c8 652
40064aec
DZF
653 /* check alignment */
654 bits -= ALIGN(bit_off, align) - bit_off;
655 bit_off = ALIGN(bit_off, align);
656 if (bits < alloc_bits)
657 continue;
a16037c8 658
40064aec
DZF
659 bits = alloc_bits;
660 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
661 &bit_off))
662 break;
a16037c8 663
40064aec 664 bits = 0;
a16037c8 665 }
40064aec
DZF
666
667 if (bit_off == pcpu_chunk_map_bits(chunk))
668 return -1;
669
670 return bit_off;
a16037c8
TH
671}
672
fbf59bc9 673/**
40064aec 674 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 675 * @chunk: chunk of interest
40064aec
DZF
676 * @alloc_bits: size of request in allocation units
677 * @align: alignment of area (max PAGE_SIZE)
678 * @start: bit_off to start searching
9f7dcf22 679 *
40064aec
DZF
680 * This function takes in a @start offset to begin searching to fit an
681 * allocation of @alloc_bits with alignment @align. If it confirms a
682 * valid free area, it then updates the allocation and boundary maps
683 * accordingly.
ccea34b5 684 *
fbf59bc9 685 * RETURNS:
40064aec
DZF
686 * Allocated addr offset in @chunk on success.
687 * -1 if no matching area is found.
fbf59bc9 688 */
40064aec
DZF
689static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
690 size_t align, int start)
fbf59bc9 691{
40064aec
DZF
692 size_t align_mask = (align) ? (align - 1) : 0;
693 int bit_off, end, oslot;
a16037c8 694
40064aec 695 lockdep_assert_held(&pcpu_lock);
fbf59bc9 696
40064aec 697 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 698
40064aec
DZF
699 /*
700 * Search to find a fit.
701 */
702 end = start + alloc_bits;
703 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
704 alloc_bits, align_mask);
705 if (bit_off >= end)
706 return -1;
fbf59bc9 707
40064aec
DZF
708 /* update alloc map */
709 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 710
40064aec
DZF
711 /* update boundary map */
712 set_bit(bit_off, chunk->bound_map);
713 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
714 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 715
40064aec 716 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 717
ca460b3c 718 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 719
fbf59bc9
TH
720 pcpu_chunk_relocate(chunk, oslot);
721
40064aec 722 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
723}
724
725/**
40064aec 726 * pcpu_free_area - frees the corresponding offset
fbf59bc9 727 * @chunk: chunk of interest
40064aec 728 * @off: addr offset into chunk
ccea34b5 729 *
40064aec
DZF
730 * This function determines the size of an allocation to free using
731 * the boundary bitmap and clears the allocation map.
fbf59bc9 732 */
40064aec 733static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 734{
40064aec 735 int bit_off, bits, end, oslot;
723ad1d9 736
5ccd30e4 737 lockdep_assert_held(&pcpu_lock);
30a5b536 738 pcpu_stats_area_dealloc(chunk);
5ccd30e4 739
40064aec 740 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 741
40064aec 742 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 743
40064aec
DZF
744 /* find end index */
745 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
746 bit_off + 1);
747 bits = end - bit_off;
748 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 749
40064aec
DZF
750 /* update metadata */
751 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
b539b87f 752
ca460b3c 753 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 754
fbf59bc9
TH
755 pcpu_chunk_relocate(chunk, oslot);
756}
757
ca460b3c
DZF
758static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
759{
760 struct pcpu_block_md *md_block;
761
762 for (md_block = chunk->md_blocks;
763 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
764 md_block++) {
765 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
766 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
767 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
768 }
769}
770
40064aec
DZF
771/**
772 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
773 * @tmp_addr: the start of the region served
774 * @map_size: size of the region served
775 *
776 * This is responsible for creating the chunks that serve the first chunk. The
777 * base_addr is page aligned down of @tmp_addr while the region end is page
778 * aligned up. Offsets are kept track of to determine the region served. All
779 * this is done to appease the bitmap allocator in avoiding partial blocks.
780 *
781 * RETURNS:
782 * Chunk serving the region at @tmp_addr of @map_size.
783 */
c0ebfdc3 784static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 785 int map_size)
10edf5b0
DZF
786{
787 struct pcpu_chunk *chunk;
ca460b3c 788 unsigned long aligned_addr, lcm_align;
40064aec 789 int start_offset, offset_bits, region_size, region_bits;
c0ebfdc3
DZF
790
791 /* region calculations */
792 aligned_addr = tmp_addr & PAGE_MASK;
793
794 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 795
ca460b3c
DZF
796 /*
797 * Align the end of the region with the LCM of PAGE_SIZE and
798 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
799 * the other.
800 */
801 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
802 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 803
c0ebfdc3 804 /* allocate chunk */
8ab16c43
DZF
805 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
806 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
807 0);
c0ebfdc3 808
10edf5b0 809 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
810
811 chunk->base_addr = (void *)aligned_addr;
10edf5b0 812 chunk->start_offset = start_offset;
6b9d7c8e 813 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 814
8ab16c43 815 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 816 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 817
ca460b3c
DZF
818 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
819 sizeof(chunk->alloc_map[0]), 0);
820 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
821 sizeof(chunk->bound_map[0]), 0);
822 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
823 sizeof(chunk->md_blocks[0]), 0);
824 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
825
826 /* manage populated page bitmap */
827 chunk->immutable = true;
8ab16c43
DZF
828 bitmap_fill(chunk->populated, chunk->nr_pages);
829 chunk->nr_populated = chunk->nr_pages;
40064aec
DZF
830 chunk->nr_empty_pop_pages =
831 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
832 map_size / PCPU_MIN_ALLOC_SIZE);
10edf5b0 833
40064aec
DZF
834 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
835 chunk->free_bytes = map_size;
c0ebfdc3
DZF
836
837 if (chunk->start_offset) {
838 /* hide the beginning of the bitmap */
40064aec
DZF
839 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
840 bitmap_set(chunk->alloc_map, 0, offset_bits);
841 set_bit(0, chunk->bound_map);
842 set_bit(offset_bits, chunk->bound_map);
ca460b3c
DZF
843
844 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
845 }
846
6b9d7c8e
DZF
847 if (chunk->end_offset) {
848 /* hide the end of the bitmap */
40064aec
DZF
849 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
850 bitmap_set(chunk->alloc_map,
851 pcpu_chunk_map_bits(chunk) - offset_bits,
852 offset_bits);
853 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
854 chunk->bound_map);
855 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 856
ca460b3c
DZF
857 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
858 - offset_bits, offset_bits);
859 }
40064aec 860
10edf5b0
DZF
861 return chunk;
862}
863
6081089f
TH
864static struct pcpu_chunk *pcpu_alloc_chunk(void)
865{
866 struct pcpu_chunk *chunk;
40064aec 867 int region_bits;
6081089f 868
90459ce0 869 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
870 if (!chunk)
871 return NULL;
872
40064aec
DZF
873 INIT_LIST_HEAD(&chunk->list);
874 chunk->nr_pages = pcpu_unit_pages;
875 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 876
40064aec
DZF
877 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
878 sizeof(chunk->alloc_map[0]));
879 if (!chunk->alloc_map)
880 goto alloc_map_fail;
6081089f 881
40064aec
DZF
882 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
883 sizeof(chunk->bound_map[0]));
884 if (!chunk->bound_map)
885 goto bound_map_fail;
6081089f 886
ca460b3c
DZF
887 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
888 sizeof(chunk->md_blocks[0]));
889 if (!chunk->md_blocks)
890 goto md_blocks_fail;
891
892 pcpu_init_md_blocks(chunk);
893
40064aec
DZF
894 /* init metadata */
895 chunk->contig_bits = region_bits;
896 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 897
6081089f 898 return chunk;
40064aec 899
ca460b3c
DZF
900md_blocks_fail:
901 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
902bound_map_fail:
903 pcpu_mem_free(chunk->alloc_map);
904alloc_map_fail:
905 pcpu_mem_free(chunk);
906
907 return NULL;
6081089f
TH
908}
909
910static void pcpu_free_chunk(struct pcpu_chunk *chunk)
911{
912 if (!chunk)
913 return;
40064aec
DZF
914 pcpu_mem_free(chunk->bound_map);
915 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 916 pcpu_mem_free(chunk);
6081089f
TH
917}
918
b539b87f
TH
919/**
920 * pcpu_chunk_populated - post-population bookkeeping
921 * @chunk: pcpu_chunk which got populated
922 * @page_start: the start page
923 * @page_end: the end page
40064aec 924 * @for_alloc: if this is to populate for allocation
b539b87f
TH
925 *
926 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
927 * the bookkeeping information accordingly. Must be called after each
928 * successful population.
40064aec
DZF
929 *
930 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
931 * is to serve an allocation in that area.
b539b87f 932 */
40064aec
DZF
933static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
934 int page_end, bool for_alloc)
b539b87f
TH
935{
936 int nr = page_end - page_start;
937
938 lockdep_assert_held(&pcpu_lock);
939
940 bitmap_set(chunk->populated, page_start, nr);
941 chunk->nr_populated += nr;
40064aec
DZF
942
943 if (!for_alloc) {
944 chunk->nr_empty_pop_pages += nr;
945 pcpu_nr_empty_pop_pages += nr;
946 }
b539b87f
TH
947}
948
949/**
950 * pcpu_chunk_depopulated - post-depopulation bookkeeping
951 * @chunk: pcpu_chunk which got depopulated
952 * @page_start: the start page
953 * @page_end: the end page
954 *
955 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
956 * Update the bookkeeping information accordingly. Must be called after
957 * each successful depopulation.
958 */
959static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
960 int page_start, int page_end)
961{
962 int nr = page_end - page_start;
963
964 lockdep_assert_held(&pcpu_lock);
965
966 bitmap_clear(chunk->populated, page_start, nr);
967 chunk->nr_populated -= nr;
0cecf50c 968 chunk->nr_empty_pop_pages -= nr;
b539b87f
TH
969 pcpu_nr_empty_pop_pages -= nr;
970}
971
9f645532
TH
972/*
973 * Chunk management implementation.
974 *
975 * To allow different implementations, chunk alloc/free and
976 * [de]population are implemented in a separate file which is pulled
977 * into this file and compiled together. The following functions
978 * should be implemented.
979 *
980 * pcpu_populate_chunk - populate the specified range of a chunk
981 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
982 * pcpu_create_chunk - create a new chunk
983 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
984 * pcpu_addr_to_page - translate address to physical address
985 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 986 */
9f645532
TH
987static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
988static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
989static struct pcpu_chunk *pcpu_create_chunk(void);
990static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
991static struct page *pcpu_addr_to_page(void *addr);
992static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 993
b0c9778b
TH
994#ifdef CONFIG_NEED_PER_CPU_KM
995#include "percpu-km.c"
996#else
9f645532 997#include "percpu-vm.c"
b0c9778b 998#endif
fbf59bc9 999
88999a89
TH
1000/**
1001 * pcpu_chunk_addr_search - determine chunk containing specified address
1002 * @addr: address for which the chunk needs to be determined.
1003 *
c0ebfdc3
DZF
1004 * This is an internal function that handles all but static allocations.
1005 * Static percpu address values should never be passed into the allocator.
1006 *
88999a89
TH
1007 * RETURNS:
1008 * The address of the found chunk.
1009 */
1010static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1011{
c0ebfdc3 1012 /* is it in the dynamic region (first chunk)? */
560f2c23 1013 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1014 return pcpu_first_chunk;
c0ebfdc3
DZF
1015
1016 /* is it in the reserved region? */
560f2c23 1017 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1018 return pcpu_reserved_chunk;
88999a89
TH
1019
1020 /*
1021 * The address is relative to unit0 which might be unused and
1022 * thus unmapped. Offset the address to the unit space of the
1023 * current processor before looking it up in the vmalloc
1024 * space. Note that any possible cpu id can be used here, so
1025 * there's no need to worry about preemption or cpu hotplug.
1026 */
1027 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1028 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1029}
1030
fbf59bc9 1031/**
edcb4639 1032 * pcpu_alloc - the percpu allocator
cae3aeb8 1033 * @size: size of area to allocate in bytes
fbf59bc9 1034 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1035 * @reserved: allocate from the reserved chunk if available
5835d96e 1036 * @gfp: allocation flags
fbf59bc9 1037 *
5835d96e
TH
1038 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1039 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
1040 *
1041 * RETURNS:
1042 * Percpu pointer to the allocated area on success, NULL on failure.
1043 */
5835d96e
TH
1044static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1045 gfp_t gfp)
fbf59bc9 1046{
f2badb0c 1047 static int warn_limit = 10;
fbf59bc9 1048 struct pcpu_chunk *chunk;
f2badb0c 1049 const char *err;
6ae833c7 1050 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
40064aec 1051 int slot, off, cpu, ret;
403a91b1 1052 unsigned long flags;
f528f0b8 1053 void __percpu *ptr;
40064aec 1054 size_t bits, bit_align;
fbf59bc9 1055
723ad1d9 1056 /*
40064aec
DZF
1057 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1058 * therefore alignment must be a minimum of that many bytes.
1059 * An allocation may have internal fragmentation from rounding up
1060 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1061 */
d2f3c384
DZF
1062 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1063 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1064
d2f3c384 1065 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1066 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1067 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1068
3ca45a46 1069 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1070 !is_power_of_2(align))) {
756a025f
JP
1071 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1072 size, align);
fbf59bc9
TH
1073 return NULL;
1074 }
1075
6710e594
TH
1076 if (!is_atomic)
1077 mutex_lock(&pcpu_alloc_mutex);
1078
403a91b1 1079 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1080
edcb4639
TH
1081 /* serve reserved allocations from the reserved chunk if available */
1082 if (reserved && pcpu_reserved_chunk) {
1083 chunk = pcpu_reserved_chunk;
833af842 1084
40064aec
DZF
1085 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1086 if (off < 0) {
833af842 1087 err = "alloc from reserved chunk failed";
ccea34b5 1088 goto fail_unlock;
f2badb0c 1089 }
833af842 1090
40064aec 1091 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1092 if (off >= 0)
1093 goto area_found;
833af842 1094
f2badb0c 1095 err = "alloc from reserved chunk failed";
ccea34b5 1096 goto fail_unlock;
edcb4639
TH
1097 }
1098
ccea34b5 1099restart:
edcb4639 1100 /* search through normal chunks */
fbf59bc9
TH
1101 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1102 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
40064aec
DZF
1103 off = pcpu_find_block_fit(chunk, bits, bit_align,
1104 is_atomic);
1105 if (off < 0)
fbf59bc9 1106 continue;
ccea34b5 1107
40064aec 1108 off = pcpu_alloc_area(chunk, bits, bit_align, off);
fbf59bc9
TH
1109 if (off >= 0)
1110 goto area_found;
40064aec 1111
fbf59bc9
TH
1112 }
1113 }
1114
403a91b1 1115 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1116
b38d08f3
TH
1117 /*
1118 * No space left. Create a new chunk. We don't want multiple
1119 * tasks to create chunks simultaneously. Serialize and create iff
1120 * there's still no empty chunk after grabbing the mutex.
1121 */
11df02bf
DZ
1122 if (is_atomic) {
1123 err = "atomic alloc failed, no space left";
5835d96e 1124 goto fail;
11df02bf 1125 }
5835d96e 1126
b38d08f3
TH
1127 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1128 chunk = pcpu_create_chunk();
1129 if (!chunk) {
1130 err = "failed to allocate new chunk";
1131 goto fail;
1132 }
1133
1134 spin_lock_irqsave(&pcpu_lock, flags);
1135 pcpu_chunk_relocate(chunk, -1);
1136 } else {
1137 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1138 }
ccea34b5 1139
ccea34b5 1140 goto restart;
fbf59bc9
TH
1141
1142area_found:
30a5b536 1143 pcpu_stats_area_alloc(chunk, size);
403a91b1 1144 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1145
dca49645 1146 /* populate if not all pages are already there */
5835d96e 1147 if (!is_atomic) {
e04d3208 1148 int page_start, page_end, rs, re;
dca49645 1149
e04d3208
TH
1150 page_start = PFN_DOWN(off);
1151 page_end = PFN_UP(off + size);
b38d08f3 1152
91e914c5
DZF
1153 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1154 page_start, page_end) {
e04d3208
TH
1155 WARN_ON(chunk->immutable);
1156
1157 ret = pcpu_populate_chunk(chunk, rs, re);
1158
1159 spin_lock_irqsave(&pcpu_lock, flags);
1160 if (ret) {
40064aec 1161 pcpu_free_area(chunk, off);
e04d3208
TH
1162 err = "failed to populate";
1163 goto fail_unlock;
1164 }
40064aec 1165 pcpu_chunk_populated(chunk, rs, re, true);
e04d3208 1166 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1167 }
fbf59bc9 1168
e04d3208
TH
1169 mutex_unlock(&pcpu_alloc_mutex);
1170 }
ccea34b5 1171
1a4d7607
TH
1172 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1173 pcpu_schedule_balance_work();
1174
dca49645
TH
1175 /* clear the areas and return address relative to base address */
1176 for_each_possible_cpu(cpu)
1177 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1178
f528f0b8 1179 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1180 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1181
1182 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1183 chunk->base_addr, off, ptr);
1184
f528f0b8 1185 return ptr;
ccea34b5
TH
1186
1187fail_unlock:
403a91b1 1188 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1189fail:
df95e795
DZ
1190 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1191
5835d96e 1192 if (!is_atomic && warn_limit) {
870d4b12 1193 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1194 size, align, is_atomic, err);
f2badb0c
TH
1195 dump_stack();
1196 if (!--warn_limit)
870d4b12 1197 pr_info("limit reached, disable warning\n");
f2badb0c 1198 }
1a4d7607
TH
1199 if (is_atomic) {
1200 /* see the flag handling in pcpu_blance_workfn() */
1201 pcpu_atomic_alloc_failed = true;
1202 pcpu_schedule_balance_work();
6710e594
TH
1203 } else {
1204 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1205 }
ccea34b5 1206 return NULL;
fbf59bc9 1207}
edcb4639
TH
1208
1209/**
5835d96e 1210 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1211 * @size: size of area to allocate in bytes
1212 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1213 * @gfp: allocation flags
edcb4639 1214 *
5835d96e
TH
1215 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1216 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1217 * be called from any context but is a lot more likely to fail.
ccea34b5 1218 *
edcb4639
TH
1219 * RETURNS:
1220 * Percpu pointer to the allocated area on success, NULL on failure.
1221 */
5835d96e
TH
1222void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1223{
1224 return pcpu_alloc(size, align, false, gfp);
1225}
1226EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1227
1228/**
1229 * __alloc_percpu - allocate dynamic percpu area
1230 * @size: size of area to allocate in bytes
1231 * @align: alignment of area (max PAGE_SIZE)
1232 *
1233 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1234 */
43cf38eb 1235void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1236{
5835d96e 1237 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1238}
fbf59bc9
TH
1239EXPORT_SYMBOL_GPL(__alloc_percpu);
1240
edcb4639
TH
1241/**
1242 * __alloc_reserved_percpu - allocate reserved percpu area
1243 * @size: size of area to allocate in bytes
1244 * @align: alignment of area (max PAGE_SIZE)
1245 *
9329ba97
TH
1246 * Allocate zero-filled percpu area of @size bytes aligned at @align
1247 * from reserved percpu area if arch has set it up; otherwise,
1248 * allocation is served from the same dynamic area. Might sleep.
1249 * Might trigger writeouts.
edcb4639 1250 *
ccea34b5
TH
1251 * CONTEXT:
1252 * Does GFP_KERNEL allocation.
1253 *
edcb4639
TH
1254 * RETURNS:
1255 * Percpu pointer to the allocated area on success, NULL on failure.
1256 */
43cf38eb 1257void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1258{
5835d96e 1259 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1260}
1261
a56dbddf 1262/**
1a4d7607 1263 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1264 * @work: unused
1265 *
1266 * Reclaim all fully free chunks except for the first one.
1267 */
fe6bd8c3 1268static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1269{
fe6bd8c3
TH
1270 LIST_HEAD(to_free);
1271 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1272 struct pcpu_chunk *chunk, *next;
1a4d7607 1273 int slot, nr_to_pop, ret;
a56dbddf 1274
1a4d7607
TH
1275 /*
1276 * There's no reason to keep around multiple unused chunks and VM
1277 * areas can be scarce. Destroy all free chunks except for one.
1278 */
ccea34b5
TH
1279 mutex_lock(&pcpu_alloc_mutex);
1280 spin_lock_irq(&pcpu_lock);
a56dbddf 1281
fe6bd8c3 1282 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1283 WARN_ON(chunk->immutable);
1284
1285 /* spare the first one */
fe6bd8c3 1286 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1287 continue;
1288
fe6bd8c3 1289 list_move(&chunk->list, &to_free);
a56dbddf
TH
1290 }
1291
ccea34b5 1292 spin_unlock_irq(&pcpu_lock);
a56dbddf 1293
fe6bd8c3 1294 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1295 int rs, re;
dca49645 1296
91e914c5
DZF
1297 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1298 chunk->nr_pages) {
a93ace48 1299 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1300 spin_lock_irq(&pcpu_lock);
1301 pcpu_chunk_depopulated(chunk, rs, re);
1302 spin_unlock_irq(&pcpu_lock);
a93ace48 1303 }
6081089f 1304 pcpu_destroy_chunk(chunk);
a56dbddf 1305 }
971f3918 1306
1a4d7607
TH
1307 /*
1308 * Ensure there are certain number of free populated pages for
1309 * atomic allocs. Fill up from the most packed so that atomic
1310 * allocs don't increase fragmentation. If atomic allocation
1311 * failed previously, always populate the maximum amount. This
1312 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1313 * failing indefinitely; however, large atomic allocs are not
1314 * something we support properly and can be highly unreliable and
1315 * inefficient.
1316 */
1317retry_pop:
1318 if (pcpu_atomic_alloc_failed) {
1319 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1320 /* best effort anyway, don't worry about synchronization */
1321 pcpu_atomic_alloc_failed = false;
1322 } else {
1323 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1324 pcpu_nr_empty_pop_pages,
1325 0, PCPU_EMPTY_POP_PAGES_HIGH);
1326 }
1327
1328 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1329 int nr_unpop = 0, rs, re;
1330
1331 if (!nr_to_pop)
1332 break;
1333
1334 spin_lock_irq(&pcpu_lock);
1335 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1336 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1337 if (nr_unpop)
1338 break;
1339 }
1340 spin_unlock_irq(&pcpu_lock);
1341
1342 if (!nr_unpop)
1343 continue;
1344
1345 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1346 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1347 chunk->nr_pages) {
1a4d7607
TH
1348 int nr = min(re - rs, nr_to_pop);
1349
1350 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1351 if (!ret) {
1352 nr_to_pop -= nr;
1353 spin_lock_irq(&pcpu_lock);
40064aec 1354 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1a4d7607
TH
1355 spin_unlock_irq(&pcpu_lock);
1356 } else {
1357 nr_to_pop = 0;
1358 }
1359
1360 if (!nr_to_pop)
1361 break;
1362 }
1363 }
1364
1365 if (nr_to_pop) {
1366 /* ran out of chunks to populate, create a new one and retry */
1367 chunk = pcpu_create_chunk();
1368 if (chunk) {
1369 spin_lock_irq(&pcpu_lock);
1370 pcpu_chunk_relocate(chunk, -1);
1371 spin_unlock_irq(&pcpu_lock);
1372 goto retry_pop;
1373 }
1374 }
1375
971f3918 1376 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1377}
1378
1379/**
1380 * free_percpu - free percpu area
1381 * @ptr: pointer to area to free
1382 *
ccea34b5
TH
1383 * Free percpu area @ptr.
1384 *
1385 * CONTEXT:
1386 * Can be called from atomic context.
fbf59bc9 1387 */
43cf38eb 1388void free_percpu(void __percpu *ptr)
fbf59bc9 1389{
129182e5 1390 void *addr;
fbf59bc9 1391 struct pcpu_chunk *chunk;
ccea34b5 1392 unsigned long flags;
40064aec 1393 int off;
fbf59bc9
TH
1394
1395 if (!ptr)
1396 return;
1397
f528f0b8
CM
1398 kmemleak_free_percpu(ptr);
1399
129182e5
AM
1400 addr = __pcpu_ptr_to_addr(ptr);
1401
ccea34b5 1402 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1403
1404 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1405 off = addr - chunk->base_addr;
fbf59bc9 1406
40064aec 1407 pcpu_free_area(chunk, off);
fbf59bc9 1408
a56dbddf 1409 /* if there are more than one fully free chunks, wake up grim reaper */
40064aec 1410 if (chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
1411 struct pcpu_chunk *pos;
1412
a56dbddf 1413 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1414 if (pos != chunk) {
1a4d7607 1415 pcpu_schedule_balance_work();
fbf59bc9
TH
1416 break;
1417 }
1418 }
1419
df95e795
DZ
1420 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1421
ccea34b5 1422 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1423}
1424EXPORT_SYMBOL_GPL(free_percpu);
1425
383776fa 1426bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1427{
bbddff05 1428#ifdef CONFIG_SMP
10fad5e4
TH
1429 const size_t static_size = __per_cpu_end - __per_cpu_start;
1430 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1431 unsigned int cpu;
1432
1433 for_each_possible_cpu(cpu) {
1434 void *start = per_cpu_ptr(base, cpu);
383776fa 1435 void *va = (void *)addr;
10fad5e4 1436
383776fa 1437 if (va >= start && va < start + static_size) {
8ce371f9 1438 if (can_addr) {
383776fa 1439 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1440 *can_addr += (unsigned long)
1441 per_cpu_ptr(base, get_boot_cpu_id());
1442 }
10fad5e4 1443 return true;
383776fa
TG
1444 }
1445 }
bbddff05
TH
1446#endif
1447 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1448 return false;
1449}
1450
383776fa
TG
1451/**
1452 * is_kernel_percpu_address - test whether address is from static percpu area
1453 * @addr: address to test
1454 *
1455 * Test whether @addr belongs to in-kernel static percpu area. Module
1456 * static percpu areas are not considered. For those, use
1457 * is_module_percpu_address().
1458 *
1459 * RETURNS:
1460 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1461 */
1462bool is_kernel_percpu_address(unsigned long addr)
1463{
1464 return __is_kernel_percpu_address(addr, NULL);
1465}
1466
3b034b0d
VG
1467/**
1468 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1469 * @addr: the address to be converted to physical address
1470 *
1471 * Given @addr which is dereferenceable address obtained via one of
1472 * percpu access macros, this function translates it into its physical
1473 * address. The caller is responsible for ensuring @addr stays valid
1474 * until this function finishes.
1475 *
67589c71
DY
1476 * percpu allocator has special setup for the first chunk, which currently
1477 * supports either embedding in linear address space or vmalloc mapping,
1478 * and, from the second one, the backing allocator (currently either vm or
1479 * km) provides translation.
1480 *
bffc4375 1481 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1482 * first chunk. But the current code reflects better how percpu allocator
1483 * actually works, and the verification can discover both bugs in percpu
1484 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1485 * code.
1486 *
3b034b0d
VG
1487 * RETURNS:
1488 * The physical address for @addr.
1489 */
1490phys_addr_t per_cpu_ptr_to_phys(void *addr)
1491{
9983b6f0
TH
1492 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1493 bool in_first_chunk = false;
a855b84c 1494 unsigned long first_low, first_high;
9983b6f0
TH
1495 unsigned int cpu;
1496
1497 /*
a855b84c 1498 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1499 * necessary but will speed up lookups of addresses which
1500 * aren't in the first chunk.
c0ebfdc3
DZF
1501 *
1502 * The address check is against full chunk sizes. pcpu_base_addr
1503 * points to the beginning of the first chunk including the
1504 * static region. Assumes good intent as the first chunk may
1505 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1506 */
c0ebfdc3
DZF
1507 first_low = (unsigned long)pcpu_base_addr +
1508 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1509 first_high = (unsigned long)pcpu_base_addr +
1510 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1511 if ((unsigned long)addr >= first_low &&
1512 (unsigned long)addr < first_high) {
9983b6f0
TH
1513 for_each_possible_cpu(cpu) {
1514 void *start = per_cpu_ptr(base, cpu);
1515
1516 if (addr >= start && addr < start + pcpu_unit_size) {
1517 in_first_chunk = true;
1518 break;
1519 }
1520 }
1521 }
1522
1523 if (in_first_chunk) {
eac522ef 1524 if (!is_vmalloc_addr(addr))
020ec653
TH
1525 return __pa(addr);
1526 else
9f57bd4d
ES
1527 return page_to_phys(vmalloc_to_page(addr)) +
1528 offset_in_page(addr);
020ec653 1529 } else
9f57bd4d
ES
1530 return page_to_phys(pcpu_addr_to_page(addr)) +
1531 offset_in_page(addr);
3b034b0d
VG
1532}
1533
fbf59bc9 1534/**
fd1e8a1f
TH
1535 * pcpu_alloc_alloc_info - allocate percpu allocation info
1536 * @nr_groups: the number of groups
1537 * @nr_units: the number of units
1538 *
1539 * Allocate ai which is large enough for @nr_groups groups containing
1540 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1541 * cpu_map array which is long enough for @nr_units and filled with
1542 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1543 * pointer of other groups.
1544 *
1545 * RETURNS:
1546 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1547 * failure.
1548 */
1549struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1550 int nr_units)
1551{
1552 struct pcpu_alloc_info *ai;
1553 size_t base_size, ai_size;
1554 void *ptr;
1555 int unit;
1556
1557 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1558 __alignof__(ai->groups[0].cpu_map[0]));
1559 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1560
999c17e3 1561 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1562 if (!ptr)
1563 return NULL;
1564 ai = ptr;
1565 ptr += base_size;
1566
1567 ai->groups[0].cpu_map = ptr;
1568
1569 for (unit = 0; unit < nr_units; unit++)
1570 ai->groups[0].cpu_map[unit] = NR_CPUS;
1571
1572 ai->nr_groups = nr_groups;
1573 ai->__ai_size = PFN_ALIGN(ai_size);
1574
1575 return ai;
1576}
1577
1578/**
1579 * pcpu_free_alloc_info - free percpu allocation info
1580 * @ai: pcpu_alloc_info to free
1581 *
1582 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1583 */
1584void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1585{
999c17e3 1586 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1587}
1588
fd1e8a1f
TH
1589/**
1590 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1591 * @lvl: loglevel
1592 * @ai: allocation info to dump
1593 *
1594 * Print out information about @ai using loglevel @lvl.
1595 */
1596static void pcpu_dump_alloc_info(const char *lvl,
1597 const struct pcpu_alloc_info *ai)
033e48fb 1598{
fd1e8a1f 1599 int group_width = 1, cpu_width = 1, width;
033e48fb 1600 char empty_str[] = "--------";
fd1e8a1f
TH
1601 int alloc = 0, alloc_end = 0;
1602 int group, v;
1603 int upa, apl; /* units per alloc, allocs per line */
1604
1605 v = ai->nr_groups;
1606 while (v /= 10)
1607 group_width++;
033e48fb 1608
fd1e8a1f 1609 v = num_possible_cpus();
033e48fb 1610 while (v /= 10)
fd1e8a1f
TH
1611 cpu_width++;
1612 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1613
fd1e8a1f
TH
1614 upa = ai->alloc_size / ai->unit_size;
1615 width = upa * (cpu_width + 1) + group_width + 3;
1616 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1617
fd1e8a1f
TH
1618 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1619 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1620 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1621
fd1e8a1f
TH
1622 for (group = 0; group < ai->nr_groups; group++) {
1623 const struct pcpu_group_info *gi = &ai->groups[group];
1624 int unit = 0, unit_end = 0;
1625
1626 BUG_ON(gi->nr_units % upa);
1627 for (alloc_end += gi->nr_units / upa;
1628 alloc < alloc_end; alloc++) {
1629 if (!(alloc % apl)) {
1170532b 1630 pr_cont("\n");
fd1e8a1f
TH
1631 printk("%spcpu-alloc: ", lvl);
1632 }
1170532b 1633 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1634
1635 for (unit_end += upa; unit < unit_end; unit++)
1636 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1637 pr_cont("%0*d ",
1638 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1639 else
1170532b 1640 pr_cont("%s ", empty_str);
033e48fb 1641 }
033e48fb 1642 }
1170532b 1643 pr_cont("\n");
033e48fb 1644}
033e48fb 1645
fbf59bc9 1646/**
8d408b4b 1647 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1648 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1649 * @base_addr: mapped address
8d408b4b
TH
1650 *
1651 * Initialize the first percpu chunk which contains the kernel static
1652 * perpcu area. This function is to be called from arch percpu area
38a6be52 1653 * setup path.
8d408b4b 1654 *
fd1e8a1f
TH
1655 * @ai contains all information necessary to initialize the first
1656 * chunk and prime the dynamic percpu allocator.
1657 *
1658 * @ai->static_size is the size of static percpu area.
1659 *
1660 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1661 * reserve after the static area in the first chunk. This reserves
1662 * the first chunk such that it's available only through reserved
1663 * percpu allocation. This is primarily used to serve module percpu
1664 * static areas on architectures where the addressing model has
1665 * limited offset range for symbol relocations to guarantee module
1666 * percpu symbols fall inside the relocatable range.
1667 *
fd1e8a1f
TH
1668 * @ai->dyn_size determines the number of bytes available for dynamic
1669 * allocation in the first chunk. The area between @ai->static_size +
1670 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1671 *
fd1e8a1f
TH
1672 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1673 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1674 * @ai->dyn_size.
8d408b4b 1675 *
fd1e8a1f
TH
1676 * @ai->atom_size is the allocation atom size and used as alignment
1677 * for vm areas.
8d408b4b 1678 *
fd1e8a1f
TH
1679 * @ai->alloc_size is the allocation size and always multiple of
1680 * @ai->atom_size. This is larger than @ai->atom_size if
1681 * @ai->unit_size is larger than @ai->atom_size.
1682 *
1683 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1684 * percpu areas. Units which should be colocated are put into the
1685 * same group. Dynamic VM areas will be allocated according to these
1686 * groupings. If @ai->nr_groups is zero, a single group containing
1687 * all units is assumed.
8d408b4b 1688 *
38a6be52
TH
1689 * The caller should have mapped the first chunk at @base_addr and
1690 * copied static data to each unit.
fbf59bc9 1691 *
c0ebfdc3
DZF
1692 * The first chunk will always contain a static and a dynamic region.
1693 * However, the static region is not managed by any chunk. If the first
1694 * chunk also contains a reserved region, it is served by two chunks -
1695 * one for the reserved region and one for the dynamic region. They
1696 * share the same vm, but use offset regions in the area allocation map.
1697 * The chunk serving the dynamic region is circulated in the chunk slots
1698 * and available for dynamic allocation like any other chunk.
edcb4639 1699 *
fbf59bc9 1700 * RETURNS:
fb435d52 1701 * 0 on success, -errno on failure.
fbf59bc9 1702 */
fb435d52
TH
1703int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1704 void *base_addr)
fbf59bc9 1705{
b9c39442 1706 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 1707 size_t static_size, dyn_size;
0c4169c3 1708 struct pcpu_chunk *chunk;
6563297c
TH
1709 unsigned long *group_offsets;
1710 size_t *group_sizes;
fb435d52 1711 unsigned long *unit_off;
fbf59bc9 1712 unsigned int cpu;
fd1e8a1f
TH
1713 int *unit_map;
1714 int group, unit, i;
c0ebfdc3
DZF
1715 int map_size;
1716 unsigned long tmp_addr;
fbf59bc9 1717
635b75fc
TH
1718#define PCPU_SETUP_BUG_ON(cond) do { \
1719 if (unlikely(cond)) { \
870d4b12
JP
1720 pr_emerg("failed to initialize, %s\n", #cond); \
1721 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1722 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1723 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1724 BUG(); \
1725 } \
1726} while (0)
1727
2f39e637 1728 /* sanity checks */
635b75fc 1729 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1730#ifdef CONFIG_SMP
635b75fc 1731 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1732 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1733#endif
635b75fc 1734 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1735 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1736 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1737 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1738 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 1739 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 1740 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1741 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 1742 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
1743 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
1744 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 1745 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1746
6563297c 1747 /* process group information and build config tables accordingly */
999c17e3
SS
1748 group_offsets = memblock_virt_alloc(ai->nr_groups *
1749 sizeof(group_offsets[0]), 0);
1750 group_sizes = memblock_virt_alloc(ai->nr_groups *
1751 sizeof(group_sizes[0]), 0);
1752 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1753 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1754
fd1e8a1f 1755 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1756 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1757
1758 pcpu_low_unit_cpu = NR_CPUS;
1759 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1760
fd1e8a1f
TH
1761 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1762 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1763
6563297c
TH
1764 group_offsets[group] = gi->base_offset;
1765 group_sizes[group] = gi->nr_units * ai->unit_size;
1766
fd1e8a1f
TH
1767 for (i = 0; i < gi->nr_units; i++) {
1768 cpu = gi->cpu_map[i];
1769 if (cpu == NR_CPUS)
1770 continue;
8d408b4b 1771
9f295664 1772 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1773 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1774 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1775
fd1e8a1f 1776 unit_map[cpu] = unit + i;
fb435d52
TH
1777 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1778
a855b84c
TH
1779 /* determine low/high unit_cpu */
1780 if (pcpu_low_unit_cpu == NR_CPUS ||
1781 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1782 pcpu_low_unit_cpu = cpu;
1783 if (pcpu_high_unit_cpu == NR_CPUS ||
1784 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1785 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1786 }
2f39e637 1787 }
fd1e8a1f
TH
1788 pcpu_nr_units = unit;
1789
1790 for_each_possible_cpu(cpu)
635b75fc
TH
1791 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1792
1793 /* we're done parsing the input, undefine BUG macro and dump config */
1794#undef PCPU_SETUP_BUG_ON
bcbea798 1795 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1796
6563297c
TH
1797 pcpu_nr_groups = ai->nr_groups;
1798 pcpu_group_offsets = group_offsets;
1799 pcpu_group_sizes = group_sizes;
fd1e8a1f 1800 pcpu_unit_map = unit_map;
fb435d52 1801 pcpu_unit_offsets = unit_off;
2f39e637
TH
1802
1803 /* determine basic parameters */
fd1e8a1f 1804 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1805 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1806 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1807 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1808 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1809
30a5b536
DZ
1810 pcpu_stats_save_ai(ai);
1811
d9b55eeb
TH
1812 /*
1813 * Allocate chunk slots. The additional last slot is for
1814 * empty chunks.
1815 */
1816 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1817 pcpu_slot = memblock_virt_alloc(
1818 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1819 for (i = 0; i < pcpu_nr_slots; i++)
1820 INIT_LIST_HEAD(&pcpu_slot[i]);
1821
d2f3c384
DZF
1822 /*
1823 * The end of the static region needs to be aligned with the
1824 * minimum allocation size as this offsets the reserved and
1825 * dynamic region. The first chunk ends page aligned by
1826 * expanding the dynamic region, therefore the dynamic region
1827 * can be shrunk to compensate while still staying above the
1828 * configured sizes.
1829 */
1830 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
1831 dyn_size = ai->dyn_size - (static_size - ai->static_size);
1832
edcb4639 1833 /*
c0ebfdc3
DZF
1834 * Initialize first chunk.
1835 * If the reserved_size is non-zero, this initializes the reserved
1836 * chunk. If the reserved_size is zero, the reserved chunk is NULL
1837 * and the dynamic region is initialized here. The first chunk,
1838 * pcpu_first_chunk, will always point to the chunk that serves
1839 * the dynamic region.
edcb4639 1840 */
d2f3c384
DZF
1841 tmp_addr = (unsigned long)base_addr + static_size;
1842 map_size = ai->reserved_size ?: dyn_size;
40064aec 1843 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 1844
edcb4639 1845 /* init dynamic chunk if necessary */
b9c39442 1846 if (ai->reserved_size) {
0c4169c3 1847 pcpu_reserved_chunk = chunk;
b9c39442 1848
d2f3c384 1849 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 1850 ai->reserved_size;
d2f3c384 1851 map_size = dyn_size;
40064aec 1852 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
1853 }
1854
2441d15c 1855 /* link the first chunk in */
0c4169c3 1856 pcpu_first_chunk = chunk;
0cecf50c 1857 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 1858 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1859
30a5b536 1860 pcpu_stats_chunk_alloc();
df95e795 1861 trace_percpu_create_chunk(base_addr);
30a5b536 1862
fbf59bc9 1863 /* we're done */
bba174f5 1864 pcpu_base_addr = base_addr;
fb435d52 1865 return 0;
fbf59bc9 1866}
66c3a757 1867
bbddff05
TH
1868#ifdef CONFIG_SMP
1869
17f3609c 1870const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1871 [PCPU_FC_AUTO] = "auto",
1872 [PCPU_FC_EMBED] = "embed",
1873 [PCPU_FC_PAGE] = "page",
f58dc01b 1874};
66c3a757 1875
f58dc01b 1876enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1877
f58dc01b
TH
1878static int __init percpu_alloc_setup(char *str)
1879{
5479c78a
CG
1880 if (!str)
1881 return -EINVAL;
1882
f58dc01b
TH
1883 if (0)
1884 /* nada */;
1885#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1886 else if (!strcmp(str, "embed"))
1887 pcpu_chosen_fc = PCPU_FC_EMBED;
1888#endif
1889#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1890 else if (!strcmp(str, "page"))
1891 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1892#endif
1893 else
870d4b12 1894 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1895
f58dc01b 1896 return 0;
66c3a757 1897}
f58dc01b 1898early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1899
3c9a024f
TH
1900/*
1901 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1902 * Build it if needed by the arch config or the generic setup is going
1903 * to be used.
1904 */
08fc4580
TH
1905#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1906 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1907#define BUILD_EMBED_FIRST_CHUNK
1908#endif
1909
1910/* build pcpu_page_first_chunk() iff needed by the arch config */
1911#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1912#define BUILD_PAGE_FIRST_CHUNK
1913#endif
1914
1915/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1916#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1917/**
1918 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1919 * @reserved_size: the size of reserved percpu area in bytes
1920 * @dyn_size: minimum free size for dynamic allocation in bytes
1921 * @atom_size: allocation atom size
1922 * @cpu_distance_fn: callback to determine distance between cpus, optional
1923 *
1924 * This function determines grouping of units, their mappings to cpus
1925 * and other parameters considering needed percpu size, allocation
1926 * atom size and distances between CPUs.
1927 *
bffc4375 1928 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1929 * LOCAL_DISTANCE both ways are grouped together and share space for
1930 * units in the same group. The returned configuration is guaranteed
1931 * to have CPUs on different nodes on different groups and >=75% usage
1932 * of allocated virtual address space.
1933 *
1934 * RETURNS:
1935 * On success, pointer to the new allocation_info is returned. On
1936 * failure, ERR_PTR value is returned.
1937 */
1938static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1939 size_t reserved_size, size_t dyn_size,
1940 size_t atom_size,
1941 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1942{
1943 static int group_map[NR_CPUS] __initdata;
1944 static int group_cnt[NR_CPUS] __initdata;
1945 const size_t static_size = __per_cpu_end - __per_cpu_start;
1946 int nr_groups = 1, nr_units = 0;
1947 size_t size_sum, min_unit_size, alloc_size;
1948 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1949 int last_allocs, group, unit;
1950 unsigned int cpu, tcpu;
1951 struct pcpu_alloc_info *ai;
1952 unsigned int *cpu_map;
1953
1954 /* this function may be called multiple times */
1955 memset(group_map, 0, sizeof(group_map));
1956 memset(group_cnt, 0, sizeof(group_cnt));
1957
1958 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1959 size_sum = PFN_ALIGN(static_size + reserved_size +
1960 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1961 dyn_size = size_sum - static_size - reserved_size;
1962
1963 /*
1964 * Determine min_unit_size, alloc_size and max_upa such that
1965 * alloc_size is multiple of atom_size and is the smallest
25985edc 1966 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1967 * or larger than min_unit_size.
1968 */
1969 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1970
9c015162 1971 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1972 alloc_size = roundup(min_unit_size, atom_size);
1973 upa = alloc_size / min_unit_size;
f09f1243 1974 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1975 upa--;
1976 max_upa = upa;
1977
1978 /* group cpus according to their proximity */
1979 for_each_possible_cpu(cpu) {
1980 group = 0;
1981 next_group:
1982 for_each_possible_cpu(tcpu) {
1983 if (cpu == tcpu)
1984 break;
1985 if (group_map[tcpu] == group && cpu_distance_fn &&
1986 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1987 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1988 group++;
1989 nr_groups = max(nr_groups, group + 1);
1990 goto next_group;
1991 }
1992 }
1993 group_map[cpu] = group;
1994 group_cnt[group]++;
1995 }
1996
1997 /*
9c015162
DZF
1998 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1999 * Expand the unit_size until we use >= 75% of the units allocated.
2000 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2001 */
2002 last_allocs = INT_MAX;
2003 for (upa = max_upa; upa; upa--) {
2004 int allocs = 0, wasted = 0;
2005
f09f1243 2006 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2007 continue;
2008
2009 for (group = 0; group < nr_groups; group++) {
2010 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2011 allocs += this_allocs;
2012 wasted += this_allocs * upa - group_cnt[group];
2013 }
2014
2015 /*
2016 * Don't accept if wastage is over 1/3. The
2017 * greater-than comparison ensures upa==1 always
2018 * passes the following check.
2019 */
2020 if (wasted > num_possible_cpus() / 3)
2021 continue;
2022
2023 /* and then don't consume more memory */
2024 if (allocs > last_allocs)
2025 break;
2026 last_allocs = allocs;
2027 best_upa = upa;
2028 }
2029 upa = best_upa;
2030
2031 /* allocate and fill alloc_info */
2032 for (group = 0; group < nr_groups; group++)
2033 nr_units += roundup(group_cnt[group], upa);
2034
2035 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2036 if (!ai)
2037 return ERR_PTR(-ENOMEM);
2038 cpu_map = ai->groups[0].cpu_map;
2039
2040 for (group = 0; group < nr_groups; group++) {
2041 ai->groups[group].cpu_map = cpu_map;
2042 cpu_map += roundup(group_cnt[group], upa);
2043 }
2044
2045 ai->static_size = static_size;
2046 ai->reserved_size = reserved_size;
2047 ai->dyn_size = dyn_size;
2048 ai->unit_size = alloc_size / upa;
2049 ai->atom_size = atom_size;
2050 ai->alloc_size = alloc_size;
2051
2052 for (group = 0, unit = 0; group_cnt[group]; group++) {
2053 struct pcpu_group_info *gi = &ai->groups[group];
2054
2055 /*
2056 * Initialize base_offset as if all groups are located
2057 * back-to-back. The caller should update this to
2058 * reflect actual allocation.
2059 */
2060 gi->base_offset = unit * ai->unit_size;
2061
2062 for_each_possible_cpu(cpu)
2063 if (group_map[cpu] == group)
2064 gi->cpu_map[gi->nr_units++] = cpu;
2065 gi->nr_units = roundup(gi->nr_units, upa);
2066 unit += gi->nr_units;
2067 }
2068 BUG_ON(unit != nr_units);
2069
2070 return ai;
2071}
2072#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2073
2074#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2075/**
2076 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2077 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2078 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2079 * @atom_size: allocation atom size
2080 * @cpu_distance_fn: callback to determine distance between cpus, optional
2081 * @alloc_fn: function to allocate percpu page
25985edc 2082 * @free_fn: function to free percpu page
66c3a757
TH
2083 *
2084 * This is a helper to ease setting up embedded first percpu chunk and
2085 * can be called where pcpu_setup_first_chunk() is expected.
2086 *
2087 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2088 * by calling @alloc_fn and used as-is without being mapped into
2089 * vmalloc area. Allocations are always whole multiples of @atom_size
2090 * aligned to @atom_size.
2091 *
2092 * This enables the first chunk to piggy back on the linear physical
2093 * mapping which often uses larger page size. Please note that this
2094 * can result in very sparse cpu->unit mapping on NUMA machines thus
2095 * requiring large vmalloc address space. Don't use this allocator if
2096 * vmalloc space is not orders of magnitude larger than distances
2097 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2098 *
4ba6ce25 2099 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2100 *
2101 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2102 * size, the leftover is returned using @free_fn.
66c3a757
TH
2103 *
2104 * RETURNS:
fb435d52 2105 * 0 on success, -errno on failure.
66c3a757 2106 */
4ba6ce25 2107int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2108 size_t atom_size,
2109 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2110 pcpu_fc_alloc_fn_t alloc_fn,
2111 pcpu_fc_free_fn_t free_fn)
66c3a757 2112{
c8826dd5
TH
2113 void *base = (void *)ULONG_MAX;
2114 void **areas = NULL;
fd1e8a1f 2115 struct pcpu_alloc_info *ai;
93c76b6b 2116 size_t size_sum, areas_size;
2117 unsigned long max_distance;
9b739662 2118 int group, i, highest_group, rc;
66c3a757 2119
c8826dd5
TH
2120 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2121 cpu_distance_fn);
fd1e8a1f
TH
2122 if (IS_ERR(ai))
2123 return PTR_ERR(ai);
66c3a757 2124
fd1e8a1f 2125 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2126 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2127
999c17e3 2128 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2129 if (!areas) {
fb435d52 2130 rc = -ENOMEM;
c8826dd5 2131 goto out_free;
fa8a7094 2132 }
66c3a757 2133
9b739662 2134 /* allocate, copy and determine base address & max_distance */
2135 highest_group = 0;
c8826dd5
TH
2136 for (group = 0; group < ai->nr_groups; group++) {
2137 struct pcpu_group_info *gi = &ai->groups[group];
2138 unsigned int cpu = NR_CPUS;
2139 void *ptr;
2140
2141 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2142 cpu = gi->cpu_map[i];
2143 BUG_ON(cpu == NR_CPUS);
2144
2145 /* allocate space for the whole group */
2146 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2147 if (!ptr) {
2148 rc = -ENOMEM;
2149 goto out_free_areas;
2150 }
f528f0b8
CM
2151 /* kmemleak tracks the percpu allocations separately */
2152 kmemleak_free(ptr);
c8826dd5 2153 areas[group] = ptr;
fd1e8a1f 2154
c8826dd5 2155 base = min(ptr, base);
9b739662 2156 if (ptr > areas[highest_group])
2157 highest_group = group;
2158 }
2159 max_distance = areas[highest_group] - base;
2160 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2161
2162 /* warn if maximum distance is further than 75% of vmalloc space */
2163 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2164 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2165 max_distance, VMALLOC_TOTAL);
2166#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2167 /* and fail if we have fallback */
2168 rc = -EINVAL;
2169 goto out_free_areas;
2170#endif
42b64281
TH
2171 }
2172
2173 /*
2174 * Copy data and free unused parts. This should happen after all
2175 * allocations are complete; otherwise, we may end up with
2176 * overlapping groups.
2177 */
2178 for (group = 0; group < ai->nr_groups; group++) {
2179 struct pcpu_group_info *gi = &ai->groups[group];
2180 void *ptr = areas[group];
c8826dd5
TH
2181
2182 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2183 if (gi->cpu_map[i] == NR_CPUS) {
2184 /* unused unit, free whole */
2185 free_fn(ptr, ai->unit_size);
2186 continue;
2187 }
2188 /* copy and return the unused part */
2189 memcpy(ptr, __per_cpu_load, ai->static_size);
2190 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2191 }
fa8a7094 2192 }
66c3a757 2193
c8826dd5 2194 /* base address is now known, determine group base offsets */
6ea529a2 2195 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2196 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2197 }
c8826dd5 2198
870d4b12 2199 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2200 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2201 ai->dyn_size, ai->unit_size);
d4b95f80 2202
fb435d52 2203 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2204 goto out_free;
2205
2206out_free_areas:
2207 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2208 if (areas[group])
2209 free_fn(areas[group],
2210 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2211out_free:
fd1e8a1f 2212 pcpu_free_alloc_info(ai);
c8826dd5 2213 if (areas)
999c17e3 2214 memblock_free_early(__pa(areas), areas_size);
fb435d52 2215 return rc;
d4b95f80 2216}
3c9a024f 2217#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2218
3c9a024f 2219#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2220/**
00ae4064 2221 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2222 * @reserved_size: the size of reserved percpu area in bytes
2223 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2224 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2225 * @populate_pte_fn: function to populate pte
2226 *
00ae4064
TH
2227 * This is a helper to ease setting up page-remapped first percpu
2228 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2229 *
2230 * This is the basic allocator. Static percpu area is allocated
2231 * page-by-page into vmalloc area.
2232 *
2233 * RETURNS:
fb435d52 2234 * 0 on success, -errno on failure.
d4b95f80 2235 */
fb435d52
TH
2236int __init pcpu_page_first_chunk(size_t reserved_size,
2237 pcpu_fc_alloc_fn_t alloc_fn,
2238 pcpu_fc_free_fn_t free_fn,
2239 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2240{
8f05a6a6 2241 static struct vm_struct vm;
fd1e8a1f 2242 struct pcpu_alloc_info *ai;
00ae4064 2243 char psize_str[16];
ce3141a2 2244 int unit_pages;
d4b95f80 2245 size_t pages_size;
ce3141a2 2246 struct page **pages;
fb435d52 2247 int unit, i, j, rc;
8f606604 2248 int upa;
2249 int nr_g0_units;
d4b95f80 2250
00ae4064
TH
2251 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2252
4ba6ce25 2253 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2254 if (IS_ERR(ai))
2255 return PTR_ERR(ai);
2256 BUG_ON(ai->nr_groups != 1);
8f606604 2257 upa = ai->alloc_size/ai->unit_size;
2258 nr_g0_units = roundup(num_possible_cpus(), upa);
2259 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2260 pcpu_free_alloc_info(ai);
2261 return -EINVAL;
2262 }
fd1e8a1f
TH
2263
2264 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2265
2266 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2267 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2268 sizeof(pages[0]));
999c17e3 2269 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2270
8f05a6a6 2271 /* allocate pages */
d4b95f80 2272 j = 0;
8f606604 2273 for (unit = 0; unit < num_possible_cpus(); unit++) {
2274 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2275 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2276 void *ptr;
2277
3cbc8565 2278 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2279 if (!ptr) {
870d4b12 2280 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2281 psize_str, cpu);
d4b95f80
TH
2282 goto enomem;
2283 }
f528f0b8
CM
2284 /* kmemleak tracks the percpu allocations separately */
2285 kmemleak_free(ptr);
ce3141a2 2286 pages[j++] = virt_to_page(ptr);
d4b95f80 2287 }
8f606604 2288 }
d4b95f80 2289
8f05a6a6
TH
2290 /* allocate vm area, map the pages and copy static data */
2291 vm.flags = VM_ALLOC;
fd1e8a1f 2292 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2293 vm_area_register_early(&vm, PAGE_SIZE);
2294
fd1e8a1f 2295 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2296 unsigned long unit_addr =
fd1e8a1f 2297 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2298
ce3141a2 2299 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2300 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2301
2302 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2303 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2304 unit_pages);
2305 if (rc < 0)
2306 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2307
8f05a6a6
TH
2308 /*
2309 * FIXME: Archs with virtual cache should flush local
2310 * cache for the linear mapping here - something
2311 * equivalent to flush_cache_vmap() on the local cpu.
2312 * flush_cache_vmap() can't be used as most supporting
2313 * data structures are not set up yet.
2314 */
2315
2316 /* copy static data */
fd1e8a1f 2317 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2318 }
2319
2320 /* we're ready, commit */
870d4b12 2321 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2322 unit_pages, psize_str, vm.addr, ai->static_size,
2323 ai->reserved_size, ai->dyn_size);
d4b95f80 2324
fb435d52 2325 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2326 goto out_free_ar;
2327
2328enomem:
2329 while (--j >= 0)
ce3141a2 2330 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2331 rc = -ENOMEM;
d4b95f80 2332out_free_ar:
999c17e3 2333 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2334 pcpu_free_alloc_info(ai);
fb435d52 2335 return rc;
d4b95f80 2336}
3c9a024f 2337#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2338
bbddff05 2339#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2340/*
bbddff05 2341 * Generic SMP percpu area setup.
e74e3962
TH
2342 *
2343 * The embedding helper is used because its behavior closely resembles
2344 * the original non-dynamic generic percpu area setup. This is
2345 * important because many archs have addressing restrictions and might
2346 * fail if the percpu area is located far away from the previous
2347 * location. As an added bonus, in non-NUMA cases, embedding is
2348 * generally a good idea TLB-wise because percpu area can piggy back
2349 * on the physical linear memory mapping which uses large page
2350 * mappings on applicable archs.
2351 */
e74e3962
TH
2352unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2353EXPORT_SYMBOL(__per_cpu_offset);
2354
c8826dd5
TH
2355static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2356 size_t align)
2357{
999c17e3
SS
2358 return memblock_virt_alloc_from_nopanic(
2359 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2360}
66c3a757 2361
c8826dd5
TH
2362static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2363{
999c17e3 2364 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2365}
2366
e74e3962
TH
2367void __init setup_per_cpu_areas(void)
2368{
e74e3962
TH
2369 unsigned long delta;
2370 unsigned int cpu;
fb435d52 2371 int rc;
e74e3962
TH
2372
2373 /*
2374 * Always reserve area for module percpu variables. That's
2375 * what the legacy allocator did.
2376 */
fb435d52 2377 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2378 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2379 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2380 if (rc < 0)
bbddff05 2381 panic("Failed to initialize percpu areas.");
e74e3962
TH
2382
2383 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2384 for_each_possible_cpu(cpu)
fb435d52 2385 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2386}
bbddff05
TH
2387#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2388
2389#else /* CONFIG_SMP */
2390
2391/*
2392 * UP percpu area setup.
2393 *
2394 * UP always uses km-based percpu allocator with identity mapping.
2395 * Static percpu variables are indistinguishable from the usual static
2396 * variables and don't require any special preparation.
2397 */
2398void __init setup_per_cpu_areas(void)
2399{
2400 const size_t unit_size =
2401 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2402 PERCPU_DYNAMIC_RESERVE));
2403 struct pcpu_alloc_info *ai;
2404 void *fc;
2405
2406 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2407 fc = memblock_virt_alloc_from_nopanic(unit_size,
2408 PAGE_SIZE,
2409 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2410 if (!ai || !fc)
2411 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2412 /* kmemleak tracks the percpu allocations separately */
2413 kmemleak_free(fc);
bbddff05
TH
2414
2415 ai->dyn_size = unit_size;
2416 ai->unit_size = unit_size;
2417 ai->atom_size = unit_size;
2418 ai->alloc_size = unit_size;
2419 ai->groups[0].nr_units = 1;
2420 ai->groups[0].cpu_map[0] = 0;
2421
2422 if (pcpu_setup_first_chunk(ai, fc) < 0)
2423 panic("Failed to initialize percpu areas.");
2424}
2425
2426#endif /* CONFIG_SMP */
099a19d9 2427
1a4d7607
TH
2428/*
2429 * Percpu allocator is initialized early during boot when neither slab or
2430 * workqueue is available. Plug async management until everything is up
2431 * and running.
2432 */
2433static int __init percpu_enable_async(void)
2434{
2435 pcpu_async_enabled = true;
2436 return 0;
2437}
2438subsys_initcall(percpu_enable_async);