]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: increase minimum percpu allocation size and align first regions
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
fbf59bc9 66#include <linux/list.h>
a530b795 67#include <linux/log2.h>
fbf59bc9
TH
68#include <linux/mm.h>
69#include <linux/module.h>
70#include <linux/mutex.h>
71#include <linux/percpu.h>
72#include <linux/pfn.h>
fbf59bc9 73#include <linux/slab.h>
ccea34b5 74#include <linux/spinlock.h>
fbf59bc9 75#include <linux/vmalloc.h>
a56dbddf 76#include <linux/workqueue.h>
f528f0b8 77#include <linux/kmemleak.h>
fbf59bc9
TH
78
79#include <asm/cacheflush.h>
e0100983 80#include <asm/sections.h>
fbf59bc9 81#include <asm/tlbflush.h>
3b034b0d 82#include <asm/io.h>
fbf59bc9 83
df95e795
DZ
84#define CREATE_TRACE_POINTS
85#include <trace/events/percpu.h>
86
8fa3ed80
DZ
87#include "percpu-internal.h"
88
fbf59bc9
TH
89#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
90#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
91#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
92#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3 184/**
560f2c23
DZF
185 * pcpu_addr_in_chunk - check if the address is served from this chunk
186 * @chunk: chunk of interest
187 * @addr: percpu address
c0ebfdc3
DZF
188 *
189 * RETURNS:
560f2c23 190 * True if the address is served from this chunk.
c0ebfdc3 191 */
560f2c23 192static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 193{
c0ebfdc3
DZF
194 void *start_addr, *end_addr;
195
560f2c23 196 if (!chunk)
c0ebfdc3 197 return false;
020ec653 198
560f2c23
DZF
199 start_addr = chunk->base_addr + chunk->start_offset;
200 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
201 chunk->end_offset;
c0ebfdc3
DZF
202
203 return addr >= start_addr && addr < end_addr;
020ec653
TH
204}
205
d9b55eeb 206static int __pcpu_size_to_slot(int size)
fbf59bc9 207{
cae3aeb8 208 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
209 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
210}
211
d9b55eeb
TH
212static int pcpu_size_to_slot(int size)
213{
214 if (size == pcpu_unit_size)
215 return pcpu_nr_slots - 1;
216 return __pcpu_size_to_slot(size);
217}
218
fbf59bc9
TH
219static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
220{
221 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
222 return 0;
223
224 return pcpu_size_to_slot(chunk->free_size);
225}
226
88999a89
TH
227/* set the pointer to a chunk in a page struct */
228static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
229{
230 page->index = (unsigned long)pcpu;
231}
232
233/* obtain pointer to a chunk from a page struct */
234static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
235{
236 return (struct pcpu_chunk *)page->index;
237}
238
239static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 240{
2f39e637 241 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
242}
243
c0ebfdc3
DZF
244static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
247}
248
9983b6f0
TH
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
fbf59bc9 251{
c0ebfdc3
DZF
252 return (unsigned long)chunk->base_addr +
253 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
254}
255
88999a89
TH
256static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
257 int *rs, int *re, int end)
ce3141a2
TH
258{
259 *rs = find_next_zero_bit(chunk->populated, end, *rs);
260 *re = find_next_bit(chunk->populated, end, *rs + 1);
261}
262
88999a89
TH
263static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
264 int *rs, int *re, int end)
ce3141a2
TH
265{
266 *rs = find_next_bit(chunk->populated, end, *rs);
267 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
268}
269
270/*
271 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 272 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
273 * be integer variables and will be set to start and end page index of
274 * the current region.
275 */
276#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
277 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
278 (rs) < (re); \
279 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
280
281#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
282 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
283 (rs) < (re); \
284 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
285
fbf59bc9 286/**
90459ce0 287 * pcpu_mem_zalloc - allocate memory
1880d93b 288 * @size: bytes to allocate
fbf59bc9 289 *
1880d93b 290 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 291 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 292 * memory is always zeroed.
fbf59bc9 293 *
ccea34b5
TH
294 * CONTEXT:
295 * Does GFP_KERNEL allocation.
296 *
fbf59bc9 297 * RETURNS:
1880d93b 298 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 299 */
90459ce0 300static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 301{
099a19d9
TH
302 if (WARN_ON_ONCE(!slab_is_available()))
303 return NULL;
304
1880d93b
TH
305 if (size <= PAGE_SIZE)
306 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
307 else
308 return vzalloc(size);
1880d93b 309}
fbf59bc9 310
1880d93b
TH
311/**
312 * pcpu_mem_free - free memory
313 * @ptr: memory to free
1880d93b 314 *
90459ce0 315 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 316 */
1d5cfdb0 317static void pcpu_mem_free(void *ptr)
1880d93b 318{
1d5cfdb0 319 kvfree(ptr);
fbf59bc9
TH
320}
321
b539b87f
TH
322/**
323 * pcpu_count_occupied_pages - count the number of pages an area occupies
324 * @chunk: chunk of interest
325 * @i: index of the area in question
326 *
327 * Count the number of pages chunk's @i'th area occupies. When the area's
328 * start and/or end address isn't aligned to page boundary, the straddled
329 * page is included in the count iff the rest of the page is free.
330 */
331static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
332{
333 int off = chunk->map[i] & ~1;
334 int end = chunk->map[i + 1] & ~1;
335
336 if (!PAGE_ALIGNED(off) && i > 0) {
337 int prev = chunk->map[i - 1];
338
339 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
340 off = round_down(off, PAGE_SIZE);
341 }
342
343 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
344 int next = chunk->map[i + 1];
345 int nend = chunk->map[i + 2] & ~1;
346
347 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
348 end = round_up(end, PAGE_SIZE);
349 }
350
351 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
352}
353
fbf59bc9
TH
354/**
355 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
356 * @chunk: chunk of interest
357 * @oslot: the previous slot it was on
358 *
359 * This function is called after an allocation or free changed @chunk.
360 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
361 * moved to the slot. Note that the reserved chunk is never put on
362 * chunk slots.
ccea34b5
TH
363 *
364 * CONTEXT:
365 * pcpu_lock.
fbf59bc9
TH
366 */
367static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
368{
369 int nslot = pcpu_chunk_slot(chunk);
370
edcb4639 371 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
372 if (oslot < nslot)
373 list_move(&chunk->list, &pcpu_slot[nslot]);
374 else
375 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
376 }
377}
378
9f7dcf22 379/**
833af842
TH
380 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
381 * @chunk: chunk of interest
9c824b6a 382 * @is_atomic: the allocation context
9f7dcf22 383 *
9c824b6a
TH
384 * Determine whether area map of @chunk needs to be extended. If
385 * @is_atomic, only the amount necessary for a new allocation is
386 * considered; however, async extension is scheduled if the left amount is
387 * low. If !@is_atomic, it aims for more empty space. Combined, this
388 * ensures that the map is likely to have enough available space to
389 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 390 *
ccea34b5 391 * CONTEXT:
833af842 392 * pcpu_lock.
ccea34b5 393 *
9f7dcf22 394 * RETURNS:
833af842
TH
395 * New target map allocation length if extension is necessary, 0
396 * otherwise.
9f7dcf22 397 */
9c824b6a 398static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 399{
9c824b6a
TH
400 int margin, new_alloc;
401
4f996e23
TH
402 lockdep_assert_held(&pcpu_lock);
403
9c824b6a
TH
404 if (is_atomic) {
405 margin = 3;
9f7dcf22 406
9c824b6a 407 if (chunk->map_alloc <
4f996e23
TH
408 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
409 if (list_empty(&chunk->map_extend_list)) {
410 list_add_tail(&chunk->map_extend_list,
411 &pcpu_map_extend_chunks);
412 pcpu_schedule_balance_work();
413 }
414 }
9c824b6a
TH
415 } else {
416 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
417 }
418
419 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
420 return 0;
421
422 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 423 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
424 new_alloc *= 2;
425
833af842
TH
426 return new_alloc;
427}
428
429/**
430 * pcpu_extend_area_map - extend area map of a chunk
431 * @chunk: chunk of interest
432 * @new_alloc: new target allocation length of the area map
433 *
434 * Extend area map of @chunk to have @new_alloc entries.
435 *
436 * CONTEXT:
437 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
438 *
439 * RETURNS:
440 * 0 on success, -errno on failure.
441 */
442static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
443{
444 int *old = NULL, *new = NULL;
445 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
446 unsigned long flags;
447
6710e594
TH
448 lockdep_assert_held(&pcpu_alloc_mutex);
449
90459ce0 450 new = pcpu_mem_zalloc(new_size);
833af842 451 if (!new)
9f7dcf22 452 return -ENOMEM;
ccea34b5 453
833af842
TH
454 /* acquire pcpu_lock and switch to new area map */
455 spin_lock_irqsave(&pcpu_lock, flags);
456
457 if (new_alloc <= chunk->map_alloc)
458 goto out_unlock;
9f7dcf22 459
833af842 460 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
461 old = chunk->map;
462
463 memcpy(new, old, old_size);
9f7dcf22 464
9f7dcf22
TH
465 chunk->map_alloc = new_alloc;
466 chunk->map = new;
833af842
TH
467 new = NULL;
468
469out_unlock:
470 spin_unlock_irqrestore(&pcpu_lock, flags);
471
472 /*
473 * pcpu_mem_free() might end up calling vfree() which uses
474 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
475 */
1d5cfdb0
TH
476 pcpu_mem_free(old);
477 pcpu_mem_free(new);
833af842 478
9f7dcf22
TH
479 return 0;
480}
481
a16037c8
TH
482/**
483 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
484 * @chunk: chunk the candidate area belongs to
485 * @off: the offset to the start of the candidate area
486 * @this_size: the size of the candidate area
487 * @size: the size of the target allocation
488 * @align: the alignment of the target allocation
489 * @pop_only: only allocate from already populated region
490 *
491 * We're trying to allocate @size bytes aligned at @align. @chunk's area
492 * at @off sized @this_size is a candidate. This function determines
493 * whether the target allocation fits in the candidate area and returns the
494 * number of bytes to pad after @off. If the target area doesn't fit, -1
495 * is returned.
496 *
497 * If @pop_only is %true, this function only considers the already
498 * populated part of the candidate area.
499 */
500static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
501 int size, int align, bool pop_only)
502{
503 int cand_off = off;
504
505 while (true) {
506 int head = ALIGN(cand_off, align) - off;
507 int page_start, page_end, rs, re;
508
509 if (this_size < head + size)
510 return -1;
511
512 if (!pop_only)
513 return head;
514
515 /*
516 * If the first unpopulated page is beyond the end of the
517 * allocation, the whole allocation is populated;
518 * otherwise, retry from the end of the unpopulated area.
519 */
520 page_start = PFN_DOWN(head + off);
521 page_end = PFN_UP(head + off + size);
522
523 rs = page_start;
524 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
525 if (rs >= page_end)
526 return head;
527 cand_off = re * PAGE_SIZE;
528 }
529}
530
fbf59bc9
TH
531/**
532 * pcpu_alloc_area - allocate area from a pcpu_chunk
533 * @chunk: chunk of interest
cae3aeb8 534 * @size: wanted size in bytes
fbf59bc9 535 * @align: wanted align
a16037c8 536 * @pop_only: allocate only from the populated area
b539b87f 537 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
538 *
539 * Try to allocate @size bytes area aligned at @align from @chunk.
540 * Note that this function only allocates the offset. It doesn't
541 * populate or map the area.
542 *
9f7dcf22
TH
543 * @chunk->map must have at least two free slots.
544 *
ccea34b5
TH
545 * CONTEXT:
546 * pcpu_lock.
547 *
fbf59bc9 548 * RETURNS:
9f7dcf22
TH
549 * Allocated offset in @chunk on success, -1 if no matching area is
550 * found.
fbf59bc9 551 */
a16037c8 552static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 553 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
554{
555 int oslot = pcpu_chunk_slot(chunk);
556 int max_contig = 0;
557 int i, off;
3d331ad7 558 bool seen_free = false;
723ad1d9 559 int *p;
fbf59bc9 560
3d331ad7 561 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 562 int head, tail;
723ad1d9
AV
563 int this_size;
564
565 off = *p;
566 if (off & 1)
567 continue;
fbf59bc9 568
723ad1d9 569 this_size = (p[1] & ~1) - off;
a16037c8
TH
570
571 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
572 pop_only);
573 if (head < 0) {
3d331ad7
AV
574 if (!seen_free) {
575 chunk->first_free = i;
576 seen_free = true;
577 }
723ad1d9 578 max_contig = max(this_size, max_contig);
fbf59bc9
TH
579 continue;
580 }
581
582 /*
583 * If head is small or the previous block is free,
584 * merge'em. Note that 'small' is defined as smaller
585 * than sizeof(int), which is very small but isn't too
586 * uncommon for percpu allocations.
587 */
723ad1d9 588 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 589 *p = off += head;
723ad1d9 590 if (p[-1] & 1)
fbf59bc9 591 chunk->free_size -= head;
21ddfd38
JZ
592 else
593 max_contig = max(*p - p[-1], max_contig);
723ad1d9 594 this_size -= head;
fbf59bc9
TH
595 head = 0;
596 }
597
598 /* if tail is small, just keep it around */
723ad1d9
AV
599 tail = this_size - head - size;
600 if (tail < sizeof(int)) {
fbf59bc9 601 tail = 0;
723ad1d9
AV
602 size = this_size - head;
603 }
fbf59bc9
TH
604
605 /* split if warranted */
606 if (head || tail) {
706c16f2
AV
607 int nr_extra = !!head + !!tail;
608
609 /* insert new subblocks */
723ad1d9 610 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
611 sizeof(chunk->map[0]) * (chunk->map_used - i));
612 chunk->map_used += nr_extra;
613
fbf59bc9 614 if (head) {
3d331ad7
AV
615 if (!seen_free) {
616 chunk->first_free = i;
617 seen_free = true;
618 }
723ad1d9
AV
619 *++p = off += head;
620 ++i;
706c16f2
AV
621 max_contig = max(head, max_contig);
622 }
623 if (tail) {
723ad1d9 624 p[1] = off + size;
706c16f2 625 max_contig = max(tail, max_contig);
fbf59bc9 626 }
fbf59bc9
TH
627 }
628
3d331ad7
AV
629 if (!seen_free)
630 chunk->first_free = i + 1;
631
fbf59bc9 632 /* update hint and mark allocated */
723ad1d9 633 if (i + 1 == chunk->map_used)
fbf59bc9
TH
634 chunk->contig_hint = max_contig; /* fully scanned */
635 else
636 chunk->contig_hint = max(chunk->contig_hint,
637 max_contig);
638
723ad1d9
AV
639 chunk->free_size -= size;
640 *p |= 1;
fbf59bc9 641
b539b87f 642 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
643 pcpu_chunk_relocate(chunk, oslot);
644 return off;
645 }
646
647 chunk->contig_hint = max_contig; /* fully scanned */
648 pcpu_chunk_relocate(chunk, oslot);
649
9f7dcf22
TH
650 /* tell the upper layer that this chunk has no matching area */
651 return -1;
fbf59bc9
TH
652}
653
654/**
655 * pcpu_free_area - free area to a pcpu_chunk
656 * @chunk: chunk of interest
657 * @freeme: offset of area to free
b539b87f 658 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
659 *
660 * Free area starting from @freeme to @chunk. Note that this function
661 * only modifies the allocation map. It doesn't depopulate or unmap
662 * the area.
ccea34b5
TH
663 *
664 * CONTEXT:
665 * pcpu_lock.
fbf59bc9 666 */
b539b87f
TH
667static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
668 int *occ_pages_p)
fbf59bc9
TH
669{
670 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
671 int off = 0;
672 unsigned i, j;
673 int to_free = 0;
674 int *p;
675
5ccd30e4 676 lockdep_assert_held(&pcpu_lock);
30a5b536 677 pcpu_stats_area_dealloc(chunk);
5ccd30e4 678
723ad1d9
AV
679 freeme |= 1; /* we are searching for <given offset, in use> pair */
680
681 i = 0;
682 j = chunk->map_used;
683 while (i != j) {
684 unsigned k = (i + j) / 2;
685 off = chunk->map[k];
686 if (off < freeme)
687 i = k + 1;
688 else if (off > freeme)
689 j = k;
690 else
691 i = j = k;
692 }
fbf59bc9 693 BUG_ON(off != freeme);
fbf59bc9 694
3d331ad7
AV
695 if (i < chunk->first_free)
696 chunk->first_free = i;
697
723ad1d9
AV
698 p = chunk->map + i;
699 *p = off &= ~1;
700 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 701
b539b87f
TH
702 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
703
723ad1d9
AV
704 /* merge with next? */
705 if (!(p[1] & 1))
706 to_free++;
fbf59bc9 707 /* merge with previous? */
723ad1d9
AV
708 if (i > 0 && !(p[-1] & 1)) {
709 to_free++;
fbf59bc9 710 i--;
723ad1d9 711 p--;
fbf59bc9 712 }
723ad1d9
AV
713 if (to_free) {
714 chunk->map_used -= to_free;
715 memmove(p + 1, p + 1 + to_free,
716 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
717 }
718
723ad1d9 719 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
720 pcpu_chunk_relocate(chunk, oslot);
721}
722
c0ebfdc3 723static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
10edf5b0
DZF
724 int map_size,
725 int *map,
726 int init_map_size)
727{
728 struct pcpu_chunk *chunk;
c0ebfdc3
DZF
729 unsigned long aligned_addr;
730 int start_offset, region_size;
731
732 /* region calculations */
733 aligned_addr = tmp_addr & PAGE_MASK;
734
735 start_offset = tmp_addr - aligned_addr;
6b9d7c8e
DZF
736
737 region_size = PFN_ALIGN(start_offset + map_size);
10edf5b0 738
c0ebfdc3 739 /* allocate chunk */
8ab16c43
DZF
740 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
741 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
742 0);
c0ebfdc3 743
10edf5b0
DZF
744 INIT_LIST_HEAD(&chunk->list);
745 INIT_LIST_HEAD(&chunk->map_extend_list);
c0ebfdc3
DZF
746
747 chunk->base_addr = (void *)aligned_addr;
10edf5b0 748 chunk->start_offset = start_offset;
6b9d7c8e 749 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 750
8ab16c43 751 chunk->nr_pages = region_size >> PAGE_SHIFT;
c0ebfdc3 752
10edf5b0
DZF
753 chunk->map = map;
754 chunk->map_alloc = init_map_size;
755
756 /* manage populated page bitmap */
757 chunk->immutable = true;
8ab16c43
DZF
758 bitmap_fill(chunk->populated, chunk->nr_pages);
759 chunk->nr_populated = chunk->nr_pages;
0cecf50c 760 chunk->nr_empty_pop_pages = chunk->nr_pages;
10edf5b0
DZF
761
762 chunk->contig_hint = chunk->free_size = map_size;
c0ebfdc3
DZF
763
764 if (chunk->start_offset) {
765 /* hide the beginning of the bitmap */
0cecf50c
DZF
766 chunk->nr_empty_pop_pages--;
767
c0ebfdc3
DZF
768 chunk->map[0] = 1;
769 chunk->map[1] = chunk->start_offset;
770 chunk->map_used = 1;
771 }
772
773 /* set chunk's free region */
774 chunk->map[++chunk->map_used] =
775 (chunk->start_offset + chunk->free_size) | 1;
10edf5b0 776
6b9d7c8e
DZF
777 if (chunk->end_offset) {
778 /* hide the end of the bitmap */
0cecf50c
DZF
779 chunk->nr_empty_pop_pages--;
780
6b9d7c8e
DZF
781 chunk->map[++chunk->map_used] = region_size | 1;
782 }
783
10edf5b0
DZF
784 return chunk;
785}
786
6081089f
TH
787static struct pcpu_chunk *pcpu_alloc_chunk(void)
788{
789 struct pcpu_chunk *chunk;
790
90459ce0 791 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
792 if (!chunk)
793 return NULL;
794
90459ce0
BL
795 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
796 sizeof(chunk->map[0]));
6081089f 797 if (!chunk->map) {
1d5cfdb0 798 pcpu_mem_free(chunk);
6081089f
TH
799 return NULL;
800 }
801
802 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
803 chunk->map[0] = 0;
804 chunk->map[1] = pcpu_unit_size | 1;
805 chunk->map_used = 1;
6081089f
TH
806
807 INIT_LIST_HEAD(&chunk->list);
4f996e23 808 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
809 chunk->free_size = pcpu_unit_size;
810 chunk->contig_hint = pcpu_unit_size;
811
c0ebfdc3
DZF
812 chunk->nr_pages = pcpu_unit_pages;
813
6081089f
TH
814 return chunk;
815}
816
817static void pcpu_free_chunk(struct pcpu_chunk *chunk)
818{
819 if (!chunk)
820 return;
1d5cfdb0
TH
821 pcpu_mem_free(chunk->map);
822 pcpu_mem_free(chunk);
6081089f
TH
823}
824
b539b87f
TH
825/**
826 * pcpu_chunk_populated - post-population bookkeeping
827 * @chunk: pcpu_chunk which got populated
828 * @page_start: the start page
829 * @page_end: the end page
830 *
831 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
832 * the bookkeeping information accordingly. Must be called after each
833 * successful population.
834 */
835static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
836 int page_start, int page_end)
837{
838 int nr = page_end - page_start;
839
840 lockdep_assert_held(&pcpu_lock);
841
842 bitmap_set(chunk->populated, page_start, nr);
843 chunk->nr_populated += nr;
0cecf50c 844 chunk->nr_empty_pop_pages += nr;
b539b87f
TH
845 pcpu_nr_empty_pop_pages += nr;
846}
847
848/**
849 * pcpu_chunk_depopulated - post-depopulation bookkeeping
850 * @chunk: pcpu_chunk which got depopulated
851 * @page_start: the start page
852 * @page_end: the end page
853 *
854 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
855 * Update the bookkeeping information accordingly. Must be called after
856 * each successful depopulation.
857 */
858static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
859 int page_start, int page_end)
860{
861 int nr = page_end - page_start;
862
863 lockdep_assert_held(&pcpu_lock);
864
865 bitmap_clear(chunk->populated, page_start, nr);
866 chunk->nr_populated -= nr;
0cecf50c 867 chunk->nr_empty_pop_pages -= nr;
b539b87f
TH
868 pcpu_nr_empty_pop_pages -= nr;
869}
870
9f645532
TH
871/*
872 * Chunk management implementation.
873 *
874 * To allow different implementations, chunk alloc/free and
875 * [de]population are implemented in a separate file which is pulled
876 * into this file and compiled together. The following functions
877 * should be implemented.
878 *
879 * pcpu_populate_chunk - populate the specified range of a chunk
880 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
881 * pcpu_create_chunk - create a new chunk
882 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
883 * pcpu_addr_to_page - translate address to physical address
884 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 885 */
9f645532
TH
886static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
887static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
888static struct pcpu_chunk *pcpu_create_chunk(void);
889static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
890static struct page *pcpu_addr_to_page(void *addr);
891static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 892
b0c9778b
TH
893#ifdef CONFIG_NEED_PER_CPU_KM
894#include "percpu-km.c"
895#else
9f645532 896#include "percpu-vm.c"
b0c9778b 897#endif
fbf59bc9 898
88999a89
TH
899/**
900 * pcpu_chunk_addr_search - determine chunk containing specified address
901 * @addr: address for which the chunk needs to be determined.
902 *
c0ebfdc3
DZF
903 * This is an internal function that handles all but static allocations.
904 * Static percpu address values should never be passed into the allocator.
905 *
88999a89
TH
906 * RETURNS:
907 * The address of the found chunk.
908 */
909static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
910{
c0ebfdc3 911 /* is it in the dynamic region (first chunk)? */
560f2c23 912 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 913 return pcpu_first_chunk;
c0ebfdc3
DZF
914
915 /* is it in the reserved region? */
560f2c23 916 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 917 return pcpu_reserved_chunk;
88999a89
TH
918
919 /*
920 * The address is relative to unit0 which might be unused and
921 * thus unmapped. Offset the address to the unit space of the
922 * current processor before looking it up in the vmalloc
923 * space. Note that any possible cpu id can be used here, so
924 * there's no need to worry about preemption or cpu hotplug.
925 */
926 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 927 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
928}
929
fbf59bc9 930/**
edcb4639 931 * pcpu_alloc - the percpu allocator
cae3aeb8 932 * @size: size of area to allocate in bytes
fbf59bc9 933 * @align: alignment of area (max PAGE_SIZE)
edcb4639 934 * @reserved: allocate from the reserved chunk if available
5835d96e 935 * @gfp: allocation flags
fbf59bc9 936 *
5835d96e
TH
937 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
938 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
939 *
940 * RETURNS:
941 * Percpu pointer to the allocated area on success, NULL on failure.
942 */
5835d96e
TH
943static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
944 gfp_t gfp)
fbf59bc9 945{
f2badb0c 946 static int warn_limit = 10;
fbf59bc9 947 struct pcpu_chunk *chunk;
f2badb0c 948 const char *err;
6ae833c7 949 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 950 int occ_pages = 0;
b38d08f3 951 int slot, off, new_alloc, cpu, ret;
403a91b1 952 unsigned long flags;
f528f0b8 953 void __percpu *ptr;
fbf59bc9 954
723ad1d9
AV
955 /*
956 * We want the lowest bit of offset available for in-use/free
2f69fa82 957 * indicator, so force >= 16bit alignment and make size even.
723ad1d9 958 */
d2f3c384
DZF
959 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
960 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 961
d2f3c384 962 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
2f69fa82 963
3ca45a46 964 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
965 !is_power_of_2(align))) {
756a025f
JP
966 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
967 size, align);
fbf59bc9
TH
968 return NULL;
969 }
970
6710e594
TH
971 if (!is_atomic)
972 mutex_lock(&pcpu_alloc_mutex);
973
403a91b1 974 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 975
edcb4639
TH
976 /* serve reserved allocations from the reserved chunk if available */
977 if (reserved && pcpu_reserved_chunk) {
978 chunk = pcpu_reserved_chunk;
833af842
TH
979
980 if (size > chunk->contig_hint) {
981 err = "alloc from reserved chunk failed";
ccea34b5 982 goto fail_unlock;
f2badb0c 983 }
833af842 984
9c824b6a 985 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 986 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
987 if (is_atomic ||
988 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 989 err = "failed to extend area map of reserved chunk";
b38d08f3 990 goto fail;
833af842
TH
991 }
992 spin_lock_irqsave(&pcpu_lock, flags);
993 }
994
b539b87f
TH
995 off = pcpu_alloc_area(chunk, size, align, is_atomic,
996 &occ_pages);
edcb4639
TH
997 if (off >= 0)
998 goto area_found;
833af842 999
f2badb0c 1000 err = "alloc from reserved chunk failed";
ccea34b5 1001 goto fail_unlock;
edcb4639
TH
1002 }
1003
ccea34b5 1004restart:
edcb4639 1005 /* search through normal chunks */
fbf59bc9
TH
1006 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1007 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1008 if (size > chunk->contig_hint)
1009 continue;
ccea34b5 1010
9c824b6a 1011 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 1012 if (new_alloc) {
5835d96e
TH
1013 if (is_atomic)
1014 continue;
833af842
TH
1015 spin_unlock_irqrestore(&pcpu_lock, flags);
1016 if (pcpu_extend_area_map(chunk,
1017 new_alloc) < 0) {
1018 err = "failed to extend area map";
b38d08f3 1019 goto fail;
833af842
TH
1020 }
1021 spin_lock_irqsave(&pcpu_lock, flags);
1022 /*
1023 * pcpu_lock has been dropped, need to
1024 * restart cpu_slot list walking.
1025 */
1026 goto restart;
ccea34b5
TH
1027 }
1028
b539b87f
TH
1029 off = pcpu_alloc_area(chunk, size, align, is_atomic,
1030 &occ_pages);
fbf59bc9
TH
1031 if (off >= 0)
1032 goto area_found;
fbf59bc9
TH
1033 }
1034 }
1035
403a91b1 1036 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1037
b38d08f3
TH
1038 /*
1039 * No space left. Create a new chunk. We don't want multiple
1040 * tasks to create chunks simultaneously. Serialize and create iff
1041 * there's still no empty chunk after grabbing the mutex.
1042 */
11df02bf
DZ
1043 if (is_atomic) {
1044 err = "atomic alloc failed, no space left";
5835d96e 1045 goto fail;
11df02bf 1046 }
5835d96e 1047
b38d08f3
TH
1048 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1049 chunk = pcpu_create_chunk();
1050 if (!chunk) {
1051 err = "failed to allocate new chunk";
1052 goto fail;
1053 }
1054
1055 spin_lock_irqsave(&pcpu_lock, flags);
1056 pcpu_chunk_relocate(chunk, -1);
1057 } else {
1058 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1059 }
ccea34b5 1060
ccea34b5 1061 goto restart;
fbf59bc9
TH
1062
1063area_found:
30a5b536 1064 pcpu_stats_area_alloc(chunk, size);
403a91b1 1065 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1066
dca49645 1067 /* populate if not all pages are already there */
5835d96e 1068 if (!is_atomic) {
e04d3208 1069 int page_start, page_end, rs, re;
dca49645 1070
e04d3208
TH
1071 page_start = PFN_DOWN(off);
1072 page_end = PFN_UP(off + size);
b38d08f3 1073
e04d3208
TH
1074 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1075 WARN_ON(chunk->immutable);
1076
1077 ret = pcpu_populate_chunk(chunk, rs, re);
1078
1079 spin_lock_irqsave(&pcpu_lock, flags);
1080 if (ret) {
b539b87f 1081 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1082 err = "failed to populate";
1083 goto fail_unlock;
1084 }
b539b87f 1085 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1086 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1087 }
fbf59bc9 1088
e04d3208
TH
1089 mutex_unlock(&pcpu_alloc_mutex);
1090 }
ccea34b5 1091
320661b0
TE
1092 if (chunk != pcpu_reserved_chunk) {
1093 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1094 pcpu_nr_empty_pop_pages -= occ_pages;
320661b0
TE
1095 spin_unlock_irqrestore(&pcpu_lock, flags);
1096 }
b539b87f 1097
1a4d7607
TH
1098 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1099 pcpu_schedule_balance_work();
1100
dca49645
TH
1101 /* clear the areas and return address relative to base address */
1102 for_each_possible_cpu(cpu)
1103 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1104
f528f0b8 1105 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1106 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1107
1108 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1109 chunk->base_addr, off, ptr);
1110
f528f0b8 1111 return ptr;
ccea34b5
TH
1112
1113fail_unlock:
403a91b1 1114 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1115fail:
df95e795
DZ
1116 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1117
5835d96e 1118 if (!is_atomic && warn_limit) {
870d4b12 1119 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1120 size, align, is_atomic, err);
f2badb0c
TH
1121 dump_stack();
1122 if (!--warn_limit)
870d4b12 1123 pr_info("limit reached, disable warning\n");
f2badb0c 1124 }
1a4d7607
TH
1125 if (is_atomic) {
1126 /* see the flag handling in pcpu_blance_workfn() */
1127 pcpu_atomic_alloc_failed = true;
1128 pcpu_schedule_balance_work();
6710e594
TH
1129 } else {
1130 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1131 }
ccea34b5 1132 return NULL;
fbf59bc9 1133}
edcb4639
TH
1134
1135/**
5835d96e 1136 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1137 * @size: size of area to allocate in bytes
1138 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1139 * @gfp: allocation flags
edcb4639 1140 *
5835d96e
TH
1141 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1142 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1143 * be called from any context but is a lot more likely to fail.
ccea34b5 1144 *
edcb4639
TH
1145 * RETURNS:
1146 * Percpu pointer to the allocated area on success, NULL on failure.
1147 */
5835d96e
TH
1148void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1149{
1150 return pcpu_alloc(size, align, false, gfp);
1151}
1152EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1153
1154/**
1155 * __alloc_percpu - allocate dynamic percpu area
1156 * @size: size of area to allocate in bytes
1157 * @align: alignment of area (max PAGE_SIZE)
1158 *
1159 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1160 */
43cf38eb 1161void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1162{
5835d96e 1163 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1164}
fbf59bc9
TH
1165EXPORT_SYMBOL_GPL(__alloc_percpu);
1166
edcb4639
TH
1167/**
1168 * __alloc_reserved_percpu - allocate reserved percpu area
1169 * @size: size of area to allocate in bytes
1170 * @align: alignment of area (max PAGE_SIZE)
1171 *
9329ba97
TH
1172 * Allocate zero-filled percpu area of @size bytes aligned at @align
1173 * from reserved percpu area if arch has set it up; otherwise,
1174 * allocation is served from the same dynamic area. Might sleep.
1175 * Might trigger writeouts.
edcb4639 1176 *
ccea34b5
TH
1177 * CONTEXT:
1178 * Does GFP_KERNEL allocation.
1179 *
edcb4639
TH
1180 * RETURNS:
1181 * Percpu pointer to the allocated area on success, NULL on failure.
1182 */
43cf38eb 1183void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1184{
5835d96e 1185 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1186}
1187
a56dbddf 1188/**
1a4d7607 1189 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1190 * @work: unused
1191 *
1192 * Reclaim all fully free chunks except for the first one.
1193 */
fe6bd8c3 1194static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1195{
fe6bd8c3
TH
1196 LIST_HEAD(to_free);
1197 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1198 struct pcpu_chunk *chunk, *next;
1a4d7607 1199 int slot, nr_to_pop, ret;
a56dbddf 1200
1a4d7607
TH
1201 /*
1202 * There's no reason to keep around multiple unused chunks and VM
1203 * areas can be scarce. Destroy all free chunks except for one.
1204 */
ccea34b5
TH
1205 mutex_lock(&pcpu_alloc_mutex);
1206 spin_lock_irq(&pcpu_lock);
a56dbddf 1207
fe6bd8c3 1208 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1209 WARN_ON(chunk->immutable);
1210
1211 /* spare the first one */
fe6bd8c3 1212 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1213 continue;
1214
4f996e23 1215 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1216 list_move(&chunk->list, &to_free);
a56dbddf
TH
1217 }
1218
ccea34b5 1219 spin_unlock_irq(&pcpu_lock);
a56dbddf 1220
fe6bd8c3 1221 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1222 int rs, re;
dca49645 1223
8ab16c43 1224 pcpu_for_each_pop_region(chunk, rs, re, 0, chunk->nr_pages) {
a93ace48 1225 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1226 spin_lock_irq(&pcpu_lock);
1227 pcpu_chunk_depopulated(chunk, rs, re);
1228 spin_unlock_irq(&pcpu_lock);
a93ace48 1229 }
6081089f 1230 pcpu_destroy_chunk(chunk);
a56dbddf 1231 }
971f3918 1232
4f996e23
TH
1233 /* service chunks which requested async area map extension */
1234 do {
1235 int new_alloc = 0;
1236
1237 spin_lock_irq(&pcpu_lock);
1238
1239 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1240 struct pcpu_chunk, map_extend_list);
1241 if (chunk) {
1242 list_del_init(&chunk->map_extend_list);
1243 new_alloc = pcpu_need_to_extend(chunk, false);
1244 }
1245
1246 spin_unlock_irq(&pcpu_lock);
1247
1248 if (new_alloc)
1249 pcpu_extend_area_map(chunk, new_alloc);
1250 } while (chunk);
1251
1a4d7607
TH
1252 /*
1253 * Ensure there are certain number of free populated pages for
1254 * atomic allocs. Fill up from the most packed so that atomic
1255 * allocs don't increase fragmentation. If atomic allocation
1256 * failed previously, always populate the maximum amount. This
1257 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1258 * failing indefinitely; however, large atomic allocs are not
1259 * something we support properly and can be highly unreliable and
1260 * inefficient.
1261 */
1262retry_pop:
1263 if (pcpu_atomic_alloc_failed) {
1264 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1265 /* best effort anyway, don't worry about synchronization */
1266 pcpu_atomic_alloc_failed = false;
1267 } else {
1268 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1269 pcpu_nr_empty_pop_pages,
1270 0, PCPU_EMPTY_POP_PAGES_HIGH);
1271 }
1272
1273 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1274 int nr_unpop = 0, rs, re;
1275
1276 if (!nr_to_pop)
1277 break;
1278
1279 spin_lock_irq(&pcpu_lock);
1280 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1281 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1282 if (nr_unpop)
1283 break;
1284 }
1285 spin_unlock_irq(&pcpu_lock);
1286
1287 if (!nr_unpop)
1288 continue;
1289
1290 /* @chunk can't go away while pcpu_alloc_mutex is held */
8ab16c43 1291 pcpu_for_each_unpop_region(chunk, rs, re, 0, chunk->nr_pages) {
1a4d7607
TH
1292 int nr = min(re - rs, nr_to_pop);
1293
1294 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1295 if (!ret) {
1296 nr_to_pop -= nr;
1297 spin_lock_irq(&pcpu_lock);
1298 pcpu_chunk_populated(chunk, rs, rs + nr);
1299 spin_unlock_irq(&pcpu_lock);
1300 } else {
1301 nr_to_pop = 0;
1302 }
1303
1304 if (!nr_to_pop)
1305 break;
1306 }
1307 }
1308
1309 if (nr_to_pop) {
1310 /* ran out of chunks to populate, create a new one and retry */
1311 chunk = pcpu_create_chunk();
1312 if (chunk) {
1313 spin_lock_irq(&pcpu_lock);
1314 pcpu_chunk_relocate(chunk, -1);
1315 spin_unlock_irq(&pcpu_lock);
1316 goto retry_pop;
1317 }
1318 }
1319
971f3918 1320 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1321}
1322
1323/**
1324 * free_percpu - free percpu area
1325 * @ptr: pointer to area to free
1326 *
ccea34b5
TH
1327 * Free percpu area @ptr.
1328 *
1329 * CONTEXT:
1330 * Can be called from atomic context.
fbf59bc9 1331 */
43cf38eb 1332void free_percpu(void __percpu *ptr)
fbf59bc9 1333{
129182e5 1334 void *addr;
fbf59bc9 1335 struct pcpu_chunk *chunk;
ccea34b5 1336 unsigned long flags;
b539b87f 1337 int off, occ_pages;
fbf59bc9
TH
1338
1339 if (!ptr)
1340 return;
1341
f528f0b8
CM
1342 kmemleak_free_percpu(ptr);
1343
129182e5
AM
1344 addr = __pcpu_ptr_to_addr(ptr);
1345
ccea34b5 1346 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1347
1348 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1349 off = addr - chunk->base_addr;
fbf59bc9 1350
b539b87f
TH
1351 pcpu_free_area(chunk, off, &occ_pages);
1352
1353 if (chunk != pcpu_reserved_chunk)
1354 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1355
a56dbddf 1356 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1357 if (chunk->free_size == pcpu_unit_size) {
1358 struct pcpu_chunk *pos;
1359
a56dbddf 1360 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1361 if (pos != chunk) {
1a4d7607 1362 pcpu_schedule_balance_work();
fbf59bc9
TH
1363 break;
1364 }
1365 }
1366
df95e795
DZ
1367 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1368
ccea34b5 1369 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1370}
1371EXPORT_SYMBOL_GPL(free_percpu);
1372
383776fa 1373bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1374{
bbddff05 1375#ifdef CONFIG_SMP
10fad5e4
TH
1376 const size_t static_size = __per_cpu_end - __per_cpu_start;
1377 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1378 unsigned int cpu;
1379
1380 for_each_possible_cpu(cpu) {
1381 void *start = per_cpu_ptr(base, cpu);
383776fa 1382 void *va = (void *)addr;
10fad5e4 1383
383776fa 1384 if (va >= start && va < start + static_size) {
8ce371f9 1385 if (can_addr) {
383776fa 1386 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1387 *can_addr += (unsigned long)
1388 per_cpu_ptr(base, get_boot_cpu_id());
1389 }
10fad5e4 1390 return true;
383776fa
TG
1391 }
1392 }
bbddff05
TH
1393#endif
1394 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1395 return false;
1396}
1397
383776fa
TG
1398/**
1399 * is_kernel_percpu_address - test whether address is from static percpu area
1400 * @addr: address to test
1401 *
1402 * Test whether @addr belongs to in-kernel static percpu area. Module
1403 * static percpu areas are not considered. For those, use
1404 * is_module_percpu_address().
1405 *
1406 * RETURNS:
1407 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1408 */
1409bool is_kernel_percpu_address(unsigned long addr)
1410{
1411 return __is_kernel_percpu_address(addr, NULL);
1412}
1413
3b034b0d
VG
1414/**
1415 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1416 * @addr: the address to be converted to physical address
1417 *
1418 * Given @addr which is dereferenceable address obtained via one of
1419 * percpu access macros, this function translates it into its physical
1420 * address. The caller is responsible for ensuring @addr stays valid
1421 * until this function finishes.
1422 *
67589c71
DY
1423 * percpu allocator has special setup for the first chunk, which currently
1424 * supports either embedding in linear address space or vmalloc mapping,
1425 * and, from the second one, the backing allocator (currently either vm or
1426 * km) provides translation.
1427 *
bffc4375 1428 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1429 * first chunk. But the current code reflects better how percpu allocator
1430 * actually works, and the verification can discover both bugs in percpu
1431 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1432 * code.
1433 *
3b034b0d
VG
1434 * RETURNS:
1435 * The physical address for @addr.
1436 */
1437phys_addr_t per_cpu_ptr_to_phys(void *addr)
1438{
9983b6f0
TH
1439 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1440 bool in_first_chunk = false;
a855b84c 1441 unsigned long first_low, first_high;
9983b6f0
TH
1442 unsigned int cpu;
1443
1444 /*
a855b84c 1445 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1446 * necessary but will speed up lookups of addresses which
1447 * aren't in the first chunk.
c0ebfdc3
DZF
1448 *
1449 * The address check is against full chunk sizes. pcpu_base_addr
1450 * points to the beginning of the first chunk including the
1451 * static region. Assumes good intent as the first chunk may
1452 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1453 */
c0ebfdc3
DZF
1454 first_low = (unsigned long)pcpu_base_addr +
1455 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1456 first_high = (unsigned long)pcpu_base_addr +
1457 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1458 if ((unsigned long)addr >= first_low &&
1459 (unsigned long)addr < first_high) {
9983b6f0
TH
1460 for_each_possible_cpu(cpu) {
1461 void *start = per_cpu_ptr(base, cpu);
1462
1463 if (addr >= start && addr < start + pcpu_unit_size) {
1464 in_first_chunk = true;
1465 break;
1466 }
1467 }
1468 }
1469
1470 if (in_first_chunk) {
eac522ef 1471 if (!is_vmalloc_addr(addr))
020ec653
TH
1472 return __pa(addr);
1473 else
9f57bd4d
ES
1474 return page_to_phys(vmalloc_to_page(addr)) +
1475 offset_in_page(addr);
020ec653 1476 } else
9f57bd4d
ES
1477 return page_to_phys(pcpu_addr_to_page(addr)) +
1478 offset_in_page(addr);
3b034b0d
VG
1479}
1480
fbf59bc9 1481/**
fd1e8a1f
TH
1482 * pcpu_alloc_alloc_info - allocate percpu allocation info
1483 * @nr_groups: the number of groups
1484 * @nr_units: the number of units
1485 *
1486 * Allocate ai which is large enough for @nr_groups groups containing
1487 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1488 * cpu_map array which is long enough for @nr_units and filled with
1489 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1490 * pointer of other groups.
1491 *
1492 * RETURNS:
1493 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1494 * failure.
1495 */
1496struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1497 int nr_units)
1498{
1499 struct pcpu_alloc_info *ai;
1500 size_t base_size, ai_size;
1501 void *ptr;
1502 int unit;
1503
1504 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1505 __alignof__(ai->groups[0].cpu_map[0]));
1506 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1507
999c17e3 1508 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1509 if (!ptr)
1510 return NULL;
1511 ai = ptr;
1512 ptr += base_size;
1513
1514 ai->groups[0].cpu_map = ptr;
1515
1516 for (unit = 0; unit < nr_units; unit++)
1517 ai->groups[0].cpu_map[unit] = NR_CPUS;
1518
1519 ai->nr_groups = nr_groups;
1520 ai->__ai_size = PFN_ALIGN(ai_size);
1521
1522 return ai;
1523}
1524
1525/**
1526 * pcpu_free_alloc_info - free percpu allocation info
1527 * @ai: pcpu_alloc_info to free
1528 *
1529 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1530 */
1531void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1532{
999c17e3 1533 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1534}
1535
fd1e8a1f
TH
1536/**
1537 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1538 * @lvl: loglevel
1539 * @ai: allocation info to dump
1540 *
1541 * Print out information about @ai using loglevel @lvl.
1542 */
1543static void pcpu_dump_alloc_info(const char *lvl,
1544 const struct pcpu_alloc_info *ai)
033e48fb 1545{
fd1e8a1f 1546 int group_width = 1, cpu_width = 1, width;
033e48fb 1547 char empty_str[] = "--------";
fd1e8a1f
TH
1548 int alloc = 0, alloc_end = 0;
1549 int group, v;
1550 int upa, apl; /* units per alloc, allocs per line */
1551
1552 v = ai->nr_groups;
1553 while (v /= 10)
1554 group_width++;
033e48fb 1555
fd1e8a1f 1556 v = num_possible_cpus();
033e48fb 1557 while (v /= 10)
fd1e8a1f
TH
1558 cpu_width++;
1559 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1560
fd1e8a1f
TH
1561 upa = ai->alloc_size / ai->unit_size;
1562 width = upa * (cpu_width + 1) + group_width + 3;
1563 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1564
fd1e8a1f
TH
1565 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1566 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1567 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1568
fd1e8a1f
TH
1569 for (group = 0; group < ai->nr_groups; group++) {
1570 const struct pcpu_group_info *gi = &ai->groups[group];
1571 int unit = 0, unit_end = 0;
1572
1573 BUG_ON(gi->nr_units % upa);
1574 for (alloc_end += gi->nr_units / upa;
1575 alloc < alloc_end; alloc++) {
1576 if (!(alloc % apl)) {
1170532b 1577 pr_cont("\n");
fd1e8a1f
TH
1578 printk("%spcpu-alloc: ", lvl);
1579 }
1170532b 1580 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1581
1582 for (unit_end += upa; unit < unit_end; unit++)
1583 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1584 pr_cont("%0*d ",
1585 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1586 else
1170532b 1587 pr_cont("%s ", empty_str);
033e48fb 1588 }
033e48fb 1589 }
1170532b 1590 pr_cont("\n");
033e48fb 1591}
033e48fb 1592
fbf59bc9 1593/**
8d408b4b 1594 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1595 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1596 * @base_addr: mapped address
8d408b4b
TH
1597 *
1598 * Initialize the first percpu chunk which contains the kernel static
1599 * perpcu area. This function is to be called from arch percpu area
38a6be52 1600 * setup path.
8d408b4b 1601 *
fd1e8a1f
TH
1602 * @ai contains all information necessary to initialize the first
1603 * chunk and prime the dynamic percpu allocator.
1604 *
1605 * @ai->static_size is the size of static percpu area.
1606 *
1607 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1608 * reserve after the static area in the first chunk. This reserves
1609 * the first chunk such that it's available only through reserved
1610 * percpu allocation. This is primarily used to serve module percpu
1611 * static areas on architectures where the addressing model has
1612 * limited offset range for symbol relocations to guarantee module
1613 * percpu symbols fall inside the relocatable range.
1614 *
fd1e8a1f
TH
1615 * @ai->dyn_size determines the number of bytes available for dynamic
1616 * allocation in the first chunk. The area between @ai->static_size +
1617 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1618 *
fd1e8a1f
TH
1619 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1620 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1621 * @ai->dyn_size.
8d408b4b 1622 *
fd1e8a1f
TH
1623 * @ai->atom_size is the allocation atom size and used as alignment
1624 * for vm areas.
8d408b4b 1625 *
fd1e8a1f
TH
1626 * @ai->alloc_size is the allocation size and always multiple of
1627 * @ai->atom_size. This is larger than @ai->atom_size if
1628 * @ai->unit_size is larger than @ai->atom_size.
1629 *
1630 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1631 * percpu areas. Units which should be colocated are put into the
1632 * same group. Dynamic VM areas will be allocated according to these
1633 * groupings. If @ai->nr_groups is zero, a single group containing
1634 * all units is assumed.
8d408b4b 1635 *
38a6be52
TH
1636 * The caller should have mapped the first chunk at @base_addr and
1637 * copied static data to each unit.
fbf59bc9 1638 *
c0ebfdc3
DZF
1639 * The first chunk will always contain a static and a dynamic region.
1640 * However, the static region is not managed by any chunk. If the first
1641 * chunk also contains a reserved region, it is served by two chunks -
1642 * one for the reserved region and one for the dynamic region. They
1643 * share the same vm, but use offset regions in the area allocation map.
1644 * The chunk serving the dynamic region is circulated in the chunk slots
1645 * and available for dynamic allocation like any other chunk.
edcb4639 1646 *
fbf59bc9 1647 * RETURNS:
fb435d52 1648 * 0 on success, -errno on failure.
fbf59bc9 1649 */
fb435d52
TH
1650int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1651 void *base_addr)
fbf59bc9 1652{
099a19d9
TH
1653 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1654 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
b9c39442 1655 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 1656 size_t static_size, dyn_size;
0c4169c3 1657 struct pcpu_chunk *chunk;
6563297c
TH
1658 unsigned long *group_offsets;
1659 size_t *group_sizes;
fb435d52 1660 unsigned long *unit_off;
fbf59bc9 1661 unsigned int cpu;
fd1e8a1f
TH
1662 int *unit_map;
1663 int group, unit, i;
c0ebfdc3
DZF
1664 int map_size;
1665 unsigned long tmp_addr;
fbf59bc9 1666
635b75fc
TH
1667#define PCPU_SETUP_BUG_ON(cond) do { \
1668 if (unlikely(cond)) { \
870d4b12
JP
1669 pr_emerg("failed to initialize, %s\n", #cond); \
1670 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1671 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1672 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1673 BUG(); \
1674 } \
1675} while (0)
1676
2f39e637 1677 /* sanity checks */
635b75fc 1678 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1679#ifdef CONFIG_SMP
635b75fc 1680 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1681 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1682#endif
635b75fc 1683 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1684 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1685 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1686 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1687 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1688 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1689 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 1690 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
9f645532 1691 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1692
6563297c 1693 /* process group information and build config tables accordingly */
999c17e3
SS
1694 group_offsets = memblock_virt_alloc(ai->nr_groups *
1695 sizeof(group_offsets[0]), 0);
1696 group_sizes = memblock_virt_alloc(ai->nr_groups *
1697 sizeof(group_sizes[0]), 0);
1698 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1699 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1700
fd1e8a1f 1701 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1702 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1703
1704 pcpu_low_unit_cpu = NR_CPUS;
1705 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1706
fd1e8a1f
TH
1707 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1708 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1709
6563297c
TH
1710 group_offsets[group] = gi->base_offset;
1711 group_sizes[group] = gi->nr_units * ai->unit_size;
1712
fd1e8a1f
TH
1713 for (i = 0; i < gi->nr_units; i++) {
1714 cpu = gi->cpu_map[i];
1715 if (cpu == NR_CPUS)
1716 continue;
8d408b4b 1717
9f295664 1718 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1719 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1720 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1721
fd1e8a1f 1722 unit_map[cpu] = unit + i;
fb435d52
TH
1723 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1724
a855b84c
TH
1725 /* determine low/high unit_cpu */
1726 if (pcpu_low_unit_cpu == NR_CPUS ||
1727 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1728 pcpu_low_unit_cpu = cpu;
1729 if (pcpu_high_unit_cpu == NR_CPUS ||
1730 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1731 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1732 }
2f39e637 1733 }
fd1e8a1f
TH
1734 pcpu_nr_units = unit;
1735
1736 for_each_possible_cpu(cpu)
635b75fc
TH
1737 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1738
1739 /* we're done parsing the input, undefine BUG macro and dump config */
1740#undef PCPU_SETUP_BUG_ON
bcbea798 1741 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1742
6563297c
TH
1743 pcpu_nr_groups = ai->nr_groups;
1744 pcpu_group_offsets = group_offsets;
1745 pcpu_group_sizes = group_sizes;
fd1e8a1f 1746 pcpu_unit_map = unit_map;
fb435d52 1747 pcpu_unit_offsets = unit_off;
2f39e637
TH
1748
1749 /* determine basic parameters */
fd1e8a1f 1750 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1751 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1752 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1753 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1754 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1755
30a5b536
DZ
1756 pcpu_stats_save_ai(ai);
1757
d9b55eeb
TH
1758 /*
1759 * Allocate chunk slots. The additional last slot is for
1760 * empty chunks.
1761 */
1762 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1763 pcpu_slot = memblock_virt_alloc(
1764 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1765 for (i = 0; i < pcpu_nr_slots; i++)
1766 INIT_LIST_HEAD(&pcpu_slot[i]);
1767
d2f3c384
DZF
1768 /*
1769 * The end of the static region needs to be aligned with the
1770 * minimum allocation size as this offsets the reserved and
1771 * dynamic region. The first chunk ends page aligned by
1772 * expanding the dynamic region, therefore the dynamic region
1773 * can be shrunk to compensate while still staying above the
1774 * configured sizes.
1775 */
1776 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
1777 dyn_size = ai->dyn_size - (static_size - ai->static_size);
1778
edcb4639 1779 /*
c0ebfdc3
DZF
1780 * Initialize first chunk.
1781 * If the reserved_size is non-zero, this initializes the reserved
1782 * chunk. If the reserved_size is zero, the reserved chunk is NULL
1783 * and the dynamic region is initialized here. The first chunk,
1784 * pcpu_first_chunk, will always point to the chunk that serves
1785 * the dynamic region.
edcb4639 1786 */
d2f3c384
DZF
1787 tmp_addr = (unsigned long)base_addr + static_size;
1788 map_size = ai->reserved_size ?: dyn_size;
c0ebfdc3 1789 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, smap,
0c4169c3 1790 ARRAY_SIZE(smap));
61ace7fa 1791
edcb4639 1792 /* init dynamic chunk if necessary */
b9c39442 1793 if (ai->reserved_size) {
0c4169c3 1794 pcpu_reserved_chunk = chunk;
b9c39442 1795
d2f3c384 1796 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 1797 ai->reserved_size;
d2f3c384 1798 map_size = dyn_size;
c0ebfdc3 1799 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, dmap,
0c4169c3 1800 ARRAY_SIZE(dmap));
edcb4639
TH
1801 }
1802
2441d15c 1803 /* link the first chunk in */
0c4169c3 1804 pcpu_first_chunk = chunk;
0cecf50c 1805 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 1806 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1807
30a5b536 1808 pcpu_stats_chunk_alloc();
df95e795 1809 trace_percpu_create_chunk(base_addr);
30a5b536 1810
fbf59bc9 1811 /* we're done */
bba174f5 1812 pcpu_base_addr = base_addr;
fb435d52 1813 return 0;
fbf59bc9 1814}
66c3a757 1815
bbddff05
TH
1816#ifdef CONFIG_SMP
1817
17f3609c 1818const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1819 [PCPU_FC_AUTO] = "auto",
1820 [PCPU_FC_EMBED] = "embed",
1821 [PCPU_FC_PAGE] = "page",
f58dc01b 1822};
66c3a757 1823
f58dc01b 1824enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1825
f58dc01b
TH
1826static int __init percpu_alloc_setup(char *str)
1827{
5479c78a
CG
1828 if (!str)
1829 return -EINVAL;
1830
f58dc01b
TH
1831 if (0)
1832 /* nada */;
1833#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1834 else if (!strcmp(str, "embed"))
1835 pcpu_chosen_fc = PCPU_FC_EMBED;
1836#endif
1837#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1838 else if (!strcmp(str, "page"))
1839 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1840#endif
1841 else
870d4b12 1842 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1843
f58dc01b 1844 return 0;
66c3a757 1845}
f58dc01b 1846early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1847
3c9a024f
TH
1848/*
1849 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1850 * Build it if needed by the arch config or the generic setup is going
1851 * to be used.
1852 */
08fc4580
TH
1853#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1854 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1855#define BUILD_EMBED_FIRST_CHUNK
1856#endif
1857
1858/* build pcpu_page_first_chunk() iff needed by the arch config */
1859#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1860#define BUILD_PAGE_FIRST_CHUNK
1861#endif
1862
1863/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1864#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1865/**
1866 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1867 * @reserved_size: the size of reserved percpu area in bytes
1868 * @dyn_size: minimum free size for dynamic allocation in bytes
1869 * @atom_size: allocation atom size
1870 * @cpu_distance_fn: callback to determine distance between cpus, optional
1871 *
1872 * This function determines grouping of units, their mappings to cpus
1873 * and other parameters considering needed percpu size, allocation
1874 * atom size and distances between CPUs.
1875 *
bffc4375 1876 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1877 * LOCAL_DISTANCE both ways are grouped together and share space for
1878 * units in the same group. The returned configuration is guaranteed
1879 * to have CPUs on different nodes on different groups and >=75% usage
1880 * of allocated virtual address space.
1881 *
1882 * RETURNS:
1883 * On success, pointer to the new allocation_info is returned. On
1884 * failure, ERR_PTR value is returned.
1885 */
1886static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1887 size_t reserved_size, size_t dyn_size,
1888 size_t atom_size,
1889 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1890{
1891 static int group_map[NR_CPUS] __initdata;
1892 static int group_cnt[NR_CPUS] __initdata;
1893 const size_t static_size = __per_cpu_end - __per_cpu_start;
1894 int nr_groups = 1, nr_units = 0;
1895 size_t size_sum, min_unit_size, alloc_size;
1896 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1897 int last_allocs, group, unit;
1898 unsigned int cpu, tcpu;
1899 struct pcpu_alloc_info *ai;
1900 unsigned int *cpu_map;
1901
1902 /* this function may be called multiple times */
1903 memset(group_map, 0, sizeof(group_map));
1904 memset(group_cnt, 0, sizeof(group_cnt));
1905
1906 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1907 size_sum = PFN_ALIGN(static_size + reserved_size +
1908 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1909 dyn_size = size_sum - static_size - reserved_size;
1910
1911 /*
1912 * Determine min_unit_size, alloc_size and max_upa such that
1913 * alloc_size is multiple of atom_size and is the smallest
25985edc 1914 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1915 * or larger than min_unit_size.
1916 */
1917 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1918
9c015162 1919 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1920 alloc_size = roundup(min_unit_size, atom_size);
1921 upa = alloc_size / min_unit_size;
f09f1243 1922 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1923 upa--;
1924 max_upa = upa;
1925
1926 /* group cpus according to their proximity */
1927 for_each_possible_cpu(cpu) {
1928 group = 0;
1929 next_group:
1930 for_each_possible_cpu(tcpu) {
1931 if (cpu == tcpu)
1932 break;
1933 if (group_map[tcpu] == group && cpu_distance_fn &&
1934 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1935 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1936 group++;
1937 nr_groups = max(nr_groups, group + 1);
1938 goto next_group;
1939 }
1940 }
1941 group_map[cpu] = group;
1942 group_cnt[group]++;
1943 }
1944
1945 /*
9c015162
DZF
1946 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1947 * Expand the unit_size until we use >= 75% of the units allocated.
1948 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
1949 */
1950 last_allocs = INT_MAX;
1951 for (upa = max_upa; upa; upa--) {
1952 int allocs = 0, wasted = 0;
1953
f09f1243 1954 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1955 continue;
1956
1957 for (group = 0; group < nr_groups; group++) {
1958 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1959 allocs += this_allocs;
1960 wasted += this_allocs * upa - group_cnt[group];
1961 }
1962
1963 /*
1964 * Don't accept if wastage is over 1/3. The
1965 * greater-than comparison ensures upa==1 always
1966 * passes the following check.
1967 */
1968 if (wasted > num_possible_cpus() / 3)
1969 continue;
1970
1971 /* and then don't consume more memory */
1972 if (allocs > last_allocs)
1973 break;
1974 last_allocs = allocs;
1975 best_upa = upa;
1976 }
1977 upa = best_upa;
1978
1979 /* allocate and fill alloc_info */
1980 for (group = 0; group < nr_groups; group++)
1981 nr_units += roundup(group_cnt[group], upa);
1982
1983 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1984 if (!ai)
1985 return ERR_PTR(-ENOMEM);
1986 cpu_map = ai->groups[0].cpu_map;
1987
1988 for (group = 0; group < nr_groups; group++) {
1989 ai->groups[group].cpu_map = cpu_map;
1990 cpu_map += roundup(group_cnt[group], upa);
1991 }
1992
1993 ai->static_size = static_size;
1994 ai->reserved_size = reserved_size;
1995 ai->dyn_size = dyn_size;
1996 ai->unit_size = alloc_size / upa;
1997 ai->atom_size = atom_size;
1998 ai->alloc_size = alloc_size;
1999
2000 for (group = 0, unit = 0; group_cnt[group]; group++) {
2001 struct pcpu_group_info *gi = &ai->groups[group];
2002
2003 /*
2004 * Initialize base_offset as if all groups are located
2005 * back-to-back. The caller should update this to
2006 * reflect actual allocation.
2007 */
2008 gi->base_offset = unit * ai->unit_size;
2009
2010 for_each_possible_cpu(cpu)
2011 if (group_map[cpu] == group)
2012 gi->cpu_map[gi->nr_units++] = cpu;
2013 gi->nr_units = roundup(gi->nr_units, upa);
2014 unit += gi->nr_units;
2015 }
2016 BUG_ON(unit != nr_units);
2017
2018 return ai;
2019}
2020#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2021
2022#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2023/**
2024 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2025 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2026 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2027 * @atom_size: allocation atom size
2028 * @cpu_distance_fn: callback to determine distance between cpus, optional
2029 * @alloc_fn: function to allocate percpu page
25985edc 2030 * @free_fn: function to free percpu page
66c3a757
TH
2031 *
2032 * This is a helper to ease setting up embedded first percpu chunk and
2033 * can be called where pcpu_setup_first_chunk() is expected.
2034 *
2035 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2036 * by calling @alloc_fn and used as-is without being mapped into
2037 * vmalloc area. Allocations are always whole multiples of @atom_size
2038 * aligned to @atom_size.
2039 *
2040 * This enables the first chunk to piggy back on the linear physical
2041 * mapping which often uses larger page size. Please note that this
2042 * can result in very sparse cpu->unit mapping on NUMA machines thus
2043 * requiring large vmalloc address space. Don't use this allocator if
2044 * vmalloc space is not orders of magnitude larger than distances
2045 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2046 *
4ba6ce25 2047 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2048 *
2049 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2050 * size, the leftover is returned using @free_fn.
66c3a757
TH
2051 *
2052 * RETURNS:
fb435d52 2053 * 0 on success, -errno on failure.
66c3a757 2054 */
4ba6ce25 2055int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2056 size_t atom_size,
2057 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2058 pcpu_fc_alloc_fn_t alloc_fn,
2059 pcpu_fc_free_fn_t free_fn)
66c3a757 2060{
c8826dd5
TH
2061 void *base = (void *)ULONG_MAX;
2062 void **areas = NULL;
fd1e8a1f 2063 struct pcpu_alloc_info *ai;
93c76b6b 2064 size_t size_sum, areas_size;
2065 unsigned long max_distance;
9b739662 2066 int group, i, highest_group, rc;
66c3a757 2067
c8826dd5
TH
2068 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2069 cpu_distance_fn);
fd1e8a1f
TH
2070 if (IS_ERR(ai))
2071 return PTR_ERR(ai);
66c3a757 2072
fd1e8a1f 2073 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2074 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2075
999c17e3 2076 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2077 if (!areas) {
fb435d52 2078 rc = -ENOMEM;
c8826dd5 2079 goto out_free;
fa8a7094 2080 }
66c3a757 2081
9b739662 2082 /* allocate, copy and determine base address & max_distance */
2083 highest_group = 0;
c8826dd5
TH
2084 for (group = 0; group < ai->nr_groups; group++) {
2085 struct pcpu_group_info *gi = &ai->groups[group];
2086 unsigned int cpu = NR_CPUS;
2087 void *ptr;
2088
2089 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2090 cpu = gi->cpu_map[i];
2091 BUG_ON(cpu == NR_CPUS);
2092
2093 /* allocate space for the whole group */
2094 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2095 if (!ptr) {
2096 rc = -ENOMEM;
2097 goto out_free_areas;
2098 }
f528f0b8
CM
2099 /* kmemleak tracks the percpu allocations separately */
2100 kmemleak_free(ptr);
c8826dd5 2101 areas[group] = ptr;
fd1e8a1f 2102
c8826dd5 2103 base = min(ptr, base);
9b739662 2104 if (ptr > areas[highest_group])
2105 highest_group = group;
2106 }
2107 max_distance = areas[highest_group] - base;
2108 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2109
2110 /* warn if maximum distance is further than 75% of vmalloc space */
2111 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2112 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2113 max_distance, VMALLOC_TOTAL);
2114#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2115 /* and fail if we have fallback */
2116 rc = -EINVAL;
2117 goto out_free_areas;
2118#endif
42b64281
TH
2119 }
2120
2121 /*
2122 * Copy data and free unused parts. This should happen after all
2123 * allocations are complete; otherwise, we may end up with
2124 * overlapping groups.
2125 */
2126 for (group = 0; group < ai->nr_groups; group++) {
2127 struct pcpu_group_info *gi = &ai->groups[group];
2128 void *ptr = areas[group];
c8826dd5
TH
2129
2130 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2131 if (gi->cpu_map[i] == NR_CPUS) {
2132 /* unused unit, free whole */
2133 free_fn(ptr, ai->unit_size);
2134 continue;
2135 }
2136 /* copy and return the unused part */
2137 memcpy(ptr, __per_cpu_load, ai->static_size);
2138 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2139 }
fa8a7094 2140 }
66c3a757 2141
c8826dd5 2142 /* base address is now known, determine group base offsets */
6ea529a2 2143 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2144 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2145 }
c8826dd5 2146
870d4b12 2147 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2148 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2149 ai->dyn_size, ai->unit_size);
d4b95f80 2150
fb435d52 2151 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2152 goto out_free;
2153
2154out_free_areas:
2155 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2156 if (areas[group])
2157 free_fn(areas[group],
2158 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2159out_free:
fd1e8a1f 2160 pcpu_free_alloc_info(ai);
c8826dd5 2161 if (areas)
999c17e3 2162 memblock_free_early(__pa(areas), areas_size);
fb435d52 2163 return rc;
d4b95f80 2164}
3c9a024f 2165#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2166
3c9a024f 2167#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2168/**
00ae4064 2169 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2170 * @reserved_size: the size of reserved percpu area in bytes
2171 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2172 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2173 * @populate_pte_fn: function to populate pte
2174 *
00ae4064
TH
2175 * This is a helper to ease setting up page-remapped first percpu
2176 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2177 *
2178 * This is the basic allocator. Static percpu area is allocated
2179 * page-by-page into vmalloc area.
2180 *
2181 * RETURNS:
fb435d52 2182 * 0 on success, -errno on failure.
d4b95f80 2183 */
fb435d52
TH
2184int __init pcpu_page_first_chunk(size_t reserved_size,
2185 pcpu_fc_alloc_fn_t alloc_fn,
2186 pcpu_fc_free_fn_t free_fn,
2187 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2188{
8f05a6a6 2189 static struct vm_struct vm;
fd1e8a1f 2190 struct pcpu_alloc_info *ai;
00ae4064 2191 char psize_str[16];
ce3141a2 2192 int unit_pages;
d4b95f80 2193 size_t pages_size;
ce3141a2 2194 struct page **pages;
fb435d52 2195 int unit, i, j, rc;
8f606604 2196 int upa;
2197 int nr_g0_units;
d4b95f80 2198
00ae4064
TH
2199 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2200
4ba6ce25 2201 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2202 if (IS_ERR(ai))
2203 return PTR_ERR(ai);
2204 BUG_ON(ai->nr_groups != 1);
8f606604 2205 upa = ai->alloc_size/ai->unit_size;
2206 nr_g0_units = roundup(num_possible_cpus(), upa);
2207 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2208 pcpu_free_alloc_info(ai);
2209 return -EINVAL;
2210 }
fd1e8a1f
TH
2211
2212 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2213
2214 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2215 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2216 sizeof(pages[0]));
999c17e3 2217 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2218
8f05a6a6 2219 /* allocate pages */
d4b95f80 2220 j = 0;
8f606604 2221 for (unit = 0; unit < num_possible_cpus(); unit++) {
2222 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2223 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2224 void *ptr;
2225
3cbc8565 2226 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2227 if (!ptr) {
870d4b12 2228 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2229 psize_str, cpu);
d4b95f80
TH
2230 goto enomem;
2231 }
f528f0b8
CM
2232 /* kmemleak tracks the percpu allocations separately */
2233 kmemleak_free(ptr);
ce3141a2 2234 pages[j++] = virt_to_page(ptr);
d4b95f80 2235 }
8f606604 2236 }
d4b95f80 2237
8f05a6a6
TH
2238 /* allocate vm area, map the pages and copy static data */
2239 vm.flags = VM_ALLOC;
fd1e8a1f 2240 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2241 vm_area_register_early(&vm, PAGE_SIZE);
2242
fd1e8a1f 2243 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2244 unsigned long unit_addr =
fd1e8a1f 2245 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2246
ce3141a2 2247 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2248 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2249
2250 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2251 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2252 unit_pages);
2253 if (rc < 0)
2254 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2255
8f05a6a6
TH
2256 /*
2257 * FIXME: Archs with virtual cache should flush local
2258 * cache for the linear mapping here - something
2259 * equivalent to flush_cache_vmap() on the local cpu.
2260 * flush_cache_vmap() can't be used as most supporting
2261 * data structures are not set up yet.
2262 */
2263
2264 /* copy static data */
fd1e8a1f 2265 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2266 }
2267
2268 /* we're ready, commit */
870d4b12 2269 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2270 unit_pages, psize_str, vm.addr, ai->static_size,
2271 ai->reserved_size, ai->dyn_size);
d4b95f80 2272
fb435d52 2273 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2274 goto out_free_ar;
2275
2276enomem:
2277 while (--j >= 0)
ce3141a2 2278 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2279 rc = -ENOMEM;
d4b95f80 2280out_free_ar:
999c17e3 2281 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2282 pcpu_free_alloc_info(ai);
fb435d52 2283 return rc;
d4b95f80 2284}
3c9a024f 2285#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2286
bbddff05 2287#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2288/*
bbddff05 2289 * Generic SMP percpu area setup.
e74e3962
TH
2290 *
2291 * The embedding helper is used because its behavior closely resembles
2292 * the original non-dynamic generic percpu area setup. This is
2293 * important because many archs have addressing restrictions and might
2294 * fail if the percpu area is located far away from the previous
2295 * location. As an added bonus, in non-NUMA cases, embedding is
2296 * generally a good idea TLB-wise because percpu area can piggy back
2297 * on the physical linear memory mapping which uses large page
2298 * mappings on applicable archs.
2299 */
e74e3962
TH
2300unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2301EXPORT_SYMBOL(__per_cpu_offset);
2302
c8826dd5
TH
2303static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2304 size_t align)
2305{
999c17e3
SS
2306 return memblock_virt_alloc_from_nopanic(
2307 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2308}
66c3a757 2309
c8826dd5
TH
2310static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2311{
999c17e3 2312 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2313}
2314
e74e3962
TH
2315void __init setup_per_cpu_areas(void)
2316{
e74e3962
TH
2317 unsigned long delta;
2318 unsigned int cpu;
fb435d52 2319 int rc;
e74e3962
TH
2320
2321 /*
2322 * Always reserve area for module percpu variables. That's
2323 * what the legacy allocator did.
2324 */
fb435d52 2325 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2326 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2327 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2328 if (rc < 0)
bbddff05 2329 panic("Failed to initialize percpu areas.");
e74e3962
TH
2330
2331 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2332 for_each_possible_cpu(cpu)
fb435d52 2333 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2334}
bbddff05
TH
2335#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2336
2337#else /* CONFIG_SMP */
2338
2339/*
2340 * UP percpu area setup.
2341 *
2342 * UP always uses km-based percpu allocator with identity mapping.
2343 * Static percpu variables are indistinguishable from the usual static
2344 * variables and don't require any special preparation.
2345 */
2346void __init setup_per_cpu_areas(void)
2347{
2348 const size_t unit_size =
2349 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2350 PERCPU_DYNAMIC_RESERVE));
2351 struct pcpu_alloc_info *ai;
2352 void *fc;
2353
2354 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2355 fc = memblock_virt_alloc_from_nopanic(unit_size,
2356 PAGE_SIZE,
2357 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2358 if (!ai || !fc)
2359 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2360 /* kmemleak tracks the percpu allocations separately */
2361 kmemleak_free(fc);
bbddff05
TH
2362
2363 ai->dyn_size = unit_size;
2364 ai->unit_size = unit_size;
2365 ai->atom_size = unit_size;
2366 ai->alloc_size = unit_size;
2367 ai->groups[0].nr_units = 1;
2368 ai->groups[0].cpu_map[0] = 0;
2369
2370 if (pcpu_setup_first_chunk(ai, fc) < 0)
2371 panic("Failed to initialize percpu areas.");
2372}
2373
2374#endif /* CONFIG_SMP */
099a19d9
TH
2375
2376/*
2377 * First and reserved chunks are initialized with temporary allocation
2378 * map in initdata so that they can be used before slab is online.
2379 * This function is called after slab is brought up and replaces those
2380 * with properly allocated maps.
2381 */
2382void __init percpu_init_late(void)
2383{
2384 struct pcpu_chunk *target_chunks[] =
2385 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2386 struct pcpu_chunk *chunk;
2387 unsigned long flags;
2388 int i;
2389
2390 for (i = 0; (chunk = target_chunks[i]); i++) {
2391 int *map;
2392 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2393
2394 BUILD_BUG_ON(size > PAGE_SIZE);
2395
90459ce0 2396 map = pcpu_mem_zalloc(size);
099a19d9
TH
2397 BUG_ON(!map);
2398
2399 spin_lock_irqsave(&pcpu_lock, flags);
2400 memcpy(map, chunk->map, size);
2401 chunk->map = map;
2402 spin_unlock_irqrestore(&pcpu_lock, flags);
2403 }
2404}
1a4d7607
TH
2405
2406/*
2407 * Percpu allocator is initialized early during boot when neither slab or
2408 * workqueue is available. Plug async management until everything is up
2409 * and running.
2410 */
2411static int __init percpu_enable_async(void)
2412{
2413 pcpu_async_enabled = true;
2414 return 0;
2415}
2416subsys_initcall(percpu_enable_async);